xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision de9d80c1c579e39cc658a508f1d4ba1cd792e4d5)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 static cl::opt<bool> ExpandConstantExprs(
97     "expand-constant-exprs", cl::Hidden,
98     cl::desc(
99         "Expand constant expressions to instructions for testing purposes"));
100 
101 namespace {
102 
103 enum {
104   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
105 };
106 
107 } // end anonymous namespace
108 
109 static Error error(const Twine &Message) {
110   return make_error<StringError>(
111       Message, make_error_code(BitcodeError::CorruptedBitcode));
112 }
113 
114 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
115   if (!Stream.canSkipToPos(4))
116     return createStringError(std::errc::illegal_byte_sequence,
117                              "file too small to contain bitcode header");
118   for (unsigned C : {'B', 'C'})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
126     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
127       if (Res.get() != C)
128         return createStringError(std::errc::illegal_byte_sequence,
129                                  "file doesn't start with bitcode header");
130     } else
131       return Res.takeError();
132   return Error::success();
133 }
134 
135 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
136   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
137   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
138 
139   if (Buffer.getBufferSize() & 3)
140     return error("Invalid bitcode signature");
141 
142   // If we have a wrapper header, parse it and ignore the non-bc file contents.
143   // The magic number is 0x0B17C0DE stored in little endian.
144   if (isBitcodeWrapper(BufPtr, BufEnd))
145     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
146       return error("Invalid bitcode wrapper header");
147 
148   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
149   if (Error Err = hasInvalidBitcodeHeader(Stream))
150     return std::move(Err);
151 
152   return std::move(Stream);
153 }
154 
155 /// Convert a string from a record into an std::string, return true on failure.
156 template <typename StrTy>
157 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
158                             StrTy &Result) {
159   if (Idx > Record.size())
160     return true;
161 
162   Result.append(Record.begin() + Idx, Record.end());
163   return false;
164 }
165 
166 // Strip all the TBAA attachment for the module.
167 static void stripTBAA(Module *M) {
168   for (auto &F : *M) {
169     if (F.isMaterializable())
170       continue;
171     for (auto &I : instructions(F))
172       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
173   }
174 }
175 
176 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
177 /// "epoch" encoded in the bitcode, and return the producer name if any.
178 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
179   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
180     return std::move(Err);
181 
182   // Read all the records.
183   SmallVector<uint64_t, 64> Record;
184 
185   std::string ProducerIdentification;
186 
187   while (true) {
188     BitstreamEntry Entry;
189     if (Error E = Stream.advance().moveInto(Entry))
190       return std::move(E);
191 
192     switch (Entry.Kind) {
193     default:
194     case BitstreamEntry::Error:
195       return error("Malformed block");
196     case BitstreamEntry::EndBlock:
197       return ProducerIdentification;
198     case BitstreamEntry::Record:
199       // The interesting case.
200       break;
201     }
202 
203     // Read a record.
204     Record.clear();
205     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
206     if (!MaybeBitCode)
207       return MaybeBitCode.takeError();
208     switch (MaybeBitCode.get()) {
209     default: // Default behavior: reject
210       return error("Invalid value");
211     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
212       convertToString(Record, 0, ProducerIdentification);
213       break;
214     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
215       unsigned epoch = (unsigned)Record[0];
216       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
217         return error(
218           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
219           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
220       }
221     }
222     }
223   }
224 }
225 
226 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
227   // We expect a number of well-defined blocks, though we don't necessarily
228   // need to understand them all.
229   while (true) {
230     if (Stream.AtEndOfStream())
231       return "";
232 
233     BitstreamEntry Entry;
234     if (Error E = Stream.advance().moveInto(Entry))
235       return std::move(E);
236 
237     switch (Entry.Kind) {
238     case BitstreamEntry::EndBlock:
239     case BitstreamEntry::Error:
240       return error("Malformed block");
241 
242     case BitstreamEntry::SubBlock:
243       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
244         return readIdentificationBlock(Stream);
245 
246       // Ignore other sub-blocks.
247       if (Error Err = Stream.SkipBlock())
248         return std::move(Err);
249       continue;
250     case BitstreamEntry::Record:
251       if (Error E = Stream.skipRecord(Entry.ID).takeError())
252         return std::move(E);
253       continue;
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid section name record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Error E = Stream.advance().moveInto(Entry))
311       return std::move(E);
312 
313     switch (Entry.Kind) {
314     case BitstreamEntry::Error:
315       return error("Malformed block");
316     case BitstreamEntry::EndBlock:
317       return false;
318 
319     case BitstreamEntry::SubBlock:
320       if (Entry.ID == bitc::MODULE_BLOCK_ID)
321         return hasObjCCategoryInModule(Stream);
322 
323       // Ignore other sub-blocks.
324       if (Error Err = Stream.SkipBlock())
325         return std::move(Err);
326       continue;
327 
328     case BitstreamEntry::Record:
329       if (Error E = Stream.skipRecord(Entry.ID).takeError())
330         return std::move(E);
331       continue;
332     }
333   }
334 }
335 
336 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
337   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
338     return std::move(Err);
339 
340   SmallVector<uint64_t, 64> Record;
341 
342   std::string Triple;
343 
344   // Read all the records for this module.
345   while (true) {
346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
347     if (!MaybeEntry)
348       return MaybeEntry.takeError();
349     BitstreamEntry Entry = MaybeEntry.get();
350 
351     switch (Entry.Kind) {
352     case BitstreamEntry::SubBlock: // Handled for us already.
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return Triple;
357     case BitstreamEntry::Record:
358       // The interesting case.
359       break;
360     }
361 
362     // Read a record.
363     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
364     if (!MaybeRecord)
365       return MaybeRecord.takeError();
366     switch (MaybeRecord.get()) {
367     default: break;  // Default behavior, ignore unknown content.
368     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
369       std::string S;
370       if (convertToString(Record, 0, S))
371         return error("Invalid triple record");
372       Triple = S;
373       break;
374     }
375     }
376     Record.clear();
377   }
378   llvm_unreachable("Exit infinite loop");
379 }
380 
381 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
382   // We expect a number of well-defined blocks, though we don't necessarily
383   // need to understand them all.
384   while (true) {
385     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
386     if (!MaybeEntry)
387       return MaybeEntry.takeError();
388     BitstreamEntry Entry = MaybeEntry.get();
389 
390     switch (Entry.Kind) {
391     case BitstreamEntry::Error:
392       return error("Malformed block");
393     case BitstreamEntry::EndBlock:
394       return "";
395 
396     case BitstreamEntry::SubBlock:
397       if (Entry.ID == bitc::MODULE_BLOCK_ID)
398         return readModuleTriple(Stream);
399 
400       // Ignore other sub-blocks.
401       if (Error Err = Stream.SkipBlock())
402         return std::move(Err);
403       continue;
404 
405     case BitstreamEntry::Record:
406       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
407         continue;
408       else
409         return Skipped.takeError();
410     }
411   }
412 }
413 
414 namespace {
415 
416 class BitcodeReaderBase {
417 protected:
418   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
419       : Stream(std::move(Stream)), Strtab(Strtab) {
420     this->Stream.setBlockInfo(&BlockInfo);
421   }
422 
423   BitstreamBlockInfo BlockInfo;
424   BitstreamCursor Stream;
425   StringRef Strtab;
426 
427   /// In version 2 of the bitcode we store names of global values and comdats in
428   /// a string table rather than in the VST.
429   bool UseStrtab = false;
430 
431   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
432 
433   /// If this module uses a string table, pop the reference to the string table
434   /// and return the referenced string and the rest of the record. Otherwise
435   /// just return the record itself.
436   std::pair<StringRef, ArrayRef<uint64_t>>
437   readNameFromStrtab(ArrayRef<uint64_t> Record);
438 
439   Error readBlockInfo();
440 
441   // Contains an arbitrary and optional string identifying the bitcode producer
442   std::string ProducerIdentification;
443 
444   Error error(const Twine &Message);
445 };
446 
447 } // end anonymous namespace
448 
449 Error BitcodeReaderBase::error(const Twine &Message) {
450   std::string FullMsg = Message.str();
451   if (!ProducerIdentification.empty())
452     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
453                LLVM_VERSION_STRING "')";
454   return ::error(FullMsg);
455 }
456 
457 Expected<unsigned>
458 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
459   if (Record.empty())
460     return error("Invalid version record");
461   unsigned ModuleVersion = Record[0];
462   if (ModuleVersion > 2)
463     return error("Invalid value");
464   UseStrtab = ModuleVersion >= 2;
465   return ModuleVersion;
466 }
467 
468 std::pair<StringRef, ArrayRef<uint64_t>>
469 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
470   if (!UseStrtab)
471     return {"", Record};
472   // Invalid reference. Let the caller complain about the record being empty.
473   if (Record[0] + Record[1] > Strtab.size())
474     return {"", {}};
475   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
476 }
477 
478 namespace {
479 
480 /// This represents a constant expression or constant aggregate using a custom
481 /// structure internal to the bitcode reader. Later, this structure will be
482 /// expanded by materializeValue() either into a constant expression/aggregate,
483 /// or into an instruction sequence at the point of use. This allows us to
484 /// upgrade bitcode using constant expressions even if this kind of constant
485 /// expression is no longer supported.
486 class BitcodeConstant final : public Value,
487                               TrailingObjects<BitcodeConstant, unsigned> {
488   friend TrailingObjects;
489 
490   // Value subclass ID: Pick largest possible value to avoid any clashes.
491   static constexpr uint8_t SubclassID = 255;
492 
493 public:
494   // Opcodes used for non-expressions. This includes constant aggregates
495   // (struct, array, vector) that might need expansion, as well as non-leaf
496   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
497   // but still go through BitcodeConstant to avoid different uselist orders
498   // between the two cases.
499   static constexpr uint8_t ConstantStructOpcode = 255;
500   static constexpr uint8_t ConstantArrayOpcode = 254;
501   static constexpr uint8_t ConstantVectorOpcode = 253;
502   static constexpr uint8_t NoCFIOpcode = 252;
503   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
504   static constexpr uint8_t BlockAddressOpcode = 250;
505   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
506 
507   // Separate struct to make passing different number of parameters to
508   // BitcodeConstant::create() more convenient.
509   struct ExtraInfo {
510     uint8_t Opcode;
511     uint8_t Flags;
512     unsigned Extra;
513     Type *SrcElemTy;
514 
515     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
516               Type *SrcElemTy = nullptr)
517         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
518   };
519 
520   uint8_t Opcode;
521   uint8_t Flags;
522   unsigned NumOperands;
523   unsigned Extra;  // GEP inrange index or blockaddress BB id.
524   Type *SrcElemTy; // GEP source element type.
525 
526 private:
527   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
528       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
529         NumOperands(OpIDs.size()), Extra(Info.Extra),
530         SrcElemTy(Info.SrcElemTy) {
531     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
532                             getTrailingObjects<unsigned>());
533   }
534 
535   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
536 
537 public:
538   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
539                                  const ExtraInfo &Info,
540                                  ArrayRef<unsigned> OpIDs) {
541     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
542                            alignof(BitcodeConstant));
543     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
544   }
545 
546   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
547 
548   ArrayRef<unsigned> getOperandIDs() const {
549     return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands);
550   }
551 
552   Optional<unsigned> getInRangeIndex() const {
553     assert(Opcode == Instruction::GetElementPtr);
554     if (Extra == (unsigned)-1)
555       return None;
556     return Extra;
557   }
558 
559   const char *getOpcodeName() const {
560     return Instruction::getOpcodeName(Opcode);
561   }
562 };
563 
564 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
565   LLVMContext &Context;
566   Module *TheModule = nullptr;
567   // Next offset to start scanning for lazy parsing of function bodies.
568   uint64_t NextUnreadBit = 0;
569   // Last function offset found in the VST.
570   uint64_t LastFunctionBlockBit = 0;
571   bool SeenValueSymbolTable = false;
572   uint64_t VSTOffset = 0;
573 
574   std::vector<std::string> SectionTable;
575   std::vector<std::string> GCTable;
576 
577   std::vector<Type *> TypeList;
578   /// Track type IDs of contained types. Order is the same as the contained
579   /// types of a Type*. This is used during upgrades of typed pointer IR in
580   /// opaque pointer mode.
581   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
582   /// In some cases, we need to create a type ID for a type that was not
583   /// explicitly encoded in the bitcode, or we don't know about at the current
584   /// point. For example, a global may explicitly encode the value type ID, but
585   /// not have a type ID for the pointer to value type, for which we create a
586   /// virtual type ID instead. This map stores the new type ID that was created
587   /// for the given pair of Type and contained type ID.
588   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
589   DenseMap<Function *, unsigned> FunctionTypeIDs;
590   /// Allocator for BitcodeConstants. This should come before ValueList,
591   /// because the ValueList might hold ValueHandles to these constants, so
592   /// ValueList must be destroyed before Alloc.
593   BumpPtrAllocator Alloc;
594   BitcodeReaderValueList ValueList;
595   Optional<MetadataLoader> MDLoader;
596   std::vector<Comdat *> ComdatList;
597   DenseSet<GlobalObject *> ImplicitComdatObjects;
598   SmallVector<Instruction *, 64> InstructionList;
599 
600   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
601   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
602 
603   struct FunctionOperandInfo {
604     Function *F;
605     unsigned PersonalityFn;
606     unsigned Prefix;
607     unsigned Prologue;
608   };
609   std::vector<FunctionOperandInfo> FunctionOperands;
610 
611   /// The set of attributes by index.  Index zero in the file is for null, and
612   /// is thus not represented here.  As such all indices are off by one.
613   std::vector<AttributeList> MAttributes;
614 
615   /// The set of attribute groups.
616   std::map<unsigned, AttributeList> MAttributeGroups;
617 
618   /// While parsing a function body, this is a list of the basic blocks for the
619   /// function.
620   std::vector<BasicBlock*> FunctionBBs;
621 
622   // When reading the module header, this list is populated with functions that
623   // have bodies later in the file.
624   std::vector<Function*> FunctionsWithBodies;
625 
626   // When intrinsic functions are encountered which require upgrading they are
627   // stored here with their replacement function.
628   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
629   UpdatedIntrinsicMap UpgradedIntrinsics;
630   // Intrinsics which were remangled because of types rename
631   UpdatedIntrinsicMap RemangledIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678 public:
679   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
680                 StringRef ProducerIdentification, LLVMContext &Context);
681 
682   Error materializeForwardReferencedFunctions();
683 
684   Error materialize(GlobalValue *GV) override;
685   Error materializeModule() override;
686   std::vector<StructType *> getIdentifiedStructTypes() const override;
687 
688   /// Main interface to parsing a bitcode buffer.
689   /// \returns true if an error occurred.
690   Error parseBitcodeInto(
691       Module *M, bool ShouldLazyLoadMetadata, bool IsImporting,
692       DataLayoutCallbackTy DataLayoutCallback);
693 
694   static uint64_t decodeSignRotatedValue(uint64_t V);
695 
696   /// Materialize any deferred Metadata block.
697   Error materializeMetadata() override;
698 
699   void setStripDebugInfo() override;
700 
701 private:
702   std::vector<StructType *> IdentifiedStructTypes;
703   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704   StructType *createIdentifiedStructType(LLVMContext &Context);
705 
706   static constexpr unsigned InvalidTypeID = ~0u;
707 
708   Type *getTypeByID(unsigned ID);
709   Type *getPtrElementTypeByID(unsigned ID);
710   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712 
713   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
714   Expected<Constant *> getValueForInitializer(unsigned ID);
715 
716   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
717                         BasicBlock *ConstExprInsertBB) {
718     if (Ty && Ty->isMetadataTy())
719       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
720     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
721   }
722 
723   Metadata *getFnMetadataByID(unsigned ID) {
724     return MDLoader->getMetadataFwdRefOrLoad(ID);
725   }
726 
727   BasicBlock *getBasicBlock(unsigned ID) const {
728     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
729     return FunctionBBs[ID];
730   }
731 
732   AttributeList getAttributes(unsigned i) const {
733     if (i-1 < MAttributes.size())
734       return MAttributes[i-1];
735     return AttributeList();
736   }
737 
738   /// Read a value/type pair out of the specified record from slot 'Slot'.
739   /// Increment Slot past the number of slots used in the record. Return true on
740   /// failure.
741   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
742                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
743                         BasicBlock *ConstExprInsertBB) {
744     if (Slot == Record.size()) return true;
745     unsigned ValNo = (unsigned)Record[Slot++];
746     // Adjust the ValNo, if it was encoded relative to the InstNum.
747     if (UseRelativeIDs)
748       ValNo = InstNum - ValNo;
749     if (ValNo < InstNum) {
750       // If this is not a forward reference, just return the value we already
751       // have.
752       TypeID = ValueList.getTypeID(ValNo);
753       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
754       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
755              "Incorrect type ID stored for value");
756       return ResVal == nullptr;
757     }
758     if (Slot == Record.size())
759       return true;
760 
761     TypeID = (unsigned)Record[Slot++];
762     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
763                             ConstExprInsertBB);
764     return ResVal == nullptr;
765   }
766 
767   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
768   /// past the number of slots used by the value in the record. Return true if
769   /// there is an error.
770   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
771                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
772                 BasicBlock *ConstExprInsertBB) {
773     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
774       return true;
775     // All values currently take a single record slot.
776     ++Slot;
777     return false;
778   }
779 
780   /// Like popValue, but does not increment the Slot number.
781   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
782                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
783                 BasicBlock *ConstExprInsertBB) {
784     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
785     return ResVal == nullptr;
786   }
787 
788   /// Version of getValue that returns ResVal directly, or 0 if there is an
789   /// error.
790   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
791                   unsigned InstNum, Type *Ty, unsigned TyID,
792                   BasicBlock *ConstExprInsertBB) {
793     if (Slot == Record.size()) return nullptr;
794     unsigned ValNo = (unsigned)Record[Slot];
795     // Adjust the ValNo, if it was encoded relative to the InstNum.
796     if (UseRelativeIDs)
797       ValNo = InstNum - ValNo;
798     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
799   }
800 
801   /// Like getValue, but decodes signed VBRs.
802   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
803                         unsigned InstNum, Type *Ty, unsigned TyID,
804                         BasicBlock *ConstExprInsertBB) {
805     if (Slot == Record.size()) return nullptr;
806     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
807     // Adjust the ValNo, if it was encoded relative to the InstNum.
808     if (UseRelativeIDs)
809       ValNo = InstNum - ValNo;
810     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
811   }
812 
813   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
814   /// corresponding argument's pointee type. Also upgrades intrinsics that now
815   /// require an elementtype attribute.
816   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
817 
818   /// Converts alignment exponent (i.e. power of two (or zero)) to the
819   /// corresponding alignment to use. If alignment is too large, returns
820   /// a corresponding error code.
821   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
822   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
823   Error parseModule(
824       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
826 
827   Error parseComdatRecord(ArrayRef<uint64_t> Record);
828   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831                                         ArrayRef<uint64_t> Record);
832 
833   Error parseAttributeBlock();
834   Error parseAttributeGroupBlock();
835   Error parseTypeTable();
836   Error parseTypeTableBody();
837   Error parseOperandBundleTags();
838   Error parseSyncScopeNames();
839 
840   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841                                 unsigned NameIndex, Triple &TT);
842   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843                                ArrayRef<uint64_t> Record);
844   Error parseValueSymbolTable(uint64_t Offset = 0);
845   Error parseGlobalValueSymbolTable();
846   Error parseConstants();
847   Error rememberAndSkipFunctionBodies();
848   Error rememberAndSkipFunctionBody();
849   /// Save the positions of the Metadata blocks and skip parsing the blocks.
850   Error rememberAndSkipMetadata();
851   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852   Error parseFunctionBody(Function *F);
853   Error globalCleanup();
854   Error resolveGlobalAndIndirectSymbolInits();
855   Error parseUseLists();
856   Error findFunctionInStream(
857       Function *F,
858       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859 
860   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861 };
862 
863 /// Class to manage reading and parsing function summary index bitcode
864 /// files/sections.
865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866   /// The module index built during parsing.
867   ModuleSummaryIndex &TheIndex;
868 
869   /// Indicates whether we have encountered a global value summary section
870   /// yet during parsing.
871   bool SeenGlobalValSummary = false;
872 
873   /// Indicates whether we have already parsed the VST, used for error checking.
874   bool SeenValueSymbolTable = false;
875 
876   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877   /// Used to enable on-demand parsing of the VST.
878   uint64_t VSTOffset = 0;
879 
880   // Map to save ValueId to ValueInfo association that was recorded in the
881   // ValueSymbolTable. It is used after the VST is parsed to convert
882   // call graph edges read from the function summary from referencing
883   // callees by their ValueId to using the ValueInfo instead, which is how
884   // they are recorded in the summary index being built.
885   // We save a GUID which refers to the same global as the ValueInfo, but
886   // ignoring the linkage, i.e. for values other than local linkage they are
887   // identical.
888   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
889       ValueIdToValueInfoMap;
890 
891   /// Map populated during module path string table parsing, from the
892   /// module ID to a string reference owned by the index's module
893   /// path string table, used to correlate with combined index
894   /// summary records.
895   DenseMap<uint64_t, StringRef> ModuleIdMap;
896 
897   /// Original source file name recorded in a bitcode record.
898   std::string SourceFileName;
899 
900   /// The string identifier given to this module by the client, normally the
901   /// path to the bitcode file.
902   StringRef ModulePath;
903 
904   /// For per-module summary indexes, the unique numerical identifier given to
905   /// this module by the client.
906   unsigned ModuleId;
907 
908 public:
909   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
910                                   ModuleSummaryIndex &TheIndex,
911                                   StringRef ModulePath, unsigned ModuleId);
912 
913   Error parseModule();
914 
915 private:
916   void setValueGUID(uint64_t ValueID, StringRef ValueName,
917                     GlobalValue::LinkageTypes Linkage,
918                     StringRef SourceFileName);
919   Error parseValueSymbolTable(
920       uint64_t Offset,
921       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
922   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
923   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
924                                                     bool IsOldProfileFormat,
925                                                     bool HasProfile,
926                                                     bool HasRelBF);
927   Error parseEntireSummary(unsigned ID);
928   Error parseModuleStringTable();
929   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
930   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
931                                        TypeIdCompatibleVtableInfo &TypeId);
932   std::vector<FunctionSummary::ParamAccess>
933   parseParamAccesses(ArrayRef<uint64_t> Record);
934 
935   std::pair<ValueInfo, GlobalValue::GUID>
936   getValueInfoFromValueId(unsigned ValueId);
937 
938   void addThisModule();
939   ModuleSummaryIndex::ModuleInfo *getThisModule();
940 };
941 
942 } // end anonymous namespace
943 
944 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
945                                                     Error Err) {
946   if (Err) {
947     std::error_code EC;
948     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
949       EC = EIB.convertToErrorCode();
950       Ctx.emitError(EIB.message());
951     });
952     return EC;
953   }
954   return std::error_code();
955 }
956 
957 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
958                              StringRef ProducerIdentification,
959                              LLVMContext &Context)
960     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
961       ValueList(this->Stream.SizeInBytes(),
962                 [this](unsigned ValID, BasicBlock *InsertBB) {
963                   return materializeValue(ValID, InsertBB);
964                 }) {
965   this->ProducerIdentification = std::string(ProducerIdentification);
966 }
967 
968 Error BitcodeReader::materializeForwardReferencedFunctions() {
969   if (WillMaterializeAllForwardRefs)
970     return Error::success();
971 
972   // Prevent recursion.
973   WillMaterializeAllForwardRefs = true;
974 
975   while (!BasicBlockFwdRefQueue.empty()) {
976     Function *F = BasicBlockFwdRefQueue.front();
977     BasicBlockFwdRefQueue.pop_front();
978     assert(F && "Expected valid function");
979     if (!BasicBlockFwdRefs.count(F))
980       // Already materialized.
981       continue;
982 
983     // Check for a function that isn't materializable to prevent an infinite
984     // loop.  When parsing a blockaddress stored in a global variable, there
985     // isn't a trivial way to check if a function will have a body without a
986     // linear search through FunctionsWithBodies, so just check it here.
987     if (!F->isMaterializable())
988       return error("Never resolved function from blockaddress");
989 
990     // Try to materialize F.
991     if (Error Err = materialize(F))
992       return Err;
993   }
994   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
995 
996   for (Function *F : BackwardRefFunctions)
997     if (Error Err = materialize(F))
998       return Err;
999   BackwardRefFunctions.clear();
1000 
1001   // Reset state.
1002   WillMaterializeAllForwardRefs = false;
1003   return Error::success();
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 //  Helper functions to implement forward reference resolution, etc.
1008 //===----------------------------------------------------------------------===//
1009 
1010 static bool hasImplicitComdat(size_t Val) {
1011   switch (Val) {
1012   default:
1013     return false;
1014   case 1:  // Old WeakAnyLinkage
1015   case 4:  // Old LinkOnceAnyLinkage
1016   case 10: // Old WeakODRLinkage
1017   case 11: // Old LinkOnceODRLinkage
1018     return true;
1019   }
1020 }
1021 
1022 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1023   switch (Val) {
1024   default: // Map unknown/new linkages to external
1025   case 0:
1026     return GlobalValue::ExternalLinkage;
1027   case 2:
1028     return GlobalValue::AppendingLinkage;
1029   case 3:
1030     return GlobalValue::InternalLinkage;
1031   case 5:
1032     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1033   case 6:
1034     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1035   case 7:
1036     return GlobalValue::ExternalWeakLinkage;
1037   case 8:
1038     return GlobalValue::CommonLinkage;
1039   case 9:
1040     return GlobalValue::PrivateLinkage;
1041   case 12:
1042     return GlobalValue::AvailableExternallyLinkage;
1043   case 13:
1044     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1045   case 14:
1046     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1047   case 15:
1048     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1049   case 1: // Old value with implicit comdat.
1050   case 16:
1051     return GlobalValue::WeakAnyLinkage;
1052   case 10: // Old value with implicit comdat.
1053   case 17:
1054     return GlobalValue::WeakODRLinkage;
1055   case 4: // Old value with implicit comdat.
1056   case 18:
1057     return GlobalValue::LinkOnceAnyLinkage;
1058   case 11: // Old value with implicit comdat.
1059   case 19:
1060     return GlobalValue::LinkOnceODRLinkage;
1061   }
1062 }
1063 
1064 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1065   FunctionSummary::FFlags Flags;
1066   Flags.ReadNone = RawFlags & 0x1;
1067   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1068   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1069   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1070   Flags.NoInline = (RawFlags >> 4) & 0x1;
1071   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1072   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1073   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1074   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1075   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1076   return Flags;
1077 }
1078 
1079 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1080 //
1081 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1082 // visibility: [8, 10).
1083 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1084                                                             uint64_t Version) {
1085   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1086   // like getDecodedLinkage() above. Any future change to the linkage enum and
1087   // to getDecodedLinkage() will need to be taken into account here as above.
1088   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1089   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1090   RawFlags = RawFlags >> 4;
1091   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1092   // The Live flag wasn't introduced until version 3. For dead stripping
1093   // to work correctly on earlier versions, we must conservatively treat all
1094   // values as live.
1095   bool Live = (RawFlags & 0x2) || Version < 3;
1096   bool Local = (RawFlags & 0x4);
1097   bool AutoHide = (RawFlags & 0x8);
1098 
1099   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1100                                      Live, Local, AutoHide);
1101 }
1102 
1103 // Decode the flags for GlobalVariable in the summary
1104 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1105   return GlobalVarSummary::GVarFlags(
1106       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1107       (RawFlags & 0x4) ? true : false,
1108       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1109 }
1110 
1111 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1112   switch (Val) {
1113   default: // Map unknown visibilities to default.
1114   case 0: return GlobalValue::DefaultVisibility;
1115   case 1: return GlobalValue::HiddenVisibility;
1116   case 2: return GlobalValue::ProtectedVisibility;
1117   }
1118 }
1119 
1120 static GlobalValue::DLLStorageClassTypes
1121 getDecodedDLLStorageClass(unsigned Val) {
1122   switch (Val) {
1123   default: // Map unknown values to default.
1124   case 0: return GlobalValue::DefaultStorageClass;
1125   case 1: return GlobalValue::DLLImportStorageClass;
1126   case 2: return GlobalValue::DLLExportStorageClass;
1127   }
1128 }
1129 
1130 static bool getDecodedDSOLocal(unsigned Val) {
1131   switch(Val) {
1132   default: // Map unknown values to preemptable.
1133   case 0:  return false;
1134   case 1:  return true;
1135   }
1136 }
1137 
1138 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1139   switch (Val) {
1140     case 0: return GlobalVariable::NotThreadLocal;
1141     default: // Map unknown non-zero value to general dynamic.
1142     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1143     case 2: return GlobalVariable::LocalDynamicTLSModel;
1144     case 3: return GlobalVariable::InitialExecTLSModel;
1145     case 4: return GlobalVariable::LocalExecTLSModel;
1146   }
1147 }
1148 
1149 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1150   switch (Val) {
1151     default: // Map unknown to UnnamedAddr::None.
1152     case 0: return GlobalVariable::UnnamedAddr::None;
1153     case 1: return GlobalVariable::UnnamedAddr::Global;
1154     case 2: return GlobalVariable::UnnamedAddr::Local;
1155   }
1156 }
1157 
1158 static int getDecodedCastOpcode(unsigned Val) {
1159   switch (Val) {
1160   default: return -1;
1161   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1162   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1163   case bitc::CAST_SEXT    : return Instruction::SExt;
1164   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1165   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1166   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1167   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1168   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1169   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1170   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1171   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1172   case bitc::CAST_BITCAST : return Instruction::BitCast;
1173   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1174   }
1175 }
1176 
1177 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1178   bool IsFP = Ty->isFPOrFPVectorTy();
1179   // UnOps are only valid for int/fp or vector of int/fp types
1180   if (!IsFP && !Ty->isIntOrIntVectorTy())
1181     return -1;
1182 
1183   switch (Val) {
1184   default:
1185     return -1;
1186   case bitc::UNOP_FNEG:
1187     return IsFP ? Instruction::FNeg : -1;
1188   }
1189 }
1190 
1191 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1192   bool IsFP = Ty->isFPOrFPVectorTy();
1193   // BinOps are only valid for int/fp or vector of int/fp types
1194   if (!IsFP && !Ty->isIntOrIntVectorTy())
1195     return -1;
1196 
1197   switch (Val) {
1198   default:
1199     return -1;
1200   case bitc::BINOP_ADD:
1201     return IsFP ? Instruction::FAdd : Instruction::Add;
1202   case bitc::BINOP_SUB:
1203     return IsFP ? Instruction::FSub : Instruction::Sub;
1204   case bitc::BINOP_MUL:
1205     return IsFP ? Instruction::FMul : Instruction::Mul;
1206   case bitc::BINOP_UDIV:
1207     return IsFP ? -1 : Instruction::UDiv;
1208   case bitc::BINOP_SDIV:
1209     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1210   case bitc::BINOP_UREM:
1211     return IsFP ? -1 : Instruction::URem;
1212   case bitc::BINOP_SREM:
1213     return IsFP ? Instruction::FRem : Instruction::SRem;
1214   case bitc::BINOP_SHL:
1215     return IsFP ? -1 : Instruction::Shl;
1216   case bitc::BINOP_LSHR:
1217     return IsFP ? -1 : Instruction::LShr;
1218   case bitc::BINOP_ASHR:
1219     return IsFP ? -1 : Instruction::AShr;
1220   case bitc::BINOP_AND:
1221     return IsFP ? -1 : Instruction::And;
1222   case bitc::BINOP_OR:
1223     return IsFP ? -1 : Instruction::Or;
1224   case bitc::BINOP_XOR:
1225     return IsFP ? -1 : Instruction::Xor;
1226   }
1227 }
1228 
1229 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1230   switch (Val) {
1231   default: return AtomicRMWInst::BAD_BINOP;
1232   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1233   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1234   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1235   case bitc::RMW_AND: return AtomicRMWInst::And;
1236   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1237   case bitc::RMW_OR: return AtomicRMWInst::Or;
1238   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1239   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1240   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1241   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1242   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1243   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1244   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1245   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1246   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1247   }
1248 }
1249 
1250 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1251   switch (Val) {
1252   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1253   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1254   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1255   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1256   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1257   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1258   default: // Map unknown orderings to sequentially-consistent.
1259   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1260   }
1261 }
1262 
1263 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1264   switch (Val) {
1265   default: // Map unknown selection kinds to any.
1266   case bitc::COMDAT_SELECTION_KIND_ANY:
1267     return Comdat::Any;
1268   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1269     return Comdat::ExactMatch;
1270   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1271     return Comdat::Largest;
1272   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1273     return Comdat::NoDeduplicate;
1274   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1275     return Comdat::SameSize;
1276   }
1277 }
1278 
1279 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1280   FastMathFlags FMF;
1281   if (0 != (Val & bitc::UnsafeAlgebra))
1282     FMF.setFast();
1283   if (0 != (Val & bitc::AllowReassoc))
1284     FMF.setAllowReassoc();
1285   if (0 != (Val & bitc::NoNaNs))
1286     FMF.setNoNaNs();
1287   if (0 != (Val & bitc::NoInfs))
1288     FMF.setNoInfs();
1289   if (0 != (Val & bitc::NoSignedZeros))
1290     FMF.setNoSignedZeros();
1291   if (0 != (Val & bitc::AllowReciprocal))
1292     FMF.setAllowReciprocal();
1293   if (0 != (Val & bitc::AllowContract))
1294     FMF.setAllowContract(true);
1295   if (0 != (Val & bitc::ApproxFunc))
1296     FMF.setApproxFunc();
1297   return FMF;
1298 }
1299 
1300 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1301   switch (Val) {
1302   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1303   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1304   }
1305 }
1306 
1307 Type *BitcodeReader::getTypeByID(unsigned ID) {
1308   // The type table size is always specified correctly.
1309   if (ID >= TypeList.size())
1310     return nullptr;
1311 
1312   if (Type *Ty = TypeList[ID])
1313     return Ty;
1314 
1315   // If we have a forward reference, the only possible case is when it is to a
1316   // named struct.  Just create a placeholder for now.
1317   return TypeList[ID] = createIdentifiedStructType(Context);
1318 }
1319 
1320 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1321   auto It = ContainedTypeIDs.find(ID);
1322   if (It == ContainedTypeIDs.end())
1323     return InvalidTypeID;
1324 
1325   if (Idx >= It->second.size())
1326     return InvalidTypeID;
1327 
1328   return It->second[Idx];
1329 }
1330 
1331 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1332   if (ID >= TypeList.size())
1333     return nullptr;
1334 
1335   Type *Ty = TypeList[ID];
1336   if (!Ty->isPointerTy())
1337     return nullptr;
1338 
1339   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1340   if (!ElemTy)
1341     return nullptr;
1342 
1343   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1344          "Incorrect element type");
1345   return ElemTy;
1346 }
1347 
1348 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1349                                          ArrayRef<unsigned> ChildTypeIDs) {
1350   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1351   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1352   auto It = VirtualTypeIDs.find(CacheKey);
1353   if (It != VirtualTypeIDs.end()) {
1354     // The cmpxchg return value is the only place we need more than one
1355     // contained type ID, however the second one will always be the same (i1),
1356     // so we don't need to include it in the cache key. This asserts that the
1357     // contained types are indeed as expected and there are no collisions.
1358     assert((ChildTypeIDs.empty() ||
1359             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1360            "Incorrect cached contained type IDs");
1361     return It->second;
1362   }
1363 
1364 #ifndef NDEBUG
1365   if (!Ty->isOpaquePointerTy()) {
1366     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1367            "Wrong number of contained types");
1368     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1369       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1370              "Incorrect contained type ID");
1371     }
1372   }
1373 #endif
1374 
1375   unsigned TypeID = TypeList.size();
1376   TypeList.push_back(Ty);
1377   if (!ChildTypeIDs.empty())
1378     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1379   VirtualTypeIDs.insert({CacheKey, TypeID});
1380   return TypeID;
1381 }
1382 
1383 static bool isConstExprSupported(uint8_t Opcode) {
1384   // These are not real constant expressions, always consider them supported.
1385   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1386     return true;
1387 
1388   if (Instruction::isBinaryOp(Opcode))
1389     return ConstantExpr::isSupportedBinOp(Opcode);
1390 
1391   return !ExpandConstantExprs;
1392 }
1393 
1394 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1395                                                   BasicBlock *InsertBB) {
1396   // Quickly handle the case where there is no BitcodeConstant to resolve.
1397   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1398       !isa<BitcodeConstant>(ValueList[StartValID]))
1399     return ValueList[StartValID];
1400 
1401   SmallDenseMap<unsigned, Value *> MaterializedValues;
1402   SmallVector<unsigned> Worklist;
1403   Worklist.push_back(StartValID);
1404   while (!Worklist.empty()) {
1405     unsigned ValID = Worklist.back();
1406     if (MaterializedValues.count(ValID)) {
1407       // Duplicate expression that was already handled.
1408       Worklist.pop_back();
1409       continue;
1410     }
1411 
1412     if (ValID >= ValueList.size() || !ValueList[ValID])
1413       return error("Invalid value ID");
1414 
1415     Value *V = ValueList[ValID];
1416     auto *BC = dyn_cast<BitcodeConstant>(V);
1417     if (!BC) {
1418       MaterializedValues.insert({ValID, V});
1419       Worklist.pop_back();
1420       continue;
1421     }
1422 
1423     // Iterate in reverse, so values will get popped from the worklist in
1424     // expected order.
1425     SmallVector<Value *> Ops;
1426     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1427       auto It = MaterializedValues.find(OpID);
1428       if (It != MaterializedValues.end())
1429         Ops.push_back(It->second);
1430       else
1431         Worklist.push_back(OpID);
1432     }
1433 
1434     // Some expressions have not been resolved yet, handle them first and then
1435     // revisit this one.
1436     if (Ops.size() != BC->getOperandIDs().size())
1437       continue;
1438     std::reverse(Ops.begin(), Ops.end());
1439 
1440     SmallVector<Constant *> ConstOps;
1441     for (Value *Op : Ops)
1442       if (auto *C = dyn_cast<Constant>(Op))
1443         ConstOps.push_back(C);
1444 
1445     // Materialize as constant expression if possible.
1446     if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
1447       Constant *C;
1448       if (Instruction::isCast(BC->Opcode)) {
1449         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1450         if (!C)
1451           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1452       } else if (Instruction::isUnaryOp(BC->Opcode)) {
1453         C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags);
1454       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1455         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1456       } else {
1457         switch (BC->Opcode) {
1458         case BitcodeConstant::NoCFIOpcode: {
1459           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1460           if (!GV)
1461             return error("no_cfi operand must be GlobalValue");
1462           C = NoCFIValue::get(GV);
1463           break;
1464         }
1465         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1466           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1467           if (!GV)
1468             return error("dso_local operand must be GlobalValue");
1469           C = DSOLocalEquivalent::get(GV);
1470           break;
1471         }
1472         case BitcodeConstant::BlockAddressOpcode: {
1473           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1474           if (!Fn)
1475             return error("blockaddress operand must be a function");
1476 
1477           // If the function is already parsed we can insert the block address
1478           // right away.
1479           BasicBlock *BB;
1480           unsigned BBID = BC->Extra;
1481           if (!BBID)
1482             // Invalid reference to entry block.
1483             return error("Invalid ID");
1484           if (!Fn->empty()) {
1485             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1486             for (size_t I = 0, E = BBID; I != E; ++I) {
1487               if (BBI == BBE)
1488                 return error("Invalid ID");
1489               ++BBI;
1490             }
1491             BB = &*BBI;
1492           } else {
1493             // Otherwise insert a placeholder and remember it so it can be
1494             // inserted when the function is parsed.
1495             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1496             if (FwdBBs.empty())
1497               BasicBlockFwdRefQueue.push_back(Fn);
1498             if (FwdBBs.size() < BBID + 1)
1499               FwdBBs.resize(BBID + 1);
1500             if (!FwdBBs[BBID])
1501               FwdBBs[BBID] = BasicBlock::Create(Context);
1502             BB = FwdBBs[BBID];
1503           }
1504           C = BlockAddress::get(Fn, BB);
1505           break;
1506         }
1507         case BitcodeConstant::ConstantStructOpcode:
1508           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1509           break;
1510         case BitcodeConstant::ConstantArrayOpcode:
1511           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1512           break;
1513         case BitcodeConstant::ConstantVectorOpcode:
1514           C = ConstantVector::get(ConstOps);
1515           break;
1516         case Instruction::ICmp:
1517         case Instruction::FCmp:
1518           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1519           break;
1520         case Instruction::GetElementPtr:
1521           C = ConstantExpr::getGetElementPtr(
1522               BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(),
1523               BC->Flags, BC->getInRangeIndex());
1524           break;
1525         case Instruction::Select:
1526           C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1527           break;
1528         case Instruction::ExtractElement:
1529           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1530           break;
1531         case Instruction::InsertElement:
1532           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1533                                              ConstOps[2]);
1534           break;
1535         case Instruction::ShuffleVector: {
1536           SmallVector<int, 16> Mask;
1537           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1538           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1539           break;
1540         }
1541         default:
1542           llvm_unreachable("Unhandled bitcode constant");
1543         }
1544       }
1545 
1546       // Cache resolved constant.
1547       ValueList.replaceValueWithoutRAUW(ValID, C);
1548       MaterializedValues.insert({ValID, C});
1549       Worklist.pop_back();
1550       continue;
1551     }
1552 
1553     if (!InsertBB)
1554       return error(Twine("Value referenced by initializer is an unsupported "
1555                          "constant expression of type ") +
1556                    BC->getOpcodeName());
1557 
1558     // Materialize as instructions if necessary.
1559     Instruction *I;
1560     if (Instruction::isCast(BC->Opcode)) {
1561       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1562                            BC->getType(), "constexpr", InsertBB);
1563     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1564       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1565                                 "constexpr", InsertBB);
1566     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1567       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1568                                  Ops[1], "constexpr", InsertBB);
1569       if (isa<OverflowingBinaryOperator>(I)) {
1570         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1571           I->setHasNoSignedWrap();
1572         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1573           I->setHasNoUnsignedWrap();
1574       }
1575       if (isa<PossiblyExactOperator>(I) &&
1576           (BC->Flags & PossiblyExactOperator::IsExact))
1577         I->setIsExact();
1578     } else {
1579       switch (BC->Opcode) {
1580       case BitcodeConstant::ConstantStructOpcode:
1581       case BitcodeConstant::ConstantArrayOpcode:
1582       case BitcodeConstant::ConstantVectorOpcode: {
1583         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1584         Value *V = PoisonValue::get(BC->getType());
1585         for (auto Pair : enumerate(Ops)) {
1586           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1587           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1588                                         InsertBB);
1589         }
1590         I = cast<Instruction>(V);
1591         break;
1592       }
1593       case Instruction::ICmp:
1594       case Instruction::FCmp:
1595         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1596                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1597                             "constexpr", InsertBB);
1598         break;
1599       case Instruction::GetElementPtr:
1600         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1601                                       makeArrayRef(Ops).drop_front(),
1602                                       "constexpr", InsertBB);
1603         if (BC->Flags)
1604           cast<GetElementPtrInst>(I)->setIsInBounds();
1605         break;
1606       case Instruction::Select:
1607         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1608         break;
1609       case Instruction::ExtractElement:
1610         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1611         break;
1612       case Instruction::InsertElement:
1613         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1614                                       InsertBB);
1615         break;
1616       case Instruction::ShuffleVector:
1617         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1618                                   InsertBB);
1619         break;
1620       default:
1621         llvm_unreachable("Unhandled bitcode constant");
1622       }
1623     }
1624 
1625     MaterializedValues.insert({ValID, I});
1626     Worklist.pop_back();
1627   }
1628 
1629   return MaterializedValues[StartValID];
1630 }
1631 
1632 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1633   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1634   if (!MaybeV)
1635     return MaybeV.takeError();
1636 
1637   // Result must be Constant if InsertBB is nullptr.
1638   return cast<Constant>(MaybeV.get());
1639 }
1640 
1641 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1642                                                       StringRef Name) {
1643   auto *Ret = StructType::create(Context, Name);
1644   IdentifiedStructTypes.push_back(Ret);
1645   return Ret;
1646 }
1647 
1648 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1649   auto *Ret = StructType::create(Context);
1650   IdentifiedStructTypes.push_back(Ret);
1651   return Ret;
1652 }
1653 
1654 //===----------------------------------------------------------------------===//
1655 //  Functions for parsing blocks from the bitcode file
1656 //===----------------------------------------------------------------------===//
1657 
1658 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1659   switch (Val) {
1660   case Attribute::EndAttrKinds:
1661   case Attribute::EmptyKey:
1662   case Attribute::TombstoneKey:
1663     llvm_unreachable("Synthetic enumerators which should never get here");
1664 
1665   case Attribute::None:            return 0;
1666   case Attribute::ZExt:            return 1 << 0;
1667   case Attribute::SExt:            return 1 << 1;
1668   case Attribute::NoReturn:        return 1 << 2;
1669   case Attribute::InReg:           return 1 << 3;
1670   case Attribute::StructRet:       return 1 << 4;
1671   case Attribute::NoUnwind:        return 1 << 5;
1672   case Attribute::NoAlias:         return 1 << 6;
1673   case Attribute::ByVal:           return 1 << 7;
1674   case Attribute::Nest:            return 1 << 8;
1675   case Attribute::ReadNone:        return 1 << 9;
1676   case Attribute::ReadOnly:        return 1 << 10;
1677   case Attribute::NoInline:        return 1 << 11;
1678   case Attribute::AlwaysInline:    return 1 << 12;
1679   case Attribute::OptimizeForSize: return 1 << 13;
1680   case Attribute::StackProtect:    return 1 << 14;
1681   case Attribute::StackProtectReq: return 1 << 15;
1682   case Attribute::Alignment:       return 31 << 16;
1683   case Attribute::NoCapture:       return 1 << 21;
1684   case Attribute::NoRedZone:       return 1 << 22;
1685   case Attribute::NoImplicitFloat: return 1 << 23;
1686   case Attribute::Naked:           return 1 << 24;
1687   case Attribute::InlineHint:      return 1 << 25;
1688   case Attribute::StackAlignment:  return 7 << 26;
1689   case Attribute::ReturnsTwice:    return 1 << 29;
1690   case Attribute::UWTable:         return 1 << 30;
1691   case Attribute::NonLazyBind:     return 1U << 31;
1692   case Attribute::SanitizeAddress: return 1ULL << 32;
1693   case Attribute::MinSize:         return 1ULL << 33;
1694   case Attribute::NoDuplicate:     return 1ULL << 34;
1695   case Attribute::StackProtectStrong: return 1ULL << 35;
1696   case Attribute::SanitizeThread:  return 1ULL << 36;
1697   case Attribute::SanitizeMemory:  return 1ULL << 37;
1698   case Attribute::NoBuiltin:       return 1ULL << 38;
1699   case Attribute::Returned:        return 1ULL << 39;
1700   case Attribute::Cold:            return 1ULL << 40;
1701   case Attribute::Builtin:         return 1ULL << 41;
1702   case Attribute::OptimizeNone:    return 1ULL << 42;
1703   case Attribute::InAlloca:        return 1ULL << 43;
1704   case Attribute::NonNull:         return 1ULL << 44;
1705   case Attribute::JumpTable:       return 1ULL << 45;
1706   case Attribute::Convergent:      return 1ULL << 46;
1707   case Attribute::SafeStack:       return 1ULL << 47;
1708   case Attribute::NoRecurse:       return 1ULL << 48;
1709   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1710   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1711   case Attribute::SwiftSelf:       return 1ULL << 51;
1712   case Attribute::SwiftError:      return 1ULL << 52;
1713   case Attribute::WriteOnly:       return 1ULL << 53;
1714   case Attribute::Speculatable:    return 1ULL << 54;
1715   case Attribute::StrictFP:        return 1ULL << 55;
1716   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1717   case Attribute::NoCfCheck:       return 1ULL << 57;
1718   case Attribute::OptForFuzzing:   return 1ULL << 58;
1719   case Attribute::ShadowCallStack: return 1ULL << 59;
1720   case Attribute::SpeculativeLoadHardening:
1721     return 1ULL << 60;
1722   case Attribute::ImmArg:
1723     return 1ULL << 61;
1724   case Attribute::WillReturn:
1725     return 1ULL << 62;
1726   case Attribute::NoFree:
1727     return 1ULL << 63;
1728   default:
1729     // Other attributes are not supported in the raw format,
1730     // as we ran out of space.
1731     return 0;
1732   }
1733   llvm_unreachable("Unsupported attribute type");
1734 }
1735 
1736 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1737   if (!Val) return;
1738 
1739   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1740        I = Attribute::AttrKind(I + 1)) {
1741     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1742       if (I == Attribute::Alignment)
1743         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1744       else if (I == Attribute::StackAlignment)
1745         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1746       else if (Attribute::isTypeAttrKind(I))
1747         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1748       else
1749         B.addAttribute(I);
1750     }
1751   }
1752 }
1753 
1754 /// This fills an AttrBuilder object with the LLVM attributes that have
1755 /// been decoded from the given integer. This function must stay in sync with
1756 /// 'encodeLLVMAttributesForBitcode'.
1757 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1758                                            uint64_t EncodedAttrs) {
1759   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1760   // the bits above 31 down by 11 bits.
1761   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1762   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1763          "Alignment must be a power of two.");
1764 
1765   if (Alignment)
1766     B.addAlignmentAttr(Alignment);
1767   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1768                           (EncodedAttrs & 0xffff));
1769 }
1770 
1771 Error BitcodeReader::parseAttributeBlock() {
1772   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1773     return Err;
1774 
1775   if (!MAttributes.empty())
1776     return error("Invalid multiple blocks");
1777 
1778   SmallVector<uint64_t, 64> Record;
1779 
1780   SmallVector<AttributeList, 8> Attrs;
1781 
1782   // Read all the records.
1783   while (true) {
1784     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1785     if (!MaybeEntry)
1786       return MaybeEntry.takeError();
1787     BitstreamEntry Entry = MaybeEntry.get();
1788 
1789     switch (Entry.Kind) {
1790     case BitstreamEntry::SubBlock: // Handled for us already.
1791     case BitstreamEntry::Error:
1792       return error("Malformed block");
1793     case BitstreamEntry::EndBlock:
1794       return Error::success();
1795     case BitstreamEntry::Record:
1796       // The interesting case.
1797       break;
1798     }
1799 
1800     // Read a record.
1801     Record.clear();
1802     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1803     if (!MaybeRecord)
1804       return MaybeRecord.takeError();
1805     switch (MaybeRecord.get()) {
1806     default:  // Default behavior: ignore.
1807       break;
1808     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1809       // Deprecated, but still needed to read old bitcode files.
1810       if (Record.size() & 1)
1811         return error("Invalid parameter attribute record");
1812 
1813       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1814         AttrBuilder B(Context);
1815         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1816         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1817       }
1818 
1819       MAttributes.push_back(AttributeList::get(Context, Attrs));
1820       Attrs.clear();
1821       break;
1822     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1823       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1824         Attrs.push_back(MAttributeGroups[Record[i]]);
1825 
1826       MAttributes.push_back(AttributeList::get(Context, Attrs));
1827       Attrs.clear();
1828       break;
1829     }
1830   }
1831 }
1832 
1833 // Returns Attribute::None on unrecognized codes.
1834 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1835   switch (Code) {
1836   default:
1837     return Attribute::None;
1838   case bitc::ATTR_KIND_ALIGNMENT:
1839     return Attribute::Alignment;
1840   case bitc::ATTR_KIND_ALWAYS_INLINE:
1841     return Attribute::AlwaysInline;
1842   case bitc::ATTR_KIND_ARGMEMONLY:
1843     return Attribute::ArgMemOnly;
1844   case bitc::ATTR_KIND_BUILTIN:
1845     return Attribute::Builtin;
1846   case bitc::ATTR_KIND_BY_VAL:
1847     return Attribute::ByVal;
1848   case bitc::ATTR_KIND_IN_ALLOCA:
1849     return Attribute::InAlloca;
1850   case bitc::ATTR_KIND_COLD:
1851     return Attribute::Cold;
1852   case bitc::ATTR_KIND_CONVERGENT:
1853     return Attribute::Convergent;
1854   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1855     return Attribute::DisableSanitizerInstrumentation;
1856   case bitc::ATTR_KIND_ELEMENTTYPE:
1857     return Attribute::ElementType;
1858   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1859     return Attribute::FnRetThunkExtern;
1860   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1861     return Attribute::InaccessibleMemOnly;
1862   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1863     return Attribute::InaccessibleMemOrArgMemOnly;
1864   case bitc::ATTR_KIND_INLINE_HINT:
1865     return Attribute::InlineHint;
1866   case bitc::ATTR_KIND_IN_REG:
1867     return Attribute::InReg;
1868   case bitc::ATTR_KIND_JUMP_TABLE:
1869     return Attribute::JumpTable;
1870   case bitc::ATTR_KIND_MIN_SIZE:
1871     return Attribute::MinSize;
1872   case bitc::ATTR_KIND_NAKED:
1873     return Attribute::Naked;
1874   case bitc::ATTR_KIND_NEST:
1875     return Attribute::Nest;
1876   case bitc::ATTR_KIND_NO_ALIAS:
1877     return Attribute::NoAlias;
1878   case bitc::ATTR_KIND_NO_BUILTIN:
1879     return Attribute::NoBuiltin;
1880   case bitc::ATTR_KIND_NO_CALLBACK:
1881     return Attribute::NoCallback;
1882   case bitc::ATTR_KIND_NO_CAPTURE:
1883     return Attribute::NoCapture;
1884   case bitc::ATTR_KIND_NO_DUPLICATE:
1885     return Attribute::NoDuplicate;
1886   case bitc::ATTR_KIND_NOFREE:
1887     return Attribute::NoFree;
1888   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1889     return Attribute::NoImplicitFloat;
1890   case bitc::ATTR_KIND_NO_INLINE:
1891     return Attribute::NoInline;
1892   case bitc::ATTR_KIND_NO_RECURSE:
1893     return Attribute::NoRecurse;
1894   case bitc::ATTR_KIND_NO_MERGE:
1895     return Attribute::NoMerge;
1896   case bitc::ATTR_KIND_NON_LAZY_BIND:
1897     return Attribute::NonLazyBind;
1898   case bitc::ATTR_KIND_NON_NULL:
1899     return Attribute::NonNull;
1900   case bitc::ATTR_KIND_DEREFERENCEABLE:
1901     return Attribute::Dereferenceable;
1902   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1903     return Attribute::DereferenceableOrNull;
1904   case bitc::ATTR_KIND_ALLOC_ALIGN:
1905     return Attribute::AllocAlign;
1906   case bitc::ATTR_KIND_ALLOC_KIND:
1907     return Attribute::AllocKind;
1908   case bitc::ATTR_KIND_ALLOC_SIZE:
1909     return Attribute::AllocSize;
1910   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1911     return Attribute::AllocatedPointer;
1912   case bitc::ATTR_KIND_NO_RED_ZONE:
1913     return Attribute::NoRedZone;
1914   case bitc::ATTR_KIND_NO_RETURN:
1915     return Attribute::NoReturn;
1916   case bitc::ATTR_KIND_NOSYNC:
1917     return Attribute::NoSync;
1918   case bitc::ATTR_KIND_NOCF_CHECK:
1919     return Attribute::NoCfCheck;
1920   case bitc::ATTR_KIND_NO_PROFILE:
1921     return Attribute::NoProfile;
1922   case bitc::ATTR_KIND_SKIP_PROFILE:
1923     return Attribute::SkipProfile;
1924   case bitc::ATTR_KIND_NO_UNWIND:
1925     return Attribute::NoUnwind;
1926   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1927     return Attribute::NoSanitizeBounds;
1928   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1929     return Attribute::NoSanitizeCoverage;
1930   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1931     return Attribute::NullPointerIsValid;
1932   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1933     return Attribute::OptForFuzzing;
1934   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1935     return Attribute::OptimizeForSize;
1936   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1937     return Attribute::OptimizeNone;
1938   case bitc::ATTR_KIND_READ_NONE:
1939     return Attribute::ReadNone;
1940   case bitc::ATTR_KIND_READ_ONLY:
1941     return Attribute::ReadOnly;
1942   case bitc::ATTR_KIND_RETURNED:
1943     return Attribute::Returned;
1944   case bitc::ATTR_KIND_RETURNS_TWICE:
1945     return Attribute::ReturnsTwice;
1946   case bitc::ATTR_KIND_S_EXT:
1947     return Attribute::SExt;
1948   case bitc::ATTR_KIND_SPECULATABLE:
1949     return Attribute::Speculatable;
1950   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1951     return Attribute::StackAlignment;
1952   case bitc::ATTR_KIND_STACK_PROTECT:
1953     return Attribute::StackProtect;
1954   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1955     return Attribute::StackProtectReq;
1956   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1957     return Attribute::StackProtectStrong;
1958   case bitc::ATTR_KIND_SAFESTACK:
1959     return Attribute::SafeStack;
1960   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1961     return Attribute::ShadowCallStack;
1962   case bitc::ATTR_KIND_STRICT_FP:
1963     return Attribute::StrictFP;
1964   case bitc::ATTR_KIND_STRUCT_RET:
1965     return Attribute::StructRet;
1966   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1967     return Attribute::SanitizeAddress;
1968   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1969     return Attribute::SanitizeHWAddress;
1970   case bitc::ATTR_KIND_SANITIZE_THREAD:
1971     return Attribute::SanitizeThread;
1972   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1973     return Attribute::SanitizeMemory;
1974   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1975     return Attribute::SpeculativeLoadHardening;
1976   case bitc::ATTR_KIND_SWIFT_ERROR:
1977     return Attribute::SwiftError;
1978   case bitc::ATTR_KIND_SWIFT_SELF:
1979     return Attribute::SwiftSelf;
1980   case bitc::ATTR_KIND_SWIFT_ASYNC:
1981     return Attribute::SwiftAsync;
1982   case bitc::ATTR_KIND_UW_TABLE:
1983     return Attribute::UWTable;
1984   case bitc::ATTR_KIND_VSCALE_RANGE:
1985     return Attribute::VScaleRange;
1986   case bitc::ATTR_KIND_WILLRETURN:
1987     return Attribute::WillReturn;
1988   case bitc::ATTR_KIND_WRITEONLY:
1989     return Attribute::WriteOnly;
1990   case bitc::ATTR_KIND_Z_EXT:
1991     return Attribute::ZExt;
1992   case bitc::ATTR_KIND_IMMARG:
1993     return Attribute::ImmArg;
1994   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1995     return Attribute::SanitizeMemTag;
1996   case bitc::ATTR_KIND_PREALLOCATED:
1997     return Attribute::Preallocated;
1998   case bitc::ATTR_KIND_NOUNDEF:
1999     return Attribute::NoUndef;
2000   case bitc::ATTR_KIND_BYREF:
2001     return Attribute::ByRef;
2002   case bitc::ATTR_KIND_MUSTPROGRESS:
2003     return Attribute::MustProgress;
2004   case bitc::ATTR_KIND_HOT:
2005     return Attribute::Hot;
2006   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2007     return Attribute::PresplitCoroutine;
2008   }
2009 }
2010 
2011 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2012                                          MaybeAlign &Alignment) {
2013   // Note: Alignment in bitcode files is incremented by 1, so that zero
2014   // can be used for default alignment.
2015   if (Exponent > Value::MaxAlignmentExponent + 1)
2016     return error("Invalid alignment value");
2017   Alignment = decodeMaybeAlign(Exponent);
2018   return Error::success();
2019 }
2020 
2021 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2022   *Kind = getAttrFromCode(Code);
2023   if (*Kind == Attribute::None)
2024     return error("Unknown attribute kind (" + Twine(Code) + ")");
2025   return Error::success();
2026 }
2027 
2028 Error BitcodeReader::parseAttributeGroupBlock() {
2029   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2030     return Err;
2031 
2032   if (!MAttributeGroups.empty())
2033     return error("Invalid multiple blocks");
2034 
2035   SmallVector<uint64_t, 64> Record;
2036 
2037   // Read all the records.
2038   while (true) {
2039     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2040     if (!MaybeEntry)
2041       return MaybeEntry.takeError();
2042     BitstreamEntry Entry = MaybeEntry.get();
2043 
2044     switch (Entry.Kind) {
2045     case BitstreamEntry::SubBlock: // Handled for us already.
2046     case BitstreamEntry::Error:
2047       return error("Malformed block");
2048     case BitstreamEntry::EndBlock:
2049       return Error::success();
2050     case BitstreamEntry::Record:
2051       // The interesting case.
2052       break;
2053     }
2054 
2055     // Read a record.
2056     Record.clear();
2057     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2058     if (!MaybeRecord)
2059       return MaybeRecord.takeError();
2060     switch (MaybeRecord.get()) {
2061     default:  // Default behavior: ignore.
2062       break;
2063     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2064       if (Record.size() < 3)
2065         return error("Invalid grp record");
2066 
2067       uint64_t GrpID = Record[0];
2068       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2069 
2070       AttrBuilder B(Context);
2071       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2072         if (Record[i] == 0) {        // Enum attribute
2073           Attribute::AttrKind Kind;
2074           if (Error Err = parseAttrKind(Record[++i], &Kind))
2075             return Err;
2076 
2077           // Upgrade old-style byval attribute to one with a type, even if it's
2078           // nullptr. We will have to insert the real type when we associate
2079           // this AttributeList with a function.
2080           if (Kind == Attribute::ByVal)
2081             B.addByValAttr(nullptr);
2082           else if (Kind == Attribute::StructRet)
2083             B.addStructRetAttr(nullptr);
2084           else if (Kind == Attribute::InAlloca)
2085             B.addInAllocaAttr(nullptr);
2086           else if (Kind == Attribute::UWTable)
2087             B.addUWTableAttr(UWTableKind::Default);
2088           else if (Attribute::isEnumAttrKind(Kind))
2089             B.addAttribute(Kind);
2090           else
2091             return error("Not an enum attribute");
2092         } else if (Record[i] == 1) { // Integer attribute
2093           Attribute::AttrKind Kind;
2094           if (Error Err = parseAttrKind(Record[++i], &Kind))
2095             return Err;
2096           if (!Attribute::isIntAttrKind(Kind))
2097             return error("Not an int attribute");
2098           if (Kind == Attribute::Alignment)
2099             B.addAlignmentAttr(Record[++i]);
2100           else if (Kind == Attribute::StackAlignment)
2101             B.addStackAlignmentAttr(Record[++i]);
2102           else if (Kind == Attribute::Dereferenceable)
2103             B.addDereferenceableAttr(Record[++i]);
2104           else if (Kind == Attribute::DereferenceableOrNull)
2105             B.addDereferenceableOrNullAttr(Record[++i]);
2106           else if (Kind == Attribute::AllocSize)
2107             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2108           else if (Kind == Attribute::VScaleRange)
2109             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2110           else if (Kind == Attribute::UWTable)
2111             B.addUWTableAttr(UWTableKind(Record[++i]));
2112           else if (Kind == Attribute::AllocKind)
2113             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2114         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2115           bool HasValue = (Record[i++] == 4);
2116           SmallString<64> KindStr;
2117           SmallString<64> ValStr;
2118 
2119           while (Record[i] != 0 && i != e)
2120             KindStr += Record[i++];
2121           assert(Record[i] == 0 && "Kind string not null terminated");
2122 
2123           if (HasValue) {
2124             // Has a value associated with it.
2125             ++i; // Skip the '0' that terminates the "kind" string.
2126             while (Record[i] != 0 && i != e)
2127               ValStr += Record[i++];
2128             assert(Record[i] == 0 && "Value string not null terminated");
2129           }
2130 
2131           B.addAttribute(KindStr.str(), ValStr.str());
2132         } else if (Record[i] == 5 || Record[i] == 6) {
2133           bool HasType = Record[i] == 6;
2134           Attribute::AttrKind Kind;
2135           if (Error Err = parseAttrKind(Record[++i], &Kind))
2136             return Err;
2137           if (!Attribute::isTypeAttrKind(Kind))
2138             return error("Not a type attribute");
2139 
2140           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2141         } else {
2142           return error("Invalid attribute group entry");
2143         }
2144       }
2145 
2146       UpgradeAttributes(B);
2147       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2148       break;
2149     }
2150     }
2151   }
2152 }
2153 
2154 Error BitcodeReader::parseTypeTable() {
2155   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2156     return Err;
2157 
2158   return parseTypeTableBody();
2159 }
2160 
2161 Error BitcodeReader::parseTypeTableBody() {
2162   if (!TypeList.empty())
2163     return error("Invalid multiple blocks");
2164 
2165   SmallVector<uint64_t, 64> Record;
2166   unsigned NumRecords = 0;
2167 
2168   SmallString<64> TypeName;
2169 
2170   // Read all the records for this type table.
2171   while (true) {
2172     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173     if (!MaybeEntry)
2174       return MaybeEntry.takeError();
2175     BitstreamEntry Entry = MaybeEntry.get();
2176 
2177     switch (Entry.Kind) {
2178     case BitstreamEntry::SubBlock: // Handled for us already.
2179     case BitstreamEntry::Error:
2180       return error("Malformed block");
2181     case BitstreamEntry::EndBlock:
2182       if (NumRecords != TypeList.size())
2183         return error("Malformed block");
2184       return Error::success();
2185     case BitstreamEntry::Record:
2186       // The interesting case.
2187       break;
2188     }
2189 
2190     // Read a record.
2191     Record.clear();
2192     Type *ResultTy = nullptr;
2193     SmallVector<unsigned> ContainedIDs;
2194     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2195     if (!MaybeRecord)
2196       return MaybeRecord.takeError();
2197     switch (MaybeRecord.get()) {
2198     default:
2199       return error("Invalid value");
2200     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2201       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2202       // type list.  This allows us to reserve space.
2203       if (Record.empty())
2204         return error("Invalid numentry record");
2205       TypeList.resize(Record[0]);
2206       continue;
2207     case bitc::TYPE_CODE_VOID:      // VOID
2208       ResultTy = Type::getVoidTy(Context);
2209       break;
2210     case bitc::TYPE_CODE_HALF:     // HALF
2211       ResultTy = Type::getHalfTy(Context);
2212       break;
2213     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2214       ResultTy = Type::getBFloatTy(Context);
2215       break;
2216     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2217       ResultTy = Type::getFloatTy(Context);
2218       break;
2219     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2220       ResultTy = Type::getDoubleTy(Context);
2221       break;
2222     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2223       ResultTy = Type::getX86_FP80Ty(Context);
2224       break;
2225     case bitc::TYPE_CODE_FP128:     // FP128
2226       ResultTy = Type::getFP128Ty(Context);
2227       break;
2228     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2229       ResultTy = Type::getPPC_FP128Ty(Context);
2230       break;
2231     case bitc::TYPE_CODE_LABEL:     // LABEL
2232       ResultTy = Type::getLabelTy(Context);
2233       break;
2234     case bitc::TYPE_CODE_METADATA:  // METADATA
2235       ResultTy = Type::getMetadataTy(Context);
2236       break;
2237     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2238       ResultTy = Type::getX86_MMXTy(Context);
2239       break;
2240     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2241       ResultTy = Type::getX86_AMXTy(Context);
2242       break;
2243     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2244       ResultTy = Type::getTokenTy(Context);
2245       break;
2246     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2247       if (Record.empty())
2248         return error("Invalid integer record");
2249 
2250       uint64_t NumBits = Record[0];
2251       if (NumBits < IntegerType::MIN_INT_BITS ||
2252           NumBits > IntegerType::MAX_INT_BITS)
2253         return error("Bitwidth for integer type out of range");
2254       ResultTy = IntegerType::get(Context, NumBits);
2255       break;
2256     }
2257     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2258                                     //          [pointee type, address space]
2259       if (Record.empty())
2260         return error("Invalid pointer record");
2261       unsigned AddressSpace = 0;
2262       if (Record.size() == 2)
2263         AddressSpace = Record[1];
2264       ResultTy = getTypeByID(Record[0]);
2265       if (!ResultTy ||
2266           !PointerType::isValidElementType(ResultTy))
2267         return error("Invalid type");
2268       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue()))
2269         Context.setOpaquePointers(false);
2270       ContainedIDs.push_back(Record[0]);
2271       ResultTy = PointerType::get(ResultTy, AddressSpace);
2272       break;
2273     }
2274     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2275       if (Record.size() != 1)
2276         return error("Invalid opaque pointer record");
2277       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) {
2278         Context.setOpaquePointers(true);
2279       } else if (Context.supportsTypedPointers())
2280         return error(
2281             "Opaque pointers are only supported in -opaque-pointers mode");
2282       unsigned AddressSpace = Record[0];
2283       ResultTy = PointerType::get(Context, AddressSpace);
2284       break;
2285     }
2286     case bitc::TYPE_CODE_FUNCTION_OLD: {
2287       // Deprecated, but still needed to read old bitcode files.
2288       // FUNCTION: [vararg, attrid, retty, paramty x N]
2289       if (Record.size() < 3)
2290         return error("Invalid function record");
2291       SmallVector<Type*, 8> ArgTys;
2292       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2293         if (Type *T = getTypeByID(Record[i]))
2294           ArgTys.push_back(T);
2295         else
2296           break;
2297       }
2298 
2299       ResultTy = getTypeByID(Record[2]);
2300       if (!ResultTy || ArgTys.size() < Record.size()-3)
2301         return error("Invalid type");
2302 
2303       ContainedIDs.append(Record.begin() + 2, Record.end());
2304       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2305       break;
2306     }
2307     case bitc::TYPE_CODE_FUNCTION: {
2308       // FUNCTION: [vararg, retty, paramty x N]
2309       if (Record.size() < 2)
2310         return error("Invalid function record");
2311       SmallVector<Type*, 8> ArgTys;
2312       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2313         if (Type *T = getTypeByID(Record[i])) {
2314           if (!FunctionType::isValidArgumentType(T))
2315             return error("Invalid function argument type");
2316           ArgTys.push_back(T);
2317         }
2318         else
2319           break;
2320       }
2321 
2322       ResultTy = getTypeByID(Record[1]);
2323       if (!ResultTy || ArgTys.size() < Record.size()-2)
2324         return error("Invalid type");
2325 
2326       ContainedIDs.append(Record.begin() + 1, Record.end());
2327       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2328       break;
2329     }
2330     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2331       if (Record.empty())
2332         return error("Invalid anon struct record");
2333       SmallVector<Type*, 8> EltTys;
2334       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2335         if (Type *T = getTypeByID(Record[i]))
2336           EltTys.push_back(T);
2337         else
2338           break;
2339       }
2340       if (EltTys.size() != Record.size()-1)
2341         return error("Invalid type");
2342       ContainedIDs.append(Record.begin() + 1, Record.end());
2343       ResultTy = StructType::get(Context, EltTys, Record[0]);
2344       break;
2345     }
2346     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2347       if (convertToString(Record, 0, TypeName))
2348         return error("Invalid struct name record");
2349       continue;
2350 
2351     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2352       if (Record.empty())
2353         return error("Invalid named struct record");
2354 
2355       if (NumRecords >= TypeList.size())
2356         return error("Invalid TYPE table");
2357 
2358       // Check to see if this was forward referenced, if so fill in the temp.
2359       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2360       if (Res) {
2361         Res->setName(TypeName);
2362         TypeList[NumRecords] = nullptr;
2363       } else  // Otherwise, create a new struct.
2364         Res = createIdentifiedStructType(Context, TypeName);
2365       TypeName.clear();
2366 
2367       SmallVector<Type*, 8> EltTys;
2368       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2369         if (Type *T = getTypeByID(Record[i]))
2370           EltTys.push_back(T);
2371         else
2372           break;
2373       }
2374       if (EltTys.size() != Record.size()-1)
2375         return error("Invalid named struct record");
2376       Res->setBody(EltTys, Record[0]);
2377       ContainedIDs.append(Record.begin() + 1, Record.end());
2378       ResultTy = Res;
2379       break;
2380     }
2381     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2382       if (Record.size() != 1)
2383         return error("Invalid opaque type record");
2384 
2385       if (NumRecords >= TypeList.size())
2386         return error("Invalid TYPE table");
2387 
2388       // Check to see if this was forward referenced, if so fill in the temp.
2389       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2390       if (Res) {
2391         Res->setName(TypeName);
2392         TypeList[NumRecords] = nullptr;
2393       } else  // Otherwise, create a new struct with no body.
2394         Res = createIdentifiedStructType(Context, TypeName);
2395       TypeName.clear();
2396       ResultTy = Res;
2397       break;
2398     }
2399     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2400       if (Record.size() < 2)
2401         return error("Invalid array type record");
2402       ResultTy = getTypeByID(Record[1]);
2403       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2404         return error("Invalid type");
2405       ContainedIDs.push_back(Record[1]);
2406       ResultTy = ArrayType::get(ResultTy, Record[0]);
2407       break;
2408     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2409                                     //         [numelts, eltty, scalable]
2410       if (Record.size() < 2)
2411         return error("Invalid vector type record");
2412       if (Record[0] == 0)
2413         return error("Invalid vector length");
2414       ResultTy = getTypeByID(Record[1]);
2415       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2416         return error("Invalid type");
2417       bool Scalable = Record.size() > 2 ? Record[2] : false;
2418       ContainedIDs.push_back(Record[1]);
2419       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2420       break;
2421     }
2422 
2423     if (NumRecords >= TypeList.size())
2424       return error("Invalid TYPE table");
2425     if (TypeList[NumRecords])
2426       return error(
2427           "Invalid TYPE table: Only named structs can be forward referenced");
2428     assert(ResultTy && "Didn't read a type?");
2429     TypeList[NumRecords] = ResultTy;
2430     if (!ContainedIDs.empty())
2431       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2432     ++NumRecords;
2433   }
2434 }
2435 
2436 Error BitcodeReader::parseOperandBundleTags() {
2437   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2438     return Err;
2439 
2440   if (!BundleTags.empty())
2441     return error("Invalid multiple blocks");
2442 
2443   SmallVector<uint64_t, 64> Record;
2444 
2445   while (true) {
2446     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2447     if (!MaybeEntry)
2448       return MaybeEntry.takeError();
2449     BitstreamEntry Entry = MaybeEntry.get();
2450 
2451     switch (Entry.Kind) {
2452     case BitstreamEntry::SubBlock: // Handled for us already.
2453     case BitstreamEntry::Error:
2454       return error("Malformed block");
2455     case BitstreamEntry::EndBlock:
2456       return Error::success();
2457     case BitstreamEntry::Record:
2458       // The interesting case.
2459       break;
2460     }
2461 
2462     // Tags are implicitly mapped to integers by their order.
2463 
2464     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2465     if (!MaybeRecord)
2466       return MaybeRecord.takeError();
2467     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2468       return error("Invalid operand bundle record");
2469 
2470     // OPERAND_BUNDLE_TAG: [strchr x N]
2471     BundleTags.emplace_back();
2472     if (convertToString(Record, 0, BundleTags.back()))
2473       return error("Invalid operand bundle record");
2474     Record.clear();
2475   }
2476 }
2477 
2478 Error BitcodeReader::parseSyncScopeNames() {
2479   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2480     return Err;
2481 
2482   if (!SSIDs.empty())
2483     return error("Invalid multiple synchronization scope names blocks");
2484 
2485   SmallVector<uint64_t, 64> Record;
2486   while (true) {
2487     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2488     if (!MaybeEntry)
2489       return MaybeEntry.takeError();
2490     BitstreamEntry Entry = MaybeEntry.get();
2491 
2492     switch (Entry.Kind) {
2493     case BitstreamEntry::SubBlock: // Handled for us already.
2494     case BitstreamEntry::Error:
2495       return error("Malformed block");
2496     case BitstreamEntry::EndBlock:
2497       if (SSIDs.empty())
2498         return error("Invalid empty synchronization scope names block");
2499       return Error::success();
2500     case BitstreamEntry::Record:
2501       // The interesting case.
2502       break;
2503     }
2504 
2505     // Synchronization scope names are implicitly mapped to synchronization
2506     // scope IDs by their order.
2507 
2508     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2509     if (!MaybeRecord)
2510       return MaybeRecord.takeError();
2511     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2512       return error("Invalid sync scope record");
2513 
2514     SmallString<16> SSN;
2515     if (convertToString(Record, 0, SSN))
2516       return error("Invalid sync scope record");
2517 
2518     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2519     Record.clear();
2520   }
2521 }
2522 
2523 /// Associate a value with its name from the given index in the provided record.
2524 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2525                                              unsigned NameIndex, Triple &TT) {
2526   SmallString<128> ValueName;
2527   if (convertToString(Record, NameIndex, ValueName))
2528     return error("Invalid record");
2529   unsigned ValueID = Record[0];
2530   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2531     return error("Invalid record");
2532   Value *V = ValueList[ValueID];
2533 
2534   StringRef NameStr(ValueName.data(), ValueName.size());
2535   if (NameStr.find_first_of(0) != StringRef::npos)
2536     return error("Invalid value name");
2537   V->setName(NameStr);
2538   auto *GO = dyn_cast<GlobalObject>(V);
2539   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2540     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2541   return V;
2542 }
2543 
2544 /// Helper to note and return the current location, and jump to the given
2545 /// offset.
2546 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2547                                                  BitstreamCursor &Stream) {
2548   // Save the current parsing location so we can jump back at the end
2549   // of the VST read.
2550   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2551   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2552     return std::move(JumpFailed);
2553   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2554   if (!MaybeEntry)
2555     return MaybeEntry.takeError();
2556   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2557       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2558     return error("Expected value symbol table subblock");
2559   return CurrentBit;
2560 }
2561 
2562 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2563                                             Function *F,
2564                                             ArrayRef<uint64_t> Record) {
2565   // Note that we subtract 1 here because the offset is relative to one word
2566   // before the start of the identification or module block, which was
2567   // historically always the start of the regular bitcode header.
2568   uint64_t FuncWordOffset = Record[1] - 1;
2569   uint64_t FuncBitOffset = FuncWordOffset * 32;
2570   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2571   // Set the LastFunctionBlockBit to point to the last function block.
2572   // Later when parsing is resumed after function materialization,
2573   // we can simply skip that last function block.
2574   if (FuncBitOffset > LastFunctionBlockBit)
2575     LastFunctionBlockBit = FuncBitOffset;
2576 }
2577 
2578 /// Read a new-style GlobalValue symbol table.
2579 Error BitcodeReader::parseGlobalValueSymbolTable() {
2580   unsigned FuncBitcodeOffsetDelta =
2581       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2582 
2583   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2584     return Err;
2585 
2586   SmallVector<uint64_t, 64> Record;
2587   while (true) {
2588     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2589     if (!MaybeEntry)
2590       return MaybeEntry.takeError();
2591     BitstreamEntry Entry = MaybeEntry.get();
2592 
2593     switch (Entry.Kind) {
2594     case BitstreamEntry::SubBlock:
2595     case BitstreamEntry::Error:
2596       return error("Malformed block");
2597     case BitstreamEntry::EndBlock:
2598       return Error::success();
2599     case BitstreamEntry::Record:
2600       break;
2601     }
2602 
2603     Record.clear();
2604     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2605     if (!MaybeRecord)
2606       return MaybeRecord.takeError();
2607     switch (MaybeRecord.get()) {
2608     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2609       unsigned ValueID = Record[0];
2610       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2611         return error("Invalid value reference in symbol table");
2612       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2613                               cast<Function>(ValueList[ValueID]), Record);
2614       break;
2615     }
2616     }
2617   }
2618 }
2619 
2620 /// Parse the value symbol table at either the current parsing location or
2621 /// at the given bit offset if provided.
2622 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2623   uint64_t CurrentBit;
2624   // Pass in the Offset to distinguish between calling for the module-level
2625   // VST (where we want to jump to the VST offset) and the function-level
2626   // VST (where we don't).
2627   if (Offset > 0) {
2628     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2629     if (!MaybeCurrentBit)
2630       return MaybeCurrentBit.takeError();
2631     CurrentBit = MaybeCurrentBit.get();
2632     // If this module uses a string table, read this as a module-level VST.
2633     if (UseStrtab) {
2634       if (Error Err = parseGlobalValueSymbolTable())
2635         return Err;
2636       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2637         return JumpFailed;
2638       return Error::success();
2639     }
2640     // Otherwise, the VST will be in a similar format to a function-level VST,
2641     // and will contain symbol names.
2642   }
2643 
2644   // Compute the delta between the bitcode indices in the VST (the word offset
2645   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2646   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2647   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2648   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2649   // just before entering the VST subblock because: 1) the EnterSubBlock
2650   // changes the AbbrevID width; 2) the VST block is nested within the same
2651   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2652   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2653   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2654   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2655   unsigned FuncBitcodeOffsetDelta =
2656       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2657 
2658   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2659     return Err;
2660 
2661   SmallVector<uint64_t, 64> Record;
2662 
2663   Triple TT(TheModule->getTargetTriple());
2664 
2665   // Read all the records for this value table.
2666   SmallString<128> ValueName;
2667 
2668   while (true) {
2669     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2670     if (!MaybeEntry)
2671       return MaybeEntry.takeError();
2672     BitstreamEntry Entry = MaybeEntry.get();
2673 
2674     switch (Entry.Kind) {
2675     case BitstreamEntry::SubBlock: // Handled for us already.
2676     case BitstreamEntry::Error:
2677       return error("Malformed block");
2678     case BitstreamEntry::EndBlock:
2679       if (Offset > 0)
2680         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2681           return JumpFailed;
2682       return Error::success();
2683     case BitstreamEntry::Record:
2684       // The interesting case.
2685       break;
2686     }
2687 
2688     // Read a record.
2689     Record.clear();
2690     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2691     if (!MaybeRecord)
2692       return MaybeRecord.takeError();
2693     switch (MaybeRecord.get()) {
2694     default:  // Default behavior: unknown type.
2695       break;
2696     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2697       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2698       if (Error Err = ValOrErr.takeError())
2699         return Err;
2700       ValOrErr.get();
2701       break;
2702     }
2703     case bitc::VST_CODE_FNENTRY: {
2704       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2705       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2706       if (Error Err = ValOrErr.takeError())
2707         return Err;
2708       Value *V = ValOrErr.get();
2709 
2710       // Ignore function offsets emitted for aliases of functions in older
2711       // versions of LLVM.
2712       if (auto *F = dyn_cast<Function>(V))
2713         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2714       break;
2715     }
2716     case bitc::VST_CODE_BBENTRY: {
2717       if (convertToString(Record, 1, ValueName))
2718         return error("Invalid bbentry record");
2719       BasicBlock *BB = getBasicBlock(Record[0]);
2720       if (!BB)
2721         return error("Invalid bbentry record");
2722 
2723       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2724       ValueName.clear();
2725       break;
2726     }
2727     }
2728   }
2729 }
2730 
2731 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2732 /// encoding.
2733 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2734   if ((V & 1) == 0)
2735     return V >> 1;
2736   if (V != 1)
2737     return -(V >> 1);
2738   // There is no such thing as -0 with integers.  "-0" really means MININT.
2739   return 1ULL << 63;
2740 }
2741 
2742 /// Resolve all of the initializers for global values and aliases that we can.
2743 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2744   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2745   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2746   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2747 
2748   GlobalInitWorklist.swap(GlobalInits);
2749   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2750   FunctionOperandWorklist.swap(FunctionOperands);
2751 
2752   while (!GlobalInitWorklist.empty()) {
2753     unsigned ValID = GlobalInitWorklist.back().second;
2754     if (ValID >= ValueList.size()) {
2755       // Not ready to resolve this yet, it requires something later in the file.
2756       GlobalInits.push_back(GlobalInitWorklist.back());
2757     } else {
2758       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2759       if (!MaybeC)
2760         return MaybeC.takeError();
2761       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2762     }
2763     GlobalInitWorklist.pop_back();
2764   }
2765 
2766   while (!IndirectSymbolInitWorklist.empty()) {
2767     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2768     if (ValID >= ValueList.size()) {
2769       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2770     } else {
2771       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2772       if (!MaybeC)
2773         return MaybeC.takeError();
2774       Constant *C = MaybeC.get();
2775       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2776       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2777         if (C->getType() != GV->getType())
2778           return error("Alias and aliasee types don't match");
2779         GA->setAliasee(C);
2780       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2781         Type *ResolverFTy =
2782             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2783         // Transparently fix up the type for compatibility with older bitcode
2784         GI->setResolver(
2785             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2786       } else {
2787         return error("Expected an alias or an ifunc");
2788       }
2789     }
2790     IndirectSymbolInitWorklist.pop_back();
2791   }
2792 
2793   while (!FunctionOperandWorklist.empty()) {
2794     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2795     if (Info.PersonalityFn) {
2796       unsigned ValID = Info.PersonalityFn - 1;
2797       if (ValID < ValueList.size()) {
2798         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2799         if (!MaybeC)
2800           return MaybeC.takeError();
2801         Info.F->setPersonalityFn(MaybeC.get());
2802         Info.PersonalityFn = 0;
2803       }
2804     }
2805     if (Info.Prefix) {
2806       unsigned ValID = Info.Prefix - 1;
2807       if (ValID < ValueList.size()) {
2808         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2809         if (!MaybeC)
2810           return MaybeC.takeError();
2811         Info.F->setPrefixData(MaybeC.get());
2812         Info.Prefix = 0;
2813       }
2814     }
2815     if (Info.Prologue) {
2816       unsigned ValID = Info.Prologue - 1;
2817       if (ValID < ValueList.size()) {
2818         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2819         if (!MaybeC)
2820           return MaybeC.takeError();
2821         Info.F->setPrologueData(MaybeC.get());
2822         Info.Prologue = 0;
2823       }
2824     }
2825     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2826       FunctionOperands.push_back(Info);
2827     FunctionOperandWorklist.pop_back();
2828   }
2829 
2830   return Error::success();
2831 }
2832 
2833 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2834   SmallVector<uint64_t, 8> Words(Vals.size());
2835   transform(Vals, Words.begin(),
2836                  BitcodeReader::decodeSignRotatedValue);
2837 
2838   return APInt(TypeBits, Words);
2839 }
2840 
2841 Error BitcodeReader::parseConstants() {
2842   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2843     return Err;
2844 
2845   SmallVector<uint64_t, 64> Record;
2846 
2847   // Read all the records for this value table.
2848   Type *CurTy = Type::getInt32Ty(Context);
2849   unsigned Int32TyID = getVirtualTypeID(CurTy);
2850   unsigned CurTyID = Int32TyID;
2851   Type *CurElemTy = nullptr;
2852   unsigned NextCstNo = ValueList.size();
2853 
2854   while (true) {
2855     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2856     if (!MaybeEntry)
2857       return MaybeEntry.takeError();
2858     BitstreamEntry Entry = MaybeEntry.get();
2859 
2860     switch (Entry.Kind) {
2861     case BitstreamEntry::SubBlock: // Handled for us already.
2862     case BitstreamEntry::Error:
2863       return error("Malformed block");
2864     case BitstreamEntry::EndBlock:
2865       if (NextCstNo != ValueList.size())
2866         return error("Invalid constant reference");
2867       return Error::success();
2868     case BitstreamEntry::Record:
2869       // The interesting case.
2870       break;
2871     }
2872 
2873     // Read a record.
2874     Record.clear();
2875     Type *VoidType = Type::getVoidTy(Context);
2876     Value *V = nullptr;
2877     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2878     if (!MaybeBitCode)
2879       return MaybeBitCode.takeError();
2880     switch (unsigned BitCode = MaybeBitCode.get()) {
2881     default:  // Default behavior: unknown constant
2882     case bitc::CST_CODE_UNDEF:     // UNDEF
2883       V = UndefValue::get(CurTy);
2884       break;
2885     case bitc::CST_CODE_POISON:    // POISON
2886       V = PoisonValue::get(CurTy);
2887       break;
2888     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2889       if (Record.empty())
2890         return error("Invalid settype record");
2891       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2892         return error("Invalid settype record");
2893       if (TypeList[Record[0]] == VoidType)
2894         return error("Invalid constant type");
2895       CurTyID = Record[0];
2896       CurTy = TypeList[CurTyID];
2897       CurElemTy = getPtrElementTypeByID(CurTyID);
2898       continue;  // Skip the ValueList manipulation.
2899     case bitc::CST_CODE_NULL:      // NULL
2900       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2901         return error("Invalid type for a constant null value");
2902       V = Constant::getNullValue(CurTy);
2903       break;
2904     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2905       if (!CurTy->isIntegerTy() || Record.empty())
2906         return error("Invalid integer const record");
2907       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2908       break;
2909     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2910       if (!CurTy->isIntegerTy() || Record.empty())
2911         return error("Invalid wide integer const record");
2912 
2913       APInt VInt =
2914           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2915       V = ConstantInt::get(Context, VInt);
2916 
2917       break;
2918     }
2919     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2920       if (Record.empty())
2921         return error("Invalid float const record");
2922       if (CurTy->isHalfTy())
2923         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2924                                              APInt(16, (uint16_t)Record[0])));
2925       else if (CurTy->isBFloatTy())
2926         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2927                                              APInt(16, (uint32_t)Record[0])));
2928       else if (CurTy->isFloatTy())
2929         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2930                                              APInt(32, (uint32_t)Record[0])));
2931       else if (CurTy->isDoubleTy())
2932         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2933                                              APInt(64, Record[0])));
2934       else if (CurTy->isX86_FP80Ty()) {
2935         // Bits are not stored the same way as a normal i80 APInt, compensate.
2936         uint64_t Rearrange[2];
2937         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2938         Rearrange[1] = Record[0] >> 48;
2939         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2940                                              APInt(80, Rearrange)));
2941       } else if (CurTy->isFP128Ty())
2942         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2943                                              APInt(128, Record)));
2944       else if (CurTy->isPPC_FP128Ty())
2945         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2946                                              APInt(128, Record)));
2947       else
2948         V = UndefValue::get(CurTy);
2949       break;
2950     }
2951 
2952     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2953       if (Record.empty())
2954         return error("Invalid aggregate record");
2955 
2956       unsigned Size = Record.size();
2957       SmallVector<unsigned, 16> Elts;
2958       for (unsigned i = 0; i != Size; ++i)
2959         Elts.push_back(Record[i]);
2960 
2961       if (isa<StructType>(CurTy)) {
2962         V = BitcodeConstant::create(
2963             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
2964       } else if (isa<ArrayType>(CurTy)) {
2965         V = BitcodeConstant::create(Alloc, CurTy,
2966                                     BitcodeConstant::ConstantArrayOpcode, Elts);
2967       } else if (isa<VectorType>(CurTy)) {
2968         V = BitcodeConstant::create(
2969             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
2970       } else {
2971         V = UndefValue::get(CurTy);
2972       }
2973       break;
2974     }
2975     case bitc::CST_CODE_STRING:    // STRING: [values]
2976     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2977       if (Record.empty())
2978         return error("Invalid string record");
2979 
2980       SmallString<16> Elts(Record.begin(), Record.end());
2981       V = ConstantDataArray::getString(Context, Elts,
2982                                        BitCode == bitc::CST_CODE_CSTRING);
2983       break;
2984     }
2985     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2986       if (Record.empty())
2987         return error("Invalid data record");
2988 
2989       Type *EltTy;
2990       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2991         EltTy = Array->getElementType();
2992       else
2993         EltTy = cast<VectorType>(CurTy)->getElementType();
2994       if (EltTy->isIntegerTy(8)) {
2995         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2996         if (isa<VectorType>(CurTy))
2997           V = ConstantDataVector::get(Context, Elts);
2998         else
2999           V = ConstantDataArray::get(Context, Elts);
3000       } else if (EltTy->isIntegerTy(16)) {
3001         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3002         if (isa<VectorType>(CurTy))
3003           V = ConstantDataVector::get(Context, Elts);
3004         else
3005           V = ConstantDataArray::get(Context, Elts);
3006       } else if (EltTy->isIntegerTy(32)) {
3007         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3008         if (isa<VectorType>(CurTy))
3009           V = ConstantDataVector::get(Context, Elts);
3010         else
3011           V = ConstantDataArray::get(Context, Elts);
3012       } else if (EltTy->isIntegerTy(64)) {
3013         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3014         if (isa<VectorType>(CurTy))
3015           V = ConstantDataVector::get(Context, Elts);
3016         else
3017           V = ConstantDataArray::get(Context, Elts);
3018       } else if (EltTy->isHalfTy()) {
3019         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3020         if (isa<VectorType>(CurTy))
3021           V = ConstantDataVector::getFP(EltTy, Elts);
3022         else
3023           V = ConstantDataArray::getFP(EltTy, Elts);
3024       } else if (EltTy->isBFloatTy()) {
3025         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3026         if (isa<VectorType>(CurTy))
3027           V = ConstantDataVector::getFP(EltTy, Elts);
3028         else
3029           V = ConstantDataArray::getFP(EltTy, Elts);
3030       } else if (EltTy->isFloatTy()) {
3031         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3032         if (isa<VectorType>(CurTy))
3033           V = ConstantDataVector::getFP(EltTy, Elts);
3034         else
3035           V = ConstantDataArray::getFP(EltTy, Elts);
3036       } else if (EltTy->isDoubleTy()) {
3037         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3038         if (isa<VectorType>(CurTy))
3039           V = ConstantDataVector::getFP(EltTy, Elts);
3040         else
3041           V = ConstantDataArray::getFP(EltTy, Elts);
3042       } else {
3043         return error("Invalid type for value");
3044       }
3045       break;
3046     }
3047     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3048       if (Record.size() < 2)
3049         return error("Invalid unary op constexpr record");
3050       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3051       if (Opc < 0) {
3052         V = UndefValue::get(CurTy);  // Unknown unop.
3053       } else {
3054         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3055       }
3056       break;
3057     }
3058     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3059       if (Record.size() < 3)
3060         return error("Invalid binary op constexpr record");
3061       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3062       if (Opc < 0) {
3063         V = UndefValue::get(CurTy);  // Unknown binop.
3064       } else {
3065         uint8_t Flags = 0;
3066         if (Record.size() >= 4) {
3067           if (Opc == Instruction::Add ||
3068               Opc == Instruction::Sub ||
3069               Opc == Instruction::Mul ||
3070               Opc == Instruction::Shl) {
3071             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3072               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3073             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3074               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3075           } else if (Opc == Instruction::SDiv ||
3076                      Opc == Instruction::UDiv ||
3077                      Opc == Instruction::LShr ||
3078                      Opc == Instruction::AShr) {
3079             if (Record[3] & (1 << bitc::PEO_EXACT))
3080               Flags |= SDivOperator::IsExact;
3081           }
3082         }
3083         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3084                                     {(unsigned)Record[1], (unsigned)Record[2]});
3085       }
3086       break;
3087     }
3088     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3089       if (Record.size() < 3)
3090         return error("Invalid cast constexpr record");
3091       int Opc = getDecodedCastOpcode(Record[0]);
3092       if (Opc < 0) {
3093         V = UndefValue::get(CurTy);  // Unknown cast.
3094       } else {
3095         unsigned OpTyID = Record[1];
3096         Type *OpTy = getTypeByID(OpTyID);
3097         if (!OpTy)
3098           return error("Invalid cast constexpr record");
3099         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3100       }
3101       break;
3102     }
3103     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3104     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3105     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3106                                                      // operands]
3107       if (Record.size() < 2)
3108         return error("Constant GEP record must have at least two elements");
3109       unsigned OpNum = 0;
3110       Type *PointeeType = nullptr;
3111       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3112           Record.size() % 2)
3113         PointeeType = getTypeByID(Record[OpNum++]);
3114 
3115       bool InBounds = false;
3116       Optional<unsigned> InRangeIndex;
3117       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3118         uint64_t Op = Record[OpNum++];
3119         InBounds = Op & 1;
3120         InRangeIndex = Op >> 1;
3121       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3122         InBounds = true;
3123 
3124       SmallVector<unsigned, 16> Elts;
3125       unsigned BaseTypeID = Record[OpNum];
3126       while (OpNum != Record.size()) {
3127         unsigned ElTyID = Record[OpNum++];
3128         Type *ElTy = getTypeByID(ElTyID);
3129         if (!ElTy)
3130           return error("Invalid getelementptr constexpr record");
3131         Elts.push_back(Record[OpNum++]);
3132       }
3133 
3134       if (Elts.size() < 1)
3135         return error("Invalid gep with no operands");
3136 
3137       Type *BaseType = getTypeByID(BaseTypeID);
3138       if (isa<VectorType>(BaseType)) {
3139         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3140         BaseType = getTypeByID(BaseTypeID);
3141       }
3142 
3143       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3144       if (!OrigPtrTy)
3145         return error("GEP base operand must be pointer or vector of pointer");
3146 
3147       if (!PointeeType) {
3148         PointeeType = getPtrElementTypeByID(BaseTypeID);
3149         if (!PointeeType)
3150           return error("Missing element type for old-style constant GEP");
3151       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3152         return error("Explicit gep operator type does not match pointee type "
3153                      "of pointer operand");
3154 
3155       V = BitcodeConstant::create(Alloc, CurTy,
3156                                   {Instruction::GetElementPtr, InBounds,
3157                                    InRangeIndex.value_or(-1), PointeeType},
3158                                   Elts);
3159       break;
3160     }
3161     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3162       if (Record.size() < 3)
3163         return error("Invalid select constexpr record");
3164 
3165       V = BitcodeConstant::create(
3166           Alloc, CurTy, Instruction::Select,
3167           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3168       break;
3169     }
3170     case bitc::CST_CODE_CE_EXTRACTELT
3171         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3172       if (Record.size() < 3)
3173         return error("Invalid extractelement constexpr record");
3174       unsigned OpTyID = Record[0];
3175       VectorType *OpTy =
3176         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3177       if (!OpTy)
3178         return error("Invalid extractelement constexpr record");
3179       unsigned IdxRecord;
3180       if (Record.size() == 4) {
3181         unsigned IdxTyID = Record[2];
3182         Type *IdxTy = getTypeByID(IdxTyID);
3183         if (!IdxTy)
3184           return error("Invalid extractelement constexpr record");
3185         IdxRecord = Record[3];
3186       } else {
3187         // Deprecated, but still needed to read old bitcode files.
3188         IdxRecord = Record[2];
3189       }
3190       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3191                                   {(unsigned)Record[1], IdxRecord});
3192       break;
3193     }
3194     case bitc::CST_CODE_CE_INSERTELT
3195         : { // CE_INSERTELT: [opval, opval, opty, opval]
3196       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3197       if (Record.size() < 3 || !OpTy)
3198         return error("Invalid insertelement constexpr record");
3199       unsigned IdxRecord;
3200       if (Record.size() == 4) {
3201         unsigned IdxTyID = Record[2];
3202         Type *IdxTy = getTypeByID(IdxTyID);
3203         if (!IdxTy)
3204           return error("Invalid insertelement constexpr record");
3205         IdxRecord = Record[3];
3206       } else {
3207         // Deprecated, but still needed to read old bitcode files.
3208         IdxRecord = Record[2];
3209       }
3210       V = BitcodeConstant::create(
3211           Alloc, CurTy, Instruction::InsertElement,
3212           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3213       break;
3214     }
3215     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3216       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3217       if (Record.size() < 3 || !OpTy)
3218         return error("Invalid shufflevector constexpr record");
3219       V = BitcodeConstant::create(
3220           Alloc, CurTy, Instruction::ShuffleVector,
3221           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3222       break;
3223     }
3224     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3225       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3226       VectorType *OpTy =
3227         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3228       if (Record.size() < 4 || !RTy || !OpTy)
3229         return error("Invalid shufflevector constexpr record");
3230       V = BitcodeConstant::create(
3231           Alloc, CurTy, Instruction::ShuffleVector,
3232           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3233       break;
3234     }
3235     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3236       if (Record.size() < 4)
3237         return error("Invalid cmp constexpt record");
3238       unsigned OpTyID = Record[0];
3239       Type *OpTy = getTypeByID(OpTyID);
3240       if (!OpTy)
3241         return error("Invalid cmp constexpr record");
3242       V = BitcodeConstant::create(
3243           Alloc, CurTy,
3244           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3245                                               : Instruction::ICmp),
3246            (uint8_t)Record[3]},
3247           {(unsigned)Record[1], (unsigned)Record[2]});
3248       break;
3249     }
3250     // This maintains backward compatibility, pre-asm dialect keywords.
3251     // Deprecated, but still needed to read old bitcode files.
3252     case bitc::CST_CODE_INLINEASM_OLD: {
3253       if (Record.size() < 2)
3254         return error("Invalid inlineasm record");
3255       std::string AsmStr, ConstrStr;
3256       bool HasSideEffects = Record[0] & 1;
3257       bool IsAlignStack = Record[0] >> 1;
3258       unsigned AsmStrSize = Record[1];
3259       if (2+AsmStrSize >= Record.size())
3260         return error("Invalid inlineasm record");
3261       unsigned ConstStrSize = Record[2+AsmStrSize];
3262       if (3+AsmStrSize+ConstStrSize > Record.size())
3263         return error("Invalid inlineasm record");
3264 
3265       for (unsigned i = 0; i != AsmStrSize; ++i)
3266         AsmStr += (char)Record[2+i];
3267       for (unsigned i = 0; i != ConstStrSize; ++i)
3268         ConstrStr += (char)Record[3+AsmStrSize+i];
3269       UpgradeInlineAsmString(&AsmStr);
3270       if (!CurElemTy)
3271         return error("Missing element type for old-style inlineasm");
3272       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3273                          HasSideEffects, IsAlignStack);
3274       break;
3275     }
3276     // This version adds support for the asm dialect keywords (e.g.,
3277     // inteldialect).
3278     case bitc::CST_CODE_INLINEASM_OLD2: {
3279       if (Record.size() < 2)
3280         return error("Invalid inlineasm record");
3281       std::string AsmStr, ConstrStr;
3282       bool HasSideEffects = Record[0] & 1;
3283       bool IsAlignStack = (Record[0] >> 1) & 1;
3284       unsigned AsmDialect = Record[0] >> 2;
3285       unsigned AsmStrSize = Record[1];
3286       if (2+AsmStrSize >= Record.size())
3287         return error("Invalid inlineasm record");
3288       unsigned ConstStrSize = Record[2+AsmStrSize];
3289       if (3+AsmStrSize+ConstStrSize > Record.size())
3290         return error("Invalid inlineasm record");
3291 
3292       for (unsigned i = 0; i != AsmStrSize; ++i)
3293         AsmStr += (char)Record[2+i];
3294       for (unsigned i = 0; i != ConstStrSize; ++i)
3295         ConstrStr += (char)Record[3+AsmStrSize+i];
3296       UpgradeInlineAsmString(&AsmStr);
3297       if (!CurElemTy)
3298         return error("Missing element type for old-style inlineasm");
3299       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3300                          HasSideEffects, IsAlignStack,
3301                          InlineAsm::AsmDialect(AsmDialect));
3302       break;
3303     }
3304     // This version adds support for the unwind keyword.
3305     case bitc::CST_CODE_INLINEASM_OLD3: {
3306       if (Record.size() < 2)
3307         return error("Invalid inlineasm record");
3308       unsigned OpNum = 0;
3309       std::string AsmStr, ConstrStr;
3310       bool HasSideEffects = Record[OpNum] & 1;
3311       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3312       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3313       bool CanThrow = (Record[OpNum] >> 3) & 1;
3314       ++OpNum;
3315       unsigned AsmStrSize = Record[OpNum];
3316       ++OpNum;
3317       if (OpNum + AsmStrSize >= Record.size())
3318         return error("Invalid inlineasm record");
3319       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3320       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3321         return error("Invalid inlineasm record");
3322 
3323       for (unsigned i = 0; i != AsmStrSize; ++i)
3324         AsmStr += (char)Record[OpNum + i];
3325       ++OpNum;
3326       for (unsigned i = 0; i != ConstStrSize; ++i)
3327         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3328       UpgradeInlineAsmString(&AsmStr);
3329       if (!CurElemTy)
3330         return error("Missing element type for old-style inlineasm");
3331       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3332                          HasSideEffects, IsAlignStack,
3333                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3334       break;
3335     }
3336     // This version adds explicit function type.
3337     case bitc::CST_CODE_INLINEASM: {
3338       if (Record.size() < 3)
3339         return error("Invalid inlineasm record");
3340       unsigned OpNum = 0;
3341       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3342       ++OpNum;
3343       if (!FnTy)
3344         return error("Invalid inlineasm record");
3345       std::string AsmStr, ConstrStr;
3346       bool HasSideEffects = Record[OpNum] & 1;
3347       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3348       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3349       bool CanThrow = (Record[OpNum] >> 3) & 1;
3350       ++OpNum;
3351       unsigned AsmStrSize = Record[OpNum];
3352       ++OpNum;
3353       if (OpNum + AsmStrSize >= Record.size())
3354         return error("Invalid inlineasm record");
3355       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3356       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3357         return error("Invalid inlineasm record");
3358 
3359       for (unsigned i = 0; i != AsmStrSize; ++i)
3360         AsmStr += (char)Record[OpNum + i];
3361       ++OpNum;
3362       for (unsigned i = 0; i != ConstStrSize; ++i)
3363         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3364       UpgradeInlineAsmString(&AsmStr);
3365       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3366                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3367       break;
3368     }
3369     case bitc::CST_CODE_BLOCKADDRESS:{
3370       if (Record.size() < 3)
3371         return error("Invalid blockaddress record");
3372       unsigned FnTyID = Record[0];
3373       Type *FnTy = getTypeByID(FnTyID);
3374       if (!FnTy)
3375         return error("Invalid blockaddress record");
3376       V = BitcodeConstant::create(
3377           Alloc, CurTy,
3378           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3379           Record[1]);
3380       break;
3381     }
3382     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3383       if (Record.size() < 2)
3384         return error("Invalid dso_local record");
3385       unsigned GVTyID = Record[0];
3386       Type *GVTy = getTypeByID(GVTyID);
3387       if (!GVTy)
3388         return error("Invalid dso_local record");
3389       V = BitcodeConstant::create(
3390           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3391       break;
3392     }
3393     case bitc::CST_CODE_NO_CFI_VALUE: {
3394       if (Record.size() < 2)
3395         return error("Invalid no_cfi record");
3396       unsigned GVTyID = Record[0];
3397       Type *GVTy = getTypeByID(GVTyID);
3398       if (!GVTy)
3399         return error("Invalid no_cfi record");
3400       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3401                                   Record[1]);
3402       break;
3403     }
3404     }
3405 
3406     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3407     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3408       return Err;
3409     ++NextCstNo;
3410   }
3411 }
3412 
3413 Error BitcodeReader::parseUseLists() {
3414   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3415     return Err;
3416 
3417   // Read all the records.
3418   SmallVector<uint64_t, 64> Record;
3419 
3420   while (true) {
3421     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3422     if (!MaybeEntry)
3423       return MaybeEntry.takeError();
3424     BitstreamEntry Entry = MaybeEntry.get();
3425 
3426     switch (Entry.Kind) {
3427     case BitstreamEntry::SubBlock: // Handled for us already.
3428     case BitstreamEntry::Error:
3429       return error("Malformed block");
3430     case BitstreamEntry::EndBlock:
3431       return Error::success();
3432     case BitstreamEntry::Record:
3433       // The interesting case.
3434       break;
3435     }
3436 
3437     // Read a use list record.
3438     Record.clear();
3439     bool IsBB = false;
3440     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3441     if (!MaybeRecord)
3442       return MaybeRecord.takeError();
3443     switch (MaybeRecord.get()) {
3444     default:  // Default behavior: unknown type.
3445       break;
3446     case bitc::USELIST_CODE_BB:
3447       IsBB = true;
3448       [[fallthrough]];
3449     case bitc::USELIST_CODE_DEFAULT: {
3450       unsigned RecordLength = Record.size();
3451       if (RecordLength < 3)
3452         // Records should have at least an ID and two indexes.
3453         return error("Invalid record");
3454       unsigned ID = Record.pop_back_val();
3455 
3456       Value *V;
3457       if (IsBB) {
3458         assert(ID < FunctionBBs.size() && "Basic block not found");
3459         V = FunctionBBs[ID];
3460       } else
3461         V = ValueList[ID];
3462       unsigned NumUses = 0;
3463       SmallDenseMap<const Use *, unsigned, 16> Order;
3464       for (const Use &U : V->materialized_uses()) {
3465         if (++NumUses > Record.size())
3466           break;
3467         Order[&U] = Record[NumUses - 1];
3468       }
3469       if (Order.size() != Record.size() || NumUses > Record.size())
3470         // Mismatches can happen if the functions are being materialized lazily
3471         // (out-of-order), or a value has been upgraded.
3472         break;
3473 
3474       V->sortUseList([&](const Use &L, const Use &R) {
3475         return Order.lookup(&L) < Order.lookup(&R);
3476       });
3477       break;
3478     }
3479     }
3480   }
3481 }
3482 
3483 /// When we see the block for metadata, remember where it is and then skip it.
3484 /// This lets us lazily deserialize the metadata.
3485 Error BitcodeReader::rememberAndSkipMetadata() {
3486   // Save the current stream state.
3487   uint64_t CurBit = Stream.GetCurrentBitNo();
3488   DeferredMetadataInfo.push_back(CurBit);
3489 
3490   // Skip over the block for now.
3491   if (Error Err = Stream.SkipBlock())
3492     return Err;
3493   return Error::success();
3494 }
3495 
3496 Error BitcodeReader::materializeMetadata() {
3497   for (uint64_t BitPos : DeferredMetadataInfo) {
3498     // Move the bit stream to the saved position.
3499     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3500       return JumpFailed;
3501     if (Error Err = MDLoader->parseModuleMetadata())
3502       return Err;
3503   }
3504 
3505   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3506   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3507   // multiple times.
3508   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3509     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3510       NamedMDNode *LinkerOpts =
3511           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3512       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3513         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3514     }
3515   }
3516 
3517   DeferredMetadataInfo.clear();
3518   return Error::success();
3519 }
3520 
3521 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3522 
3523 /// When we see the block for a function body, remember where it is and then
3524 /// skip it.  This lets us lazily deserialize the functions.
3525 Error BitcodeReader::rememberAndSkipFunctionBody() {
3526   // Get the function we are talking about.
3527   if (FunctionsWithBodies.empty())
3528     return error("Insufficient function protos");
3529 
3530   Function *Fn = FunctionsWithBodies.back();
3531   FunctionsWithBodies.pop_back();
3532 
3533   // Save the current stream state.
3534   uint64_t CurBit = Stream.GetCurrentBitNo();
3535   assert(
3536       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3537       "Mismatch between VST and scanned function offsets");
3538   DeferredFunctionInfo[Fn] = CurBit;
3539 
3540   // Skip over the function block for now.
3541   if (Error Err = Stream.SkipBlock())
3542     return Err;
3543   return Error::success();
3544 }
3545 
3546 Error BitcodeReader::globalCleanup() {
3547   // Patch the initializers for globals and aliases up.
3548   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3549     return Err;
3550   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3551     return error("Malformed global initializer set");
3552 
3553   // Look for intrinsic functions which need to be upgraded at some point
3554   // and functions that need to have their function attributes upgraded.
3555   for (Function &F : *TheModule) {
3556     MDLoader->upgradeDebugIntrinsics(F);
3557     Function *NewFn;
3558     if (UpgradeIntrinsicFunction(&F, NewFn))
3559       UpgradedIntrinsics[&F] = NewFn;
3560     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3561       // Some types could be renamed during loading if several modules are
3562       // loaded in the same LLVMContext (LTO scenario). In this case we should
3563       // remangle intrinsics names as well.
3564       RemangledIntrinsics[&F] = *Remangled;
3565     // Look for functions that rely on old function attribute behavior.
3566     UpgradeFunctionAttributes(F);
3567   }
3568 
3569   // Look for global variables which need to be renamed.
3570   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3571   for (GlobalVariable &GV : TheModule->globals())
3572     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3573       UpgradedVariables.emplace_back(&GV, Upgraded);
3574   for (auto &Pair : UpgradedVariables) {
3575     Pair.first->eraseFromParent();
3576     TheModule->getGlobalList().push_back(Pair.second);
3577   }
3578 
3579   // Force deallocation of memory for these vectors to favor the client that
3580   // want lazy deserialization.
3581   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3582   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3583   return Error::success();
3584 }
3585 
3586 /// Support for lazy parsing of function bodies. This is required if we
3587 /// either have an old bitcode file without a VST forward declaration record,
3588 /// or if we have an anonymous function being materialized, since anonymous
3589 /// functions do not have a name and are therefore not in the VST.
3590 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3591   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3592     return JumpFailed;
3593 
3594   if (Stream.AtEndOfStream())
3595     return error("Could not find function in stream");
3596 
3597   if (!SeenFirstFunctionBody)
3598     return error("Trying to materialize functions before seeing function blocks");
3599 
3600   // An old bitcode file with the symbol table at the end would have
3601   // finished the parse greedily.
3602   assert(SeenValueSymbolTable);
3603 
3604   SmallVector<uint64_t, 64> Record;
3605 
3606   while (true) {
3607     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3608     if (!MaybeEntry)
3609       return MaybeEntry.takeError();
3610     llvm::BitstreamEntry Entry = MaybeEntry.get();
3611 
3612     switch (Entry.Kind) {
3613     default:
3614       return error("Expect SubBlock");
3615     case BitstreamEntry::SubBlock:
3616       switch (Entry.ID) {
3617       default:
3618         return error("Expect function block");
3619       case bitc::FUNCTION_BLOCK_ID:
3620         if (Error Err = rememberAndSkipFunctionBody())
3621           return Err;
3622         NextUnreadBit = Stream.GetCurrentBitNo();
3623         return Error::success();
3624       }
3625     }
3626   }
3627 }
3628 
3629 Error BitcodeReaderBase::readBlockInfo() {
3630   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3631       Stream.ReadBlockInfoBlock();
3632   if (!MaybeNewBlockInfo)
3633     return MaybeNewBlockInfo.takeError();
3634   Optional<BitstreamBlockInfo> NewBlockInfo =
3635       std::move(MaybeNewBlockInfo.get());
3636   if (!NewBlockInfo)
3637     return error("Malformed block");
3638   BlockInfo = std::move(*NewBlockInfo);
3639   return Error::success();
3640 }
3641 
3642 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3643   // v1: [selection_kind, name]
3644   // v2: [strtab_offset, strtab_size, selection_kind]
3645   StringRef Name;
3646   std::tie(Name, Record) = readNameFromStrtab(Record);
3647 
3648   if (Record.empty())
3649     return error("Invalid record");
3650   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3651   std::string OldFormatName;
3652   if (!UseStrtab) {
3653     if (Record.size() < 2)
3654       return error("Invalid record");
3655     unsigned ComdatNameSize = Record[1];
3656     if (ComdatNameSize > Record.size() - 2)
3657       return error("Comdat name size too large");
3658     OldFormatName.reserve(ComdatNameSize);
3659     for (unsigned i = 0; i != ComdatNameSize; ++i)
3660       OldFormatName += (char)Record[2 + i];
3661     Name = OldFormatName;
3662   }
3663   Comdat *C = TheModule->getOrInsertComdat(Name);
3664   C->setSelectionKind(SK);
3665   ComdatList.push_back(C);
3666   return Error::success();
3667 }
3668 
3669 static void inferDSOLocal(GlobalValue *GV) {
3670   // infer dso_local from linkage and visibility if it is not encoded.
3671   if (GV->hasLocalLinkage() ||
3672       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3673     GV->setDSOLocal(true);
3674 }
3675 
3676 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3677   GlobalValue::SanitizerMetadata Meta;
3678   if (V & (1 << 0))
3679     Meta.NoAddress = true;
3680   if (V & (1 << 1))
3681     Meta.NoHWAddress = true;
3682   if (V & (1 << 2))
3683     Meta.Memtag = true;
3684   if (V & (1 << 3))
3685     Meta.IsDynInit = true;
3686   return Meta;
3687 }
3688 
3689 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3690   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3691   // visibility, threadlocal, unnamed_addr, externally_initialized,
3692   // dllstorageclass, comdat, attributes, preemption specifier,
3693   // partition strtab offset, partition strtab size] (name in VST)
3694   // v2: [strtab_offset, strtab_size, v1]
3695   StringRef Name;
3696   std::tie(Name, Record) = readNameFromStrtab(Record);
3697 
3698   if (Record.size() < 6)
3699     return error("Invalid record");
3700   unsigned TyID = Record[0];
3701   Type *Ty = getTypeByID(TyID);
3702   if (!Ty)
3703     return error("Invalid record");
3704   bool isConstant = Record[1] & 1;
3705   bool explicitType = Record[1] & 2;
3706   unsigned AddressSpace;
3707   if (explicitType) {
3708     AddressSpace = Record[1] >> 2;
3709   } else {
3710     if (!Ty->isPointerTy())
3711       return error("Invalid type for value");
3712     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3713     TyID = getContainedTypeID(TyID);
3714     Ty = getTypeByID(TyID);
3715     if (!Ty)
3716       return error("Missing element type for old-style global");
3717   }
3718 
3719   uint64_t RawLinkage = Record[3];
3720   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3721   MaybeAlign Alignment;
3722   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3723     return Err;
3724   std::string Section;
3725   if (Record[5]) {
3726     if (Record[5] - 1 >= SectionTable.size())
3727       return error("Invalid ID");
3728     Section = SectionTable[Record[5] - 1];
3729   }
3730   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3731   // Local linkage must have default visibility.
3732   // auto-upgrade `hidden` and `protected` for old bitcode.
3733   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3734     Visibility = getDecodedVisibility(Record[6]);
3735 
3736   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3737   if (Record.size() > 7)
3738     TLM = getDecodedThreadLocalMode(Record[7]);
3739 
3740   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3741   if (Record.size() > 8)
3742     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3743 
3744   bool ExternallyInitialized = false;
3745   if (Record.size() > 9)
3746     ExternallyInitialized = Record[9];
3747 
3748   GlobalVariable *NewGV =
3749       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3750                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3751   NewGV->setAlignment(Alignment);
3752   if (!Section.empty())
3753     NewGV->setSection(Section);
3754   NewGV->setVisibility(Visibility);
3755   NewGV->setUnnamedAddr(UnnamedAddr);
3756 
3757   if (Record.size() > 10)
3758     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3759   else
3760     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3761 
3762   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3763 
3764   // Remember which value to use for the global initializer.
3765   if (unsigned InitID = Record[2])
3766     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3767 
3768   if (Record.size() > 11) {
3769     if (unsigned ComdatID = Record[11]) {
3770       if (ComdatID > ComdatList.size())
3771         return error("Invalid global variable comdat ID");
3772       NewGV->setComdat(ComdatList[ComdatID - 1]);
3773     }
3774   } else if (hasImplicitComdat(RawLinkage)) {
3775     ImplicitComdatObjects.insert(NewGV);
3776   }
3777 
3778   if (Record.size() > 12) {
3779     auto AS = getAttributes(Record[12]).getFnAttrs();
3780     NewGV->setAttributes(AS);
3781   }
3782 
3783   if (Record.size() > 13) {
3784     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3785   }
3786   inferDSOLocal(NewGV);
3787 
3788   // Check whether we have enough values to read a partition name.
3789   if (Record.size() > 15)
3790     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3791 
3792   if (Record.size() > 16 && Record[16]) {
3793     llvm::GlobalValue::SanitizerMetadata Meta =
3794         deserializeSanitizerMetadata(Record[16]);
3795     NewGV->setSanitizerMetadata(Meta);
3796   }
3797 
3798   return Error::success();
3799 }
3800 
3801 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3802   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3803   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3804   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3805   // v2: [strtab_offset, strtab_size, v1]
3806   StringRef Name;
3807   std::tie(Name, Record) = readNameFromStrtab(Record);
3808 
3809   if (Record.size() < 8)
3810     return error("Invalid record");
3811   unsigned FTyID = Record[0];
3812   Type *FTy = getTypeByID(FTyID);
3813   if (!FTy)
3814     return error("Invalid record");
3815   if (isa<PointerType>(FTy)) {
3816     FTyID = getContainedTypeID(FTyID, 0);
3817     FTy = getTypeByID(FTyID);
3818     if (!FTy)
3819       return error("Missing element type for old-style function");
3820   }
3821 
3822   if (!isa<FunctionType>(FTy))
3823     return error("Invalid type for value");
3824   auto CC = static_cast<CallingConv::ID>(Record[1]);
3825   if (CC & ~CallingConv::MaxID)
3826     return error("Invalid calling convention ID");
3827 
3828   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3829   if (Record.size() > 16)
3830     AddrSpace = Record[16];
3831 
3832   Function *Func =
3833       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3834                        AddrSpace, Name, TheModule);
3835 
3836   assert(Func->getFunctionType() == FTy &&
3837          "Incorrect fully specified type provided for function");
3838   FunctionTypeIDs[Func] = FTyID;
3839 
3840   Func->setCallingConv(CC);
3841   bool isProto = Record[2];
3842   uint64_t RawLinkage = Record[3];
3843   Func->setLinkage(getDecodedLinkage(RawLinkage));
3844   Func->setAttributes(getAttributes(Record[4]));
3845 
3846   // Upgrade any old-style byval or sret without a type by propagating the
3847   // argument's pointee type. There should be no opaque pointers where the byval
3848   // type is implicit.
3849   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3850     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3851                                      Attribute::InAlloca}) {
3852       if (!Func->hasParamAttribute(i, Kind))
3853         continue;
3854 
3855       if (Func->getParamAttribute(i, Kind).getValueAsType())
3856         continue;
3857 
3858       Func->removeParamAttr(i, Kind);
3859 
3860       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3861       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3862       if (!PtrEltTy)
3863         return error("Missing param element type for attribute upgrade");
3864 
3865       Attribute NewAttr;
3866       switch (Kind) {
3867       case Attribute::ByVal:
3868         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3869         break;
3870       case Attribute::StructRet:
3871         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3872         break;
3873       case Attribute::InAlloca:
3874         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3875         break;
3876       default:
3877         llvm_unreachable("not an upgraded type attribute");
3878       }
3879 
3880       Func->addParamAttr(i, NewAttr);
3881     }
3882   }
3883 
3884   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3885       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3886     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3887     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3888     if (!ByValTy)
3889       return error("Missing param element type for x86_intrcc upgrade");
3890     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3891     Func->addParamAttr(0, NewAttr);
3892   }
3893 
3894   MaybeAlign Alignment;
3895   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3896     return Err;
3897   Func->setAlignment(Alignment);
3898   if (Record[6]) {
3899     if (Record[6] - 1 >= SectionTable.size())
3900       return error("Invalid ID");
3901     Func->setSection(SectionTable[Record[6] - 1]);
3902   }
3903   // Local linkage must have default visibility.
3904   // auto-upgrade `hidden` and `protected` for old bitcode.
3905   if (!Func->hasLocalLinkage())
3906     Func->setVisibility(getDecodedVisibility(Record[7]));
3907   if (Record.size() > 8 && Record[8]) {
3908     if (Record[8] - 1 >= GCTable.size())
3909       return error("Invalid ID");
3910     Func->setGC(GCTable[Record[8] - 1]);
3911   }
3912   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3913   if (Record.size() > 9)
3914     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3915   Func->setUnnamedAddr(UnnamedAddr);
3916 
3917   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3918   if (Record.size() > 10)
3919     OperandInfo.Prologue = Record[10];
3920 
3921   if (Record.size() > 11)
3922     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3923   else
3924     upgradeDLLImportExportLinkage(Func, RawLinkage);
3925 
3926   if (Record.size() > 12) {
3927     if (unsigned ComdatID = Record[12]) {
3928       if (ComdatID > ComdatList.size())
3929         return error("Invalid function comdat ID");
3930       Func->setComdat(ComdatList[ComdatID - 1]);
3931     }
3932   } else if (hasImplicitComdat(RawLinkage)) {
3933     ImplicitComdatObjects.insert(Func);
3934   }
3935 
3936   if (Record.size() > 13)
3937     OperandInfo.Prefix = Record[13];
3938 
3939   if (Record.size() > 14)
3940     OperandInfo.PersonalityFn = Record[14];
3941 
3942   if (Record.size() > 15) {
3943     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3944   }
3945   inferDSOLocal(Func);
3946 
3947   // Record[16] is the address space number.
3948 
3949   // Check whether we have enough values to read a partition name. Also make
3950   // sure Strtab has enough values.
3951   if (Record.size() > 18 && Strtab.data() &&
3952       Record[17] + Record[18] <= Strtab.size()) {
3953     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3954   }
3955 
3956   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3957 
3958   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3959     FunctionOperands.push_back(OperandInfo);
3960 
3961   // If this is a function with a body, remember the prototype we are
3962   // creating now, so that we can match up the body with them later.
3963   if (!isProto) {
3964     Func->setIsMaterializable(true);
3965     FunctionsWithBodies.push_back(Func);
3966     DeferredFunctionInfo[Func] = 0;
3967   }
3968   return Error::success();
3969 }
3970 
3971 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3972     unsigned BitCode, ArrayRef<uint64_t> Record) {
3973   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3974   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3975   // dllstorageclass, threadlocal, unnamed_addr,
3976   // preemption specifier] (name in VST)
3977   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3978   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3979   // preemption specifier] (name in VST)
3980   // v2: [strtab_offset, strtab_size, v1]
3981   StringRef Name;
3982   std::tie(Name, Record) = readNameFromStrtab(Record);
3983 
3984   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3985   if (Record.size() < (3 + (unsigned)NewRecord))
3986     return error("Invalid record");
3987   unsigned OpNum = 0;
3988   unsigned TypeID = Record[OpNum++];
3989   Type *Ty = getTypeByID(TypeID);
3990   if (!Ty)
3991     return error("Invalid record");
3992 
3993   unsigned AddrSpace;
3994   if (!NewRecord) {
3995     auto *PTy = dyn_cast<PointerType>(Ty);
3996     if (!PTy)
3997       return error("Invalid type for value");
3998     AddrSpace = PTy->getAddressSpace();
3999     TypeID = getContainedTypeID(TypeID);
4000     Ty = getTypeByID(TypeID);
4001     if (!Ty)
4002       return error("Missing element type for old-style indirect symbol");
4003   } else {
4004     AddrSpace = Record[OpNum++];
4005   }
4006 
4007   auto Val = Record[OpNum++];
4008   auto Linkage = Record[OpNum++];
4009   GlobalValue *NewGA;
4010   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4011       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4012     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4013                                 TheModule);
4014   else
4015     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4016                                 nullptr, TheModule);
4017 
4018   // Local linkage must have default visibility.
4019   // auto-upgrade `hidden` and `protected` for old bitcode.
4020   if (OpNum != Record.size()) {
4021     auto VisInd = OpNum++;
4022     if (!NewGA->hasLocalLinkage())
4023       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4024   }
4025   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4026       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4027     if (OpNum != Record.size())
4028       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4029     else
4030       upgradeDLLImportExportLinkage(NewGA, Linkage);
4031     if (OpNum != Record.size())
4032       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4033     if (OpNum != Record.size())
4034       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4035   }
4036   if (OpNum != Record.size())
4037     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4038   inferDSOLocal(NewGA);
4039 
4040   // Check whether we have enough values to read a partition name.
4041   if (OpNum + 1 < Record.size()) {
4042     NewGA->setPartition(
4043         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4044     OpNum += 2;
4045   }
4046 
4047   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4048   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4049   return Error::success();
4050 }
4051 
4052 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4053                                  bool ShouldLazyLoadMetadata,
4054                                  DataLayoutCallbackTy DataLayoutCallback) {
4055   if (ResumeBit) {
4056     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4057       return JumpFailed;
4058   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4059     return Err;
4060 
4061   SmallVector<uint64_t, 64> Record;
4062 
4063   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4064   // finalize the datalayout before we run any of that code.
4065   bool ResolvedDataLayout = false;
4066   auto ResolveDataLayout = [&] {
4067     if (ResolvedDataLayout)
4068       return;
4069 
4070     // datalayout and triple can't be parsed after this point.
4071     ResolvedDataLayout = true;
4072 
4073     // Upgrade data layout string.
4074     std::string DL = llvm::UpgradeDataLayoutString(
4075         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
4076     TheModule->setDataLayout(DL);
4077 
4078     if (auto LayoutOverride =
4079             DataLayoutCallback(TheModule->getTargetTriple()))
4080       TheModule->setDataLayout(*LayoutOverride);
4081   };
4082 
4083   // Read all the records for this module.
4084   while (true) {
4085     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4086     if (!MaybeEntry)
4087       return MaybeEntry.takeError();
4088     llvm::BitstreamEntry Entry = MaybeEntry.get();
4089 
4090     switch (Entry.Kind) {
4091     case BitstreamEntry::Error:
4092       return error("Malformed block");
4093     case BitstreamEntry::EndBlock:
4094       ResolveDataLayout();
4095       return globalCleanup();
4096 
4097     case BitstreamEntry::SubBlock:
4098       switch (Entry.ID) {
4099       default:  // Skip unknown content.
4100         if (Error Err = Stream.SkipBlock())
4101           return Err;
4102         break;
4103       case bitc::BLOCKINFO_BLOCK_ID:
4104         if (Error Err = readBlockInfo())
4105           return Err;
4106         break;
4107       case bitc::PARAMATTR_BLOCK_ID:
4108         if (Error Err = parseAttributeBlock())
4109           return Err;
4110         break;
4111       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4112         if (Error Err = parseAttributeGroupBlock())
4113           return Err;
4114         break;
4115       case bitc::TYPE_BLOCK_ID_NEW:
4116         if (Error Err = parseTypeTable())
4117           return Err;
4118         break;
4119       case bitc::VALUE_SYMTAB_BLOCK_ID:
4120         if (!SeenValueSymbolTable) {
4121           // Either this is an old form VST without function index and an
4122           // associated VST forward declaration record (which would have caused
4123           // the VST to be jumped to and parsed before it was encountered
4124           // normally in the stream), or there were no function blocks to
4125           // trigger an earlier parsing of the VST.
4126           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4127           if (Error Err = parseValueSymbolTable())
4128             return Err;
4129           SeenValueSymbolTable = true;
4130         } else {
4131           // We must have had a VST forward declaration record, which caused
4132           // the parser to jump to and parse the VST earlier.
4133           assert(VSTOffset > 0);
4134           if (Error Err = Stream.SkipBlock())
4135             return Err;
4136         }
4137         break;
4138       case bitc::CONSTANTS_BLOCK_ID:
4139         if (Error Err = parseConstants())
4140           return Err;
4141         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4142           return Err;
4143         break;
4144       case bitc::METADATA_BLOCK_ID:
4145         if (ShouldLazyLoadMetadata) {
4146           if (Error Err = rememberAndSkipMetadata())
4147             return Err;
4148           break;
4149         }
4150         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4151         if (Error Err = MDLoader->parseModuleMetadata())
4152           return Err;
4153         break;
4154       case bitc::METADATA_KIND_BLOCK_ID:
4155         if (Error Err = MDLoader->parseMetadataKinds())
4156           return Err;
4157         break;
4158       case bitc::FUNCTION_BLOCK_ID:
4159         ResolveDataLayout();
4160 
4161         // If this is the first function body we've seen, reverse the
4162         // FunctionsWithBodies list.
4163         if (!SeenFirstFunctionBody) {
4164           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4165           if (Error Err = globalCleanup())
4166             return Err;
4167           SeenFirstFunctionBody = true;
4168         }
4169 
4170         if (VSTOffset > 0) {
4171           // If we have a VST forward declaration record, make sure we
4172           // parse the VST now if we haven't already. It is needed to
4173           // set up the DeferredFunctionInfo vector for lazy reading.
4174           if (!SeenValueSymbolTable) {
4175             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4176               return Err;
4177             SeenValueSymbolTable = true;
4178             // Fall through so that we record the NextUnreadBit below.
4179             // This is necessary in case we have an anonymous function that
4180             // is later materialized. Since it will not have a VST entry we
4181             // need to fall back to the lazy parse to find its offset.
4182           } else {
4183             // If we have a VST forward declaration record, but have already
4184             // parsed the VST (just above, when the first function body was
4185             // encountered here), then we are resuming the parse after
4186             // materializing functions. The ResumeBit points to the
4187             // start of the last function block recorded in the
4188             // DeferredFunctionInfo map. Skip it.
4189             if (Error Err = Stream.SkipBlock())
4190               return Err;
4191             continue;
4192           }
4193         }
4194 
4195         // Support older bitcode files that did not have the function
4196         // index in the VST, nor a VST forward declaration record, as
4197         // well as anonymous functions that do not have VST entries.
4198         // Build the DeferredFunctionInfo vector on the fly.
4199         if (Error Err = rememberAndSkipFunctionBody())
4200           return Err;
4201 
4202         // Suspend parsing when we reach the function bodies. Subsequent
4203         // materialization calls will resume it when necessary. If the bitcode
4204         // file is old, the symbol table will be at the end instead and will not
4205         // have been seen yet. In this case, just finish the parse now.
4206         if (SeenValueSymbolTable) {
4207           NextUnreadBit = Stream.GetCurrentBitNo();
4208           // After the VST has been parsed, we need to make sure intrinsic name
4209           // are auto-upgraded.
4210           return globalCleanup();
4211         }
4212         break;
4213       case bitc::USELIST_BLOCK_ID:
4214         if (Error Err = parseUseLists())
4215           return Err;
4216         break;
4217       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4218         if (Error Err = parseOperandBundleTags())
4219           return Err;
4220         break;
4221       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4222         if (Error Err = parseSyncScopeNames())
4223           return Err;
4224         break;
4225       }
4226       continue;
4227 
4228     case BitstreamEntry::Record:
4229       // The interesting case.
4230       break;
4231     }
4232 
4233     // Read a record.
4234     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4235     if (!MaybeBitCode)
4236       return MaybeBitCode.takeError();
4237     switch (unsigned BitCode = MaybeBitCode.get()) {
4238     default: break;  // Default behavior, ignore unknown content.
4239     case bitc::MODULE_CODE_VERSION: {
4240       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4241       if (!VersionOrErr)
4242         return VersionOrErr.takeError();
4243       UseRelativeIDs = *VersionOrErr >= 1;
4244       break;
4245     }
4246     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4247       if (ResolvedDataLayout)
4248         return error("target triple too late in module");
4249       std::string S;
4250       if (convertToString(Record, 0, S))
4251         return error("Invalid record");
4252       TheModule->setTargetTriple(S);
4253       break;
4254     }
4255     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4256       if (ResolvedDataLayout)
4257         return error("datalayout too late in module");
4258       std::string S;
4259       if (convertToString(Record, 0, S))
4260         return error("Invalid record");
4261       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4262       if (!MaybeDL)
4263         return MaybeDL.takeError();
4264       TheModule->setDataLayout(MaybeDL.get());
4265       break;
4266     }
4267     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4268       std::string S;
4269       if (convertToString(Record, 0, S))
4270         return error("Invalid record");
4271       TheModule->setModuleInlineAsm(S);
4272       break;
4273     }
4274     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4275       // Deprecated, but still needed to read old bitcode files.
4276       std::string S;
4277       if (convertToString(Record, 0, S))
4278         return error("Invalid record");
4279       // Ignore value.
4280       break;
4281     }
4282     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4283       std::string S;
4284       if (convertToString(Record, 0, S))
4285         return error("Invalid record");
4286       SectionTable.push_back(S);
4287       break;
4288     }
4289     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4290       std::string S;
4291       if (convertToString(Record, 0, S))
4292         return error("Invalid record");
4293       GCTable.push_back(S);
4294       break;
4295     }
4296     case bitc::MODULE_CODE_COMDAT:
4297       if (Error Err = parseComdatRecord(Record))
4298         return Err;
4299       break;
4300     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4301     // written by ThinLinkBitcodeWriter. See
4302     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4303     // record
4304     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4305     case bitc::MODULE_CODE_GLOBALVAR:
4306       if (Error Err = parseGlobalVarRecord(Record))
4307         return Err;
4308       break;
4309     case bitc::MODULE_CODE_FUNCTION:
4310       ResolveDataLayout();
4311       if (Error Err = parseFunctionRecord(Record))
4312         return Err;
4313       break;
4314     case bitc::MODULE_CODE_IFUNC:
4315     case bitc::MODULE_CODE_ALIAS:
4316     case bitc::MODULE_CODE_ALIAS_OLD:
4317       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4318         return Err;
4319       break;
4320     /// MODULE_CODE_VSTOFFSET: [offset]
4321     case bitc::MODULE_CODE_VSTOFFSET:
4322       if (Record.empty())
4323         return error("Invalid record");
4324       // Note that we subtract 1 here because the offset is relative to one word
4325       // before the start of the identification or module block, which was
4326       // historically always the start of the regular bitcode header.
4327       VSTOffset = Record[0] - 1;
4328       break;
4329     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4330     case bitc::MODULE_CODE_SOURCE_FILENAME:
4331       SmallString<128> ValueName;
4332       if (convertToString(Record, 0, ValueName))
4333         return error("Invalid record");
4334       TheModule->setSourceFileName(ValueName);
4335       break;
4336     }
4337     Record.clear();
4338   }
4339 }
4340 
4341 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4342                                       bool IsImporting,
4343                                       DataLayoutCallbackTy DataLayoutCallback) {
4344   TheModule = M;
4345   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4346                             [&](unsigned ID) { return getTypeByID(ID); });
4347   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4348 }
4349 
4350 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4351   if (!isa<PointerType>(PtrType))
4352     return error("Load/Store operand is not a pointer type");
4353 
4354   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4355     return error("Explicit load/store type does not match pointee "
4356                  "type of pointer operand");
4357   if (!PointerType::isLoadableOrStorableType(ValType))
4358     return error("Cannot load/store from pointer");
4359   return Error::success();
4360 }
4361 
4362 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4363                                              ArrayRef<unsigned> ArgTyIDs) {
4364   AttributeList Attrs = CB->getAttributes();
4365   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4366     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4367                                      Attribute::InAlloca}) {
4368       if (!Attrs.hasParamAttr(i, Kind) ||
4369           Attrs.getParamAttr(i, Kind).getValueAsType())
4370         continue;
4371 
4372       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4373       if (!PtrEltTy)
4374         return error("Missing element type for typed attribute upgrade");
4375 
4376       Attribute NewAttr;
4377       switch (Kind) {
4378       case Attribute::ByVal:
4379         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4380         break;
4381       case Attribute::StructRet:
4382         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4383         break;
4384       case Attribute::InAlloca:
4385         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4386         break;
4387       default:
4388         llvm_unreachable("not an upgraded type attribute");
4389       }
4390 
4391       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4392     }
4393   }
4394 
4395   if (CB->isInlineAsm()) {
4396     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4397     unsigned ArgNo = 0;
4398     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4399       if (!CI.hasArg())
4400         continue;
4401 
4402       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4403         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4404         if (!ElemTy)
4405           return error("Missing element type for inline asm upgrade");
4406         Attrs = Attrs.addParamAttribute(
4407             Context, ArgNo,
4408             Attribute::get(Context, Attribute::ElementType, ElemTy));
4409       }
4410 
4411       ArgNo++;
4412     }
4413   }
4414 
4415   switch (CB->getIntrinsicID()) {
4416   case Intrinsic::preserve_array_access_index:
4417   case Intrinsic::preserve_struct_access_index:
4418   case Intrinsic::aarch64_ldaxr:
4419   case Intrinsic::aarch64_ldxr:
4420   case Intrinsic::aarch64_stlxr:
4421   case Intrinsic::aarch64_stxr:
4422   case Intrinsic::arm_ldaex:
4423   case Intrinsic::arm_ldrex:
4424   case Intrinsic::arm_stlex:
4425   case Intrinsic::arm_strex: {
4426     unsigned ArgNo;
4427     switch (CB->getIntrinsicID()) {
4428     case Intrinsic::aarch64_stlxr:
4429     case Intrinsic::aarch64_stxr:
4430     case Intrinsic::arm_stlex:
4431     case Intrinsic::arm_strex:
4432       ArgNo = 1;
4433       break;
4434     default:
4435       ArgNo = 0;
4436       break;
4437     }
4438     if (!Attrs.getParamElementType(ArgNo)) {
4439       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4440       if (!ElTy)
4441         return error("Missing element type for elementtype upgrade");
4442       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4443       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4444     }
4445     break;
4446   }
4447   default:
4448     break;
4449   }
4450 
4451   CB->setAttributes(Attrs);
4452   return Error::success();
4453 }
4454 
4455 /// Lazily parse the specified function body block.
4456 Error BitcodeReader::parseFunctionBody(Function *F) {
4457   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4458     return Err;
4459 
4460   // Unexpected unresolved metadata when parsing function.
4461   if (MDLoader->hasFwdRefs())
4462     return error("Invalid function metadata: incoming forward references");
4463 
4464   InstructionList.clear();
4465   unsigned ModuleValueListSize = ValueList.size();
4466   unsigned ModuleMDLoaderSize = MDLoader->size();
4467 
4468   // Add all the function arguments to the value table.
4469   unsigned ArgNo = 0;
4470   unsigned FTyID = FunctionTypeIDs[F];
4471   for (Argument &I : F->args()) {
4472     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4473     assert(I.getType() == getTypeByID(ArgTyID) &&
4474            "Incorrect fully specified type for Function Argument");
4475     ValueList.push_back(&I, ArgTyID);
4476     ++ArgNo;
4477   }
4478   unsigned NextValueNo = ValueList.size();
4479   BasicBlock *CurBB = nullptr;
4480   unsigned CurBBNo = 0;
4481   // Block into which constant expressions from phi nodes are materialized.
4482   BasicBlock *PhiConstExprBB = nullptr;
4483   // Edge blocks for phi nodes into which constant expressions have been
4484   // expanded.
4485   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4486     ConstExprEdgeBBs;
4487 
4488   DebugLoc LastLoc;
4489   auto getLastInstruction = [&]() -> Instruction * {
4490     if (CurBB && !CurBB->empty())
4491       return &CurBB->back();
4492     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4493              !FunctionBBs[CurBBNo - 1]->empty())
4494       return &FunctionBBs[CurBBNo - 1]->back();
4495     return nullptr;
4496   };
4497 
4498   std::vector<OperandBundleDef> OperandBundles;
4499 
4500   // Read all the records.
4501   SmallVector<uint64_t, 64> Record;
4502 
4503   while (true) {
4504     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4505     if (!MaybeEntry)
4506       return MaybeEntry.takeError();
4507     llvm::BitstreamEntry Entry = MaybeEntry.get();
4508 
4509     switch (Entry.Kind) {
4510     case BitstreamEntry::Error:
4511       return error("Malformed block");
4512     case BitstreamEntry::EndBlock:
4513       goto OutOfRecordLoop;
4514 
4515     case BitstreamEntry::SubBlock:
4516       switch (Entry.ID) {
4517       default:  // Skip unknown content.
4518         if (Error Err = Stream.SkipBlock())
4519           return Err;
4520         break;
4521       case bitc::CONSTANTS_BLOCK_ID:
4522         if (Error Err = parseConstants())
4523           return Err;
4524         NextValueNo = ValueList.size();
4525         break;
4526       case bitc::VALUE_SYMTAB_BLOCK_ID:
4527         if (Error Err = parseValueSymbolTable())
4528           return Err;
4529         break;
4530       case bitc::METADATA_ATTACHMENT_ID:
4531         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4532           return Err;
4533         break;
4534       case bitc::METADATA_BLOCK_ID:
4535         assert(DeferredMetadataInfo.empty() &&
4536                "Must read all module-level metadata before function-level");
4537         if (Error Err = MDLoader->parseFunctionMetadata())
4538           return Err;
4539         break;
4540       case bitc::USELIST_BLOCK_ID:
4541         if (Error Err = parseUseLists())
4542           return Err;
4543         break;
4544       }
4545       continue;
4546 
4547     case BitstreamEntry::Record:
4548       // The interesting case.
4549       break;
4550     }
4551 
4552     // Read a record.
4553     Record.clear();
4554     Instruction *I = nullptr;
4555     unsigned ResTypeID = InvalidTypeID;
4556     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4557     if (!MaybeBitCode)
4558       return MaybeBitCode.takeError();
4559     switch (unsigned BitCode = MaybeBitCode.get()) {
4560     default: // Default behavior: reject
4561       return error("Invalid value");
4562     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4563       if (Record.empty() || Record[0] == 0)
4564         return error("Invalid record");
4565       // Create all the basic blocks for the function.
4566       FunctionBBs.resize(Record[0]);
4567 
4568       // See if anything took the address of blocks in this function.
4569       auto BBFRI = BasicBlockFwdRefs.find(F);
4570       if (BBFRI == BasicBlockFwdRefs.end()) {
4571         for (BasicBlock *&BB : FunctionBBs)
4572           BB = BasicBlock::Create(Context, "", F);
4573       } else {
4574         auto &BBRefs = BBFRI->second;
4575         // Check for invalid basic block references.
4576         if (BBRefs.size() > FunctionBBs.size())
4577           return error("Invalid ID");
4578         assert(!BBRefs.empty() && "Unexpected empty array");
4579         assert(!BBRefs.front() && "Invalid reference to entry block");
4580         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4581              ++I)
4582           if (I < RE && BBRefs[I]) {
4583             BBRefs[I]->insertInto(F);
4584             FunctionBBs[I] = BBRefs[I];
4585           } else {
4586             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4587           }
4588 
4589         // Erase from the table.
4590         BasicBlockFwdRefs.erase(BBFRI);
4591       }
4592 
4593       CurBB = FunctionBBs[0];
4594       continue;
4595     }
4596 
4597     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4598       // The record should not be emitted if it's an empty list.
4599       if (Record.empty())
4600         return error("Invalid record");
4601       // When we have the RARE case of a BlockAddress Constant that is not
4602       // scoped to the Function it refers to, we need to conservatively
4603       // materialize the referred to Function, regardless of whether or not
4604       // that Function will ultimately be linked, otherwise users of
4605       // BitcodeReader might start splicing out Function bodies such that we
4606       // might no longer be able to materialize the BlockAddress since the
4607       // BasicBlock (and entire body of the Function) the BlockAddress refers
4608       // to may have been moved. In the case that the user of BitcodeReader
4609       // decides ultimately not to link the Function body, materializing here
4610       // could be considered wasteful, but it's better than a deserialization
4611       // failure as described. This keeps BitcodeReader unaware of complex
4612       // linkage policy decisions such as those use by LTO, leaving those
4613       // decisions "one layer up."
4614       for (uint64_t ValID : Record)
4615         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4616           BackwardRefFunctions.push_back(F);
4617         else
4618           return error("Invalid record");
4619 
4620       continue;
4621 
4622     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4623       // This record indicates that the last instruction is at the same
4624       // location as the previous instruction with a location.
4625       I = getLastInstruction();
4626 
4627       if (!I)
4628         return error("Invalid record");
4629       I->setDebugLoc(LastLoc);
4630       I = nullptr;
4631       continue;
4632 
4633     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4634       I = getLastInstruction();
4635       if (!I || Record.size() < 4)
4636         return error("Invalid record");
4637 
4638       unsigned Line = Record[0], Col = Record[1];
4639       unsigned ScopeID = Record[2], IAID = Record[3];
4640       bool isImplicitCode = Record.size() == 5 && Record[4];
4641 
4642       MDNode *Scope = nullptr, *IA = nullptr;
4643       if (ScopeID) {
4644         Scope = dyn_cast_or_null<MDNode>(
4645             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4646         if (!Scope)
4647           return error("Invalid record");
4648       }
4649       if (IAID) {
4650         IA = dyn_cast_or_null<MDNode>(
4651             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4652         if (!IA)
4653           return error("Invalid record");
4654       }
4655       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4656                                 isImplicitCode);
4657       I->setDebugLoc(LastLoc);
4658       I = nullptr;
4659       continue;
4660     }
4661     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4662       unsigned OpNum = 0;
4663       Value *LHS;
4664       unsigned TypeID;
4665       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4666           OpNum+1 > Record.size())
4667         return error("Invalid record");
4668 
4669       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4670       if (Opc == -1)
4671         return error("Invalid record");
4672       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4673       ResTypeID = TypeID;
4674       InstructionList.push_back(I);
4675       if (OpNum < Record.size()) {
4676         if (isa<FPMathOperator>(I)) {
4677           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4678           if (FMF.any())
4679             I->setFastMathFlags(FMF);
4680         }
4681       }
4682       break;
4683     }
4684     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4685       unsigned OpNum = 0;
4686       Value *LHS, *RHS;
4687       unsigned TypeID;
4688       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4689           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4690                    CurBB) ||
4691           OpNum+1 > Record.size())
4692         return error("Invalid record");
4693 
4694       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4695       if (Opc == -1)
4696         return error("Invalid record");
4697       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4698       ResTypeID = TypeID;
4699       InstructionList.push_back(I);
4700       if (OpNum < Record.size()) {
4701         if (Opc == Instruction::Add ||
4702             Opc == Instruction::Sub ||
4703             Opc == Instruction::Mul ||
4704             Opc == Instruction::Shl) {
4705           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4706             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4707           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4708             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4709         } else if (Opc == Instruction::SDiv ||
4710                    Opc == Instruction::UDiv ||
4711                    Opc == Instruction::LShr ||
4712                    Opc == Instruction::AShr) {
4713           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4714             cast<BinaryOperator>(I)->setIsExact(true);
4715         } else if (isa<FPMathOperator>(I)) {
4716           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4717           if (FMF.any())
4718             I->setFastMathFlags(FMF);
4719         }
4720 
4721       }
4722       break;
4723     }
4724     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4725       unsigned OpNum = 0;
4726       Value *Op;
4727       unsigned OpTypeID;
4728       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4729           OpNum+2 != Record.size())
4730         return error("Invalid record");
4731 
4732       ResTypeID = Record[OpNum];
4733       Type *ResTy = getTypeByID(ResTypeID);
4734       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4735       if (Opc == -1 || !ResTy)
4736         return error("Invalid record");
4737       Instruction *Temp = nullptr;
4738       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4739         if (Temp) {
4740           InstructionList.push_back(Temp);
4741           assert(CurBB && "No current BB?");
4742           CurBB->getInstList().push_back(Temp);
4743         }
4744       } else {
4745         auto CastOp = (Instruction::CastOps)Opc;
4746         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4747           return error("Invalid cast");
4748         I = CastInst::Create(CastOp, Op, ResTy);
4749       }
4750       InstructionList.push_back(I);
4751       break;
4752     }
4753     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4754     case bitc::FUNC_CODE_INST_GEP_OLD:
4755     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4756       unsigned OpNum = 0;
4757 
4758       unsigned TyID;
4759       Type *Ty;
4760       bool InBounds;
4761 
4762       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4763         InBounds = Record[OpNum++];
4764         TyID = Record[OpNum++];
4765         Ty = getTypeByID(TyID);
4766       } else {
4767         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4768         TyID = InvalidTypeID;
4769         Ty = nullptr;
4770       }
4771 
4772       Value *BasePtr;
4773       unsigned BasePtrTypeID;
4774       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4775                            CurBB))
4776         return error("Invalid record");
4777 
4778       if (!Ty) {
4779         TyID = getContainedTypeID(BasePtrTypeID);
4780         if (BasePtr->getType()->isVectorTy())
4781           TyID = getContainedTypeID(TyID);
4782         Ty = getTypeByID(TyID);
4783       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4784                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4785         return error(
4786             "Explicit gep type does not match pointee type of pointer operand");
4787       }
4788 
4789       SmallVector<Value*, 16> GEPIdx;
4790       while (OpNum != Record.size()) {
4791         Value *Op;
4792         unsigned OpTypeID;
4793         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4794           return error("Invalid record");
4795         GEPIdx.push_back(Op);
4796       }
4797 
4798       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4799 
4800       ResTypeID = TyID;
4801       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4802         auto GTI = std::next(gep_type_begin(I));
4803         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4804           unsigned SubType = 0;
4805           if (GTI.isStruct()) {
4806             ConstantInt *IdxC =
4807                 Idx->getType()->isVectorTy()
4808                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4809                     : cast<ConstantInt>(Idx);
4810             SubType = IdxC->getZExtValue();
4811           }
4812           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4813           ++GTI;
4814         }
4815       }
4816 
4817       // At this point ResTypeID is the result element type. We need a pointer
4818       // or vector of pointer to it.
4819       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4820       if (I->getType()->isVectorTy())
4821         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4822 
4823       InstructionList.push_back(I);
4824       if (InBounds)
4825         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4826       break;
4827     }
4828 
4829     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4830                                        // EXTRACTVAL: [opty, opval, n x indices]
4831       unsigned OpNum = 0;
4832       Value *Agg;
4833       unsigned AggTypeID;
4834       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4835         return error("Invalid record");
4836       Type *Ty = Agg->getType();
4837 
4838       unsigned RecSize = Record.size();
4839       if (OpNum == RecSize)
4840         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4841 
4842       SmallVector<unsigned, 4> EXTRACTVALIdx;
4843       ResTypeID = AggTypeID;
4844       for (; OpNum != RecSize; ++OpNum) {
4845         bool IsArray = Ty->isArrayTy();
4846         bool IsStruct = Ty->isStructTy();
4847         uint64_t Index = Record[OpNum];
4848 
4849         if (!IsStruct && !IsArray)
4850           return error("EXTRACTVAL: Invalid type");
4851         if ((unsigned)Index != Index)
4852           return error("Invalid value");
4853         if (IsStruct && Index >= Ty->getStructNumElements())
4854           return error("EXTRACTVAL: Invalid struct index");
4855         if (IsArray && Index >= Ty->getArrayNumElements())
4856           return error("EXTRACTVAL: Invalid array index");
4857         EXTRACTVALIdx.push_back((unsigned)Index);
4858 
4859         if (IsStruct) {
4860           Ty = Ty->getStructElementType(Index);
4861           ResTypeID = getContainedTypeID(ResTypeID, Index);
4862         } else {
4863           Ty = Ty->getArrayElementType();
4864           ResTypeID = getContainedTypeID(ResTypeID);
4865         }
4866       }
4867 
4868       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4869       InstructionList.push_back(I);
4870       break;
4871     }
4872 
4873     case bitc::FUNC_CODE_INST_INSERTVAL: {
4874                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4875       unsigned OpNum = 0;
4876       Value *Agg;
4877       unsigned AggTypeID;
4878       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4879         return error("Invalid record");
4880       Value *Val;
4881       unsigned ValTypeID;
4882       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
4883         return error("Invalid record");
4884 
4885       unsigned RecSize = Record.size();
4886       if (OpNum == RecSize)
4887         return error("INSERTVAL: Invalid instruction with 0 indices");
4888 
4889       SmallVector<unsigned, 4> INSERTVALIdx;
4890       Type *CurTy = Agg->getType();
4891       for (; OpNum != RecSize; ++OpNum) {
4892         bool IsArray = CurTy->isArrayTy();
4893         bool IsStruct = CurTy->isStructTy();
4894         uint64_t Index = Record[OpNum];
4895 
4896         if (!IsStruct && !IsArray)
4897           return error("INSERTVAL: Invalid type");
4898         if ((unsigned)Index != Index)
4899           return error("Invalid value");
4900         if (IsStruct && Index >= CurTy->getStructNumElements())
4901           return error("INSERTVAL: Invalid struct index");
4902         if (IsArray && Index >= CurTy->getArrayNumElements())
4903           return error("INSERTVAL: Invalid array index");
4904 
4905         INSERTVALIdx.push_back((unsigned)Index);
4906         if (IsStruct)
4907           CurTy = CurTy->getStructElementType(Index);
4908         else
4909           CurTy = CurTy->getArrayElementType();
4910       }
4911 
4912       if (CurTy != Val->getType())
4913         return error("Inserted value type doesn't match aggregate type");
4914 
4915       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4916       ResTypeID = AggTypeID;
4917       InstructionList.push_back(I);
4918       break;
4919     }
4920 
4921     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4922       // obsolete form of select
4923       // handles select i1 ... in old bitcode
4924       unsigned OpNum = 0;
4925       Value *TrueVal, *FalseVal, *Cond;
4926       unsigned TypeID;
4927       Type *CondType = Type::getInt1Ty(Context);
4928       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
4929                            CurBB) ||
4930           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4931                    FalseVal, CurBB) ||
4932           popValue(Record, OpNum, NextValueNo, CondType,
4933                    getVirtualTypeID(CondType), Cond, CurBB))
4934         return error("Invalid record");
4935 
4936       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4937       ResTypeID = TypeID;
4938       InstructionList.push_back(I);
4939       break;
4940     }
4941 
4942     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4943       // new form of select
4944       // handles select i1 or select [N x i1]
4945       unsigned OpNum = 0;
4946       Value *TrueVal, *FalseVal, *Cond;
4947       unsigned ValTypeID, CondTypeID;
4948       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
4949                            CurBB) ||
4950           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4951                    FalseVal, CurBB) ||
4952           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
4953         return error("Invalid record");
4954 
4955       // select condition can be either i1 or [N x i1]
4956       if (VectorType* vector_type =
4957           dyn_cast<VectorType>(Cond->getType())) {
4958         // expect <n x i1>
4959         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4960           return error("Invalid type for value");
4961       } else {
4962         // expect i1
4963         if (Cond->getType() != Type::getInt1Ty(Context))
4964           return error("Invalid type for value");
4965       }
4966 
4967       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4968       ResTypeID = ValTypeID;
4969       InstructionList.push_back(I);
4970       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4971         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4972         if (FMF.any())
4973           I->setFastMathFlags(FMF);
4974       }
4975       break;
4976     }
4977 
4978     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4979       unsigned OpNum = 0;
4980       Value *Vec, *Idx;
4981       unsigned VecTypeID, IdxTypeID;
4982       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
4983           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
4984         return error("Invalid record");
4985       if (!Vec->getType()->isVectorTy())
4986         return error("Invalid type for value");
4987       I = ExtractElementInst::Create(Vec, Idx);
4988       ResTypeID = getContainedTypeID(VecTypeID);
4989       InstructionList.push_back(I);
4990       break;
4991     }
4992 
4993     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4994       unsigned OpNum = 0;
4995       Value *Vec, *Elt, *Idx;
4996       unsigned VecTypeID, IdxTypeID;
4997       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
4998         return error("Invalid record");
4999       if (!Vec->getType()->isVectorTy())
5000         return error("Invalid type for value");
5001       if (popValue(Record, OpNum, NextValueNo,
5002                    cast<VectorType>(Vec->getType())->getElementType(),
5003                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5004           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5005         return error("Invalid record");
5006       I = InsertElementInst::Create(Vec, Elt, Idx);
5007       ResTypeID = VecTypeID;
5008       InstructionList.push_back(I);
5009       break;
5010     }
5011 
5012     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5013       unsigned OpNum = 0;
5014       Value *Vec1, *Vec2, *Mask;
5015       unsigned Vec1TypeID;
5016       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5017                            CurBB) ||
5018           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5019                    Vec2, CurBB))
5020         return error("Invalid record");
5021 
5022       unsigned MaskTypeID;
5023       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5024         return error("Invalid record");
5025       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5026         return error("Invalid type for value");
5027 
5028       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5029       ResTypeID =
5030           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5031       InstructionList.push_back(I);
5032       break;
5033     }
5034 
5035     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5036       // Old form of ICmp/FCmp returning bool
5037       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5038       // both legal on vectors but had different behaviour.
5039     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5040       // FCmp/ICmp returning bool or vector of bool
5041 
5042       unsigned OpNum = 0;
5043       Value *LHS, *RHS;
5044       unsigned LHSTypeID;
5045       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5046           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5047                    CurBB))
5048         return error("Invalid record");
5049 
5050       if (OpNum >= Record.size())
5051         return error(
5052             "Invalid record: operand number exceeded available operands");
5053 
5054       unsigned PredVal = Record[OpNum];
5055       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5056       FastMathFlags FMF;
5057       if (IsFP && Record.size() > OpNum+1)
5058         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5059 
5060       if (OpNum+1 != Record.size())
5061         return error("Invalid record");
5062 
5063       if (LHS->getType()->isFPOrFPVectorTy())
5064         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5065       else
5066         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5067 
5068       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5069       if (LHS->getType()->isVectorTy())
5070         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5071 
5072       if (FMF.any())
5073         I->setFastMathFlags(FMF);
5074       InstructionList.push_back(I);
5075       break;
5076     }
5077 
5078     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5079       {
5080         unsigned Size = Record.size();
5081         if (Size == 0) {
5082           I = ReturnInst::Create(Context);
5083           InstructionList.push_back(I);
5084           break;
5085         }
5086 
5087         unsigned OpNum = 0;
5088         Value *Op = nullptr;
5089         unsigned OpTypeID;
5090         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5091           return error("Invalid record");
5092         if (OpNum != Record.size())
5093           return error("Invalid record");
5094 
5095         I = ReturnInst::Create(Context, Op);
5096         InstructionList.push_back(I);
5097         break;
5098       }
5099     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5100       if (Record.size() != 1 && Record.size() != 3)
5101         return error("Invalid record");
5102       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5103       if (!TrueDest)
5104         return error("Invalid record");
5105 
5106       if (Record.size() == 1) {
5107         I = BranchInst::Create(TrueDest);
5108         InstructionList.push_back(I);
5109       }
5110       else {
5111         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5112         Type *CondType = Type::getInt1Ty(Context);
5113         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5114                                getVirtualTypeID(CondType), CurBB);
5115         if (!FalseDest || !Cond)
5116           return error("Invalid record");
5117         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5118         InstructionList.push_back(I);
5119       }
5120       break;
5121     }
5122     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5123       if (Record.size() != 1 && Record.size() != 2)
5124         return error("Invalid record");
5125       unsigned Idx = 0;
5126       Type *TokenTy = Type::getTokenTy(Context);
5127       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5128                                    getVirtualTypeID(TokenTy), CurBB);
5129       if (!CleanupPad)
5130         return error("Invalid record");
5131       BasicBlock *UnwindDest = nullptr;
5132       if (Record.size() == 2) {
5133         UnwindDest = getBasicBlock(Record[Idx++]);
5134         if (!UnwindDest)
5135           return error("Invalid record");
5136       }
5137 
5138       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5139       InstructionList.push_back(I);
5140       break;
5141     }
5142     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5143       if (Record.size() != 2)
5144         return error("Invalid record");
5145       unsigned Idx = 0;
5146       Type *TokenTy = Type::getTokenTy(Context);
5147       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5148                                  getVirtualTypeID(TokenTy), CurBB);
5149       if (!CatchPad)
5150         return error("Invalid record");
5151       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5152       if (!BB)
5153         return error("Invalid record");
5154 
5155       I = CatchReturnInst::Create(CatchPad, BB);
5156       InstructionList.push_back(I);
5157       break;
5158     }
5159     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5160       // We must have, at minimum, the outer scope and the number of arguments.
5161       if (Record.size() < 2)
5162         return error("Invalid record");
5163 
5164       unsigned Idx = 0;
5165 
5166       Type *TokenTy = Type::getTokenTy(Context);
5167       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5168                                   getVirtualTypeID(TokenTy), CurBB);
5169 
5170       unsigned NumHandlers = Record[Idx++];
5171 
5172       SmallVector<BasicBlock *, 2> Handlers;
5173       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5174         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5175         if (!BB)
5176           return error("Invalid record");
5177         Handlers.push_back(BB);
5178       }
5179 
5180       BasicBlock *UnwindDest = nullptr;
5181       if (Idx + 1 == Record.size()) {
5182         UnwindDest = getBasicBlock(Record[Idx++]);
5183         if (!UnwindDest)
5184           return error("Invalid record");
5185       }
5186 
5187       if (Record.size() != Idx)
5188         return error("Invalid record");
5189 
5190       auto *CatchSwitch =
5191           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5192       for (BasicBlock *Handler : Handlers)
5193         CatchSwitch->addHandler(Handler);
5194       I = CatchSwitch;
5195       ResTypeID = getVirtualTypeID(I->getType());
5196       InstructionList.push_back(I);
5197       break;
5198     }
5199     case bitc::FUNC_CODE_INST_CATCHPAD:
5200     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5201       // We must have, at minimum, the outer scope and the number of arguments.
5202       if (Record.size() < 2)
5203         return error("Invalid record");
5204 
5205       unsigned Idx = 0;
5206 
5207       Type *TokenTy = Type::getTokenTy(Context);
5208       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5209                                   getVirtualTypeID(TokenTy), CurBB);
5210 
5211       unsigned NumArgOperands = Record[Idx++];
5212 
5213       SmallVector<Value *, 2> Args;
5214       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5215         Value *Val;
5216         unsigned ValTypeID;
5217         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5218           return error("Invalid record");
5219         Args.push_back(Val);
5220       }
5221 
5222       if (Record.size() != Idx)
5223         return error("Invalid record");
5224 
5225       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5226         I = CleanupPadInst::Create(ParentPad, Args);
5227       else
5228         I = CatchPadInst::Create(ParentPad, Args);
5229       ResTypeID = getVirtualTypeID(I->getType());
5230       InstructionList.push_back(I);
5231       break;
5232     }
5233     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5234       // Check magic
5235       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5236         // "New" SwitchInst format with case ranges. The changes to write this
5237         // format were reverted but we still recognize bitcode that uses it.
5238         // Hopefully someday we will have support for case ranges and can use
5239         // this format again.
5240 
5241         unsigned OpTyID = Record[1];
5242         Type *OpTy = getTypeByID(OpTyID);
5243         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5244 
5245         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5246         BasicBlock *Default = getBasicBlock(Record[3]);
5247         if (!OpTy || !Cond || !Default)
5248           return error("Invalid record");
5249 
5250         unsigned NumCases = Record[4];
5251 
5252         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5253         InstructionList.push_back(SI);
5254 
5255         unsigned CurIdx = 5;
5256         for (unsigned i = 0; i != NumCases; ++i) {
5257           SmallVector<ConstantInt*, 1> CaseVals;
5258           unsigned NumItems = Record[CurIdx++];
5259           for (unsigned ci = 0; ci != NumItems; ++ci) {
5260             bool isSingleNumber = Record[CurIdx++];
5261 
5262             APInt Low;
5263             unsigned ActiveWords = 1;
5264             if (ValueBitWidth > 64)
5265               ActiveWords = Record[CurIdx++];
5266             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5267                                 ValueBitWidth);
5268             CurIdx += ActiveWords;
5269 
5270             if (!isSingleNumber) {
5271               ActiveWords = 1;
5272               if (ValueBitWidth > 64)
5273                 ActiveWords = Record[CurIdx++];
5274               APInt High = readWideAPInt(
5275                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5276               CurIdx += ActiveWords;
5277 
5278               // FIXME: It is not clear whether values in the range should be
5279               // compared as signed or unsigned values. The partially
5280               // implemented changes that used this format in the past used
5281               // unsigned comparisons.
5282               for ( ; Low.ule(High); ++Low)
5283                 CaseVals.push_back(ConstantInt::get(Context, Low));
5284             } else
5285               CaseVals.push_back(ConstantInt::get(Context, Low));
5286           }
5287           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5288           for (ConstantInt *Cst : CaseVals)
5289             SI->addCase(Cst, DestBB);
5290         }
5291         I = SI;
5292         break;
5293       }
5294 
5295       // Old SwitchInst format without case ranges.
5296 
5297       if (Record.size() < 3 || (Record.size() & 1) == 0)
5298         return error("Invalid record");
5299       unsigned OpTyID = Record[0];
5300       Type *OpTy = getTypeByID(OpTyID);
5301       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5302       BasicBlock *Default = getBasicBlock(Record[2]);
5303       if (!OpTy || !Cond || !Default)
5304         return error("Invalid record");
5305       unsigned NumCases = (Record.size()-3)/2;
5306       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5307       InstructionList.push_back(SI);
5308       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5309         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5310             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5311         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5312         if (!CaseVal || !DestBB) {
5313           delete SI;
5314           return error("Invalid record");
5315         }
5316         SI->addCase(CaseVal, DestBB);
5317       }
5318       I = SI;
5319       break;
5320     }
5321     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5322       if (Record.size() < 2)
5323         return error("Invalid record");
5324       unsigned OpTyID = Record[0];
5325       Type *OpTy = getTypeByID(OpTyID);
5326       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5327       if (!OpTy || !Address)
5328         return error("Invalid record");
5329       unsigned NumDests = Record.size()-2;
5330       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5331       InstructionList.push_back(IBI);
5332       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5333         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5334           IBI->addDestination(DestBB);
5335         } else {
5336           delete IBI;
5337           return error("Invalid record");
5338         }
5339       }
5340       I = IBI;
5341       break;
5342     }
5343 
5344     case bitc::FUNC_CODE_INST_INVOKE: {
5345       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5346       if (Record.size() < 4)
5347         return error("Invalid record");
5348       unsigned OpNum = 0;
5349       AttributeList PAL = getAttributes(Record[OpNum++]);
5350       unsigned CCInfo = Record[OpNum++];
5351       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5352       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5353 
5354       unsigned FTyID = InvalidTypeID;
5355       FunctionType *FTy = nullptr;
5356       if ((CCInfo >> 13) & 1) {
5357         FTyID = Record[OpNum++];
5358         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5359         if (!FTy)
5360           return error("Explicit invoke type is not a function type");
5361       }
5362 
5363       Value *Callee;
5364       unsigned CalleeTypeID;
5365       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5366                            CurBB))
5367         return error("Invalid record");
5368 
5369       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5370       if (!CalleeTy)
5371         return error("Callee is not a pointer");
5372       if (!FTy) {
5373         FTyID = getContainedTypeID(CalleeTypeID);
5374         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5375         if (!FTy)
5376           return error("Callee is not of pointer to function type");
5377       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5378         return error("Explicit invoke type does not match pointee type of "
5379                      "callee operand");
5380       if (Record.size() < FTy->getNumParams() + OpNum)
5381         return error("Insufficient operands to call");
5382 
5383       SmallVector<Value*, 16> Ops;
5384       SmallVector<unsigned, 16> ArgTyIDs;
5385       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5386         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5387         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5388                                ArgTyID, CurBB));
5389         ArgTyIDs.push_back(ArgTyID);
5390         if (!Ops.back())
5391           return error("Invalid record");
5392       }
5393 
5394       if (!FTy->isVarArg()) {
5395         if (Record.size() != OpNum)
5396           return error("Invalid record");
5397       } else {
5398         // Read type/value pairs for varargs params.
5399         while (OpNum != Record.size()) {
5400           Value *Op;
5401           unsigned OpTypeID;
5402           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5403             return error("Invalid record");
5404           Ops.push_back(Op);
5405           ArgTyIDs.push_back(OpTypeID);
5406         }
5407       }
5408 
5409       // Upgrade the bundles if needed.
5410       if (!OperandBundles.empty())
5411         UpgradeOperandBundles(OperandBundles);
5412 
5413       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5414                              OperandBundles);
5415       ResTypeID = getContainedTypeID(FTyID);
5416       OperandBundles.clear();
5417       InstructionList.push_back(I);
5418       cast<InvokeInst>(I)->setCallingConv(
5419           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5420       cast<InvokeInst>(I)->setAttributes(PAL);
5421       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5422         I->deleteValue();
5423         return Err;
5424       }
5425 
5426       break;
5427     }
5428     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5429       unsigned Idx = 0;
5430       Value *Val = nullptr;
5431       unsigned ValTypeID;
5432       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5433         return error("Invalid record");
5434       I = ResumeInst::Create(Val);
5435       InstructionList.push_back(I);
5436       break;
5437     }
5438     case bitc::FUNC_CODE_INST_CALLBR: {
5439       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5440       unsigned OpNum = 0;
5441       AttributeList PAL = getAttributes(Record[OpNum++]);
5442       unsigned CCInfo = Record[OpNum++];
5443 
5444       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5445       unsigned NumIndirectDests = Record[OpNum++];
5446       SmallVector<BasicBlock *, 16> IndirectDests;
5447       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5448         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5449 
5450       unsigned FTyID = InvalidTypeID;
5451       FunctionType *FTy = nullptr;
5452       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5453         FTyID = Record[OpNum++];
5454         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5455         if (!FTy)
5456           return error("Explicit call type is not a function type");
5457       }
5458 
5459       Value *Callee;
5460       unsigned CalleeTypeID;
5461       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5462                            CurBB))
5463         return error("Invalid record");
5464 
5465       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5466       if (!OpTy)
5467         return error("Callee is not a pointer type");
5468       if (!FTy) {
5469         FTyID = getContainedTypeID(CalleeTypeID);
5470         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5471         if (!FTy)
5472           return error("Callee is not of pointer to function type");
5473       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5474         return error("Explicit call type does not match pointee type of "
5475                      "callee operand");
5476       if (Record.size() < FTy->getNumParams() + OpNum)
5477         return error("Insufficient operands to call");
5478 
5479       SmallVector<Value*, 16> Args;
5480       SmallVector<unsigned, 16> ArgTyIDs;
5481       // Read the fixed params.
5482       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5483         Value *Arg;
5484         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5485         if (FTy->getParamType(i)->isLabelTy())
5486           Arg = getBasicBlock(Record[OpNum]);
5487         else
5488           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5489                          ArgTyID, CurBB);
5490         if (!Arg)
5491           return error("Invalid record");
5492         Args.push_back(Arg);
5493         ArgTyIDs.push_back(ArgTyID);
5494       }
5495 
5496       // Read type/value pairs for varargs params.
5497       if (!FTy->isVarArg()) {
5498         if (OpNum != Record.size())
5499           return error("Invalid record");
5500       } else {
5501         while (OpNum != Record.size()) {
5502           Value *Op;
5503           unsigned OpTypeID;
5504           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5505             return error("Invalid record");
5506           Args.push_back(Op);
5507           ArgTyIDs.push_back(OpTypeID);
5508         }
5509       }
5510 
5511       // Upgrade the bundles if needed.
5512       if (!OperandBundles.empty())
5513         UpgradeOperandBundles(OperandBundles);
5514 
5515       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5516         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5517         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5518           return CI.Type == InlineAsm::isLabel;
5519         };
5520         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5521           // Upgrade explicit blockaddress arguments to label constraints.
5522           // Verify that the last arguments are blockaddress arguments that
5523           // match the indirect destinations. Clang always generates callbr
5524           // in this form. We could support reordering with more effort.
5525           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5526           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5527             unsigned LabelNo = ArgNo - FirstBlockArg;
5528             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5529             if (!BA || BA->getFunction() != F ||
5530                 LabelNo > IndirectDests.size() ||
5531                 BA->getBasicBlock() != IndirectDests[LabelNo])
5532               return error("callbr argument does not match indirect dest");
5533           }
5534 
5535           // Remove blockaddress arguments.
5536           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5537           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5538 
5539           // Recreate the function type with less arguments.
5540           SmallVector<Type *> ArgTys;
5541           for (Value *Arg : Args)
5542             ArgTys.push_back(Arg->getType());
5543           FTy =
5544               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5545 
5546           // Update constraint string to use label constraints.
5547           std::string Constraints = IA->getConstraintString();
5548           unsigned ArgNo = 0;
5549           size_t Pos = 0;
5550           for (const auto &CI : ConstraintInfo) {
5551             if (CI.hasArg()) {
5552               if (ArgNo >= FirstBlockArg)
5553                 Constraints.insert(Pos, "!");
5554               ++ArgNo;
5555             }
5556 
5557             // Go to next constraint in string.
5558             Pos = Constraints.find(',', Pos);
5559             if (Pos == std::string::npos)
5560               break;
5561             ++Pos;
5562           }
5563 
5564           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5565                                   IA->hasSideEffects(), IA->isAlignStack(),
5566                                   IA->getDialect(), IA->canThrow());
5567         }
5568       }
5569 
5570       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5571                              OperandBundles);
5572       ResTypeID = getContainedTypeID(FTyID);
5573       OperandBundles.clear();
5574       InstructionList.push_back(I);
5575       cast<CallBrInst>(I)->setCallingConv(
5576           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5577       cast<CallBrInst>(I)->setAttributes(PAL);
5578       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5579         I->deleteValue();
5580         return Err;
5581       }
5582       break;
5583     }
5584     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5585       I = new UnreachableInst(Context);
5586       InstructionList.push_back(I);
5587       break;
5588     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5589       if (Record.empty())
5590         return error("Invalid phi record");
5591       // The first record specifies the type.
5592       unsigned TyID = Record[0];
5593       Type *Ty = getTypeByID(TyID);
5594       if (!Ty)
5595         return error("Invalid phi record");
5596 
5597       // Phi arguments are pairs of records of [value, basic block].
5598       // There is an optional final record for fast-math-flags if this phi has a
5599       // floating-point type.
5600       size_t NumArgs = (Record.size() - 1) / 2;
5601       PHINode *PN = PHINode::Create(Ty, NumArgs);
5602       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5603         PN->deleteValue();
5604         return error("Invalid phi record");
5605       }
5606       InstructionList.push_back(PN);
5607 
5608       SmallDenseMap<BasicBlock *, Value *> Args;
5609       for (unsigned i = 0; i != NumArgs; i++) {
5610         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5611         if (!BB) {
5612           PN->deleteValue();
5613           return error("Invalid phi BB");
5614         }
5615 
5616         // Phi nodes may contain the same predecessor multiple times, in which
5617         // case the incoming value must be identical. Directly reuse the already
5618         // seen value here, to avoid expanding a constant expression multiple
5619         // times.
5620         auto It = Args.find(BB);
5621         if (It != Args.end()) {
5622           PN->addIncoming(It->second, BB);
5623           continue;
5624         }
5625 
5626         // If there already is a block for this edge (from a different phi),
5627         // use it.
5628         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5629         if (!EdgeBB) {
5630           // Otherwise, use a temporary block (that we will discard if it
5631           // turns out to be unnecessary).
5632           if (!PhiConstExprBB)
5633             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5634           EdgeBB = PhiConstExprBB;
5635         }
5636 
5637         // With the new function encoding, it is possible that operands have
5638         // negative IDs (for forward references).  Use a signed VBR
5639         // representation to keep the encoding small.
5640         Value *V;
5641         if (UseRelativeIDs)
5642           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5643         else
5644           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5645         if (!V) {
5646           PN->deleteValue();
5647           PhiConstExprBB->eraseFromParent();
5648           return error("Invalid phi record");
5649         }
5650 
5651         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5652           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5653           PhiConstExprBB = nullptr;
5654         }
5655         PN->addIncoming(V, BB);
5656         Args.insert({BB, V});
5657       }
5658       I = PN;
5659       ResTypeID = TyID;
5660 
5661       // If there are an even number of records, the final record must be FMF.
5662       if (Record.size() % 2 == 0) {
5663         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5664         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5665         if (FMF.any())
5666           I->setFastMathFlags(FMF);
5667       }
5668 
5669       break;
5670     }
5671 
5672     case bitc::FUNC_CODE_INST_LANDINGPAD:
5673     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5674       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5675       unsigned Idx = 0;
5676       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5677         if (Record.size() < 3)
5678           return error("Invalid record");
5679       } else {
5680         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5681         if (Record.size() < 4)
5682           return error("Invalid record");
5683       }
5684       ResTypeID = Record[Idx++];
5685       Type *Ty = getTypeByID(ResTypeID);
5686       if (!Ty)
5687         return error("Invalid record");
5688       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5689         Value *PersFn = nullptr;
5690         unsigned PersFnTypeID;
5691         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5692                              nullptr))
5693           return error("Invalid record");
5694 
5695         if (!F->hasPersonalityFn())
5696           F->setPersonalityFn(cast<Constant>(PersFn));
5697         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5698           return error("Personality function mismatch");
5699       }
5700 
5701       bool IsCleanup = !!Record[Idx++];
5702       unsigned NumClauses = Record[Idx++];
5703       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5704       LP->setCleanup(IsCleanup);
5705       for (unsigned J = 0; J != NumClauses; ++J) {
5706         LandingPadInst::ClauseType CT =
5707           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5708         Value *Val;
5709         unsigned ValTypeID;
5710 
5711         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5712                              nullptr)) {
5713           delete LP;
5714           return error("Invalid record");
5715         }
5716 
5717         assert((CT != LandingPadInst::Catch ||
5718                 !isa<ArrayType>(Val->getType())) &&
5719                "Catch clause has a invalid type!");
5720         assert((CT != LandingPadInst::Filter ||
5721                 isa<ArrayType>(Val->getType())) &&
5722                "Filter clause has invalid type!");
5723         LP->addClause(cast<Constant>(Val));
5724       }
5725 
5726       I = LP;
5727       InstructionList.push_back(I);
5728       break;
5729     }
5730 
5731     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5732       if (Record.size() != 4 && Record.size() != 5)
5733         return error("Invalid record");
5734       using APV = AllocaPackedValues;
5735       const uint64_t Rec = Record[3];
5736       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5737       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5738       unsigned TyID = Record[0];
5739       Type *Ty = getTypeByID(TyID);
5740       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5741         TyID = getContainedTypeID(TyID);
5742         Ty = getTypeByID(TyID);
5743         if (!Ty)
5744           return error("Missing element type for old-style alloca");
5745       }
5746       unsigned OpTyID = Record[1];
5747       Type *OpTy = getTypeByID(OpTyID);
5748       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5749       MaybeAlign Align;
5750       uint64_t AlignExp =
5751           Bitfield::get<APV::AlignLower>(Rec) |
5752           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5753       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5754         return Err;
5755       }
5756       if (!Ty || !Size)
5757         return error("Invalid record");
5758 
5759       const DataLayout &DL = TheModule->getDataLayout();
5760       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5761 
5762       SmallPtrSet<Type *, 4> Visited;
5763       if (!Align && !Ty->isSized(&Visited))
5764         return error("alloca of unsized type");
5765       if (!Align)
5766         Align = DL.getPrefTypeAlign(Ty);
5767 
5768       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5769       AI->setUsedWithInAlloca(InAlloca);
5770       AI->setSwiftError(SwiftError);
5771       I = AI;
5772       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5773       InstructionList.push_back(I);
5774       break;
5775     }
5776     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5777       unsigned OpNum = 0;
5778       Value *Op;
5779       unsigned OpTypeID;
5780       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5781           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5782         return error("Invalid record");
5783 
5784       if (!isa<PointerType>(Op->getType()))
5785         return error("Load operand is not a pointer type");
5786 
5787       Type *Ty = nullptr;
5788       if (OpNum + 3 == Record.size()) {
5789         ResTypeID = Record[OpNum++];
5790         Ty = getTypeByID(ResTypeID);
5791       } else {
5792         ResTypeID = getContainedTypeID(OpTypeID);
5793         Ty = getTypeByID(ResTypeID);
5794         if (!Ty)
5795           return error("Missing element type for old-style load");
5796       }
5797 
5798       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5799         return Err;
5800 
5801       MaybeAlign Align;
5802       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5803         return Err;
5804       SmallPtrSet<Type *, 4> Visited;
5805       if (!Align && !Ty->isSized(&Visited))
5806         return error("load of unsized type");
5807       if (!Align)
5808         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5809       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5810       InstructionList.push_back(I);
5811       break;
5812     }
5813     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5814        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5815       unsigned OpNum = 0;
5816       Value *Op;
5817       unsigned OpTypeID;
5818       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5819           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5820         return error("Invalid record");
5821 
5822       if (!isa<PointerType>(Op->getType()))
5823         return error("Load operand is not a pointer type");
5824 
5825       Type *Ty = nullptr;
5826       if (OpNum + 5 == Record.size()) {
5827         ResTypeID = Record[OpNum++];
5828         Ty = getTypeByID(ResTypeID);
5829       } else {
5830         ResTypeID = getContainedTypeID(OpTypeID);
5831         Ty = getTypeByID(ResTypeID);
5832         if (!Ty)
5833           return error("Missing element type for old style atomic load");
5834       }
5835 
5836       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5837         return Err;
5838 
5839       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5840       if (Ordering == AtomicOrdering::NotAtomic ||
5841           Ordering == AtomicOrdering::Release ||
5842           Ordering == AtomicOrdering::AcquireRelease)
5843         return error("Invalid record");
5844       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5845         return error("Invalid record");
5846       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5847 
5848       MaybeAlign Align;
5849       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5850         return Err;
5851       if (!Align)
5852         return error("Alignment missing from atomic load");
5853       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5854       InstructionList.push_back(I);
5855       break;
5856     }
5857     case bitc::FUNC_CODE_INST_STORE:
5858     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5859       unsigned OpNum = 0;
5860       Value *Val, *Ptr;
5861       unsigned PtrTypeID, ValTypeID;
5862       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5863         return error("Invalid record");
5864 
5865       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5866         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5867           return error("Invalid record");
5868       } else {
5869         ValTypeID = getContainedTypeID(PtrTypeID);
5870         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5871                      ValTypeID, Val, CurBB))
5872           return error("Invalid record");
5873       }
5874 
5875       if (OpNum + 2 != Record.size())
5876         return error("Invalid record");
5877 
5878       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5879         return Err;
5880       MaybeAlign Align;
5881       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5882         return Err;
5883       SmallPtrSet<Type *, 4> Visited;
5884       if (!Align && !Val->getType()->isSized(&Visited))
5885         return error("store of unsized type");
5886       if (!Align)
5887         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5888       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5889       InstructionList.push_back(I);
5890       break;
5891     }
5892     case bitc::FUNC_CODE_INST_STOREATOMIC:
5893     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5894       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5895       unsigned OpNum = 0;
5896       Value *Val, *Ptr;
5897       unsigned PtrTypeID, ValTypeID;
5898       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
5899           !isa<PointerType>(Ptr->getType()))
5900         return error("Invalid record");
5901       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5902         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5903           return error("Invalid record");
5904       } else {
5905         ValTypeID = getContainedTypeID(PtrTypeID);
5906         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5907                      ValTypeID, Val, CurBB))
5908           return error("Invalid record");
5909       }
5910 
5911       if (OpNum + 4 != Record.size())
5912         return error("Invalid record");
5913 
5914       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5915         return Err;
5916       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5917       if (Ordering == AtomicOrdering::NotAtomic ||
5918           Ordering == AtomicOrdering::Acquire ||
5919           Ordering == AtomicOrdering::AcquireRelease)
5920         return error("Invalid record");
5921       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5922       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5923         return error("Invalid record");
5924 
5925       MaybeAlign Align;
5926       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5927         return Err;
5928       if (!Align)
5929         return error("Alignment missing from atomic store");
5930       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5931       InstructionList.push_back(I);
5932       break;
5933     }
5934     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5935       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5936       // failure_ordering?, weak?]
5937       const size_t NumRecords = Record.size();
5938       unsigned OpNum = 0;
5939       Value *Ptr = nullptr;
5940       unsigned PtrTypeID;
5941       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5942         return error("Invalid record");
5943 
5944       if (!isa<PointerType>(Ptr->getType()))
5945         return error("Cmpxchg operand is not a pointer type");
5946 
5947       Value *Cmp = nullptr;
5948       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5949       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5950                    CmpTypeID, Cmp, CurBB))
5951         return error("Invalid record");
5952 
5953       Value *New = nullptr;
5954       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5955                    New, CurBB) ||
5956           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5957         return error("Invalid record");
5958 
5959       const AtomicOrdering SuccessOrdering =
5960           getDecodedOrdering(Record[OpNum + 1]);
5961       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5962           SuccessOrdering == AtomicOrdering::Unordered)
5963         return error("Invalid record");
5964 
5965       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5966 
5967       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5968         return Err;
5969 
5970       const AtomicOrdering FailureOrdering =
5971           NumRecords < 7
5972               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5973               : getDecodedOrdering(Record[OpNum + 3]);
5974 
5975       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5976           FailureOrdering == AtomicOrdering::Unordered)
5977         return error("Invalid record");
5978 
5979       const Align Alignment(
5980           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5981 
5982       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5983                                 FailureOrdering, SSID);
5984       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5985 
5986       if (NumRecords < 8) {
5987         // Before weak cmpxchgs existed, the instruction simply returned the
5988         // value loaded from memory, so bitcode files from that era will be
5989         // expecting the first component of a modern cmpxchg.
5990         CurBB->getInstList().push_back(I);
5991         I = ExtractValueInst::Create(I, 0);
5992         ResTypeID = CmpTypeID;
5993       } else {
5994         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5995         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5996         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5997       }
5998 
5999       InstructionList.push_back(I);
6000       break;
6001     }
6002     case bitc::FUNC_CODE_INST_CMPXCHG: {
6003       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6004       // failure_ordering, weak, align?]
6005       const size_t NumRecords = Record.size();
6006       unsigned OpNum = 0;
6007       Value *Ptr = nullptr;
6008       unsigned PtrTypeID;
6009       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6010         return error("Invalid record");
6011 
6012       if (!isa<PointerType>(Ptr->getType()))
6013         return error("Cmpxchg operand is not a pointer type");
6014 
6015       Value *Cmp = nullptr;
6016       unsigned CmpTypeID;
6017       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6018         return error("Invalid record");
6019 
6020       Value *Val = nullptr;
6021       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6022                    CurBB))
6023         return error("Invalid record");
6024 
6025       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6026         return error("Invalid record");
6027 
6028       const bool IsVol = Record[OpNum];
6029 
6030       const AtomicOrdering SuccessOrdering =
6031           getDecodedOrdering(Record[OpNum + 1]);
6032       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6033         return error("Invalid cmpxchg success ordering");
6034 
6035       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6036 
6037       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6038         return Err;
6039 
6040       const AtomicOrdering FailureOrdering =
6041           getDecodedOrdering(Record[OpNum + 3]);
6042       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6043         return error("Invalid cmpxchg failure ordering");
6044 
6045       const bool IsWeak = Record[OpNum + 4];
6046 
6047       MaybeAlign Alignment;
6048 
6049       if (NumRecords == (OpNum + 6)) {
6050         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6051           return Err;
6052       }
6053       if (!Alignment)
6054         Alignment =
6055             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6056 
6057       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6058                                 FailureOrdering, SSID);
6059       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6060       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6061 
6062       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6063       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6064 
6065       InstructionList.push_back(I);
6066       break;
6067     }
6068     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6069     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6070       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6071       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6072       const size_t NumRecords = Record.size();
6073       unsigned OpNum = 0;
6074 
6075       Value *Ptr = nullptr;
6076       unsigned PtrTypeID;
6077       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6078         return error("Invalid record");
6079 
6080       if (!isa<PointerType>(Ptr->getType()))
6081         return error("Invalid record");
6082 
6083       Value *Val = nullptr;
6084       unsigned ValTypeID = InvalidTypeID;
6085       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6086         ValTypeID = getContainedTypeID(PtrTypeID);
6087         if (popValue(Record, OpNum, NextValueNo,
6088                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6089           return error("Invalid record");
6090       } else {
6091         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6092           return error("Invalid record");
6093       }
6094 
6095       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6096         return error("Invalid record");
6097 
6098       const AtomicRMWInst::BinOp Operation =
6099           getDecodedRMWOperation(Record[OpNum]);
6100       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6101           Operation > AtomicRMWInst::LAST_BINOP)
6102         return error("Invalid record");
6103 
6104       const bool IsVol = Record[OpNum + 1];
6105 
6106       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6107       if (Ordering == AtomicOrdering::NotAtomic ||
6108           Ordering == AtomicOrdering::Unordered)
6109         return error("Invalid record");
6110 
6111       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6112 
6113       MaybeAlign Alignment;
6114 
6115       if (NumRecords == (OpNum + 5)) {
6116         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6117           return Err;
6118       }
6119 
6120       if (!Alignment)
6121         Alignment =
6122             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6123 
6124       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6125       ResTypeID = ValTypeID;
6126       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6127 
6128       InstructionList.push_back(I);
6129       break;
6130     }
6131     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6132       if (2 != Record.size())
6133         return error("Invalid record");
6134       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6135       if (Ordering == AtomicOrdering::NotAtomic ||
6136           Ordering == AtomicOrdering::Unordered ||
6137           Ordering == AtomicOrdering::Monotonic)
6138         return error("Invalid record");
6139       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6140       I = new FenceInst(Context, Ordering, SSID);
6141       InstructionList.push_back(I);
6142       break;
6143     }
6144     case bitc::FUNC_CODE_INST_CALL: {
6145       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6146       if (Record.size() < 3)
6147         return error("Invalid record");
6148 
6149       unsigned OpNum = 0;
6150       AttributeList PAL = getAttributes(Record[OpNum++]);
6151       unsigned CCInfo = Record[OpNum++];
6152 
6153       FastMathFlags FMF;
6154       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6155         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6156         if (!FMF.any())
6157           return error("Fast math flags indicator set for call with no FMF");
6158       }
6159 
6160       unsigned FTyID = InvalidTypeID;
6161       FunctionType *FTy = nullptr;
6162       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6163         FTyID = Record[OpNum++];
6164         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6165         if (!FTy)
6166           return error("Explicit call type is not a function type");
6167       }
6168 
6169       Value *Callee;
6170       unsigned CalleeTypeID;
6171       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6172                            CurBB))
6173         return error("Invalid record");
6174 
6175       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6176       if (!OpTy)
6177         return error("Callee is not a pointer type");
6178       if (!FTy) {
6179         FTyID = getContainedTypeID(CalleeTypeID);
6180         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6181         if (!FTy)
6182           return error("Callee is not of pointer to function type");
6183       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6184         return error("Explicit call type does not match pointee type of "
6185                      "callee operand");
6186       if (Record.size() < FTy->getNumParams() + OpNum)
6187         return error("Insufficient operands to call");
6188 
6189       SmallVector<Value*, 16> Args;
6190       SmallVector<unsigned, 16> ArgTyIDs;
6191       // Read the fixed params.
6192       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6193         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6194         if (FTy->getParamType(i)->isLabelTy())
6195           Args.push_back(getBasicBlock(Record[OpNum]));
6196         else
6197           Args.push_back(getValue(Record, OpNum, NextValueNo,
6198                                   FTy->getParamType(i), ArgTyID, CurBB));
6199         ArgTyIDs.push_back(ArgTyID);
6200         if (!Args.back())
6201           return error("Invalid record");
6202       }
6203 
6204       // Read type/value pairs for varargs params.
6205       if (!FTy->isVarArg()) {
6206         if (OpNum != Record.size())
6207           return error("Invalid record");
6208       } else {
6209         while (OpNum != Record.size()) {
6210           Value *Op;
6211           unsigned OpTypeID;
6212           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6213             return error("Invalid record");
6214           Args.push_back(Op);
6215           ArgTyIDs.push_back(OpTypeID);
6216         }
6217       }
6218 
6219       // Upgrade the bundles if needed.
6220       if (!OperandBundles.empty())
6221         UpgradeOperandBundles(OperandBundles);
6222 
6223       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6224       ResTypeID = getContainedTypeID(FTyID);
6225       OperandBundles.clear();
6226       InstructionList.push_back(I);
6227       cast<CallInst>(I)->setCallingConv(
6228           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6229       CallInst::TailCallKind TCK = CallInst::TCK_None;
6230       if (CCInfo & 1 << bitc::CALL_TAIL)
6231         TCK = CallInst::TCK_Tail;
6232       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6233         TCK = CallInst::TCK_MustTail;
6234       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6235         TCK = CallInst::TCK_NoTail;
6236       cast<CallInst>(I)->setTailCallKind(TCK);
6237       cast<CallInst>(I)->setAttributes(PAL);
6238       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6239         I->deleteValue();
6240         return Err;
6241       }
6242       if (FMF.any()) {
6243         if (!isa<FPMathOperator>(I))
6244           return error("Fast-math-flags specified for call without "
6245                        "floating-point scalar or vector return type");
6246         I->setFastMathFlags(FMF);
6247       }
6248       break;
6249     }
6250     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6251       if (Record.size() < 3)
6252         return error("Invalid record");
6253       unsigned OpTyID = Record[0];
6254       Type *OpTy = getTypeByID(OpTyID);
6255       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6256       ResTypeID = Record[2];
6257       Type *ResTy = getTypeByID(ResTypeID);
6258       if (!OpTy || !Op || !ResTy)
6259         return error("Invalid record");
6260       I = new VAArgInst(Op, ResTy);
6261       InstructionList.push_back(I);
6262       break;
6263     }
6264 
6265     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6266       // A call or an invoke can be optionally prefixed with some variable
6267       // number of operand bundle blocks.  These blocks are read into
6268       // OperandBundles and consumed at the next call or invoke instruction.
6269 
6270       if (Record.empty() || Record[0] >= BundleTags.size())
6271         return error("Invalid record");
6272 
6273       std::vector<Value *> Inputs;
6274 
6275       unsigned OpNum = 1;
6276       while (OpNum != Record.size()) {
6277         Value *Op;
6278         unsigned OpTypeID;
6279         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6280           return error("Invalid record");
6281         Inputs.push_back(Op);
6282       }
6283 
6284       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6285       continue;
6286     }
6287 
6288     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6289       unsigned OpNum = 0;
6290       Value *Op = nullptr;
6291       unsigned OpTypeID;
6292       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6293         return error("Invalid record");
6294       if (OpNum != Record.size())
6295         return error("Invalid record");
6296 
6297       I = new FreezeInst(Op);
6298       ResTypeID = OpTypeID;
6299       InstructionList.push_back(I);
6300       break;
6301     }
6302     }
6303 
6304     // Add instruction to end of current BB.  If there is no current BB, reject
6305     // this file.
6306     if (!CurBB) {
6307       I->deleteValue();
6308       return error("Invalid instruction with no BB");
6309     }
6310     if (!OperandBundles.empty()) {
6311       I->deleteValue();
6312       return error("Operand bundles found with no consumer");
6313     }
6314     CurBB->getInstList().push_back(I);
6315 
6316     // If this was a terminator instruction, move to the next block.
6317     if (I->isTerminator()) {
6318       ++CurBBNo;
6319       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6320     }
6321 
6322     // Non-void values get registered in the value table for future use.
6323     if (!I->getType()->isVoidTy()) {
6324       assert(I->getType() == getTypeByID(ResTypeID) &&
6325              "Incorrect result type ID");
6326       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6327         return Err;
6328     }
6329   }
6330 
6331 OutOfRecordLoop:
6332 
6333   if (!OperandBundles.empty())
6334     return error("Operand bundles found with no consumer");
6335 
6336   // Check the function list for unresolved values.
6337   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6338     if (!A->getParent()) {
6339       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6340       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6341         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6342           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6343           delete A;
6344         }
6345       }
6346       return error("Never resolved value found in function");
6347     }
6348   }
6349 
6350   // Unexpected unresolved metadata about to be dropped.
6351   if (MDLoader->hasFwdRefs())
6352     return error("Invalid function metadata: outgoing forward refs");
6353 
6354   if (PhiConstExprBB)
6355     PhiConstExprBB->eraseFromParent();
6356 
6357   for (const auto &Pair : ConstExprEdgeBBs) {
6358     BasicBlock *From = Pair.first.first;
6359     BasicBlock *To = Pair.first.second;
6360     BasicBlock *EdgeBB = Pair.second;
6361     BranchInst::Create(To, EdgeBB);
6362     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6363     To->replacePhiUsesWith(From, EdgeBB);
6364     EdgeBB->moveBefore(To);
6365   }
6366 
6367   // Trim the value list down to the size it was before we parsed this function.
6368   ValueList.shrinkTo(ModuleValueListSize);
6369   MDLoader->shrinkTo(ModuleMDLoaderSize);
6370   std::vector<BasicBlock*>().swap(FunctionBBs);
6371   return Error::success();
6372 }
6373 
6374 /// Find the function body in the bitcode stream
6375 Error BitcodeReader::findFunctionInStream(
6376     Function *F,
6377     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6378   while (DeferredFunctionInfoIterator->second == 0) {
6379     // This is the fallback handling for the old format bitcode that
6380     // didn't contain the function index in the VST, or when we have
6381     // an anonymous function which would not have a VST entry.
6382     // Assert that we have one of those two cases.
6383     assert(VSTOffset == 0 || !F->hasName());
6384     // Parse the next body in the stream and set its position in the
6385     // DeferredFunctionInfo map.
6386     if (Error Err = rememberAndSkipFunctionBodies())
6387       return Err;
6388   }
6389   return Error::success();
6390 }
6391 
6392 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6393   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6394     return SyncScope::ID(Val);
6395   if (Val >= SSIDs.size())
6396     return SyncScope::System; // Map unknown synchronization scopes to system.
6397   return SSIDs[Val];
6398 }
6399 
6400 //===----------------------------------------------------------------------===//
6401 // GVMaterializer implementation
6402 //===----------------------------------------------------------------------===//
6403 
6404 Error BitcodeReader::materialize(GlobalValue *GV) {
6405   Function *F = dyn_cast<Function>(GV);
6406   // If it's not a function or is already material, ignore the request.
6407   if (!F || !F->isMaterializable())
6408     return Error::success();
6409 
6410   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6411   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6412   // If its position is recorded as 0, its body is somewhere in the stream
6413   // but we haven't seen it yet.
6414   if (DFII->second == 0)
6415     if (Error Err = findFunctionInStream(F, DFII))
6416       return Err;
6417 
6418   // Materialize metadata before parsing any function bodies.
6419   if (Error Err = materializeMetadata())
6420     return Err;
6421 
6422   // Move the bit stream to the saved position of the deferred function body.
6423   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6424     return JumpFailed;
6425   if (Error Err = parseFunctionBody(F))
6426     return Err;
6427   F->setIsMaterializable(false);
6428 
6429   if (StripDebugInfo)
6430     stripDebugInfo(*F);
6431 
6432   // Upgrade any old intrinsic calls in the function.
6433   for (auto &I : UpgradedIntrinsics) {
6434     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6435       if (CallInst *CI = dyn_cast<CallInst>(U))
6436         UpgradeIntrinsicCall(CI, I.second);
6437   }
6438 
6439   // Update calls to the remangled intrinsics
6440   for (auto &I : RemangledIntrinsics)
6441     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6442       // Don't expect any other users than call sites
6443       cast<CallBase>(U)->setCalledFunction(I.second);
6444 
6445   // Finish fn->subprogram upgrade for materialized functions.
6446   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6447     F->setSubprogram(SP);
6448 
6449   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6450   if (!MDLoader->isStrippingTBAA()) {
6451     for (auto &I : instructions(F)) {
6452       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6453       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6454         continue;
6455       MDLoader->setStripTBAA(true);
6456       stripTBAA(F->getParent());
6457     }
6458   }
6459 
6460   for (auto &I : instructions(F)) {
6461     // "Upgrade" older incorrect branch weights by dropping them.
6462     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6463       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6464         MDString *MDS = cast<MDString>(MD->getOperand(0));
6465         StringRef ProfName = MDS->getString();
6466         // Check consistency of !prof branch_weights metadata.
6467         if (!ProfName.equals("branch_weights"))
6468           continue;
6469         unsigned ExpectedNumOperands = 0;
6470         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6471           ExpectedNumOperands = BI->getNumSuccessors();
6472         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6473           ExpectedNumOperands = SI->getNumSuccessors();
6474         else if (isa<CallInst>(&I))
6475           ExpectedNumOperands = 1;
6476         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6477           ExpectedNumOperands = IBI->getNumDestinations();
6478         else if (isa<SelectInst>(&I))
6479           ExpectedNumOperands = 2;
6480         else
6481           continue; // ignore and continue.
6482 
6483         // If branch weight doesn't match, just strip branch weight.
6484         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6485           I.setMetadata(LLVMContext::MD_prof, nullptr);
6486       }
6487     }
6488 
6489     // Remove incompatible attributes on function calls.
6490     if (auto *CI = dyn_cast<CallBase>(&I)) {
6491       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6492           CI->getFunctionType()->getReturnType()));
6493 
6494       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6495         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6496                                         CI->getArgOperand(ArgNo)->getType()));
6497     }
6498   }
6499 
6500   // Look for functions that rely on old function attribute behavior.
6501   UpgradeFunctionAttributes(*F);
6502 
6503   // Bring in any functions that this function forward-referenced via
6504   // blockaddresses.
6505   return materializeForwardReferencedFunctions();
6506 }
6507 
6508 Error BitcodeReader::materializeModule() {
6509   if (Error Err = materializeMetadata())
6510     return Err;
6511 
6512   // Promise to materialize all forward references.
6513   WillMaterializeAllForwardRefs = true;
6514 
6515   // Iterate over the module, deserializing any functions that are still on
6516   // disk.
6517   for (Function &F : *TheModule) {
6518     if (Error Err = materialize(&F))
6519       return Err;
6520   }
6521   // At this point, if there are any function bodies, parse the rest of
6522   // the bits in the module past the last function block we have recorded
6523   // through either lazy scanning or the VST.
6524   if (LastFunctionBlockBit || NextUnreadBit)
6525     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6526                                     ? LastFunctionBlockBit
6527                                     : NextUnreadBit))
6528       return Err;
6529 
6530   // Check that all block address forward references got resolved (as we
6531   // promised above).
6532   if (!BasicBlockFwdRefs.empty())
6533     return error("Never resolved function from blockaddress");
6534 
6535   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6536   // delete the old functions to clean up. We can't do this unless the entire
6537   // module is materialized because there could always be another function body
6538   // with calls to the old function.
6539   for (auto &I : UpgradedIntrinsics) {
6540     for (auto *U : I.first->users()) {
6541       if (CallInst *CI = dyn_cast<CallInst>(U))
6542         UpgradeIntrinsicCall(CI, I.second);
6543     }
6544     if (!I.first->use_empty())
6545       I.first->replaceAllUsesWith(I.second);
6546     I.first->eraseFromParent();
6547   }
6548   UpgradedIntrinsics.clear();
6549   // Do the same for remangled intrinsics
6550   for (auto &I : RemangledIntrinsics) {
6551     I.first->replaceAllUsesWith(I.second);
6552     I.first->eraseFromParent();
6553   }
6554   RemangledIntrinsics.clear();
6555 
6556   UpgradeDebugInfo(*TheModule);
6557 
6558   UpgradeModuleFlags(*TheModule);
6559 
6560   UpgradeARCRuntime(*TheModule);
6561 
6562   return Error::success();
6563 }
6564 
6565 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6566   return IdentifiedStructTypes;
6567 }
6568 
6569 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6570     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6571     StringRef ModulePath, unsigned ModuleId)
6572     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6573       ModulePath(ModulePath), ModuleId(ModuleId) {}
6574 
6575 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6576   TheIndex.addModule(ModulePath, ModuleId);
6577 }
6578 
6579 ModuleSummaryIndex::ModuleInfo *
6580 ModuleSummaryIndexBitcodeReader::getThisModule() {
6581   return TheIndex.getModule(ModulePath);
6582 }
6583 
6584 std::pair<ValueInfo, GlobalValue::GUID>
6585 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6586   auto VGI = ValueIdToValueInfoMap[ValueId];
6587   assert(VGI.first);
6588   return VGI;
6589 }
6590 
6591 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6592     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6593     StringRef SourceFileName) {
6594   std::string GlobalId =
6595       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6596   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6597   auto OriginalNameID = ValueGUID;
6598   if (GlobalValue::isLocalLinkage(Linkage))
6599     OriginalNameID = GlobalValue::getGUID(ValueName);
6600   if (PrintSummaryGUIDs)
6601     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6602            << ValueName << "\n";
6603 
6604   // UseStrtab is false for legacy summary formats and value names are
6605   // created on stack. In that case we save the name in a string saver in
6606   // the index so that the value name can be recorded.
6607   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6608       TheIndex.getOrInsertValueInfo(
6609           ValueGUID,
6610           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6611       OriginalNameID);
6612 }
6613 
6614 // Specialized value symbol table parser used when reading module index
6615 // blocks where we don't actually create global values. The parsed information
6616 // is saved in the bitcode reader for use when later parsing summaries.
6617 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6618     uint64_t Offset,
6619     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6620   // With a strtab the VST is not required to parse the summary.
6621   if (UseStrtab)
6622     return Error::success();
6623 
6624   assert(Offset > 0 && "Expected non-zero VST offset");
6625   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6626   if (!MaybeCurrentBit)
6627     return MaybeCurrentBit.takeError();
6628   uint64_t CurrentBit = MaybeCurrentBit.get();
6629 
6630   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6631     return Err;
6632 
6633   SmallVector<uint64_t, 64> Record;
6634 
6635   // Read all the records for this value table.
6636   SmallString<128> ValueName;
6637 
6638   while (true) {
6639     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6640     if (!MaybeEntry)
6641       return MaybeEntry.takeError();
6642     BitstreamEntry Entry = MaybeEntry.get();
6643 
6644     switch (Entry.Kind) {
6645     case BitstreamEntry::SubBlock: // Handled for us already.
6646     case BitstreamEntry::Error:
6647       return error("Malformed block");
6648     case BitstreamEntry::EndBlock:
6649       // Done parsing VST, jump back to wherever we came from.
6650       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6651         return JumpFailed;
6652       return Error::success();
6653     case BitstreamEntry::Record:
6654       // The interesting case.
6655       break;
6656     }
6657 
6658     // Read a record.
6659     Record.clear();
6660     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6661     if (!MaybeRecord)
6662       return MaybeRecord.takeError();
6663     switch (MaybeRecord.get()) {
6664     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6665       break;
6666     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6667       if (convertToString(Record, 1, ValueName))
6668         return error("Invalid record");
6669       unsigned ValueID = Record[0];
6670       assert(!SourceFileName.empty());
6671       auto VLI = ValueIdToLinkageMap.find(ValueID);
6672       assert(VLI != ValueIdToLinkageMap.end() &&
6673              "No linkage found for VST entry?");
6674       auto Linkage = VLI->second;
6675       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6676       ValueName.clear();
6677       break;
6678     }
6679     case bitc::VST_CODE_FNENTRY: {
6680       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6681       if (convertToString(Record, 2, ValueName))
6682         return error("Invalid record");
6683       unsigned ValueID = Record[0];
6684       assert(!SourceFileName.empty());
6685       auto VLI = ValueIdToLinkageMap.find(ValueID);
6686       assert(VLI != ValueIdToLinkageMap.end() &&
6687              "No linkage found for VST entry?");
6688       auto Linkage = VLI->second;
6689       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6690       ValueName.clear();
6691       break;
6692     }
6693     case bitc::VST_CODE_COMBINED_ENTRY: {
6694       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6695       unsigned ValueID = Record[0];
6696       GlobalValue::GUID RefGUID = Record[1];
6697       // The "original name", which is the second value of the pair will be
6698       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6699       ValueIdToValueInfoMap[ValueID] =
6700           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6701       break;
6702     }
6703     }
6704   }
6705 }
6706 
6707 // Parse just the blocks needed for building the index out of the module.
6708 // At the end of this routine the module Index is populated with a map
6709 // from global value id to GlobalValueSummary objects.
6710 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6711   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6712     return Err;
6713 
6714   SmallVector<uint64_t, 64> Record;
6715   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6716   unsigned ValueId = 0;
6717 
6718   // Read the index for this module.
6719   while (true) {
6720     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6721     if (!MaybeEntry)
6722       return MaybeEntry.takeError();
6723     llvm::BitstreamEntry Entry = MaybeEntry.get();
6724 
6725     switch (Entry.Kind) {
6726     case BitstreamEntry::Error:
6727       return error("Malformed block");
6728     case BitstreamEntry::EndBlock:
6729       return Error::success();
6730 
6731     case BitstreamEntry::SubBlock:
6732       switch (Entry.ID) {
6733       default: // Skip unknown content.
6734         if (Error Err = Stream.SkipBlock())
6735           return Err;
6736         break;
6737       case bitc::BLOCKINFO_BLOCK_ID:
6738         // Need to parse these to get abbrev ids (e.g. for VST)
6739         if (Error Err = readBlockInfo())
6740           return Err;
6741         break;
6742       case bitc::VALUE_SYMTAB_BLOCK_ID:
6743         // Should have been parsed earlier via VSTOffset, unless there
6744         // is no summary section.
6745         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6746                 !SeenGlobalValSummary) &&
6747                "Expected early VST parse via VSTOffset record");
6748         if (Error Err = Stream.SkipBlock())
6749           return Err;
6750         break;
6751       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6752       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6753         // Add the module if it is a per-module index (has a source file name).
6754         if (!SourceFileName.empty())
6755           addThisModule();
6756         assert(!SeenValueSymbolTable &&
6757                "Already read VST when parsing summary block?");
6758         // We might not have a VST if there were no values in the
6759         // summary. An empty summary block generated when we are
6760         // performing ThinLTO compiles so we don't later invoke
6761         // the regular LTO process on them.
6762         if (VSTOffset > 0) {
6763           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6764             return Err;
6765           SeenValueSymbolTable = true;
6766         }
6767         SeenGlobalValSummary = true;
6768         if (Error Err = parseEntireSummary(Entry.ID))
6769           return Err;
6770         break;
6771       case bitc::MODULE_STRTAB_BLOCK_ID:
6772         if (Error Err = parseModuleStringTable())
6773           return Err;
6774         break;
6775       }
6776       continue;
6777 
6778     case BitstreamEntry::Record: {
6779         Record.clear();
6780         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6781         if (!MaybeBitCode)
6782           return MaybeBitCode.takeError();
6783         switch (MaybeBitCode.get()) {
6784         default:
6785           break; // Default behavior, ignore unknown content.
6786         case bitc::MODULE_CODE_VERSION: {
6787           if (Error Err = parseVersionRecord(Record).takeError())
6788             return Err;
6789           break;
6790         }
6791         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6792         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6793           SmallString<128> ValueName;
6794           if (convertToString(Record, 0, ValueName))
6795             return error("Invalid record");
6796           SourceFileName = ValueName.c_str();
6797           break;
6798         }
6799         /// MODULE_CODE_HASH: [5*i32]
6800         case bitc::MODULE_CODE_HASH: {
6801           if (Record.size() != 5)
6802             return error("Invalid hash length " + Twine(Record.size()).str());
6803           auto &Hash = getThisModule()->second.second;
6804           int Pos = 0;
6805           for (auto &Val : Record) {
6806             assert(!(Val >> 32) && "Unexpected high bits set");
6807             Hash[Pos++] = Val;
6808           }
6809           break;
6810         }
6811         /// MODULE_CODE_VSTOFFSET: [offset]
6812         case bitc::MODULE_CODE_VSTOFFSET:
6813           if (Record.empty())
6814             return error("Invalid record");
6815           // Note that we subtract 1 here because the offset is relative to one
6816           // word before the start of the identification or module block, which
6817           // was historically always the start of the regular bitcode header.
6818           VSTOffset = Record[0] - 1;
6819           break;
6820         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6821         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6822         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6823         // v2: [strtab offset, strtab size, v1]
6824         case bitc::MODULE_CODE_GLOBALVAR:
6825         case bitc::MODULE_CODE_FUNCTION:
6826         case bitc::MODULE_CODE_ALIAS: {
6827           StringRef Name;
6828           ArrayRef<uint64_t> GVRecord;
6829           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6830           if (GVRecord.size() <= 3)
6831             return error("Invalid record");
6832           uint64_t RawLinkage = GVRecord[3];
6833           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6834           if (!UseStrtab) {
6835             ValueIdToLinkageMap[ValueId++] = Linkage;
6836             break;
6837           }
6838 
6839           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6840           break;
6841         }
6842         }
6843       }
6844       continue;
6845     }
6846   }
6847 }
6848 
6849 std::vector<ValueInfo>
6850 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6851   std::vector<ValueInfo> Ret;
6852   Ret.reserve(Record.size());
6853   for (uint64_t RefValueId : Record)
6854     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6855   return Ret;
6856 }
6857 
6858 std::vector<FunctionSummary::EdgeTy>
6859 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6860                                               bool IsOldProfileFormat,
6861                                               bool HasProfile, bool HasRelBF) {
6862   std::vector<FunctionSummary::EdgeTy> Ret;
6863   Ret.reserve(Record.size());
6864   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6865     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6866     uint64_t RelBF = 0;
6867     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6868     if (IsOldProfileFormat) {
6869       I += 1; // Skip old callsitecount field
6870       if (HasProfile)
6871         I += 1; // Skip old profilecount field
6872     } else if (HasProfile)
6873       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6874     else if (HasRelBF)
6875       RelBF = Record[++I];
6876     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6877   }
6878   return Ret;
6879 }
6880 
6881 static void
6882 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6883                                        WholeProgramDevirtResolution &Wpd) {
6884   uint64_t ArgNum = Record[Slot++];
6885   WholeProgramDevirtResolution::ByArg &B =
6886       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6887   Slot += ArgNum;
6888 
6889   B.TheKind =
6890       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6891   B.Info = Record[Slot++];
6892   B.Byte = Record[Slot++];
6893   B.Bit = Record[Slot++];
6894 }
6895 
6896 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6897                                               StringRef Strtab, size_t &Slot,
6898                                               TypeIdSummary &TypeId) {
6899   uint64_t Id = Record[Slot++];
6900   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6901 
6902   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6903   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6904                         static_cast<size_t>(Record[Slot + 1])};
6905   Slot += 2;
6906 
6907   uint64_t ResByArgNum = Record[Slot++];
6908   for (uint64_t I = 0; I != ResByArgNum; ++I)
6909     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6910 }
6911 
6912 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6913                                      StringRef Strtab,
6914                                      ModuleSummaryIndex &TheIndex) {
6915   size_t Slot = 0;
6916   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6917       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6918   Slot += 2;
6919 
6920   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6921   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6922   TypeId.TTRes.AlignLog2 = Record[Slot++];
6923   TypeId.TTRes.SizeM1 = Record[Slot++];
6924   TypeId.TTRes.BitMask = Record[Slot++];
6925   TypeId.TTRes.InlineBits = Record[Slot++];
6926 
6927   while (Slot < Record.size())
6928     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6929 }
6930 
6931 std::vector<FunctionSummary::ParamAccess>
6932 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6933   auto ReadRange = [&]() {
6934     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6935                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6936     Record = Record.drop_front();
6937     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6938                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6939     Record = Record.drop_front();
6940     ConstantRange Range{Lower, Upper};
6941     assert(!Range.isFullSet());
6942     assert(!Range.isUpperSignWrapped());
6943     return Range;
6944   };
6945 
6946   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6947   while (!Record.empty()) {
6948     PendingParamAccesses.emplace_back();
6949     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6950     ParamAccess.ParamNo = Record.front();
6951     Record = Record.drop_front();
6952     ParamAccess.Use = ReadRange();
6953     ParamAccess.Calls.resize(Record.front());
6954     Record = Record.drop_front();
6955     for (auto &Call : ParamAccess.Calls) {
6956       Call.ParamNo = Record.front();
6957       Record = Record.drop_front();
6958       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6959       Record = Record.drop_front();
6960       Call.Offsets = ReadRange();
6961     }
6962   }
6963   return PendingParamAccesses;
6964 }
6965 
6966 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6967     ArrayRef<uint64_t> Record, size_t &Slot,
6968     TypeIdCompatibleVtableInfo &TypeId) {
6969   uint64_t Offset = Record[Slot++];
6970   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6971   TypeId.push_back({Offset, Callee});
6972 }
6973 
6974 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6975     ArrayRef<uint64_t> Record) {
6976   size_t Slot = 0;
6977   TypeIdCompatibleVtableInfo &TypeId =
6978       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6979           {Strtab.data() + Record[Slot],
6980            static_cast<size_t>(Record[Slot + 1])});
6981   Slot += 2;
6982 
6983   while (Slot < Record.size())
6984     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6985 }
6986 
6987 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6988                            unsigned WOCnt) {
6989   // Readonly and writeonly refs are in the end of the refs list.
6990   assert(ROCnt + WOCnt <= Refs.size());
6991   unsigned FirstWORef = Refs.size() - WOCnt;
6992   unsigned RefNo = FirstWORef - ROCnt;
6993   for (; RefNo < FirstWORef; ++RefNo)
6994     Refs[RefNo].setReadOnly();
6995   for (; RefNo < Refs.size(); ++RefNo)
6996     Refs[RefNo].setWriteOnly();
6997 }
6998 
6999 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7000 // objects in the index.
7001 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7002   if (Error Err = Stream.EnterSubBlock(ID))
7003     return Err;
7004   SmallVector<uint64_t, 64> Record;
7005 
7006   // Parse version
7007   {
7008     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7009     if (!MaybeEntry)
7010       return MaybeEntry.takeError();
7011     BitstreamEntry Entry = MaybeEntry.get();
7012 
7013     if (Entry.Kind != BitstreamEntry::Record)
7014       return error("Invalid Summary Block: record for version expected");
7015     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7016     if (!MaybeRecord)
7017       return MaybeRecord.takeError();
7018     if (MaybeRecord.get() != bitc::FS_VERSION)
7019       return error("Invalid Summary Block: version expected");
7020   }
7021   const uint64_t Version = Record[0];
7022   const bool IsOldProfileFormat = Version == 1;
7023   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7024     return error("Invalid summary version " + Twine(Version) +
7025                  ". Version should be in the range [1-" +
7026                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7027                  "].");
7028   Record.clear();
7029 
7030   // Keep around the last seen summary to be used when we see an optional
7031   // "OriginalName" attachement.
7032   GlobalValueSummary *LastSeenSummary = nullptr;
7033   GlobalValue::GUID LastSeenGUID = 0;
7034 
7035   // We can expect to see any number of type ID information records before
7036   // each function summary records; these variables store the information
7037   // collected so far so that it can be used to create the summary object.
7038   std::vector<GlobalValue::GUID> PendingTypeTests;
7039   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7040       PendingTypeCheckedLoadVCalls;
7041   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7042       PendingTypeCheckedLoadConstVCalls;
7043   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7044 
7045   while (true) {
7046     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7047     if (!MaybeEntry)
7048       return MaybeEntry.takeError();
7049     BitstreamEntry Entry = MaybeEntry.get();
7050 
7051     switch (Entry.Kind) {
7052     case BitstreamEntry::SubBlock: // Handled for us already.
7053     case BitstreamEntry::Error:
7054       return error("Malformed block");
7055     case BitstreamEntry::EndBlock:
7056       return Error::success();
7057     case BitstreamEntry::Record:
7058       // The interesting case.
7059       break;
7060     }
7061 
7062     // Read a record. The record format depends on whether this
7063     // is a per-module index or a combined index file. In the per-module
7064     // case the records contain the associated value's ID for correlation
7065     // with VST entries. In the combined index the correlation is done
7066     // via the bitcode offset of the summary records (which were saved
7067     // in the combined index VST entries). The records also contain
7068     // information used for ThinLTO renaming and importing.
7069     Record.clear();
7070     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7071     if (!MaybeBitCode)
7072       return MaybeBitCode.takeError();
7073     switch (unsigned BitCode = MaybeBitCode.get()) {
7074     default: // Default behavior: ignore.
7075       break;
7076     case bitc::FS_FLAGS: {  // [flags]
7077       TheIndex.setFlags(Record[0]);
7078       break;
7079     }
7080     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7081       uint64_t ValueID = Record[0];
7082       GlobalValue::GUID RefGUID = Record[1];
7083       ValueIdToValueInfoMap[ValueID] =
7084           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7085       break;
7086     }
7087     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7088     //                numrefs x valueid, n x (valueid)]
7089     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7090     //                        numrefs x valueid,
7091     //                        n x (valueid, hotness)]
7092     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7093     //                      numrefs x valueid,
7094     //                      n x (valueid, relblockfreq)]
7095     case bitc::FS_PERMODULE:
7096     case bitc::FS_PERMODULE_RELBF:
7097     case bitc::FS_PERMODULE_PROFILE: {
7098       unsigned ValueID = Record[0];
7099       uint64_t RawFlags = Record[1];
7100       unsigned InstCount = Record[2];
7101       uint64_t RawFunFlags = 0;
7102       unsigned NumRefs = Record[3];
7103       unsigned NumRORefs = 0, NumWORefs = 0;
7104       int RefListStartIndex = 4;
7105       if (Version >= 4) {
7106         RawFunFlags = Record[3];
7107         NumRefs = Record[4];
7108         RefListStartIndex = 5;
7109         if (Version >= 5) {
7110           NumRORefs = Record[5];
7111           RefListStartIndex = 6;
7112           if (Version >= 7) {
7113             NumWORefs = Record[6];
7114             RefListStartIndex = 7;
7115           }
7116         }
7117       }
7118 
7119       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7120       // The module path string ref set in the summary must be owned by the
7121       // index's module string table. Since we don't have a module path
7122       // string table section in the per-module index, we create a single
7123       // module path string table entry with an empty (0) ID to take
7124       // ownership.
7125       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7126       assert(Record.size() >= RefListStartIndex + NumRefs &&
7127              "Record size inconsistent with number of references");
7128       std::vector<ValueInfo> Refs = makeRefList(
7129           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7130       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7131       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7132       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7133           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7134           IsOldProfileFormat, HasProfile, HasRelBF);
7135       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7136       auto FS = std::make_unique<FunctionSummary>(
7137           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7138           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7139           std::move(PendingTypeTestAssumeVCalls),
7140           std::move(PendingTypeCheckedLoadVCalls),
7141           std::move(PendingTypeTestAssumeConstVCalls),
7142           std::move(PendingTypeCheckedLoadConstVCalls),
7143           std::move(PendingParamAccesses));
7144       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7145       FS->setModulePath(getThisModule()->first());
7146       FS->setOriginalName(VIAndOriginalGUID.second);
7147       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
7148       break;
7149     }
7150     // FS_ALIAS: [valueid, flags, valueid]
7151     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7152     // they expect all aliasee summaries to be available.
7153     case bitc::FS_ALIAS: {
7154       unsigned ValueID = Record[0];
7155       uint64_t RawFlags = Record[1];
7156       unsigned AliaseeID = Record[2];
7157       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7158       auto AS = std::make_unique<AliasSummary>(Flags);
7159       // The module path string ref set in the summary must be owned by the
7160       // index's module string table. Since we don't have a module path
7161       // string table section in the per-module index, we create a single
7162       // module path string table entry with an empty (0) ID to take
7163       // ownership.
7164       AS->setModulePath(getThisModule()->first());
7165 
7166       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
7167       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7168       if (!AliaseeInModule)
7169         return error("Alias expects aliasee summary to be parsed");
7170       AS->setAliasee(AliaseeVI, AliaseeInModule);
7171 
7172       auto GUID = getValueInfoFromValueId(ValueID);
7173       AS->setOriginalName(GUID.second);
7174       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
7175       break;
7176     }
7177     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7178     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7179       unsigned ValueID = Record[0];
7180       uint64_t RawFlags = Record[1];
7181       unsigned RefArrayStart = 2;
7182       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7183                                       /* WriteOnly */ false,
7184                                       /* Constant */ false,
7185                                       GlobalObject::VCallVisibilityPublic);
7186       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7187       if (Version >= 5) {
7188         GVF = getDecodedGVarFlags(Record[2]);
7189         RefArrayStart = 3;
7190       }
7191       std::vector<ValueInfo> Refs =
7192           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7193       auto FS =
7194           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7195       FS->setModulePath(getThisModule()->first());
7196       auto GUID = getValueInfoFromValueId(ValueID);
7197       FS->setOriginalName(GUID.second);
7198       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
7199       break;
7200     }
7201     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7202     //                        numrefs, numrefs x valueid,
7203     //                        n x (valueid, offset)]
7204     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7205       unsigned ValueID = Record[0];
7206       uint64_t RawFlags = Record[1];
7207       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7208       unsigned NumRefs = Record[3];
7209       unsigned RefListStartIndex = 4;
7210       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7211       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7212       std::vector<ValueInfo> Refs = makeRefList(
7213           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7214       VTableFuncList VTableFuncs;
7215       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7216         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
7217         uint64_t Offset = Record[++I];
7218         VTableFuncs.push_back({Callee, Offset});
7219       }
7220       auto VS =
7221           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7222       VS->setModulePath(getThisModule()->first());
7223       VS->setVTableFuncs(VTableFuncs);
7224       auto GUID = getValueInfoFromValueId(ValueID);
7225       VS->setOriginalName(GUID.second);
7226       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
7227       break;
7228     }
7229     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7230     //               numrefs x valueid, n x (valueid)]
7231     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7232     //                       numrefs x valueid, n x (valueid, hotness)]
7233     case bitc::FS_COMBINED:
7234     case bitc::FS_COMBINED_PROFILE: {
7235       unsigned ValueID = Record[0];
7236       uint64_t ModuleId = Record[1];
7237       uint64_t RawFlags = Record[2];
7238       unsigned InstCount = Record[3];
7239       uint64_t RawFunFlags = 0;
7240       uint64_t EntryCount = 0;
7241       unsigned NumRefs = Record[4];
7242       unsigned NumRORefs = 0, NumWORefs = 0;
7243       int RefListStartIndex = 5;
7244 
7245       if (Version >= 4) {
7246         RawFunFlags = Record[4];
7247         RefListStartIndex = 6;
7248         size_t NumRefsIndex = 5;
7249         if (Version >= 5) {
7250           unsigned NumRORefsOffset = 1;
7251           RefListStartIndex = 7;
7252           if (Version >= 6) {
7253             NumRefsIndex = 6;
7254             EntryCount = Record[5];
7255             RefListStartIndex = 8;
7256             if (Version >= 7) {
7257               RefListStartIndex = 9;
7258               NumWORefs = Record[8];
7259               NumRORefsOffset = 2;
7260             }
7261           }
7262           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7263         }
7264         NumRefs = Record[NumRefsIndex];
7265       }
7266 
7267       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7268       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7269       assert(Record.size() >= RefListStartIndex + NumRefs &&
7270              "Record size inconsistent with number of references");
7271       std::vector<ValueInfo> Refs = makeRefList(
7272           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7273       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7274       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7275           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7276           IsOldProfileFormat, HasProfile, false);
7277       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7278       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7279       auto FS = std::make_unique<FunctionSummary>(
7280           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7281           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7282           std::move(PendingTypeTestAssumeVCalls),
7283           std::move(PendingTypeCheckedLoadVCalls),
7284           std::move(PendingTypeTestAssumeConstVCalls),
7285           std::move(PendingTypeCheckedLoadConstVCalls),
7286           std::move(PendingParamAccesses));
7287       LastSeenSummary = FS.get();
7288       LastSeenGUID = VI.getGUID();
7289       FS->setModulePath(ModuleIdMap[ModuleId]);
7290       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7291       break;
7292     }
7293     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7294     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7295     // they expect all aliasee summaries to be available.
7296     case bitc::FS_COMBINED_ALIAS: {
7297       unsigned ValueID = Record[0];
7298       uint64_t ModuleId = Record[1];
7299       uint64_t RawFlags = Record[2];
7300       unsigned AliaseeValueId = Record[3];
7301       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7302       auto AS = std::make_unique<AliasSummary>(Flags);
7303       LastSeenSummary = AS.get();
7304       AS->setModulePath(ModuleIdMap[ModuleId]);
7305 
7306       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
7307       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7308       AS->setAliasee(AliaseeVI, AliaseeInModule);
7309 
7310       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7311       LastSeenGUID = VI.getGUID();
7312       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7313       break;
7314     }
7315     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7316     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7317       unsigned ValueID = Record[0];
7318       uint64_t ModuleId = Record[1];
7319       uint64_t RawFlags = Record[2];
7320       unsigned RefArrayStart = 3;
7321       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7322                                       /* WriteOnly */ false,
7323                                       /* Constant */ false,
7324                                       GlobalObject::VCallVisibilityPublic);
7325       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7326       if (Version >= 5) {
7327         GVF = getDecodedGVarFlags(Record[3]);
7328         RefArrayStart = 4;
7329       }
7330       std::vector<ValueInfo> Refs =
7331           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7332       auto FS =
7333           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7334       LastSeenSummary = FS.get();
7335       FS->setModulePath(ModuleIdMap[ModuleId]);
7336       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7337       LastSeenGUID = VI.getGUID();
7338       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7339       break;
7340     }
7341     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7342     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7343       uint64_t OriginalName = Record[0];
7344       if (!LastSeenSummary)
7345         return error("Name attachment that does not follow a combined record");
7346       LastSeenSummary->setOriginalName(OriginalName);
7347       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7348       // Reset the LastSeenSummary
7349       LastSeenSummary = nullptr;
7350       LastSeenGUID = 0;
7351       break;
7352     }
7353     case bitc::FS_TYPE_TESTS:
7354       assert(PendingTypeTests.empty());
7355       llvm::append_range(PendingTypeTests, Record);
7356       break;
7357 
7358     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7359       assert(PendingTypeTestAssumeVCalls.empty());
7360       for (unsigned I = 0; I != Record.size(); I += 2)
7361         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7362       break;
7363 
7364     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7365       assert(PendingTypeCheckedLoadVCalls.empty());
7366       for (unsigned I = 0; I != Record.size(); I += 2)
7367         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7368       break;
7369 
7370     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7371       PendingTypeTestAssumeConstVCalls.push_back(
7372           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7373       break;
7374 
7375     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7376       PendingTypeCheckedLoadConstVCalls.push_back(
7377           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7378       break;
7379 
7380     case bitc::FS_CFI_FUNCTION_DEFS: {
7381       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7382       for (unsigned I = 0; I != Record.size(); I += 2)
7383         CfiFunctionDefs.insert(
7384             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7385       break;
7386     }
7387 
7388     case bitc::FS_CFI_FUNCTION_DECLS: {
7389       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7390       for (unsigned I = 0; I != Record.size(); I += 2)
7391         CfiFunctionDecls.insert(
7392             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7393       break;
7394     }
7395 
7396     case bitc::FS_TYPE_ID:
7397       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7398       break;
7399 
7400     case bitc::FS_TYPE_ID_METADATA:
7401       parseTypeIdCompatibleVtableSummaryRecord(Record);
7402       break;
7403 
7404     case bitc::FS_BLOCK_COUNT:
7405       TheIndex.addBlockCount(Record[0]);
7406       break;
7407 
7408     case bitc::FS_PARAM_ACCESS: {
7409       PendingParamAccesses = parseParamAccesses(Record);
7410       break;
7411     }
7412     }
7413   }
7414   llvm_unreachable("Exit infinite loop");
7415 }
7416 
7417 // Parse the  module string table block into the Index.
7418 // This populates the ModulePathStringTable map in the index.
7419 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7420   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7421     return Err;
7422 
7423   SmallVector<uint64_t, 64> Record;
7424 
7425   SmallString<128> ModulePath;
7426   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7427 
7428   while (true) {
7429     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7430     if (!MaybeEntry)
7431       return MaybeEntry.takeError();
7432     BitstreamEntry Entry = MaybeEntry.get();
7433 
7434     switch (Entry.Kind) {
7435     case BitstreamEntry::SubBlock: // Handled for us already.
7436     case BitstreamEntry::Error:
7437       return error("Malformed block");
7438     case BitstreamEntry::EndBlock:
7439       return Error::success();
7440     case BitstreamEntry::Record:
7441       // The interesting case.
7442       break;
7443     }
7444 
7445     Record.clear();
7446     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7447     if (!MaybeRecord)
7448       return MaybeRecord.takeError();
7449     switch (MaybeRecord.get()) {
7450     default: // Default behavior: ignore.
7451       break;
7452     case bitc::MST_CODE_ENTRY: {
7453       // MST_ENTRY: [modid, namechar x N]
7454       uint64_t ModuleId = Record[0];
7455 
7456       if (convertToString(Record, 1, ModulePath))
7457         return error("Invalid record");
7458 
7459       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7460       ModuleIdMap[ModuleId] = LastSeenModule->first();
7461 
7462       ModulePath.clear();
7463       break;
7464     }
7465     /// MST_CODE_HASH: [5*i32]
7466     case bitc::MST_CODE_HASH: {
7467       if (Record.size() != 5)
7468         return error("Invalid hash length " + Twine(Record.size()).str());
7469       if (!LastSeenModule)
7470         return error("Invalid hash that does not follow a module path");
7471       int Pos = 0;
7472       for (auto &Val : Record) {
7473         assert(!(Val >> 32) && "Unexpected high bits set");
7474         LastSeenModule->second.second[Pos++] = Val;
7475       }
7476       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7477       LastSeenModule = nullptr;
7478       break;
7479     }
7480     }
7481   }
7482   llvm_unreachable("Exit infinite loop");
7483 }
7484 
7485 namespace {
7486 
7487 // FIXME: This class is only here to support the transition to llvm::Error. It
7488 // will be removed once this transition is complete. Clients should prefer to
7489 // deal with the Error value directly, rather than converting to error_code.
7490 class BitcodeErrorCategoryType : public std::error_category {
7491   const char *name() const noexcept override {
7492     return "llvm.bitcode";
7493   }
7494 
7495   std::string message(int IE) const override {
7496     BitcodeError E = static_cast<BitcodeError>(IE);
7497     switch (E) {
7498     case BitcodeError::CorruptedBitcode:
7499       return "Corrupted bitcode";
7500     }
7501     llvm_unreachable("Unknown error type!");
7502   }
7503 };
7504 
7505 } // end anonymous namespace
7506 
7507 const std::error_category &llvm::BitcodeErrorCategory() {
7508   static BitcodeErrorCategoryType ErrorCategory;
7509   return ErrorCategory;
7510 }
7511 
7512 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7513                                             unsigned Block, unsigned RecordID) {
7514   if (Error Err = Stream.EnterSubBlock(Block))
7515     return std::move(Err);
7516 
7517   StringRef Strtab;
7518   while (true) {
7519     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7520     if (!MaybeEntry)
7521       return MaybeEntry.takeError();
7522     llvm::BitstreamEntry Entry = MaybeEntry.get();
7523 
7524     switch (Entry.Kind) {
7525     case BitstreamEntry::EndBlock:
7526       return Strtab;
7527 
7528     case BitstreamEntry::Error:
7529       return error("Malformed block");
7530 
7531     case BitstreamEntry::SubBlock:
7532       if (Error Err = Stream.SkipBlock())
7533         return std::move(Err);
7534       break;
7535 
7536     case BitstreamEntry::Record:
7537       StringRef Blob;
7538       SmallVector<uint64_t, 1> Record;
7539       Expected<unsigned> MaybeRecord =
7540           Stream.readRecord(Entry.ID, Record, &Blob);
7541       if (!MaybeRecord)
7542         return MaybeRecord.takeError();
7543       if (MaybeRecord.get() == RecordID)
7544         Strtab = Blob;
7545       break;
7546     }
7547   }
7548 }
7549 
7550 //===----------------------------------------------------------------------===//
7551 // External interface
7552 //===----------------------------------------------------------------------===//
7553 
7554 Expected<std::vector<BitcodeModule>>
7555 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7556   auto FOrErr = getBitcodeFileContents(Buffer);
7557   if (!FOrErr)
7558     return FOrErr.takeError();
7559   return std::move(FOrErr->Mods);
7560 }
7561 
7562 Expected<BitcodeFileContents>
7563 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7564   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7565   if (!StreamOrErr)
7566     return StreamOrErr.takeError();
7567   BitstreamCursor &Stream = *StreamOrErr;
7568 
7569   BitcodeFileContents F;
7570   while (true) {
7571     uint64_t BCBegin = Stream.getCurrentByteNo();
7572 
7573     // We may be consuming bitcode from a client that leaves garbage at the end
7574     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7575     // the end that there cannot possibly be another module, stop looking.
7576     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7577       return F;
7578 
7579     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7580     if (!MaybeEntry)
7581       return MaybeEntry.takeError();
7582     llvm::BitstreamEntry Entry = MaybeEntry.get();
7583 
7584     switch (Entry.Kind) {
7585     case BitstreamEntry::EndBlock:
7586     case BitstreamEntry::Error:
7587       return error("Malformed block");
7588 
7589     case BitstreamEntry::SubBlock: {
7590       uint64_t IdentificationBit = -1ull;
7591       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7592         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7593         if (Error Err = Stream.SkipBlock())
7594           return std::move(Err);
7595 
7596         {
7597           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7598           if (!MaybeEntry)
7599             return MaybeEntry.takeError();
7600           Entry = MaybeEntry.get();
7601         }
7602 
7603         if (Entry.Kind != BitstreamEntry::SubBlock ||
7604             Entry.ID != bitc::MODULE_BLOCK_ID)
7605           return error("Malformed block");
7606       }
7607 
7608       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7609         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7610         if (Error Err = Stream.SkipBlock())
7611           return std::move(Err);
7612 
7613         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7614                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7615                           Buffer.getBufferIdentifier(), IdentificationBit,
7616                           ModuleBit});
7617         continue;
7618       }
7619 
7620       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7621         Expected<StringRef> Strtab =
7622             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7623         if (!Strtab)
7624           return Strtab.takeError();
7625         // This string table is used by every preceding bitcode module that does
7626         // not have its own string table. A bitcode file may have multiple
7627         // string tables if it was created by binary concatenation, for example
7628         // with "llvm-cat -b".
7629         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7630           if (!I.Strtab.empty())
7631             break;
7632           I.Strtab = *Strtab;
7633         }
7634         // Similarly, the string table is used by every preceding symbol table;
7635         // normally there will be just one unless the bitcode file was created
7636         // by binary concatenation.
7637         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7638           F.StrtabForSymtab = *Strtab;
7639         continue;
7640       }
7641 
7642       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7643         Expected<StringRef> SymtabOrErr =
7644             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7645         if (!SymtabOrErr)
7646           return SymtabOrErr.takeError();
7647 
7648         // We can expect the bitcode file to have multiple symbol tables if it
7649         // was created by binary concatenation. In that case we silently
7650         // ignore any subsequent symbol tables, which is fine because this is a
7651         // low level function. The client is expected to notice that the number
7652         // of modules in the symbol table does not match the number of modules
7653         // in the input file and regenerate the symbol table.
7654         if (F.Symtab.empty())
7655           F.Symtab = *SymtabOrErr;
7656         continue;
7657       }
7658 
7659       if (Error Err = Stream.SkipBlock())
7660         return std::move(Err);
7661       continue;
7662     }
7663     case BitstreamEntry::Record:
7664       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7665         return std::move(E);
7666       continue;
7667     }
7668   }
7669 }
7670 
7671 /// Get a lazy one-at-time loading module from bitcode.
7672 ///
7673 /// This isn't always used in a lazy context.  In particular, it's also used by
7674 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7675 /// in forward-referenced functions from block address references.
7676 ///
7677 /// \param[in] MaterializeAll Set to \c true if we should materialize
7678 /// everything.
7679 Expected<std::unique_ptr<Module>>
7680 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7681                              bool ShouldLazyLoadMetadata, bool IsImporting,
7682                              DataLayoutCallbackTy DataLayoutCallback) {
7683   BitstreamCursor Stream(Buffer);
7684 
7685   std::string ProducerIdentification;
7686   if (IdentificationBit != -1ull) {
7687     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7688       return std::move(JumpFailed);
7689     if (Error E =
7690             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7691       return std::move(E);
7692   }
7693 
7694   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7695     return std::move(JumpFailed);
7696   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7697                               Context);
7698 
7699   std::unique_ptr<Module> M =
7700       std::make_unique<Module>(ModuleIdentifier, Context);
7701   M->setMaterializer(R);
7702 
7703   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7704   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7705                                       IsImporting, DataLayoutCallback))
7706     return std::move(Err);
7707 
7708   if (MaterializeAll) {
7709     // Read in the entire module, and destroy the BitcodeReader.
7710     if (Error Err = M->materializeAll())
7711       return std::move(Err);
7712   } else {
7713     // Resolve forward references from blockaddresses.
7714     if (Error Err = R->materializeForwardReferencedFunctions())
7715       return std::move(Err);
7716   }
7717   return std::move(M);
7718 }
7719 
7720 Expected<std::unique_ptr<Module>>
7721 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7722                              bool IsImporting) {
7723   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7724                        [](StringRef) { return None; });
7725 }
7726 
7727 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7728 // We don't use ModuleIdentifier here because the client may need to control the
7729 // module path used in the combined summary (e.g. when reading summaries for
7730 // regular LTO modules).
7731 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7732                                  StringRef ModulePath, uint64_t ModuleId) {
7733   BitstreamCursor Stream(Buffer);
7734   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7735     return JumpFailed;
7736 
7737   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7738                                     ModulePath, ModuleId);
7739   return R.parseModule();
7740 }
7741 
7742 // Parse the specified bitcode buffer, returning the function info index.
7743 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7744   BitstreamCursor Stream(Buffer);
7745   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7746     return std::move(JumpFailed);
7747 
7748   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7749   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7750                                     ModuleIdentifier, 0);
7751 
7752   if (Error Err = R.parseModule())
7753     return std::move(Err);
7754 
7755   return std::move(Index);
7756 }
7757 
7758 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7759                                                 unsigned ID) {
7760   if (Error Err = Stream.EnterSubBlock(ID))
7761     return std::move(Err);
7762   SmallVector<uint64_t, 64> Record;
7763 
7764   while (true) {
7765     BitstreamEntry Entry;
7766     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7767       return std::move(E);
7768 
7769     switch (Entry.Kind) {
7770     case BitstreamEntry::SubBlock: // Handled for us already.
7771     case BitstreamEntry::Error:
7772       return error("Malformed block");
7773     case BitstreamEntry::EndBlock:
7774       // If no flags record found, conservatively return true to mimic
7775       // behavior before this flag was added.
7776       return true;
7777     case BitstreamEntry::Record:
7778       // The interesting case.
7779       break;
7780     }
7781 
7782     // Look for the FS_FLAGS record.
7783     Record.clear();
7784     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7785     if (!MaybeBitCode)
7786       return MaybeBitCode.takeError();
7787     switch (MaybeBitCode.get()) {
7788     default: // Default behavior: ignore.
7789       break;
7790     case bitc::FS_FLAGS: { // [flags]
7791       uint64_t Flags = Record[0];
7792       // Scan flags.
7793       assert(Flags <= 0xff && "Unexpected bits in flag");
7794 
7795       return Flags & 0x8;
7796     }
7797     }
7798   }
7799   llvm_unreachable("Exit infinite loop");
7800 }
7801 
7802 // Check if the given bitcode buffer contains a global value summary block.
7803 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7804   BitstreamCursor Stream(Buffer);
7805   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7806     return std::move(JumpFailed);
7807 
7808   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7809     return std::move(Err);
7810 
7811   while (true) {
7812     llvm::BitstreamEntry Entry;
7813     if (Error E = Stream.advance().moveInto(Entry))
7814       return std::move(E);
7815 
7816     switch (Entry.Kind) {
7817     case BitstreamEntry::Error:
7818       return error("Malformed block");
7819     case BitstreamEntry::EndBlock:
7820       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7821                             /*EnableSplitLTOUnit=*/false};
7822 
7823     case BitstreamEntry::SubBlock:
7824       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7825         Expected<bool> EnableSplitLTOUnit =
7826             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7827         if (!EnableSplitLTOUnit)
7828           return EnableSplitLTOUnit.takeError();
7829         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7830                               *EnableSplitLTOUnit};
7831       }
7832 
7833       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7834         Expected<bool> EnableSplitLTOUnit =
7835             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7836         if (!EnableSplitLTOUnit)
7837           return EnableSplitLTOUnit.takeError();
7838         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7839                               *EnableSplitLTOUnit};
7840       }
7841 
7842       // Ignore other sub-blocks.
7843       if (Error Err = Stream.SkipBlock())
7844         return std::move(Err);
7845       continue;
7846 
7847     case BitstreamEntry::Record:
7848       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7849         continue;
7850       else
7851         return StreamFailed.takeError();
7852     }
7853   }
7854 }
7855 
7856 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7857   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7858   if (!MsOrErr)
7859     return MsOrErr.takeError();
7860 
7861   if (MsOrErr->size() != 1)
7862     return error("Expected a single module");
7863 
7864   return (*MsOrErr)[0];
7865 }
7866 
7867 Expected<std::unique_ptr<Module>>
7868 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7869                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7870   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7871   if (!BM)
7872     return BM.takeError();
7873 
7874   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7875 }
7876 
7877 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7878     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7879     bool ShouldLazyLoadMetadata, bool IsImporting) {
7880   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7881                                      IsImporting);
7882   if (MOrErr)
7883     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7884   return MOrErr;
7885 }
7886 
7887 Expected<std::unique_ptr<Module>>
7888 BitcodeModule::parseModule(LLVMContext &Context,
7889                            DataLayoutCallbackTy DataLayoutCallback) {
7890   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7891   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7892   // written.  We must defer until the Module has been fully materialized.
7893 }
7894 
7895 Expected<std::unique_ptr<Module>>
7896 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7897                        DataLayoutCallbackTy DataLayoutCallback) {
7898   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7899   if (!BM)
7900     return BM.takeError();
7901 
7902   return BM->parseModule(Context, DataLayoutCallback);
7903 }
7904 
7905 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7906   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7907   if (!StreamOrErr)
7908     return StreamOrErr.takeError();
7909 
7910   return readTriple(*StreamOrErr);
7911 }
7912 
7913 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7914   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7915   if (!StreamOrErr)
7916     return StreamOrErr.takeError();
7917 
7918   return hasObjCCategory(*StreamOrErr);
7919 }
7920 
7921 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7922   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7923   if (!StreamOrErr)
7924     return StreamOrErr.takeError();
7925 
7926   return readIdentificationCode(*StreamOrErr);
7927 }
7928 
7929 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7930                                    ModuleSummaryIndex &CombinedIndex,
7931                                    uint64_t ModuleId) {
7932   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7933   if (!BM)
7934     return BM.takeError();
7935 
7936   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7937 }
7938 
7939 Expected<std::unique_ptr<ModuleSummaryIndex>>
7940 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7941   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7942   if (!BM)
7943     return BM.takeError();
7944 
7945   return BM->getSummary();
7946 }
7947 
7948 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7949   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7950   if (!BM)
7951     return BM.takeError();
7952 
7953   return BM->getLTOInfo();
7954 }
7955 
7956 Expected<std::unique_ptr<ModuleSummaryIndex>>
7957 llvm::getModuleSummaryIndexForFile(StringRef Path,
7958                                    bool IgnoreEmptyThinLTOIndexFile) {
7959   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7960       MemoryBuffer::getFileOrSTDIN(Path);
7961   if (!FileOrErr)
7962     return errorCodeToError(FileOrErr.getError());
7963   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7964     return nullptr;
7965   return getModuleSummaryIndex(**FileOrErr);
7966 }
7967