1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 796 /// past the number of slots used by the value in the record. Return true if 797 /// there is an error. 798 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 799 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 800 BasicBlock *ConstExprInsertBB) { 801 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 802 return true; 803 // All values currently take a single record slot. 804 ++Slot; 805 return false; 806 } 807 808 /// Like popValue, but does not increment the Slot number. 809 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 810 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 811 BasicBlock *ConstExprInsertBB) { 812 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 813 return ResVal == nullptr; 814 } 815 816 /// Version of getValue that returns ResVal directly, or 0 if there is an 817 /// error. 818 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 819 unsigned InstNum, Type *Ty, unsigned TyID, 820 BasicBlock *ConstExprInsertBB) { 821 if (Slot == Record.size()) return nullptr; 822 unsigned ValNo = (unsigned)Record[Slot]; 823 // Adjust the ValNo, if it was encoded relative to the InstNum. 824 if (UseRelativeIDs) 825 ValNo = InstNum - ValNo; 826 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 827 } 828 829 /// Like getValue, but decodes signed VBRs. 830 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 831 unsigned InstNum, Type *Ty, unsigned TyID, 832 BasicBlock *ConstExprInsertBB) { 833 if (Slot == Record.size()) return nullptr; 834 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 835 // Adjust the ValNo, if it was encoded relative to the InstNum. 836 if (UseRelativeIDs) 837 ValNo = InstNum - ValNo; 838 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 839 } 840 841 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 842 unsigned &OpNum, 843 unsigned BitWidth) { 844 if (Record.size() - OpNum < 2) 845 return error("Too few records for range"); 846 if (BitWidth > 64) { 847 unsigned LowerActiveWords = Record[OpNum]; 848 unsigned UpperActiveWords = Record[OpNum++] >> 32; 849 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 850 return error("Too few records for range"); 851 APInt Lower = 852 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 853 OpNum += LowerActiveWords; 854 APInt Upper = 855 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 856 OpNum += UpperActiveWords; 857 return ConstantRange(Lower, Upper); 858 } else { 859 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 860 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 861 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 862 } 863 } 864 865 Expected<ConstantRange> 866 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 867 if (Record.size() - OpNum < 1) 868 return error("Too few records for range"); 869 unsigned BitWidth = Record[OpNum++]; 870 return readConstantRange(Record, OpNum, BitWidth); 871 } 872 873 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 874 /// corresponding argument's pointee type. Also upgrades intrinsics that now 875 /// require an elementtype attribute. 876 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 877 878 /// Converts alignment exponent (i.e. power of two (or zero)) to the 879 /// corresponding alignment to use. If alignment is too large, returns 880 /// a corresponding error code. 881 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 882 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 883 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 884 ParserCallbacks Callbacks = {}); 885 886 Error parseComdatRecord(ArrayRef<uint64_t> Record); 887 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 888 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 889 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 890 ArrayRef<uint64_t> Record); 891 892 Error parseAttributeBlock(); 893 Error parseAttributeGroupBlock(); 894 Error parseTypeTable(); 895 Error parseTypeTableBody(); 896 Error parseOperandBundleTags(); 897 Error parseSyncScopeNames(); 898 899 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 900 unsigned NameIndex, Triple &TT); 901 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 902 ArrayRef<uint64_t> Record); 903 Error parseValueSymbolTable(uint64_t Offset = 0); 904 Error parseGlobalValueSymbolTable(); 905 Error parseConstants(); 906 Error rememberAndSkipFunctionBodies(); 907 Error rememberAndSkipFunctionBody(); 908 /// Save the positions of the Metadata blocks and skip parsing the blocks. 909 Error rememberAndSkipMetadata(); 910 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 911 Error parseFunctionBody(Function *F); 912 Error globalCleanup(); 913 Error resolveGlobalAndIndirectSymbolInits(); 914 Error parseUseLists(); 915 Error findFunctionInStream( 916 Function *F, 917 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 918 919 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 920 }; 921 922 /// Class to manage reading and parsing function summary index bitcode 923 /// files/sections. 924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 925 /// The module index built during parsing. 926 ModuleSummaryIndex &TheIndex; 927 928 /// Indicates whether we have encountered a global value summary section 929 /// yet during parsing. 930 bool SeenGlobalValSummary = false; 931 932 /// Indicates whether we have already parsed the VST, used for error checking. 933 bool SeenValueSymbolTable = false; 934 935 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 936 /// Used to enable on-demand parsing of the VST. 937 uint64_t VSTOffset = 0; 938 939 // Map to save ValueId to ValueInfo association that was recorded in the 940 // ValueSymbolTable. It is used after the VST is parsed to convert 941 // call graph edges read from the function summary from referencing 942 // callees by their ValueId to using the ValueInfo instead, which is how 943 // they are recorded in the summary index being built. 944 // We save a GUID which refers to the same global as the ValueInfo, but 945 // ignoring the linkage, i.e. for values other than local linkage they are 946 // identical (this is the second tuple member). 947 // The third tuple member is the real GUID of the ValueInfo. 948 DenseMap<unsigned, 949 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 950 ValueIdToValueInfoMap; 951 952 /// Map populated during module path string table parsing, from the 953 /// module ID to a string reference owned by the index's module 954 /// path string table, used to correlate with combined index 955 /// summary records. 956 DenseMap<uint64_t, StringRef> ModuleIdMap; 957 958 /// Original source file name recorded in a bitcode record. 959 std::string SourceFileName; 960 961 /// The string identifier given to this module by the client, normally the 962 /// path to the bitcode file. 963 StringRef ModulePath; 964 965 /// Callback to ask whether a symbol is the prevailing copy when invoked 966 /// during combined index building. 967 std::function<bool(GlobalValue::GUID)> IsPrevailing; 968 969 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 970 /// ids from the lists in the callsite and alloc entries to the index. 971 std::vector<uint64_t> StackIds; 972 973 public: 974 ModuleSummaryIndexBitcodeReader( 975 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 976 StringRef ModulePath, 977 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 978 979 Error parseModule(); 980 981 private: 982 void setValueGUID(uint64_t ValueID, StringRef ValueName, 983 GlobalValue::LinkageTypes Linkage, 984 StringRef SourceFileName); 985 Error parseValueSymbolTable( 986 uint64_t Offset, 987 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 988 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 989 SmallVector<FunctionSummary::EdgeTy, 0> 990 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 991 bool HasProfile, bool HasRelBF); 992 Error parseEntireSummary(unsigned ID); 993 Error parseModuleStringTable(); 994 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 995 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 996 TypeIdCompatibleVtableInfo &TypeId); 997 std::vector<FunctionSummary::ParamAccess> 998 parseParamAccesses(ArrayRef<uint64_t> Record); 999 1000 template <bool AllowNullValueInfo = false> 1001 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 1002 getValueInfoFromValueId(unsigned ValueId); 1003 1004 void addThisModule(); 1005 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1011 Error Err) { 1012 if (Err) { 1013 std::error_code EC; 1014 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1015 EC = EIB.convertToErrorCode(); 1016 Ctx.emitError(EIB.message()); 1017 }); 1018 return EC; 1019 } 1020 return std::error_code(); 1021 } 1022 1023 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1024 StringRef ProducerIdentification, 1025 LLVMContext &Context) 1026 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1027 ValueList(this->Stream.SizeInBytes(), 1028 [this](unsigned ValID, BasicBlock *InsertBB) { 1029 return materializeValue(ValID, InsertBB); 1030 }) { 1031 this->ProducerIdentification = std::string(ProducerIdentification); 1032 } 1033 1034 Error BitcodeReader::materializeForwardReferencedFunctions() { 1035 if (WillMaterializeAllForwardRefs) 1036 return Error::success(); 1037 1038 // Prevent recursion. 1039 WillMaterializeAllForwardRefs = true; 1040 1041 while (!BasicBlockFwdRefQueue.empty()) { 1042 Function *F = BasicBlockFwdRefQueue.front(); 1043 BasicBlockFwdRefQueue.pop_front(); 1044 assert(F && "Expected valid function"); 1045 if (!BasicBlockFwdRefs.count(F)) 1046 // Already materialized. 1047 continue; 1048 1049 // Check for a function that isn't materializable to prevent an infinite 1050 // loop. When parsing a blockaddress stored in a global variable, there 1051 // isn't a trivial way to check if a function will have a body without a 1052 // linear search through FunctionsWithBodies, so just check it here. 1053 if (!F->isMaterializable()) 1054 return error("Never resolved function from blockaddress"); 1055 1056 // Try to materialize F. 1057 if (Error Err = materialize(F)) 1058 return Err; 1059 } 1060 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1061 1062 for (Function *F : BackwardRefFunctions) 1063 if (Error Err = materialize(F)) 1064 return Err; 1065 BackwardRefFunctions.clear(); 1066 1067 // Reset state. 1068 WillMaterializeAllForwardRefs = false; 1069 return Error::success(); 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // Helper functions to implement forward reference resolution, etc. 1074 //===----------------------------------------------------------------------===// 1075 1076 static bool hasImplicitComdat(size_t Val) { 1077 switch (Val) { 1078 default: 1079 return false; 1080 case 1: // Old WeakAnyLinkage 1081 case 4: // Old LinkOnceAnyLinkage 1082 case 10: // Old WeakODRLinkage 1083 case 11: // Old LinkOnceODRLinkage 1084 return true; 1085 } 1086 } 1087 1088 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1089 switch (Val) { 1090 default: // Map unknown/new linkages to external 1091 case 0: 1092 return GlobalValue::ExternalLinkage; 1093 case 2: 1094 return GlobalValue::AppendingLinkage; 1095 case 3: 1096 return GlobalValue::InternalLinkage; 1097 case 5: 1098 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1099 case 6: 1100 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1101 case 7: 1102 return GlobalValue::ExternalWeakLinkage; 1103 case 8: 1104 return GlobalValue::CommonLinkage; 1105 case 9: 1106 return GlobalValue::PrivateLinkage; 1107 case 12: 1108 return GlobalValue::AvailableExternallyLinkage; 1109 case 13: 1110 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1111 case 14: 1112 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1113 case 15: 1114 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1115 case 1: // Old value with implicit comdat. 1116 case 16: 1117 return GlobalValue::WeakAnyLinkage; 1118 case 10: // Old value with implicit comdat. 1119 case 17: 1120 return GlobalValue::WeakODRLinkage; 1121 case 4: // Old value with implicit comdat. 1122 case 18: 1123 return GlobalValue::LinkOnceAnyLinkage; 1124 case 11: // Old value with implicit comdat. 1125 case 19: 1126 return GlobalValue::LinkOnceODRLinkage; 1127 } 1128 } 1129 1130 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1131 FunctionSummary::FFlags Flags; 1132 Flags.ReadNone = RawFlags & 0x1; 1133 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1134 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1135 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1136 Flags.NoInline = (RawFlags >> 4) & 0x1; 1137 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1138 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1139 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1140 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1141 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1142 return Flags; 1143 } 1144 1145 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1146 // 1147 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1148 // visibility: [8, 10). 1149 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1150 uint64_t Version) { 1151 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1152 // like getDecodedLinkage() above. Any future change to the linkage enum and 1153 // to getDecodedLinkage() will need to be taken into account here as above. 1154 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1155 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1156 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1157 RawFlags = RawFlags >> 4; 1158 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1159 // The Live flag wasn't introduced until version 3. For dead stripping 1160 // to work correctly on earlier versions, we must conservatively treat all 1161 // values as live. 1162 bool Live = (RawFlags & 0x2) || Version < 3; 1163 bool Local = (RawFlags & 0x4); 1164 bool AutoHide = (RawFlags & 0x8); 1165 1166 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1167 Live, Local, AutoHide, IK); 1168 } 1169 1170 // Decode the flags for GlobalVariable in the summary 1171 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1172 return GlobalVarSummary::GVarFlags( 1173 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1174 (RawFlags & 0x4) ? true : false, 1175 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1176 } 1177 1178 static std::pair<CalleeInfo::HotnessType, bool> 1179 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1180 CalleeInfo::HotnessType Hotness = 1181 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1182 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1183 return {Hotness, HasTailCall}; 1184 } 1185 1186 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1187 bool &HasTailCall) { 1188 static constexpr uint64_t RelBlockFreqMask = 1189 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1190 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1191 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1192 } 1193 1194 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1195 switch (Val) { 1196 default: // Map unknown visibilities to default. 1197 case 0: return GlobalValue::DefaultVisibility; 1198 case 1: return GlobalValue::HiddenVisibility; 1199 case 2: return GlobalValue::ProtectedVisibility; 1200 } 1201 } 1202 1203 static GlobalValue::DLLStorageClassTypes 1204 getDecodedDLLStorageClass(unsigned Val) { 1205 switch (Val) { 1206 default: // Map unknown values to default. 1207 case 0: return GlobalValue::DefaultStorageClass; 1208 case 1: return GlobalValue::DLLImportStorageClass; 1209 case 2: return GlobalValue::DLLExportStorageClass; 1210 } 1211 } 1212 1213 static bool getDecodedDSOLocal(unsigned Val) { 1214 switch(Val) { 1215 default: // Map unknown values to preemptable. 1216 case 0: return false; 1217 case 1: return true; 1218 } 1219 } 1220 1221 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1222 switch (Val) { 1223 case 1: 1224 return CodeModel::Tiny; 1225 case 2: 1226 return CodeModel::Small; 1227 case 3: 1228 return CodeModel::Kernel; 1229 case 4: 1230 return CodeModel::Medium; 1231 case 5: 1232 return CodeModel::Large; 1233 } 1234 1235 return {}; 1236 } 1237 1238 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1239 switch (Val) { 1240 case 0: return GlobalVariable::NotThreadLocal; 1241 default: // Map unknown non-zero value to general dynamic. 1242 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1243 case 2: return GlobalVariable::LocalDynamicTLSModel; 1244 case 3: return GlobalVariable::InitialExecTLSModel; 1245 case 4: return GlobalVariable::LocalExecTLSModel; 1246 } 1247 } 1248 1249 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1250 switch (Val) { 1251 default: // Map unknown to UnnamedAddr::None. 1252 case 0: return GlobalVariable::UnnamedAddr::None; 1253 case 1: return GlobalVariable::UnnamedAddr::Global; 1254 case 2: return GlobalVariable::UnnamedAddr::Local; 1255 } 1256 } 1257 1258 static int getDecodedCastOpcode(unsigned Val) { 1259 switch (Val) { 1260 default: return -1; 1261 case bitc::CAST_TRUNC : return Instruction::Trunc; 1262 case bitc::CAST_ZEXT : return Instruction::ZExt; 1263 case bitc::CAST_SEXT : return Instruction::SExt; 1264 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1265 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1266 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1267 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1268 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1269 case bitc::CAST_FPEXT : return Instruction::FPExt; 1270 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1271 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1272 case bitc::CAST_BITCAST : return Instruction::BitCast; 1273 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1274 } 1275 } 1276 1277 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1278 bool IsFP = Ty->isFPOrFPVectorTy(); 1279 // UnOps are only valid for int/fp or vector of int/fp types 1280 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1281 return -1; 1282 1283 switch (Val) { 1284 default: 1285 return -1; 1286 case bitc::UNOP_FNEG: 1287 return IsFP ? Instruction::FNeg : -1; 1288 } 1289 } 1290 1291 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1292 bool IsFP = Ty->isFPOrFPVectorTy(); 1293 // BinOps are only valid for int/fp or vector of int/fp types 1294 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1295 return -1; 1296 1297 switch (Val) { 1298 default: 1299 return -1; 1300 case bitc::BINOP_ADD: 1301 return IsFP ? Instruction::FAdd : Instruction::Add; 1302 case bitc::BINOP_SUB: 1303 return IsFP ? Instruction::FSub : Instruction::Sub; 1304 case bitc::BINOP_MUL: 1305 return IsFP ? Instruction::FMul : Instruction::Mul; 1306 case bitc::BINOP_UDIV: 1307 return IsFP ? -1 : Instruction::UDiv; 1308 case bitc::BINOP_SDIV: 1309 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1310 case bitc::BINOP_UREM: 1311 return IsFP ? -1 : Instruction::URem; 1312 case bitc::BINOP_SREM: 1313 return IsFP ? Instruction::FRem : Instruction::SRem; 1314 case bitc::BINOP_SHL: 1315 return IsFP ? -1 : Instruction::Shl; 1316 case bitc::BINOP_LSHR: 1317 return IsFP ? -1 : Instruction::LShr; 1318 case bitc::BINOP_ASHR: 1319 return IsFP ? -1 : Instruction::AShr; 1320 case bitc::BINOP_AND: 1321 return IsFP ? -1 : Instruction::And; 1322 case bitc::BINOP_OR: 1323 return IsFP ? -1 : Instruction::Or; 1324 case bitc::BINOP_XOR: 1325 return IsFP ? -1 : Instruction::Xor; 1326 } 1327 } 1328 1329 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1330 switch (Val) { 1331 default: return AtomicRMWInst::BAD_BINOP; 1332 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1333 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1334 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1335 case bitc::RMW_AND: return AtomicRMWInst::And; 1336 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1337 case bitc::RMW_OR: return AtomicRMWInst::Or; 1338 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1339 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1340 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1341 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1342 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1343 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1344 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1345 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1346 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1347 case bitc::RMW_UINC_WRAP: 1348 return AtomicRMWInst::UIncWrap; 1349 case bitc::RMW_UDEC_WRAP: 1350 return AtomicRMWInst::UDecWrap; 1351 case bitc::RMW_USUB_COND: 1352 return AtomicRMWInst::USubCond; 1353 case bitc::RMW_USUB_SAT: 1354 return AtomicRMWInst::USubSat; 1355 } 1356 } 1357 1358 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1359 switch (Val) { 1360 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1361 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1362 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1363 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1364 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1365 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1366 default: // Map unknown orderings to sequentially-consistent. 1367 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1368 } 1369 } 1370 1371 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1372 switch (Val) { 1373 default: // Map unknown selection kinds to any. 1374 case bitc::COMDAT_SELECTION_KIND_ANY: 1375 return Comdat::Any; 1376 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1377 return Comdat::ExactMatch; 1378 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1379 return Comdat::Largest; 1380 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1381 return Comdat::NoDeduplicate; 1382 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1383 return Comdat::SameSize; 1384 } 1385 } 1386 1387 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1388 FastMathFlags FMF; 1389 if (0 != (Val & bitc::UnsafeAlgebra)) 1390 FMF.setFast(); 1391 if (0 != (Val & bitc::AllowReassoc)) 1392 FMF.setAllowReassoc(); 1393 if (0 != (Val & bitc::NoNaNs)) 1394 FMF.setNoNaNs(); 1395 if (0 != (Val & bitc::NoInfs)) 1396 FMF.setNoInfs(); 1397 if (0 != (Val & bitc::NoSignedZeros)) 1398 FMF.setNoSignedZeros(); 1399 if (0 != (Val & bitc::AllowReciprocal)) 1400 FMF.setAllowReciprocal(); 1401 if (0 != (Val & bitc::AllowContract)) 1402 FMF.setAllowContract(true); 1403 if (0 != (Val & bitc::ApproxFunc)) 1404 FMF.setApproxFunc(); 1405 return FMF; 1406 } 1407 1408 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1409 // A GlobalValue with local linkage cannot have a DLL storage class. 1410 if (GV->hasLocalLinkage()) 1411 return; 1412 switch (Val) { 1413 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1414 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1415 } 1416 } 1417 1418 Type *BitcodeReader::getTypeByID(unsigned ID) { 1419 // The type table size is always specified correctly. 1420 if (ID >= TypeList.size()) 1421 return nullptr; 1422 1423 if (Type *Ty = TypeList[ID]) 1424 return Ty; 1425 1426 // If we have a forward reference, the only possible case is when it is to a 1427 // named struct. Just create a placeholder for now. 1428 return TypeList[ID] = createIdentifiedStructType(Context); 1429 } 1430 1431 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1432 auto It = ContainedTypeIDs.find(ID); 1433 if (It == ContainedTypeIDs.end()) 1434 return InvalidTypeID; 1435 1436 if (Idx >= It->second.size()) 1437 return InvalidTypeID; 1438 1439 return It->second[Idx]; 1440 } 1441 1442 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1443 if (ID >= TypeList.size()) 1444 return nullptr; 1445 1446 Type *Ty = TypeList[ID]; 1447 if (!Ty->isPointerTy()) 1448 return nullptr; 1449 1450 return getTypeByID(getContainedTypeID(ID, 0)); 1451 } 1452 1453 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1454 ArrayRef<unsigned> ChildTypeIDs) { 1455 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1456 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1457 auto It = VirtualTypeIDs.find(CacheKey); 1458 if (It != VirtualTypeIDs.end()) { 1459 // The cmpxchg return value is the only place we need more than one 1460 // contained type ID, however the second one will always be the same (i1), 1461 // so we don't need to include it in the cache key. This asserts that the 1462 // contained types are indeed as expected and there are no collisions. 1463 assert((ChildTypeIDs.empty() || 1464 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1465 "Incorrect cached contained type IDs"); 1466 return It->second; 1467 } 1468 1469 unsigned TypeID = TypeList.size(); 1470 TypeList.push_back(Ty); 1471 if (!ChildTypeIDs.empty()) 1472 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1473 VirtualTypeIDs.insert({CacheKey, TypeID}); 1474 return TypeID; 1475 } 1476 1477 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1478 GEPNoWrapFlags NW; 1479 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1480 NW |= GEPNoWrapFlags::inBounds(); 1481 if (Flags & (1 << bitc::GEP_NUSW)) 1482 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1483 if (Flags & (1 << bitc::GEP_NUW)) 1484 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1485 return NW; 1486 } 1487 1488 static bool isConstExprSupported(const BitcodeConstant *BC) { 1489 uint8_t Opcode = BC->Opcode; 1490 1491 // These are not real constant expressions, always consider them supported. 1492 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1493 return true; 1494 1495 // If -expand-constant-exprs is set, we want to consider all expressions 1496 // as unsupported. 1497 if (ExpandConstantExprs) 1498 return false; 1499 1500 if (Instruction::isBinaryOp(Opcode)) 1501 return ConstantExpr::isSupportedBinOp(Opcode); 1502 1503 if (Instruction::isCast(Opcode)) 1504 return ConstantExpr::isSupportedCastOp(Opcode); 1505 1506 if (Opcode == Instruction::GetElementPtr) 1507 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1508 1509 switch (Opcode) { 1510 case Instruction::FNeg: 1511 case Instruction::Select: 1512 case Instruction::ICmp: 1513 case Instruction::FCmp: 1514 return false; 1515 default: 1516 return true; 1517 } 1518 } 1519 1520 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1521 BasicBlock *InsertBB) { 1522 // Quickly handle the case where there is no BitcodeConstant to resolve. 1523 if (StartValID < ValueList.size() && ValueList[StartValID] && 1524 !isa<BitcodeConstant>(ValueList[StartValID])) 1525 return ValueList[StartValID]; 1526 1527 SmallDenseMap<unsigned, Value *> MaterializedValues; 1528 SmallVector<unsigned> Worklist; 1529 Worklist.push_back(StartValID); 1530 while (!Worklist.empty()) { 1531 unsigned ValID = Worklist.back(); 1532 if (MaterializedValues.count(ValID)) { 1533 // Duplicate expression that was already handled. 1534 Worklist.pop_back(); 1535 continue; 1536 } 1537 1538 if (ValID >= ValueList.size() || !ValueList[ValID]) 1539 return error("Invalid value ID"); 1540 1541 Value *V = ValueList[ValID]; 1542 auto *BC = dyn_cast<BitcodeConstant>(V); 1543 if (!BC) { 1544 MaterializedValues.insert({ValID, V}); 1545 Worklist.pop_back(); 1546 continue; 1547 } 1548 1549 // Iterate in reverse, so values will get popped from the worklist in 1550 // expected order. 1551 SmallVector<Value *> Ops; 1552 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1553 auto It = MaterializedValues.find(OpID); 1554 if (It != MaterializedValues.end()) 1555 Ops.push_back(It->second); 1556 else 1557 Worklist.push_back(OpID); 1558 } 1559 1560 // Some expressions have not been resolved yet, handle them first and then 1561 // revisit this one. 1562 if (Ops.size() != BC->getOperandIDs().size()) 1563 continue; 1564 std::reverse(Ops.begin(), Ops.end()); 1565 1566 SmallVector<Constant *> ConstOps; 1567 for (Value *Op : Ops) 1568 if (auto *C = dyn_cast<Constant>(Op)) 1569 ConstOps.push_back(C); 1570 1571 // Materialize as constant expression if possible. 1572 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1573 Constant *C; 1574 if (Instruction::isCast(BC->Opcode)) { 1575 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1576 if (!C) 1577 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1578 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1579 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1580 } else { 1581 switch (BC->Opcode) { 1582 case BitcodeConstant::ConstantPtrAuthOpcode: { 1583 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1584 if (!Key) 1585 return error("ptrauth key operand must be ConstantInt"); 1586 1587 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1588 if (!Disc) 1589 return error("ptrauth disc operand must be ConstantInt"); 1590 1591 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1592 break; 1593 } 1594 case BitcodeConstant::NoCFIOpcode: { 1595 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1596 if (!GV) 1597 return error("no_cfi operand must be GlobalValue"); 1598 C = NoCFIValue::get(GV); 1599 break; 1600 } 1601 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1602 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1603 if (!GV) 1604 return error("dso_local operand must be GlobalValue"); 1605 C = DSOLocalEquivalent::get(GV); 1606 break; 1607 } 1608 case BitcodeConstant::BlockAddressOpcode: { 1609 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1610 if (!Fn) 1611 return error("blockaddress operand must be a function"); 1612 1613 // If the function is already parsed we can insert the block address 1614 // right away. 1615 BasicBlock *BB; 1616 unsigned BBID = BC->BlockAddressBB; 1617 if (!BBID) 1618 // Invalid reference to entry block. 1619 return error("Invalid ID"); 1620 if (!Fn->empty()) { 1621 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1622 for (size_t I = 0, E = BBID; I != E; ++I) { 1623 if (BBI == BBE) 1624 return error("Invalid ID"); 1625 ++BBI; 1626 } 1627 BB = &*BBI; 1628 } else { 1629 // Otherwise insert a placeholder and remember it so it can be 1630 // inserted when the function is parsed. 1631 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1632 if (FwdBBs.empty()) 1633 BasicBlockFwdRefQueue.push_back(Fn); 1634 if (FwdBBs.size() < BBID + 1) 1635 FwdBBs.resize(BBID + 1); 1636 if (!FwdBBs[BBID]) 1637 FwdBBs[BBID] = BasicBlock::Create(Context); 1638 BB = FwdBBs[BBID]; 1639 } 1640 C = BlockAddress::get(Fn, BB); 1641 break; 1642 } 1643 case BitcodeConstant::ConstantStructOpcode: 1644 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1645 break; 1646 case BitcodeConstant::ConstantArrayOpcode: 1647 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1648 break; 1649 case BitcodeConstant::ConstantVectorOpcode: 1650 C = ConstantVector::get(ConstOps); 1651 break; 1652 case Instruction::GetElementPtr: 1653 C = ConstantExpr::getGetElementPtr( 1654 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1655 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1656 break; 1657 case Instruction::ExtractElement: 1658 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1659 break; 1660 case Instruction::InsertElement: 1661 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1662 ConstOps[2]); 1663 break; 1664 case Instruction::ShuffleVector: { 1665 SmallVector<int, 16> Mask; 1666 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1667 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1668 break; 1669 } 1670 default: 1671 llvm_unreachable("Unhandled bitcode constant"); 1672 } 1673 } 1674 1675 // Cache resolved constant. 1676 ValueList.replaceValueWithoutRAUW(ValID, C); 1677 MaterializedValues.insert({ValID, C}); 1678 Worklist.pop_back(); 1679 continue; 1680 } 1681 1682 if (!InsertBB) 1683 return error(Twine("Value referenced by initializer is an unsupported " 1684 "constant expression of type ") + 1685 BC->getOpcodeName()); 1686 1687 // Materialize as instructions if necessary. 1688 Instruction *I; 1689 if (Instruction::isCast(BC->Opcode)) { 1690 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1691 BC->getType(), "constexpr", InsertBB); 1692 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1693 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1694 "constexpr", InsertBB); 1695 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1696 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1697 Ops[1], "constexpr", InsertBB); 1698 if (isa<OverflowingBinaryOperator>(I)) { 1699 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1700 I->setHasNoSignedWrap(); 1701 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1702 I->setHasNoUnsignedWrap(); 1703 } 1704 if (isa<PossiblyExactOperator>(I) && 1705 (BC->Flags & PossiblyExactOperator::IsExact)) 1706 I->setIsExact(); 1707 } else { 1708 switch (BC->Opcode) { 1709 case BitcodeConstant::ConstantVectorOpcode: { 1710 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1711 Value *V = PoisonValue::get(BC->getType()); 1712 for (auto Pair : enumerate(Ops)) { 1713 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1714 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1715 InsertBB); 1716 } 1717 I = cast<Instruction>(V); 1718 break; 1719 } 1720 case BitcodeConstant::ConstantStructOpcode: 1721 case BitcodeConstant::ConstantArrayOpcode: { 1722 Value *V = PoisonValue::get(BC->getType()); 1723 for (auto Pair : enumerate(Ops)) 1724 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1725 "constexpr.ins", InsertBB); 1726 I = cast<Instruction>(V); 1727 break; 1728 } 1729 case Instruction::ICmp: 1730 case Instruction::FCmp: 1731 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1732 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1733 "constexpr", InsertBB); 1734 break; 1735 case Instruction::GetElementPtr: 1736 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1737 ArrayRef(Ops).drop_front(), "constexpr", 1738 InsertBB); 1739 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1740 break; 1741 case Instruction::Select: 1742 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1743 break; 1744 case Instruction::ExtractElement: 1745 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1746 break; 1747 case Instruction::InsertElement: 1748 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1749 InsertBB); 1750 break; 1751 case Instruction::ShuffleVector: 1752 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1753 InsertBB); 1754 break; 1755 default: 1756 llvm_unreachable("Unhandled bitcode constant"); 1757 } 1758 } 1759 1760 MaterializedValues.insert({ValID, I}); 1761 Worklist.pop_back(); 1762 } 1763 1764 return MaterializedValues[StartValID]; 1765 } 1766 1767 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1768 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1769 if (!MaybeV) 1770 return MaybeV.takeError(); 1771 1772 // Result must be Constant if InsertBB is nullptr. 1773 return cast<Constant>(MaybeV.get()); 1774 } 1775 1776 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1777 StringRef Name) { 1778 auto *Ret = StructType::create(Context, Name); 1779 IdentifiedStructTypes.push_back(Ret); 1780 return Ret; 1781 } 1782 1783 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1784 auto *Ret = StructType::create(Context); 1785 IdentifiedStructTypes.push_back(Ret); 1786 return Ret; 1787 } 1788 1789 //===----------------------------------------------------------------------===// 1790 // Functions for parsing blocks from the bitcode file 1791 //===----------------------------------------------------------------------===// 1792 1793 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1794 switch (Val) { 1795 case Attribute::EndAttrKinds: 1796 case Attribute::EmptyKey: 1797 case Attribute::TombstoneKey: 1798 llvm_unreachable("Synthetic enumerators which should never get here"); 1799 1800 case Attribute::None: return 0; 1801 case Attribute::ZExt: return 1 << 0; 1802 case Attribute::SExt: return 1 << 1; 1803 case Attribute::NoReturn: return 1 << 2; 1804 case Attribute::InReg: return 1 << 3; 1805 case Attribute::StructRet: return 1 << 4; 1806 case Attribute::NoUnwind: return 1 << 5; 1807 case Attribute::NoAlias: return 1 << 6; 1808 case Attribute::ByVal: return 1 << 7; 1809 case Attribute::Nest: return 1 << 8; 1810 case Attribute::ReadNone: return 1 << 9; 1811 case Attribute::ReadOnly: return 1 << 10; 1812 case Attribute::NoInline: return 1 << 11; 1813 case Attribute::AlwaysInline: return 1 << 12; 1814 case Attribute::OptimizeForSize: return 1 << 13; 1815 case Attribute::StackProtect: return 1 << 14; 1816 case Attribute::StackProtectReq: return 1 << 15; 1817 case Attribute::Alignment: return 31 << 16; 1818 case Attribute::NoCapture: return 1 << 21; 1819 case Attribute::NoRedZone: return 1 << 22; 1820 case Attribute::NoImplicitFloat: return 1 << 23; 1821 case Attribute::Naked: return 1 << 24; 1822 case Attribute::InlineHint: return 1 << 25; 1823 case Attribute::StackAlignment: return 7 << 26; 1824 case Attribute::ReturnsTwice: return 1 << 29; 1825 case Attribute::UWTable: return 1 << 30; 1826 case Attribute::NonLazyBind: return 1U << 31; 1827 case Attribute::SanitizeAddress: return 1ULL << 32; 1828 case Attribute::MinSize: return 1ULL << 33; 1829 case Attribute::NoDuplicate: return 1ULL << 34; 1830 case Attribute::StackProtectStrong: return 1ULL << 35; 1831 case Attribute::SanitizeThread: return 1ULL << 36; 1832 case Attribute::SanitizeMemory: return 1ULL << 37; 1833 case Attribute::NoBuiltin: return 1ULL << 38; 1834 case Attribute::Returned: return 1ULL << 39; 1835 case Attribute::Cold: return 1ULL << 40; 1836 case Attribute::Builtin: return 1ULL << 41; 1837 case Attribute::OptimizeNone: return 1ULL << 42; 1838 case Attribute::InAlloca: return 1ULL << 43; 1839 case Attribute::NonNull: return 1ULL << 44; 1840 case Attribute::JumpTable: return 1ULL << 45; 1841 case Attribute::Convergent: return 1ULL << 46; 1842 case Attribute::SafeStack: return 1ULL << 47; 1843 case Attribute::NoRecurse: return 1ULL << 48; 1844 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1845 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1846 case Attribute::SwiftSelf: return 1ULL << 51; 1847 case Attribute::SwiftError: return 1ULL << 52; 1848 case Attribute::WriteOnly: return 1ULL << 53; 1849 case Attribute::Speculatable: return 1ULL << 54; 1850 case Attribute::StrictFP: return 1ULL << 55; 1851 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1852 case Attribute::NoCfCheck: return 1ULL << 57; 1853 case Attribute::OptForFuzzing: return 1ULL << 58; 1854 case Attribute::ShadowCallStack: return 1ULL << 59; 1855 case Attribute::SpeculativeLoadHardening: 1856 return 1ULL << 60; 1857 case Attribute::ImmArg: 1858 return 1ULL << 61; 1859 case Attribute::WillReturn: 1860 return 1ULL << 62; 1861 case Attribute::NoFree: 1862 return 1ULL << 63; 1863 default: 1864 // Other attributes are not supported in the raw format, 1865 // as we ran out of space. 1866 return 0; 1867 } 1868 llvm_unreachable("Unsupported attribute type"); 1869 } 1870 1871 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1872 if (!Val) return; 1873 1874 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1875 I = Attribute::AttrKind(I + 1)) { 1876 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1877 if (I == Attribute::Alignment) 1878 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1879 else if (I == Attribute::StackAlignment) 1880 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1881 else if (Attribute::isTypeAttrKind(I)) 1882 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1883 else 1884 B.addAttribute(I); 1885 } 1886 } 1887 } 1888 1889 /// This fills an AttrBuilder object with the LLVM attributes that have 1890 /// been decoded from the given integer. This function must stay in sync with 1891 /// 'encodeLLVMAttributesForBitcode'. 1892 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1893 uint64_t EncodedAttrs, 1894 uint64_t AttrIdx) { 1895 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1896 // the bits above 31 down by 11 bits. 1897 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1898 assert((!Alignment || isPowerOf2_32(Alignment)) && 1899 "Alignment must be a power of two."); 1900 1901 if (Alignment) 1902 B.addAlignmentAttr(Alignment); 1903 1904 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1905 (EncodedAttrs & 0xffff); 1906 1907 if (AttrIdx == AttributeList::FunctionIndex) { 1908 // Upgrade old memory attributes. 1909 MemoryEffects ME = MemoryEffects::unknown(); 1910 if (Attrs & (1ULL << 9)) { 1911 // ReadNone 1912 Attrs &= ~(1ULL << 9); 1913 ME &= MemoryEffects::none(); 1914 } 1915 if (Attrs & (1ULL << 10)) { 1916 // ReadOnly 1917 Attrs &= ~(1ULL << 10); 1918 ME &= MemoryEffects::readOnly(); 1919 } 1920 if (Attrs & (1ULL << 49)) { 1921 // InaccessibleMemOnly 1922 Attrs &= ~(1ULL << 49); 1923 ME &= MemoryEffects::inaccessibleMemOnly(); 1924 } 1925 if (Attrs & (1ULL << 50)) { 1926 // InaccessibleMemOrArgMemOnly 1927 Attrs &= ~(1ULL << 50); 1928 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1929 } 1930 if (Attrs & (1ULL << 53)) { 1931 // WriteOnly 1932 Attrs &= ~(1ULL << 53); 1933 ME &= MemoryEffects::writeOnly(); 1934 } 1935 if (ME != MemoryEffects::unknown()) 1936 B.addMemoryAttr(ME); 1937 } 1938 1939 addRawAttributeValue(B, Attrs); 1940 } 1941 1942 Error BitcodeReader::parseAttributeBlock() { 1943 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1944 return Err; 1945 1946 if (!MAttributes.empty()) 1947 return error("Invalid multiple blocks"); 1948 1949 SmallVector<uint64_t, 64> Record; 1950 1951 SmallVector<AttributeList, 8> Attrs; 1952 1953 // Read all the records. 1954 while (true) { 1955 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1956 if (!MaybeEntry) 1957 return MaybeEntry.takeError(); 1958 BitstreamEntry Entry = MaybeEntry.get(); 1959 1960 switch (Entry.Kind) { 1961 case BitstreamEntry::SubBlock: // Handled for us already. 1962 case BitstreamEntry::Error: 1963 return error("Malformed block"); 1964 case BitstreamEntry::EndBlock: 1965 return Error::success(); 1966 case BitstreamEntry::Record: 1967 // The interesting case. 1968 break; 1969 } 1970 1971 // Read a record. 1972 Record.clear(); 1973 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1974 if (!MaybeRecord) 1975 return MaybeRecord.takeError(); 1976 switch (MaybeRecord.get()) { 1977 default: // Default behavior: ignore. 1978 break; 1979 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1980 // Deprecated, but still needed to read old bitcode files. 1981 if (Record.size() & 1) 1982 return error("Invalid parameter attribute record"); 1983 1984 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1985 AttrBuilder B(Context); 1986 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1987 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1988 } 1989 1990 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1991 Attrs.clear(); 1992 break; 1993 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1994 for (uint64_t Val : Record) 1995 Attrs.push_back(MAttributeGroups[Val]); 1996 1997 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1998 Attrs.clear(); 1999 break; 2000 } 2001 } 2002 } 2003 2004 // Returns Attribute::None on unrecognized codes. 2005 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2006 switch (Code) { 2007 default: 2008 return Attribute::None; 2009 case bitc::ATTR_KIND_ALIGNMENT: 2010 return Attribute::Alignment; 2011 case bitc::ATTR_KIND_ALWAYS_INLINE: 2012 return Attribute::AlwaysInline; 2013 case bitc::ATTR_KIND_BUILTIN: 2014 return Attribute::Builtin; 2015 case bitc::ATTR_KIND_BY_VAL: 2016 return Attribute::ByVal; 2017 case bitc::ATTR_KIND_IN_ALLOCA: 2018 return Attribute::InAlloca; 2019 case bitc::ATTR_KIND_COLD: 2020 return Attribute::Cold; 2021 case bitc::ATTR_KIND_CONVERGENT: 2022 return Attribute::Convergent; 2023 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2024 return Attribute::DisableSanitizerInstrumentation; 2025 case bitc::ATTR_KIND_ELEMENTTYPE: 2026 return Attribute::ElementType; 2027 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2028 return Attribute::FnRetThunkExtern; 2029 case bitc::ATTR_KIND_INLINE_HINT: 2030 return Attribute::InlineHint; 2031 case bitc::ATTR_KIND_IN_REG: 2032 return Attribute::InReg; 2033 case bitc::ATTR_KIND_JUMP_TABLE: 2034 return Attribute::JumpTable; 2035 case bitc::ATTR_KIND_MEMORY: 2036 return Attribute::Memory; 2037 case bitc::ATTR_KIND_NOFPCLASS: 2038 return Attribute::NoFPClass; 2039 case bitc::ATTR_KIND_MIN_SIZE: 2040 return Attribute::MinSize; 2041 case bitc::ATTR_KIND_NAKED: 2042 return Attribute::Naked; 2043 case bitc::ATTR_KIND_NEST: 2044 return Attribute::Nest; 2045 case bitc::ATTR_KIND_NO_ALIAS: 2046 return Attribute::NoAlias; 2047 case bitc::ATTR_KIND_NO_BUILTIN: 2048 return Attribute::NoBuiltin; 2049 case bitc::ATTR_KIND_NO_CALLBACK: 2050 return Attribute::NoCallback; 2051 case bitc::ATTR_KIND_NO_CAPTURE: 2052 return Attribute::NoCapture; 2053 case bitc::ATTR_KIND_NO_DUPLICATE: 2054 return Attribute::NoDuplicate; 2055 case bitc::ATTR_KIND_NOFREE: 2056 return Attribute::NoFree; 2057 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2058 return Attribute::NoImplicitFloat; 2059 case bitc::ATTR_KIND_NO_INLINE: 2060 return Attribute::NoInline; 2061 case bitc::ATTR_KIND_NO_RECURSE: 2062 return Attribute::NoRecurse; 2063 case bitc::ATTR_KIND_NO_MERGE: 2064 return Attribute::NoMerge; 2065 case bitc::ATTR_KIND_NON_LAZY_BIND: 2066 return Attribute::NonLazyBind; 2067 case bitc::ATTR_KIND_NON_NULL: 2068 return Attribute::NonNull; 2069 case bitc::ATTR_KIND_DEREFERENCEABLE: 2070 return Attribute::Dereferenceable; 2071 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2072 return Attribute::DereferenceableOrNull; 2073 case bitc::ATTR_KIND_ALLOC_ALIGN: 2074 return Attribute::AllocAlign; 2075 case bitc::ATTR_KIND_ALLOC_KIND: 2076 return Attribute::AllocKind; 2077 case bitc::ATTR_KIND_ALLOC_SIZE: 2078 return Attribute::AllocSize; 2079 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2080 return Attribute::AllocatedPointer; 2081 case bitc::ATTR_KIND_NO_RED_ZONE: 2082 return Attribute::NoRedZone; 2083 case bitc::ATTR_KIND_NO_RETURN: 2084 return Attribute::NoReturn; 2085 case bitc::ATTR_KIND_NOSYNC: 2086 return Attribute::NoSync; 2087 case bitc::ATTR_KIND_NOCF_CHECK: 2088 return Attribute::NoCfCheck; 2089 case bitc::ATTR_KIND_NO_PROFILE: 2090 return Attribute::NoProfile; 2091 case bitc::ATTR_KIND_SKIP_PROFILE: 2092 return Attribute::SkipProfile; 2093 case bitc::ATTR_KIND_NO_UNWIND: 2094 return Attribute::NoUnwind; 2095 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2096 return Attribute::NoSanitizeBounds; 2097 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2098 return Attribute::NoSanitizeCoverage; 2099 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2100 return Attribute::NullPointerIsValid; 2101 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2102 return Attribute::OptimizeForDebugging; 2103 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2104 return Attribute::OptForFuzzing; 2105 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2106 return Attribute::OptimizeForSize; 2107 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2108 return Attribute::OptimizeNone; 2109 case bitc::ATTR_KIND_READ_NONE: 2110 return Attribute::ReadNone; 2111 case bitc::ATTR_KIND_READ_ONLY: 2112 return Attribute::ReadOnly; 2113 case bitc::ATTR_KIND_RETURNED: 2114 return Attribute::Returned; 2115 case bitc::ATTR_KIND_RETURNS_TWICE: 2116 return Attribute::ReturnsTwice; 2117 case bitc::ATTR_KIND_S_EXT: 2118 return Attribute::SExt; 2119 case bitc::ATTR_KIND_SPECULATABLE: 2120 return Attribute::Speculatable; 2121 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2122 return Attribute::StackAlignment; 2123 case bitc::ATTR_KIND_STACK_PROTECT: 2124 return Attribute::StackProtect; 2125 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2126 return Attribute::StackProtectReq; 2127 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2128 return Attribute::StackProtectStrong; 2129 case bitc::ATTR_KIND_SAFESTACK: 2130 return Attribute::SafeStack; 2131 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2132 return Attribute::ShadowCallStack; 2133 case bitc::ATTR_KIND_STRICT_FP: 2134 return Attribute::StrictFP; 2135 case bitc::ATTR_KIND_STRUCT_RET: 2136 return Attribute::StructRet; 2137 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2138 return Attribute::SanitizeAddress; 2139 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2140 return Attribute::SanitizeHWAddress; 2141 case bitc::ATTR_KIND_SANITIZE_THREAD: 2142 return Attribute::SanitizeThread; 2143 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2144 return Attribute::SanitizeMemory; 2145 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2146 return Attribute::SanitizeNumericalStability; 2147 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2148 return Attribute::SanitizeRealtime; 2149 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2150 return Attribute::SpeculativeLoadHardening; 2151 case bitc::ATTR_KIND_SWIFT_ERROR: 2152 return Attribute::SwiftError; 2153 case bitc::ATTR_KIND_SWIFT_SELF: 2154 return Attribute::SwiftSelf; 2155 case bitc::ATTR_KIND_SWIFT_ASYNC: 2156 return Attribute::SwiftAsync; 2157 case bitc::ATTR_KIND_UW_TABLE: 2158 return Attribute::UWTable; 2159 case bitc::ATTR_KIND_VSCALE_RANGE: 2160 return Attribute::VScaleRange; 2161 case bitc::ATTR_KIND_WILLRETURN: 2162 return Attribute::WillReturn; 2163 case bitc::ATTR_KIND_WRITEONLY: 2164 return Attribute::WriteOnly; 2165 case bitc::ATTR_KIND_Z_EXT: 2166 return Attribute::ZExt; 2167 case bitc::ATTR_KIND_IMMARG: 2168 return Attribute::ImmArg; 2169 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2170 return Attribute::SanitizeMemTag; 2171 case bitc::ATTR_KIND_PREALLOCATED: 2172 return Attribute::Preallocated; 2173 case bitc::ATTR_KIND_NOUNDEF: 2174 return Attribute::NoUndef; 2175 case bitc::ATTR_KIND_BYREF: 2176 return Attribute::ByRef; 2177 case bitc::ATTR_KIND_MUSTPROGRESS: 2178 return Attribute::MustProgress; 2179 case bitc::ATTR_KIND_HOT: 2180 return Attribute::Hot; 2181 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2182 return Attribute::PresplitCoroutine; 2183 case bitc::ATTR_KIND_WRITABLE: 2184 return Attribute::Writable; 2185 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2186 return Attribute::CoroDestroyOnlyWhenComplete; 2187 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2188 return Attribute::DeadOnUnwind; 2189 case bitc::ATTR_KIND_RANGE: 2190 return Attribute::Range; 2191 case bitc::ATTR_KIND_INITIALIZES: 2192 return Attribute::Initializes; 2193 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2194 return Attribute::CoroElideSafe; 2195 } 2196 } 2197 2198 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2199 MaybeAlign &Alignment) { 2200 // Note: Alignment in bitcode files is incremented by 1, so that zero 2201 // can be used for default alignment. 2202 if (Exponent > Value::MaxAlignmentExponent + 1) 2203 return error("Invalid alignment value"); 2204 Alignment = decodeMaybeAlign(Exponent); 2205 return Error::success(); 2206 } 2207 2208 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2209 *Kind = getAttrFromCode(Code); 2210 if (*Kind == Attribute::None) 2211 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2212 return Error::success(); 2213 } 2214 2215 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2216 switch (EncodedKind) { 2217 case bitc::ATTR_KIND_READ_NONE: 2218 ME &= MemoryEffects::none(); 2219 return true; 2220 case bitc::ATTR_KIND_READ_ONLY: 2221 ME &= MemoryEffects::readOnly(); 2222 return true; 2223 case bitc::ATTR_KIND_WRITEONLY: 2224 ME &= MemoryEffects::writeOnly(); 2225 return true; 2226 case bitc::ATTR_KIND_ARGMEMONLY: 2227 ME &= MemoryEffects::argMemOnly(); 2228 return true; 2229 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2230 ME &= MemoryEffects::inaccessibleMemOnly(); 2231 return true; 2232 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2233 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2234 return true; 2235 default: 2236 return false; 2237 } 2238 } 2239 2240 Error BitcodeReader::parseAttributeGroupBlock() { 2241 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2242 return Err; 2243 2244 if (!MAttributeGroups.empty()) 2245 return error("Invalid multiple blocks"); 2246 2247 SmallVector<uint64_t, 64> Record; 2248 2249 // Read all the records. 2250 while (true) { 2251 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2252 if (!MaybeEntry) 2253 return MaybeEntry.takeError(); 2254 BitstreamEntry Entry = MaybeEntry.get(); 2255 2256 switch (Entry.Kind) { 2257 case BitstreamEntry::SubBlock: // Handled for us already. 2258 case BitstreamEntry::Error: 2259 return error("Malformed block"); 2260 case BitstreamEntry::EndBlock: 2261 return Error::success(); 2262 case BitstreamEntry::Record: 2263 // The interesting case. 2264 break; 2265 } 2266 2267 // Read a record. 2268 Record.clear(); 2269 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2270 if (!MaybeRecord) 2271 return MaybeRecord.takeError(); 2272 switch (MaybeRecord.get()) { 2273 default: // Default behavior: ignore. 2274 break; 2275 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2276 if (Record.size() < 3) 2277 return error("Invalid grp record"); 2278 2279 uint64_t GrpID = Record[0]; 2280 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2281 2282 AttrBuilder B(Context); 2283 MemoryEffects ME = MemoryEffects::unknown(); 2284 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2285 if (Record[i] == 0) { // Enum attribute 2286 Attribute::AttrKind Kind; 2287 uint64_t EncodedKind = Record[++i]; 2288 if (Idx == AttributeList::FunctionIndex && 2289 upgradeOldMemoryAttribute(ME, EncodedKind)) 2290 continue; 2291 2292 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2293 return Err; 2294 2295 // Upgrade old-style byval attribute to one with a type, even if it's 2296 // nullptr. We will have to insert the real type when we associate 2297 // this AttributeList with a function. 2298 if (Kind == Attribute::ByVal) 2299 B.addByValAttr(nullptr); 2300 else if (Kind == Attribute::StructRet) 2301 B.addStructRetAttr(nullptr); 2302 else if (Kind == Attribute::InAlloca) 2303 B.addInAllocaAttr(nullptr); 2304 else if (Kind == Attribute::UWTable) 2305 B.addUWTableAttr(UWTableKind::Default); 2306 else if (Attribute::isEnumAttrKind(Kind)) 2307 B.addAttribute(Kind); 2308 else 2309 return error("Not an enum attribute"); 2310 } else if (Record[i] == 1) { // Integer attribute 2311 Attribute::AttrKind Kind; 2312 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2313 return Err; 2314 if (!Attribute::isIntAttrKind(Kind)) 2315 return error("Not an int attribute"); 2316 if (Kind == Attribute::Alignment) 2317 B.addAlignmentAttr(Record[++i]); 2318 else if (Kind == Attribute::StackAlignment) 2319 B.addStackAlignmentAttr(Record[++i]); 2320 else if (Kind == Attribute::Dereferenceable) 2321 B.addDereferenceableAttr(Record[++i]); 2322 else if (Kind == Attribute::DereferenceableOrNull) 2323 B.addDereferenceableOrNullAttr(Record[++i]); 2324 else if (Kind == Attribute::AllocSize) 2325 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2326 else if (Kind == Attribute::VScaleRange) 2327 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2328 else if (Kind == Attribute::UWTable) 2329 B.addUWTableAttr(UWTableKind(Record[++i])); 2330 else if (Kind == Attribute::AllocKind) 2331 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2332 else if (Kind == Attribute::Memory) 2333 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2334 else if (Kind == Attribute::NoFPClass) 2335 B.addNoFPClassAttr( 2336 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2337 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2338 bool HasValue = (Record[i++] == 4); 2339 SmallString<64> KindStr; 2340 SmallString<64> ValStr; 2341 2342 while (Record[i] != 0 && i != e) 2343 KindStr += Record[i++]; 2344 assert(Record[i] == 0 && "Kind string not null terminated"); 2345 2346 if (HasValue) { 2347 // Has a value associated with it. 2348 ++i; // Skip the '0' that terminates the "kind" string. 2349 while (Record[i] != 0 && i != e) 2350 ValStr += Record[i++]; 2351 assert(Record[i] == 0 && "Value string not null terminated"); 2352 } 2353 2354 B.addAttribute(KindStr.str(), ValStr.str()); 2355 } else if (Record[i] == 5 || Record[i] == 6) { 2356 bool HasType = Record[i] == 6; 2357 Attribute::AttrKind Kind; 2358 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2359 return Err; 2360 if (!Attribute::isTypeAttrKind(Kind)) 2361 return error("Not a type attribute"); 2362 2363 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2364 } else if (Record[i] == 7) { 2365 Attribute::AttrKind Kind; 2366 2367 i++; 2368 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2369 return Err; 2370 if (!Attribute::isConstantRangeAttrKind(Kind)) 2371 return error("Not a ConstantRange attribute"); 2372 2373 Expected<ConstantRange> MaybeCR = 2374 readBitWidthAndConstantRange(Record, i); 2375 if (!MaybeCR) 2376 return MaybeCR.takeError(); 2377 i--; 2378 2379 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2380 } else if (Record[i] == 8) { 2381 Attribute::AttrKind Kind; 2382 2383 i++; 2384 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2385 return Err; 2386 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2387 return error("Not a constant range list attribute"); 2388 2389 SmallVector<ConstantRange, 2> Val; 2390 if (i + 2 > e) 2391 return error("Too few records for constant range list"); 2392 unsigned RangeSize = Record[i++]; 2393 unsigned BitWidth = Record[i++]; 2394 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2395 Expected<ConstantRange> MaybeCR = 2396 readConstantRange(Record, i, BitWidth); 2397 if (!MaybeCR) 2398 return MaybeCR.takeError(); 2399 Val.push_back(MaybeCR.get()); 2400 } 2401 i--; 2402 2403 if (!ConstantRangeList::isOrderedRanges(Val)) 2404 return error("Invalid (unordered or overlapping) range list"); 2405 B.addConstantRangeListAttr(Kind, Val); 2406 } else { 2407 return error("Invalid attribute group entry"); 2408 } 2409 } 2410 2411 if (ME != MemoryEffects::unknown()) 2412 B.addMemoryAttr(ME); 2413 2414 UpgradeAttributes(B); 2415 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2416 break; 2417 } 2418 } 2419 } 2420 } 2421 2422 Error BitcodeReader::parseTypeTable() { 2423 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2424 return Err; 2425 2426 return parseTypeTableBody(); 2427 } 2428 2429 Error BitcodeReader::parseTypeTableBody() { 2430 if (!TypeList.empty()) 2431 return error("Invalid multiple blocks"); 2432 2433 SmallVector<uint64_t, 64> Record; 2434 unsigned NumRecords = 0; 2435 2436 SmallString<64> TypeName; 2437 2438 // Read all the records for this type table. 2439 while (true) { 2440 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2441 if (!MaybeEntry) 2442 return MaybeEntry.takeError(); 2443 BitstreamEntry Entry = MaybeEntry.get(); 2444 2445 switch (Entry.Kind) { 2446 case BitstreamEntry::SubBlock: // Handled for us already. 2447 case BitstreamEntry::Error: 2448 return error("Malformed block"); 2449 case BitstreamEntry::EndBlock: 2450 if (NumRecords != TypeList.size()) 2451 return error("Malformed block"); 2452 return Error::success(); 2453 case BitstreamEntry::Record: 2454 // The interesting case. 2455 break; 2456 } 2457 2458 // Read a record. 2459 Record.clear(); 2460 Type *ResultTy = nullptr; 2461 SmallVector<unsigned> ContainedIDs; 2462 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2463 if (!MaybeRecord) 2464 return MaybeRecord.takeError(); 2465 switch (MaybeRecord.get()) { 2466 default: 2467 return error("Invalid value"); 2468 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2469 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2470 // type list. This allows us to reserve space. 2471 if (Record.empty()) 2472 return error("Invalid numentry record"); 2473 TypeList.resize(Record[0]); 2474 continue; 2475 case bitc::TYPE_CODE_VOID: // VOID 2476 ResultTy = Type::getVoidTy(Context); 2477 break; 2478 case bitc::TYPE_CODE_HALF: // HALF 2479 ResultTy = Type::getHalfTy(Context); 2480 break; 2481 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2482 ResultTy = Type::getBFloatTy(Context); 2483 break; 2484 case bitc::TYPE_CODE_FLOAT: // FLOAT 2485 ResultTy = Type::getFloatTy(Context); 2486 break; 2487 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2488 ResultTy = Type::getDoubleTy(Context); 2489 break; 2490 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2491 ResultTy = Type::getX86_FP80Ty(Context); 2492 break; 2493 case bitc::TYPE_CODE_FP128: // FP128 2494 ResultTy = Type::getFP128Ty(Context); 2495 break; 2496 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2497 ResultTy = Type::getPPC_FP128Ty(Context); 2498 break; 2499 case bitc::TYPE_CODE_LABEL: // LABEL 2500 ResultTy = Type::getLabelTy(Context); 2501 break; 2502 case bitc::TYPE_CODE_METADATA: // METADATA 2503 ResultTy = Type::getMetadataTy(Context); 2504 break; 2505 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2506 // Deprecated: decodes as <1 x i64> 2507 ResultTy = 2508 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2509 break; 2510 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2511 ResultTy = Type::getX86_AMXTy(Context); 2512 break; 2513 case bitc::TYPE_CODE_TOKEN: // TOKEN 2514 ResultTy = Type::getTokenTy(Context); 2515 break; 2516 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2517 if (Record.empty()) 2518 return error("Invalid integer record"); 2519 2520 uint64_t NumBits = Record[0]; 2521 if (NumBits < IntegerType::MIN_INT_BITS || 2522 NumBits > IntegerType::MAX_INT_BITS) 2523 return error("Bitwidth for integer type out of range"); 2524 ResultTy = IntegerType::get(Context, NumBits); 2525 break; 2526 } 2527 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2528 // [pointee type, address space] 2529 if (Record.empty()) 2530 return error("Invalid pointer record"); 2531 unsigned AddressSpace = 0; 2532 if (Record.size() == 2) 2533 AddressSpace = Record[1]; 2534 ResultTy = getTypeByID(Record[0]); 2535 if (!ResultTy || 2536 !PointerType::isValidElementType(ResultTy)) 2537 return error("Invalid type"); 2538 ContainedIDs.push_back(Record[0]); 2539 ResultTy = PointerType::get(ResultTy, AddressSpace); 2540 break; 2541 } 2542 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2543 if (Record.size() != 1) 2544 return error("Invalid opaque pointer record"); 2545 unsigned AddressSpace = Record[0]; 2546 ResultTy = PointerType::get(Context, AddressSpace); 2547 break; 2548 } 2549 case bitc::TYPE_CODE_FUNCTION_OLD: { 2550 // Deprecated, but still needed to read old bitcode files. 2551 // FUNCTION: [vararg, attrid, retty, paramty x N] 2552 if (Record.size() < 3) 2553 return error("Invalid function record"); 2554 SmallVector<Type*, 8> ArgTys; 2555 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2556 if (Type *T = getTypeByID(Record[i])) 2557 ArgTys.push_back(T); 2558 else 2559 break; 2560 } 2561 2562 ResultTy = getTypeByID(Record[2]); 2563 if (!ResultTy || ArgTys.size() < Record.size()-3) 2564 return error("Invalid type"); 2565 2566 ContainedIDs.append(Record.begin() + 2, Record.end()); 2567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2568 break; 2569 } 2570 case bitc::TYPE_CODE_FUNCTION: { 2571 // FUNCTION: [vararg, retty, paramty x N] 2572 if (Record.size() < 2) 2573 return error("Invalid function record"); 2574 SmallVector<Type*, 8> ArgTys; 2575 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2576 if (Type *T = getTypeByID(Record[i])) { 2577 if (!FunctionType::isValidArgumentType(T)) 2578 return error("Invalid function argument type"); 2579 ArgTys.push_back(T); 2580 } 2581 else 2582 break; 2583 } 2584 2585 ResultTy = getTypeByID(Record[1]); 2586 if (!ResultTy || ArgTys.size() < Record.size()-2) 2587 return error("Invalid type"); 2588 2589 ContainedIDs.append(Record.begin() + 1, Record.end()); 2590 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2591 break; 2592 } 2593 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2594 if (Record.empty()) 2595 return error("Invalid anon struct record"); 2596 SmallVector<Type*, 8> EltTys; 2597 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2598 if (Type *T = getTypeByID(Record[i])) 2599 EltTys.push_back(T); 2600 else 2601 break; 2602 } 2603 if (EltTys.size() != Record.size()-1) 2604 return error("Invalid type"); 2605 ContainedIDs.append(Record.begin() + 1, Record.end()); 2606 ResultTy = StructType::get(Context, EltTys, Record[0]); 2607 break; 2608 } 2609 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2610 if (convertToString(Record, 0, TypeName)) 2611 return error("Invalid struct name record"); 2612 continue; 2613 2614 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2615 if (Record.empty()) 2616 return error("Invalid named struct record"); 2617 2618 if (NumRecords >= TypeList.size()) 2619 return error("Invalid TYPE table"); 2620 2621 // Check to see if this was forward referenced, if so fill in the temp. 2622 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2623 if (Res) { 2624 Res->setName(TypeName); 2625 TypeList[NumRecords] = nullptr; 2626 } else // Otherwise, create a new struct. 2627 Res = createIdentifiedStructType(Context, TypeName); 2628 TypeName.clear(); 2629 2630 SmallVector<Type*, 8> EltTys; 2631 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2632 if (Type *T = getTypeByID(Record[i])) 2633 EltTys.push_back(T); 2634 else 2635 break; 2636 } 2637 if (EltTys.size() != Record.size()-1) 2638 return error("Invalid named struct record"); 2639 Res->setBody(EltTys, Record[0]); 2640 ContainedIDs.append(Record.begin() + 1, Record.end()); 2641 ResultTy = Res; 2642 break; 2643 } 2644 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2645 if (Record.size() != 1) 2646 return error("Invalid opaque type record"); 2647 2648 if (NumRecords >= TypeList.size()) 2649 return error("Invalid TYPE table"); 2650 2651 // Check to see if this was forward referenced, if so fill in the temp. 2652 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2653 if (Res) { 2654 Res->setName(TypeName); 2655 TypeList[NumRecords] = nullptr; 2656 } else // Otherwise, create a new struct with no body. 2657 Res = createIdentifiedStructType(Context, TypeName); 2658 TypeName.clear(); 2659 ResultTy = Res; 2660 break; 2661 } 2662 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2663 if (Record.size() < 1) 2664 return error("Invalid target extension type record"); 2665 2666 if (NumRecords >= TypeList.size()) 2667 return error("Invalid TYPE table"); 2668 2669 if (Record[0] >= Record.size()) 2670 return error("Too many type parameters"); 2671 2672 unsigned NumTys = Record[0]; 2673 SmallVector<Type *, 4> TypeParams; 2674 SmallVector<unsigned, 8> IntParams; 2675 for (unsigned i = 0; i < NumTys; i++) { 2676 if (Type *T = getTypeByID(Record[i + 1])) 2677 TypeParams.push_back(T); 2678 else 2679 return error("Invalid type"); 2680 } 2681 2682 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2683 if (Record[i] > UINT_MAX) 2684 return error("Integer parameter too large"); 2685 IntParams.push_back(Record[i]); 2686 } 2687 auto TTy = 2688 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2689 if (auto E = TTy.takeError()) 2690 return E; 2691 ResultTy = *TTy; 2692 TypeName.clear(); 2693 break; 2694 } 2695 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2696 if (Record.size() < 2) 2697 return error("Invalid array type record"); 2698 ResultTy = getTypeByID(Record[1]); 2699 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2700 return error("Invalid type"); 2701 ContainedIDs.push_back(Record[1]); 2702 ResultTy = ArrayType::get(ResultTy, Record[0]); 2703 break; 2704 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2705 // [numelts, eltty, scalable] 2706 if (Record.size() < 2) 2707 return error("Invalid vector type record"); 2708 if (Record[0] == 0) 2709 return error("Invalid vector length"); 2710 ResultTy = getTypeByID(Record[1]); 2711 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2712 return error("Invalid type"); 2713 bool Scalable = Record.size() > 2 ? Record[2] : false; 2714 ContainedIDs.push_back(Record[1]); 2715 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2716 break; 2717 } 2718 2719 if (NumRecords >= TypeList.size()) 2720 return error("Invalid TYPE table"); 2721 if (TypeList[NumRecords]) 2722 return error( 2723 "Invalid TYPE table: Only named structs can be forward referenced"); 2724 assert(ResultTy && "Didn't read a type?"); 2725 TypeList[NumRecords] = ResultTy; 2726 if (!ContainedIDs.empty()) 2727 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2728 ++NumRecords; 2729 } 2730 } 2731 2732 Error BitcodeReader::parseOperandBundleTags() { 2733 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2734 return Err; 2735 2736 if (!BundleTags.empty()) 2737 return error("Invalid multiple blocks"); 2738 2739 SmallVector<uint64_t, 64> Record; 2740 2741 while (true) { 2742 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2743 if (!MaybeEntry) 2744 return MaybeEntry.takeError(); 2745 BitstreamEntry Entry = MaybeEntry.get(); 2746 2747 switch (Entry.Kind) { 2748 case BitstreamEntry::SubBlock: // Handled for us already. 2749 case BitstreamEntry::Error: 2750 return error("Malformed block"); 2751 case BitstreamEntry::EndBlock: 2752 return Error::success(); 2753 case BitstreamEntry::Record: 2754 // The interesting case. 2755 break; 2756 } 2757 2758 // Tags are implicitly mapped to integers by their order. 2759 2760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2761 if (!MaybeRecord) 2762 return MaybeRecord.takeError(); 2763 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2764 return error("Invalid operand bundle record"); 2765 2766 // OPERAND_BUNDLE_TAG: [strchr x N] 2767 BundleTags.emplace_back(); 2768 if (convertToString(Record, 0, BundleTags.back())) 2769 return error("Invalid operand bundle record"); 2770 Record.clear(); 2771 } 2772 } 2773 2774 Error BitcodeReader::parseSyncScopeNames() { 2775 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2776 return Err; 2777 2778 if (!SSIDs.empty()) 2779 return error("Invalid multiple synchronization scope names blocks"); 2780 2781 SmallVector<uint64_t, 64> Record; 2782 while (true) { 2783 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2784 if (!MaybeEntry) 2785 return MaybeEntry.takeError(); 2786 BitstreamEntry Entry = MaybeEntry.get(); 2787 2788 switch (Entry.Kind) { 2789 case BitstreamEntry::SubBlock: // Handled for us already. 2790 case BitstreamEntry::Error: 2791 return error("Malformed block"); 2792 case BitstreamEntry::EndBlock: 2793 if (SSIDs.empty()) 2794 return error("Invalid empty synchronization scope names block"); 2795 return Error::success(); 2796 case BitstreamEntry::Record: 2797 // The interesting case. 2798 break; 2799 } 2800 2801 // Synchronization scope names are implicitly mapped to synchronization 2802 // scope IDs by their order. 2803 2804 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2805 if (!MaybeRecord) 2806 return MaybeRecord.takeError(); 2807 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2808 return error("Invalid sync scope record"); 2809 2810 SmallString<16> SSN; 2811 if (convertToString(Record, 0, SSN)) 2812 return error("Invalid sync scope record"); 2813 2814 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2815 Record.clear(); 2816 } 2817 } 2818 2819 /// Associate a value with its name from the given index in the provided record. 2820 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2821 unsigned NameIndex, Triple &TT) { 2822 SmallString<128> ValueName; 2823 if (convertToString(Record, NameIndex, ValueName)) 2824 return error("Invalid record"); 2825 unsigned ValueID = Record[0]; 2826 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2827 return error("Invalid record"); 2828 Value *V = ValueList[ValueID]; 2829 2830 StringRef NameStr(ValueName.data(), ValueName.size()); 2831 if (NameStr.contains(0)) 2832 return error("Invalid value name"); 2833 V->setName(NameStr); 2834 auto *GO = dyn_cast<GlobalObject>(V); 2835 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2836 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2837 return V; 2838 } 2839 2840 /// Helper to note and return the current location, and jump to the given 2841 /// offset. 2842 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2843 BitstreamCursor &Stream) { 2844 // Save the current parsing location so we can jump back at the end 2845 // of the VST read. 2846 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2847 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2848 return std::move(JumpFailed); 2849 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2850 if (!MaybeEntry) 2851 return MaybeEntry.takeError(); 2852 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2853 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2854 return error("Expected value symbol table subblock"); 2855 return CurrentBit; 2856 } 2857 2858 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2859 Function *F, 2860 ArrayRef<uint64_t> Record) { 2861 // Note that we subtract 1 here because the offset is relative to one word 2862 // before the start of the identification or module block, which was 2863 // historically always the start of the regular bitcode header. 2864 uint64_t FuncWordOffset = Record[1] - 1; 2865 uint64_t FuncBitOffset = FuncWordOffset * 32; 2866 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2867 // Set the LastFunctionBlockBit to point to the last function block. 2868 // Later when parsing is resumed after function materialization, 2869 // we can simply skip that last function block. 2870 if (FuncBitOffset > LastFunctionBlockBit) 2871 LastFunctionBlockBit = FuncBitOffset; 2872 } 2873 2874 /// Read a new-style GlobalValue symbol table. 2875 Error BitcodeReader::parseGlobalValueSymbolTable() { 2876 unsigned FuncBitcodeOffsetDelta = 2877 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2878 2879 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2880 return Err; 2881 2882 SmallVector<uint64_t, 64> Record; 2883 while (true) { 2884 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2885 if (!MaybeEntry) 2886 return MaybeEntry.takeError(); 2887 BitstreamEntry Entry = MaybeEntry.get(); 2888 2889 switch (Entry.Kind) { 2890 case BitstreamEntry::SubBlock: 2891 case BitstreamEntry::Error: 2892 return error("Malformed block"); 2893 case BitstreamEntry::EndBlock: 2894 return Error::success(); 2895 case BitstreamEntry::Record: 2896 break; 2897 } 2898 2899 Record.clear(); 2900 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2901 if (!MaybeRecord) 2902 return MaybeRecord.takeError(); 2903 switch (MaybeRecord.get()) { 2904 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2905 unsigned ValueID = Record[0]; 2906 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2907 return error("Invalid value reference in symbol table"); 2908 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2909 cast<Function>(ValueList[ValueID]), Record); 2910 break; 2911 } 2912 } 2913 } 2914 } 2915 2916 /// Parse the value symbol table at either the current parsing location or 2917 /// at the given bit offset if provided. 2918 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2919 uint64_t CurrentBit; 2920 // Pass in the Offset to distinguish between calling for the module-level 2921 // VST (where we want to jump to the VST offset) and the function-level 2922 // VST (where we don't). 2923 if (Offset > 0) { 2924 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2925 if (!MaybeCurrentBit) 2926 return MaybeCurrentBit.takeError(); 2927 CurrentBit = MaybeCurrentBit.get(); 2928 // If this module uses a string table, read this as a module-level VST. 2929 if (UseStrtab) { 2930 if (Error Err = parseGlobalValueSymbolTable()) 2931 return Err; 2932 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2933 return JumpFailed; 2934 return Error::success(); 2935 } 2936 // Otherwise, the VST will be in a similar format to a function-level VST, 2937 // and will contain symbol names. 2938 } 2939 2940 // Compute the delta between the bitcode indices in the VST (the word offset 2941 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2942 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2943 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2944 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2945 // just before entering the VST subblock because: 1) the EnterSubBlock 2946 // changes the AbbrevID width; 2) the VST block is nested within the same 2947 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2948 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2949 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2950 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2951 unsigned FuncBitcodeOffsetDelta = 2952 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2953 2954 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2955 return Err; 2956 2957 SmallVector<uint64_t, 64> Record; 2958 2959 Triple TT(TheModule->getTargetTriple()); 2960 2961 // Read all the records for this value table. 2962 SmallString<128> ValueName; 2963 2964 while (true) { 2965 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2966 if (!MaybeEntry) 2967 return MaybeEntry.takeError(); 2968 BitstreamEntry Entry = MaybeEntry.get(); 2969 2970 switch (Entry.Kind) { 2971 case BitstreamEntry::SubBlock: // Handled for us already. 2972 case BitstreamEntry::Error: 2973 return error("Malformed block"); 2974 case BitstreamEntry::EndBlock: 2975 if (Offset > 0) 2976 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2977 return JumpFailed; 2978 return Error::success(); 2979 case BitstreamEntry::Record: 2980 // The interesting case. 2981 break; 2982 } 2983 2984 // Read a record. 2985 Record.clear(); 2986 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2987 if (!MaybeRecord) 2988 return MaybeRecord.takeError(); 2989 switch (MaybeRecord.get()) { 2990 default: // Default behavior: unknown type. 2991 break; 2992 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2993 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2994 if (Error Err = ValOrErr.takeError()) 2995 return Err; 2996 ValOrErr.get(); 2997 break; 2998 } 2999 case bitc::VST_CODE_FNENTRY: { 3000 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3001 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3002 if (Error Err = ValOrErr.takeError()) 3003 return Err; 3004 Value *V = ValOrErr.get(); 3005 3006 // Ignore function offsets emitted for aliases of functions in older 3007 // versions of LLVM. 3008 if (auto *F = dyn_cast<Function>(V)) 3009 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3010 break; 3011 } 3012 case bitc::VST_CODE_BBENTRY: { 3013 if (convertToString(Record, 1, ValueName)) 3014 return error("Invalid bbentry record"); 3015 BasicBlock *BB = getBasicBlock(Record[0]); 3016 if (!BB) 3017 return error("Invalid bbentry record"); 3018 3019 BB->setName(ValueName.str()); 3020 ValueName.clear(); 3021 break; 3022 } 3023 } 3024 } 3025 } 3026 3027 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3028 /// encoding. 3029 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3030 if ((V & 1) == 0) 3031 return V >> 1; 3032 if (V != 1) 3033 return -(V >> 1); 3034 // There is no such thing as -0 with integers. "-0" really means MININT. 3035 return 1ULL << 63; 3036 } 3037 3038 /// Resolve all of the initializers for global values and aliases that we can. 3039 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3040 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3041 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3042 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3043 3044 GlobalInitWorklist.swap(GlobalInits); 3045 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3046 FunctionOperandWorklist.swap(FunctionOperands); 3047 3048 while (!GlobalInitWorklist.empty()) { 3049 unsigned ValID = GlobalInitWorklist.back().second; 3050 if (ValID >= ValueList.size()) { 3051 // Not ready to resolve this yet, it requires something later in the file. 3052 GlobalInits.push_back(GlobalInitWorklist.back()); 3053 } else { 3054 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3055 if (!MaybeC) 3056 return MaybeC.takeError(); 3057 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3058 } 3059 GlobalInitWorklist.pop_back(); 3060 } 3061 3062 while (!IndirectSymbolInitWorklist.empty()) { 3063 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3064 if (ValID >= ValueList.size()) { 3065 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3066 } else { 3067 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3068 if (!MaybeC) 3069 return MaybeC.takeError(); 3070 Constant *C = MaybeC.get(); 3071 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3072 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3073 if (C->getType() != GV->getType()) 3074 return error("Alias and aliasee types don't match"); 3075 GA->setAliasee(C); 3076 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3077 GI->setResolver(C); 3078 } else { 3079 return error("Expected an alias or an ifunc"); 3080 } 3081 } 3082 IndirectSymbolInitWorklist.pop_back(); 3083 } 3084 3085 while (!FunctionOperandWorklist.empty()) { 3086 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3087 if (Info.PersonalityFn) { 3088 unsigned ValID = Info.PersonalityFn - 1; 3089 if (ValID < ValueList.size()) { 3090 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3091 if (!MaybeC) 3092 return MaybeC.takeError(); 3093 Info.F->setPersonalityFn(MaybeC.get()); 3094 Info.PersonalityFn = 0; 3095 } 3096 } 3097 if (Info.Prefix) { 3098 unsigned ValID = Info.Prefix - 1; 3099 if (ValID < ValueList.size()) { 3100 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3101 if (!MaybeC) 3102 return MaybeC.takeError(); 3103 Info.F->setPrefixData(MaybeC.get()); 3104 Info.Prefix = 0; 3105 } 3106 } 3107 if (Info.Prologue) { 3108 unsigned ValID = Info.Prologue - 1; 3109 if (ValID < ValueList.size()) { 3110 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3111 if (!MaybeC) 3112 return MaybeC.takeError(); 3113 Info.F->setPrologueData(MaybeC.get()); 3114 Info.Prologue = 0; 3115 } 3116 } 3117 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3118 FunctionOperands.push_back(Info); 3119 FunctionOperandWorklist.pop_back(); 3120 } 3121 3122 return Error::success(); 3123 } 3124 3125 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3126 SmallVector<uint64_t, 8> Words(Vals.size()); 3127 transform(Vals, Words.begin(), 3128 BitcodeReader::decodeSignRotatedValue); 3129 3130 return APInt(TypeBits, Words); 3131 } 3132 3133 Error BitcodeReader::parseConstants() { 3134 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3135 return Err; 3136 3137 SmallVector<uint64_t, 64> Record; 3138 3139 // Read all the records for this value table. 3140 Type *CurTy = Type::getInt32Ty(Context); 3141 unsigned Int32TyID = getVirtualTypeID(CurTy); 3142 unsigned CurTyID = Int32TyID; 3143 Type *CurElemTy = nullptr; 3144 unsigned NextCstNo = ValueList.size(); 3145 3146 while (true) { 3147 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3148 if (!MaybeEntry) 3149 return MaybeEntry.takeError(); 3150 BitstreamEntry Entry = MaybeEntry.get(); 3151 3152 switch (Entry.Kind) { 3153 case BitstreamEntry::SubBlock: // Handled for us already. 3154 case BitstreamEntry::Error: 3155 return error("Malformed block"); 3156 case BitstreamEntry::EndBlock: 3157 if (NextCstNo != ValueList.size()) 3158 return error("Invalid constant reference"); 3159 return Error::success(); 3160 case BitstreamEntry::Record: 3161 // The interesting case. 3162 break; 3163 } 3164 3165 // Read a record. 3166 Record.clear(); 3167 Type *VoidType = Type::getVoidTy(Context); 3168 Value *V = nullptr; 3169 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3170 if (!MaybeBitCode) 3171 return MaybeBitCode.takeError(); 3172 switch (unsigned BitCode = MaybeBitCode.get()) { 3173 default: // Default behavior: unknown constant 3174 case bitc::CST_CODE_UNDEF: // UNDEF 3175 V = UndefValue::get(CurTy); 3176 break; 3177 case bitc::CST_CODE_POISON: // POISON 3178 V = PoisonValue::get(CurTy); 3179 break; 3180 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3181 if (Record.empty()) 3182 return error("Invalid settype record"); 3183 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3184 return error("Invalid settype record"); 3185 if (TypeList[Record[0]] == VoidType) 3186 return error("Invalid constant type"); 3187 CurTyID = Record[0]; 3188 CurTy = TypeList[CurTyID]; 3189 CurElemTy = getPtrElementTypeByID(CurTyID); 3190 continue; // Skip the ValueList manipulation. 3191 case bitc::CST_CODE_NULL: // NULL 3192 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3193 return error("Invalid type for a constant null value"); 3194 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3195 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3196 return error("Invalid type for a constant null value"); 3197 V = Constant::getNullValue(CurTy); 3198 break; 3199 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3200 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3201 return error("Invalid integer const record"); 3202 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3203 break; 3204 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3205 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3206 return error("Invalid wide integer const record"); 3207 3208 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3209 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3210 V = ConstantInt::get(CurTy, VInt); 3211 break; 3212 } 3213 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3214 if (Record.empty()) 3215 return error("Invalid float const record"); 3216 3217 auto *ScalarTy = CurTy->getScalarType(); 3218 if (ScalarTy->isHalfTy()) 3219 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3220 APInt(16, (uint16_t)Record[0]))); 3221 else if (ScalarTy->isBFloatTy()) 3222 V = ConstantFP::get( 3223 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3224 else if (ScalarTy->isFloatTy()) 3225 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3226 APInt(32, (uint32_t)Record[0]))); 3227 else if (ScalarTy->isDoubleTy()) 3228 V = ConstantFP::get( 3229 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3230 else if (ScalarTy->isX86_FP80Ty()) { 3231 // Bits are not stored the same way as a normal i80 APInt, compensate. 3232 uint64_t Rearrange[2]; 3233 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3234 Rearrange[1] = Record[0] >> 48; 3235 V = ConstantFP::get( 3236 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3237 } else if (ScalarTy->isFP128Ty()) 3238 V = ConstantFP::get(CurTy, 3239 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3240 else if (ScalarTy->isPPC_FP128Ty()) 3241 V = ConstantFP::get( 3242 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3243 else 3244 V = PoisonValue::get(CurTy); 3245 break; 3246 } 3247 3248 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3249 if (Record.empty()) 3250 return error("Invalid aggregate record"); 3251 3252 unsigned Size = Record.size(); 3253 SmallVector<unsigned, 16> Elts; 3254 for (unsigned i = 0; i != Size; ++i) 3255 Elts.push_back(Record[i]); 3256 3257 if (isa<StructType>(CurTy)) { 3258 V = BitcodeConstant::create( 3259 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3260 } else if (isa<ArrayType>(CurTy)) { 3261 V = BitcodeConstant::create(Alloc, CurTy, 3262 BitcodeConstant::ConstantArrayOpcode, Elts); 3263 } else if (isa<VectorType>(CurTy)) { 3264 V = BitcodeConstant::create( 3265 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3266 } else { 3267 V = PoisonValue::get(CurTy); 3268 } 3269 break; 3270 } 3271 case bitc::CST_CODE_STRING: // STRING: [values] 3272 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3273 if (Record.empty()) 3274 return error("Invalid string record"); 3275 3276 SmallString<16> Elts(Record.begin(), Record.end()); 3277 V = ConstantDataArray::getString(Context, Elts, 3278 BitCode == bitc::CST_CODE_CSTRING); 3279 break; 3280 } 3281 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3282 if (Record.empty()) 3283 return error("Invalid data record"); 3284 3285 Type *EltTy; 3286 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3287 EltTy = Array->getElementType(); 3288 else 3289 EltTy = cast<VectorType>(CurTy)->getElementType(); 3290 if (EltTy->isIntegerTy(8)) { 3291 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3292 if (isa<VectorType>(CurTy)) 3293 V = ConstantDataVector::get(Context, Elts); 3294 else 3295 V = ConstantDataArray::get(Context, Elts); 3296 } else if (EltTy->isIntegerTy(16)) { 3297 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3298 if (isa<VectorType>(CurTy)) 3299 V = ConstantDataVector::get(Context, Elts); 3300 else 3301 V = ConstantDataArray::get(Context, Elts); 3302 } else if (EltTy->isIntegerTy(32)) { 3303 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3304 if (isa<VectorType>(CurTy)) 3305 V = ConstantDataVector::get(Context, Elts); 3306 else 3307 V = ConstantDataArray::get(Context, Elts); 3308 } else if (EltTy->isIntegerTy(64)) { 3309 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3310 if (isa<VectorType>(CurTy)) 3311 V = ConstantDataVector::get(Context, Elts); 3312 else 3313 V = ConstantDataArray::get(Context, Elts); 3314 } else if (EltTy->isHalfTy()) { 3315 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3316 if (isa<VectorType>(CurTy)) 3317 V = ConstantDataVector::getFP(EltTy, Elts); 3318 else 3319 V = ConstantDataArray::getFP(EltTy, Elts); 3320 } else if (EltTy->isBFloatTy()) { 3321 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3322 if (isa<VectorType>(CurTy)) 3323 V = ConstantDataVector::getFP(EltTy, Elts); 3324 else 3325 V = ConstantDataArray::getFP(EltTy, Elts); 3326 } else if (EltTy->isFloatTy()) { 3327 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3328 if (isa<VectorType>(CurTy)) 3329 V = ConstantDataVector::getFP(EltTy, Elts); 3330 else 3331 V = ConstantDataArray::getFP(EltTy, Elts); 3332 } else if (EltTy->isDoubleTy()) { 3333 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3334 if (isa<VectorType>(CurTy)) 3335 V = ConstantDataVector::getFP(EltTy, Elts); 3336 else 3337 V = ConstantDataArray::getFP(EltTy, Elts); 3338 } else { 3339 return error("Invalid type for value"); 3340 } 3341 break; 3342 } 3343 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3344 if (Record.size() < 2) 3345 return error("Invalid unary op constexpr record"); 3346 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3347 if (Opc < 0) { 3348 V = PoisonValue::get(CurTy); // Unknown unop. 3349 } else { 3350 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3351 } 3352 break; 3353 } 3354 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3355 if (Record.size() < 3) 3356 return error("Invalid binary op constexpr record"); 3357 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3358 if (Opc < 0) { 3359 V = PoisonValue::get(CurTy); // Unknown binop. 3360 } else { 3361 uint8_t Flags = 0; 3362 if (Record.size() >= 4) { 3363 if (Opc == Instruction::Add || 3364 Opc == Instruction::Sub || 3365 Opc == Instruction::Mul || 3366 Opc == Instruction::Shl) { 3367 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3368 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3369 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3370 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3371 } else if (Opc == Instruction::SDiv || 3372 Opc == Instruction::UDiv || 3373 Opc == Instruction::LShr || 3374 Opc == Instruction::AShr) { 3375 if (Record[3] & (1 << bitc::PEO_EXACT)) 3376 Flags |= PossiblyExactOperator::IsExact; 3377 } 3378 } 3379 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3380 {(unsigned)Record[1], (unsigned)Record[2]}); 3381 } 3382 break; 3383 } 3384 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3385 if (Record.size() < 3) 3386 return error("Invalid cast constexpr record"); 3387 int Opc = getDecodedCastOpcode(Record[0]); 3388 if (Opc < 0) { 3389 V = PoisonValue::get(CurTy); // Unknown cast. 3390 } else { 3391 unsigned OpTyID = Record[1]; 3392 Type *OpTy = getTypeByID(OpTyID); 3393 if (!OpTy) 3394 return error("Invalid cast constexpr record"); 3395 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3396 } 3397 break; 3398 } 3399 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3400 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3401 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3402 // operands] 3403 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3404 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3405 // operands] 3406 if (Record.size() < 2) 3407 return error("Constant GEP record must have at least two elements"); 3408 unsigned OpNum = 0; 3409 Type *PointeeType = nullptr; 3410 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3411 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3412 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3413 PointeeType = getTypeByID(Record[OpNum++]); 3414 3415 uint64_t Flags = 0; 3416 std::optional<ConstantRange> InRange; 3417 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3418 uint64_t Op = Record[OpNum++]; 3419 Flags = Op & 1; // inbounds 3420 unsigned InRangeIndex = Op >> 1; 3421 // "Upgrade" inrange by dropping it. The feature is too niche to 3422 // bother. 3423 (void)InRangeIndex; 3424 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3425 Flags = Record[OpNum++]; 3426 Expected<ConstantRange> MaybeInRange = 3427 readBitWidthAndConstantRange(Record, OpNum); 3428 if (!MaybeInRange) 3429 return MaybeInRange.takeError(); 3430 InRange = MaybeInRange.get(); 3431 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3432 Flags = Record[OpNum++]; 3433 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3434 Flags = (1 << bitc::GEP_INBOUNDS); 3435 3436 SmallVector<unsigned, 16> Elts; 3437 unsigned BaseTypeID = Record[OpNum]; 3438 while (OpNum != Record.size()) { 3439 unsigned ElTyID = Record[OpNum++]; 3440 Type *ElTy = getTypeByID(ElTyID); 3441 if (!ElTy) 3442 return error("Invalid getelementptr constexpr record"); 3443 Elts.push_back(Record[OpNum++]); 3444 } 3445 3446 if (Elts.size() < 1) 3447 return error("Invalid gep with no operands"); 3448 3449 Type *BaseType = getTypeByID(BaseTypeID); 3450 if (isa<VectorType>(BaseType)) { 3451 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3452 BaseType = getTypeByID(BaseTypeID); 3453 } 3454 3455 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3456 if (!OrigPtrTy) 3457 return error("GEP base operand must be pointer or vector of pointer"); 3458 3459 if (!PointeeType) { 3460 PointeeType = getPtrElementTypeByID(BaseTypeID); 3461 if (!PointeeType) 3462 return error("Missing element type for old-style constant GEP"); 3463 } 3464 3465 V = BitcodeConstant::create( 3466 Alloc, CurTy, 3467 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3468 Elts); 3469 break; 3470 } 3471 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3472 if (Record.size() < 3) 3473 return error("Invalid select constexpr record"); 3474 3475 V = BitcodeConstant::create( 3476 Alloc, CurTy, Instruction::Select, 3477 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3478 break; 3479 } 3480 case bitc::CST_CODE_CE_EXTRACTELT 3481 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3482 if (Record.size() < 3) 3483 return error("Invalid extractelement constexpr record"); 3484 unsigned OpTyID = Record[0]; 3485 VectorType *OpTy = 3486 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3487 if (!OpTy) 3488 return error("Invalid extractelement constexpr record"); 3489 unsigned IdxRecord; 3490 if (Record.size() == 4) { 3491 unsigned IdxTyID = Record[2]; 3492 Type *IdxTy = getTypeByID(IdxTyID); 3493 if (!IdxTy) 3494 return error("Invalid extractelement constexpr record"); 3495 IdxRecord = Record[3]; 3496 } else { 3497 // Deprecated, but still needed to read old bitcode files. 3498 IdxRecord = Record[2]; 3499 } 3500 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3501 {(unsigned)Record[1], IdxRecord}); 3502 break; 3503 } 3504 case bitc::CST_CODE_CE_INSERTELT 3505 : { // CE_INSERTELT: [opval, opval, opty, opval] 3506 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3507 if (Record.size() < 3 || !OpTy) 3508 return error("Invalid insertelement constexpr record"); 3509 unsigned IdxRecord; 3510 if (Record.size() == 4) { 3511 unsigned IdxTyID = Record[2]; 3512 Type *IdxTy = getTypeByID(IdxTyID); 3513 if (!IdxTy) 3514 return error("Invalid insertelement constexpr record"); 3515 IdxRecord = Record[3]; 3516 } else { 3517 // Deprecated, but still needed to read old bitcode files. 3518 IdxRecord = Record[2]; 3519 } 3520 V = BitcodeConstant::create( 3521 Alloc, CurTy, Instruction::InsertElement, 3522 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3523 break; 3524 } 3525 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3526 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3527 if (Record.size() < 3 || !OpTy) 3528 return error("Invalid shufflevector constexpr record"); 3529 V = BitcodeConstant::create( 3530 Alloc, CurTy, Instruction::ShuffleVector, 3531 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3532 break; 3533 } 3534 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3535 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3536 VectorType *OpTy = 3537 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3538 if (Record.size() < 4 || !RTy || !OpTy) 3539 return error("Invalid shufflevector constexpr record"); 3540 V = BitcodeConstant::create( 3541 Alloc, CurTy, Instruction::ShuffleVector, 3542 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3543 break; 3544 } 3545 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3546 if (Record.size() < 4) 3547 return error("Invalid cmp constexpt record"); 3548 unsigned OpTyID = Record[0]; 3549 Type *OpTy = getTypeByID(OpTyID); 3550 if (!OpTy) 3551 return error("Invalid cmp constexpr record"); 3552 V = BitcodeConstant::create( 3553 Alloc, CurTy, 3554 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3555 : Instruction::ICmp), 3556 (uint8_t)Record[3]}, 3557 {(unsigned)Record[1], (unsigned)Record[2]}); 3558 break; 3559 } 3560 // This maintains backward compatibility, pre-asm dialect keywords. 3561 // Deprecated, but still needed to read old bitcode files. 3562 case bitc::CST_CODE_INLINEASM_OLD: { 3563 if (Record.size() < 2) 3564 return error("Invalid inlineasm record"); 3565 std::string AsmStr, ConstrStr; 3566 bool HasSideEffects = Record[0] & 1; 3567 bool IsAlignStack = Record[0] >> 1; 3568 unsigned AsmStrSize = Record[1]; 3569 if (2+AsmStrSize >= Record.size()) 3570 return error("Invalid inlineasm record"); 3571 unsigned ConstStrSize = Record[2+AsmStrSize]; 3572 if (3+AsmStrSize+ConstStrSize > Record.size()) 3573 return error("Invalid inlineasm record"); 3574 3575 for (unsigned i = 0; i != AsmStrSize; ++i) 3576 AsmStr += (char)Record[2+i]; 3577 for (unsigned i = 0; i != ConstStrSize; ++i) 3578 ConstrStr += (char)Record[3+AsmStrSize+i]; 3579 UpgradeInlineAsmString(&AsmStr); 3580 if (!CurElemTy) 3581 return error("Missing element type for old-style inlineasm"); 3582 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3583 HasSideEffects, IsAlignStack); 3584 break; 3585 } 3586 // This version adds support for the asm dialect keywords (e.g., 3587 // inteldialect). 3588 case bitc::CST_CODE_INLINEASM_OLD2: { 3589 if (Record.size() < 2) 3590 return error("Invalid inlineasm record"); 3591 std::string AsmStr, ConstrStr; 3592 bool HasSideEffects = Record[0] & 1; 3593 bool IsAlignStack = (Record[0] >> 1) & 1; 3594 unsigned AsmDialect = Record[0] >> 2; 3595 unsigned AsmStrSize = Record[1]; 3596 if (2+AsmStrSize >= Record.size()) 3597 return error("Invalid inlineasm record"); 3598 unsigned ConstStrSize = Record[2+AsmStrSize]; 3599 if (3+AsmStrSize+ConstStrSize > Record.size()) 3600 return error("Invalid inlineasm record"); 3601 3602 for (unsigned i = 0; i != AsmStrSize; ++i) 3603 AsmStr += (char)Record[2+i]; 3604 for (unsigned i = 0; i != ConstStrSize; ++i) 3605 ConstrStr += (char)Record[3+AsmStrSize+i]; 3606 UpgradeInlineAsmString(&AsmStr); 3607 if (!CurElemTy) 3608 return error("Missing element type for old-style inlineasm"); 3609 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3610 HasSideEffects, IsAlignStack, 3611 InlineAsm::AsmDialect(AsmDialect)); 3612 break; 3613 } 3614 // This version adds support for the unwind keyword. 3615 case bitc::CST_CODE_INLINEASM_OLD3: { 3616 if (Record.size() < 2) 3617 return error("Invalid inlineasm record"); 3618 unsigned OpNum = 0; 3619 std::string AsmStr, ConstrStr; 3620 bool HasSideEffects = Record[OpNum] & 1; 3621 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3622 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3623 bool CanThrow = (Record[OpNum] >> 3) & 1; 3624 ++OpNum; 3625 unsigned AsmStrSize = Record[OpNum]; 3626 ++OpNum; 3627 if (OpNum + AsmStrSize >= Record.size()) 3628 return error("Invalid inlineasm record"); 3629 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3630 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3631 return error("Invalid inlineasm record"); 3632 3633 for (unsigned i = 0; i != AsmStrSize; ++i) 3634 AsmStr += (char)Record[OpNum + i]; 3635 ++OpNum; 3636 for (unsigned i = 0; i != ConstStrSize; ++i) 3637 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3638 UpgradeInlineAsmString(&AsmStr); 3639 if (!CurElemTy) 3640 return error("Missing element type for old-style inlineasm"); 3641 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3642 HasSideEffects, IsAlignStack, 3643 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3644 break; 3645 } 3646 // This version adds explicit function type. 3647 case bitc::CST_CODE_INLINEASM: { 3648 if (Record.size() < 3) 3649 return error("Invalid inlineasm record"); 3650 unsigned OpNum = 0; 3651 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3652 ++OpNum; 3653 if (!FnTy) 3654 return error("Invalid inlineasm record"); 3655 std::string AsmStr, ConstrStr; 3656 bool HasSideEffects = Record[OpNum] & 1; 3657 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3658 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3659 bool CanThrow = (Record[OpNum] >> 3) & 1; 3660 ++OpNum; 3661 unsigned AsmStrSize = Record[OpNum]; 3662 ++OpNum; 3663 if (OpNum + AsmStrSize >= Record.size()) 3664 return error("Invalid inlineasm record"); 3665 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3666 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3667 return error("Invalid inlineasm record"); 3668 3669 for (unsigned i = 0; i != AsmStrSize; ++i) 3670 AsmStr += (char)Record[OpNum + i]; 3671 ++OpNum; 3672 for (unsigned i = 0; i != ConstStrSize; ++i) 3673 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3674 UpgradeInlineAsmString(&AsmStr); 3675 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3676 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3677 break; 3678 } 3679 case bitc::CST_CODE_BLOCKADDRESS:{ 3680 if (Record.size() < 3) 3681 return error("Invalid blockaddress record"); 3682 unsigned FnTyID = Record[0]; 3683 Type *FnTy = getTypeByID(FnTyID); 3684 if (!FnTy) 3685 return error("Invalid blockaddress record"); 3686 V = BitcodeConstant::create( 3687 Alloc, CurTy, 3688 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3689 Record[1]); 3690 break; 3691 } 3692 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3693 if (Record.size() < 2) 3694 return error("Invalid dso_local record"); 3695 unsigned GVTyID = Record[0]; 3696 Type *GVTy = getTypeByID(GVTyID); 3697 if (!GVTy) 3698 return error("Invalid dso_local record"); 3699 V = BitcodeConstant::create( 3700 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3701 break; 3702 } 3703 case bitc::CST_CODE_NO_CFI_VALUE: { 3704 if (Record.size() < 2) 3705 return error("Invalid no_cfi record"); 3706 unsigned GVTyID = Record[0]; 3707 Type *GVTy = getTypeByID(GVTyID); 3708 if (!GVTy) 3709 return error("Invalid no_cfi record"); 3710 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3711 Record[1]); 3712 break; 3713 } 3714 case bitc::CST_CODE_PTRAUTH: { 3715 if (Record.size() < 4) 3716 return error("Invalid ptrauth record"); 3717 // Ptr, Key, Disc, AddrDisc 3718 V = BitcodeConstant::create(Alloc, CurTy, 3719 BitcodeConstant::ConstantPtrAuthOpcode, 3720 {(unsigned)Record[0], (unsigned)Record[1], 3721 (unsigned)Record[2], (unsigned)Record[3]}); 3722 break; 3723 } 3724 } 3725 3726 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3727 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3728 return Err; 3729 ++NextCstNo; 3730 } 3731 } 3732 3733 Error BitcodeReader::parseUseLists() { 3734 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3735 return Err; 3736 3737 // Read all the records. 3738 SmallVector<uint64_t, 64> Record; 3739 3740 while (true) { 3741 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3742 if (!MaybeEntry) 3743 return MaybeEntry.takeError(); 3744 BitstreamEntry Entry = MaybeEntry.get(); 3745 3746 switch (Entry.Kind) { 3747 case BitstreamEntry::SubBlock: // Handled for us already. 3748 case BitstreamEntry::Error: 3749 return error("Malformed block"); 3750 case BitstreamEntry::EndBlock: 3751 return Error::success(); 3752 case BitstreamEntry::Record: 3753 // The interesting case. 3754 break; 3755 } 3756 3757 // Read a use list record. 3758 Record.clear(); 3759 bool IsBB = false; 3760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3761 if (!MaybeRecord) 3762 return MaybeRecord.takeError(); 3763 switch (MaybeRecord.get()) { 3764 default: // Default behavior: unknown type. 3765 break; 3766 case bitc::USELIST_CODE_BB: 3767 IsBB = true; 3768 [[fallthrough]]; 3769 case bitc::USELIST_CODE_DEFAULT: { 3770 unsigned RecordLength = Record.size(); 3771 if (RecordLength < 3) 3772 // Records should have at least an ID and two indexes. 3773 return error("Invalid record"); 3774 unsigned ID = Record.pop_back_val(); 3775 3776 Value *V; 3777 if (IsBB) { 3778 assert(ID < FunctionBBs.size() && "Basic block not found"); 3779 V = FunctionBBs[ID]; 3780 } else 3781 V = ValueList[ID]; 3782 unsigned NumUses = 0; 3783 SmallDenseMap<const Use *, unsigned, 16> Order; 3784 for (const Use &U : V->materialized_uses()) { 3785 if (++NumUses > Record.size()) 3786 break; 3787 Order[&U] = Record[NumUses - 1]; 3788 } 3789 if (Order.size() != Record.size() || NumUses > Record.size()) 3790 // Mismatches can happen if the functions are being materialized lazily 3791 // (out-of-order), or a value has been upgraded. 3792 break; 3793 3794 V->sortUseList([&](const Use &L, const Use &R) { 3795 return Order.lookup(&L) < Order.lookup(&R); 3796 }); 3797 break; 3798 } 3799 } 3800 } 3801 } 3802 3803 /// When we see the block for metadata, remember where it is and then skip it. 3804 /// This lets us lazily deserialize the metadata. 3805 Error BitcodeReader::rememberAndSkipMetadata() { 3806 // Save the current stream state. 3807 uint64_t CurBit = Stream.GetCurrentBitNo(); 3808 DeferredMetadataInfo.push_back(CurBit); 3809 3810 // Skip over the block for now. 3811 if (Error Err = Stream.SkipBlock()) 3812 return Err; 3813 return Error::success(); 3814 } 3815 3816 Error BitcodeReader::materializeMetadata() { 3817 for (uint64_t BitPos : DeferredMetadataInfo) { 3818 // Move the bit stream to the saved position. 3819 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3820 return JumpFailed; 3821 if (Error Err = MDLoader->parseModuleMetadata()) 3822 return Err; 3823 } 3824 3825 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3826 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3827 // multiple times. 3828 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3829 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3830 NamedMDNode *LinkerOpts = 3831 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3832 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3833 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3834 } 3835 } 3836 3837 DeferredMetadataInfo.clear(); 3838 return Error::success(); 3839 } 3840 3841 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3842 3843 /// When we see the block for a function body, remember where it is and then 3844 /// skip it. This lets us lazily deserialize the functions. 3845 Error BitcodeReader::rememberAndSkipFunctionBody() { 3846 // Get the function we are talking about. 3847 if (FunctionsWithBodies.empty()) 3848 return error("Insufficient function protos"); 3849 3850 Function *Fn = FunctionsWithBodies.back(); 3851 FunctionsWithBodies.pop_back(); 3852 3853 // Save the current stream state. 3854 uint64_t CurBit = Stream.GetCurrentBitNo(); 3855 assert( 3856 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3857 "Mismatch between VST and scanned function offsets"); 3858 DeferredFunctionInfo[Fn] = CurBit; 3859 3860 // Skip over the function block for now. 3861 if (Error Err = Stream.SkipBlock()) 3862 return Err; 3863 return Error::success(); 3864 } 3865 3866 Error BitcodeReader::globalCleanup() { 3867 // Patch the initializers for globals and aliases up. 3868 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3869 return Err; 3870 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3871 return error("Malformed global initializer set"); 3872 3873 // Look for intrinsic functions which need to be upgraded at some point 3874 // and functions that need to have their function attributes upgraded. 3875 for (Function &F : *TheModule) { 3876 MDLoader->upgradeDebugIntrinsics(F); 3877 Function *NewFn; 3878 // If PreserveInputDbgFormat=true, then we don't know whether we want 3879 // intrinsics or records, and we won't perform any conversions in either 3880 // case, so don't upgrade intrinsics to records. 3881 if (UpgradeIntrinsicFunction( 3882 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3883 UpgradedIntrinsics[&F] = NewFn; 3884 // Look for functions that rely on old function attribute behavior. 3885 UpgradeFunctionAttributes(F); 3886 } 3887 3888 // Look for global variables which need to be renamed. 3889 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3890 for (GlobalVariable &GV : TheModule->globals()) 3891 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3892 UpgradedVariables.emplace_back(&GV, Upgraded); 3893 for (auto &Pair : UpgradedVariables) { 3894 Pair.first->eraseFromParent(); 3895 TheModule->insertGlobalVariable(Pair.second); 3896 } 3897 3898 // Force deallocation of memory for these vectors to favor the client that 3899 // want lazy deserialization. 3900 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3901 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3902 return Error::success(); 3903 } 3904 3905 /// Support for lazy parsing of function bodies. This is required if we 3906 /// either have an old bitcode file without a VST forward declaration record, 3907 /// or if we have an anonymous function being materialized, since anonymous 3908 /// functions do not have a name and are therefore not in the VST. 3909 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3910 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3911 return JumpFailed; 3912 3913 if (Stream.AtEndOfStream()) 3914 return error("Could not find function in stream"); 3915 3916 if (!SeenFirstFunctionBody) 3917 return error("Trying to materialize functions before seeing function blocks"); 3918 3919 // An old bitcode file with the symbol table at the end would have 3920 // finished the parse greedily. 3921 assert(SeenValueSymbolTable); 3922 3923 SmallVector<uint64_t, 64> Record; 3924 3925 while (true) { 3926 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3927 if (!MaybeEntry) 3928 return MaybeEntry.takeError(); 3929 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3930 3931 switch (Entry.Kind) { 3932 default: 3933 return error("Expect SubBlock"); 3934 case BitstreamEntry::SubBlock: 3935 switch (Entry.ID) { 3936 default: 3937 return error("Expect function block"); 3938 case bitc::FUNCTION_BLOCK_ID: 3939 if (Error Err = rememberAndSkipFunctionBody()) 3940 return Err; 3941 NextUnreadBit = Stream.GetCurrentBitNo(); 3942 return Error::success(); 3943 } 3944 } 3945 } 3946 } 3947 3948 Error BitcodeReaderBase::readBlockInfo() { 3949 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3950 Stream.ReadBlockInfoBlock(); 3951 if (!MaybeNewBlockInfo) 3952 return MaybeNewBlockInfo.takeError(); 3953 std::optional<BitstreamBlockInfo> NewBlockInfo = 3954 std::move(MaybeNewBlockInfo.get()); 3955 if (!NewBlockInfo) 3956 return error("Malformed block"); 3957 BlockInfo = std::move(*NewBlockInfo); 3958 return Error::success(); 3959 } 3960 3961 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3962 // v1: [selection_kind, name] 3963 // v2: [strtab_offset, strtab_size, selection_kind] 3964 StringRef Name; 3965 std::tie(Name, Record) = readNameFromStrtab(Record); 3966 3967 if (Record.empty()) 3968 return error("Invalid record"); 3969 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3970 std::string OldFormatName; 3971 if (!UseStrtab) { 3972 if (Record.size() < 2) 3973 return error("Invalid record"); 3974 unsigned ComdatNameSize = Record[1]; 3975 if (ComdatNameSize > Record.size() - 2) 3976 return error("Comdat name size too large"); 3977 OldFormatName.reserve(ComdatNameSize); 3978 for (unsigned i = 0; i != ComdatNameSize; ++i) 3979 OldFormatName += (char)Record[2 + i]; 3980 Name = OldFormatName; 3981 } 3982 Comdat *C = TheModule->getOrInsertComdat(Name); 3983 C->setSelectionKind(SK); 3984 ComdatList.push_back(C); 3985 return Error::success(); 3986 } 3987 3988 static void inferDSOLocal(GlobalValue *GV) { 3989 // infer dso_local from linkage and visibility if it is not encoded. 3990 if (GV->hasLocalLinkage() || 3991 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3992 GV->setDSOLocal(true); 3993 } 3994 3995 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3996 GlobalValue::SanitizerMetadata Meta; 3997 if (V & (1 << 0)) 3998 Meta.NoAddress = true; 3999 if (V & (1 << 1)) 4000 Meta.NoHWAddress = true; 4001 if (V & (1 << 2)) 4002 Meta.Memtag = true; 4003 if (V & (1 << 3)) 4004 Meta.IsDynInit = true; 4005 return Meta; 4006 } 4007 4008 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4009 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4010 // visibility, threadlocal, unnamed_addr, externally_initialized, 4011 // dllstorageclass, comdat, attributes, preemption specifier, 4012 // partition strtab offset, partition strtab size] (name in VST) 4013 // v2: [strtab_offset, strtab_size, v1] 4014 // v3: [v2, code_model] 4015 StringRef Name; 4016 std::tie(Name, Record) = readNameFromStrtab(Record); 4017 4018 if (Record.size() < 6) 4019 return error("Invalid record"); 4020 unsigned TyID = Record[0]; 4021 Type *Ty = getTypeByID(TyID); 4022 if (!Ty) 4023 return error("Invalid record"); 4024 bool isConstant = Record[1] & 1; 4025 bool explicitType = Record[1] & 2; 4026 unsigned AddressSpace; 4027 if (explicitType) { 4028 AddressSpace = Record[1] >> 2; 4029 } else { 4030 if (!Ty->isPointerTy()) 4031 return error("Invalid type for value"); 4032 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4033 TyID = getContainedTypeID(TyID); 4034 Ty = getTypeByID(TyID); 4035 if (!Ty) 4036 return error("Missing element type for old-style global"); 4037 } 4038 4039 uint64_t RawLinkage = Record[3]; 4040 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4041 MaybeAlign Alignment; 4042 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4043 return Err; 4044 std::string Section; 4045 if (Record[5]) { 4046 if (Record[5] - 1 >= SectionTable.size()) 4047 return error("Invalid ID"); 4048 Section = SectionTable[Record[5] - 1]; 4049 } 4050 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4051 // Local linkage must have default visibility. 4052 // auto-upgrade `hidden` and `protected` for old bitcode. 4053 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4054 Visibility = getDecodedVisibility(Record[6]); 4055 4056 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4057 if (Record.size() > 7) 4058 TLM = getDecodedThreadLocalMode(Record[7]); 4059 4060 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4061 if (Record.size() > 8) 4062 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4063 4064 bool ExternallyInitialized = false; 4065 if (Record.size() > 9) 4066 ExternallyInitialized = Record[9]; 4067 4068 GlobalVariable *NewGV = 4069 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4070 nullptr, TLM, AddressSpace, ExternallyInitialized); 4071 if (Alignment) 4072 NewGV->setAlignment(*Alignment); 4073 if (!Section.empty()) 4074 NewGV->setSection(Section); 4075 NewGV->setVisibility(Visibility); 4076 NewGV->setUnnamedAddr(UnnamedAddr); 4077 4078 if (Record.size() > 10) { 4079 // A GlobalValue with local linkage cannot have a DLL storage class. 4080 if (!NewGV->hasLocalLinkage()) { 4081 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4082 } 4083 } else { 4084 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4085 } 4086 4087 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4088 4089 // Remember which value to use for the global initializer. 4090 if (unsigned InitID = Record[2]) 4091 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4092 4093 if (Record.size() > 11) { 4094 if (unsigned ComdatID = Record[11]) { 4095 if (ComdatID > ComdatList.size()) 4096 return error("Invalid global variable comdat ID"); 4097 NewGV->setComdat(ComdatList[ComdatID - 1]); 4098 } 4099 } else if (hasImplicitComdat(RawLinkage)) { 4100 ImplicitComdatObjects.insert(NewGV); 4101 } 4102 4103 if (Record.size() > 12) { 4104 auto AS = getAttributes(Record[12]).getFnAttrs(); 4105 NewGV->setAttributes(AS); 4106 } 4107 4108 if (Record.size() > 13) { 4109 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4110 } 4111 inferDSOLocal(NewGV); 4112 4113 // Check whether we have enough values to read a partition name. 4114 if (Record.size() > 15) 4115 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4116 4117 if (Record.size() > 16 && Record[16]) { 4118 llvm::GlobalValue::SanitizerMetadata Meta = 4119 deserializeSanitizerMetadata(Record[16]); 4120 NewGV->setSanitizerMetadata(Meta); 4121 } 4122 4123 if (Record.size() > 17 && Record[17]) { 4124 if (auto CM = getDecodedCodeModel(Record[17])) 4125 NewGV->setCodeModel(*CM); 4126 else 4127 return error("Invalid global variable code model"); 4128 } 4129 4130 return Error::success(); 4131 } 4132 4133 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4134 if (ValueTypeCallback) { 4135 (*ValueTypeCallback)( 4136 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4137 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4138 } 4139 } 4140 4141 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4142 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4143 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4144 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4145 // v2: [strtab_offset, strtab_size, v1] 4146 StringRef Name; 4147 std::tie(Name, Record) = readNameFromStrtab(Record); 4148 4149 if (Record.size() < 8) 4150 return error("Invalid record"); 4151 unsigned FTyID = Record[0]; 4152 Type *FTy = getTypeByID(FTyID); 4153 if (!FTy) 4154 return error("Invalid record"); 4155 if (isa<PointerType>(FTy)) { 4156 FTyID = getContainedTypeID(FTyID, 0); 4157 FTy = getTypeByID(FTyID); 4158 if (!FTy) 4159 return error("Missing element type for old-style function"); 4160 } 4161 4162 if (!isa<FunctionType>(FTy)) 4163 return error("Invalid type for value"); 4164 auto CC = static_cast<CallingConv::ID>(Record[1]); 4165 if (CC & ~CallingConv::MaxID) 4166 return error("Invalid calling convention ID"); 4167 4168 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4169 if (Record.size() > 16) 4170 AddrSpace = Record[16]; 4171 4172 Function *Func = 4173 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4174 AddrSpace, Name, TheModule); 4175 4176 assert(Func->getFunctionType() == FTy && 4177 "Incorrect fully specified type provided for function"); 4178 FunctionTypeIDs[Func] = FTyID; 4179 4180 Func->setCallingConv(CC); 4181 bool isProto = Record[2]; 4182 uint64_t RawLinkage = Record[3]; 4183 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4184 Func->setAttributes(getAttributes(Record[4])); 4185 callValueTypeCallback(Func, FTyID); 4186 4187 // Upgrade any old-style byval or sret without a type by propagating the 4188 // argument's pointee type. There should be no opaque pointers where the byval 4189 // type is implicit. 4190 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4191 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4192 Attribute::InAlloca}) { 4193 if (!Func->hasParamAttribute(i, Kind)) 4194 continue; 4195 4196 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4197 continue; 4198 4199 Func->removeParamAttr(i, Kind); 4200 4201 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4202 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4203 if (!PtrEltTy) 4204 return error("Missing param element type for attribute upgrade"); 4205 4206 Attribute NewAttr; 4207 switch (Kind) { 4208 case Attribute::ByVal: 4209 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4210 break; 4211 case Attribute::StructRet: 4212 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4213 break; 4214 case Attribute::InAlloca: 4215 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4216 break; 4217 default: 4218 llvm_unreachable("not an upgraded type attribute"); 4219 } 4220 4221 Func->addParamAttr(i, NewAttr); 4222 } 4223 } 4224 4225 if (Func->getCallingConv() == CallingConv::X86_INTR && 4226 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4227 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4228 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4229 if (!ByValTy) 4230 return error("Missing param element type for x86_intrcc upgrade"); 4231 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4232 Func->addParamAttr(0, NewAttr); 4233 } 4234 4235 MaybeAlign Alignment; 4236 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4237 return Err; 4238 if (Alignment) 4239 Func->setAlignment(*Alignment); 4240 if (Record[6]) { 4241 if (Record[6] - 1 >= SectionTable.size()) 4242 return error("Invalid ID"); 4243 Func->setSection(SectionTable[Record[6] - 1]); 4244 } 4245 // Local linkage must have default visibility. 4246 // auto-upgrade `hidden` and `protected` for old bitcode. 4247 if (!Func->hasLocalLinkage()) 4248 Func->setVisibility(getDecodedVisibility(Record[7])); 4249 if (Record.size() > 8 && Record[8]) { 4250 if (Record[8] - 1 >= GCTable.size()) 4251 return error("Invalid ID"); 4252 Func->setGC(GCTable[Record[8] - 1]); 4253 } 4254 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4255 if (Record.size() > 9) 4256 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4257 Func->setUnnamedAddr(UnnamedAddr); 4258 4259 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4260 if (Record.size() > 10) 4261 OperandInfo.Prologue = Record[10]; 4262 4263 if (Record.size() > 11) { 4264 // A GlobalValue with local linkage cannot have a DLL storage class. 4265 if (!Func->hasLocalLinkage()) { 4266 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4267 } 4268 } else { 4269 upgradeDLLImportExportLinkage(Func, RawLinkage); 4270 } 4271 4272 if (Record.size() > 12) { 4273 if (unsigned ComdatID = Record[12]) { 4274 if (ComdatID > ComdatList.size()) 4275 return error("Invalid function comdat ID"); 4276 Func->setComdat(ComdatList[ComdatID - 1]); 4277 } 4278 } else if (hasImplicitComdat(RawLinkage)) { 4279 ImplicitComdatObjects.insert(Func); 4280 } 4281 4282 if (Record.size() > 13) 4283 OperandInfo.Prefix = Record[13]; 4284 4285 if (Record.size() > 14) 4286 OperandInfo.PersonalityFn = Record[14]; 4287 4288 if (Record.size() > 15) { 4289 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4290 } 4291 inferDSOLocal(Func); 4292 4293 // Record[16] is the address space number. 4294 4295 // Check whether we have enough values to read a partition name. Also make 4296 // sure Strtab has enough values. 4297 if (Record.size() > 18 && Strtab.data() && 4298 Record[17] + Record[18] <= Strtab.size()) { 4299 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4300 } 4301 4302 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4303 4304 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4305 FunctionOperands.push_back(OperandInfo); 4306 4307 // If this is a function with a body, remember the prototype we are 4308 // creating now, so that we can match up the body with them later. 4309 if (!isProto) { 4310 Func->setIsMaterializable(true); 4311 FunctionsWithBodies.push_back(Func); 4312 DeferredFunctionInfo[Func] = 0; 4313 } 4314 return Error::success(); 4315 } 4316 4317 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4318 unsigned BitCode, ArrayRef<uint64_t> Record) { 4319 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4320 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4321 // dllstorageclass, threadlocal, unnamed_addr, 4322 // preemption specifier] (name in VST) 4323 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4324 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4325 // preemption specifier] (name in VST) 4326 // v2: [strtab_offset, strtab_size, v1] 4327 StringRef Name; 4328 std::tie(Name, Record) = readNameFromStrtab(Record); 4329 4330 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4331 if (Record.size() < (3 + (unsigned)NewRecord)) 4332 return error("Invalid record"); 4333 unsigned OpNum = 0; 4334 unsigned TypeID = Record[OpNum++]; 4335 Type *Ty = getTypeByID(TypeID); 4336 if (!Ty) 4337 return error("Invalid record"); 4338 4339 unsigned AddrSpace; 4340 if (!NewRecord) { 4341 auto *PTy = dyn_cast<PointerType>(Ty); 4342 if (!PTy) 4343 return error("Invalid type for value"); 4344 AddrSpace = PTy->getAddressSpace(); 4345 TypeID = getContainedTypeID(TypeID); 4346 Ty = getTypeByID(TypeID); 4347 if (!Ty) 4348 return error("Missing element type for old-style indirect symbol"); 4349 } else { 4350 AddrSpace = Record[OpNum++]; 4351 } 4352 4353 auto Val = Record[OpNum++]; 4354 auto Linkage = Record[OpNum++]; 4355 GlobalValue *NewGA; 4356 if (BitCode == bitc::MODULE_CODE_ALIAS || 4357 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4358 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4359 TheModule); 4360 else 4361 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4362 nullptr, TheModule); 4363 4364 // Local linkage must have default visibility. 4365 // auto-upgrade `hidden` and `protected` for old bitcode. 4366 if (OpNum != Record.size()) { 4367 auto VisInd = OpNum++; 4368 if (!NewGA->hasLocalLinkage()) 4369 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4370 } 4371 if (BitCode == bitc::MODULE_CODE_ALIAS || 4372 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4373 if (OpNum != Record.size()) { 4374 auto S = Record[OpNum++]; 4375 // A GlobalValue with local linkage cannot have a DLL storage class. 4376 if (!NewGA->hasLocalLinkage()) 4377 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4378 } 4379 else 4380 upgradeDLLImportExportLinkage(NewGA, Linkage); 4381 if (OpNum != Record.size()) 4382 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4383 if (OpNum != Record.size()) 4384 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4385 } 4386 if (OpNum != Record.size()) 4387 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4388 inferDSOLocal(NewGA); 4389 4390 // Check whether we have enough values to read a partition name. 4391 if (OpNum + 1 < Record.size()) { 4392 // Check Strtab has enough values for the partition. 4393 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4394 return error("Malformed partition, too large."); 4395 NewGA->setPartition( 4396 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4397 } 4398 4399 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4400 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4401 return Error::success(); 4402 } 4403 4404 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4405 bool ShouldLazyLoadMetadata, 4406 ParserCallbacks Callbacks) { 4407 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4408 // has been set to true and we aren't attempting to preserve the existing 4409 // format in the bitcode (default action: load into the old debug format). 4410 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4411 TheModule->IsNewDbgInfoFormat = 4412 UseNewDbgInfoFormat && 4413 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4414 } 4415 4416 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4417 if (ResumeBit) { 4418 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4419 return JumpFailed; 4420 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4421 return Err; 4422 4423 SmallVector<uint64_t, 64> Record; 4424 4425 // Parts of bitcode parsing depend on the datalayout. Make sure we 4426 // finalize the datalayout before we run any of that code. 4427 bool ResolvedDataLayout = false; 4428 // In order to support importing modules with illegal data layout strings, 4429 // delay parsing the data layout string until after upgrades and overrides 4430 // have been applied, allowing to fix illegal data layout strings. 4431 // Initialize to the current module's layout string in case none is specified. 4432 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4433 4434 auto ResolveDataLayout = [&]() -> Error { 4435 if (ResolvedDataLayout) 4436 return Error::success(); 4437 4438 // Datalayout and triple can't be parsed after this point. 4439 ResolvedDataLayout = true; 4440 4441 // Auto-upgrade the layout string 4442 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4443 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4444 4445 // Apply override 4446 if (Callbacks.DataLayout) { 4447 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4448 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4449 TentativeDataLayoutStr = *LayoutOverride; 4450 } 4451 4452 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4453 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4454 if (!MaybeDL) 4455 return MaybeDL.takeError(); 4456 4457 TheModule->setDataLayout(MaybeDL.get()); 4458 return Error::success(); 4459 }; 4460 4461 // Read all the records for this module. 4462 while (true) { 4463 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4464 if (!MaybeEntry) 4465 return MaybeEntry.takeError(); 4466 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4467 4468 switch (Entry.Kind) { 4469 case BitstreamEntry::Error: 4470 return error("Malformed block"); 4471 case BitstreamEntry::EndBlock: 4472 if (Error Err = ResolveDataLayout()) 4473 return Err; 4474 return globalCleanup(); 4475 4476 case BitstreamEntry::SubBlock: 4477 switch (Entry.ID) { 4478 default: // Skip unknown content. 4479 if (Error Err = Stream.SkipBlock()) 4480 return Err; 4481 break; 4482 case bitc::BLOCKINFO_BLOCK_ID: 4483 if (Error Err = readBlockInfo()) 4484 return Err; 4485 break; 4486 case bitc::PARAMATTR_BLOCK_ID: 4487 if (Error Err = parseAttributeBlock()) 4488 return Err; 4489 break; 4490 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4491 if (Error Err = parseAttributeGroupBlock()) 4492 return Err; 4493 break; 4494 case bitc::TYPE_BLOCK_ID_NEW: 4495 if (Error Err = parseTypeTable()) 4496 return Err; 4497 break; 4498 case bitc::VALUE_SYMTAB_BLOCK_ID: 4499 if (!SeenValueSymbolTable) { 4500 // Either this is an old form VST without function index and an 4501 // associated VST forward declaration record (which would have caused 4502 // the VST to be jumped to and parsed before it was encountered 4503 // normally in the stream), or there were no function blocks to 4504 // trigger an earlier parsing of the VST. 4505 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4506 if (Error Err = parseValueSymbolTable()) 4507 return Err; 4508 SeenValueSymbolTable = true; 4509 } else { 4510 // We must have had a VST forward declaration record, which caused 4511 // the parser to jump to and parse the VST earlier. 4512 assert(VSTOffset > 0); 4513 if (Error Err = Stream.SkipBlock()) 4514 return Err; 4515 } 4516 break; 4517 case bitc::CONSTANTS_BLOCK_ID: 4518 if (Error Err = parseConstants()) 4519 return Err; 4520 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4521 return Err; 4522 break; 4523 case bitc::METADATA_BLOCK_ID: 4524 if (ShouldLazyLoadMetadata) { 4525 if (Error Err = rememberAndSkipMetadata()) 4526 return Err; 4527 break; 4528 } 4529 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4530 if (Error Err = MDLoader->parseModuleMetadata()) 4531 return Err; 4532 break; 4533 case bitc::METADATA_KIND_BLOCK_ID: 4534 if (Error Err = MDLoader->parseMetadataKinds()) 4535 return Err; 4536 break; 4537 case bitc::FUNCTION_BLOCK_ID: 4538 if (Error Err = ResolveDataLayout()) 4539 return Err; 4540 4541 // If this is the first function body we've seen, reverse the 4542 // FunctionsWithBodies list. 4543 if (!SeenFirstFunctionBody) { 4544 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4545 if (Error Err = globalCleanup()) 4546 return Err; 4547 SeenFirstFunctionBody = true; 4548 } 4549 4550 if (VSTOffset > 0) { 4551 // If we have a VST forward declaration record, make sure we 4552 // parse the VST now if we haven't already. It is needed to 4553 // set up the DeferredFunctionInfo vector for lazy reading. 4554 if (!SeenValueSymbolTable) { 4555 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4556 return Err; 4557 SeenValueSymbolTable = true; 4558 // Fall through so that we record the NextUnreadBit below. 4559 // This is necessary in case we have an anonymous function that 4560 // is later materialized. Since it will not have a VST entry we 4561 // need to fall back to the lazy parse to find its offset. 4562 } else { 4563 // If we have a VST forward declaration record, but have already 4564 // parsed the VST (just above, when the first function body was 4565 // encountered here), then we are resuming the parse after 4566 // materializing functions. The ResumeBit points to the 4567 // start of the last function block recorded in the 4568 // DeferredFunctionInfo map. Skip it. 4569 if (Error Err = Stream.SkipBlock()) 4570 return Err; 4571 continue; 4572 } 4573 } 4574 4575 // Support older bitcode files that did not have the function 4576 // index in the VST, nor a VST forward declaration record, as 4577 // well as anonymous functions that do not have VST entries. 4578 // Build the DeferredFunctionInfo vector on the fly. 4579 if (Error Err = rememberAndSkipFunctionBody()) 4580 return Err; 4581 4582 // Suspend parsing when we reach the function bodies. Subsequent 4583 // materialization calls will resume it when necessary. If the bitcode 4584 // file is old, the symbol table will be at the end instead and will not 4585 // have been seen yet. In this case, just finish the parse now. 4586 if (SeenValueSymbolTable) { 4587 NextUnreadBit = Stream.GetCurrentBitNo(); 4588 // After the VST has been parsed, we need to make sure intrinsic name 4589 // are auto-upgraded. 4590 return globalCleanup(); 4591 } 4592 break; 4593 case bitc::USELIST_BLOCK_ID: 4594 if (Error Err = parseUseLists()) 4595 return Err; 4596 break; 4597 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4598 if (Error Err = parseOperandBundleTags()) 4599 return Err; 4600 break; 4601 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4602 if (Error Err = parseSyncScopeNames()) 4603 return Err; 4604 break; 4605 } 4606 continue; 4607 4608 case BitstreamEntry::Record: 4609 // The interesting case. 4610 break; 4611 } 4612 4613 // Read a record. 4614 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4615 if (!MaybeBitCode) 4616 return MaybeBitCode.takeError(); 4617 switch (unsigned BitCode = MaybeBitCode.get()) { 4618 default: break; // Default behavior, ignore unknown content. 4619 case bitc::MODULE_CODE_VERSION: { 4620 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4621 if (!VersionOrErr) 4622 return VersionOrErr.takeError(); 4623 UseRelativeIDs = *VersionOrErr >= 1; 4624 break; 4625 } 4626 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4627 if (ResolvedDataLayout) 4628 return error("target triple too late in module"); 4629 std::string S; 4630 if (convertToString(Record, 0, S)) 4631 return error("Invalid record"); 4632 TheModule->setTargetTriple(S); 4633 break; 4634 } 4635 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4636 if (ResolvedDataLayout) 4637 return error("datalayout too late in module"); 4638 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4639 return error("Invalid record"); 4640 break; 4641 } 4642 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4643 std::string S; 4644 if (convertToString(Record, 0, S)) 4645 return error("Invalid record"); 4646 TheModule->setModuleInlineAsm(S); 4647 break; 4648 } 4649 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4650 // Deprecated, but still needed to read old bitcode files. 4651 std::string S; 4652 if (convertToString(Record, 0, S)) 4653 return error("Invalid record"); 4654 // Ignore value. 4655 break; 4656 } 4657 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4658 std::string S; 4659 if (convertToString(Record, 0, S)) 4660 return error("Invalid record"); 4661 SectionTable.push_back(S); 4662 break; 4663 } 4664 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4665 std::string S; 4666 if (convertToString(Record, 0, S)) 4667 return error("Invalid record"); 4668 GCTable.push_back(S); 4669 break; 4670 } 4671 case bitc::MODULE_CODE_COMDAT: 4672 if (Error Err = parseComdatRecord(Record)) 4673 return Err; 4674 break; 4675 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4676 // written by ThinLinkBitcodeWriter. See 4677 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4678 // record 4679 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4680 case bitc::MODULE_CODE_GLOBALVAR: 4681 if (Error Err = parseGlobalVarRecord(Record)) 4682 return Err; 4683 break; 4684 case bitc::MODULE_CODE_FUNCTION: 4685 if (Error Err = ResolveDataLayout()) 4686 return Err; 4687 if (Error Err = parseFunctionRecord(Record)) 4688 return Err; 4689 break; 4690 case bitc::MODULE_CODE_IFUNC: 4691 case bitc::MODULE_CODE_ALIAS: 4692 case bitc::MODULE_CODE_ALIAS_OLD: 4693 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4694 return Err; 4695 break; 4696 /// MODULE_CODE_VSTOFFSET: [offset] 4697 case bitc::MODULE_CODE_VSTOFFSET: 4698 if (Record.empty()) 4699 return error("Invalid record"); 4700 // Note that we subtract 1 here because the offset is relative to one word 4701 // before the start of the identification or module block, which was 4702 // historically always the start of the regular bitcode header. 4703 VSTOffset = Record[0] - 1; 4704 break; 4705 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4706 case bitc::MODULE_CODE_SOURCE_FILENAME: 4707 SmallString<128> ValueName; 4708 if (convertToString(Record, 0, ValueName)) 4709 return error("Invalid record"); 4710 TheModule->setSourceFileName(ValueName); 4711 break; 4712 } 4713 Record.clear(); 4714 } 4715 this->ValueTypeCallback = std::nullopt; 4716 return Error::success(); 4717 } 4718 4719 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4720 bool IsImporting, 4721 ParserCallbacks Callbacks) { 4722 TheModule = M; 4723 MetadataLoaderCallbacks MDCallbacks; 4724 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4725 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4726 return getContainedTypeID(I, J); 4727 }; 4728 MDCallbacks.MDType = Callbacks.MDType; 4729 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4730 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4731 } 4732 4733 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4734 if (!isa<PointerType>(PtrType)) 4735 return error("Load/Store operand is not a pointer type"); 4736 if (!PointerType::isLoadableOrStorableType(ValType)) 4737 return error("Cannot load/store from pointer"); 4738 return Error::success(); 4739 } 4740 4741 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4742 ArrayRef<unsigned> ArgTyIDs) { 4743 AttributeList Attrs = CB->getAttributes(); 4744 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4745 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4746 Attribute::InAlloca}) { 4747 if (!Attrs.hasParamAttr(i, Kind) || 4748 Attrs.getParamAttr(i, Kind).getValueAsType()) 4749 continue; 4750 4751 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4752 if (!PtrEltTy) 4753 return error("Missing element type for typed attribute upgrade"); 4754 4755 Attribute NewAttr; 4756 switch (Kind) { 4757 case Attribute::ByVal: 4758 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4759 break; 4760 case Attribute::StructRet: 4761 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4762 break; 4763 case Attribute::InAlloca: 4764 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4765 break; 4766 default: 4767 llvm_unreachable("not an upgraded type attribute"); 4768 } 4769 4770 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4771 } 4772 } 4773 4774 if (CB->isInlineAsm()) { 4775 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4776 unsigned ArgNo = 0; 4777 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4778 if (!CI.hasArg()) 4779 continue; 4780 4781 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4782 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4783 if (!ElemTy) 4784 return error("Missing element type for inline asm upgrade"); 4785 Attrs = Attrs.addParamAttribute( 4786 Context, ArgNo, 4787 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4788 } 4789 4790 ArgNo++; 4791 } 4792 } 4793 4794 switch (CB->getIntrinsicID()) { 4795 case Intrinsic::preserve_array_access_index: 4796 case Intrinsic::preserve_struct_access_index: 4797 case Intrinsic::aarch64_ldaxr: 4798 case Intrinsic::aarch64_ldxr: 4799 case Intrinsic::aarch64_stlxr: 4800 case Intrinsic::aarch64_stxr: 4801 case Intrinsic::arm_ldaex: 4802 case Intrinsic::arm_ldrex: 4803 case Intrinsic::arm_stlex: 4804 case Intrinsic::arm_strex: { 4805 unsigned ArgNo; 4806 switch (CB->getIntrinsicID()) { 4807 case Intrinsic::aarch64_stlxr: 4808 case Intrinsic::aarch64_stxr: 4809 case Intrinsic::arm_stlex: 4810 case Intrinsic::arm_strex: 4811 ArgNo = 1; 4812 break; 4813 default: 4814 ArgNo = 0; 4815 break; 4816 } 4817 if (!Attrs.getParamElementType(ArgNo)) { 4818 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4819 if (!ElTy) 4820 return error("Missing element type for elementtype upgrade"); 4821 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4822 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4823 } 4824 break; 4825 } 4826 default: 4827 break; 4828 } 4829 4830 CB->setAttributes(Attrs); 4831 return Error::success(); 4832 } 4833 4834 /// Lazily parse the specified function body block. 4835 Error BitcodeReader::parseFunctionBody(Function *F) { 4836 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4837 return Err; 4838 4839 // Unexpected unresolved metadata when parsing function. 4840 if (MDLoader->hasFwdRefs()) 4841 return error("Invalid function metadata: incoming forward references"); 4842 4843 InstructionList.clear(); 4844 unsigned ModuleValueListSize = ValueList.size(); 4845 unsigned ModuleMDLoaderSize = MDLoader->size(); 4846 4847 // Add all the function arguments to the value table. 4848 unsigned ArgNo = 0; 4849 unsigned FTyID = FunctionTypeIDs[F]; 4850 for (Argument &I : F->args()) { 4851 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4852 assert(I.getType() == getTypeByID(ArgTyID) && 4853 "Incorrect fully specified type for Function Argument"); 4854 ValueList.push_back(&I, ArgTyID); 4855 ++ArgNo; 4856 } 4857 unsigned NextValueNo = ValueList.size(); 4858 BasicBlock *CurBB = nullptr; 4859 unsigned CurBBNo = 0; 4860 // Block into which constant expressions from phi nodes are materialized. 4861 BasicBlock *PhiConstExprBB = nullptr; 4862 // Edge blocks for phi nodes into which constant expressions have been 4863 // expanded. 4864 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4865 ConstExprEdgeBBs; 4866 4867 DebugLoc LastLoc; 4868 auto getLastInstruction = [&]() -> Instruction * { 4869 if (CurBB && !CurBB->empty()) 4870 return &CurBB->back(); 4871 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4872 !FunctionBBs[CurBBNo - 1]->empty()) 4873 return &FunctionBBs[CurBBNo - 1]->back(); 4874 return nullptr; 4875 }; 4876 4877 std::vector<OperandBundleDef> OperandBundles; 4878 4879 // Read all the records. 4880 SmallVector<uint64_t, 64> Record; 4881 4882 while (true) { 4883 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4884 if (!MaybeEntry) 4885 return MaybeEntry.takeError(); 4886 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4887 4888 switch (Entry.Kind) { 4889 case BitstreamEntry::Error: 4890 return error("Malformed block"); 4891 case BitstreamEntry::EndBlock: 4892 goto OutOfRecordLoop; 4893 4894 case BitstreamEntry::SubBlock: 4895 switch (Entry.ID) { 4896 default: // Skip unknown content. 4897 if (Error Err = Stream.SkipBlock()) 4898 return Err; 4899 break; 4900 case bitc::CONSTANTS_BLOCK_ID: 4901 if (Error Err = parseConstants()) 4902 return Err; 4903 NextValueNo = ValueList.size(); 4904 break; 4905 case bitc::VALUE_SYMTAB_BLOCK_ID: 4906 if (Error Err = parseValueSymbolTable()) 4907 return Err; 4908 break; 4909 case bitc::METADATA_ATTACHMENT_ID: 4910 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4911 return Err; 4912 break; 4913 case bitc::METADATA_BLOCK_ID: 4914 assert(DeferredMetadataInfo.empty() && 4915 "Must read all module-level metadata before function-level"); 4916 if (Error Err = MDLoader->parseFunctionMetadata()) 4917 return Err; 4918 break; 4919 case bitc::USELIST_BLOCK_ID: 4920 if (Error Err = parseUseLists()) 4921 return Err; 4922 break; 4923 } 4924 continue; 4925 4926 case BitstreamEntry::Record: 4927 // The interesting case. 4928 break; 4929 } 4930 4931 // Read a record. 4932 Record.clear(); 4933 Instruction *I = nullptr; 4934 unsigned ResTypeID = InvalidTypeID; 4935 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4936 if (!MaybeBitCode) 4937 return MaybeBitCode.takeError(); 4938 switch (unsigned BitCode = MaybeBitCode.get()) { 4939 default: // Default behavior: reject 4940 return error("Invalid value"); 4941 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4942 if (Record.empty() || Record[0] == 0) 4943 return error("Invalid record"); 4944 // Create all the basic blocks for the function. 4945 FunctionBBs.resize(Record[0]); 4946 4947 // See if anything took the address of blocks in this function. 4948 auto BBFRI = BasicBlockFwdRefs.find(F); 4949 if (BBFRI == BasicBlockFwdRefs.end()) { 4950 for (BasicBlock *&BB : FunctionBBs) 4951 BB = BasicBlock::Create(Context, "", F); 4952 } else { 4953 auto &BBRefs = BBFRI->second; 4954 // Check for invalid basic block references. 4955 if (BBRefs.size() > FunctionBBs.size()) 4956 return error("Invalid ID"); 4957 assert(!BBRefs.empty() && "Unexpected empty array"); 4958 assert(!BBRefs.front() && "Invalid reference to entry block"); 4959 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4960 ++I) 4961 if (I < RE && BBRefs[I]) { 4962 BBRefs[I]->insertInto(F); 4963 FunctionBBs[I] = BBRefs[I]; 4964 } else { 4965 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4966 } 4967 4968 // Erase from the table. 4969 BasicBlockFwdRefs.erase(BBFRI); 4970 } 4971 4972 CurBB = FunctionBBs[0]; 4973 continue; 4974 } 4975 4976 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4977 // The record should not be emitted if it's an empty list. 4978 if (Record.empty()) 4979 return error("Invalid record"); 4980 // When we have the RARE case of a BlockAddress Constant that is not 4981 // scoped to the Function it refers to, we need to conservatively 4982 // materialize the referred to Function, regardless of whether or not 4983 // that Function will ultimately be linked, otherwise users of 4984 // BitcodeReader might start splicing out Function bodies such that we 4985 // might no longer be able to materialize the BlockAddress since the 4986 // BasicBlock (and entire body of the Function) the BlockAddress refers 4987 // to may have been moved. In the case that the user of BitcodeReader 4988 // decides ultimately not to link the Function body, materializing here 4989 // could be considered wasteful, but it's better than a deserialization 4990 // failure as described. This keeps BitcodeReader unaware of complex 4991 // linkage policy decisions such as those use by LTO, leaving those 4992 // decisions "one layer up." 4993 for (uint64_t ValID : Record) 4994 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4995 BackwardRefFunctions.push_back(F); 4996 else 4997 return error("Invalid record"); 4998 4999 continue; 5000 5001 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5002 // This record indicates that the last instruction is at the same 5003 // location as the previous instruction with a location. 5004 I = getLastInstruction(); 5005 5006 if (!I) 5007 return error("Invalid record"); 5008 I->setDebugLoc(LastLoc); 5009 I = nullptr; 5010 continue; 5011 5012 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5013 I = getLastInstruction(); 5014 if (!I || Record.size() < 4) 5015 return error("Invalid record"); 5016 5017 unsigned Line = Record[0], Col = Record[1]; 5018 unsigned ScopeID = Record[2], IAID = Record[3]; 5019 bool isImplicitCode = Record.size() == 5 && Record[4]; 5020 5021 MDNode *Scope = nullptr, *IA = nullptr; 5022 if (ScopeID) { 5023 Scope = dyn_cast_or_null<MDNode>( 5024 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5025 if (!Scope) 5026 return error("Invalid record"); 5027 } 5028 if (IAID) { 5029 IA = dyn_cast_or_null<MDNode>( 5030 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5031 if (!IA) 5032 return error("Invalid record"); 5033 } 5034 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5035 isImplicitCode); 5036 I->setDebugLoc(LastLoc); 5037 I = nullptr; 5038 continue; 5039 } 5040 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5041 unsigned OpNum = 0; 5042 Value *LHS; 5043 unsigned TypeID; 5044 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5045 OpNum+1 > Record.size()) 5046 return error("Invalid record"); 5047 5048 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5049 if (Opc == -1) 5050 return error("Invalid record"); 5051 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5052 ResTypeID = TypeID; 5053 InstructionList.push_back(I); 5054 if (OpNum < Record.size()) { 5055 if (isa<FPMathOperator>(I)) { 5056 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5057 if (FMF.any()) 5058 I->setFastMathFlags(FMF); 5059 } 5060 } 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5064 unsigned OpNum = 0; 5065 Value *LHS, *RHS; 5066 unsigned TypeID; 5067 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5068 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5069 CurBB) || 5070 OpNum+1 > Record.size()) 5071 return error("Invalid record"); 5072 5073 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5074 if (Opc == -1) 5075 return error("Invalid record"); 5076 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5077 ResTypeID = TypeID; 5078 InstructionList.push_back(I); 5079 if (OpNum < Record.size()) { 5080 if (Opc == Instruction::Add || 5081 Opc == Instruction::Sub || 5082 Opc == Instruction::Mul || 5083 Opc == Instruction::Shl) { 5084 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5085 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5086 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5087 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5088 } else if (Opc == Instruction::SDiv || 5089 Opc == Instruction::UDiv || 5090 Opc == Instruction::LShr || 5091 Opc == Instruction::AShr) { 5092 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5093 cast<BinaryOperator>(I)->setIsExact(true); 5094 } else if (Opc == Instruction::Or) { 5095 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5096 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5097 } else if (isa<FPMathOperator>(I)) { 5098 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5099 if (FMF.any()) 5100 I->setFastMathFlags(FMF); 5101 } 5102 } 5103 break; 5104 } 5105 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5106 unsigned OpNum = 0; 5107 Value *Op; 5108 unsigned OpTypeID; 5109 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5110 OpNum + 1 > Record.size()) 5111 return error("Invalid record"); 5112 5113 ResTypeID = Record[OpNum++]; 5114 Type *ResTy = getTypeByID(ResTypeID); 5115 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5116 5117 if (Opc == -1 || !ResTy) 5118 return error("Invalid record"); 5119 Instruction *Temp = nullptr; 5120 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5121 if (Temp) { 5122 InstructionList.push_back(Temp); 5123 assert(CurBB && "No current BB?"); 5124 Temp->insertInto(CurBB, CurBB->end()); 5125 } 5126 } else { 5127 auto CastOp = (Instruction::CastOps)Opc; 5128 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5129 return error("Invalid cast"); 5130 I = CastInst::Create(CastOp, Op, ResTy); 5131 } 5132 5133 if (OpNum < Record.size()) { 5134 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5135 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5136 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5137 } else if (Opc == Instruction::Trunc) { 5138 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5139 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5140 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5141 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5142 } 5143 } 5144 5145 InstructionList.push_back(I); 5146 break; 5147 } 5148 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5149 case bitc::FUNC_CODE_INST_GEP_OLD: 5150 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5151 unsigned OpNum = 0; 5152 5153 unsigned TyID; 5154 Type *Ty; 5155 GEPNoWrapFlags NW; 5156 5157 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5158 NW = toGEPNoWrapFlags(Record[OpNum++]); 5159 TyID = Record[OpNum++]; 5160 Ty = getTypeByID(TyID); 5161 } else { 5162 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5163 NW = GEPNoWrapFlags::inBounds(); 5164 TyID = InvalidTypeID; 5165 Ty = nullptr; 5166 } 5167 5168 Value *BasePtr; 5169 unsigned BasePtrTypeID; 5170 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5171 CurBB)) 5172 return error("Invalid record"); 5173 5174 if (!Ty) { 5175 TyID = getContainedTypeID(BasePtrTypeID); 5176 if (BasePtr->getType()->isVectorTy()) 5177 TyID = getContainedTypeID(TyID); 5178 Ty = getTypeByID(TyID); 5179 } 5180 5181 SmallVector<Value*, 16> GEPIdx; 5182 while (OpNum != Record.size()) { 5183 Value *Op; 5184 unsigned OpTypeID; 5185 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5186 return error("Invalid record"); 5187 GEPIdx.push_back(Op); 5188 } 5189 5190 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5191 I = GEP; 5192 5193 ResTypeID = TyID; 5194 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5195 auto GTI = std::next(gep_type_begin(I)); 5196 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5197 unsigned SubType = 0; 5198 if (GTI.isStruct()) { 5199 ConstantInt *IdxC = 5200 Idx->getType()->isVectorTy() 5201 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5202 : cast<ConstantInt>(Idx); 5203 SubType = IdxC->getZExtValue(); 5204 } 5205 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5206 ++GTI; 5207 } 5208 } 5209 5210 // At this point ResTypeID is the result element type. We need a pointer 5211 // or vector of pointer to it. 5212 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5213 if (I->getType()->isVectorTy()) 5214 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5215 5216 InstructionList.push_back(I); 5217 GEP->setNoWrapFlags(NW); 5218 break; 5219 } 5220 5221 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5222 // EXTRACTVAL: [opty, opval, n x indices] 5223 unsigned OpNum = 0; 5224 Value *Agg; 5225 unsigned AggTypeID; 5226 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5227 return error("Invalid record"); 5228 Type *Ty = Agg->getType(); 5229 5230 unsigned RecSize = Record.size(); 5231 if (OpNum == RecSize) 5232 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5233 5234 SmallVector<unsigned, 4> EXTRACTVALIdx; 5235 ResTypeID = AggTypeID; 5236 for (; OpNum != RecSize; ++OpNum) { 5237 bool IsArray = Ty->isArrayTy(); 5238 bool IsStruct = Ty->isStructTy(); 5239 uint64_t Index = Record[OpNum]; 5240 5241 if (!IsStruct && !IsArray) 5242 return error("EXTRACTVAL: Invalid type"); 5243 if ((unsigned)Index != Index) 5244 return error("Invalid value"); 5245 if (IsStruct && Index >= Ty->getStructNumElements()) 5246 return error("EXTRACTVAL: Invalid struct index"); 5247 if (IsArray && Index >= Ty->getArrayNumElements()) 5248 return error("EXTRACTVAL: Invalid array index"); 5249 EXTRACTVALIdx.push_back((unsigned)Index); 5250 5251 if (IsStruct) { 5252 Ty = Ty->getStructElementType(Index); 5253 ResTypeID = getContainedTypeID(ResTypeID, Index); 5254 } else { 5255 Ty = Ty->getArrayElementType(); 5256 ResTypeID = getContainedTypeID(ResTypeID); 5257 } 5258 } 5259 5260 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5261 InstructionList.push_back(I); 5262 break; 5263 } 5264 5265 case bitc::FUNC_CODE_INST_INSERTVAL: { 5266 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5267 unsigned OpNum = 0; 5268 Value *Agg; 5269 unsigned AggTypeID; 5270 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5271 return error("Invalid record"); 5272 Value *Val; 5273 unsigned ValTypeID; 5274 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5275 return error("Invalid record"); 5276 5277 unsigned RecSize = Record.size(); 5278 if (OpNum == RecSize) 5279 return error("INSERTVAL: Invalid instruction with 0 indices"); 5280 5281 SmallVector<unsigned, 4> INSERTVALIdx; 5282 Type *CurTy = Agg->getType(); 5283 for (; OpNum != RecSize; ++OpNum) { 5284 bool IsArray = CurTy->isArrayTy(); 5285 bool IsStruct = CurTy->isStructTy(); 5286 uint64_t Index = Record[OpNum]; 5287 5288 if (!IsStruct && !IsArray) 5289 return error("INSERTVAL: Invalid type"); 5290 if ((unsigned)Index != Index) 5291 return error("Invalid value"); 5292 if (IsStruct && Index >= CurTy->getStructNumElements()) 5293 return error("INSERTVAL: Invalid struct index"); 5294 if (IsArray && Index >= CurTy->getArrayNumElements()) 5295 return error("INSERTVAL: Invalid array index"); 5296 5297 INSERTVALIdx.push_back((unsigned)Index); 5298 if (IsStruct) 5299 CurTy = CurTy->getStructElementType(Index); 5300 else 5301 CurTy = CurTy->getArrayElementType(); 5302 } 5303 5304 if (CurTy != Val->getType()) 5305 return error("Inserted value type doesn't match aggregate type"); 5306 5307 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5308 ResTypeID = AggTypeID; 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 5313 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5314 // obsolete form of select 5315 // handles select i1 ... in old bitcode 5316 unsigned OpNum = 0; 5317 Value *TrueVal, *FalseVal, *Cond; 5318 unsigned TypeID; 5319 Type *CondType = Type::getInt1Ty(Context); 5320 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5321 CurBB) || 5322 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5323 FalseVal, CurBB) || 5324 popValue(Record, OpNum, NextValueNo, CondType, 5325 getVirtualTypeID(CondType), Cond, CurBB)) 5326 return error("Invalid record"); 5327 5328 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5329 ResTypeID = TypeID; 5330 InstructionList.push_back(I); 5331 break; 5332 } 5333 5334 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5335 // new form of select 5336 // handles select i1 or select [N x i1] 5337 unsigned OpNum = 0; 5338 Value *TrueVal, *FalseVal, *Cond; 5339 unsigned ValTypeID, CondTypeID; 5340 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5341 CurBB) || 5342 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5343 FalseVal, CurBB) || 5344 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5345 return error("Invalid record"); 5346 5347 // select condition can be either i1 or [N x i1] 5348 if (VectorType* vector_type = 5349 dyn_cast<VectorType>(Cond->getType())) { 5350 // expect <n x i1> 5351 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5352 return error("Invalid type for value"); 5353 } else { 5354 // expect i1 5355 if (Cond->getType() != Type::getInt1Ty(Context)) 5356 return error("Invalid type for value"); 5357 } 5358 5359 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5360 ResTypeID = ValTypeID; 5361 InstructionList.push_back(I); 5362 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5363 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5364 if (FMF.any()) 5365 I->setFastMathFlags(FMF); 5366 } 5367 break; 5368 } 5369 5370 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5371 unsigned OpNum = 0; 5372 Value *Vec, *Idx; 5373 unsigned VecTypeID, IdxTypeID; 5374 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5375 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5376 return error("Invalid record"); 5377 if (!Vec->getType()->isVectorTy()) 5378 return error("Invalid type for value"); 5379 I = ExtractElementInst::Create(Vec, Idx); 5380 ResTypeID = getContainedTypeID(VecTypeID); 5381 InstructionList.push_back(I); 5382 break; 5383 } 5384 5385 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5386 unsigned OpNum = 0; 5387 Value *Vec, *Elt, *Idx; 5388 unsigned VecTypeID, IdxTypeID; 5389 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5390 return error("Invalid record"); 5391 if (!Vec->getType()->isVectorTy()) 5392 return error("Invalid type for value"); 5393 if (popValue(Record, OpNum, NextValueNo, 5394 cast<VectorType>(Vec->getType())->getElementType(), 5395 getContainedTypeID(VecTypeID), Elt, CurBB) || 5396 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5397 return error("Invalid record"); 5398 I = InsertElementInst::Create(Vec, Elt, Idx); 5399 ResTypeID = VecTypeID; 5400 InstructionList.push_back(I); 5401 break; 5402 } 5403 5404 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5405 unsigned OpNum = 0; 5406 Value *Vec1, *Vec2, *Mask; 5407 unsigned Vec1TypeID; 5408 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5409 CurBB) || 5410 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5411 Vec2, CurBB)) 5412 return error("Invalid record"); 5413 5414 unsigned MaskTypeID; 5415 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5416 return error("Invalid record"); 5417 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5418 return error("Invalid type for value"); 5419 5420 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5421 ResTypeID = 5422 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5423 InstructionList.push_back(I); 5424 break; 5425 } 5426 5427 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5428 // Old form of ICmp/FCmp returning bool 5429 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5430 // both legal on vectors but had different behaviour. 5431 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5432 // FCmp/ICmp returning bool or vector of bool 5433 5434 unsigned OpNum = 0; 5435 Value *LHS, *RHS; 5436 unsigned LHSTypeID; 5437 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5438 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5439 CurBB)) 5440 return error("Invalid record"); 5441 5442 if (OpNum >= Record.size()) 5443 return error( 5444 "Invalid record: operand number exceeded available operands"); 5445 5446 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5447 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5448 FastMathFlags FMF; 5449 if (IsFP && Record.size() > OpNum+1) 5450 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5451 5452 if (OpNum+1 != Record.size()) 5453 return error("Invalid record"); 5454 5455 if (IsFP) { 5456 if (!CmpInst::isFPPredicate(PredVal)) 5457 return error("Invalid fcmp predicate"); 5458 I = new FCmpInst(PredVal, LHS, RHS); 5459 } else { 5460 if (!CmpInst::isIntPredicate(PredVal)) 5461 return error("Invalid icmp predicate"); 5462 I = new ICmpInst(PredVal, LHS, RHS); 5463 } 5464 5465 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5466 if (LHS->getType()->isVectorTy()) 5467 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5468 5469 if (FMF.any()) 5470 I->setFastMathFlags(FMF); 5471 InstructionList.push_back(I); 5472 break; 5473 } 5474 5475 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5476 { 5477 unsigned Size = Record.size(); 5478 if (Size == 0) { 5479 I = ReturnInst::Create(Context); 5480 InstructionList.push_back(I); 5481 break; 5482 } 5483 5484 unsigned OpNum = 0; 5485 Value *Op = nullptr; 5486 unsigned OpTypeID; 5487 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5488 return error("Invalid record"); 5489 if (OpNum != Record.size()) 5490 return error("Invalid record"); 5491 5492 I = ReturnInst::Create(Context, Op); 5493 InstructionList.push_back(I); 5494 break; 5495 } 5496 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5497 if (Record.size() != 1 && Record.size() != 3) 5498 return error("Invalid record"); 5499 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5500 if (!TrueDest) 5501 return error("Invalid record"); 5502 5503 if (Record.size() == 1) { 5504 I = BranchInst::Create(TrueDest); 5505 InstructionList.push_back(I); 5506 } 5507 else { 5508 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5509 Type *CondType = Type::getInt1Ty(Context); 5510 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5511 getVirtualTypeID(CondType), CurBB); 5512 if (!FalseDest || !Cond) 5513 return error("Invalid record"); 5514 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5515 InstructionList.push_back(I); 5516 } 5517 break; 5518 } 5519 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5520 if (Record.size() != 1 && Record.size() != 2) 5521 return error("Invalid record"); 5522 unsigned Idx = 0; 5523 Type *TokenTy = Type::getTokenTy(Context); 5524 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5525 getVirtualTypeID(TokenTy), CurBB); 5526 if (!CleanupPad) 5527 return error("Invalid record"); 5528 BasicBlock *UnwindDest = nullptr; 5529 if (Record.size() == 2) { 5530 UnwindDest = getBasicBlock(Record[Idx++]); 5531 if (!UnwindDest) 5532 return error("Invalid record"); 5533 } 5534 5535 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5536 InstructionList.push_back(I); 5537 break; 5538 } 5539 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5540 if (Record.size() != 2) 5541 return error("Invalid record"); 5542 unsigned Idx = 0; 5543 Type *TokenTy = Type::getTokenTy(Context); 5544 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5545 getVirtualTypeID(TokenTy), CurBB); 5546 if (!CatchPad) 5547 return error("Invalid record"); 5548 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5549 if (!BB) 5550 return error("Invalid record"); 5551 5552 I = CatchReturnInst::Create(CatchPad, BB); 5553 InstructionList.push_back(I); 5554 break; 5555 } 5556 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5557 // We must have, at minimum, the outer scope and the number of arguments. 5558 if (Record.size() < 2) 5559 return error("Invalid record"); 5560 5561 unsigned Idx = 0; 5562 5563 Type *TokenTy = Type::getTokenTy(Context); 5564 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5565 getVirtualTypeID(TokenTy), CurBB); 5566 if (!ParentPad) 5567 return error("Invalid record"); 5568 5569 unsigned NumHandlers = Record[Idx++]; 5570 5571 SmallVector<BasicBlock *, 2> Handlers; 5572 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5573 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5574 if (!BB) 5575 return error("Invalid record"); 5576 Handlers.push_back(BB); 5577 } 5578 5579 BasicBlock *UnwindDest = nullptr; 5580 if (Idx + 1 == Record.size()) { 5581 UnwindDest = getBasicBlock(Record[Idx++]); 5582 if (!UnwindDest) 5583 return error("Invalid record"); 5584 } 5585 5586 if (Record.size() != Idx) 5587 return error("Invalid record"); 5588 5589 auto *CatchSwitch = 5590 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5591 for (BasicBlock *Handler : Handlers) 5592 CatchSwitch->addHandler(Handler); 5593 I = CatchSwitch; 5594 ResTypeID = getVirtualTypeID(I->getType()); 5595 InstructionList.push_back(I); 5596 break; 5597 } 5598 case bitc::FUNC_CODE_INST_CATCHPAD: 5599 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5600 // We must have, at minimum, the outer scope and the number of arguments. 5601 if (Record.size() < 2) 5602 return error("Invalid record"); 5603 5604 unsigned Idx = 0; 5605 5606 Type *TokenTy = Type::getTokenTy(Context); 5607 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5608 getVirtualTypeID(TokenTy), CurBB); 5609 if (!ParentPad) 5610 return error("Invald record"); 5611 5612 unsigned NumArgOperands = Record[Idx++]; 5613 5614 SmallVector<Value *, 2> Args; 5615 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5616 Value *Val; 5617 unsigned ValTypeID; 5618 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5619 return error("Invalid record"); 5620 Args.push_back(Val); 5621 } 5622 5623 if (Record.size() != Idx) 5624 return error("Invalid record"); 5625 5626 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5627 I = CleanupPadInst::Create(ParentPad, Args); 5628 else 5629 I = CatchPadInst::Create(ParentPad, Args); 5630 ResTypeID = getVirtualTypeID(I->getType()); 5631 InstructionList.push_back(I); 5632 break; 5633 } 5634 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5635 // Check magic 5636 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5637 // "New" SwitchInst format with case ranges. The changes to write this 5638 // format were reverted but we still recognize bitcode that uses it. 5639 // Hopefully someday we will have support for case ranges and can use 5640 // this format again. 5641 5642 unsigned OpTyID = Record[1]; 5643 Type *OpTy = getTypeByID(OpTyID); 5644 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5645 5646 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5647 BasicBlock *Default = getBasicBlock(Record[3]); 5648 if (!OpTy || !Cond || !Default) 5649 return error("Invalid record"); 5650 5651 unsigned NumCases = Record[4]; 5652 5653 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5654 InstructionList.push_back(SI); 5655 5656 unsigned CurIdx = 5; 5657 for (unsigned i = 0; i != NumCases; ++i) { 5658 SmallVector<ConstantInt*, 1> CaseVals; 5659 unsigned NumItems = Record[CurIdx++]; 5660 for (unsigned ci = 0; ci != NumItems; ++ci) { 5661 bool isSingleNumber = Record[CurIdx++]; 5662 5663 APInt Low; 5664 unsigned ActiveWords = 1; 5665 if (ValueBitWidth > 64) 5666 ActiveWords = Record[CurIdx++]; 5667 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5668 ValueBitWidth); 5669 CurIdx += ActiveWords; 5670 5671 if (!isSingleNumber) { 5672 ActiveWords = 1; 5673 if (ValueBitWidth > 64) 5674 ActiveWords = Record[CurIdx++]; 5675 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5676 ValueBitWidth); 5677 CurIdx += ActiveWords; 5678 5679 // FIXME: It is not clear whether values in the range should be 5680 // compared as signed or unsigned values. The partially 5681 // implemented changes that used this format in the past used 5682 // unsigned comparisons. 5683 for ( ; Low.ule(High); ++Low) 5684 CaseVals.push_back(ConstantInt::get(Context, Low)); 5685 } else 5686 CaseVals.push_back(ConstantInt::get(Context, Low)); 5687 } 5688 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5689 for (ConstantInt *Cst : CaseVals) 5690 SI->addCase(Cst, DestBB); 5691 } 5692 I = SI; 5693 break; 5694 } 5695 5696 // Old SwitchInst format without case ranges. 5697 5698 if (Record.size() < 3 || (Record.size() & 1) == 0) 5699 return error("Invalid record"); 5700 unsigned OpTyID = Record[0]; 5701 Type *OpTy = getTypeByID(OpTyID); 5702 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5703 BasicBlock *Default = getBasicBlock(Record[2]); 5704 if (!OpTy || !Cond || !Default) 5705 return error("Invalid record"); 5706 unsigned NumCases = (Record.size()-3)/2; 5707 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5708 InstructionList.push_back(SI); 5709 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5710 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5711 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5712 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5713 if (!CaseVal || !DestBB) { 5714 delete SI; 5715 return error("Invalid record"); 5716 } 5717 SI->addCase(CaseVal, DestBB); 5718 } 5719 I = SI; 5720 break; 5721 } 5722 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5723 if (Record.size() < 2) 5724 return error("Invalid record"); 5725 unsigned OpTyID = Record[0]; 5726 Type *OpTy = getTypeByID(OpTyID); 5727 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5728 if (!OpTy || !Address) 5729 return error("Invalid record"); 5730 unsigned NumDests = Record.size()-2; 5731 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5732 InstructionList.push_back(IBI); 5733 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5734 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5735 IBI->addDestination(DestBB); 5736 } else { 5737 delete IBI; 5738 return error("Invalid record"); 5739 } 5740 } 5741 I = IBI; 5742 break; 5743 } 5744 5745 case bitc::FUNC_CODE_INST_INVOKE: { 5746 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5747 if (Record.size() < 4) 5748 return error("Invalid record"); 5749 unsigned OpNum = 0; 5750 AttributeList PAL = getAttributes(Record[OpNum++]); 5751 unsigned CCInfo = Record[OpNum++]; 5752 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5753 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5754 5755 unsigned FTyID = InvalidTypeID; 5756 FunctionType *FTy = nullptr; 5757 if ((CCInfo >> 13) & 1) { 5758 FTyID = Record[OpNum++]; 5759 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5760 if (!FTy) 5761 return error("Explicit invoke type is not a function type"); 5762 } 5763 5764 Value *Callee; 5765 unsigned CalleeTypeID; 5766 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5767 CurBB)) 5768 return error("Invalid record"); 5769 5770 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5771 if (!CalleeTy) 5772 return error("Callee is not a pointer"); 5773 if (!FTy) { 5774 FTyID = getContainedTypeID(CalleeTypeID); 5775 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5776 if (!FTy) 5777 return error("Callee is not of pointer to function type"); 5778 } 5779 if (Record.size() < FTy->getNumParams() + OpNum) 5780 return error("Insufficient operands to call"); 5781 5782 SmallVector<Value*, 16> Ops; 5783 SmallVector<unsigned, 16> ArgTyIDs; 5784 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5785 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5786 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5787 ArgTyID, CurBB)); 5788 ArgTyIDs.push_back(ArgTyID); 5789 if (!Ops.back()) 5790 return error("Invalid record"); 5791 } 5792 5793 if (!FTy->isVarArg()) { 5794 if (Record.size() != OpNum) 5795 return error("Invalid record"); 5796 } else { 5797 // Read type/value pairs for varargs params. 5798 while (OpNum != Record.size()) { 5799 Value *Op; 5800 unsigned OpTypeID; 5801 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5802 return error("Invalid record"); 5803 Ops.push_back(Op); 5804 ArgTyIDs.push_back(OpTypeID); 5805 } 5806 } 5807 5808 // Upgrade the bundles if needed. 5809 if (!OperandBundles.empty()) 5810 UpgradeOperandBundles(OperandBundles); 5811 5812 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5813 OperandBundles); 5814 ResTypeID = getContainedTypeID(FTyID); 5815 OperandBundles.clear(); 5816 InstructionList.push_back(I); 5817 cast<InvokeInst>(I)->setCallingConv( 5818 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5819 cast<InvokeInst>(I)->setAttributes(PAL); 5820 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5821 I->deleteValue(); 5822 return Err; 5823 } 5824 5825 break; 5826 } 5827 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5828 unsigned Idx = 0; 5829 Value *Val = nullptr; 5830 unsigned ValTypeID; 5831 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5832 return error("Invalid record"); 5833 I = ResumeInst::Create(Val); 5834 InstructionList.push_back(I); 5835 break; 5836 } 5837 case bitc::FUNC_CODE_INST_CALLBR: { 5838 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5839 unsigned OpNum = 0; 5840 AttributeList PAL = getAttributes(Record[OpNum++]); 5841 unsigned CCInfo = Record[OpNum++]; 5842 5843 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5844 unsigned NumIndirectDests = Record[OpNum++]; 5845 SmallVector<BasicBlock *, 16> IndirectDests; 5846 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5847 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5848 5849 unsigned FTyID = InvalidTypeID; 5850 FunctionType *FTy = nullptr; 5851 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5852 FTyID = Record[OpNum++]; 5853 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5854 if (!FTy) 5855 return error("Explicit call type is not a function type"); 5856 } 5857 5858 Value *Callee; 5859 unsigned CalleeTypeID; 5860 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5861 CurBB)) 5862 return error("Invalid record"); 5863 5864 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5865 if (!OpTy) 5866 return error("Callee is not a pointer type"); 5867 if (!FTy) { 5868 FTyID = getContainedTypeID(CalleeTypeID); 5869 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5870 if (!FTy) 5871 return error("Callee is not of pointer to function type"); 5872 } 5873 if (Record.size() < FTy->getNumParams() + OpNum) 5874 return error("Insufficient operands to call"); 5875 5876 SmallVector<Value*, 16> Args; 5877 SmallVector<unsigned, 16> ArgTyIDs; 5878 // Read the fixed params. 5879 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5880 Value *Arg; 5881 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5882 if (FTy->getParamType(i)->isLabelTy()) 5883 Arg = getBasicBlock(Record[OpNum]); 5884 else 5885 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5886 ArgTyID, CurBB); 5887 if (!Arg) 5888 return error("Invalid record"); 5889 Args.push_back(Arg); 5890 ArgTyIDs.push_back(ArgTyID); 5891 } 5892 5893 // Read type/value pairs for varargs params. 5894 if (!FTy->isVarArg()) { 5895 if (OpNum != Record.size()) 5896 return error("Invalid record"); 5897 } else { 5898 while (OpNum != Record.size()) { 5899 Value *Op; 5900 unsigned OpTypeID; 5901 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5902 return error("Invalid record"); 5903 Args.push_back(Op); 5904 ArgTyIDs.push_back(OpTypeID); 5905 } 5906 } 5907 5908 // Upgrade the bundles if needed. 5909 if (!OperandBundles.empty()) 5910 UpgradeOperandBundles(OperandBundles); 5911 5912 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5913 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5914 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5915 return CI.Type == InlineAsm::isLabel; 5916 }; 5917 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5918 // Upgrade explicit blockaddress arguments to label constraints. 5919 // Verify that the last arguments are blockaddress arguments that 5920 // match the indirect destinations. Clang always generates callbr 5921 // in this form. We could support reordering with more effort. 5922 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5923 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5924 unsigned LabelNo = ArgNo - FirstBlockArg; 5925 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5926 if (!BA || BA->getFunction() != F || 5927 LabelNo > IndirectDests.size() || 5928 BA->getBasicBlock() != IndirectDests[LabelNo]) 5929 return error("callbr argument does not match indirect dest"); 5930 } 5931 5932 // Remove blockaddress arguments. 5933 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5934 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5935 5936 // Recreate the function type with less arguments. 5937 SmallVector<Type *> ArgTys; 5938 for (Value *Arg : Args) 5939 ArgTys.push_back(Arg->getType()); 5940 FTy = 5941 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5942 5943 // Update constraint string to use label constraints. 5944 std::string Constraints = IA->getConstraintString(); 5945 unsigned ArgNo = 0; 5946 size_t Pos = 0; 5947 for (const auto &CI : ConstraintInfo) { 5948 if (CI.hasArg()) { 5949 if (ArgNo >= FirstBlockArg) 5950 Constraints.insert(Pos, "!"); 5951 ++ArgNo; 5952 } 5953 5954 // Go to next constraint in string. 5955 Pos = Constraints.find(',', Pos); 5956 if (Pos == std::string::npos) 5957 break; 5958 ++Pos; 5959 } 5960 5961 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5962 IA->hasSideEffects(), IA->isAlignStack(), 5963 IA->getDialect(), IA->canThrow()); 5964 } 5965 } 5966 5967 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5968 OperandBundles); 5969 ResTypeID = getContainedTypeID(FTyID); 5970 OperandBundles.clear(); 5971 InstructionList.push_back(I); 5972 cast<CallBrInst>(I)->setCallingConv( 5973 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5974 cast<CallBrInst>(I)->setAttributes(PAL); 5975 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5976 I->deleteValue(); 5977 return Err; 5978 } 5979 break; 5980 } 5981 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5982 I = new UnreachableInst(Context); 5983 InstructionList.push_back(I); 5984 break; 5985 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5986 if (Record.empty()) 5987 return error("Invalid phi record"); 5988 // The first record specifies the type. 5989 unsigned TyID = Record[0]; 5990 Type *Ty = getTypeByID(TyID); 5991 if (!Ty) 5992 return error("Invalid phi record"); 5993 5994 // Phi arguments are pairs of records of [value, basic block]. 5995 // There is an optional final record for fast-math-flags if this phi has a 5996 // floating-point type. 5997 size_t NumArgs = (Record.size() - 1) / 2; 5998 PHINode *PN = PHINode::Create(Ty, NumArgs); 5999 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6000 PN->deleteValue(); 6001 return error("Invalid phi record"); 6002 } 6003 InstructionList.push_back(PN); 6004 6005 SmallDenseMap<BasicBlock *, Value *> Args; 6006 for (unsigned i = 0; i != NumArgs; i++) { 6007 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6008 if (!BB) { 6009 PN->deleteValue(); 6010 return error("Invalid phi BB"); 6011 } 6012 6013 // Phi nodes may contain the same predecessor multiple times, in which 6014 // case the incoming value must be identical. Directly reuse the already 6015 // seen value here, to avoid expanding a constant expression multiple 6016 // times. 6017 auto It = Args.find(BB); 6018 if (It != Args.end()) { 6019 PN->addIncoming(It->second, BB); 6020 continue; 6021 } 6022 6023 // If there already is a block for this edge (from a different phi), 6024 // use it. 6025 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6026 if (!EdgeBB) { 6027 // Otherwise, use a temporary block (that we will discard if it 6028 // turns out to be unnecessary). 6029 if (!PhiConstExprBB) 6030 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6031 EdgeBB = PhiConstExprBB; 6032 } 6033 6034 // With the new function encoding, it is possible that operands have 6035 // negative IDs (for forward references). Use a signed VBR 6036 // representation to keep the encoding small. 6037 Value *V; 6038 if (UseRelativeIDs) 6039 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6040 else 6041 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6042 if (!V) { 6043 PN->deleteValue(); 6044 PhiConstExprBB->eraseFromParent(); 6045 return error("Invalid phi record"); 6046 } 6047 6048 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6049 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6050 PhiConstExprBB = nullptr; 6051 } 6052 PN->addIncoming(V, BB); 6053 Args.insert({BB, V}); 6054 } 6055 I = PN; 6056 ResTypeID = TyID; 6057 6058 // If there are an even number of records, the final record must be FMF. 6059 if (Record.size() % 2 == 0) { 6060 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6061 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6062 if (FMF.any()) 6063 I->setFastMathFlags(FMF); 6064 } 6065 6066 break; 6067 } 6068 6069 case bitc::FUNC_CODE_INST_LANDINGPAD: 6070 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6071 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6072 unsigned Idx = 0; 6073 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6074 if (Record.size() < 3) 6075 return error("Invalid record"); 6076 } else { 6077 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6078 if (Record.size() < 4) 6079 return error("Invalid record"); 6080 } 6081 ResTypeID = Record[Idx++]; 6082 Type *Ty = getTypeByID(ResTypeID); 6083 if (!Ty) 6084 return error("Invalid record"); 6085 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6086 Value *PersFn = nullptr; 6087 unsigned PersFnTypeID; 6088 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6089 nullptr)) 6090 return error("Invalid record"); 6091 6092 if (!F->hasPersonalityFn()) 6093 F->setPersonalityFn(cast<Constant>(PersFn)); 6094 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6095 return error("Personality function mismatch"); 6096 } 6097 6098 bool IsCleanup = !!Record[Idx++]; 6099 unsigned NumClauses = Record[Idx++]; 6100 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6101 LP->setCleanup(IsCleanup); 6102 for (unsigned J = 0; J != NumClauses; ++J) { 6103 LandingPadInst::ClauseType CT = 6104 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6105 Value *Val; 6106 unsigned ValTypeID; 6107 6108 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6109 nullptr)) { 6110 delete LP; 6111 return error("Invalid record"); 6112 } 6113 6114 assert((CT != LandingPadInst::Catch || 6115 !isa<ArrayType>(Val->getType())) && 6116 "Catch clause has a invalid type!"); 6117 assert((CT != LandingPadInst::Filter || 6118 isa<ArrayType>(Val->getType())) && 6119 "Filter clause has invalid type!"); 6120 LP->addClause(cast<Constant>(Val)); 6121 } 6122 6123 I = LP; 6124 InstructionList.push_back(I); 6125 break; 6126 } 6127 6128 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6129 if (Record.size() != 4 && Record.size() != 5) 6130 return error("Invalid record"); 6131 using APV = AllocaPackedValues; 6132 const uint64_t Rec = Record[3]; 6133 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6134 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6135 unsigned TyID = Record[0]; 6136 Type *Ty = getTypeByID(TyID); 6137 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6138 TyID = getContainedTypeID(TyID); 6139 Ty = getTypeByID(TyID); 6140 if (!Ty) 6141 return error("Missing element type for old-style alloca"); 6142 } 6143 unsigned OpTyID = Record[1]; 6144 Type *OpTy = getTypeByID(OpTyID); 6145 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6146 MaybeAlign Align; 6147 uint64_t AlignExp = 6148 Bitfield::get<APV::AlignLower>(Rec) | 6149 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6150 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6151 return Err; 6152 } 6153 if (!Ty || !Size) 6154 return error("Invalid record"); 6155 6156 const DataLayout &DL = TheModule->getDataLayout(); 6157 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6158 6159 SmallPtrSet<Type *, 4> Visited; 6160 if (!Align && !Ty->isSized(&Visited)) 6161 return error("alloca of unsized type"); 6162 if (!Align) 6163 Align = DL.getPrefTypeAlign(Ty); 6164 6165 if (!Size->getType()->isIntegerTy()) 6166 return error("alloca element count must have integer type"); 6167 6168 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6169 AI->setUsedWithInAlloca(InAlloca); 6170 AI->setSwiftError(SwiftError); 6171 I = AI; 6172 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6173 InstructionList.push_back(I); 6174 break; 6175 } 6176 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6177 unsigned OpNum = 0; 6178 Value *Op; 6179 unsigned OpTypeID; 6180 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6181 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6182 return error("Invalid record"); 6183 6184 if (!isa<PointerType>(Op->getType())) 6185 return error("Load operand is not a pointer type"); 6186 6187 Type *Ty = nullptr; 6188 if (OpNum + 3 == Record.size()) { 6189 ResTypeID = Record[OpNum++]; 6190 Ty = getTypeByID(ResTypeID); 6191 } else { 6192 ResTypeID = getContainedTypeID(OpTypeID); 6193 Ty = getTypeByID(ResTypeID); 6194 } 6195 6196 if (!Ty) 6197 return error("Missing load type"); 6198 6199 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6200 return Err; 6201 6202 MaybeAlign Align; 6203 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6204 return Err; 6205 SmallPtrSet<Type *, 4> Visited; 6206 if (!Align && !Ty->isSized(&Visited)) 6207 return error("load of unsized type"); 6208 if (!Align) 6209 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6210 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6211 InstructionList.push_back(I); 6212 break; 6213 } 6214 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6215 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6216 unsigned OpNum = 0; 6217 Value *Op; 6218 unsigned OpTypeID; 6219 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6220 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6221 return error("Invalid record"); 6222 6223 if (!isa<PointerType>(Op->getType())) 6224 return error("Load operand is not a pointer type"); 6225 6226 Type *Ty = nullptr; 6227 if (OpNum + 5 == Record.size()) { 6228 ResTypeID = Record[OpNum++]; 6229 Ty = getTypeByID(ResTypeID); 6230 } else { 6231 ResTypeID = getContainedTypeID(OpTypeID); 6232 Ty = getTypeByID(ResTypeID); 6233 } 6234 6235 if (!Ty) 6236 return error("Missing atomic load type"); 6237 6238 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6239 return Err; 6240 6241 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6242 if (Ordering == AtomicOrdering::NotAtomic || 6243 Ordering == AtomicOrdering::Release || 6244 Ordering == AtomicOrdering::AcquireRelease) 6245 return error("Invalid record"); 6246 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6247 return error("Invalid record"); 6248 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6249 6250 MaybeAlign Align; 6251 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6252 return Err; 6253 if (!Align) 6254 return error("Alignment missing from atomic load"); 6255 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6256 InstructionList.push_back(I); 6257 break; 6258 } 6259 case bitc::FUNC_CODE_INST_STORE: 6260 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6261 unsigned OpNum = 0; 6262 Value *Val, *Ptr; 6263 unsigned PtrTypeID, ValTypeID; 6264 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6265 return error("Invalid record"); 6266 6267 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6268 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6269 return error("Invalid record"); 6270 } else { 6271 ValTypeID = getContainedTypeID(PtrTypeID); 6272 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6273 ValTypeID, Val, CurBB)) 6274 return error("Invalid record"); 6275 } 6276 6277 if (OpNum + 2 != Record.size()) 6278 return error("Invalid record"); 6279 6280 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6281 return Err; 6282 MaybeAlign Align; 6283 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6284 return Err; 6285 SmallPtrSet<Type *, 4> Visited; 6286 if (!Align && !Val->getType()->isSized(&Visited)) 6287 return error("store of unsized type"); 6288 if (!Align) 6289 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6290 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6291 InstructionList.push_back(I); 6292 break; 6293 } 6294 case bitc::FUNC_CODE_INST_STOREATOMIC: 6295 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6296 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6297 unsigned OpNum = 0; 6298 Value *Val, *Ptr; 6299 unsigned PtrTypeID, ValTypeID; 6300 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6301 !isa<PointerType>(Ptr->getType())) 6302 return error("Invalid record"); 6303 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6304 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6305 return error("Invalid record"); 6306 } else { 6307 ValTypeID = getContainedTypeID(PtrTypeID); 6308 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6309 ValTypeID, Val, CurBB)) 6310 return error("Invalid record"); 6311 } 6312 6313 if (OpNum + 4 != Record.size()) 6314 return error("Invalid record"); 6315 6316 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6317 return Err; 6318 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6319 if (Ordering == AtomicOrdering::NotAtomic || 6320 Ordering == AtomicOrdering::Acquire || 6321 Ordering == AtomicOrdering::AcquireRelease) 6322 return error("Invalid record"); 6323 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6324 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6325 return error("Invalid record"); 6326 6327 MaybeAlign Align; 6328 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6329 return Err; 6330 if (!Align) 6331 return error("Alignment missing from atomic store"); 6332 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6333 InstructionList.push_back(I); 6334 break; 6335 } 6336 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6337 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6338 // failure_ordering?, weak?] 6339 const size_t NumRecords = Record.size(); 6340 unsigned OpNum = 0; 6341 Value *Ptr = nullptr; 6342 unsigned PtrTypeID; 6343 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6344 return error("Invalid record"); 6345 6346 if (!isa<PointerType>(Ptr->getType())) 6347 return error("Cmpxchg operand is not a pointer type"); 6348 6349 Value *Cmp = nullptr; 6350 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6351 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6352 CmpTypeID, Cmp, CurBB)) 6353 return error("Invalid record"); 6354 6355 Value *New = nullptr; 6356 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6357 New, CurBB) || 6358 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6359 return error("Invalid record"); 6360 6361 const AtomicOrdering SuccessOrdering = 6362 getDecodedOrdering(Record[OpNum + 1]); 6363 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6364 SuccessOrdering == AtomicOrdering::Unordered) 6365 return error("Invalid record"); 6366 6367 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6368 6369 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6370 return Err; 6371 6372 const AtomicOrdering FailureOrdering = 6373 NumRecords < 7 6374 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6375 : getDecodedOrdering(Record[OpNum + 3]); 6376 6377 if (FailureOrdering == AtomicOrdering::NotAtomic || 6378 FailureOrdering == AtomicOrdering::Unordered) 6379 return error("Invalid record"); 6380 6381 const Align Alignment( 6382 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6383 6384 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6385 FailureOrdering, SSID); 6386 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6387 6388 if (NumRecords < 8) { 6389 // Before weak cmpxchgs existed, the instruction simply returned the 6390 // value loaded from memory, so bitcode files from that era will be 6391 // expecting the first component of a modern cmpxchg. 6392 I->insertInto(CurBB, CurBB->end()); 6393 I = ExtractValueInst::Create(I, 0); 6394 ResTypeID = CmpTypeID; 6395 } else { 6396 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6397 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6398 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6399 } 6400 6401 InstructionList.push_back(I); 6402 break; 6403 } 6404 case bitc::FUNC_CODE_INST_CMPXCHG: { 6405 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6406 // failure_ordering, weak, align?] 6407 const size_t NumRecords = Record.size(); 6408 unsigned OpNum = 0; 6409 Value *Ptr = nullptr; 6410 unsigned PtrTypeID; 6411 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6412 return error("Invalid record"); 6413 6414 if (!isa<PointerType>(Ptr->getType())) 6415 return error("Cmpxchg operand is not a pointer type"); 6416 6417 Value *Cmp = nullptr; 6418 unsigned CmpTypeID; 6419 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6420 return error("Invalid record"); 6421 6422 Value *Val = nullptr; 6423 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6424 CurBB)) 6425 return error("Invalid record"); 6426 6427 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6428 return error("Invalid record"); 6429 6430 const bool IsVol = Record[OpNum]; 6431 6432 const AtomicOrdering SuccessOrdering = 6433 getDecodedOrdering(Record[OpNum + 1]); 6434 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6435 return error("Invalid cmpxchg success ordering"); 6436 6437 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6438 6439 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6440 return Err; 6441 6442 const AtomicOrdering FailureOrdering = 6443 getDecodedOrdering(Record[OpNum + 3]); 6444 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6445 return error("Invalid cmpxchg failure ordering"); 6446 6447 const bool IsWeak = Record[OpNum + 4]; 6448 6449 MaybeAlign Alignment; 6450 6451 if (NumRecords == (OpNum + 6)) { 6452 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6453 return Err; 6454 } 6455 if (!Alignment) 6456 Alignment = 6457 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6458 6459 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6460 FailureOrdering, SSID); 6461 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6462 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6463 6464 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6465 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6466 6467 InstructionList.push_back(I); 6468 break; 6469 } 6470 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6471 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6472 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6473 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6474 const size_t NumRecords = Record.size(); 6475 unsigned OpNum = 0; 6476 6477 Value *Ptr = nullptr; 6478 unsigned PtrTypeID; 6479 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6480 return error("Invalid record"); 6481 6482 if (!isa<PointerType>(Ptr->getType())) 6483 return error("Invalid record"); 6484 6485 Value *Val = nullptr; 6486 unsigned ValTypeID = InvalidTypeID; 6487 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6488 ValTypeID = getContainedTypeID(PtrTypeID); 6489 if (popValue(Record, OpNum, NextValueNo, 6490 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6491 return error("Invalid record"); 6492 } else { 6493 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6494 return error("Invalid record"); 6495 } 6496 6497 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6498 return error("Invalid record"); 6499 6500 const AtomicRMWInst::BinOp Operation = 6501 getDecodedRMWOperation(Record[OpNum]); 6502 if (Operation < AtomicRMWInst::FIRST_BINOP || 6503 Operation > AtomicRMWInst::LAST_BINOP) 6504 return error("Invalid record"); 6505 6506 const bool IsVol = Record[OpNum + 1]; 6507 6508 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6509 if (Ordering == AtomicOrdering::NotAtomic || 6510 Ordering == AtomicOrdering::Unordered) 6511 return error("Invalid record"); 6512 6513 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6514 6515 MaybeAlign Alignment; 6516 6517 if (NumRecords == (OpNum + 5)) { 6518 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6519 return Err; 6520 } 6521 6522 if (!Alignment) 6523 Alignment = 6524 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6525 6526 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6527 ResTypeID = ValTypeID; 6528 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6529 6530 InstructionList.push_back(I); 6531 break; 6532 } 6533 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6534 if (2 != Record.size()) 6535 return error("Invalid record"); 6536 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6537 if (Ordering == AtomicOrdering::NotAtomic || 6538 Ordering == AtomicOrdering::Unordered || 6539 Ordering == AtomicOrdering::Monotonic) 6540 return error("Invalid record"); 6541 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6542 I = new FenceInst(Context, Ordering, SSID); 6543 InstructionList.push_back(I); 6544 break; 6545 } 6546 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6547 // DbgLabelRecords are placed after the Instructions that they are 6548 // attached to. 6549 SeenDebugRecord = true; 6550 Instruction *Inst = getLastInstruction(); 6551 if (!Inst) 6552 return error("Invalid dbg record: missing instruction"); 6553 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6554 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6555 Inst->getParent()->insertDbgRecordBefore( 6556 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6557 continue; // This isn't an instruction. 6558 } 6559 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6560 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6561 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6562 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6563 // DbgVariableRecords are placed after the Instructions that they are 6564 // attached to. 6565 SeenDebugRecord = true; 6566 Instruction *Inst = getLastInstruction(); 6567 if (!Inst) 6568 return error("Invalid dbg record: missing instruction"); 6569 6570 // First 3 fields are common to all kinds: 6571 // DILocation, DILocalVariable, DIExpression 6572 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6573 // ..., LocationMetadata 6574 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6575 // ..., Value 6576 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6577 // ..., LocationMetadata 6578 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6579 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6580 unsigned Slot = 0; 6581 // Common fields (0-2). 6582 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6583 DILocalVariable *Var = 6584 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6585 DIExpression *Expr = 6586 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6587 6588 // Union field (3: LocationMetadata | Value). 6589 Metadata *RawLocation = nullptr; 6590 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6591 Value *V = nullptr; 6592 unsigned TyID = 0; 6593 // We never expect to see a fwd reference value here because 6594 // use-before-defs are encoded with the standard non-abbrev record 6595 // type (they'd require encoding the type too, and they're rare). As a 6596 // result, getValueTypePair only ever increments Slot by one here (once 6597 // for the value, never twice for value and type). 6598 unsigned SlotBefore = Slot; 6599 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6600 return error("Invalid dbg record: invalid value"); 6601 (void)SlotBefore; 6602 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6603 RawLocation = ValueAsMetadata::get(V); 6604 } else { 6605 RawLocation = getFnMetadataByID(Record[Slot++]); 6606 } 6607 6608 DbgVariableRecord *DVR = nullptr; 6609 switch (BitCode) { 6610 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6611 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6612 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6613 DbgVariableRecord::LocationType::Value); 6614 break; 6615 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6616 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6617 DbgVariableRecord::LocationType::Declare); 6618 break; 6619 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6620 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6621 DIExpression *AddrExpr = 6622 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6623 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6624 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6625 DIL); 6626 break; 6627 } 6628 default: 6629 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6630 } 6631 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6632 continue; // This isn't an instruction. 6633 } 6634 case bitc::FUNC_CODE_INST_CALL: { 6635 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6636 if (Record.size() < 3) 6637 return error("Invalid record"); 6638 6639 unsigned OpNum = 0; 6640 AttributeList PAL = getAttributes(Record[OpNum++]); 6641 unsigned CCInfo = Record[OpNum++]; 6642 6643 FastMathFlags FMF; 6644 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6645 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6646 if (!FMF.any()) 6647 return error("Fast math flags indicator set for call with no FMF"); 6648 } 6649 6650 unsigned FTyID = InvalidTypeID; 6651 FunctionType *FTy = nullptr; 6652 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6653 FTyID = Record[OpNum++]; 6654 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6655 if (!FTy) 6656 return error("Explicit call type is not a function type"); 6657 } 6658 6659 Value *Callee; 6660 unsigned CalleeTypeID; 6661 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6662 CurBB)) 6663 return error("Invalid record"); 6664 6665 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6666 if (!OpTy) 6667 return error("Callee is not a pointer type"); 6668 if (!FTy) { 6669 FTyID = getContainedTypeID(CalleeTypeID); 6670 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6671 if (!FTy) 6672 return error("Callee is not of pointer to function type"); 6673 } 6674 if (Record.size() < FTy->getNumParams() + OpNum) 6675 return error("Insufficient operands to call"); 6676 6677 SmallVector<Value*, 16> Args; 6678 SmallVector<unsigned, 16> ArgTyIDs; 6679 // Read the fixed params. 6680 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6681 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6682 if (FTy->getParamType(i)->isLabelTy()) 6683 Args.push_back(getBasicBlock(Record[OpNum])); 6684 else 6685 Args.push_back(getValue(Record, OpNum, NextValueNo, 6686 FTy->getParamType(i), ArgTyID, CurBB)); 6687 ArgTyIDs.push_back(ArgTyID); 6688 if (!Args.back()) 6689 return error("Invalid record"); 6690 } 6691 6692 // Read type/value pairs for varargs params. 6693 if (!FTy->isVarArg()) { 6694 if (OpNum != Record.size()) 6695 return error("Invalid record"); 6696 } else { 6697 while (OpNum != Record.size()) { 6698 Value *Op; 6699 unsigned OpTypeID; 6700 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6701 return error("Invalid record"); 6702 Args.push_back(Op); 6703 ArgTyIDs.push_back(OpTypeID); 6704 } 6705 } 6706 6707 // Upgrade the bundles if needed. 6708 if (!OperandBundles.empty()) 6709 UpgradeOperandBundles(OperandBundles); 6710 6711 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6712 ResTypeID = getContainedTypeID(FTyID); 6713 OperandBundles.clear(); 6714 InstructionList.push_back(I); 6715 cast<CallInst>(I)->setCallingConv( 6716 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6717 CallInst::TailCallKind TCK = CallInst::TCK_None; 6718 if (CCInfo & (1 << bitc::CALL_TAIL)) 6719 TCK = CallInst::TCK_Tail; 6720 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6721 TCK = CallInst::TCK_MustTail; 6722 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6723 TCK = CallInst::TCK_NoTail; 6724 cast<CallInst>(I)->setTailCallKind(TCK); 6725 cast<CallInst>(I)->setAttributes(PAL); 6726 if (isa<DbgInfoIntrinsic>(I)) 6727 SeenDebugIntrinsic = true; 6728 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6729 I->deleteValue(); 6730 return Err; 6731 } 6732 if (FMF.any()) { 6733 if (!isa<FPMathOperator>(I)) 6734 return error("Fast-math-flags specified for call without " 6735 "floating-point scalar or vector return type"); 6736 I->setFastMathFlags(FMF); 6737 } 6738 break; 6739 } 6740 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6741 if (Record.size() < 3) 6742 return error("Invalid record"); 6743 unsigned OpTyID = Record[0]; 6744 Type *OpTy = getTypeByID(OpTyID); 6745 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6746 ResTypeID = Record[2]; 6747 Type *ResTy = getTypeByID(ResTypeID); 6748 if (!OpTy || !Op || !ResTy) 6749 return error("Invalid record"); 6750 I = new VAArgInst(Op, ResTy); 6751 InstructionList.push_back(I); 6752 break; 6753 } 6754 6755 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6756 // A call or an invoke can be optionally prefixed with some variable 6757 // number of operand bundle blocks. These blocks are read into 6758 // OperandBundles and consumed at the next call or invoke instruction. 6759 6760 if (Record.empty() || Record[0] >= BundleTags.size()) 6761 return error("Invalid record"); 6762 6763 std::vector<Value *> Inputs; 6764 6765 unsigned OpNum = 1; 6766 while (OpNum != Record.size()) { 6767 Value *Op; 6768 unsigned OpTypeID; 6769 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6770 return error("Invalid record"); 6771 Inputs.push_back(Op); 6772 } 6773 6774 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6775 continue; 6776 } 6777 6778 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6779 unsigned OpNum = 0; 6780 Value *Op = nullptr; 6781 unsigned OpTypeID; 6782 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6783 return error("Invalid record"); 6784 if (OpNum != Record.size()) 6785 return error("Invalid record"); 6786 6787 I = new FreezeInst(Op); 6788 ResTypeID = OpTypeID; 6789 InstructionList.push_back(I); 6790 break; 6791 } 6792 } 6793 6794 // Add instruction to end of current BB. If there is no current BB, reject 6795 // this file. 6796 if (!CurBB) { 6797 I->deleteValue(); 6798 return error("Invalid instruction with no BB"); 6799 } 6800 if (!OperandBundles.empty()) { 6801 I->deleteValue(); 6802 return error("Operand bundles found with no consumer"); 6803 } 6804 I->insertInto(CurBB, CurBB->end()); 6805 6806 // If this was a terminator instruction, move to the next block. 6807 if (I->isTerminator()) { 6808 ++CurBBNo; 6809 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6810 } 6811 6812 // Non-void values get registered in the value table for future use. 6813 if (!I->getType()->isVoidTy()) { 6814 assert(I->getType() == getTypeByID(ResTypeID) && 6815 "Incorrect result type ID"); 6816 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6817 return Err; 6818 } 6819 } 6820 6821 OutOfRecordLoop: 6822 6823 if (!OperandBundles.empty()) 6824 return error("Operand bundles found with no consumer"); 6825 6826 // Check the function list for unresolved values. 6827 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6828 if (!A->getParent()) { 6829 // We found at least one unresolved value. Nuke them all to avoid leaks. 6830 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6831 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6832 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6833 delete A; 6834 } 6835 } 6836 return error("Never resolved value found in function"); 6837 } 6838 } 6839 6840 // Unexpected unresolved metadata about to be dropped. 6841 if (MDLoader->hasFwdRefs()) 6842 return error("Invalid function metadata: outgoing forward refs"); 6843 6844 if (PhiConstExprBB) 6845 PhiConstExprBB->eraseFromParent(); 6846 6847 for (const auto &Pair : ConstExprEdgeBBs) { 6848 BasicBlock *From = Pair.first.first; 6849 BasicBlock *To = Pair.first.second; 6850 BasicBlock *EdgeBB = Pair.second; 6851 BranchInst::Create(To, EdgeBB); 6852 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6853 To->replacePhiUsesWith(From, EdgeBB); 6854 EdgeBB->moveBefore(To); 6855 } 6856 6857 // Trim the value list down to the size it was before we parsed this function. 6858 ValueList.shrinkTo(ModuleValueListSize); 6859 MDLoader->shrinkTo(ModuleMDLoaderSize); 6860 std::vector<BasicBlock*>().swap(FunctionBBs); 6861 return Error::success(); 6862 } 6863 6864 /// Find the function body in the bitcode stream 6865 Error BitcodeReader::findFunctionInStream( 6866 Function *F, 6867 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6868 while (DeferredFunctionInfoIterator->second == 0) { 6869 // This is the fallback handling for the old format bitcode that 6870 // didn't contain the function index in the VST, or when we have 6871 // an anonymous function which would not have a VST entry. 6872 // Assert that we have one of those two cases. 6873 assert(VSTOffset == 0 || !F->hasName()); 6874 // Parse the next body in the stream and set its position in the 6875 // DeferredFunctionInfo map. 6876 if (Error Err = rememberAndSkipFunctionBodies()) 6877 return Err; 6878 } 6879 return Error::success(); 6880 } 6881 6882 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6883 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6884 return SyncScope::ID(Val); 6885 if (Val >= SSIDs.size()) 6886 return SyncScope::System; // Map unknown synchronization scopes to system. 6887 return SSIDs[Val]; 6888 } 6889 6890 //===----------------------------------------------------------------------===// 6891 // GVMaterializer implementation 6892 //===----------------------------------------------------------------------===// 6893 6894 Error BitcodeReader::materialize(GlobalValue *GV) { 6895 Function *F = dyn_cast<Function>(GV); 6896 // If it's not a function or is already material, ignore the request. 6897 if (!F || !F->isMaterializable()) 6898 return Error::success(); 6899 6900 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6901 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6902 // If its position is recorded as 0, its body is somewhere in the stream 6903 // but we haven't seen it yet. 6904 if (DFII->second == 0) 6905 if (Error Err = findFunctionInStream(F, DFII)) 6906 return Err; 6907 6908 // Materialize metadata before parsing any function bodies. 6909 if (Error Err = materializeMetadata()) 6910 return Err; 6911 6912 // Move the bit stream to the saved position of the deferred function body. 6913 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6914 return JumpFailed; 6915 6916 // Regardless of the debug info format we want to end up in, we need 6917 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6918 F->IsNewDbgInfoFormat = true; 6919 6920 if (Error Err = parseFunctionBody(F)) 6921 return Err; 6922 F->setIsMaterializable(false); 6923 6924 // All parsed Functions should load into the debug info format dictated by the 6925 // Module, unless we're attempting to preserve the input debug info format. 6926 if (SeenDebugIntrinsic && SeenDebugRecord) 6927 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6928 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6929 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6930 bool NewDbgInfoFormatDesired = 6931 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6932 if (SeenAnyDebugInfo) { 6933 UseNewDbgInfoFormat = SeenDebugRecord; 6934 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6935 WriteNewDbgInfoFormat = SeenDebugRecord; 6936 } 6937 // If the module's debug info format doesn't match the observed input 6938 // format, then set its format now; we don't need to call the conversion 6939 // function because there must be no existing intrinsics to convert. 6940 // Otherwise, just set the format on this function now. 6941 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6942 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6943 else 6944 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6945 } else { 6946 // If we aren't preserving formats, we use the Module flag to get our 6947 // desired format instead of reading flags, in case we are lazy-loading and 6948 // the format of the module has been changed since it was set by the flags. 6949 // We only need to convert debug info here if we have debug records but 6950 // desire the intrinsic format; everything else is a no-op or handled by the 6951 // autoupgrader. 6952 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6953 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6954 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6955 else 6956 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6957 } 6958 6959 if (StripDebugInfo) 6960 stripDebugInfo(*F); 6961 6962 // Upgrade any old intrinsic calls in the function. 6963 for (auto &I : UpgradedIntrinsics) { 6964 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6965 if (CallInst *CI = dyn_cast<CallInst>(U)) 6966 UpgradeIntrinsicCall(CI, I.second); 6967 } 6968 6969 // Finish fn->subprogram upgrade for materialized functions. 6970 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6971 F->setSubprogram(SP); 6972 6973 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6974 if (!MDLoader->isStrippingTBAA()) { 6975 for (auto &I : instructions(F)) { 6976 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6977 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6978 continue; 6979 MDLoader->setStripTBAA(true); 6980 stripTBAA(F->getParent()); 6981 } 6982 } 6983 6984 for (auto &I : instructions(F)) { 6985 // "Upgrade" older incorrect branch weights by dropping them. 6986 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6987 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6988 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6989 StringRef ProfName = MDS->getString(); 6990 // Check consistency of !prof branch_weights metadata. 6991 if (ProfName != "branch_weights") 6992 continue; 6993 unsigned ExpectedNumOperands = 0; 6994 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6995 ExpectedNumOperands = BI->getNumSuccessors(); 6996 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6997 ExpectedNumOperands = SI->getNumSuccessors(); 6998 else if (isa<CallInst>(&I)) 6999 ExpectedNumOperands = 1; 7000 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7001 ExpectedNumOperands = IBI->getNumDestinations(); 7002 else if (isa<SelectInst>(&I)) 7003 ExpectedNumOperands = 2; 7004 else 7005 continue; // ignore and continue. 7006 7007 unsigned Offset = getBranchWeightOffset(MD); 7008 7009 // If branch weight doesn't match, just strip branch weight. 7010 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7011 I.setMetadata(LLVMContext::MD_prof, nullptr); 7012 } 7013 } 7014 7015 // Remove incompatible attributes on function calls. 7016 if (auto *CI = dyn_cast<CallBase>(&I)) { 7017 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7018 CI->getFunctionType()->getReturnType())); 7019 7020 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7021 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7022 CI->getArgOperand(ArgNo)->getType())); 7023 } 7024 } 7025 7026 // Look for functions that rely on old function attribute behavior. 7027 UpgradeFunctionAttributes(*F); 7028 7029 // Bring in any functions that this function forward-referenced via 7030 // blockaddresses. 7031 return materializeForwardReferencedFunctions(); 7032 } 7033 7034 Error BitcodeReader::materializeModule() { 7035 if (Error Err = materializeMetadata()) 7036 return Err; 7037 7038 // Promise to materialize all forward references. 7039 WillMaterializeAllForwardRefs = true; 7040 7041 // Iterate over the module, deserializing any functions that are still on 7042 // disk. 7043 for (Function &F : *TheModule) { 7044 if (Error Err = materialize(&F)) 7045 return Err; 7046 } 7047 // At this point, if there are any function bodies, parse the rest of 7048 // the bits in the module past the last function block we have recorded 7049 // through either lazy scanning or the VST. 7050 if (LastFunctionBlockBit || NextUnreadBit) 7051 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7052 ? LastFunctionBlockBit 7053 : NextUnreadBit)) 7054 return Err; 7055 7056 // Check that all block address forward references got resolved (as we 7057 // promised above). 7058 if (!BasicBlockFwdRefs.empty()) 7059 return error("Never resolved function from blockaddress"); 7060 7061 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7062 // delete the old functions to clean up. We can't do this unless the entire 7063 // module is materialized because there could always be another function body 7064 // with calls to the old function. 7065 for (auto &I : UpgradedIntrinsics) { 7066 for (auto *U : I.first->users()) { 7067 if (CallInst *CI = dyn_cast<CallInst>(U)) 7068 UpgradeIntrinsicCall(CI, I.second); 7069 } 7070 if (!I.first->use_empty()) 7071 I.first->replaceAllUsesWith(I.second); 7072 I.first->eraseFromParent(); 7073 } 7074 UpgradedIntrinsics.clear(); 7075 7076 UpgradeDebugInfo(*TheModule); 7077 7078 UpgradeModuleFlags(*TheModule); 7079 7080 UpgradeARCRuntime(*TheModule); 7081 7082 return Error::success(); 7083 } 7084 7085 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7086 return IdentifiedStructTypes; 7087 } 7088 7089 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7090 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7091 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7092 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7093 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7094 7095 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7096 TheIndex.addModule(ModulePath); 7097 } 7098 7099 ModuleSummaryIndex::ModuleInfo * 7100 ModuleSummaryIndexBitcodeReader::getThisModule() { 7101 return TheIndex.getModule(ModulePath); 7102 } 7103 7104 template <bool AllowNullValueInfo> 7105 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7106 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7107 auto VGI = ValueIdToValueInfoMap[ValueId]; 7108 // We can have a null value info for memprof callsite info records in 7109 // distributed ThinLTO index files when the callee function summary is not 7110 // included in the index. The bitcode writer records 0 in that case, 7111 // and the caller of this helper will set AllowNullValueInfo to true. 7112 assert(AllowNullValueInfo || std::get<0>(VGI)); 7113 return VGI; 7114 } 7115 7116 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7117 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7118 StringRef SourceFileName) { 7119 std::string GlobalId = 7120 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7121 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7122 auto OriginalNameID = ValueGUID; 7123 if (GlobalValue::isLocalLinkage(Linkage)) 7124 OriginalNameID = GlobalValue::getGUID(ValueName); 7125 if (PrintSummaryGUIDs) 7126 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7127 << ValueName << "\n"; 7128 7129 // UseStrtab is false for legacy summary formats and value names are 7130 // created on stack. In that case we save the name in a string saver in 7131 // the index so that the value name can be recorded. 7132 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7133 TheIndex.getOrInsertValueInfo( 7134 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7135 OriginalNameID, ValueGUID); 7136 } 7137 7138 // Specialized value symbol table parser used when reading module index 7139 // blocks where we don't actually create global values. The parsed information 7140 // is saved in the bitcode reader for use when later parsing summaries. 7141 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7142 uint64_t Offset, 7143 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7144 // With a strtab the VST is not required to parse the summary. 7145 if (UseStrtab) 7146 return Error::success(); 7147 7148 assert(Offset > 0 && "Expected non-zero VST offset"); 7149 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7150 if (!MaybeCurrentBit) 7151 return MaybeCurrentBit.takeError(); 7152 uint64_t CurrentBit = MaybeCurrentBit.get(); 7153 7154 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7155 return Err; 7156 7157 SmallVector<uint64_t, 64> Record; 7158 7159 // Read all the records for this value table. 7160 SmallString<128> ValueName; 7161 7162 while (true) { 7163 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7164 if (!MaybeEntry) 7165 return MaybeEntry.takeError(); 7166 BitstreamEntry Entry = MaybeEntry.get(); 7167 7168 switch (Entry.Kind) { 7169 case BitstreamEntry::SubBlock: // Handled for us already. 7170 case BitstreamEntry::Error: 7171 return error("Malformed block"); 7172 case BitstreamEntry::EndBlock: 7173 // Done parsing VST, jump back to wherever we came from. 7174 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7175 return JumpFailed; 7176 return Error::success(); 7177 case BitstreamEntry::Record: 7178 // The interesting case. 7179 break; 7180 } 7181 7182 // Read a record. 7183 Record.clear(); 7184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7185 if (!MaybeRecord) 7186 return MaybeRecord.takeError(); 7187 switch (MaybeRecord.get()) { 7188 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7189 break; 7190 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7191 if (convertToString(Record, 1, ValueName)) 7192 return error("Invalid record"); 7193 unsigned ValueID = Record[0]; 7194 assert(!SourceFileName.empty()); 7195 auto VLI = ValueIdToLinkageMap.find(ValueID); 7196 assert(VLI != ValueIdToLinkageMap.end() && 7197 "No linkage found for VST entry?"); 7198 auto Linkage = VLI->second; 7199 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7200 ValueName.clear(); 7201 break; 7202 } 7203 case bitc::VST_CODE_FNENTRY: { 7204 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7205 if (convertToString(Record, 2, ValueName)) 7206 return error("Invalid record"); 7207 unsigned ValueID = Record[0]; 7208 assert(!SourceFileName.empty()); 7209 auto VLI = ValueIdToLinkageMap.find(ValueID); 7210 assert(VLI != ValueIdToLinkageMap.end() && 7211 "No linkage found for VST entry?"); 7212 auto Linkage = VLI->second; 7213 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7214 ValueName.clear(); 7215 break; 7216 } 7217 case bitc::VST_CODE_COMBINED_ENTRY: { 7218 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7219 unsigned ValueID = Record[0]; 7220 GlobalValue::GUID RefGUID = Record[1]; 7221 // The "original name", which is the second value of the pair will be 7222 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7223 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7224 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7225 break; 7226 } 7227 } 7228 } 7229 } 7230 7231 // Parse just the blocks needed for building the index out of the module. 7232 // At the end of this routine the module Index is populated with a map 7233 // from global value id to GlobalValueSummary objects. 7234 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7235 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7236 return Err; 7237 7238 SmallVector<uint64_t, 64> Record; 7239 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7240 unsigned ValueId = 0; 7241 7242 // Read the index for this module. 7243 while (true) { 7244 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7245 if (!MaybeEntry) 7246 return MaybeEntry.takeError(); 7247 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7248 7249 switch (Entry.Kind) { 7250 case BitstreamEntry::Error: 7251 return error("Malformed block"); 7252 case BitstreamEntry::EndBlock: 7253 return Error::success(); 7254 7255 case BitstreamEntry::SubBlock: 7256 switch (Entry.ID) { 7257 default: // Skip unknown content. 7258 if (Error Err = Stream.SkipBlock()) 7259 return Err; 7260 break; 7261 case bitc::BLOCKINFO_BLOCK_ID: 7262 // Need to parse these to get abbrev ids (e.g. for VST) 7263 if (Error Err = readBlockInfo()) 7264 return Err; 7265 break; 7266 case bitc::VALUE_SYMTAB_BLOCK_ID: 7267 // Should have been parsed earlier via VSTOffset, unless there 7268 // is no summary section. 7269 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7270 !SeenGlobalValSummary) && 7271 "Expected early VST parse via VSTOffset record"); 7272 if (Error Err = Stream.SkipBlock()) 7273 return Err; 7274 break; 7275 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7276 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7277 // Add the module if it is a per-module index (has a source file name). 7278 if (!SourceFileName.empty()) 7279 addThisModule(); 7280 assert(!SeenValueSymbolTable && 7281 "Already read VST when parsing summary block?"); 7282 // We might not have a VST if there were no values in the 7283 // summary. An empty summary block generated when we are 7284 // performing ThinLTO compiles so we don't later invoke 7285 // the regular LTO process on them. 7286 if (VSTOffset > 0) { 7287 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7288 return Err; 7289 SeenValueSymbolTable = true; 7290 } 7291 SeenGlobalValSummary = true; 7292 if (Error Err = parseEntireSummary(Entry.ID)) 7293 return Err; 7294 break; 7295 case bitc::MODULE_STRTAB_BLOCK_ID: 7296 if (Error Err = parseModuleStringTable()) 7297 return Err; 7298 break; 7299 } 7300 continue; 7301 7302 case BitstreamEntry::Record: { 7303 Record.clear(); 7304 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7305 if (!MaybeBitCode) 7306 return MaybeBitCode.takeError(); 7307 switch (MaybeBitCode.get()) { 7308 default: 7309 break; // Default behavior, ignore unknown content. 7310 case bitc::MODULE_CODE_VERSION: { 7311 if (Error Err = parseVersionRecord(Record).takeError()) 7312 return Err; 7313 break; 7314 } 7315 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7316 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7317 SmallString<128> ValueName; 7318 if (convertToString(Record, 0, ValueName)) 7319 return error("Invalid record"); 7320 SourceFileName = ValueName.c_str(); 7321 break; 7322 } 7323 /// MODULE_CODE_HASH: [5*i32] 7324 case bitc::MODULE_CODE_HASH: { 7325 if (Record.size() != 5) 7326 return error("Invalid hash length " + Twine(Record.size()).str()); 7327 auto &Hash = getThisModule()->second; 7328 int Pos = 0; 7329 for (auto &Val : Record) { 7330 assert(!(Val >> 32) && "Unexpected high bits set"); 7331 Hash[Pos++] = Val; 7332 } 7333 break; 7334 } 7335 /// MODULE_CODE_VSTOFFSET: [offset] 7336 case bitc::MODULE_CODE_VSTOFFSET: 7337 if (Record.empty()) 7338 return error("Invalid record"); 7339 // Note that we subtract 1 here because the offset is relative to one 7340 // word before the start of the identification or module block, which 7341 // was historically always the start of the regular bitcode header. 7342 VSTOffset = Record[0] - 1; 7343 break; 7344 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7345 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7346 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7347 // v2: [strtab offset, strtab size, v1] 7348 case bitc::MODULE_CODE_GLOBALVAR: 7349 case bitc::MODULE_CODE_FUNCTION: 7350 case bitc::MODULE_CODE_ALIAS: { 7351 StringRef Name; 7352 ArrayRef<uint64_t> GVRecord; 7353 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7354 if (GVRecord.size() <= 3) 7355 return error("Invalid record"); 7356 uint64_t RawLinkage = GVRecord[3]; 7357 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7358 if (!UseStrtab) { 7359 ValueIdToLinkageMap[ValueId++] = Linkage; 7360 break; 7361 } 7362 7363 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7364 break; 7365 } 7366 } 7367 } 7368 continue; 7369 } 7370 } 7371 } 7372 7373 SmallVector<ValueInfo, 0> 7374 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7375 SmallVector<ValueInfo, 0> Ret; 7376 Ret.reserve(Record.size()); 7377 for (uint64_t RefValueId : Record) 7378 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7379 return Ret; 7380 } 7381 7382 SmallVector<FunctionSummary::EdgeTy, 0> 7383 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7384 bool IsOldProfileFormat, 7385 bool HasProfile, bool HasRelBF) { 7386 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7387 // In the case of new profile formats, there are two Record entries per 7388 // Edge. Otherwise, conservatively reserve up to Record.size. 7389 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7390 Ret.reserve(Record.size() / 2); 7391 else 7392 Ret.reserve(Record.size()); 7393 7394 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7395 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7396 bool HasTailCall = false; 7397 uint64_t RelBF = 0; 7398 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7399 if (IsOldProfileFormat) { 7400 I += 1; // Skip old callsitecount field 7401 if (HasProfile) 7402 I += 1; // Skip old profilecount field 7403 } else if (HasProfile) 7404 std::tie(Hotness, HasTailCall) = 7405 getDecodedHotnessCallEdgeInfo(Record[++I]); 7406 else if (HasRelBF) 7407 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7408 Ret.push_back(FunctionSummary::EdgeTy{ 7409 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7410 } 7411 return Ret; 7412 } 7413 7414 static void 7415 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7416 WholeProgramDevirtResolution &Wpd) { 7417 uint64_t ArgNum = Record[Slot++]; 7418 WholeProgramDevirtResolution::ByArg &B = 7419 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7420 Slot += ArgNum; 7421 7422 B.TheKind = 7423 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7424 B.Info = Record[Slot++]; 7425 B.Byte = Record[Slot++]; 7426 B.Bit = Record[Slot++]; 7427 } 7428 7429 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7430 StringRef Strtab, size_t &Slot, 7431 TypeIdSummary &TypeId) { 7432 uint64_t Id = Record[Slot++]; 7433 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7434 7435 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7436 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7437 static_cast<size_t>(Record[Slot + 1])}; 7438 Slot += 2; 7439 7440 uint64_t ResByArgNum = Record[Slot++]; 7441 for (uint64_t I = 0; I != ResByArgNum; ++I) 7442 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7443 } 7444 7445 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7446 StringRef Strtab, 7447 ModuleSummaryIndex &TheIndex) { 7448 size_t Slot = 0; 7449 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7450 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7451 Slot += 2; 7452 7453 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7454 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7455 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7456 TypeId.TTRes.SizeM1 = Record[Slot++]; 7457 TypeId.TTRes.BitMask = Record[Slot++]; 7458 TypeId.TTRes.InlineBits = Record[Slot++]; 7459 7460 while (Slot < Record.size()) 7461 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7462 } 7463 7464 std::vector<FunctionSummary::ParamAccess> 7465 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7466 auto ReadRange = [&]() { 7467 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7468 BitcodeReader::decodeSignRotatedValue(Record.front())); 7469 Record = Record.drop_front(); 7470 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7471 BitcodeReader::decodeSignRotatedValue(Record.front())); 7472 Record = Record.drop_front(); 7473 ConstantRange Range{Lower, Upper}; 7474 assert(!Range.isFullSet()); 7475 assert(!Range.isUpperSignWrapped()); 7476 return Range; 7477 }; 7478 7479 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7480 while (!Record.empty()) { 7481 PendingParamAccesses.emplace_back(); 7482 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7483 ParamAccess.ParamNo = Record.front(); 7484 Record = Record.drop_front(); 7485 ParamAccess.Use = ReadRange(); 7486 ParamAccess.Calls.resize(Record.front()); 7487 Record = Record.drop_front(); 7488 for (auto &Call : ParamAccess.Calls) { 7489 Call.ParamNo = Record.front(); 7490 Record = Record.drop_front(); 7491 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7492 Record = Record.drop_front(); 7493 Call.Offsets = ReadRange(); 7494 } 7495 } 7496 return PendingParamAccesses; 7497 } 7498 7499 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7500 ArrayRef<uint64_t> Record, size_t &Slot, 7501 TypeIdCompatibleVtableInfo &TypeId) { 7502 uint64_t Offset = Record[Slot++]; 7503 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7504 TypeId.push_back({Offset, Callee}); 7505 } 7506 7507 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7508 ArrayRef<uint64_t> Record) { 7509 size_t Slot = 0; 7510 TypeIdCompatibleVtableInfo &TypeId = 7511 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7512 {Strtab.data() + Record[Slot], 7513 static_cast<size_t>(Record[Slot + 1])}); 7514 Slot += 2; 7515 7516 while (Slot < Record.size()) 7517 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7518 } 7519 7520 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7521 unsigned WOCnt) { 7522 // Readonly and writeonly refs are in the end of the refs list. 7523 assert(ROCnt + WOCnt <= Refs.size()); 7524 unsigned FirstWORef = Refs.size() - WOCnt; 7525 unsigned RefNo = FirstWORef - ROCnt; 7526 for (; RefNo < FirstWORef; ++RefNo) 7527 Refs[RefNo].setReadOnly(); 7528 for (; RefNo < Refs.size(); ++RefNo) 7529 Refs[RefNo].setWriteOnly(); 7530 } 7531 7532 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7533 // objects in the index. 7534 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7535 if (Error Err = Stream.EnterSubBlock(ID)) 7536 return Err; 7537 SmallVector<uint64_t, 64> Record; 7538 7539 // Parse version 7540 { 7541 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7542 if (!MaybeEntry) 7543 return MaybeEntry.takeError(); 7544 BitstreamEntry Entry = MaybeEntry.get(); 7545 7546 if (Entry.Kind != BitstreamEntry::Record) 7547 return error("Invalid Summary Block: record for version expected"); 7548 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7549 if (!MaybeRecord) 7550 return MaybeRecord.takeError(); 7551 if (MaybeRecord.get() != bitc::FS_VERSION) 7552 return error("Invalid Summary Block: version expected"); 7553 } 7554 const uint64_t Version = Record[0]; 7555 const bool IsOldProfileFormat = Version == 1; 7556 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7557 return error("Invalid summary version " + Twine(Version) + 7558 ". Version should be in the range [1-" + 7559 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7560 "]."); 7561 Record.clear(); 7562 7563 // Keep around the last seen summary to be used when we see an optional 7564 // "OriginalName" attachement. 7565 GlobalValueSummary *LastSeenSummary = nullptr; 7566 GlobalValue::GUID LastSeenGUID = 0; 7567 7568 // We can expect to see any number of type ID information records before 7569 // each function summary records; these variables store the information 7570 // collected so far so that it can be used to create the summary object. 7571 std::vector<GlobalValue::GUID> PendingTypeTests; 7572 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7573 PendingTypeCheckedLoadVCalls; 7574 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7575 PendingTypeCheckedLoadConstVCalls; 7576 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7577 7578 std::vector<CallsiteInfo> PendingCallsites; 7579 std::vector<AllocInfo> PendingAllocs; 7580 7581 while (true) { 7582 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7583 if (!MaybeEntry) 7584 return MaybeEntry.takeError(); 7585 BitstreamEntry Entry = MaybeEntry.get(); 7586 7587 switch (Entry.Kind) { 7588 case BitstreamEntry::SubBlock: // Handled for us already. 7589 case BitstreamEntry::Error: 7590 return error("Malformed block"); 7591 case BitstreamEntry::EndBlock: 7592 return Error::success(); 7593 case BitstreamEntry::Record: 7594 // The interesting case. 7595 break; 7596 } 7597 7598 // Read a record. The record format depends on whether this 7599 // is a per-module index or a combined index file. In the per-module 7600 // case the records contain the associated value's ID for correlation 7601 // with VST entries. In the combined index the correlation is done 7602 // via the bitcode offset of the summary records (which were saved 7603 // in the combined index VST entries). The records also contain 7604 // information used for ThinLTO renaming and importing. 7605 Record.clear(); 7606 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7607 if (!MaybeBitCode) 7608 return MaybeBitCode.takeError(); 7609 switch (unsigned BitCode = MaybeBitCode.get()) { 7610 default: // Default behavior: ignore. 7611 break; 7612 case bitc::FS_FLAGS: { // [flags] 7613 TheIndex.setFlags(Record[0]); 7614 break; 7615 } 7616 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7617 uint64_t ValueID = Record[0]; 7618 GlobalValue::GUID RefGUID; 7619 if (Version >= 11) { 7620 RefGUID = Record[1] << 32 | Record[2]; 7621 } else { 7622 RefGUID = Record[1]; 7623 } 7624 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7625 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7626 break; 7627 } 7628 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7629 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7630 // numrefs x valueid, n x (valueid)] 7631 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7632 // numrefs x valueid, 7633 // n x (valueid, hotness+tailcall flags)] 7634 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7635 // numrefs x valueid, 7636 // n x (valueid, relblockfreq+tailcall)] 7637 case bitc::FS_PERMODULE: 7638 case bitc::FS_PERMODULE_RELBF: 7639 case bitc::FS_PERMODULE_PROFILE: { 7640 unsigned ValueID = Record[0]; 7641 uint64_t RawFlags = Record[1]; 7642 unsigned InstCount = Record[2]; 7643 uint64_t RawFunFlags = 0; 7644 unsigned NumRefs = Record[3]; 7645 unsigned NumRORefs = 0, NumWORefs = 0; 7646 int RefListStartIndex = 4; 7647 if (Version >= 4) { 7648 RawFunFlags = Record[3]; 7649 NumRefs = Record[4]; 7650 RefListStartIndex = 5; 7651 if (Version >= 5) { 7652 NumRORefs = Record[5]; 7653 RefListStartIndex = 6; 7654 if (Version >= 7) { 7655 NumWORefs = Record[6]; 7656 RefListStartIndex = 7; 7657 } 7658 } 7659 } 7660 7661 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7662 // The module path string ref set in the summary must be owned by the 7663 // index's module string table. Since we don't have a module path 7664 // string table section in the per-module index, we create a single 7665 // module path string table entry with an empty (0) ID to take 7666 // ownership. 7667 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7668 assert(Record.size() >= RefListStartIndex + NumRefs && 7669 "Record size inconsistent with number of references"); 7670 SmallVector<ValueInfo, 0> Refs = makeRefList( 7671 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7672 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7673 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7674 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7675 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7676 IsOldProfileFormat, HasProfile, HasRelBF); 7677 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7678 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7679 // In order to save memory, only record the memprof summaries if this is 7680 // the prevailing copy of a symbol. The linker doesn't resolve local 7681 // linkage values so don't check whether those are prevailing. 7682 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7683 if (IsPrevailing && 7684 !GlobalValue::isLocalLinkage(LT) && 7685 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7686 PendingCallsites.clear(); 7687 PendingAllocs.clear(); 7688 } 7689 auto FS = std::make_unique<FunctionSummary>( 7690 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7691 std::move(Calls), std::move(PendingTypeTests), 7692 std::move(PendingTypeTestAssumeVCalls), 7693 std::move(PendingTypeCheckedLoadVCalls), 7694 std::move(PendingTypeTestAssumeConstVCalls), 7695 std::move(PendingTypeCheckedLoadConstVCalls), 7696 std::move(PendingParamAccesses), std::move(PendingCallsites), 7697 std::move(PendingAllocs)); 7698 FS->setModulePath(getThisModule()->first()); 7699 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7700 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7701 std::move(FS)); 7702 break; 7703 } 7704 // FS_ALIAS: [valueid, flags, valueid] 7705 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7706 // they expect all aliasee summaries to be available. 7707 case bitc::FS_ALIAS: { 7708 unsigned ValueID = Record[0]; 7709 uint64_t RawFlags = Record[1]; 7710 unsigned AliaseeID = Record[2]; 7711 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7712 auto AS = std::make_unique<AliasSummary>(Flags); 7713 // The module path string ref set in the summary must be owned by the 7714 // index's module string table. Since we don't have a module path 7715 // string table section in the per-module index, we create a single 7716 // module path string table entry with an empty (0) ID to take 7717 // ownership. 7718 AS->setModulePath(getThisModule()->first()); 7719 7720 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7721 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7722 if (!AliaseeInModule) 7723 return error("Alias expects aliasee summary to be parsed"); 7724 AS->setAliasee(AliaseeVI, AliaseeInModule); 7725 7726 auto GUID = getValueInfoFromValueId(ValueID); 7727 AS->setOriginalName(std::get<1>(GUID)); 7728 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7729 break; 7730 } 7731 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7732 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7733 unsigned ValueID = Record[0]; 7734 uint64_t RawFlags = Record[1]; 7735 unsigned RefArrayStart = 2; 7736 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7737 /* WriteOnly */ false, 7738 /* Constant */ false, 7739 GlobalObject::VCallVisibilityPublic); 7740 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7741 if (Version >= 5) { 7742 GVF = getDecodedGVarFlags(Record[2]); 7743 RefArrayStart = 3; 7744 } 7745 SmallVector<ValueInfo, 0> Refs = 7746 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7747 auto FS = 7748 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7749 FS->setModulePath(getThisModule()->first()); 7750 auto GUID = getValueInfoFromValueId(ValueID); 7751 FS->setOriginalName(std::get<1>(GUID)); 7752 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7753 break; 7754 } 7755 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7756 // numrefs, numrefs x valueid, 7757 // n x (valueid, offset)] 7758 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7759 unsigned ValueID = Record[0]; 7760 uint64_t RawFlags = Record[1]; 7761 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7762 unsigned NumRefs = Record[3]; 7763 unsigned RefListStartIndex = 4; 7764 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7765 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7766 SmallVector<ValueInfo, 0> Refs = makeRefList( 7767 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7768 VTableFuncList VTableFuncs; 7769 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7770 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7771 uint64_t Offset = Record[++I]; 7772 VTableFuncs.push_back({Callee, Offset}); 7773 } 7774 auto VS = 7775 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7776 VS->setModulePath(getThisModule()->first()); 7777 VS->setVTableFuncs(VTableFuncs); 7778 auto GUID = getValueInfoFromValueId(ValueID); 7779 VS->setOriginalName(std::get<1>(GUID)); 7780 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7781 break; 7782 } 7783 // FS_COMBINED is legacy and does not have support for the tail call flag. 7784 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7785 // numrefs x valueid, n x (valueid)] 7786 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7787 // numrefs x valueid, 7788 // n x (valueid, hotness+tailcall flags)] 7789 case bitc::FS_COMBINED: 7790 case bitc::FS_COMBINED_PROFILE: { 7791 unsigned ValueID = Record[0]; 7792 uint64_t ModuleId = Record[1]; 7793 uint64_t RawFlags = Record[2]; 7794 unsigned InstCount = Record[3]; 7795 uint64_t RawFunFlags = 0; 7796 unsigned NumRefs = Record[4]; 7797 unsigned NumRORefs = 0, NumWORefs = 0; 7798 int RefListStartIndex = 5; 7799 7800 if (Version >= 4) { 7801 RawFunFlags = Record[4]; 7802 RefListStartIndex = 6; 7803 size_t NumRefsIndex = 5; 7804 if (Version >= 5) { 7805 unsigned NumRORefsOffset = 1; 7806 RefListStartIndex = 7; 7807 if (Version >= 6) { 7808 NumRefsIndex = 6; 7809 RefListStartIndex = 8; 7810 if (Version >= 7) { 7811 RefListStartIndex = 9; 7812 NumWORefs = Record[8]; 7813 NumRORefsOffset = 2; 7814 } 7815 } 7816 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7817 } 7818 NumRefs = Record[NumRefsIndex]; 7819 } 7820 7821 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7822 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7823 assert(Record.size() >= RefListStartIndex + NumRefs && 7824 "Record size inconsistent with number of references"); 7825 SmallVector<ValueInfo, 0> Refs = makeRefList( 7826 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7827 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7828 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7829 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7830 IsOldProfileFormat, HasProfile, false); 7831 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7832 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7833 auto FS = std::make_unique<FunctionSummary>( 7834 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7835 std::move(Edges), std::move(PendingTypeTests), 7836 std::move(PendingTypeTestAssumeVCalls), 7837 std::move(PendingTypeCheckedLoadVCalls), 7838 std::move(PendingTypeTestAssumeConstVCalls), 7839 std::move(PendingTypeCheckedLoadConstVCalls), 7840 std::move(PendingParamAccesses), std::move(PendingCallsites), 7841 std::move(PendingAllocs)); 7842 LastSeenSummary = FS.get(); 7843 LastSeenGUID = VI.getGUID(); 7844 FS->setModulePath(ModuleIdMap[ModuleId]); 7845 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7846 break; 7847 } 7848 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7849 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7850 // they expect all aliasee summaries to be available. 7851 case bitc::FS_COMBINED_ALIAS: { 7852 unsigned ValueID = Record[0]; 7853 uint64_t ModuleId = Record[1]; 7854 uint64_t RawFlags = Record[2]; 7855 unsigned AliaseeValueId = Record[3]; 7856 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7857 auto AS = std::make_unique<AliasSummary>(Flags); 7858 LastSeenSummary = AS.get(); 7859 AS->setModulePath(ModuleIdMap[ModuleId]); 7860 7861 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7862 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7863 AS->setAliasee(AliaseeVI, AliaseeInModule); 7864 7865 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7866 LastSeenGUID = VI.getGUID(); 7867 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7868 break; 7869 } 7870 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7871 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7872 unsigned ValueID = Record[0]; 7873 uint64_t ModuleId = Record[1]; 7874 uint64_t RawFlags = Record[2]; 7875 unsigned RefArrayStart = 3; 7876 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7877 /* WriteOnly */ false, 7878 /* Constant */ false, 7879 GlobalObject::VCallVisibilityPublic); 7880 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7881 if (Version >= 5) { 7882 GVF = getDecodedGVarFlags(Record[3]); 7883 RefArrayStart = 4; 7884 } 7885 SmallVector<ValueInfo, 0> Refs = 7886 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7887 auto FS = 7888 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7889 LastSeenSummary = FS.get(); 7890 FS->setModulePath(ModuleIdMap[ModuleId]); 7891 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7892 LastSeenGUID = VI.getGUID(); 7893 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7894 break; 7895 } 7896 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7897 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7898 uint64_t OriginalName = Record[0]; 7899 if (!LastSeenSummary) 7900 return error("Name attachment that does not follow a combined record"); 7901 LastSeenSummary->setOriginalName(OriginalName); 7902 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7903 // Reset the LastSeenSummary 7904 LastSeenSummary = nullptr; 7905 LastSeenGUID = 0; 7906 break; 7907 } 7908 case bitc::FS_TYPE_TESTS: 7909 assert(PendingTypeTests.empty()); 7910 llvm::append_range(PendingTypeTests, Record); 7911 break; 7912 7913 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7914 assert(PendingTypeTestAssumeVCalls.empty()); 7915 for (unsigned I = 0; I != Record.size(); I += 2) 7916 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7917 break; 7918 7919 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7920 assert(PendingTypeCheckedLoadVCalls.empty()); 7921 for (unsigned I = 0; I != Record.size(); I += 2) 7922 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7923 break; 7924 7925 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7926 PendingTypeTestAssumeConstVCalls.push_back( 7927 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7928 break; 7929 7930 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7931 PendingTypeCheckedLoadConstVCalls.push_back( 7932 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7933 break; 7934 7935 case bitc::FS_CFI_FUNCTION_DEFS: { 7936 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7937 for (unsigned I = 0; I != Record.size(); I += 2) 7938 CfiFunctionDefs.insert( 7939 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7940 break; 7941 } 7942 7943 case bitc::FS_CFI_FUNCTION_DECLS: { 7944 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7945 for (unsigned I = 0; I != Record.size(); I += 2) 7946 CfiFunctionDecls.insert( 7947 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7948 break; 7949 } 7950 7951 case bitc::FS_TYPE_ID: 7952 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7953 break; 7954 7955 case bitc::FS_TYPE_ID_METADATA: 7956 parseTypeIdCompatibleVtableSummaryRecord(Record); 7957 break; 7958 7959 case bitc::FS_BLOCK_COUNT: 7960 TheIndex.addBlockCount(Record[0]); 7961 break; 7962 7963 case bitc::FS_PARAM_ACCESS: { 7964 PendingParamAccesses = parseParamAccesses(Record); 7965 break; 7966 } 7967 7968 case bitc::FS_STACK_IDS: { // [n x stackid] 7969 // Save stack ids in the reader to consult when adding stack ids from the 7970 // lists in the stack node and alloc node entries. 7971 StackIds = ArrayRef<uint64_t>(Record); 7972 break; 7973 } 7974 7975 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7976 unsigned ValueID = Record[0]; 7977 SmallVector<unsigned> StackIdList; 7978 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7979 assert(*R < StackIds.size()); 7980 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7981 } 7982 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7983 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7984 break; 7985 } 7986 7987 case bitc::FS_COMBINED_CALLSITE_INFO: { 7988 auto RecordIter = Record.begin(); 7989 unsigned ValueID = *RecordIter++; 7990 unsigned NumStackIds = *RecordIter++; 7991 unsigned NumVersions = *RecordIter++; 7992 assert(Record.size() == 3 + NumStackIds + NumVersions); 7993 SmallVector<unsigned> StackIdList; 7994 for (unsigned J = 0; J < NumStackIds; J++) { 7995 assert(*RecordIter < StackIds.size()); 7996 StackIdList.push_back( 7997 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7998 } 7999 SmallVector<unsigned> Versions; 8000 for (unsigned J = 0; J < NumVersions; J++) 8001 Versions.push_back(*RecordIter++); 8002 ValueInfo VI = std::get<0>( 8003 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8004 PendingCallsites.push_back( 8005 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8006 break; 8007 } 8008 8009 case bitc::FS_PERMODULE_ALLOC_INFO: { 8010 unsigned I = 0; 8011 std::vector<MIBInfo> MIBs; 8012 unsigned NumMIBs = 0; 8013 if (Version >= 10) 8014 NumMIBs = Record[I++]; 8015 unsigned MIBsRead = 0; 8016 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8017 (Version < 10 && I < Record.size())) { 8018 assert(Record.size() - I >= 2); 8019 AllocationType AllocType = (AllocationType)Record[I++]; 8020 unsigned NumStackEntries = Record[I++]; 8021 assert(Record.size() - I >= NumStackEntries); 8022 SmallVector<unsigned> StackIdList; 8023 for (unsigned J = 0; J < NumStackEntries; J++) { 8024 assert(Record[I] < StackIds.size()); 8025 StackIdList.push_back( 8026 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8027 } 8028 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8029 } 8030 std::vector<uint64_t> TotalSizes; 8031 // We either have no sizes or NumMIBs of them. 8032 assert(I == Record.size() || Record.size() - I == NumMIBs); 8033 if (I < Record.size()) { 8034 MIBsRead = 0; 8035 while (MIBsRead++ < NumMIBs) 8036 TotalSizes.push_back(Record[I++]); 8037 } 8038 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8039 if (!TotalSizes.empty()) { 8040 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8041 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8042 } 8043 break; 8044 } 8045 8046 case bitc::FS_COMBINED_ALLOC_INFO: { 8047 unsigned I = 0; 8048 std::vector<MIBInfo> MIBs; 8049 unsigned NumMIBs = Record[I++]; 8050 unsigned NumVersions = Record[I++]; 8051 unsigned MIBsRead = 0; 8052 while (MIBsRead++ < NumMIBs) { 8053 assert(Record.size() - I >= 2); 8054 AllocationType AllocType = (AllocationType)Record[I++]; 8055 unsigned NumStackEntries = Record[I++]; 8056 assert(Record.size() - I >= NumStackEntries); 8057 SmallVector<unsigned> StackIdList; 8058 for (unsigned J = 0; J < NumStackEntries; J++) { 8059 assert(Record[I] < StackIds.size()); 8060 StackIdList.push_back( 8061 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8062 } 8063 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8064 } 8065 assert(Record.size() - I >= NumVersions); 8066 SmallVector<uint8_t> Versions; 8067 for (unsigned J = 0; J < NumVersions; J++) 8068 Versions.push_back(Record[I++]); 8069 std::vector<uint64_t> TotalSizes; 8070 // We either have no sizes or NumMIBs of them. 8071 assert(I == Record.size() || Record.size() - I == NumMIBs); 8072 if (I < Record.size()) { 8073 MIBsRead = 0; 8074 while (MIBsRead++ < NumMIBs) { 8075 TotalSizes.push_back(Record[I++]); 8076 } 8077 } 8078 PendingAllocs.push_back( 8079 AllocInfo(std::move(Versions), std::move(MIBs))); 8080 if (!TotalSizes.empty()) { 8081 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8082 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8083 } 8084 break; 8085 } 8086 } 8087 } 8088 llvm_unreachable("Exit infinite loop"); 8089 } 8090 8091 // Parse the module string table block into the Index. 8092 // This populates the ModulePathStringTable map in the index. 8093 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8094 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8095 return Err; 8096 8097 SmallVector<uint64_t, 64> Record; 8098 8099 SmallString<128> ModulePath; 8100 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8101 8102 while (true) { 8103 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8104 if (!MaybeEntry) 8105 return MaybeEntry.takeError(); 8106 BitstreamEntry Entry = MaybeEntry.get(); 8107 8108 switch (Entry.Kind) { 8109 case BitstreamEntry::SubBlock: // Handled for us already. 8110 case BitstreamEntry::Error: 8111 return error("Malformed block"); 8112 case BitstreamEntry::EndBlock: 8113 return Error::success(); 8114 case BitstreamEntry::Record: 8115 // The interesting case. 8116 break; 8117 } 8118 8119 Record.clear(); 8120 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8121 if (!MaybeRecord) 8122 return MaybeRecord.takeError(); 8123 switch (MaybeRecord.get()) { 8124 default: // Default behavior: ignore. 8125 break; 8126 case bitc::MST_CODE_ENTRY: { 8127 // MST_ENTRY: [modid, namechar x N] 8128 uint64_t ModuleId = Record[0]; 8129 8130 if (convertToString(Record, 1, ModulePath)) 8131 return error("Invalid record"); 8132 8133 LastSeenModule = TheIndex.addModule(ModulePath); 8134 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8135 8136 ModulePath.clear(); 8137 break; 8138 } 8139 /// MST_CODE_HASH: [5*i32] 8140 case bitc::MST_CODE_HASH: { 8141 if (Record.size() != 5) 8142 return error("Invalid hash length " + Twine(Record.size()).str()); 8143 if (!LastSeenModule) 8144 return error("Invalid hash that does not follow a module path"); 8145 int Pos = 0; 8146 for (auto &Val : Record) { 8147 assert(!(Val >> 32) && "Unexpected high bits set"); 8148 LastSeenModule->second[Pos++] = Val; 8149 } 8150 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8151 LastSeenModule = nullptr; 8152 break; 8153 } 8154 } 8155 } 8156 llvm_unreachable("Exit infinite loop"); 8157 } 8158 8159 namespace { 8160 8161 // FIXME: This class is only here to support the transition to llvm::Error. It 8162 // will be removed once this transition is complete. Clients should prefer to 8163 // deal with the Error value directly, rather than converting to error_code. 8164 class BitcodeErrorCategoryType : public std::error_category { 8165 const char *name() const noexcept override { 8166 return "llvm.bitcode"; 8167 } 8168 8169 std::string message(int IE) const override { 8170 BitcodeError E = static_cast<BitcodeError>(IE); 8171 switch (E) { 8172 case BitcodeError::CorruptedBitcode: 8173 return "Corrupted bitcode"; 8174 } 8175 llvm_unreachable("Unknown error type!"); 8176 } 8177 }; 8178 8179 } // end anonymous namespace 8180 8181 const std::error_category &llvm::BitcodeErrorCategory() { 8182 static BitcodeErrorCategoryType ErrorCategory; 8183 return ErrorCategory; 8184 } 8185 8186 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8187 unsigned Block, unsigned RecordID) { 8188 if (Error Err = Stream.EnterSubBlock(Block)) 8189 return std::move(Err); 8190 8191 StringRef Strtab; 8192 while (true) { 8193 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8194 if (!MaybeEntry) 8195 return MaybeEntry.takeError(); 8196 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8197 8198 switch (Entry.Kind) { 8199 case BitstreamEntry::EndBlock: 8200 return Strtab; 8201 8202 case BitstreamEntry::Error: 8203 return error("Malformed block"); 8204 8205 case BitstreamEntry::SubBlock: 8206 if (Error Err = Stream.SkipBlock()) 8207 return std::move(Err); 8208 break; 8209 8210 case BitstreamEntry::Record: 8211 StringRef Blob; 8212 SmallVector<uint64_t, 1> Record; 8213 Expected<unsigned> MaybeRecord = 8214 Stream.readRecord(Entry.ID, Record, &Blob); 8215 if (!MaybeRecord) 8216 return MaybeRecord.takeError(); 8217 if (MaybeRecord.get() == RecordID) 8218 Strtab = Blob; 8219 break; 8220 } 8221 } 8222 } 8223 8224 //===----------------------------------------------------------------------===// 8225 // External interface 8226 //===----------------------------------------------------------------------===// 8227 8228 Expected<std::vector<BitcodeModule>> 8229 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8230 auto FOrErr = getBitcodeFileContents(Buffer); 8231 if (!FOrErr) 8232 return FOrErr.takeError(); 8233 return std::move(FOrErr->Mods); 8234 } 8235 8236 Expected<BitcodeFileContents> 8237 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8238 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8239 if (!StreamOrErr) 8240 return StreamOrErr.takeError(); 8241 BitstreamCursor &Stream = *StreamOrErr; 8242 8243 BitcodeFileContents F; 8244 while (true) { 8245 uint64_t BCBegin = Stream.getCurrentByteNo(); 8246 8247 // We may be consuming bitcode from a client that leaves garbage at the end 8248 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8249 // the end that there cannot possibly be another module, stop looking. 8250 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8251 return F; 8252 8253 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8254 if (!MaybeEntry) 8255 return MaybeEntry.takeError(); 8256 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8257 8258 switch (Entry.Kind) { 8259 case BitstreamEntry::EndBlock: 8260 case BitstreamEntry::Error: 8261 return error("Malformed block"); 8262 8263 case BitstreamEntry::SubBlock: { 8264 uint64_t IdentificationBit = -1ull; 8265 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8266 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8267 if (Error Err = Stream.SkipBlock()) 8268 return std::move(Err); 8269 8270 { 8271 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8272 if (!MaybeEntry) 8273 return MaybeEntry.takeError(); 8274 Entry = MaybeEntry.get(); 8275 } 8276 8277 if (Entry.Kind != BitstreamEntry::SubBlock || 8278 Entry.ID != bitc::MODULE_BLOCK_ID) 8279 return error("Malformed block"); 8280 } 8281 8282 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8283 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8284 if (Error Err = Stream.SkipBlock()) 8285 return std::move(Err); 8286 8287 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8288 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8289 Buffer.getBufferIdentifier(), IdentificationBit, 8290 ModuleBit}); 8291 continue; 8292 } 8293 8294 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8295 Expected<StringRef> Strtab = 8296 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8297 if (!Strtab) 8298 return Strtab.takeError(); 8299 // This string table is used by every preceding bitcode module that does 8300 // not have its own string table. A bitcode file may have multiple 8301 // string tables if it was created by binary concatenation, for example 8302 // with "llvm-cat -b". 8303 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8304 if (!I.Strtab.empty()) 8305 break; 8306 I.Strtab = *Strtab; 8307 } 8308 // Similarly, the string table is used by every preceding symbol table; 8309 // normally there will be just one unless the bitcode file was created 8310 // by binary concatenation. 8311 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8312 F.StrtabForSymtab = *Strtab; 8313 continue; 8314 } 8315 8316 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8317 Expected<StringRef> SymtabOrErr = 8318 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8319 if (!SymtabOrErr) 8320 return SymtabOrErr.takeError(); 8321 8322 // We can expect the bitcode file to have multiple symbol tables if it 8323 // was created by binary concatenation. In that case we silently 8324 // ignore any subsequent symbol tables, which is fine because this is a 8325 // low level function. The client is expected to notice that the number 8326 // of modules in the symbol table does not match the number of modules 8327 // in the input file and regenerate the symbol table. 8328 if (F.Symtab.empty()) 8329 F.Symtab = *SymtabOrErr; 8330 continue; 8331 } 8332 8333 if (Error Err = Stream.SkipBlock()) 8334 return std::move(Err); 8335 continue; 8336 } 8337 case BitstreamEntry::Record: 8338 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8339 return std::move(E); 8340 continue; 8341 } 8342 } 8343 } 8344 8345 /// Get a lazy one-at-time loading module from bitcode. 8346 /// 8347 /// This isn't always used in a lazy context. In particular, it's also used by 8348 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8349 /// in forward-referenced functions from block address references. 8350 /// 8351 /// \param[in] MaterializeAll Set to \c true if we should materialize 8352 /// everything. 8353 Expected<std::unique_ptr<Module>> 8354 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8355 bool ShouldLazyLoadMetadata, bool IsImporting, 8356 ParserCallbacks Callbacks) { 8357 BitstreamCursor Stream(Buffer); 8358 8359 std::string ProducerIdentification; 8360 if (IdentificationBit != -1ull) { 8361 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8362 return std::move(JumpFailed); 8363 if (Error E = 8364 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8365 return std::move(E); 8366 } 8367 8368 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8369 return std::move(JumpFailed); 8370 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8371 Context); 8372 8373 std::unique_ptr<Module> M = 8374 std::make_unique<Module>(ModuleIdentifier, Context); 8375 M->setMaterializer(R); 8376 8377 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8378 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8379 IsImporting, Callbacks)) 8380 return std::move(Err); 8381 8382 if (MaterializeAll) { 8383 // Read in the entire module, and destroy the BitcodeReader. 8384 if (Error Err = M->materializeAll()) 8385 return std::move(Err); 8386 } else { 8387 // Resolve forward references from blockaddresses. 8388 if (Error Err = R->materializeForwardReferencedFunctions()) 8389 return std::move(Err); 8390 } 8391 8392 return std::move(M); 8393 } 8394 8395 Expected<std::unique_ptr<Module>> 8396 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8397 bool IsImporting, ParserCallbacks Callbacks) { 8398 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8399 Callbacks); 8400 } 8401 8402 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8403 // We don't use ModuleIdentifier here because the client may need to control the 8404 // module path used in the combined summary (e.g. when reading summaries for 8405 // regular LTO modules). 8406 Error BitcodeModule::readSummary( 8407 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8408 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8409 BitstreamCursor Stream(Buffer); 8410 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8411 return JumpFailed; 8412 8413 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8414 ModulePath, IsPrevailing); 8415 return R.parseModule(); 8416 } 8417 8418 // Parse the specified bitcode buffer, returning the function info index. 8419 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8420 BitstreamCursor Stream(Buffer); 8421 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8422 return std::move(JumpFailed); 8423 8424 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8425 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8426 ModuleIdentifier, 0); 8427 8428 if (Error Err = R.parseModule()) 8429 return std::move(Err); 8430 8431 return std::move(Index); 8432 } 8433 8434 static Expected<std::pair<bool, bool>> 8435 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8436 unsigned ID, 8437 BitcodeLTOInfo <OInfo) { 8438 if (Error Err = Stream.EnterSubBlock(ID)) 8439 return std::move(Err); 8440 SmallVector<uint64_t, 64> Record; 8441 8442 while (true) { 8443 BitstreamEntry Entry; 8444 std::pair<bool, bool> Result = {false,false}; 8445 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8446 return std::move(E); 8447 8448 switch (Entry.Kind) { 8449 case BitstreamEntry::SubBlock: // Handled for us already. 8450 case BitstreamEntry::Error: 8451 return error("Malformed block"); 8452 case BitstreamEntry::EndBlock: { 8453 // If no flags record found, set both flags to false. 8454 return Result; 8455 } 8456 case BitstreamEntry::Record: 8457 // The interesting case. 8458 break; 8459 } 8460 8461 // Look for the FS_FLAGS record. 8462 Record.clear(); 8463 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8464 if (!MaybeBitCode) 8465 return MaybeBitCode.takeError(); 8466 switch (MaybeBitCode.get()) { 8467 default: // Default behavior: ignore. 8468 break; 8469 case bitc::FS_FLAGS: { // [flags] 8470 uint64_t Flags = Record[0]; 8471 // Scan flags. 8472 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8473 8474 bool EnableSplitLTOUnit = Flags & 0x8; 8475 bool UnifiedLTO = Flags & 0x200; 8476 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8477 8478 return Result; 8479 } 8480 } 8481 } 8482 llvm_unreachable("Exit infinite loop"); 8483 } 8484 8485 // Check if the given bitcode buffer contains a global value summary block. 8486 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8487 BitstreamCursor Stream(Buffer); 8488 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8489 return std::move(JumpFailed); 8490 8491 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8492 return std::move(Err); 8493 8494 while (true) { 8495 llvm::BitstreamEntry Entry; 8496 if (Error E = Stream.advance().moveInto(Entry)) 8497 return std::move(E); 8498 8499 switch (Entry.Kind) { 8500 case BitstreamEntry::Error: 8501 return error("Malformed block"); 8502 case BitstreamEntry::EndBlock: 8503 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8504 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8505 8506 case BitstreamEntry::SubBlock: 8507 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8508 BitcodeLTOInfo LTOInfo; 8509 Expected<std::pair<bool, bool>> Flags = 8510 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8511 if (!Flags) 8512 return Flags.takeError(); 8513 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8514 LTOInfo.IsThinLTO = true; 8515 LTOInfo.HasSummary = true; 8516 return LTOInfo; 8517 } 8518 8519 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8520 BitcodeLTOInfo LTOInfo; 8521 Expected<std::pair<bool, bool>> Flags = 8522 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8523 if (!Flags) 8524 return Flags.takeError(); 8525 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8526 LTOInfo.IsThinLTO = false; 8527 LTOInfo.HasSummary = true; 8528 return LTOInfo; 8529 } 8530 8531 // Ignore other sub-blocks. 8532 if (Error Err = Stream.SkipBlock()) 8533 return std::move(Err); 8534 continue; 8535 8536 case BitstreamEntry::Record: 8537 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8538 continue; 8539 else 8540 return StreamFailed.takeError(); 8541 } 8542 } 8543 } 8544 8545 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8546 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8547 if (!MsOrErr) 8548 return MsOrErr.takeError(); 8549 8550 if (MsOrErr->size() != 1) 8551 return error("Expected a single module"); 8552 8553 return (*MsOrErr)[0]; 8554 } 8555 8556 Expected<std::unique_ptr<Module>> 8557 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8558 bool ShouldLazyLoadMetadata, bool IsImporting, 8559 ParserCallbacks Callbacks) { 8560 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8561 if (!BM) 8562 return BM.takeError(); 8563 8564 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8565 Callbacks); 8566 } 8567 8568 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8569 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8570 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8571 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8572 IsImporting, Callbacks); 8573 if (MOrErr) 8574 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8575 return MOrErr; 8576 } 8577 8578 Expected<std::unique_ptr<Module>> 8579 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8580 return getModuleImpl(Context, true, false, false, Callbacks); 8581 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8582 // written. We must defer until the Module has been fully materialized. 8583 } 8584 8585 Expected<std::unique_ptr<Module>> 8586 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8587 ParserCallbacks Callbacks) { 8588 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8589 if (!BM) 8590 return BM.takeError(); 8591 8592 return BM->parseModule(Context, Callbacks); 8593 } 8594 8595 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8596 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8597 if (!StreamOrErr) 8598 return StreamOrErr.takeError(); 8599 8600 return readTriple(*StreamOrErr); 8601 } 8602 8603 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8604 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8605 if (!StreamOrErr) 8606 return StreamOrErr.takeError(); 8607 8608 return hasObjCCategory(*StreamOrErr); 8609 } 8610 8611 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8612 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8613 if (!StreamOrErr) 8614 return StreamOrErr.takeError(); 8615 8616 return readIdentificationCode(*StreamOrErr); 8617 } 8618 8619 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8620 ModuleSummaryIndex &CombinedIndex) { 8621 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8622 if (!BM) 8623 return BM.takeError(); 8624 8625 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8626 } 8627 8628 Expected<std::unique_ptr<ModuleSummaryIndex>> 8629 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8630 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8631 if (!BM) 8632 return BM.takeError(); 8633 8634 return BM->getSummary(); 8635 } 8636 8637 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8638 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8639 if (!BM) 8640 return BM.takeError(); 8641 8642 return BM->getLTOInfo(); 8643 } 8644 8645 Expected<std::unique_ptr<ModuleSummaryIndex>> 8646 llvm::getModuleSummaryIndexForFile(StringRef Path, 8647 bool IgnoreEmptyThinLTOIndexFile) { 8648 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8649 MemoryBuffer::getFileOrSTDIN(Path); 8650 if (!FileOrErr) 8651 return errorCodeToError(FileOrErr.getError()); 8652 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8653 return nullptr; 8654 return getModuleSummaryIndex(**FileOrErr); 8655 } 8656