1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/ProfDataUtils.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/ModRef.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/TargetParser/Triple.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <deque> 82 #include <map> 83 #include <memory> 84 #include <optional> 85 #include <set> 86 #include <string> 87 #include <system_error> 88 #include <tuple> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 94 static cl::opt<bool> PrintSummaryGUIDs( 95 "print-summary-global-ids", cl::init(false), cl::Hidden, 96 cl::desc( 97 "Print the global id for each value when reading the module summary")); 98 99 static cl::opt<bool> ExpandConstantExprs( 100 "expand-constant-exprs", cl::Hidden, 101 cl::desc( 102 "Expand constant expressions to instructions for testing purposes")); 103 104 /// Load bitcode directly into RemoveDIs format (use debug records instead 105 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 106 /// is to do nothing. Individual tools can override this to incrementally add 107 /// support for the RemoveDIs format. 108 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 109 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 110 cl::desc("Load bitcode directly into the new debug info format (regardless " 111 "of input format)")); 112 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 113 extern bool WriteNewDbgInfoFormatToBitcode; 114 extern cl::opt<bool> WriteNewDbgInfoFormat; 115 116 namespace { 117 118 enum { 119 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 120 }; 121 122 } // end anonymous namespace 123 124 static Error error(const Twine &Message) { 125 return make_error<StringError>( 126 Message, make_error_code(BitcodeError::CorruptedBitcode)); 127 } 128 129 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 130 if (!Stream.canSkipToPos(4)) 131 return createStringError(std::errc::illegal_byte_sequence, 132 "file too small to contain bitcode header"); 133 for (unsigned C : {'B', 'C'}) 134 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 135 if (Res.get() != C) 136 return createStringError(std::errc::illegal_byte_sequence, 137 "file doesn't start with bitcode header"); 138 } else 139 return Res.takeError(); 140 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 141 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 142 if (Res.get() != C) 143 return createStringError(std::errc::illegal_byte_sequence, 144 "file doesn't start with bitcode header"); 145 } else 146 return Res.takeError(); 147 return Error::success(); 148 } 149 150 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 151 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 152 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 153 154 if (Buffer.getBufferSize() & 3) 155 return error("Invalid bitcode signature"); 156 157 // If we have a wrapper header, parse it and ignore the non-bc file contents. 158 // The magic number is 0x0B17C0DE stored in little endian. 159 if (isBitcodeWrapper(BufPtr, BufEnd)) 160 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 161 return error("Invalid bitcode wrapper header"); 162 163 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 164 if (Error Err = hasInvalidBitcodeHeader(Stream)) 165 return std::move(Err); 166 167 return std::move(Stream); 168 } 169 170 /// Convert a string from a record into an std::string, return true on failure. 171 template <typename StrTy> 172 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 173 StrTy &Result) { 174 if (Idx > Record.size()) 175 return true; 176 177 Result.append(Record.begin() + Idx, Record.end()); 178 return false; 179 } 180 181 // Strip all the TBAA attachment for the module. 182 static void stripTBAA(Module *M) { 183 for (auto &F : *M) { 184 if (F.isMaterializable()) 185 continue; 186 for (auto &I : instructions(F)) 187 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 188 } 189 } 190 191 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 192 /// "epoch" encoded in the bitcode, and return the producer name if any. 193 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 194 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 195 return std::move(Err); 196 197 // Read all the records. 198 SmallVector<uint64_t, 64> Record; 199 200 std::string ProducerIdentification; 201 202 while (true) { 203 BitstreamEntry Entry; 204 if (Error E = Stream.advance().moveInto(Entry)) 205 return std::move(E); 206 207 switch (Entry.Kind) { 208 default: 209 case BitstreamEntry::Error: 210 return error("Malformed block"); 211 case BitstreamEntry::EndBlock: 212 return ProducerIdentification; 213 case BitstreamEntry::Record: 214 // The interesting case. 215 break; 216 } 217 218 // Read a record. 219 Record.clear(); 220 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 221 if (!MaybeBitCode) 222 return MaybeBitCode.takeError(); 223 switch (MaybeBitCode.get()) { 224 default: // Default behavior: reject 225 return error("Invalid value"); 226 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 227 convertToString(Record, 0, ProducerIdentification); 228 break; 229 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 230 unsigned epoch = (unsigned)Record[0]; 231 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 232 return error( 233 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 234 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 235 } 236 } 237 } 238 } 239 } 240 241 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 242 // We expect a number of well-defined blocks, though we don't necessarily 243 // need to understand them all. 244 while (true) { 245 if (Stream.AtEndOfStream()) 246 return ""; 247 248 BitstreamEntry Entry; 249 if (Error E = Stream.advance().moveInto(Entry)) 250 return std::move(E); 251 252 switch (Entry.Kind) { 253 case BitstreamEntry::EndBlock: 254 case BitstreamEntry::Error: 255 return error("Malformed block"); 256 257 case BitstreamEntry::SubBlock: 258 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 259 return readIdentificationBlock(Stream); 260 261 // Ignore other sub-blocks. 262 if (Error Err = Stream.SkipBlock()) 263 return std::move(Err); 264 continue; 265 case BitstreamEntry::Record: 266 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 267 return std::move(E); 268 continue; 269 } 270 } 271 } 272 273 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 274 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 275 return std::move(Err); 276 277 SmallVector<uint64_t, 64> Record; 278 // Read all the records for this module. 279 280 while (true) { 281 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 282 if (!MaybeEntry) 283 return MaybeEntry.takeError(); 284 BitstreamEntry Entry = MaybeEntry.get(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::SubBlock: // Handled for us already. 288 case BitstreamEntry::Error: 289 return error("Malformed block"); 290 case BitstreamEntry::EndBlock: 291 return false; 292 case BitstreamEntry::Record: 293 // The interesting case. 294 break; 295 } 296 297 // Read a record. 298 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 299 if (!MaybeRecord) 300 return MaybeRecord.takeError(); 301 switch (MaybeRecord.get()) { 302 default: 303 break; // Default behavior, ignore unknown content. 304 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 305 std::string S; 306 if (convertToString(Record, 0, S)) 307 return error("Invalid section name record"); 308 // Check for the i386 and other (x86_64, ARM) conventions 309 if (S.find("__DATA,__objc_catlist") != std::string::npos || 310 S.find("__OBJC,__category") != std::string::npos || 311 S.find("__TEXT,__swift") != std::string::npos) 312 return true; 313 break; 314 } 315 } 316 Record.clear(); 317 } 318 llvm_unreachable("Exit infinite loop"); 319 } 320 321 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 322 // We expect a number of well-defined blocks, though we don't necessarily 323 // need to understand them all. 324 while (true) { 325 BitstreamEntry Entry; 326 if (Error E = Stream.advance().moveInto(Entry)) 327 return std::move(E); 328 329 switch (Entry.Kind) { 330 case BitstreamEntry::Error: 331 return error("Malformed block"); 332 case BitstreamEntry::EndBlock: 333 return false; 334 335 case BitstreamEntry::SubBlock: 336 if (Entry.ID == bitc::MODULE_BLOCK_ID) 337 return hasObjCCategoryInModule(Stream); 338 339 // Ignore other sub-blocks. 340 if (Error Err = Stream.SkipBlock()) 341 return std::move(Err); 342 continue; 343 344 case BitstreamEntry::Record: 345 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 346 return std::move(E); 347 continue; 348 } 349 } 350 } 351 352 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 353 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 354 return std::move(Err); 355 356 SmallVector<uint64_t, 64> Record; 357 358 std::string Triple; 359 360 // Read all the records for this module. 361 while (true) { 362 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 363 if (!MaybeEntry) 364 return MaybeEntry.takeError(); 365 BitstreamEntry Entry = MaybeEntry.get(); 366 367 switch (Entry.Kind) { 368 case BitstreamEntry::SubBlock: // Handled for us already. 369 case BitstreamEntry::Error: 370 return error("Malformed block"); 371 case BitstreamEntry::EndBlock: 372 return Triple; 373 case BitstreamEntry::Record: 374 // The interesting case. 375 break; 376 } 377 378 // Read a record. 379 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 380 if (!MaybeRecord) 381 return MaybeRecord.takeError(); 382 switch (MaybeRecord.get()) { 383 default: break; // Default behavior, ignore unknown content. 384 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 385 std::string S; 386 if (convertToString(Record, 0, S)) 387 return error("Invalid triple record"); 388 Triple = S; 389 break; 390 } 391 } 392 Record.clear(); 393 } 394 llvm_unreachable("Exit infinite loop"); 395 } 396 397 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 398 // We expect a number of well-defined blocks, though we don't necessarily 399 // need to understand them all. 400 while (true) { 401 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 402 if (!MaybeEntry) 403 return MaybeEntry.takeError(); 404 BitstreamEntry Entry = MaybeEntry.get(); 405 406 switch (Entry.Kind) { 407 case BitstreamEntry::Error: 408 return error("Malformed block"); 409 case BitstreamEntry::EndBlock: 410 return ""; 411 412 case BitstreamEntry::SubBlock: 413 if (Entry.ID == bitc::MODULE_BLOCK_ID) 414 return readModuleTriple(Stream); 415 416 // Ignore other sub-blocks. 417 if (Error Err = Stream.SkipBlock()) 418 return std::move(Err); 419 continue; 420 421 case BitstreamEntry::Record: 422 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 423 continue; 424 else 425 return Skipped.takeError(); 426 } 427 } 428 } 429 430 namespace { 431 432 class BitcodeReaderBase { 433 protected: 434 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 435 : Stream(std::move(Stream)), Strtab(Strtab) { 436 this->Stream.setBlockInfo(&BlockInfo); 437 } 438 439 BitstreamBlockInfo BlockInfo; 440 BitstreamCursor Stream; 441 StringRef Strtab; 442 443 /// In version 2 of the bitcode we store names of global values and comdats in 444 /// a string table rather than in the VST. 445 bool UseStrtab = false; 446 447 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 448 449 /// If this module uses a string table, pop the reference to the string table 450 /// and return the referenced string and the rest of the record. Otherwise 451 /// just return the record itself. 452 std::pair<StringRef, ArrayRef<uint64_t>> 453 readNameFromStrtab(ArrayRef<uint64_t> Record); 454 455 Error readBlockInfo(); 456 457 // Contains an arbitrary and optional string identifying the bitcode producer 458 std::string ProducerIdentification; 459 460 Error error(const Twine &Message); 461 }; 462 463 } // end anonymous namespace 464 465 Error BitcodeReaderBase::error(const Twine &Message) { 466 std::string FullMsg = Message.str(); 467 if (!ProducerIdentification.empty()) 468 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 469 LLVM_VERSION_STRING "')"; 470 return ::error(FullMsg); 471 } 472 473 Expected<unsigned> 474 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 475 if (Record.empty()) 476 return error("Invalid version record"); 477 unsigned ModuleVersion = Record[0]; 478 if (ModuleVersion > 2) 479 return error("Invalid value"); 480 UseStrtab = ModuleVersion >= 2; 481 return ModuleVersion; 482 } 483 484 std::pair<StringRef, ArrayRef<uint64_t>> 485 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 486 if (!UseStrtab) 487 return {"", Record}; 488 // Invalid reference. Let the caller complain about the record being empty. 489 if (Record[0] + Record[1] > Strtab.size()) 490 return {"", {}}; 491 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 492 } 493 494 namespace { 495 496 /// This represents a constant expression or constant aggregate using a custom 497 /// structure internal to the bitcode reader. Later, this structure will be 498 /// expanded by materializeValue() either into a constant expression/aggregate, 499 /// or into an instruction sequence at the point of use. This allows us to 500 /// upgrade bitcode using constant expressions even if this kind of constant 501 /// expression is no longer supported. 502 class BitcodeConstant final : public Value, 503 TrailingObjects<BitcodeConstant, unsigned> { 504 friend TrailingObjects; 505 506 // Value subclass ID: Pick largest possible value to avoid any clashes. 507 static constexpr uint8_t SubclassID = 255; 508 509 public: 510 // Opcodes used for non-expressions. This includes constant aggregates 511 // (struct, array, vector) that might need expansion, as well as non-leaf 512 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 513 // but still go through BitcodeConstant to avoid different uselist orders 514 // between the two cases. 515 static constexpr uint8_t ConstantStructOpcode = 255; 516 static constexpr uint8_t ConstantArrayOpcode = 254; 517 static constexpr uint8_t ConstantVectorOpcode = 253; 518 static constexpr uint8_t NoCFIOpcode = 252; 519 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 520 static constexpr uint8_t BlockAddressOpcode = 250; 521 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 522 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 523 524 // Separate struct to make passing different number of parameters to 525 // BitcodeConstant::create() more convenient. 526 struct ExtraInfo { 527 uint8_t Opcode; 528 uint8_t Flags; 529 unsigned BlockAddressBB = 0; 530 Type *SrcElemTy = nullptr; 531 std::optional<ConstantRange> InRange; 532 533 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 534 std::optional<ConstantRange> InRange = std::nullopt) 535 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 536 InRange(std::move(InRange)) {} 537 538 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 539 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 540 }; 541 542 uint8_t Opcode; 543 uint8_t Flags; 544 unsigned NumOperands; 545 unsigned BlockAddressBB; 546 Type *SrcElemTy; // GEP source element type. 547 std::optional<ConstantRange> InRange; // GEP inrange attribute. 548 549 private: 550 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 551 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 552 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 553 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 554 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 555 getTrailingObjects<unsigned>()); 556 } 557 558 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 559 560 public: 561 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 562 const ExtraInfo &Info, 563 ArrayRef<unsigned> OpIDs) { 564 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 565 alignof(BitcodeConstant)); 566 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 567 } 568 569 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 570 571 ArrayRef<unsigned> getOperandIDs() const { 572 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 573 } 574 575 std::optional<ConstantRange> getInRange() const { 576 assert(Opcode == Instruction::GetElementPtr); 577 return InRange; 578 } 579 580 const char *getOpcodeName() const { 581 return Instruction::getOpcodeName(Opcode); 582 } 583 }; 584 585 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 586 LLVMContext &Context; 587 Module *TheModule = nullptr; 588 // Next offset to start scanning for lazy parsing of function bodies. 589 uint64_t NextUnreadBit = 0; 590 // Last function offset found in the VST. 591 uint64_t LastFunctionBlockBit = 0; 592 bool SeenValueSymbolTable = false; 593 uint64_t VSTOffset = 0; 594 595 std::vector<std::string> SectionTable; 596 std::vector<std::string> GCTable; 597 598 std::vector<Type *> TypeList; 599 /// Track type IDs of contained types. Order is the same as the contained 600 /// types of a Type*. This is used during upgrades of typed pointer IR in 601 /// opaque pointer mode. 602 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 603 /// In some cases, we need to create a type ID for a type that was not 604 /// explicitly encoded in the bitcode, or we don't know about at the current 605 /// point. For example, a global may explicitly encode the value type ID, but 606 /// not have a type ID for the pointer to value type, for which we create a 607 /// virtual type ID instead. This map stores the new type ID that was created 608 /// for the given pair of Type and contained type ID. 609 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 610 DenseMap<Function *, unsigned> FunctionTypeIDs; 611 /// Allocator for BitcodeConstants. This should come before ValueList, 612 /// because the ValueList might hold ValueHandles to these constants, so 613 /// ValueList must be destroyed before Alloc. 614 BumpPtrAllocator Alloc; 615 BitcodeReaderValueList ValueList; 616 std::optional<MetadataLoader> MDLoader; 617 std::vector<Comdat *> ComdatList; 618 DenseSet<GlobalObject *> ImplicitComdatObjects; 619 SmallVector<Instruction *, 64> InstructionList; 620 621 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 622 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 623 624 struct FunctionOperandInfo { 625 Function *F; 626 unsigned PersonalityFn; 627 unsigned Prefix; 628 unsigned Prologue; 629 }; 630 std::vector<FunctionOperandInfo> FunctionOperands; 631 632 /// The set of attributes by index. Index zero in the file is for null, and 633 /// is thus not represented here. As such all indices are off by one. 634 std::vector<AttributeList> MAttributes; 635 636 /// The set of attribute groups. 637 std::map<unsigned, AttributeList> MAttributeGroups; 638 639 /// While parsing a function body, this is a list of the basic blocks for the 640 /// function. 641 std::vector<BasicBlock*> FunctionBBs; 642 643 // When reading the module header, this list is populated with functions that 644 // have bodies later in the file. 645 std::vector<Function*> FunctionsWithBodies; 646 647 // When intrinsic functions are encountered which require upgrading they are 648 // stored here with their replacement function. 649 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 650 UpdatedIntrinsicMap UpgradedIntrinsics; 651 652 // Several operations happen after the module header has been read, but 653 // before function bodies are processed. This keeps track of whether 654 // we've done this yet. 655 bool SeenFirstFunctionBody = false; 656 657 /// When function bodies are initially scanned, this map contains info about 658 /// where to find deferred function body in the stream. 659 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 660 661 /// When Metadata block is initially scanned when parsing the module, we may 662 /// choose to defer parsing of the metadata. This vector contains info about 663 /// which Metadata blocks are deferred. 664 std::vector<uint64_t> DeferredMetadataInfo; 665 666 /// These are basic blocks forward-referenced by block addresses. They are 667 /// inserted lazily into functions when they're loaded. The basic block ID is 668 /// its index into the vector. 669 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 670 std::deque<Function *> BasicBlockFwdRefQueue; 671 672 /// These are Functions that contain BlockAddresses which refer a different 673 /// Function. When parsing the different Function, queue Functions that refer 674 /// to the different Function. Those Functions must be materialized in order 675 /// to resolve their BlockAddress constants before the different Function 676 /// gets moved into another Module. 677 std::vector<Function *> BackwardRefFunctions; 678 679 /// Indicates that we are using a new encoding for instruction operands where 680 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 681 /// instruction number, for a more compact encoding. Some instruction 682 /// operands are not relative to the instruction ID: basic block numbers, and 683 /// types. Once the old style function blocks have been phased out, we would 684 /// not need this flag. 685 bool UseRelativeIDs = false; 686 687 /// True if all functions will be materialized, negating the need to process 688 /// (e.g.) blockaddress forward references. 689 bool WillMaterializeAllForwardRefs = false; 690 691 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 692 /// seeing both in a single module is currently a fatal error. 693 bool SeenDebugIntrinsic = false; 694 bool SeenDebugRecord = false; 695 696 bool StripDebugInfo = false; 697 TBAAVerifier TBAAVerifyHelper; 698 699 std::vector<std::string> BundleTags; 700 SmallVector<SyncScope::ID, 8> SSIDs; 701 702 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 703 704 public: 705 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 706 StringRef ProducerIdentification, LLVMContext &Context); 707 708 Error materializeForwardReferencedFunctions(); 709 710 Error materialize(GlobalValue *GV) override; 711 Error materializeModule() override; 712 std::vector<StructType *> getIdentifiedStructTypes() const override; 713 714 /// Main interface to parsing a bitcode buffer. 715 /// \returns true if an error occurred. 716 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 717 bool IsImporting, ParserCallbacks Callbacks = {}); 718 719 static uint64_t decodeSignRotatedValue(uint64_t V); 720 721 /// Materialize any deferred Metadata block. 722 Error materializeMetadata() override; 723 724 void setStripDebugInfo() override; 725 726 private: 727 std::vector<StructType *> IdentifiedStructTypes; 728 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 729 StructType *createIdentifiedStructType(LLVMContext &Context); 730 731 static constexpr unsigned InvalidTypeID = ~0u; 732 733 Type *getTypeByID(unsigned ID); 734 Type *getPtrElementTypeByID(unsigned ID); 735 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 736 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 737 738 void callValueTypeCallback(Value *F, unsigned TypeID); 739 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 740 Expected<Constant *> getValueForInitializer(unsigned ID); 741 742 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 743 BasicBlock *ConstExprInsertBB) { 744 if (Ty && Ty->isMetadataTy()) 745 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 746 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 747 } 748 749 Metadata *getFnMetadataByID(unsigned ID) { 750 return MDLoader->getMetadataFwdRefOrLoad(ID); 751 } 752 753 BasicBlock *getBasicBlock(unsigned ID) const { 754 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 755 return FunctionBBs[ID]; 756 } 757 758 AttributeList getAttributes(unsigned i) const { 759 if (i-1 < MAttributes.size()) 760 return MAttributes[i-1]; 761 return AttributeList(); 762 } 763 764 /// Read a value/type pair out of the specified record from slot 'Slot'. 765 /// Increment Slot past the number of slots used in the record. Return true on 766 /// failure. 767 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 768 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 769 BasicBlock *ConstExprInsertBB) { 770 if (Slot == Record.size()) return true; 771 unsigned ValNo = (unsigned)Record[Slot++]; 772 // Adjust the ValNo, if it was encoded relative to the InstNum. 773 if (UseRelativeIDs) 774 ValNo = InstNum - ValNo; 775 if (ValNo < InstNum) { 776 // If this is not a forward reference, just return the value we already 777 // have. 778 TypeID = ValueList.getTypeID(ValNo); 779 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 780 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 781 "Incorrect type ID stored for value"); 782 return ResVal == nullptr; 783 } 784 if (Slot == Record.size()) 785 return true; 786 787 TypeID = (unsigned)Record[Slot++]; 788 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 789 ConstExprInsertBB); 790 return ResVal == nullptr; 791 } 792 793 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 794 /// past the number of slots used by the value in the record. Return true if 795 /// there is an error. 796 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 797 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 798 BasicBlock *ConstExprInsertBB) { 799 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 800 return true; 801 // All values currently take a single record slot. 802 ++Slot; 803 return false; 804 } 805 806 /// Like popValue, but does not increment the Slot number. 807 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 808 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 809 BasicBlock *ConstExprInsertBB) { 810 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 811 return ResVal == nullptr; 812 } 813 814 /// Version of getValue that returns ResVal directly, or 0 if there is an 815 /// error. 816 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, 818 BasicBlock *ConstExprInsertBB) { 819 if (Slot == Record.size()) return nullptr; 820 unsigned ValNo = (unsigned)Record[Slot]; 821 // Adjust the ValNo, if it was encoded relative to the InstNum. 822 if (UseRelativeIDs) 823 ValNo = InstNum - ValNo; 824 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 825 } 826 827 /// Like getValue, but decodes signed VBRs. 828 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 829 unsigned InstNum, Type *Ty, unsigned TyID, 830 BasicBlock *ConstExprInsertBB) { 831 if (Slot == Record.size()) return nullptr; 832 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 833 // Adjust the ValNo, if it was encoded relative to the InstNum. 834 if (UseRelativeIDs) 835 ValNo = InstNum - ValNo; 836 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 837 } 838 839 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 840 unsigned &OpNum) { 841 if (Record.size() - OpNum < 3) 842 return error("Too few records for range"); 843 unsigned BitWidth = Record[OpNum++]; 844 if (BitWidth > 64) { 845 unsigned LowerActiveWords = Record[OpNum]; 846 unsigned UpperActiveWords = Record[OpNum++] >> 32; 847 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 848 return error("Too few records for range"); 849 APInt Lower = 850 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 851 OpNum += LowerActiveWords; 852 APInt Upper = 853 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 854 OpNum += UpperActiveWords; 855 return ConstantRange(Lower, Upper); 856 } else { 857 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 858 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 859 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 860 } 861 } 862 863 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 864 /// corresponding argument's pointee type. Also upgrades intrinsics that now 865 /// require an elementtype attribute. 866 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 867 868 /// Converts alignment exponent (i.e. power of two (or zero)) to the 869 /// corresponding alignment to use. If alignment is too large, returns 870 /// a corresponding error code. 871 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 872 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 873 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 874 ParserCallbacks Callbacks = {}); 875 876 Error parseComdatRecord(ArrayRef<uint64_t> Record); 877 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 878 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 879 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 880 ArrayRef<uint64_t> Record); 881 882 Error parseAttributeBlock(); 883 Error parseAttributeGroupBlock(); 884 Error parseTypeTable(); 885 Error parseTypeTableBody(); 886 Error parseOperandBundleTags(); 887 Error parseSyncScopeNames(); 888 889 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 890 unsigned NameIndex, Triple &TT); 891 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 892 ArrayRef<uint64_t> Record); 893 Error parseValueSymbolTable(uint64_t Offset = 0); 894 Error parseGlobalValueSymbolTable(); 895 Error parseConstants(); 896 Error rememberAndSkipFunctionBodies(); 897 Error rememberAndSkipFunctionBody(); 898 /// Save the positions of the Metadata blocks and skip parsing the blocks. 899 Error rememberAndSkipMetadata(); 900 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 901 Error parseFunctionBody(Function *F); 902 Error globalCleanup(); 903 Error resolveGlobalAndIndirectSymbolInits(); 904 Error parseUseLists(); 905 Error findFunctionInStream( 906 Function *F, 907 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 908 909 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 910 }; 911 912 /// Class to manage reading and parsing function summary index bitcode 913 /// files/sections. 914 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 915 /// The module index built during parsing. 916 ModuleSummaryIndex &TheIndex; 917 918 /// Indicates whether we have encountered a global value summary section 919 /// yet during parsing. 920 bool SeenGlobalValSummary = false; 921 922 /// Indicates whether we have already parsed the VST, used for error checking. 923 bool SeenValueSymbolTable = false; 924 925 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 926 /// Used to enable on-demand parsing of the VST. 927 uint64_t VSTOffset = 0; 928 929 // Map to save ValueId to ValueInfo association that was recorded in the 930 // ValueSymbolTable. It is used after the VST is parsed to convert 931 // call graph edges read from the function summary from referencing 932 // callees by their ValueId to using the ValueInfo instead, which is how 933 // they are recorded in the summary index being built. 934 // We save a GUID which refers to the same global as the ValueInfo, but 935 // ignoring the linkage, i.e. for values other than local linkage they are 936 // identical (this is the second tuple member). 937 // The third tuple member is the real GUID of the ValueInfo. 938 DenseMap<unsigned, 939 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 940 ValueIdToValueInfoMap; 941 942 /// Map populated during module path string table parsing, from the 943 /// module ID to a string reference owned by the index's module 944 /// path string table, used to correlate with combined index 945 /// summary records. 946 DenseMap<uint64_t, StringRef> ModuleIdMap; 947 948 /// Original source file name recorded in a bitcode record. 949 std::string SourceFileName; 950 951 /// The string identifier given to this module by the client, normally the 952 /// path to the bitcode file. 953 StringRef ModulePath; 954 955 /// Callback to ask whether a symbol is the prevailing copy when invoked 956 /// during combined index building. 957 std::function<bool(GlobalValue::GUID)> IsPrevailing; 958 959 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 960 /// ids from the lists in the callsite and alloc entries to the index. 961 std::vector<uint64_t> StackIds; 962 963 public: 964 ModuleSummaryIndexBitcodeReader( 965 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 966 StringRef ModulePath, 967 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 968 969 Error parseModule(); 970 971 private: 972 void setValueGUID(uint64_t ValueID, StringRef ValueName, 973 GlobalValue::LinkageTypes Linkage, 974 StringRef SourceFileName); 975 Error parseValueSymbolTable( 976 uint64_t Offset, 977 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 978 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 979 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 980 bool IsOldProfileFormat, 981 bool HasProfile, 982 bool HasRelBF); 983 Error parseEntireSummary(unsigned ID); 984 Error parseModuleStringTable(); 985 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 986 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 987 TypeIdCompatibleVtableInfo &TypeId); 988 std::vector<FunctionSummary::ParamAccess> 989 parseParamAccesses(ArrayRef<uint64_t> Record); 990 991 template <bool AllowNullValueInfo = false> 992 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 993 getValueInfoFromValueId(unsigned ValueId); 994 995 void addThisModule(); 996 ModuleSummaryIndex::ModuleInfo *getThisModule(); 997 }; 998 999 } // end anonymous namespace 1000 1001 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1002 Error Err) { 1003 if (Err) { 1004 std::error_code EC; 1005 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1006 EC = EIB.convertToErrorCode(); 1007 Ctx.emitError(EIB.message()); 1008 }); 1009 return EC; 1010 } 1011 return std::error_code(); 1012 } 1013 1014 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1015 StringRef ProducerIdentification, 1016 LLVMContext &Context) 1017 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1018 ValueList(this->Stream.SizeInBytes(), 1019 [this](unsigned ValID, BasicBlock *InsertBB) { 1020 return materializeValue(ValID, InsertBB); 1021 }) { 1022 this->ProducerIdentification = std::string(ProducerIdentification); 1023 } 1024 1025 Error BitcodeReader::materializeForwardReferencedFunctions() { 1026 if (WillMaterializeAllForwardRefs) 1027 return Error::success(); 1028 1029 // Prevent recursion. 1030 WillMaterializeAllForwardRefs = true; 1031 1032 while (!BasicBlockFwdRefQueue.empty()) { 1033 Function *F = BasicBlockFwdRefQueue.front(); 1034 BasicBlockFwdRefQueue.pop_front(); 1035 assert(F && "Expected valid function"); 1036 if (!BasicBlockFwdRefs.count(F)) 1037 // Already materialized. 1038 continue; 1039 1040 // Check for a function that isn't materializable to prevent an infinite 1041 // loop. When parsing a blockaddress stored in a global variable, there 1042 // isn't a trivial way to check if a function will have a body without a 1043 // linear search through FunctionsWithBodies, so just check it here. 1044 if (!F->isMaterializable()) 1045 return error("Never resolved function from blockaddress"); 1046 1047 // Try to materialize F. 1048 if (Error Err = materialize(F)) 1049 return Err; 1050 } 1051 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1052 1053 for (Function *F : BackwardRefFunctions) 1054 if (Error Err = materialize(F)) 1055 return Err; 1056 BackwardRefFunctions.clear(); 1057 1058 // Reset state. 1059 WillMaterializeAllForwardRefs = false; 1060 return Error::success(); 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // Helper functions to implement forward reference resolution, etc. 1065 //===----------------------------------------------------------------------===// 1066 1067 static bool hasImplicitComdat(size_t Val) { 1068 switch (Val) { 1069 default: 1070 return false; 1071 case 1: // Old WeakAnyLinkage 1072 case 4: // Old LinkOnceAnyLinkage 1073 case 10: // Old WeakODRLinkage 1074 case 11: // Old LinkOnceODRLinkage 1075 return true; 1076 } 1077 } 1078 1079 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1080 switch (Val) { 1081 default: // Map unknown/new linkages to external 1082 case 0: 1083 return GlobalValue::ExternalLinkage; 1084 case 2: 1085 return GlobalValue::AppendingLinkage; 1086 case 3: 1087 return GlobalValue::InternalLinkage; 1088 case 5: 1089 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1090 case 6: 1091 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1092 case 7: 1093 return GlobalValue::ExternalWeakLinkage; 1094 case 8: 1095 return GlobalValue::CommonLinkage; 1096 case 9: 1097 return GlobalValue::PrivateLinkage; 1098 case 12: 1099 return GlobalValue::AvailableExternallyLinkage; 1100 case 13: 1101 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1102 case 14: 1103 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1104 case 15: 1105 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1106 case 1: // Old value with implicit comdat. 1107 case 16: 1108 return GlobalValue::WeakAnyLinkage; 1109 case 10: // Old value with implicit comdat. 1110 case 17: 1111 return GlobalValue::WeakODRLinkage; 1112 case 4: // Old value with implicit comdat. 1113 case 18: 1114 return GlobalValue::LinkOnceAnyLinkage; 1115 case 11: // Old value with implicit comdat. 1116 case 19: 1117 return GlobalValue::LinkOnceODRLinkage; 1118 } 1119 } 1120 1121 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1122 FunctionSummary::FFlags Flags; 1123 Flags.ReadNone = RawFlags & 0x1; 1124 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1125 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1126 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1127 Flags.NoInline = (RawFlags >> 4) & 0x1; 1128 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1129 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1130 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1131 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1132 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1133 return Flags; 1134 } 1135 1136 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1137 // 1138 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1139 // visibility: [8, 10). 1140 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1141 uint64_t Version) { 1142 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1143 // like getDecodedLinkage() above. Any future change to the linkage enum and 1144 // to getDecodedLinkage() will need to be taken into account here as above. 1145 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1146 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1147 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1148 RawFlags = RawFlags >> 4; 1149 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1150 // The Live flag wasn't introduced until version 3. For dead stripping 1151 // to work correctly on earlier versions, we must conservatively treat all 1152 // values as live. 1153 bool Live = (RawFlags & 0x2) || Version < 3; 1154 bool Local = (RawFlags & 0x4); 1155 bool AutoHide = (RawFlags & 0x8); 1156 1157 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1158 Live, Local, AutoHide, IK); 1159 } 1160 1161 // Decode the flags for GlobalVariable in the summary 1162 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1163 return GlobalVarSummary::GVarFlags( 1164 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1165 (RawFlags & 0x4) ? true : false, 1166 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1167 } 1168 1169 static std::pair<CalleeInfo::HotnessType, bool> 1170 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1171 CalleeInfo::HotnessType Hotness = 1172 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1173 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1174 return {Hotness, HasTailCall}; 1175 } 1176 1177 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1178 bool &HasTailCall) { 1179 static constexpr uint64_t RelBlockFreqMask = 1180 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1181 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1182 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1183 } 1184 1185 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1186 switch (Val) { 1187 default: // Map unknown visibilities to default. 1188 case 0: return GlobalValue::DefaultVisibility; 1189 case 1: return GlobalValue::HiddenVisibility; 1190 case 2: return GlobalValue::ProtectedVisibility; 1191 } 1192 } 1193 1194 static GlobalValue::DLLStorageClassTypes 1195 getDecodedDLLStorageClass(unsigned Val) { 1196 switch (Val) { 1197 default: // Map unknown values to default. 1198 case 0: return GlobalValue::DefaultStorageClass; 1199 case 1: return GlobalValue::DLLImportStorageClass; 1200 case 2: return GlobalValue::DLLExportStorageClass; 1201 } 1202 } 1203 1204 static bool getDecodedDSOLocal(unsigned Val) { 1205 switch(Val) { 1206 default: // Map unknown values to preemptable. 1207 case 0: return false; 1208 case 1: return true; 1209 } 1210 } 1211 1212 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1213 switch (Val) { 1214 case 1: 1215 return CodeModel::Tiny; 1216 case 2: 1217 return CodeModel::Small; 1218 case 3: 1219 return CodeModel::Kernel; 1220 case 4: 1221 return CodeModel::Medium; 1222 case 5: 1223 return CodeModel::Large; 1224 } 1225 1226 return {}; 1227 } 1228 1229 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1230 switch (Val) { 1231 case 0: return GlobalVariable::NotThreadLocal; 1232 default: // Map unknown non-zero value to general dynamic. 1233 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1234 case 2: return GlobalVariable::LocalDynamicTLSModel; 1235 case 3: return GlobalVariable::InitialExecTLSModel; 1236 case 4: return GlobalVariable::LocalExecTLSModel; 1237 } 1238 } 1239 1240 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1241 switch (Val) { 1242 default: // Map unknown to UnnamedAddr::None. 1243 case 0: return GlobalVariable::UnnamedAddr::None; 1244 case 1: return GlobalVariable::UnnamedAddr::Global; 1245 case 2: return GlobalVariable::UnnamedAddr::Local; 1246 } 1247 } 1248 1249 static int getDecodedCastOpcode(unsigned Val) { 1250 switch (Val) { 1251 default: return -1; 1252 case bitc::CAST_TRUNC : return Instruction::Trunc; 1253 case bitc::CAST_ZEXT : return Instruction::ZExt; 1254 case bitc::CAST_SEXT : return Instruction::SExt; 1255 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1256 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1257 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1258 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1259 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1260 case bitc::CAST_FPEXT : return Instruction::FPExt; 1261 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1262 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1263 case bitc::CAST_BITCAST : return Instruction::BitCast; 1264 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1265 } 1266 } 1267 1268 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1269 bool IsFP = Ty->isFPOrFPVectorTy(); 1270 // UnOps are only valid for int/fp or vector of int/fp types 1271 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1272 return -1; 1273 1274 switch (Val) { 1275 default: 1276 return -1; 1277 case bitc::UNOP_FNEG: 1278 return IsFP ? Instruction::FNeg : -1; 1279 } 1280 } 1281 1282 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1283 bool IsFP = Ty->isFPOrFPVectorTy(); 1284 // BinOps are only valid for int/fp or vector of int/fp types 1285 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1286 return -1; 1287 1288 switch (Val) { 1289 default: 1290 return -1; 1291 case bitc::BINOP_ADD: 1292 return IsFP ? Instruction::FAdd : Instruction::Add; 1293 case bitc::BINOP_SUB: 1294 return IsFP ? Instruction::FSub : Instruction::Sub; 1295 case bitc::BINOP_MUL: 1296 return IsFP ? Instruction::FMul : Instruction::Mul; 1297 case bitc::BINOP_UDIV: 1298 return IsFP ? -1 : Instruction::UDiv; 1299 case bitc::BINOP_SDIV: 1300 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1301 case bitc::BINOP_UREM: 1302 return IsFP ? -1 : Instruction::URem; 1303 case bitc::BINOP_SREM: 1304 return IsFP ? Instruction::FRem : Instruction::SRem; 1305 case bitc::BINOP_SHL: 1306 return IsFP ? -1 : Instruction::Shl; 1307 case bitc::BINOP_LSHR: 1308 return IsFP ? -1 : Instruction::LShr; 1309 case bitc::BINOP_ASHR: 1310 return IsFP ? -1 : Instruction::AShr; 1311 case bitc::BINOP_AND: 1312 return IsFP ? -1 : Instruction::And; 1313 case bitc::BINOP_OR: 1314 return IsFP ? -1 : Instruction::Or; 1315 case bitc::BINOP_XOR: 1316 return IsFP ? -1 : Instruction::Xor; 1317 } 1318 } 1319 1320 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1321 switch (Val) { 1322 default: return AtomicRMWInst::BAD_BINOP; 1323 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1324 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1325 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1326 case bitc::RMW_AND: return AtomicRMWInst::And; 1327 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1328 case bitc::RMW_OR: return AtomicRMWInst::Or; 1329 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1330 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1331 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1332 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1333 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1334 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1335 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1336 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1337 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1338 case bitc::RMW_UINC_WRAP: 1339 return AtomicRMWInst::UIncWrap; 1340 case bitc::RMW_UDEC_WRAP: 1341 return AtomicRMWInst::UDecWrap; 1342 } 1343 } 1344 1345 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1346 switch (Val) { 1347 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1348 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1349 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1350 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1351 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1352 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1353 default: // Map unknown orderings to sequentially-consistent. 1354 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1355 } 1356 } 1357 1358 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1359 switch (Val) { 1360 default: // Map unknown selection kinds to any. 1361 case bitc::COMDAT_SELECTION_KIND_ANY: 1362 return Comdat::Any; 1363 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1364 return Comdat::ExactMatch; 1365 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1366 return Comdat::Largest; 1367 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1368 return Comdat::NoDeduplicate; 1369 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1370 return Comdat::SameSize; 1371 } 1372 } 1373 1374 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1375 FastMathFlags FMF; 1376 if (0 != (Val & bitc::UnsafeAlgebra)) 1377 FMF.setFast(); 1378 if (0 != (Val & bitc::AllowReassoc)) 1379 FMF.setAllowReassoc(); 1380 if (0 != (Val & bitc::NoNaNs)) 1381 FMF.setNoNaNs(); 1382 if (0 != (Val & bitc::NoInfs)) 1383 FMF.setNoInfs(); 1384 if (0 != (Val & bitc::NoSignedZeros)) 1385 FMF.setNoSignedZeros(); 1386 if (0 != (Val & bitc::AllowReciprocal)) 1387 FMF.setAllowReciprocal(); 1388 if (0 != (Val & bitc::AllowContract)) 1389 FMF.setAllowContract(true); 1390 if (0 != (Val & bitc::ApproxFunc)) 1391 FMF.setApproxFunc(); 1392 return FMF; 1393 } 1394 1395 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1396 // A GlobalValue with local linkage cannot have a DLL storage class. 1397 if (GV->hasLocalLinkage()) 1398 return; 1399 switch (Val) { 1400 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1401 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1402 } 1403 } 1404 1405 Type *BitcodeReader::getTypeByID(unsigned ID) { 1406 // The type table size is always specified correctly. 1407 if (ID >= TypeList.size()) 1408 return nullptr; 1409 1410 if (Type *Ty = TypeList[ID]) 1411 return Ty; 1412 1413 // If we have a forward reference, the only possible case is when it is to a 1414 // named struct. Just create a placeholder for now. 1415 return TypeList[ID] = createIdentifiedStructType(Context); 1416 } 1417 1418 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1419 auto It = ContainedTypeIDs.find(ID); 1420 if (It == ContainedTypeIDs.end()) 1421 return InvalidTypeID; 1422 1423 if (Idx >= It->second.size()) 1424 return InvalidTypeID; 1425 1426 return It->second[Idx]; 1427 } 1428 1429 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1430 if (ID >= TypeList.size()) 1431 return nullptr; 1432 1433 Type *Ty = TypeList[ID]; 1434 if (!Ty->isPointerTy()) 1435 return nullptr; 1436 1437 return getTypeByID(getContainedTypeID(ID, 0)); 1438 } 1439 1440 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1441 ArrayRef<unsigned> ChildTypeIDs) { 1442 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1443 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1444 auto It = VirtualTypeIDs.find(CacheKey); 1445 if (It != VirtualTypeIDs.end()) { 1446 // The cmpxchg return value is the only place we need more than one 1447 // contained type ID, however the second one will always be the same (i1), 1448 // so we don't need to include it in the cache key. This asserts that the 1449 // contained types are indeed as expected and there are no collisions. 1450 assert((ChildTypeIDs.empty() || 1451 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1452 "Incorrect cached contained type IDs"); 1453 return It->second; 1454 } 1455 1456 unsigned TypeID = TypeList.size(); 1457 TypeList.push_back(Ty); 1458 if (!ChildTypeIDs.empty()) 1459 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1460 VirtualTypeIDs.insert({CacheKey, TypeID}); 1461 return TypeID; 1462 } 1463 1464 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1465 GEPNoWrapFlags NW; 1466 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1467 NW |= GEPNoWrapFlags::inBounds(); 1468 if (Flags & (1 << bitc::GEP_NUSW)) 1469 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1470 if (Flags & (1 << bitc::GEP_NUW)) 1471 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1472 return NW; 1473 } 1474 1475 static bool isConstExprSupported(const BitcodeConstant *BC) { 1476 uint8_t Opcode = BC->Opcode; 1477 1478 // These are not real constant expressions, always consider them supported. 1479 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1480 return true; 1481 1482 // If -expand-constant-exprs is set, we want to consider all expressions 1483 // as unsupported. 1484 if (ExpandConstantExprs) 1485 return false; 1486 1487 if (Instruction::isBinaryOp(Opcode)) 1488 return ConstantExpr::isSupportedBinOp(Opcode); 1489 1490 if (Instruction::isCast(Opcode)) 1491 return ConstantExpr::isSupportedCastOp(Opcode); 1492 1493 if (Opcode == Instruction::GetElementPtr) 1494 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1495 1496 switch (Opcode) { 1497 case Instruction::FNeg: 1498 case Instruction::Select: 1499 case Instruction::ICmp: 1500 case Instruction::FCmp: 1501 return false; 1502 default: 1503 return true; 1504 } 1505 } 1506 1507 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1508 BasicBlock *InsertBB) { 1509 // Quickly handle the case where there is no BitcodeConstant to resolve. 1510 if (StartValID < ValueList.size() && ValueList[StartValID] && 1511 !isa<BitcodeConstant>(ValueList[StartValID])) 1512 return ValueList[StartValID]; 1513 1514 SmallDenseMap<unsigned, Value *> MaterializedValues; 1515 SmallVector<unsigned> Worklist; 1516 Worklist.push_back(StartValID); 1517 while (!Worklist.empty()) { 1518 unsigned ValID = Worklist.back(); 1519 if (MaterializedValues.count(ValID)) { 1520 // Duplicate expression that was already handled. 1521 Worklist.pop_back(); 1522 continue; 1523 } 1524 1525 if (ValID >= ValueList.size() || !ValueList[ValID]) 1526 return error("Invalid value ID"); 1527 1528 Value *V = ValueList[ValID]; 1529 auto *BC = dyn_cast<BitcodeConstant>(V); 1530 if (!BC) { 1531 MaterializedValues.insert({ValID, V}); 1532 Worklist.pop_back(); 1533 continue; 1534 } 1535 1536 // Iterate in reverse, so values will get popped from the worklist in 1537 // expected order. 1538 SmallVector<Value *> Ops; 1539 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1540 auto It = MaterializedValues.find(OpID); 1541 if (It != MaterializedValues.end()) 1542 Ops.push_back(It->second); 1543 else 1544 Worklist.push_back(OpID); 1545 } 1546 1547 // Some expressions have not been resolved yet, handle them first and then 1548 // revisit this one. 1549 if (Ops.size() != BC->getOperandIDs().size()) 1550 continue; 1551 std::reverse(Ops.begin(), Ops.end()); 1552 1553 SmallVector<Constant *> ConstOps; 1554 for (Value *Op : Ops) 1555 if (auto *C = dyn_cast<Constant>(Op)) 1556 ConstOps.push_back(C); 1557 1558 // Materialize as constant expression if possible. 1559 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1560 Constant *C; 1561 if (Instruction::isCast(BC->Opcode)) { 1562 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1563 if (!C) 1564 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1565 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1566 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1567 } else { 1568 switch (BC->Opcode) { 1569 case BitcodeConstant::ConstantPtrAuthOpcode: { 1570 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1571 if (!Key) 1572 return error("ptrauth key operand must be ConstantInt"); 1573 1574 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1575 if (!Disc) 1576 return error("ptrauth disc operand must be ConstantInt"); 1577 1578 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1579 break; 1580 } 1581 case BitcodeConstant::NoCFIOpcode: { 1582 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1583 if (!GV) 1584 return error("no_cfi operand must be GlobalValue"); 1585 C = NoCFIValue::get(GV); 1586 break; 1587 } 1588 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1589 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1590 if (!GV) 1591 return error("dso_local operand must be GlobalValue"); 1592 C = DSOLocalEquivalent::get(GV); 1593 break; 1594 } 1595 case BitcodeConstant::BlockAddressOpcode: { 1596 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1597 if (!Fn) 1598 return error("blockaddress operand must be a function"); 1599 1600 // If the function is already parsed we can insert the block address 1601 // right away. 1602 BasicBlock *BB; 1603 unsigned BBID = BC->BlockAddressBB; 1604 if (!BBID) 1605 // Invalid reference to entry block. 1606 return error("Invalid ID"); 1607 if (!Fn->empty()) { 1608 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1609 for (size_t I = 0, E = BBID; I != E; ++I) { 1610 if (BBI == BBE) 1611 return error("Invalid ID"); 1612 ++BBI; 1613 } 1614 BB = &*BBI; 1615 } else { 1616 // Otherwise insert a placeholder and remember it so it can be 1617 // inserted when the function is parsed. 1618 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1619 if (FwdBBs.empty()) 1620 BasicBlockFwdRefQueue.push_back(Fn); 1621 if (FwdBBs.size() < BBID + 1) 1622 FwdBBs.resize(BBID + 1); 1623 if (!FwdBBs[BBID]) 1624 FwdBBs[BBID] = BasicBlock::Create(Context); 1625 BB = FwdBBs[BBID]; 1626 } 1627 C = BlockAddress::get(Fn, BB); 1628 break; 1629 } 1630 case BitcodeConstant::ConstantStructOpcode: 1631 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1632 break; 1633 case BitcodeConstant::ConstantArrayOpcode: 1634 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1635 break; 1636 case BitcodeConstant::ConstantVectorOpcode: 1637 C = ConstantVector::get(ConstOps); 1638 break; 1639 case Instruction::GetElementPtr: 1640 C = ConstantExpr::getGetElementPtr( 1641 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1642 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1643 break; 1644 case Instruction::ExtractElement: 1645 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1646 break; 1647 case Instruction::InsertElement: 1648 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1649 ConstOps[2]); 1650 break; 1651 case Instruction::ShuffleVector: { 1652 SmallVector<int, 16> Mask; 1653 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1654 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1655 break; 1656 } 1657 default: 1658 llvm_unreachable("Unhandled bitcode constant"); 1659 } 1660 } 1661 1662 // Cache resolved constant. 1663 ValueList.replaceValueWithoutRAUW(ValID, C); 1664 MaterializedValues.insert({ValID, C}); 1665 Worklist.pop_back(); 1666 continue; 1667 } 1668 1669 if (!InsertBB) 1670 return error(Twine("Value referenced by initializer is an unsupported " 1671 "constant expression of type ") + 1672 BC->getOpcodeName()); 1673 1674 // Materialize as instructions if necessary. 1675 Instruction *I; 1676 if (Instruction::isCast(BC->Opcode)) { 1677 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1678 BC->getType(), "constexpr", InsertBB); 1679 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1680 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1681 "constexpr", InsertBB); 1682 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1683 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1684 Ops[1], "constexpr", InsertBB); 1685 if (isa<OverflowingBinaryOperator>(I)) { 1686 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1687 I->setHasNoSignedWrap(); 1688 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1689 I->setHasNoUnsignedWrap(); 1690 } 1691 if (isa<PossiblyExactOperator>(I) && 1692 (BC->Flags & PossiblyExactOperator::IsExact)) 1693 I->setIsExact(); 1694 } else { 1695 switch (BC->Opcode) { 1696 case BitcodeConstant::ConstantVectorOpcode: { 1697 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1698 Value *V = PoisonValue::get(BC->getType()); 1699 for (auto Pair : enumerate(Ops)) { 1700 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1701 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1702 InsertBB); 1703 } 1704 I = cast<Instruction>(V); 1705 break; 1706 } 1707 case BitcodeConstant::ConstantStructOpcode: 1708 case BitcodeConstant::ConstantArrayOpcode: { 1709 Value *V = PoisonValue::get(BC->getType()); 1710 for (auto Pair : enumerate(Ops)) 1711 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1712 "constexpr.ins", InsertBB); 1713 I = cast<Instruction>(V); 1714 break; 1715 } 1716 case Instruction::ICmp: 1717 case Instruction::FCmp: 1718 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1719 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1720 "constexpr", InsertBB); 1721 break; 1722 case Instruction::GetElementPtr: 1723 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1724 ArrayRef(Ops).drop_front(), "constexpr", 1725 InsertBB); 1726 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1727 break; 1728 case Instruction::Select: 1729 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1730 break; 1731 case Instruction::ExtractElement: 1732 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1733 break; 1734 case Instruction::InsertElement: 1735 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1736 InsertBB); 1737 break; 1738 case Instruction::ShuffleVector: 1739 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1740 InsertBB); 1741 break; 1742 default: 1743 llvm_unreachable("Unhandled bitcode constant"); 1744 } 1745 } 1746 1747 MaterializedValues.insert({ValID, I}); 1748 Worklist.pop_back(); 1749 } 1750 1751 return MaterializedValues[StartValID]; 1752 } 1753 1754 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1755 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1756 if (!MaybeV) 1757 return MaybeV.takeError(); 1758 1759 // Result must be Constant if InsertBB is nullptr. 1760 return cast<Constant>(MaybeV.get()); 1761 } 1762 1763 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1764 StringRef Name) { 1765 auto *Ret = StructType::create(Context, Name); 1766 IdentifiedStructTypes.push_back(Ret); 1767 return Ret; 1768 } 1769 1770 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1771 auto *Ret = StructType::create(Context); 1772 IdentifiedStructTypes.push_back(Ret); 1773 return Ret; 1774 } 1775 1776 //===----------------------------------------------------------------------===// 1777 // Functions for parsing blocks from the bitcode file 1778 //===----------------------------------------------------------------------===// 1779 1780 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1781 switch (Val) { 1782 case Attribute::EndAttrKinds: 1783 case Attribute::EmptyKey: 1784 case Attribute::TombstoneKey: 1785 llvm_unreachable("Synthetic enumerators which should never get here"); 1786 1787 case Attribute::None: return 0; 1788 case Attribute::ZExt: return 1 << 0; 1789 case Attribute::SExt: return 1 << 1; 1790 case Attribute::NoReturn: return 1 << 2; 1791 case Attribute::InReg: return 1 << 3; 1792 case Attribute::StructRet: return 1 << 4; 1793 case Attribute::NoUnwind: return 1 << 5; 1794 case Attribute::NoAlias: return 1 << 6; 1795 case Attribute::ByVal: return 1 << 7; 1796 case Attribute::Nest: return 1 << 8; 1797 case Attribute::ReadNone: return 1 << 9; 1798 case Attribute::ReadOnly: return 1 << 10; 1799 case Attribute::NoInline: return 1 << 11; 1800 case Attribute::AlwaysInline: return 1 << 12; 1801 case Attribute::OptimizeForSize: return 1 << 13; 1802 case Attribute::StackProtect: return 1 << 14; 1803 case Attribute::StackProtectReq: return 1 << 15; 1804 case Attribute::Alignment: return 31 << 16; 1805 case Attribute::NoCapture: return 1 << 21; 1806 case Attribute::NoRedZone: return 1 << 22; 1807 case Attribute::NoImplicitFloat: return 1 << 23; 1808 case Attribute::Naked: return 1 << 24; 1809 case Attribute::InlineHint: return 1 << 25; 1810 case Attribute::StackAlignment: return 7 << 26; 1811 case Attribute::ReturnsTwice: return 1 << 29; 1812 case Attribute::UWTable: return 1 << 30; 1813 case Attribute::NonLazyBind: return 1U << 31; 1814 case Attribute::SanitizeAddress: return 1ULL << 32; 1815 case Attribute::MinSize: return 1ULL << 33; 1816 case Attribute::NoDuplicate: return 1ULL << 34; 1817 case Attribute::StackProtectStrong: return 1ULL << 35; 1818 case Attribute::SanitizeThread: return 1ULL << 36; 1819 case Attribute::SanitizeMemory: return 1ULL << 37; 1820 case Attribute::NoBuiltin: return 1ULL << 38; 1821 case Attribute::Returned: return 1ULL << 39; 1822 case Attribute::Cold: return 1ULL << 40; 1823 case Attribute::Builtin: return 1ULL << 41; 1824 case Attribute::OptimizeNone: return 1ULL << 42; 1825 case Attribute::InAlloca: return 1ULL << 43; 1826 case Attribute::NonNull: return 1ULL << 44; 1827 case Attribute::JumpTable: return 1ULL << 45; 1828 case Attribute::Convergent: return 1ULL << 46; 1829 case Attribute::SafeStack: return 1ULL << 47; 1830 case Attribute::NoRecurse: return 1ULL << 48; 1831 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1832 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1833 case Attribute::SwiftSelf: return 1ULL << 51; 1834 case Attribute::SwiftError: return 1ULL << 52; 1835 case Attribute::WriteOnly: return 1ULL << 53; 1836 case Attribute::Speculatable: return 1ULL << 54; 1837 case Attribute::StrictFP: return 1ULL << 55; 1838 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1839 case Attribute::NoCfCheck: return 1ULL << 57; 1840 case Attribute::OptForFuzzing: return 1ULL << 58; 1841 case Attribute::ShadowCallStack: return 1ULL << 59; 1842 case Attribute::SpeculativeLoadHardening: 1843 return 1ULL << 60; 1844 case Attribute::ImmArg: 1845 return 1ULL << 61; 1846 case Attribute::WillReturn: 1847 return 1ULL << 62; 1848 case Attribute::NoFree: 1849 return 1ULL << 63; 1850 default: 1851 // Other attributes are not supported in the raw format, 1852 // as we ran out of space. 1853 return 0; 1854 } 1855 llvm_unreachable("Unsupported attribute type"); 1856 } 1857 1858 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1859 if (!Val) return; 1860 1861 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1862 I = Attribute::AttrKind(I + 1)) { 1863 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1864 if (I == Attribute::Alignment) 1865 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1866 else if (I == Attribute::StackAlignment) 1867 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1868 else if (Attribute::isTypeAttrKind(I)) 1869 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1870 else 1871 B.addAttribute(I); 1872 } 1873 } 1874 } 1875 1876 /// This fills an AttrBuilder object with the LLVM attributes that have 1877 /// been decoded from the given integer. This function must stay in sync with 1878 /// 'encodeLLVMAttributesForBitcode'. 1879 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1880 uint64_t EncodedAttrs, 1881 uint64_t AttrIdx) { 1882 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1883 // the bits above 31 down by 11 bits. 1884 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1885 assert((!Alignment || isPowerOf2_32(Alignment)) && 1886 "Alignment must be a power of two."); 1887 1888 if (Alignment) 1889 B.addAlignmentAttr(Alignment); 1890 1891 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1892 (EncodedAttrs & 0xffff); 1893 1894 if (AttrIdx == AttributeList::FunctionIndex) { 1895 // Upgrade old memory attributes. 1896 MemoryEffects ME = MemoryEffects::unknown(); 1897 if (Attrs & (1ULL << 9)) { 1898 // ReadNone 1899 Attrs &= ~(1ULL << 9); 1900 ME &= MemoryEffects::none(); 1901 } 1902 if (Attrs & (1ULL << 10)) { 1903 // ReadOnly 1904 Attrs &= ~(1ULL << 10); 1905 ME &= MemoryEffects::readOnly(); 1906 } 1907 if (Attrs & (1ULL << 49)) { 1908 // InaccessibleMemOnly 1909 Attrs &= ~(1ULL << 49); 1910 ME &= MemoryEffects::inaccessibleMemOnly(); 1911 } 1912 if (Attrs & (1ULL << 50)) { 1913 // InaccessibleMemOrArgMemOnly 1914 Attrs &= ~(1ULL << 50); 1915 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1916 } 1917 if (Attrs & (1ULL << 53)) { 1918 // WriteOnly 1919 Attrs &= ~(1ULL << 53); 1920 ME &= MemoryEffects::writeOnly(); 1921 } 1922 if (ME != MemoryEffects::unknown()) 1923 B.addMemoryAttr(ME); 1924 } 1925 1926 addRawAttributeValue(B, Attrs); 1927 } 1928 1929 Error BitcodeReader::parseAttributeBlock() { 1930 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1931 return Err; 1932 1933 if (!MAttributes.empty()) 1934 return error("Invalid multiple blocks"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 SmallVector<AttributeList, 8> Attrs; 1939 1940 // Read all the records. 1941 while (true) { 1942 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1943 if (!MaybeEntry) 1944 return MaybeEntry.takeError(); 1945 BitstreamEntry Entry = MaybeEntry.get(); 1946 1947 switch (Entry.Kind) { 1948 case BitstreamEntry::SubBlock: // Handled for us already. 1949 case BitstreamEntry::Error: 1950 return error("Malformed block"); 1951 case BitstreamEntry::EndBlock: 1952 return Error::success(); 1953 case BitstreamEntry::Record: 1954 // The interesting case. 1955 break; 1956 } 1957 1958 // Read a record. 1959 Record.clear(); 1960 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1961 if (!MaybeRecord) 1962 return MaybeRecord.takeError(); 1963 switch (MaybeRecord.get()) { 1964 default: // Default behavior: ignore. 1965 break; 1966 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1967 // Deprecated, but still needed to read old bitcode files. 1968 if (Record.size() & 1) 1969 return error("Invalid parameter attribute record"); 1970 1971 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1972 AttrBuilder B(Context); 1973 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1974 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1975 } 1976 1977 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1978 Attrs.clear(); 1979 break; 1980 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1981 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1982 Attrs.push_back(MAttributeGroups[Record[i]]); 1983 1984 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1985 Attrs.clear(); 1986 break; 1987 } 1988 } 1989 } 1990 1991 // Returns Attribute::None on unrecognized codes. 1992 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1993 switch (Code) { 1994 default: 1995 return Attribute::None; 1996 case bitc::ATTR_KIND_ALIGNMENT: 1997 return Attribute::Alignment; 1998 case bitc::ATTR_KIND_ALWAYS_INLINE: 1999 return Attribute::AlwaysInline; 2000 case bitc::ATTR_KIND_BUILTIN: 2001 return Attribute::Builtin; 2002 case bitc::ATTR_KIND_BY_VAL: 2003 return Attribute::ByVal; 2004 case bitc::ATTR_KIND_IN_ALLOCA: 2005 return Attribute::InAlloca; 2006 case bitc::ATTR_KIND_COLD: 2007 return Attribute::Cold; 2008 case bitc::ATTR_KIND_CONVERGENT: 2009 return Attribute::Convergent; 2010 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2011 return Attribute::DisableSanitizerInstrumentation; 2012 case bitc::ATTR_KIND_ELEMENTTYPE: 2013 return Attribute::ElementType; 2014 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2015 return Attribute::FnRetThunkExtern; 2016 case bitc::ATTR_KIND_INLINE_HINT: 2017 return Attribute::InlineHint; 2018 case bitc::ATTR_KIND_IN_REG: 2019 return Attribute::InReg; 2020 case bitc::ATTR_KIND_JUMP_TABLE: 2021 return Attribute::JumpTable; 2022 case bitc::ATTR_KIND_MEMORY: 2023 return Attribute::Memory; 2024 case bitc::ATTR_KIND_NOFPCLASS: 2025 return Attribute::NoFPClass; 2026 case bitc::ATTR_KIND_MIN_SIZE: 2027 return Attribute::MinSize; 2028 case bitc::ATTR_KIND_NAKED: 2029 return Attribute::Naked; 2030 case bitc::ATTR_KIND_NEST: 2031 return Attribute::Nest; 2032 case bitc::ATTR_KIND_NO_ALIAS: 2033 return Attribute::NoAlias; 2034 case bitc::ATTR_KIND_NO_BUILTIN: 2035 return Attribute::NoBuiltin; 2036 case bitc::ATTR_KIND_NO_CALLBACK: 2037 return Attribute::NoCallback; 2038 case bitc::ATTR_KIND_NO_CAPTURE: 2039 return Attribute::NoCapture; 2040 case bitc::ATTR_KIND_NO_DUPLICATE: 2041 return Attribute::NoDuplicate; 2042 case bitc::ATTR_KIND_NOFREE: 2043 return Attribute::NoFree; 2044 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2045 return Attribute::NoImplicitFloat; 2046 case bitc::ATTR_KIND_NO_INLINE: 2047 return Attribute::NoInline; 2048 case bitc::ATTR_KIND_NO_RECURSE: 2049 return Attribute::NoRecurse; 2050 case bitc::ATTR_KIND_NO_MERGE: 2051 return Attribute::NoMerge; 2052 case bitc::ATTR_KIND_NON_LAZY_BIND: 2053 return Attribute::NonLazyBind; 2054 case bitc::ATTR_KIND_NON_NULL: 2055 return Attribute::NonNull; 2056 case bitc::ATTR_KIND_DEREFERENCEABLE: 2057 return Attribute::Dereferenceable; 2058 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2059 return Attribute::DereferenceableOrNull; 2060 case bitc::ATTR_KIND_ALLOC_ALIGN: 2061 return Attribute::AllocAlign; 2062 case bitc::ATTR_KIND_ALLOC_KIND: 2063 return Attribute::AllocKind; 2064 case bitc::ATTR_KIND_ALLOC_SIZE: 2065 return Attribute::AllocSize; 2066 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2067 return Attribute::AllocatedPointer; 2068 case bitc::ATTR_KIND_NO_RED_ZONE: 2069 return Attribute::NoRedZone; 2070 case bitc::ATTR_KIND_NO_RETURN: 2071 return Attribute::NoReturn; 2072 case bitc::ATTR_KIND_NOSYNC: 2073 return Attribute::NoSync; 2074 case bitc::ATTR_KIND_NOCF_CHECK: 2075 return Attribute::NoCfCheck; 2076 case bitc::ATTR_KIND_NO_PROFILE: 2077 return Attribute::NoProfile; 2078 case bitc::ATTR_KIND_SKIP_PROFILE: 2079 return Attribute::SkipProfile; 2080 case bitc::ATTR_KIND_NO_UNWIND: 2081 return Attribute::NoUnwind; 2082 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2083 return Attribute::NoSanitizeBounds; 2084 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2085 return Attribute::NoSanitizeCoverage; 2086 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2087 return Attribute::NullPointerIsValid; 2088 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2089 return Attribute::OptimizeForDebugging; 2090 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2091 return Attribute::OptForFuzzing; 2092 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2093 return Attribute::OptimizeForSize; 2094 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2095 return Attribute::OptimizeNone; 2096 case bitc::ATTR_KIND_READ_NONE: 2097 return Attribute::ReadNone; 2098 case bitc::ATTR_KIND_READ_ONLY: 2099 return Attribute::ReadOnly; 2100 case bitc::ATTR_KIND_RETURNED: 2101 return Attribute::Returned; 2102 case bitc::ATTR_KIND_RETURNS_TWICE: 2103 return Attribute::ReturnsTwice; 2104 case bitc::ATTR_KIND_S_EXT: 2105 return Attribute::SExt; 2106 case bitc::ATTR_KIND_SPECULATABLE: 2107 return Attribute::Speculatable; 2108 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2109 return Attribute::StackAlignment; 2110 case bitc::ATTR_KIND_STACK_PROTECT: 2111 return Attribute::StackProtect; 2112 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2113 return Attribute::StackProtectReq; 2114 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2115 return Attribute::StackProtectStrong; 2116 case bitc::ATTR_KIND_SAFESTACK: 2117 return Attribute::SafeStack; 2118 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2119 return Attribute::ShadowCallStack; 2120 case bitc::ATTR_KIND_STRICT_FP: 2121 return Attribute::StrictFP; 2122 case bitc::ATTR_KIND_STRUCT_RET: 2123 return Attribute::StructRet; 2124 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2125 return Attribute::SanitizeAddress; 2126 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2127 return Attribute::SanitizeHWAddress; 2128 case bitc::ATTR_KIND_SANITIZE_THREAD: 2129 return Attribute::SanitizeThread; 2130 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2131 return Attribute::SanitizeMemory; 2132 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2133 return Attribute::SanitizeNumericalStability; 2134 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2135 return Attribute::SpeculativeLoadHardening; 2136 case bitc::ATTR_KIND_SWIFT_ERROR: 2137 return Attribute::SwiftError; 2138 case bitc::ATTR_KIND_SWIFT_SELF: 2139 return Attribute::SwiftSelf; 2140 case bitc::ATTR_KIND_SWIFT_ASYNC: 2141 return Attribute::SwiftAsync; 2142 case bitc::ATTR_KIND_UW_TABLE: 2143 return Attribute::UWTable; 2144 case bitc::ATTR_KIND_VSCALE_RANGE: 2145 return Attribute::VScaleRange; 2146 case bitc::ATTR_KIND_WILLRETURN: 2147 return Attribute::WillReturn; 2148 case bitc::ATTR_KIND_WRITEONLY: 2149 return Attribute::WriteOnly; 2150 case bitc::ATTR_KIND_Z_EXT: 2151 return Attribute::ZExt; 2152 case bitc::ATTR_KIND_IMMARG: 2153 return Attribute::ImmArg; 2154 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2155 return Attribute::SanitizeMemTag; 2156 case bitc::ATTR_KIND_PREALLOCATED: 2157 return Attribute::Preallocated; 2158 case bitc::ATTR_KIND_NOUNDEF: 2159 return Attribute::NoUndef; 2160 case bitc::ATTR_KIND_BYREF: 2161 return Attribute::ByRef; 2162 case bitc::ATTR_KIND_MUSTPROGRESS: 2163 return Attribute::MustProgress; 2164 case bitc::ATTR_KIND_HOT: 2165 return Attribute::Hot; 2166 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2167 return Attribute::PresplitCoroutine; 2168 case bitc::ATTR_KIND_WRITABLE: 2169 return Attribute::Writable; 2170 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2171 return Attribute::CoroDestroyOnlyWhenComplete; 2172 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2173 return Attribute::DeadOnUnwind; 2174 case bitc::ATTR_KIND_RANGE: 2175 return Attribute::Range; 2176 } 2177 } 2178 2179 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2180 MaybeAlign &Alignment) { 2181 // Note: Alignment in bitcode files is incremented by 1, so that zero 2182 // can be used for default alignment. 2183 if (Exponent > Value::MaxAlignmentExponent + 1) 2184 return error("Invalid alignment value"); 2185 Alignment = decodeMaybeAlign(Exponent); 2186 return Error::success(); 2187 } 2188 2189 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2190 *Kind = getAttrFromCode(Code); 2191 if (*Kind == Attribute::None) 2192 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2193 return Error::success(); 2194 } 2195 2196 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2197 switch (EncodedKind) { 2198 case bitc::ATTR_KIND_READ_NONE: 2199 ME &= MemoryEffects::none(); 2200 return true; 2201 case bitc::ATTR_KIND_READ_ONLY: 2202 ME &= MemoryEffects::readOnly(); 2203 return true; 2204 case bitc::ATTR_KIND_WRITEONLY: 2205 ME &= MemoryEffects::writeOnly(); 2206 return true; 2207 case bitc::ATTR_KIND_ARGMEMONLY: 2208 ME &= MemoryEffects::argMemOnly(); 2209 return true; 2210 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2211 ME &= MemoryEffects::inaccessibleMemOnly(); 2212 return true; 2213 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2214 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2215 return true; 2216 default: 2217 return false; 2218 } 2219 } 2220 2221 Error BitcodeReader::parseAttributeGroupBlock() { 2222 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2223 return Err; 2224 2225 if (!MAttributeGroups.empty()) 2226 return error("Invalid multiple blocks"); 2227 2228 SmallVector<uint64_t, 64> Record; 2229 2230 // Read all the records. 2231 while (true) { 2232 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2233 if (!MaybeEntry) 2234 return MaybeEntry.takeError(); 2235 BitstreamEntry Entry = MaybeEntry.get(); 2236 2237 switch (Entry.Kind) { 2238 case BitstreamEntry::SubBlock: // Handled for us already. 2239 case BitstreamEntry::Error: 2240 return error("Malformed block"); 2241 case BitstreamEntry::EndBlock: 2242 return Error::success(); 2243 case BitstreamEntry::Record: 2244 // The interesting case. 2245 break; 2246 } 2247 2248 // Read a record. 2249 Record.clear(); 2250 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2251 if (!MaybeRecord) 2252 return MaybeRecord.takeError(); 2253 switch (MaybeRecord.get()) { 2254 default: // Default behavior: ignore. 2255 break; 2256 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2257 if (Record.size() < 3) 2258 return error("Invalid grp record"); 2259 2260 uint64_t GrpID = Record[0]; 2261 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2262 2263 AttrBuilder B(Context); 2264 MemoryEffects ME = MemoryEffects::unknown(); 2265 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2266 if (Record[i] == 0) { // Enum attribute 2267 Attribute::AttrKind Kind; 2268 uint64_t EncodedKind = Record[++i]; 2269 if (Idx == AttributeList::FunctionIndex && 2270 upgradeOldMemoryAttribute(ME, EncodedKind)) 2271 continue; 2272 2273 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2274 return Err; 2275 2276 // Upgrade old-style byval attribute to one with a type, even if it's 2277 // nullptr. We will have to insert the real type when we associate 2278 // this AttributeList with a function. 2279 if (Kind == Attribute::ByVal) 2280 B.addByValAttr(nullptr); 2281 else if (Kind == Attribute::StructRet) 2282 B.addStructRetAttr(nullptr); 2283 else if (Kind == Attribute::InAlloca) 2284 B.addInAllocaAttr(nullptr); 2285 else if (Kind == Attribute::UWTable) 2286 B.addUWTableAttr(UWTableKind::Default); 2287 else if (Attribute::isEnumAttrKind(Kind)) 2288 B.addAttribute(Kind); 2289 else 2290 return error("Not an enum attribute"); 2291 } else if (Record[i] == 1) { // Integer attribute 2292 Attribute::AttrKind Kind; 2293 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2294 return Err; 2295 if (!Attribute::isIntAttrKind(Kind)) 2296 return error("Not an int attribute"); 2297 if (Kind == Attribute::Alignment) 2298 B.addAlignmentAttr(Record[++i]); 2299 else if (Kind == Attribute::StackAlignment) 2300 B.addStackAlignmentAttr(Record[++i]); 2301 else if (Kind == Attribute::Dereferenceable) 2302 B.addDereferenceableAttr(Record[++i]); 2303 else if (Kind == Attribute::DereferenceableOrNull) 2304 B.addDereferenceableOrNullAttr(Record[++i]); 2305 else if (Kind == Attribute::AllocSize) 2306 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2307 else if (Kind == Attribute::VScaleRange) 2308 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2309 else if (Kind == Attribute::UWTable) 2310 B.addUWTableAttr(UWTableKind(Record[++i])); 2311 else if (Kind == Attribute::AllocKind) 2312 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2313 else if (Kind == Attribute::Memory) 2314 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2315 else if (Kind == Attribute::NoFPClass) 2316 B.addNoFPClassAttr( 2317 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2318 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2319 bool HasValue = (Record[i++] == 4); 2320 SmallString<64> KindStr; 2321 SmallString<64> ValStr; 2322 2323 while (Record[i] != 0 && i != e) 2324 KindStr += Record[i++]; 2325 assert(Record[i] == 0 && "Kind string not null terminated"); 2326 2327 if (HasValue) { 2328 // Has a value associated with it. 2329 ++i; // Skip the '0' that terminates the "kind" string. 2330 while (Record[i] != 0 && i != e) 2331 ValStr += Record[i++]; 2332 assert(Record[i] == 0 && "Value string not null terminated"); 2333 } 2334 2335 B.addAttribute(KindStr.str(), ValStr.str()); 2336 } else if (Record[i] == 5 || Record[i] == 6) { 2337 bool HasType = Record[i] == 6; 2338 Attribute::AttrKind Kind; 2339 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2340 return Err; 2341 if (!Attribute::isTypeAttrKind(Kind)) 2342 return error("Not a type attribute"); 2343 2344 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2345 } else if (Record[i] == 7) { 2346 Attribute::AttrKind Kind; 2347 2348 i++; 2349 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2350 return Err; 2351 if (!Attribute::isConstantRangeAttrKind(Kind)) 2352 return error("Not a ConstantRange attribute"); 2353 2354 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2355 if (!MaybeCR) 2356 return MaybeCR.takeError(); 2357 i--; 2358 2359 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2360 } else { 2361 return error("Invalid attribute group entry"); 2362 } 2363 } 2364 2365 if (ME != MemoryEffects::unknown()) 2366 B.addMemoryAttr(ME); 2367 2368 UpgradeAttributes(B); 2369 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2370 break; 2371 } 2372 } 2373 } 2374 } 2375 2376 Error BitcodeReader::parseTypeTable() { 2377 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2378 return Err; 2379 2380 return parseTypeTableBody(); 2381 } 2382 2383 Error BitcodeReader::parseTypeTableBody() { 2384 if (!TypeList.empty()) 2385 return error("Invalid multiple blocks"); 2386 2387 SmallVector<uint64_t, 64> Record; 2388 unsigned NumRecords = 0; 2389 2390 SmallString<64> TypeName; 2391 2392 // Read all the records for this type table. 2393 while (true) { 2394 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2395 if (!MaybeEntry) 2396 return MaybeEntry.takeError(); 2397 BitstreamEntry Entry = MaybeEntry.get(); 2398 2399 switch (Entry.Kind) { 2400 case BitstreamEntry::SubBlock: // Handled for us already. 2401 case BitstreamEntry::Error: 2402 return error("Malformed block"); 2403 case BitstreamEntry::EndBlock: 2404 if (NumRecords != TypeList.size()) 2405 return error("Malformed block"); 2406 return Error::success(); 2407 case BitstreamEntry::Record: 2408 // The interesting case. 2409 break; 2410 } 2411 2412 // Read a record. 2413 Record.clear(); 2414 Type *ResultTy = nullptr; 2415 SmallVector<unsigned> ContainedIDs; 2416 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2417 if (!MaybeRecord) 2418 return MaybeRecord.takeError(); 2419 switch (MaybeRecord.get()) { 2420 default: 2421 return error("Invalid value"); 2422 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2423 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2424 // type list. This allows us to reserve space. 2425 if (Record.empty()) 2426 return error("Invalid numentry record"); 2427 TypeList.resize(Record[0]); 2428 continue; 2429 case bitc::TYPE_CODE_VOID: // VOID 2430 ResultTy = Type::getVoidTy(Context); 2431 break; 2432 case bitc::TYPE_CODE_HALF: // HALF 2433 ResultTy = Type::getHalfTy(Context); 2434 break; 2435 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2436 ResultTy = Type::getBFloatTy(Context); 2437 break; 2438 case bitc::TYPE_CODE_FLOAT: // FLOAT 2439 ResultTy = Type::getFloatTy(Context); 2440 break; 2441 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2442 ResultTy = Type::getDoubleTy(Context); 2443 break; 2444 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2445 ResultTy = Type::getX86_FP80Ty(Context); 2446 break; 2447 case bitc::TYPE_CODE_FP128: // FP128 2448 ResultTy = Type::getFP128Ty(Context); 2449 break; 2450 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2451 ResultTy = Type::getPPC_FP128Ty(Context); 2452 break; 2453 case bitc::TYPE_CODE_LABEL: // LABEL 2454 ResultTy = Type::getLabelTy(Context); 2455 break; 2456 case bitc::TYPE_CODE_METADATA: // METADATA 2457 ResultTy = Type::getMetadataTy(Context); 2458 break; 2459 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2460 ResultTy = Type::getX86_MMXTy(Context); 2461 break; 2462 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2463 ResultTy = Type::getX86_AMXTy(Context); 2464 break; 2465 case bitc::TYPE_CODE_TOKEN: // TOKEN 2466 ResultTy = Type::getTokenTy(Context); 2467 break; 2468 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2469 if (Record.empty()) 2470 return error("Invalid integer record"); 2471 2472 uint64_t NumBits = Record[0]; 2473 if (NumBits < IntegerType::MIN_INT_BITS || 2474 NumBits > IntegerType::MAX_INT_BITS) 2475 return error("Bitwidth for integer type out of range"); 2476 ResultTy = IntegerType::get(Context, NumBits); 2477 break; 2478 } 2479 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2480 // [pointee type, address space] 2481 if (Record.empty()) 2482 return error("Invalid pointer record"); 2483 unsigned AddressSpace = 0; 2484 if (Record.size() == 2) 2485 AddressSpace = Record[1]; 2486 ResultTy = getTypeByID(Record[0]); 2487 if (!ResultTy || 2488 !PointerType::isValidElementType(ResultTy)) 2489 return error("Invalid type"); 2490 ContainedIDs.push_back(Record[0]); 2491 ResultTy = PointerType::get(ResultTy, AddressSpace); 2492 break; 2493 } 2494 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2495 if (Record.size() != 1) 2496 return error("Invalid opaque pointer record"); 2497 unsigned AddressSpace = Record[0]; 2498 ResultTy = PointerType::get(Context, AddressSpace); 2499 break; 2500 } 2501 case bitc::TYPE_CODE_FUNCTION_OLD: { 2502 // Deprecated, but still needed to read old bitcode files. 2503 // FUNCTION: [vararg, attrid, retty, paramty x N] 2504 if (Record.size() < 3) 2505 return error("Invalid function record"); 2506 SmallVector<Type*, 8> ArgTys; 2507 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2508 if (Type *T = getTypeByID(Record[i])) 2509 ArgTys.push_back(T); 2510 else 2511 break; 2512 } 2513 2514 ResultTy = getTypeByID(Record[2]); 2515 if (!ResultTy || ArgTys.size() < Record.size()-3) 2516 return error("Invalid type"); 2517 2518 ContainedIDs.append(Record.begin() + 2, Record.end()); 2519 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2520 break; 2521 } 2522 case bitc::TYPE_CODE_FUNCTION: { 2523 // FUNCTION: [vararg, retty, paramty x N] 2524 if (Record.size() < 2) 2525 return error("Invalid function record"); 2526 SmallVector<Type*, 8> ArgTys; 2527 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2528 if (Type *T = getTypeByID(Record[i])) { 2529 if (!FunctionType::isValidArgumentType(T)) 2530 return error("Invalid function argument type"); 2531 ArgTys.push_back(T); 2532 } 2533 else 2534 break; 2535 } 2536 2537 ResultTy = getTypeByID(Record[1]); 2538 if (!ResultTy || ArgTys.size() < Record.size()-2) 2539 return error("Invalid type"); 2540 2541 ContainedIDs.append(Record.begin() + 1, Record.end()); 2542 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2543 break; 2544 } 2545 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2546 if (Record.empty()) 2547 return error("Invalid anon struct record"); 2548 SmallVector<Type*, 8> EltTys; 2549 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2550 if (Type *T = getTypeByID(Record[i])) 2551 EltTys.push_back(T); 2552 else 2553 break; 2554 } 2555 if (EltTys.size() != Record.size()-1) 2556 return error("Invalid type"); 2557 ContainedIDs.append(Record.begin() + 1, Record.end()); 2558 ResultTy = StructType::get(Context, EltTys, Record[0]); 2559 break; 2560 } 2561 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2562 if (convertToString(Record, 0, TypeName)) 2563 return error("Invalid struct name record"); 2564 continue; 2565 2566 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2567 if (Record.empty()) 2568 return error("Invalid named struct record"); 2569 2570 if (NumRecords >= TypeList.size()) 2571 return error("Invalid TYPE table"); 2572 2573 // Check to see if this was forward referenced, if so fill in the temp. 2574 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2575 if (Res) { 2576 Res->setName(TypeName); 2577 TypeList[NumRecords] = nullptr; 2578 } else // Otherwise, create a new struct. 2579 Res = createIdentifiedStructType(Context, TypeName); 2580 TypeName.clear(); 2581 2582 SmallVector<Type*, 8> EltTys; 2583 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2584 if (Type *T = getTypeByID(Record[i])) 2585 EltTys.push_back(T); 2586 else 2587 break; 2588 } 2589 if (EltTys.size() != Record.size()-1) 2590 return error("Invalid named struct record"); 2591 Res->setBody(EltTys, Record[0]); 2592 ContainedIDs.append(Record.begin() + 1, Record.end()); 2593 ResultTy = Res; 2594 break; 2595 } 2596 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2597 if (Record.size() != 1) 2598 return error("Invalid opaque type record"); 2599 2600 if (NumRecords >= TypeList.size()) 2601 return error("Invalid TYPE table"); 2602 2603 // Check to see if this was forward referenced, if so fill in the temp. 2604 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2605 if (Res) { 2606 Res->setName(TypeName); 2607 TypeList[NumRecords] = nullptr; 2608 } else // Otherwise, create a new struct with no body. 2609 Res = createIdentifiedStructType(Context, TypeName); 2610 TypeName.clear(); 2611 ResultTy = Res; 2612 break; 2613 } 2614 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2615 if (Record.size() < 1) 2616 return error("Invalid target extension type record"); 2617 2618 if (NumRecords >= TypeList.size()) 2619 return error("Invalid TYPE table"); 2620 2621 if (Record[0] >= Record.size()) 2622 return error("Too many type parameters"); 2623 2624 unsigned NumTys = Record[0]; 2625 SmallVector<Type *, 4> TypeParams; 2626 SmallVector<unsigned, 8> IntParams; 2627 for (unsigned i = 0; i < NumTys; i++) { 2628 if (Type *T = getTypeByID(Record[i + 1])) 2629 TypeParams.push_back(T); 2630 else 2631 return error("Invalid type"); 2632 } 2633 2634 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2635 if (Record[i] > UINT_MAX) 2636 return error("Integer parameter too large"); 2637 IntParams.push_back(Record[i]); 2638 } 2639 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2640 TypeName.clear(); 2641 break; 2642 } 2643 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2644 if (Record.size() < 2) 2645 return error("Invalid array type record"); 2646 ResultTy = getTypeByID(Record[1]); 2647 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2648 return error("Invalid type"); 2649 ContainedIDs.push_back(Record[1]); 2650 ResultTy = ArrayType::get(ResultTy, Record[0]); 2651 break; 2652 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2653 // [numelts, eltty, scalable] 2654 if (Record.size() < 2) 2655 return error("Invalid vector type record"); 2656 if (Record[0] == 0) 2657 return error("Invalid vector length"); 2658 ResultTy = getTypeByID(Record[1]); 2659 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2660 return error("Invalid type"); 2661 bool Scalable = Record.size() > 2 ? Record[2] : false; 2662 ContainedIDs.push_back(Record[1]); 2663 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2664 break; 2665 } 2666 2667 if (NumRecords >= TypeList.size()) 2668 return error("Invalid TYPE table"); 2669 if (TypeList[NumRecords]) 2670 return error( 2671 "Invalid TYPE table: Only named structs can be forward referenced"); 2672 assert(ResultTy && "Didn't read a type?"); 2673 TypeList[NumRecords] = ResultTy; 2674 if (!ContainedIDs.empty()) 2675 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2676 ++NumRecords; 2677 } 2678 } 2679 2680 Error BitcodeReader::parseOperandBundleTags() { 2681 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2682 return Err; 2683 2684 if (!BundleTags.empty()) 2685 return error("Invalid multiple blocks"); 2686 2687 SmallVector<uint64_t, 64> Record; 2688 2689 while (true) { 2690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2691 if (!MaybeEntry) 2692 return MaybeEntry.takeError(); 2693 BitstreamEntry Entry = MaybeEntry.get(); 2694 2695 switch (Entry.Kind) { 2696 case BitstreamEntry::SubBlock: // Handled for us already. 2697 case BitstreamEntry::Error: 2698 return error("Malformed block"); 2699 case BitstreamEntry::EndBlock: 2700 return Error::success(); 2701 case BitstreamEntry::Record: 2702 // The interesting case. 2703 break; 2704 } 2705 2706 // Tags are implicitly mapped to integers by their order. 2707 2708 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2709 if (!MaybeRecord) 2710 return MaybeRecord.takeError(); 2711 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2712 return error("Invalid operand bundle record"); 2713 2714 // OPERAND_BUNDLE_TAG: [strchr x N] 2715 BundleTags.emplace_back(); 2716 if (convertToString(Record, 0, BundleTags.back())) 2717 return error("Invalid operand bundle record"); 2718 Record.clear(); 2719 } 2720 } 2721 2722 Error BitcodeReader::parseSyncScopeNames() { 2723 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2724 return Err; 2725 2726 if (!SSIDs.empty()) 2727 return error("Invalid multiple synchronization scope names blocks"); 2728 2729 SmallVector<uint64_t, 64> Record; 2730 while (true) { 2731 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2732 if (!MaybeEntry) 2733 return MaybeEntry.takeError(); 2734 BitstreamEntry Entry = MaybeEntry.get(); 2735 2736 switch (Entry.Kind) { 2737 case BitstreamEntry::SubBlock: // Handled for us already. 2738 case BitstreamEntry::Error: 2739 return error("Malformed block"); 2740 case BitstreamEntry::EndBlock: 2741 if (SSIDs.empty()) 2742 return error("Invalid empty synchronization scope names block"); 2743 return Error::success(); 2744 case BitstreamEntry::Record: 2745 // The interesting case. 2746 break; 2747 } 2748 2749 // Synchronization scope names are implicitly mapped to synchronization 2750 // scope IDs by their order. 2751 2752 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2753 if (!MaybeRecord) 2754 return MaybeRecord.takeError(); 2755 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2756 return error("Invalid sync scope record"); 2757 2758 SmallString<16> SSN; 2759 if (convertToString(Record, 0, SSN)) 2760 return error("Invalid sync scope record"); 2761 2762 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2763 Record.clear(); 2764 } 2765 } 2766 2767 /// Associate a value with its name from the given index in the provided record. 2768 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2769 unsigned NameIndex, Triple &TT) { 2770 SmallString<128> ValueName; 2771 if (convertToString(Record, NameIndex, ValueName)) 2772 return error("Invalid record"); 2773 unsigned ValueID = Record[0]; 2774 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2775 return error("Invalid record"); 2776 Value *V = ValueList[ValueID]; 2777 2778 StringRef NameStr(ValueName.data(), ValueName.size()); 2779 if (NameStr.contains(0)) 2780 return error("Invalid value name"); 2781 V->setName(NameStr); 2782 auto *GO = dyn_cast<GlobalObject>(V); 2783 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2784 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2785 return V; 2786 } 2787 2788 /// Helper to note and return the current location, and jump to the given 2789 /// offset. 2790 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2791 BitstreamCursor &Stream) { 2792 // Save the current parsing location so we can jump back at the end 2793 // of the VST read. 2794 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2795 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2796 return std::move(JumpFailed); 2797 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2798 if (!MaybeEntry) 2799 return MaybeEntry.takeError(); 2800 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2801 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2802 return error("Expected value symbol table subblock"); 2803 return CurrentBit; 2804 } 2805 2806 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2807 Function *F, 2808 ArrayRef<uint64_t> Record) { 2809 // Note that we subtract 1 here because the offset is relative to one word 2810 // before the start of the identification or module block, which was 2811 // historically always the start of the regular bitcode header. 2812 uint64_t FuncWordOffset = Record[1] - 1; 2813 uint64_t FuncBitOffset = FuncWordOffset * 32; 2814 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2815 // Set the LastFunctionBlockBit to point to the last function block. 2816 // Later when parsing is resumed after function materialization, 2817 // we can simply skip that last function block. 2818 if (FuncBitOffset > LastFunctionBlockBit) 2819 LastFunctionBlockBit = FuncBitOffset; 2820 } 2821 2822 /// Read a new-style GlobalValue symbol table. 2823 Error BitcodeReader::parseGlobalValueSymbolTable() { 2824 unsigned FuncBitcodeOffsetDelta = 2825 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2826 2827 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2828 return Err; 2829 2830 SmallVector<uint64_t, 64> Record; 2831 while (true) { 2832 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2833 if (!MaybeEntry) 2834 return MaybeEntry.takeError(); 2835 BitstreamEntry Entry = MaybeEntry.get(); 2836 2837 switch (Entry.Kind) { 2838 case BitstreamEntry::SubBlock: 2839 case BitstreamEntry::Error: 2840 return error("Malformed block"); 2841 case BitstreamEntry::EndBlock: 2842 return Error::success(); 2843 case BitstreamEntry::Record: 2844 break; 2845 } 2846 2847 Record.clear(); 2848 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2849 if (!MaybeRecord) 2850 return MaybeRecord.takeError(); 2851 switch (MaybeRecord.get()) { 2852 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2853 unsigned ValueID = Record[0]; 2854 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2855 return error("Invalid value reference in symbol table"); 2856 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2857 cast<Function>(ValueList[ValueID]), Record); 2858 break; 2859 } 2860 } 2861 } 2862 } 2863 2864 /// Parse the value symbol table at either the current parsing location or 2865 /// at the given bit offset if provided. 2866 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2867 uint64_t CurrentBit; 2868 // Pass in the Offset to distinguish between calling for the module-level 2869 // VST (where we want to jump to the VST offset) and the function-level 2870 // VST (where we don't). 2871 if (Offset > 0) { 2872 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2873 if (!MaybeCurrentBit) 2874 return MaybeCurrentBit.takeError(); 2875 CurrentBit = MaybeCurrentBit.get(); 2876 // If this module uses a string table, read this as a module-level VST. 2877 if (UseStrtab) { 2878 if (Error Err = parseGlobalValueSymbolTable()) 2879 return Err; 2880 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2881 return JumpFailed; 2882 return Error::success(); 2883 } 2884 // Otherwise, the VST will be in a similar format to a function-level VST, 2885 // and will contain symbol names. 2886 } 2887 2888 // Compute the delta between the bitcode indices in the VST (the word offset 2889 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2890 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2891 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2892 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2893 // just before entering the VST subblock because: 1) the EnterSubBlock 2894 // changes the AbbrevID width; 2) the VST block is nested within the same 2895 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2896 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2897 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2898 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2899 unsigned FuncBitcodeOffsetDelta = 2900 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2901 2902 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2903 return Err; 2904 2905 SmallVector<uint64_t, 64> Record; 2906 2907 Triple TT(TheModule->getTargetTriple()); 2908 2909 // Read all the records for this value table. 2910 SmallString<128> ValueName; 2911 2912 while (true) { 2913 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2914 if (!MaybeEntry) 2915 return MaybeEntry.takeError(); 2916 BitstreamEntry Entry = MaybeEntry.get(); 2917 2918 switch (Entry.Kind) { 2919 case BitstreamEntry::SubBlock: // Handled for us already. 2920 case BitstreamEntry::Error: 2921 return error("Malformed block"); 2922 case BitstreamEntry::EndBlock: 2923 if (Offset > 0) 2924 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2925 return JumpFailed; 2926 return Error::success(); 2927 case BitstreamEntry::Record: 2928 // The interesting case. 2929 break; 2930 } 2931 2932 // Read a record. 2933 Record.clear(); 2934 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2935 if (!MaybeRecord) 2936 return MaybeRecord.takeError(); 2937 switch (MaybeRecord.get()) { 2938 default: // Default behavior: unknown type. 2939 break; 2940 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2941 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2942 if (Error Err = ValOrErr.takeError()) 2943 return Err; 2944 ValOrErr.get(); 2945 break; 2946 } 2947 case bitc::VST_CODE_FNENTRY: { 2948 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2949 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2950 if (Error Err = ValOrErr.takeError()) 2951 return Err; 2952 Value *V = ValOrErr.get(); 2953 2954 // Ignore function offsets emitted for aliases of functions in older 2955 // versions of LLVM. 2956 if (auto *F = dyn_cast<Function>(V)) 2957 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2958 break; 2959 } 2960 case bitc::VST_CODE_BBENTRY: { 2961 if (convertToString(Record, 1, ValueName)) 2962 return error("Invalid bbentry record"); 2963 BasicBlock *BB = getBasicBlock(Record[0]); 2964 if (!BB) 2965 return error("Invalid bbentry record"); 2966 2967 BB->setName(ValueName.str()); 2968 ValueName.clear(); 2969 break; 2970 } 2971 } 2972 } 2973 } 2974 2975 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2976 /// encoding. 2977 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2978 if ((V & 1) == 0) 2979 return V >> 1; 2980 if (V != 1) 2981 return -(V >> 1); 2982 // There is no such thing as -0 with integers. "-0" really means MININT. 2983 return 1ULL << 63; 2984 } 2985 2986 /// Resolve all of the initializers for global values and aliases that we can. 2987 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2988 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2989 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2990 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2991 2992 GlobalInitWorklist.swap(GlobalInits); 2993 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2994 FunctionOperandWorklist.swap(FunctionOperands); 2995 2996 while (!GlobalInitWorklist.empty()) { 2997 unsigned ValID = GlobalInitWorklist.back().second; 2998 if (ValID >= ValueList.size()) { 2999 // Not ready to resolve this yet, it requires something later in the file. 3000 GlobalInits.push_back(GlobalInitWorklist.back()); 3001 } else { 3002 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3003 if (!MaybeC) 3004 return MaybeC.takeError(); 3005 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3006 } 3007 GlobalInitWorklist.pop_back(); 3008 } 3009 3010 while (!IndirectSymbolInitWorklist.empty()) { 3011 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3012 if (ValID >= ValueList.size()) { 3013 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3014 } else { 3015 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3016 if (!MaybeC) 3017 return MaybeC.takeError(); 3018 Constant *C = MaybeC.get(); 3019 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3020 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3021 if (C->getType() != GV->getType()) 3022 return error("Alias and aliasee types don't match"); 3023 GA->setAliasee(C); 3024 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3025 GI->setResolver(C); 3026 } else { 3027 return error("Expected an alias or an ifunc"); 3028 } 3029 } 3030 IndirectSymbolInitWorklist.pop_back(); 3031 } 3032 3033 while (!FunctionOperandWorklist.empty()) { 3034 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3035 if (Info.PersonalityFn) { 3036 unsigned ValID = Info.PersonalityFn - 1; 3037 if (ValID < ValueList.size()) { 3038 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3039 if (!MaybeC) 3040 return MaybeC.takeError(); 3041 Info.F->setPersonalityFn(MaybeC.get()); 3042 Info.PersonalityFn = 0; 3043 } 3044 } 3045 if (Info.Prefix) { 3046 unsigned ValID = Info.Prefix - 1; 3047 if (ValID < ValueList.size()) { 3048 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3049 if (!MaybeC) 3050 return MaybeC.takeError(); 3051 Info.F->setPrefixData(MaybeC.get()); 3052 Info.Prefix = 0; 3053 } 3054 } 3055 if (Info.Prologue) { 3056 unsigned ValID = Info.Prologue - 1; 3057 if (ValID < ValueList.size()) { 3058 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3059 if (!MaybeC) 3060 return MaybeC.takeError(); 3061 Info.F->setPrologueData(MaybeC.get()); 3062 Info.Prologue = 0; 3063 } 3064 } 3065 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3066 FunctionOperands.push_back(Info); 3067 FunctionOperandWorklist.pop_back(); 3068 } 3069 3070 return Error::success(); 3071 } 3072 3073 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3074 SmallVector<uint64_t, 8> Words(Vals.size()); 3075 transform(Vals, Words.begin(), 3076 BitcodeReader::decodeSignRotatedValue); 3077 3078 return APInt(TypeBits, Words); 3079 } 3080 3081 Error BitcodeReader::parseConstants() { 3082 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3083 return Err; 3084 3085 SmallVector<uint64_t, 64> Record; 3086 3087 // Read all the records for this value table. 3088 Type *CurTy = Type::getInt32Ty(Context); 3089 unsigned Int32TyID = getVirtualTypeID(CurTy); 3090 unsigned CurTyID = Int32TyID; 3091 Type *CurElemTy = nullptr; 3092 unsigned NextCstNo = ValueList.size(); 3093 3094 while (true) { 3095 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3096 if (!MaybeEntry) 3097 return MaybeEntry.takeError(); 3098 BitstreamEntry Entry = MaybeEntry.get(); 3099 3100 switch (Entry.Kind) { 3101 case BitstreamEntry::SubBlock: // Handled for us already. 3102 case BitstreamEntry::Error: 3103 return error("Malformed block"); 3104 case BitstreamEntry::EndBlock: 3105 if (NextCstNo != ValueList.size()) 3106 return error("Invalid constant reference"); 3107 return Error::success(); 3108 case BitstreamEntry::Record: 3109 // The interesting case. 3110 break; 3111 } 3112 3113 // Read a record. 3114 Record.clear(); 3115 Type *VoidType = Type::getVoidTy(Context); 3116 Value *V = nullptr; 3117 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3118 if (!MaybeBitCode) 3119 return MaybeBitCode.takeError(); 3120 switch (unsigned BitCode = MaybeBitCode.get()) { 3121 default: // Default behavior: unknown constant 3122 case bitc::CST_CODE_UNDEF: // UNDEF 3123 V = UndefValue::get(CurTy); 3124 break; 3125 case bitc::CST_CODE_POISON: // POISON 3126 V = PoisonValue::get(CurTy); 3127 break; 3128 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3129 if (Record.empty()) 3130 return error("Invalid settype record"); 3131 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3132 return error("Invalid settype record"); 3133 if (TypeList[Record[0]] == VoidType) 3134 return error("Invalid constant type"); 3135 CurTyID = Record[0]; 3136 CurTy = TypeList[CurTyID]; 3137 CurElemTy = getPtrElementTypeByID(CurTyID); 3138 continue; // Skip the ValueList manipulation. 3139 case bitc::CST_CODE_NULL: // NULL 3140 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3141 return error("Invalid type for a constant null value"); 3142 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3143 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3144 return error("Invalid type for a constant null value"); 3145 V = Constant::getNullValue(CurTy); 3146 break; 3147 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3148 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3149 return error("Invalid integer const record"); 3150 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3151 break; 3152 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3153 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3154 return error("Invalid wide integer const record"); 3155 3156 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3157 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3158 V = ConstantInt::get(CurTy, VInt); 3159 break; 3160 } 3161 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3162 if (Record.empty()) 3163 return error("Invalid float const record"); 3164 3165 auto *ScalarTy = CurTy->getScalarType(); 3166 if (ScalarTy->isHalfTy()) 3167 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3168 APInt(16, (uint16_t)Record[0]))); 3169 else if (ScalarTy->isBFloatTy()) 3170 V = ConstantFP::get( 3171 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3172 else if (ScalarTy->isFloatTy()) 3173 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3174 APInt(32, (uint32_t)Record[0]))); 3175 else if (ScalarTy->isDoubleTy()) 3176 V = ConstantFP::get( 3177 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3178 else if (ScalarTy->isX86_FP80Ty()) { 3179 // Bits are not stored the same way as a normal i80 APInt, compensate. 3180 uint64_t Rearrange[2]; 3181 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3182 Rearrange[1] = Record[0] >> 48; 3183 V = ConstantFP::get( 3184 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3185 } else if (ScalarTy->isFP128Ty()) 3186 V = ConstantFP::get(CurTy, 3187 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3188 else if (ScalarTy->isPPC_FP128Ty()) 3189 V = ConstantFP::get( 3190 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3191 else 3192 V = UndefValue::get(CurTy); 3193 break; 3194 } 3195 3196 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3197 if (Record.empty()) 3198 return error("Invalid aggregate record"); 3199 3200 unsigned Size = Record.size(); 3201 SmallVector<unsigned, 16> Elts; 3202 for (unsigned i = 0; i != Size; ++i) 3203 Elts.push_back(Record[i]); 3204 3205 if (isa<StructType>(CurTy)) { 3206 V = BitcodeConstant::create( 3207 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3208 } else if (isa<ArrayType>(CurTy)) { 3209 V = BitcodeConstant::create(Alloc, CurTy, 3210 BitcodeConstant::ConstantArrayOpcode, Elts); 3211 } else if (isa<VectorType>(CurTy)) { 3212 V = BitcodeConstant::create( 3213 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3214 } else { 3215 V = UndefValue::get(CurTy); 3216 } 3217 break; 3218 } 3219 case bitc::CST_CODE_STRING: // STRING: [values] 3220 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3221 if (Record.empty()) 3222 return error("Invalid string record"); 3223 3224 SmallString<16> Elts(Record.begin(), Record.end()); 3225 V = ConstantDataArray::getString(Context, Elts, 3226 BitCode == bitc::CST_CODE_CSTRING); 3227 break; 3228 } 3229 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3230 if (Record.empty()) 3231 return error("Invalid data record"); 3232 3233 Type *EltTy; 3234 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3235 EltTy = Array->getElementType(); 3236 else 3237 EltTy = cast<VectorType>(CurTy)->getElementType(); 3238 if (EltTy->isIntegerTy(8)) { 3239 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3240 if (isa<VectorType>(CurTy)) 3241 V = ConstantDataVector::get(Context, Elts); 3242 else 3243 V = ConstantDataArray::get(Context, Elts); 3244 } else if (EltTy->isIntegerTy(16)) { 3245 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3246 if (isa<VectorType>(CurTy)) 3247 V = ConstantDataVector::get(Context, Elts); 3248 else 3249 V = ConstantDataArray::get(Context, Elts); 3250 } else if (EltTy->isIntegerTy(32)) { 3251 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3252 if (isa<VectorType>(CurTy)) 3253 V = ConstantDataVector::get(Context, Elts); 3254 else 3255 V = ConstantDataArray::get(Context, Elts); 3256 } else if (EltTy->isIntegerTy(64)) { 3257 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3258 if (isa<VectorType>(CurTy)) 3259 V = ConstantDataVector::get(Context, Elts); 3260 else 3261 V = ConstantDataArray::get(Context, Elts); 3262 } else if (EltTy->isHalfTy()) { 3263 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3264 if (isa<VectorType>(CurTy)) 3265 V = ConstantDataVector::getFP(EltTy, Elts); 3266 else 3267 V = ConstantDataArray::getFP(EltTy, Elts); 3268 } else if (EltTy->isBFloatTy()) { 3269 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3270 if (isa<VectorType>(CurTy)) 3271 V = ConstantDataVector::getFP(EltTy, Elts); 3272 else 3273 V = ConstantDataArray::getFP(EltTy, Elts); 3274 } else if (EltTy->isFloatTy()) { 3275 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3276 if (isa<VectorType>(CurTy)) 3277 V = ConstantDataVector::getFP(EltTy, Elts); 3278 else 3279 V = ConstantDataArray::getFP(EltTy, Elts); 3280 } else if (EltTy->isDoubleTy()) { 3281 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3282 if (isa<VectorType>(CurTy)) 3283 V = ConstantDataVector::getFP(EltTy, Elts); 3284 else 3285 V = ConstantDataArray::getFP(EltTy, Elts); 3286 } else { 3287 return error("Invalid type for value"); 3288 } 3289 break; 3290 } 3291 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3292 if (Record.size() < 2) 3293 return error("Invalid unary op constexpr record"); 3294 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3295 if (Opc < 0) { 3296 V = UndefValue::get(CurTy); // Unknown unop. 3297 } else { 3298 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3299 } 3300 break; 3301 } 3302 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3303 if (Record.size() < 3) 3304 return error("Invalid binary op constexpr record"); 3305 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3306 if (Opc < 0) { 3307 V = UndefValue::get(CurTy); // Unknown binop. 3308 } else { 3309 uint8_t Flags = 0; 3310 if (Record.size() >= 4) { 3311 if (Opc == Instruction::Add || 3312 Opc == Instruction::Sub || 3313 Opc == Instruction::Mul || 3314 Opc == Instruction::Shl) { 3315 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3316 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3317 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3318 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3319 } else if (Opc == Instruction::SDiv || 3320 Opc == Instruction::UDiv || 3321 Opc == Instruction::LShr || 3322 Opc == Instruction::AShr) { 3323 if (Record[3] & (1 << bitc::PEO_EXACT)) 3324 Flags |= PossiblyExactOperator::IsExact; 3325 } 3326 } 3327 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3328 {(unsigned)Record[1], (unsigned)Record[2]}); 3329 } 3330 break; 3331 } 3332 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3333 if (Record.size() < 3) 3334 return error("Invalid cast constexpr record"); 3335 int Opc = getDecodedCastOpcode(Record[0]); 3336 if (Opc < 0) { 3337 V = UndefValue::get(CurTy); // Unknown cast. 3338 } else { 3339 unsigned OpTyID = Record[1]; 3340 Type *OpTy = getTypeByID(OpTyID); 3341 if (!OpTy) 3342 return error("Invalid cast constexpr record"); 3343 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3344 } 3345 break; 3346 } 3347 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3348 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3349 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3350 // operands] 3351 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3352 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3353 // operands] 3354 if (Record.size() < 2) 3355 return error("Constant GEP record must have at least two elements"); 3356 unsigned OpNum = 0; 3357 Type *PointeeType = nullptr; 3358 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3359 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3360 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3361 PointeeType = getTypeByID(Record[OpNum++]); 3362 3363 uint64_t Flags = 0; 3364 std::optional<ConstantRange> InRange; 3365 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3366 uint64_t Op = Record[OpNum++]; 3367 Flags = Op & 1; // inbounds 3368 unsigned InRangeIndex = Op >> 1; 3369 // "Upgrade" inrange by dropping it. The feature is too niche to 3370 // bother. 3371 (void)InRangeIndex; 3372 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3373 Flags = Record[OpNum++]; 3374 Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum); 3375 if (!MaybeInRange) 3376 return MaybeInRange.takeError(); 3377 InRange = MaybeInRange.get(); 3378 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3379 Flags = Record[OpNum++]; 3380 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3381 Flags = (1 << bitc::GEP_INBOUNDS); 3382 3383 SmallVector<unsigned, 16> Elts; 3384 unsigned BaseTypeID = Record[OpNum]; 3385 while (OpNum != Record.size()) { 3386 unsigned ElTyID = Record[OpNum++]; 3387 Type *ElTy = getTypeByID(ElTyID); 3388 if (!ElTy) 3389 return error("Invalid getelementptr constexpr record"); 3390 Elts.push_back(Record[OpNum++]); 3391 } 3392 3393 if (Elts.size() < 1) 3394 return error("Invalid gep with no operands"); 3395 3396 Type *BaseType = getTypeByID(BaseTypeID); 3397 if (isa<VectorType>(BaseType)) { 3398 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3399 BaseType = getTypeByID(BaseTypeID); 3400 } 3401 3402 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3403 if (!OrigPtrTy) 3404 return error("GEP base operand must be pointer or vector of pointer"); 3405 3406 if (!PointeeType) { 3407 PointeeType = getPtrElementTypeByID(BaseTypeID); 3408 if (!PointeeType) 3409 return error("Missing element type for old-style constant GEP"); 3410 } 3411 3412 V = BitcodeConstant::create( 3413 Alloc, CurTy, 3414 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3415 Elts); 3416 break; 3417 } 3418 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3419 if (Record.size() < 3) 3420 return error("Invalid select constexpr record"); 3421 3422 V = BitcodeConstant::create( 3423 Alloc, CurTy, Instruction::Select, 3424 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3425 break; 3426 } 3427 case bitc::CST_CODE_CE_EXTRACTELT 3428 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3429 if (Record.size() < 3) 3430 return error("Invalid extractelement constexpr record"); 3431 unsigned OpTyID = Record[0]; 3432 VectorType *OpTy = 3433 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3434 if (!OpTy) 3435 return error("Invalid extractelement constexpr record"); 3436 unsigned IdxRecord; 3437 if (Record.size() == 4) { 3438 unsigned IdxTyID = Record[2]; 3439 Type *IdxTy = getTypeByID(IdxTyID); 3440 if (!IdxTy) 3441 return error("Invalid extractelement constexpr record"); 3442 IdxRecord = Record[3]; 3443 } else { 3444 // Deprecated, but still needed to read old bitcode files. 3445 IdxRecord = Record[2]; 3446 } 3447 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3448 {(unsigned)Record[1], IdxRecord}); 3449 break; 3450 } 3451 case bitc::CST_CODE_CE_INSERTELT 3452 : { // CE_INSERTELT: [opval, opval, opty, opval] 3453 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3454 if (Record.size() < 3 || !OpTy) 3455 return error("Invalid insertelement constexpr record"); 3456 unsigned IdxRecord; 3457 if (Record.size() == 4) { 3458 unsigned IdxTyID = Record[2]; 3459 Type *IdxTy = getTypeByID(IdxTyID); 3460 if (!IdxTy) 3461 return error("Invalid insertelement constexpr record"); 3462 IdxRecord = Record[3]; 3463 } else { 3464 // Deprecated, but still needed to read old bitcode files. 3465 IdxRecord = Record[2]; 3466 } 3467 V = BitcodeConstant::create( 3468 Alloc, CurTy, Instruction::InsertElement, 3469 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3470 break; 3471 } 3472 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3473 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3474 if (Record.size() < 3 || !OpTy) 3475 return error("Invalid shufflevector constexpr record"); 3476 V = BitcodeConstant::create( 3477 Alloc, CurTy, Instruction::ShuffleVector, 3478 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3479 break; 3480 } 3481 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3482 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3483 VectorType *OpTy = 3484 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3485 if (Record.size() < 4 || !RTy || !OpTy) 3486 return error("Invalid shufflevector constexpr record"); 3487 V = BitcodeConstant::create( 3488 Alloc, CurTy, Instruction::ShuffleVector, 3489 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3490 break; 3491 } 3492 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3493 if (Record.size() < 4) 3494 return error("Invalid cmp constexpt record"); 3495 unsigned OpTyID = Record[0]; 3496 Type *OpTy = getTypeByID(OpTyID); 3497 if (!OpTy) 3498 return error("Invalid cmp constexpr record"); 3499 V = BitcodeConstant::create( 3500 Alloc, CurTy, 3501 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3502 : Instruction::ICmp), 3503 (uint8_t)Record[3]}, 3504 {(unsigned)Record[1], (unsigned)Record[2]}); 3505 break; 3506 } 3507 // This maintains backward compatibility, pre-asm dialect keywords. 3508 // Deprecated, but still needed to read old bitcode files. 3509 case bitc::CST_CODE_INLINEASM_OLD: { 3510 if (Record.size() < 2) 3511 return error("Invalid inlineasm record"); 3512 std::string AsmStr, ConstrStr; 3513 bool HasSideEffects = Record[0] & 1; 3514 bool IsAlignStack = Record[0] >> 1; 3515 unsigned AsmStrSize = Record[1]; 3516 if (2+AsmStrSize >= Record.size()) 3517 return error("Invalid inlineasm record"); 3518 unsigned ConstStrSize = Record[2+AsmStrSize]; 3519 if (3+AsmStrSize+ConstStrSize > Record.size()) 3520 return error("Invalid inlineasm record"); 3521 3522 for (unsigned i = 0; i != AsmStrSize; ++i) 3523 AsmStr += (char)Record[2+i]; 3524 for (unsigned i = 0; i != ConstStrSize; ++i) 3525 ConstrStr += (char)Record[3+AsmStrSize+i]; 3526 UpgradeInlineAsmString(&AsmStr); 3527 if (!CurElemTy) 3528 return error("Missing element type for old-style inlineasm"); 3529 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3530 HasSideEffects, IsAlignStack); 3531 break; 3532 } 3533 // This version adds support for the asm dialect keywords (e.g., 3534 // inteldialect). 3535 case bitc::CST_CODE_INLINEASM_OLD2: { 3536 if (Record.size() < 2) 3537 return error("Invalid inlineasm record"); 3538 std::string AsmStr, ConstrStr; 3539 bool HasSideEffects = Record[0] & 1; 3540 bool IsAlignStack = (Record[0] >> 1) & 1; 3541 unsigned AsmDialect = Record[0] >> 2; 3542 unsigned AsmStrSize = Record[1]; 3543 if (2+AsmStrSize >= Record.size()) 3544 return error("Invalid inlineasm record"); 3545 unsigned ConstStrSize = Record[2+AsmStrSize]; 3546 if (3+AsmStrSize+ConstStrSize > Record.size()) 3547 return error("Invalid inlineasm record"); 3548 3549 for (unsigned i = 0; i != AsmStrSize; ++i) 3550 AsmStr += (char)Record[2+i]; 3551 for (unsigned i = 0; i != ConstStrSize; ++i) 3552 ConstrStr += (char)Record[3+AsmStrSize+i]; 3553 UpgradeInlineAsmString(&AsmStr); 3554 if (!CurElemTy) 3555 return error("Missing element type for old-style inlineasm"); 3556 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3557 HasSideEffects, IsAlignStack, 3558 InlineAsm::AsmDialect(AsmDialect)); 3559 break; 3560 } 3561 // This version adds support for the unwind keyword. 3562 case bitc::CST_CODE_INLINEASM_OLD3: { 3563 if (Record.size() < 2) 3564 return error("Invalid inlineasm record"); 3565 unsigned OpNum = 0; 3566 std::string AsmStr, ConstrStr; 3567 bool HasSideEffects = Record[OpNum] & 1; 3568 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3569 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3570 bool CanThrow = (Record[OpNum] >> 3) & 1; 3571 ++OpNum; 3572 unsigned AsmStrSize = Record[OpNum]; 3573 ++OpNum; 3574 if (OpNum + AsmStrSize >= Record.size()) 3575 return error("Invalid inlineasm record"); 3576 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3577 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3578 return error("Invalid inlineasm record"); 3579 3580 for (unsigned i = 0; i != AsmStrSize; ++i) 3581 AsmStr += (char)Record[OpNum + i]; 3582 ++OpNum; 3583 for (unsigned i = 0; i != ConstStrSize; ++i) 3584 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3585 UpgradeInlineAsmString(&AsmStr); 3586 if (!CurElemTy) 3587 return error("Missing element type for old-style inlineasm"); 3588 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3589 HasSideEffects, IsAlignStack, 3590 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3591 break; 3592 } 3593 // This version adds explicit function type. 3594 case bitc::CST_CODE_INLINEASM: { 3595 if (Record.size() < 3) 3596 return error("Invalid inlineasm record"); 3597 unsigned OpNum = 0; 3598 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3599 ++OpNum; 3600 if (!FnTy) 3601 return error("Invalid inlineasm record"); 3602 std::string AsmStr, ConstrStr; 3603 bool HasSideEffects = Record[OpNum] & 1; 3604 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3605 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3606 bool CanThrow = (Record[OpNum] >> 3) & 1; 3607 ++OpNum; 3608 unsigned AsmStrSize = Record[OpNum]; 3609 ++OpNum; 3610 if (OpNum + AsmStrSize >= Record.size()) 3611 return error("Invalid inlineasm record"); 3612 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3613 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3614 return error("Invalid inlineasm record"); 3615 3616 for (unsigned i = 0; i != AsmStrSize; ++i) 3617 AsmStr += (char)Record[OpNum + i]; 3618 ++OpNum; 3619 for (unsigned i = 0; i != ConstStrSize; ++i) 3620 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3621 UpgradeInlineAsmString(&AsmStr); 3622 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3623 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3624 break; 3625 } 3626 case bitc::CST_CODE_BLOCKADDRESS:{ 3627 if (Record.size() < 3) 3628 return error("Invalid blockaddress record"); 3629 unsigned FnTyID = Record[0]; 3630 Type *FnTy = getTypeByID(FnTyID); 3631 if (!FnTy) 3632 return error("Invalid blockaddress record"); 3633 V = BitcodeConstant::create( 3634 Alloc, CurTy, 3635 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3636 Record[1]); 3637 break; 3638 } 3639 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3640 if (Record.size() < 2) 3641 return error("Invalid dso_local record"); 3642 unsigned GVTyID = Record[0]; 3643 Type *GVTy = getTypeByID(GVTyID); 3644 if (!GVTy) 3645 return error("Invalid dso_local record"); 3646 V = BitcodeConstant::create( 3647 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3648 break; 3649 } 3650 case bitc::CST_CODE_NO_CFI_VALUE: { 3651 if (Record.size() < 2) 3652 return error("Invalid no_cfi record"); 3653 unsigned GVTyID = Record[0]; 3654 Type *GVTy = getTypeByID(GVTyID); 3655 if (!GVTy) 3656 return error("Invalid no_cfi record"); 3657 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3658 Record[1]); 3659 break; 3660 } 3661 case bitc::CST_CODE_PTRAUTH: { 3662 if (Record.size() < 4) 3663 return error("Invalid ptrauth record"); 3664 // Ptr, Key, Disc, AddrDisc 3665 V = BitcodeConstant::create(Alloc, CurTy, 3666 BitcodeConstant::ConstantPtrAuthOpcode, 3667 {(unsigned)Record[0], (unsigned)Record[1], 3668 (unsigned)Record[2], (unsigned)Record[3]}); 3669 break; 3670 } 3671 } 3672 3673 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3674 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3675 return Err; 3676 ++NextCstNo; 3677 } 3678 } 3679 3680 Error BitcodeReader::parseUseLists() { 3681 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3682 return Err; 3683 3684 // Read all the records. 3685 SmallVector<uint64_t, 64> Record; 3686 3687 while (true) { 3688 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3689 if (!MaybeEntry) 3690 return MaybeEntry.takeError(); 3691 BitstreamEntry Entry = MaybeEntry.get(); 3692 3693 switch (Entry.Kind) { 3694 case BitstreamEntry::SubBlock: // Handled for us already. 3695 case BitstreamEntry::Error: 3696 return error("Malformed block"); 3697 case BitstreamEntry::EndBlock: 3698 return Error::success(); 3699 case BitstreamEntry::Record: 3700 // The interesting case. 3701 break; 3702 } 3703 3704 // Read a use list record. 3705 Record.clear(); 3706 bool IsBB = false; 3707 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3708 if (!MaybeRecord) 3709 return MaybeRecord.takeError(); 3710 switch (MaybeRecord.get()) { 3711 default: // Default behavior: unknown type. 3712 break; 3713 case bitc::USELIST_CODE_BB: 3714 IsBB = true; 3715 [[fallthrough]]; 3716 case bitc::USELIST_CODE_DEFAULT: { 3717 unsigned RecordLength = Record.size(); 3718 if (RecordLength < 3) 3719 // Records should have at least an ID and two indexes. 3720 return error("Invalid record"); 3721 unsigned ID = Record.pop_back_val(); 3722 3723 Value *V; 3724 if (IsBB) { 3725 assert(ID < FunctionBBs.size() && "Basic block not found"); 3726 V = FunctionBBs[ID]; 3727 } else 3728 V = ValueList[ID]; 3729 unsigned NumUses = 0; 3730 SmallDenseMap<const Use *, unsigned, 16> Order; 3731 for (const Use &U : V->materialized_uses()) { 3732 if (++NumUses > Record.size()) 3733 break; 3734 Order[&U] = Record[NumUses - 1]; 3735 } 3736 if (Order.size() != Record.size() || NumUses > Record.size()) 3737 // Mismatches can happen if the functions are being materialized lazily 3738 // (out-of-order), or a value has been upgraded. 3739 break; 3740 3741 V->sortUseList([&](const Use &L, const Use &R) { 3742 return Order.lookup(&L) < Order.lookup(&R); 3743 }); 3744 break; 3745 } 3746 } 3747 } 3748 } 3749 3750 /// When we see the block for metadata, remember where it is and then skip it. 3751 /// This lets us lazily deserialize the metadata. 3752 Error BitcodeReader::rememberAndSkipMetadata() { 3753 // Save the current stream state. 3754 uint64_t CurBit = Stream.GetCurrentBitNo(); 3755 DeferredMetadataInfo.push_back(CurBit); 3756 3757 // Skip over the block for now. 3758 if (Error Err = Stream.SkipBlock()) 3759 return Err; 3760 return Error::success(); 3761 } 3762 3763 Error BitcodeReader::materializeMetadata() { 3764 for (uint64_t BitPos : DeferredMetadataInfo) { 3765 // Move the bit stream to the saved position. 3766 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3767 return JumpFailed; 3768 if (Error Err = MDLoader->parseModuleMetadata()) 3769 return Err; 3770 } 3771 3772 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3773 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3774 // multiple times. 3775 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3776 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3777 NamedMDNode *LinkerOpts = 3778 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3779 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3780 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3781 } 3782 } 3783 3784 DeferredMetadataInfo.clear(); 3785 return Error::success(); 3786 } 3787 3788 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3789 3790 /// When we see the block for a function body, remember where it is and then 3791 /// skip it. This lets us lazily deserialize the functions. 3792 Error BitcodeReader::rememberAndSkipFunctionBody() { 3793 // Get the function we are talking about. 3794 if (FunctionsWithBodies.empty()) 3795 return error("Insufficient function protos"); 3796 3797 Function *Fn = FunctionsWithBodies.back(); 3798 FunctionsWithBodies.pop_back(); 3799 3800 // Save the current stream state. 3801 uint64_t CurBit = Stream.GetCurrentBitNo(); 3802 assert( 3803 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3804 "Mismatch between VST and scanned function offsets"); 3805 DeferredFunctionInfo[Fn] = CurBit; 3806 3807 // Skip over the function block for now. 3808 if (Error Err = Stream.SkipBlock()) 3809 return Err; 3810 return Error::success(); 3811 } 3812 3813 Error BitcodeReader::globalCleanup() { 3814 // Patch the initializers for globals and aliases up. 3815 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3816 return Err; 3817 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3818 return error("Malformed global initializer set"); 3819 3820 // Look for intrinsic functions which need to be upgraded at some point 3821 // and functions that need to have their function attributes upgraded. 3822 for (Function &F : *TheModule) { 3823 MDLoader->upgradeDebugIntrinsics(F); 3824 Function *NewFn; 3825 // If PreserveInputDbgFormat=true, then we don't know whether we want 3826 // intrinsics or records, and we won't perform any conversions in either 3827 // case, so don't upgrade intrinsics to records. 3828 if (UpgradeIntrinsicFunction( 3829 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3830 UpgradedIntrinsics[&F] = NewFn; 3831 // Look for functions that rely on old function attribute behavior. 3832 UpgradeFunctionAttributes(F); 3833 } 3834 3835 // Look for global variables which need to be renamed. 3836 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3837 for (GlobalVariable &GV : TheModule->globals()) 3838 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3839 UpgradedVariables.emplace_back(&GV, Upgraded); 3840 for (auto &Pair : UpgradedVariables) { 3841 Pair.first->eraseFromParent(); 3842 TheModule->insertGlobalVariable(Pair.second); 3843 } 3844 3845 // Force deallocation of memory for these vectors to favor the client that 3846 // want lazy deserialization. 3847 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3848 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3849 return Error::success(); 3850 } 3851 3852 /// Support for lazy parsing of function bodies. This is required if we 3853 /// either have an old bitcode file without a VST forward declaration record, 3854 /// or if we have an anonymous function being materialized, since anonymous 3855 /// functions do not have a name and are therefore not in the VST. 3856 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3857 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3858 return JumpFailed; 3859 3860 if (Stream.AtEndOfStream()) 3861 return error("Could not find function in stream"); 3862 3863 if (!SeenFirstFunctionBody) 3864 return error("Trying to materialize functions before seeing function blocks"); 3865 3866 // An old bitcode file with the symbol table at the end would have 3867 // finished the parse greedily. 3868 assert(SeenValueSymbolTable); 3869 3870 SmallVector<uint64_t, 64> Record; 3871 3872 while (true) { 3873 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3874 if (!MaybeEntry) 3875 return MaybeEntry.takeError(); 3876 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3877 3878 switch (Entry.Kind) { 3879 default: 3880 return error("Expect SubBlock"); 3881 case BitstreamEntry::SubBlock: 3882 switch (Entry.ID) { 3883 default: 3884 return error("Expect function block"); 3885 case bitc::FUNCTION_BLOCK_ID: 3886 if (Error Err = rememberAndSkipFunctionBody()) 3887 return Err; 3888 NextUnreadBit = Stream.GetCurrentBitNo(); 3889 return Error::success(); 3890 } 3891 } 3892 } 3893 } 3894 3895 Error BitcodeReaderBase::readBlockInfo() { 3896 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3897 Stream.ReadBlockInfoBlock(); 3898 if (!MaybeNewBlockInfo) 3899 return MaybeNewBlockInfo.takeError(); 3900 std::optional<BitstreamBlockInfo> NewBlockInfo = 3901 std::move(MaybeNewBlockInfo.get()); 3902 if (!NewBlockInfo) 3903 return error("Malformed block"); 3904 BlockInfo = std::move(*NewBlockInfo); 3905 return Error::success(); 3906 } 3907 3908 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3909 // v1: [selection_kind, name] 3910 // v2: [strtab_offset, strtab_size, selection_kind] 3911 StringRef Name; 3912 std::tie(Name, Record) = readNameFromStrtab(Record); 3913 3914 if (Record.empty()) 3915 return error("Invalid record"); 3916 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3917 std::string OldFormatName; 3918 if (!UseStrtab) { 3919 if (Record.size() < 2) 3920 return error("Invalid record"); 3921 unsigned ComdatNameSize = Record[1]; 3922 if (ComdatNameSize > Record.size() - 2) 3923 return error("Comdat name size too large"); 3924 OldFormatName.reserve(ComdatNameSize); 3925 for (unsigned i = 0; i != ComdatNameSize; ++i) 3926 OldFormatName += (char)Record[2 + i]; 3927 Name = OldFormatName; 3928 } 3929 Comdat *C = TheModule->getOrInsertComdat(Name); 3930 C->setSelectionKind(SK); 3931 ComdatList.push_back(C); 3932 return Error::success(); 3933 } 3934 3935 static void inferDSOLocal(GlobalValue *GV) { 3936 // infer dso_local from linkage and visibility if it is not encoded. 3937 if (GV->hasLocalLinkage() || 3938 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3939 GV->setDSOLocal(true); 3940 } 3941 3942 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3943 GlobalValue::SanitizerMetadata Meta; 3944 if (V & (1 << 0)) 3945 Meta.NoAddress = true; 3946 if (V & (1 << 1)) 3947 Meta.NoHWAddress = true; 3948 if (V & (1 << 2)) 3949 Meta.Memtag = true; 3950 if (V & (1 << 3)) 3951 Meta.IsDynInit = true; 3952 return Meta; 3953 } 3954 3955 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3956 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3957 // visibility, threadlocal, unnamed_addr, externally_initialized, 3958 // dllstorageclass, comdat, attributes, preemption specifier, 3959 // partition strtab offset, partition strtab size] (name in VST) 3960 // v2: [strtab_offset, strtab_size, v1] 3961 // v3: [v2, code_model] 3962 StringRef Name; 3963 std::tie(Name, Record) = readNameFromStrtab(Record); 3964 3965 if (Record.size() < 6) 3966 return error("Invalid record"); 3967 unsigned TyID = Record[0]; 3968 Type *Ty = getTypeByID(TyID); 3969 if (!Ty) 3970 return error("Invalid record"); 3971 bool isConstant = Record[1] & 1; 3972 bool explicitType = Record[1] & 2; 3973 unsigned AddressSpace; 3974 if (explicitType) { 3975 AddressSpace = Record[1] >> 2; 3976 } else { 3977 if (!Ty->isPointerTy()) 3978 return error("Invalid type for value"); 3979 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3980 TyID = getContainedTypeID(TyID); 3981 Ty = getTypeByID(TyID); 3982 if (!Ty) 3983 return error("Missing element type for old-style global"); 3984 } 3985 3986 uint64_t RawLinkage = Record[3]; 3987 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3988 MaybeAlign Alignment; 3989 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3990 return Err; 3991 std::string Section; 3992 if (Record[5]) { 3993 if (Record[5] - 1 >= SectionTable.size()) 3994 return error("Invalid ID"); 3995 Section = SectionTable[Record[5] - 1]; 3996 } 3997 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3998 // Local linkage must have default visibility. 3999 // auto-upgrade `hidden` and `protected` for old bitcode. 4000 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4001 Visibility = getDecodedVisibility(Record[6]); 4002 4003 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4004 if (Record.size() > 7) 4005 TLM = getDecodedThreadLocalMode(Record[7]); 4006 4007 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4008 if (Record.size() > 8) 4009 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4010 4011 bool ExternallyInitialized = false; 4012 if (Record.size() > 9) 4013 ExternallyInitialized = Record[9]; 4014 4015 GlobalVariable *NewGV = 4016 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4017 nullptr, TLM, AddressSpace, ExternallyInitialized); 4018 if (Alignment) 4019 NewGV->setAlignment(*Alignment); 4020 if (!Section.empty()) 4021 NewGV->setSection(Section); 4022 NewGV->setVisibility(Visibility); 4023 NewGV->setUnnamedAddr(UnnamedAddr); 4024 4025 if (Record.size() > 10) { 4026 // A GlobalValue with local linkage cannot have a DLL storage class. 4027 if (!NewGV->hasLocalLinkage()) { 4028 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4029 } 4030 } else { 4031 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4032 } 4033 4034 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4035 4036 // Remember which value to use for the global initializer. 4037 if (unsigned InitID = Record[2]) 4038 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4039 4040 if (Record.size() > 11) { 4041 if (unsigned ComdatID = Record[11]) { 4042 if (ComdatID > ComdatList.size()) 4043 return error("Invalid global variable comdat ID"); 4044 NewGV->setComdat(ComdatList[ComdatID - 1]); 4045 } 4046 } else if (hasImplicitComdat(RawLinkage)) { 4047 ImplicitComdatObjects.insert(NewGV); 4048 } 4049 4050 if (Record.size() > 12) { 4051 auto AS = getAttributes(Record[12]).getFnAttrs(); 4052 NewGV->setAttributes(AS); 4053 } 4054 4055 if (Record.size() > 13) { 4056 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4057 } 4058 inferDSOLocal(NewGV); 4059 4060 // Check whether we have enough values to read a partition name. 4061 if (Record.size() > 15) 4062 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4063 4064 if (Record.size() > 16 && Record[16]) { 4065 llvm::GlobalValue::SanitizerMetadata Meta = 4066 deserializeSanitizerMetadata(Record[16]); 4067 NewGV->setSanitizerMetadata(Meta); 4068 } 4069 4070 if (Record.size() > 17 && Record[17]) { 4071 if (auto CM = getDecodedCodeModel(Record[17])) 4072 NewGV->setCodeModel(*CM); 4073 else 4074 return error("Invalid global variable code model"); 4075 } 4076 4077 return Error::success(); 4078 } 4079 4080 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4081 if (ValueTypeCallback) { 4082 (*ValueTypeCallback)( 4083 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4084 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4085 } 4086 } 4087 4088 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4089 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4090 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4091 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4092 // v2: [strtab_offset, strtab_size, v1] 4093 StringRef Name; 4094 std::tie(Name, Record) = readNameFromStrtab(Record); 4095 4096 if (Record.size() < 8) 4097 return error("Invalid record"); 4098 unsigned FTyID = Record[0]; 4099 Type *FTy = getTypeByID(FTyID); 4100 if (!FTy) 4101 return error("Invalid record"); 4102 if (isa<PointerType>(FTy)) { 4103 FTyID = getContainedTypeID(FTyID, 0); 4104 FTy = getTypeByID(FTyID); 4105 if (!FTy) 4106 return error("Missing element type for old-style function"); 4107 } 4108 4109 if (!isa<FunctionType>(FTy)) 4110 return error("Invalid type for value"); 4111 auto CC = static_cast<CallingConv::ID>(Record[1]); 4112 if (CC & ~CallingConv::MaxID) 4113 return error("Invalid calling convention ID"); 4114 4115 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4116 if (Record.size() > 16) 4117 AddrSpace = Record[16]; 4118 4119 Function *Func = 4120 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4121 AddrSpace, Name, TheModule); 4122 4123 assert(Func->getFunctionType() == FTy && 4124 "Incorrect fully specified type provided for function"); 4125 FunctionTypeIDs[Func] = FTyID; 4126 4127 Func->setCallingConv(CC); 4128 bool isProto = Record[2]; 4129 uint64_t RawLinkage = Record[3]; 4130 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4131 Func->setAttributes(getAttributes(Record[4])); 4132 callValueTypeCallback(Func, FTyID); 4133 4134 // Upgrade any old-style byval or sret without a type by propagating the 4135 // argument's pointee type. There should be no opaque pointers where the byval 4136 // type is implicit. 4137 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4138 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4139 Attribute::InAlloca}) { 4140 if (!Func->hasParamAttribute(i, Kind)) 4141 continue; 4142 4143 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4144 continue; 4145 4146 Func->removeParamAttr(i, Kind); 4147 4148 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4149 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4150 if (!PtrEltTy) 4151 return error("Missing param element type for attribute upgrade"); 4152 4153 Attribute NewAttr; 4154 switch (Kind) { 4155 case Attribute::ByVal: 4156 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4157 break; 4158 case Attribute::StructRet: 4159 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4160 break; 4161 case Attribute::InAlloca: 4162 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4163 break; 4164 default: 4165 llvm_unreachable("not an upgraded type attribute"); 4166 } 4167 4168 Func->addParamAttr(i, NewAttr); 4169 } 4170 } 4171 4172 if (Func->getCallingConv() == CallingConv::X86_INTR && 4173 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4174 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4175 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4176 if (!ByValTy) 4177 return error("Missing param element type for x86_intrcc upgrade"); 4178 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4179 Func->addParamAttr(0, NewAttr); 4180 } 4181 4182 MaybeAlign Alignment; 4183 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4184 return Err; 4185 if (Alignment) 4186 Func->setAlignment(*Alignment); 4187 if (Record[6]) { 4188 if (Record[6] - 1 >= SectionTable.size()) 4189 return error("Invalid ID"); 4190 Func->setSection(SectionTable[Record[6] - 1]); 4191 } 4192 // Local linkage must have default visibility. 4193 // auto-upgrade `hidden` and `protected` for old bitcode. 4194 if (!Func->hasLocalLinkage()) 4195 Func->setVisibility(getDecodedVisibility(Record[7])); 4196 if (Record.size() > 8 && Record[8]) { 4197 if (Record[8] - 1 >= GCTable.size()) 4198 return error("Invalid ID"); 4199 Func->setGC(GCTable[Record[8] - 1]); 4200 } 4201 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4202 if (Record.size() > 9) 4203 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4204 Func->setUnnamedAddr(UnnamedAddr); 4205 4206 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4207 if (Record.size() > 10) 4208 OperandInfo.Prologue = Record[10]; 4209 4210 if (Record.size() > 11) { 4211 // A GlobalValue with local linkage cannot have a DLL storage class. 4212 if (!Func->hasLocalLinkage()) { 4213 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4214 } 4215 } else { 4216 upgradeDLLImportExportLinkage(Func, RawLinkage); 4217 } 4218 4219 if (Record.size() > 12) { 4220 if (unsigned ComdatID = Record[12]) { 4221 if (ComdatID > ComdatList.size()) 4222 return error("Invalid function comdat ID"); 4223 Func->setComdat(ComdatList[ComdatID - 1]); 4224 } 4225 } else if (hasImplicitComdat(RawLinkage)) { 4226 ImplicitComdatObjects.insert(Func); 4227 } 4228 4229 if (Record.size() > 13) 4230 OperandInfo.Prefix = Record[13]; 4231 4232 if (Record.size() > 14) 4233 OperandInfo.PersonalityFn = Record[14]; 4234 4235 if (Record.size() > 15) { 4236 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4237 } 4238 inferDSOLocal(Func); 4239 4240 // Record[16] is the address space number. 4241 4242 // Check whether we have enough values to read a partition name. Also make 4243 // sure Strtab has enough values. 4244 if (Record.size() > 18 && Strtab.data() && 4245 Record[17] + Record[18] <= Strtab.size()) { 4246 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4247 } 4248 4249 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4250 4251 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4252 FunctionOperands.push_back(OperandInfo); 4253 4254 // If this is a function with a body, remember the prototype we are 4255 // creating now, so that we can match up the body with them later. 4256 if (!isProto) { 4257 Func->setIsMaterializable(true); 4258 FunctionsWithBodies.push_back(Func); 4259 DeferredFunctionInfo[Func] = 0; 4260 } 4261 return Error::success(); 4262 } 4263 4264 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4265 unsigned BitCode, ArrayRef<uint64_t> Record) { 4266 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4267 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4268 // dllstorageclass, threadlocal, unnamed_addr, 4269 // preemption specifier] (name in VST) 4270 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4271 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4272 // preemption specifier] (name in VST) 4273 // v2: [strtab_offset, strtab_size, v1] 4274 StringRef Name; 4275 std::tie(Name, Record) = readNameFromStrtab(Record); 4276 4277 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4278 if (Record.size() < (3 + (unsigned)NewRecord)) 4279 return error("Invalid record"); 4280 unsigned OpNum = 0; 4281 unsigned TypeID = Record[OpNum++]; 4282 Type *Ty = getTypeByID(TypeID); 4283 if (!Ty) 4284 return error("Invalid record"); 4285 4286 unsigned AddrSpace; 4287 if (!NewRecord) { 4288 auto *PTy = dyn_cast<PointerType>(Ty); 4289 if (!PTy) 4290 return error("Invalid type for value"); 4291 AddrSpace = PTy->getAddressSpace(); 4292 TypeID = getContainedTypeID(TypeID); 4293 Ty = getTypeByID(TypeID); 4294 if (!Ty) 4295 return error("Missing element type for old-style indirect symbol"); 4296 } else { 4297 AddrSpace = Record[OpNum++]; 4298 } 4299 4300 auto Val = Record[OpNum++]; 4301 auto Linkage = Record[OpNum++]; 4302 GlobalValue *NewGA; 4303 if (BitCode == bitc::MODULE_CODE_ALIAS || 4304 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4305 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4306 TheModule); 4307 else 4308 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4309 nullptr, TheModule); 4310 4311 // Local linkage must have default visibility. 4312 // auto-upgrade `hidden` and `protected` for old bitcode. 4313 if (OpNum != Record.size()) { 4314 auto VisInd = OpNum++; 4315 if (!NewGA->hasLocalLinkage()) 4316 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4317 } 4318 if (BitCode == bitc::MODULE_CODE_ALIAS || 4319 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4320 if (OpNum != Record.size()) { 4321 auto S = Record[OpNum++]; 4322 // A GlobalValue with local linkage cannot have a DLL storage class. 4323 if (!NewGA->hasLocalLinkage()) 4324 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4325 } 4326 else 4327 upgradeDLLImportExportLinkage(NewGA, Linkage); 4328 if (OpNum != Record.size()) 4329 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4330 if (OpNum != Record.size()) 4331 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4332 } 4333 if (OpNum != Record.size()) 4334 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4335 inferDSOLocal(NewGA); 4336 4337 // Check whether we have enough values to read a partition name. 4338 if (OpNum + 1 < Record.size()) { 4339 // Check Strtab has enough values for the partition. 4340 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4341 return error("Malformed partition, too large."); 4342 NewGA->setPartition( 4343 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4344 OpNum += 2; 4345 } 4346 4347 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4348 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4349 return Error::success(); 4350 } 4351 4352 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4353 bool ShouldLazyLoadMetadata, 4354 ParserCallbacks Callbacks) { 4355 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4356 // has been set to true and we aren't attempting to preserve the existing 4357 // format in the bitcode (default action: load into the old debug format). 4358 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4359 TheModule->IsNewDbgInfoFormat = 4360 UseNewDbgInfoFormat && 4361 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4362 } 4363 4364 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4365 if (ResumeBit) { 4366 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4367 return JumpFailed; 4368 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4369 return Err; 4370 4371 SmallVector<uint64_t, 64> Record; 4372 4373 // Parts of bitcode parsing depend on the datalayout. Make sure we 4374 // finalize the datalayout before we run any of that code. 4375 bool ResolvedDataLayout = false; 4376 // In order to support importing modules with illegal data layout strings, 4377 // delay parsing the data layout string until after upgrades and overrides 4378 // have been applied, allowing to fix illegal data layout strings. 4379 // Initialize to the current module's layout string in case none is specified. 4380 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4381 4382 auto ResolveDataLayout = [&]() -> Error { 4383 if (ResolvedDataLayout) 4384 return Error::success(); 4385 4386 // Datalayout and triple can't be parsed after this point. 4387 ResolvedDataLayout = true; 4388 4389 // Auto-upgrade the layout string 4390 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4391 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4392 4393 // Apply override 4394 if (Callbacks.DataLayout) { 4395 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4396 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4397 TentativeDataLayoutStr = *LayoutOverride; 4398 } 4399 4400 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4401 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4402 if (!MaybeDL) 4403 return MaybeDL.takeError(); 4404 4405 TheModule->setDataLayout(MaybeDL.get()); 4406 return Error::success(); 4407 }; 4408 4409 // Read all the records for this module. 4410 while (true) { 4411 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4412 if (!MaybeEntry) 4413 return MaybeEntry.takeError(); 4414 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4415 4416 switch (Entry.Kind) { 4417 case BitstreamEntry::Error: 4418 return error("Malformed block"); 4419 case BitstreamEntry::EndBlock: 4420 if (Error Err = ResolveDataLayout()) 4421 return Err; 4422 return globalCleanup(); 4423 4424 case BitstreamEntry::SubBlock: 4425 switch (Entry.ID) { 4426 default: // Skip unknown content. 4427 if (Error Err = Stream.SkipBlock()) 4428 return Err; 4429 break; 4430 case bitc::BLOCKINFO_BLOCK_ID: 4431 if (Error Err = readBlockInfo()) 4432 return Err; 4433 break; 4434 case bitc::PARAMATTR_BLOCK_ID: 4435 if (Error Err = parseAttributeBlock()) 4436 return Err; 4437 break; 4438 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4439 if (Error Err = parseAttributeGroupBlock()) 4440 return Err; 4441 break; 4442 case bitc::TYPE_BLOCK_ID_NEW: 4443 if (Error Err = parseTypeTable()) 4444 return Err; 4445 break; 4446 case bitc::VALUE_SYMTAB_BLOCK_ID: 4447 if (!SeenValueSymbolTable) { 4448 // Either this is an old form VST without function index and an 4449 // associated VST forward declaration record (which would have caused 4450 // the VST to be jumped to and parsed before it was encountered 4451 // normally in the stream), or there were no function blocks to 4452 // trigger an earlier parsing of the VST. 4453 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4454 if (Error Err = parseValueSymbolTable()) 4455 return Err; 4456 SeenValueSymbolTable = true; 4457 } else { 4458 // We must have had a VST forward declaration record, which caused 4459 // the parser to jump to and parse the VST earlier. 4460 assert(VSTOffset > 0); 4461 if (Error Err = Stream.SkipBlock()) 4462 return Err; 4463 } 4464 break; 4465 case bitc::CONSTANTS_BLOCK_ID: 4466 if (Error Err = parseConstants()) 4467 return Err; 4468 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4469 return Err; 4470 break; 4471 case bitc::METADATA_BLOCK_ID: 4472 if (ShouldLazyLoadMetadata) { 4473 if (Error Err = rememberAndSkipMetadata()) 4474 return Err; 4475 break; 4476 } 4477 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4478 if (Error Err = MDLoader->parseModuleMetadata()) 4479 return Err; 4480 break; 4481 case bitc::METADATA_KIND_BLOCK_ID: 4482 if (Error Err = MDLoader->parseMetadataKinds()) 4483 return Err; 4484 break; 4485 case bitc::FUNCTION_BLOCK_ID: 4486 if (Error Err = ResolveDataLayout()) 4487 return Err; 4488 4489 // If this is the first function body we've seen, reverse the 4490 // FunctionsWithBodies list. 4491 if (!SeenFirstFunctionBody) { 4492 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4493 if (Error Err = globalCleanup()) 4494 return Err; 4495 SeenFirstFunctionBody = true; 4496 } 4497 4498 if (VSTOffset > 0) { 4499 // If we have a VST forward declaration record, make sure we 4500 // parse the VST now if we haven't already. It is needed to 4501 // set up the DeferredFunctionInfo vector for lazy reading. 4502 if (!SeenValueSymbolTable) { 4503 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4504 return Err; 4505 SeenValueSymbolTable = true; 4506 // Fall through so that we record the NextUnreadBit below. 4507 // This is necessary in case we have an anonymous function that 4508 // is later materialized. Since it will not have a VST entry we 4509 // need to fall back to the lazy parse to find its offset. 4510 } else { 4511 // If we have a VST forward declaration record, but have already 4512 // parsed the VST (just above, when the first function body was 4513 // encountered here), then we are resuming the parse after 4514 // materializing functions. The ResumeBit points to the 4515 // start of the last function block recorded in the 4516 // DeferredFunctionInfo map. Skip it. 4517 if (Error Err = Stream.SkipBlock()) 4518 return Err; 4519 continue; 4520 } 4521 } 4522 4523 // Support older bitcode files that did not have the function 4524 // index in the VST, nor a VST forward declaration record, as 4525 // well as anonymous functions that do not have VST entries. 4526 // Build the DeferredFunctionInfo vector on the fly. 4527 if (Error Err = rememberAndSkipFunctionBody()) 4528 return Err; 4529 4530 // Suspend parsing when we reach the function bodies. Subsequent 4531 // materialization calls will resume it when necessary. If the bitcode 4532 // file is old, the symbol table will be at the end instead and will not 4533 // have been seen yet. In this case, just finish the parse now. 4534 if (SeenValueSymbolTable) { 4535 NextUnreadBit = Stream.GetCurrentBitNo(); 4536 // After the VST has been parsed, we need to make sure intrinsic name 4537 // are auto-upgraded. 4538 return globalCleanup(); 4539 } 4540 break; 4541 case bitc::USELIST_BLOCK_ID: 4542 if (Error Err = parseUseLists()) 4543 return Err; 4544 break; 4545 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4546 if (Error Err = parseOperandBundleTags()) 4547 return Err; 4548 break; 4549 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4550 if (Error Err = parseSyncScopeNames()) 4551 return Err; 4552 break; 4553 } 4554 continue; 4555 4556 case BitstreamEntry::Record: 4557 // The interesting case. 4558 break; 4559 } 4560 4561 // Read a record. 4562 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4563 if (!MaybeBitCode) 4564 return MaybeBitCode.takeError(); 4565 switch (unsigned BitCode = MaybeBitCode.get()) { 4566 default: break; // Default behavior, ignore unknown content. 4567 case bitc::MODULE_CODE_VERSION: { 4568 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4569 if (!VersionOrErr) 4570 return VersionOrErr.takeError(); 4571 UseRelativeIDs = *VersionOrErr >= 1; 4572 break; 4573 } 4574 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4575 if (ResolvedDataLayout) 4576 return error("target triple too late in module"); 4577 std::string S; 4578 if (convertToString(Record, 0, S)) 4579 return error("Invalid record"); 4580 TheModule->setTargetTriple(S); 4581 break; 4582 } 4583 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4584 if (ResolvedDataLayout) 4585 return error("datalayout too late in module"); 4586 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4587 return error("Invalid record"); 4588 break; 4589 } 4590 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4591 std::string S; 4592 if (convertToString(Record, 0, S)) 4593 return error("Invalid record"); 4594 TheModule->setModuleInlineAsm(S); 4595 break; 4596 } 4597 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4598 // Deprecated, but still needed to read old bitcode files. 4599 std::string S; 4600 if (convertToString(Record, 0, S)) 4601 return error("Invalid record"); 4602 // Ignore value. 4603 break; 4604 } 4605 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4606 std::string S; 4607 if (convertToString(Record, 0, S)) 4608 return error("Invalid record"); 4609 SectionTable.push_back(S); 4610 break; 4611 } 4612 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4613 std::string S; 4614 if (convertToString(Record, 0, S)) 4615 return error("Invalid record"); 4616 GCTable.push_back(S); 4617 break; 4618 } 4619 case bitc::MODULE_CODE_COMDAT: 4620 if (Error Err = parseComdatRecord(Record)) 4621 return Err; 4622 break; 4623 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4624 // written by ThinLinkBitcodeWriter. See 4625 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4626 // record 4627 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4628 case bitc::MODULE_CODE_GLOBALVAR: 4629 if (Error Err = parseGlobalVarRecord(Record)) 4630 return Err; 4631 break; 4632 case bitc::MODULE_CODE_FUNCTION: 4633 if (Error Err = ResolveDataLayout()) 4634 return Err; 4635 if (Error Err = parseFunctionRecord(Record)) 4636 return Err; 4637 break; 4638 case bitc::MODULE_CODE_IFUNC: 4639 case bitc::MODULE_CODE_ALIAS: 4640 case bitc::MODULE_CODE_ALIAS_OLD: 4641 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4642 return Err; 4643 break; 4644 /// MODULE_CODE_VSTOFFSET: [offset] 4645 case bitc::MODULE_CODE_VSTOFFSET: 4646 if (Record.empty()) 4647 return error("Invalid record"); 4648 // Note that we subtract 1 here because the offset is relative to one word 4649 // before the start of the identification or module block, which was 4650 // historically always the start of the regular bitcode header. 4651 VSTOffset = Record[0] - 1; 4652 break; 4653 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4654 case bitc::MODULE_CODE_SOURCE_FILENAME: 4655 SmallString<128> ValueName; 4656 if (convertToString(Record, 0, ValueName)) 4657 return error("Invalid record"); 4658 TheModule->setSourceFileName(ValueName); 4659 break; 4660 } 4661 Record.clear(); 4662 } 4663 this->ValueTypeCallback = std::nullopt; 4664 return Error::success(); 4665 } 4666 4667 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4668 bool IsImporting, 4669 ParserCallbacks Callbacks) { 4670 TheModule = M; 4671 MetadataLoaderCallbacks MDCallbacks; 4672 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4673 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4674 return getContainedTypeID(I, J); 4675 }; 4676 MDCallbacks.MDType = Callbacks.MDType; 4677 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4678 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4679 } 4680 4681 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4682 if (!isa<PointerType>(PtrType)) 4683 return error("Load/Store operand is not a pointer type"); 4684 if (!PointerType::isLoadableOrStorableType(ValType)) 4685 return error("Cannot load/store from pointer"); 4686 return Error::success(); 4687 } 4688 4689 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4690 ArrayRef<unsigned> ArgTyIDs) { 4691 AttributeList Attrs = CB->getAttributes(); 4692 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4693 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4694 Attribute::InAlloca}) { 4695 if (!Attrs.hasParamAttr(i, Kind) || 4696 Attrs.getParamAttr(i, Kind).getValueAsType()) 4697 continue; 4698 4699 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4700 if (!PtrEltTy) 4701 return error("Missing element type for typed attribute upgrade"); 4702 4703 Attribute NewAttr; 4704 switch (Kind) { 4705 case Attribute::ByVal: 4706 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4707 break; 4708 case Attribute::StructRet: 4709 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4710 break; 4711 case Attribute::InAlloca: 4712 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4713 break; 4714 default: 4715 llvm_unreachable("not an upgraded type attribute"); 4716 } 4717 4718 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4719 } 4720 } 4721 4722 if (CB->isInlineAsm()) { 4723 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4724 unsigned ArgNo = 0; 4725 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4726 if (!CI.hasArg()) 4727 continue; 4728 4729 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4730 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4731 if (!ElemTy) 4732 return error("Missing element type for inline asm upgrade"); 4733 Attrs = Attrs.addParamAttribute( 4734 Context, ArgNo, 4735 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4736 } 4737 4738 ArgNo++; 4739 } 4740 } 4741 4742 switch (CB->getIntrinsicID()) { 4743 case Intrinsic::preserve_array_access_index: 4744 case Intrinsic::preserve_struct_access_index: 4745 case Intrinsic::aarch64_ldaxr: 4746 case Intrinsic::aarch64_ldxr: 4747 case Intrinsic::aarch64_stlxr: 4748 case Intrinsic::aarch64_stxr: 4749 case Intrinsic::arm_ldaex: 4750 case Intrinsic::arm_ldrex: 4751 case Intrinsic::arm_stlex: 4752 case Intrinsic::arm_strex: { 4753 unsigned ArgNo; 4754 switch (CB->getIntrinsicID()) { 4755 case Intrinsic::aarch64_stlxr: 4756 case Intrinsic::aarch64_stxr: 4757 case Intrinsic::arm_stlex: 4758 case Intrinsic::arm_strex: 4759 ArgNo = 1; 4760 break; 4761 default: 4762 ArgNo = 0; 4763 break; 4764 } 4765 if (!Attrs.getParamElementType(ArgNo)) { 4766 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4767 if (!ElTy) 4768 return error("Missing element type for elementtype upgrade"); 4769 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4770 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4771 } 4772 break; 4773 } 4774 default: 4775 break; 4776 } 4777 4778 CB->setAttributes(Attrs); 4779 return Error::success(); 4780 } 4781 4782 /// Lazily parse the specified function body block. 4783 Error BitcodeReader::parseFunctionBody(Function *F) { 4784 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4785 return Err; 4786 4787 // Unexpected unresolved metadata when parsing function. 4788 if (MDLoader->hasFwdRefs()) 4789 return error("Invalid function metadata: incoming forward references"); 4790 4791 InstructionList.clear(); 4792 unsigned ModuleValueListSize = ValueList.size(); 4793 unsigned ModuleMDLoaderSize = MDLoader->size(); 4794 4795 // Add all the function arguments to the value table. 4796 unsigned ArgNo = 0; 4797 unsigned FTyID = FunctionTypeIDs[F]; 4798 for (Argument &I : F->args()) { 4799 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4800 assert(I.getType() == getTypeByID(ArgTyID) && 4801 "Incorrect fully specified type for Function Argument"); 4802 ValueList.push_back(&I, ArgTyID); 4803 ++ArgNo; 4804 } 4805 unsigned NextValueNo = ValueList.size(); 4806 BasicBlock *CurBB = nullptr; 4807 unsigned CurBBNo = 0; 4808 // Block into which constant expressions from phi nodes are materialized. 4809 BasicBlock *PhiConstExprBB = nullptr; 4810 // Edge blocks for phi nodes into which constant expressions have been 4811 // expanded. 4812 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4813 ConstExprEdgeBBs; 4814 4815 DebugLoc LastLoc; 4816 auto getLastInstruction = [&]() -> Instruction * { 4817 if (CurBB && !CurBB->empty()) 4818 return &CurBB->back(); 4819 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4820 !FunctionBBs[CurBBNo - 1]->empty()) 4821 return &FunctionBBs[CurBBNo - 1]->back(); 4822 return nullptr; 4823 }; 4824 4825 std::vector<OperandBundleDef> OperandBundles; 4826 4827 // Read all the records. 4828 SmallVector<uint64_t, 64> Record; 4829 4830 while (true) { 4831 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4832 if (!MaybeEntry) 4833 return MaybeEntry.takeError(); 4834 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4835 4836 switch (Entry.Kind) { 4837 case BitstreamEntry::Error: 4838 return error("Malformed block"); 4839 case BitstreamEntry::EndBlock: 4840 goto OutOfRecordLoop; 4841 4842 case BitstreamEntry::SubBlock: 4843 switch (Entry.ID) { 4844 default: // Skip unknown content. 4845 if (Error Err = Stream.SkipBlock()) 4846 return Err; 4847 break; 4848 case bitc::CONSTANTS_BLOCK_ID: 4849 if (Error Err = parseConstants()) 4850 return Err; 4851 NextValueNo = ValueList.size(); 4852 break; 4853 case bitc::VALUE_SYMTAB_BLOCK_ID: 4854 if (Error Err = parseValueSymbolTable()) 4855 return Err; 4856 break; 4857 case bitc::METADATA_ATTACHMENT_ID: 4858 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4859 return Err; 4860 break; 4861 case bitc::METADATA_BLOCK_ID: 4862 assert(DeferredMetadataInfo.empty() && 4863 "Must read all module-level metadata before function-level"); 4864 if (Error Err = MDLoader->parseFunctionMetadata()) 4865 return Err; 4866 break; 4867 case bitc::USELIST_BLOCK_ID: 4868 if (Error Err = parseUseLists()) 4869 return Err; 4870 break; 4871 } 4872 continue; 4873 4874 case BitstreamEntry::Record: 4875 // The interesting case. 4876 break; 4877 } 4878 4879 // Read a record. 4880 Record.clear(); 4881 Instruction *I = nullptr; 4882 unsigned ResTypeID = InvalidTypeID; 4883 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4884 if (!MaybeBitCode) 4885 return MaybeBitCode.takeError(); 4886 switch (unsigned BitCode = MaybeBitCode.get()) { 4887 default: // Default behavior: reject 4888 return error("Invalid value"); 4889 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4890 if (Record.empty() || Record[0] == 0) 4891 return error("Invalid record"); 4892 // Create all the basic blocks for the function. 4893 FunctionBBs.resize(Record[0]); 4894 4895 // See if anything took the address of blocks in this function. 4896 auto BBFRI = BasicBlockFwdRefs.find(F); 4897 if (BBFRI == BasicBlockFwdRefs.end()) { 4898 for (BasicBlock *&BB : FunctionBBs) 4899 BB = BasicBlock::Create(Context, "", F); 4900 } else { 4901 auto &BBRefs = BBFRI->second; 4902 // Check for invalid basic block references. 4903 if (BBRefs.size() > FunctionBBs.size()) 4904 return error("Invalid ID"); 4905 assert(!BBRefs.empty() && "Unexpected empty array"); 4906 assert(!BBRefs.front() && "Invalid reference to entry block"); 4907 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4908 ++I) 4909 if (I < RE && BBRefs[I]) { 4910 BBRefs[I]->insertInto(F); 4911 FunctionBBs[I] = BBRefs[I]; 4912 } else { 4913 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4914 } 4915 4916 // Erase from the table. 4917 BasicBlockFwdRefs.erase(BBFRI); 4918 } 4919 4920 CurBB = FunctionBBs[0]; 4921 continue; 4922 } 4923 4924 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4925 // The record should not be emitted if it's an empty list. 4926 if (Record.empty()) 4927 return error("Invalid record"); 4928 // When we have the RARE case of a BlockAddress Constant that is not 4929 // scoped to the Function it refers to, we need to conservatively 4930 // materialize the referred to Function, regardless of whether or not 4931 // that Function will ultimately be linked, otherwise users of 4932 // BitcodeReader might start splicing out Function bodies such that we 4933 // might no longer be able to materialize the BlockAddress since the 4934 // BasicBlock (and entire body of the Function) the BlockAddress refers 4935 // to may have been moved. In the case that the user of BitcodeReader 4936 // decides ultimately not to link the Function body, materializing here 4937 // could be considered wasteful, but it's better than a deserialization 4938 // failure as described. This keeps BitcodeReader unaware of complex 4939 // linkage policy decisions such as those use by LTO, leaving those 4940 // decisions "one layer up." 4941 for (uint64_t ValID : Record) 4942 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4943 BackwardRefFunctions.push_back(F); 4944 else 4945 return error("Invalid record"); 4946 4947 continue; 4948 4949 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4950 // This record indicates that the last instruction is at the same 4951 // location as the previous instruction with a location. 4952 I = getLastInstruction(); 4953 4954 if (!I) 4955 return error("Invalid record"); 4956 I->setDebugLoc(LastLoc); 4957 I = nullptr; 4958 continue; 4959 4960 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4961 I = getLastInstruction(); 4962 if (!I || Record.size() < 4) 4963 return error("Invalid record"); 4964 4965 unsigned Line = Record[0], Col = Record[1]; 4966 unsigned ScopeID = Record[2], IAID = Record[3]; 4967 bool isImplicitCode = Record.size() == 5 && Record[4]; 4968 4969 MDNode *Scope = nullptr, *IA = nullptr; 4970 if (ScopeID) { 4971 Scope = dyn_cast_or_null<MDNode>( 4972 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4973 if (!Scope) 4974 return error("Invalid record"); 4975 } 4976 if (IAID) { 4977 IA = dyn_cast_or_null<MDNode>( 4978 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4979 if (!IA) 4980 return error("Invalid record"); 4981 } 4982 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4983 isImplicitCode); 4984 I->setDebugLoc(LastLoc); 4985 I = nullptr; 4986 continue; 4987 } 4988 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4989 unsigned OpNum = 0; 4990 Value *LHS; 4991 unsigned TypeID; 4992 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4993 OpNum+1 > Record.size()) 4994 return error("Invalid record"); 4995 4996 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4997 if (Opc == -1) 4998 return error("Invalid record"); 4999 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5000 ResTypeID = TypeID; 5001 InstructionList.push_back(I); 5002 if (OpNum < Record.size()) { 5003 if (isa<FPMathOperator>(I)) { 5004 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5005 if (FMF.any()) 5006 I->setFastMathFlags(FMF); 5007 } 5008 } 5009 break; 5010 } 5011 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5012 unsigned OpNum = 0; 5013 Value *LHS, *RHS; 5014 unsigned TypeID; 5015 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5016 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5017 CurBB) || 5018 OpNum+1 > Record.size()) 5019 return error("Invalid record"); 5020 5021 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5022 if (Opc == -1) 5023 return error("Invalid record"); 5024 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5025 ResTypeID = TypeID; 5026 InstructionList.push_back(I); 5027 if (OpNum < Record.size()) { 5028 if (Opc == Instruction::Add || 5029 Opc == Instruction::Sub || 5030 Opc == Instruction::Mul || 5031 Opc == Instruction::Shl) { 5032 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5033 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5034 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5035 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5036 } else if (Opc == Instruction::SDiv || 5037 Opc == Instruction::UDiv || 5038 Opc == Instruction::LShr || 5039 Opc == Instruction::AShr) { 5040 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5041 cast<BinaryOperator>(I)->setIsExact(true); 5042 } else if (Opc == Instruction::Or) { 5043 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5044 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5045 } else if (isa<FPMathOperator>(I)) { 5046 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5047 if (FMF.any()) 5048 I->setFastMathFlags(FMF); 5049 } 5050 } 5051 break; 5052 } 5053 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5054 unsigned OpNum = 0; 5055 Value *Op; 5056 unsigned OpTypeID; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5058 OpNum + 1 > Record.size()) 5059 return error("Invalid record"); 5060 5061 ResTypeID = Record[OpNum++]; 5062 Type *ResTy = getTypeByID(ResTypeID); 5063 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5064 5065 if (Opc == -1 || !ResTy) 5066 return error("Invalid record"); 5067 Instruction *Temp = nullptr; 5068 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5069 if (Temp) { 5070 InstructionList.push_back(Temp); 5071 assert(CurBB && "No current BB?"); 5072 Temp->insertInto(CurBB, CurBB->end()); 5073 } 5074 } else { 5075 auto CastOp = (Instruction::CastOps)Opc; 5076 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5077 return error("Invalid cast"); 5078 I = CastInst::Create(CastOp, Op, ResTy); 5079 } 5080 5081 if (OpNum < Record.size()) { 5082 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5083 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5084 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5085 } else if (Opc == Instruction::Trunc) { 5086 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5087 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5088 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5089 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5090 } 5091 } 5092 5093 InstructionList.push_back(I); 5094 break; 5095 } 5096 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5097 case bitc::FUNC_CODE_INST_GEP_OLD: 5098 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5099 unsigned OpNum = 0; 5100 5101 unsigned TyID; 5102 Type *Ty; 5103 GEPNoWrapFlags NW; 5104 5105 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5106 NW = toGEPNoWrapFlags(Record[OpNum++]); 5107 TyID = Record[OpNum++]; 5108 Ty = getTypeByID(TyID); 5109 } else { 5110 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5111 NW = GEPNoWrapFlags::inBounds(); 5112 TyID = InvalidTypeID; 5113 Ty = nullptr; 5114 } 5115 5116 Value *BasePtr; 5117 unsigned BasePtrTypeID; 5118 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5119 CurBB)) 5120 return error("Invalid record"); 5121 5122 if (!Ty) { 5123 TyID = getContainedTypeID(BasePtrTypeID); 5124 if (BasePtr->getType()->isVectorTy()) 5125 TyID = getContainedTypeID(TyID); 5126 Ty = getTypeByID(TyID); 5127 } 5128 5129 SmallVector<Value*, 16> GEPIdx; 5130 while (OpNum != Record.size()) { 5131 Value *Op; 5132 unsigned OpTypeID; 5133 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5134 return error("Invalid record"); 5135 GEPIdx.push_back(Op); 5136 } 5137 5138 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5139 I = GEP; 5140 5141 ResTypeID = TyID; 5142 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5143 auto GTI = std::next(gep_type_begin(I)); 5144 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5145 unsigned SubType = 0; 5146 if (GTI.isStruct()) { 5147 ConstantInt *IdxC = 5148 Idx->getType()->isVectorTy() 5149 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5150 : cast<ConstantInt>(Idx); 5151 SubType = IdxC->getZExtValue(); 5152 } 5153 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5154 ++GTI; 5155 } 5156 } 5157 5158 // At this point ResTypeID is the result element type. We need a pointer 5159 // or vector of pointer to it. 5160 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5161 if (I->getType()->isVectorTy()) 5162 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5163 5164 InstructionList.push_back(I); 5165 GEP->setNoWrapFlags(NW); 5166 break; 5167 } 5168 5169 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5170 // EXTRACTVAL: [opty, opval, n x indices] 5171 unsigned OpNum = 0; 5172 Value *Agg; 5173 unsigned AggTypeID; 5174 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5175 return error("Invalid record"); 5176 Type *Ty = Agg->getType(); 5177 5178 unsigned RecSize = Record.size(); 5179 if (OpNum == RecSize) 5180 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5181 5182 SmallVector<unsigned, 4> EXTRACTVALIdx; 5183 ResTypeID = AggTypeID; 5184 for (; OpNum != RecSize; ++OpNum) { 5185 bool IsArray = Ty->isArrayTy(); 5186 bool IsStruct = Ty->isStructTy(); 5187 uint64_t Index = Record[OpNum]; 5188 5189 if (!IsStruct && !IsArray) 5190 return error("EXTRACTVAL: Invalid type"); 5191 if ((unsigned)Index != Index) 5192 return error("Invalid value"); 5193 if (IsStruct && Index >= Ty->getStructNumElements()) 5194 return error("EXTRACTVAL: Invalid struct index"); 5195 if (IsArray && Index >= Ty->getArrayNumElements()) 5196 return error("EXTRACTVAL: Invalid array index"); 5197 EXTRACTVALIdx.push_back((unsigned)Index); 5198 5199 if (IsStruct) { 5200 Ty = Ty->getStructElementType(Index); 5201 ResTypeID = getContainedTypeID(ResTypeID, Index); 5202 } else { 5203 Ty = Ty->getArrayElementType(); 5204 ResTypeID = getContainedTypeID(ResTypeID); 5205 } 5206 } 5207 5208 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5209 InstructionList.push_back(I); 5210 break; 5211 } 5212 5213 case bitc::FUNC_CODE_INST_INSERTVAL: { 5214 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5215 unsigned OpNum = 0; 5216 Value *Agg; 5217 unsigned AggTypeID; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5219 return error("Invalid record"); 5220 Value *Val; 5221 unsigned ValTypeID; 5222 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5223 return error("Invalid record"); 5224 5225 unsigned RecSize = Record.size(); 5226 if (OpNum == RecSize) 5227 return error("INSERTVAL: Invalid instruction with 0 indices"); 5228 5229 SmallVector<unsigned, 4> INSERTVALIdx; 5230 Type *CurTy = Agg->getType(); 5231 for (; OpNum != RecSize; ++OpNum) { 5232 bool IsArray = CurTy->isArrayTy(); 5233 bool IsStruct = CurTy->isStructTy(); 5234 uint64_t Index = Record[OpNum]; 5235 5236 if (!IsStruct && !IsArray) 5237 return error("INSERTVAL: Invalid type"); 5238 if ((unsigned)Index != Index) 5239 return error("Invalid value"); 5240 if (IsStruct && Index >= CurTy->getStructNumElements()) 5241 return error("INSERTVAL: Invalid struct index"); 5242 if (IsArray && Index >= CurTy->getArrayNumElements()) 5243 return error("INSERTVAL: Invalid array index"); 5244 5245 INSERTVALIdx.push_back((unsigned)Index); 5246 if (IsStruct) 5247 CurTy = CurTy->getStructElementType(Index); 5248 else 5249 CurTy = CurTy->getArrayElementType(); 5250 } 5251 5252 if (CurTy != Val->getType()) 5253 return error("Inserted value type doesn't match aggregate type"); 5254 5255 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5256 ResTypeID = AggTypeID; 5257 InstructionList.push_back(I); 5258 break; 5259 } 5260 5261 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5262 // obsolete form of select 5263 // handles select i1 ... in old bitcode 5264 unsigned OpNum = 0; 5265 Value *TrueVal, *FalseVal, *Cond; 5266 unsigned TypeID; 5267 Type *CondType = Type::getInt1Ty(Context); 5268 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5269 CurBB) || 5270 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5271 FalseVal, CurBB) || 5272 popValue(Record, OpNum, NextValueNo, CondType, 5273 getVirtualTypeID(CondType), Cond, CurBB)) 5274 return error("Invalid record"); 5275 5276 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5277 ResTypeID = TypeID; 5278 InstructionList.push_back(I); 5279 break; 5280 } 5281 5282 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5283 // new form of select 5284 // handles select i1 or select [N x i1] 5285 unsigned OpNum = 0; 5286 Value *TrueVal, *FalseVal, *Cond; 5287 unsigned ValTypeID, CondTypeID; 5288 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5289 CurBB) || 5290 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5291 FalseVal, CurBB) || 5292 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5293 return error("Invalid record"); 5294 5295 // select condition can be either i1 or [N x i1] 5296 if (VectorType* vector_type = 5297 dyn_cast<VectorType>(Cond->getType())) { 5298 // expect <n x i1> 5299 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5300 return error("Invalid type for value"); 5301 } else { 5302 // expect i1 5303 if (Cond->getType() != Type::getInt1Ty(Context)) 5304 return error("Invalid type for value"); 5305 } 5306 5307 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5308 ResTypeID = ValTypeID; 5309 InstructionList.push_back(I); 5310 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5311 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5312 if (FMF.any()) 5313 I->setFastMathFlags(FMF); 5314 } 5315 break; 5316 } 5317 5318 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5319 unsigned OpNum = 0; 5320 Value *Vec, *Idx; 5321 unsigned VecTypeID, IdxTypeID; 5322 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5323 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5324 return error("Invalid record"); 5325 if (!Vec->getType()->isVectorTy()) 5326 return error("Invalid type for value"); 5327 I = ExtractElementInst::Create(Vec, Idx); 5328 ResTypeID = getContainedTypeID(VecTypeID); 5329 InstructionList.push_back(I); 5330 break; 5331 } 5332 5333 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5334 unsigned OpNum = 0; 5335 Value *Vec, *Elt, *Idx; 5336 unsigned VecTypeID, IdxTypeID; 5337 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5338 return error("Invalid record"); 5339 if (!Vec->getType()->isVectorTy()) 5340 return error("Invalid type for value"); 5341 if (popValue(Record, OpNum, NextValueNo, 5342 cast<VectorType>(Vec->getType())->getElementType(), 5343 getContainedTypeID(VecTypeID), Elt, CurBB) || 5344 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5345 return error("Invalid record"); 5346 I = InsertElementInst::Create(Vec, Elt, Idx); 5347 ResTypeID = VecTypeID; 5348 InstructionList.push_back(I); 5349 break; 5350 } 5351 5352 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5353 unsigned OpNum = 0; 5354 Value *Vec1, *Vec2, *Mask; 5355 unsigned Vec1TypeID; 5356 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5357 CurBB) || 5358 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5359 Vec2, CurBB)) 5360 return error("Invalid record"); 5361 5362 unsigned MaskTypeID; 5363 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5364 return error("Invalid record"); 5365 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5366 return error("Invalid type for value"); 5367 5368 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5369 ResTypeID = 5370 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5371 InstructionList.push_back(I); 5372 break; 5373 } 5374 5375 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5376 // Old form of ICmp/FCmp returning bool 5377 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5378 // both legal on vectors but had different behaviour. 5379 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5380 // FCmp/ICmp returning bool or vector of bool 5381 5382 unsigned OpNum = 0; 5383 Value *LHS, *RHS; 5384 unsigned LHSTypeID; 5385 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5386 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5387 CurBB)) 5388 return error("Invalid record"); 5389 5390 if (OpNum >= Record.size()) 5391 return error( 5392 "Invalid record: operand number exceeded available operands"); 5393 5394 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5395 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5396 FastMathFlags FMF; 5397 if (IsFP && Record.size() > OpNum+1) 5398 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5399 5400 if (OpNum+1 != Record.size()) 5401 return error("Invalid record"); 5402 5403 if (IsFP) { 5404 if (!CmpInst::isFPPredicate(PredVal)) 5405 return error("Invalid fcmp predicate"); 5406 I = new FCmpInst(PredVal, LHS, RHS); 5407 } else { 5408 if (!CmpInst::isIntPredicate(PredVal)) 5409 return error("Invalid icmp predicate"); 5410 I = new ICmpInst(PredVal, LHS, RHS); 5411 } 5412 5413 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5414 if (LHS->getType()->isVectorTy()) 5415 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5416 5417 if (FMF.any()) 5418 I->setFastMathFlags(FMF); 5419 InstructionList.push_back(I); 5420 break; 5421 } 5422 5423 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5424 { 5425 unsigned Size = Record.size(); 5426 if (Size == 0) { 5427 I = ReturnInst::Create(Context); 5428 InstructionList.push_back(I); 5429 break; 5430 } 5431 5432 unsigned OpNum = 0; 5433 Value *Op = nullptr; 5434 unsigned OpTypeID; 5435 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5436 return error("Invalid record"); 5437 if (OpNum != Record.size()) 5438 return error("Invalid record"); 5439 5440 I = ReturnInst::Create(Context, Op); 5441 InstructionList.push_back(I); 5442 break; 5443 } 5444 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5445 if (Record.size() != 1 && Record.size() != 3) 5446 return error("Invalid record"); 5447 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5448 if (!TrueDest) 5449 return error("Invalid record"); 5450 5451 if (Record.size() == 1) { 5452 I = BranchInst::Create(TrueDest); 5453 InstructionList.push_back(I); 5454 } 5455 else { 5456 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5457 Type *CondType = Type::getInt1Ty(Context); 5458 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5459 getVirtualTypeID(CondType), CurBB); 5460 if (!FalseDest || !Cond) 5461 return error("Invalid record"); 5462 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5463 InstructionList.push_back(I); 5464 } 5465 break; 5466 } 5467 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5468 if (Record.size() != 1 && Record.size() != 2) 5469 return error("Invalid record"); 5470 unsigned Idx = 0; 5471 Type *TokenTy = Type::getTokenTy(Context); 5472 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5473 getVirtualTypeID(TokenTy), CurBB); 5474 if (!CleanupPad) 5475 return error("Invalid record"); 5476 BasicBlock *UnwindDest = nullptr; 5477 if (Record.size() == 2) { 5478 UnwindDest = getBasicBlock(Record[Idx++]); 5479 if (!UnwindDest) 5480 return error("Invalid record"); 5481 } 5482 5483 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5484 InstructionList.push_back(I); 5485 break; 5486 } 5487 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5488 if (Record.size() != 2) 5489 return error("Invalid record"); 5490 unsigned Idx = 0; 5491 Type *TokenTy = Type::getTokenTy(Context); 5492 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5493 getVirtualTypeID(TokenTy), CurBB); 5494 if (!CatchPad) 5495 return error("Invalid record"); 5496 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5497 if (!BB) 5498 return error("Invalid record"); 5499 5500 I = CatchReturnInst::Create(CatchPad, BB); 5501 InstructionList.push_back(I); 5502 break; 5503 } 5504 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5505 // We must have, at minimum, the outer scope and the number of arguments. 5506 if (Record.size() < 2) 5507 return error("Invalid record"); 5508 5509 unsigned Idx = 0; 5510 5511 Type *TokenTy = Type::getTokenTy(Context); 5512 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5513 getVirtualTypeID(TokenTy), CurBB); 5514 if (!ParentPad) 5515 return error("Invalid record"); 5516 5517 unsigned NumHandlers = Record[Idx++]; 5518 5519 SmallVector<BasicBlock *, 2> Handlers; 5520 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5521 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5522 if (!BB) 5523 return error("Invalid record"); 5524 Handlers.push_back(BB); 5525 } 5526 5527 BasicBlock *UnwindDest = nullptr; 5528 if (Idx + 1 == Record.size()) { 5529 UnwindDest = getBasicBlock(Record[Idx++]); 5530 if (!UnwindDest) 5531 return error("Invalid record"); 5532 } 5533 5534 if (Record.size() != Idx) 5535 return error("Invalid record"); 5536 5537 auto *CatchSwitch = 5538 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5539 for (BasicBlock *Handler : Handlers) 5540 CatchSwitch->addHandler(Handler); 5541 I = CatchSwitch; 5542 ResTypeID = getVirtualTypeID(I->getType()); 5543 InstructionList.push_back(I); 5544 break; 5545 } 5546 case bitc::FUNC_CODE_INST_CATCHPAD: 5547 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5548 // We must have, at minimum, the outer scope and the number of arguments. 5549 if (Record.size() < 2) 5550 return error("Invalid record"); 5551 5552 unsigned Idx = 0; 5553 5554 Type *TokenTy = Type::getTokenTy(Context); 5555 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5556 getVirtualTypeID(TokenTy), CurBB); 5557 if (!ParentPad) 5558 return error("Invald record"); 5559 5560 unsigned NumArgOperands = Record[Idx++]; 5561 5562 SmallVector<Value *, 2> Args; 5563 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5564 Value *Val; 5565 unsigned ValTypeID; 5566 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5567 return error("Invalid record"); 5568 Args.push_back(Val); 5569 } 5570 5571 if (Record.size() != Idx) 5572 return error("Invalid record"); 5573 5574 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5575 I = CleanupPadInst::Create(ParentPad, Args); 5576 else 5577 I = CatchPadInst::Create(ParentPad, Args); 5578 ResTypeID = getVirtualTypeID(I->getType()); 5579 InstructionList.push_back(I); 5580 break; 5581 } 5582 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5583 // Check magic 5584 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5585 // "New" SwitchInst format with case ranges. The changes to write this 5586 // format were reverted but we still recognize bitcode that uses it. 5587 // Hopefully someday we will have support for case ranges and can use 5588 // this format again. 5589 5590 unsigned OpTyID = Record[1]; 5591 Type *OpTy = getTypeByID(OpTyID); 5592 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5593 5594 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5595 BasicBlock *Default = getBasicBlock(Record[3]); 5596 if (!OpTy || !Cond || !Default) 5597 return error("Invalid record"); 5598 5599 unsigned NumCases = Record[4]; 5600 5601 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5602 InstructionList.push_back(SI); 5603 5604 unsigned CurIdx = 5; 5605 for (unsigned i = 0; i != NumCases; ++i) { 5606 SmallVector<ConstantInt*, 1> CaseVals; 5607 unsigned NumItems = Record[CurIdx++]; 5608 for (unsigned ci = 0; ci != NumItems; ++ci) { 5609 bool isSingleNumber = Record[CurIdx++]; 5610 5611 APInt Low; 5612 unsigned ActiveWords = 1; 5613 if (ValueBitWidth > 64) 5614 ActiveWords = Record[CurIdx++]; 5615 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5616 ValueBitWidth); 5617 CurIdx += ActiveWords; 5618 5619 if (!isSingleNumber) { 5620 ActiveWords = 1; 5621 if (ValueBitWidth > 64) 5622 ActiveWords = Record[CurIdx++]; 5623 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5624 ValueBitWidth); 5625 CurIdx += ActiveWords; 5626 5627 // FIXME: It is not clear whether values in the range should be 5628 // compared as signed or unsigned values. The partially 5629 // implemented changes that used this format in the past used 5630 // unsigned comparisons. 5631 for ( ; Low.ule(High); ++Low) 5632 CaseVals.push_back(ConstantInt::get(Context, Low)); 5633 } else 5634 CaseVals.push_back(ConstantInt::get(Context, Low)); 5635 } 5636 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5637 for (ConstantInt *Cst : CaseVals) 5638 SI->addCase(Cst, DestBB); 5639 } 5640 I = SI; 5641 break; 5642 } 5643 5644 // Old SwitchInst format without case ranges. 5645 5646 if (Record.size() < 3 || (Record.size() & 1) == 0) 5647 return error("Invalid record"); 5648 unsigned OpTyID = Record[0]; 5649 Type *OpTy = getTypeByID(OpTyID); 5650 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5651 BasicBlock *Default = getBasicBlock(Record[2]); 5652 if (!OpTy || !Cond || !Default) 5653 return error("Invalid record"); 5654 unsigned NumCases = (Record.size()-3)/2; 5655 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5656 InstructionList.push_back(SI); 5657 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5658 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5659 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5660 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5661 if (!CaseVal || !DestBB) { 5662 delete SI; 5663 return error("Invalid record"); 5664 } 5665 SI->addCase(CaseVal, DestBB); 5666 } 5667 I = SI; 5668 break; 5669 } 5670 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5671 if (Record.size() < 2) 5672 return error("Invalid record"); 5673 unsigned OpTyID = Record[0]; 5674 Type *OpTy = getTypeByID(OpTyID); 5675 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5676 if (!OpTy || !Address) 5677 return error("Invalid record"); 5678 unsigned NumDests = Record.size()-2; 5679 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5680 InstructionList.push_back(IBI); 5681 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5682 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5683 IBI->addDestination(DestBB); 5684 } else { 5685 delete IBI; 5686 return error("Invalid record"); 5687 } 5688 } 5689 I = IBI; 5690 break; 5691 } 5692 5693 case bitc::FUNC_CODE_INST_INVOKE: { 5694 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5695 if (Record.size() < 4) 5696 return error("Invalid record"); 5697 unsigned OpNum = 0; 5698 AttributeList PAL = getAttributes(Record[OpNum++]); 5699 unsigned CCInfo = Record[OpNum++]; 5700 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5701 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5702 5703 unsigned FTyID = InvalidTypeID; 5704 FunctionType *FTy = nullptr; 5705 if ((CCInfo >> 13) & 1) { 5706 FTyID = Record[OpNum++]; 5707 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5708 if (!FTy) 5709 return error("Explicit invoke type is not a function type"); 5710 } 5711 5712 Value *Callee; 5713 unsigned CalleeTypeID; 5714 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5715 CurBB)) 5716 return error("Invalid record"); 5717 5718 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5719 if (!CalleeTy) 5720 return error("Callee is not a pointer"); 5721 if (!FTy) { 5722 FTyID = getContainedTypeID(CalleeTypeID); 5723 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5724 if (!FTy) 5725 return error("Callee is not of pointer to function type"); 5726 } 5727 if (Record.size() < FTy->getNumParams() + OpNum) 5728 return error("Insufficient operands to call"); 5729 5730 SmallVector<Value*, 16> Ops; 5731 SmallVector<unsigned, 16> ArgTyIDs; 5732 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5733 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5734 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5735 ArgTyID, CurBB)); 5736 ArgTyIDs.push_back(ArgTyID); 5737 if (!Ops.back()) 5738 return error("Invalid record"); 5739 } 5740 5741 if (!FTy->isVarArg()) { 5742 if (Record.size() != OpNum) 5743 return error("Invalid record"); 5744 } else { 5745 // Read type/value pairs for varargs params. 5746 while (OpNum != Record.size()) { 5747 Value *Op; 5748 unsigned OpTypeID; 5749 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5750 return error("Invalid record"); 5751 Ops.push_back(Op); 5752 ArgTyIDs.push_back(OpTypeID); 5753 } 5754 } 5755 5756 // Upgrade the bundles if needed. 5757 if (!OperandBundles.empty()) 5758 UpgradeOperandBundles(OperandBundles); 5759 5760 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5761 OperandBundles); 5762 ResTypeID = getContainedTypeID(FTyID); 5763 OperandBundles.clear(); 5764 InstructionList.push_back(I); 5765 cast<InvokeInst>(I)->setCallingConv( 5766 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5767 cast<InvokeInst>(I)->setAttributes(PAL); 5768 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5769 I->deleteValue(); 5770 return Err; 5771 } 5772 5773 break; 5774 } 5775 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5776 unsigned Idx = 0; 5777 Value *Val = nullptr; 5778 unsigned ValTypeID; 5779 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5780 return error("Invalid record"); 5781 I = ResumeInst::Create(Val); 5782 InstructionList.push_back(I); 5783 break; 5784 } 5785 case bitc::FUNC_CODE_INST_CALLBR: { 5786 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5787 unsigned OpNum = 0; 5788 AttributeList PAL = getAttributes(Record[OpNum++]); 5789 unsigned CCInfo = Record[OpNum++]; 5790 5791 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5792 unsigned NumIndirectDests = Record[OpNum++]; 5793 SmallVector<BasicBlock *, 16> IndirectDests; 5794 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5795 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5796 5797 unsigned FTyID = InvalidTypeID; 5798 FunctionType *FTy = nullptr; 5799 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5800 FTyID = Record[OpNum++]; 5801 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5802 if (!FTy) 5803 return error("Explicit call type is not a function type"); 5804 } 5805 5806 Value *Callee; 5807 unsigned CalleeTypeID; 5808 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5809 CurBB)) 5810 return error("Invalid record"); 5811 5812 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5813 if (!OpTy) 5814 return error("Callee is not a pointer type"); 5815 if (!FTy) { 5816 FTyID = getContainedTypeID(CalleeTypeID); 5817 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5818 if (!FTy) 5819 return error("Callee is not of pointer to function type"); 5820 } 5821 if (Record.size() < FTy->getNumParams() + OpNum) 5822 return error("Insufficient operands to call"); 5823 5824 SmallVector<Value*, 16> Args; 5825 SmallVector<unsigned, 16> ArgTyIDs; 5826 // Read the fixed params. 5827 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5828 Value *Arg; 5829 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5830 if (FTy->getParamType(i)->isLabelTy()) 5831 Arg = getBasicBlock(Record[OpNum]); 5832 else 5833 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5834 ArgTyID, CurBB); 5835 if (!Arg) 5836 return error("Invalid record"); 5837 Args.push_back(Arg); 5838 ArgTyIDs.push_back(ArgTyID); 5839 } 5840 5841 // Read type/value pairs for varargs params. 5842 if (!FTy->isVarArg()) { 5843 if (OpNum != Record.size()) 5844 return error("Invalid record"); 5845 } else { 5846 while (OpNum != Record.size()) { 5847 Value *Op; 5848 unsigned OpTypeID; 5849 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5850 return error("Invalid record"); 5851 Args.push_back(Op); 5852 ArgTyIDs.push_back(OpTypeID); 5853 } 5854 } 5855 5856 // Upgrade the bundles if needed. 5857 if (!OperandBundles.empty()) 5858 UpgradeOperandBundles(OperandBundles); 5859 5860 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5861 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5862 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5863 return CI.Type == InlineAsm::isLabel; 5864 }; 5865 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5866 // Upgrade explicit blockaddress arguments to label constraints. 5867 // Verify that the last arguments are blockaddress arguments that 5868 // match the indirect destinations. Clang always generates callbr 5869 // in this form. We could support reordering with more effort. 5870 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5871 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5872 unsigned LabelNo = ArgNo - FirstBlockArg; 5873 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5874 if (!BA || BA->getFunction() != F || 5875 LabelNo > IndirectDests.size() || 5876 BA->getBasicBlock() != IndirectDests[LabelNo]) 5877 return error("callbr argument does not match indirect dest"); 5878 } 5879 5880 // Remove blockaddress arguments. 5881 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5882 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5883 5884 // Recreate the function type with less arguments. 5885 SmallVector<Type *> ArgTys; 5886 for (Value *Arg : Args) 5887 ArgTys.push_back(Arg->getType()); 5888 FTy = 5889 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5890 5891 // Update constraint string to use label constraints. 5892 std::string Constraints = IA->getConstraintString(); 5893 unsigned ArgNo = 0; 5894 size_t Pos = 0; 5895 for (const auto &CI : ConstraintInfo) { 5896 if (CI.hasArg()) { 5897 if (ArgNo >= FirstBlockArg) 5898 Constraints.insert(Pos, "!"); 5899 ++ArgNo; 5900 } 5901 5902 // Go to next constraint in string. 5903 Pos = Constraints.find(',', Pos); 5904 if (Pos == std::string::npos) 5905 break; 5906 ++Pos; 5907 } 5908 5909 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5910 IA->hasSideEffects(), IA->isAlignStack(), 5911 IA->getDialect(), IA->canThrow()); 5912 } 5913 } 5914 5915 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5916 OperandBundles); 5917 ResTypeID = getContainedTypeID(FTyID); 5918 OperandBundles.clear(); 5919 InstructionList.push_back(I); 5920 cast<CallBrInst>(I)->setCallingConv( 5921 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5922 cast<CallBrInst>(I)->setAttributes(PAL); 5923 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5924 I->deleteValue(); 5925 return Err; 5926 } 5927 break; 5928 } 5929 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5930 I = new UnreachableInst(Context); 5931 InstructionList.push_back(I); 5932 break; 5933 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5934 if (Record.empty()) 5935 return error("Invalid phi record"); 5936 // The first record specifies the type. 5937 unsigned TyID = Record[0]; 5938 Type *Ty = getTypeByID(TyID); 5939 if (!Ty) 5940 return error("Invalid phi record"); 5941 5942 // Phi arguments are pairs of records of [value, basic block]. 5943 // There is an optional final record for fast-math-flags if this phi has a 5944 // floating-point type. 5945 size_t NumArgs = (Record.size() - 1) / 2; 5946 PHINode *PN = PHINode::Create(Ty, NumArgs); 5947 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5948 PN->deleteValue(); 5949 return error("Invalid phi record"); 5950 } 5951 InstructionList.push_back(PN); 5952 5953 SmallDenseMap<BasicBlock *, Value *> Args; 5954 for (unsigned i = 0; i != NumArgs; i++) { 5955 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5956 if (!BB) { 5957 PN->deleteValue(); 5958 return error("Invalid phi BB"); 5959 } 5960 5961 // Phi nodes may contain the same predecessor multiple times, in which 5962 // case the incoming value must be identical. Directly reuse the already 5963 // seen value here, to avoid expanding a constant expression multiple 5964 // times. 5965 auto It = Args.find(BB); 5966 if (It != Args.end()) { 5967 PN->addIncoming(It->second, BB); 5968 continue; 5969 } 5970 5971 // If there already is a block for this edge (from a different phi), 5972 // use it. 5973 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5974 if (!EdgeBB) { 5975 // Otherwise, use a temporary block (that we will discard if it 5976 // turns out to be unnecessary). 5977 if (!PhiConstExprBB) 5978 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5979 EdgeBB = PhiConstExprBB; 5980 } 5981 5982 // With the new function encoding, it is possible that operands have 5983 // negative IDs (for forward references). Use a signed VBR 5984 // representation to keep the encoding small. 5985 Value *V; 5986 if (UseRelativeIDs) 5987 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5988 else 5989 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5990 if (!V) { 5991 PN->deleteValue(); 5992 PhiConstExprBB->eraseFromParent(); 5993 return error("Invalid phi record"); 5994 } 5995 5996 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5997 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5998 PhiConstExprBB = nullptr; 5999 } 6000 PN->addIncoming(V, BB); 6001 Args.insert({BB, V}); 6002 } 6003 I = PN; 6004 ResTypeID = TyID; 6005 6006 // If there are an even number of records, the final record must be FMF. 6007 if (Record.size() % 2 == 0) { 6008 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6009 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6010 if (FMF.any()) 6011 I->setFastMathFlags(FMF); 6012 } 6013 6014 break; 6015 } 6016 6017 case bitc::FUNC_CODE_INST_LANDINGPAD: 6018 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6019 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6020 unsigned Idx = 0; 6021 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6022 if (Record.size() < 3) 6023 return error("Invalid record"); 6024 } else { 6025 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6026 if (Record.size() < 4) 6027 return error("Invalid record"); 6028 } 6029 ResTypeID = Record[Idx++]; 6030 Type *Ty = getTypeByID(ResTypeID); 6031 if (!Ty) 6032 return error("Invalid record"); 6033 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6034 Value *PersFn = nullptr; 6035 unsigned PersFnTypeID; 6036 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6037 nullptr)) 6038 return error("Invalid record"); 6039 6040 if (!F->hasPersonalityFn()) 6041 F->setPersonalityFn(cast<Constant>(PersFn)); 6042 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6043 return error("Personality function mismatch"); 6044 } 6045 6046 bool IsCleanup = !!Record[Idx++]; 6047 unsigned NumClauses = Record[Idx++]; 6048 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6049 LP->setCleanup(IsCleanup); 6050 for (unsigned J = 0; J != NumClauses; ++J) { 6051 LandingPadInst::ClauseType CT = 6052 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6053 Value *Val; 6054 unsigned ValTypeID; 6055 6056 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6057 nullptr)) { 6058 delete LP; 6059 return error("Invalid record"); 6060 } 6061 6062 assert((CT != LandingPadInst::Catch || 6063 !isa<ArrayType>(Val->getType())) && 6064 "Catch clause has a invalid type!"); 6065 assert((CT != LandingPadInst::Filter || 6066 isa<ArrayType>(Val->getType())) && 6067 "Filter clause has invalid type!"); 6068 LP->addClause(cast<Constant>(Val)); 6069 } 6070 6071 I = LP; 6072 InstructionList.push_back(I); 6073 break; 6074 } 6075 6076 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6077 if (Record.size() != 4 && Record.size() != 5) 6078 return error("Invalid record"); 6079 using APV = AllocaPackedValues; 6080 const uint64_t Rec = Record[3]; 6081 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6082 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6083 unsigned TyID = Record[0]; 6084 Type *Ty = getTypeByID(TyID); 6085 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6086 TyID = getContainedTypeID(TyID); 6087 Ty = getTypeByID(TyID); 6088 if (!Ty) 6089 return error("Missing element type for old-style alloca"); 6090 } 6091 unsigned OpTyID = Record[1]; 6092 Type *OpTy = getTypeByID(OpTyID); 6093 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6094 MaybeAlign Align; 6095 uint64_t AlignExp = 6096 Bitfield::get<APV::AlignLower>(Rec) | 6097 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6098 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6099 return Err; 6100 } 6101 if (!Ty || !Size) 6102 return error("Invalid record"); 6103 6104 const DataLayout &DL = TheModule->getDataLayout(); 6105 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6106 6107 SmallPtrSet<Type *, 4> Visited; 6108 if (!Align && !Ty->isSized(&Visited)) 6109 return error("alloca of unsized type"); 6110 if (!Align) 6111 Align = DL.getPrefTypeAlign(Ty); 6112 6113 if (!Size->getType()->isIntegerTy()) 6114 return error("alloca element count must have integer type"); 6115 6116 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6117 AI->setUsedWithInAlloca(InAlloca); 6118 AI->setSwiftError(SwiftError); 6119 I = AI; 6120 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6121 InstructionList.push_back(I); 6122 break; 6123 } 6124 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6125 unsigned OpNum = 0; 6126 Value *Op; 6127 unsigned OpTypeID; 6128 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6129 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6130 return error("Invalid record"); 6131 6132 if (!isa<PointerType>(Op->getType())) 6133 return error("Load operand is not a pointer type"); 6134 6135 Type *Ty = nullptr; 6136 if (OpNum + 3 == Record.size()) { 6137 ResTypeID = Record[OpNum++]; 6138 Ty = getTypeByID(ResTypeID); 6139 } else { 6140 ResTypeID = getContainedTypeID(OpTypeID); 6141 Ty = getTypeByID(ResTypeID); 6142 } 6143 6144 if (!Ty) 6145 return error("Missing load type"); 6146 6147 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6148 return Err; 6149 6150 MaybeAlign Align; 6151 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6152 return Err; 6153 SmallPtrSet<Type *, 4> Visited; 6154 if (!Align && !Ty->isSized(&Visited)) 6155 return error("load of unsized type"); 6156 if (!Align) 6157 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6158 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6159 InstructionList.push_back(I); 6160 break; 6161 } 6162 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6163 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6164 unsigned OpNum = 0; 6165 Value *Op; 6166 unsigned OpTypeID; 6167 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6168 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6169 return error("Invalid record"); 6170 6171 if (!isa<PointerType>(Op->getType())) 6172 return error("Load operand is not a pointer type"); 6173 6174 Type *Ty = nullptr; 6175 if (OpNum + 5 == Record.size()) { 6176 ResTypeID = Record[OpNum++]; 6177 Ty = getTypeByID(ResTypeID); 6178 } else { 6179 ResTypeID = getContainedTypeID(OpTypeID); 6180 Ty = getTypeByID(ResTypeID); 6181 } 6182 6183 if (!Ty) 6184 return error("Missing atomic load type"); 6185 6186 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6187 return Err; 6188 6189 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6190 if (Ordering == AtomicOrdering::NotAtomic || 6191 Ordering == AtomicOrdering::Release || 6192 Ordering == AtomicOrdering::AcquireRelease) 6193 return error("Invalid record"); 6194 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6195 return error("Invalid record"); 6196 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6197 6198 MaybeAlign Align; 6199 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6200 return Err; 6201 if (!Align) 6202 return error("Alignment missing from atomic load"); 6203 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6204 InstructionList.push_back(I); 6205 break; 6206 } 6207 case bitc::FUNC_CODE_INST_STORE: 6208 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6209 unsigned OpNum = 0; 6210 Value *Val, *Ptr; 6211 unsigned PtrTypeID, ValTypeID; 6212 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6213 return error("Invalid record"); 6214 6215 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6216 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6217 return error("Invalid record"); 6218 } else { 6219 ValTypeID = getContainedTypeID(PtrTypeID); 6220 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6221 ValTypeID, Val, CurBB)) 6222 return error("Invalid record"); 6223 } 6224 6225 if (OpNum + 2 != Record.size()) 6226 return error("Invalid record"); 6227 6228 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6229 return Err; 6230 MaybeAlign Align; 6231 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6232 return Err; 6233 SmallPtrSet<Type *, 4> Visited; 6234 if (!Align && !Val->getType()->isSized(&Visited)) 6235 return error("store of unsized type"); 6236 if (!Align) 6237 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6238 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6239 InstructionList.push_back(I); 6240 break; 6241 } 6242 case bitc::FUNC_CODE_INST_STOREATOMIC: 6243 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6244 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6245 unsigned OpNum = 0; 6246 Value *Val, *Ptr; 6247 unsigned PtrTypeID, ValTypeID; 6248 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6249 !isa<PointerType>(Ptr->getType())) 6250 return error("Invalid record"); 6251 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6252 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6253 return error("Invalid record"); 6254 } else { 6255 ValTypeID = getContainedTypeID(PtrTypeID); 6256 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6257 ValTypeID, Val, CurBB)) 6258 return error("Invalid record"); 6259 } 6260 6261 if (OpNum + 4 != Record.size()) 6262 return error("Invalid record"); 6263 6264 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6265 return Err; 6266 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6267 if (Ordering == AtomicOrdering::NotAtomic || 6268 Ordering == AtomicOrdering::Acquire || 6269 Ordering == AtomicOrdering::AcquireRelease) 6270 return error("Invalid record"); 6271 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6272 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6273 return error("Invalid record"); 6274 6275 MaybeAlign Align; 6276 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6277 return Err; 6278 if (!Align) 6279 return error("Alignment missing from atomic store"); 6280 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6281 InstructionList.push_back(I); 6282 break; 6283 } 6284 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6285 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6286 // failure_ordering?, weak?] 6287 const size_t NumRecords = Record.size(); 6288 unsigned OpNum = 0; 6289 Value *Ptr = nullptr; 6290 unsigned PtrTypeID; 6291 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6292 return error("Invalid record"); 6293 6294 if (!isa<PointerType>(Ptr->getType())) 6295 return error("Cmpxchg operand is not a pointer type"); 6296 6297 Value *Cmp = nullptr; 6298 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6299 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6300 CmpTypeID, Cmp, CurBB)) 6301 return error("Invalid record"); 6302 6303 Value *New = nullptr; 6304 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6305 New, CurBB) || 6306 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6307 return error("Invalid record"); 6308 6309 const AtomicOrdering SuccessOrdering = 6310 getDecodedOrdering(Record[OpNum + 1]); 6311 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6312 SuccessOrdering == AtomicOrdering::Unordered) 6313 return error("Invalid record"); 6314 6315 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6316 6317 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6318 return Err; 6319 6320 const AtomicOrdering FailureOrdering = 6321 NumRecords < 7 6322 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6323 : getDecodedOrdering(Record[OpNum + 3]); 6324 6325 if (FailureOrdering == AtomicOrdering::NotAtomic || 6326 FailureOrdering == AtomicOrdering::Unordered) 6327 return error("Invalid record"); 6328 6329 const Align Alignment( 6330 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6331 6332 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6333 FailureOrdering, SSID); 6334 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6335 6336 if (NumRecords < 8) { 6337 // Before weak cmpxchgs existed, the instruction simply returned the 6338 // value loaded from memory, so bitcode files from that era will be 6339 // expecting the first component of a modern cmpxchg. 6340 I->insertInto(CurBB, CurBB->end()); 6341 I = ExtractValueInst::Create(I, 0); 6342 ResTypeID = CmpTypeID; 6343 } else { 6344 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6345 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6346 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6347 } 6348 6349 InstructionList.push_back(I); 6350 break; 6351 } 6352 case bitc::FUNC_CODE_INST_CMPXCHG: { 6353 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6354 // failure_ordering, weak, align?] 6355 const size_t NumRecords = Record.size(); 6356 unsigned OpNum = 0; 6357 Value *Ptr = nullptr; 6358 unsigned PtrTypeID; 6359 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6360 return error("Invalid record"); 6361 6362 if (!isa<PointerType>(Ptr->getType())) 6363 return error("Cmpxchg operand is not a pointer type"); 6364 6365 Value *Cmp = nullptr; 6366 unsigned CmpTypeID; 6367 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6368 return error("Invalid record"); 6369 6370 Value *Val = nullptr; 6371 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6372 CurBB)) 6373 return error("Invalid record"); 6374 6375 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6376 return error("Invalid record"); 6377 6378 const bool IsVol = Record[OpNum]; 6379 6380 const AtomicOrdering SuccessOrdering = 6381 getDecodedOrdering(Record[OpNum + 1]); 6382 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6383 return error("Invalid cmpxchg success ordering"); 6384 6385 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6386 6387 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6388 return Err; 6389 6390 const AtomicOrdering FailureOrdering = 6391 getDecodedOrdering(Record[OpNum + 3]); 6392 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6393 return error("Invalid cmpxchg failure ordering"); 6394 6395 const bool IsWeak = Record[OpNum + 4]; 6396 6397 MaybeAlign Alignment; 6398 6399 if (NumRecords == (OpNum + 6)) { 6400 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6401 return Err; 6402 } 6403 if (!Alignment) 6404 Alignment = 6405 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6406 6407 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6408 FailureOrdering, SSID); 6409 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6410 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6411 6412 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6413 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6414 6415 InstructionList.push_back(I); 6416 break; 6417 } 6418 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6419 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6420 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6421 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6422 const size_t NumRecords = Record.size(); 6423 unsigned OpNum = 0; 6424 6425 Value *Ptr = nullptr; 6426 unsigned PtrTypeID; 6427 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6428 return error("Invalid record"); 6429 6430 if (!isa<PointerType>(Ptr->getType())) 6431 return error("Invalid record"); 6432 6433 Value *Val = nullptr; 6434 unsigned ValTypeID = InvalidTypeID; 6435 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6436 ValTypeID = getContainedTypeID(PtrTypeID); 6437 if (popValue(Record, OpNum, NextValueNo, 6438 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6439 return error("Invalid record"); 6440 } else { 6441 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6442 return error("Invalid record"); 6443 } 6444 6445 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6446 return error("Invalid record"); 6447 6448 const AtomicRMWInst::BinOp Operation = 6449 getDecodedRMWOperation(Record[OpNum]); 6450 if (Operation < AtomicRMWInst::FIRST_BINOP || 6451 Operation > AtomicRMWInst::LAST_BINOP) 6452 return error("Invalid record"); 6453 6454 const bool IsVol = Record[OpNum + 1]; 6455 6456 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6457 if (Ordering == AtomicOrdering::NotAtomic || 6458 Ordering == AtomicOrdering::Unordered) 6459 return error("Invalid record"); 6460 6461 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6462 6463 MaybeAlign Alignment; 6464 6465 if (NumRecords == (OpNum + 5)) { 6466 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6467 return Err; 6468 } 6469 6470 if (!Alignment) 6471 Alignment = 6472 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6473 6474 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6475 ResTypeID = ValTypeID; 6476 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6477 6478 InstructionList.push_back(I); 6479 break; 6480 } 6481 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6482 if (2 != Record.size()) 6483 return error("Invalid record"); 6484 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6485 if (Ordering == AtomicOrdering::NotAtomic || 6486 Ordering == AtomicOrdering::Unordered || 6487 Ordering == AtomicOrdering::Monotonic) 6488 return error("Invalid record"); 6489 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6490 I = new FenceInst(Context, Ordering, SSID); 6491 InstructionList.push_back(I); 6492 break; 6493 } 6494 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6495 // DbgLabelRecords are placed after the Instructions that they are 6496 // attached to. 6497 SeenDebugRecord = true; 6498 Instruction *Inst = getLastInstruction(); 6499 if (!Inst) 6500 return error("Invalid dbg record: missing instruction"); 6501 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6502 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6503 Inst->getParent()->insertDbgRecordBefore( 6504 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6505 continue; // This isn't an instruction. 6506 } 6507 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6508 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6509 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6510 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6511 // DbgVariableRecords are placed after the Instructions that they are 6512 // attached to. 6513 SeenDebugRecord = true; 6514 Instruction *Inst = getLastInstruction(); 6515 if (!Inst) 6516 return error("Invalid dbg record: missing instruction"); 6517 6518 // First 3 fields are common to all kinds: 6519 // DILocation, DILocalVariable, DIExpression 6520 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6521 // ..., LocationMetadata 6522 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6523 // ..., Value 6524 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6525 // ..., LocationMetadata 6526 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6527 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6528 unsigned Slot = 0; 6529 // Common fields (0-2). 6530 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6531 DILocalVariable *Var = 6532 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6533 DIExpression *Expr = 6534 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6535 6536 // Union field (3: LocationMetadata | Value). 6537 Metadata *RawLocation = nullptr; 6538 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6539 Value *V = nullptr; 6540 unsigned TyID = 0; 6541 // We never expect to see a fwd reference value here because 6542 // use-before-defs are encoded with the standard non-abbrev record 6543 // type (they'd require encoding the type too, and they're rare). As a 6544 // result, getValueTypePair only ever increments Slot by one here (once 6545 // for the value, never twice for value and type). 6546 unsigned SlotBefore = Slot; 6547 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6548 return error("Invalid dbg record: invalid value"); 6549 (void)SlotBefore; 6550 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6551 RawLocation = ValueAsMetadata::get(V); 6552 } else { 6553 RawLocation = getFnMetadataByID(Record[Slot++]); 6554 } 6555 6556 DbgVariableRecord *DVR = nullptr; 6557 switch (BitCode) { 6558 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6559 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6560 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6561 DbgVariableRecord::LocationType::Value); 6562 break; 6563 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6564 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6565 DbgVariableRecord::LocationType::Declare); 6566 break; 6567 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6568 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6569 DIExpression *AddrExpr = 6570 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6571 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6572 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6573 DIL); 6574 break; 6575 } 6576 default: 6577 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6578 } 6579 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6580 continue; // This isn't an instruction. 6581 } 6582 case bitc::FUNC_CODE_INST_CALL: { 6583 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6584 if (Record.size() < 3) 6585 return error("Invalid record"); 6586 6587 unsigned OpNum = 0; 6588 AttributeList PAL = getAttributes(Record[OpNum++]); 6589 unsigned CCInfo = Record[OpNum++]; 6590 6591 FastMathFlags FMF; 6592 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6593 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6594 if (!FMF.any()) 6595 return error("Fast math flags indicator set for call with no FMF"); 6596 } 6597 6598 unsigned FTyID = InvalidTypeID; 6599 FunctionType *FTy = nullptr; 6600 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6601 FTyID = Record[OpNum++]; 6602 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6603 if (!FTy) 6604 return error("Explicit call type is not a function type"); 6605 } 6606 6607 Value *Callee; 6608 unsigned CalleeTypeID; 6609 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6610 CurBB)) 6611 return error("Invalid record"); 6612 6613 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6614 if (!OpTy) 6615 return error("Callee is not a pointer type"); 6616 if (!FTy) { 6617 FTyID = getContainedTypeID(CalleeTypeID); 6618 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6619 if (!FTy) 6620 return error("Callee is not of pointer to function type"); 6621 } 6622 if (Record.size() < FTy->getNumParams() + OpNum) 6623 return error("Insufficient operands to call"); 6624 6625 SmallVector<Value*, 16> Args; 6626 SmallVector<unsigned, 16> ArgTyIDs; 6627 // Read the fixed params. 6628 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6629 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6630 if (FTy->getParamType(i)->isLabelTy()) 6631 Args.push_back(getBasicBlock(Record[OpNum])); 6632 else 6633 Args.push_back(getValue(Record, OpNum, NextValueNo, 6634 FTy->getParamType(i), ArgTyID, CurBB)); 6635 ArgTyIDs.push_back(ArgTyID); 6636 if (!Args.back()) 6637 return error("Invalid record"); 6638 } 6639 6640 // Read type/value pairs for varargs params. 6641 if (!FTy->isVarArg()) { 6642 if (OpNum != Record.size()) 6643 return error("Invalid record"); 6644 } else { 6645 while (OpNum != Record.size()) { 6646 Value *Op; 6647 unsigned OpTypeID; 6648 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6649 return error("Invalid record"); 6650 Args.push_back(Op); 6651 ArgTyIDs.push_back(OpTypeID); 6652 } 6653 } 6654 6655 // Upgrade the bundles if needed. 6656 if (!OperandBundles.empty()) 6657 UpgradeOperandBundles(OperandBundles); 6658 6659 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6660 ResTypeID = getContainedTypeID(FTyID); 6661 OperandBundles.clear(); 6662 InstructionList.push_back(I); 6663 cast<CallInst>(I)->setCallingConv( 6664 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6665 CallInst::TailCallKind TCK = CallInst::TCK_None; 6666 if (CCInfo & (1 << bitc::CALL_TAIL)) 6667 TCK = CallInst::TCK_Tail; 6668 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6669 TCK = CallInst::TCK_MustTail; 6670 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6671 TCK = CallInst::TCK_NoTail; 6672 cast<CallInst>(I)->setTailCallKind(TCK); 6673 cast<CallInst>(I)->setAttributes(PAL); 6674 if (isa<DbgInfoIntrinsic>(I)) 6675 SeenDebugIntrinsic = true; 6676 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6677 I->deleteValue(); 6678 return Err; 6679 } 6680 if (FMF.any()) { 6681 if (!isa<FPMathOperator>(I)) 6682 return error("Fast-math-flags specified for call without " 6683 "floating-point scalar or vector return type"); 6684 I->setFastMathFlags(FMF); 6685 } 6686 break; 6687 } 6688 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6689 if (Record.size() < 3) 6690 return error("Invalid record"); 6691 unsigned OpTyID = Record[0]; 6692 Type *OpTy = getTypeByID(OpTyID); 6693 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6694 ResTypeID = Record[2]; 6695 Type *ResTy = getTypeByID(ResTypeID); 6696 if (!OpTy || !Op || !ResTy) 6697 return error("Invalid record"); 6698 I = new VAArgInst(Op, ResTy); 6699 InstructionList.push_back(I); 6700 break; 6701 } 6702 6703 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6704 // A call or an invoke can be optionally prefixed with some variable 6705 // number of operand bundle blocks. These blocks are read into 6706 // OperandBundles and consumed at the next call or invoke instruction. 6707 6708 if (Record.empty() || Record[0] >= BundleTags.size()) 6709 return error("Invalid record"); 6710 6711 std::vector<Value *> Inputs; 6712 6713 unsigned OpNum = 1; 6714 while (OpNum != Record.size()) { 6715 Value *Op; 6716 unsigned OpTypeID; 6717 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6718 return error("Invalid record"); 6719 Inputs.push_back(Op); 6720 } 6721 6722 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6723 continue; 6724 } 6725 6726 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6727 unsigned OpNum = 0; 6728 Value *Op = nullptr; 6729 unsigned OpTypeID; 6730 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6731 return error("Invalid record"); 6732 if (OpNum != Record.size()) 6733 return error("Invalid record"); 6734 6735 I = new FreezeInst(Op); 6736 ResTypeID = OpTypeID; 6737 InstructionList.push_back(I); 6738 break; 6739 } 6740 } 6741 6742 // Add instruction to end of current BB. If there is no current BB, reject 6743 // this file. 6744 if (!CurBB) { 6745 I->deleteValue(); 6746 return error("Invalid instruction with no BB"); 6747 } 6748 if (!OperandBundles.empty()) { 6749 I->deleteValue(); 6750 return error("Operand bundles found with no consumer"); 6751 } 6752 I->insertInto(CurBB, CurBB->end()); 6753 6754 // If this was a terminator instruction, move to the next block. 6755 if (I->isTerminator()) { 6756 ++CurBBNo; 6757 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6758 } 6759 6760 // Non-void values get registered in the value table for future use. 6761 if (!I->getType()->isVoidTy()) { 6762 assert(I->getType() == getTypeByID(ResTypeID) && 6763 "Incorrect result type ID"); 6764 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6765 return Err; 6766 } 6767 } 6768 6769 OutOfRecordLoop: 6770 6771 if (!OperandBundles.empty()) 6772 return error("Operand bundles found with no consumer"); 6773 6774 // Check the function list for unresolved values. 6775 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6776 if (!A->getParent()) { 6777 // We found at least one unresolved value. Nuke them all to avoid leaks. 6778 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6779 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6780 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6781 delete A; 6782 } 6783 } 6784 return error("Never resolved value found in function"); 6785 } 6786 } 6787 6788 // Unexpected unresolved metadata about to be dropped. 6789 if (MDLoader->hasFwdRefs()) 6790 return error("Invalid function metadata: outgoing forward refs"); 6791 6792 if (PhiConstExprBB) 6793 PhiConstExprBB->eraseFromParent(); 6794 6795 for (const auto &Pair : ConstExprEdgeBBs) { 6796 BasicBlock *From = Pair.first.first; 6797 BasicBlock *To = Pair.first.second; 6798 BasicBlock *EdgeBB = Pair.second; 6799 BranchInst::Create(To, EdgeBB); 6800 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6801 To->replacePhiUsesWith(From, EdgeBB); 6802 EdgeBB->moveBefore(To); 6803 } 6804 6805 // Trim the value list down to the size it was before we parsed this function. 6806 ValueList.shrinkTo(ModuleValueListSize); 6807 MDLoader->shrinkTo(ModuleMDLoaderSize); 6808 std::vector<BasicBlock*>().swap(FunctionBBs); 6809 return Error::success(); 6810 } 6811 6812 /// Find the function body in the bitcode stream 6813 Error BitcodeReader::findFunctionInStream( 6814 Function *F, 6815 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6816 while (DeferredFunctionInfoIterator->second == 0) { 6817 // This is the fallback handling for the old format bitcode that 6818 // didn't contain the function index in the VST, or when we have 6819 // an anonymous function which would not have a VST entry. 6820 // Assert that we have one of those two cases. 6821 assert(VSTOffset == 0 || !F->hasName()); 6822 // Parse the next body in the stream and set its position in the 6823 // DeferredFunctionInfo map. 6824 if (Error Err = rememberAndSkipFunctionBodies()) 6825 return Err; 6826 } 6827 return Error::success(); 6828 } 6829 6830 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6831 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6832 return SyncScope::ID(Val); 6833 if (Val >= SSIDs.size()) 6834 return SyncScope::System; // Map unknown synchronization scopes to system. 6835 return SSIDs[Val]; 6836 } 6837 6838 //===----------------------------------------------------------------------===// 6839 // GVMaterializer implementation 6840 //===----------------------------------------------------------------------===// 6841 6842 Error BitcodeReader::materialize(GlobalValue *GV) { 6843 Function *F = dyn_cast<Function>(GV); 6844 // If it's not a function or is already material, ignore the request. 6845 if (!F || !F->isMaterializable()) 6846 return Error::success(); 6847 6848 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6849 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6850 // If its position is recorded as 0, its body is somewhere in the stream 6851 // but we haven't seen it yet. 6852 if (DFII->second == 0) 6853 if (Error Err = findFunctionInStream(F, DFII)) 6854 return Err; 6855 6856 // Materialize metadata before parsing any function bodies. 6857 if (Error Err = materializeMetadata()) 6858 return Err; 6859 6860 // Move the bit stream to the saved position of the deferred function body. 6861 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6862 return JumpFailed; 6863 6864 // Regardless of the debug info format we want to end up in, we need 6865 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6866 F->IsNewDbgInfoFormat = true; 6867 6868 if (Error Err = parseFunctionBody(F)) 6869 return Err; 6870 F->setIsMaterializable(false); 6871 6872 // All parsed Functions should load into the debug info format dictated by the 6873 // Module, unless we're attempting to preserve the input debug info format. 6874 if (SeenDebugIntrinsic && SeenDebugRecord) 6875 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6876 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6877 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6878 bool NewDbgInfoFormatDesired = 6879 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6880 if (SeenAnyDebugInfo) { 6881 UseNewDbgInfoFormat = SeenDebugRecord; 6882 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6883 WriteNewDbgInfoFormat = SeenDebugRecord; 6884 } 6885 // If the module's debug info format doesn't match the observed input 6886 // format, then set its format now; we don't need to call the conversion 6887 // function because there must be no existing intrinsics to convert. 6888 // Otherwise, just set the format on this function now. 6889 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6890 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6891 else 6892 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6893 } else { 6894 // If we aren't preserving formats, we use the Module flag to get our 6895 // desired format instead of reading flags, in case we are lazy-loading and 6896 // the format of the module has been changed since it was set by the flags. 6897 // We only need to convert debug info here if we have debug records but 6898 // desire the intrinsic format; everything else is a no-op or handled by the 6899 // autoupgrader. 6900 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6901 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6902 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6903 else 6904 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6905 } 6906 6907 if (StripDebugInfo) 6908 stripDebugInfo(*F); 6909 6910 // Upgrade any old intrinsic calls in the function. 6911 for (auto &I : UpgradedIntrinsics) { 6912 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6913 if (CallInst *CI = dyn_cast<CallInst>(U)) 6914 UpgradeIntrinsicCall(CI, I.second); 6915 } 6916 6917 // Finish fn->subprogram upgrade for materialized functions. 6918 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6919 F->setSubprogram(SP); 6920 6921 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6922 if (!MDLoader->isStrippingTBAA()) { 6923 for (auto &I : instructions(F)) { 6924 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6925 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6926 continue; 6927 MDLoader->setStripTBAA(true); 6928 stripTBAA(F->getParent()); 6929 } 6930 } 6931 6932 for (auto &I : instructions(F)) { 6933 // "Upgrade" older incorrect branch weights by dropping them. 6934 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6935 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6936 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6937 StringRef ProfName = MDS->getString(); 6938 // Check consistency of !prof branch_weights metadata. 6939 if (ProfName != "branch_weights") 6940 continue; 6941 unsigned ExpectedNumOperands = 0; 6942 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6943 ExpectedNumOperands = BI->getNumSuccessors(); 6944 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6945 ExpectedNumOperands = SI->getNumSuccessors(); 6946 else if (isa<CallInst>(&I)) 6947 ExpectedNumOperands = 1; 6948 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6949 ExpectedNumOperands = IBI->getNumDestinations(); 6950 else if (isa<SelectInst>(&I)) 6951 ExpectedNumOperands = 2; 6952 else 6953 continue; // ignore and continue. 6954 6955 unsigned Offset = getBranchWeightOffset(MD); 6956 6957 // If branch weight doesn't match, just strip branch weight. 6958 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 6959 I.setMetadata(LLVMContext::MD_prof, nullptr); 6960 } 6961 } 6962 6963 // Remove incompatible attributes on function calls. 6964 if (auto *CI = dyn_cast<CallBase>(&I)) { 6965 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6966 CI->getFunctionType()->getReturnType())); 6967 6968 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6969 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6970 CI->getArgOperand(ArgNo)->getType())); 6971 } 6972 } 6973 6974 // Look for functions that rely on old function attribute behavior. 6975 UpgradeFunctionAttributes(*F); 6976 6977 // Bring in any functions that this function forward-referenced via 6978 // blockaddresses. 6979 return materializeForwardReferencedFunctions(); 6980 } 6981 6982 Error BitcodeReader::materializeModule() { 6983 if (Error Err = materializeMetadata()) 6984 return Err; 6985 6986 // Promise to materialize all forward references. 6987 WillMaterializeAllForwardRefs = true; 6988 6989 // Iterate over the module, deserializing any functions that are still on 6990 // disk. 6991 for (Function &F : *TheModule) { 6992 if (Error Err = materialize(&F)) 6993 return Err; 6994 } 6995 // At this point, if there are any function bodies, parse the rest of 6996 // the bits in the module past the last function block we have recorded 6997 // through either lazy scanning or the VST. 6998 if (LastFunctionBlockBit || NextUnreadBit) 6999 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7000 ? LastFunctionBlockBit 7001 : NextUnreadBit)) 7002 return Err; 7003 7004 // Check that all block address forward references got resolved (as we 7005 // promised above). 7006 if (!BasicBlockFwdRefs.empty()) 7007 return error("Never resolved function from blockaddress"); 7008 7009 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7010 // delete the old functions to clean up. We can't do this unless the entire 7011 // module is materialized because there could always be another function body 7012 // with calls to the old function. 7013 for (auto &I : UpgradedIntrinsics) { 7014 for (auto *U : I.first->users()) { 7015 if (CallInst *CI = dyn_cast<CallInst>(U)) 7016 UpgradeIntrinsicCall(CI, I.second); 7017 } 7018 if (!I.first->use_empty()) 7019 I.first->replaceAllUsesWith(I.second); 7020 I.first->eraseFromParent(); 7021 } 7022 UpgradedIntrinsics.clear(); 7023 7024 UpgradeDebugInfo(*TheModule); 7025 7026 UpgradeModuleFlags(*TheModule); 7027 7028 UpgradeARCRuntime(*TheModule); 7029 7030 return Error::success(); 7031 } 7032 7033 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7034 return IdentifiedStructTypes; 7035 } 7036 7037 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7038 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7039 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7040 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7041 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7042 7043 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7044 TheIndex.addModule(ModulePath); 7045 } 7046 7047 ModuleSummaryIndex::ModuleInfo * 7048 ModuleSummaryIndexBitcodeReader::getThisModule() { 7049 return TheIndex.getModule(ModulePath); 7050 } 7051 7052 template <bool AllowNullValueInfo> 7053 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7054 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7055 auto VGI = ValueIdToValueInfoMap[ValueId]; 7056 // We can have a null value info for memprof callsite info records in 7057 // distributed ThinLTO index files when the callee function summary is not 7058 // included in the index. The bitcode writer records 0 in that case, 7059 // and the caller of this helper will set AllowNullValueInfo to true. 7060 assert(AllowNullValueInfo || std::get<0>(VGI)); 7061 return VGI; 7062 } 7063 7064 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7065 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7066 StringRef SourceFileName) { 7067 std::string GlobalId = 7068 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7069 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7070 auto OriginalNameID = ValueGUID; 7071 if (GlobalValue::isLocalLinkage(Linkage)) 7072 OriginalNameID = GlobalValue::getGUID(ValueName); 7073 if (PrintSummaryGUIDs) 7074 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7075 << ValueName << "\n"; 7076 7077 // UseStrtab is false for legacy summary formats and value names are 7078 // created on stack. In that case we save the name in a string saver in 7079 // the index so that the value name can be recorded. 7080 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7081 TheIndex.getOrInsertValueInfo( 7082 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7083 OriginalNameID, ValueGUID); 7084 } 7085 7086 // Specialized value symbol table parser used when reading module index 7087 // blocks where we don't actually create global values. The parsed information 7088 // is saved in the bitcode reader for use when later parsing summaries. 7089 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7090 uint64_t Offset, 7091 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7092 // With a strtab the VST is not required to parse the summary. 7093 if (UseStrtab) 7094 return Error::success(); 7095 7096 assert(Offset > 0 && "Expected non-zero VST offset"); 7097 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7098 if (!MaybeCurrentBit) 7099 return MaybeCurrentBit.takeError(); 7100 uint64_t CurrentBit = MaybeCurrentBit.get(); 7101 7102 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7103 return Err; 7104 7105 SmallVector<uint64_t, 64> Record; 7106 7107 // Read all the records for this value table. 7108 SmallString<128> ValueName; 7109 7110 while (true) { 7111 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7112 if (!MaybeEntry) 7113 return MaybeEntry.takeError(); 7114 BitstreamEntry Entry = MaybeEntry.get(); 7115 7116 switch (Entry.Kind) { 7117 case BitstreamEntry::SubBlock: // Handled for us already. 7118 case BitstreamEntry::Error: 7119 return error("Malformed block"); 7120 case BitstreamEntry::EndBlock: 7121 // Done parsing VST, jump back to wherever we came from. 7122 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7123 return JumpFailed; 7124 return Error::success(); 7125 case BitstreamEntry::Record: 7126 // The interesting case. 7127 break; 7128 } 7129 7130 // Read a record. 7131 Record.clear(); 7132 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7133 if (!MaybeRecord) 7134 return MaybeRecord.takeError(); 7135 switch (MaybeRecord.get()) { 7136 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7137 break; 7138 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7139 if (convertToString(Record, 1, ValueName)) 7140 return error("Invalid record"); 7141 unsigned ValueID = Record[0]; 7142 assert(!SourceFileName.empty()); 7143 auto VLI = ValueIdToLinkageMap.find(ValueID); 7144 assert(VLI != ValueIdToLinkageMap.end() && 7145 "No linkage found for VST entry?"); 7146 auto Linkage = VLI->second; 7147 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7148 ValueName.clear(); 7149 break; 7150 } 7151 case bitc::VST_CODE_FNENTRY: { 7152 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7153 if (convertToString(Record, 2, ValueName)) 7154 return error("Invalid record"); 7155 unsigned ValueID = Record[0]; 7156 assert(!SourceFileName.empty()); 7157 auto VLI = ValueIdToLinkageMap.find(ValueID); 7158 assert(VLI != ValueIdToLinkageMap.end() && 7159 "No linkage found for VST entry?"); 7160 auto Linkage = VLI->second; 7161 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7162 ValueName.clear(); 7163 break; 7164 } 7165 case bitc::VST_CODE_COMBINED_ENTRY: { 7166 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7167 unsigned ValueID = Record[0]; 7168 GlobalValue::GUID RefGUID = Record[1]; 7169 // The "original name", which is the second value of the pair will be 7170 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7171 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7172 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7173 break; 7174 } 7175 } 7176 } 7177 } 7178 7179 // Parse just the blocks needed for building the index out of the module. 7180 // At the end of this routine the module Index is populated with a map 7181 // from global value id to GlobalValueSummary objects. 7182 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7183 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7184 return Err; 7185 7186 SmallVector<uint64_t, 64> Record; 7187 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7188 unsigned ValueId = 0; 7189 7190 // Read the index for this module. 7191 while (true) { 7192 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7193 if (!MaybeEntry) 7194 return MaybeEntry.takeError(); 7195 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7196 7197 switch (Entry.Kind) { 7198 case BitstreamEntry::Error: 7199 return error("Malformed block"); 7200 case BitstreamEntry::EndBlock: 7201 return Error::success(); 7202 7203 case BitstreamEntry::SubBlock: 7204 switch (Entry.ID) { 7205 default: // Skip unknown content. 7206 if (Error Err = Stream.SkipBlock()) 7207 return Err; 7208 break; 7209 case bitc::BLOCKINFO_BLOCK_ID: 7210 // Need to parse these to get abbrev ids (e.g. for VST) 7211 if (Error Err = readBlockInfo()) 7212 return Err; 7213 break; 7214 case bitc::VALUE_SYMTAB_BLOCK_ID: 7215 // Should have been parsed earlier via VSTOffset, unless there 7216 // is no summary section. 7217 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7218 !SeenGlobalValSummary) && 7219 "Expected early VST parse via VSTOffset record"); 7220 if (Error Err = Stream.SkipBlock()) 7221 return Err; 7222 break; 7223 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7224 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7225 // Add the module if it is a per-module index (has a source file name). 7226 if (!SourceFileName.empty()) 7227 addThisModule(); 7228 assert(!SeenValueSymbolTable && 7229 "Already read VST when parsing summary block?"); 7230 // We might not have a VST if there were no values in the 7231 // summary. An empty summary block generated when we are 7232 // performing ThinLTO compiles so we don't later invoke 7233 // the regular LTO process on them. 7234 if (VSTOffset > 0) { 7235 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7236 return Err; 7237 SeenValueSymbolTable = true; 7238 } 7239 SeenGlobalValSummary = true; 7240 if (Error Err = parseEntireSummary(Entry.ID)) 7241 return Err; 7242 break; 7243 case bitc::MODULE_STRTAB_BLOCK_ID: 7244 if (Error Err = parseModuleStringTable()) 7245 return Err; 7246 break; 7247 } 7248 continue; 7249 7250 case BitstreamEntry::Record: { 7251 Record.clear(); 7252 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7253 if (!MaybeBitCode) 7254 return MaybeBitCode.takeError(); 7255 switch (MaybeBitCode.get()) { 7256 default: 7257 break; // Default behavior, ignore unknown content. 7258 case bitc::MODULE_CODE_VERSION: { 7259 if (Error Err = parseVersionRecord(Record).takeError()) 7260 return Err; 7261 break; 7262 } 7263 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7264 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7265 SmallString<128> ValueName; 7266 if (convertToString(Record, 0, ValueName)) 7267 return error("Invalid record"); 7268 SourceFileName = ValueName.c_str(); 7269 break; 7270 } 7271 /// MODULE_CODE_HASH: [5*i32] 7272 case bitc::MODULE_CODE_HASH: { 7273 if (Record.size() != 5) 7274 return error("Invalid hash length " + Twine(Record.size()).str()); 7275 auto &Hash = getThisModule()->second; 7276 int Pos = 0; 7277 for (auto &Val : Record) { 7278 assert(!(Val >> 32) && "Unexpected high bits set"); 7279 Hash[Pos++] = Val; 7280 } 7281 break; 7282 } 7283 /// MODULE_CODE_VSTOFFSET: [offset] 7284 case bitc::MODULE_CODE_VSTOFFSET: 7285 if (Record.empty()) 7286 return error("Invalid record"); 7287 // Note that we subtract 1 here because the offset is relative to one 7288 // word before the start of the identification or module block, which 7289 // was historically always the start of the regular bitcode header. 7290 VSTOffset = Record[0] - 1; 7291 break; 7292 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7293 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7294 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7295 // v2: [strtab offset, strtab size, v1] 7296 case bitc::MODULE_CODE_GLOBALVAR: 7297 case bitc::MODULE_CODE_FUNCTION: 7298 case bitc::MODULE_CODE_ALIAS: { 7299 StringRef Name; 7300 ArrayRef<uint64_t> GVRecord; 7301 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7302 if (GVRecord.size() <= 3) 7303 return error("Invalid record"); 7304 uint64_t RawLinkage = GVRecord[3]; 7305 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7306 if (!UseStrtab) { 7307 ValueIdToLinkageMap[ValueId++] = Linkage; 7308 break; 7309 } 7310 7311 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7312 break; 7313 } 7314 } 7315 } 7316 continue; 7317 } 7318 } 7319 } 7320 7321 std::vector<ValueInfo> 7322 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7323 std::vector<ValueInfo> Ret; 7324 Ret.reserve(Record.size()); 7325 for (uint64_t RefValueId : Record) 7326 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7327 return Ret; 7328 } 7329 7330 std::vector<FunctionSummary::EdgeTy> 7331 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7332 bool IsOldProfileFormat, 7333 bool HasProfile, bool HasRelBF) { 7334 std::vector<FunctionSummary::EdgeTy> Ret; 7335 Ret.reserve(Record.size()); 7336 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7337 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7338 bool HasTailCall = false; 7339 uint64_t RelBF = 0; 7340 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7341 if (IsOldProfileFormat) { 7342 I += 1; // Skip old callsitecount field 7343 if (HasProfile) 7344 I += 1; // Skip old profilecount field 7345 } else if (HasProfile) 7346 std::tie(Hotness, HasTailCall) = 7347 getDecodedHotnessCallEdgeInfo(Record[++I]); 7348 else if (HasRelBF) 7349 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7350 Ret.push_back(FunctionSummary::EdgeTy{ 7351 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7352 } 7353 return Ret; 7354 } 7355 7356 static void 7357 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7358 WholeProgramDevirtResolution &Wpd) { 7359 uint64_t ArgNum = Record[Slot++]; 7360 WholeProgramDevirtResolution::ByArg &B = 7361 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7362 Slot += ArgNum; 7363 7364 B.TheKind = 7365 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7366 B.Info = Record[Slot++]; 7367 B.Byte = Record[Slot++]; 7368 B.Bit = Record[Slot++]; 7369 } 7370 7371 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7372 StringRef Strtab, size_t &Slot, 7373 TypeIdSummary &TypeId) { 7374 uint64_t Id = Record[Slot++]; 7375 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7376 7377 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7378 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7379 static_cast<size_t>(Record[Slot + 1])}; 7380 Slot += 2; 7381 7382 uint64_t ResByArgNum = Record[Slot++]; 7383 for (uint64_t I = 0; I != ResByArgNum; ++I) 7384 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7385 } 7386 7387 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7388 StringRef Strtab, 7389 ModuleSummaryIndex &TheIndex) { 7390 size_t Slot = 0; 7391 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7392 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7393 Slot += 2; 7394 7395 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7396 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7397 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7398 TypeId.TTRes.SizeM1 = Record[Slot++]; 7399 TypeId.TTRes.BitMask = Record[Slot++]; 7400 TypeId.TTRes.InlineBits = Record[Slot++]; 7401 7402 while (Slot < Record.size()) 7403 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7404 } 7405 7406 std::vector<FunctionSummary::ParamAccess> 7407 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7408 auto ReadRange = [&]() { 7409 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7410 BitcodeReader::decodeSignRotatedValue(Record.front())); 7411 Record = Record.drop_front(); 7412 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7413 BitcodeReader::decodeSignRotatedValue(Record.front())); 7414 Record = Record.drop_front(); 7415 ConstantRange Range{Lower, Upper}; 7416 assert(!Range.isFullSet()); 7417 assert(!Range.isUpperSignWrapped()); 7418 return Range; 7419 }; 7420 7421 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7422 while (!Record.empty()) { 7423 PendingParamAccesses.emplace_back(); 7424 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7425 ParamAccess.ParamNo = Record.front(); 7426 Record = Record.drop_front(); 7427 ParamAccess.Use = ReadRange(); 7428 ParamAccess.Calls.resize(Record.front()); 7429 Record = Record.drop_front(); 7430 for (auto &Call : ParamAccess.Calls) { 7431 Call.ParamNo = Record.front(); 7432 Record = Record.drop_front(); 7433 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7434 Record = Record.drop_front(); 7435 Call.Offsets = ReadRange(); 7436 } 7437 } 7438 return PendingParamAccesses; 7439 } 7440 7441 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7442 ArrayRef<uint64_t> Record, size_t &Slot, 7443 TypeIdCompatibleVtableInfo &TypeId) { 7444 uint64_t Offset = Record[Slot++]; 7445 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7446 TypeId.push_back({Offset, Callee}); 7447 } 7448 7449 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7450 ArrayRef<uint64_t> Record) { 7451 size_t Slot = 0; 7452 TypeIdCompatibleVtableInfo &TypeId = 7453 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7454 {Strtab.data() + Record[Slot], 7455 static_cast<size_t>(Record[Slot + 1])}); 7456 Slot += 2; 7457 7458 while (Slot < Record.size()) 7459 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7460 } 7461 7462 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7463 unsigned WOCnt) { 7464 // Readonly and writeonly refs are in the end of the refs list. 7465 assert(ROCnt + WOCnt <= Refs.size()); 7466 unsigned FirstWORef = Refs.size() - WOCnt; 7467 unsigned RefNo = FirstWORef - ROCnt; 7468 for (; RefNo < FirstWORef; ++RefNo) 7469 Refs[RefNo].setReadOnly(); 7470 for (; RefNo < Refs.size(); ++RefNo) 7471 Refs[RefNo].setWriteOnly(); 7472 } 7473 7474 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7475 // objects in the index. 7476 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7477 if (Error Err = Stream.EnterSubBlock(ID)) 7478 return Err; 7479 SmallVector<uint64_t, 64> Record; 7480 7481 // Parse version 7482 { 7483 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7484 if (!MaybeEntry) 7485 return MaybeEntry.takeError(); 7486 BitstreamEntry Entry = MaybeEntry.get(); 7487 7488 if (Entry.Kind != BitstreamEntry::Record) 7489 return error("Invalid Summary Block: record for version expected"); 7490 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7491 if (!MaybeRecord) 7492 return MaybeRecord.takeError(); 7493 if (MaybeRecord.get() != bitc::FS_VERSION) 7494 return error("Invalid Summary Block: version expected"); 7495 } 7496 const uint64_t Version = Record[0]; 7497 const bool IsOldProfileFormat = Version == 1; 7498 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7499 return error("Invalid summary version " + Twine(Version) + 7500 ". Version should be in the range [1-" + 7501 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7502 "]."); 7503 Record.clear(); 7504 7505 // Keep around the last seen summary to be used when we see an optional 7506 // "OriginalName" attachement. 7507 GlobalValueSummary *LastSeenSummary = nullptr; 7508 GlobalValue::GUID LastSeenGUID = 0; 7509 7510 // We can expect to see any number of type ID information records before 7511 // each function summary records; these variables store the information 7512 // collected so far so that it can be used to create the summary object. 7513 std::vector<GlobalValue::GUID> PendingTypeTests; 7514 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7515 PendingTypeCheckedLoadVCalls; 7516 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7517 PendingTypeCheckedLoadConstVCalls; 7518 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7519 7520 std::vector<CallsiteInfo> PendingCallsites; 7521 std::vector<AllocInfo> PendingAllocs; 7522 7523 while (true) { 7524 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7525 if (!MaybeEntry) 7526 return MaybeEntry.takeError(); 7527 BitstreamEntry Entry = MaybeEntry.get(); 7528 7529 switch (Entry.Kind) { 7530 case BitstreamEntry::SubBlock: // Handled for us already. 7531 case BitstreamEntry::Error: 7532 return error("Malformed block"); 7533 case BitstreamEntry::EndBlock: 7534 return Error::success(); 7535 case BitstreamEntry::Record: 7536 // The interesting case. 7537 break; 7538 } 7539 7540 // Read a record. The record format depends on whether this 7541 // is a per-module index or a combined index file. In the per-module 7542 // case the records contain the associated value's ID for correlation 7543 // with VST entries. In the combined index the correlation is done 7544 // via the bitcode offset of the summary records (which were saved 7545 // in the combined index VST entries). The records also contain 7546 // information used for ThinLTO renaming and importing. 7547 Record.clear(); 7548 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7549 if (!MaybeBitCode) 7550 return MaybeBitCode.takeError(); 7551 switch (unsigned BitCode = MaybeBitCode.get()) { 7552 default: // Default behavior: ignore. 7553 break; 7554 case bitc::FS_FLAGS: { // [flags] 7555 TheIndex.setFlags(Record[0]); 7556 break; 7557 } 7558 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7559 uint64_t ValueID = Record[0]; 7560 GlobalValue::GUID RefGUID = Record[1]; 7561 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7562 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7563 break; 7564 } 7565 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7566 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7567 // numrefs x valueid, n x (valueid)] 7568 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7569 // numrefs x valueid, 7570 // n x (valueid, hotness+tailcall flags)] 7571 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7572 // numrefs x valueid, 7573 // n x (valueid, relblockfreq+tailcall)] 7574 case bitc::FS_PERMODULE: 7575 case bitc::FS_PERMODULE_RELBF: 7576 case bitc::FS_PERMODULE_PROFILE: { 7577 unsigned ValueID = Record[0]; 7578 uint64_t RawFlags = Record[1]; 7579 unsigned InstCount = Record[2]; 7580 uint64_t RawFunFlags = 0; 7581 unsigned NumRefs = Record[3]; 7582 unsigned NumRORefs = 0, NumWORefs = 0; 7583 int RefListStartIndex = 4; 7584 if (Version >= 4) { 7585 RawFunFlags = Record[3]; 7586 NumRefs = Record[4]; 7587 RefListStartIndex = 5; 7588 if (Version >= 5) { 7589 NumRORefs = Record[5]; 7590 RefListStartIndex = 6; 7591 if (Version >= 7) { 7592 NumWORefs = Record[6]; 7593 RefListStartIndex = 7; 7594 } 7595 } 7596 } 7597 7598 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7599 // The module path string ref set in the summary must be owned by the 7600 // index's module string table. Since we don't have a module path 7601 // string table section in the per-module index, we create a single 7602 // module path string table entry with an empty (0) ID to take 7603 // ownership. 7604 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7605 assert(Record.size() >= RefListStartIndex + NumRefs && 7606 "Record size inconsistent with number of references"); 7607 std::vector<ValueInfo> Refs = makeRefList( 7608 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7609 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7610 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7611 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7612 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7613 IsOldProfileFormat, HasProfile, HasRelBF); 7614 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7615 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7616 // In order to save memory, only record the memprof summaries if this is 7617 // the prevailing copy of a symbol. The linker doesn't resolve local 7618 // linkage values so don't check whether those are prevailing. 7619 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7620 if (IsPrevailing && 7621 !GlobalValue::isLocalLinkage(LT) && 7622 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7623 PendingCallsites.clear(); 7624 PendingAllocs.clear(); 7625 } 7626 auto FS = std::make_unique<FunctionSummary>( 7627 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7628 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7629 std::move(PendingTypeTestAssumeVCalls), 7630 std::move(PendingTypeCheckedLoadVCalls), 7631 std::move(PendingTypeTestAssumeConstVCalls), 7632 std::move(PendingTypeCheckedLoadConstVCalls), 7633 std::move(PendingParamAccesses), std::move(PendingCallsites), 7634 std::move(PendingAllocs)); 7635 FS->setModulePath(getThisModule()->first()); 7636 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7637 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7638 std::move(FS)); 7639 break; 7640 } 7641 // FS_ALIAS: [valueid, flags, valueid] 7642 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7643 // they expect all aliasee summaries to be available. 7644 case bitc::FS_ALIAS: { 7645 unsigned ValueID = Record[0]; 7646 uint64_t RawFlags = Record[1]; 7647 unsigned AliaseeID = Record[2]; 7648 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7649 auto AS = std::make_unique<AliasSummary>(Flags); 7650 // The module path string ref set in the summary must be owned by the 7651 // index's module string table. Since we don't have a module path 7652 // string table section in the per-module index, we create a single 7653 // module path string table entry with an empty (0) ID to take 7654 // ownership. 7655 AS->setModulePath(getThisModule()->first()); 7656 7657 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7658 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7659 if (!AliaseeInModule) 7660 return error("Alias expects aliasee summary to be parsed"); 7661 AS->setAliasee(AliaseeVI, AliaseeInModule); 7662 7663 auto GUID = getValueInfoFromValueId(ValueID); 7664 AS->setOriginalName(std::get<1>(GUID)); 7665 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7666 break; 7667 } 7668 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7669 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7670 unsigned ValueID = Record[0]; 7671 uint64_t RawFlags = Record[1]; 7672 unsigned RefArrayStart = 2; 7673 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7674 /* WriteOnly */ false, 7675 /* Constant */ false, 7676 GlobalObject::VCallVisibilityPublic); 7677 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7678 if (Version >= 5) { 7679 GVF = getDecodedGVarFlags(Record[2]); 7680 RefArrayStart = 3; 7681 } 7682 std::vector<ValueInfo> Refs = 7683 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7684 auto FS = 7685 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7686 FS->setModulePath(getThisModule()->first()); 7687 auto GUID = getValueInfoFromValueId(ValueID); 7688 FS->setOriginalName(std::get<1>(GUID)); 7689 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7690 break; 7691 } 7692 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7693 // numrefs, numrefs x valueid, 7694 // n x (valueid, offset)] 7695 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7696 unsigned ValueID = Record[0]; 7697 uint64_t RawFlags = Record[1]; 7698 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7699 unsigned NumRefs = Record[3]; 7700 unsigned RefListStartIndex = 4; 7701 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7702 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7703 std::vector<ValueInfo> Refs = makeRefList( 7704 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7705 VTableFuncList VTableFuncs; 7706 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7707 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7708 uint64_t Offset = Record[++I]; 7709 VTableFuncs.push_back({Callee, Offset}); 7710 } 7711 auto VS = 7712 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7713 VS->setModulePath(getThisModule()->first()); 7714 VS->setVTableFuncs(VTableFuncs); 7715 auto GUID = getValueInfoFromValueId(ValueID); 7716 VS->setOriginalName(std::get<1>(GUID)); 7717 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7718 break; 7719 } 7720 // FS_COMBINED is legacy and does not have support for the tail call flag. 7721 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7722 // numrefs x valueid, n x (valueid)] 7723 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7724 // numrefs x valueid, 7725 // n x (valueid, hotness+tailcall flags)] 7726 case bitc::FS_COMBINED: 7727 case bitc::FS_COMBINED_PROFILE: { 7728 unsigned ValueID = Record[0]; 7729 uint64_t ModuleId = Record[1]; 7730 uint64_t RawFlags = Record[2]; 7731 unsigned InstCount = Record[3]; 7732 uint64_t RawFunFlags = 0; 7733 uint64_t EntryCount = 0; 7734 unsigned NumRefs = Record[4]; 7735 unsigned NumRORefs = 0, NumWORefs = 0; 7736 int RefListStartIndex = 5; 7737 7738 if (Version >= 4) { 7739 RawFunFlags = Record[4]; 7740 RefListStartIndex = 6; 7741 size_t NumRefsIndex = 5; 7742 if (Version >= 5) { 7743 unsigned NumRORefsOffset = 1; 7744 RefListStartIndex = 7; 7745 if (Version >= 6) { 7746 NumRefsIndex = 6; 7747 EntryCount = Record[5]; 7748 RefListStartIndex = 8; 7749 if (Version >= 7) { 7750 RefListStartIndex = 9; 7751 NumWORefs = Record[8]; 7752 NumRORefsOffset = 2; 7753 } 7754 } 7755 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7756 } 7757 NumRefs = Record[NumRefsIndex]; 7758 } 7759 7760 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7761 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7762 assert(Record.size() >= RefListStartIndex + NumRefs && 7763 "Record size inconsistent with number of references"); 7764 std::vector<ValueInfo> Refs = makeRefList( 7765 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7766 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7767 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7768 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7769 IsOldProfileFormat, HasProfile, false); 7770 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7771 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7772 auto FS = std::make_unique<FunctionSummary>( 7773 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7774 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7775 std::move(PendingTypeTestAssumeVCalls), 7776 std::move(PendingTypeCheckedLoadVCalls), 7777 std::move(PendingTypeTestAssumeConstVCalls), 7778 std::move(PendingTypeCheckedLoadConstVCalls), 7779 std::move(PendingParamAccesses), std::move(PendingCallsites), 7780 std::move(PendingAllocs)); 7781 LastSeenSummary = FS.get(); 7782 LastSeenGUID = VI.getGUID(); 7783 FS->setModulePath(ModuleIdMap[ModuleId]); 7784 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7785 break; 7786 } 7787 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7788 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7789 // they expect all aliasee summaries to be available. 7790 case bitc::FS_COMBINED_ALIAS: { 7791 unsigned ValueID = Record[0]; 7792 uint64_t ModuleId = Record[1]; 7793 uint64_t RawFlags = Record[2]; 7794 unsigned AliaseeValueId = Record[3]; 7795 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7796 auto AS = std::make_unique<AliasSummary>(Flags); 7797 LastSeenSummary = AS.get(); 7798 AS->setModulePath(ModuleIdMap[ModuleId]); 7799 7800 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7801 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7802 AS->setAliasee(AliaseeVI, AliaseeInModule); 7803 7804 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7805 LastSeenGUID = VI.getGUID(); 7806 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7807 break; 7808 } 7809 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7810 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7811 unsigned ValueID = Record[0]; 7812 uint64_t ModuleId = Record[1]; 7813 uint64_t RawFlags = Record[2]; 7814 unsigned RefArrayStart = 3; 7815 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7816 /* WriteOnly */ false, 7817 /* Constant */ false, 7818 GlobalObject::VCallVisibilityPublic); 7819 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7820 if (Version >= 5) { 7821 GVF = getDecodedGVarFlags(Record[3]); 7822 RefArrayStart = 4; 7823 } 7824 std::vector<ValueInfo> Refs = 7825 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7826 auto FS = 7827 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7828 LastSeenSummary = FS.get(); 7829 FS->setModulePath(ModuleIdMap[ModuleId]); 7830 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7831 LastSeenGUID = VI.getGUID(); 7832 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7833 break; 7834 } 7835 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7836 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7837 uint64_t OriginalName = Record[0]; 7838 if (!LastSeenSummary) 7839 return error("Name attachment that does not follow a combined record"); 7840 LastSeenSummary->setOriginalName(OriginalName); 7841 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7842 // Reset the LastSeenSummary 7843 LastSeenSummary = nullptr; 7844 LastSeenGUID = 0; 7845 break; 7846 } 7847 case bitc::FS_TYPE_TESTS: 7848 assert(PendingTypeTests.empty()); 7849 llvm::append_range(PendingTypeTests, Record); 7850 break; 7851 7852 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7853 assert(PendingTypeTestAssumeVCalls.empty()); 7854 for (unsigned I = 0; I != Record.size(); I += 2) 7855 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7856 break; 7857 7858 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7859 assert(PendingTypeCheckedLoadVCalls.empty()); 7860 for (unsigned I = 0; I != Record.size(); I += 2) 7861 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7862 break; 7863 7864 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7865 PendingTypeTestAssumeConstVCalls.push_back( 7866 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7867 break; 7868 7869 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7870 PendingTypeCheckedLoadConstVCalls.push_back( 7871 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7872 break; 7873 7874 case bitc::FS_CFI_FUNCTION_DEFS: { 7875 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7876 for (unsigned I = 0; I != Record.size(); I += 2) 7877 CfiFunctionDefs.insert( 7878 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7879 break; 7880 } 7881 7882 case bitc::FS_CFI_FUNCTION_DECLS: { 7883 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7884 for (unsigned I = 0; I != Record.size(); I += 2) 7885 CfiFunctionDecls.insert( 7886 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7887 break; 7888 } 7889 7890 case bitc::FS_TYPE_ID: 7891 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7892 break; 7893 7894 case bitc::FS_TYPE_ID_METADATA: 7895 parseTypeIdCompatibleVtableSummaryRecord(Record); 7896 break; 7897 7898 case bitc::FS_BLOCK_COUNT: 7899 TheIndex.addBlockCount(Record[0]); 7900 break; 7901 7902 case bitc::FS_PARAM_ACCESS: { 7903 PendingParamAccesses = parseParamAccesses(Record); 7904 break; 7905 } 7906 7907 case bitc::FS_STACK_IDS: { // [n x stackid] 7908 // Save stack ids in the reader to consult when adding stack ids from the 7909 // lists in the stack node and alloc node entries. 7910 StackIds = ArrayRef<uint64_t>(Record); 7911 break; 7912 } 7913 7914 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7915 unsigned ValueID = Record[0]; 7916 SmallVector<unsigned> StackIdList; 7917 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7918 assert(*R < StackIds.size()); 7919 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7920 } 7921 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7922 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7923 break; 7924 } 7925 7926 case bitc::FS_COMBINED_CALLSITE_INFO: { 7927 auto RecordIter = Record.begin(); 7928 unsigned ValueID = *RecordIter++; 7929 unsigned NumStackIds = *RecordIter++; 7930 unsigned NumVersions = *RecordIter++; 7931 assert(Record.size() == 3 + NumStackIds + NumVersions); 7932 SmallVector<unsigned> StackIdList; 7933 for (unsigned J = 0; J < NumStackIds; J++) { 7934 assert(*RecordIter < StackIds.size()); 7935 StackIdList.push_back( 7936 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7937 } 7938 SmallVector<unsigned> Versions; 7939 for (unsigned J = 0; J < NumVersions; J++) 7940 Versions.push_back(*RecordIter++); 7941 ValueInfo VI = std::get<0>( 7942 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7943 PendingCallsites.push_back( 7944 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7945 break; 7946 } 7947 7948 case bitc::FS_PERMODULE_ALLOC_INFO: { 7949 unsigned I = 0; 7950 std::vector<MIBInfo> MIBs; 7951 while (I < Record.size()) { 7952 assert(Record.size() - I >= 2); 7953 AllocationType AllocType = (AllocationType)Record[I++]; 7954 unsigned NumStackEntries = Record[I++]; 7955 assert(Record.size() - I >= NumStackEntries); 7956 SmallVector<unsigned> StackIdList; 7957 for (unsigned J = 0; J < NumStackEntries; J++) { 7958 assert(Record[I] < StackIds.size()); 7959 StackIdList.push_back( 7960 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7961 } 7962 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7963 } 7964 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7965 break; 7966 } 7967 7968 case bitc::FS_COMBINED_ALLOC_INFO: { 7969 unsigned I = 0; 7970 std::vector<MIBInfo> MIBs; 7971 unsigned NumMIBs = Record[I++]; 7972 unsigned NumVersions = Record[I++]; 7973 unsigned MIBsRead = 0; 7974 while (MIBsRead++ < NumMIBs) { 7975 assert(Record.size() - I >= 2); 7976 AllocationType AllocType = (AllocationType)Record[I++]; 7977 unsigned NumStackEntries = Record[I++]; 7978 assert(Record.size() - I >= NumStackEntries); 7979 SmallVector<unsigned> StackIdList; 7980 for (unsigned J = 0; J < NumStackEntries; J++) { 7981 assert(Record[I] < StackIds.size()); 7982 StackIdList.push_back( 7983 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7984 } 7985 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7986 } 7987 assert(Record.size() - I >= NumVersions); 7988 SmallVector<uint8_t> Versions; 7989 for (unsigned J = 0; J < NumVersions; J++) 7990 Versions.push_back(Record[I++]); 7991 PendingAllocs.push_back( 7992 AllocInfo(std::move(Versions), std::move(MIBs))); 7993 break; 7994 } 7995 } 7996 } 7997 llvm_unreachable("Exit infinite loop"); 7998 } 7999 8000 // Parse the module string table block into the Index. 8001 // This populates the ModulePathStringTable map in the index. 8002 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8003 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8004 return Err; 8005 8006 SmallVector<uint64_t, 64> Record; 8007 8008 SmallString<128> ModulePath; 8009 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8010 8011 while (true) { 8012 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8013 if (!MaybeEntry) 8014 return MaybeEntry.takeError(); 8015 BitstreamEntry Entry = MaybeEntry.get(); 8016 8017 switch (Entry.Kind) { 8018 case BitstreamEntry::SubBlock: // Handled for us already. 8019 case BitstreamEntry::Error: 8020 return error("Malformed block"); 8021 case BitstreamEntry::EndBlock: 8022 return Error::success(); 8023 case BitstreamEntry::Record: 8024 // The interesting case. 8025 break; 8026 } 8027 8028 Record.clear(); 8029 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8030 if (!MaybeRecord) 8031 return MaybeRecord.takeError(); 8032 switch (MaybeRecord.get()) { 8033 default: // Default behavior: ignore. 8034 break; 8035 case bitc::MST_CODE_ENTRY: { 8036 // MST_ENTRY: [modid, namechar x N] 8037 uint64_t ModuleId = Record[0]; 8038 8039 if (convertToString(Record, 1, ModulePath)) 8040 return error("Invalid record"); 8041 8042 LastSeenModule = TheIndex.addModule(ModulePath); 8043 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8044 8045 ModulePath.clear(); 8046 break; 8047 } 8048 /// MST_CODE_HASH: [5*i32] 8049 case bitc::MST_CODE_HASH: { 8050 if (Record.size() != 5) 8051 return error("Invalid hash length " + Twine(Record.size()).str()); 8052 if (!LastSeenModule) 8053 return error("Invalid hash that does not follow a module path"); 8054 int Pos = 0; 8055 for (auto &Val : Record) { 8056 assert(!(Val >> 32) && "Unexpected high bits set"); 8057 LastSeenModule->second[Pos++] = Val; 8058 } 8059 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8060 LastSeenModule = nullptr; 8061 break; 8062 } 8063 } 8064 } 8065 llvm_unreachable("Exit infinite loop"); 8066 } 8067 8068 namespace { 8069 8070 // FIXME: This class is only here to support the transition to llvm::Error. It 8071 // will be removed once this transition is complete. Clients should prefer to 8072 // deal with the Error value directly, rather than converting to error_code. 8073 class BitcodeErrorCategoryType : public std::error_category { 8074 const char *name() const noexcept override { 8075 return "llvm.bitcode"; 8076 } 8077 8078 std::string message(int IE) const override { 8079 BitcodeError E = static_cast<BitcodeError>(IE); 8080 switch (E) { 8081 case BitcodeError::CorruptedBitcode: 8082 return "Corrupted bitcode"; 8083 } 8084 llvm_unreachable("Unknown error type!"); 8085 } 8086 }; 8087 8088 } // end anonymous namespace 8089 8090 const std::error_category &llvm::BitcodeErrorCategory() { 8091 static BitcodeErrorCategoryType ErrorCategory; 8092 return ErrorCategory; 8093 } 8094 8095 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8096 unsigned Block, unsigned RecordID) { 8097 if (Error Err = Stream.EnterSubBlock(Block)) 8098 return std::move(Err); 8099 8100 StringRef Strtab; 8101 while (true) { 8102 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8103 if (!MaybeEntry) 8104 return MaybeEntry.takeError(); 8105 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8106 8107 switch (Entry.Kind) { 8108 case BitstreamEntry::EndBlock: 8109 return Strtab; 8110 8111 case BitstreamEntry::Error: 8112 return error("Malformed block"); 8113 8114 case BitstreamEntry::SubBlock: 8115 if (Error Err = Stream.SkipBlock()) 8116 return std::move(Err); 8117 break; 8118 8119 case BitstreamEntry::Record: 8120 StringRef Blob; 8121 SmallVector<uint64_t, 1> Record; 8122 Expected<unsigned> MaybeRecord = 8123 Stream.readRecord(Entry.ID, Record, &Blob); 8124 if (!MaybeRecord) 8125 return MaybeRecord.takeError(); 8126 if (MaybeRecord.get() == RecordID) 8127 Strtab = Blob; 8128 break; 8129 } 8130 } 8131 } 8132 8133 //===----------------------------------------------------------------------===// 8134 // External interface 8135 //===----------------------------------------------------------------------===// 8136 8137 Expected<std::vector<BitcodeModule>> 8138 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8139 auto FOrErr = getBitcodeFileContents(Buffer); 8140 if (!FOrErr) 8141 return FOrErr.takeError(); 8142 return std::move(FOrErr->Mods); 8143 } 8144 8145 Expected<BitcodeFileContents> 8146 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8147 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8148 if (!StreamOrErr) 8149 return StreamOrErr.takeError(); 8150 BitstreamCursor &Stream = *StreamOrErr; 8151 8152 BitcodeFileContents F; 8153 while (true) { 8154 uint64_t BCBegin = Stream.getCurrentByteNo(); 8155 8156 // We may be consuming bitcode from a client that leaves garbage at the end 8157 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8158 // the end that there cannot possibly be another module, stop looking. 8159 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8160 return F; 8161 8162 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8163 if (!MaybeEntry) 8164 return MaybeEntry.takeError(); 8165 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8166 8167 switch (Entry.Kind) { 8168 case BitstreamEntry::EndBlock: 8169 case BitstreamEntry::Error: 8170 return error("Malformed block"); 8171 8172 case BitstreamEntry::SubBlock: { 8173 uint64_t IdentificationBit = -1ull; 8174 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8175 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8176 if (Error Err = Stream.SkipBlock()) 8177 return std::move(Err); 8178 8179 { 8180 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8181 if (!MaybeEntry) 8182 return MaybeEntry.takeError(); 8183 Entry = MaybeEntry.get(); 8184 } 8185 8186 if (Entry.Kind != BitstreamEntry::SubBlock || 8187 Entry.ID != bitc::MODULE_BLOCK_ID) 8188 return error("Malformed block"); 8189 } 8190 8191 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8192 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8193 if (Error Err = Stream.SkipBlock()) 8194 return std::move(Err); 8195 8196 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8197 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8198 Buffer.getBufferIdentifier(), IdentificationBit, 8199 ModuleBit}); 8200 continue; 8201 } 8202 8203 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8204 Expected<StringRef> Strtab = 8205 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8206 if (!Strtab) 8207 return Strtab.takeError(); 8208 // This string table is used by every preceding bitcode module that does 8209 // not have its own string table. A bitcode file may have multiple 8210 // string tables if it was created by binary concatenation, for example 8211 // with "llvm-cat -b". 8212 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8213 if (!I.Strtab.empty()) 8214 break; 8215 I.Strtab = *Strtab; 8216 } 8217 // Similarly, the string table is used by every preceding symbol table; 8218 // normally there will be just one unless the bitcode file was created 8219 // by binary concatenation. 8220 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8221 F.StrtabForSymtab = *Strtab; 8222 continue; 8223 } 8224 8225 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8226 Expected<StringRef> SymtabOrErr = 8227 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8228 if (!SymtabOrErr) 8229 return SymtabOrErr.takeError(); 8230 8231 // We can expect the bitcode file to have multiple symbol tables if it 8232 // was created by binary concatenation. In that case we silently 8233 // ignore any subsequent symbol tables, which is fine because this is a 8234 // low level function. The client is expected to notice that the number 8235 // of modules in the symbol table does not match the number of modules 8236 // in the input file and regenerate the symbol table. 8237 if (F.Symtab.empty()) 8238 F.Symtab = *SymtabOrErr; 8239 continue; 8240 } 8241 8242 if (Error Err = Stream.SkipBlock()) 8243 return std::move(Err); 8244 continue; 8245 } 8246 case BitstreamEntry::Record: 8247 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8248 return std::move(E); 8249 continue; 8250 } 8251 } 8252 } 8253 8254 /// Get a lazy one-at-time loading module from bitcode. 8255 /// 8256 /// This isn't always used in a lazy context. In particular, it's also used by 8257 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8258 /// in forward-referenced functions from block address references. 8259 /// 8260 /// \param[in] MaterializeAll Set to \c true if we should materialize 8261 /// everything. 8262 Expected<std::unique_ptr<Module>> 8263 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8264 bool ShouldLazyLoadMetadata, bool IsImporting, 8265 ParserCallbacks Callbacks) { 8266 BitstreamCursor Stream(Buffer); 8267 8268 std::string ProducerIdentification; 8269 if (IdentificationBit != -1ull) { 8270 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8271 return std::move(JumpFailed); 8272 if (Error E = 8273 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8274 return std::move(E); 8275 } 8276 8277 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8278 return std::move(JumpFailed); 8279 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8280 Context); 8281 8282 std::unique_ptr<Module> M = 8283 std::make_unique<Module>(ModuleIdentifier, Context); 8284 M->setMaterializer(R); 8285 8286 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8287 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8288 IsImporting, Callbacks)) 8289 return std::move(Err); 8290 8291 if (MaterializeAll) { 8292 // Read in the entire module, and destroy the BitcodeReader. 8293 if (Error Err = M->materializeAll()) 8294 return std::move(Err); 8295 } else { 8296 // Resolve forward references from blockaddresses. 8297 if (Error Err = R->materializeForwardReferencedFunctions()) 8298 return std::move(Err); 8299 } 8300 8301 return std::move(M); 8302 } 8303 8304 Expected<std::unique_ptr<Module>> 8305 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8306 bool IsImporting, ParserCallbacks Callbacks) { 8307 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8308 Callbacks); 8309 } 8310 8311 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8312 // We don't use ModuleIdentifier here because the client may need to control the 8313 // module path used in the combined summary (e.g. when reading summaries for 8314 // regular LTO modules). 8315 Error BitcodeModule::readSummary( 8316 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8317 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8318 BitstreamCursor Stream(Buffer); 8319 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8320 return JumpFailed; 8321 8322 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8323 ModulePath, IsPrevailing); 8324 return R.parseModule(); 8325 } 8326 8327 // Parse the specified bitcode buffer, returning the function info index. 8328 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8329 BitstreamCursor Stream(Buffer); 8330 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8331 return std::move(JumpFailed); 8332 8333 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8334 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8335 ModuleIdentifier, 0); 8336 8337 if (Error Err = R.parseModule()) 8338 return std::move(Err); 8339 8340 return std::move(Index); 8341 } 8342 8343 static Expected<std::pair<bool, bool>> 8344 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8345 unsigned ID, 8346 BitcodeLTOInfo <OInfo) { 8347 if (Error Err = Stream.EnterSubBlock(ID)) 8348 return std::move(Err); 8349 SmallVector<uint64_t, 64> Record; 8350 8351 while (true) { 8352 BitstreamEntry Entry; 8353 std::pair<bool, bool> Result = {false,false}; 8354 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8355 return std::move(E); 8356 8357 switch (Entry.Kind) { 8358 case BitstreamEntry::SubBlock: // Handled for us already. 8359 case BitstreamEntry::Error: 8360 return error("Malformed block"); 8361 case BitstreamEntry::EndBlock: { 8362 // If no flags record found, set both flags to false. 8363 return Result; 8364 } 8365 case BitstreamEntry::Record: 8366 // The interesting case. 8367 break; 8368 } 8369 8370 // Look for the FS_FLAGS record. 8371 Record.clear(); 8372 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8373 if (!MaybeBitCode) 8374 return MaybeBitCode.takeError(); 8375 switch (MaybeBitCode.get()) { 8376 default: // Default behavior: ignore. 8377 break; 8378 case bitc::FS_FLAGS: { // [flags] 8379 uint64_t Flags = Record[0]; 8380 // Scan flags. 8381 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8382 8383 bool EnableSplitLTOUnit = Flags & 0x8; 8384 bool UnifiedLTO = Flags & 0x200; 8385 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8386 8387 return Result; 8388 } 8389 } 8390 } 8391 llvm_unreachable("Exit infinite loop"); 8392 } 8393 8394 // Check if the given bitcode buffer contains a global value summary block. 8395 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8396 BitstreamCursor Stream(Buffer); 8397 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8398 return std::move(JumpFailed); 8399 8400 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8401 return std::move(Err); 8402 8403 while (true) { 8404 llvm::BitstreamEntry Entry; 8405 if (Error E = Stream.advance().moveInto(Entry)) 8406 return std::move(E); 8407 8408 switch (Entry.Kind) { 8409 case BitstreamEntry::Error: 8410 return error("Malformed block"); 8411 case BitstreamEntry::EndBlock: 8412 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8413 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8414 8415 case BitstreamEntry::SubBlock: 8416 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8417 BitcodeLTOInfo LTOInfo; 8418 Expected<std::pair<bool, bool>> Flags = 8419 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8420 if (!Flags) 8421 return Flags.takeError(); 8422 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8423 LTOInfo.IsThinLTO = true; 8424 LTOInfo.HasSummary = true; 8425 return LTOInfo; 8426 } 8427 8428 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8429 BitcodeLTOInfo LTOInfo; 8430 Expected<std::pair<bool, bool>> Flags = 8431 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8432 if (!Flags) 8433 return Flags.takeError(); 8434 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8435 LTOInfo.IsThinLTO = false; 8436 LTOInfo.HasSummary = true; 8437 return LTOInfo; 8438 } 8439 8440 // Ignore other sub-blocks. 8441 if (Error Err = Stream.SkipBlock()) 8442 return std::move(Err); 8443 continue; 8444 8445 case BitstreamEntry::Record: 8446 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8447 continue; 8448 else 8449 return StreamFailed.takeError(); 8450 } 8451 } 8452 } 8453 8454 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8455 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8456 if (!MsOrErr) 8457 return MsOrErr.takeError(); 8458 8459 if (MsOrErr->size() != 1) 8460 return error("Expected a single module"); 8461 8462 return (*MsOrErr)[0]; 8463 } 8464 8465 Expected<std::unique_ptr<Module>> 8466 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8467 bool ShouldLazyLoadMetadata, bool IsImporting, 8468 ParserCallbacks Callbacks) { 8469 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8470 if (!BM) 8471 return BM.takeError(); 8472 8473 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8474 Callbacks); 8475 } 8476 8477 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8478 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8479 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8480 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8481 IsImporting, Callbacks); 8482 if (MOrErr) 8483 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8484 return MOrErr; 8485 } 8486 8487 Expected<std::unique_ptr<Module>> 8488 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8489 return getModuleImpl(Context, true, false, false, Callbacks); 8490 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8491 // written. We must defer until the Module has been fully materialized. 8492 } 8493 8494 Expected<std::unique_ptr<Module>> 8495 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8496 ParserCallbacks Callbacks) { 8497 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8498 if (!BM) 8499 return BM.takeError(); 8500 8501 return BM->parseModule(Context, Callbacks); 8502 } 8503 8504 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8505 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8506 if (!StreamOrErr) 8507 return StreamOrErr.takeError(); 8508 8509 return readTriple(*StreamOrErr); 8510 } 8511 8512 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8513 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8514 if (!StreamOrErr) 8515 return StreamOrErr.takeError(); 8516 8517 return hasObjCCategory(*StreamOrErr); 8518 } 8519 8520 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8521 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8522 if (!StreamOrErr) 8523 return StreamOrErr.takeError(); 8524 8525 return readIdentificationCode(*StreamOrErr); 8526 } 8527 8528 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8529 ModuleSummaryIndex &CombinedIndex) { 8530 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8531 if (!BM) 8532 return BM.takeError(); 8533 8534 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8535 } 8536 8537 Expected<std::unique_ptr<ModuleSummaryIndex>> 8538 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8539 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8540 if (!BM) 8541 return BM.takeError(); 8542 8543 return BM->getSummary(); 8544 } 8545 8546 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8547 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8548 if (!BM) 8549 return BM.takeError(); 8550 8551 return BM->getLTOInfo(); 8552 } 8553 8554 Expected<std::unique_ptr<ModuleSummaryIndex>> 8555 llvm::getModuleSummaryIndexForFile(StringRef Path, 8556 bool IgnoreEmptyThinLTOIndexFile) { 8557 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8558 MemoryBuffer::getFileOrSTDIN(Path); 8559 if (!FileOrErr) 8560 return errorCodeToError(FileOrErr.getError()); 8561 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8562 return nullptr; 8563 return getModuleSummaryIndex(**FileOrErr); 8564 } 8565