xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision deab451e7a7f2dff42097049274637052c87eabd)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 /// Load bitcode directly into RemoveDIs format (use debug records instead
104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
105 /// is to do nothing. Individual tools can override this to incrementally add
106 /// support for the RemoveDIs format.
107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
108     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
109     cl::desc("Load bitcode directly into the new debug info format (regardless "
110              "of input format)"));
111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
112 extern bool WriteNewDbgInfoFormatToBitcode;
113 extern cl::opt<bool> WriteNewDbgInfoFormat;
114 
115 namespace {
116 
117 enum {
118   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
119 };
120 
121 } // end anonymous namespace
122 
123 static Error error(const Twine &Message) {
124   return make_error<StringError>(
125       Message, make_error_code(BitcodeError::CorruptedBitcode));
126 }
127 
128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
129   if (!Stream.canSkipToPos(4))
130     return createStringError(std::errc::illegal_byte_sequence,
131                              "file too small to contain bitcode header");
132   for (unsigned C : {'B', 'C'})
133     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
134       if (Res.get() != C)
135         return createStringError(std::errc::illegal_byte_sequence,
136                                  "file doesn't start with bitcode header");
137     } else
138       return Res.takeError();
139   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
140     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
141       if (Res.get() != C)
142         return createStringError(std::errc::illegal_byte_sequence,
143                                  "file doesn't start with bitcode header");
144     } else
145       return Res.takeError();
146   return Error::success();
147 }
148 
149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
150   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
151   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
152 
153   if (Buffer.getBufferSize() & 3)
154     return error("Invalid bitcode signature");
155 
156   // If we have a wrapper header, parse it and ignore the non-bc file contents.
157   // The magic number is 0x0B17C0DE stored in little endian.
158   if (isBitcodeWrapper(BufPtr, BufEnd))
159     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
160       return error("Invalid bitcode wrapper header");
161 
162   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
163   if (Error Err = hasInvalidBitcodeHeader(Stream))
164     return std::move(Err);
165 
166   return std::move(Stream);
167 }
168 
169 /// Convert a string from a record into an std::string, return true on failure.
170 template <typename StrTy>
171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
172                             StrTy &Result) {
173   if (Idx > Record.size())
174     return true;
175 
176   Result.append(Record.begin() + Idx, Record.end());
177   return false;
178 }
179 
180 // Strip all the TBAA attachment for the module.
181 static void stripTBAA(Module *M) {
182   for (auto &F : *M) {
183     if (F.isMaterializable())
184       continue;
185     for (auto &I : instructions(F))
186       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
187   }
188 }
189 
190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
191 /// "epoch" encoded in the bitcode, and return the producer name if any.
192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
193   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
194     return std::move(Err);
195 
196   // Read all the records.
197   SmallVector<uint64_t, 64> Record;
198 
199   std::string ProducerIdentification;
200 
201   while (true) {
202     BitstreamEntry Entry;
203     if (Error E = Stream.advance().moveInto(Entry))
204       return std::move(E);
205 
206     switch (Entry.Kind) {
207     default:
208     case BitstreamEntry::Error:
209       return error("Malformed block");
210     case BitstreamEntry::EndBlock:
211       return ProducerIdentification;
212     case BitstreamEntry::Record:
213       // The interesting case.
214       break;
215     }
216 
217     // Read a record.
218     Record.clear();
219     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
220     if (!MaybeBitCode)
221       return MaybeBitCode.takeError();
222     switch (MaybeBitCode.get()) {
223     default: // Default behavior: reject
224       return error("Invalid value");
225     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
226       convertToString(Record, 0, ProducerIdentification);
227       break;
228     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
229       unsigned epoch = (unsigned)Record[0];
230       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
231         return error(
232           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
233           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
234       }
235     }
236     }
237   }
238 }
239 
240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
241   // We expect a number of well-defined blocks, though we don't necessarily
242   // need to understand them all.
243   while (true) {
244     if (Stream.AtEndOfStream())
245       return "";
246 
247     BitstreamEntry Entry;
248     if (Error E = Stream.advance().moveInto(Entry))
249       return std::move(E);
250 
251     switch (Entry.Kind) {
252     case BitstreamEntry::EndBlock:
253     case BitstreamEntry::Error:
254       return error("Malformed block");
255 
256     case BitstreamEntry::SubBlock:
257       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
258         return readIdentificationBlock(Stream);
259 
260       // Ignore other sub-blocks.
261       if (Error Err = Stream.SkipBlock())
262         return std::move(Err);
263       continue;
264     case BitstreamEntry::Record:
265       if (Error E = Stream.skipRecord(Entry.ID).takeError())
266         return std::move(E);
267       continue;
268     }
269   }
270 }
271 
272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
273   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
274     return std::move(Err);
275 
276   SmallVector<uint64_t, 64> Record;
277   // Read all the records for this module.
278 
279   while (true) {
280     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
281     if (!MaybeEntry)
282       return MaybeEntry.takeError();
283     BitstreamEntry Entry = MaybeEntry.get();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::SubBlock: // Handled for us already.
287     case BitstreamEntry::Error:
288       return error("Malformed block");
289     case BitstreamEntry::EndBlock:
290       return false;
291     case BitstreamEntry::Record:
292       // The interesting case.
293       break;
294     }
295 
296     // Read a record.
297     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
298     if (!MaybeRecord)
299       return MaybeRecord.takeError();
300     switch (MaybeRecord.get()) {
301     default:
302       break; // Default behavior, ignore unknown content.
303     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
304       std::string S;
305       if (convertToString(Record, 0, S))
306         return error("Invalid section name record");
307       // Check for the i386 and other (x86_64, ARM) conventions
308       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
309           S.find("__OBJC,__category") != std::string::npos ||
310           S.find("__TEXT,__swift") != std::string::npos)
311         return true;
312       break;
313     }
314     }
315     Record.clear();
316   }
317   llvm_unreachable("Exit infinite loop");
318 }
319 
320 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
321   // We expect a number of well-defined blocks, though we don't necessarily
322   // need to understand them all.
323   while (true) {
324     BitstreamEntry Entry;
325     if (Error E = Stream.advance().moveInto(Entry))
326       return std::move(E);
327 
328     switch (Entry.Kind) {
329     case BitstreamEntry::Error:
330       return error("Malformed block");
331     case BitstreamEntry::EndBlock:
332       return false;
333 
334     case BitstreamEntry::SubBlock:
335       if (Entry.ID == bitc::MODULE_BLOCK_ID)
336         return hasObjCCategoryInModule(Stream);
337 
338       // Ignore other sub-blocks.
339       if (Error Err = Stream.SkipBlock())
340         return std::move(Err);
341       continue;
342 
343     case BitstreamEntry::Record:
344       if (Error E = Stream.skipRecord(Entry.ID).takeError())
345         return std::move(E);
346       continue;
347     }
348   }
349 }
350 
351 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
352   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
353     return std::move(Err);
354 
355   SmallVector<uint64_t, 64> Record;
356 
357   std::string Triple;
358 
359   // Read all the records for this module.
360   while (true) {
361     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
362     if (!MaybeEntry)
363       return MaybeEntry.takeError();
364     BitstreamEntry Entry = MaybeEntry.get();
365 
366     switch (Entry.Kind) {
367     case BitstreamEntry::SubBlock: // Handled for us already.
368     case BitstreamEntry::Error:
369       return error("Malformed block");
370     case BitstreamEntry::EndBlock:
371       return Triple;
372     case BitstreamEntry::Record:
373       // The interesting case.
374       break;
375     }
376 
377     // Read a record.
378     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
379     if (!MaybeRecord)
380       return MaybeRecord.takeError();
381     switch (MaybeRecord.get()) {
382     default: break;  // Default behavior, ignore unknown content.
383     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
384       std::string S;
385       if (convertToString(Record, 0, S))
386         return error("Invalid triple record");
387       Triple = S;
388       break;
389     }
390     }
391     Record.clear();
392   }
393   llvm_unreachable("Exit infinite loop");
394 }
395 
396 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
397   // We expect a number of well-defined blocks, though we don't necessarily
398   // need to understand them all.
399   while (true) {
400     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
401     if (!MaybeEntry)
402       return MaybeEntry.takeError();
403     BitstreamEntry Entry = MaybeEntry.get();
404 
405     switch (Entry.Kind) {
406     case BitstreamEntry::Error:
407       return error("Malformed block");
408     case BitstreamEntry::EndBlock:
409       return "";
410 
411     case BitstreamEntry::SubBlock:
412       if (Entry.ID == bitc::MODULE_BLOCK_ID)
413         return readModuleTriple(Stream);
414 
415       // Ignore other sub-blocks.
416       if (Error Err = Stream.SkipBlock())
417         return std::move(Err);
418       continue;
419 
420     case BitstreamEntry::Record:
421       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
422         continue;
423       else
424         return Skipped.takeError();
425     }
426   }
427 }
428 
429 namespace {
430 
431 class BitcodeReaderBase {
432 protected:
433   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
434       : Stream(std::move(Stream)), Strtab(Strtab) {
435     this->Stream.setBlockInfo(&BlockInfo);
436   }
437 
438   BitstreamBlockInfo BlockInfo;
439   BitstreamCursor Stream;
440   StringRef Strtab;
441 
442   /// In version 2 of the bitcode we store names of global values and comdats in
443   /// a string table rather than in the VST.
444   bool UseStrtab = false;
445 
446   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
447 
448   /// If this module uses a string table, pop the reference to the string table
449   /// and return the referenced string and the rest of the record. Otherwise
450   /// just return the record itself.
451   std::pair<StringRef, ArrayRef<uint64_t>>
452   readNameFromStrtab(ArrayRef<uint64_t> Record);
453 
454   Error readBlockInfo();
455 
456   // Contains an arbitrary and optional string identifying the bitcode producer
457   std::string ProducerIdentification;
458 
459   Error error(const Twine &Message);
460 };
461 
462 } // end anonymous namespace
463 
464 Error BitcodeReaderBase::error(const Twine &Message) {
465   std::string FullMsg = Message.str();
466   if (!ProducerIdentification.empty())
467     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
468                LLVM_VERSION_STRING "')";
469   return ::error(FullMsg);
470 }
471 
472 Expected<unsigned>
473 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
474   if (Record.empty())
475     return error("Invalid version record");
476   unsigned ModuleVersion = Record[0];
477   if (ModuleVersion > 2)
478     return error("Invalid value");
479   UseStrtab = ModuleVersion >= 2;
480   return ModuleVersion;
481 }
482 
483 std::pair<StringRef, ArrayRef<uint64_t>>
484 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
485   if (!UseStrtab)
486     return {"", Record};
487   // Invalid reference. Let the caller complain about the record being empty.
488   if (Record[0] + Record[1] > Strtab.size())
489     return {"", {}};
490   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
491 }
492 
493 namespace {
494 
495 /// This represents a constant expression or constant aggregate using a custom
496 /// structure internal to the bitcode reader. Later, this structure will be
497 /// expanded by materializeValue() either into a constant expression/aggregate,
498 /// or into an instruction sequence at the point of use. This allows us to
499 /// upgrade bitcode using constant expressions even if this kind of constant
500 /// expression is no longer supported.
501 class BitcodeConstant final : public Value,
502                               TrailingObjects<BitcodeConstant, unsigned> {
503   friend TrailingObjects;
504 
505   // Value subclass ID: Pick largest possible value to avoid any clashes.
506   static constexpr uint8_t SubclassID = 255;
507 
508 public:
509   // Opcodes used for non-expressions. This includes constant aggregates
510   // (struct, array, vector) that might need expansion, as well as non-leaf
511   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
512   // but still go through BitcodeConstant to avoid different uselist orders
513   // between the two cases.
514   static constexpr uint8_t ConstantStructOpcode = 255;
515   static constexpr uint8_t ConstantArrayOpcode = 254;
516   static constexpr uint8_t ConstantVectorOpcode = 253;
517   static constexpr uint8_t NoCFIOpcode = 252;
518   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
519   static constexpr uint8_t BlockAddressOpcode = 250;
520   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
521   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
522 
523   // Separate struct to make passing different number of parameters to
524   // BitcodeConstant::create() more convenient.
525   struct ExtraInfo {
526     uint8_t Opcode;
527     uint8_t Flags;
528     unsigned BlockAddressBB = 0;
529     Type *SrcElemTy = nullptr;
530     std::optional<ConstantRange> InRange;
531 
532     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
533               std::optional<ConstantRange> InRange = std::nullopt)
534         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
535           InRange(std::move(InRange)) {}
536 
537     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
538         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
539   };
540 
541   uint8_t Opcode;
542   uint8_t Flags;
543   unsigned NumOperands;
544   unsigned BlockAddressBB;
545   Type *SrcElemTy; // GEP source element type.
546   std::optional<ConstantRange> InRange; // GEP inrange attribute.
547 
548 private:
549   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
550       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
551         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
552         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
553     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
554                             getTrailingObjects<unsigned>());
555   }
556 
557   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
558 
559 public:
560   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
561                                  const ExtraInfo &Info,
562                                  ArrayRef<unsigned> OpIDs) {
563     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
564                            alignof(BitcodeConstant));
565     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
566   }
567 
568   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
569 
570   ArrayRef<unsigned> getOperandIDs() const {
571     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
572   }
573 
574   std::optional<ConstantRange> getInRange() const {
575     assert(Opcode == Instruction::GetElementPtr);
576     return InRange;
577   }
578 
579   const char *getOpcodeName() const {
580     return Instruction::getOpcodeName(Opcode);
581   }
582 };
583 
584 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
585   LLVMContext &Context;
586   Module *TheModule = nullptr;
587   // Next offset to start scanning for lazy parsing of function bodies.
588   uint64_t NextUnreadBit = 0;
589   // Last function offset found in the VST.
590   uint64_t LastFunctionBlockBit = 0;
591   bool SeenValueSymbolTable = false;
592   uint64_t VSTOffset = 0;
593 
594   std::vector<std::string> SectionTable;
595   std::vector<std::string> GCTable;
596 
597   std::vector<Type *> TypeList;
598   /// Track type IDs of contained types. Order is the same as the contained
599   /// types of a Type*. This is used during upgrades of typed pointer IR in
600   /// opaque pointer mode.
601   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
602   /// In some cases, we need to create a type ID for a type that was not
603   /// explicitly encoded in the bitcode, or we don't know about at the current
604   /// point. For example, a global may explicitly encode the value type ID, but
605   /// not have a type ID for the pointer to value type, for which we create a
606   /// virtual type ID instead. This map stores the new type ID that was created
607   /// for the given pair of Type and contained type ID.
608   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
609   DenseMap<Function *, unsigned> FunctionTypeIDs;
610   /// Allocator for BitcodeConstants. This should come before ValueList,
611   /// because the ValueList might hold ValueHandles to these constants, so
612   /// ValueList must be destroyed before Alloc.
613   BumpPtrAllocator Alloc;
614   BitcodeReaderValueList ValueList;
615   std::optional<MetadataLoader> MDLoader;
616   std::vector<Comdat *> ComdatList;
617   DenseSet<GlobalObject *> ImplicitComdatObjects;
618   SmallVector<Instruction *, 64> InstructionList;
619 
620   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
621   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
622 
623   struct FunctionOperandInfo {
624     Function *F;
625     unsigned PersonalityFn;
626     unsigned Prefix;
627     unsigned Prologue;
628   };
629   std::vector<FunctionOperandInfo> FunctionOperands;
630 
631   /// The set of attributes by index.  Index zero in the file is for null, and
632   /// is thus not represented here.  As such all indices are off by one.
633   std::vector<AttributeList> MAttributes;
634 
635   /// The set of attribute groups.
636   std::map<unsigned, AttributeList> MAttributeGroups;
637 
638   /// While parsing a function body, this is a list of the basic blocks for the
639   /// function.
640   std::vector<BasicBlock*> FunctionBBs;
641 
642   // When reading the module header, this list is populated with functions that
643   // have bodies later in the file.
644   std::vector<Function*> FunctionsWithBodies;
645 
646   // When intrinsic functions are encountered which require upgrading they are
647   // stored here with their replacement function.
648   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
649   UpdatedIntrinsicMap UpgradedIntrinsics;
650 
651   // Several operations happen after the module header has been read, but
652   // before function bodies are processed. This keeps track of whether
653   // we've done this yet.
654   bool SeenFirstFunctionBody = false;
655 
656   /// When function bodies are initially scanned, this map contains info about
657   /// where to find deferred function body in the stream.
658   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
659 
660   /// When Metadata block is initially scanned when parsing the module, we may
661   /// choose to defer parsing of the metadata. This vector contains info about
662   /// which Metadata blocks are deferred.
663   std::vector<uint64_t> DeferredMetadataInfo;
664 
665   /// These are basic blocks forward-referenced by block addresses.  They are
666   /// inserted lazily into functions when they're loaded.  The basic block ID is
667   /// its index into the vector.
668   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
669   std::deque<Function *> BasicBlockFwdRefQueue;
670 
671   /// These are Functions that contain BlockAddresses which refer a different
672   /// Function. When parsing the different Function, queue Functions that refer
673   /// to the different Function. Those Functions must be materialized in order
674   /// to resolve their BlockAddress constants before the different Function
675   /// gets moved into another Module.
676   std::vector<Function *> BackwardRefFunctions;
677 
678   /// Indicates that we are using a new encoding for instruction operands where
679   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
680   /// instruction number, for a more compact encoding.  Some instruction
681   /// operands are not relative to the instruction ID: basic block numbers, and
682   /// types. Once the old style function blocks have been phased out, we would
683   /// not need this flag.
684   bool UseRelativeIDs = false;
685 
686   /// True if all functions will be materialized, negating the need to process
687   /// (e.g.) blockaddress forward references.
688   bool WillMaterializeAllForwardRefs = false;
689 
690   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
691   /// seeing both in a single module is currently a fatal error.
692   bool SeenDebugIntrinsic = false;
693   bool SeenDebugRecord = false;
694 
695   bool StripDebugInfo = false;
696   TBAAVerifier TBAAVerifyHelper;
697 
698   std::vector<std::string> BundleTags;
699   SmallVector<SyncScope::ID, 8> SSIDs;
700 
701   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
702 
703 public:
704   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
705                 StringRef ProducerIdentification, LLVMContext &Context);
706 
707   Error materializeForwardReferencedFunctions();
708 
709   Error materialize(GlobalValue *GV) override;
710   Error materializeModule() override;
711   std::vector<StructType *> getIdentifiedStructTypes() const override;
712 
713   /// Main interface to parsing a bitcode buffer.
714   /// \returns true if an error occurred.
715   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
716                          bool IsImporting, ParserCallbacks Callbacks = {});
717 
718   static uint64_t decodeSignRotatedValue(uint64_t V);
719 
720   /// Materialize any deferred Metadata block.
721   Error materializeMetadata() override;
722 
723   void setStripDebugInfo() override;
724 
725 private:
726   std::vector<StructType *> IdentifiedStructTypes;
727   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
728   StructType *createIdentifiedStructType(LLVMContext &Context);
729 
730   static constexpr unsigned InvalidTypeID = ~0u;
731 
732   Type *getTypeByID(unsigned ID);
733   Type *getPtrElementTypeByID(unsigned ID);
734   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
735   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
736 
737   void callValueTypeCallback(Value *F, unsigned TypeID);
738   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
739   Expected<Constant *> getValueForInitializer(unsigned ID);
740 
741   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
742                         BasicBlock *ConstExprInsertBB) {
743     if (Ty && Ty->isMetadataTy())
744       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
745     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
746   }
747 
748   Metadata *getFnMetadataByID(unsigned ID) {
749     return MDLoader->getMetadataFwdRefOrLoad(ID);
750   }
751 
752   BasicBlock *getBasicBlock(unsigned ID) const {
753     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
754     return FunctionBBs[ID];
755   }
756 
757   AttributeList getAttributes(unsigned i) const {
758     if (i-1 < MAttributes.size())
759       return MAttributes[i-1];
760     return AttributeList();
761   }
762 
763   /// Read a value/type pair out of the specified record from slot 'Slot'.
764   /// Increment Slot past the number of slots used in the record. Return true on
765   /// failure.
766   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
767                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
768                         BasicBlock *ConstExprInsertBB) {
769     if (Slot == Record.size()) return true;
770     unsigned ValNo = (unsigned)Record[Slot++];
771     // Adjust the ValNo, if it was encoded relative to the InstNum.
772     if (UseRelativeIDs)
773       ValNo = InstNum - ValNo;
774     if (ValNo < InstNum) {
775       // If this is not a forward reference, just return the value we already
776       // have.
777       TypeID = ValueList.getTypeID(ValNo);
778       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
779       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
780              "Incorrect type ID stored for value");
781       return ResVal == nullptr;
782     }
783     if (Slot == Record.size())
784       return true;
785 
786     TypeID = (unsigned)Record[Slot++];
787     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
788                             ConstExprInsertBB);
789     return ResVal == nullptr;
790   }
791 
792   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
793   /// past the number of slots used by the value in the record. Return true if
794   /// there is an error.
795   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
796                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
797                 BasicBlock *ConstExprInsertBB) {
798     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
799       return true;
800     // All values currently take a single record slot.
801     ++Slot;
802     return false;
803   }
804 
805   /// Like popValue, but does not increment the Slot number.
806   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
807                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
808                 BasicBlock *ConstExprInsertBB) {
809     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
810     return ResVal == nullptr;
811   }
812 
813   /// Version of getValue that returns ResVal directly, or 0 if there is an
814   /// error.
815   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
816                   unsigned InstNum, Type *Ty, unsigned TyID,
817                   BasicBlock *ConstExprInsertBB) {
818     if (Slot == Record.size()) return nullptr;
819     unsigned ValNo = (unsigned)Record[Slot];
820     // Adjust the ValNo, if it was encoded relative to the InstNum.
821     if (UseRelativeIDs)
822       ValNo = InstNum - ValNo;
823     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
824   }
825 
826   /// Like getValue, but decodes signed VBRs.
827   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828                         unsigned InstNum, Type *Ty, unsigned TyID,
829                         BasicBlock *ConstExprInsertBB) {
830     if (Slot == Record.size()) return nullptr;
831     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
832     // Adjust the ValNo, if it was encoded relative to the InstNum.
833     if (UseRelativeIDs)
834       ValNo = InstNum - ValNo;
835     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
836   }
837 
838   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
839                                             unsigned &OpNum) {
840     if (Record.size() - OpNum < 3)
841       return error("Too few records for range");
842     unsigned BitWidth = Record[OpNum++];
843     if (BitWidth > 64) {
844       unsigned LowerActiveWords = Record[OpNum];
845       unsigned UpperActiveWords = Record[OpNum++] >> 32;
846       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
847         return error("Too few records for range");
848       APInt Lower =
849           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
850       OpNum += LowerActiveWords;
851       APInt Upper =
852           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
853       OpNum += UpperActiveWords;
854       return ConstantRange(Lower, Upper);
855     } else {
856       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
857       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
858       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
859     }
860   }
861 
862   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
863   /// corresponding argument's pointee type. Also upgrades intrinsics that now
864   /// require an elementtype attribute.
865   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
866 
867   /// Converts alignment exponent (i.e. power of two (or zero)) to the
868   /// corresponding alignment to use. If alignment is too large, returns
869   /// a corresponding error code.
870   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
871   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
872   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
873                     ParserCallbacks Callbacks = {});
874 
875   Error parseComdatRecord(ArrayRef<uint64_t> Record);
876   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
877   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
878   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
879                                         ArrayRef<uint64_t> Record);
880 
881   Error parseAttributeBlock();
882   Error parseAttributeGroupBlock();
883   Error parseTypeTable();
884   Error parseTypeTableBody();
885   Error parseOperandBundleTags();
886   Error parseSyncScopeNames();
887 
888   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
889                                 unsigned NameIndex, Triple &TT);
890   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
891                                ArrayRef<uint64_t> Record);
892   Error parseValueSymbolTable(uint64_t Offset = 0);
893   Error parseGlobalValueSymbolTable();
894   Error parseConstants();
895   Error rememberAndSkipFunctionBodies();
896   Error rememberAndSkipFunctionBody();
897   /// Save the positions of the Metadata blocks and skip parsing the blocks.
898   Error rememberAndSkipMetadata();
899   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
900   Error parseFunctionBody(Function *F);
901   Error globalCleanup();
902   Error resolveGlobalAndIndirectSymbolInits();
903   Error parseUseLists();
904   Error findFunctionInStream(
905       Function *F,
906       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
907 
908   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
909 };
910 
911 /// Class to manage reading and parsing function summary index bitcode
912 /// files/sections.
913 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
914   /// The module index built during parsing.
915   ModuleSummaryIndex &TheIndex;
916 
917   /// Indicates whether we have encountered a global value summary section
918   /// yet during parsing.
919   bool SeenGlobalValSummary = false;
920 
921   /// Indicates whether we have already parsed the VST, used for error checking.
922   bool SeenValueSymbolTable = false;
923 
924   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
925   /// Used to enable on-demand parsing of the VST.
926   uint64_t VSTOffset = 0;
927 
928   // Map to save ValueId to ValueInfo association that was recorded in the
929   // ValueSymbolTable. It is used after the VST is parsed to convert
930   // call graph edges read from the function summary from referencing
931   // callees by their ValueId to using the ValueInfo instead, which is how
932   // they are recorded in the summary index being built.
933   // We save a GUID which refers to the same global as the ValueInfo, but
934   // ignoring the linkage, i.e. for values other than local linkage they are
935   // identical (this is the second tuple member).
936   // The third tuple member is the real GUID of the ValueInfo.
937   DenseMap<unsigned,
938            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
939       ValueIdToValueInfoMap;
940 
941   /// Map populated during module path string table parsing, from the
942   /// module ID to a string reference owned by the index's module
943   /// path string table, used to correlate with combined index
944   /// summary records.
945   DenseMap<uint64_t, StringRef> ModuleIdMap;
946 
947   /// Original source file name recorded in a bitcode record.
948   std::string SourceFileName;
949 
950   /// The string identifier given to this module by the client, normally the
951   /// path to the bitcode file.
952   StringRef ModulePath;
953 
954   /// Callback to ask whether a symbol is the prevailing copy when invoked
955   /// during combined index building.
956   std::function<bool(GlobalValue::GUID)> IsPrevailing;
957 
958   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
959   /// ids from the lists in the callsite and alloc entries to the index.
960   std::vector<uint64_t> StackIds;
961 
962 public:
963   ModuleSummaryIndexBitcodeReader(
964       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
965       StringRef ModulePath,
966       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
967 
968   Error parseModule();
969 
970 private:
971   void setValueGUID(uint64_t ValueID, StringRef ValueName,
972                     GlobalValue::LinkageTypes Linkage,
973                     StringRef SourceFileName);
974   Error parseValueSymbolTable(
975       uint64_t Offset,
976       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
977   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
978   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
979                                                     bool IsOldProfileFormat,
980                                                     bool HasProfile,
981                                                     bool HasRelBF);
982   Error parseEntireSummary(unsigned ID);
983   Error parseModuleStringTable();
984   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
985   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
986                                        TypeIdCompatibleVtableInfo &TypeId);
987   std::vector<FunctionSummary::ParamAccess>
988   parseParamAccesses(ArrayRef<uint64_t> Record);
989 
990   template <bool AllowNullValueInfo = false>
991   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
992   getValueInfoFromValueId(unsigned ValueId);
993 
994   void addThisModule();
995   ModuleSummaryIndex::ModuleInfo *getThisModule();
996 };
997 
998 } // end anonymous namespace
999 
1000 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1001                                                     Error Err) {
1002   if (Err) {
1003     std::error_code EC;
1004     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1005       EC = EIB.convertToErrorCode();
1006       Ctx.emitError(EIB.message());
1007     });
1008     return EC;
1009   }
1010   return std::error_code();
1011 }
1012 
1013 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1014                              StringRef ProducerIdentification,
1015                              LLVMContext &Context)
1016     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1017       ValueList(this->Stream.SizeInBytes(),
1018                 [this](unsigned ValID, BasicBlock *InsertBB) {
1019                   return materializeValue(ValID, InsertBB);
1020                 }) {
1021   this->ProducerIdentification = std::string(ProducerIdentification);
1022 }
1023 
1024 Error BitcodeReader::materializeForwardReferencedFunctions() {
1025   if (WillMaterializeAllForwardRefs)
1026     return Error::success();
1027 
1028   // Prevent recursion.
1029   WillMaterializeAllForwardRefs = true;
1030 
1031   while (!BasicBlockFwdRefQueue.empty()) {
1032     Function *F = BasicBlockFwdRefQueue.front();
1033     BasicBlockFwdRefQueue.pop_front();
1034     assert(F && "Expected valid function");
1035     if (!BasicBlockFwdRefs.count(F))
1036       // Already materialized.
1037       continue;
1038 
1039     // Check for a function that isn't materializable to prevent an infinite
1040     // loop.  When parsing a blockaddress stored in a global variable, there
1041     // isn't a trivial way to check if a function will have a body without a
1042     // linear search through FunctionsWithBodies, so just check it here.
1043     if (!F->isMaterializable())
1044       return error("Never resolved function from blockaddress");
1045 
1046     // Try to materialize F.
1047     if (Error Err = materialize(F))
1048       return Err;
1049   }
1050   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1051 
1052   for (Function *F : BackwardRefFunctions)
1053     if (Error Err = materialize(F))
1054       return Err;
1055   BackwardRefFunctions.clear();
1056 
1057   // Reset state.
1058   WillMaterializeAllForwardRefs = false;
1059   return Error::success();
1060 }
1061 
1062 //===----------------------------------------------------------------------===//
1063 //  Helper functions to implement forward reference resolution, etc.
1064 //===----------------------------------------------------------------------===//
1065 
1066 static bool hasImplicitComdat(size_t Val) {
1067   switch (Val) {
1068   default:
1069     return false;
1070   case 1:  // Old WeakAnyLinkage
1071   case 4:  // Old LinkOnceAnyLinkage
1072   case 10: // Old WeakODRLinkage
1073   case 11: // Old LinkOnceODRLinkage
1074     return true;
1075   }
1076 }
1077 
1078 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1079   switch (Val) {
1080   default: // Map unknown/new linkages to external
1081   case 0:
1082     return GlobalValue::ExternalLinkage;
1083   case 2:
1084     return GlobalValue::AppendingLinkage;
1085   case 3:
1086     return GlobalValue::InternalLinkage;
1087   case 5:
1088     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1089   case 6:
1090     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1091   case 7:
1092     return GlobalValue::ExternalWeakLinkage;
1093   case 8:
1094     return GlobalValue::CommonLinkage;
1095   case 9:
1096     return GlobalValue::PrivateLinkage;
1097   case 12:
1098     return GlobalValue::AvailableExternallyLinkage;
1099   case 13:
1100     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1101   case 14:
1102     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1103   case 15:
1104     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1105   case 1: // Old value with implicit comdat.
1106   case 16:
1107     return GlobalValue::WeakAnyLinkage;
1108   case 10: // Old value with implicit comdat.
1109   case 17:
1110     return GlobalValue::WeakODRLinkage;
1111   case 4: // Old value with implicit comdat.
1112   case 18:
1113     return GlobalValue::LinkOnceAnyLinkage;
1114   case 11: // Old value with implicit comdat.
1115   case 19:
1116     return GlobalValue::LinkOnceODRLinkage;
1117   }
1118 }
1119 
1120 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1121   FunctionSummary::FFlags Flags;
1122   Flags.ReadNone = RawFlags & 0x1;
1123   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1124   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1125   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1126   Flags.NoInline = (RawFlags >> 4) & 0x1;
1127   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1128   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1129   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1130   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1131   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1132   return Flags;
1133 }
1134 
1135 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1136 //
1137 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1138 // visibility: [8, 10).
1139 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1140                                                             uint64_t Version) {
1141   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1142   // like getDecodedLinkage() above. Any future change to the linkage enum and
1143   // to getDecodedLinkage() will need to be taken into account here as above.
1144   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1145   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1146   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1147   RawFlags = RawFlags >> 4;
1148   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1149   // The Live flag wasn't introduced until version 3. For dead stripping
1150   // to work correctly on earlier versions, we must conservatively treat all
1151   // values as live.
1152   bool Live = (RawFlags & 0x2) || Version < 3;
1153   bool Local = (RawFlags & 0x4);
1154   bool AutoHide = (RawFlags & 0x8);
1155 
1156   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1157                                      Live, Local, AutoHide, IK);
1158 }
1159 
1160 // Decode the flags for GlobalVariable in the summary
1161 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1162   return GlobalVarSummary::GVarFlags(
1163       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1164       (RawFlags & 0x4) ? true : false,
1165       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1166 }
1167 
1168 static std::pair<CalleeInfo::HotnessType, bool>
1169 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1170   CalleeInfo::HotnessType Hotness =
1171       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1172   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1173   return {Hotness, HasTailCall};
1174 }
1175 
1176 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1177                                         bool &HasTailCall) {
1178   static constexpr uint64_t RelBlockFreqMask =
1179       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1180   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1181   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1182 }
1183 
1184 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1185   switch (Val) {
1186   default: // Map unknown visibilities to default.
1187   case 0: return GlobalValue::DefaultVisibility;
1188   case 1: return GlobalValue::HiddenVisibility;
1189   case 2: return GlobalValue::ProtectedVisibility;
1190   }
1191 }
1192 
1193 static GlobalValue::DLLStorageClassTypes
1194 getDecodedDLLStorageClass(unsigned Val) {
1195   switch (Val) {
1196   default: // Map unknown values to default.
1197   case 0: return GlobalValue::DefaultStorageClass;
1198   case 1: return GlobalValue::DLLImportStorageClass;
1199   case 2: return GlobalValue::DLLExportStorageClass;
1200   }
1201 }
1202 
1203 static bool getDecodedDSOLocal(unsigned Val) {
1204   switch(Val) {
1205   default: // Map unknown values to preemptable.
1206   case 0:  return false;
1207   case 1:  return true;
1208   }
1209 }
1210 
1211 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1212   switch (Val) {
1213   case 1:
1214     return CodeModel::Tiny;
1215   case 2:
1216     return CodeModel::Small;
1217   case 3:
1218     return CodeModel::Kernel;
1219   case 4:
1220     return CodeModel::Medium;
1221   case 5:
1222     return CodeModel::Large;
1223   }
1224 
1225   return {};
1226 }
1227 
1228 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1229   switch (Val) {
1230     case 0: return GlobalVariable::NotThreadLocal;
1231     default: // Map unknown non-zero value to general dynamic.
1232     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1233     case 2: return GlobalVariable::LocalDynamicTLSModel;
1234     case 3: return GlobalVariable::InitialExecTLSModel;
1235     case 4: return GlobalVariable::LocalExecTLSModel;
1236   }
1237 }
1238 
1239 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1240   switch (Val) {
1241     default: // Map unknown to UnnamedAddr::None.
1242     case 0: return GlobalVariable::UnnamedAddr::None;
1243     case 1: return GlobalVariable::UnnamedAddr::Global;
1244     case 2: return GlobalVariable::UnnamedAddr::Local;
1245   }
1246 }
1247 
1248 static int getDecodedCastOpcode(unsigned Val) {
1249   switch (Val) {
1250   default: return -1;
1251   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1252   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1253   case bitc::CAST_SEXT    : return Instruction::SExt;
1254   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1255   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1256   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1257   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1258   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1259   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1260   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1261   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1262   case bitc::CAST_BITCAST : return Instruction::BitCast;
1263   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1264   }
1265 }
1266 
1267 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1268   bool IsFP = Ty->isFPOrFPVectorTy();
1269   // UnOps are only valid for int/fp or vector of int/fp types
1270   if (!IsFP && !Ty->isIntOrIntVectorTy())
1271     return -1;
1272 
1273   switch (Val) {
1274   default:
1275     return -1;
1276   case bitc::UNOP_FNEG:
1277     return IsFP ? Instruction::FNeg : -1;
1278   }
1279 }
1280 
1281 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1282   bool IsFP = Ty->isFPOrFPVectorTy();
1283   // BinOps are only valid for int/fp or vector of int/fp types
1284   if (!IsFP && !Ty->isIntOrIntVectorTy())
1285     return -1;
1286 
1287   switch (Val) {
1288   default:
1289     return -1;
1290   case bitc::BINOP_ADD:
1291     return IsFP ? Instruction::FAdd : Instruction::Add;
1292   case bitc::BINOP_SUB:
1293     return IsFP ? Instruction::FSub : Instruction::Sub;
1294   case bitc::BINOP_MUL:
1295     return IsFP ? Instruction::FMul : Instruction::Mul;
1296   case bitc::BINOP_UDIV:
1297     return IsFP ? -1 : Instruction::UDiv;
1298   case bitc::BINOP_SDIV:
1299     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1300   case bitc::BINOP_UREM:
1301     return IsFP ? -1 : Instruction::URem;
1302   case bitc::BINOP_SREM:
1303     return IsFP ? Instruction::FRem : Instruction::SRem;
1304   case bitc::BINOP_SHL:
1305     return IsFP ? -1 : Instruction::Shl;
1306   case bitc::BINOP_LSHR:
1307     return IsFP ? -1 : Instruction::LShr;
1308   case bitc::BINOP_ASHR:
1309     return IsFP ? -1 : Instruction::AShr;
1310   case bitc::BINOP_AND:
1311     return IsFP ? -1 : Instruction::And;
1312   case bitc::BINOP_OR:
1313     return IsFP ? -1 : Instruction::Or;
1314   case bitc::BINOP_XOR:
1315     return IsFP ? -1 : Instruction::Xor;
1316   }
1317 }
1318 
1319 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1320   switch (Val) {
1321   default: return AtomicRMWInst::BAD_BINOP;
1322   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1323   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1324   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1325   case bitc::RMW_AND: return AtomicRMWInst::And;
1326   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1327   case bitc::RMW_OR: return AtomicRMWInst::Or;
1328   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1329   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1330   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1331   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1332   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1333   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1334   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1335   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1336   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1337   case bitc::RMW_UINC_WRAP:
1338     return AtomicRMWInst::UIncWrap;
1339   case bitc::RMW_UDEC_WRAP:
1340     return AtomicRMWInst::UDecWrap;
1341   }
1342 }
1343 
1344 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1345   switch (Val) {
1346   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1347   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1348   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1349   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1350   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1351   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1352   default: // Map unknown orderings to sequentially-consistent.
1353   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1354   }
1355 }
1356 
1357 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1358   switch (Val) {
1359   default: // Map unknown selection kinds to any.
1360   case bitc::COMDAT_SELECTION_KIND_ANY:
1361     return Comdat::Any;
1362   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1363     return Comdat::ExactMatch;
1364   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1365     return Comdat::Largest;
1366   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1367     return Comdat::NoDeduplicate;
1368   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1369     return Comdat::SameSize;
1370   }
1371 }
1372 
1373 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1374   FastMathFlags FMF;
1375   if (0 != (Val & bitc::UnsafeAlgebra))
1376     FMF.setFast();
1377   if (0 != (Val & bitc::AllowReassoc))
1378     FMF.setAllowReassoc();
1379   if (0 != (Val & bitc::NoNaNs))
1380     FMF.setNoNaNs();
1381   if (0 != (Val & bitc::NoInfs))
1382     FMF.setNoInfs();
1383   if (0 != (Val & bitc::NoSignedZeros))
1384     FMF.setNoSignedZeros();
1385   if (0 != (Val & bitc::AllowReciprocal))
1386     FMF.setAllowReciprocal();
1387   if (0 != (Val & bitc::AllowContract))
1388     FMF.setAllowContract(true);
1389   if (0 != (Val & bitc::ApproxFunc))
1390     FMF.setApproxFunc();
1391   return FMF;
1392 }
1393 
1394 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1395   // A GlobalValue with local linkage cannot have a DLL storage class.
1396   if (GV->hasLocalLinkage())
1397     return;
1398   switch (Val) {
1399   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1400   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1401   }
1402 }
1403 
1404 Type *BitcodeReader::getTypeByID(unsigned ID) {
1405   // The type table size is always specified correctly.
1406   if (ID >= TypeList.size())
1407     return nullptr;
1408 
1409   if (Type *Ty = TypeList[ID])
1410     return Ty;
1411 
1412   // If we have a forward reference, the only possible case is when it is to a
1413   // named struct.  Just create a placeholder for now.
1414   return TypeList[ID] = createIdentifiedStructType(Context);
1415 }
1416 
1417 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1418   auto It = ContainedTypeIDs.find(ID);
1419   if (It == ContainedTypeIDs.end())
1420     return InvalidTypeID;
1421 
1422   if (Idx >= It->second.size())
1423     return InvalidTypeID;
1424 
1425   return It->second[Idx];
1426 }
1427 
1428 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1429   if (ID >= TypeList.size())
1430     return nullptr;
1431 
1432   Type *Ty = TypeList[ID];
1433   if (!Ty->isPointerTy())
1434     return nullptr;
1435 
1436   return getTypeByID(getContainedTypeID(ID, 0));
1437 }
1438 
1439 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1440                                          ArrayRef<unsigned> ChildTypeIDs) {
1441   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1442   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1443   auto It = VirtualTypeIDs.find(CacheKey);
1444   if (It != VirtualTypeIDs.end()) {
1445     // The cmpxchg return value is the only place we need more than one
1446     // contained type ID, however the second one will always be the same (i1),
1447     // so we don't need to include it in the cache key. This asserts that the
1448     // contained types are indeed as expected and there are no collisions.
1449     assert((ChildTypeIDs.empty() ||
1450             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1451            "Incorrect cached contained type IDs");
1452     return It->second;
1453   }
1454 
1455   unsigned TypeID = TypeList.size();
1456   TypeList.push_back(Ty);
1457   if (!ChildTypeIDs.empty())
1458     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1459   VirtualTypeIDs.insert({CacheKey, TypeID});
1460   return TypeID;
1461 }
1462 
1463 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1464   GEPNoWrapFlags NW;
1465   if (Flags & (1 << bitc::GEP_INBOUNDS))
1466     NW |= GEPNoWrapFlags::inBounds();
1467   if (Flags & (1 << bitc::GEP_NUSW))
1468     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1469   if (Flags & (1 << bitc::GEP_NUW))
1470     NW |= GEPNoWrapFlags::noUnsignedWrap();
1471   return NW;
1472 }
1473 
1474 static bool isConstExprSupported(const BitcodeConstant *BC) {
1475   uint8_t Opcode = BC->Opcode;
1476 
1477   // These are not real constant expressions, always consider them supported.
1478   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1479     return true;
1480 
1481   // If -expand-constant-exprs is set, we want to consider all expressions
1482   // as unsupported.
1483   if (ExpandConstantExprs)
1484     return false;
1485 
1486   if (Instruction::isBinaryOp(Opcode))
1487     return ConstantExpr::isSupportedBinOp(Opcode);
1488 
1489   if (Instruction::isCast(Opcode))
1490     return ConstantExpr::isSupportedCastOp(Opcode);
1491 
1492   if (Opcode == Instruction::GetElementPtr)
1493     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1494 
1495   switch (Opcode) {
1496   case Instruction::FNeg:
1497   case Instruction::Select:
1498   case Instruction::ICmp:
1499   case Instruction::FCmp:
1500     return false;
1501   default:
1502     return true;
1503   }
1504 }
1505 
1506 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1507                                                   BasicBlock *InsertBB) {
1508   // Quickly handle the case where there is no BitcodeConstant to resolve.
1509   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1510       !isa<BitcodeConstant>(ValueList[StartValID]))
1511     return ValueList[StartValID];
1512 
1513   SmallDenseMap<unsigned, Value *> MaterializedValues;
1514   SmallVector<unsigned> Worklist;
1515   Worklist.push_back(StartValID);
1516   while (!Worklist.empty()) {
1517     unsigned ValID = Worklist.back();
1518     if (MaterializedValues.count(ValID)) {
1519       // Duplicate expression that was already handled.
1520       Worklist.pop_back();
1521       continue;
1522     }
1523 
1524     if (ValID >= ValueList.size() || !ValueList[ValID])
1525       return error("Invalid value ID");
1526 
1527     Value *V = ValueList[ValID];
1528     auto *BC = dyn_cast<BitcodeConstant>(V);
1529     if (!BC) {
1530       MaterializedValues.insert({ValID, V});
1531       Worklist.pop_back();
1532       continue;
1533     }
1534 
1535     // Iterate in reverse, so values will get popped from the worklist in
1536     // expected order.
1537     SmallVector<Value *> Ops;
1538     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1539       auto It = MaterializedValues.find(OpID);
1540       if (It != MaterializedValues.end())
1541         Ops.push_back(It->second);
1542       else
1543         Worklist.push_back(OpID);
1544     }
1545 
1546     // Some expressions have not been resolved yet, handle them first and then
1547     // revisit this one.
1548     if (Ops.size() != BC->getOperandIDs().size())
1549       continue;
1550     std::reverse(Ops.begin(), Ops.end());
1551 
1552     SmallVector<Constant *> ConstOps;
1553     for (Value *Op : Ops)
1554       if (auto *C = dyn_cast<Constant>(Op))
1555         ConstOps.push_back(C);
1556 
1557     // Materialize as constant expression if possible.
1558     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1559       Constant *C;
1560       if (Instruction::isCast(BC->Opcode)) {
1561         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1562         if (!C)
1563           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1564       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1565         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1566       } else {
1567         switch (BC->Opcode) {
1568         case BitcodeConstant::ConstantPtrAuthOpcode: {
1569           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1570           if (!Key)
1571             return error("ptrauth key operand must be ConstantInt");
1572 
1573           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1574           if (!Disc)
1575             return error("ptrauth disc operand must be ConstantInt");
1576 
1577           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1578           break;
1579         }
1580         case BitcodeConstant::NoCFIOpcode: {
1581           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1582           if (!GV)
1583             return error("no_cfi operand must be GlobalValue");
1584           C = NoCFIValue::get(GV);
1585           break;
1586         }
1587         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1588           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1589           if (!GV)
1590             return error("dso_local operand must be GlobalValue");
1591           C = DSOLocalEquivalent::get(GV);
1592           break;
1593         }
1594         case BitcodeConstant::BlockAddressOpcode: {
1595           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1596           if (!Fn)
1597             return error("blockaddress operand must be a function");
1598 
1599           // If the function is already parsed we can insert the block address
1600           // right away.
1601           BasicBlock *BB;
1602           unsigned BBID = BC->BlockAddressBB;
1603           if (!BBID)
1604             // Invalid reference to entry block.
1605             return error("Invalid ID");
1606           if (!Fn->empty()) {
1607             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1608             for (size_t I = 0, E = BBID; I != E; ++I) {
1609               if (BBI == BBE)
1610                 return error("Invalid ID");
1611               ++BBI;
1612             }
1613             BB = &*BBI;
1614           } else {
1615             // Otherwise insert a placeholder and remember it so it can be
1616             // inserted when the function is parsed.
1617             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1618             if (FwdBBs.empty())
1619               BasicBlockFwdRefQueue.push_back(Fn);
1620             if (FwdBBs.size() < BBID + 1)
1621               FwdBBs.resize(BBID + 1);
1622             if (!FwdBBs[BBID])
1623               FwdBBs[BBID] = BasicBlock::Create(Context);
1624             BB = FwdBBs[BBID];
1625           }
1626           C = BlockAddress::get(Fn, BB);
1627           break;
1628         }
1629         case BitcodeConstant::ConstantStructOpcode:
1630           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1631           break;
1632         case BitcodeConstant::ConstantArrayOpcode:
1633           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1634           break;
1635         case BitcodeConstant::ConstantVectorOpcode:
1636           C = ConstantVector::get(ConstOps);
1637           break;
1638         case Instruction::GetElementPtr:
1639           C = ConstantExpr::getGetElementPtr(
1640               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1641               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1642           break;
1643         case Instruction::ExtractElement:
1644           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1645           break;
1646         case Instruction::InsertElement:
1647           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1648                                              ConstOps[2]);
1649           break;
1650         case Instruction::ShuffleVector: {
1651           SmallVector<int, 16> Mask;
1652           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1653           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1654           break;
1655         }
1656         default:
1657           llvm_unreachable("Unhandled bitcode constant");
1658         }
1659       }
1660 
1661       // Cache resolved constant.
1662       ValueList.replaceValueWithoutRAUW(ValID, C);
1663       MaterializedValues.insert({ValID, C});
1664       Worklist.pop_back();
1665       continue;
1666     }
1667 
1668     if (!InsertBB)
1669       return error(Twine("Value referenced by initializer is an unsupported "
1670                          "constant expression of type ") +
1671                    BC->getOpcodeName());
1672 
1673     // Materialize as instructions if necessary.
1674     Instruction *I;
1675     if (Instruction::isCast(BC->Opcode)) {
1676       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1677                            BC->getType(), "constexpr", InsertBB);
1678     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1679       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1680                                 "constexpr", InsertBB);
1681     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1682       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1683                                  Ops[1], "constexpr", InsertBB);
1684       if (isa<OverflowingBinaryOperator>(I)) {
1685         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1686           I->setHasNoSignedWrap();
1687         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1688           I->setHasNoUnsignedWrap();
1689       }
1690       if (isa<PossiblyExactOperator>(I) &&
1691           (BC->Flags & PossiblyExactOperator::IsExact))
1692         I->setIsExact();
1693     } else {
1694       switch (BC->Opcode) {
1695       case BitcodeConstant::ConstantVectorOpcode: {
1696         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1697         Value *V = PoisonValue::get(BC->getType());
1698         for (auto Pair : enumerate(Ops)) {
1699           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1700           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1701                                         InsertBB);
1702         }
1703         I = cast<Instruction>(V);
1704         break;
1705       }
1706       case BitcodeConstant::ConstantStructOpcode:
1707       case BitcodeConstant::ConstantArrayOpcode: {
1708         Value *V = PoisonValue::get(BC->getType());
1709         for (auto Pair : enumerate(Ops))
1710           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1711                                       "constexpr.ins", InsertBB);
1712         I = cast<Instruction>(V);
1713         break;
1714       }
1715       case Instruction::ICmp:
1716       case Instruction::FCmp:
1717         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1718                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1719                             "constexpr", InsertBB);
1720         break;
1721       case Instruction::GetElementPtr:
1722         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1723                                       ArrayRef(Ops).drop_front(), "constexpr",
1724                                       InsertBB);
1725         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1726         break;
1727       case Instruction::Select:
1728         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1729         break;
1730       case Instruction::ExtractElement:
1731         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1732         break;
1733       case Instruction::InsertElement:
1734         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1735                                       InsertBB);
1736         break;
1737       case Instruction::ShuffleVector:
1738         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1739                                   InsertBB);
1740         break;
1741       default:
1742         llvm_unreachable("Unhandled bitcode constant");
1743       }
1744     }
1745 
1746     MaterializedValues.insert({ValID, I});
1747     Worklist.pop_back();
1748   }
1749 
1750   return MaterializedValues[StartValID];
1751 }
1752 
1753 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1754   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1755   if (!MaybeV)
1756     return MaybeV.takeError();
1757 
1758   // Result must be Constant if InsertBB is nullptr.
1759   return cast<Constant>(MaybeV.get());
1760 }
1761 
1762 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1763                                                       StringRef Name) {
1764   auto *Ret = StructType::create(Context, Name);
1765   IdentifiedStructTypes.push_back(Ret);
1766   return Ret;
1767 }
1768 
1769 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1770   auto *Ret = StructType::create(Context);
1771   IdentifiedStructTypes.push_back(Ret);
1772   return Ret;
1773 }
1774 
1775 //===----------------------------------------------------------------------===//
1776 //  Functions for parsing blocks from the bitcode file
1777 //===----------------------------------------------------------------------===//
1778 
1779 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1780   switch (Val) {
1781   case Attribute::EndAttrKinds:
1782   case Attribute::EmptyKey:
1783   case Attribute::TombstoneKey:
1784     llvm_unreachable("Synthetic enumerators which should never get here");
1785 
1786   case Attribute::None:            return 0;
1787   case Attribute::ZExt:            return 1 << 0;
1788   case Attribute::SExt:            return 1 << 1;
1789   case Attribute::NoReturn:        return 1 << 2;
1790   case Attribute::InReg:           return 1 << 3;
1791   case Attribute::StructRet:       return 1 << 4;
1792   case Attribute::NoUnwind:        return 1 << 5;
1793   case Attribute::NoAlias:         return 1 << 6;
1794   case Attribute::ByVal:           return 1 << 7;
1795   case Attribute::Nest:            return 1 << 8;
1796   case Attribute::ReadNone:        return 1 << 9;
1797   case Attribute::ReadOnly:        return 1 << 10;
1798   case Attribute::NoInline:        return 1 << 11;
1799   case Attribute::AlwaysInline:    return 1 << 12;
1800   case Attribute::OptimizeForSize: return 1 << 13;
1801   case Attribute::StackProtect:    return 1 << 14;
1802   case Attribute::StackProtectReq: return 1 << 15;
1803   case Attribute::Alignment:       return 31 << 16;
1804   case Attribute::NoCapture:       return 1 << 21;
1805   case Attribute::NoRedZone:       return 1 << 22;
1806   case Attribute::NoImplicitFloat: return 1 << 23;
1807   case Attribute::Naked:           return 1 << 24;
1808   case Attribute::InlineHint:      return 1 << 25;
1809   case Attribute::StackAlignment:  return 7 << 26;
1810   case Attribute::ReturnsTwice:    return 1 << 29;
1811   case Attribute::UWTable:         return 1 << 30;
1812   case Attribute::NonLazyBind:     return 1U << 31;
1813   case Attribute::SanitizeAddress: return 1ULL << 32;
1814   case Attribute::MinSize:         return 1ULL << 33;
1815   case Attribute::NoDuplicate:     return 1ULL << 34;
1816   case Attribute::StackProtectStrong: return 1ULL << 35;
1817   case Attribute::SanitizeThread:  return 1ULL << 36;
1818   case Attribute::SanitizeMemory:  return 1ULL << 37;
1819   case Attribute::NoBuiltin:       return 1ULL << 38;
1820   case Attribute::Returned:        return 1ULL << 39;
1821   case Attribute::Cold:            return 1ULL << 40;
1822   case Attribute::Builtin:         return 1ULL << 41;
1823   case Attribute::OptimizeNone:    return 1ULL << 42;
1824   case Attribute::InAlloca:        return 1ULL << 43;
1825   case Attribute::NonNull:         return 1ULL << 44;
1826   case Attribute::JumpTable:       return 1ULL << 45;
1827   case Attribute::Convergent:      return 1ULL << 46;
1828   case Attribute::SafeStack:       return 1ULL << 47;
1829   case Attribute::NoRecurse:       return 1ULL << 48;
1830   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1831   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1832   case Attribute::SwiftSelf:       return 1ULL << 51;
1833   case Attribute::SwiftError:      return 1ULL << 52;
1834   case Attribute::WriteOnly:       return 1ULL << 53;
1835   case Attribute::Speculatable:    return 1ULL << 54;
1836   case Attribute::StrictFP:        return 1ULL << 55;
1837   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1838   case Attribute::NoCfCheck:       return 1ULL << 57;
1839   case Attribute::OptForFuzzing:   return 1ULL << 58;
1840   case Attribute::ShadowCallStack: return 1ULL << 59;
1841   case Attribute::SpeculativeLoadHardening:
1842     return 1ULL << 60;
1843   case Attribute::ImmArg:
1844     return 1ULL << 61;
1845   case Attribute::WillReturn:
1846     return 1ULL << 62;
1847   case Attribute::NoFree:
1848     return 1ULL << 63;
1849   default:
1850     // Other attributes are not supported in the raw format,
1851     // as we ran out of space.
1852     return 0;
1853   }
1854   llvm_unreachable("Unsupported attribute type");
1855 }
1856 
1857 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1858   if (!Val) return;
1859 
1860   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1861        I = Attribute::AttrKind(I + 1)) {
1862     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1863       if (I == Attribute::Alignment)
1864         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1865       else if (I == Attribute::StackAlignment)
1866         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1867       else if (Attribute::isTypeAttrKind(I))
1868         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1869       else
1870         B.addAttribute(I);
1871     }
1872   }
1873 }
1874 
1875 /// This fills an AttrBuilder object with the LLVM attributes that have
1876 /// been decoded from the given integer. This function must stay in sync with
1877 /// 'encodeLLVMAttributesForBitcode'.
1878 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1879                                            uint64_t EncodedAttrs,
1880                                            uint64_t AttrIdx) {
1881   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1882   // the bits above 31 down by 11 bits.
1883   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1884   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1885          "Alignment must be a power of two.");
1886 
1887   if (Alignment)
1888     B.addAlignmentAttr(Alignment);
1889 
1890   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1891                    (EncodedAttrs & 0xffff);
1892 
1893   if (AttrIdx == AttributeList::FunctionIndex) {
1894     // Upgrade old memory attributes.
1895     MemoryEffects ME = MemoryEffects::unknown();
1896     if (Attrs & (1ULL << 9)) {
1897       // ReadNone
1898       Attrs &= ~(1ULL << 9);
1899       ME &= MemoryEffects::none();
1900     }
1901     if (Attrs & (1ULL << 10)) {
1902       // ReadOnly
1903       Attrs &= ~(1ULL << 10);
1904       ME &= MemoryEffects::readOnly();
1905     }
1906     if (Attrs & (1ULL << 49)) {
1907       // InaccessibleMemOnly
1908       Attrs &= ~(1ULL << 49);
1909       ME &= MemoryEffects::inaccessibleMemOnly();
1910     }
1911     if (Attrs & (1ULL << 50)) {
1912       // InaccessibleMemOrArgMemOnly
1913       Attrs &= ~(1ULL << 50);
1914       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1915     }
1916     if (Attrs & (1ULL << 53)) {
1917       // WriteOnly
1918       Attrs &= ~(1ULL << 53);
1919       ME &= MemoryEffects::writeOnly();
1920     }
1921     if (ME != MemoryEffects::unknown())
1922       B.addMemoryAttr(ME);
1923   }
1924 
1925   addRawAttributeValue(B, Attrs);
1926 }
1927 
1928 Error BitcodeReader::parseAttributeBlock() {
1929   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1930     return Err;
1931 
1932   if (!MAttributes.empty())
1933     return error("Invalid multiple blocks");
1934 
1935   SmallVector<uint64_t, 64> Record;
1936 
1937   SmallVector<AttributeList, 8> Attrs;
1938 
1939   // Read all the records.
1940   while (true) {
1941     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1942     if (!MaybeEntry)
1943       return MaybeEntry.takeError();
1944     BitstreamEntry Entry = MaybeEntry.get();
1945 
1946     switch (Entry.Kind) {
1947     case BitstreamEntry::SubBlock: // Handled for us already.
1948     case BitstreamEntry::Error:
1949       return error("Malformed block");
1950     case BitstreamEntry::EndBlock:
1951       return Error::success();
1952     case BitstreamEntry::Record:
1953       // The interesting case.
1954       break;
1955     }
1956 
1957     // Read a record.
1958     Record.clear();
1959     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1960     if (!MaybeRecord)
1961       return MaybeRecord.takeError();
1962     switch (MaybeRecord.get()) {
1963     default:  // Default behavior: ignore.
1964       break;
1965     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1966       // Deprecated, but still needed to read old bitcode files.
1967       if (Record.size() & 1)
1968         return error("Invalid parameter attribute record");
1969 
1970       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1971         AttrBuilder B(Context);
1972         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1973         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1974       }
1975 
1976       MAttributes.push_back(AttributeList::get(Context, Attrs));
1977       Attrs.clear();
1978       break;
1979     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1980       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1981         Attrs.push_back(MAttributeGroups[Record[i]]);
1982 
1983       MAttributes.push_back(AttributeList::get(Context, Attrs));
1984       Attrs.clear();
1985       break;
1986     }
1987   }
1988 }
1989 
1990 // Returns Attribute::None on unrecognized codes.
1991 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1992   switch (Code) {
1993   default:
1994     return Attribute::None;
1995   case bitc::ATTR_KIND_ALIGNMENT:
1996     return Attribute::Alignment;
1997   case bitc::ATTR_KIND_ALWAYS_INLINE:
1998     return Attribute::AlwaysInline;
1999   case bitc::ATTR_KIND_BUILTIN:
2000     return Attribute::Builtin;
2001   case bitc::ATTR_KIND_BY_VAL:
2002     return Attribute::ByVal;
2003   case bitc::ATTR_KIND_IN_ALLOCA:
2004     return Attribute::InAlloca;
2005   case bitc::ATTR_KIND_COLD:
2006     return Attribute::Cold;
2007   case bitc::ATTR_KIND_CONVERGENT:
2008     return Attribute::Convergent;
2009   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2010     return Attribute::DisableSanitizerInstrumentation;
2011   case bitc::ATTR_KIND_ELEMENTTYPE:
2012     return Attribute::ElementType;
2013   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2014     return Attribute::FnRetThunkExtern;
2015   case bitc::ATTR_KIND_INLINE_HINT:
2016     return Attribute::InlineHint;
2017   case bitc::ATTR_KIND_IN_REG:
2018     return Attribute::InReg;
2019   case bitc::ATTR_KIND_JUMP_TABLE:
2020     return Attribute::JumpTable;
2021   case bitc::ATTR_KIND_MEMORY:
2022     return Attribute::Memory;
2023   case bitc::ATTR_KIND_NOFPCLASS:
2024     return Attribute::NoFPClass;
2025   case bitc::ATTR_KIND_MIN_SIZE:
2026     return Attribute::MinSize;
2027   case bitc::ATTR_KIND_NAKED:
2028     return Attribute::Naked;
2029   case bitc::ATTR_KIND_NEST:
2030     return Attribute::Nest;
2031   case bitc::ATTR_KIND_NO_ALIAS:
2032     return Attribute::NoAlias;
2033   case bitc::ATTR_KIND_NO_BUILTIN:
2034     return Attribute::NoBuiltin;
2035   case bitc::ATTR_KIND_NO_CALLBACK:
2036     return Attribute::NoCallback;
2037   case bitc::ATTR_KIND_NO_CAPTURE:
2038     return Attribute::NoCapture;
2039   case bitc::ATTR_KIND_NO_DUPLICATE:
2040     return Attribute::NoDuplicate;
2041   case bitc::ATTR_KIND_NOFREE:
2042     return Attribute::NoFree;
2043   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2044     return Attribute::NoImplicitFloat;
2045   case bitc::ATTR_KIND_NO_INLINE:
2046     return Attribute::NoInline;
2047   case bitc::ATTR_KIND_NO_RECURSE:
2048     return Attribute::NoRecurse;
2049   case bitc::ATTR_KIND_NO_MERGE:
2050     return Attribute::NoMerge;
2051   case bitc::ATTR_KIND_NON_LAZY_BIND:
2052     return Attribute::NonLazyBind;
2053   case bitc::ATTR_KIND_NON_NULL:
2054     return Attribute::NonNull;
2055   case bitc::ATTR_KIND_DEREFERENCEABLE:
2056     return Attribute::Dereferenceable;
2057   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2058     return Attribute::DereferenceableOrNull;
2059   case bitc::ATTR_KIND_ALLOC_ALIGN:
2060     return Attribute::AllocAlign;
2061   case bitc::ATTR_KIND_ALLOC_KIND:
2062     return Attribute::AllocKind;
2063   case bitc::ATTR_KIND_ALLOC_SIZE:
2064     return Attribute::AllocSize;
2065   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2066     return Attribute::AllocatedPointer;
2067   case bitc::ATTR_KIND_NO_RED_ZONE:
2068     return Attribute::NoRedZone;
2069   case bitc::ATTR_KIND_NO_RETURN:
2070     return Attribute::NoReturn;
2071   case bitc::ATTR_KIND_NOSYNC:
2072     return Attribute::NoSync;
2073   case bitc::ATTR_KIND_NOCF_CHECK:
2074     return Attribute::NoCfCheck;
2075   case bitc::ATTR_KIND_NO_PROFILE:
2076     return Attribute::NoProfile;
2077   case bitc::ATTR_KIND_SKIP_PROFILE:
2078     return Attribute::SkipProfile;
2079   case bitc::ATTR_KIND_NO_UNWIND:
2080     return Attribute::NoUnwind;
2081   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2082     return Attribute::NoSanitizeBounds;
2083   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2084     return Attribute::NoSanitizeCoverage;
2085   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2086     return Attribute::NullPointerIsValid;
2087   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2088     return Attribute::OptimizeForDebugging;
2089   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2090     return Attribute::OptForFuzzing;
2091   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2092     return Attribute::OptimizeForSize;
2093   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2094     return Attribute::OptimizeNone;
2095   case bitc::ATTR_KIND_READ_NONE:
2096     return Attribute::ReadNone;
2097   case bitc::ATTR_KIND_READ_ONLY:
2098     return Attribute::ReadOnly;
2099   case bitc::ATTR_KIND_RETURNED:
2100     return Attribute::Returned;
2101   case bitc::ATTR_KIND_RETURNS_TWICE:
2102     return Attribute::ReturnsTwice;
2103   case bitc::ATTR_KIND_S_EXT:
2104     return Attribute::SExt;
2105   case bitc::ATTR_KIND_SPECULATABLE:
2106     return Attribute::Speculatable;
2107   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2108     return Attribute::StackAlignment;
2109   case bitc::ATTR_KIND_STACK_PROTECT:
2110     return Attribute::StackProtect;
2111   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2112     return Attribute::StackProtectReq;
2113   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2114     return Attribute::StackProtectStrong;
2115   case bitc::ATTR_KIND_SAFESTACK:
2116     return Attribute::SafeStack;
2117   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2118     return Attribute::ShadowCallStack;
2119   case bitc::ATTR_KIND_STRICT_FP:
2120     return Attribute::StrictFP;
2121   case bitc::ATTR_KIND_STRUCT_RET:
2122     return Attribute::StructRet;
2123   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2124     return Attribute::SanitizeAddress;
2125   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2126     return Attribute::SanitizeHWAddress;
2127   case bitc::ATTR_KIND_SANITIZE_THREAD:
2128     return Attribute::SanitizeThread;
2129   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2130     return Attribute::SanitizeMemory;
2131   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2132     return Attribute::SpeculativeLoadHardening;
2133   case bitc::ATTR_KIND_SWIFT_ERROR:
2134     return Attribute::SwiftError;
2135   case bitc::ATTR_KIND_SWIFT_SELF:
2136     return Attribute::SwiftSelf;
2137   case bitc::ATTR_KIND_SWIFT_ASYNC:
2138     return Attribute::SwiftAsync;
2139   case bitc::ATTR_KIND_UW_TABLE:
2140     return Attribute::UWTable;
2141   case bitc::ATTR_KIND_VSCALE_RANGE:
2142     return Attribute::VScaleRange;
2143   case bitc::ATTR_KIND_WILLRETURN:
2144     return Attribute::WillReturn;
2145   case bitc::ATTR_KIND_WRITEONLY:
2146     return Attribute::WriteOnly;
2147   case bitc::ATTR_KIND_Z_EXT:
2148     return Attribute::ZExt;
2149   case bitc::ATTR_KIND_IMMARG:
2150     return Attribute::ImmArg;
2151   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2152     return Attribute::SanitizeMemTag;
2153   case bitc::ATTR_KIND_PREALLOCATED:
2154     return Attribute::Preallocated;
2155   case bitc::ATTR_KIND_NOUNDEF:
2156     return Attribute::NoUndef;
2157   case bitc::ATTR_KIND_BYREF:
2158     return Attribute::ByRef;
2159   case bitc::ATTR_KIND_MUSTPROGRESS:
2160     return Attribute::MustProgress;
2161   case bitc::ATTR_KIND_HOT:
2162     return Attribute::Hot;
2163   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2164     return Attribute::PresplitCoroutine;
2165   case bitc::ATTR_KIND_WRITABLE:
2166     return Attribute::Writable;
2167   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2168     return Attribute::CoroDestroyOnlyWhenComplete;
2169   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2170     return Attribute::DeadOnUnwind;
2171   case bitc::ATTR_KIND_RANGE:
2172     return Attribute::Range;
2173   }
2174 }
2175 
2176 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2177                                          MaybeAlign &Alignment) {
2178   // Note: Alignment in bitcode files is incremented by 1, so that zero
2179   // can be used for default alignment.
2180   if (Exponent > Value::MaxAlignmentExponent + 1)
2181     return error("Invalid alignment value");
2182   Alignment = decodeMaybeAlign(Exponent);
2183   return Error::success();
2184 }
2185 
2186 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2187   *Kind = getAttrFromCode(Code);
2188   if (*Kind == Attribute::None)
2189     return error("Unknown attribute kind (" + Twine(Code) + ")");
2190   return Error::success();
2191 }
2192 
2193 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2194   switch (EncodedKind) {
2195   case bitc::ATTR_KIND_READ_NONE:
2196     ME &= MemoryEffects::none();
2197     return true;
2198   case bitc::ATTR_KIND_READ_ONLY:
2199     ME &= MemoryEffects::readOnly();
2200     return true;
2201   case bitc::ATTR_KIND_WRITEONLY:
2202     ME &= MemoryEffects::writeOnly();
2203     return true;
2204   case bitc::ATTR_KIND_ARGMEMONLY:
2205     ME &= MemoryEffects::argMemOnly();
2206     return true;
2207   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2208     ME &= MemoryEffects::inaccessibleMemOnly();
2209     return true;
2210   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2211     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2212     return true;
2213   default:
2214     return false;
2215   }
2216 }
2217 
2218 Error BitcodeReader::parseAttributeGroupBlock() {
2219   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2220     return Err;
2221 
2222   if (!MAttributeGroups.empty())
2223     return error("Invalid multiple blocks");
2224 
2225   SmallVector<uint64_t, 64> Record;
2226 
2227   // Read all the records.
2228   while (true) {
2229     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2230     if (!MaybeEntry)
2231       return MaybeEntry.takeError();
2232     BitstreamEntry Entry = MaybeEntry.get();
2233 
2234     switch (Entry.Kind) {
2235     case BitstreamEntry::SubBlock: // Handled for us already.
2236     case BitstreamEntry::Error:
2237       return error("Malformed block");
2238     case BitstreamEntry::EndBlock:
2239       return Error::success();
2240     case BitstreamEntry::Record:
2241       // The interesting case.
2242       break;
2243     }
2244 
2245     // Read a record.
2246     Record.clear();
2247     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2248     if (!MaybeRecord)
2249       return MaybeRecord.takeError();
2250     switch (MaybeRecord.get()) {
2251     default:  // Default behavior: ignore.
2252       break;
2253     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2254       if (Record.size() < 3)
2255         return error("Invalid grp record");
2256 
2257       uint64_t GrpID = Record[0];
2258       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2259 
2260       AttrBuilder B(Context);
2261       MemoryEffects ME = MemoryEffects::unknown();
2262       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2263         if (Record[i] == 0) {        // Enum attribute
2264           Attribute::AttrKind Kind;
2265           uint64_t EncodedKind = Record[++i];
2266           if (Idx == AttributeList::FunctionIndex &&
2267               upgradeOldMemoryAttribute(ME, EncodedKind))
2268             continue;
2269 
2270           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2271             return Err;
2272 
2273           // Upgrade old-style byval attribute to one with a type, even if it's
2274           // nullptr. We will have to insert the real type when we associate
2275           // this AttributeList with a function.
2276           if (Kind == Attribute::ByVal)
2277             B.addByValAttr(nullptr);
2278           else if (Kind == Attribute::StructRet)
2279             B.addStructRetAttr(nullptr);
2280           else if (Kind == Attribute::InAlloca)
2281             B.addInAllocaAttr(nullptr);
2282           else if (Kind == Attribute::UWTable)
2283             B.addUWTableAttr(UWTableKind::Default);
2284           else if (Attribute::isEnumAttrKind(Kind))
2285             B.addAttribute(Kind);
2286           else
2287             return error("Not an enum attribute");
2288         } else if (Record[i] == 1) { // Integer attribute
2289           Attribute::AttrKind Kind;
2290           if (Error Err = parseAttrKind(Record[++i], &Kind))
2291             return Err;
2292           if (!Attribute::isIntAttrKind(Kind))
2293             return error("Not an int attribute");
2294           if (Kind == Attribute::Alignment)
2295             B.addAlignmentAttr(Record[++i]);
2296           else if (Kind == Attribute::StackAlignment)
2297             B.addStackAlignmentAttr(Record[++i]);
2298           else if (Kind == Attribute::Dereferenceable)
2299             B.addDereferenceableAttr(Record[++i]);
2300           else if (Kind == Attribute::DereferenceableOrNull)
2301             B.addDereferenceableOrNullAttr(Record[++i]);
2302           else if (Kind == Attribute::AllocSize)
2303             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2304           else if (Kind == Attribute::VScaleRange)
2305             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2306           else if (Kind == Attribute::UWTable)
2307             B.addUWTableAttr(UWTableKind(Record[++i]));
2308           else if (Kind == Attribute::AllocKind)
2309             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2310           else if (Kind == Attribute::Memory)
2311             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2312           else if (Kind == Attribute::NoFPClass)
2313             B.addNoFPClassAttr(
2314                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2315         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2316           bool HasValue = (Record[i++] == 4);
2317           SmallString<64> KindStr;
2318           SmallString<64> ValStr;
2319 
2320           while (Record[i] != 0 && i != e)
2321             KindStr += Record[i++];
2322           assert(Record[i] == 0 && "Kind string not null terminated");
2323 
2324           if (HasValue) {
2325             // Has a value associated with it.
2326             ++i; // Skip the '0' that terminates the "kind" string.
2327             while (Record[i] != 0 && i != e)
2328               ValStr += Record[i++];
2329             assert(Record[i] == 0 && "Value string not null terminated");
2330           }
2331 
2332           B.addAttribute(KindStr.str(), ValStr.str());
2333         } else if (Record[i] == 5 || Record[i] == 6) {
2334           bool HasType = Record[i] == 6;
2335           Attribute::AttrKind Kind;
2336           if (Error Err = parseAttrKind(Record[++i], &Kind))
2337             return Err;
2338           if (!Attribute::isTypeAttrKind(Kind))
2339             return error("Not a type attribute");
2340 
2341           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2342         } else if (Record[i] == 7) {
2343           Attribute::AttrKind Kind;
2344 
2345           i++;
2346           if (Error Err = parseAttrKind(Record[i++], &Kind))
2347             return Err;
2348           if (!Attribute::isConstantRangeAttrKind(Kind))
2349             return error("Not a ConstantRange attribute");
2350 
2351           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2352           if (!MaybeCR)
2353             return MaybeCR.takeError();
2354           i--;
2355 
2356           B.addConstantRangeAttr(Kind, MaybeCR.get());
2357         } else {
2358           return error("Invalid attribute group entry");
2359         }
2360       }
2361 
2362       if (ME != MemoryEffects::unknown())
2363         B.addMemoryAttr(ME);
2364 
2365       UpgradeAttributes(B);
2366       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2367       break;
2368     }
2369     }
2370   }
2371 }
2372 
2373 Error BitcodeReader::parseTypeTable() {
2374   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2375     return Err;
2376 
2377   return parseTypeTableBody();
2378 }
2379 
2380 Error BitcodeReader::parseTypeTableBody() {
2381   if (!TypeList.empty())
2382     return error("Invalid multiple blocks");
2383 
2384   SmallVector<uint64_t, 64> Record;
2385   unsigned NumRecords = 0;
2386 
2387   SmallString<64> TypeName;
2388 
2389   // Read all the records for this type table.
2390   while (true) {
2391     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2392     if (!MaybeEntry)
2393       return MaybeEntry.takeError();
2394     BitstreamEntry Entry = MaybeEntry.get();
2395 
2396     switch (Entry.Kind) {
2397     case BitstreamEntry::SubBlock: // Handled for us already.
2398     case BitstreamEntry::Error:
2399       return error("Malformed block");
2400     case BitstreamEntry::EndBlock:
2401       if (NumRecords != TypeList.size())
2402         return error("Malformed block");
2403       return Error::success();
2404     case BitstreamEntry::Record:
2405       // The interesting case.
2406       break;
2407     }
2408 
2409     // Read a record.
2410     Record.clear();
2411     Type *ResultTy = nullptr;
2412     SmallVector<unsigned> ContainedIDs;
2413     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2414     if (!MaybeRecord)
2415       return MaybeRecord.takeError();
2416     switch (MaybeRecord.get()) {
2417     default:
2418       return error("Invalid value");
2419     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2420       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2421       // type list.  This allows us to reserve space.
2422       if (Record.empty())
2423         return error("Invalid numentry record");
2424       TypeList.resize(Record[0]);
2425       continue;
2426     case bitc::TYPE_CODE_VOID:      // VOID
2427       ResultTy = Type::getVoidTy(Context);
2428       break;
2429     case bitc::TYPE_CODE_HALF:     // HALF
2430       ResultTy = Type::getHalfTy(Context);
2431       break;
2432     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2433       ResultTy = Type::getBFloatTy(Context);
2434       break;
2435     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2436       ResultTy = Type::getFloatTy(Context);
2437       break;
2438     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2439       ResultTy = Type::getDoubleTy(Context);
2440       break;
2441     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2442       ResultTy = Type::getX86_FP80Ty(Context);
2443       break;
2444     case bitc::TYPE_CODE_FP128:     // FP128
2445       ResultTy = Type::getFP128Ty(Context);
2446       break;
2447     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2448       ResultTy = Type::getPPC_FP128Ty(Context);
2449       break;
2450     case bitc::TYPE_CODE_LABEL:     // LABEL
2451       ResultTy = Type::getLabelTy(Context);
2452       break;
2453     case bitc::TYPE_CODE_METADATA:  // METADATA
2454       ResultTy = Type::getMetadataTy(Context);
2455       break;
2456     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2457       ResultTy = Type::getX86_MMXTy(Context);
2458       break;
2459     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2460       ResultTy = Type::getX86_AMXTy(Context);
2461       break;
2462     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2463       ResultTy = Type::getTokenTy(Context);
2464       break;
2465     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2466       if (Record.empty())
2467         return error("Invalid integer record");
2468 
2469       uint64_t NumBits = Record[0];
2470       if (NumBits < IntegerType::MIN_INT_BITS ||
2471           NumBits > IntegerType::MAX_INT_BITS)
2472         return error("Bitwidth for integer type out of range");
2473       ResultTy = IntegerType::get(Context, NumBits);
2474       break;
2475     }
2476     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2477                                     //          [pointee type, address space]
2478       if (Record.empty())
2479         return error("Invalid pointer record");
2480       unsigned AddressSpace = 0;
2481       if (Record.size() == 2)
2482         AddressSpace = Record[1];
2483       ResultTy = getTypeByID(Record[0]);
2484       if (!ResultTy ||
2485           !PointerType::isValidElementType(ResultTy))
2486         return error("Invalid type");
2487       ContainedIDs.push_back(Record[0]);
2488       ResultTy = PointerType::get(ResultTy, AddressSpace);
2489       break;
2490     }
2491     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2492       if (Record.size() != 1)
2493         return error("Invalid opaque pointer record");
2494       unsigned AddressSpace = Record[0];
2495       ResultTy = PointerType::get(Context, AddressSpace);
2496       break;
2497     }
2498     case bitc::TYPE_CODE_FUNCTION_OLD: {
2499       // Deprecated, but still needed to read old bitcode files.
2500       // FUNCTION: [vararg, attrid, retty, paramty x N]
2501       if (Record.size() < 3)
2502         return error("Invalid function record");
2503       SmallVector<Type*, 8> ArgTys;
2504       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2505         if (Type *T = getTypeByID(Record[i]))
2506           ArgTys.push_back(T);
2507         else
2508           break;
2509       }
2510 
2511       ResultTy = getTypeByID(Record[2]);
2512       if (!ResultTy || ArgTys.size() < Record.size()-3)
2513         return error("Invalid type");
2514 
2515       ContainedIDs.append(Record.begin() + 2, Record.end());
2516       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2517       break;
2518     }
2519     case bitc::TYPE_CODE_FUNCTION: {
2520       // FUNCTION: [vararg, retty, paramty x N]
2521       if (Record.size() < 2)
2522         return error("Invalid function record");
2523       SmallVector<Type*, 8> ArgTys;
2524       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2525         if (Type *T = getTypeByID(Record[i])) {
2526           if (!FunctionType::isValidArgumentType(T))
2527             return error("Invalid function argument type");
2528           ArgTys.push_back(T);
2529         }
2530         else
2531           break;
2532       }
2533 
2534       ResultTy = getTypeByID(Record[1]);
2535       if (!ResultTy || ArgTys.size() < Record.size()-2)
2536         return error("Invalid type");
2537 
2538       ContainedIDs.append(Record.begin() + 1, Record.end());
2539       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2540       break;
2541     }
2542     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2543       if (Record.empty())
2544         return error("Invalid anon struct record");
2545       SmallVector<Type*, 8> EltTys;
2546       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2547         if (Type *T = getTypeByID(Record[i]))
2548           EltTys.push_back(T);
2549         else
2550           break;
2551       }
2552       if (EltTys.size() != Record.size()-1)
2553         return error("Invalid type");
2554       ContainedIDs.append(Record.begin() + 1, Record.end());
2555       ResultTy = StructType::get(Context, EltTys, Record[0]);
2556       break;
2557     }
2558     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2559       if (convertToString(Record, 0, TypeName))
2560         return error("Invalid struct name record");
2561       continue;
2562 
2563     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2564       if (Record.empty())
2565         return error("Invalid named struct record");
2566 
2567       if (NumRecords >= TypeList.size())
2568         return error("Invalid TYPE table");
2569 
2570       // Check to see if this was forward referenced, if so fill in the temp.
2571       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2572       if (Res) {
2573         Res->setName(TypeName);
2574         TypeList[NumRecords] = nullptr;
2575       } else  // Otherwise, create a new struct.
2576         Res = createIdentifiedStructType(Context, TypeName);
2577       TypeName.clear();
2578 
2579       SmallVector<Type*, 8> EltTys;
2580       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2581         if (Type *T = getTypeByID(Record[i]))
2582           EltTys.push_back(T);
2583         else
2584           break;
2585       }
2586       if (EltTys.size() != Record.size()-1)
2587         return error("Invalid named struct record");
2588       Res->setBody(EltTys, Record[0]);
2589       ContainedIDs.append(Record.begin() + 1, Record.end());
2590       ResultTy = Res;
2591       break;
2592     }
2593     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2594       if (Record.size() != 1)
2595         return error("Invalid opaque type record");
2596 
2597       if (NumRecords >= TypeList.size())
2598         return error("Invalid TYPE table");
2599 
2600       // Check to see if this was forward referenced, if so fill in the temp.
2601       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2602       if (Res) {
2603         Res->setName(TypeName);
2604         TypeList[NumRecords] = nullptr;
2605       } else  // Otherwise, create a new struct with no body.
2606         Res = createIdentifiedStructType(Context, TypeName);
2607       TypeName.clear();
2608       ResultTy = Res;
2609       break;
2610     }
2611     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2612       if (Record.size() < 1)
2613         return error("Invalid target extension type record");
2614 
2615       if (NumRecords >= TypeList.size())
2616         return error("Invalid TYPE table");
2617 
2618       if (Record[0] >= Record.size())
2619         return error("Too many type parameters");
2620 
2621       unsigned NumTys = Record[0];
2622       SmallVector<Type *, 4> TypeParams;
2623       SmallVector<unsigned, 8> IntParams;
2624       for (unsigned i = 0; i < NumTys; i++) {
2625         if (Type *T = getTypeByID(Record[i + 1]))
2626           TypeParams.push_back(T);
2627         else
2628           return error("Invalid type");
2629       }
2630 
2631       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2632         if (Record[i] > UINT_MAX)
2633           return error("Integer parameter too large");
2634         IntParams.push_back(Record[i]);
2635       }
2636       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2637       TypeName.clear();
2638       break;
2639     }
2640     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2641       if (Record.size() < 2)
2642         return error("Invalid array type record");
2643       ResultTy = getTypeByID(Record[1]);
2644       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2645         return error("Invalid type");
2646       ContainedIDs.push_back(Record[1]);
2647       ResultTy = ArrayType::get(ResultTy, Record[0]);
2648       break;
2649     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2650                                     //         [numelts, eltty, scalable]
2651       if (Record.size() < 2)
2652         return error("Invalid vector type record");
2653       if (Record[0] == 0)
2654         return error("Invalid vector length");
2655       ResultTy = getTypeByID(Record[1]);
2656       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2657         return error("Invalid type");
2658       bool Scalable = Record.size() > 2 ? Record[2] : false;
2659       ContainedIDs.push_back(Record[1]);
2660       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2661       break;
2662     }
2663 
2664     if (NumRecords >= TypeList.size())
2665       return error("Invalid TYPE table");
2666     if (TypeList[NumRecords])
2667       return error(
2668           "Invalid TYPE table: Only named structs can be forward referenced");
2669     assert(ResultTy && "Didn't read a type?");
2670     TypeList[NumRecords] = ResultTy;
2671     if (!ContainedIDs.empty())
2672       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2673     ++NumRecords;
2674   }
2675 }
2676 
2677 Error BitcodeReader::parseOperandBundleTags() {
2678   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2679     return Err;
2680 
2681   if (!BundleTags.empty())
2682     return error("Invalid multiple blocks");
2683 
2684   SmallVector<uint64_t, 64> Record;
2685 
2686   while (true) {
2687     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2688     if (!MaybeEntry)
2689       return MaybeEntry.takeError();
2690     BitstreamEntry Entry = MaybeEntry.get();
2691 
2692     switch (Entry.Kind) {
2693     case BitstreamEntry::SubBlock: // Handled for us already.
2694     case BitstreamEntry::Error:
2695       return error("Malformed block");
2696     case BitstreamEntry::EndBlock:
2697       return Error::success();
2698     case BitstreamEntry::Record:
2699       // The interesting case.
2700       break;
2701     }
2702 
2703     // Tags are implicitly mapped to integers by their order.
2704 
2705     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2706     if (!MaybeRecord)
2707       return MaybeRecord.takeError();
2708     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2709       return error("Invalid operand bundle record");
2710 
2711     // OPERAND_BUNDLE_TAG: [strchr x N]
2712     BundleTags.emplace_back();
2713     if (convertToString(Record, 0, BundleTags.back()))
2714       return error("Invalid operand bundle record");
2715     Record.clear();
2716   }
2717 }
2718 
2719 Error BitcodeReader::parseSyncScopeNames() {
2720   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2721     return Err;
2722 
2723   if (!SSIDs.empty())
2724     return error("Invalid multiple synchronization scope names blocks");
2725 
2726   SmallVector<uint64_t, 64> Record;
2727   while (true) {
2728     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2729     if (!MaybeEntry)
2730       return MaybeEntry.takeError();
2731     BitstreamEntry Entry = MaybeEntry.get();
2732 
2733     switch (Entry.Kind) {
2734     case BitstreamEntry::SubBlock: // Handled for us already.
2735     case BitstreamEntry::Error:
2736       return error("Malformed block");
2737     case BitstreamEntry::EndBlock:
2738       if (SSIDs.empty())
2739         return error("Invalid empty synchronization scope names block");
2740       return Error::success();
2741     case BitstreamEntry::Record:
2742       // The interesting case.
2743       break;
2744     }
2745 
2746     // Synchronization scope names are implicitly mapped to synchronization
2747     // scope IDs by their order.
2748 
2749     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2750     if (!MaybeRecord)
2751       return MaybeRecord.takeError();
2752     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2753       return error("Invalid sync scope record");
2754 
2755     SmallString<16> SSN;
2756     if (convertToString(Record, 0, SSN))
2757       return error("Invalid sync scope record");
2758 
2759     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2760     Record.clear();
2761   }
2762 }
2763 
2764 /// Associate a value with its name from the given index in the provided record.
2765 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2766                                              unsigned NameIndex, Triple &TT) {
2767   SmallString<128> ValueName;
2768   if (convertToString(Record, NameIndex, ValueName))
2769     return error("Invalid record");
2770   unsigned ValueID = Record[0];
2771   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2772     return error("Invalid record");
2773   Value *V = ValueList[ValueID];
2774 
2775   StringRef NameStr(ValueName.data(), ValueName.size());
2776   if (NameStr.contains(0))
2777     return error("Invalid value name");
2778   V->setName(NameStr);
2779   auto *GO = dyn_cast<GlobalObject>(V);
2780   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2781     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2782   return V;
2783 }
2784 
2785 /// Helper to note and return the current location, and jump to the given
2786 /// offset.
2787 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2788                                                  BitstreamCursor &Stream) {
2789   // Save the current parsing location so we can jump back at the end
2790   // of the VST read.
2791   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2792   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2793     return std::move(JumpFailed);
2794   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2795   if (!MaybeEntry)
2796     return MaybeEntry.takeError();
2797   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2798       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2799     return error("Expected value symbol table subblock");
2800   return CurrentBit;
2801 }
2802 
2803 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2804                                             Function *F,
2805                                             ArrayRef<uint64_t> Record) {
2806   // Note that we subtract 1 here because the offset is relative to one word
2807   // before the start of the identification or module block, which was
2808   // historically always the start of the regular bitcode header.
2809   uint64_t FuncWordOffset = Record[1] - 1;
2810   uint64_t FuncBitOffset = FuncWordOffset * 32;
2811   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2812   // Set the LastFunctionBlockBit to point to the last function block.
2813   // Later when parsing is resumed after function materialization,
2814   // we can simply skip that last function block.
2815   if (FuncBitOffset > LastFunctionBlockBit)
2816     LastFunctionBlockBit = FuncBitOffset;
2817 }
2818 
2819 /// Read a new-style GlobalValue symbol table.
2820 Error BitcodeReader::parseGlobalValueSymbolTable() {
2821   unsigned FuncBitcodeOffsetDelta =
2822       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2823 
2824   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2825     return Err;
2826 
2827   SmallVector<uint64_t, 64> Record;
2828   while (true) {
2829     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2830     if (!MaybeEntry)
2831       return MaybeEntry.takeError();
2832     BitstreamEntry Entry = MaybeEntry.get();
2833 
2834     switch (Entry.Kind) {
2835     case BitstreamEntry::SubBlock:
2836     case BitstreamEntry::Error:
2837       return error("Malformed block");
2838     case BitstreamEntry::EndBlock:
2839       return Error::success();
2840     case BitstreamEntry::Record:
2841       break;
2842     }
2843 
2844     Record.clear();
2845     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2846     if (!MaybeRecord)
2847       return MaybeRecord.takeError();
2848     switch (MaybeRecord.get()) {
2849     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2850       unsigned ValueID = Record[0];
2851       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2852         return error("Invalid value reference in symbol table");
2853       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2854                               cast<Function>(ValueList[ValueID]), Record);
2855       break;
2856     }
2857     }
2858   }
2859 }
2860 
2861 /// Parse the value symbol table at either the current parsing location or
2862 /// at the given bit offset if provided.
2863 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2864   uint64_t CurrentBit;
2865   // Pass in the Offset to distinguish between calling for the module-level
2866   // VST (where we want to jump to the VST offset) and the function-level
2867   // VST (where we don't).
2868   if (Offset > 0) {
2869     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2870     if (!MaybeCurrentBit)
2871       return MaybeCurrentBit.takeError();
2872     CurrentBit = MaybeCurrentBit.get();
2873     // If this module uses a string table, read this as a module-level VST.
2874     if (UseStrtab) {
2875       if (Error Err = parseGlobalValueSymbolTable())
2876         return Err;
2877       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2878         return JumpFailed;
2879       return Error::success();
2880     }
2881     // Otherwise, the VST will be in a similar format to a function-level VST,
2882     // and will contain symbol names.
2883   }
2884 
2885   // Compute the delta between the bitcode indices in the VST (the word offset
2886   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2887   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2888   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2889   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2890   // just before entering the VST subblock because: 1) the EnterSubBlock
2891   // changes the AbbrevID width; 2) the VST block is nested within the same
2892   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2893   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2894   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2895   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2896   unsigned FuncBitcodeOffsetDelta =
2897       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2898 
2899   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2900     return Err;
2901 
2902   SmallVector<uint64_t, 64> Record;
2903 
2904   Triple TT(TheModule->getTargetTriple());
2905 
2906   // Read all the records for this value table.
2907   SmallString<128> ValueName;
2908 
2909   while (true) {
2910     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2911     if (!MaybeEntry)
2912       return MaybeEntry.takeError();
2913     BitstreamEntry Entry = MaybeEntry.get();
2914 
2915     switch (Entry.Kind) {
2916     case BitstreamEntry::SubBlock: // Handled for us already.
2917     case BitstreamEntry::Error:
2918       return error("Malformed block");
2919     case BitstreamEntry::EndBlock:
2920       if (Offset > 0)
2921         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2922           return JumpFailed;
2923       return Error::success();
2924     case BitstreamEntry::Record:
2925       // The interesting case.
2926       break;
2927     }
2928 
2929     // Read a record.
2930     Record.clear();
2931     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2932     if (!MaybeRecord)
2933       return MaybeRecord.takeError();
2934     switch (MaybeRecord.get()) {
2935     default:  // Default behavior: unknown type.
2936       break;
2937     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2938       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2939       if (Error Err = ValOrErr.takeError())
2940         return Err;
2941       ValOrErr.get();
2942       break;
2943     }
2944     case bitc::VST_CODE_FNENTRY: {
2945       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2946       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2947       if (Error Err = ValOrErr.takeError())
2948         return Err;
2949       Value *V = ValOrErr.get();
2950 
2951       // Ignore function offsets emitted for aliases of functions in older
2952       // versions of LLVM.
2953       if (auto *F = dyn_cast<Function>(V))
2954         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2955       break;
2956     }
2957     case bitc::VST_CODE_BBENTRY: {
2958       if (convertToString(Record, 1, ValueName))
2959         return error("Invalid bbentry record");
2960       BasicBlock *BB = getBasicBlock(Record[0]);
2961       if (!BB)
2962         return error("Invalid bbentry record");
2963 
2964       BB->setName(ValueName.str());
2965       ValueName.clear();
2966       break;
2967     }
2968     }
2969   }
2970 }
2971 
2972 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2973 /// encoding.
2974 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2975   if ((V & 1) == 0)
2976     return V >> 1;
2977   if (V != 1)
2978     return -(V >> 1);
2979   // There is no such thing as -0 with integers.  "-0" really means MININT.
2980   return 1ULL << 63;
2981 }
2982 
2983 /// Resolve all of the initializers for global values and aliases that we can.
2984 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2985   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2986   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2987   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2988 
2989   GlobalInitWorklist.swap(GlobalInits);
2990   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2991   FunctionOperandWorklist.swap(FunctionOperands);
2992 
2993   while (!GlobalInitWorklist.empty()) {
2994     unsigned ValID = GlobalInitWorklist.back().second;
2995     if (ValID >= ValueList.size()) {
2996       // Not ready to resolve this yet, it requires something later in the file.
2997       GlobalInits.push_back(GlobalInitWorklist.back());
2998     } else {
2999       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3000       if (!MaybeC)
3001         return MaybeC.takeError();
3002       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3003     }
3004     GlobalInitWorklist.pop_back();
3005   }
3006 
3007   while (!IndirectSymbolInitWorklist.empty()) {
3008     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3009     if (ValID >= ValueList.size()) {
3010       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3011     } else {
3012       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3013       if (!MaybeC)
3014         return MaybeC.takeError();
3015       Constant *C = MaybeC.get();
3016       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3017       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3018         if (C->getType() != GV->getType())
3019           return error("Alias and aliasee types don't match");
3020         GA->setAliasee(C);
3021       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3022         GI->setResolver(C);
3023       } else {
3024         return error("Expected an alias or an ifunc");
3025       }
3026     }
3027     IndirectSymbolInitWorklist.pop_back();
3028   }
3029 
3030   while (!FunctionOperandWorklist.empty()) {
3031     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3032     if (Info.PersonalityFn) {
3033       unsigned ValID = Info.PersonalityFn - 1;
3034       if (ValID < ValueList.size()) {
3035         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3036         if (!MaybeC)
3037           return MaybeC.takeError();
3038         Info.F->setPersonalityFn(MaybeC.get());
3039         Info.PersonalityFn = 0;
3040       }
3041     }
3042     if (Info.Prefix) {
3043       unsigned ValID = Info.Prefix - 1;
3044       if (ValID < ValueList.size()) {
3045         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3046         if (!MaybeC)
3047           return MaybeC.takeError();
3048         Info.F->setPrefixData(MaybeC.get());
3049         Info.Prefix = 0;
3050       }
3051     }
3052     if (Info.Prologue) {
3053       unsigned ValID = Info.Prologue - 1;
3054       if (ValID < ValueList.size()) {
3055         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3056         if (!MaybeC)
3057           return MaybeC.takeError();
3058         Info.F->setPrologueData(MaybeC.get());
3059         Info.Prologue = 0;
3060       }
3061     }
3062     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3063       FunctionOperands.push_back(Info);
3064     FunctionOperandWorklist.pop_back();
3065   }
3066 
3067   return Error::success();
3068 }
3069 
3070 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3071   SmallVector<uint64_t, 8> Words(Vals.size());
3072   transform(Vals, Words.begin(),
3073                  BitcodeReader::decodeSignRotatedValue);
3074 
3075   return APInt(TypeBits, Words);
3076 }
3077 
3078 Error BitcodeReader::parseConstants() {
3079   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3080     return Err;
3081 
3082   SmallVector<uint64_t, 64> Record;
3083 
3084   // Read all the records for this value table.
3085   Type *CurTy = Type::getInt32Ty(Context);
3086   unsigned Int32TyID = getVirtualTypeID(CurTy);
3087   unsigned CurTyID = Int32TyID;
3088   Type *CurElemTy = nullptr;
3089   unsigned NextCstNo = ValueList.size();
3090 
3091   while (true) {
3092     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3093     if (!MaybeEntry)
3094       return MaybeEntry.takeError();
3095     BitstreamEntry Entry = MaybeEntry.get();
3096 
3097     switch (Entry.Kind) {
3098     case BitstreamEntry::SubBlock: // Handled for us already.
3099     case BitstreamEntry::Error:
3100       return error("Malformed block");
3101     case BitstreamEntry::EndBlock:
3102       if (NextCstNo != ValueList.size())
3103         return error("Invalid constant reference");
3104       return Error::success();
3105     case BitstreamEntry::Record:
3106       // The interesting case.
3107       break;
3108     }
3109 
3110     // Read a record.
3111     Record.clear();
3112     Type *VoidType = Type::getVoidTy(Context);
3113     Value *V = nullptr;
3114     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3115     if (!MaybeBitCode)
3116       return MaybeBitCode.takeError();
3117     switch (unsigned BitCode = MaybeBitCode.get()) {
3118     default:  // Default behavior: unknown constant
3119     case bitc::CST_CODE_UNDEF:     // UNDEF
3120       V = UndefValue::get(CurTy);
3121       break;
3122     case bitc::CST_CODE_POISON:    // POISON
3123       V = PoisonValue::get(CurTy);
3124       break;
3125     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3126       if (Record.empty())
3127         return error("Invalid settype record");
3128       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3129         return error("Invalid settype record");
3130       if (TypeList[Record[0]] == VoidType)
3131         return error("Invalid constant type");
3132       CurTyID = Record[0];
3133       CurTy = TypeList[CurTyID];
3134       CurElemTy = getPtrElementTypeByID(CurTyID);
3135       continue;  // Skip the ValueList manipulation.
3136     case bitc::CST_CODE_NULL:      // NULL
3137       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3138         return error("Invalid type for a constant null value");
3139       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3140         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3141           return error("Invalid type for a constant null value");
3142       V = Constant::getNullValue(CurTy);
3143       break;
3144     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3145       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3146         return error("Invalid integer const record");
3147       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3148       break;
3149     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3150       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3151         return error("Invalid wide integer const record");
3152 
3153       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3154       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3155       V = ConstantInt::get(CurTy, VInt);
3156       break;
3157     }
3158     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3159       if (Record.empty())
3160         return error("Invalid float const record");
3161 
3162       auto *ScalarTy = CurTy->getScalarType();
3163       if (ScalarTy->isHalfTy())
3164         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3165                                            APInt(16, (uint16_t)Record[0])));
3166       else if (ScalarTy->isBFloatTy())
3167         V = ConstantFP::get(
3168             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3169       else if (ScalarTy->isFloatTy())
3170         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3171                                            APInt(32, (uint32_t)Record[0])));
3172       else if (ScalarTy->isDoubleTy())
3173         V = ConstantFP::get(
3174             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3175       else if (ScalarTy->isX86_FP80Ty()) {
3176         // Bits are not stored the same way as a normal i80 APInt, compensate.
3177         uint64_t Rearrange[2];
3178         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3179         Rearrange[1] = Record[0] >> 48;
3180         V = ConstantFP::get(
3181             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3182       } else if (ScalarTy->isFP128Ty())
3183         V = ConstantFP::get(CurTy,
3184                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3185       else if (ScalarTy->isPPC_FP128Ty())
3186         V = ConstantFP::get(
3187             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3188       else
3189         V = UndefValue::get(CurTy);
3190       break;
3191     }
3192 
3193     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3194       if (Record.empty())
3195         return error("Invalid aggregate record");
3196 
3197       unsigned Size = Record.size();
3198       SmallVector<unsigned, 16> Elts;
3199       for (unsigned i = 0; i != Size; ++i)
3200         Elts.push_back(Record[i]);
3201 
3202       if (isa<StructType>(CurTy)) {
3203         V = BitcodeConstant::create(
3204             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3205       } else if (isa<ArrayType>(CurTy)) {
3206         V = BitcodeConstant::create(Alloc, CurTy,
3207                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3208       } else if (isa<VectorType>(CurTy)) {
3209         V = BitcodeConstant::create(
3210             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3211       } else {
3212         V = UndefValue::get(CurTy);
3213       }
3214       break;
3215     }
3216     case bitc::CST_CODE_STRING:    // STRING: [values]
3217     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3218       if (Record.empty())
3219         return error("Invalid string record");
3220 
3221       SmallString<16> Elts(Record.begin(), Record.end());
3222       V = ConstantDataArray::getString(Context, Elts,
3223                                        BitCode == bitc::CST_CODE_CSTRING);
3224       break;
3225     }
3226     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3227       if (Record.empty())
3228         return error("Invalid data record");
3229 
3230       Type *EltTy;
3231       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3232         EltTy = Array->getElementType();
3233       else
3234         EltTy = cast<VectorType>(CurTy)->getElementType();
3235       if (EltTy->isIntegerTy(8)) {
3236         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3237         if (isa<VectorType>(CurTy))
3238           V = ConstantDataVector::get(Context, Elts);
3239         else
3240           V = ConstantDataArray::get(Context, Elts);
3241       } else if (EltTy->isIntegerTy(16)) {
3242         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3243         if (isa<VectorType>(CurTy))
3244           V = ConstantDataVector::get(Context, Elts);
3245         else
3246           V = ConstantDataArray::get(Context, Elts);
3247       } else if (EltTy->isIntegerTy(32)) {
3248         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3249         if (isa<VectorType>(CurTy))
3250           V = ConstantDataVector::get(Context, Elts);
3251         else
3252           V = ConstantDataArray::get(Context, Elts);
3253       } else if (EltTy->isIntegerTy(64)) {
3254         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3255         if (isa<VectorType>(CurTy))
3256           V = ConstantDataVector::get(Context, Elts);
3257         else
3258           V = ConstantDataArray::get(Context, Elts);
3259       } else if (EltTy->isHalfTy()) {
3260         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3261         if (isa<VectorType>(CurTy))
3262           V = ConstantDataVector::getFP(EltTy, Elts);
3263         else
3264           V = ConstantDataArray::getFP(EltTy, Elts);
3265       } else if (EltTy->isBFloatTy()) {
3266         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3267         if (isa<VectorType>(CurTy))
3268           V = ConstantDataVector::getFP(EltTy, Elts);
3269         else
3270           V = ConstantDataArray::getFP(EltTy, Elts);
3271       } else if (EltTy->isFloatTy()) {
3272         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3273         if (isa<VectorType>(CurTy))
3274           V = ConstantDataVector::getFP(EltTy, Elts);
3275         else
3276           V = ConstantDataArray::getFP(EltTy, Elts);
3277       } else if (EltTy->isDoubleTy()) {
3278         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3279         if (isa<VectorType>(CurTy))
3280           V = ConstantDataVector::getFP(EltTy, Elts);
3281         else
3282           V = ConstantDataArray::getFP(EltTy, Elts);
3283       } else {
3284         return error("Invalid type for value");
3285       }
3286       break;
3287     }
3288     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3289       if (Record.size() < 2)
3290         return error("Invalid unary op constexpr record");
3291       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3292       if (Opc < 0) {
3293         V = UndefValue::get(CurTy);  // Unknown unop.
3294       } else {
3295         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3296       }
3297       break;
3298     }
3299     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3300       if (Record.size() < 3)
3301         return error("Invalid binary op constexpr record");
3302       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3303       if (Opc < 0) {
3304         V = UndefValue::get(CurTy);  // Unknown binop.
3305       } else {
3306         uint8_t Flags = 0;
3307         if (Record.size() >= 4) {
3308           if (Opc == Instruction::Add ||
3309               Opc == Instruction::Sub ||
3310               Opc == Instruction::Mul ||
3311               Opc == Instruction::Shl) {
3312             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3313               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3314             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3315               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3316           } else if (Opc == Instruction::SDiv ||
3317                      Opc == Instruction::UDiv ||
3318                      Opc == Instruction::LShr ||
3319                      Opc == Instruction::AShr) {
3320             if (Record[3] & (1 << bitc::PEO_EXACT))
3321               Flags |= PossiblyExactOperator::IsExact;
3322           }
3323         }
3324         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3325                                     {(unsigned)Record[1], (unsigned)Record[2]});
3326       }
3327       break;
3328     }
3329     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3330       if (Record.size() < 3)
3331         return error("Invalid cast constexpr record");
3332       int Opc = getDecodedCastOpcode(Record[0]);
3333       if (Opc < 0) {
3334         V = UndefValue::get(CurTy);  // Unknown cast.
3335       } else {
3336         unsigned OpTyID = Record[1];
3337         Type *OpTy = getTypeByID(OpTyID);
3338         if (!OpTy)
3339           return error("Invalid cast constexpr record");
3340         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3341       }
3342       break;
3343     }
3344     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3345     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3346     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3347                                                        // operands]
3348     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3349     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3350                                                // operands]
3351       if (Record.size() < 2)
3352         return error("Constant GEP record must have at least two elements");
3353       unsigned OpNum = 0;
3354       Type *PointeeType = nullptr;
3355       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3356           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3357           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3358         PointeeType = getTypeByID(Record[OpNum++]);
3359 
3360       uint64_t Flags = 0;
3361       std::optional<ConstantRange> InRange;
3362       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3363         uint64_t Op = Record[OpNum++];
3364         Flags = Op & 1; // inbounds
3365         unsigned InRangeIndex = Op >> 1;
3366         // "Upgrade" inrange by dropping it. The feature is too niche to
3367         // bother.
3368         (void)InRangeIndex;
3369       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3370         Flags = Record[OpNum++];
3371         Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3372         if (!MaybeInRange)
3373           return MaybeInRange.takeError();
3374         InRange = MaybeInRange.get();
3375       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3376         Flags = Record[OpNum++];
3377       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3378         Flags = (1 << bitc::GEP_INBOUNDS);
3379 
3380       SmallVector<unsigned, 16> Elts;
3381       unsigned BaseTypeID = Record[OpNum];
3382       while (OpNum != Record.size()) {
3383         unsigned ElTyID = Record[OpNum++];
3384         Type *ElTy = getTypeByID(ElTyID);
3385         if (!ElTy)
3386           return error("Invalid getelementptr constexpr record");
3387         Elts.push_back(Record[OpNum++]);
3388       }
3389 
3390       if (Elts.size() < 1)
3391         return error("Invalid gep with no operands");
3392 
3393       Type *BaseType = getTypeByID(BaseTypeID);
3394       if (isa<VectorType>(BaseType)) {
3395         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3396         BaseType = getTypeByID(BaseTypeID);
3397       }
3398 
3399       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3400       if (!OrigPtrTy)
3401         return error("GEP base operand must be pointer or vector of pointer");
3402 
3403       if (!PointeeType) {
3404         PointeeType = getPtrElementTypeByID(BaseTypeID);
3405         if (!PointeeType)
3406           return error("Missing element type for old-style constant GEP");
3407       }
3408 
3409       V = BitcodeConstant::create(
3410           Alloc, CurTy,
3411           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3412           Elts);
3413       break;
3414     }
3415     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3416       if (Record.size() < 3)
3417         return error("Invalid select constexpr record");
3418 
3419       V = BitcodeConstant::create(
3420           Alloc, CurTy, Instruction::Select,
3421           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3422       break;
3423     }
3424     case bitc::CST_CODE_CE_EXTRACTELT
3425         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3426       if (Record.size() < 3)
3427         return error("Invalid extractelement constexpr record");
3428       unsigned OpTyID = Record[0];
3429       VectorType *OpTy =
3430         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3431       if (!OpTy)
3432         return error("Invalid extractelement constexpr record");
3433       unsigned IdxRecord;
3434       if (Record.size() == 4) {
3435         unsigned IdxTyID = Record[2];
3436         Type *IdxTy = getTypeByID(IdxTyID);
3437         if (!IdxTy)
3438           return error("Invalid extractelement constexpr record");
3439         IdxRecord = Record[3];
3440       } else {
3441         // Deprecated, but still needed to read old bitcode files.
3442         IdxRecord = Record[2];
3443       }
3444       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3445                                   {(unsigned)Record[1], IdxRecord});
3446       break;
3447     }
3448     case bitc::CST_CODE_CE_INSERTELT
3449         : { // CE_INSERTELT: [opval, opval, opty, opval]
3450       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3451       if (Record.size() < 3 || !OpTy)
3452         return error("Invalid insertelement constexpr record");
3453       unsigned IdxRecord;
3454       if (Record.size() == 4) {
3455         unsigned IdxTyID = Record[2];
3456         Type *IdxTy = getTypeByID(IdxTyID);
3457         if (!IdxTy)
3458           return error("Invalid insertelement constexpr record");
3459         IdxRecord = Record[3];
3460       } else {
3461         // Deprecated, but still needed to read old bitcode files.
3462         IdxRecord = Record[2];
3463       }
3464       V = BitcodeConstant::create(
3465           Alloc, CurTy, Instruction::InsertElement,
3466           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3467       break;
3468     }
3469     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3470       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3471       if (Record.size() < 3 || !OpTy)
3472         return error("Invalid shufflevector constexpr record");
3473       V = BitcodeConstant::create(
3474           Alloc, CurTy, Instruction::ShuffleVector,
3475           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3476       break;
3477     }
3478     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3479       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3480       VectorType *OpTy =
3481         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3482       if (Record.size() < 4 || !RTy || !OpTy)
3483         return error("Invalid shufflevector constexpr record");
3484       V = BitcodeConstant::create(
3485           Alloc, CurTy, Instruction::ShuffleVector,
3486           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3487       break;
3488     }
3489     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3490       if (Record.size() < 4)
3491         return error("Invalid cmp constexpt record");
3492       unsigned OpTyID = Record[0];
3493       Type *OpTy = getTypeByID(OpTyID);
3494       if (!OpTy)
3495         return error("Invalid cmp constexpr record");
3496       V = BitcodeConstant::create(
3497           Alloc, CurTy,
3498           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3499                                               : Instruction::ICmp),
3500            (uint8_t)Record[3]},
3501           {(unsigned)Record[1], (unsigned)Record[2]});
3502       break;
3503     }
3504     // This maintains backward compatibility, pre-asm dialect keywords.
3505     // Deprecated, but still needed to read old bitcode files.
3506     case bitc::CST_CODE_INLINEASM_OLD: {
3507       if (Record.size() < 2)
3508         return error("Invalid inlineasm record");
3509       std::string AsmStr, ConstrStr;
3510       bool HasSideEffects = Record[0] & 1;
3511       bool IsAlignStack = Record[0] >> 1;
3512       unsigned AsmStrSize = Record[1];
3513       if (2+AsmStrSize >= Record.size())
3514         return error("Invalid inlineasm record");
3515       unsigned ConstStrSize = Record[2+AsmStrSize];
3516       if (3+AsmStrSize+ConstStrSize > Record.size())
3517         return error("Invalid inlineasm record");
3518 
3519       for (unsigned i = 0; i != AsmStrSize; ++i)
3520         AsmStr += (char)Record[2+i];
3521       for (unsigned i = 0; i != ConstStrSize; ++i)
3522         ConstrStr += (char)Record[3+AsmStrSize+i];
3523       UpgradeInlineAsmString(&AsmStr);
3524       if (!CurElemTy)
3525         return error("Missing element type for old-style inlineasm");
3526       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3527                          HasSideEffects, IsAlignStack);
3528       break;
3529     }
3530     // This version adds support for the asm dialect keywords (e.g.,
3531     // inteldialect).
3532     case bitc::CST_CODE_INLINEASM_OLD2: {
3533       if (Record.size() < 2)
3534         return error("Invalid inlineasm record");
3535       std::string AsmStr, ConstrStr;
3536       bool HasSideEffects = Record[0] & 1;
3537       bool IsAlignStack = (Record[0] >> 1) & 1;
3538       unsigned AsmDialect = Record[0] >> 2;
3539       unsigned AsmStrSize = Record[1];
3540       if (2+AsmStrSize >= Record.size())
3541         return error("Invalid inlineasm record");
3542       unsigned ConstStrSize = Record[2+AsmStrSize];
3543       if (3+AsmStrSize+ConstStrSize > Record.size())
3544         return error("Invalid inlineasm record");
3545 
3546       for (unsigned i = 0; i != AsmStrSize; ++i)
3547         AsmStr += (char)Record[2+i];
3548       for (unsigned i = 0; i != ConstStrSize; ++i)
3549         ConstrStr += (char)Record[3+AsmStrSize+i];
3550       UpgradeInlineAsmString(&AsmStr);
3551       if (!CurElemTy)
3552         return error("Missing element type for old-style inlineasm");
3553       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3554                          HasSideEffects, IsAlignStack,
3555                          InlineAsm::AsmDialect(AsmDialect));
3556       break;
3557     }
3558     // This version adds support for the unwind keyword.
3559     case bitc::CST_CODE_INLINEASM_OLD3: {
3560       if (Record.size() < 2)
3561         return error("Invalid inlineasm record");
3562       unsigned OpNum = 0;
3563       std::string AsmStr, ConstrStr;
3564       bool HasSideEffects = Record[OpNum] & 1;
3565       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3566       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3567       bool CanThrow = (Record[OpNum] >> 3) & 1;
3568       ++OpNum;
3569       unsigned AsmStrSize = Record[OpNum];
3570       ++OpNum;
3571       if (OpNum + AsmStrSize >= Record.size())
3572         return error("Invalid inlineasm record");
3573       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3574       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3575         return error("Invalid inlineasm record");
3576 
3577       for (unsigned i = 0; i != AsmStrSize; ++i)
3578         AsmStr += (char)Record[OpNum + i];
3579       ++OpNum;
3580       for (unsigned i = 0; i != ConstStrSize; ++i)
3581         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3582       UpgradeInlineAsmString(&AsmStr);
3583       if (!CurElemTy)
3584         return error("Missing element type for old-style inlineasm");
3585       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3586                          HasSideEffects, IsAlignStack,
3587                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3588       break;
3589     }
3590     // This version adds explicit function type.
3591     case bitc::CST_CODE_INLINEASM: {
3592       if (Record.size() < 3)
3593         return error("Invalid inlineasm record");
3594       unsigned OpNum = 0;
3595       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3596       ++OpNum;
3597       if (!FnTy)
3598         return error("Invalid inlineasm record");
3599       std::string AsmStr, ConstrStr;
3600       bool HasSideEffects = Record[OpNum] & 1;
3601       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3602       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3603       bool CanThrow = (Record[OpNum] >> 3) & 1;
3604       ++OpNum;
3605       unsigned AsmStrSize = Record[OpNum];
3606       ++OpNum;
3607       if (OpNum + AsmStrSize >= Record.size())
3608         return error("Invalid inlineasm record");
3609       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3610       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3611         return error("Invalid inlineasm record");
3612 
3613       for (unsigned i = 0; i != AsmStrSize; ++i)
3614         AsmStr += (char)Record[OpNum + i];
3615       ++OpNum;
3616       for (unsigned i = 0; i != ConstStrSize; ++i)
3617         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3618       UpgradeInlineAsmString(&AsmStr);
3619       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3620                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3621       break;
3622     }
3623     case bitc::CST_CODE_BLOCKADDRESS:{
3624       if (Record.size() < 3)
3625         return error("Invalid blockaddress record");
3626       unsigned FnTyID = Record[0];
3627       Type *FnTy = getTypeByID(FnTyID);
3628       if (!FnTy)
3629         return error("Invalid blockaddress record");
3630       V = BitcodeConstant::create(
3631           Alloc, CurTy,
3632           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3633           Record[1]);
3634       break;
3635     }
3636     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3637       if (Record.size() < 2)
3638         return error("Invalid dso_local record");
3639       unsigned GVTyID = Record[0];
3640       Type *GVTy = getTypeByID(GVTyID);
3641       if (!GVTy)
3642         return error("Invalid dso_local record");
3643       V = BitcodeConstant::create(
3644           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3645       break;
3646     }
3647     case bitc::CST_CODE_NO_CFI_VALUE: {
3648       if (Record.size() < 2)
3649         return error("Invalid no_cfi record");
3650       unsigned GVTyID = Record[0];
3651       Type *GVTy = getTypeByID(GVTyID);
3652       if (!GVTy)
3653         return error("Invalid no_cfi record");
3654       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3655                                   Record[1]);
3656       break;
3657     }
3658     case bitc::CST_CODE_PTRAUTH: {
3659       if (Record.size() < 4)
3660         return error("Invalid ptrauth record");
3661       // Ptr, Key, Disc, AddrDisc
3662       V = BitcodeConstant::create(Alloc, CurTy,
3663                                   BitcodeConstant::ConstantPtrAuthOpcode,
3664                                   {(unsigned)Record[0], (unsigned)Record[1],
3665                                    (unsigned)Record[2], (unsigned)Record[3]});
3666       break;
3667     }
3668     }
3669 
3670     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3671     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3672       return Err;
3673     ++NextCstNo;
3674   }
3675 }
3676 
3677 Error BitcodeReader::parseUseLists() {
3678   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3679     return Err;
3680 
3681   // Read all the records.
3682   SmallVector<uint64_t, 64> Record;
3683 
3684   while (true) {
3685     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3686     if (!MaybeEntry)
3687       return MaybeEntry.takeError();
3688     BitstreamEntry Entry = MaybeEntry.get();
3689 
3690     switch (Entry.Kind) {
3691     case BitstreamEntry::SubBlock: // Handled for us already.
3692     case BitstreamEntry::Error:
3693       return error("Malformed block");
3694     case BitstreamEntry::EndBlock:
3695       return Error::success();
3696     case BitstreamEntry::Record:
3697       // The interesting case.
3698       break;
3699     }
3700 
3701     // Read a use list record.
3702     Record.clear();
3703     bool IsBB = false;
3704     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3705     if (!MaybeRecord)
3706       return MaybeRecord.takeError();
3707     switch (MaybeRecord.get()) {
3708     default:  // Default behavior: unknown type.
3709       break;
3710     case bitc::USELIST_CODE_BB:
3711       IsBB = true;
3712       [[fallthrough]];
3713     case bitc::USELIST_CODE_DEFAULT: {
3714       unsigned RecordLength = Record.size();
3715       if (RecordLength < 3)
3716         // Records should have at least an ID and two indexes.
3717         return error("Invalid record");
3718       unsigned ID = Record.pop_back_val();
3719 
3720       Value *V;
3721       if (IsBB) {
3722         assert(ID < FunctionBBs.size() && "Basic block not found");
3723         V = FunctionBBs[ID];
3724       } else
3725         V = ValueList[ID];
3726       unsigned NumUses = 0;
3727       SmallDenseMap<const Use *, unsigned, 16> Order;
3728       for (const Use &U : V->materialized_uses()) {
3729         if (++NumUses > Record.size())
3730           break;
3731         Order[&U] = Record[NumUses - 1];
3732       }
3733       if (Order.size() != Record.size() || NumUses > Record.size())
3734         // Mismatches can happen if the functions are being materialized lazily
3735         // (out-of-order), or a value has been upgraded.
3736         break;
3737 
3738       V->sortUseList([&](const Use &L, const Use &R) {
3739         return Order.lookup(&L) < Order.lookup(&R);
3740       });
3741       break;
3742     }
3743     }
3744   }
3745 }
3746 
3747 /// When we see the block for metadata, remember where it is and then skip it.
3748 /// This lets us lazily deserialize the metadata.
3749 Error BitcodeReader::rememberAndSkipMetadata() {
3750   // Save the current stream state.
3751   uint64_t CurBit = Stream.GetCurrentBitNo();
3752   DeferredMetadataInfo.push_back(CurBit);
3753 
3754   // Skip over the block for now.
3755   if (Error Err = Stream.SkipBlock())
3756     return Err;
3757   return Error::success();
3758 }
3759 
3760 Error BitcodeReader::materializeMetadata() {
3761   for (uint64_t BitPos : DeferredMetadataInfo) {
3762     // Move the bit stream to the saved position.
3763     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3764       return JumpFailed;
3765     if (Error Err = MDLoader->parseModuleMetadata())
3766       return Err;
3767   }
3768 
3769   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3770   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3771   // multiple times.
3772   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3773     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3774       NamedMDNode *LinkerOpts =
3775           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3776       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3777         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3778     }
3779   }
3780 
3781   DeferredMetadataInfo.clear();
3782   return Error::success();
3783 }
3784 
3785 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3786 
3787 /// When we see the block for a function body, remember where it is and then
3788 /// skip it.  This lets us lazily deserialize the functions.
3789 Error BitcodeReader::rememberAndSkipFunctionBody() {
3790   // Get the function we are talking about.
3791   if (FunctionsWithBodies.empty())
3792     return error("Insufficient function protos");
3793 
3794   Function *Fn = FunctionsWithBodies.back();
3795   FunctionsWithBodies.pop_back();
3796 
3797   // Save the current stream state.
3798   uint64_t CurBit = Stream.GetCurrentBitNo();
3799   assert(
3800       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3801       "Mismatch between VST and scanned function offsets");
3802   DeferredFunctionInfo[Fn] = CurBit;
3803 
3804   // Skip over the function block for now.
3805   if (Error Err = Stream.SkipBlock())
3806     return Err;
3807   return Error::success();
3808 }
3809 
3810 Error BitcodeReader::globalCleanup() {
3811   // Patch the initializers for globals and aliases up.
3812   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3813     return Err;
3814   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3815     return error("Malformed global initializer set");
3816 
3817   // Look for intrinsic functions which need to be upgraded at some point
3818   // and functions that need to have their function attributes upgraded.
3819   for (Function &F : *TheModule) {
3820     MDLoader->upgradeDebugIntrinsics(F);
3821     Function *NewFn;
3822     // If PreserveInputDbgFormat=true, then we don't know whether we want
3823     // intrinsics or records, and we won't perform any conversions in either
3824     // case, so don't upgrade intrinsics to records.
3825     if (UpgradeIntrinsicFunction(
3826             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3827       UpgradedIntrinsics[&F] = NewFn;
3828     // Look for functions that rely on old function attribute behavior.
3829     UpgradeFunctionAttributes(F);
3830   }
3831 
3832   // Look for global variables which need to be renamed.
3833   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3834   for (GlobalVariable &GV : TheModule->globals())
3835     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3836       UpgradedVariables.emplace_back(&GV, Upgraded);
3837   for (auto &Pair : UpgradedVariables) {
3838     Pair.first->eraseFromParent();
3839     TheModule->insertGlobalVariable(Pair.second);
3840   }
3841 
3842   // Force deallocation of memory for these vectors to favor the client that
3843   // want lazy deserialization.
3844   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3845   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3846   return Error::success();
3847 }
3848 
3849 /// Support for lazy parsing of function bodies. This is required if we
3850 /// either have an old bitcode file without a VST forward declaration record,
3851 /// or if we have an anonymous function being materialized, since anonymous
3852 /// functions do not have a name and are therefore not in the VST.
3853 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3854   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3855     return JumpFailed;
3856 
3857   if (Stream.AtEndOfStream())
3858     return error("Could not find function in stream");
3859 
3860   if (!SeenFirstFunctionBody)
3861     return error("Trying to materialize functions before seeing function blocks");
3862 
3863   // An old bitcode file with the symbol table at the end would have
3864   // finished the parse greedily.
3865   assert(SeenValueSymbolTable);
3866 
3867   SmallVector<uint64_t, 64> Record;
3868 
3869   while (true) {
3870     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3871     if (!MaybeEntry)
3872       return MaybeEntry.takeError();
3873     llvm::BitstreamEntry Entry = MaybeEntry.get();
3874 
3875     switch (Entry.Kind) {
3876     default:
3877       return error("Expect SubBlock");
3878     case BitstreamEntry::SubBlock:
3879       switch (Entry.ID) {
3880       default:
3881         return error("Expect function block");
3882       case bitc::FUNCTION_BLOCK_ID:
3883         if (Error Err = rememberAndSkipFunctionBody())
3884           return Err;
3885         NextUnreadBit = Stream.GetCurrentBitNo();
3886         return Error::success();
3887       }
3888     }
3889   }
3890 }
3891 
3892 Error BitcodeReaderBase::readBlockInfo() {
3893   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3894       Stream.ReadBlockInfoBlock();
3895   if (!MaybeNewBlockInfo)
3896     return MaybeNewBlockInfo.takeError();
3897   std::optional<BitstreamBlockInfo> NewBlockInfo =
3898       std::move(MaybeNewBlockInfo.get());
3899   if (!NewBlockInfo)
3900     return error("Malformed block");
3901   BlockInfo = std::move(*NewBlockInfo);
3902   return Error::success();
3903 }
3904 
3905 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3906   // v1: [selection_kind, name]
3907   // v2: [strtab_offset, strtab_size, selection_kind]
3908   StringRef Name;
3909   std::tie(Name, Record) = readNameFromStrtab(Record);
3910 
3911   if (Record.empty())
3912     return error("Invalid record");
3913   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3914   std::string OldFormatName;
3915   if (!UseStrtab) {
3916     if (Record.size() < 2)
3917       return error("Invalid record");
3918     unsigned ComdatNameSize = Record[1];
3919     if (ComdatNameSize > Record.size() - 2)
3920       return error("Comdat name size too large");
3921     OldFormatName.reserve(ComdatNameSize);
3922     for (unsigned i = 0; i != ComdatNameSize; ++i)
3923       OldFormatName += (char)Record[2 + i];
3924     Name = OldFormatName;
3925   }
3926   Comdat *C = TheModule->getOrInsertComdat(Name);
3927   C->setSelectionKind(SK);
3928   ComdatList.push_back(C);
3929   return Error::success();
3930 }
3931 
3932 static void inferDSOLocal(GlobalValue *GV) {
3933   // infer dso_local from linkage and visibility if it is not encoded.
3934   if (GV->hasLocalLinkage() ||
3935       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3936     GV->setDSOLocal(true);
3937 }
3938 
3939 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3940   GlobalValue::SanitizerMetadata Meta;
3941   if (V & (1 << 0))
3942     Meta.NoAddress = true;
3943   if (V & (1 << 1))
3944     Meta.NoHWAddress = true;
3945   if (V & (1 << 2))
3946     Meta.Memtag = true;
3947   if (V & (1 << 3))
3948     Meta.IsDynInit = true;
3949   return Meta;
3950 }
3951 
3952 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3953   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3954   // visibility, threadlocal, unnamed_addr, externally_initialized,
3955   // dllstorageclass, comdat, attributes, preemption specifier,
3956   // partition strtab offset, partition strtab size] (name in VST)
3957   // v2: [strtab_offset, strtab_size, v1]
3958   // v3: [v2, code_model]
3959   StringRef Name;
3960   std::tie(Name, Record) = readNameFromStrtab(Record);
3961 
3962   if (Record.size() < 6)
3963     return error("Invalid record");
3964   unsigned TyID = Record[0];
3965   Type *Ty = getTypeByID(TyID);
3966   if (!Ty)
3967     return error("Invalid record");
3968   bool isConstant = Record[1] & 1;
3969   bool explicitType = Record[1] & 2;
3970   unsigned AddressSpace;
3971   if (explicitType) {
3972     AddressSpace = Record[1] >> 2;
3973   } else {
3974     if (!Ty->isPointerTy())
3975       return error("Invalid type for value");
3976     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3977     TyID = getContainedTypeID(TyID);
3978     Ty = getTypeByID(TyID);
3979     if (!Ty)
3980       return error("Missing element type for old-style global");
3981   }
3982 
3983   uint64_t RawLinkage = Record[3];
3984   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3985   MaybeAlign Alignment;
3986   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3987     return Err;
3988   std::string Section;
3989   if (Record[5]) {
3990     if (Record[5] - 1 >= SectionTable.size())
3991       return error("Invalid ID");
3992     Section = SectionTable[Record[5] - 1];
3993   }
3994   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3995   // Local linkage must have default visibility.
3996   // auto-upgrade `hidden` and `protected` for old bitcode.
3997   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3998     Visibility = getDecodedVisibility(Record[6]);
3999 
4000   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4001   if (Record.size() > 7)
4002     TLM = getDecodedThreadLocalMode(Record[7]);
4003 
4004   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4005   if (Record.size() > 8)
4006     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4007 
4008   bool ExternallyInitialized = false;
4009   if (Record.size() > 9)
4010     ExternallyInitialized = Record[9];
4011 
4012   GlobalVariable *NewGV =
4013       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4014                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4015   if (Alignment)
4016     NewGV->setAlignment(*Alignment);
4017   if (!Section.empty())
4018     NewGV->setSection(Section);
4019   NewGV->setVisibility(Visibility);
4020   NewGV->setUnnamedAddr(UnnamedAddr);
4021 
4022   if (Record.size() > 10) {
4023     // A GlobalValue with local linkage cannot have a DLL storage class.
4024     if (!NewGV->hasLocalLinkage()) {
4025       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4026     }
4027   } else {
4028     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4029   }
4030 
4031   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4032 
4033   // Remember which value to use for the global initializer.
4034   if (unsigned InitID = Record[2])
4035     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4036 
4037   if (Record.size() > 11) {
4038     if (unsigned ComdatID = Record[11]) {
4039       if (ComdatID > ComdatList.size())
4040         return error("Invalid global variable comdat ID");
4041       NewGV->setComdat(ComdatList[ComdatID - 1]);
4042     }
4043   } else if (hasImplicitComdat(RawLinkage)) {
4044     ImplicitComdatObjects.insert(NewGV);
4045   }
4046 
4047   if (Record.size() > 12) {
4048     auto AS = getAttributes(Record[12]).getFnAttrs();
4049     NewGV->setAttributes(AS);
4050   }
4051 
4052   if (Record.size() > 13) {
4053     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4054   }
4055   inferDSOLocal(NewGV);
4056 
4057   // Check whether we have enough values to read a partition name.
4058   if (Record.size() > 15)
4059     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4060 
4061   if (Record.size() > 16 && Record[16]) {
4062     llvm::GlobalValue::SanitizerMetadata Meta =
4063         deserializeSanitizerMetadata(Record[16]);
4064     NewGV->setSanitizerMetadata(Meta);
4065   }
4066 
4067   if (Record.size() > 17 && Record[17]) {
4068     if (auto CM = getDecodedCodeModel(Record[17]))
4069       NewGV->setCodeModel(*CM);
4070     else
4071       return error("Invalid global variable code model");
4072   }
4073 
4074   return Error::success();
4075 }
4076 
4077 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4078   if (ValueTypeCallback) {
4079     (*ValueTypeCallback)(
4080         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4081         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4082   }
4083 }
4084 
4085 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4086   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4087   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4088   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4089   // v2: [strtab_offset, strtab_size, v1]
4090   StringRef Name;
4091   std::tie(Name, Record) = readNameFromStrtab(Record);
4092 
4093   if (Record.size() < 8)
4094     return error("Invalid record");
4095   unsigned FTyID = Record[0];
4096   Type *FTy = getTypeByID(FTyID);
4097   if (!FTy)
4098     return error("Invalid record");
4099   if (isa<PointerType>(FTy)) {
4100     FTyID = getContainedTypeID(FTyID, 0);
4101     FTy = getTypeByID(FTyID);
4102     if (!FTy)
4103       return error("Missing element type for old-style function");
4104   }
4105 
4106   if (!isa<FunctionType>(FTy))
4107     return error("Invalid type for value");
4108   auto CC = static_cast<CallingConv::ID>(Record[1]);
4109   if (CC & ~CallingConv::MaxID)
4110     return error("Invalid calling convention ID");
4111 
4112   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4113   if (Record.size() > 16)
4114     AddrSpace = Record[16];
4115 
4116   Function *Func =
4117       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4118                        AddrSpace, Name, TheModule);
4119 
4120   assert(Func->getFunctionType() == FTy &&
4121          "Incorrect fully specified type provided for function");
4122   FunctionTypeIDs[Func] = FTyID;
4123 
4124   Func->setCallingConv(CC);
4125   bool isProto = Record[2];
4126   uint64_t RawLinkage = Record[3];
4127   Func->setLinkage(getDecodedLinkage(RawLinkage));
4128   Func->setAttributes(getAttributes(Record[4]));
4129   callValueTypeCallback(Func, FTyID);
4130 
4131   // Upgrade any old-style byval or sret without a type by propagating the
4132   // argument's pointee type. There should be no opaque pointers where the byval
4133   // type is implicit.
4134   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4135     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4136                                      Attribute::InAlloca}) {
4137       if (!Func->hasParamAttribute(i, Kind))
4138         continue;
4139 
4140       if (Func->getParamAttribute(i, Kind).getValueAsType())
4141         continue;
4142 
4143       Func->removeParamAttr(i, Kind);
4144 
4145       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4146       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4147       if (!PtrEltTy)
4148         return error("Missing param element type for attribute upgrade");
4149 
4150       Attribute NewAttr;
4151       switch (Kind) {
4152       case Attribute::ByVal:
4153         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4154         break;
4155       case Attribute::StructRet:
4156         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4157         break;
4158       case Attribute::InAlloca:
4159         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4160         break;
4161       default:
4162         llvm_unreachable("not an upgraded type attribute");
4163       }
4164 
4165       Func->addParamAttr(i, NewAttr);
4166     }
4167   }
4168 
4169   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4170       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4171     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4172     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4173     if (!ByValTy)
4174       return error("Missing param element type for x86_intrcc upgrade");
4175     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4176     Func->addParamAttr(0, NewAttr);
4177   }
4178 
4179   MaybeAlign Alignment;
4180   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4181     return Err;
4182   if (Alignment)
4183     Func->setAlignment(*Alignment);
4184   if (Record[6]) {
4185     if (Record[6] - 1 >= SectionTable.size())
4186       return error("Invalid ID");
4187     Func->setSection(SectionTable[Record[6] - 1]);
4188   }
4189   // Local linkage must have default visibility.
4190   // auto-upgrade `hidden` and `protected` for old bitcode.
4191   if (!Func->hasLocalLinkage())
4192     Func->setVisibility(getDecodedVisibility(Record[7]));
4193   if (Record.size() > 8 && Record[8]) {
4194     if (Record[8] - 1 >= GCTable.size())
4195       return error("Invalid ID");
4196     Func->setGC(GCTable[Record[8] - 1]);
4197   }
4198   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4199   if (Record.size() > 9)
4200     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4201   Func->setUnnamedAddr(UnnamedAddr);
4202 
4203   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4204   if (Record.size() > 10)
4205     OperandInfo.Prologue = Record[10];
4206 
4207   if (Record.size() > 11) {
4208     // A GlobalValue with local linkage cannot have a DLL storage class.
4209     if (!Func->hasLocalLinkage()) {
4210       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4211     }
4212   } else {
4213     upgradeDLLImportExportLinkage(Func, RawLinkage);
4214   }
4215 
4216   if (Record.size() > 12) {
4217     if (unsigned ComdatID = Record[12]) {
4218       if (ComdatID > ComdatList.size())
4219         return error("Invalid function comdat ID");
4220       Func->setComdat(ComdatList[ComdatID - 1]);
4221     }
4222   } else if (hasImplicitComdat(RawLinkage)) {
4223     ImplicitComdatObjects.insert(Func);
4224   }
4225 
4226   if (Record.size() > 13)
4227     OperandInfo.Prefix = Record[13];
4228 
4229   if (Record.size() > 14)
4230     OperandInfo.PersonalityFn = Record[14];
4231 
4232   if (Record.size() > 15) {
4233     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4234   }
4235   inferDSOLocal(Func);
4236 
4237   // Record[16] is the address space number.
4238 
4239   // Check whether we have enough values to read a partition name. Also make
4240   // sure Strtab has enough values.
4241   if (Record.size() > 18 && Strtab.data() &&
4242       Record[17] + Record[18] <= Strtab.size()) {
4243     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4244   }
4245 
4246   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4247 
4248   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4249     FunctionOperands.push_back(OperandInfo);
4250 
4251   // If this is a function with a body, remember the prototype we are
4252   // creating now, so that we can match up the body with them later.
4253   if (!isProto) {
4254     Func->setIsMaterializable(true);
4255     FunctionsWithBodies.push_back(Func);
4256     DeferredFunctionInfo[Func] = 0;
4257   }
4258   return Error::success();
4259 }
4260 
4261 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4262     unsigned BitCode, ArrayRef<uint64_t> Record) {
4263   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4264   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4265   // dllstorageclass, threadlocal, unnamed_addr,
4266   // preemption specifier] (name in VST)
4267   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4268   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4269   // preemption specifier] (name in VST)
4270   // v2: [strtab_offset, strtab_size, v1]
4271   StringRef Name;
4272   std::tie(Name, Record) = readNameFromStrtab(Record);
4273 
4274   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4275   if (Record.size() < (3 + (unsigned)NewRecord))
4276     return error("Invalid record");
4277   unsigned OpNum = 0;
4278   unsigned TypeID = Record[OpNum++];
4279   Type *Ty = getTypeByID(TypeID);
4280   if (!Ty)
4281     return error("Invalid record");
4282 
4283   unsigned AddrSpace;
4284   if (!NewRecord) {
4285     auto *PTy = dyn_cast<PointerType>(Ty);
4286     if (!PTy)
4287       return error("Invalid type for value");
4288     AddrSpace = PTy->getAddressSpace();
4289     TypeID = getContainedTypeID(TypeID);
4290     Ty = getTypeByID(TypeID);
4291     if (!Ty)
4292       return error("Missing element type for old-style indirect symbol");
4293   } else {
4294     AddrSpace = Record[OpNum++];
4295   }
4296 
4297   auto Val = Record[OpNum++];
4298   auto Linkage = Record[OpNum++];
4299   GlobalValue *NewGA;
4300   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4301       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4302     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4303                                 TheModule);
4304   else
4305     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4306                                 nullptr, TheModule);
4307 
4308   // Local linkage must have default visibility.
4309   // auto-upgrade `hidden` and `protected` for old bitcode.
4310   if (OpNum != Record.size()) {
4311     auto VisInd = OpNum++;
4312     if (!NewGA->hasLocalLinkage())
4313       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4314   }
4315   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4316       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4317     if (OpNum != Record.size()) {
4318       auto S = Record[OpNum++];
4319       // A GlobalValue with local linkage cannot have a DLL storage class.
4320       if (!NewGA->hasLocalLinkage())
4321         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4322     }
4323     else
4324       upgradeDLLImportExportLinkage(NewGA, Linkage);
4325     if (OpNum != Record.size())
4326       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4327     if (OpNum != Record.size())
4328       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4329   }
4330   if (OpNum != Record.size())
4331     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4332   inferDSOLocal(NewGA);
4333 
4334   // Check whether we have enough values to read a partition name.
4335   if (OpNum + 1 < Record.size()) {
4336     // Check Strtab has enough values for the partition.
4337     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4338       return error("Malformed partition, too large.");
4339     NewGA->setPartition(
4340         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4341     OpNum += 2;
4342   }
4343 
4344   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4345   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4346   return Error::success();
4347 }
4348 
4349 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4350                                  bool ShouldLazyLoadMetadata,
4351                                  ParserCallbacks Callbacks) {
4352   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4353   // has been set to true and we aren't attempting to preserve the existing
4354   // format in the bitcode (default action: load into the old debug format).
4355   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4356     TheModule->IsNewDbgInfoFormat =
4357         UseNewDbgInfoFormat &&
4358         LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE;
4359   }
4360 
4361   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4362   if (ResumeBit) {
4363     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4364       return JumpFailed;
4365   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4366     return Err;
4367 
4368   SmallVector<uint64_t, 64> Record;
4369 
4370   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4371   // finalize the datalayout before we run any of that code.
4372   bool ResolvedDataLayout = false;
4373   // In order to support importing modules with illegal data layout strings,
4374   // delay parsing the data layout string until after upgrades and overrides
4375   // have been applied, allowing to fix illegal data layout strings.
4376   // Initialize to the current module's layout string in case none is specified.
4377   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4378 
4379   auto ResolveDataLayout = [&]() -> Error {
4380     if (ResolvedDataLayout)
4381       return Error::success();
4382 
4383     // Datalayout and triple can't be parsed after this point.
4384     ResolvedDataLayout = true;
4385 
4386     // Auto-upgrade the layout string
4387     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4388         TentativeDataLayoutStr, TheModule->getTargetTriple());
4389 
4390     // Apply override
4391     if (Callbacks.DataLayout) {
4392       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4393               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4394         TentativeDataLayoutStr = *LayoutOverride;
4395     }
4396 
4397     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4398     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4399     if (!MaybeDL)
4400       return MaybeDL.takeError();
4401 
4402     TheModule->setDataLayout(MaybeDL.get());
4403     return Error::success();
4404   };
4405 
4406   // Read all the records for this module.
4407   while (true) {
4408     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4409     if (!MaybeEntry)
4410       return MaybeEntry.takeError();
4411     llvm::BitstreamEntry Entry = MaybeEntry.get();
4412 
4413     switch (Entry.Kind) {
4414     case BitstreamEntry::Error:
4415       return error("Malformed block");
4416     case BitstreamEntry::EndBlock:
4417       if (Error Err = ResolveDataLayout())
4418         return Err;
4419       return globalCleanup();
4420 
4421     case BitstreamEntry::SubBlock:
4422       switch (Entry.ID) {
4423       default:  // Skip unknown content.
4424         if (Error Err = Stream.SkipBlock())
4425           return Err;
4426         break;
4427       case bitc::BLOCKINFO_BLOCK_ID:
4428         if (Error Err = readBlockInfo())
4429           return Err;
4430         break;
4431       case bitc::PARAMATTR_BLOCK_ID:
4432         if (Error Err = parseAttributeBlock())
4433           return Err;
4434         break;
4435       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4436         if (Error Err = parseAttributeGroupBlock())
4437           return Err;
4438         break;
4439       case bitc::TYPE_BLOCK_ID_NEW:
4440         if (Error Err = parseTypeTable())
4441           return Err;
4442         break;
4443       case bitc::VALUE_SYMTAB_BLOCK_ID:
4444         if (!SeenValueSymbolTable) {
4445           // Either this is an old form VST without function index and an
4446           // associated VST forward declaration record (which would have caused
4447           // the VST to be jumped to and parsed before it was encountered
4448           // normally in the stream), or there were no function blocks to
4449           // trigger an earlier parsing of the VST.
4450           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4451           if (Error Err = parseValueSymbolTable())
4452             return Err;
4453           SeenValueSymbolTable = true;
4454         } else {
4455           // We must have had a VST forward declaration record, which caused
4456           // the parser to jump to and parse the VST earlier.
4457           assert(VSTOffset > 0);
4458           if (Error Err = Stream.SkipBlock())
4459             return Err;
4460         }
4461         break;
4462       case bitc::CONSTANTS_BLOCK_ID:
4463         if (Error Err = parseConstants())
4464           return Err;
4465         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4466           return Err;
4467         break;
4468       case bitc::METADATA_BLOCK_ID:
4469         if (ShouldLazyLoadMetadata) {
4470           if (Error Err = rememberAndSkipMetadata())
4471             return Err;
4472           break;
4473         }
4474         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4475         if (Error Err = MDLoader->parseModuleMetadata())
4476           return Err;
4477         break;
4478       case bitc::METADATA_KIND_BLOCK_ID:
4479         if (Error Err = MDLoader->parseMetadataKinds())
4480           return Err;
4481         break;
4482       case bitc::FUNCTION_BLOCK_ID:
4483         if (Error Err = ResolveDataLayout())
4484           return Err;
4485 
4486         // If this is the first function body we've seen, reverse the
4487         // FunctionsWithBodies list.
4488         if (!SeenFirstFunctionBody) {
4489           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4490           if (Error Err = globalCleanup())
4491             return Err;
4492           SeenFirstFunctionBody = true;
4493         }
4494 
4495         if (VSTOffset > 0) {
4496           // If we have a VST forward declaration record, make sure we
4497           // parse the VST now if we haven't already. It is needed to
4498           // set up the DeferredFunctionInfo vector for lazy reading.
4499           if (!SeenValueSymbolTable) {
4500             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4501               return Err;
4502             SeenValueSymbolTable = true;
4503             // Fall through so that we record the NextUnreadBit below.
4504             // This is necessary in case we have an anonymous function that
4505             // is later materialized. Since it will not have a VST entry we
4506             // need to fall back to the lazy parse to find its offset.
4507           } else {
4508             // If we have a VST forward declaration record, but have already
4509             // parsed the VST (just above, when the first function body was
4510             // encountered here), then we are resuming the parse after
4511             // materializing functions. The ResumeBit points to the
4512             // start of the last function block recorded in the
4513             // DeferredFunctionInfo map. Skip it.
4514             if (Error Err = Stream.SkipBlock())
4515               return Err;
4516             continue;
4517           }
4518         }
4519 
4520         // Support older bitcode files that did not have the function
4521         // index in the VST, nor a VST forward declaration record, as
4522         // well as anonymous functions that do not have VST entries.
4523         // Build the DeferredFunctionInfo vector on the fly.
4524         if (Error Err = rememberAndSkipFunctionBody())
4525           return Err;
4526 
4527         // Suspend parsing when we reach the function bodies. Subsequent
4528         // materialization calls will resume it when necessary. If the bitcode
4529         // file is old, the symbol table will be at the end instead and will not
4530         // have been seen yet. In this case, just finish the parse now.
4531         if (SeenValueSymbolTable) {
4532           NextUnreadBit = Stream.GetCurrentBitNo();
4533           // After the VST has been parsed, we need to make sure intrinsic name
4534           // are auto-upgraded.
4535           return globalCleanup();
4536         }
4537         break;
4538       case bitc::USELIST_BLOCK_ID:
4539         if (Error Err = parseUseLists())
4540           return Err;
4541         break;
4542       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4543         if (Error Err = parseOperandBundleTags())
4544           return Err;
4545         break;
4546       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4547         if (Error Err = parseSyncScopeNames())
4548           return Err;
4549         break;
4550       }
4551       continue;
4552 
4553     case BitstreamEntry::Record:
4554       // The interesting case.
4555       break;
4556     }
4557 
4558     // Read a record.
4559     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4560     if (!MaybeBitCode)
4561       return MaybeBitCode.takeError();
4562     switch (unsigned BitCode = MaybeBitCode.get()) {
4563     default: break;  // Default behavior, ignore unknown content.
4564     case bitc::MODULE_CODE_VERSION: {
4565       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4566       if (!VersionOrErr)
4567         return VersionOrErr.takeError();
4568       UseRelativeIDs = *VersionOrErr >= 1;
4569       break;
4570     }
4571     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4572       if (ResolvedDataLayout)
4573         return error("target triple too late in module");
4574       std::string S;
4575       if (convertToString(Record, 0, S))
4576         return error("Invalid record");
4577       TheModule->setTargetTriple(S);
4578       break;
4579     }
4580     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4581       if (ResolvedDataLayout)
4582         return error("datalayout too late in module");
4583       if (convertToString(Record, 0, TentativeDataLayoutStr))
4584         return error("Invalid record");
4585       break;
4586     }
4587     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4588       std::string S;
4589       if (convertToString(Record, 0, S))
4590         return error("Invalid record");
4591       TheModule->setModuleInlineAsm(S);
4592       break;
4593     }
4594     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4595       // Deprecated, but still needed to read old bitcode files.
4596       std::string S;
4597       if (convertToString(Record, 0, S))
4598         return error("Invalid record");
4599       // Ignore value.
4600       break;
4601     }
4602     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4603       std::string S;
4604       if (convertToString(Record, 0, S))
4605         return error("Invalid record");
4606       SectionTable.push_back(S);
4607       break;
4608     }
4609     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4610       std::string S;
4611       if (convertToString(Record, 0, S))
4612         return error("Invalid record");
4613       GCTable.push_back(S);
4614       break;
4615     }
4616     case bitc::MODULE_CODE_COMDAT:
4617       if (Error Err = parseComdatRecord(Record))
4618         return Err;
4619       break;
4620     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4621     // written by ThinLinkBitcodeWriter. See
4622     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4623     // record
4624     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4625     case bitc::MODULE_CODE_GLOBALVAR:
4626       if (Error Err = parseGlobalVarRecord(Record))
4627         return Err;
4628       break;
4629     case bitc::MODULE_CODE_FUNCTION:
4630       if (Error Err = ResolveDataLayout())
4631         return Err;
4632       if (Error Err = parseFunctionRecord(Record))
4633         return Err;
4634       break;
4635     case bitc::MODULE_CODE_IFUNC:
4636     case bitc::MODULE_CODE_ALIAS:
4637     case bitc::MODULE_CODE_ALIAS_OLD:
4638       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4639         return Err;
4640       break;
4641     /// MODULE_CODE_VSTOFFSET: [offset]
4642     case bitc::MODULE_CODE_VSTOFFSET:
4643       if (Record.empty())
4644         return error("Invalid record");
4645       // Note that we subtract 1 here because the offset is relative to one word
4646       // before the start of the identification or module block, which was
4647       // historically always the start of the regular bitcode header.
4648       VSTOffset = Record[0] - 1;
4649       break;
4650     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4651     case bitc::MODULE_CODE_SOURCE_FILENAME:
4652       SmallString<128> ValueName;
4653       if (convertToString(Record, 0, ValueName))
4654         return error("Invalid record");
4655       TheModule->setSourceFileName(ValueName);
4656       break;
4657     }
4658     Record.clear();
4659   }
4660   this->ValueTypeCallback = std::nullopt;
4661   return Error::success();
4662 }
4663 
4664 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4665                                       bool IsImporting,
4666                                       ParserCallbacks Callbacks) {
4667   TheModule = M;
4668   MetadataLoaderCallbacks MDCallbacks;
4669   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4670   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4671     return getContainedTypeID(I, J);
4672   };
4673   MDCallbacks.MDType = Callbacks.MDType;
4674   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4675   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4676 }
4677 
4678 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4679   if (!isa<PointerType>(PtrType))
4680     return error("Load/Store operand is not a pointer type");
4681   if (!PointerType::isLoadableOrStorableType(ValType))
4682     return error("Cannot load/store from pointer");
4683   return Error::success();
4684 }
4685 
4686 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4687                                              ArrayRef<unsigned> ArgTyIDs) {
4688   AttributeList Attrs = CB->getAttributes();
4689   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4690     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4691                                      Attribute::InAlloca}) {
4692       if (!Attrs.hasParamAttr(i, Kind) ||
4693           Attrs.getParamAttr(i, Kind).getValueAsType())
4694         continue;
4695 
4696       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4697       if (!PtrEltTy)
4698         return error("Missing element type for typed attribute upgrade");
4699 
4700       Attribute NewAttr;
4701       switch (Kind) {
4702       case Attribute::ByVal:
4703         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4704         break;
4705       case Attribute::StructRet:
4706         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4707         break;
4708       case Attribute::InAlloca:
4709         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4710         break;
4711       default:
4712         llvm_unreachable("not an upgraded type attribute");
4713       }
4714 
4715       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4716     }
4717   }
4718 
4719   if (CB->isInlineAsm()) {
4720     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4721     unsigned ArgNo = 0;
4722     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4723       if (!CI.hasArg())
4724         continue;
4725 
4726       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4727         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4728         if (!ElemTy)
4729           return error("Missing element type for inline asm upgrade");
4730         Attrs = Attrs.addParamAttribute(
4731             Context, ArgNo,
4732             Attribute::get(Context, Attribute::ElementType, ElemTy));
4733       }
4734 
4735       ArgNo++;
4736     }
4737   }
4738 
4739   switch (CB->getIntrinsicID()) {
4740   case Intrinsic::preserve_array_access_index:
4741   case Intrinsic::preserve_struct_access_index:
4742   case Intrinsic::aarch64_ldaxr:
4743   case Intrinsic::aarch64_ldxr:
4744   case Intrinsic::aarch64_stlxr:
4745   case Intrinsic::aarch64_stxr:
4746   case Intrinsic::arm_ldaex:
4747   case Intrinsic::arm_ldrex:
4748   case Intrinsic::arm_stlex:
4749   case Intrinsic::arm_strex: {
4750     unsigned ArgNo;
4751     switch (CB->getIntrinsicID()) {
4752     case Intrinsic::aarch64_stlxr:
4753     case Intrinsic::aarch64_stxr:
4754     case Intrinsic::arm_stlex:
4755     case Intrinsic::arm_strex:
4756       ArgNo = 1;
4757       break;
4758     default:
4759       ArgNo = 0;
4760       break;
4761     }
4762     if (!Attrs.getParamElementType(ArgNo)) {
4763       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4764       if (!ElTy)
4765         return error("Missing element type for elementtype upgrade");
4766       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4767       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4768     }
4769     break;
4770   }
4771   default:
4772     break;
4773   }
4774 
4775   CB->setAttributes(Attrs);
4776   return Error::success();
4777 }
4778 
4779 /// Lazily parse the specified function body block.
4780 Error BitcodeReader::parseFunctionBody(Function *F) {
4781   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4782     return Err;
4783 
4784   // Unexpected unresolved metadata when parsing function.
4785   if (MDLoader->hasFwdRefs())
4786     return error("Invalid function metadata: incoming forward references");
4787 
4788   InstructionList.clear();
4789   unsigned ModuleValueListSize = ValueList.size();
4790   unsigned ModuleMDLoaderSize = MDLoader->size();
4791 
4792   // Add all the function arguments to the value table.
4793   unsigned ArgNo = 0;
4794   unsigned FTyID = FunctionTypeIDs[F];
4795   for (Argument &I : F->args()) {
4796     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4797     assert(I.getType() == getTypeByID(ArgTyID) &&
4798            "Incorrect fully specified type for Function Argument");
4799     ValueList.push_back(&I, ArgTyID);
4800     ++ArgNo;
4801   }
4802   unsigned NextValueNo = ValueList.size();
4803   BasicBlock *CurBB = nullptr;
4804   unsigned CurBBNo = 0;
4805   // Block into which constant expressions from phi nodes are materialized.
4806   BasicBlock *PhiConstExprBB = nullptr;
4807   // Edge blocks for phi nodes into which constant expressions have been
4808   // expanded.
4809   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4810     ConstExprEdgeBBs;
4811 
4812   DebugLoc LastLoc;
4813   auto getLastInstruction = [&]() -> Instruction * {
4814     if (CurBB && !CurBB->empty())
4815       return &CurBB->back();
4816     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4817              !FunctionBBs[CurBBNo - 1]->empty())
4818       return &FunctionBBs[CurBBNo - 1]->back();
4819     return nullptr;
4820   };
4821 
4822   std::vector<OperandBundleDef> OperandBundles;
4823 
4824   // Read all the records.
4825   SmallVector<uint64_t, 64> Record;
4826 
4827   while (true) {
4828     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4829     if (!MaybeEntry)
4830       return MaybeEntry.takeError();
4831     llvm::BitstreamEntry Entry = MaybeEntry.get();
4832 
4833     switch (Entry.Kind) {
4834     case BitstreamEntry::Error:
4835       return error("Malformed block");
4836     case BitstreamEntry::EndBlock:
4837       goto OutOfRecordLoop;
4838 
4839     case BitstreamEntry::SubBlock:
4840       switch (Entry.ID) {
4841       default:  // Skip unknown content.
4842         if (Error Err = Stream.SkipBlock())
4843           return Err;
4844         break;
4845       case bitc::CONSTANTS_BLOCK_ID:
4846         if (Error Err = parseConstants())
4847           return Err;
4848         NextValueNo = ValueList.size();
4849         break;
4850       case bitc::VALUE_SYMTAB_BLOCK_ID:
4851         if (Error Err = parseValueSymbolTable())
4852           return Err;
4853         break;
4854       case bitc::METADATA_ATTACHMENT_ID:
4855         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4856           return Err;
4857         break;
4858       case bitc::METADATA_BLOCK_ID:
4859         assert(DeferredMetadataInfo.empty() &&
4860                "Must read all module-level metadata before function-level");
4861         if (Error Err = MDLoader->parseFunctionMetadata())
4862           return Err;
4863         break;
4864       case bitc::USELIST_BLOCK_ID:
4865         if (Error Err = parseUseLists())
4866           return Err;
4867         break;
4868       }
4869       continue;
4870 
4871     case BitstreamEntry::Record:
4872       // The interesting case.
4873       break;
4874     }
4875 
4876     // Read a record.
4877     Record.clear();
4878     Instruction *I = nullptr;
4879     unsigned ResTypeID = InvalidTypeID;
4880     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4881     if (!MaybeBitCode)
4882       return MaybeBitCode.takeError();
4883     switch (unsigned BitCode = MaybeBitCode.get()) {
4884     default: // Default behavior: reject
4885       return error("Invalid value");
4886     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4887       if (Record.empty() || Record[0] == 0)
4888         return error("Invalid record");
4889       // Create all the basic blocks for the function.
4890       FunctionBBs.resize(Record[0]);
4891 
4892       // See if anything took the address of blocks in this function.
4893       auto BBFRI = BasicBlockFwdRefs.find(F);
4894       if (BBFRI == BasicBlockFwdRefs.end()) {
4895         for (BasicBlock *&BB : FunctionBBs)
4896           BB = BasicBlock::Create(Context, "", F);
4897       } else {
4898         auto &BBRefs = BBFRI->second;
4899         // Check for invalid basic block references.
4900         if (BBRefs.size() > FunctionBBs.size())
4901           return error("Invalid ID");
4902         assert(!BBRefs.empty() && "Unexpected empty array");
4903         assert(!BBRefs.front() && "Invalid reference to entry block");
4904         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4905              ++I)
4906           if (I < RE && BBRefs[I]) {
4907             BBRefs[I]->insertInto(F);
4908             FunctionBBs[I] = BBRefs[I];
4909           } else {
4910             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4911           }
4912 
4913         // Erase from the table.
4914         BasicBlockFwdRefs.erase(BBFRI);
4915       }
4916 
4917       CurBB = FunctionBBs[0];
4918       continue;
4919     }
4920 
4921     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4922       // The record should not be emitted if it's an empty list.
4923       if (Record.empty())
4924         return error("Invalid record");
4925       // When we have the RARE case of a BlockAddress Constant that is not
4926       // scoped to the Function it refers to, we need to conservatively
4927       // materialize the referred to Function, regardless of whether or not
4928       // that Function will ultimately be linked, otherwise users of
4929       // BitcodeReader might start splicing out Function bodies such that we
4930       // might no longer be able to materialize the BlockAddress since the
4931       // BasicBlock (and entire body of the Function) the BlockAddress refers
4932       // to may have been moved. In the case that the user of BitcodeReader
4933       // decides ultimately not to link the Function body, materializing here
4934       // could be considered wasteful, but it's better than a deserialization
4935       // failure as described. This keeps BitcodeReader unaware of complex
4936       // linkage policy decisions such as those use by LTO, leaving those
4937       // decisions "one layer up."
4938       for (uint64_t ValID : Record)
4939         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4940           BackwardRefFunctions.push_back(F);
4941         else
4942           return error("Invalid record");
4943 
4944       continue;
4945 
4946     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4947       // This record indicates that the last instruction is at the same
4948       // location as the previous instruction with a location.
4949       I = getLastInstruction();
4950 
4951       if (!I)
4952         return error("Invalid record");
4953       I->setDebugLoc(LastLoc);
4954       I = nullptr;
4955       continue;
4956 
4957     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4958       I = getLastInstruction();
4959       if (!I || Record.size() < 4)
4960         return error("Invalid record");
4961 
4962       unsigned Line = Record[0], Col = Record[1];
4963       unsigned ScopeID = Record[2], IAID = Record[3];
4964       bool isImplicitCode = Record.size() == 5 && Record[4];
4965 
4966       MDNode *Scope = nullptr, *IA = nullptr;
4967       if (ScopeID) {
4968         Scope = dyn_cast_or_null<MDNode>(
4969             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4970         if (!Scope)
4971           return error("Invalid record");
4972       }
4973       if (IAID) {
4974         IA = dyn_cast_or_null<MDNode>(
4975             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4976         if (!IA)
4977           return error("Invalid record");
4978       }
4979       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4980                                 isImplicitCode);
4981       I->setDebugLoc(LastLoc);
4982       I = nullptr;
4983       continue;
4984     }
4985     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4986       unsigned OpNum = 0;
4987       Value *LHS;
4988       unsigned TypeID;
4989       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4990           OpNum+1 > Record.size())
4991         return error("Invalid record");
4992 
4993       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4994       if (Opc == -1)
4995         return error("Invalid record");
4996       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4997       ResTypeID = TypeID;
4998       InstructionList.push_back(I);
4999       if (OpNum < Record.size()) {
5000         if (isa<FPMathOperator>(I)) {
5001           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5002           if (FMF.any())
5003             I->setFastMathFlags(FMF);
5004         }
5005       }
5006       break;
5007     }
5008     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5009       unsigned OpNum = 0;
5010       Value *LHS, *RHS;
5011       unsigned TypeID;
5012       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5013           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5014                    CurBB) ||
5015           OpNum+1 > Record.size())
5016         return error("Invalid record");
5017 
5018       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5019       if (Opc == -1)
5020         return error("Invalid record");
5021       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5022       ResTypeID = TypeID;
5023       InstructionList.push_back(I);
5024       if (OpNum < Record.size()) {
5025         if (Opc == Instruction::Add ||
5026             Opc == Instruction::Sub ||
5027             Opc == Instruction::Mul ||
5028             Opc == Instruction::Shl) {
5029           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5030             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5031           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5032             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5033         } else if (Opc == Instruction::SDiv ||
5034                    Opc == Instruction::UDiv ||
5035                    Opc == Instruction::LShr ||
5036                    Opc == Instruction::AShr) {
5037           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5038             cast<BinaryOperator>(I)->setIsExact(true);
5039         } else if (Opc == Instruction::Or) {
5040           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5041             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5042         } else if (isa<FPMathOperator>(I)) {
5043           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5044           if (FMF.any())
5045             I->setFastMathFlags(FMF);
5046         }
5047       }
5048       break;
5049     }
5050     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5051       unsigned OpNum = 0;
5052       Value *Op;
5053       unsigned OpTypeID;
5054       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5055           OpNum + 1 > Record.size())
5056         return error("Invalid record");
5057 
5058       ResTypeID = Record[OpNum++];
5059       Type *ResTy = getTypeByID(ResTypeID);
5060       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5061 
5062       if (Opc == -1 || !ResTy)
5063         return error("Invalid record");
5064       Instruction *Temp = nullptr;
5065       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5066         if (Temp) {
5067           InstructionList.push_back(Temp);
5068           assert(CurBB && "No current BB?");
5069           Temp->insertInto(CurBB, CurBB->end());
5070         }
5071       } else {
5072         auto CastOp = (Instruction::CastOps)Opc;
5073         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5074           return error("Invalid cast");
5075         I = CastInst::Create(CastOp, Op, ResTy);
5076       }
5077 
5078       if (OpNum < Record.size()) {
5079         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5080           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5081             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5082         } else if (Opc == Instruction::Trunc) {
5083           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5084             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5085           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5086             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5087         }
5088       }
5089 
5090       InstructionList.push_back(I);
5091       break;
5092     }
5093     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5094     case bitc::FUNC_CODE_INST_GEP_OLD:
5095     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5096       unsigned OpNum = 0;
5097 
5098       unsigned TyID;
5099       Type *Ty;
5100       GEPNoWrapFlags NW;
5101 
5102       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5103         NW = toGEPNoWrapFlags(Record[OpNum++]);
5104         TyID = Record[OpNum++];
5105         Ty = getTypeByID(TyID);
5106       } else {
5107         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5108           NW = GEPNoWrapFlags::inBounds();
5109         TyID = InvalidTypeID;
5110         Ty = nullptr;
5111       }
5112 
5113       Value *BasePtr;
5114       unsigned BasePtrTypeID;
5115       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5116                            CurBB))
5117         return error("Invalid record");
5118 
5119       if (!Ty) {
5120         TyID = getContainedTypeID(BasePtrTypeID);
5121         if (BasePtr->getType()->isVectorTy())
5122           TyID = getContainedTypeID(TyID);
5123         Ty = getTypeByID(TyID);
5124       }
5125 
5126       SmallVector<Value*, 16> GEPIdx;
5127       while (OpNum != Record.size()) {
5128         Value *Op;
5129         unsigned OpTypeID;
5130         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5131           return error("Invalid record");
5132         GEPIdx.push_back(Op);
5133       }
5134 
5135       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5136       I = GEP;
5137 
5138       ResTypeID = TyID;
5139       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5140         auto GTI = std::next(gep_type_begin(I));
5141         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5142           unsigned SubType = 0;
5143           if (GTI.isStruct()) {
5144             ConstantInt *IdxC =
5145                 Idx->getType()->isVectorTy()
5146                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5147                     : cast<ConstantInt>(Idx);
5148             SubType = IdxC->getZExtValue();
5149           }
5150           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5151           ++GTI;
5152         }
5153       }
5154 
5155       // At this point ResTypeID is the result element type. We need a pointer
5156       // or vector of pointer to it.
5157       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5158       if (I->getType()->isVectorTy())
5159         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5160 
5161       InstructionList.push_back(I);
5162       GEP->setNoWrapFlags(NW);
5163       break;
5164     }
5165 
5166     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5167                                        // EXTRACTVAL: [opty, opval, n x indices]
5168       unsigned OpNum = 0;
5169       Value *Agg;
5170       unsigned AggTypeID;
5171       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5172         return error("Invalid record");
5173       Type *Ty = Agg->getType();
5174 
5175       unsigned RecSize = Record.size();
5176       if (OpNum == RecSize)
5177         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5178 
5179       SmallVector<unsigned, 4> EXTRACTVALIdx;
5180       ResTypeID = AggTypeID;
5181       for (; OpNum != RecSize; ++OpNum) {
5182         bool IsArray = Ty->isArrayTy();
5183         bool IsStruct = Ty->isStructTy();
5184         uint64_t Index = Record[OpNum];
5185 
5186         if (!IsStruct && !IsArray)
5187           return error("EXTRACTVAL: Invalid type");
5188         if ((unsigned)Index != Index)
5189           return error("Invalid value");
5190         if (IsStruct && Index >= Ty->getStructNumElements())
5191           return error("EXTRACTVAL: Invalid struct index");
5192         if (IsArray && Index >= Ty->getArrayNumElements())
5193           return error("EXTRACTVAL: Invalid array index");
5194         EXTRACTVALIdx.push_back((unsigned)Index);
5195 
5196         if (IsStruct) {
5197           Ty = Ty->getStructElementType(Index);
5198           ResTypeID = getContainedTypeID(ResTypeID, Index);
5199         } else {
5200           Ty = Ty->getArrayElementType();
5201           ResTypeID = getContainedTypeID(ResTypeID);
5202         }
5203       }
5204 
5205       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5206       InstructionList.push_back(I);
5207       break;
5208     }
5209 
5210     case bitc::FUNC_CODE_INST_INSERTVAL: {
5211                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5212       unsigned OpNum = 0;
5213       Value *Agg;
5214       unsigned AggTypeID;
5215       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5216         return error("Invalid record");
5217       Value *Val;
5218       unsigned ValTypeID;
5219       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5220         return error("Invalid record");
5221 
5222       unsigned RecSize = Record.size();
5223       if (OpNum == RecSize)
5224         return error("INSERTVAL: Invalid instruction with 0 indices");
5225 
5226       SmallVector<unsigned, 4> INSERTVALIdx;
5227       Type *CurTy = Agg->getType();
5228       for (; OpNum != RecSize; ++OpNum) {
5229         bool IsArray = CurTy->isArrayTy();
5230         bool IsStruct = CurTy->isStructTy();
5231         uint64_t Index = Record[OpNum];
5232 
5233         if (!IsStruct && !IsArray)
5234           return error("INSERTVAL: Invalid type");
5235         if ((unsigned)Index != Index)
5236           return error("Invalid value");
5237         if (IsStruct && Index >= CurTy->getStructNumElements())
5238           return error("INSERTVAL: Invalid struct index");
5239         if (IsArray && Index >= CurTy->getArrayNumElements())
5240           return error("INSERTVAL: Invalid array index");
5241 
5242         INSERTVALIdx.push_back((unsigned)Index);
5243         if (IsStruct)
5244           CurTy = CurTy->getStructElementType(Index);
5245         else
5246           CurTy = CurTy->getArrayElementType();
5247       }
5248 
5249       if (CurTy != Val->getType())
5250         return error("Inserted value type doesn't match aggregate type");
5251 
5252       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5253       ResTypeID = AggTypeID;
5254       InstructionList.push_back(I);
5255       break;
5256     }
5257 
5258     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5259       // obsolete form of select
5260       // handles select i1 ... in old bitcode
5261       unsigned OpNum = 0;
5262       Value *TrueVal, *FalseVal, *Cond;
5263       unsigned TypeID;
5264       Type *CondType = Type::getInt1Ty(Context);
5265       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5266                            CurBB) ||
5267           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5268                    FalseVal, CurBB) ||
5269           popValue(Record, OpNum, NextValueNo, CondType,
5270                    getVirtualTypeID(CondType), Cond, CurBB))
5271         return error("Invalid record");
5272 
5273       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5274       ResTypeID = TypeID;
5275       InstructionList.push_back(I);
5276       break;
5277     }
5278 
5279     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5280       // new form of select
5281       // handles select i1 or select [N x i1]
5282       unsigned OpNum = 0;
5283       Value *TrueVal, *FalseVal, *Cond;
5284       unsigned ValTypeID, CondTypeID;
5285       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5286                            CurBB) ||
5287           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5288                    FalseVal, CurBB) ||
5289           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5290         return error("Invalid record");
5291 
5292       // select condition can be either i1 or [N x i1]
5293       if (VectorType* vector_type =
5294           dyn_cast<VectorType>(Cond->getType())) {
5295         // expect <n x i1>
5296         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5297           return error("Invalid type for value");
5298       } else {
5299         // expect i1
5300         if (Cond->getType() != Type::getInt1Ty(Context))
5301           return error("Invalid type for value");
5302       }
5303 
5304       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5305       ResTypeID = ValTypeID;
5306       InstructionList.push_back(I);
5307       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5308         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5309         if (FMF.any())
5310           I->setFastMathFlags(FMF);
5311       }
5312       break;
5313     }
5314 
5315     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5316       unsigned OpNum = 0;
5317       Value *Vec, *Idx;
5318       unsigned VecTypeID, IdxTypeID;
5319       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5320           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5321         return error("Invalid record");
5322       if (!Vec->getType()->isVectorTy())
5323         return error("Invalid type for value");
5324       I = ExtractElementInst::Create(Vec, Idx);
5325       ResTypeID = getContainedTypeID(VecTypeID);
5326       InstructionList.push_back(I);
5327       break;
5328     }
5329 
5330     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5331       unsigned OpNum = 0;
5332       Value *Vec, *Elt, *Idx;
5333       unsigned VecTypeID, IdxTypeID;
5334       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5335         return error("Invalid record");
5336       if (!Vec->getType()->isVectorTy())
5337         return error("Invalid type for value");
5338       if (popValue(Record, OpNum, NextValueNo,
5339                    cast<VectorType>(Vec->getType())->getElementType(),
5340                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5341           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5342         return error("Invalid record");
5343       I = InsertElementInst::Create(Vec, Elt, Idx);
5344       ResTypeID = VecTypeID;
5345       InstructionList.push_back(I);
5346       break;
5347     }
5348 
5349     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5350       unsigned OpNum = 0;
5351       Value *Vec1, *Vec2, *Mask;
5352       unsigned Vec1TypeID;
5353       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5354                            CurBB) ||
5355           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5356                    Vec2, CurBB))
5357         return error("Invalid record");
5358 
5359       unsigned MaskTypeID;
5360       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5361         return error("Invalid record");
5362       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5363         return error("Invalid type for value");
5364 
5365       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5366       ResTypeID =
5367           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5368       InstructionList.push_back(I);
5369       break;
5370     }
5371 
5372     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5373       // Old form of ICmp/FCmp returning bool
5374       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5375       // both legal on vectors but had different behaviour.
5376     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5377       // FCmp/ICmp returning bool or vector of bool
5378 
5379       unsigned OpNum = 0;
5380       Value *LHS, *RHS;
5381       unsigned LHSTypeID;
5382       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5383           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5384                    CurBB))
5385         return error("Invalid record");
5386 
5387       if (OpNum >= Record.size())
5388         return error(
5389             "Invalid record: operand number exceeded available operands");
5390 
5391       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5392       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5393       FastMathFlags FMF;
5394       if (IsFP && Record.size() > OpNum+1)
5395         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5396 
5397       if (OpNum+1 != Record.size())
5398         return error("Invalid record");
5399 
5400       if (IsFP) {
5401         if (!CmpInst::isFPPredicate(PredVal))
5402           return error("Invalid fcmp predicate");
5403         I = new FCmpInst(PredVal, LHS, RHS);
5404       } else {
5405         if (!CmpInst::isIntPredicate(PredVal))
5406           return error("Invalid icmp predicate");
5407         I = new ICmpInst(PredVal, LHS, RHS);
5408       }
5409 
5410       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5411       if (LHS->getType()->isVectorTy())
5412         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5413 
5414       if (FMF.any())
5415         I->setFastMathFlags(FMF);
5416       InstructionList.push_back(I);
5417       break;
5418     }
5419 
5420     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5421       {
5422         unsigned Size = Record.size();
5423         if (Size == 0) {
5424           I = ReturnInst::Create(Context);
5425           InstructionList.push_back(I);
5426           break;
5427         }
5428 
5429         unsigned OpNum = 0;
5430         Value *Op = nullptr;
5431         unsigned OpTypeID;
5432         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5433           return error("Invalid record");
5434         if (OpNum != Record.size())
5435           return error("Invalid record");
5436 
5437         I = ReturnInst::Create(Context, Op);
5438         InstructionList.push_back(I);
5439         break;
5440       }
5441     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5442       if (Record.size() != 1 && Record.size() != 3)
5443         return error("Invalid record");
5444       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5445       if (!TrueDest)
5446         return error("Invalid record");
5447 
5448       if (Record.size() == 1) {
5449         I = BranchInst::Create(TrueDest);
5450         InstructionList.push_back(I);
5451       }
5452       else {
5453         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5454         Type *CondType = Type::getInt1Ty(Context);
5455         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5456                                getVirtualTypeID(CondType), CurBB);
5457         if (!FalseDest || !Cond)
5458           return error("Invalid record");
5459         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5460         InstructionList.push_back(I);
5461       }
5462       break;
5463     }
5464     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5465       if (Record.size() != 1 && Record.size() != 2)
5466         return error("Invalid record");
5467       unsigned Idx = 0;
5468       Type *TokenTy = Type::getTokenTy(Context);
5469       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5470                                    getVirtualTypeID(TokenTy), CurBB);
5471       if (!CleanupPad)
5472         return error("Invalid record");
5473       BasicBlock *UnwindDest = nullptr;
5474       if (Record.size() == 2) {
5475         UnwindDest = getBasicBlock(Record[Idx++]);
5476         if (!UnwindDest)
5477           return error("Invalid record");
5478       }
5479 
5480       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5481       InstructionList.push_back(I);
5482       break;
5483     }
5484     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5485       if (Record.size() != 2)
5486         return error("Invalid record");
5487       unsigned Idx = 0;
5488       Type *TokenTy = Type::getTokenTy(Context);
5489       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5490                                  getVirtualTypeID(TokenTy), CurBB);
5491       if (!CatchPad)
5492         return error("Invalid record");
5493       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5494       if (!BB)
5495         return error("Invalid record");
5496 
5497       I = CatchReturnInst::Create(CatchPad, BB);
5498       InstructionList.push_back(I);
5499       break;
5500     }
5501     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5502       // We must have, at minimum, the outer scope and the number of arguments.
5503       if (Record.size() < 2)
5504         return error("Invalid record");
5505 
5506       unsigned Idx = 0;
5507 
5508       Type *TokenTy = Type::getTokenTy(Context);
5509       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5510                                   getVirtualTypeID(TokenTy), CurBB);
5511       if (!ParentPad)
5512         return error("Invalid record");
5513 
5514       unsigned NumHandlers = Record[Idx++];
5515 
5516       SmallVector<BasicBlock *, 2> Handlers;
5517       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5518         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5519         if (!BB)
5520           return error("Invalid record");
5521         Handlers.push_back(BB);
5522       }
5523 
5524       BasicBlock *UnwindDest = nullptr;
5525       if (Idx + 1 == Record.size()) {
5526         UnwindDest = getBasicBlock(Record[Idx++]);
5527         if (!UnwindDest)
5528           return error("Invalid record");
5529       }
5530 
5531       if (Record.size() != Idx)
5532         return error("Invalid record");
5533 
5534       auto *CatchSwitch =
5535           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5536       for (BasicBlock *Handler : Handlers)
5537         CatchSwitch->addHandler(Handler);
5538       I = CatchSwitch;
5539       ResTypeID = getVirtualTypeID(I->getType());
5540       InstructionList.push_back(I);
5541       break;
5542     }
5543     case bitc::FUNC_CODE_INST_CATCHPAD:
5544     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5545       // We must have, at minimum, the outer scope and the number of arguments.
5546       if (Record.size() < 2)
5547         return error("Invalid record");
5548 
5549       unsigned Idx = 0;
5550 
5551       Type *TokenTy = Type::getTokenTy(Context);
5552       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5553                                   getVirtualTypeID(TokenTy), CurBB);
5554       if (!ParentPad)
5555         return error("Invald record");
5556 
5557       unsigned NumArgOperands = Record[Idx++];
5558 
5559       SmallVector<Value *, 2> Args;
5560       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5561         Value *Val;
5562         unsigned ValTypeID;
5563         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5564           return error("Invalid record");
5565         Args.push_back(Val);
5566       }
5567 
5568       if (Record.size() != Idx)
5569         return error("Invalid record");
5570 
5571       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5572         I = CleanupPadInst::Create(ParentPad, Args);
5573       else
5574         I = CatchPadInst::Create(ParentPad, Args);
5575       ResTypeID = getVirtualTypeID(I->getType());
5576       InstructionList.push_back(I);
5577       break;
5578     }
5579     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5580       // Check magic
5581       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5582         // "New" SwitchInst format with case ranges. The changes to write this
5583         // format were reverted but we still recognize bitcode that uses it.
5584         // Hopefully someday we will have support for case ranges and can use
5585         // this format again.
5586 
5587         unsigned OpTyID = Record[1];
5588         Type *OpTy = getTypeByID(OpTyID);
5589         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5590 
5591         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5592         BasicBlock *Default = getBasicBlock(Record[3]);
5593         if (!OpTy || !Cond || !Default)
5594           return error("Invalid record");
5595 
5596         unsigned NumCases = Record[4];
5597 
5598         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5599         InstructionList.push_back(SI);
5600 
5601         unsigned CurIdx = 5;
5602         for (unsigned i = 0; i != NumCases; ++i) {
5603           SmallVector<ConstantInt*, 1> CaseVals;
5604           unsigned NumItems = Record[CurIdx++];
5605           for (unsigned ci = 0; ci != NumItems; ++ci) {
5606             bool isSingleNumber = Record[CurIdx++];
5607 
5608             APInt Low;
5609             unsigned ActiveWords = 1;
5610             if (ValueBitWidth > 64)
5611               ActiveWords = Record[CurIdx++];
5612             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5613                                 ValueBitWidth);
5614             CurIdx += ActiveWords;
5615 
5616             if (!isSingleNumber) {
5617               ActiveWords = 1;
5618               if (ValueBitWidth > 64)
5619                 ActiveWords = Record[CurIdx++];
5620               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5621                                          ValueBitWidth);
5622               CurIdx += ActiveWords;
5623 
5624               // FIXME: It is not clear whether values in the range should be
5625               // compared as signed or unsigned values. The partially
5626               // implemented changes that used this format in the past used
5627               // unsigned comparisons.
5628               for ( ; Low.ule(High); ++Low)
5629                 CaseVals.push_back(ConstantInt::get(Context, Low));
5630             } else
5631               CaseVals.push_back(ConstantInt::get(Context, Low));
5632           }
5633           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5634           for (ConstantInt *Cst : CaseVals)
5635             SI->addCase(Cst, DestBB);
5636         }
5637         I = SI;
5638         break;
5639       }
5640 
5641       // Old SwitchInst format without case ranges.
5642 
5643       if (Record.size() < 3 || (Record.size() & 1) == 0)
5644         return error("Invalid record");
5645       unsigned OpTyID = Record[0];
5646       Type *OpTy = getTypeByID(OpTyID);
5647       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5648       BasicBlock *Default = getBasicBlock(Record[2]);
5649       if (!OpTy || !Cond || !Default)
5650         return error("Invalid record");
5651       unsigned NumCases = (Record.size()-3)/2;
5652       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5653       InstructionList.push_back(SI);
5654       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5655         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5656             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5657         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5658         if (!CaseVal || !DestBB) {
5659           delete SI;
5660           return error("Invalid record");
5661         }
5662         SI->addCase(CaseVal, DestBB);
5663       }
5664       I = SI;
5665       break;
5666     }
5667     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5668       if (Record.size() < 2)
5669         return error("Invalid record");
5670       unsigned OpTyID = Record[0];
5671       Type *OpTy = getTypeByID(OpTyID);
5672       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5673       if (!OpTy || !Address)
5674         return error("Invalid record");
5675       unsigned NumDests = Record.size()-2;
5676       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5677       InstructionList.push_back(IBI);
5678       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5679         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5680           IBI->addDestination(DestBB);
5681         } else {
5682           delete IBI;
5683           return error("Invalid record");
5684         }
5685       }
5686       I = IBI;
5687       break;
5688     }
5689 
5690     case bitc::FUNC_CODE_INST_INVOKE: {
5691       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5692       if (Record.size() < 4)
5693         return error("Invalid record");
5694       unsigned OpNum = 0;
5695       AttributeList PAL = getAttributes(Record[OpNum++]);
5696       unsigned CCInfo = Record[OpNum++];
5697       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5698       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5699 
5700       unsigned FTyID = InvalidTypeID;
5701       FunctionType *FTy = nullptr;
5702       if ((CCInfo >> 13) & 1) {
5703         FTyID = Record[OpNum++];
5704         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5705         if (!FTy)
5706           return error("Explicit invoke type is not a function type");
5707       }
5708 
5709       Value *Callee;
5710       unsigned CalleeTypeID;
5711       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5712                            CurBB))
5713         return error("Invalid record");
5714 
5715       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5716       if (!CalleeTy)
5717         return error("Callee is not a pointer");
5718       if (!FTy) {
5719         FTyID = getContainedTypeID(CalleeTypeID);
5720         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5721         if (!FTy)
5722           return error("Callee is not of pointer to function type");
5723       }
5724       if (Record.size() < FTy->getNumParams() + OpNum)
5725         return error("Insufficient operands to call");
5726 
5727       SmallVector<Value*, 16> Ops;
5728       SmallVector<unsigned, 16> ArgTyIDs;
5729       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5730         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5731         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5732                                ArgTyID, CurBB));
5733         ArgTyIDs.push_back(ArgTyID);
5734         if (!Ops.back())
5735           return error("Invalid record");
5736       }
5737 
5738       if (!FTy->isVarArg()) {
5739         if (Record.size() != OpNum)
5740           return error("Invalid record");
5741       } else {
5742         // Read type/value pairs for varargs params.
5743         while (OpNum != Record.size()) {
5744           Value *Op;
5745           unsigned OpTypeID;
5746           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5747             return error("Invalid record");
5748           Ops.push_back(Op);
5749           ArgTyIDs.push_back(OpTypeID);
5750         }
5751       }
5752 
5753       // Upgrade the bundles if needed.
5754       if (!OperandBundles.empty())
5755         UpgradeOperandBundles(OperandBundles);
5756 
5757       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5758                              OperandBundles);
5759       ResTypeID = getContainedTypeID(FTyID);
5760       OperandBundles.clear();
5761       InstructionList.push_back(I);
5762       cast<InvokeInst>(I)->setCallingConv(
5763           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5764       cast<InvokeInst>(I)->setAttributes(PAL);
5765       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5766         I->deleteValue();
5767         return Err;
5768       }
5769 
5770       break;
5771     }
5772     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5773       unsigned Idx = 0;
5774       Value *Val = nullptr;
5775       unsigned ValTypeID;
5776       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5777         return error("Invalid record");
5778       I = ResumeInst::Create(Val);
5779       InstructionList.push_back(I);
5780       break;
5781     }
5782     case bitc::FUNC_CODE_INST_CALLBR: {
5783       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5784       unsigned OpNum = 0;
5785       AttributeList PAL = getAttributes(Record[OpNum++]);
5786       unsigned CCInfo = Record[OpNum++];
5787 
5788       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5789       unsigned NumIndirectDests = Record[OpNum++];
5790       SmallVector<BasicBlock *, 16> IndirectDests;
5791       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5792         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5793 
5794       unsigned FTyID = InvalidTypeID;
5795       FunctionType *FTy = nullptr;
5796       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5797         FTyID = Record[OpNum++];
5798         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5799         if (!FTy)
5800           return error("Explicit call type is not a function type");
5801       }
5802 
5803       Value *Callee;
5804       unsigned CalleeTypeID;
5805       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5806                            CurBB))
5807         return error("Invalid record");
5808 
5809       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5810       if (!OpTy)
5811         return error("Callee is not a pointer type");
5812       if (!FTy) {
5813         FTyID = getContainedTypeID(CalleeTypeID);
5814         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5815         if (!FTy)
5816           return error("Callee is not of pointer to function type");
5817       }
5818       if (Record.size() < FTy->getNumParams() + OpNum)
5819         return error("Insufficient operands to call");
5820 
5821       SmallVector<Value*, 16> Args;
5822       SmallVector<unsigned, 16> ArgTyIDs;
5823       // Read the fixed params.
5824       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5825         Value *Arg;
5826         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5827         if (FTy->getParamType(i)->isLabelTy())
5828           Arg = getBasicBlock(Record[OpNum]);
5829         else
5830           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5831                          ArgTyID, CurBB);
5832         if (!Arg)
5833           return error("Invalid record");
5834         Args.push_back(Arg);
5835         ArgTyIDs.push_back(ArgTyID);
5836       }
5837 
5838       // Read type/value pairs for varargs params.
5839       if (!FTy->isVarArg()) {
5840         if (OpNum != Record.size())
5841           return error("Invalid record");
5842       } else {
5843         while (OpNum != Record.size()) {
5844           Value *Op;
5845           unsigned OpTypeID;
5846           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5847             return error("Invalid record");
5848           Args.push_back(Op);
5849           ArgTyIDs.push_back(OpTypeID);
5850         }
5851       }
5852 
5853       // Upgrade the bundles if needed.
5854       if (!OperandBundles.empty())
5855         UpgradeOperandBundles(OperandBundles);
5856 
5857       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5858         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5859         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5860           return CI.Type == InlineAsm::isLabel;
5861         };
5862         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5863           // Upgrade explicit blockaddress arguments to label constraints.
5864           // Verify that the last arguments are blockaddress arguments that
5865           // match the indirect destinations. Clang always generates callbr
5866           // in this form. We could support reordering with more effort.
5867           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5868           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5869             unsigned LabelNo = ArgNo - FirstBlockArg;
5870             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5871             if (!BA || BA->getFunction() != F ||
5872                 LabelNo > IndirectDests.size() ||
5873                 BA->getBasicBlock() != IndirectDests[LabelNo])
5874               return error("callbr argument does not match indirect dest");
5875           }
5876 
5877           // Remove blockaddress arguments.
5878           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5879           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5880 
5881           // Recreate the function type with less arguments.
5882           SmallVector<Type *> ArgTys;
5883           for (Value *Arg : Args)
5884             ArgTys.push_back(Arg->getType());
5885           FTy =
5886               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5887 
5888           // Update constraint string to use label constraints.
5889           std::string Constraints = IA->getConstraintString();
5890           unsigned ArgNo = 0;
5891           size_t Pos = 0;
5892           for (const auto &CI : ConstraintInfo) {
5893             if (CI.hasArg()) {
5894               if (ArgNo >= FirstBlockArg)
5895                 Constraints.insert(Pos, "!");
5896               ++ArgNo;
5897             }
5898 
5899             // Go to next constraint in string.
5900             Pos = Constraints.find(',', Pos);
5901             if (Pos == std::string::npos)
5902               break;
5903             ++Pos;
5904           }
5905 
5906           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5907                                   IA->hasSideEffects(), IA->isAlignStack(),
5908                                   IA->getDialect(), IA->canThrow());
5909         }
5910       }
5911 
5912       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5913                              OperandBundles);
5914       ResTypeID = getContainedTypeID(FTyID);
5915       OperandBundles.clear();
5916       InstructionList.push_back(I);
5917       cast<CallBrInst>(I)->setCallingConv(
5918           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5919       cast<CallBrInst>(I)->setAttributes(PAL);
5920       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5921         I->deleteValue();
5922         return Err;
5923       }
5924       break;
5925     }
5926     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5927       I = new UnreachableInst(Context);
5928       InstructionList.push_back(I);
5929       break;
5930     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5931       if (Record.empty())
5932         return error("Invalid phi record");
5933       // The first record specifies the type.
5934       unsigned TyID = Record[0];
5935       Type *Ty = getTypeByID(TyID);
5936       if (!Ty)
5937         return error("Invalid phi record");
5938 
5939       // Phi arguments are pairs of records of [value, basic block].
5940       // There is an optional final record for fast-math-flags if this phi has a
5941       // floating-point type.
5942       size_t NumArgs = (Record.size() - 1) / 2;
5943       PHINode *PN = PHINode::Create(Ty, NumArgs);
5944       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5945         PN->deleteValue();
5946         return error("Invalid phi record");
5947       }
5948       InstructionList.push_back(PN);
5949 
5950       SmallDenseMap<BasicBlock *, Value *> Args;
5951       for (unsigned i = 0; i != NumArgs; i++) {
5952         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5953         if (!BB) {
5954           PN->deleteValue();
5955           return error("Invalid phi BB");
5956         }
5957 
5958         // Phi nodes may contain the same predecessor multiple times, in which
5959         // case the incoming value must be identical. Directly reuse the already
5960         // seen value here, to avoid expanding a constant expression multiple
5961         // times.
5962         auto It = Args.find(BB);
5963         if (It != Args.end()) {
5964           PN->addIncoming(It->second, BB);
5965           continue;
5966         }
5967 
5968         // If there already is a block for this edge (from a different phi),
5969         // use it.
5970         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5971         if (!EdgeBB) {
5972           // Otherwise, use a temporary block (that we will discard if it
5973           // turns out to be unnecessary).
5974           if (!PhiConstExprBB)
5975             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5976           EdgeBB = PhiConstExprBB;
5977         }
5978 
5979         // With the new function encoding, it is possible that operands have
5980         // negative IDs (for forward references).  Use a signed VBR
5981         // representation to keep the encoding small.
5982         Value *V;
5983         if (UseRelativeIDs)
5984           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5985         else
5986           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5987         if (!V) {
5988           PN->deleteValue();
5989           PhiConstExprBB->eraseFromParent();
5990           return error("Invalid phi record");
5991         }
5992 
5993         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5994           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5995           PhiConstExprBB = nullptr;
5996         }
5997         PN->addIncoming(V, BB);
5998         Args.insert({BB, V});
5999       }
6000       I = PN;
6001       ResTypeID = TyID;
6002 
6003       // If there are an even number of records, the final record must be FMF.
6004       if (Record.size() % 2 == 0) {
6005         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6006         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6007         if (FMF.any())
6008           I->setFastMathFlags(FMF);
6009       }
6010 
6011       break;
6012     }
6013 
6014     case bitc::FUNC_CODE_INST_LANDINGPAD:
6015     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6016       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6017       unsigned Idx = 0;
6018       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6019         if (Record.size() < 3)
6020           return error("Invalid record");
6021       } else {
6022         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6023         if (Record.size() < 4)
6024           return error("Invalid record");
6025       }
6026       ResTypeID = Record[Idx++];
6027       Type *Ty = getTypeByID(ResTypeID);
6028       if (!Ty)
6029         return error("Invalid record");
6030       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6031         Value *PersFn = nullptr;
6032         unsigned PersFnTypeID;
6033         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6034                              nullptr))
6035           return error("Invalid record");
6036 
6037         if (!F->hasPersonalityFn())
6038           F->setPersonalityFn(cast<Constant>(PersFn));
6039         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6040           return error("Personality function mismatch");
6041       }
6042 
6043       bool IsCleanup = !!Record[Idx++];
6044       unsigned NumClauses = Record[Idx++];
6045       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6046       LP->setCleanup(IsCleanup);
6047       for (unsigned J = 0; J != NumClauses; ++J) {
6048         LandingPadInst::ClauseType CT =
6049           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6050         Value *Val;
6051         unsigned ValTypeID;
6052 
6053         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6054                              nullptr)) {
6055           delete LP;
6056           return error("Invalid record");
6057         }
6058 
6059         assert((CT != LandingPadInst::Catch ||
6060                 !isa<ArrayType>(Val->getType())) &&
6061                "Catch clause has a invalid type!");
6062         assert((CT != LandingPadInst::Filter ||
6063                 isa<ArrayType>(Val->getType())) &&
6064                "Filter clause has invalid type!");
6065         LP->addClause(cast<Constant>(Val));
6066       }
6067 
6068       I = LP;
6069       InstructionList.push_back(I);
6070       break;
6071     }
6072 
6073     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6074       if (Record.size() != 4 && Record.size() != 5)
6075         return error("Invalid record");
6076       using APV = AllocaPackedValues;
6077       const uint64_t Rec = Record[3];
6078       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6079       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6080       unsigned TyID = Record[0];
6081       Type *Ty = getTypeByID(TyID);
6082       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6083         TyID = getContainedTypeID(TyID);
6084         Ty = getTypeByID(TyID);
6085         if (!Ty)
6086           return error("Missing element type for old-style alloca");
6087       }
6088       unsigned OpTyID = Record[1];
6089       Type *OpTy = getTypeByID(OpTyID);
6090       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6091       MaybeAlign Align;
6092       uint64_t AlignExp =
6093           Bitfield::get<APV::AlignLower>(Rec) |
6094           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6095       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6096         return Err;
6097       }
6098       if (!Ty || !Size)
6099         return error("Invalid record");
6100 
6101       const DataLayout &DL = TheModule->getDataLayout();
6102       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6103 
6104       SmallPtrSet<Type *, 4> Visited;
6105       if (!Align && !Ty->isSized(&Visited))
6106         return error("alloca of unsized type");
6107       if (!Align)
6108         Align = DL.getPrefTypeAlign(Ty);
6109 
6110       if (!Size->getType()->isIntegerTy())
6111         return error("alloca element count must have integer type");
6112 
6113       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6114       AI->setUsedWithInAlloca(InAlloca);
6115       AI->setSwiftError(SwiftError);
6116       I = AI;
6117       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6118       InstructionList.push_back(I);
6119       break;
6120     }
6121     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6122       unsigned OpNum = 0;
6123       Value *Op;
6124       unsigned OpTypeID;
6125       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6126           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6127         return error("Invalid record");
6128 
6129       if (!isa<PointerType>(Op->getType()))
6130         return error("Load operand is not a pointer type");
6131 
6132       Type *Ty = nullptr;
6133       if (OpNum + 3 == Record.size()) {
6134         ResTypeID = Record[OpNum++];
6135         Ty = getTypeByID(ResTypeID);
6136       } else {
6137         ResTypeID = getContainedTypeID(OpTypeID);
6138         Ty = getTypeByID(ResTypeID);
6139       }
6140 
6141       if (!Ty)
6142         return error("Missing load type");
6143 
6144       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6145         return Err;
6146 
6147       MaybeAlign Align;
6148       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6149         return Err;
6150       SmallPtrSet<Type *, 4> Visited;
6151       if (!Align && !Ty->isSized(&Visited))
6152         return error("load of unsized type");
6153       if (!Align)
6154         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6155       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6156       InstructionList.push_back(I);
6157       break;
6158     }
6159     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6160        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6161       unsigned OpNum = 0;
6162       Value *Op;
6163       unsigned OpTypeID;
6164       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6165           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6166         return error("Invalid record");
6167 
6168       if (!isa<PointerType>(Op->getType()))
6169         return error("Load operand is not a pointer type");
6170 
6171       Type *Ty = nullptr;
6172       if (OpNum + 5 == Record.size()) {
6173         ResTypeID = Record[OpNum++];
6174         Ty = getTypeByID(ResTypeID);
6175       } else {
6176         ResTypeID = getContainedTypeID(OpTypeID);
6177         Ty = getTypeByID(ResTypeID);
6178       }
6179 
6180       if (!Ty)
6181         return error("Missing atomic load type");
6182 
6183       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6184         return Err;
6185 
6186       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6187       if (Ordering == AtomicOrdering::NotAtomic ||
6188           Ordering == AtomicOrdering::Release ||
6189           Ordering == AtomicOrdering::AcquireRelease)
6190         return error("Invalid record");
6191       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6192         return error("Invalid record");
6193       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6194 
6195       MaybeAlign Align;
6196       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6197         return Err;
6198       if (!Align)
6199         return error("Alignment missing from atomic load");
6200       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6201       InstructionList.push_back(I);
6202       break;
6203     }
6204     case bitc::FUNC_CODE_INST_STORE:
6205     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6206       unsigned OpNum = 0;
6207       Value *Val, *Ptr;
6208       unsigned PtrTypeID, ValTypeID;
6209       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6210         return error("Invalid record");
6211 
6212       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6213         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6214           return error("Invalid record");
6215       } else {
6216         ValTypeID = getContainedTypeID(PtrTypeID);
6217         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6218                      ValTypeID, Val, CurBB))
6219           return error("Invalid record");
6220       }
6221 
6222       if (OpNum + 2 != Record.size())
6223         return error("Invalid record");
6224 
6225       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6226         return Err;
6227       MaybeAlign Align;
6228       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6229         return Err;
6230       SmallPtrSet<Type *, 4> Visited;
6231       if (!Align && !Val->getType()->isSized(&Visited))
6232         return error("store of unsized type");
6233       if (!Align)
6234         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6235       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6236       InstructionList.push_back(I);
6237       break;
6238     }
6239     case bitc::FUNC_CODE_INST_STOREATOMIC:
6240     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6241       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6242       unsigned OpNum = 0;
6243       Value *Val, *Ptr;
6244       unsigned PtrTypeID, ValTypeID;
6245       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6246           !isa<PointerType>(Ptr->getType()))
6247         return error("Invalid record");
6248       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6249         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6250           return error("Invalid record");
6251       } else {
6252         ValTypeID = getContainedTypeID(PtrTypeID);
6253         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6254                      ValTypeID, Val, CurBB))
6255           return error("Invalid record");
6256       }
6257 
6258       if (OpNum + 4 != Record.size())
6259         return error("Invalid record");
6260 
6261       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6262         return Err;
6263       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6264       if (Ordering == AtomicOrdering::NotAtomic ||
6265           Ordering == AtomicOrdering::Acquire ||
6266           Ordering == AtomicOrdering::AcquireRelease)
6267         return error("Invalid record");
6268       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6269       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6270         return error("Invalid record");
6271 
6272       MaybeAlign Align;
6273       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6274         return Err;
6275       if (!Align)
6276         return error("Alignment missing from atomic store");
6277       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6278       InstructionList.push_back(I);
6279       break;
6280     }
6281     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6282       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6283       // failure_ordering?, weak?]
6284       const size_t NumRecords = Record.size();
6285       unsigned OpNum = 0;
6286       Value *Ptr = nullptr;
6287       unsigned PtrTypeID;
6288       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6289         return error("Invalid record");
6290 
6291       if (!isa<PointerType>(Ptr->getType()))
6292         return error("Cmpxchg operand is not a pointer type");
6293 
6294       Value *Cmp = nullptr;
6295       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6296       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6297                    CmpTypeID, Cmp, CurBB))
6298         return error("Invalid record");
6299 
6300       Value *New = nullptr;
6301       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6302                    New, CurBB) ||
6303           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6304         return error("Invalid record");
6305 
6306       const AtomicOrdering SuccessOrdering =
6307           getDecodedOrdering(Record[OpNum + 1]);
6308       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6309           SuccessOrdering == AtomicOrdering::Unordered)
6310         return error("Invalid record");
6311 
6312       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6313 
6314       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6315         return Err;
6316 
6317       const AtomicOrdering FailureOrdering =
6318           NumRecords < 7
6319               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6320               : getDecodedOrdering(Record[OpNum + 3]);
6321 
6322       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6323           FailureOrdering == AtomicOrdering::Unordered)
6324         return error("Invalid record");
6325 
6326       const Align Alignment(
6327           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6328 
6329       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6330                                 FailureOrdering, SSID);
6331       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6332 
6333       if (NumRecords < 8) {
6334         // Before weak cmpxchgs existed, the instruction simply returned the
6335         // value loaded from memory, so bitcode files from that era will be
6336         // expecting the first component of a modern cmpxchg.
6337         I->insertInto(CurBB, CurBB->end());
6338         I = ExtractValueInst::Create(I, 0);
6339         ResTypeID = CmpTypeID;
6340       } else {
6341         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6342         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6343         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6344       }
6345 
6346       InstructionList.push_back(I);
6347       break;
6348     }
6349     case bitc::FUNC_CODE_INST_CMPXCHG: {
6350       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6351       // failure_ordering, weak, align?]
6352       const size_t NumRecords = Record.size();
6353       unsigned OpNum = 0;
6354       Value *Ptr = nullptr;
6355       unsigned PtrTypeID;
6356       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6357         return error("Invalid record");
6358 
6359       if (!isa<PointerType>(Ptr->getType()))
6360         return error("Cmpxchg operand is not a pointer type");
6361 
6362       Value *Cmp = nullptr;
6363       unsigned CmpTypeID;
6364       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6365         return error("Invalid record");
6366 
6367       Value *Val = nullptr;
6368       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6369                    CurBB))
6370         return error("Invalid record");
6371 
6372       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6373         return error("Invalid record");
6374 
6375       const bool IsVol = Record[OpNum];
6376 
6377       const AtomicOrdering SuccessOrdering =
6378           getDecodedOrdering(Record[OpNum + 1]);
6379       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6380         return error("Invalid cmpxchg success ordering");
6381 
6382       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6383 
6384       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6385         return Err;
6386 
6387       const AtomicOrdering FailureOrdering =
6388           getDecodedOrdering(Record[OpNum + 3]);
6389       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6390         return error("Invalid cmpxchg failure ordering");
6391 
6392       const bool IsWeak = Record[OpNum + 4];
6393 
6394       MaybeAlign Alignment;
6395 
6396       if (NumRecords == (OpNum + 6)) {
6397         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6398           return Err;
6399       }
6400       if (!Alignment)
6401         Alignment =
6402             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6403 
6404       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6405                                 FailureOrdering, SSID);
6406       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6407       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6408 
6409       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6410       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6411 
6412       InstructionList.push_back(I);
6413       break;
6414     }
6415     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6416     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6417       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6418       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6419       const size_t NumRecords = Record.size();
6420       unsigned OpNum = 0;
6421 
6422       Value *Ptr = nullptr;
6423       unsigned PtrTypeID;
6424       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6425         return error("Invalid record");
6426 
6427       if (!isa<PointerType>(Ptr->getType()))
6428         return error("Invalid record");
6429 
6430       Value *Val = nullptr;
6431       unsigned ValTypeID = InvalidTypeID;
6432       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6433         ValTypeID = getContainedTypeID(PtrTypeID);
6434         if (popValue(Record, OpNum, NextValueNo,
6435                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6436           return error("Invalid record");
6437       } else {
6438         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6439           return error("Invalid record");
6440       }
6441 
6442       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6443         return error("Invalid record");
6444 
6445       const AtomicRMWInst::BinOp Operation =
6446           getDecodedRMWOperation(Record[OpNum]);
6447       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6448           Operation > AtomicRMWInst::LAST_BINOP)
6449         return error("Invalid record");
6450 
6451       const bool IsVol = Record[OpNum + 1];
6452 
6453       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6454       if (Ordering == AtomicOrdering::NotAtomic ||
6455           Ordering == AtomicOrdering::Unordered)
6456         return error("Invalid record");
6457 
6458       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6459 
6460       MaybeAlign Alignment;
6461 
6462       if (NumRecords == (OpNum + 5)) {
6463         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6464           return Err;
6465       }
6466 
6467       if (!Alignment)
6468         Alignment =
6469             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6470 
6471       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6472       ResTypeID = ValTypeID;
6473       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6474 
6475       InstructionList.push_back(I);
6476       break;
6477     }
6478     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6479       if (2 != Record.size())
6480         return error("Invalid record");
6481       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6482       if (Ordering == AtomicOrdering::NotAtomic ||
6483           Ordering == AtomicOrdering::Unordered ||
6484           Ordering == AtomicOrdering::Monotonic)
6485         return error("Invalid record");
6486       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6487       I = new FenceInst(Context, Ordering, SSID);
6488       InstructionList.push_back(I);
6489       break;
6490     }
6491     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6492       // DbgLabelRecords are placed after the Instructions that they are
6493       // attached to.
6494       SeenDebugRecord = true;
6495       Instruction *Inst = getLastInstruction();
6496       if (!Inst)
6497         return error("Invalid dbg record: missing instruction");
6498       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6499       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6500       Inst->getParent()->insertDbgRecordBefore(
6501           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6502       continue; // This isn't an instruction.
6503     }
6504     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6505     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6506     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6507     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6508       // DbgVariableRecords are placed after the Instructions that they are
6509       // attached to.
6510       SeenDebugRecord = true;
6511       Instruction *Inst = getLastInstruction();
6512       if (!Inst)
6513         return error("Invalid dbg record: missing instruction");
6514 
6515       // First 3 fields are common to all kinds:
6516       //   DILocation, DILocalVariable, DIExpression
6517       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6518       //   ..., LocationMetadata
6519       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6520       //   ..., Value
6521       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6522       //   ..., LocationMetadata
6523       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6524       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6525       unsigned Slot = 0;
6526       // Common fields (0-2).
6527       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6528       DILocalVariable *Var =
6529           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6530       DIExpression *Expr =
6531           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6532 
6533       // Union field (3: LocationMetadata | Value).
6534       Metadata *RawLocation = nullptr;
6535       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6536         Value *V = nullptr;
6537         unsigned TyID = 0;
6538         // We never expect to see a fwd reference value here because
6539         // use-before-defs are encoded with the standard non-abbrev record
6540         // type (they'd require encoding the type too, and they're rare). As a
6541         // result, getValueTypePair only ever increments Slot by one here (once
6542         // for the value, never twice for value and type).
6543         unsigned SlotBefore = Slot;
6544         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6545           return error("Invalid dbg record: invalid value");
6546         (void)SlotBefore;
6547         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6548         RawLocation = ValueAsMetadata::get(V);
6549       } else {
6550         RawLocation = getFnMetadataByID(Record[Slot++]);
6551       }
6552 
6553       DbgVariableRecord *DVR = nullptr;
6554       switch (BitCode) {
6555       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6556       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6557         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6558                                     DbgVariableRecord::LocationType::Value);
6559         break;
6560       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6561         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6562                                     DbgVariableRecord::LocationType::Declare);
6563         break;
6564       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6565         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6566         DIExpression *AddrExpr =
6567             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6568         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6569         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6570                                     DIL);
6571         break;
6572       }
6573       default:
6574         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6575       }
6576       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6577       continue; // This isn't an instruction.
6578     }
6579     case bitc::FUNC_CODE_INST_CALL: {
6580       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6581       if (Record.size() < 3)
6582         return error("Invalid record");
6583 
6584       unsigned OpNum = 0;
6585       AttributeList PAL = getAttributes(Record[OpNum++]);
6586       unsigned CCInfo = Record[OpNum++];
6587 
6588       FastMathFlags FMF;
6589       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6590         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6591         if (!FMF.any())
6592           return error("Fast math flags indicator set for call with no FMF");
6593       }
6594 
6595       unsigned FTyID = InvalidTypeID;
6596       FunctionType *FTy = nullptr;
6597       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6598         FTyID = Record[OpNum++];
6599         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6600         if (!FTy)
6601           return error("Explicit call type is not a function type");
6602       }
6603 
6604       Value *Callee;
6605       unsigned CalleeTypeID;
6606       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6607                            CurBB))
6608         return error("Invalid record");
6609 
6610       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6611       if (!OpTy)
6612         return error("Callee is not a pointer type");
6613       if (!FTy) {
6614         FTyID = getContainedTypeID(CalleeTypeID);
6615         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6616         if (!FTy)
6617           return error("Callee is not of pointer to function type");
6618       }
6619       if (Record.size() < FTy->getNumParams() + OpNum)
6620         return error("Insufficient operands to call");
6621 
6622       SmallVector<Value*, 16> Args;
6623       SmallVector<unsigned, 16> ArgTyIDs;
6624       // Read the fixed params.
6625       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6626         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6627         if (FTy->getParamType(i)->isLabelTy())
6628           Args.push_back(getBasicBlock(Record[OpNum]));
6629         else
6630           Args.push_back(getValue(Record, OpNum, NextValueNo,
6631                                   FTy->getParamType(i), ArgTyID, CurBB));
6632         ArgTyIDs.push_back(ArgTyID);
6633         if (!Args.back())
6634           return error("Invalid record");
6635       }
6636 
6637       // Read type/value pairs for varargs params.
6638       if (!FTy->isVarArg()) {
6639         if (OpNum != Record.size())
6640           return error("Invalid record");
6641       } else {
6642         while (OpNum != Record.size()) {
6643           Value *Op;
6644           unsigned OpTypeID;
6645           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6646             return error("Invalid record");
6647           Args.push_back(Op);
6648           ArgTyIDs.push_back(OpTypeID);
6649         }
6650       }
6651 
6652       // Upgrade the bundles if needed.
6653       if (!OperandBundles.empty())
6654         UpgradeOperandBundles(OperandBundles);
6655 
6656       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6657       ResTypeID = getContainedTypeID(FTyID);
6658       OperandBundles.clear();
6659       InstructionList.push_back(I);
6660       cast<CallInst>(I)->setCallingConv(
6661           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6662       CallInst::TailCallKind TCK = CallInst::TCK_None;
6663       if (CCInfo & (1 << bitc::CALL_TAIL))
6664         TCK = CallInst::TCK_Tail;
6665       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6666         TCK = CallInst::TCK_MustTail;
6667       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6668         TCK = CallInst::TCK_NoTail;
6669       cast<CallInst>(I)->setTailCallKind(TCK);
6670       cast<CallInst>(I)->setAttributes(PAL);
6671       if (isa<DbgInfoIntrinsic>(I))
6672         SeenDebugIntrinsic = true;
6673       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6674         I->deleteValue();
6675         return Err;
6676       }
6677       if (FMF.any()) {
6678         if (!isa<FPMathOperator>(I))
6679           return error("Fast-math-flags specified for call without "
6680                        "floating-point scalar or vector return type");
6681         I->setFastMathFlags(FMF);
6682       }
6683       break;
6684     }
6685     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6686       if (Record.size() < 3)
6687         return error("Invalid record");
6688       unsigned OpTyID = Record[0];
6689       Type *OpTy = getTypeByID(OpTyID);
6690       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6691       ResTypeID = Record[2];
6692       Type *ResTy = getTypeByID(ResTypeID);
6693       if (!OpTy || !Op || !ResTy)
6694         return error("Invalid record");
6695       I = new VAArgInst(Op, ResTy);
6696       InstructionList.push_back(I);
6697       break;
6698     }
6699 
6700     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6701       // A call or an invoke can be optionally prefixed with some variable
6702       // number of operand bundle blocks.  These blocks are read into
6703       // OperandBundles and consumed at the next call or invoke instruction.
6704 
6705       if (Record.empty() || Record[0] >= BundleTags.size())
6706         return error("Invalid record");
6707 
6708       std::vector<Value *> Inputs;
6709 
6710       unsigned OpNum = 1;
6711       while (OpNum != Record.size()) {
6712         Value *Op;
6713         unsigned OpTypeID;
6714         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6715           return error("Invalid record");
6716         Inputs.push_back(Op);
6717       }
6718 
6719       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6720       continue;
6721     }
6722 
6723     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6724       unsigned OpNum = 0;
6725       Value *Op = nullptr;
6726       unsigned OpTypeID;
6727       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6728         return error("Invalid record");
6729       if (OpNum != Record.size())
6730         return error("Invalid record");
6731 
6732       I = new FreezeInst(Op);
6733       ResTypeID = OpTypeID;
6734       InstructionList.push_back(I);
6735       break;
6736     }
6737     }
6738 
6739     // Add instruction to end of current BB.  If there is no current BB, reject
6740     // this file.
6741     if (!CurBB) {
6742       I->deleteValue();
6743       return error("Invalid instruction with no BB");
6744     }
6745     if (!OperandBundles.empty()) {
6746       I->deleteValue();
6747       return error("Operand bundles found with no consumer");
6748     }
6749     I->insertInto(CurBB, CurBB->end());
6750 
6751     // If this was a terminator instruction, move to the next block.
6752     if (I->isTerminator()) {
6753       ++CurBBNo;
6754       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6755     }
6756 
6757     // Non-void values get registered in the value table for future use.
6758     if (!I->getType()->isVoidTy()) {
6759       assert(I->getType() == getTypeByID(ResTypeID) &&
6760              "Incorrect result type ID");
6761       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6762         return Err;
6763     }
6764   }
6765 
6766 OutOfRecordLoop:
6767 
6768   if (!OperandBundles.empty())
6769     return error("Operand bundles found with no consumer");
6770 
6771   // Check the function list for unresolved values.
6772   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6773     if (!A->getParent()) {
6774       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6775       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6776         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6777           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6778           delete A;
6779         }
6780       }
6781       return error("Never resolved value found in function");
6782     }
6783   }
6784 
6785   // Unexpected unresolved metadata about to be dropped.
6786   if (MDLoader->hasFwdRefs())
6787     return error("Invalid function metadata: outgoing forward refs");
6788 
6789   if (PhiConstExprBB)
6790     PhiConstExprBB->eraseFromParent();
6791 
6792   for (const auto &Pair : ConstExprEdgeBBs) {
6793     BasicBlock *From = Pair.first.first;
6794     BasicBlock *To = Pair.first.second;
6795     BasicBlock *EdgeBB = Pair.second;
6796     BranchInst::Create(To, EdgeBB);
6797     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6798     To->replacePhiUsesWith(From, EdgeBB);
6799     EdgeBB->moveBefore(To);
6800   }
6801 
6802   // Trim the value list down to the size it was before we parsed this function.
6803   ValueList.shrinkTo(ModuleValueListSize);
6804   MDLoader->shrinkTo(ModuleMDLoaderSize);
6805   std::vector<BasicBlock*>().swap(FunctionBBs);
6806   return Error::success();
6807 }
6808 
6809 /// Find the function body in the bitcode stream
6810 Error BitcodeReader::findFunctionInStream(
6811     Function *F,
6812     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6813   while (DeferredFunctionInfoIterator->second == 0) {
6814     // This is the fallback handling for the old format bitcode that
6815     // didn't contain the function index in the VST, or when we have
6816     // an anonymous function which would not have a VST entry.
6817     // Assert that we have one of those two cases.
6818     assert(VSTOffset == 0 || !F->hasName());
6819     // Parse the next body in the stream and set its position in the
6820     // DeferredFunctionInfo map.
6821     if (Error Err = rememberAndSkipFunctionBodies())
6822       return Err;
6823   }
6824   return Error::success();
6825 }
6826 
6827 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6828   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6829     return SyncScope::ID(Val);
6830   if (Val >= SSIDs.size())
6831     return SyncScope::System; // Map unknown synchronization scopes to system.
6832   return SSIDs[Val];
6833 }
6834 
6835 //===----------------------------------------------------------------------===//
6836 // GVMaterializer implementation
6837 //===----------------------------------------------------------------------===//
6838 
6839 Error BitcodeReader::materialize(GlobalValue *GV) {
6840   Function *F = dyn_cast<Function>(GV);
6841   // If it's not a function or is already material, ignore the request.
6842   if (!F || !F->isMaterializable())
6843     return Error::success();
6844 
6845   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6846   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6847   // If its position is recorded as 0, its body is somewhere in the stream
6848   // but we haven't seen it yet.
6849   if (DFII->second == 0)
6850     if (Error Err = findFunctionInStream(F, DFII))
6851       return Err;
6852 
6853   // Materialize metadata before parsing any function bodies.
6854   if (Error Err = materializeMetadata())
6855     return Err;
6856 
6857   // Move the bit stream to the saved position of the deferred function body.
6858   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6859     return JumpFailed;
6860 
6861   // Regardless of the debug info format we want to end up in, we need
6862   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6863   F->IsNewDbgInfoFormat = true;
6864 
6865   if (Error Err = parseFunctionBody(F))
6866     return Err;
6867   F->setIsMaterializable(false);
6868 
6869   // All parsed Functions should load into the debug info format dictated by the
6870   // Module, unless we're attempting to preserve the input debug info format.
6871   if (SeenDebugIntrinsic && SeenDebugRecord)
6872     return error("Mixed debug intrinsics and debug records in bitcode module!");
6873   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6874     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6875     bool NewDbgInfoFormatDesired =
6876         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6877     if (SeenAnyDebugInfo) {
6878       UseNewDbgInfoFormat = SeenDebugRecord;
6879       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6880       WriteNewDbgInfoFormat = SeenDebugRecord;
6881     }
6882     // If the module's debug info format doesn't match the observed input
6883     // format, then set its format now; we don't need to call the conversion
6884     // function because there must be no existing intrinsics to convert.
6885     // Otherwise, just set the format on this function now.
6886     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6887       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6888     else
6889       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6890   } else {
6891     // If we aren't preserving formats, we use the Module flag to get our
6892     // desired format instead of reading flags, in case we are lazy-loading and
6893     // the format of the module has been changed since it was set by the flags.
6894     // We only need to convert debug info here if we have debug records but
6895     // desire the intrinsic format; everything else is a no-op or handled by the
6896     // autoupgrader.
6897     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6898     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6899       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6900     else
6901       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6902   }
6903 
6904   if (StripDebugInfo)
6905     stripDebugInfo(*F);
6906 
6907   // Upgrade any old intrinsic calls in the function.
6908   for (auto &I : UpgradedIntrinsics) {
6909     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6910       if (CallInst *CI = dyn_cast<CallInst>(U))
6911         UpgradeIntrinsicCall(CI, I.second);
6912   }
6913 
6914   // Finish fn->subprogram upgrade for materialized functions.
6915   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6916     F->setSubprogram(SP);
6917 
6918   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6919   if (!MDLoader->isStrippingTBAA()) {
6920     for (auto &I : instructions(F)) {
6921       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6922       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6923         continue;
6924       MDLoader->setStripTBAA(true);
6925       stripTBAA(F->getParent());
6926     }
6927   }
6928 
6929   for (auto &I : instructions(F)) {
6930     // "Upgrade" older incorrect branch weights by dropping them.
6931     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6932       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6933         MDString *MDS = cast<MDString>(MD->getOperand(0));
6934         StringRef ProfName = MDS->getString();
6935         // Check consistency of !prof branch_weights metadata.
6936         if (ProfName != "branch_weights")
6937           continue;
6938         unsigned ExpectedNumOperands = 0;
6939         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6940           ExpectedNumOperands = BI->getNumSuccessors();
6941         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6942           ExpectedNumOperands = SI->getNumSuccessors();
6943         else if (isa<CallInst>(&I))
6944           ExpectedNumOperands = 1;
6945         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6946           ExpectedNumOperands = IBI->getNumDestinations();
6947         else if (isa<SelectInst>(&I))
6948           ExpectedNumOperands = 2;
6949         else
6950           continue; // ignore and continue.
6951 
6952         // If branch weight doesn't match, just strip branch weight.
6953         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6954           I.setMetadata(LLVMContext::MD_prof, nullptr);
6955       }
6956     }
6957 
6958     // Remove incompatible attributes on function calls.
6959     if (auto *CI = dyn_cast<CallBase>(&I)) {
6960       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6961           CI->getFunctionType()->getReturnType()));
6962 
6963       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6964         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6965                                         CI->getArgOperand(ArgNo)->getType()));
6966     }
6967   }
6968 
6969   // Look for functions that rely on old function attribute behavior.
6970   UpgradeFunctionAttributes(*F);
6971 
6972   // Bring in any functions that this function forward-referenced via
6973   // blockaddresses.
6974   return materializeForwardReferencedFunctions();
6975 }
6976 
6977 Error BitcodeReader::materializeModule() {
6978   if (Error Err = materializeMetadata())
6979     return Err;
6980 
6981   // Promise to materialize all forward references.
6982   WillMaterializeAllForwardRefs = true;
6983 
6984   // Iterate over the module, deserializing any functions that are still on
6985   // disk.
6986   for (Function &F : *TheModule) {
6987     if (Error Err = materialize(&F))
6988       return Err;
6989   }
6990   // At this point, if there are any function bodies, parse the rest of
6991   // the bits in the module past the last function block we have recorded
6992   // through either lazy scanning or the VST.
6993   if (LastFunctionBlockBit || NextUnreadBit)
6994     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6995                                     ? LastFunctionBlockBit
6996                                     : NextUnreadBit))
6997       return Err;
6998 
6999   // Check that all block address forward references got resolved (as we
7000   // promised above).
7001   if (!BasicBlockFwdRefs.empty())
7002     return error("Never resolved function from blockaddress");
7003 
7004   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7005   // delete the old functions to clean up. We can't do this unless the entire
7006   // module is materialized because there could always be another function body
7007   // with calls to the old function.
7008   for (auto &I : UpgradedIntrinsics) {
7009     for (auto *U : I.first->users()) {
7010       if (CallInst *CI = dyn_cast<CallInst>(U))
7011         UpgradeIntrinsicCall(CI, I.second);
7012     }
7013     if (!I.first->use_empty())
7014       I.first->replaceAllUsesWith(I.second);
7015     I.first->eraseFromParent();
7016   }
7017   UpgradedIntrinsics.clear();
7018 
7019   UpgradeDebugInfo(*TheModule);
7020 
7021   UpgradeModuleFlags(*TheModule);
7022 
7023   UpgradeARCRuntime(*TheModule);
7024 
7025   return Error::success();
7026 }
7027 
7028 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7029   return IdentifiedStructTypes;
7030 }
7031 
7032 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7033     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7034     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7035     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7036       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7037 
7038 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7039   TheIndex.addModule(ModulePath);
7040 }
7041 
7042 ModuleSummaryIndex::ModuleInfo *
7043 ModuleSummaryIndexBitcodeReader::getThisModule() {
7044   return TheIndex.getModule(ModulePath);
7045 }
7046 
7047 template <bool AllowNullValueInfo>
7048 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7049 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7050   auto VGI = ValueIdToValueInfoMap[ValueId];
7051   // We can have a null value info for memprof callsite info records in
7052   // distributed ThinLTO index files when the callee function summary is not
7053   // included in the index. The bitcode writer records 0 in that case,
7054   // and the caller of this helper will set AllowNullValueInfo to true.
7055   assert(AllowNullValueInfo || std::get<0>(VGI));
7056   return VGI;
7057 }
7058 
7059 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7060     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7061     StringRef SourceFileName) {
7062   std::string GlobalId =
7063       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7064   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7065   auto OriginalNameID = ValueGUID;
7066   if (GlobalValue::isLocalLinkage(Linkage))
7067     OriginalNameID = GlobalValue::getGUID(ValueName);
7068   if (PrintSummaryGUIDs)
7069     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7070            << ValueName << "\n";
7071 
7072   // UseStrtab is false for legacy summary formats and value names are
7073   // created on stack. In that case we save the name in a string saver in
7074   // the index so that the value name can be recorded.
7075   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7076       TheIndex.getOrInsertValueInfo(
7077           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7078       OriginalNameID, ValueGUID);
7079 }
7080 
7081 // Specialized value symbol table parser used when reading module index
7082 // blocks where we don't actually create global values. The parsed information
7083 // is saved in the bitcode reader for use when later parsing summaries.
7084 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7085     uint64_t Offset,
7086     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7087   // With a strtab the VST is not required to parse the summary.
7088   if (UseStrtab)
7089     return Error::success();
7090 
7091   assert(Offset > 0 && "Expected non-zero VST offset");
7092   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7093   if (!MaybeCurrentBit)
7094     return MaybeCurrentBit.takeError();
7095   uint64_t CurrentBit = MaybeCurrentBit.get();
7096 
7097   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7098     return Err;
7099 
7100   SmallVector<uint64_t, 64> Record;
7101 
7102   // Read all the records for this value table.
7103   SmallString<128> ValueName;
7104 
7105   while (true) {
7106     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7107     if (!MaybeEntry)
7108       return MaybeEntry.takeError();
7109     BitstreamEntry Entry = MaybeEntry.get();
7110 
7111     switch (Entry.Kind) {
7112     case BitstreamEntry::SubBlock: // Handled for us already.
7113     case BitstreamEntry::Error:
7114       return error("Malformed block");
7115     case BitstreamEntry::EndBlock:
7116       // Done parsing VST, jump back to wherever we came from.
7117       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7118         return JumpFailed;
7119       return Error::success();
7120     case BitstreamEntry::Record:
7121       // The interesting case.
7122       break;
7123     }
7124 
7125     // Read a record.
7126     Record.clear();
7127     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7128     if (!MaybeRecord)
7129       return MaybeRecord.takeError();
7130     switch (MaybeRecord.get()) {
7131     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7132       break;
7133     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7134       if (convertToString(Record, 1, ValueName))
7135         return error("Invalid record");
7136       unsigned ValueID = Record[0];
7137       assert(!SourceFileName.empty());
7138       auto VLI = ValueIdToLinkageMap.find(ValueID);
7139       assert(VLI != ValueIdToLinkageMap.end() &&
7140              "No linkage found for VST entry?");
7141       auto Linkage = VLI->second;
7142       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7143       ValueName.clear();
7144       break;
7145     }
7146     case bitc::VST_CODE_FNENTRY: {
7147       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7148       if (convertToString(Record, 2, ValueName))
7149         return error("Invalid record");
7150       unsigned ValueID = Record[0];
7151       assert(!SourceFileName.empty());
7152       auto VLI = ValueIdToLinkageMap.find(ValueID);
7153       assert(VLI != ValueIdToLinkageMap.end() &&
7154              "No linkage found for VST entry?");
7155       auto Linkage = VLI->second;
7156       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7157       ValueName.clear();
7158       break;
7159     }
7160     case bitc::VST_CODE_COMBINED_ENTRY: {
7161       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7162       unsigned ValueID = Record[0];
7163       GlobalValue::GUID RefGUID = Record[1];
7164       // The "original name", which is the second value of the pair will be
7165       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7166       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7167           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7168       break;
7169     }
7170     }
7171   }
7172 }
7173 
7174 // Parse just the blocks needed for building the index out of the module.
7175 // At the end of this routine the module Index is populated with a map
7176 // from global value id to GlobalValueSummary objects.
7177 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7178   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7179     return Err;
7180 
7181   SmallVector<uint64_t, 64> Record;
7182   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7183   unsigned ValueId = 0;
7184 
7185   // Read the index for this module.
7186   while (true) {
7187     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7188     if (!MaybeEntry)
7189       return MaybeEntry.takeError();
7190     llvm::BitstreamEntry Entry = MaybeEntry.get();
7191 
7192     switch (Entry.Kind) {
7193     case BitstreamEntry::Error:
7194       return error("Malformed block");
7195     case BitstreamEntry::EndBlock:
7196       return Error::success();
7197 
7198     case BitstreamEntry::SubBlock:
7199       switch (Entry.ID) {
7200       default: // Skip unknown content.
7201         if (Error Err = Stream.SkipBlock())
7202           return Err;
7203         break;
7204       case bitc::BLOCKINFO_BLOCK_ID:
7205         // Need to parse these to get abbrev ids (e.g. for VST)
7206         if (Error Err = readBlockInfo())
7207           return Err;
7208         break;
7209       case bitc::VALUE_SYMTAB_BLOCK_ID:
7210         // Should have been parsed earlier via VSTOffset, unless there
7211         // is no summary section.
7212         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7213                 !SeenGlobalValSummary) &&
7214                "Expected early VST parse via VSTOffset record");
7215         if (Error Err = Stream.SkipBlock())
7216           return Err;
7217         break;
7218       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7219       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7220         // Add the module if it is a per-module index (has a source file name).
7221         if (!SourceFileName.empty())
7222           addThisModule();
7223         assert(!SeenValueSymbolTable &&
7224                "Already read VST when parsing summary block?");
7225         // We might not have a VST if there were no values in the
7226         // summary. An empty summary block generated when we are
7227         // performing ThinLTO compiles so we don't later invoke
7228         // the regular LTO process on them.
7229         if (VSTOffset > 0) {
7230           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7231             return Err;
7232           SeenValueSymbolTable = true;
7233         }
7234         SeenGlobalValSummary = true;
7235         if (Error Err = parseEntireSummary(Entry.ID))
7236           return Err;
7237         break;
7238       case bitc::MODULE_STRTAB_BLOCK_ID:
7239         if (Error Err = parseModuleStringTable())
7240           return Err;
7241         break;
7242       }
7243       continue;
7244 
7245     case BitstreamEntry::Record: {
7246         Record.clear();
7247         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7248         if (!MaybeBitCode)
7249           return MaybeBitCode.takeError();
7250         switch (MaybeBitCode.get()) {
7251         default:
7252           break; // Default behavior, ignore unknown content.
7253         case bitc::MODULE_CODE_VERSION: {
7254           if (Error Err = parseVersionRecord(Record).takeError())
7255             return Err;
7256           break;
7257         }
7258         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7259         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7260           SmallString<128> ValueName;
7261           if (convertToString(Record, 0, ValueName))
7262             return error("Invalid record");
7263           SourceFileName = ValueName.c_str();
7264           break;
7265         }
7266         /// MODULE_CODE_HASH: [5*i32]
7267         case bitc::MODULE_CODE_HASH: {
7268           if (Record.size() != 5)
7269             return error("Invalid hash length " + Twine(Record.size()).str());
7270           auto &Hash = getThisModule()->second;
7271           int Pos = 0;
7272           for (auto &Val : Record) {
7273             assert(!(Val >> 32) && "Unexpected high bits set");
7274             Hash[Pos++] = Val;
7275           }
7276           break;
7277         }
7278         /// MODULE_CODE_VSTOFFSET: [offset]
7279         case bitc::MODULE_CODE_VSTOFFSET:
7280           if (Record.empty())
7281             return error("Invalid record");
7282           // Note that we subtract 1 here because the offset is relative to one
7283           // word before the start of the identification or module block, which
7284           // was historically always the start of the regular bitcode header.
7285           VSTOffset = Record[0] - 1;
7286           break;
7287         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7288         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7289         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7290         // v2: [strtab offset, strtab size, v1]
7291         case bitc::MODULE_CODE_GLOBALVAR:
7292         case bitc::MODULE_CODE_FUNCTION:
7293         case bitc::MODULE_CODE_ALIAS: {
7294           StringRef Name;
7295           ArrayRef<uint64_t> GVRecord;
7296           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7297           if (GVRecord.size() <= 3)
7298             return error("Invalid record");
7299           uint64_t RawLinkage = GVRecord[3];
7300           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7301           if (!UseStrtab) {
7302             ValueIdToLinkageMap[ValueId++] = Linkage;
7303             break;
7304           }
7305 
7306           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7307           break;
7308         }
7309         }
7310       }
7311       continue;
7312     }
7313   }
7314 }
7315 
7316 std::vector<ValueInfo>
7317 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7318   std::vector<ValueInfo> Ret;
7319   Ret.reserve(Record.size());
7320   for (uint64_t RefValueId : Record)
7321     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7322   return Ret;
7323 }
7324 
7325 std::vector<FunctionSummary::EdgeTy>
7326 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7327                                               bool IsOldProfileFormat,
7328                                               bool HasProfile, bool HasRelBF) {
7329   std::vector<FunctionSummary::EdgeTy> Ret;
7330   Ret.reserve(Record.size());
7331   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7332     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7333     bool HasTailCall = false;
7334     uint64_t RelBF = 0;
7335     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7336     if (IsOldProfileFormat) {
7337       I += 1; // Skip old callsitecount field
7338       if (HasProfile)
7339         I += 1; // Skip old profilecount field
7340     } else if (HasProfile)
7341       std::tie(Hotness, HasTailCall) =
7342           getDecodedHotnessCallEdgeInfo(Record[++I]);
7343     else if (HasRelBF)
7344       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7345     Ret.push_back(FunctionSummary::EdgeTy{
7346         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7347   }
7348   return Ret;
7349 }
7350 
7351 static void
7352 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7353                                        WholeProgramDevirtResolution &Wpd) {
7354   uint64_t ArgNum = Record[Slot++];
7355   WholeProgramDevirtResolution::ByArg &B =
7356       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7357   Slot += ArgNum;
7358 
7359   B.TheKind =
7360       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7361   B.Info = Record[Slot++];
7362   B.Byte = Record[Slot++];
7363   B.Bit = Record[Slot++];
7364 }
7365 
7366 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7367                                               StringRef Strtab, size_t &Slot,
7368                                               TypeIdSummary &TypeId) {
7369   uint64_t Id = Record[Slot++];
7370   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7371 
7372   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7373   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7374                         static_cast<size_t>(Record[Slot + 1])};
7375   Slot += 2;
7376 
7377   uint64_t ResByArgNum = Record[Slot++];
7378   for (uint64_t I = 0; I != ResByArgNum; ++I)
7379     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7380 }
7381 
7382 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7383                                      StringRef Strtab,
7384                                      ModuleSummaryIndex &TheIndex) {
7385   size_t Slot = 0;
7386   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7387       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7388   Slot += 2;
7389 
7390   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7391   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7392   TypeId.TTRes.AlignLog2 = Record[Slot++];
7393   TypeId.TTRes.SizeM1 = Record[Slot++];
7394   TypeId.TTRes.BitMask = Record[Slot++];
7395   TypeId.TTRes.InlineBits = Record[Slot++];
7396 
7397   while (Slot < Record.size())
7398     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7399 }
7400 
7401 std::vector<FunctionSummary::ParamAccess>
7402 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7403   auto ReadRange = [&]() {
7404     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7405                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7406     Record = Record.drop_front();
7407     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7408                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7409     Record = Record.drop_front();
7410     ConstantRange Range{Lower, Upper};
7411     assert(!Range.isFullSet());
7412     assert(!Range.isUpperSignWrapped());
7413     return Range;
7414   };
7415 
7416   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7417   while (!Record.empty()) {
7418     PendingParamAccesses.emplace_back();
7419     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7420     ParamAccess.ParamNo = Record.front();
7421     Record = Record.drop_front();
7422     ParamAccess.Use = ReadRange();
7423     ParamAccess.Calls.resize(Record.front());
7424     Record = Record.drop_front();
7425     for (auto &Call : ParamAccess.Calls) {
7426       Call.ParamNo = Record.front();
7427       Record = Record.drop_front();
7428       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7429       Record = Record.drop_front();
7430       Call.Offsets = ReadRange();
7431     }
7432   }
7433   return PendingParamAccesses;
7434 }
7435 
7436 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7437     ArrayRef<uint64_t> Record, size_t &Slot,
7438     TypeIdCompatibleVtableInfo &TypeId) {
7439   uint64_t Offset = Record[Slot++];
7440   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7441   TypeId.push_back({Offset, Callee});
7442 }
7443 
7444 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7445     ArrayRef<uint64_t> Record) {
7446   size_t Slot = 0;
7447   TypeIdCompatibleVtableInfo &TypeId =
7448       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7449           {Strtab.data() + Record[Slot],
7450            static_cast<size_t>(Record[Slot + 1])});
7451   Slot += 2;
7452 
7453   while (Slot < Record.size())
7454     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7455 }
7456 
7457 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7458                            unsigned WOCnt) {
7459   // Readonly and writeonly refs are in the end of the refs list.
7460   assert(ROCnt + WOCnt <= Refs.size());
7461   unsigned FirstWORef = Refs.size() - WOCnt;
7462   unsigned RefNo = FirstWORef - ROCnt;
7463   for (; RefNo < FirstWORef; ++RefNo)
7464     Refs[RefNo].setReadOnly();
7465   for (; RefNo < Refs.size(); ++RefNo)
7466     Refs[RefNo].setWriteOnly();
7467 }
7468 
7469 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7470 // objects in the index.
7471 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7472   if (Error Err = Stream.EnterSubBlock(ID))
7473     return Err;
7474   SmallVector<uint64_t, 64> Record;
7475 
7476   // Parse version
7477   {
7478     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7479     if (!MaybeEntry)
7480       return MaybeEntry.takeError();
7481     BitstreamEntry Entry = MaybeEntry.get();
7482 
7483     if (Entry.Kind != BitstreamEntry::Record)
7484       return error("Invalid Summary Block: record for version expected");
7485     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7486     if (!MaybeRecord)
7487       return MaybeRecord.takeError();
7488     if (MaybeRecord.get() != bitc::FS_VERSION)
7489       return error("Invalid Summary Block: version expected");
7490   }
7491   const uint64_t Version = Record[0];
7492   const bool IsOldProfileFormat = Version == 1;
7493   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7494     return error("Invalid summary version " + Twine(Version) +
7495                  ". Version should be in the range [1-" +
7496                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7497                  "].");
7498   Record.clear();
7499 
7500   // Keep around the last seen summary to be used when we see an optional
7501   // "OriginalName" attachement.
7502   GlobalValueSummary *LastSeenSummary = nullptr;
7503   GlobalValue::GUID LastSeenGUID = 0;
7504 
7505   // We can expect to see any number of type ID information records before
7506   // each function summary records; these variables store the information
7507   // collected so far so that it can be used to create the summary object.
7508   std::vector<GlobalValue::GUID> PendingTypeTests;
7509   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7510       PendingTypeCheckedLoadVCalls;
7511   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7512       PendingTypeCheckedLoadConstVCalls;
7513   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7514 
7515   std::vector<CallsiteInfo> PendingCallsites;
7516   std::vector<AllocInfo> PendingAllocs;
7517 
7518   while (true) {
7519     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7520     if (!MaybeEntry)
7521       return MaybeEntry.takeError();
7522     BitstreamEntry Entry = MaybeEntry.get();
7523 
7524     switch (Entry.Kind) {
7525     case BitstreamEntry::SubBlock: // Handled for us already.
7526     case BitstreamEntry::Error:
7527       return error("Malformed block");
7528     case BitstreamEntry::EndBlock:
7529       return Error::success();
7530     case BitstreamEntry::Record:
7531       // The interesting case.
7532       break;
7533     }
7534 
7535     // Read a record. The record format depends on whether this
7536     // is a per-module index or a combined index file. In the per-module
7537     // case the records contain the associated value's ID for correlation
7538     // with VST entries. In the combined index the correlation is done
7539     // via the bitcode offset of the summary records (which were saved
7540     // in the combined index VST entries). The records also contain
7541     // information used for ThinLTO renaming and importing.
7542     Record.clear();
7543     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7544     if (!MaybeBitCode)
7545       return MaybeBitCode.takeError();
7546     switch (unsigned BitCode = MaybeBitCode.get()) {
7547     default: // Default behavior: ignore.
7548       break;
7549     case bitc::FS_FLAGS: {  // [flags]
7550       TheIndex.setFlags(Record[0]);
7551       break;
7552     }
7553     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7554       uint64_t ValueID = Record[0];
7555       GlobalValue::GUID RefGUID = Record[1];
7556       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7557           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7558       break;
7559     }
7560     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7561     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7562     //                numrefs x valueid, n x (valueid)]
7563     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7564     //                        numrefs x valueid,
7565     //                        n x (valueid, hotness+tailcall flags)]
7566     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7567     //                      numrefs x valueid,
7568     //                      n x (valueid, relblockfreq+tailcall)]
7569     case bitc::FS_PERMODULE:
7570     case bitc::FS_PERMODULE_RELBF:
7571     case bitc::FS_PERMODULE_PROFILE: {
7572       unsigned ValueID = Record[0];
7573       uint64_t RawFlags = Record[1];
7574       unsigned InstCount = Record[2];
7575       uint64_t RawFunFlags = 0;
7576       unsigned NumRefs = Record[3];
7577       unsigned NumRORefs = 0, NumWORefs = 0;
7578       int RefListStartIndex = 4;
7579       if (Version >= 4) {
7580         RawFunFlags = Record[3];
7581         NumRefs = Record[4];
7582         RefListStartIndex = 5;
7583         if (Version >= 5) {
7584           NumRORefs = Record[5];
7585           RefListStartIndex = 6;
7586           if (Version >= 7) {
7587             NumWORefs = Record[6];
7588             RefListStartIndex = 7;
7589           }
7590         }
7591       }
7592 
7593       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7594       // The module path string ref set in the summary must be owned by the
7595       // index's module string table. Since we don't have a module path
7596       // string table section in the per-module index, we create a single
7597       // module path string table entry with an empty (0) ID to take
7598       // ownership.
7599       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7600       assert(Record.size() >= RefListStartIndex + NumRefs &&
7601              "Record size inconsistent with number of references");
7602       std::vector<ValueInfo> Refs = makeRefList(
7603           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7604       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7605       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7606       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7607           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7608           IsOldProfileFormat, HasProfile, HasRelBF);
7609       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7610       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7611       // In order to save memory, only record the memprof summaries if this is
7612       // the prevailing copy of a symbol. The linker doesn't resolve local
7613       // linkage values so don't check whether those are prevailing.
7614       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7615       if (IsPrevailing &&
7616           !GlobalValue::isLocalLinkage(LT) &&
7617           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7618         PendingCallsites.clear();
7619         PendingAllocs.clear();
7620       }
7621       auto FS = std::make_unique<FunctionSummary>(
7622           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7623           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7624           std::move(PendingTypeTestAssumeVCalls),
7625           std::move(PendingTypeCheckedLoadVCalls),
7626           std::move(PendingTypeTestAssumeConstVCalls),
7627           std::move(PendingTypeCheckedLoadConstVCalls),
7628           std::move(PendingParamAccesses), std::move(PendingCallsites),
7629           std::move(PendingAllocs));
7630       FS->setModulePath(getThisModule()->first());
7631       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7632       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7633                                      std::move(FS));
7634       break;
7635     }
7636     // FS_ALIAS: [valueid, flags, valueid]
7637     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7638     // they expect all aliasee summaries to be available.
7639     case bitc::FS_ALIAS: {
7640       unsigned ValueID = Record[0];
7641       uint64_t RawFlags = Record[1];
7642       unsigned AliaseeID = Record[2];
7643       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7644       auto AS = std::make_unique<AliasSummary>(Flags);
7645       // The module path string ref set in the summary must be owned by the
7646       // index's module string table. Since we don't have a module path
7647       // string table section in the per-module index, we create a single
7648       // module path string table entry with an empty (0) ID to take
7649       // ownership.
7650       AS->setModulePath(getThisModule()->first());
7651 
7652       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7653       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7654       if (!AliaseeInModule)
7655         return error("Alias expects aliasee summary to be parsed");
7656       AS->setAliasee(AliaseeVI, AliaseeInModule);
7657 
7658       auto GUID = getValueInfoFromValueId(ValueID);
7659       AS->setOriginalName(std::get<1>(GUID));
7660       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7661       break;
7662     }
7663     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7664     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7665       unsigned ValueID = Record[0];
7666       uint64_t RawFlags = Record[1];
7667       unsigned RefArrayStart = 2;
7668       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7669                                       /* WriteOnly */ false,
7670                                       /* Constant */ false,
7671                                       GlobalObject::VCallVisibilityPublic);
7672       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7673       if (Version >= 5) {
7674         GVF = getDecodedGVarFlags(Record[2]);
7675         RefArrayStart = 3;
7676       }
7677       std::vector<ValueInfo> Refs =
7678           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7679       auto FS =
7680           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7681       FS->setModulePath(getThisModule()->first());
7682       auto GUID = getValueInfoFromValueId(ValueID);
7683       FS->setOriginalName(std::get<1>(GUID));
7684       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7685       break;
7686     }
7687     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7688     //                        numrefs, numrefs x valueid,
7689     //                        n x (valueid, offset)]
7690     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7691       unsigned ValueID = Record[0];
7692       uint64_t RawFlags = Record[1];
7693       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7694       unsigned NumRefs = Record[3];
7695       unsigned RefListStartIndex = 4;
7696       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7697       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7698       std::vector<ValueInfo> Refs = makeRefList(
7699           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7700       VTableFuncList VTableFuncs;
7701       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7702         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7703         uint64_t Offset = Record[++I];
7704         VTableFuncs.push_back({Callee, Offset});
7705       }
7706       auto VS =
7707           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7708       VS->setModulePath(getThisModule()->first());
7709       VS->setVTableFuncs(VTableFuncs);
7710       auto GUID = getValueInfoFromValueId(ValueID);
7711       VS->setOriginalName(std::get<1>(GUID));
7712       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7713       break;
7714     }
7715     // FS_COMBINED is legacy and does not have support for the tail call flag.
7716     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7717     //               numrefs x valueid, n x (valueid)]
7718     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7719     //                       numrefs x valueid,
7720     //                       n x (valueid, hotness+tailcall flags)]
7721     case bitc::FS_COMBINED:
7722     case bitc::FS_COMBINED_PROFILE: {
7723       unsigned ValueID = Record[0];
7724       uint64_t ModuleId = Record[1];
7725       uint64_t RawFlags = Record[2];
7726       unsigned InstCount = Record[3];
7727       uint64_t RawFunFlags = 0;
7728       uint64_t EntryCount = 0;
7729       unsigned NumRefs = Record[4];
7730       unsigned NumRORefs = 0, NumWORefs = 0;
7731       int RefListStartIndex = 5;
7732 
7733       if (Version >= 4) {
7734         RawFunFlags = Record[4];
7735         RefListStartIndex = 6;
7736         size_t NumRefsIndex = 5;
7737         if (Version >= 5) {
7738           unsigned NumRORefsOffset = 1;
7739           RefListStartIndex = 7;
7740           if (Version >= 6) {
7741             NumRefsIndex = 6;
7742             EntryCount = Record[5];
7743             RefListStartIndex = 8;
7744             if (Version >= 7) {
7745               RefListStartIndex = 9;
7746               NumWORefs = Record[8];
7747               NumRORefsOffset = 2;
7748             }
7749           }
7750           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7751         }
7752         NumRefs = Record[NumRefsIndex];
7753       }
7754 
7755       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7756       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7757       assert(Record.size() >= RefListStartIndex + NumRefs &&
7758              "Record size inconsistent with number of references");
7759       std::vector<ValueInfo> Refs = makeRefList(
7760           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7761       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7762       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7763           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7764           IsOldProfileFormat, HasProfile, false);
7765       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7766       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7767       auto FS = std::make_unique<FunctionSummary>(
7768           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7769           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7770           std::move(PendingTypeTestAssumeVCalls),
7771           std::move(PendingTypeCheckedLoadVCalls),
7772           std::move(PendingTypeTestAssumeConstVCalls),
7773           std::move(PendingTypeCheckedLoadConstVCalls),
7774           std::move(PendingParamAccesses), std::move(PendingCallsites),
7775           std::move(PendingAllocs));
7776       LastSeenSummary = FS.get();
7777       LastSeenGUID = VI.getGUID();
7778       FS->setModulePath(ModuleIdMap[ModuleId]);
7779       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7780       break;
7781     }
7782     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7783     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7784     // they expect all aliasee summaries to be available.
7785     case bitc::FS_COMBINED_ALIAS: {
7786       unsigned ValueID = Record[0];
7787       uint64_t ModuleId = Record[1];
7788       uint64_t RawFlags = Record[2];
7789       unsigned AliaseeValueId = Record[3];
7790       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7791       auto AS = std::make_unique<AliasSummary>(Flags);
7792       LastSeenSummary = AS.get();
7793       AS->setModulePath(ModuleIdMap[ModuleId]);
7794 
7795       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7796       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7797       AS->setAliasee(AliaseeVI, AliaseeInModule);
7798 
7799       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7800       LastSeenGUID = VI.getGUID();
7801       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7802       break;
7803     }
7804     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7805     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7806       unsigned ValueID = Record[0];
7807       uint64_t ModuleId = Record[1];
7808       uint64_t RawFlags = Record[2];
7809       unsigned RefArrayStart = 3;
7810       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7811                                       /* WriteOnly */ false,
7812                                       /* Constant */ false,
7813                                       GlobalObject::VCallVisibilityPublic);
7814       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7815       if (Version >= 5) {
7816         GVF = getDecodedGVarFlags(Record[3]);
7817         RefArrayStart = 4;
7818       }
7819       std::vector<ValueInfo> Refs =
7820           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7821       auto FS =
7822           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7823       LastSeenSummary = FS.get();
7824       FS->setModulePath(ModuleIdMap[ModuleId]);
7825       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7826       LastSeenGUID = VI.getGUID();
7827       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7828       break;
7829     }
7830     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7831     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7832       uint64_t OriginalName = Record[0];
7833       if (!LastSeenSummary)
7834         return error("Name attachment that does not follow a combined record");
7835       LastSeenSummary->setOriginalName(OriginalName);
7836       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7837       // Reset the LastSeenSummary
7838       LastSeenSummary = nullptr;
7839       LastSeenGUID = 0;
7840       break;
7841     }
7842     case bitc::FS_TYPE_TESTS:
7843       assert(PendingTypeTests.empty());
7844       llvm::append_range(PendingTypeTests, Record);
7845       break;
7846 
7847     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7848       assert(PendingTypeTestAssumeVCalls.empty());
7849       for (unsigned I = 0; I != Record.size(); I += 2)
7850         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7851       break;
7852 
7853     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7854       assert(PendingTypeCheckedLoadVCalls.empty());
7855       for (unsigned I = 0; I != Record.size(); I += 2)
7856         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7857       break;
7858 
7859     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7860       PendingTypeTestAssumeConstVCalls.push_back(
7861           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7862       break;
7863 
7864     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7865       PendingTypeCheckedLoadConstVCalls.push_back(
7866           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7867       break;
7868 
7869     case bitc::FS_CFI_FUNCTION_DEFS: {
7870       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7871       for (unsigned I = 0; I != Record.size(); I += 2)
7872         CfiFunctionDefs.insert(
7873             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7874       break;
7875     }
7876 
7877     case bitc::FS_CFI_FUNCTION_DECLS: {
7878       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7879       for (unsigned I = 0; I != Record.size(); I += 2)
7880         CfiFunctionDecls.insert(
7881             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7882       break;
7883     }
7884 
7885     case bitc::FS_TYPE_ID:
7886       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7887       break;
7888 
7889     case bitc::FS_TYPE_ID_METADATA:
7890       parseTypeIdCompatibleVtableSummaryRecord(Record);
7891       break;
7892 
7893     case bitc::FS_BLOCK_COUNT:
7894       TheIndex.addBlockCount(Record[0]);
7895       break;
7896 
7897     case bitc::FS_PARAM_ACCESS: {
7898       PendingParamAccesses = parseParamAccesses(Record);
7899       break;
7900     }
7901 
7902     case bitc::FS_STACK_IDS: { // [n x stackid]
7903       // Save stack ids in the reader to consult when adding stack ids from the
7904       // lists in the stack node and alloc node entries.
7905       StackIds = ArrayRef<uint64_t>(Record);
7906       break;
7907     }
7908 
7909     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7910       unsigned ValueID = Record[0];
7911       SmallVector<unsigned> StackIdList;
7912       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7913         assert(*R < StackIds.size());
7914         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7915       }
7916       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7917       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7918       break;
7919     }
7920 
7921     case bitc::FS_COMBINED_CALLSITE_INFO: {
7922       auto RecordIter = Record.begin();
7923       unsigned ValueID = *RecordIter++;
7924       unsigned NumStackIds = *RecordIter++;
7925       unsigned NumVersions = *RecordIter++;
7926       assert(Record.size() == 3 + NumStackIds + NumVersions);
7927       SmallVector<unsigned> StackIdList;
7928       for (unsigned J = 0; J < NumStackIds; J++) {
7929         assert(*RecordIter < StackIds.size());
7930         StackIdList.push_back(
7931             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7932       }
7933       SmallVector<unsigned> Versions;
7934       for (unsigned J = 0; J < NumVersions; J++)
7935         Versions.push_back(*RecordIter++);
7936       ValueInfo VI = std::get<0>(
7937           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7938       PendingCallsites.push_back(
7939           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7940       break;
7941     }
7942 
7943     case bitc::FS_PERMODULE_ALLOC_INFO: {
7944       unsigned I = 0;
7945       std::vector<MIBInfo> MIBs;
7946       while (I < Record.size()) {
7947         assert(Record.size() - I >= 2);
7948         AllocationType AllocType = (AllocationType)Record[I++];
7949         unsigned NumStackEntries = Record[I++];
7950         assert(Record.size() - I >= NumStackEntries);
7951         SmallVector<unsigned> StackIdList;
7952         for (unsigned J = 0; J < NumStackEntries; J++) {
7953           assert(Record[I] < StackIds.size());
7954           StackIdList.push_back(
7955               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7956         }
7957         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7958       }
7959       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7960       break;
7961     }
7962 
7963     case bitc::FS_COMBINED_ALLOC_INFO: {
7964       unsigned I = 0;
7965       std::vector<MIBInfo> MIBs;
7966       unsigned NumMIBs = Record[I++];
7967       unsigned NumVersions = Record[I++];
7968       unsigned MIBsRead = 0;
7969       while (MIBsRead++ < NumMIBs) {
7970         assert(Record.size() - I >= 2);
7971         AllocationType AllocType = (AllocationType)Record[I++];
7972         unsigned NumStackEntries = Record[I++];
7973         assert(Record.size() - I >= NumStackEntries);
7974         SmallVector<unsigned> StackIdList;
7975         for (unsigned J = 0; J < NumStackEntries; J++) {
7976           assert(Record[I] < StackIds.size());
7977           StackIdList.push_back(
7978               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7979         }
7980         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7981       }
7982       assert(Record.size() - I >= NumVersions);
7983       SmallVector<uint8_t> Versions;
7984       for (unsigned J = 0; J < NumVersions; J++)
7985         Versions.push_back(Record[I++]);
7986       PendingAllocs.push_back(
7987           AllocInfo(std::move(Versions), std::move(MIBs)));
7988       break;
7989     }
7990     }
7991   }
7992   llvm_unreachable("Exit infinite loop");
7993 }
7994 
7995 // Parse the  module string table block into the Index.
7996 // This populates the ModulePathStringTable map in the index.
7997 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7998   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7999     return Err;
8000 
8001   SmallVector<uint64_t, 64> Record;
8002 
8003   SmallString<128> ModulePath;
8004   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8005 
8006   while (true) {
8007     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8008     if (!MaybeEntry)
8009       return MaybeEntry.takeError();
8010     BitstreamEntry Entry = MaybeEntry.get();
8011 
8012     switch (Entry.Kind) {
8013     case BitstreamEntry::SubBlock: // Handled for us already.
8014     case BitstreamEntry::Error:
8015       return error("Malformed block");
8016     case BitstreamEntry::EndBlock:
8017       return Error::success();
8018     case BitstreamEntry::Record:
8019       // The interesting case.
8020       break;
8021     }
8022 
8023     Record.clear();
8024     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8025     if (!MaybeRecord)
8026       return MaybeRecord.takeError();
8027     switch (MaybeRecord.get()) {
8028     default: // Default behavior: ignore.
8029       break;
8030     case bitc::MST_CODE_ENTRY: {
8031       // MST_ENTRY: [modid, namechar x N]
8032       uint64_t ModuleId = Record[0];
8033 
8034       if (convertToString(Record, 1, ModulePath))
8035         return error("Invalid record");
8036 
8037       LastSeenModule = TheIndex.addModule(ModulePath);
8038       ModuleIdMap[ModuleId] = LastSeenModule->first();
8039 
8040       ModulePath.clear();
8041       break;
8042     }
8043     /// MST_CODE_HASH: [5*i32]
8044     case bitc::MST_CODE_HASH: {
8045       if (Record.size() != 5)
8046         return error("Invalid hash length " + Twine(Record.size()).str());
8047       if (!LastSeenModule)
8048         return error("Invalid hash that does not follow a module path");
8049       int Pos = 0;
8050       for (auto &Val : Record) {
8051         assert(!(Val >> 32) && "Unexpected high bits set");
8052         LastSeenModule->second[Pos++] = Val;
8053       }
8054       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8055       LastSeenModule = nullptr;
8056       break;
8057     }
8058     }
8059   }
8060   llvm_unreachable("Exit infinite loop");
8061 }
8062 
8063 namespace {
8064 
8065 // FIXME: This class is only here to support the transition to llvm::Error. It
8066 // will be removed once this transition is complete. Clients should prefer to
8067 // deal with the Error value directly, rather than converting to error_code.
8068 class BitcodeErrorCategoryType : public std::error_category {
8069   const char *name() const noexcept override {
8070     return "llvm.bitcode";
8071   }
8072 
8073   std::string message(int IE) const override {
8074     BitcodeError E = static_cast<BitcodeError>(IE);
8075     switch (E) {
8076     case BitcodeError::CorruptedBitcode:
8077       return "Corrupted bitcode";
8078     }
8079     llvm_unreachable("Unknown error type!");
8080   }
8081 };
8082 
8083 } // end anonymous namespace
8084 
8085 const std::error_category &llvm::BitcodeErrorCategory() {
8086   static BitcodeErrorCategoryType ErrorCategory;
8087   return ErrorCategory;
8088 }
8089 
8090 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8091                                             unsigned Block, unsigned RecordID) {
8092   if (Error Err = Stream.EnterSubBlock(Block))
8093     return std::move(Err);
8094 
8095   StringRef Strtab;
8096   while (true) {
8097     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8098     if (!MaybeEntry)
8099       return MaybeEntry.takeError();
8100     llvm::BitstreamEntry Entry = MaybeEntry.get();
8101 
8102     switch (Entry.Kind) {
8103     case BitstreamEntry::EndBlock:
8104       return Strtab;
8105 
8106     case BitstreamEntry::Error:
8107       return error("Malformed block");
8108 
8109     case BitstreamEntry::SubBlock:
8110       if (Error Err = Stream.SkipBlock())
8111         return std::move(Err);
8112       break;
8113 
8114     case BitstreamEntry::Record:
8115       StringRef Blob;
8116       SmallVector<uint64_t, 1> Record;
8117       Expected<unsigned> MaybeRecord =
8118           Stream.readRecord(Entry.ID, Record, &Blob);
8119       if (!MaybeRecord)
8120         return MaybeRecord.takeError();
8121       if (MaybeRecord.get() == RecordID)
8122         Strtab = Blob;
8123       break;
8124     }
8125   }
8126 }
8127 
8128 //===----------------------------------------------------------------------===//
8129 // External interface
8130 //===----------------------------------------------------------------------===//
8131 
8132 Expected<std::vector<BitcodeModule>>
8133 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8134   auto FOrErr = getBitcodeFileContents(Buffer);
8135   if (!FOrErr)
8136     return FOrErr.takeError();
8137   return std::move(FOrErr->Mods);
8138 }
8139 
8140 Expected<BitcodeFileContents>
8141 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8142   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8143   if (!StreamOrErr)
8144     return StreamOrErr.takeError();
8145   BitstreamCursor &Stream = *StreamOrErr;
8146 
8147   BitcodeFileContents F;
8148   while (true) {
8149     uint64_t BCBegin = Stream.getCurrentByteNo();
8150 
8151     // We may be consuming bitcode from a client that leaves garbage at the end
8152     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8153     // the end that there cannot possibly be another module, stop looking.
8154     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8155       return F;
8156 
8157     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8158     if (!MaybeEntry)
8159       return MaybeEntry.takeError();
8160     llvm::BitstreamEntry Entry = MaybeEntry.get();
8161 
8162     switch (Entry.Kind) {
8163     case BitstreamEntry::EndBlock:
8164     case BitstreamEntry::Error:
8165       return error("Malformed block");
8166 
8167     case BitstreamEntry::SubBlock: {
8168       uint64_t IdentificationBit = -1ull;
8169       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8170         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8171         if (Error Err = Stream.SkipBlock())
8172           return std::move(Err);
8173 
8174         {
8175           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8176           if (!MaybeEntry)
8177             return MaybeEntry.takeError();
8178           Entry = MaybeEntry.get();
8179         }
8180 
8181         if (Entry.Kind != BitstreamEntry::SubBlock ||
8182             Entry.ID != bitc::MODULE_BLOCK_ID)
8183           return error("Malformed block");
8184       }
8185 
8186       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8187         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8188         if (Error Err = Stream.SkipBlock())
8189           return std::move(Err);
8190 
8191         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8192                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8193                           Buffer.getBufferIdentifier(), IdentificationBit,
8194                           ModuleBit});
8195         continue;
8196       }
8197 
8198       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8199         Expected<StringRef> Strtab =
8200             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8201         if (!Strtab)
8202           return Strtab.takeError();
8203         // This string table is used by every preceding bitcode module that does
8204         // not have its own string table. A bitcode file may have multiple
8205         // string tables if it was created by binary concatenation, for example
8206         // with "llvm-cat -b".
8207         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8208           if (!I.Strtab.empty())
8209             break;
8210           I.Strtab = *Strtab;
8211         }
8212         // Similarly, the string table is used by every preceding symbol table;
8213         // normally there will be just one unless the bitcode file was created
8214         // by binary concatenation.
8215         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8216           F.StrtabForSymtab = *Strtab;
8217         continue;
8218       }
8219 
8220       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8221         Expected<StringRef> SymtabOrErr =
8222             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8223         if (!SymtabOrErr)
8224           return SymtabOrErr.takeError();
8225 
8226         // We can expect the bitcode file to have multiple symbol tables if it
8227         // was created by binary concatenation. In that case we silently
8228         // ignore any subsequent symbol tables, which is fine because this is a
8229         // low level function. The client is expected to notice that the number
8230         // of modules in the symbol table does not match the number of modules
8231         // in the input file and regenerate the symbol table.
8232         if (F.Symtab.empty())
8233           F.Symtab = *SymtabOrErr;
8234         continue;
8235       }
8236 
8237       if (Error Err = Stream.SkipBlock())
8238         return std::move(Err);
8239       continue;
8240     }
8241     case BitstreamEntry::Record:
8242       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8243         return std::move(E);
8244       continue;
8245     }
8246   }
8247 }
8248 
8249 /// Get a lazy one-at-time loading module from bitcode.
8250 ///
8251 /// This isn't always used in a lazy context.  In particular, it's also used by
8252 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8253 /// in forward-referenced functions from block address references.
8254 ///
8255 /// \param[in] MaterializeAll Set to \c true if we should materialize
8256 /// everything.
8257 Expected<std::unique_ptr<Module>>
8258 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8259                              bool ShouldLazyLoadMetadata, bool IsImporting,
8260                              ParserCallbacks Callbacks) {
8261   BitstreamCursor Stream(Buffer);
8262 
8263   std::string ProducerIdentification;
8264   if (IdentificationBit != -1ull) {
8265     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8266       return std::move(JumpFailed);
8267     if (Error E =
8268             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8269       return std::move(E);
8270   }
8271 
8272   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8273     return std::move(JumpFailed);
8274   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8275                               Context);
8276 
8277   std::unique_ptr<Module> M =
8278       std::make_unique<Module>(ModuleIdentifier, Context);
8279   M->setMaterializer(R);
8280 
8281   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8282   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8283                                       IsImporting, Callbacks))
8284     return std::move(Err);
8285 
8286   if (MaterializeAll) {
8287     // Read in the entire module, and destroy the BitcodeReader.
8288     if (Error Err = M->materializeAll())
8289       return std::move(Err);
8290   } else {
8291     // Resolve forward references from blockaddresses.
8292     if (Error Err = R->materializeForwardReferencedFunctions())
8293       return std::move(Err);
8294   }
8295 
8296   return std::move(M);
8297 }
8298 
8299 Expected<std::unique_ptr<Module>>
8300 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8301                              bool IsImporting, ParserCallbacks Callbacks) {
8302   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8303                        Callbacks);
8304 }
8305 
8306 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8307 // We don't use ModuleIdentifier here because the client may need to control the
8308 // module path used in the combined summary (e.g. when reading summaries for
8309 // regular LTO modules).
8310 Error BitcodeModule::readSummary(
8311     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8312     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8313   BitstreamCursor Stream(Buffer);
8314   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8315     return JumpFailed;
8316 
8317   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8318                                     ModulePath, IsPrevailing);
8319   return R.parseModule();
8320 }
8321 
8322 // Parse the specified bitcode buffer, returning the function info index.
8323 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8324   BitstreamCursor Stream(Buffer);
8325   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8326     return std::move(JumpFailed);
8327 
8328   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8329   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8330                                     ModuleIdentifier, 0);
8331 
8332   if (Error Err = R.parseModule())
8333     return std::move(Err);
8334 
8335   return std::move(Index);
8336 }
8337 
8338 static Expected<std::pair<bool, bool>>
8339 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8340                                                  unsigned ID,
8341                                                  BitcodeLTOInfo &LTOInfo) {
8342   if (Error Err = Stream.EnterSubBlock(ID))
8343     return std::move(Err);
8344   SmallVector<uint64_t, 64> Record;
8345 
8346   while (true) {
8347     BitstreamEntry Entry;
8348     std::pair<bool, bool> Result = {false,false};
8349     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8350       return std::move(E);
8351 
8352     switch (Entry.Kind) {
8353     case BitstreamEntry::SubBlock: // Handled for us already.
8354     case BitstreamEntry::Error:
8355       return error("Malformed block");
8356     case BitstreamEntry::EndBlock: {
8357       // If no flags record found, set both flags to false.
8358       return Result;
8359     }
8360     case BitstreamEntry::Record:
8361       // The interesting case.
8362       break;
8363     }
8364 
8365     // Look for the FS_FLAGS record.
8366     Record.clear();
8367     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8368     if (!MaybeBitCode)
8369       return MaybeBitCode.takeError();
8370     switch (MaybeBitCode.get()) {
8371     default: // Default behavior: ignore.
8372       break;
8373     case bitc::FS_FLAGS: { // [flags]
8374       uint64_t Flags = Record[0];
8375       // Scan flags.
8376       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8377 
8378       bool EnableSplitLTOUnit = Flags & 0x8;
8379       bool UnifiedLTO = Flags & 0x200;
8380       Result = {EnableSplitLTOUnit, UnifiedLTO};
8381 
8382       return Result;
8383     }
8384     }
8385   }
8386   llvm_unreachable("Exit infinite loop");
8387 }
8388 
8389 // Check if the given bitcode buffer contains a global value summary block.
8390 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8391   BitstreamCursor Stream(Buffer);
8392   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8393     return std::move(JumpFailed);
8394 
8395   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8396     return std::move(Err);
8397 
8398   while (true) {
8399     llvm::BitstreamEntry Entry;
8400     if (Error E = Stream.advance().moveInto(Entry))
8401       return std::move(E);
8402 
8403     switch (Entry.Kind) {
8404     case BitstreamEntry::Error:
8405       return error("Malformed block");
8406     case BitstreamEntry::EndBlock:
8407       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8408                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8409 
8410     case BitstreamEntry::SubBlock:
8411       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8412         BitcodeLTOInfo LTOInfo;
8413         Expected<std::pair<bool, bool>> Flags =
8414             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8415         if (!Flags)
8416           return Flags.takeError();
8417         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8418         LTOInfo.IsThinLTO = true;
8419         LTOInfo.HasSummary = true;
8420         return LTOInfo;
8421       }
8422 
8423       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8424         BitcodeLTOInfo LTOInfo;
8425         Expected<std::pair<bool, bool>> Flags =
8426             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8427         if (!Flags)
8428           return Flags.takeError();
8429         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8430         LTOInfo.IsThinLTO = false;
8431         LTOInfo.HasSummary = true;
8432         return LTOInfo;
8433       }
8434 
8435       // Ignore other sub-blocks.
8436       if (Error Err = Stream.SkipBlock())
8437         return std::move(Err);
8438       continue;
8439 
8440     case BitstreamEntry::Record:
8441       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8442         continue;
8443       else
8444         return StreamFailed.takeError();
8445     }
8446   }
8447 }
8448 
8449 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8450   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8451   if (!MsOrErr)
8452     return MsOrErr.takeError();
8453 
8454   if (MsOrErr->size() != 1)
8455     return error("Expected a single module");
8456 
8457   return (*MsOrErr)[0];
8458 }
8459 
8460 Expected<std::unique_ptr<Module>>
8461 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8462                            bool ShouldLazyLoadMetadata, bool IsImporting,
8463                            ParserCallbacks Callbacks) {
8464   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8465   if (!BM)
8466     return BM.takeError();
8467 
8468   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8469                            Callbacks);
8470 }
8471 
8472 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8473     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8474     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8475   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8476                                      IsImporting, Callbacks);
8477   if (MOrErr)
8478     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8479   return MOrErr;
8480 }
8481 
8482 Expected<std::unique_ptr<Module>>
8483 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8484   return getModuleImpl(Context, true, false, false, Callbacks);
8485   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8486   // written.  We must defer until the Module has been fully materialized.
8487 }
8488 
8489 Expected<std::unique_ptr<Module>>
8490 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8491                        ParserCallbacks Callbacks) {
8492   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8493   if (!BM)
8494     return BM.takeError();
8495 
8496   return BM->parseModule(Context, Callbacks);
8497 }
8498 
8499 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8500   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8501   if (!StreamOrErr)
8502     return StreamOrErr.takeError();
8503 
8504   return readTriple(*StreamOrErr);
8505 }
8506 
8507 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8508   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8509   if (!StreamOrErr)
8510     return StreamOrErr.takeError();
8511 
8512   return hasObjCCategory(*StreamOrErr);
8513 }
8514 
8515 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8516   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8517   if (!StreamOrErr)
8518     return StreamOrErr.takeError();
8519 
8520   return readIdentificationCode(*StreamOrErr);
8521 }
8522 
8523 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8524                                    ModuleSummaryIndex &CombinedIndex) {
8525   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8526   if (!BM)
8527     return BM.takeError();
8528 
8529   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8530 }
8531 
8532 Expected<std::unique_ptr<ModuleSummaryIndex>>
8533 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8534   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8535   if (!BM)
8536     return BM.takeError();
8537 
8538   return BM->getSummary();
8539 }
8540 
8541 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8542   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8543   if (!BM)
8544     return BM.takeError();
8545 
8546   return BM->getLTOInfo();
8547 }
8548 
8549 Expected<std::unique_ptr<ModuleSummaryIndex>>
8550 llvm::getModuleSummaryIndexForFile(StringRef Path,
8551                                    bool IgnoreEmptyThinLTOIndexFile) {
8552   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8553       MemoryBuffer::getFileOrSTDIN(Path);
8554   if (!FileOrErr)
8555     return errorCodeToError(FileOrErr.getError());
8556   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8557     return nullptr;
8558   return getModuleSummaryIndex(**FileOrErr);
8559 }
8560