xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision dfeb3991fb489a703f631ab0c34b58f80568038d)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
796   /// past the number of slots used by the value in the record. Return true if
797   /// there is an error.
798   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
799                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
800                 BasicBlock *ConstExprInsertBB) {
801     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
802       return true;
803     // All values currently take a single record slot.
804     ++Slot;
805     return false;
806   }
807 
808   /// Like popValue, but does not increment the Slot number.
809   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
810                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
811                 BasicBlock *ConstExprInsertBB) {
812     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
813     return ResVal == nullptr;
814   }
815 
816   /// Version of getValue that returns ResVal directly, or 0 if there is an
817   /// error.
818   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
819                   unsigned InstNum, Type *Ty, unsigned TyID,
820                   BasicBlock *ConstExprInsertBB) {
821     if (Slot == Record.size()) return nullptr;
822     unsigned ValNo = (unsigned)Record[Slot];
823     // Adjust the ValNo, if it was encoded relative to the InstNum.
824     if (UseRelativeIDs)
825       ValNo = InstNum - ValNo;
826     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
827   }
828 
829   /// Like getValue, but decodes signed VBRs.
830   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
831                         unsigned InstNum, Type *Ty, unsigned TyID,
832                         BasicBlock *ConstExprInsertBB) {
833     if (Slot == Record.size()) return nullptr;
834     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
835     // Adjust the ValNo, if it was encoded relative to the InstNum.
836     if (UseRelativeIDs)
837       ValNo = InstNum - ValNo;
838     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
839   }
840 
841   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
842                                             unsigned &OpNum,
843                                             unsigned BitWidth) {
844     if (Record.size() - OpNum < 2)
845       return error("Too few records for range");
846     if (BitWidth > 64) {
847       unsigned LowerActiveWords = Record[OpNum];
848       unsigned UpperActiveWords = Record[OpNum++] >> 32;
849       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
850         return error("Too few records for range");
851       APInt Lower =
852           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
853       OpNum += LowerActiveWords;
854       APInt Upper =
855           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
856       OpNum += UpperActiveWords;
857       return ConstantRange(Lower, Upper);
858     } else {
859       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
861       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
862     }
863   }
864 
865   Expected<ConstantRange>
866   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
867     if (Record.size() - OpNum < 1)
868       return error("Too few records for range");
869     unsigned BitWidth = Record[OpNum++];
870     return readConstantRange(Record, OpNum, BitWidth);
871   }
872 
873   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
874   /// corresponding argument's pointee type. Also upgrades intrinsics that now
875   /// require an elementtype attribute.
876   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
877 
878   /// Converts alignment exponent (i.e. power of two (or zero)) to the
879   /// corresponding alignment to use. If alignment is too large, returns
880   /// a corresponding error code.
881   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
882   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
883   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
884                     ParserCallbacks Callbacks = {});
885 
886   Error parseComdatRecord(ArrayRef<uint64_t> Record);
887   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
888   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
889   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
890                                         ArrayRef<uint64_t> Record);
891 
892   Error parseAttributeBlock();
893   Error parseAttributeGroupBlock();
894   Error parseTypeTable();
895   Error parseTypeTableBody();
896   Error parseOperandBundleTags();
897   Error parseSyncScopeNames();
898 
899   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
900                                 unsigned NameIndex, Triple &TT);
901   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
902                                ArrayRef<uint64_t> Record);
903   Error parseValueSymbolTable(uint64_t Offset = 0);
904   Error parseGlobalValueSymbolTable();
905   Error parseConstants();
906   Error rememberAndSkipFunctionBodies();
907   Error rememberAndSkipFunctionBody();
908   /// Save the positions of the Metadata blocks and skip parsing the blocks.
909   Error rememberAndSkipMetadata();
910   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
911   Error parseFunctionBody(Function *F);
912   Error globalCleanup();
913   Error resolveGlobalAndIndirectSymbolInits();
914   Error parseUseLists();
915   Error findFunctionInStream(
916       Function *F,
917       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
918 
919   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
920 };
921 
922 /// Class to manage reading and parsing function summary index bitcode
923 /// files/sections.
924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
925   /// The module index built during parsing.
926   ModuleSummaryIndex &TheIndex;
927 
928   /// Indicates whether we have encountered a global value summary section
929   /// yet during parsing.
930   bool SeenGlobalValSummary = false;
931 
932   /// Indicates whether we have already parsed the VST, used for error checking.
933   bool SeenValueSymbolTable = false;
934 
935   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
936   /// Used to enable on-demand parsing of the VST.
937   uint64_t VSTOffset = 0;
938 
939   // Map to save ValueId to ValueInfo association that was recorded in the
940   // ValueSymbolTable. It is used after the VST is parsed to convert
941   // call graph edges read from the function summary from referencing
942   // callees by their ValueId to using the ValueInfo instead, which is how
943   // they are recorded in the summary index being built.
944   // We save a GUID which refers to the same global as the ValueInfo, but
945   // ignoring the linkage, i.e. for values other than local linkage they are
946   // identical (this is the second tuple member).
947   // The third tuple member is the real GUID of the ValueInfo.
948   DenseMap<unsigned,
949            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
950       ValueIdToValueInfoMap;
951 
952   /// Map populated during module path string table parsing, from the
953   /// module ID to a string reference owned by the index's module
954   /// path string table, used to correlate with combined index
955   /// summary records.
956   DenseMap<uint64_t, StringRef> ModuleIdMap;
957 
958   /// Original source file name recorded in a bitcode record.
959   std::string SourceFileName;
960 
961   /// The string identifier given to this module by the client, normally the
962   /// path to the bitcode file.
963   StringRef ModulePath;
964 
965   /// Callback to ask whether a symbol is the prevailing copy when invoked
966   /// during combined index building.
967   std::function<bool(GlobalValue::GUID)> IsPrevailing;
968 
969   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
970   /// ids from the lists in the callsite and alloc entries to the index.
971   std::vector<uint64_t> StackIds;
972 
973 public:
974   ModuleSummaryIndexBitcodeReader(
975       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
976       StringRef ModulePath,
977       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
978 
979   Error parseModule();
980 
981 private:
982   void setValueGUID(uint64_t ValueID, StringRef ValueName,
983                     GlobalValue::LinkageTypes Linkage,
984                     StringRef SourceFileName);
985   Error parseValueSymbolTable(
986       uint64_t Offset,
987       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
988   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
989   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
990                                                     bool IsOldProfileFormat,
991                                                     bool HasProfile,
992                                                     bool HasRelBF);
993   Error parseEntireSummary(unsigned ID);
994   Error parseModuleStringTable();
995   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
996   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
997                                        TypeIdCompatibleVtableInfo &TypeId);
998   std::vector<FunctionSummary::ParamAccess>
999   parseParamAccesses(ArrayRef<uint64_t> Record);
1000 
1001   template <bool AllowNullValueInfo = false>
1002   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
1003   getValueInfoFromValueId(unsigned ValueId);
1004 
1005   void addThisModule();
1006   ModuleSummaryIndex::ModuleInfo *getThisModule();
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1012                                                     Error Err) {
1013   if (Err) {
1014     std::error_code EC;
1015     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1016       EC = EIB.convertToErrorCode();
1017       Ctx.emitError(EIB.message());
1018     });
1019     return EC;
1020   }
1021   return std::error_code();
1022 }
1023 
1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1025                              StringRef ProducerIdentification,
1026                              LLVMContext &Context)
1027     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1028       ValueList(this->Stream.SizeInBytes(),
1029                 [this](unsigned ValID, BasicBlock *InsertBB) {
1030                   return materializeValue(ValID, InsertBB);
1031                 }) {
1032   this->ProducerIdentification = std::string(ProducerIdentification);
1033 }
1034 
1035 Error BitcodeReader::materializeForwardReferencedFunctions() {
1036   if (WillMaterializeAllForwardRefs)
1037     return Error::success();
1038 
1039   // Prevent recursion.
1040   WillMaterializeAllForwardRefs = true;
1041 
1042   while (!BasicBlockFwdRefQueue.empty()) {
1043     Function *F = BasicBlockFwdRefQueue.front();
1044     BasicBlockFwdRefQueue.pop_front();
1045     assert(F && "Expected valid function");
1046     if (!BasicBlockFwdRefs.count(F))
1047       // Already materialized.
1048       continue;
1049 
1050     // Check for a function that isn't materializable to prevent an infinite
1051     // loop.  When parsing a blockaddress stored in a global variable, there
1052     // isn't a trivial way to check if a function will have a body without a
1053     // linear search through FunctionsWithBodies, so just check it here.
1054     if (!F->isMaterializable())
1055       return error("Never resolved function from blockaddress");
1056 
1057     // Try to materialize F.
1058     if (Error Err = materialize(F))
1059       return Err;
1060   }
1061   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1062 
1063   for (Function *F : BackwardRefFunctions)
1064     if (Error Err = materialize(F))
1065       return Err;
1066   BackwardRefFunctions.clear();
1067 
1068   // Reset state.
1069   WillMaterializeAllForwardRefs = false;
1070   return Error::success();
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 //  Helper functions to implement forward reference resolution, etc.
1075 //===----------------------------------------------------------------------===//
1076 
1077 static bool hasImplicitComdat(size_t Val) {
1078   switch (Val) {
1079   default:
1080     return false;
1081   case 1:  // Old WeakAnyLinkage
1082   case 4:  // Old LinkOnceAnyLinkage
1083   case 10: // Old WeakODRLinkage
1084   case 11: // Old LinkOnceODRLinkage
1085     return true;
1086   }
1087 }
1088 
1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1090   switch (Val) {
1091   default: // Map unknown/new linkages to external
1092   case 0:
1093     return GlobalValue::ExternalLinkage;
1094   case 2:
1095     return GlobalValue::AppendingLinkage;
1096   case 3:
1097     return GlobalValue::InternalLinkage;
1098   case 5:
1099     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1100   case 6:
1101     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1102   case 7:
1103     return GlobalValue::ExternalWeakLinkage;
1104   case 8:
1105     return GlobalValue::CommonLinkage;
1106   case 9:
1107     return GlobalValue::PrivateLinkage;
1108   case 12:
1109     return GlobalValue::AvailableExternallyLinkage;
1110   case 13:
1111     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1112   case 14:
1113     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1114   case 15:
1115     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1116   case 1: // Old value with implicit comdat.
1117   case 16:
1118     return GlobalValue::WeakAnyLinkage;
1119   case 10: // Old value with implicit comdat.
1120   case 17:
1121     return GlobalValue::WeakODRLinkage;
1122   case 4: // Old value with implicit comdat.
1123   case 18:
1124     return GlobalValue::LinkOnceAnyLinkage;
1125   case 11: // Old value with implicit comdat.
1126   case 19:
1127     return GlobalValue::LinkOnceODRLinkage;
1128   }
1129 }
1130 
1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1132   FunctionSummary::FFlags Flags;
1133   Flags.ReadNone = RawFlags & 0x1;
1134   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1135   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1136   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1137   Flags.NoInline = (RawFlags >> 4) & 0x1;
1138   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1139   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1140   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1141   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1142   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1143   return Flags;
1144 }
1145 
1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1147 //
1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1149 // visibility: [8, 10).
1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1151                                                             uint64_t Version) {
1152   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1153   // like getDecodedLinkage() above. Any future change to the linkage enum and
1154   // to getDecodedLinkage() will need to be taken into account here as above.
1155   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1156   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1157   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1158   RawFlags = RawFlags >> 4;
1159   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1160   // The Live flag wasn't introduced until version 3. For dead stripping
1161   // to work correctly on earlier versions, we must conservatively treat all
1162   // values as live.
1163   bool Live = (RawFlags & 0x2) || Version < 3;
1164   bool Local = (RawFlags & 0x4);
1165   bool AutoHide = (RawFlags & 0x8);
1166 
1167   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1168                                      Live, Local, AutoHide, IK);
1169 }
1170 
1171 // Decode the flags for GlobalVariable in the summary
1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1173   return GlobalVarSummary::GVarFlags(
1174       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1175       (RawFlags & 0x4) ? true : false,
1176       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1177 }
1178 
1179 static std::pair<CalleeInfo::HotnessType, bool>
1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1181   CalleeInfo::HotnessType Hotness =
1182       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1183   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1184   return {Hotness, HasTailCall};
1185 }
1186 
1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1188                                         bool &HasTailCall) {
1189   static constexpr uint64_t RelBlockFreqMask =
1190       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1191   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1192   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1193 }
1194 
1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1196   switch (Val) {
1197   default: // Map unknown visibilities to default.
1198   case 0: return GlobalValue::DefaultVisibility;
1199   case 1: return GlobalValue::HiddenVisibility;
1200   case 2: return GlobalValue::ProtectedVisibility;
1201   }
1202 }
1203 
1204 static GlobalValue::DLLStorageClassTypes
1205 getDecodedDLLStorageClass(unsigned Val) {
1206   switch (Val) {
1207   default: // Map unknown values to default.
1208   case 0: return GlobalValue::DefaultStorageClass;
1209   case 1: return GlobalValue::DLLImportStorageClass;
1210   case 2: return GlobalValue::DLLExportStorageClass;
1211   }
1212 }
1213 
1214 static bool getDecodedDSOLocal(unsigned Val) {
1215   switch(Val) {
1216   default: // Map unknown values to preemptable.
1217   case 0:  return false;
1218   case 1:  return true;
1219   }
1220 }
1221 
1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1223   switch (Val) {
1224   case 1:
1225     return CodeModel::Tiny;
1226   case 2:
1227     return CodeModel::Small;
1228   case 3:
1229     return CodeModel::Kernel;
1230   case 4:
1231     return CodeModel::Medium;
1232   case 5:
1233     return CodeModel::Large;
1234   }
1235 
1236   return {};
1237 }
1238 
1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1240   switch (Val) {
1241     case 0: return GlobalVariable::NotThreadLocal;
1242     default: // Map unknown non-zero value to general dynamic.
1243     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1244     case 2: return GlobalVariable::LocalDynamicTLSModel;
1245     case 3: return GlobalVariable::InitialExecTLSModel;
1246     case 4: return GlobalVariable::LocalExecTLSModel;
1247   }
1248 }
1249 
1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1251   switch (Val) {
1252     default: // Map unknown to UnnamedAddr::None.
1253     case 0: return GlobalVariable::UnnamedAddr::None;
1254     case 1: return GlobalVariable::UnnamedAddr::Global;
1255     case 2: return GlobalVariable::UnnamedAddr::Local;
1256   }
1257 }
1258 
1259 static int getDecodedCastOpcode(unsigned Val) {
1260   switch (Val) {
1261   default: return -1;
1262   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1263   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1264   case bitc::CAST_SEXT    : return Instruction::SExt;
1265   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1266   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1267   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1268   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1269   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1270   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1271   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1272   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1273   case bitc::CAST_BITCAST : return Instruction::BitCast;
1274   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1275   }
1276 }
1277 
1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1279   bool IsFP = Ty->isFPOrFPVectorTy();
1280   // UnOps are only valid for int/fp or vector of int/fp types
1281   if (!IsFP && !Ty->isIntOrIntVectorTy())
1282     return -1;
1283 
1284   switch (Val) {
1285   default:
1286     return -1;
1287   case bitc::UNOP_FNEG:
1288     return IsFP ? Instruction::FNeg : -1;
1289   }
1290 }
1291 
1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1293   bool IsFP = Ty->isFPOrFPVectorTy();
1294   // BinOps are only valid for int/fp or vector of int/fp types
1295   if (!IsFP && !Ty->isIntOrIntVectorTy())
1296     return -1;
1297 
1298   switch (Val) {
1299   default:
1300     return -1;
1301   case bitc::BINOP_ADD:
1302     return IsFP ? Instruction::FAdd : Instruction::Add;
1303   case bitc::BINOP_SUB:
1304     return IsFP ? Instruction::FSub : Instruction::Sub;
1305   case bitc::BINOP_MUL:
1306     return IsFP ? Instruction::FMul : Instruction::Mul;
1307   case bitc::BINOP_UDIV:
1308     return IsFP ? -1 : Instruction::UDiv;
1309   case bitc::BINOP_SDIV:
1310     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1311   case bitc::BINOP_UREM:
1312     return IsFP ? -1 : Instruction::URem;
1313   case bitc::BINOP_SREM:
1314     return IsFP ? Instruction::FRem : Instruction::SRem;
1315   case bitc::BINOP_SHL:
1316     return IsFP ? -1 : Instruction::Shl;
1317   case bitc::BINOP_LSHR:
1318     return IsFP ? -1 : Instruction::LShr;
1319   case bitc::BINOP_ASHR:
1320     return IsFP ? -1 : Instruction::AShr;
1321   case bitc::BINOP_AND:
1322     return IsFP ? -1 : Instruction::And;
1323   case bitc::BINOP_OR:
1324     return IsFP ? -1 : Instruction::Or;
1325   case bitc::BINOP_XOR:
1326     return IsFP ? -1 : Instruction::Xor;
1327   }
1328 }
1329 
1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1331   switch (Val) {
1332   default: return AtomicRMWInst::BAD_BINOP;
1333   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1334   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1335   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1336   case bitc::RMW_AND: return AtomicRMWInst::And;
1337   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1338   case bitc::RMW_OR: return AtomicRMWInst::Or;
1339   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1340   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1341   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1342   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1343   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1344   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1345   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1346   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1347   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1348   case bitc::RMW_UINC_WRAP:
1349     return AtomicRMWInst::UIncWrap;
1350   case bitc::RMW_UDEC_WRAP:
1351     return AtomicRMWInst::UDecWrap;
1352   }
1353 }
1354 
1355 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1356   switch (Val) {
1357   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1358   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1359   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1360   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1361   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1362   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1363   default: // Map unknown orderings to sequentially-consistent.
1364   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1365   }
1366 }
1367 
1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1369   switch (Val) {
1370   default: // Map unknown selection kinds to any.
1371   case bitc::COMDAT_SELECTION_KIND_ANY:
1372     return Comdat::Any;
1373   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1374     return Comdat::ExactMatch;
1375   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1376     return Comdat::Largest;
1377   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1378     return Comdat::NoDeduplicate;
1379   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1380     return Comdat::SameSize;
1381   }
1382 }
1383 
1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1385   FastMathFlags FMF;
1386   if (0 != (Val & bitc::UnsafeAlgebra))
1387     FMF.setFast();
1388   if (0 != (Val & bitc::AllowReassoc))
1389     FMF.setAllowReassoc();
1390   if (0 != (Val & bitc::NoNaNs))
1391     FMF.setNoNaNs();
1392   if (0 != (Val & bitc::NoInfs))
1393     FMF.setNoInfs();
1394   if (0 != (Val & bitc::NoSignedZeros))
1395     FMF.setNoSignedZeros();
1396   if (0 != (Val & bitc::AllowReciprocal))
1397     FMF.setAllowReciprocal();
1398   if (0 != (Val & bitc::AllowContract))
1399     FMF.setAllowContract(true);
1400   if (0 != (Val & bitc::ApproxFunc))
1401     FMF.setApproxFunc();
1402   return FMF;
1403 }
1404 
1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1406   // A GlobalValue with local linkage cannot have a DLL storage class.
1407   if (GV->hasLocalLinkage())
1408     return;
1409   switch (Val) {
1410   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1411   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1412   }
1413 }
1414 
1415 Type *BitcodeReader::getTypeByID(unsigned ID) {
1416   // The type table size is always specified correctly.
1417   if (ID >= TypeList.size())
1418     return nullptr;
1419 
1420   if (Type *Ty = TypeList[ID])
1421     return Ty;
1422 
1423   // If we have a forward reference, the only possible case is when it is to a
1424   // named struct.  Just create a placeholder for now.
1425   return TypeList[ID] = createIdentifiedStructType(Context);
1426 }
1427 
1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1429   auto It = ContainedTypeIDs.find(ID);
1430   if (It == ContainedTypeIDs.end())
1431     return InvalidTypeID;
1432 
1433   if (Idx >= It->second.size())
1434     return InvalidTypeID;
1435 
1436   return It->second[Idx];
1437 }
1438 
1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1440   if (ID >= TypeList.size())
1441     return nullptr;
1442 
1443   Type *Ty = TypeList[ID];
1444   if (!Ty->isPointerTy())
1445     return nullptr;
1446 
1447   return getTypeByID(getContainedTypeID(ID, 0));
1448 }
1449 
1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1451                                          ArrayRef<unsigned> ChildTypeIDs) {
1452   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1453   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1454   auto It = VirtualTypeIDs.find(CacheKey);
1455   if (It != VirtualTypeIDs.end()) {
1456     // The cmpxchg return value is the only place we need more than one
1457     // contained type ID, however the second one will always be the same (i1),
1458     // so we don't need to include it in the cache key. This asserts that the
1459     // contained types are indeed as expected and there are no collisions.
1460     assert((ChildTypeIDs.empty() ||
1461             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1462            "Incorrect cached contained type IDs");
1463     return It->second;
1464   }
1465 
1466   unsigned TypeID = TypeList.size();
1467   TypeList.push_back(Ty);
1468   if (!ChildTypeIDs.empty())
1469     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1470   VirtualTypeIDs.insert({CacheKey, TypeID});
1471   return TypeID;
1472 }
1473 
1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1475   GEPNoWrapFlags NW;
1476   if (Flags & (1 << bitc::GEP_INBOUNDS))
1477     NW |= GEPNoWrapFlags::inBounds();
1478   if (Flags & (1 << bitc::GEP_NUSW))
1479     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1480   if (Flags & (1 << bitc::GEP_NUW))
1481     NW |= GEPNoWrapFlags::noUnsignedWrap();
1482   return NW;
1483 }
1484 
1485 static bool isConstExprSupported(const BitcodeConstant *BC) {
1486   uint8_t Opcode = BC->Opcode;
1487 
1488   // These are not real constant expressions, always consider them supported.
1489   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1490     return true;
1491 
1492   // If -expand-constant-exprs is set, we want to consider all expressions
1493   // as unsupported.
1494   if (ExpandConstantExprs)
1495     return false;
1496 
1497   if (Instruction::isBinaryOp(Opcode))
1498     return ConstantExpr::isSupportedBinOp(Opcode);
1499 
1500   if (Instruction::isCast(Opcode))
1501     return ConstantExpr::isSupportedCastOp(Opcode);
1502 
1503   if (Opcode == Instruction::GetElementPtr)
1504     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1505 
1506   switch (Opcode) {
1507   case Instruction::FNeg:
1508   case Instruction::Select:
1509   case Instruction::ICmp:
1510   case Instruction::FCmp:
1511     return false;
1512   default:
1513     return true;
1514   }
1515 }
1516 
1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1518                                                   BasicBlock *InsertBB) {
1519   // Quickly handle the case where there is no BitcodeConstant to resolve.
1520   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1521       !isa<BitcodeConstant>(ValueList[StartValID]))
1522     return ValueList[StartValID];
1523 
1524   SmallDenseMap<unsigned, Value *> MaterializedValues;
1525   SmallVector<unsigned> Worklist;
1526   Worklist.push_back(StartValID);
1527   while (!Worklist.empty()) {
1528     unsigned ValID = Worklist.back();
1529     if (MaterializedValues.count(ValID)) {
1530       // Duplicate expression that was already handled.
1531       Worklist.pop_back();
1532       continue;
1533     }
1534 
1535     if (ValID >= ValueList.size() || !ValueList[ValID])
1536       return error("Invalid value ID");
1537 
1538     Value *V = ValueList[ValID];
1539     auto *BC = dyn_cast<BitcodeConstant>(V);
1540     if (!BC) {
1541       MaterializedValues.insert({ValID, V});
1542       Worklist.pop_back();
1543       continue;
1544     }
1545 
1546     // Iterate in reverse, so values will get popped from the worklist in
1547     // expected order.
1548     SmallVector<Value *> Ops;
1549     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1550       auto It = MaterializedValues.find(OpID);
1551       if (It != MaterializedValues.end())
1552         Ops.push_back(It->second);
1553       else
1554         Worklist.push_back(OpID);
1555     }
1556 
1557     // Some expressions have not been resolved yet, handle them first and then
1558     // revisit this one.
1559     if (Ops.size() != BC->getOperandIDs().size())
1560       continue;
1561     std::reverse(Ops.begin(), Ops.end());
1562 
1563     SmallVector<Constant *> ConstOps;
1564     for (Value *Op : Ops)
1565       if (auto *C = dyn_cast<Constant>(Op))
1566         ConstOps.push_back(C);
1567 
1568     // Materialize as constant expression if possible.
1569     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1570       Constant *C;
1571       if (Instruction::isCast(BC->Opcode)) {
1572         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1573         if (!C)
1574           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1575       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1576         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1577       } else {
1578         switch (BC->Opcode) {
1579         case BitcodeConstant::ConstantPtrAuthOpcode: {
1580           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1581           if (!Key)
1582             return error("ptrauth key operand must be ConstantInt");
1583 
1584           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1585           if (!Disc)
1586             return error("ptrauth disc operand must be ConstantInt");
1587 
1588           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1589           break;
1590         }
1591         case BitcodeConstant::NoCFIOpcode: {
1592           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1593           if (!GV)
1594             return error("no_cfi operand must be GlobalValue");
1595           C = NoCFIValue::get(GV);
1596           break;
1597         }
1598         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1599           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1600           if (!GV)
1601             return error("dso_local operand must be GlobalValue");
1602           C = DSOLocalEquivalent::get(GV);
1603           break;
1604         }
1605         case BitcodeConstant::BlockAddressOpcode: {
1606           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1607           if (!Fn)
1608             return error("blockaddress operand must be a function");
1609 
1610           // If the function is already parsed we can insert the block address
1611           // right away.
1612           BasicBlock *BB;
1613           unsigned BBID = BC->BlockAddressBB;
1614           if (!BBID)
1615             // Invalid reference to entry block.
1616             return error("Invalid ID");
1617           if (!Fn->empty()) {
1618             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1619             for (size_t I = 0, E = BBID; I != E; ++I) {
1620               if (BBI == BBE)
1621                 return error("Invalid ID");
1622               ++BBI;
1623             }
1624             BB = &*BBI;
1625           } else {
1626             // Otherwise insert a placeholder and remember it so it can be
1627             // inserted when the function is parsed.
1628             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1629             if (FwdBBs.empty())
1630               BasicBlockFwdRefQueue.push_back(Fn);
1631             if (FwdBBs.size() < BBID + 1)
1632               FwdBBs.resize(BBID + 1);
1633             if (!FwdBBs[BBID])
1634               FwdBBs[BBID] = BasicBlock::Create(Context);
1635             BB = FwdBBs[BBID];
1636           }
1637           C = BlockAddress::get(Fn, BB);
1638           break;
1639         }
1640         case BitcodeConstant::ConstantStructOpcode:
1641           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1642           break;
1643         case BitcodeConstant::ConstantArrayOpcode:
1644           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1645           break;
1646         case BitcodeConstant::ConstantVectorOpcode:
1647           C = ConstantVector::get(ConstOps);
1648           break;
1649         case Instruction::GetElementPtr:
1650           C = ConstantExpr::getGetElementPtr(
1651               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1652               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1653           break;
1654         case Instruction::ExtractElement:
1655           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1656           break;
1657         case Instruction::InsertElement:
1658           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1659                                              ConstOps[2]);
1660           break;
1661         case Instruction::ShuffleVector: {
1662           SmallVector<int, 16> Mask;
1663           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1664           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1665           break;
1666         }
1667         default:
1668           llvm_unreachable("Unhandled bitcode constant");
1669         }
1670       }
1671 
1672       // Cache resolved constant.
1673       ValueList.replaceValueWithoutRAUW(ValID, C);
1674       MaterializedValues.insert({ValID, C});
1675       Worklist.pop_back();
1676       continue;
1677     }
1678 
1679     if (!InsertBB)
1680       return error(Twine("Value referenced by initializer is an unsupported "
1681                          "constant expression of type ") +
1682                    BC->getOpcodeName());
1683 
1684     // Materialize as instructions if necessary.
1685     Instruction *I;
1686     if (Instruction::isCast(BC->Opcode)) {
1687       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1688                            BC->getType(), "constexpr", InsertBB);
1689     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1690       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1691                                 "constexpr", InsertBB);
1692     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1693       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1694                                  Ops[1], "constexpr", InsertBB);
1695       if (isa<OverflowingBinaryOperator>(I)) {
1696         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1697           I->setHasNoSignedWrap();
1698         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1699           I->setHasNoUnsignedWrap();
1700       }
1701       if (isa<PossiblyExactOperator>(I) &&
1702           (BC->Flags & PossiblyExactOperator::IsExact))
1703         I->setIsExact();
1704     } else {
1705       switch (BC->Opcode) {
1706       case BitcodeConstant::ConstantVectorOpcode: {
1707         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1708         Value *V = PoisonValue::get(BC->getType());
1709         for (auto Pair : enumerate(Ops)) {
1710           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1711           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1712                                         InsertBB);
1713         }
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case BitcodeConstant::ConstantStructOpcode:
1718       case BitcodeConstant::ConstantArrayOpcode: {
1719         Value *V = PoisonValue::get(BC->getType());
1720         for (auto Pair : enumerate(Ops))
1721           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1722                                       "constexpr.ins", InsertBB);
1723         I = cast<Instruction>(V);
1724         break;
1725       }
1726       case Instruction::ICmp:
1727       case Instruction::FCmp:
1728         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1729                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1730                             "constexpr", InsertBB);
1731         break;
1732       case Instruction::GetElementPtr:
1733         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1734                                       ArrayRef(Ops).drop_front(), "constexpr",
1735                                       InsertBB);
1736         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1737         break;
1738       case Instruction::Select:
1739         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1740         break;
1741       case Instruction::ExtractElement:
1742         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1743         break;
1744       case Instruction::InsertElement:
1745         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1746                                       InsertBB);
1747         break;
1748       case Instruction::ShuffleVector:
1749         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1750                                   InsertBB);
1751         break;
1752       default:
1753         llvm_unreachable("Unhandled bitcode constant");
1754       }
1755     }
1756 
1757     MaterializedValues.insert({ValID, I});
1758     Worklist.pop_back();
1759   }
1760 
1761   return MaterializedValues[StartValID];
1762 }
1763 
1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1765   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1766   if (!MaybeV)
1767     return MaybeV.takeError();
1768 
1769   // Result must be Constant if InsertBB is nullptr.
1770   return cast<Constant>(MaybeV.get());
1771 }
1772 
1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1774                                                       StringRef Name) {
1775   auto *Ret = StructType::create(Context, Name);
1776   IdentifiedStructTypes.push_back(Ret);
1777   return Ret;
1778 }
1779 
1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1781   auto *Ret = StructType::create(Context);
1782   IdentifiedStructTypes.push_back(Ret);
1783   return Ret;
1784 }
1785 
1786 //===----------------------------------------------------------------------===//
1787 //  Functions for parsing blocks from the bitcode file
1788 //===----------------------------------------------------------------------===//
1789 
1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1791   switch (Val) {
1792   case Attribute::EndAttrKinds:
1793   case Attribute::EmptyKey:
1794   case Attribute::TombstoneKey:
1795     llvm_unreachable("Synthetic enumerators which should never get here");
1796 
1797   case Attribute::None:            return 0;
1798   case Attribute::ZExt:            return 1 << 0;
1799   case Attribute::SExt:            return 1 << 1;
1800   case Attribute::NoReturn:        return 1 << 2;
1801   case Attribute::InReg:           return 1 << 3;
1802   case Attribute::StructRet:       return 1 << 4;
1803   case Attribute::NoUnwind:        return 1 << 5;
1804   case Attribute::NoAlias:         return 1 << 6;
1805   case Attribute::ByVal:           return 1 << 7;
1806   case Attribute::Nest:            return 1 << 8;
1807   case Attribute::ReadNone:        return 1 << 9;
1808   case Attribute::ReadOnly:        return 1 << 10;
1809   case Attribute::NoInline:        return 1 << 11;
1810   case Attribute::AlwaysInline:    return 1 << 12;
1811   case Attribute::OptimizeForSize: return 1 << 13;
1812   case Attribute::StackProtect:    return 1 << 14;
1813   case Attribute::StackProtectReq: return 1 << 15;
1814   case Attribute::Alignment:       return 31 << 16;
1815   case Attribute::NoCapture:       return 1 << 21;
1816   case Attribute::NoRedZone:       return 1 << 22;
1817   case Attribute::NoImplicitFloat: return 1 << 23;
1818   case Attribute::Naked:           return 1 << 24;
1819   case Attribute::InlineHint:      return 1 << 25;
1820   case Attribute::StackAlignment:  return 7 << 26;
1821   case Attribute::ReturnsTwice:    return 1 << 29;
1822   case Attribute::UWTable:         return 1 << 30;
1823   case Attribute::NonLazyBind:     return 1U << 31;
1824   case Attribute::SanitizeAddress: return 1ULL << 32;
1825   case Attribute::MinSize:         return 1ULL << 33;
1826   case Attribute::NoDuplicate:     return 1ULL << 34;
1827   case Attribute::StackProtectStrong: return 1ULL << 35;
1828   case Attribute::SanitizeThread:  return 1ULL << 36;
1829   case Attribute::SanitizeMemory:  return 1ULL << 37;
1830   case Attribute::NoBuiltin:       return 1ULL << 38;
1831   case Attribute::Returned:        return 1ULL << 39;
1832   case Attribute::Cold:            return 1ULL << 40;
1833   case Attribute::Builtin:         return 1ULL << 41;
1834   case Attribute::OptimizeNone:    return 1ULL << 42;
1835   case Attribute::InAlloca:        return 1ULL << 43;
1836   case Attribute::NonNull:         return 1ULL << 44;
1837   case Attribute::JumpTable:       return 1ULL << 45;
1838   case Attribute::Convergent:      return 1ULL << 46;
1839   case Attribute::SafeStack:       return 1ULL << 47;
1840   case Attribute::NoRecurse:       return 1ULL << 48;
1841   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1842   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1843   case Attribute::SwiftSelf:       return 1ULL << 51;
1844   case Attribute::SwiftError:      return 1ULL << 52;
1845   case Attribute::WriteOnly:       return 1ULL << 53;
1846   case Attribute::Speculatable:    return 1ULL << 54;
1847   case Attribute::StrictFP:        return 1ULL << 55;
1848   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1849   case Attribute::NoCfCheck:       return 1ULL << 57;
1850   case Attribute::OptForFuzzing:   return 1ULL << 58;
1851   case Attribute::ShadowCallStack: return 1ULL << 59;
1852   case Attribute::SpeculativeLoadHardening:
1853     return 1ULL << 60;
1854   case Attribute::ImmArg:
1855     return 1ULL << 61;
1856   case Attribute::WillReturn:
1857     return 1ULL << 62;
1858   case Attribute::NoFree:
1859     return 1ULL << 63;
1860   default:
1861     // Other attributes are not supported in the raw format,
1862     // as we ran out of space.
1863     return 0;
1864   }
1865   llvm_unreachable("Unsupported attribute type");
1866 }
1867 
1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1869   if (!Val) return;
1870 
1871   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1872        I = Attribute::AttrKind(I + 1)) {
1873     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1874       if (I == Attribute::Alignment)
1875         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1876       else if (I == Attribute::StackAlignment)
1877         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1878       else if (Attribute::isTypeAttrKind(I))
1879         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1880       else
1881         B.addAttribute(I);
1882     }
1883   }
1884 }
1885 
1886 /// This fills an AttrBuilder object with the LLVM attributes that have
1887 /// been decoded from the given integer. This function must stay in sync with
1888 /// 'encodeLLVMAttributesForBitcode'.
1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1890                                            uint64_t EncodedAttrs,
1891                                            uint64_t AttrIdx) {
1892   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1893   // the bits above 31 down by 11 bits.
1894   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1895   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1896          "Alignment must be a power of two.");
1897 
1898   if (Alignment)
1899     B.addAlignmentAttr(Alignment);
1900 
1901   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1902                    (EncodedAttrs & 0xffff);
1903 
1904   if (AttrIdx == AttributeList::FunctionIndex) {
1905     // Upgrade old memory attributes.
1906     MemoryEffects ME = MemoryEffects::unknown();
1907     if (Attrs & (1ULL << 9)) {
1908       // ReadNone
1909       Attrs &= ~(1ULL << 9);
1910       ME &= MemoryEffects::none();
1911     }
1912     if (Attrs & (1ULL << 10)) {
1913       // ReadOnly
1914       Attrs &= ~(1ULL << 10);
1915       ME &= MemoryEffects::readOnly();
1916     }
1917     if (Attrs & (1ULL << 49)) {
1918       // InaccessibleMemOnly
1919       Attrs &= ~(1ULL << 49);
1920       ME &= MemoryEffects::inaccessibleMemOnly();
1921     }
1922     if (Attrs & (1ULL << 50)) {
1923       // InaccessibleMemOrArgMemOnly
1924       Attrs &= ~(1ULL << 50);
1925       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1926     }
1927     if (Attrs & (1ULL << 53)) {
1928       // WriteOnly
1929       Attrs &= ~(1ULL << 53);
1930       ME &= MemoryEffects::writeOnly();
1931     }
1932     if (ME != MemoryEffects::unknown())
1933       B.addMemoryAttr(ME);
1934   }
1935 
1936   addRawAttributeValue(B, Attrs);
1937 }
1938 
1939 Error BitcodeReader::parseAttributeBlock() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1941     return Err;
1942 
1943   if (!MAttributes.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   SmallVector<AttributeList, 8> Attrs;
1949 
1950   // Read all the records.
1951   while (true) {
1952     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1953     if (!MaybeEntry)
1954       return MaybeEntry.takeError();
1955     BitstreamEntry Entry = MaybeEntry.get();
1956 
1957     switch (Entry.Kind) {
1958     case BitstreamEntry::SubBlock: // Handled for us already.
1959     case BitstreamEntry::Error:
1960       return error("Malformed block");
1961     case BitstreamEntry::EndBlock:
1962       return Error::success();
1963     case BitstreamEntry::Record:
1964       // The interesting case.
1965       break;
1966     }
1967 
1968     // Read a record.
1969     Record.clear();
1970     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1971     if (!MaybeRecord)
1972       return MaybeRecord.takeError();
1973     switch (MaybeRecord.get()) {
1974     default:  // Default behavior: ignore.
1975       break;
1976     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1977       // Deprecated, but still needed to read old bitcode files.
1978       if (Record.size() & 1)
1979         return error("Invalid parameter attribute record");
1980 
1981       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1982         AttrBuilder B(Context);
1983         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1984         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1985       }
1986 
1987       MAttributes.push_back(AttributeList::get(Context, Attrs));
1988       Attrs.clear();
1989       break;
1990     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1991       for (uint64_t Val : Record)
1992         Attrs.push_back(MAttributeGroups[Val]);
1993 
1994       MAttributes.push_back(AttributeList::get(Context, Attrs));
1995       Attrs.clear();
1996       break;
1997     }
1998   }
1999 }
2000 
2001 // Returns Attribute::None on unrecognized codes.
2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2003   switch (Code) {
2004   default:
2005     return Attribute::None;
2006   case bitc::ATTR_KIND_ALIGNMENT:
2007     return Attribute::Alignment;
2008   case bitc::ATTR_KIND_ALWAYS_INLINE:
2009     return Attribute::AlwaysInline;
2010   case bitc::ATTR_KIND_BUILTIN:
2011     return Attribute::Builtin;
2012   case bitc::ATTR_KIND_BY_VAL:
2013     return Attribute::ByVal;
2014   case bitc::ATTR_KIND_IN_ALLOCA:
2015     return Attribute::InAlloca;
2016   case bitc::ATTR_KIND_COLD:
2017     return Attribute::Cold;
2018   case bitc::ATTR_KIND_CONVERGENT:
2019     return Attribute::Convergent;
2020   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2021     return Attribute::DisableSanitizerInstrumentation;
2022   case bitc::ATTR_KIND_ELEMENTTYPE:
2023     return Attribute::ElementType;
2024   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2025     return Attribute::FnRetThunkExtern;
2026   case bitc::ATTR_KIND_INLINE_HINT:
2027     return Attribute::InlineHint;
2028   case bitc::ATTR_KIND_IN_REG:
2029     return Attribute::InReg;
2030   case bitc::ATTR_KIND_JUMP_TABLE:
2031     return Attribute::JumpTable;
2032   case bitc::ATTR_KIND_MEMORY:
2033     return Attribute::Memory;
2034   case bitc::ATTR_KIND_NOFPCLASS:
2035     return Attribute::NoFPClass;
2036   case bitc::ATTR_KIND_MIN_SIZE:
2037     return Attribute::MinSize;
2038   case bitc::ATTR_KIND_NAKED:
2039     return Attribute::Naked;
2040   case bitc::ATTR_KIND_NEST:
2041     return Attribute::Nest;
2042   case bitc::ATTR_KIND_NO_ALIAS:
2043     return Attribute::NoAlias;
2044   case bitc::ATTR_KIND_NO_BUILTIN:
2045     return Attribute::NoBuiltin;
2046   case bitc::ATTR_KIND_NO_CALLBACK:
2047     return Attribute::NoCallback;
2048   case bitc::ATTR_KIND_NO_CAPTURE:
2049     return Attribute::NoCapture;
2050   case bitc::ATTR_KIND_NO_DUPLICATE:
2051     return Attribute::NoDuplicate;
2052   case bitc::ATTR_KIND_NOFREE:
2053     return Attribute::NoFree;
2054   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2055     return Attribute::NoImplicitFloat;
2056   case bitc::ATTR_KIND_NO_INLINE:
2057     return Attribute::NoInline;
2058   case bitc::ATTR_KIND_NO_RECURSE:
2059     return Attribute::NoRecurse;
2060   case bitc::ATTR_KIND_NO_MERGE:
2061     return Attribute::NoMerge;
2062   case bitc::ATTR_KIND_NON_LAZY_BIND:
2063     return Attribute::NonLazyBind;
2064   case bitc::ATTR_KIND_NON_NULL:
2065     return Attribute::NonNull;
2066   case bitc::ATTR_KIND_DEREFERENCEABLE:
2067     return Attribute::Dereferenceable;
2068   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2069     return Attribute::DereferenceableOrNull;
2070   case bitc::ATTR_KIND_ALLOC_ALIGN:
2071     return Attribute::AllocAlign;
2072   case bitc::ATTR_KIND_ALLOC_KIND:
2073     return Attribute::AllocKind;
2074   case bitc::ATTR_KIND_ALLOC_SIZE:
2075     return Attribute::AllocSize;
2076   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2077     return Attribute::AllocatedPointer;
2078   case bitc::ATTR_KIND_NO_RED_ZONE:
2079     return Attribute::NoRedZone;
2080   case bitc::ATTR_KIND_NO_RETURN:
2081     return Attribute::NoReturn;
2082   case bitc::ATTR_KIND_NOSYNC:
2083     return Attribute::NoSync;
2084   case bitc::ATTR_KIND_NOCF_CHECK:
2085     return Attribute::NoCfCheck;
2086   case bitc::ATTR_KIND_NO_PROFILE:
2087     return Attribute::NoProfile;
2088   case bitc::ATTR_KIND_SKIP_PROFILE:
2089     return Attribute::SkipProfile;
2090   case bitc::ATTR_KIND_NO_UNWIND:
2091     return Attribute::NoUnwind;
2092   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2093     return Attribute::NoSanitizeBounds;
2094   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2095     return Attribute::NoSanitizeCoverage;
2096   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2097     return Attribute::NullPointerIsValid;
2098   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2099     return Attribute::OptimizeForDebugging;
2100   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2101     return Attribute::OptForFuzzing;
2102   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2103     return Attribute::OptimizeForSize;
2104   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2105     return Attribute::OptimizeNone;
2106   case bitc::ATTR_KIND_READ_NONE:
2107     return Attribute::ReadNone;
2108   case bitc::ATTR_KIND_READ_ONLY:
2109     return Attribute::ReadOnly;
2110   case bitc::ATTR_KIND_RETURNED:
2111     return Attribute::Returned;
2112   case bitc::ATTR_KIND_RETURNS_TWICE:
2113     return Attribute::ReturnsTwice;
2114   case bitc::ATTR_KIND_S_EXT:
2115     return Attribute::SExt;
2116   case bitc::ATTR_KIND_SPECULATABLE:
2117     return Attribute::Speculatable;
2118   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2119     return Attribute::StackAlignment;
2120   case bitc::ATTR_KIND_STACK_PROTECT:
2121     return Attribute::StackProtect;
2122   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2123     return Attribute::StackProtectReq;
2124   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2125     return Attribute::StackProtectStrong;
2126   case bitc::ATTR_KIND_SAFESTACK:
2127     return Attribute::SafeStack;
2128   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2129     return Attribute::ShadowCallStack;
2130   case bitc::ATTR_KIND_STRICT_FP:
2131     return Attribute::StrictFP;
2132   case bitc::ATTR_KIND_STRUCT_RET:
2133     return Attribute::StructRet;
2134   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2135     return Attribute::SanitizeAddress;
2136   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2137     return Attribute::SanitizeHWAddress;
2138   case bitc::ATTR_KIND_SANITIZE_THREAD:
2139     return Attribute::SanitizeThread;
2140   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2141     return Attribute::SanitizeMemory;
2142   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2143     return Attribute::SanitizeNumericalStability;
2144   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2145     return Attribute::SpeculativeLoadHardening;
2146   case bitc::ATTR_KIND_SWIFT_ERROR:
2147     return Attribute::SwiftError;
2148   case bitc::ATTR_KIND_SWIFT_SELF:
2149     return Attribute::SwiftSelf;
2150   case bitc::ATTR_KIND_SWIFT_ASYNC:
2151     return Attribute::SwiftAsync;
2152   case bitc::ATTR_KIND_UW_TABLE:
2153     return Attribute::UWTable;
2154   case bitc::ATTR_KIND_VSCALE_RANGE:
2155     return Attribute::VScaleRange;
2156   case bitc::ATTR_KIND_WILLRETURN:
2157     return Attribute::WillReturn;
2158   case bitc::ATTR_KIND_WRITEONLY:
2159     return Attribute::WriteOnly;
2160   case bitc::ATTR_KIND_Z_EXT:
2161     return Attribute::ZExt;
2162   case bitc::ATTR_KIND_IMMARG:
2163     return Attribute::ImmArg;
2164   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2165     return Attribute::SanitizeMemTag;
2166   case bitc::ATTR_KIND_PREALLOCATED:
2167     return Attribute::Preallocated;
2168   case bitc::ATTR_KIND_NOUNDEF:
2169     return Attribute::NoUndef;
2170   case bitc::ATTR_KIND_BYREF:
2171     return Attribute::ByRef;
2172   case bitc::ATTR_KIND_MUSTPROGRESS:
2173     return Attribute::MustProgress;
2174   case bitc::ATTR_KIND_HOT:
2175     return Attribute::Hot;
2176   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2177     return Attribute::PresplitCoroutine;
2178   case bitc::ATTR_KIND_WRITABLE:
2179     return Attribute::Writable;
2180   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2181     return Attribute::CoroDestroyOnlyWhenComplete;
2182   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2183     return Attribute::DeadOnUnwind;
2184   case bitc::ATTR_KIND_RANGE:
2185     return Attribute::Range;
2186   case bitc::ATTR_KIND_INITIALIZES:
2187     return Attribute::Initializes;
2188   }
2189 }
2190 
2191 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2192                                          MaybeAlign &Alignment) {
2193   // Note: Alignment in bitcode files is incremented by 1, so that zero
2194   // can be used for default alignment.
2195   if (Exponent > Value::MaxAlignmentExponent + 1)
2196     return error("Invalid alignment value");
2197   Alignment = decodeMaybeAlign(Exponent);
2198   return Error::success();
2199 }
2200 
2201 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2202   *Kind = getAttrFromCode(Code);
2203   if (*Kind == Attribute::None)
2204     return error("Unknown attribute kind (" + Twine(Code) + ")");
2205   return Error::success();
2206 }
2207 
2208 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2209   switch (EncodedKind) {
2210   case bitc::ATTR_KIND_READ_NONE:
2211     ME &= MemoryEffects::none();
2212     return true;
2213   case bitc::ATTR_KIND_READ_ONLY:
2214     ME &= MemoryEffects::readOnly();
2215     return true;
2216   case bitc::ATTR_KIND_WRITEONLY:
2217     ME &= MemoryEffects::writeOnly();
2218     return true;
2219   case bitc::ATTR_KIND_ARGMEMONLY:
2220     ME &= MemoryEffects::argMemOnly();
2221     return true;
2222   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2223     ME &= MemoryEffects::inaccessibleMemOnly();
2224     return true;
2225   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2226     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2227     return true;
2228   default:
2229     return false;
2230   }
2231 }
2232 
2233 Error BitcodeReader::parseAttributeGroupBlock() {
2234   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2235     return Err;
2236 
2237   if (!MAttributeGroups.empty())
2238     return error("Invalid multiple blocks");
2239 
2240   SmallVector<uint64_t, 64> Record;
2241 
2242   // Read all the records.
2243   while (true) {
2244     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2245     if (!MaybeEntry)
2246       return MaybeEntry.takeError();
2247     BitstreamEntry Entry = MaybeEntry.get();
2248 
2249     switch (Entry.Kind) {
2250     case BitstreamEntry::SubBlock: // Handled for us already.
2251     case BitstreamEntry::Error:
2252       return error("Malformed block");
2253     case BitstreamEntry::EndBlock:
2254       return Error::success();
2255     case BitstreamEntry::Record:
2256       // The interesting case.
2257       break;
2258     }
2259 
2260     // Read a record.
2261     Record.clear();
2262     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2263     if (!MaybeRecord)
2264       return MaybeRecord.takeError();
2265     switch (MaybeRecord.get()) {
2266     default:  // Default behavior: ignore.
2267       break;
2268     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2269       if (Record.size() < 3)
2270         return error("Invalid grp record");
2271 
2272       uint64_t GrpID = Record[0];
2273       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2274 
2275       AttrBuilder B(Context);
2276       MemoryEffects ME = MemoryEffects::unknown();
2277       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2278         if (Record[i] == 0) {        // Enum attribute
2279           Attribute::AttrKind Kind;
2280           uint64_t EncodedKind = Record[++i];
2281           if (Idx == AttributeList::FunctionIndex &&
2282               upgradeOldMemoryAttribute(ME, EncodedKind))
2283             continue;
2284 
2285           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2286             return Err;
2287 
2288           // Upgrade old-style byval attribute to one with a type, even if it's
2289           // nullptr. We will have to insert the real type when we associate
2290           // this AttributeList with a function.
2291           if (Kind == Attribute::ByVal)
2292             B.addByValAttr(nullptr);
2293           else if (Kind == Attribute::StructRet)
2294             B.addStructRetAttr(nullptr);
2295           else if (Kind == Attribute::InAlloca)
2296             B.addInAllocaAttr(nullptr);
2297           else if (Kind == Attribute::UWTable)
2298             B.addUWTableAttr(UWTableKind::Default);
2299           else if (Attribute::isEnumAttrKind(Kind))
2300             B.addAttribute(Kind);
2301           else
2302             return error("Not an enum attribute");
2303         } else if (Record[i] == 1) { // Integer attribute
2304           Attribute::AttrKind Kind;
2305           if (Error Err = parseAttrKind(Record[++i], &Kind))
2306             return Err;
2307           if (!Attribute::isIntAttrKind(Kind))
2308             return error("Not an int attribute");
2309           if (Kind == Attribute::Alignment)
2310             B.addAlignmentAttr(Record[++i]);
2311           else if (Kind == Attribute::StackAlignment)
2312             B.addStackAlignmentAttr(Record[++i]);
2313           else if (Kind == Attribute::Dereferenceable)
2314             B.addDereferenceableAttr(Record[++i]);
2315           else if (Kind == Attribute::DereferenceableOrNull)
2316             B.addDereferenceableOrNullAttr(Record[++i]);
2317           else if (Kind == Attribute::AllocSize)
2318             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2319           else if (Kind == Attribute::VScaleRange)
2320             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2321           else if (Kind == Attribute::UWTable)
2322             B.addUWTableAttr(UWTableKind(Record[++i]));
2323           else if (Kind == Attribute::AllocKind)
2324             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2325           else if (Kind == Attribute::Memory)
2326             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2327           else if (Kind == Attribute::NoFPClass)
2328             B.addNoFPClassAttr(
2329                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2330         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2331           bool HasValue = (Record[i++] == 4);
2332           SmallString<64> KindStr;
2333           SmallString<64> ValStr;
2334 
2335           while (Record[i] != 0 && i != e)
2336             KindStr += Record[i++];
2337           assert(Record[i] == 0 && "Kind string not null terminated");
2338 
2339           if (HasValue) {
2340             // Has a value associated with it.
2341             ++i; // Skip the '0' that terminates the "kind" string.
2342             while (Record[i] != 0 && i != e)
2343               ValStr += Record[i++];
2344             assert(Record[i] == 0 && "Value string not null terminated");
2345           }
2346 
2347           B.addAttribute(KindStr.str(), ValStr.str());
2348         } else if (Record[i] == 5 || Record[i] == 6) {
2349           bool HasType = Record[i] == 6;
2350           Attribute::AttrKind Kind;
2351           if (Error Err = parseAttrKind(Record[++i], &Kind))
2352             return Err;
2353           if (!Attribute::isTypeAttrKind(Kind))
2354             return error("Not a type attribute");
2355 
2356           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2357         } else if (Record[i] == 7) {
2358           Attribute::AttrKind Kind;
2359 
2360           i++;
2361           if (Error Err = parseAttrKind(Record[i++], &Kind))
2362             return Err;
2363           if (!Attribute::isConstantRangeAttrKind(Kind))
2364             return error("Not a ConstantRange attribute");
2365 
2366           Expected<ConstantRange> MaybeCR =
2367               readBitWidthAndConstantRange(Record, i);
2368           if (!MaybeCR)
2369             return MaybeCR.takeError();
2370           i--;
2371 
2372           B.addConstantRangeAttr(Kind, MaybeCR.get());
2373         } else if (Record[i] == 8) {
2374           Attribute::AttrKind Kind;
2375 
2376           i++;
2377           if (Error Err = parseAttrKind(Record[i++], &Kind))
2378             return Err;
2379           if (!Attribute::isConstantRangeListAttrKind(Kind))
2380             return error("Not a constant range list attribute");
2381 
2382           SmallVector<ConstantRange, 2> Val;
2383           if (i + 2 > e)
2384             return error("Too few records for constant range list");
2385           unsigned RangeSize = Record[i++];
2386           unsigned BitWidth = Record[i++];
2387           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2388             Expected<ConstantRange> MaybeCR =
2389                 readConstantRange(Record, i, BitWidth);
2390             if (!MaybeCR)
2391               return MaybeCR.takeError();
2392             Val.push_back(MaybeCR.get());
2393           }
2394           i--;
2395 
2396           if (!ConstantRangeList::isOrderedRanges(Val))
2397             return error("Invalid (unordered or overlapping) range list");
2398           B.addConstantRangeListAttr(Kind, Val);
2399         } else {
2400           return error("Invalid attribute group entry");
2401         }
2402       }
2403 
2404       if (ME != MemoryEffects::unknown())
2405         B.addMemoryAttr(ME);
2406 
2407       UpgradeAttributes(B);
2408       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2409       break;
2410     }
2411     }
2412   }
2413 }
2414 
2415 Error BitcodeReader::parseTypeTable() {
2416   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2417     return Err;
2418 
2419   return parseTypeTableBody();
2420 }
2421 
2422 Error BitcodeReader::parseTypeTableBody() {
2423   if (!TypeList.empty())
2424     return error("Invalid multiple blocks");
2425 
2426   SmallVector<uint64_t, 64> Record;
2427   unsigned NumRecords = 0;
2428 
2429   SmallString<64> TypeName;
2430 
2431   // Read all the records for this type table.
2432   while (true) {
2433     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2434     if (!MaybeEntry)
2435       return MaybeEntry.takeError();
2436     BitstreamEntry Entry = MaybeEntry.get();
2437 
2438     switch (Entry.Kind) {
2439     case BitstreamEntry::SubBlock: // Handled for us already.
2440     case BitstreamEntry::Error:
2441       return error("Malformed block");
2442     case BitstreamEntry::EndBlock:
2443       if (NumRecords != TypeList.size())
2444         return error("Malformed block");
2445       return Error::success();
2446     case BitstreamEntry::Record:
2447       // The interesting case.
2448       break;
2449     }
2450 
2451     // Read a record.
2452     Record.clear();
2453     Type *ResultTy = nullptr;
2454     SmallVector<unsigned> ContainedIDs;
2455     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2456     if (!MaybeRecord)
2457       return MaybeRecord.takeError();
2458     switch (MaybeRecord.get()) {
2459     default:
2460       return error("Invalid value");
2461     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2462       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2463       // type list.  This allows us to reserve space.
2464       if (Record.empty())
2465         return error("Invalid numentry record");
2466       TypeList.resize(Record[0]);
2467       continue;
2468     case bitc::TYPE_CODE_VOID:      // VOID
2469       ResultTy = Type::getVoidTy(Context);
2470       break;
2471     case bitc::TYPE_CODE_HALF:     // HALF
2472       ResultTy = Type::getHalfTy(Context);
2473       break;
2474     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2475       ResultTy = Type::getBFloatTy(Context);
2476       break;
2477     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2478       ResultTy = Type::getFloatTy(Context);
2479       break;
2480     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2481       ResultTy = Type::getDoubleTy(Context);
2482       break;
2483     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2484       ResultTy = Type::getX86_FP80Ty(Context);
2485       break;
2486     case bitc::TYPE_CODE_FP128:     // FP128
2487       ResultTy = Type::getFP128Ty(Context);
2488       break;
2489     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2490       ResultTy = Type::getPPC_FP128Ty(Context);
2491       break;
2492     case bitc::TYPE_CODE_LABEL:     // LABEL
2493       ResultTy = Type::getLabelTy(Context);
2494       break;
2495     case bitc::TYPE_CODE_METADATA:  // METADATA
2496       ResultTy = Type::getMetadataTy(Context);
2497       break;
2498     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2499       // Deprecated: decodes as <1 x i64>
2500       ResultTy =
2501           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2502       break;
2503     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2504       ResultTy = Type::getX86_AMXTy(Context);
2505       break;
2506     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2507       ResultTy = Type::getTokenTy(Context);
2508       break;
2509     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2510       if (Record.empty())
2511         return error("Invalid integer record");
2512 
2513       uint64_t NumBits = Record[0];
2514       if (NumBits < IntegerType::MIN_INT_BITS ||
2515           NumBits > IntegerType::MAX_INT_BITS)
2516         return error("Bitwidth for integer type out of range");
2517       ResultTy = IntegerType::get(Context, NumBits);
2518       break;
2519     }
2520     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2521                                     //          [pointee type, address space]
2522       if (Record.empty())
2523         return error("Invalid pointer record");
2524       unsigned AddressSpace = 0;
2525       if (Record.size() == 2)
2526         AddressSpace = Record[1];
2527       ResultTy = getTypeByID(Record[0]);
2528       if (!ResultTy ||
2529           !PointerType::isValidElementType(ResultTy))
2530         return error("Invalid type");
2531       ContainedIDs.push_back(Record[0]);
2532       ResultTy = PointerType::get(ResultTy, AddressSpace);
2533       break;
2534     }
2535     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2536       if (Record.size() != 1)
2537         return error("Invalid opaque pointer record");
2538       unsigned AddressSpace = Record[0];
2539       ResultTy = PointerType::get(Context, AddressSpace);
2540       break;
2541     }
2542     case bitc::TYPE_CODE_FUNCTION_OLD: {
2543       // Deprecated, but still needed to read old bitcode files.
2544       // FUNCTION: [vararg, attrid, retty, paramty x N]
2545       if (Record.size() < 3)
2546         return error("Invalid function record");
2547       SmallVector<Type*, 8> ArgTys;
2548       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2549         if (Type *T = getTypeByID(Record[i]))
2550           ArgTys.push_back(T);
2551         else
2552           break;
2553       }
2554 
2555       ResultTy = getTypeByID(Record[2]);
2556       if (!ResultTy || ArgTys.size() < Record.size()-3)
2557         return error("Invalid type");
2558 
2559       ContainedIDs.append(Record.begin() + 2, Record.end());
2560       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2561       break;
2562     }
2563     case bitc::TYPE_CODE_FUNCTION: {
2564       // FUNCTION: [vararg, retty, paramty x N]
2565       if (Record.size() < 2)
2566         return error("Invalid function record");
2567       SmallVector<Type*, 8> ArgTys;
2568       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2569         if (Type *T = getTypeByID(Record[i])) {
2570           if (!FunctionType::isValidArgumentType(T))
2571             return error("Invalid function argument type");
2572           ArgTys.push_back(T);
2573         }
2574         else
2575           break;
2576       }
2577 
2578       ResultTy = getTypeByID(Record[1]);
2579       if (!ResultTy || ArgTys.size() < Record.size()-2)
2580         return error("Invalid type");
2581 
2582       ContainedIDs.append(Record.begin() + 1, Record.end());
2583       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2584       break;
2585     }
2586     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2587       if (Record.empty())
2588         return error("Invalid anon struct record");
2589       SmallVector<Type*, 8> EltTys;
2590       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2591         if (Type *T = getTypeByID(Record[i]))
2592           EltTys.push_back(T);
2593         else
2594           break;
2595       }
2596       if (EltTys.size() != Record.size()-1)
2597         return error("Invalid type");
2598       ContainedIDs.append(Record.begin() + 1, Record.end());
2599       ResultTy = StructType::get(Context, EltTys, Record[0]);
2600       break;
2601     }
2602     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2603       if (convertToString(Record, 0, TypeName))
2604         return error("Invalid struct name record");
2605       continue;
2606 
2607     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2608       if (Record.empty())
2609         return error("Invalid named struct record");
2610 
2611       if (NumRecords >= TypeList.size())
2612         return error("Invalid TYPE table");
2613 
2614       // Check to see if this was forward referenced, if so fill in the temp.
2615       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2616       if (Res) {
2617         Res->setName(TypeName);
2618         TypeList[NumRecords] = nullptr;
2619       } else  // Otherwise, create a new struct.
2620         Res = createIdentifiedStructType(Context, TypeName);
2621       TypeName.clear();
2622 
2623       SmallVector<Type*, 8> EltTys;
2624       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2625         if (Type *T = getTypeByID(Record[i]))
2626           EltTys.push_back(T);
2627         else
2628           break;
2629       }
2630       if (EltTys.size() != Record.size()-1)
2631         return error("Invalid named struct record");
2632       Res->setBody(EltTys, Record[0]);
2633       ContainedIDs.append(Record.begin() + 1, Record.end());
2634       ResultTy = Res;
2635       break;
2636     }
2637     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2638       if (Record.size() != 1)
2639         return error("Invalid opaque type record");
2640 
2641       if (NumRecords >= TypeList.size())
2642         return error("Invalid TYPE table");
2643 
2644       // Check to see if this was forward referenced, if so fill in the temp.
2645       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2646       if (Res) {
2647         Res->setName(TypeName);
2648         TypeList[NumRecords] = nullptr;
2649       } else  // Otherwise, create a new struct with no body.
2650         Res = createIdentifiedStructType(Context, TypeName);
2651       TypeName.clear();
2652       ResultTy = Res;
2653       break;
2654     }
2655     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2656       if (Record.size() < 1)
2657         return error("Invalid target extension type record");
2658 
2659       if (NumRecords >= TypeList.size())
2660         return error("Invalid TYPE table");
2661 
2662       if (Record[0] >= Record.size())
2663         return error("Too many type parameters");
2664 
2665       unsigned NumTys = Record[0];
2666       SmallVector<Type *, 4> TypeParams;
2667       SmallVector<unsigned, 8> IntParams;
2668       for (unsigned i = 0; i < NumTys; i++) {
2669         if (Type *T = getTypeByID(Record[i + 1]))
2670           TypeParams.push_back(T);
2671         else
2672           return error("Invalid type");
2673       }
2674 
2675       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2676         if (Record[i] > UINT_MAX)
2677           return error("Integer parameter too large");
2678         IntParams.push_back(Record[i]);
2679       }
2680       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2681       TypeName.clear();
2682       break;
2683     }
2684     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2685       if (Record.size() < 2)
2686         return error("Invalid array type record");
2687       ResultTy = getTypeByID(Record[1]);
2688       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2689         return error("Invalid type");
2690       ContainedIDs.push_back(Record[1]);
2691       ResultTy = ArrayType::get(ResultTy, Record[0]);
2692       break;
2693     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2694                                     //         [numelts, eltty, scalable]
2695       if (Record.size() < 2)
2696         return error("Invalid vector type record");
2697       if (Record[0] == 0)
2698         return error("Invalid vector length");
2699       ResultTy = getTypeByID(Record[1]);
2700       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2701         return error("Invalid type");
2702       bool Scalable = Record.size() > 2 ? Record[2] : false;
2703       ContainedIDs.push_back(Record[1]);
2704       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2705       break;
2706     }
2707 
2708     if (NumRecords >= TypeList.size())
2709       return error("Invalid TYPE table");
2710     if (TypeList[NumRecords])
2711       return error(
2712           "Invalid TYPE table: Only named structs can be forward referenced");
2713     assert(ResultTy && "Didn't read a type?");
2714     TypeList[NumRecords] = ResultTy;
2715     if (!ContainedIDs.empty())
2716       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2717     ++NumRecords;
2718   }
2719 }
2720 
2721 Error BitcodeReader::parseOperandBundleTags() {
2722   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2723     return Err;
2724 
2725   if (!BundleTags.empty())
2726     return error("Invalid multiple blocks");
2727 
2728   SmallVector<uint64_t, 64> Record;
2729 
2730   while (true) {
2731     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2732     if (!MaybeEntry)
2733       return MaybeEntry.takeError();
2734     BitstreamEntry Entry = MaybeEntry.get();
2735 
2736     switch (Entry.Kind) {
2737     case BitstreamEntry::SubBlock: // Handled for us already.
2738     case BitstreamEntry::Error:
2739       return error("Malformed block");
2740     case BitstreamEntry::EndBlock:
2741       return Error::success();
2742     case BitstreamEntry::Record:
2743       // The interesting case.
2744       break;
2745     }
2746 
2747     // Tags are implicitly mapped to integers by their order.
2748 
2749     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2750     if (!MaybeRecord)
2751       return MaybeRecord.takeError();
2752     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2753       return error("Invalid operand bundle record");
2754 
2755     // OPERAND_BUNDLE_TAG: [strchr x N]
2756     BundleTags.emplace_back();
2757     if (convertToString(Record, 0, BundleTags.back()))
2758       return error("Invalid operand bundle record");
2759     Record.clear();
2760   }
2761 }
2762 
2763 Error BitcodeReader::parseSyncScopeNames() {
2764   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2765     return Err;
2766 
2767   if (!SSIDs.empty())
2768     return error("Invalid multiple synchronization scope names blocks");
2769 
2770   SmallVector<uint64_t, 64> Record;
2771   while (true) {
2772     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2773     if (!MaybeEntry)
2774       return MaybeEntry.takeError();
2775     BitstreamEntry Entry = MaybeEntry.get();
2776 
2777     switch (Entry.Kind) {
2778     case BitstreamEntry::SubBlock: // Handled for us already.
2779     case BitstreamEntry::Error:
2780       return error("Malformed block");
2781     case BitstreamEntry::EndBlock:
2782       if (SSIDs.empty())
2783         return error("Invalid empty synchronization scope names block");
2784       return Error::success();
2785     case BitstreamEntry::Record:
2786       // The interesting case.
2787       break;
2788     }
2789 
2790     // Synchronization scope names are implicitly mapped to synchronization
2791     // scope IDs by their order.
2792 
2793     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2794     if (!MaybeRecord)
2795       return MaybeRecord.takeError();
2796     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2797       return error("Invalid sync scope record");
2798 
2799     SmallString<16> SSN;
2800     if (convertToString(Record, 0, SSN))
2801       return error("Invalid sync scope record");
2802 
2803     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2804     Record.clear();
2805   }
2806 }
2807 
2808 /// Associate a value with its name from the given index in the provided record.
2809 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2810                                              unsigned NameIndex, Triple &TT) {
2811   SmallString<128> ValueName;
2812   if (convertToString(Record, NameIndex, ValueName))
2813     return error("Invalid record");
2814   unsigned ValueID = Record[0];
2815   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2816     return error("Invalid record");
2817   Value *V = ValueList[ValueID];
2818 
2819   StringRef NameStr(ValueName.data(), ValueName.size());
2820   if (NameStr.contains(0))
2821     return error("Invalid value name");
2822   V->setName(NameStr);
2823   auto *GO = dyn_cast<GlobalObject>(V);
2824   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2825     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2826   return V;
2827 }
2828 
2829 /// Helper to note and return the current location, and jump to the given
2830 /// offset.
2831 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2832                                                  BitstreamCursor &Stream) {
2833   // Save the current parsing location so we can jump back at the end
2834   // of the VST read.
2835   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2836   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2837     return std::move(JumpFailed);
2838   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2839   if (!MaybeEntry)
2840     return MaybeEntry.takeError();
2841   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2842       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2843     return error("Expected value symbol table subblock");
2844   return CurrentBit;
2845 }
2846 
2847 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2848                                             Function *F,
2849                                             ArrayRef<uint64_t> Record) {
2850   // Note that we subtract 1 here because the offset is relative to one word
2851   // before the start of the identification or module block, which was
2852   // historically always the start of the regular bitcode header.
2853   uint64_t FuncWordOffset = Record[1] - 1;
2854   uint64_t FuncBitOffset = FuncWordOffset * 32;
2855   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2856   // Set the LastFunctionBlockBit to point to the last function block.
2857   // Later when parsing is resumed after function materialization,
2858   // we can simply skip that last function block.
2859   if (FuncBitOffset > LastFunctionBlockBit)
2860     LastFunctionBlockBit = FuncBitOffset;
2861 }
2862 
2863 /// Read a new-style GlobalValue symbol table.
2864 Error BitcodeReader::parseGlobalValueSymbolTable() {
2865   unsigned FuncBitcodeOffsetDelta =
2866       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2867 
2868   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2869     return Err;
2870 
2871   SmallVector<uint64_t, 64> Record;
2872   while (true) {
2873     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2874     if (!MaybeEntry)
2875       return MaybeEntry.takeError();
2876     BitstreamEntry Entry = MaybeEntry.get();
2877 
2878     switch (Entry.Kind) {
2879     case BitstreamEntry::SubBlock:
2880     case BitstreamEntry::Error:
2881       return error("Malformed block");
2882     case BitstreamEntry::EndBlock:
2883       return Error::success();
2884     case BitstreamEntry::Record:
2885       break;
2886     }
2887 
2888     Record.clear();
2889     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2890     if (!MaybeRecord)
2891       return MaybeRecord.takeError();
2892     switch (MaybeRecord.get()) {
2893     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2894       unsigned ValueID = Record[0];
2895       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2896         return error("Invalid value reference in symbol table");
2897       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2898                               cast<Function>(ValueList[ValueID]), Record);
2899       break;
2900     }
2901     }
2902   }
2903 }
2904 
2905 /// Parse the value symbol table at either the current parsing location or
2906 /// at the given bit offset if provided.
2907 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2908   uint64_t CurrentBit;
2909   // Pass in the Offset to distinguish between calling for the module-level
2910   // VST (where we want to jump to the VST offset) and the function-level
2911   // VST (where we don't).
2912   if (Offset > 0) {
2913     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2914     if (!MaybeCurrentBit)
2915       return MaybeCurrentBit.takeError();
2916     CurrentBit = MaybeCurrentBit.get();
2917     // If this module uses a string table, read this as a module-level VST.
2918     if (UseStrtab) {
2919       if (Error Err = parseGlobalValueSymbolTable())
2920         return Err;
2921       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2922         return JumpFailed;
2923       return Error::success();
2924     }
2925     // Otherwise, the VST will be in a similar format to a function-level VST,
2926     // and will contain symbol names.
2927   }
2928 
2929   // Compute the delta between the bitcode indices in the VST (the word offset
2930   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2931   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2932   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2933   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2934   // just before entering the VST subblock because: 1) the EnterSubBlock
2935   // changes the AbbrevID width; 2) the VST block is nested within the same
2936   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2937   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2938   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2939   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2940   unsigned FuncBitcodeOffsetDelta =
2941       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2942 
2943   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2944     return Err;
2945 
2946   SmallVector<uint64_t, 64> Record;
2947 
2948   Triple TT(TheModule->getTargetTriple());
2949 
2950   // Read all the records for this value table.
2951   SmallString<128> ValueName;
2952 
2953   while (true) {
2954     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2955     if (!MaybeEntry)
2956       return MaybeEntry.takeError();
2957     BitstreamEntry Entry = MaybeEntry.get();
2958 
2959     switch (Entry.Kind) {
2960     case BitstreamEntry::SubBlock: // Handled for us already.
2961     case BitstreamEntry::Error:
2962       return error("Malformed block");
2963     case BitstreamEntry::EndBlock:
2964       if (Offset > 0)
2965         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2966           return JumpFailed;
2967       return Error::success();
2968     case BitstreamEntry::Record:
2969       // The interesting case.
2970       break;
2971     }
2972 
2973     // Read a record.
2974     Record.clear();
2975     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2976     if (!MaybeRecord)
2977       return MaybeRecord.takeError();
2978     switch (MaybeRecord.get()) {
2979     default:  // Default behavior: unknown type.
2980       break;
2981     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2982       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2983       if (Error Err = ValOrErr.takeError())
2984         return Err;
2985       ValOrErr.get();
2986       break;
2987     }
2988     case bitc::VST_CODE_FNENTRY: {
2989       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2990       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2991       if (Error Err = ValOrErr.takeError())
2992         return Err;
2993       Value *V = ValOrErr.get();
2994 
2995       // Ignore function offsets emitted for aliases of functions in older
2996       // versions of LLVM.
2997       if (auto *F = dyn_cast<Function>(V))
2998         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2999       break;
3000     }
3001     case bitc::VST_CODE_BBENTRY: {
3002       if (convertToString(Record, 1, ValueName))
3003         return error("Invalid bbentry record");
3004       BasicBlock *BB = getBasicBlock(Record[0]);
3005       if (!BB)
3006         return error("Invalid bbentry record");
3007 
3008       BB->setName(ValueName.str());
3009       ValueName.clear();
3010       break;
3011     }
3012     }
3013   }
3014 }
3015 
3016 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3017 /// encoding.
3018 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3019   if ((V & 1) == 0)
3020     return V >> 1;
3021   if (V != 1)
3022     return -(V >> 1);
3023   // There is no such thing as -0 with integers.  "-0" really means MININT.
3024   return 1ULL << 63;
3025 }
3026 
3027 /// Resolve all of the initializers for global values and aliases that we can.
3028 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3029   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3030   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3031   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3032 
3033   GlobalInitWorklist.swap(GlobalInits);
3034   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3035   FunctionOperandWorklist.swap(FunctionOperands);
3036 
3037   while (!GlobalInitWorklist.empty()) {
3038     unsigned ValID = GlobalInitWorklist.back().second;
3039     if (ValID >= ValueList.size()) {
3040       // Not ready to resolve this yet, it requires something later in the file.
3041       GlobalInits.push_back(GlobalInitWorklist.back());
3042     } else {
3043       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3044       if (!MaybeC)
3045         return MaybeC.takeError();
3046       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3047     }
3048     GlobalInitWorklist.pop_back();
3049   }
3050 
3051   while (!IndirectSymbolInitWorklist.empty()) {
3052     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3053     if (ValID >= ValueList.size()) {
3054       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3055     } else {
3056       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3057       if (!MaybeC)
3058         return MaybeC.takeError();
3059       Constant *C = MaybeC.get();
3060       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3061       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3062         if (C->getType() != GV->getType())
3063           return error("Alias and aliasee types don't match");
3064         GA->setAliasee(C);
3065       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3066         GI->setResolver(C);
3067       } else {
3068         return error("Expected an alias or an ifunc");
3069       }
3070     }
3071     IndirectSymbolInitWorklist.pop_back();
3072   }
3073 
3074   while (!FunctionOperandWorklist.empty()) {
3075     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3076     if (Info.PersonalityFn) {
3077       unsigned ValID = Info.PersonalityFn - 1;
3078       if (ValID < ValueList.size()) {
3079         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3080         if (!MaybeC)
3081           return MaybeC.takeError();
3082         Info.F->setPersonalityFn(MaybeC.get());
3083         Info.PersonalityFn = 0;
3084       }
3085     }
3086     if (Info.Prefix) {
3087       unsigned ValID = Info.Prefix - 1;
3088       if (ValID < ValueList.size()) {
3089         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3090         if (!MaybeC)
3091           return MaybeC.takeError();
3092         Info.F->setPrefixData(MaybeC.get());
3093         Info.Prefix = 0;
3094       }
3095     }
3096     if (Info.Prologue) {
3097       unsigned ValID = Info.Prologue - 1;
3098       if (ValID < ValueList.size()) {
3099         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3100         if (!MaybeC)
3101           return MaybeC.takeError();
3102         Info.F->setPrologueData(MaybeC.get());
3103         Info.Prologue = 0;
3104       }
3105     }
3106     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3107       FunctionOperands.push_back(Info);
3108     FunctionOperandWorklist.pop_back();
3109   }
3110 
3111   return Error::success();
3112 }
3113 
3114 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3115   SmallVector<uint64_t, 8> Words(Vals.size());
3116   transform(Vals, Words.begin(),
3117                  BitcodeReader::decodeSignRotatedValue);
3118 
3119   return APInt(TypeBits, Words);
3120 }
3121 
3122 Error BitcodeReader::parseConstants() {
3123   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3124     return Err;
3125 
3126   SmallVector<uint64_t, 64> Record;
3127 
3128   // Read all the records for this value table.
3129   Type *CurTy = Type::getInt32Ty(Context);
3130   unsigned Int32TyID = getVirtualTypeID(CurTy);
3131   unsigned CurTyID = Int32TyID;
3132   Type *CurElemTy = nullptr;
3133   unsigned NextCstNo = ValueList.size();
3134 
3135   while (true) {
3136     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3137     if (!MaybeEntry)
3138       return MaybeEntry.takeError();
3139     BitstreamEntry Entry = MaybeEntry.get();
3140 
3141     switch (Entry.Kind) {
3142     case BitstreamEntry::SubBlock: // Handled for us already.
3143     case BitstreamEntry::Error:
3144       return error("Malformed block");
3145     case BitstreamEntry::EndBlock:
3146       if (NextCstNo != ValueList.size())
3147         return error("Invalid constant reference");
3148       return Error::success();
3149     case BitstreamEntry::Record:
3150       // The interesting case.
3151       break;
3152     }
3153 
3154     // Read a record.
3155     Record.clear();
3156     Type *VoidType = Type::getVoidTy(Context);
3157     Value *V = nullptr;
3158     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3159     if (!MaybeBitCode)
3160       return MaybeBitCode.takeError();
3161     switch (unsigned BitCode = MaybeBitCode.get()) {
3162     default:  // Default behavior: unknown constant
3163     case bitc::CST_CODE_UNDEF:     // UNDEF
3164       V = UndefValue::get(CurTy);
3165       break;
3166     case bitc::CST_CODE_POISON:    // POISON
3167       V = PoisonValue::get(CurTy);
3168       break;
3169     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3170       if (Record.empty())
3171         return error("Invalid settype record");
3172       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3173         return error("Invalid settype record");
3174       if (TypeList[Record[0]] == VoidType)
3175         return error("Invalid constant type");
3176       CurTyID = Record[0];
3177       CurTy = TypeList[CurTyID];
3178       CurElemTy = getPtrElementTypeByID(CurTyID);
3179       continue;  // Skip the ValueList manipulation.
3180     case bitc::CST_CODE_NULL:      // NULL
3181       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3182         return error("Invalid type for a constant null value");
3183       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3184         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3185           return error("Invalid type for a constant null value");
3186       V = Constant::getNullValue(CurTy);
3187       break;
3188     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3189       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3190         return error("Invalid integer const record");
3191       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3192       break;
3193     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3194       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3195         return error("Invalid wide integer const record");
3196 
3197       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3198       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3199       V = ConstantInt::get(CurTy, VInt);
3200       break;
3201     }
3202     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3203       if (Record.empty())
3204         return error("Invalid float const record");
3205 
3206       auto *ScalarTy = CurTy->getScalarType();
3207       if (ScalarTy->isHalfTy())
3208         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3209                                            APInt(16, (uint16_t)Record[0])));
3210       else if (ScalarTy->isBFloatTy())
3211         V = ConstantFP::get(
3212             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3213       else if (ScalarTy->isFloatTy())
3214         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3215                                            APInt(32, (uint32_t)Record[0])));
3216       else if (ScalarTy->isDoubleTy())
3217         V = ConstantFP::get(
3218             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3219       else if (ScalarTy->isX86_FP80Ty()) {
3220         // Bits are not stored the same way as a normal i80 APInt, compensate.
3221         uint64_t Rearrange[2];
3222         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3223         Rearrange[1] = Record[0] >> 48;
3224         V = ConstantFP::get(
3225             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3226       } else if (ScalarTy->isFP128Ty())
3227         V = ConstantFP::get(CurTy,
3228                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3229       else if (ScalarTy->isPPC_FP128Ty())
3230         V = ConstantFP::get(
3231             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3232       else
3233         V = PoisonValue::get(CurTy);
3234       break;
3235     }
3236 
3237     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3238       if (Record.empty())
3239         return error("Invalid aggregate record");
3240 
3241       unsigned Size = Record.size();
3242       SmallVector<unsigned, 16> Elts;
3243       for (unsigned i = 0; i != Size; ++i)
3244         Elts.push_back(Record[i]);
3245 
3246       if (isa<StructType>(CurTy)) {
3247         V = BitcodeConstant::create(
3248             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3249       } else if (isa<ArrayType>(CurTy)) {
3250         V = BitcodeConstant::create(Alloc, CurTy,
3251                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3252       } else if (isa<VectorType>(CurTy)) {
3253         V = BitcodeConstant::create(
3254             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3255       } else {
3256         V = PoisonValue::get(CurTy);
3257       }
3258       break;
3259     }
3260     case bitc::CST_CODE_STRING:    // STRING: [values]
3261     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3262       if (Record.empty())
3263         return error("Invalid string record");
3264 
3265       SmallString<16> Elts(Record.begin(), Record.end());
3266       V = ConstantDataArray::getString(Context, Elts,
3267                                        BitCode == bitc::CST_CODE_CSTRING);
3268       break;
3269     }
3270     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3271       if (Record.empty())
3272         return error("Invalid data record");
3273 
3274       Type *EltTy;
3275       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3276         EltTy = Array->getElementType();
3277       else
3278         EltTy = cast<VectorType>(CurTy)->getElementType();
3279       if (EltTy->isIntegerTy(8)) {
3280         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3281         if (isa<VectorType>(CurTy))
3282           V = ConstantDataVector::get(Context, Elts);
3283         else
3284           V = ConstantDataArray::get(Context, Elts);
3285       } else if (EltTy->isIntegerTy(16)) {
3286         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3287         if (isa<VectorType>(CurTy))
3288           V = ConstantDataVector::get(Context, Elts);
3289         else
3290           V = ConstantDataArray::get(Context, Elts);
3291       } else if (EltTy->isIntegerTy(32)) {
3292         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3293         if (isa<VectorType>(CurTy))
3294           V = ConstantDataVector::get(Context, Elts);
3295         else
3296           V = ConstantDataArray::get(Context, Elts);
3297       } else if (EltTy->isIntegerTy(64)) {
3298         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3299         if (isa<VectorType>(CurTy))
3300           V = ConstantDataVector::get(Context, Elts);
3301         else
3302           V = ConstantDataArray::get(Context, Elts);
3303       } else if (EltTy->isHalfTy()) {
3304         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3305         if (isa<VectorType>(CurTy))
3306           V = ConstantDataVector::getFP(EltTy, Elts);
3307         else
3308           V = ConstantDataArray::getFP(EltTy, Elts);
3309       } else if (EltTy->isBFloatTy()) {
3310         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3311         if (isa<VectorType>(CurTy))
3312           V = ConstantDataVector::getFP(EltTy, Elts);
3313         else
3314           V = ConstantDataArray::getFP(EltTy, Elts);
3315       } else if (EltTy->isFloatTy()) {
3316         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3317         if (isa<VectorType>(CurTy))
3318           V = ConstantDataVector::getFP(EltTy, Elts);
3319         else
3320           V = ConstantDataArray::getFP(EltTy, Elts);
3321       } else if (EltTy->isDoubleTy()) {
3322         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3323         if (isa<VectorType>(CurTy))
3324           V = ConstantDataVector::getFP(EltTy, Elts);
3325         else
3326           V = ConstantDataArray::getFP(EltTy, Elts);
3327       } else {
3328         return error("Invalid type for value");
3329       }
3330       break;
3331     }
3332     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3333       if (Record.size() < 2)
3334         return error("Invalid unary op constexpr record");
3335       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3336       if (Opc < 0) {
3337         V = PoisonValue::get(CurTy);  // Unknown unop.
3338       } else {
3339         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3340       }
3341       break;
3342     }
3343     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3344       if (Record.size() < 3)
3345         return error("Invalid binary op constexpr record");
3346       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3347       if (Opc < 0) {
3348         V = PoisonValue::get(CurTy);  // Unknown binop.
3349       } else {
3350         uint8_t Flags = 0;
3351         if (Record.size() >= 4) {
3352           if (Opc == Instruction::Add ||
3353               Opc == Instruction::Sub ||
3354               Opc == Instruction::Mul ||
3355               Opc == Instruction::Shl) {
3356             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3357               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3358             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3359               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3360           } else if (Opc == Instruction::SDiv ||
3361                      Opc == Instruction::UDiv ||
3362                      Opc == Instruction::LShr ||
3363                      Opc == Instruction::AShr) {
3364             if (Record[3] & (1 << bitc::PEO_EXACT))
3365               Flags |= PossiblyExactOperator::IsExact;
3366           }
3367         }
3368         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3369                                     {(unsigned)Record[1], (unsigned)Record[2]});
3370       }
3371       break;
3372     }
3373     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3374       if (Record.size() < 3)
3375         return error("Invalid cast constexpr record");
3376       int Opc = getDecodedCastOpcode(Record[0]);
3377       if (Opc < 0) {
3378         V = PoisonValue::get(CurTy);  // Unknown cast.
3379       } else {
3380         unsigned OpTyID = Record[1];
3381         Type *OpTy = getTypeByID(OpTyID);
3382         if (!OpTy)
3383           return error("Invalid cast constexpr record");
3384         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3385       }
3386       break;
3387     }
3388     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3389     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3390     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3391                                                        // operands]
3392     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3393     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3394                                                // operands]
3395       if (Record.size() < 2)
3396         return error("Constant GEP record must have at least two elements");
3397       unsigned OpNum = 0;
3398       Type *PointeeType = nullptr;
3399       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3400           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3401           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3402         PointeeType = getTypeByID(Record[OpNum++]);
3403 
3404       uint64_t Flags = 0;
3405       std::optional<ConstantRange> InRange;
3406       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3407         uint64_t Op = Record[OpNum++];
3408         Flags = Op & 1; // inbounds
3409         unsigned InRangeIndex = Op >> 1;
3410         // "Upgrade" inrange by dropping it. The feature is too niche to
3411         // bother.
3412         (void)InRangeIndex;
3413       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3414         Flags = Record[OpNum++];
3415         Expected<ConstantRange> MaybeInRange =
3416             readBitWidthAndConstantRange(Record, OpNum);
3417         if (!MaybeInRange)
3418           return MaybeInRange.takeError();
3419         InRange = MaybeInRange.get();
3420       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3421         Flags = Record[OpNum++];
3422       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3423         Flags = (1 << bitc::GEP_INBOUNDS);
3424 
3425       SmallVector<unsigned, 16> Elts;
3426       unsigned BaseTypeID = Record[OpNum];
3427       while (OpNum != Record.size()) {
3428         unsigned ElTyID = Record[OpNum++];
3429         Type *ElTy = getTypeByID(ElTyID);
3430         if (!ElTy)
3431           return error("Invalid getelementptr constexpr record");
3432         Elts.push_back(Record[OpNum++]);
3433       }
3434 
3435       if (Elts.size() < 1)
3436         return error("Invalid gep with no operands");
3437 
3438       Type *BaseType = getTypeByID(BaseTypeID);
3439       if (isa<VectorType>(BaseType)) {
3440         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3441         BaseType = getTypeByID(BaseTypeID);
3442       }
3443 
3444       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3445       if (!OrigPtrTy)
3446         return error("GEP base operand must be pointer or vector of pointer");
3447 
3448       if (!PointeeType) {
3449         PointeeType = getPtrElementTypeByID(BaseTypeID);
3450         if (!PointeeType)
3451           return error("Missing element type for old-style constant GEP");
3452       }
3453 
3454       V = BitcodeConstant::create(
3455           Alloc, CurTy,
3456           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3457           Elts);
3458       break;
3459     }
3460     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3461       if (Record.size() < 3)
3462         return error("Invalid select constexpr record");
3463 
3464       V = BitcodeConstant::create(
3465           Alloc, CurTy, Instruction::Select,
3466           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3467       break;
3468     }
3469     case bitc::CST_CODE_CE_EXTRACTELT
3470         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3471       if (Record.size() < 3)
3472         return error("Invalid extractelement constexpr record");
3473       unsigned OpTyID = Record[0];
3474       VectorType *OpTy =
3475         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3476       if (!OpTy)
3477         return error("Invalid extractelement constexpr record");
3478       unsigned IdxRecord;
3479       if (Record.size() == 4) {
3480         unsigned IdxTyID = Record[2];
3481         Type *IdxTy = getTypeByID(IdxTyID);
3482         if (!IdxTy)
3483           return error("Invalid extractelement constexpr record");
3484         IdxRecord = Record[3];
3485       } else {
3486         // Deprecated, but still needed to read old bitcode files.
3487         IdxRecord = Record[2];
3488       }
3489       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3490                                   {(unsigned)Record[1], IdxRecord});
3491       break;
3492     }
3493     case bitc::CST_CODE_CE_INSERTELT
3494         : { // CE_INSERTELT: [opval, opval, opty, opval]
3495       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3496       if (Record.size() < 3 || !OpTy)
3497         return error("Invalid insertelement constexpr record");
3498       unsigned IdxRecord;
3499       if (Record.size() == 4) {
3500         unsigned IdxTyID = Record[2];
3501         Type *IdxTy = getTypeByID(IdxTyID);
3502         if (!IdxTy)
3503           return error("Invalid insertelement constexpr record");
3504         IdxRecord = Record[3];
3505       } else {
3506         // Deprecated, but still needed to read old bitcode files.
3507         IdxRecord = Record[2];
3508       }
3509       V = BitcodeConstant::create(
3510           Alloc, CurTy, Instruction::InsertElement,
3511           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3512       break;
3513     }
3514     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3515       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3516       if (Record.size() < 3 || !OpTy)
3517         return error("Invalid shufflevector constexpr record");
3518       V = BitcodeConstant::create(
3519           Alloc, CurTy, Instruction::ShuffleVector,
3520           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3521       break;
3522     }
3523     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3524       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3525       VectorType *OpTy =
3526         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3527       if (Record.size() < 4 || !RTy || !OpTy)
3528         return error("Invalid shufflevector constexpr record");
3529       V = BitcodeConstant::create(
3530           Alloc, CurTy, Instruction::ShuffleVector,
3531           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3532       break;
3533     }
3534     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3535       if (Record.size() < 4)
3536         return error("Invalid cmp constexpt record");
3537       unsigned OpTyID = Record[0];
3538       Type *OpTy = getTypeByID(OpTyID);
3539       if (!OpTy)
3540         return error("Invalid cmp constexpr record");
3541       V = BitcodeConstant::create(
3542           Alloc, CurTy,
3543           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3544                                               : Instruction::ICmp),
3545            (uint8_t)Record[3]},
3546           {(unsigned)Record[1], (unsigned)Record[2]});
3547       break;
3548     }
3549     // This maintains backward compatibility, pre-asm dialect keywords.
3550     // Deprecated, but still needed to read old bitcode files.
3551     case bitc::CST_CODE_INLINEASM_OLD: {
3552       if (Record.size() < 2)
3553         return error("Invalid inlineasm record");
3554       std::string AsmStr, ConstrStr;
3555       bool HasSideEffects = Record[0] & 1;
3556       bool IsAlignStack = Record[0] >> 1;
3557       unsigned AsmStrSize = Record[1];
3558       if (2+AsmStrSize >= Record.size())
3559         return error("Invalid inlineasm record");
3560       unsigned ConstStrSize = Record[2+AsmStrSize];
3561       if (3+AsmStrSize+ConstStrSize > Record.size())
3562         return error("Invalid inlineasm record");
3563 
3564       for (unsigned i = 0; i != AsmStrSize; ++i)
3565         AsmStr += (char)Record[2+i];
3566       for (unsigned i = 0; i != ConstStrSize; ++i)
3567         ConstrStr += (char)Record[3+AsmStrSize+i];
3568       UpgradeInlineAsmString(&AsmStr);
3569       if (!CurElemTy)
3570         return error("Missing element type for old-style inlineasm");
3571       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3572                          HasSideEffects, IsAlignStack);
3573       break;
3574     }
3575     // This version adds support for the asm dialect keywords (e.g.,
3576     // inteldialect).
3577     case bitc::CST_CODE_INLINEASM_OLD2: {
3578       if (Record.size() < 2)
3579         return error("Invalid inlineasm record");
3580       std::string AsmStr, ConstrStr;
3581       bool HasSideEffects = Record[0] & 1;
3582       bool IsAlignStack = (Record[0] >> 1) & 1;
3583       unsigned AsmDialect = Record[0] >> 2;
3584       unsigned AsmStrSize = Record[1];
3585       if (2+AsmStrSize >= Record.size())
3586         return error("Invalid inlineasm record");
3587       unsigned ConstStrSize = Record[2+AsmStrSize];
3588       if (3+AsmStrSize+ConstStrSize > Record.size())
3589         return error("Invalid inlineasm record");
3590 
3591       for (unsigned i = 0; i != AsmStrSize; ++i)
3592         AsmStr += (char)Record[2+i];
3593       for (unsigned i = 0; i != ConstStrSize; ++i)
3594         ConstrStr += (char)Record[3+AsmStrSize+i];
3595       UpgradeInlineAsmString(&AsmStr);
3596       if (!CurElemTy)
3597         return error("Missing element type for old-style inlineasm");
3598       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3599                          HasSideEffects, IsAlignStack,
3600                          InlineAsm::AsmDialect(AsmDialect));
3601       break;
3602     }
3603     // This version adds support for the unwind keyword.
3604     case bitc::CST_CODE_INLINEASM_OLD3: {
3605       if (Record.size() < 2)
3606         return error("Invalid inlineasm record");
3607       unsigned OpNum = 0;
3608       std::string AsmStr, ConstrStr;
3609       bool HasSideEffects = Record[OpNum] & 1;
3610       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3611       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3612       bool CanThrow = (Record[OpNum] >> 3) & 1;
3613       ++OpNum;
3614       unsigned AsmStrSize = Record[OpNum];
3615       ++OpNum;
3616       if (OpNum + AsmStrSize >= Record.size())
3617         return error("Invalid inlineasm record");
3618       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3619       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3620         return error("Invalid inlineasm record");
3621 
3622       for (unsigned i = 0; i != AsmStrSize; ++i)
3623         AsmStr += (char)Record[OpNum + i];
3624       ++OpNum;
3625       for (unsigned i = 0; i != ConstStrSize; ++i)
3626         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3627       UpgradeInlineAsmString(&AsmStr);
3628       if (!CurElemTy)
3629         return error("Missing element type for old-style inlineasm");
3630       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3631                          HasSideEffects, IsAlignStack,
3632                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3633       break;
3634     }
3635     // This version adds explicit function type.
3636     case bitc::CST_CODE_INLINEASM: {
3637       if (Record.size() < 3)
3638         return error("Invalid inlineasm record");
3639       unsigned OpNum = 0;
3640       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3641       ++OpNum;
3642       if (!FnTy)
3643         return error("Invalid inlineasm record");
3644       std::string AsmStr, ConstrStr;
3645       bool HasSideEffects = Record[OpNum] & 1;
3646       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3647       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3648       bool CanThrow = (Record[OpNum] >> 3) & 1;
3649       ++OpNum;
3650       unsigned AsmStrSize = Record[OpNum];
3651       ++OpNum;
3652       if (OpNum + AsmStrSize >= Record.size())
3653         return error("Invalid inlineasm record");
3654       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3655       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3656         return error("Invalid inlineasm record");
3657 
3658       for (unsigned i = 0; i != AsmStrSize; ++i)
3659         AsmStr += (char)Record[OpNum + i];
3660       ++OpNum;
3661       for (unsigned i = 0; i != ConstStrSize; ++i)
3662         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3663       UpgradeInlineAsmString(&AsmStr);
3664       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3665                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3666       break;
3667     }
3668     case bitc::CST_CODE_BLOCKADDRESS:{
3669       if (Record.size() < 3)
3670         return error("Invalid blockaddress record");
3671       unsigned FnTyID = Record[0];
3672       Type *FnTy = getTypeByID(FnTyID);
3673       if (!FnTy)
3674         return error("Invalid blockaddress record");
3675       V = BitcodeConstant::create(
3676           Alloc, CurTy,
3677           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3678           Record[1]);
3679       break;
3680     }
3681     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3682       if (Record.size() < 2)
3683         return error("Invalid dso_local record");
3684       unsigned GVTyID = Record[0];
3685       Type *GVTy = getTypeByID(GVTyID);
3686       if (!GVTy)
3687         return error("Invalid dso_local record");
3688       V = BitcodeConstant::create(
3689           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3690       break;
3691     }
3692     case bitc::CST_CODE_NO_CFI_VALUE: {
3693       if (Record.size() < 2)
3694         return error("Invalid no_cfi record");
3695       unsigned GVTyID = Record[0];
3696       Type *GVTy = getTypeByID(GVTyID);
3697       if (!GVTy)
3698         return error("Invalid no_cfi record");
3699       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3700                                   Record[1]);
3701       break;
3702     }
3703     case bitc::CST_CODE_PTRAUTH: {
3704       if (Record.size() < 4)
3705         return error("Invalid ptrauth record");
3706       // Ptr, Key, Disc, AddrDisc
3707       V = BitcodeConstant::create(Alloc, CurTy,
3708                                   BitcodeConstant::ConstantPtrAuthOpcode,
3709                                   {(unsigned)Record[0], (unsigned)Record[1],
3710                                    (unsigned)Record[2], (unsigned)Record[3]});
3711       break;
3712     }
3713     }
3714 
3715     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3716     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3717       return Err;
3718     ++NextCstNo;
3719   }
3720 }
3721 
3722 Error BitcodeReader::parseUseLists() {
3723   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3724     return Err;
3725 
3726   // Read all the records.
3727   SmallVector<uint64_t, 64> Record;
3728 
3729   while (true) {
3730     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3731     if (!MaybeEntry)
3732       return MaybeEntry.takeError();
3733     BitstreamEntry Entry = MaybeEntry.get();
3734 
3735     switch (Entry.Kind) {
3736     case BitstreamEntry::SubBlock: // Handled for us already.
3737     case BitstreamEntry::Error:
3738       return error("Malformed block");
3739     case BitstreamEntry::EndBlock:
3740       return Error::success();
3741     case BitstreamEntry::Record:
3742       // The interesting case.
3743       break;
3744     }
3745 
3746     // Read a use list record.
3747     Record.clear();
3748     bool IsBB = false;
3749     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3750     if (!MaybeRecord)
3751       return MaybeRecord.takeError();
3752     switch (MaybeRecord.get()) {
3753     default:  // Default behavior: unknown type.
3754       break;
3755     case bitc::USELIST_CODE_BB:
3756       IsBB = true;
3757       [[fallthrough]];
3758     case bitc::USELIST_CODE_DEFAULT: {
3759       unsigned RecordLength = Record.size();
3760       if (RecordLength < 3)
3761         // Records should have at least an ID and two indexes.
3762         return error("Invalid record");
3763       unsigned ID = Record.pop_back_val();
3764 
3765       Value *V;
3766       if (IsBB) {
3767         assert(ID < FunctionBBs.size() && "Basic block not found");
3768         V = FunctionBBs[ID];
3769       } else
3770         V = ValueList[ID];
3771       unsigned NumUses = 0;
3772       SmallDenseMap<const Use *, unsigned, 16> Order;
3773       for (const Use &U : V->materialized_uses()) {
3774         if (++NumUses > Record.size())
3775           break;
3776         Order[&U] = Record[NumUses - 1];
3777       }
3778       if (Order.size() != Record.size() || NumUses > Record.size())
3779         // Mismatches can happen if the functions are being materialized lazily
3780         // (out-of-order), or a value has been upgraded.
3781         break;
3782 
3783       V->sortUseList([&](const Use &L, const Use &R) {
3784         return Order.lookup(&L) < Order.lookup(&R);
3785       });
3786       break;
3787     }
3788     }
3789   }
3790 }
3791 
3792 /// When we see the block for metadata, remember where it is and then skip it.
3793 /// This lets us lazily deserialize the metadata.
3794 Error BitcodeReader::rememberAndSkipMetadata() {
3795   // Save the current stream state.
3796   uint64_t CurBit = Stream.GetCurrentBitNo();
3797   DeferredMetadataInfo.push_back(CurBit);
3798 
3799   // Skip over the block for now.
3800   if (Error Err = Stream.SkipBlock())
3801     return Err;
3802   return Error::success();
3803 }
3804 
3805 Error BitcodeReader::materializeMetadata() {
3806   for (uint64_t BitPos : DeferredMetadataInfo) {
3807     // Move the bit stream to the saved position.
3808     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3809       return JumpFailed;
3810     if (Error Err = MDLoader->parseModuleMetadata())
3811       return Err;
3812   }
3813 
3814   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3815   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3816   // multiple times.
3817   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3818     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3819       NamedMDNode *LinkerOpts =
3820           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3821       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3822         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3823     }
3824   }
3825 
3826   DeferredMetadataInfo.clear();
3827   return Error::success();
3828 }
3829 
3830 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3831 
3832 /// When we see the block for a function body, remember where it is and then
3833 /// skip it.  This lets us lazily deserialize the functions.
3834 Error BitcodeReader::rememberAndSkipFunctionBody() {
3835   // Get the function we are talking about.
3836   if (FunctionsWithBodies.empty())
3837     return error("Insufficient function protos");
3838 
3839   Function *Fn = FunctionsWithBodies.back();
3840   FunctionsWithBodies.pop_back();
3841 
3842   // Save the current stream state.
3843   uint64_t CurBit = Stream.GetCurrentBitNo();
3844   assert(
3845       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3846       "Mismatch between VST and scanned function offsets");
3847   DeferredFunctionInfo[Fn] = CurBit;
3848 
3849   // Skip over the function block for now.
3850   if (Error Err = Stream.SkipBlock())
3851     return Err;
3852   return Error::success();
3853 }
3854 
3855 Error BitcodeReader::globalCleanup() {
3856   // Patch the initializers for globals and aliases up.
3857   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3858     return Err;
3859   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3860     return error("Malformed global initializer set");
3861 
3862   // Look for intrinsic functions which need to be upgraded at some point
3863   // and functions that need to have their function attributes upgraded.
3864   for (Function &F : *TheModule) {
3865     MDLoader->upgradeDebugIntrinsics(F);
3866     Function *NewFn;
3867     // If PreserveInputDbgFormat=true, then we don't know whether we want
3868     // intrinsics or records, and we won't perform any conversions in either
3869     // case, so don't upgrade intrinsics to records.
3870     if (UpgradeIntrinsicFunction(
3871             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3872       UpgradedIntrinsics[&F] = NewFn;
3873     // Look for functions that rely on old function attribute behavior.
3874     UpgradeFunctionAttributes(F);
3875   }
3876 
3877   // Look for global variables which need to be renamed.
3878   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3879   for (GlobalVariable &GV : TheModule->globals())
3880     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3881       UpgradedVariables.emplace_back(&GV, Upgraded);
3882   for (auto &Pair : UpgradedVariables) {
3883     Pair.first->eraseFromParent();
3884     TheModule->insertGlobalVariable(Pair.second);
3885   }
3886 
3887   // Force deallocation of memory for these vectors to favor the client that
3888   // want lazy deserialization.
3889   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3890   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3891   return Error::success();
3892 }
3893 
3894 /// Support for lazy parsing of function bodies. This is required if we
3895 /// either have an old bitcode file without a VST forward declaration record,
3896 /// or if we have an anonymous function being materialized, since anonymous
3897 /// functions do not have a name and are therefore not in the VST.
3898 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3899   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3900     return JumpFailed;
3901 
3902   if (Stream.AtEndOfStream())
3903     return error("Could not find function in stream");
3904 
3905   if (!SeenFirstFunctionBody)
3906     return error("Trying to materialize functions before seeing function blocks");
3907 
3908   // An old bitcode file with the symbol table at the end would have
3909   // finished the parse greedily.
3910   assert(SeenValueSymbolTable);
3911 
3912   SmallVector<uint64_t, 64> Record;
3913 
3914   while (true) {
3915     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3916     if (!MaybeEntry)
3917       return MaybeEntry.takeError();
3918     llvm::BitstreamEntry Entry = MaybeEntry.get();
3919 
3920     switch (Entry.Kind) {
3921     default:
3922       return error("Expect SubBlock");
3923     case BitstreamEntry::SubBlock:
3924       switch (Entry.ID) {
3925       default:
3926         return error("Expect function block");
3927       case bitc::FUNCTION_BLOCK_ID:
3928         if (Error Err = rememberAndSkipFunctionBody())
3929           return Err;
3930         NextUnreadBit = Stream.GetCurrentBitNo();
3931         return Error::success();
3932       }
3933     }
3934   }
3935 }
3936 
3937 Error BitcodeReaderBase::readBlockInfo() {
3938   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3939       Stream.ReadBlockInfoBlock();
3940   if (!MaybeNewBlockInfo)
3941     return MaybeNewBlockInfo.takeError();
3942   std::optional<BitstreamBlockInfo> NewBlockInfo =
3943       std::move(MaybeNewBlockInfo.get());
3944   if (!NewBlockInfo)
3945     return error("Malformed block");
3946   BlockInfo = std::move(*NewBlockInfo);
3947   return Error::success();
3948 }
3949 
3950 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3951   // v1: [selection_kind, name]
3952   // v2: [strtab_offset, strtab_size, selection_kind]
3953   StringRef Name;
3954   std::tie(Name, Record) = readNameFromStrtab(Record);
3955 
3956   if (Record.empty())
3957     return error("Invalid record");
3958   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3959   std::string OldFormatName;
3960   if (!UseStrtab) {
3961     if (Record.size() < 2)
3962       return error("Invalid record");
3963     unsigned ComdatNameSize = Record[1];
3964     if (ComdatNameSize > Record.size() - 2)
3965       return error("Comdat name size too large");
3966     OldFormatName.reserve(ComdatNameSize);
3967     for (unsigned i = 0; i != ComdatNameSize; ++i)
3968       OldFormatName += (char)Record[2 + i];
3969     Name = OldFormatName;
3970   }
3971   Comdat *C = TheModule->getOrInsertComdat(Name);
3972   C->setSelectionKind(SK);
3973   ComdatList.push_back(C);
3974   return Error::success();
3975 }
3976 
3977 static void inferDSOLocal(GlobalValue *GV) {
3978   // infer dso_local from linkage and visibility if it is not encoded.
3979   if (GV->hasLocalLinkage() ||
3980       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3981     GV->setDSOLocal(true);
3982 }
3983 
3984 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3985   GlobalValue::SanitizerMetadata Meta;
3986   if (V & (1 << 0))
3987     Meta.NoAddress = true;
3988   if (V & (1 << 1))
3989     Meta.NoHWAddress = true;
3990   if (V & (1 << 2))
3991     Meta.Memtag = true;
3992   if (V & (1 << 3))
3993     Meta.IsDynInit = true;
3994   return Meta;
3995 }
3996 
3997 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3998   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3999   // visibility, threadlocal, unnamed_addr, externally_initialized,
4000   // dllstorageclass, comdat, attributes, preemption specifier,
4001   // partition strtab offset, partition strtab size] (name in VST)
4002   // v2: [strtab_offset, strtab_size, v1]
4003   // v3: [v2, code_model]
4004   StringRef Name;
4005   std::tie(Name, Record) = readNameFromStrtab(Record);
4006 
4007   if (Record.size() < 6)
4008     return error("Invalid record");
4009   unsigned TyID = Record[0];
4010   Type *Ty = getTypeByID(TyID);
4011   if (!Ty)
4012     return error("Invalid record");
4013   bool isConstant = Record[1] & 1;
4014   bool explicitType = Record[1] & 2;
4015   unsigned AddressSpace;
4016   if (explicitType) {
4017     AddressSpace = Record[1] >> 2;
4018   } else {
4019     if (!Ty->isPointerTy())
4020       return error("Invalid type for value");
4021     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4022     TyID = getContainedTypeID(TyID);
4023     Ty = getTypeByID(TyID);
4024     if (!Ty)
4025       return error("Missing element type for old-style global");
4026   }
4027 
4028   uint64_t RawLinkage = Record[3];
4029   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4030   MaybeAlign Alignment;
4031   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4032     return Err;
4033   std::string Section;
4034   if (Record[5]) {
4035     if (Record[5] - 1 >= SectionTable.size())
4036       return error("Invalid ID");
4037     Section = SectionTable[Record[5] - 1];
4038   }
4039   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4040   // Local linkage must have default visibility.
4041   // auto-upgrade `hidden` and `protected` for old bitcode.
4042   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4043     Visibility = getDecodedVisibility(Record[6]);
4044 
4045   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4046   if (Record.size() > 7)
4047     TLM = getDecodedThreadLocalMode(Record[7]);
4048 
4049   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4050   if (Record.size() > 8)
4051     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4052 
4053   bool ExternallyInitialized = false;
4054   if (Record.size() > 9)
4055     ExternallyInitialized = Record[9];
4056 
4057   GlobalVariable *NewGV =
4058       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4059                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4060   if (Alignment)
4061     NewGV->setAlignment(*Alignment);
4062   if (!Section.empty())
4063     NewGV->setSection(Section);
4064   NewGV->setVisibility(Visibility);
4065   NewGV->setUnnamedAddr(UnnamedAddr);
4066 
4067   if (Record.size() > 10) {
4068     // A GlobalValue with local linkage cannot have a DLL storage class.
4069     if (!NewGV->hasLocalLinkage()) {
4070       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4071     }
4072   } else {
4073     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4074   }
4075 
4076   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4077 
4078   // Remember which value to use for the global initializer.
4079   if (unsigned InitID = Record[2])
4080     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4081 
4082   if (Record.size() > 11) {
4083     if (unsigned ComdatID = Record[11]) {
4084       if (ComdatID > ComdatList.size())
4085         return error("Invalid global variable comdat ID");
4086       NewGV->setComdat(ComdatList[ComdatID - 1]);
4087     }
4088   } else if (hasImplicitComdat(RawLinkage)) {
4089     ImplicitComdatObjects.insert(NewGV);
4090   }
4091 
4092   if (Record.size() > 12) {
4093     auto AS = getAttributes(Record[12]).getFnAttrs();
4094     NewGV->setAttributes(AS);
4095   }
4096 
4097   if (Record.size() > 13) {
4098     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4099   }
4100   inferDSOLocal(NewGV);
4101 
4102   // Check whether we have enough values to read a partition name.
4103   if (Record.size() > 15)
4104     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4105 
4106   if (Record.size() > 16 && Record[16]) {
4107     llvm::GlobalValue::SanitizerMetadata Meta =
4108         deserializeSanitizerMetadata(Record[16]);
4109     NewGV->setSanitizerMetadata(Meta);
4110   }
4111 
4112   if (Record.size() > 17 && Record[17]) {
4113     if (auto CM = getDecodedCodeModel(Record[17]))
4114       NewGV->setCodeModel(*CM);
4115     else
4116       return error("Invalid global variable code model");
4117   }
4118 
4119   return Error::success();
4120 }
4121 
4122 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4123   if (ValueTypeCallback) {
4124     (*ValueTypeCallback)(
4125         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4126         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4127   }
4128 }
4129 
4130 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4131   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4132   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4133   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4134   // v2: [strtab_offset, strtab_size, v1]
4135   StringRef Name;
4136   std::tie(Name, Record) = readNameFromStrtab(Record);
4137 
4138   if (Record.size() < 8)
4139     return error("Invalid record");
4140   unsigned FTyID = Record[0];
4141   Type *FTy = getTypeByID(FTyID);
4142   if (!FTy)
4143     return error("Invalid record");
4144   if (isa<PointerType>(FTy)) {
4145     FTyID = getContainedTypeID(FTyID, 0);
4146     FTy = getTypeByID(FTyID);
4147     if (!FTy)
4148       return error("Missing element type for old-style function");
4149   }
4150 
4151   if (!isa<FunctionType>(FTy))
4152     return error("Invalid type for value");
4153   auto CC = static_cast<CallingConv::ID>(Record[1]);
4154   if (CC & ~CallingConv::MaxID)
4155     return error("Invalid calling convention ID");
4156 
4157   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4158   if (Record.size() > 16)
4159     AddrSpace = Record[16];
4160 
4161   Function *Func =
4162       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4163                        AddrSpace, Name, TheModule);
4164 
4165   assert(Func->getFunctionType() == FTy &&
4166          "Incorrect fully specified type provided for function");
4167   FunctionTypeIDs[Func] = FTyID;
4168 
4169   Func->setCallingConv(CC);
4170   bool isProto = Record[2];
4171   uint64_t RawLinkage = Record[3];
4172   Func->setLinkage(getDecodedLinkage(RawLinkage));
4173   Func->setAttributes(getAttributes(Record[4]));
4174   callValueTypeCallback(Func, FTyID);
4175 
4176   // Upgrade any old-style byval or sret without a type by propagating the
4177   // argument's pointee type. There should be no opaque pointers where the byval
4178   // type is implicit.
4179   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4180     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4181                                      Attribute::InAlloca}) {
4182       if (!Func->hasParamAttribute(i, Kind))
4183         continue;
4184 
4185       if (Func->getParamAttribute(i, Kind).getValueAsType())
4186         continue;
4187 
4188       Func->removeParamAttr(i, Kind);
4189 
4190       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4191       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4192       if (!PtrEltTy)
4193         return error("Missing param element type for attribute upgrade");
4194 
4195       Attribute NewAttr;
4196       switch (Kind) {
4197       case Attribute::ByVal:
4198         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4199         break;
4200       case Attribute::StructRet:
4201         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4202         break;
4203       case Attribute::InAlloca:
4204         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4205         break;
4206       default:
4207         llvm_unreachable("not an upgraded type attribute");
4208       }
4209 
4210       Func->addParamAttr(i, NewAttr);
4211     }
4212   }
4213 
4214   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4215       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4216     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4217     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4218     if (!ByValTy)
4219       return error("Missing param element type for x86_intrcc upgrade");
4220     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4221     Func->addParamAttr(0, NewAttr);
4222   }
4223 
4224   MaybeAlign Alignment;
4225   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4226     return Err;
4227   if (Alignment)
4228     Func->setAlignment(*Alignment);
4229   if (Record[6]) {
4230     if (Record[6] - 1 >= SectionTable.size())
4231       return error("Invalid ID");
4232     Func->setSection(SectionTable[Record[6] - 1]);
4233   }
4234   // Local linkage must have default visibility.
4235   // auto-upgrade `hidden` and `protected` for old bitcode.
4236   if (!Func->hasLocalLinkage())
4237     Func->setVisibility(getDecodedVisibility(Record[7]));
4238   if (Record.size() > 8 && Record[8]) {
4239     if (Record[8] - 1 >= GCTable.size())
4240       return error("Invalid ID");
4241     Func->setGC(GCTable[Record[8] - 1]);
4242   }
4243   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4244   if (Record.size() > 9)
4245     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4246   Func->setUnnamedAddr(UnnamedAddr);
4247 
4248   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4249   if (Record.size() > 10)
4250     OperandInfo.Prologue = Record[10];
4251 
4252   if (Record.size() > 11) {
4253     // A GlobalValue with local linkage cannot have a DLL storage class.
4254     if (!Func->hasLocalLinkage()) {
4255       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4256     }
4257   } else {
4258     upgradeDLLImportExportLinkage(Func, RawLinkage);
4259   }
4260 
4261   if (Record.size() > 12) {
4262     if (unsigned ComdatID = Record[12]) {
4263       if (ComdatID > ComdatList.size())
4264         return error("Invalid function comdat ID");
4265       Func->setComdat(ComdatList[ComdatID - 1]);
4266     }
4267   } else if (hasImplicitComdat(RawLinkage)) {
4268     ImplicitComdatObjects.insert(Func);
4269   }
4270 
4271   if (Record.size() > 13)
4272     OperandInfo.Prefix = Record[13];
4273 
4274   if (Record.size() > 14)
4275     OperandInfo.PersonalityFn = Record[14];
4276 
4277   if (Record.size() > 15) {
4278     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4279   }
4280   inferDSOLocal(Func);
4281 
4282   // Record[16] is the address space number.
4283 
4284   // Check whether we have enough values to read a partition name. Also make
4285   // sure Strtab has enough values.
4286   if (Record.size() > 18 && Strtab.data() &&
4287       Record[17] + Record[18] <= Strtab.size()) {
4288     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4289   }
4290 
4291   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4292 
4293   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4294     FunctionOperands.push_back(OperandInfo);
4295 
4296   // If this is a function with a body, remember the prototype we are
4297   // creating now, so that we can match up the body with them later.
4298   if (!isProto) {
4299     Func->setIsMaterializable(true);
4300     FunctionsWithBodies.push_back(Func);
4301     DeferredFunctionInfo[Func] = 0;
4302   }
4303   return Error::success();
4304 }
4305 
4306 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4307     unsigned BitCode, ArrayRef<uint64_t> Record) {
4308   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4309   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4310   // dllstorageclass, threadlocal, unnamed_addr,
4311   // preemption specifier] (name in VST)
4312   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4313   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4314   // preemption specifier] (name in VST)
4315   // v2: [strtab_offset, strtab_size, v1]
4316   StringRef Name;
4317   std::tie(Name, Record) = readNameFromStrtab(Record);
4318 
4319   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4320   if (Record.size() < (3 + (unsigned)NewRecord))
4321     return error("Invalid record");
4322   unsigned OpNum = 0;
4323   unsigned TypeID = Record[OpNum++];
4324   Type *Ty = getTypeByID(TypeID);
4325   if (!Ty)
4326     return error("Invalid record");
4327 
4328   unsigned AddrSpace;
4329   if (!NewRecord) {
4330     auto *PTy = dyn_cast<PointerType>(Ty);
4331     if (!PTy)
4332       return error("Invalid type for value");
4333     AddrSpace = PTy->getAddressSpace();
4334     TypeID = getContainedTypeID(TypeID);
4335     Ty = getTypeByID(TypeID);
4336     if (!Ty)
4337       return error("Missing element type for old-style indirect symbol");
4338   } else {
4339     AddrSpace = Record[OpNum++];
4340   }
4341 
4342   auto Val = Record[OpNum++];
4343   auto Linkage = Record[OpNum++];
4344   GlobalValue *NewGA;
4345   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4346       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4347     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4348                                 TheModule);
4349   else
4350     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4351                                 nullptr, TheModule);
4352 
4353   // Local linkage must have default visibility.
4354   // auto-upgrade `hidden` and `protected` for old bitcode.
4355   if (OpNum != Record.size()) {
4356     auto VisInd = OpNum++;
4357     if (!NewGA->hasLocalLinkage())
4358       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4359   }
4360   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4361       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4362     if (OpNum != Record.size()) {
4363       auto S = Record[OpNum++];
4364       // A GlobalValue with local linkage cannot have a DLL storage class.
4365       if (!NewGA->hasLocalLinkage())
4366         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4367     }
4368     else
4369       upgradeDLLImportExportLinkage(NewGA, Linkage);
4370     if (OpNum != Record.size())
4371       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4372     if (OpNum != Record.size())
4373       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4374   }
4375   if (OpNum != Record.size())
4376     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4377   inferDSOLocal(NewGA);
4378 
4379   // Check whether we have enough values to read a partition name.
4380   if (OpNum + 1 < Record.size()) {
4381     // Check Strtab has enough values for the partition.
4382     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4383       return error("Malformed partition, too large.");
4384     NewGA->setPartition(
4385         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4386   }
4387 
4388   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4389   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4390   return Error::success();
4391 }
4392 
4393 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4394                                  bool ShouldLazyLoadMetadata,
4395                                  ParserCallbacks Callbacks) {
4396   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4397   // has been set to true and we aren't attempting to preserve the existing
4398   // format in the bitcode (default action: load into the old debug format).
4399   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4400     TheModule->IsNewDbgInfoFormat =
4401         UseNewDbgInfoFormat &&
4402         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4403   }
4404 
4405   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4406   if (ResumeBit) {
4407     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4408       return JumpFailed;
4409   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4410     return Err;
4411 
4412   SmallVector<uint64_t, 64> Record;
4413 
4414   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4415   // finalize the datalayout before we run any of that code.
4416   bool ResolvedDataLayout = false;
4417   // In order to support importing modules with illegal data layout strings,
4418   // delay parsing the data layout string until after upgrades and overrides
4419   // have been applied, allowing to fix illegal data layout strings.
4420   // Initialize to the current module's layout string in case none is specified.
4421   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4422 
4423   auto ResolveDataLayout = [&]() -> Error {
4424     if (ResolvedDataLayout)
4425       return Error::success();
4426 
4427     // Datalayout and triple can't be parsed after this point.
4428     ResolvedDataLayout = true;
4429 
4430     // Auto-upgrade the layout string
4431     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4432         TentativeDataLayoutStr, TheModule->getTargetTriple());
4433 
4434     // Apply override
4435     if (Callbacks.DataLayout) {
4436       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4437               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4438         TentativeDataLayoutStr = *LayoutOverride;
4439     }
4440 
4441     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4442     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4443     if (!MaybeDL)
4444       return MaybeDL.takeError();
4445 
4446     TheModule->setDataLayout(MaybeDL.get());
4447     return Error::success();
4448   };
4449 
4450   // Read all the records for this module.
4451   while (true) {
4452     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4453     if (!MaybeEntry)
4454       return MaybeEntry.takeError();
4455     llvm::BitstreamEntry Entry = MaybeEntry.get();
4456 
4457     switch (Entry.Kind) {
4458     case BitstreamEntry::Error:
4459       return error("Malformed block");
4460     case BitstreamEntry::EndBlock:
4461       if (Error Err = ResolveDataLayout())
4462         return Err;
4463       return globalCleanup();
4464 
4465     case BitstreamEntry::SubBlock:
4466       switch (Entry.ID) {
4467       default:  // Skip unknown content.
4468         if (Error Err = Stream.SkipBlock())
4469           return Err;
4470         break;
4471       case bitc::BLOCKINFO_BLOCK_ID:
4472         if (Error Err = readBlockInfo())
4473           return Err;
4474         break;
4475       case bitc::PARAMATTR_BLOCK_ID:
4476         if (Error Err = parseAttributeBlock())
4477           return Err;
4478         break;
4479       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4480         if (Error Err = parseAttributeGroupBlock())
4481           return Err;
4482         break;
4483       case bitc::TYPE_BLOCK_ID_NEW:
4484         if (Error Err = parseTypeTable())
4485           return Err;
4486         break;
4487       case bitc::VALUE_SYMTAB_BLOCK_ID:
4488         if (!SeenValueSymbolTable) {
4489           // Either this is an old form VST without function index and an
4490           // associated VST forward declaration record (which would have caused
4491           // the VST to be jumped to and parsed before it was encountered
4492           // normally in the stream), or there were no function blocks to
4493           // trigger an earlier parsing of the VST.
4494           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4495           if (Error Err = parseValueSymbolTable())
4496             return Err;
4497           SeenValueSymbolTable = true;
4498         } else {
4499           // We must have had a VST forward declaration record, which caused
4500           // the parser to jump to and parse the VST earlier.
4501           assert(VSTOffset > 0);
4502           if (Error Err = Stream.SkipBlock())
4503             return Err;
4504         }
4505         break;
4506       case bitc::CONSTANTS_BLOCK_ID:
4507         if (Error Err = parseConstants())
4508           return Err;
4509         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4510           return Err;
4511         break;
4512       case bitc::METADATA_BLOCK_ID:
4513         if (ShouldLazyLoadMetadata) {
4514           if (Error Err = rememberAndSkipMetadata())
4515             return Err;
4516           break;
4517         }
4518         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4519         if (Error Err = MDLoader->parseModuleMetadata())
4520           return Err;
4521         break;
4522       case bitc::METADATA_KIND_BLOCK_ID:
4523         if (Error Err = MDLoader->parseMetadataKinds())
4524           return Err;
4525         break;
4526       case bitc::FUNCTION_BLOCK_ID:
4527         if (Error Err = ResolveDataLayout())
4528           return Err;
4529 
4530         // If this is the first function body we've seen, reverse the
4531         // FunctionsWithBodies list.
4532         if (!SeenFirstFunctionBody) {
4533           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4534           if (Error Err = globalCleanup())
4535             return Err;
4536           SeenFirstFunctionBody = true;
4537         }
4538 
4539         if (VSTOffset > 0) {
4540           // If we have a VST forward declaration record, make sure we
4541           // parse the VST now if we haven't already. It is needed to
4542           // set up the DeferredFunctionInfo vector for lazy reading.
4543           if (!SeenValueSymbolTable) {
4544             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4545               return Err;
4546             SeenValueSymbolTable = true;
4547             // Fall through so that we record the NextUnreadBit below.
4548             // This is necessary in case we have an anonymous function that
4549             // is later materialized. Since it will not have a VST entry we
4550             // need to fall back to the lazy parse to find its offset.
4551           } else {
4552             // If we have a VST forward declaration record, but have already
4553             // parsed the VST (just above, when the first function body was
4554             // encountered here), then we are resuming the parse after
4555             // materializing functions. The ResumeBit points to the
4556             // start of the last function block recorded in the
4557             // DeferredFunctionInfo map. Skip it.
4558             if (Error Err = Stream.SkipBlock())
4559               return Err;
4560             continue;
4561           }
4562         }
4563 
4564         // Support older bitcode files that did not have the function
4565         // index in the VST, nor a VST forward declaration record, as
4566         // well as anonymous functions that do not have VST entries.
4567         // Build the DeferredFunctionInfo vector on the fly.
4568         if (Error Err = rememberAndSkipFunctionBody())
4569           return Err;
4570 
4571         // Suspend parsing when we reach the function bodies. Subsequent
4572         // materialization calls will resume it when necessary. If the bitcode
4573         // file is old, the symbol table will be at the end instead and will not
4574         // have been seen yet. In this case, just finish the parse now.
4575         if (SeenValueSymbolTable) {
4576           NextUnreadBit = Stream.GetCurrentBitNo();
4577           // After the VST has been parsed, we need to make sure intrinsic name
4578           // are auto-upgraded.
4579           return globalCleanup();
4580         }
4581         break;
4582       case bitc::USELIST_BLOCK_ID:
4583         if (Error Err = parseUseLists())
4584           return Err;
4585         break;
4586       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4587         if (Error Err = parseOperandBundleTags())
4588           return Err;
4589         break;
4590       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4591         if (Error Err = parseSyncScopeNames())
4592           return Err;
4593         break;
4594       }
4595       continue;
4596 
4597     case BitstreamEntry::Record:
4598       // The interesting case.
4599       break;
4600     }
4601 
4602     // Read a record.
4603     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4604     if (!MaybeBitCode)
4605       return MaybeBitCode.takeError();
4606     switch (unsigned BitCode = MaybeBitCode.get()) {
4607     default: break;  // Default behavior, ignore unknown content.
4608     case bitc::MODULE_CODE_VERSION: {
4609       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4610       if (!VersionOrErr)
4611         return VersionOrErr.takeError();
4612       UseRelativeIDs = *VersionOrErr >= 1;
4613       break;
4614     }
4615     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4616       if (ResolvedDataLayout)
4617         return error("target triple too late in module");
4618       std::string S;
4619       if (convertToString(Record, 0, S))
4620         return error("Invalid record");
4621       TheModule->setTargetTriple(S);
4622       break;
4623     }
4624     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4625       if (ResolvedDataLayout)
4626         return error("datalayout too late in module");
4627       if (convertToString(Record, 0, TentativeDataLayoutStr))
4628         return error("Invalid record");
4629       break;
4630     }
4631     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4632       std::string S;
4633       if (convertToString(Record, 0, S))
4634         return error("Invalid record");
4635       TheModule->setModuleInlineAsm(S);
4636       break;
4637     }
4638     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4639       // Deprecated, but still needed to read old bitcode files.
4640       std::string S;
4641       if (convertToString(Record, 0, S))
4642         return error("Invalid record");
4643       // Ignore value.
4644       break;
4645     }
4646     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4647       std::string S;
4648       if (convertToString(Record, 0, S))
4649         return error("Invalid record");
4650       SectionTable.push_back(S);
4651       break;
4652     }
4653     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4654       std::string S;
4655       if (convertToString(Record, 0, S))
4656         return error("Invalid record");
4657       GCTable.push_back(S);
4658       break;
4659     }
4660     case bitc::MODULE_CODE_COMDAT:
4661       if (Error Err = parseComdatRecord(Record))
4662         return Err;
4663       break;
4664     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4665     // written by ThinLinkBitcodeWriter. See
4666     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4667     // record
4668     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4669     case bitc::MODULE_CODE_GLOBALVAR:
4670       if (Error Err = parseGlobalVarRecord(Record))
4671         return Err;
4672       break;
4673     case bitc::MODULE_CODE_FUNCTION:
4674       if (Error Err = ResolveDataLayout())
4675         return Err;
4676       if (Error Err = parseFunctionRecord(Record))
4677         return Err;
4678       break;
4679     case bitc::MODULE_CODE_IFUNC:
4680     case bitc::MODULE_CODE_ALIAS:
4681     case bitc::MODULE_CODE_ALIAS_OLD:
4682       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4683         return Err;
4684       break;
4685     /// MODULE_CODE_VSTOFFSET: [offset]
4686     case bitc::MODULE_CODE_VSTOFFSET:
4687       if (Record.empty())
4688         return error("Invalid record");
4689       // Note that we subtract 1 here because the offset is relative to one word
4690       // before the start of the identification or module block, which was
4691       // historically always the start of the regular bitcode header.
4692       VSTOffset = Record[0] - 1;
4693       break;
4694     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4695     case bitc::MODULE_CODE_SOURCE_FILENAME:
4696       SmallString<128> ValueName;
4697       if (convertToString(Record, 0, ValueName))
4698         return error("Invalid record");
4699       TheModule->setSourceFileName(ValueName);
4700       break;
4701     }
4702     Record.clear();
4703   }
4704   this->ValueTypeCallback = std::nullopt;
4705   return Error::success();
4706 }
4707 
4708 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4709                                       bool IsImporting,
4710                                       ParserCallbacks Callbacks) {
4711   TheModule = M;
4712   MetadataLoaderCallbacks MDCallbacks;
4713   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4714   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4715     return getContainedTypeID(I, J);
4716   };
4717   MDCallbacks.MDType = Callbacks.MDType;
4718   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4719   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4720 }
4721 
4722 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4723   if (!isa<PointerType>(PtrType))
4724     return error("Load/Store operand is not a pointer type");
4725   if (!PointerType::isLoadableOrStorableType(ValType))
4726     return error("Cannot load/store from pointer");
4727   return Error::success();
4728 }
4729 
4730 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4731                                              ArrayRef<unsigned> ArgTyIDs) {
4732   AttributeList Attrs = CB->getAttributes();
4733   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4734     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4735                                      Attribute::InAlloca}) {
4736       if (!Attrs.hasParamAttr(i, Kind) ||
4737           Attrs.getParamAttr(i, Kind).getValueAsType())
4738         continue;
4739 
4740       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4741       if (!PtrEltTy)
4742         return error("Missing element type for typed attribute upgrade");
4743 
4744       Attribute NewAttr;
4745       switch (Kind) {
4746       case Attribute::ByVal:
4747         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4748         break;
4749       case Attribute::StructRet:
4750         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4751         break;
4752       case Attribute::InAlloca:
4753         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4754         break;
4755       default:
4756         llvm_unreachable("not an upgraded type attribute");
4757       }
4758 
4759       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4760     }
4761   }
4762 
4763   if (CB->isInlineAsm()) {
4764     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4765     unsigned ArgNo = 0;
4766     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4767       if (!CI.hasArg())
4768         continue;
4769 
4770       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4771         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4772         if (!ElemTy)
4773           return error("Missing element type for inline asm upgrade");
4774         Attrs = Attrs.addParamAttribute(
4775             Context, ArgNo,
4776             Attribute::get(Context, Attribute::ElementType, ElemTy));
4777       }
4778 
4779       ArgNo++;
4780     }
4781   }
4782 
4783   switch (CB->getIntrinsicID()) {
4784   case Intrinsic::preserve_array_access_index:
4785   case Intrinsic::preserve_struct_access_index:
4786   case Intrinsic::aarch64_ldaxr:
4787   case Intrinsic::aarch64_ldxr:
4788   case Intrinsic::aarch64_stlxr:
4789   case Intrinsic::aarch64_stxr:
4790   case Intrinsic::arm_ldaex:
4791   case Intrinsic::arm_ldrex:
4792   case Intrinsic::arm_stlex:
4793   case Intrinsic::arm_strex: {
4794     unsigned ArgNo;
4795     switch (CB->getIntrinsicID()) {
4796     case Intrinsic::aarch64_stlxr:
4797     case Intrinsic::aarch64_stxr:
4798     case Intrinsic::arm_stlex:
4799     case Intrinsic::arm_strex:
4800       ArgNo = 1;
4801       break;
4802     default:
4803       ArgNo = 0;
4804       break;
4805     }
4806     if (!Attrs.getParamElementType(ArgNo)) {
4807       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4808       if (!ElTy)
4809         return error("Missing element type for elementtype upgrade");
4810       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4811       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4812     }
4813     break;
4814   }
4815   default:
4816     break;
4817   }
4818 
4819   CB->setAttributes(Attrs);
4820   return Error::success();
4821 }
4822 
4823 /// Lazily parse the specified function body block.
4824 Error BitcodeReader::parseFunctionBody(Function *F) {
4825   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4826     return Err;
4827 
4828   // Unexpected unresolved metadata when parsing function.
4829   if (MDLoader->hasFwdRefs())
4830     return error("Invalid function metadata: incoming forward references");
4831 
4832   InstructionList.clear();
4833   unsigned ModuleValueListSize = ValueList.size();
4834   unsigned ModuleMDLoaderSize = MDLoader->size();
4835 
4836   // Add all the function arguments to the value table.
4837   unsigned ArgNo = 0;
4838   unsigned FTyID = FunctionTypeIDs[F];
4839   for (Argument &I : F->args()) {
4840     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4841     assert(I.getType() == getTypeByID(ArgTyID) &&
4842            "Incorrect fully specified type for Function Argument");
4843     ValueList.push_back(&I, ArgTyID);
4844     ++ArgNo;
4845   }
4846   unsigned NextValueNo = ValueList.size();
4847   BasicBlock *CurBB = nullptr;
4848   unsigned CurBBNo = 0;
4849   // Block into which constant expressions from phi nodes are materialized.
4850   BasicBlock *PhiConstExprBB = nullptr;
4851   // Edge blocks for phi nodes into which constant expressions have been
4852   // expanded.
4853   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4854     ConstExprEdgeBBs;
4855 
4856   DebugLoc LastLoc;
4857   auto getLastInstruction = [&]() -> Instruction * {
4858     if (CurBB && !CurBB->empty())
4859       return &CurBB->back();
4860     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4861              !FunctionBBs[CurBBNo - 1]->empty())
4862       return &FunctionBBs[CurBBNo - 1]->back();
4863     return nullptr;
4864   };
4865 
4866   std::vector<OperandBundleDef> OperandBundles;
4867 
4868   // Read all the records.
4869   SmallVector<uint64_t, 64> Record;
4870 
4871   while (true) {
4872     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4873     if (!MaybeEntry)
4874       return MaybeEntry.takeError();
4875     llvm::BitstreamEntry Entry = MaybeEntry.get();
4876 
4877     switch (Entry.Kind) {
4878     case BitstreamEntry::Error:
4879       return error("Malformed block");
4880     case BitstreamEntry::EndBlock:
4881       goto OutOfRecordLoop;
4882 
4883     case BitstreamEntry::SubBlock:
4884       switch (Entry.ID) {
4885       default:  // Skip unknown content.
4886         if (Error Err = Stream.SkipBlock())
4887           return Err;
4888         break;
4889       case bitc::CONSTANTS_BLOCK_ID:
4890         if (Error Err = parseConstants())
4891           return Err;
4892         NextValueNo = ValueList.size();
4893         break;
4894       case bitc::VALUE_SYMTAB_BLOCK_ID:
4895         if (Error Err = parseValueSymbolTable())
4896           return Err;
4897         break;
4898       case bitc::METADATA_ATTACHMENT_ID:
4899         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4900           return Err;
4901         break;
4902       case bitc::METADATA_BLOCK_ID:
4903         assert(DeferredMetadataInfo.empty() &&
4904                "Must read all module-level metadata before function-level");
4905         if (Error Err = MDLoader->parseFunctionMetadata())
4906           return Err;
4907         break;
4908       case bitc::USELIST_BLOCK_ID:
4909         if (Error Err = parseUseLists())
4910           return Err;
4911         break;
4912       }
4913       continue;
4914 
4915     case BitstreamEntry::Record:
4916       // The interesting case.
4917       break;
4918     }
4919 
4920     // Read a record.
4921     Record.clear();
4922     Instruction *I = nullptr;
4923     unsigned ResTypeID = InvalidTypeID;
4924     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4925     if (!MaybeBitCode)
4926       return MaybeBitCode.takeError();
4927     switch (unsigned BitCode = MaybeBitCode.get()) {
4928     default: // Default behavior: reject
4929       return error("Invalid value");
4930     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4931       if (Record.empty() || Record[0] == 0)
4932         return error("Invalid record");
4933       // Create all the basic blocks for the function.
4934       FunctionBBs.resize(Record[0]);
4935 
4936       // See if anything took the address of blocks in this function.
4937       auto BBFRI = BasicBlockFwdRefs.find(F);
4938       if (BBFRI == BasicBlockFwdRefs.end()) {
4939         for (BasicBlock *&BB : FunctionBBs)
4940           BB = BasicBlock::Create(Context, "", F);
4941       } else {
4942         auto &BBRefs = BBFRI->second;
4943         // Check for invalid basic block references.
4944         if (BBRefs.size() > FunctionBBs.size())
4945           return error("Invalid ID");
4946         assert(!BBRefs.empty() && "Unexpected empty array");
4947         assert(!BBRefs.front() && "Invalid reference to entry block");
4948         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4949              ++I)
4950           if (I < RE && BBRefs[I]) {
4951             BBRefs[I]->insertInto(F);
4952             FunctionBBs[I] = BBRefs[I];
4953           } else {
4954             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4955           }
4956 
4957         // Erase from the table.
4958         BasicBlockFwdRefs.erase(BBFRI);
4959       }
4960 
4961       CurBB = FunctionBBs[0];
4962       continue;
4963     }
4964 
4965     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4966       // The record should not be emitted if it's an empty list.
4967       if (Record.empty())
4968         return error("Invalid record");
4969       // When we have the RARE case of a BlockAddress Constant that is not
4970       // scoped to the Function it refers to, we need to conservatively
4971       // materialize the referred to Function, regardless of whether or not
4972       // that Function will ultimately be linked, otherwise users of
4973       // BitcodeReader might start splicing out Function bodies such that we
4974       // might no longer be able to materialize the BlockAddress since the
4975       // BasicBlock (and entire body of the Function) the BlockAddress refers
4976       // to may have been moved. In the case that the user of BitcodeReader
4977       // decides ultimately not to link the Function body, materializing here
4978       // could be considered wasteful, but it's better than a deserialization
4979       // failure as described. This keeps BitcodeReader unaware of complex
4980       // linkage policy decisions such as those use by LTO, leaving those
4981       // decisions "one layer up."
4982       for (uint64_t ValID : Record)
4983         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4984           BackwardRefFunctions.push_back(F);
4985         else
4986           return error("Invalid record");
4987 
4988       continue;
4989 
4990     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4991       // This record indicates that the last instruction is at the same
4992       // location as the previous instruction with a location.
4993       I = getLastInstruction();
4994 
4995       if (!I)
4996         return error("Invalid record");
4997       I->setDebugLoc(LastLoc);
4998       I = nullptr;
4999       continue;
5000 
5001     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5002       I = getLastInstruction();
5003       if (!I || Record.size() < 4)
5004         return error("Invalid record");
5005 
5006       unsigned Line = Record[0], Col = Record[1];
5007       unsigned ScopeID = Record[2], IAID = Record[3];
5008       bool isImplicitCode = Record.size() == 5 && Record[4];
5009 
5010       MDNode *Scope = nullptr, *IA = nullptr;
5011       if (ScopeID) {
5012         Scope = dyn_cast_or_null<MDNode>(
5013             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5014         if (!Scope)
5015           return error("Invalid record");
5016       }
5017       if (IAID) {
5018         IA = dyn_cast_or_null<MDNode>(
5019             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5020         if (!IA)
5021           return error("Invalid record");
5022       }
5023       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5024                                 isImplicitCode);
5025       I->setDebugLoc(LastLoc);
5026       I = nullptr;
5027       continue;
5028     }
5029     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5030       unsigned OpNum = 0;
5031       Value *LHS;
5032       unsigned TypeID;
5033       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5034           OpNum+1 > Record.size())
5035         return error("Invalid record");
5036 
5037       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5038       if (Opc == -1)
5039         return error("Invalid record");
5040       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5041       ResTypeID = TypeID;
5042       InstructionList.push_back(I);
5043       if (OpNum < Record.size()) {
5044         if (isa<FPMathOperator>(I)) {
5045           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5046           if (FMF.any())
5047             I->setFastMathFlags(FMF);
5048         }
5049       }
5050       break;
5051     }
5052     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5053       unsigned OpNum = 0;
5054       Value *LHS, *RHS;
5055       unsigned TypeID;
5056       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5057           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5058                    CurBB) ||
5059           OpNum+1 > Record.size())
5060         return error("Invalid record");
5061 
5062       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5063       if (Opc == -1)
5064         return error("Invalid record");
5065       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5066       ResTypeID = TypeID;
5067       InstructionList.push_back(I);
5068       if (OpNum < Record.size()) {
5069         if (Opc == Instruction::Add ||
5070             Opc == Instruction::Sub ||
5071             Opc == Instruction::Mul ||
5072             Opc == Instruction::Shl) {
5073           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5074             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5075           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5076             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5077         } else if (Opc == Instruction::SDiv ||
5078                    Opc == Instruction::UDiv ||
5079                    Opc == Instruction::LShr ||
5080                    Opc == Instruction::AShr) {
5081           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5082             cast<BinaryOperator>(I)->setIsExact(true);
5083         } else if (Opc == Instruction::Or) {
5084           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5085             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5086         } else if (isa<FPMathOperator>(I)) {
5087           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5088           if (FMF.any())
5089             I->setFastMathFlags(FMF);
5090         }
5091       }
5092       break;
5093     }
5094     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5095       unsigned OpNum = 0;
5096       Value *Op;
5097       unsigned OpTypeID;
5098       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5099           OpNum + 1 > Record.size())
5100         return error("Invalid record");
5101 
5102       ResTypeID = Record[OpNum++];
5103       Type *ResTy = getTypeByID(ResTypeID);
5104       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5105 
5106       if (Opc == -1 || !ResTy)
5107         return error("Invalid record");
5108       Instruction *Temp = nullptr;
5109       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5110         if (Temp) {
5111           InstructionList.push_back(Temp);
5112           assert(CurBB && "No current BB?");
5113           Temp->insertInto(CurBB, CurBB->end());
5114         }
5115       } else {
5116         auto CastOp = (Instruction::CastOps)Opc;
5117         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5118           return error("Invalid cast");
5119         I = CastInst::Create(CastOp, Op, ResTy);
5120       }
5121 
5122       if (OpNum < Record.size()) {
5123         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5124           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5125             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5126         } else if (Opc == Instruction::Trunc) {
5127           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5128             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5129           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5130             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5131         }
5132       }
5133 
5134       InstructionList.push_back(I);
5135       break;
5136     }
5137     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5138     case bitc::FUNC_CODE_INST_GEP_OLD:
5139     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5140       unsigned OpNum = 0;
5141 
5142       unsigned TyID;
5143       Type *Ty;
5144       GEPNoWrapFlags NW;
5145 
5146       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5147         NW = toGEPNoWrapFlags(Record[OpNum++]);
5148         TyID = Record[OpNum++];
5149         Ty = getTypeByID(TyID);
5150       } else {
5151         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5152           NW = GEPNoWrapFlags::inBounds();
5153         TyID = InvalidTypeID;
5154         Ty = nullptr;
5155       }
5156 
5157       Value *BasePtr;
5158       unsigned BasePtrTypeID;
5159       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5160                            CurBB))
5161         return error("Invalid record");
5162 
5163       if (!Ty) {
5164         TyID = getContainedTypeID(BasePtrTypeID);
5165         if (BasePtr->getType()->isVectorTy())
5166           TyID = getContainedTypeID(TyID);
5167         Ty = getTypeByID(TyID);
5168       }
5169 
5170       SmallVector<Value*, 16> GEPIdx;
5171       while (OpNum != Record.size()) {
5172         Value *Op;
5173         unsigned OpTypeID;
5174         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5175           return error("Invalid record");
5176         GEPIdx.push_back(Op);
5177       }
5178 
5179       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5180       I = GEP;
5181 
5182       ResTypeID = TyID;
5183       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5184         auto GTI = std::next(gep_type_begin(I));
5185         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5186           unsigned SubType = 0;
5187           if (GTI.isStruct()) {
5188             ConstantInt *IdxC =
5189                 Idx->getType()->isVectorTy()
5190                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5191                     : cast<ConstantInt>(Idx);
5192             SubType = IdxC->getZExtValue();
5193           }
5194           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5195           ++GTI;
5196         }
5197       }
5198 
5199       // At this point ResTypeID is the result element type. We need a pointer
5200       // or vector of pointer to it.
5201       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5202       if (I->getType()->isVectorTy())
5203         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5204 
5205       InstructionList.push_back(I);
5206       GEP->setNoWrapFlags(NW);
5207       break;
5208     }
5209 
5210     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5211                                        // EXTRACTVAL: [opty, opval, n x indices]
5212       unsigned OpNum = 0;
5213       Value *Agg;
5214       unsigned AggTypeID;
5215       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5216         return error("Invalid record");
5217       Type *Ty = Agg->getType();
5218 
5219       unsigned RecSize = Record.size();
5220       if (OpNum == RecSize)
5221         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5222 
5223       SmallVector<unsigned, 4> EXTRACTVALIdx;
5224       ResTypeID = AggTypeID;
5225       for (; OpNum != RecSize; ++OpNum) {
5226         bool IsArray = Ty->isArrayTy();
5227         bool IsStruct = Ty->isStructTy();
5228         uint64_t Index = Record[OpNum];
5229 
5230         if (!IsStruct && !IsArray)
5231           return error("EXTRACTVAL: Invalid type");
5232         if ((unsigned)Index != Index)
5233           return error("Invalid value");
5234         if (IsStruct && Index >= Ty->getStructNumElements())
5235           return error("EXTRACTVAL: Invalid struct index");
5236         if (IsArray && Index >= Ty->getArrayNumElements())
5237           return error("EXTRACTVAL: Invalid array index");
5238         EXTRACTVALIdx.push_back((unsigned)Index);
5239 
5240         if (IsStruct) {
5241           Ty = Ty->getStructElementType(Index);
5242           ResTypeID = getContainedTypeID(ResTypeID, Index);
5243         } else {
5244           Ty = Ty->getArrayElementType();
5245           ResTypeID = getContainedTypeID(ResTypeID);
5246         }
5247       }
5248 
5249       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5250       InstructionList.push_back(I);
5251       break;
5252     }
5253 
5254     case bitc::FUNC_CODE_INST_INSERTVAL: {
5255                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5256       unsigned OpNum = 0;
5257       Value *Agg;
5258       unsigned AggTypeID;
5259       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5260         return error("Invalid record");
5261       Value *Val;
5262       unsigned ValTypeID;
5263       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5264         return error("Invalid record");
5265 
5266       unsigned RecSize = Record.size();
5267       if (OpNum == RecSize)
5268         return error("INSERTVAL: Invalid instruction with 0 indices");
5269 
5270       SmallVector<unsigned, 4> INSERTVALIdx;
5271       Type *CurTy = Agg->getType();
5272       for (; OpNum != RecSize; ++OpNum) {
5273         bool IsArray = CurTy->isArrayTy();
5274         bool IsStruct = CurTy->isStructTy();
5275         uint64_t Index = Record[OpNum];
5276 
5277         if (!IsStruct && !IsArray)
5278           return error("INSERTVAL: Invalid type");
5279         if ((unsigned)Index != Index)
5280           return error("Invalid value");
5281         if (IsStruct && Index >= CurTy->getStructNumElements())
5282           return error("INSERTVAL: Invalid struct index");
5283         if (IsArray && Index >= CurTy->getArrayNumElements())
5284           return error("INSERTVAL: Invalid array index");
5285 
5286         INSERTVALIdx.push_back((unsigned)Index);
5287         if (IsStruct)
5288           CurTy = CurTy->getStructElementType(Index);
5289         else
5290           CurTy = CurTy->getArrayElementType();
5291       }
5292 
5293       if (CurTy != Val->getType())
5294         return error("Inserted value type doesn't match aggregate type");
5295 
5296       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5297       ResTypeID = AggTypeID;
5298       InstructionList.push_back(I);
5299       break;
5300     }
5301 
5302     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5303       // obsolete form of select
5304       // handles select i1 ... in old bitcode
5305       unsigned OpNum = 0;
5306       Value *TrueVal, *FalseVal, *Cond;
5307       unsigned TypeID;
5308       Type *CondType = Type::getInt1Ty(Context);
5309       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5310                            CurBB) ||
5311           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5312                    FalseVal, CurBB) ||
5313           popValue(Record, OpNum, NextValueNo, CondType,
5314                    getVirtualTypeID(CondType), Cond, CurBB))
5315         return error("Invalid record");
5316 
5317       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5318       ResTypeID = TypeID;
5319       InstructionList.push_back(I);
5320       break;
5321     }
5322 
5323     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5324       // new form of select
5325       // handles select i1 or select [N x i1]
5326       unsigned OpNum = 0;
5327       Value *TrueVal, *FalseVal, *Cond;
5328       unsigned ValTypeID, CondTypeID;
5329       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5330                            CurBB) ||
5331           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5332                    FalseVal, CurBB) ||
5333           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5334         return error("Invalid record");
5335 
5336       // select condition can be either i1 or [N x i1]
5337       if (VectorType* vector_type =
5338           dyn_cast<VectorType>(Cond->getType())) {
5339         // expect <n x i1>
5340         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5341           return error("Invalid type for value");
5342       } else {
5343         // expect i1
5344         if (Cond->getType() != Type::getInt1Ty(Context))
5345           return error("Invalid type for value");
5346       }
5347 
5348       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5349       ResTypeID = ValTypeID;
5350       InstructionList.push_back(I);
5351       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5352         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5353         if (FMF.any())
5354           I->setFastMathFlags(FMF);
5355       }
5356       break;
5357     }
5358 
5359     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5360       unsigned OpNum = 0;
5361       Value *Vec, *Idx;
5362       unsigned VecTypeID, IdxTypeID;
5363       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5364           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5365         return error("Invalid record");
5366       if (!Vec->getType()->isVectorTy())
5367         return error("Invalid type for value");
5368       I = ExtractElementInst::Create(Vec, Idx);
5369       ResTypeID = getContainedTypeID(VecTypeID);
5370       InstructionList.push_back(I);
5371       break;
5372     }
5373 
5374     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5375       unsigned OpNum = 0;
5376       Value *Vec, *Elt, *Idx;
5377       unsigned VecTypeID, IdxTypeID;
5378       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5379         return error("Invalid record");
5380       if (!Vec->getType()->isVectorTy())
5381         return error("Invalid type for value");
5382       if (popValue(Record, OpNum, NextValueNo,
5383                    cast<VectorType>(Vec->getType())->getElementType(),
5384                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5385           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5386         return error("Invalid record");
5387       I = InsertElementInst::Create(Vec, Elt, Idx);
5388       ResTypeID = VecTypeID;
5389       InstructionList.push_back(I);
5390       break;
5391     }
5392 
5393     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5394       unsigned OpNum = 0;
5395       Value *Vec1, *Vec2, *Mask;
5396       unsigned Vec1TypeID;
5397       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5398                            CurBB) ||
5399           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5400                    Vec2, CurBB))
5401         return error("Invalid record");
5402 
5403       unsigned MaskTypeID;
5404       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5405         return error("Invalid record");
5406       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5407         return error("Invalid type for value");
5408 
5409       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5410       ResTypeID =
5411           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5412       InstructionList.push_back(I);
5413       break;
5414     }
5415 
5416     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5417       // Old form of ICmp/FCmp returning bool
5418       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5419       // both legal on vectors but had different behaviour.
5420     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5421       // FCmp/ICmp returning bool or vector of bool
5422 
5423       unsigned OpNum = 0;
5424       Value *LHS, *RHS;
5425       unsigned LHSTypeID;
5426       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5427           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5428                    CurBB))
5429         return error("Invalid record");
5430 
5431       if (OpNum >= Record.size())
5432         return error(
5433             "Invalid record: operand number exceeded available operands");
5434 
5435       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5436       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5437       FastMathFlags FMF;
5438       if (IsFP && Record.size() > OpNum+1)
5439         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5440 
5441       if (OpNum+1 != Record.size())
5442         return error("Invalid record");
5443 
5444       if (IsFP) {
5445         if (!CmpInst::isFPPredicate(PredVal))
5446           return error("Invalid fcmp predicate");
5447         I = new FCmpInst(PredVal, LHS, RHS);
5448       } else {
5449         if (!CmpInst::isIntPredicate(PredVal))
5450           return error("Invalid icmp predicate");
5451         I = new ICmpInst(PredVal, LHS, RHS);
5452       }
5453 
5454       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5455       if (LHS->getType()->isVectorTy())
5456         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5457 
5458       if (FMF.any())
5459         I->setFastMathFlags(FMF);
5460       InstructionList.push_back(I);
5461       break;
5462     }
5463 
5464     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5465       {
5466         unsigned Size = Record.size();
5467         if (Size == 0) {
5468           I = ReturnInst::Create(Context);
5469           InstructionList.push_back(I);
5470           break;
5471         }
5472 
5473         unsigned OpNum = 0;
5474         Value *Op = nullptr;
5475         unsigned OpTypeID;
5476         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5477           return error("Invalid record");
5478         if (OpNum != Record.size())
5479           return error("Invalid record");
5480 
5481         I = ReturnInst::Create(Context, Op);
5482         InstructionList.push_back(I);
5483         break;
5484       }
5485     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5486       if (Record.size() != 1 && Record.size() != 3)
5487         return error("Invalid record");
5488       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5489       if (!TrueDest)
5490         return error("Invalid record");
5491 
5492       if (Record.size() == 1) {
5493         I = BranchInst::Create(TrueDest);
5494         InstructionList.push_back(I);
5495       }
5496       else {
5497         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5498         Type *CondType = Type::getInt1Ty(Context);
5499         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5500                                getVirtualTypeID(CondType), CurBB);
5501         if (!FalseDest || !Cond)
5502           return error("Invalid record");
5503         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5504         InstructionList.push_back(I);
5505       }
5506       break;
5507     }
5508     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5509       if (Record.size() != 1 && Record.size() != 2)
5510         return error("Invalid record");
5511       unsigned Idx = 0;
5512       Type *TokenTy = Type::getTokenTy(Context);
5513       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5514                                    getVirtualTypeID(TokenTy), CurBB);
5515       if (!CleanupPad)
5516         return error("Invalid record");
5517       BasicBlock *UnwindDest = nullptr;
5518       if (Record.size() == 2) {
5519         UnwindDest = getBasicBlock(Record[Idx++]);
5520         if (!UnwindDest)
5521           return error("Invalid record");
5522       }
5523 
5524       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5525       InstructionList.push_back(I);
5526       break;
5527     }
5528     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5529       if (Record.size() != 2)
5530         return error("Invalid record");
5531       unsigned Idx = 0;
5532       Type *TokenTy = Type::getTokenTy(Context);
5533       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5534                                  getVirtualTypeID(TokenTy), CurBB);
5535       if (!CatchPad)
5536         return error("Invalid record");
5537       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5538       if (!BB)
5539         return error("Invalid record");
5540 
5541       I = CatchReturnInst::Create(CatchPad, BB);
5542       InstructionList.push_back(I);
5543       break;
5544     }
5545     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5546       // We must have, at minimum, the outer scope and the number of arguments.
5547       if (Record.size() < 2)
5548         return error("Invalid record");
5549 
5550       unsigned Idx = 0;
5551 
5552       Type *TokenTy = Type::getTokenTy(Context);
5553       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5554                                   getVirtualTypeID(TokenTy), CurBB);
5555       if (!ParentPad)
5556         return error("Invalid record");
5557 
5558       unsigned NumHandlers = Record[Idx++];
5559 
5560       SmallVector<BasicBlock *, 2> Handlers;
5561       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5562         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5563         if (!BB)
5564           return error("Invalid record");
5565         Handlers.push_back(BB);
5566       }
5567 
5568       BasicBlock *UnwindDest = nullptr;
5569       if (Idx + 1 == Record.size()) {
5570         UnwindDest = getBasicBlock(Record[Idx++]);
5571         if (!UnwindDest)
5572           return error("Invalid record");
5573       }
5574 
5575       if (Record.size() != Idx)
5576         return error("Invalid record");
5577 
5578       auto *CatchSwitch =
5579           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5580       for (BasicBlock *Handler : Handlers)
5581         CatchSwitch->addHandler(Handler);
5582       I = CatchSwitch;
5583       ResTypeID = getVirtualTypeID(I->getType());
5584       InstructionList.push_back(I);
5585       break;
5586     }
5587     case bitc::FUNC_CODE_INST_CATCHPAD:
5588     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5589       // We must have, at minimum, the outer scope and the number of arguments.
5590       if (Record.size() < 2)
5591         return error("Invalid record");
5592 
5593       unsigned Idx = 0;
5594 
5595       Type *TokenTy = Type::getTokenTy(Context);
5596       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5597                                   getVirtualTypeID(TokenTy), CurBB);
5598       if (!ParentPad)
5599         return error("Invald record");
5600 
5601       unsigned NumArgOperands = Record[Idx++];
5602 
5603       SmallVector<Value *, 2> Args;
5604       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5605         Value *Val;
5606         unsigned ValTypeID;
5607         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5608           return error("Invalid record");
5609         Args.push_back(Val);
5610       }
5611 
5612       if (Record.size() != Idx)
5613         return error("Invalid record");
5614 
5615       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5616         I = CleanupPadInst::Create(ParentPad, Args);
5617       else
5618         I = CatchPadInst::Create(ParentPad, Args);
5619       ResTypeID = getVirtualTypeID(I->getType());
5620       InstructionList.push_back(I);
5621       break;
5622     }
5623     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5624       // Check magic
5625       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5626         // "New" SwitchInst format with case ranges. The changes to write this
5627         // format were reverted but we still recognize bitcode that uses it.
5628         // Hopefully someday we will have support for case ranges and can use
5629         // this format again.
5630 
5631         unsigned OpTyID = Record[1];
5632         Type *OpTy = getTypeByID(OpTyID);
5633         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5634 
5635         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5636         BasicBlock *Default = getBasicBlock(Record[3]);
5637         if (!OpTy || !Cond || !Default)
5638           return error("Invalid record");
5639 
5640         unsigned NumCases = Record[4];
5641 
5642         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5643         InstructionList.push_back(SI);
5644 
5645         unsigned CurIdx = 5;
5646         for (unsigned i = 0; i != NumCases; ++i) {
5647           SmallVector<ConstantInt*, 1> CaseVals;
5648           unsigned NumItems = Record[CurIdx++];
5649           for (unsigned ci = 0; ci != NumItems; ++ci) {
5650             bool isSingleNumber = Record[CurIdx++];
5651 
5652             APInt Low;
5653             unsigned ActiveWords = 1;
5654             if (ValueBitWidth > 64)
5655               ActiveWords = Record[CurIdx++];
5656             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5657                                 ValueBitWidth);
5658             CurIdx += ActiveWords;
5659 
5660             if (!isSingleNumber) {
5661               ActiveWords = 1;
5662               if (ValueBitWidth > 64)
5663                 ActiveWords = Record[CurIdx++];
5664               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5665                                          ValueBitWidth);
5666               CurIdx += ActiveWords;
5667 
5668               // FIXME: It is not clear whether values in the range should be
5669               // compared as signed or unsigned values. The partially
5670               // implemented changes that used this format in the past used
5671               // unsigned comparisons.
5672               for ( ; Low.ule(High); ++Low)
5673                 CaseVals.push_back(ConstantInt::get(Context, Low));
5674             } else
5675               CaseVals.push_back(ConstantInt::get(Context, Low));
5676           }
5677           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5678           for (ConstantInt *Cst : CaseVals)
5679             SI->addCase(Cst, DestBB);
5680         }
5681         I = SI;
5682         break;
5683       }
5684 
5685       // Old SwitchInst format without case ranges.
5686 
5687       if (Record.size() < 3 || (Record.size() & 1) == 0)
5688         return error("Invalid record");
5689       unsigned OpTyID = Record[0];
5690       Type *OpTy = getTypeByID(OpTyID);
5691       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5692       BasicBlock *Default = getBasicBlock(Record[2]);
5693       if (!OpTy || !Cond || !Default)
5694         return error("Invalid record");
5695       unsigned NumCases = (Record.size()-3)/2;
5696       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5697       InstructionList.push_back(SI);
5698       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5699         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5700             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5701         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5702         if (!CaseVal || !DestBB) {
5703           delete SI;
5704           return error("Invalid record");
5705         }
5706         SI->addCase(CaseVal, DestBB);
5707       }
5708       I = SI;
5709       break;
5710     }
5711     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5712       if (Record.size() < 2)
5713         return error("Invalid record");
5714       unsigned OpTyID = Record[0];
5715       Type *OpTy = getTypeByID(OpTyID);
5716       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5717       if (!OpTy || !Address)
5718         return error("Invalid record");
5719       unsigned NumDests = Record.size()-2;
5720       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5721       InstructionList.push_back(IBI);
5722       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5723         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5724           IBI->addDestination(DestBB);
5725         } else {
5726           delete IBI;
5727           return error("Invalid record");
5728         }
5729       }
5730       I = IBI;
5731       break;
5732     }
5733 
5734     case bitc::FUNC_CODE_INST_INVOKE: {
5735       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5736       if (Record.size() < 4)
5737         return error("Invalid record");
5738       unsigned OpNum = 0;
5739       AttributeList PAL = getAttributes(Record[OpNum++]);
5740       unsigned CCInfo = Record[OpNum++];
5741       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5742       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5743 
5744       unsigned FTyID = InvalidTypeID;
5745       FunctionType *FTy = nullptr;
5746       if ((CCInfo >> 13) & 1) {
5747         FTyID = Record[OpNum++];
5748         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5749         if (!FTy)
5750           return error("Explicit invoke type is not a function type");
5751       }
5752 
5753       Value *Callee;
5754       unsigned CalleeTypeID;
5755       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5756                            CurBB))
5757         return error("Invalid record");
5758 
5759       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5760       if (!CalleeTy)
5761         return error("Callee is not a pointer");
5762       if (!FTy) {
5763         FTyID = getContainedTypeID(CalleeTypeID);
5764         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5765         if (!FTy)
5766           return error("Callee is not of pointer to function type");
5767       }
5768       if (Record.size() < FTy->getNumParams() + OpNum)
5769         return error("Insufficient operands to call");
5770 
5771       SmallVector<Value*, 16> Ops;
5772       SmallVector<unsigned, 16> ArgTyIDs;
5773       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5774         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5775         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5776                                ArgTyID, CurBB));
5777         ArgTyIDs.push_back(ArgTyID);
5778         if (!Ops.back())
5779           return error("Invalid record");
5780       }
5781 
5782       if (!FTy->isVarArg()) {
5783         if (Record.size() != OpNum)
5784           return error("Invalid record");
5785       } else {
5786         // Read type/value pairs for varargs params.
5787         while (OpNum != Record.size()) {
5788           Value *Op;
5789           unsigned OpTypeID;
5790           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5791             return error("Invalid record");
5792           Ops.push_back(Op);
5793           ArgTyIDs.push_back(OpTypeID);
5794         }
5795       }
5796 
5797       // Upgrade the bundles if needed.
5798       if (!OperandBundles.empty())
5799         UpgradeOperandBundles(OperandBundles);
5800 
5801       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5802                              OperandBundles);
5803       ResTypeID = getContainedTypeID(FTyID);
5804       OperandBundles.clear();
5805       InstructionList.push_back(I);
5806       cast<InvokeInst>(I)->setCallingConv(
5807           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5808       cast<InvokeInst>(I)->setAttributes(PAL);
5809       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5810         I->deleteValue();
5811         return Err;
5812       }
5813 
5814       break;
5815     }
5816     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5817       unsigned Idx = 0;
5818       Value *Val = nullptr;
5819       unsigned ValTypeID;
5820       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5821         return error("Invalid record");
5822       I = ResumeInst::Create(Val);
5823       InstructionList.push_back(I);
5824       break;
5825     }
5826     case bitc::FUNC_CODE_INST_CALLBR: {
5827       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5828       unsigned OpNum = 0;
5829       AttributeList PAL = getAttributes(Record[OpNum++]);
5830       unsigned CCInfo = Record[OpNum++];
5831 
5832       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5833       unsigned NumIndirectDests = Record[OpNum++];
5834       SmallVector<BasicBlock *, 16> IndirectDests;
5835       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5836         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5837 
5838       unsigned FTyID = InvalidTypeID;
5839       FunctionType *FTy = nullptr;
5840       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5841         FTyID = Record[OpNum++];
5842         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5843         if (!FTy)
5844           return error("Explicit call type is not a function type");
5845       }
5846 
5847       Value *Callee;
5848       unsigned CalleeTypeID;
5849       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5850                            CurBB))
5851         return error("Invalid record");
5852 
5853       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5854       if (!OpTy)
5855         return error("Callee is not a pointer type");
5856       if (!FTy) {
5857         FTyID = getContainedTypeID(CalleeTypeID);
5858         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5859         if (!FTy)
5860           return error("Callee is not of pointer to function type");
5861       }
5862       if (Record.size() < FTy->getNumParams() + OpNum)
5863         return error("Insufficient operands to call");
5864 
5865       SmallVector<Value*, 16> Args;
5866       SmallVector<unsigned, 16> ArgTyIDs;
5867       // Read the fixed params.
5868       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5869         Value *Arg;
5870         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5871         if (FTy->getParamType(i)->isLabelTy())
5872           Arg = getBasicBlock(Record[OpNum]);
5873         else
5874           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5875                          ArgTyID, CurBB);
5876         if (!Arg)
5877           return error("Invalid record");
5878         Args.push_back(Arg);
5879         ArgTyIDs.push_back(ArgTyID);
5880       }
5881 
5882       // Read type/value pairs for varargs params.
5883       if (!FTy->isVarArg()) {
5884         if (OpNum != Record.size())
5885           return error("Invalid record");
5886       } else {
5887         while (OpNum != Record.size()) {
5888           Value *Op;
5889           unsigned OpTypeID;
5890           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5891             return error("Invalid record");
5892           Args.push_back(Op);
5893           ArgTyIDs.push_back(OpTypeID);
5894         }
5895       }
5896 
5897       // Upgrade the bundles if needed.
5898       if (!OperandBundles.empty())
5899         UpgradeOperandBundles(OperandBundles);
5900 
5901       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5902         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5903         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5904           return CI.Type == InlineAsm::isLabel;
5905         };
5906         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5907           // Upgrade explicit blockaddress arguments to label constraints.
5908           // Verify that the last arguments are blockaddress arguments that
5909           // match the indirect destinations. Clang always generates callbr
5910           // in this form. We could support reordering with more effort.
5911           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5912           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5913             unsigned LabelNo = ArgNo - FirstBlockArg;
5914             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5915             if (!BA || BA->getFunction() != F ||
5916                 LabelNo > IndirectDests.size() ||
5917                 BA->getBasicBlock() != IndirectDests[LabelNo])
5918               return error("callbr argument does not match indirect dest");
5919           }
5920 
5921           // Remove blockaddress arguments.
5922           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5923           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5924 
5925           // Recreate the function type with less arguments.
5926           SmallVector<Type *> ArgTys;
5927           for (Value *Arg : Args)
5928             ArgTys.push_back(Arg->getType());
5929           FTy =
5930               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5931 
5932           // Update constraint string to use label constraints.
5933           std::string Constraints = IA->getConstraintString();
5934           unsigned ArgNo = 0;
5935           size_t Pos = 0;
5936           for (const auto &CI : ConstraintInfo) {
5937             if (CI.hasArg()) {
5938               if (ArgNo >= FirstBlockArg)
5939                 Constraints.insert(Pos, "!");
5940               ++ArgNo;
5941             }
5942 
5943             // Go to next constraint in string.
5944             Pos = Constraints.find(',', Pos);
5945             if (Pos == std::string::npos)
5946               break;
5947             ++Pos;
5948           }
5949 
5950           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5951                                   IA->hasSideEffects(), IA->isAlignStack(),
5952                                   IA->getDialect(), IA->canThrow());
5953         }
5954       }
5955 
5956       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5957                              OperandBundles);
5958       ResTypeID = getContainedTypeID(FTyID);
5959       OperandBundles.clear();
5960       InstructionList.push_back(I);
5961       cast<CallBrInst>(I)->setCallingConv(
5962           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5963       cast<CallBrInst>(I)->setAttributes(PAL);
5964       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5965         I->deleteValue();
5966         return Err;
5967       }
5968       break;
5969     }
5970     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5971       I = new UnreachableInst(Context);
5972       InstructionList.push_back(I);
5973       break;
5974     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5975       if (Record.empty())
5976         return error("Invalid phi record");
5977       // The first record specifies the type.
5978       unsigned TyID = Record[0];
5979       Type *Ty = getTypeByID(TyID);
5980       if (!Ty)
5981         return error("Invalid phi record");
5982 
5983       // Phi arguments are pairs of records of [value, basic block].
5984       // There is an optional final record for fast-math-flags if this phi has a
5985       // floating-point type.
5986       size_t NumArgs = (Record.size() - 1) / 2;
5987       PHINode *PN = PHINode::Create(Ty, NumArgs);
5988       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5989         PN->deleteValue();
5990         return error("Invalid phi record");
5991       }
5992       InstructionList.push_back(PN);
5993 
5994       SmallDenseMap<BasicBlock *, Value *> Args;
5995       for (unsigned i = 0; i != NumArgs; i++) {
5996         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5997         if (!BB) {
5998           PN->deleteValue();
5999           return error("Invalid phi BB");
6000         }
6001 
6002         // Phi nodes may contain the same predecessor multiple times, in which
6003         // case the incoming value must be identical. Directly reuse the already
6004         // seen value here, to avoid expanding a constant expression multiple
6005         // times.
6006         auto It = Args.find(BB);
6007         if (It != Args.end()) {
6008           PN->addIncoming(It->second, BB);
6009           continue;
6010         }
6011 
6012         // If there already is a block for this edge (from a different phi),
6013         // use it.
6014         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6015         if (!EdgeBB) {
6016           // Otherwise, use a temporary block (that we will discard if it
6017           // turns out to be unnecessary).
6018           if (!PhiConstExprBB)
6019             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6020           EdgeBB = PhiConstExprBB;
6021         }
6022 
6023         // With the new function encoding, it is possible that operands have
6024         // negative IDs (for forward references).  Use a signed VBR
6025         // representation to keep the encoding small.
6026         Value *V;
6027         if (UseRelativeIDs)
6028           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6029         else
6030           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6031         if (!V) {
6032           PN->deleteValue();
6033           PhiConstExprBB->eraseFromParent();
6034           return error("Invalid phi record");
6035         }
6036 
6037         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6038           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6039           PhiConstExprBB = nullptr;
6040         }
6041         PN->addIncoming(V, BB);
6042         Args.insert({BB, V});
6043       }
6044       I = PN;
6045       ResTypeID = TyID;
6046 
6047       // If there are an even number of records, the final record must be FMF.
6048       if (Record.size() % 2 == 0) {
6049         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6050         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6051         if (FMF.any())
6052           I->setFastMathFlags(FMF);
6053       }
6054 
6055       break;
6056     }
6057 
6058     case bitc::FUNC_CODE_INST_LANDINGPAD:
6059     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6060       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6061       unsigned Idx = 0;
6062       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6063         if (Record.size() < 3)
6064           return error("Invalid record");
6065       } else {
6066         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6067         if (Record.size() < 4)
6068           return error("Invalid record");
6069       }
6070       ResTypeID = Record[Idx++];
6071       Type *Ty = getTypeByID(ResTypeID);
6072       if (!Ty)
6073         return error("Invalid record");
6074       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6075         Value *PersFn = nullptr;
6076         unsigned PersFnTypeID;
6077         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6078                              nullptr))
6079           return error("Invalid record");
6080 
6081         if (!F->hasPersonalityFn())
6082           F->setPersonalityFn(cast<Constant>(PersFn));
6083         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6084           return error("Personality function mismatch");
6085       }
6086 
6087       bool IsCleanup = !!Record[Idx++];
6088       unsigned NumClauses = Record[Idx++];
6089       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6090       LP->setCleanup(IsCleanup);
6091       for (unsigned J = 0; J != NumClauses; ++J) {
6092         LandingPadInst::ClauseType CT =
6093           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6094         Value *Val;
6095         unsigned ValTypeID;
6096 
6097         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6098                              nullptr)) {
6099           delete LP;
6100           return error("Invalid record");
6101         }
6102 
6103         assert((CT != LandingPadInst::Catch ||
6104                 !isa<ArrayType>(Val->getType())) &&
6105                "Catch clause has a invalid type!");
6106         assert((CT != LandingPadInst::Filter ||
6107                 isa<ArrayType>(Val->getType())) &&
6108                "Filter clause has invalid type!");
6109         LP->addClause(cast<Constant>(Val));
6110       }
6111 
6112       I = LP;
6113       InstructionList.push_back(I);
6114       break;
6115     }
6116 
6117     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6118       if (Record.size() != 4 && Record.size() != 5)
6119         return error("Invalid record");
6120       using APV = AllocaPackedValues;
6121       const uint64_t Rec = Record[3];
6122       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6123       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6124       unsigned TyID = Record[0];
6125       Type *Ty = getTypeByID(TyID);
6126       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6127         TyID = getContainedTypeID(TyID);
6128         Ty = getTypeByID(TyID);
6129         if (!Ty)
6130           return error("Missing element type for old-style alloca");
6131       }
6132       unsigned OpTyID = Record[1];
6133       Type *OpTy = getTypeByID(OpTyID);
6134       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6135       MaybeAlign Align;
6136       uint64_t AlignExp =
6137           Bitfield::get<APV::AlignLower>(Rec) |
6138           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6139       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6140         return Err;
6141       }
6142       if (!Ty || !Size)
6143         return error("Invalid record");
6144 
6145       const DataLayout &DL = TheModule->getDataLayout();
6146       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6147 
6148       SmallPtrSet<Type *, 4> Visited;
6149       if (!Align && !Ty->isSized(&Visited))
6150         return error("alloca of unsized type");
6151       if (!Align)
6152         Align = DL.getPrefTypeAlign(Ty);
6153 
6154       if (!Size->getType()->isIntegerTy())
6155         return error("alloca element count must have integer type");
6156 
6157       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6158       AI->setUsedWithInAlloca(InAlloca);
6159       AI->setSwiftError(SwiftError);
6160       I = AI;
6161       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6162       InstructionList.push_back(I);
6163       break;
6164     }
6165     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6166       unsigned OpNum = 0;
6167       Value *Op;
6168       unsigned OpTypeID;
6169       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6170           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6171         return error("Invalid record");
6172 
6173       if (!isa<PointerType>(Op->getType()))
6174         return error("Load operand is not a pointer type");
6175 
6176       Type *Ty = nullptr;
6177       if (OpNum + 3 == Record.size()) {
6178         ResTypeID = Record[OpNum++];
6179         Ty = getTypeByID(ResTypeID);
6180       } else {
6181         ResTypeID = getContainedTypeID(OpTypeID);
6182         Ty = getTypeByID(ResTypeID);
6183       }
6184 
6185       if (!Ty)
6186         return error("Missing load type");
6187 
6188       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6189         return Err;
6190 
6191       MaybeAlign Align;
6192       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6193         return Err;
6194       SmallPtrSet<Type *, 4> Visited;
6195       if (!Align && !Ty->isSized(&Visited))
6196         return error("load of unsized type");
6197       if (!Align)
6198         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6199       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6200       InstructionList.push_back(I);
6201       break;
6202     }
6203     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6204        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6205       unsigned OpNum = 0;
6206       Value *Op;
6207       unsigned OpTypeID;
6208       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6209           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6210         return error("Invalid record");
6211 
6212       if (!isa<PointerType>(Op->getType()))
6213         return error("Load operand is not a pointer type");
6214 
6215       Type *Ty = nullptr;
6216       if (OpNum + 5 == Record.size()) {
6217         ResTypeID = Record[OpNum++];
6218         Ty = getTypeByID(ResTypeID);
6219       } else {
6220         ResTypeID = getContainedTypeID(OpTypeID);
6221         Ty = getTypeByID(ResTypeID);
6222       }
6223 
6224       if (!Ty)
6225         return error("Missing atomic load type");
6226 
6227       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6228         return Err;
6229 
6230       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6231       if (Ordering == AtomicOrdering::NotAtomic ||
6232           Ordering == AtomicOrdering::Release ||
6233           Ordering == AtomicOrdering::AcquireRelease)
6234         return error("Invalid record");
6235       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6236         return error("Invalid record");
6237       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6238 
6239       MaybeAlign Align;
6240       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6241         return Err;
6242       if (!Align)
6243         return error("Alignment missing from atomic load");
6244       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6245       InstructionList.push_back(I);
6246       break;
6247     }
6248     case bitc::FUNC_CODE_INST_STORE:
6249     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6250       unsigned OpNum = 0;
6251       Value *Val, *Ptr;
6252       unsigned PtrTypeID, ValTypeID;
6253       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6254         return error("Invalid record");
6255 
6256       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6257         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6258           return error("Invalid record");
6259       } else {
6260         ValTypeID = getContainedTypeID(PtrTypeID);
6261         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6262                      ValTypeID, Val, CurBB))
6263           return error("Invalid record");
6264       }
6265 
6266       if (OpNum + 2 != Record.size())
6267         return error("Invalid record");
6268 
6269       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6270         return Err;
6271       MaybeAlign Align;
6272       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6273         return Err;
6274       SmallPtrSet<Type *, 4> Visited;
6275       if (!Align && !Val->getType()->isSized(&Visited))
6276         return error("store of unsized type");
6277       if (!Align)
6278         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6279       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6280       InstructionList.push_back(I);
6281       break;
6282     }
6283     case bitc::FUNC_CODE_INST_STOREATOMIC:
6284     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6285       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6286       unsigned OpNum = 0;
6287       Value *Val, *Ptr;
6288       unsigned PtrTypeID, ValTypeID;
6289       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6290           !isa<PointerType>(Ptr->getType()))
6291         return error("Invalid record");
6292       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6293         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6294           return error("Invalid record");
6295       } else {
6296         ValTypeID = getContainedTypeID(PtrTypeID);
6297         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6298                      ValTypeID, Val, CurBB))
6299           return error("Invalid record");
6300       }
6301 
6302       if (OpNum + 4 != Record.size())
6303         return error("Invalid record");
6304 
6305       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6306         return Err;
6307       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6308       if (Ordering == AtomicOrdering::NotAtomic ||
6309           Ordering == AtomicOrdering::Acquire ||
6310           Ordering == AtomicOrdering::AcquireRelease)
6311         return error("Invalid record");
6312       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6313       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6314         return error("Invalid record");
6315 
6316       MaybeAlign Align;
6317       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6318         return Err;
6319       if (!Align)
6320         return error("Alignment missing from atomic store");
6321       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6322       InstructionList.push_back(I);
6323       break;
6324     }
6325     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6326       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6327       // failure_ordering?, weak?]
6328       const size_t NumRecords = Record.size();
6329       unsigned OpNum = 0;
6330       Value *Ptr = nullptr;
6331       unsigned PtrTypeID;
6332       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6333         return error("Invalid record");
6334 
6335       if (!isa<PointerType>(Ptr->getType()))
6336         return error("Cmpxchg operand is not a pointer type");
6337 
6338       Value *Cmp = nullptr;
6339       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6340       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6341                    CmpTypeID, Cmp, CurBB))
6342         return error("Invalid record");
6343 
6344       Value *New = nullptr;
6345       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6346                    New, CurBB) ||
6347           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6348         return error("Invalid record");
6349 
6350       const AtomicOrdering SuccessOrdering =
6351           getDecodedOrdering(Record[OpNum + 1]);
6352       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6353           SuccessOrdering == AtomicOrdering::Unordered)
6354         return error("Invalid record");
6355 
6356       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6357 
6358       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6359         return Err;
6360 
6361       const AtomicOrdering FailureOrdering =
6362           NumRecords < 7
6363               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6364               : getDecodedOrdering(Record[OpNum + 3]);
6365 
6366       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6367           FailureOrdering == AtomicOrdering::Unordered)
6368         return error("Invalid record");
6369 
6370       const Align Alignment(
6371           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6372 
6373       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6374                                 FailureOrdering, SSID);
6375       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6376 
6377       if (NumRecords < 8) {
6378         // Before weak cmpxchgs existed, the instruction simply returned the
6379         // value loaded from memory, so bitcode files from that era will be
6380         // expecting the first component of a modern cmpxchg.
6381         I->insertInto(CurBB, CurBB->end());
6382         I = ExtractValueInst::Create(I, 0);
6383         ResTypeID = CmpTypeID;
6384       } else {
6385         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6386         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6387         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6388       }
6389 
6390       InstructionList.push_back(I);
6391       break;
6392     }
6393     case bitc::FUNC_CODE_INST_CMPXCHG: {
6394       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6395       // failure_ordering, weak, align?]
6396       const size_t NumRecords = Record.size();
6397       unsigned OpNum = 0;
6398       Value *Ptr = nullptr;
6399       unsigned PtrTypeID;
6400       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6401         return error("Invalid record");
6402 
6403       if (!isa<PointerType>(Ptr->getType()))
6404         return error("Cmpxchg operand is not a pointer type");
6405 
6406       Value *Cmp = nullptr;
6407       unsigned CmpTypeID;
6408       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6409         return error("Invalid record");
6410 
6411       Value *Val = nullptr;
6412       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6413                    CurBB))
6414         return error("Invalid record");
6415 
6416       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6417         return error("Invalid record");
6418 
6419       const bool IsVol = Record[OpNum];
6420 
6421       const AtomicOrdering SuccessOrdering =
6422           getDecodedOrdering(Record[OpNum + 1]);
6423       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6424         return error("Invalid cmpxchg success ordering");
6425 
6426       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6427 
6428       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6429         return Err;
6430 
6431       const AtomicOrdering FailureOrdering =
6432           getDecodedOrdering(Record[OpNum + 3]);
6433       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6434         return error("Invalid cmpxchg failure ordering");
6435 
6436       const bool IsWeak = Record[OpNum + 4];
6437 
6438       MaybeAlign Alignment;
6439 
6440       if (NumRecords == (OpNum + 6)) {
6441         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6442           return Err;
6443       }
6444       if (!Alignment)
6445         Alignment =
6446             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6447 
6448       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6449                                 FailureOrdering, SSID);
6450       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6451       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6452 
6453       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6454       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6455 
6456       InstructionList.push_back(I);
6457       break;
6458     }
6459     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6460     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6461       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6462       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6463       const size_t NumRecords = Record.size();
6464       unsigned OpNum = 0;
6465 
6466       Value *Ptr = nullptr;
6467       unsigned PtrTypeID;
6468       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6469         return error("Invalid record");
6470 
6471       if (!isa<PointerType>(Ptr->getType()))
6472         return error("Invalid record");
6473 
6474       Value *Val = nullptr;
6475       unsigned ValTypeID = InvalidTypeID;
6476       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6477         ValTypeID = getContainedTypeID(PtrTypeID);
6478         if (popValue(Record, OpNum, NextValueNo,
6479                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6480           return error("Invalid record");
6481       } else {
6482         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6483           return error("Invalid record");
6484       }
6485 
6486       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6487         return error("Invalid record");
6488 
6489       const AtomicRMWInst::BinOp Operation =
6490           getDecodedRMWOperation(Record[OpNum]);
6491       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6492           Operation > AtomicRMWInst::LAST_BINOP)
6493         return error("Invalid record");
6494 
6495       const bool IsVol = Record[OpNum + 1];
6496 
6497       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6498       if (Ordering == AtomicOrdering::NotAtomic ||
6499           Ordering == AtomicOrdering::Unordered)
6500         return error("Invalid record");
6501 
6502       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6503 
6504       MaybeAlign Alignment;
6505 
6506       if (NumRecords == (OpNum + 5)) {
6507         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6508           return Err;
6509       }
6510 
6511       if (!Alignment)
6512         Alignment =
6513             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6514 
6515       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6516       ResTypeID = ValTypeID;
6517       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6518 
6519       InstructionList.push_back(I);
6520       break;
6521     }
6522     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6523       if (2 != Record.size())
6524         return error("Invalid record");
6525       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6526       if (Ordering == AtomicOrdering::NotAtomic ||
6527           Ordering == AtomicOrdering::Unordered ||
6528           Ordering == AtomicOrdering::Monotonic)
6529         return error("Invalid record");
6530       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6531       I = new FenceInst(Context, Ordering, SSID);
6532       InstructionList.push_back(I);
6533       break;
6534     }
6535     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6536       // DbgLabelRecords are placed after the Instructions that they are
6537       // attached to.
6538       SeenDebugRecord = true;
6539       Instruction *Inst = getLastInstruction();
6540       if (!Inst)
6541         return error("Invalid dbg record: missing instruction");
6542       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6543       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6544       Inst->getParent()->insertDbgRecordBefore(
6545           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6546       continue; // This isn't an instruction.
6547     }
6548     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6549     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6550     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6551     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6552       // DbgVariableRecords are placed after the Instructions that they are
6553       // attached to.
6554       SeenDebugRecord = true;
6555       Instruction *Inst = getLastInstruction();
6556       if (!Inst)
6557         return error("Invalid dbg record: missing instruction");
6558 
6559       // First 3 fields are common to all kinds:
6560       //   DILocation, DILocalVariable, DIExpression
6561       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6562       //   ..., LocationMetadata
6563       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6564       //   ..., Value
6565       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6566       //   ..., LocationMetadata
6567       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6568       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6569       unsigned Slot = 0;
6570       // Common fields (0-2).
6571       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6572       DILocalVariable *Var =
6573           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6574       DIExpression *Expr =
6575           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6576 
6577       // Union field (3: LocationMetadata | Value).
6578       Metadata *RawLocation = nullptr;
6579       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6580         Value *V = nullptr;
6581         unsigned TyID = 0;
6582         // We never expect to see a fwd reference value here because
6583         // use-before-defs are encoded with the standard non-abbrev record
6584         // type (they'd require encoding the type too, and they're rare). As a
6585         // result, getValueTypePair only ever increments Slot by one here (once
6586         // for the value, never twice for value and type).
6587         unsigned SlotBefore = Slot;
6588         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6589           return error("Invalid dbg record: invalid value");
6590         (void)SlotBefore;
6591         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6592         RawLocation = ValueAsMetadata::get(V);
6593       } else {
6594         RawLocation = getFnMetadataByID(Record[Slot++]);
6595       }
6596 
6597       DbgVariableRecord *DVR = nullptr;
6598       switch (BitCode) {
6599       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6600       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6601         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6602                                     DbgVariableRecord::LocationType::Value);
6603         break;
6604       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6605         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6606                                     DbgVariableRecord::LocationType::Declare);
6607         break;
6608       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6609         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6610         DIExpression *AddrExpr =
6611             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6612         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6613         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6614                                     DIL);
6615         break;
6616       }
6617       default:
6618         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6619       }
6620       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6621       continue; // This isn't an instruction.
6622     }
6623     case bitc::FUNC_CODE_INST_CALL: {
6624       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6625       if (Record.size() < 3)
6626         return error("Invalid record");
6627 
6628       unsigned OpNum = 0;
6629       AttributeList PAL = getAttributes(Record[OpNum++]);
6630       unsigned CCInfo = Record[OpNum++];
6631 
6632       FastMathFlags FMF;
6633       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6634         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6635         if (!FMF.any())
6636           return error("Fast math flags indicator set for call with no FMF");
6637       }
6638 
6639       unsigned FTyID = InvalidTypeID;
6640       FunctionType *FTy = nullptr;
6641       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6642         FTyID = Record[OpNum++];
6643         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6644         if (!FTy)
6645           return error("Explicit call type is not a function type");
6646       }
6647 
6648       Value *Callee;
6649       unsigned CalleeTypeID;
6650       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6651                            CurBB))
6652         return error("Invalid record");
6653 
6654       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6655       if (!OpTy)
6656         return error("Callee is not a pointer type");
6657       if (!FTy) {
6658         FTyID = getContainedTypeID(CalleeTypeID);
6659         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6660         if (!FTy)
6661           return error("Callee is not of pointer to function type");
6662       }
6663       if (Record.size() < FTy->getNumParams() + OpNum)
6664         return error("Insufficient operands to call");
6665 
6666       SmallVector<Value*, 16> Args;
6667       SmallVector<unsigned, 16> ArgTyIDs;
6668       // Read the fixed params.
6669       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6670         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6671         if (FTy->getParamType(i)->isLabelTy())
6672           Args.push_back(getBasicBlock(Record[OpNum]));
6673         else
6674           Args.push_back(getValue(Record, OpNum, NextValueNo,
6675                                   FTy->getParamType(i), ArgTyID, CurBB));
6676         ArgTyIDs.push_back(ArgTyID);
6677         if (!Args.back())
6678           return error("Invalid record");
6679       }
6680 
6681       // Read type/value pairs for varargs params.
6682       if (!FTy->isVarArg()) {
6683         if (OpNum != Record.size())
6684           return error("Invalid record");
6685       } else {
6686         while (OpNum != Record.size()) {
6687           Value *Op;
6688           unsigned OpTypeID;
6689           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6690             return error("Invalid record");
6691           Args.push_back(Op);
6692           ArgTyIDs.push_back(OpTypeID);
6693         }
6694       }
6695 
6696       // Upgrade the bundles if needed.
6697       if (!OperandBundles.empty())
6698         UpgradeOperandBundles(OperandBundles);
6699 
6700       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6701       ResTypeID = getContainedTypeID(FTyID);
6702       OperandBundles.clear();
6703       InstructionList.push_back(I);
6704       cast<CallInst>(I)->setCallingConv(
6705           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6706       CallInst::TailCallKind TCK = CallInst::TCK_None;
6707       if (CCInfo & (1 << bitc::CALL_TAIL))
6708         TCK = CallInst::TCK_Tail;
6709       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6710         TCK = CallInst::TCK_MustTail;
6711       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6712         TCK = CallInst::TCK_NoTail;
6713       cast<CallInst>(I)->setTailCallKind(TCK);
6714       cast<CallInst>(I)->setAttributes(PAL);
6715       if (isa<DbgInfoIntrinsic>(I))
6716         SeenDebugIntrinsic = true;
6717       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6718         I->deleteValue();
6719         return Err;
6720       }
6721       if (FMF.any()) {
6722         if (!isa<FPMathOperator>(I))
6723           return error("Fast-math-flags specified for call without "
6724                        "floating-point scalar or vector return type");
6725         I->setFastMathFlags(FMF);
6726       }
6727       break;
6728     }
6729     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6730       if (Record.size() < 3)
6731         return error("Invalid record");
6732       unsigned OpTyID = Record[0];
6733       Type *OpTy = getTypeByID(OpTyID);
6734       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6735       ResTypeID = Record[2];
6736       Type *ResTy = getTypeByID(ResTypeID);
6737       if (!OpTy || !Op || !ResTy)
6738         return error("Invalid record");
6739       I = new VAArgInst(Op, ResTy);
6740       InstructionList.push_back(I);
6741       break;
6742     }
6743 
6744     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6745       // A call or an invoke can be optionally prefixed with some variable
6746       // number of operand bundle blocks.  These blocks are read into
6747       // OperandBundles and consumed at the next call or invoke instruction.
6748 
6749       if (Record.empty() || Record[0] >= BundleTags.size())
6750         return error("Invalid record");
6751 
6752       std::vector<Value *> Inputs;
6753 
6754       unsigned OpNum = 1;
6755       while (OpNum != Record.size()) {
6756         Value *Op;
6757         unsigned OpTypeID;
6758         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6759           return error("Invalid record");
6760         Inputs.push_back(Op);
6761       }
6762 
6763       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6764       continue;
6765     }
6766 
6767     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6768       unsigned OpNum = 0;
6769       Value *Op = nullptr;
6770       unsigned OpTypeID;
6771       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6772         return error("Invalid record");
6773       if (OpNum != Record.size())
6774         return error("Invalid record");
6775 
6776       I = new FreezeInst(Op);
6777       ResTypeID = OpTypeID;
6778       InstructionList.push_back(I);
6779       break;
6780     }
6781     }
6782 
6783     // Add instruction to end of current BB.  If there is no current BB, reject
6784     // this file.
6785     if (!CurBB) {
6786       I->deleteValue();
6787       return error("Invalid instruction with no BB");
6788     }
6789     if (!OperandBundles.empty()) {
6790       I->deleteValue();
6791       return error("Operand bundles found with no consumer");
6792     }
6793     I->insertInto(CurBB, CurBB->end());
6794 
6795     // If this was a terminator instruction, move to the next block.
6796     if (I->isTerminator()) {
6797       ++CurBBNo;
6798       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6799     }
6800 
6801     // Non-void values get registered in the value table for future use.
6802     if (!I->getType()->isVoidTy()) {
6803       assert(I->getType() == getTypeByID(ResTypeID) &&
6804              "Incorrect result type ID");
6805       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6806         return Err;
6807     }
6808   }
6809 
6810 OutOfRecordLoop:
6811 
6812   if (!OperandBundles.empty())
6813     return error("Operand bundles found with no consumer");
6814 
6815   // Check the function list for unresolved values.
6816   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6817     if (!A->getParent()) {
6818       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6819       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6820         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6821           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6822           delete A;
6823         }
6824       }
6825       return error("Never resolved value found in function");
6826     }
6827   }
6828 
6829   // Unexpected unresolved metadata about to be dropped.
6830   if (MDLoader->hasFwdRefs())
6831     return error("Invalid function metadata: outgoing forward refs");
6832 
6833   if (PhiConstExprBB)
6834     PhiConstExprBB->eraseFromParent();
6835 
6836   for (const auto &Pair : ConstExprEdgeBBs) {
6837     BasicBlock *From = Pair.first.first;
6838     BasicBlock *To = Pair.first.second;
6839     BasicBlock *EdgeBB = Pair.second;
6840     BranchInst::Create(To, EdgeBB);
6841     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6842     To->replacePhiUsesWith(From, EdgeBB);
6843     EdgeBB->moveBefore(To);
6844   }
6845 
6846   // Trim the value list down to the size it was before we parsed this function.
6847   ValueList.shrinkTo(ModuleValueListSize);
6848   MDLoader->shrinkTo(ModuleMDLoaderSize);
6849   std::vector<BasicBlock*>().swap(FunctionBBs);
6850   return Error::success();
6851 }
6852 
6853 /// Find the function body in the bitcode stream
6854 Error BitcodeReader::findFunctionInStream(
6855     Function *F,
6856     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6857   while (DeferredFunctionInfoIterator->second == 0) {
6858     // This is the fallback handling for the old format bitcode that
6859     // didn't contain the function index in the VST, or when we have
6860     // an anonymous function which would not have a VST entry.
6861     // Assert that we have one of those two cases.
6862     assert(VSTOffset == 0 || !F->hasName());
6863     // Parse the next body in the stream and set its position in the
6864     // DeferredFunctionInfo map.
6865     if (Error Err = rememberAndSkipFunctionBodies())
6866       return Err;
6867   }
6868   return Error::success();
6869 }
6870 
6871 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6872   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6873     return SyncScope::ID(Val);
6874   if (Val >= SSIDs.size())
6875     return SyncScope::System; // Map unknown synchronization scopes to system.
6876   return SSIDs[Val];
6877 }
6878 
6879 //===----------------------------------------------------------------------===//
6880 // GVMaterializer implementation
6881 //===----------------------------------------------------------------------===//
6882 
6883 Error BitcodeReader::materialize(GlobalValue *GV) {
6884   Function *F = dyn_cast<Function>(GV);
6885   // If it's not a function or is already material, ignore the request.
6886   if (!F || !F->isMaterializable())
6887     return Error::success();
6888 
6889   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6890   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6891   // If its position is recorded as 0, its body is somewhere in the stream
6892   // but we haven't seen it yet.
6893   if (DFII->second == 0)
6894     if (Error Err = findFunctionInStream(F, DFII))
6895       return Err;
6896 
6897   // Materialize metadata before parsing any function bodies.
6898   if (Error Err = materializeMetadata())
6899     return Err;
6900 
6901   // Move the bit stream to the saved position of the deferred function body.
6902   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6903     return JumpFailed;
6904 
6905   // Regardless of the debug info format we want to end up in, we need
6906   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6907   F->IsNewDbgInfoFormat = true;
6908 
6909   if (Error Err = parseFunctionBody(F))
6910     return Err;
6911   F->setIsMaterializable(false);
6912 
6913   // All parsed Functions should load into the debug info format dictated by the
6914   // Module, unless we're attempting to preserve the input debug info format.
6915   if (SeenDebugIntrinsic && SeenDebugRecord)
6916     return error("Mixed debug intrinsics and debug records in bitcode module!");
6917   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6918     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6919     bool NewDbgInfoFormatDesired =
6920         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6921     if (SeenAnyDebugInfo) {
6922       UseNewDbgInfoFormat = SeenDebugRecord;
6923       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6924       WriteNewDbgInfoFormat = SeenDebugRecord;
6925     }
6926     // If the module's debug info format doesn't match the observed input
6927     // format, then set its format now; we don't need to call the conversion
6928     // function because there must be no existing intrinsics to convert.
6929     // Otherwise, just set the format on this function now.
6930     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6931       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6932     else
6933       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6934   } else {
6935     // If we aren't preserving formats, we use the Module flag to get our
6936     // desired format instead of reading flags, in case we are lazy-loading and
6937     // the format of the module has been changed since it was set by the flags.
6938     // We only need to convert debug info here if we have debug records but
6939     // desire the intrinsic format; everything else is a no-op or handled by the
6940     // autoupgrader.
6941     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6942     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6943       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6944     else
6945       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6946   }
6947 
6948   if (StripDebugInfo)
6949     stripDebugInfo(*F);
6950 
6951   // Upgrade any old intrinsic calls in the function.
6952   for (auto &I : UpgradedIntrinsics) {
6953     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6954       if (CallInst *CI = dyn_cast<CallInst>(U))
6955         UpgradeIntrinsicCall(CI, I.second);
6956   }
6957 
6958   // Finish fn->subprogram upgrade for materialized functions.
6959   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6960     F->setSubprogram(SP);
6961 
6962   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6963   if (!MDLoader->isStrippingTBAA()) {
6964     for (auto &I : instructions(F)) {
6965       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6966       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6967         continue;
6968       MDLoader->setStripTBAA(true);
6969       stripTBAA(F->getParent());
6970     }
6971   }
6972 
6973   for (auto &I : instructions(F)) {
6974     // "Upgrade" older incorrect branch weights by dropping them.
6975     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6976       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6977         MDString *MDS = cast<MDString>(MD->getOperand(0));
6978         StringRef ProfName = MDS->getString();
6979         // Check consistency of !prof branch_weights metadata.
6980         if (ProfName != "branch_weights")
6981           continue;
6982         unsigned ExpectedNumOperands = 0;
6983         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6984           ExpectedNumOperands = BI->getNumSuccessors();
6985         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6986           ExpectedNumOperands = SI->getNumSuccessors();
6987         else if (isa<CallInst>(&I))
6988           ExpectedNumOperands = 1;
6989         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6990           ExpectedNumOperands = IBI->getNumDestinations();
6991         else if (isa<SelectInst>(&I))
6992           ExpectedNumOperands = 2;
6993         else
6994           continue; // ignore and continue.
6995 
6996         unsigned Offset = getBranchWeightOffset(MD);
6997 
6998         // If branch weight doesn't match, just strip branch weight.
6999         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7000           I.setMetadata(LLVMContext::MD_prof, nullptr);
7001       }
7002     }
7003 
7004     // Remove incompatible attributes on function calls.
7005     if (auto *CI = dyn_cast<CallBase>(&I)) {
7006       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7007           CI->getFunctionType()->getReturnType()));
7008 
7009       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7010         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7011                                         CI->getArgOperand(ArgNo)->getType()));
7012     }
7013   }
7014 
7015   // Look for functions that rely on old function attribute behavior.
7016   UpgradeFunctionAttributes(*F);
7017 
7018   // Bring in any functions that this function forward-referenced via
7019   // blockaddresses.
7020   return materializeForwardReferencedFunctions();
7021 }
7022 
7023 Error BitcodeReader::materializeModule() {
7024   if (Error Err = materializeMetadata())
7025     return Err;
7026 
7027   // Promise to materialize all forward references.
7028   WillMaterializeAllForwardRefs = true;
7029 
7030   // Iterate over the module, deserializing any functions that are still on
7031   // disk.
7032   for (Function &F : *TheModule) {
7033     if (Error Err = materialize(&F))
7034       return Err;
7035   }
7036   // At this point, if there are any function bodies, parse the rest of
7037   // the bits in the module past the last function block we have recorded
7038   // through either lazy scanning or the VST.
7039   if (LastFunctionBlockBit || NextUnreadBit)
7040     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7041                                     ? LastFunctionBlockBit
7042                                     : NextUnreadBit))
7043       return Err;
7044 
7045   // Check that all block address forward references got resolved (as we
7046   // promised above).
7047   if (!BasicBlockFwdRefs.empty())
7048     return error("Never resolved function from blockaddress");
7049 
7050   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7051   // delete the old functions to clean up. We can't do this unless the entire
7052   // module is materialized because there could always be another function body
7053   // with calls to the old function.
7054   for (auto &I : UpgradedIntrinsics) {
7055     for (auto *U : I.first->users()) {
7056       if (CallInst *CI = dyn_cast<CallInst>(U))
7057         UpgradeIntrinsicCall(CI, I.second);
7058     }
7059     if (!I.first->use_empty())
7060       I.first->replaceAllUsesWith(I.second);
7061     I.first->eraseFromParent();
7062   }
7063   UpgradedIntrinsics.clear();
7064 
7065   UpgradeDebugInfo(*TheModule);
7066 
7067   UpgradeModuleFlags(*TheModule);
7068 
7069   UpgradeARCRuntime(*TheModule);
7070 
7071   return Error::success();
7072 }
7073 
7074 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7075   return IdentifiedStructTypes;
7076 }
7077 
7078 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7079     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7080     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7081     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7082       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7083 
7084 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7085   TheIndex.addModule(ModulePath);
7086 }
7087 
7088 ModuleSummaryIndex::ModuleInfo *
7089 ModuleSummaryIndexBitcodeReader::getThisModule() {
7090   return TheIndex.getModule(ModulePath);
7091 }
7092 
7093 template <bool AllowNullValueInfo>
7094 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7095 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7096   auto VGI = ValueIdToValueInfoMap[ValueId];
7097   // We can have a null value info for memprof callsite info records in
7098   // distributed ThinLTO index files when the callee function summary is not
7099   // included in the index. The bitcode writer records 0 in that case,
7100   // and the caller of this helper will set AllowNullValueInfo to true.
7101   assert(AllowNullValueInfo || std::get<0>(VGI));
7102   return VGI;
7103 }
7104 
7105 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7106     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7107     StringRef SourceFileName) {
7108   std::string GlobalId =
7109       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7110   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7111   auto OriginalNameID = ValueGUID;
7112   if (GlobalValue::isLocalLinkage(Linkage))
7113     OriginalNameID = GlobalValue::getGUID(ValueName);
7114   if (PrintSummaryGUIDs)
7115     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7116            << ValueName << "\n";
7117 
7118   // UseStrtab is false for legacy summary formats and value names are
7119   // created on stack. In that case we save the name in a string saver in
7120   // the index so that the value name can be recorded.
7121   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7122       TheIndex.getOrInsertValueInfo(
7123           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7124       OriginalNameID, ValueGUID);
7125 }
7126 
7127 // Specialized value symbol table parser used when reading module index
7128 // blocks where we don't actually create global values. The parsed information
7129 // is saved in the bitcode reader for use when later parsing summaries.
7130 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7131     uint64_t Offset,
7132     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7133   // With a strtab the VST is not required to parse the summary.
7134   if (UseStrtab)
7135     return Error::success();
7136 
7137   assert(Offset > 0 && "Expected non-zero VST offset");
7138   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7139   if (!MaybeCurrentBit)
7140     return MaybeCurrentBit.takeError();
7141   uint64_t CurrentBit = MaybeCurrentBit.get();
7142 
7143   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7144     return Err;
7145 
7146   SmallVector<uint64_t, 64> Record;
7147 
7148   // Read all the records for this value table.
7149   SmallString<128> ValueName;
7150 
7151   while (true) {
7152     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7153     if (!MaybeEntry)
7154       return MaybeEntry.takeError();
7155     BitstreamEntry Entry = MaybeEntry.get();
7156 
7157     switch (Entry.Kind) {
7158     case BitstreamEntry::SubBlock: // Handled for us already.
7159     case BitstreamEntry::Error:
7160       return error("Malformed block");
7161     case BitstreamEntry::EndBlock:
7162       // Done parsing VST, jump back to wherever we came from.
7163       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7164         return JumpFailed;
7165       return Error::success();
7166     case BitstreamEntry::Record:
7167       // The interesting case.
7168       break;
7169     }
7170 
7171     // Read a record.
7172     Record.clear();
7173     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7174     if (!MaybeRecord)
7175       return MaybeRecord.takeError();
7176     switch (MaybeRecord.get()) {
7177     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7178       break;
7179     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7180       if (convertToString(Record, 1, ValueName))
7181         return error("Invalid record");
7182       unsigned ValueID = Record[0];
7183       assert(!SourceFileName.empty());
7184       auto VLI = ValueIdToLinkageMap.find(ValueID);
7185       assert(VLI != ValueIdToLinkageMap.end() &&
7186              "No linkage found for VST entry?");
7187       auto Linkage = VLI->second;
7188       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7189       ValueName.clear();
7190       break;
7191     }
7192     case bitc::VST_CODE_FNENTRY: {
7193       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7194       if (convertToString(Record, 2, ValueName))
7195         return error("Invalid record");
7196       unsigned ValueID = Record[0];
7197       assert(!SourceFileName.empty());
7198       auto VLI = ValueIdToLinkageMap.find(ValueID);
7199       assert(VLI != ValueIdToLinkageMap.end() &&
7200              "No linkage found for VST entry?");
7201       auto Linkage = VLI->second;
7202       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7203       ValueName.clear();
7204       break;
7205     }
7206     case bitc::VST_CODE_COMBINED_ENTRY: {
7207       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7208       unsigned ValueID = Record[0];
7209       GlobalValue::GUID RefGUID = Record[1];
7210       // The "original name", which is the second value of the pair will be
7211       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7212       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7213           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7214       break;
7215     }
7216     }
7217   }
7218 }
7219 
7220 // Parse just the blocks needed for building the index out of the module.
7221 // At the end of this routine the module Index is populated with a map
7222 // from global value id to GlobalValueSummary objects.
7223 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7224   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7225     return Err;
7226 
7227   SmallVector<uint64_t, 64> Record;
7228   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7229   unsigned ValueId = 0;
7230 
7231   // Read the index for this module.
7232   while (true) {
7233     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7234     if (!MaybeEntry)
7235       return MaybeEntry.takeError();
7236     llvm::BitstreamEntry Entry = MaybeEntry.get();
7237 
7238     switch (Entry.Kind) {
7239     case BitstreamEntry::Error:
7240       return error("Malformed block");
7241     case BitstreamEntry::EndBlock:
7242       return Error::success();
7243 
7244     case BitstreamEntry::SubBlock:
7245       switch (Entry.ID) {
7246       default: // Skip unknown content.
7247         if (Error Err = Stream.SkipBlock())
7248           return Err;
7249         break;
7250       case bitc::BLOCKINFO_BLOCK_ID:
7251         // Need to parse these to get abbrev ids (e.g. for VST)
7252         if (Error Err = readBlockInfo())
7253           return Err;
7254         break;
7255       case bitc::VALUE_SYMTAB_BLOCK_ID:
7256         // Should have been parsed earlier via VSTOffset, unless there
7257         // is no summary section.
7258         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7259                 !SeenGlobalValSummary) &&
7260                "Expected early VST parse via VSTOffset record");
7261         if (Error Err = Stream.SkipBlock())
7262           return Err;
7263         break;
7264       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7265       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7266         // Add the module if it is a per-module index (has a source file name).
7267         if (!SourceFileName.empty())
7268           addThisModule();
7269         assert(!SeenValueSymbolTable &&
7270                "Already read VST when parsing summary block?");
7271         // We might not have a VST if there were no values in the
7272         // summary. An empty summary block generated when we are
7273         // performing ThinLTO compiles so we don't later invoke
7274         // the regular LTO process on them.
7275         if (VSTOffset > 0) {
7276           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7277             return Err;
7278           SeenValueSymbolTable = true;
7279         }
7280         SeenGlobalValSummary = true;
7281         if (Error Err = parseEntireSummary(Entry.ID))
7282           return Err;
7283         break;
7284       case bitc::MODULE_STRTAB_BLOCK_ID:
7285         if (Error Err = parseModuleStringTable())
7286           return Err;
7287         break;
7288       }
7289       continue;
7290 
7291     case BitstreamEntry::Record: {
7292         Record.clear();
7293         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7294         if (!MaybeBitCode)
7295           return MaybeBitCode.takeError();
7296         switch (MaybeBitCode.get()) {
7297         default:
7298           break; // Default behavior, ignore unknown content.
7299         case bitc::MODULE_CODE_VERSION: {
7300           if (Error Err = parseVersionRecord(Record).takeError())
7301             return Err;
7302           break;
7303         }
7304         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7305         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7306           SmallString<128> ValueName;
7307           if (convertToString(Record, 0, ValueName))
7308             return error("Invalid record");
7309           SourceFileName = ValueName.c_str();
7310           break;
7311         }
7312         /// MODULE_CODE_HASH: [5*i32]
7313         case bitc::MODULE_CODE_HASH: {
7314           if (Record.size() != 5)
7315             return error("Invalid hash length " + Twine(Record.size()).str());
7316           auto &Hash = getThisModule()->second;
7317           int Pos = 0;
7318           for (auto &Val : Record) {
7319             assert(!(Val >> 32) && "Unexpected high bits set");
7320             Hash[Pos++] = Val;
7321           }
7322           break;
7323         }
7324         /// MODULE_CODE_VSTOFFSET: [offset]
7325         case bitc::MODULE_CODE_VSTOFFSET:
7326           if (Record.empty())
7327             return error("Invalid record");
7328           // Note that we subtract 1 here because the offset is relative to one
7329           // word before the start of the identification or module block, which
7330           // was historically always the start of the regular bitcode header.
7331           VSTOffset = Record[0] - 1;
7332           break;
7333         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7334         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7335         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7336         // v2: [strtab offset, strtab size, v1]
7337         case bitc::MODULE_CODE_GLOBALVAR:
7338         case bitc::MODULE_CODE_FUNCTION:
7339         case bitc::MODULE_CODE_ALIAS: {
7340           StringRef Name;
7341           ArrayRef<uint64_t> GVRecord;
7342           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7343           if (GVRecord.size() <= 3)
7344             return error("Invalid record");
7345           uint64_t RawLinkage = GVRecord[3];
7346           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7347           if (!UseStrtab) {
7348             ValueIdToLinkageMap[ValueId++] = Linkage;
7349             break;
7350           }
7351 
7352           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7353           break;
7354         }
7355         }
7356       }
7357       continue;
7358     }
7359   }
7360 }
7361 
7362 std::vector<ValueInfo>
7363 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7364   std::vector<ValueInfo> Ret;
7365   Ret.reserve(Record.size());
7366   for (uint64_t RefValueId : Record)
7367     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7368   return Ret;
7369 }
7370 
7371 std::vector<FunctionSummary::EdgeTy>
7372 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7373                                               bool IsOldProfileFormat,
7374                                               bool HasProfile, bool HasRelBF) {
7375   std::vector<FunctionSummary::EdgeTy> Ret;
7376   // In the case of new profile formats, there are two Record entries per
7377   // Edge. Otherwise, conservatively reserve up to Record.size.
7378   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7379     Ret.reserve(Record.size() / 2);
7380   else
7381     Ret.reserve(Record.size());
7382 
7383   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7384     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7385     bool HasTailCall = false;
7386     uint64_t RelBF = 0;
7387     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7388     if (IsOldProfileFormat) {
7389       I += 1; // Skip old callsitecount field
7390       if (HasProfile)
7391         I += 1; // Skip old profilecount field
7392     } else if (HasProfile)
7393       std::tie(Hotness, HasTailCall) =
7394           getDecodedHotnessCallEdgeInfo(Record[++I]);
7395     else if (HasRelBF)
7396       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7397     Ret.push_back(FunctionSummary::EdgeTy{
7398         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7399   }
7400   return Ret;
7401 }
7402 
7403 static void
7404 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7405                                        WholeProgramDevirtResolution &Wpd) {
7406   uint64_t ArgNum = Record[Slot++];
7407   WholeProgramDevirtResolution::ByArg &B =
7408       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7409   Slot += ArgNum;
7410 
7411   B.TheKind =
7412       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7413   B.Info = Record[Slot++];
7414   B.Byte = Record[Slot++];
7415   B.Bit = Record[Slot++];
7416 }
7417 
7418 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7419                                               StringRef Strtab, size_t &Slot,
7420                                               TypeIdSummary &TypeId) {
7421   uint64_t Id = Record[Slot++];
7422   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7423 
7424   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7425   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7426                         static_cast<size_t>(Record[Slot + 1])};
7427   Slot += 2;
7428 
7429   uint64_t ResByArgNum = Record[Slot++];
7430   for (uint64_t I = 0; I != ResByArgNum; ++I)
7431     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7432 }
7433 
7434 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7435                                      StringRef Strtab,
7436                                      ModuleSummaryIndex &TheIndex) {
7437   size_t Slot = 0;
7438   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7439       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7440   Slot += 2;
7441 
7442   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7443   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7444   TypeId.TTRes.AlignLog2 = Record[Slot++];
7445   TypeId.TTRes.SizeM1 = Record[Slot++];
7446   TypeId.TTRes.BitMask = Record[Slot++];
7447   TypeId.TTRes.InlineBits = Record[Slot++];
7448 
7449   while (Slot < Record.size())
7450     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7451 }
7452 
7453 std::vector<FunctionSummary::ParamAccess>
7454 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7455   auto ReadRange = [&]() {
7456     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7457                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7458     Record = Record.drop_front();
7459     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7460                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7461     Record = Record.drop_front();
7462     ConstantRange Range{Lower, Upper};
7463     assert(!Range.isFullSet());
7464     assert(!Range.isUpperSignWrapped());
7465     return Range;
7466   };
7467 
7468   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7469   while (!Record.empty()) {
7470     PendingParamAccesses.emplace_back();
7471     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7472     ParamAccess.ParamNo = Record.front();
7473     Record = Record.drop_front();
7474     ParamAccess.Use = ReadRange();
7475     ParamAccess.Calls.resize(Record.front());
7476     Record = Record.drop_front();
7477     for (auto &Call : ParamAccess.Calls) {
7478       Call.ParamNo = Record.front();
7479       Record = Record.drop_front();
7480       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7481       Record = Record.drop_front();
7482       Call.Offsets = ReadRange();
7483     }
7484   }
7485   return PendingParamAccesses;
7486 }
7487 
7488 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7489     ArrayRef<uint64_t> Record, size_t &Slot,
7490     TypeIdCompatibleVtableInfo &TypeId) {
7491   uint64_t Offset = Record[Slot++];
7492   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7493   TypeId.push_back({Offset, Callee});
7494 }
7495 
7496 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7497     ArrayRef<uint64_t> Record) {
7498   size_t Slot = 0;
7499   TypeIdCompatibleVtableInfo &TypeId =
7500       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7501           {Strtab.data() + Record[Slot],
7502            static_cast<size_t>(Record[Slot + 1])});
7503   Slot += 2;
7504 
7505   while (Slot < Record.size())
7506     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7507 }
7508 
7509 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7510                            unsigned WOCnt) {
7511   // Readonly and writeonly refs are in the end of the refs list.
7512   assert(ROCnt + WOCnt <= Refs.size());
7513   unsigned FirstWORef = Refs.size() - WOCnt;
7514   unsigned RefNo = FirstWORef - ROCnt;
7515   for (; RefNo < FirstWORef; ++RefNo)
7516     Refs[RefNo].setReadOnly();
7517   for (; RefNo < Refs.size(); ++RefNo)
7518     Refs[RefNo].setWriteOnly();
7519 }
7520 
7521 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7522 // objects in the index.
7523 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7524   if (Error Err = Stream.EnterSubBlock(ID))
7525     return Err;
7526   SmallVector<uint64_t, 64> Record;
7527 
7528   // Parse version
7529   {
7530     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7531     if (!MaybeEntry)
7532       return MaybeEntry.takeError();
7533     BitstreamEntry Entry = MaybeEntry.get();
7534 
7535     if (Entry.Kind != BitstreamEntry::Record)
7536       return error("Invalid Summary Block: record for version expected");
7537     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7538     if (!MaybeRecord)
7539       return MaybeRecord.takeError();
7540     if (MaybeRecord.get() != bitc::FS_VERSION)
7541       return error("Invalid Summary Block: version expected");
7542   }
7543   const uint64_t Version = Record[0];
7544   const bool IsOldProfileFormat = Version == 1;
7545   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7546     return error("Invalid summary version " + Twine(Version) +
7547                  ". Version should be in the range [1-" +
7548                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7549                  "].");
7550   Record.clear();
7551 
7552   // Keep around the last seen summary to be used when we see an optional
7553   // "OriginalName" attachement.
7554   GlobalValueSummary *LastSeenSummary = nullptr;
7555   GlobalValue::GUID LastSeenGUID = 0;
7556 
7557   // We can expect to see any number of type ID information records before
7558   // each function summary records; these variables store the information
7559   // collected so far so that it can be used to create the summary object.
7560   std::vector<GlobalValue::GUID> PendingTypeTests;
7561   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7562       PendingTypeCheckedLoadVCalls;
7563   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7564       PendingTypeCheckedLoadConstVCalls;
7565   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7566 
7567   std::vector<CallsiteInfo> PendingCallsites;
7568   std::vector<AllocInfo> PendingAllocs;
7569 
7570   while (true) {
7571     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7572     if (!MaybeEntry)
7573       return MaybeEntry.takeError();
7574     BitstreamEntry Entry = MaybeEntry.get();
7575 
7576     switch (Entry.Kind) {
7577     case BitstreamEntry::SubBlock: // Handled for us already.
7578     case BitstreamEntry::Error:
7579       return error("Malformed block");
7580     case BitstreamEntry::EndBlock:
7581       return Error::success();
7582     case BitstreamEntry::Record:
7583       // The interesting case.
7584       break;
7585     }
7586 
7587     // Read a record. The record format depends on whether this
7588     // is a per-module index or a combined index file. In the per-module
7589     // case the records contain the associated value's ID for correlation
7590     // with VST entries. In the combined index the correlation is done
7591     // via the bitcode offset of the summary records (which were saved
7592     // in the combined index VST entries). The records also contain
7593     // information used for ThinLTO renaming and importing.
7594     Record.clear();
7595     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7596     if (!MaybeBitCode)
7597       return MaybeBitCode.takeError();
7598     switch (unsigned BitCode = MaybeBitCode.get()) {
7599     default: // Default behavior: ignore.
7600       break;
7601     case bitc::FS_FLAGS: {  // [flags]
7602       TheIndex.setFlags(Record[0]);
7603       break;
7604     }
7605     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7606       uint64_t ValueID = Record[0];
7607       GlobalValue::GUID RefGUID = Record[1];
7608       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7609           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7610       break;
7611     }
7612     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7613     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7614     //                numrefs x valueid, n x (valueid)]
7615     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7616     //                        numrefs x valueid,
7617     //                        n x (valueid, hotness+tailcall flags)]
7618     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7619     //                      numrefs x valueid,
7620     //                      n x (valueid, relblockfreq+tailcall)]
7621     case bitc::FS_PERMODULE:
7622     case bitc::FS_PERMODULE_RELBF:
7623     case bitc::FS_PERMODULE_PROFILE: {
7624       unsigned ValueID = Record[0];
7625       uint64_t RawFlags = Record[1];
7626       unsigned InstCount = Record[2];
7627       uint64_t RawFunFlags = 0;
7628       unsigned NumRefs = Record[3];
7629       unsigned NumRORefs = 0, NumWORefs = 0;
7630       int RefListStartIndex = 4;
7631       if (Version >= 4) {
7632         RawFunFlags = Record[3];
7633         NumRefs = Record[4];
7634         RefListStartIndex = 5;
7635         if (Version >= 5) {
7636           NumRORefs = Record[5];
7637           RefListStartIndex = 6;
7638           if (Version >= 7) {
7639             NumWORefs = Record[6];
7640             RefListStartIndex = 7;
7641           }
7642         }
7643       }
7644 
7645       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7646       // The module path string ref set in the summary must be owned by the
7647       // index's module string table. Since we don't have a module path
7648       // string table section in the per-module index, we create a single
7649       // module path string table entry with an empty (0) ID to take
7650       // ownership.
7651       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7652       assert(Record.size() >= RefListStartIndex + NumRefs &&
7653              "Record size inconsistent with number of references");
7654       std::vector<ValueInfo> Refs = makeRefList(
7655           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7656       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7657       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7658       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7659           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7660           IsOldProfileFormat, HasProfile, HasRelBF);
7661       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7662       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7663       // In order to save memory, only record the memprof summaries if this is
7664       // the prevailing copy of a symbol. The linker doesn't resolve local
7665       // linkage values so don't check whether those are prevailing.
7666       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7667       if (IsPrevailing &&
7668           !GlobalValue::isLocalLinkage(LT) &&
7669           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7670         PendingCallsites.clear();
7671         PendingAllocs.clear();
7672       }
7673       auto FS = std::make_unique<FunctionSummary>(
7674           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7675           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7676           std::move(PendingTypeTestAssumeVCalls),
7677           std::move(PendingTypeCheckedLoadVCalls),
7678           std::move(PendingTypeTestAssumeConstVCalls),
7679           std::move(PendingTypeCheckedLoadConstVCalls),
7680           std::move(PendingParamAccesses), std::move(PendingCallsites),
7681           std::move(PendingAllocs));
7682       FS->setModulePath(getThisModule()->first());
7683       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7684       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7685                                      std::move(FS));
7686       break;
7687     }
7688     // FS_ALIAS: [valueid, flags, valueid]
7689     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7690     // they expect all aliasee summaries to be available.
7691     case bitc::FS_ALIAS: {
7692       unsigned ValueID = Record[0];
7693       uint64_t RawFlags = Record[1];
7694       unsigned AliaseeID = Record[2];
7695       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7696       auto AS = std::make_unique<AliasSummary>(Flags);
7697       // The module path string ref set in the summary must be owned by the
7698       // index's module string table. Since we don't have a module path
7699       // string table section in the per-module index, we create a single
7700       // module path string table entry with an empty (0) ID to take
7701       // ownership.
7702       AS->setModulePath(getThisModule()->first());
7703 
7704       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7705       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7706       if (!AliaseeInModule)
7707         return error("Alias expects aliasee summary to be parsed");
7708       AS->setAliasee(AliaseeVI, AliaseeInModule);
7709 
7710       auto GUID = getValueInfoFromValueId(ValueID);
7711       AS->setOriginalName(std::get<1>(GUID));
7712       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7713       break;
7714     }
7715     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7716     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7717       unsigned ValueID = Record[0];
7718       uint64_t RawFlags = Record[1];
7719       unsigned RefArrayStart = 2;
7720       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7721                                       /* WriteOnly */ false,
7722                                       /* Constant */ false,
7723                                       GlobalObject::VCallVisibilityPublic);
7724       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7725       if (Version >= 5) {
7726         GVF = getDecodedGVarFlags(Record[2]);
7727         RefArrayStart = 3;
7728       }
7729       std::vector<ValueInfo> Refs =
7730           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7731       auto FS =
7732           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7733       FS->setModulePath(getThisModule()->first());
7734       auto GUID = getValueInfoFromValueId(ValueID);
7735       FS->setOriginalName(std::get<1>(GUID));
7736       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7737       break;
7738     }
7739     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7740     //                        numrefs, numrefs x valueid,
7741     //                        n x (valueid, offset)]
7742     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7743       unsigned ValueID = Record[0];
7744       uint64_t RawFlags = Record[1];
7745       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7746       unsigned NumRefs = Record[3];
7747       unsigned RefListStartIndex = 4;
7748       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7749       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7750       std::vector<ValueInfo> Refs = makeRefList(
7751           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7752       VTableFuncList VTableFuncs;
7753       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7754         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7755         uint64_t Offset = Record[++I];
7756         VTableFuncs.push_back({Callee, Offset});
7757       }
7758       auto VS =
7759           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7760       VS->setModulePath(getThisModule()->first());
7761       VS->setVTableFuncs(VTableFuncs);
7762       auto GUID = getValueInfoFromValueId(ValueID);
7763       VS->setOriginalName(std::get<1>(GUID));
7764       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7765       break;
7766     }
7767     // FS_COMBINED is legacy and does not have support for the tail call flag.
7768     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7769     //               numrefs x valueid, n x (valueid)]
7770     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7771     //                       numrefs x valueid,
7772     //                       n x (valueid, hotness+tailcall flags)]
7773     case bitc::FS_COMBINED:
7774     case bitc::FS_COMBINED_PROFILE: {
7775       unsigned ValueID = Record[0];
7776       uint64_t ModuleId = Record[1];
7777       uint64_t RawFlags = Record[2];
7778       unsigned InstCount = Record[3];
7779       uint64_t RawFunFlags = 0;
7780       uint64_t EntryCount = 0;
7781       unsigned NumRefs = Record[4];
7782       unsigned NumRORefs = 0, NumWORefs = 0;
7783       int RefListStartIndex = 5;
7784 
7785       if (Version >= 4) {
7786         RawFunFlags = Record[4];
7787         RefListStartIndex = 6;
7788         size_t NumRefsIndex = 5;
7789         if (Version >= 5) {
7790           unsigned NumRORefsOffset = 1;
7791           RefListStartIndex = 7;
7792           if (Version >= 6) {
7793             NumRefsIndex = 6;
7794             EntryCount = Record[5];
7795             RefListStartIndex = 8;
7796             if (Version >= 7) {
7797               RefListStartIndex = 9;
7798               NumWORefs = Record[8];
7799               NumRORefsOffset = 2;
7800             }
7801           }
7802           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7803         }
7804         NumRefs = Record[NumRefsIndex];
7805       }
7806 
7807       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7808       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7809       assert(Record.size() >= RefListStartIndex + NumRefs &&
7810              "Record size inconsistent with number of references");
7811       std::vector<ValueInfo> Refs = makeRefList(
7812           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7813       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7814       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7815           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7816           IsOldProfileFormat, HasProfile, false);
7817       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7818       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7819       auto FS = std::make_unique<FunctionSummary>(
7820           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7821           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7822           std::move(PendingTypeTestAssumeVCalls),
7823           std::move(PendingTypeCheckedLoadVCalls),
7824           std::move(PendingTypeTestAssumeConstVCalls),
7825           std::move(PendingTypeCheckedLoadConstVCalls),
7826           std::move(PendingParamAccesses), std::move(PendingCallsites),
7827           std::move(PendingAllocs));
7828       LastSeenSummary = FS.get();
7829       LastSeenGUID = VI.getGUID();
7830       FS->setModulePath(ModuleIdMap[ModuleId]);
7831       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7832       break;
7833     }
7834     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7835     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7836     // they expect all aliasee summaries to be available.
7837     case bitc::FS_COMBINED_ALIAS: {
7838       unsigned ValueID = Record[0];
7839       uint64_t ModuleId = Record[1];
7840       uint64_t RawFlags = Record[2];
7841       unsigned AliaseeValueId = Record[3];
7842       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7843       auto AS = std::make_unique<AliasSummary>(Flags);
7844       LastSeenSummary = AS.get();
7845       AS->setModulePath(ModuleIdMap[ModuleId]);
7846 
7847       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7848       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7849       AS->setAliasee(AliaseeVI, AliaseeInModule);
7850 
7851       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7852       LastSeenGUID = VI.getGUID();
7853       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7854       break;
7855     }
7856     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7857     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7858       unsigned ValueID = Record[0];
7859       uint64_t ModuleId = Record[1];
7860       uint64_t RawFlags = Record[2];
7861       unsigned RefArrayStart = 3;
7862       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7863                                       /* WriteOnly */ false,
7864                                       /* Constant */ false,
7865                                       GlobalObject::VCallVisibilityPublic);
7866       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7867       if (Version >= 5) {
7868         GVF = getDecodedGVarFlags(Record[3]);
7869         RefArrayStart = 4;
7870       }
7871       std::vector<ValueInfo> Refs =
7872           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7873       auto FS =
7874           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7875       LastSeenSummary = FS.get();
7876       FS->setModulePath(ModuleIdMap[ModuleId]);
7877       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7878       LastSeenGUID = VI.getGUID();
7879       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7880       break;
7881     }
7882     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7883     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7884       uint64_t OriginalName = Record[0];
7885       if (!LastSeenSummary)
7886         return error("Name attachment that does not follow a combined record");
7887       LastSeenSummary->setOriginalName(OriginalName);
7888       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7889       // Reset the LastSeenSummary
7890       LastSeenSummary = nullptr;
7891       LastSeenGUID = 0;
7892       break;
7893     }
7894     case bitc::FS_TYPE_TESTS:
7895       assert(PendingTypeTests.empty());
7896       llvm::append_range(PendingTypeTests, Record);
7897       break;
7898 
7899     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7900       assert(PendingTypeTestAssumeVCalls.empty());
7901       for (unsigned I = 0; I != Record.size(); I += 2)
7902         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7903       break;
7904 
7905     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7906       assert(PendingTypeCheckedLoadVCalls.empty());
7907       for (unsigned I = 0; I != Record.size(); I += 2)
7908         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7909       break;
7910 
7911     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7912       PendingTypeTestAssumeConstVCalls.push_back(
7913           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7914       break;
7915 
7916     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7917       PendingTypeCheckedLoadConstVCalls.push_back(
7918           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7919       break;
7920 
7921     case bitc::FS_CFI_FUNCTION_DEFS: {
7922       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7923       for (unsigned I = 0; I != Record.size(); I += 2)
7924         CfiFunctionDefs.insert(
7925             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7926       break;
7927     }
7928 
7929     case bitc::FS_CFI_FUNCTION_DECLS: {
7930       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7931       for (unsigned I = 0; I != Record.size(); I += 2)
7932         CfiFunctionDecls.insert(
7933             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7934       break;
7935     }
7936 
7937     case bitc::FS_TYPE_ID:
7938       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7939       break;
7940 
7941     case bitc::FS_TYPE_ID_METADATA:
7942       parseTypeIdCompatibleVtableSummaryRecord(Record);
7943       break;
7944 
7945     case bitc::FS_BLOCK_COUNT:
7946       TheIndex.addBlockCount(Record[0]);
7947       break;
7948 
7949     case bitc::FS_PARAM_ACCESS: {
7950       PendingParamAccesses = parseParamAccesses(Record);
7951       break;
7952     }
7953 
7954     case bitc::FS_STACK_IDS: { // [n x stackid]
7955       // Save stack ids in the reader to consult when adding stack ids from the
7956       // lists in the stack node and alloc node entries.
7957       StackIds = ArrayRef<uint64_t>(Record);
7958       break;
7959     }
7960 
7961     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7962       unsigned ValueID = Record[0];
7963       SmallVector<unsigned> StackIdList;
7964       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7965         assert(*R < StackIds.size());
7966         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7967       }
7968       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7969       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7970       break;
7971     }
7972 
7973     case bitc::FS_COMBINED_CALLSITE_INFO: {
7974       auto RecordIter = Record.begin();
7975       unsigned ValueID = *RecordIter++;
7976       unsigned NumStackIds = *RecordIter++;
7977       unsigned NumVersions = *RecordIter++;
7978       assert(Record.size() == 3 + NumStackIds + NumVersions);
7979       SmallVector<unsigned> StackIdList;
7980       for (unsigned J = 0; J < NumStackIds; J++) {
7981         assert(*RecordIter < StackIds.size());
7982         StackIdList.push_back(
7983             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7984       }
7985       SmallVector<unsigned> Versions;
7986       for (unsigned J = 0; J < NumVersions; J++)
7987         Versions.push_back(*RecordIter++);
7988       ValueInfo VI = std::get<0>(
7989           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7990       PendingCallsites.push_back(
7991           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7992       break;
7993     }
7994 
7995     case bitc::FS_PERMODULE_ALLOC_INFO: {
7996       unsigned I = 0;
7997       std::vector<MIBInfo> MIBs;
7998       unsigned NumMIBs = 0;
7999       if (Version >= 10)
8000         NumMIBs = Record[I++];
8001       unsigned MIBsRead = 0;
8002       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8003              (Version < 10 && I < Record.size())) {
8004         assert(Record.size() - I >= 2);
8005         AllocationType AllocType = (AllocationType)Record[I++];
8006         unsigned NumStackEntries = Record[I++];
8007         assert(Record.size() - I >= NumStackEntries);
8008         SmallVector<unsigned> StackIdList;
8009         for (unsigned J = 0; J < NumStackEntries; J++) {
8010           assert(Record[I] < StackIds.size());
8011           StackIdList.push_back(
8012               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8013         }
8014         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8015       }
8016       std::vector<uint64_t> TotalSizes;
8017       // We either have no sizes or NumMIBs of them.
8018       assert(I == Record.size() || Record.size() - I == NumMIBs);
8019       if (I < Record.size()) {
8020         MIBsRead = 0;
8021         while (MIBsRead++ < NumMIBs)
8022           TotalSizes.push_back(Record[I++]);
8023       }
8024       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8025       if (!TotalSizes.empty()) {
8026         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8027         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8028       }
8029       break;
8030     }
8031 
8032     case bitc::FS_COMBINED_ALLOC_INFO: {
8033       unsigned I = 0;
8034       std::vector<MIBInfo> MIBs;
8035       unsigned NumMIBs = Record[I++];
8036       unsigned NumVersions = Record[I++];
8037       unsigned MIBsRead = 0;
8038       while (MIBsRead++ < NumMIBs) {
8039         assert(Record.size() - I >= 2);
8040         AllocationType AllocType = (AllocationType)Record[I++];
8041         unsigned NumStackEntries = Record[I++];
8042         assert(Record.size() - I >= NumStackEntries);
8043         SmallVector<unsigned> StackIdList;
8044         for (unsigned J = 0; J < NumStackEntries; J++) {
8045           assert(Record[I] < StackIds.size());
8046           StackIdList.push_back(
8047               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8048         }
8049         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8050       }
8051       assert(Record.size() - I >= NumVersions);
8052       SmallVector<uint8_t> Versions;
8053       for (unsigned J = 0; J < NumVersions; J++)
8054         Versions.push_back(Record[I++]);
8055       std::vector<uint64_t> TotalSizes;
8056       // We either have no sizes or NumMIBs of them.
8057       assert(I == Record.size() || Record.size() - I == NumMIBs);
8058       if (I < Record.size()) {
8059         MIBsRead = 0;
8060         while (MIBsRead++ < NumMIBs) {
8061           TotalSizes.push_back(Record[I++]);
8062         }
8063       }
8064       PendingAllocs.push_back(
8065           AllocInfo(std::move(Versions), std::move(MIBs)));
8066       if (!TotalSizes.empty()) {
8067         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8068         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8069       }
8070       break;
8071     }
8072     }
8073   }
8074   llvm_unreachable("Exit infinite loop");
8075 }
8076 
8077 // Parse the  module string table block into the Index.
8078 // This populates the ModulePathStringTable map in the index.
8079 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8080   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8081     return Err;
8082 
8083   SmallVector<uint64_t, 64> Record;
8084 
8085   SmallString<128> ModulePath;
8086   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8087 
8088   while (true) {
8089     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8090     if (!MaybeEntry)
8091       return MaybeEntry.takeError();
8092     BitstreamEntry Entry = MaybeEntry.get();
8093 
8094     switch (Entry.Kind) {
8095     case BitstreamEntry::SubBlock: // Handled for us already.
8096     case BitstreamEntry::Error:
8097       return error("Malformed block");
8098     case BitstreamEntry::EndBlock:
8099       return Error::success();
8100     case BitstreamEntry::Record:
8101       // The interesting case.
8102       break;
8103     }
8104 
8105     Record.clear();
8106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8107     if (!MaybeRecord)
8108       return MaybeRecord.takeError();
8109     switch (MaybeRecord.get()) {
8110     default: // Default behavior: ignore.
8111       break;
8112     case bitc::MST_CODE_ENTRY: {
8113       // MST_ENTRY: [modid, namechar x N]
8114       uint64_t ModuleId = Record[0];
8115 
8116       if (convertToString(Record, 1, ModulePath))
8117         return error("Invalid record");
8118 
8119       LastSeenModule = TheIndex.addModule(ModulePath);
8120       ModuleIdMap[ModuleId] = LastSeenModule->first();
8121 
8122       ModulePath.clear();
8123       break;
8124     }
8125     /// MST_CODE_HASH: [5*i32]
8126     case bitc::MST_CODE_HASH: {
8127       if (Record.size() != 5)
8128         return error("Invalid hash length " + Twine(Record.size()).str());
8129       if (!LastSeenModule)
8130         return error("Invalid hash that does not follow a module path");
8131       int Pos = 0;
8132       for (auto &Val : Record) {
8133         assert(!(Val >> 32) && "Unexpected high bits set");
8134         LastSeenModule->second[Pos++] = Val;
8135       }
8136       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8137       LastSeenModule = nullptr;
8138       break;
8139     }
8140     }
8141   }
8142   llvm_unreachable("Exit infinite loop");
8143 }
8144 
8145 namespace {
8146 
8147 // FIXME: This class is only here to support the transition to llvm::Error. It
8148 // will be removed once this transition is complete. Clients should prefer to
8149 // deal with the Error value directly, rather than converting to error_code.
8150 class BitcodeErrorCategoryType : public std::error_category {
8151   const char *name() const noexcept override {
8152     return "llvm.bitcode";
8153   }
8154 
8155   std::string message(int IE) const override {
8156     BitcodeError E = static_cast<BitcodeError>(IE);
8157     switch (E) {
8158     case BitcodeError::CorruptedBitcode:
8159       return "Corrupted bitcode";
8160     }
8161     llvm_unreachable("Unknown error type!");
8162   }
8163 };
8164 
8165 } // end anonymous namespace
8166 
8167 const std::error_category &llvm::BitcodeErrorCategory() {
8168   static BitcodeErrorCategoryType ErrorCategory;
8169   return ErrorCategory;
8170 }
8171 
8172 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8173                                             unsigned Block, unsigned RecordID) {
8174   if (Error Err = Stream.EnterSubBlock(Block))
8175     return std::move(Err);
8176 
8177   StringRef Strtab;
8178   while (true) {
8179     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8180     if (!MaybeEntry)
8181       return MaybeEntry.takeError();
8182     llvm::BitstreamEntry Entry = MaybeEntry.get();
8183 
8184     switch (Entry.Kind) {
8185     case BitstreamEntry::EndBlock:
8186       return Strtab;
8187 
8188     case BitstreamEntry::Error:
8189       return error("Malformed block");
8190 
8191     case BitstreamEntry::SubBlock:
8192       if (Error Err = Stream.SkipBlock())
8193         return std::move(Err);
8194       break;
8195 
8196     case BitstreamEntry::Record:
8197       StringRef Blob;
8198       SmallVector<uint64_t, 1> Record;
8199       Expected<unsigned> MaybeRecord =
8200           Stream.readRecord(Entry.ID, Record, &Blob);
8201       if (!MaybeRecord)
8202         return MaybeRecord.takeError();
8203       if (MaybeRecord.get() == RecordID)
8204         Strtab = Blob;
8205       break;
8206     }
8207   }
8208 }
8209 
8210 //===----------------------------------------------------------------------===//
8211 // External interface
8212 //===----------------------------------------------------------------------===//
8213 
8214 Expected<std::vector<BitcodeModule>>
8215 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8216   auto FOrErr = getBitcodeFileContents(Buffer);
8217   if (!FOrErr)
8218     return FOrErr.takeError();
8219   return std::move(FOrErr->Mods);
8220 }
8221 
8222 Expected<BitcodeFileContents>
8223 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8224   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8225   if (!StreamOrErr)
8226     return StreamOrErr.takeError();
8227   BitstreamCursor &Stream = *StreamOrErr;
8228 
8229   BitcodeFileContents F;
8230   while (true) {
8231     uint64_t BCBegin = Stream.getCurrentByteNo();
8232 
8233     // We may be consuming bitcode from a client that leaves garbage at the end
8234     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8235     // the end that there cannot possibly be another module, stop looking.
8236     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8237       return F;
8238 
8239     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8240     if (!MaybeEntry)
8241       return MaybeEntry.takeError();
8242     llvm::BitstreamEntry Entry = MaybeEntry.get();
8243 
8244     switch (Entry.Kind) {
8245     case BitstreamEntry::EndBlock:
8246     case BitstreamEntry::Error:
8247       return error("Malformed block");
8248 
8249     case BitstreamEntry::SubBlock: {
8250       uint64_t IdentificationBit = -1ull;
8251       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8252         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8253         if (Error Err = Stream.SkipBlock())
8254           return std::move(Err);
8255 
8256         {
8257           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8258           if (!MaybeEntry)
8259             return MaybeEntry.takeError();
8260           Entry = MaybeEntry.get();
8261         }
8262 
8263         if (Entry.Kind != BitstreamEntry::SubBlock ||
8264             Entry.ID != bitc::MODULE_BLOCK_ID)
8265           return error("Malformed block");
8266       }
8267 
8268       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8269         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8270         if (Error Err = Stream.SkipBlock())
8271           return std::move(Err);
8272 
8273         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8274                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8275                           Buffer.getBufferIdentifier(), IdentificationBit,
8276                           ModuleBit});
8277         continue;
8278       }
8279 
8280       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8281         Expected<StringRef> Strtab =
8282             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8283         if (!Strtab)
8284           return Strtab.takeError();
8285         // This string table is used by every preceding bitcode module that does
8286         // not have its own string table. A bitcode file may have multiple
8287         // string tables if it was created by binary concatenation, for example
8288         // with "llvm-cat -b".
8289         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8290           if (!I.Strtab.empty())
8291             break;
8292           I.Strtab = *Strtab;
8293         }
8294         // Similarly, the string table is used by every preceding symbol table;
8295         // normally there will be just one unless the bitcode file was created
8296         // by binary concatenation.
8297         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8298           F.StrtabForSymtab = *Strtab;
8299         continue;
8300       }
8301 
8302       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8303         Expected<StringRef> SymtabOrErr =
8304             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8305         if (!SymtabOrErr)
8306           return SymtabOrErr.takeError();
8307 
8308         // We can expect the bitcode file to have multiple symbol tables if it
8309         // was created by binary concatenation. In that case we silently
8310         // ignore any subsequent symbol tables, which is fine because this is a
8311         // low level function. The client is expected to notice that the number
8312         // of modules in the symbol table does not match the number of modules
8313         // in the input file and regenerate the symbol table.
8314         if (F.Symtab.empty())
8315           F.Symtab = *SymtabOrErr;
8316         continue;
8317       }
8318 
8319       if (Error Err = Stream.SkipBlock())
8320         return std::move(Err);
8321       continue;
8322     }
8323     case BitstreamEntry::Record:
8324       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8325         return std::move(E);
8326       continue;
8327     }
8328   }
8329 }
8330 
8331 /// Get a lazy one-at-time loading module from bitcode.
8332 ///
8333 /// This isn't always used in a lazy context.  In particular, it's also used by
8334 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8335 /// in forward-referenced functions from block address references.
8336 ///
8337 /// \param[in] MaterializeAll Set to \c true if we should materialize
8338 /// everything.
8339 Expected<std::unique_ptr<Module>>
8340 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8341                              bool ShouldLazyLoadMetadata, bool IsImporting,
8342                              ParserCallbacks Callbacks) {
8343   BitstreamCursor Stream(Buffer);
8344 
8345   std::string ProducerIdentification;
8346   if (IdentificationBit != -1ull) {
8347     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8348       return std::move(JumpFailed);
8349     if (Error E =
8350             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8351       return std::move(E);
8352   }
8353 
8354   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8355     return std::move(JumpFailed);
8356   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8357                               Context);
8358 
8359   std::unique_ptr<Module> M =
8360       std::make_unique<Module>(ModuleIdentifier, Context);
8361   M->setMaterializer(R);
8362 
8363   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8364   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8365                                       IsImporting, Callbacks))
8366     return std::move(Err);
8367 
8368   if (MaterializeAll) {
8369     // Read in the entire module, and destroy the BitcodeReader.
8370     if (Error Err = M->materializeAll())
8371       return std::move(Err);
8372   } else {
8373     // Resolve forward references from blockaddresses.
8374     if (Error Err = R->materializeForwardReferencedFunctions())
8375       return std::move(Err);
8376   }
8377 
8378   return std::move(M);
8379 }
8380 
8381 Expected<std::unique_ptr<Module>>
8382 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8383                              bool IsImporting, ParserCallbacks Callbacks) {
8384   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8385                        Callbacks);
8386 }
8387 
8388 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8389 // We don't use ModuleIdentifier here because the client may need to control the
8390 // module path used in the combined summary (e.g. when reading summaries for
8391 // regular LTO modules).
8392 Error BitcodeModule::readSummary(
8393     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8394     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8395   BitstreamCursor Stream(Buffer);
8396   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8397     return JumpFailed;
8398 
8399   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8400                                     ModulePath, IsPrevailing);
8401   return R.parseModule();
8402 }
8403 
8404 // Parse the specified bitcode buffer, returning the function info index.
8405 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8406   BitstreamCursor Stream(Buffer);
8407   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8408     return std::move(JumpFailed);
8409 
8410   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8411   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8412                                     ModuleIdentifier, 0);
8413 
8414   if (Error Err = R.parseModule())
8415     return std::move(Err);
8416 
8417   return std::move(Index);
8418 }
8419 
8420 static Expected<std::pair<bool, bool>>
8421 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8422                                                  unsigned ID,
8423                                                  BitcodeLTOInfo &LTOInfo) {
8424   if (Error Err = Stream.EnterSubBlock(ID))
8425     return std::move(Err);
8426   SmallVector<uint64_t, 64> Record;
8427 
8428   while (true) {
8429     BitstreamEntry Entry;
8430     std::pair<bool, bool> Result = {false,false};
8431     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8432       return std::move(E);
8433 
8434     switch (Entry.Kind) {
8435     case BitstreamEntry::SubBlock: // Handled for us already.
8436     case BitstreamEntry::Error:
8437       return error("Malformed block");
8438     case BitstreamEntry::EndBlock: {
8439       // If no flags record found, set both flags to false.
8440       return Result;
8441     }
8442     case BitstreamEntry::Record:
8443       // The interesting case.
8444       break;
8445     }
8446 
8447     // Look for the FS_FLAGS record.
8448     Record.clear();
8449     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8450     if (!MaybeBitCode)
8451       return MaybeBitCode.takeError();
8452     switch (MaybeBitCode.get()) {
8453     default: // Default behavior: ignore.
8454       break;
8455     case bitc::FS_FLAGS: { // [flags]
8456       uint64_t Flags = Record[0];
8457       // Scan flags.
8458       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8459 
8460       bool EnableSplitLTOUnit = Flags & 0x8;
8461       bool UnifiedLTO = Flags & 0x200;
8462       Result = {EnableSplitLTOUnit, UnifiedLTO};
8463 
8464       return Result;
8465     }
8466     }
8467   }
8468   llvm_unreachable("Exit infinite loop");
8469 }
8470 
8471 // Check if the given bitcode buffer contains a global value summary block.
8472 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8473   BitstreamCursor Stream(Buffer);
8474   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8475     return std::move(JumpFailed);
8476 
8477   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8478     return std::move(Err);
8479 
8480   while (true) {
8481     llvm::BitstreamEntry Entry;
8482     if (Error E = Stream.advance().moveInto(Entry))
8483       return std::move(E);
8484 
8485     switch (Entry.Kind) {
8486     case BitstreamEntry::Error:
8487       return error("Malformed block");
8488     case BitstreamEntry::EndBlock:
8489       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8490                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8491 
8492     case BitstreamEntry::SubBlock:
8493       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8494         BitcodeLTOInfo LTOInfo;
8495         Expected<std::pair<bool, bool>> Flags =
8496             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8497         if (!Flags)
8498           return Flags.takeError();
8499         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8500         LTOInfo.IsThinLTO = true;
8501         LTOInfo.HasSummary = true;
8502         return LTOInfo;
8503       }
8504 
8505       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8506         BitcodeLTOInfo LTOInfo;
8507         Expected<std::pair<bool, bool>> Flags =
8508             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8509         if (!Flags)
8510           return Flags.takeError();
8511         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8512         LTOInfo.IsThinLTO = false;
8513         LTOInfo.HasSummary = true;
8514         return LTOInfo;
8515       }
8516 
8517       // Ignore other sub-blocks.
8518       if (Error Err = Stream.SkipBlock())
8519         return std::move(Err);
8520       continue;
8521 
8522     case BitstreamEntry::Record:
8523       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8524         continue;
8525       else
8526         return StreamFailed.takeError();
8527     }
8528   }
8529 }
8530 
8531 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8532   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8533   if (!MsOrErr)
8534     return MsOrErr.takeError();
8535 
8536   if (MsOrErr->size() != 1)
8537     return error("Expected a single module");
8538 
8539   return (*MsOrErr)[0];
8540 }
8541 
8542 Expected<std::unique_ptr<Module>>
8543 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8544                            bool ShouldLazyLoadMetadata, bool IsImporting,
8545                            ParserCallbacks Callbacks) {
8546   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8547   if (!BM)
8548     return BM.takeError();
8549 
8550   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8551                            Callbacks);
8552 }
8553 
8554 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8555     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8556     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8557   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8558                                      IsImporting, Callbacks);
8559   if (MOrErr)
8560     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8561   return MOrErr;
8562 }
8563 
8564 Expected<std::unique_ptr<Module>>
8565 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8566   return getModuleImpl(Context, true, false, false, Callbacks);
8567   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8568   // written.  We must defer until the Module has been fully materialized.
8569 }
8570 
8571 Expected<std::unique_ptr<Module>>
8572 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8573                        ParserCallbacks Callbacks) {
8574   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8575   if (!BM)
8576     return BM.takeError();
8577 
8578   return BM->parseModule(Context, Callbacks);
8579 }
8580 
8581 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8582   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8583   if (!StreamOrErr)
8584     return StreamOrErr.takeError();
8585 
8586   return readTriple(*StreamOrErr);
8587 }
8588 
8589 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8590   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8591   if (!StreamOrErr)
8592     return StreamOrErr.takeError();
8593 
8594   return hasObjCCategory(*StreamOrErr);
8595 }
8596 
8597 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8598   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8599   if (!StreamOrErr)
8600     return StreamOrErr.takeError();
8601 
8602   return readIdentificationCode(*StreamOrErr);
8603 }
8604 
8605 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8606                                    ModuleSummaryIndex &CombinedIndex) {
8607   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8608   if (!BM)
8609     return BM.takeError();
8610 
8611   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8612 }
8613 
8614 Expected<std::unique_ptr<ModuleSummaryIndex>>
8615 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8616   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8617   if (!BM)
8618     return BM.takeError();
8619 
8620   return BM->getSummary();
8621 }
8622 
8623 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8624   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8625   if (!BM)
8626     return BM.takeError();
8627 
8628   return BM->getLTOInfo();
8629 }
8630 
8631 Expected<std::unique_ptr<ModuleSummaryIndex>>
8632 llvm::getModuleSummaryIndexForFile(StringRef Path,
8633                                    bool IgnoreEmptyThinLTOIndexFile) {
8634   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8635       MemoryBuffer::getFileOrSTDIN(Path);
8636   if (!FileOrErr)
8637     return errorCodeToError(FileOrErr.getError());
8638   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8639     return nullptr;
8640   return getModuleSummaryIndex(**FileOrErr);
8641 }
8642