xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision d6d3d96b654012d72ad170d272cb2fe2c8def90d)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
816                                             unsigned &OpNum) {
817     if (Record.size() - OpNum < 3)
818       return error("Too few records for range");
819     unsigned BitWidth = Record[OpNum++];
820     if (BitWidth > 64) {
821       unsigned LowerActiveWords = Record[OpNum];
822       unsigned UpperActiveWords = Record[OpNum++] >> 32;
823       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
824         return error("Too few records for range");
825       APInt Lower =
826           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
827       OpNum += LowerActiveWords;
828       APInt Upper =
829           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
830       OpNum += UpperActiveWords;
831       return ConstantRange(Lower, Upper);
832     } else {
833       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
834       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
835       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
836     }
837   }
838 
839   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
840   /// corresponding argument's pointee type. Also upgrades intrinsics that now
841   /// require an elementtype attribute.
842   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
843 
844   /// Converts alignment exponent (i.e. power of two (or zero)) to the
845   /// corresponding alignment to use. If alignment is too large, returns
846   /// a corresponding error code.
847   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
848   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
849   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
850                     ParserCallbacks Callbacks = {});
851 
852   Error parseComdatRecord(ArrayRef<uint64_t> Record);
853   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
854   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
855   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
856                                         ArrayRef<uint64_t> Record);
857 
858   Error parseAttributeBlock();
859   Error parseAttributeGroupBlock();
860   Error parseTypeTable();
861   Error parseTypeTableBody();
862   Error parseOperandBundleTags();
863   Error parseSyncScopeNames();
864 
865   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
866                                 unsigned NameIndex, Triple &TT);
867   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
868                                ArrayRef<uint64_t> Record);
869   Error parseValueSymbolTable(uint64_t Offset = 0);
870   Error parseGlobalValueSymbolTable();
871   Error parseConstants();
872   Error rememberAndSkipFunctionBodies();
873   Error rememberAndSkipFunctionBody();
874   /// Save the positions of the Metadata blocks and skip parsing the blocks.
875   Error rememberAndSkipMetadata();
876   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
877   Error parseFunctionBody(Function *F);
878   Error globalCleanup();
879   Error resolveGlobalAndIndirectSymbolInits();
880   Error parseUseLists();
881   Error findFunctionInStream(
882       Function *F,
883       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
884 
885   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
886 };
887 
888 /// Class to manage reading and parsing function summary index bitcode
889 /// files/sections.
890 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
891   /// The module index built during parsing.
892   ModuleSummaryIndex &TheIndex;
893 
894   /// Indicates whether we have encountered a global value summary section
895   /// yet during parsing.
896   bool SeenGlobalValSummary = false;
897 
898   /// Indicates whether we have already parsed the VST, used for error checking.
899   bool SeenValueSymbolTable = false;
900 
901   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
902   /// Used to enable on-demand parsing of the VST.
903   uint64_t VSTOffset = 0;
904 
905   // Map to save ValueId to ValueInfo association that was recorded in the
906   // ValueSymbolTable. It is used after the VST is parsed to convert
907   // call graph edges read from the function summary from referencing
908   // callees by their ValueId to using the ValueInfo instead, which is how
909   // they are recorded in the summary index being built.
910   // We save a GUID which refers to the same global as the ValueInfo, but
911   // ignoring the linkage, i.e. for values other than local linkage they are
912   // identical (this is the second tuple member).
913   // The third tuple member is the real GUID of the ValueInfo.
914   DenseMap<unsigned,
915            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
916       ValueIdToValueInfoMap;
917 
918   /// Map populated during module path string table parsing, from the
919   /// module ID to a string reference owned by the index's module
920   /// path string table, used to correlate with combined index
921   /// summary records.
922   DenseMap<uint64_t, StringRef> ModuleIdMap;
923 
924   /// Original source file name recorded in a bitcode record.
925   std::string SourceFileName;
926 
927   /// The string identifier given to this module by the client, normally the
928   /// path to the bitcode file.
929   StringRef ModulePath;
930 
931   /// Callback to ask whether a symbol is the prevailing copy when invoked
932   /// during combined index building.
933   std::function<bool(GlobalValue::GUID)> IsPrevailing;
934 
935   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
936   /// ids from the lists in the callsite and alloc entries to the index.
937   std::vector<uint64_t> StackIds;
938 
939 public:
940   ModuleSummaryIndexBitcodeReader(
941       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
942       StringRef ModulePath,
943       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
944 
945   Error parseModule();
946 
947 private:
948   void setValueGUID(uint64_t ValueID, StringRef ValueName,
949                     GlobalValue::LinkageTypes Linkage,
950                     StringRef SourceFileName);
951   Error parseValueSymbolTable(
952       uint64_t Offset,
953       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
954   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
955   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
956                                                     bool IsOldProfileFormat,
957                                                     bool HasProfile,
958                                                     bool HasRelBF);
959   Error parseEntireSummary(unsigned ID);
960   Error parseModuleStringTable();
961   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
962   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
963                                        TypeIdCompatibleVtableInfo &TypeId);
964   std::vector<FunctionSummary::ParamAccess>
965   parseParamAccesses(ArrayRef<uint64_t> Record);
966 
967   template <bool AllowNullValueInfo = false>
968   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
969   getValueInfoFromValueId(unsigned ValueId);
970 
971   void addThisModule();
972   ModuleSummaryIndex::ModuleInfo *getThisModule();
973 };
974 
975 } // end anonymous namespace
976 
977 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
978                                                     Error Err) {
979   if (Err) {
980     std::error_code EC;
981     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
982       EC = EIB.convertToErrorCode();
983       Ctx.emitError(EIB.message());
984     });
985     return EC;
986   }
987   return std::error_code();
988 }
989 
990 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
991                              StringRef ProducerIdentification,
992                              LLVMContext &Context)
993     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
994       ValueList(this->Stream.SizeInBytes(),
995                 [this](unsigned ValID, BasicBlock *InsertBB) {
996                   return materializeValue(ValID, InsertBB);
997                 }) {
998   this->ProducerIdentification = std::string(ProducerIdentification);
999 }
1000 
1001 Error BitcodeReader::materializeForwardReferencedFunctions() {
1002   if (WillMaterializeAllForwardRefs)
1003     return Error::success();
1004 
1005   // Prevent recursion.
1006   WillMaterializeAllForwardRefs = true;
1007 
1008   while (!BasicBlockFwdRefQueue.empty()) {
1009     Function *F = BasicBlockFwdRefQueue.front();
1010     BasicBlockFwdRefQueue.pop_front();
1011     assert(F && "Expected valid function");
1012     if (!BasicBlockFwdRefs.count(F))
1013       // Already materialized.
1014       continue;
1015 
1016     // Check for a function that isn't materializable to prevent an infinite
1017     // loop.  When parsing a blockaddress stored in a global variable, there
1018     // isn't a trivial way to check if a function will have a body without a
1019     // linear search through FunctionsWithBodies, so just check it here.
1020     if (!F->isMaterializable())
1021       return error("Never resolved function from blockaddress");
1022 
1023     // Try to materialize F.
1024     if (Error Err = materialize(F))
1025       return Err;
1026   }
1027   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1028 
1029   for (Function *F : BackwardRefFunctions)
1030     if (Error Err = materialize(F))
1031       return Err;
1032   BackwardRefFunctions.clear();
1033 
1034   // Reset state.
1035   WillMaterializeAllForwardRefs = false;
1036   return Error::success();
1037 }
1038 
1039 //===----------------------------------------------------------------------===//
1040 //  Helper functions to implement forward reference resolution, etc.
1041 //===----------------------------------------------------------------------===//
1042 
1043 static bool hasImplicitComdat(size_t Val) {
1044   switch (Val) {
1045   default:
1046     return false;
1047   case 1:  // Old WeakAnyLinkage
1048   case 4:  // Old LinkOnceAnyLinkage
1049   case 10: // Old WeakODRLinkage
1050   case 11: // Old LinkOnceODRLinkage
1051     return true;
1052   }
1053 }
1054 
1055 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1056   switch (Val) {
1057   default: // Map unknown/new linkages to external
1058   case 0:
1059     return GlobalValue::ExternalLinkage;
1060   case 2:
1061     return GlobalValue::AppendingLinkage;
1062   case 3:
1063     return GlobalValue::InternalLinkage;
1064   case 5:
1065     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1066   case 6:
1067     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1068   case 7:
1069     return GlobalValue::ExternalWeakLinkage;
1070   case 8:
1071     return GlobalValue::CommonLinkage;
1072   case 9:
1073     return GlobalValue::PrivateLinkage;
1074   case 12:
1075     return GlobalValue::AvailableExternallyLinkage;
1076   case 13:
1077     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1078   case 14:
1079     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1080   case 15:
1081     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1082   case 1: // Old value with implicit comdat.
1083   case 16:
1084     return GlobalValue::WeakAnyLinkage;
1085   case 10: // Old value with implicit comdat.
1086   case 17:
1087     return GlobalValue::WeakODRLinkage;
1088   case 4: // Old value with implicit comdat.
1089   case 18:
1090     return GlobalValue::LinkOnceAnyLinkage;
1091   case 11: // Old value with implicit comdat.
1092   case 19:
1093     return GlobalValue::LinkOnceODRLinkage;
1094   }
1095 }
1096 
1097 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1098   FunctionSummary::FFlags Flags;
1099   Flags.ReadNone = RawFlags & 0x1;
1100   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1101   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1102   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1103   Flags.NoInline = (RawFlags >> 4) & 0x1;
1104   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1105   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1106   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1107   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1108   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1109   return Flags;
1110 }
1111 
1112 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1113 //
1114 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1115 // visibility: [8, 10).
1116 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1117                                                             uint64_t Version) {
1118   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1119   // like getDecodedLinkage() above. Any future change to the linkage enum and
1120   // to getDecodedLinkage() will need to be taken into account here as above.
1121   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1122   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1123   RawFlags = RawFlags >> 4;
1124   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1125   // The Live flag wasn't introduced until version 3. For dead stripping
1126   // to work correctly on earlier versions, we must conservatively treat all
1127   // values as live.
1128   bool Live = (RawFlags & 0x2) || Version < 3;
1129   bool Local = (RawFlags & 0x4);
1130   bool AutoHide = (RawFlags & 0x8);
1131 
1132   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1133                                      Live, Local, AutoHide);
1134 }
1135 
1136 // Decode the flags for GlobalVariable in the summary
1137 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1138   return GlobalVarSummary::GVarFlags(
1139       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1140       (RawFlags & 0x4) ? true : false,
1141       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1142 }
1143 
1144 static std::pair<CalleeInfo::HotnessType, bool>
1145 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1146   CalleeInfo::HotnessType Hotness =
1147       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1148   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1149   return {Hotness, HasTailCall};
1150 }
1151 
1152 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1153                                         bool &HasTailCall) {
1154   static constexpr uint64_t RelBlockFreqMask =
1155       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1156   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1157   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1158 }
1159 
1160 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1161   switch (Val) {
1162   default: // Map unknown visibilities to default.
1163   case 0: return GlobalValue::DefaultVisibility;
1164   case 1: return GlobalValue::HiddenVisibility;
1165   case 2: return GlobalValue::ProtectedVisibility;
1166   }
1167 }
1168 
1169 static GlobalValue::DLLStorageClassTypes
1170 getDecodedDLLStorageClass(unsigned Val) {
1171   switch (Val) {
1172   default: // Map unknown values to default.
1173   case 0: return GlobalValue::DefaultStorageClass;
1174   case 1: return GlobalValue::DLLImportStorageClass;
1175   case 2: return GlobalValue::DLLExportStorageClass;
1176   }
1177 }
1178 
1179 static bool getDecodedDSOLocal(unsigned Val) {
1180   switch(Val) {
1181   default: // Map unknown values to preemptable.
1182   case 0:  return false;
1183   case 1:  return true;
1184   }
1185 }
1186 
1187 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1188   switch (Val) {
1189   case 1:
1190     return CodeModel::Tiny;
1191   case 2:
1192     return CodeModel::Small;
1193   case 3:
1194     return CodeModel::Kernel;
1195   case 4:
1196     return CodeModel::Medium;
1197   case 5:
1198     return CodeModel::Large;
1199   }
1200 
1201   return {};
1202 }
1203 
1204 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1205   switch (Val) {
1206     case 0: return GlobalVariable::NotThreadLocal;
1207     default: // Map unknown non-zero value to general dynamic.
1208     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1209     case 2: return GlobalVariable::LocalDynamicTLSModel;
1210     case 3: return GlobalVariable::InitialExecTLSModel;
1211     case 4: return GlobalVariable::LocalExecTLSModel;
1212   }
1213 }
1214 
1215 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1216   switch (Val) {
1217     default: // Map unknown to UnnamedAddr::None.
1218     case 0: return GlobalVariable::UnnamedAddr::None;
1219     case 1: return GlobalVariable::UnnamedAddr::Global;
1220     case 2: return GlobalVariable::UnnamedAddr::Local;
1221   }
1222 }
1223 
1224 static int getDecodedCastOpcode(unsigned Val) {
1225   switch (Val) {
1226   default: return -1;
1227   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1228   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1229   case bitc::CAST_SEXT    : return Instruction::SExt;
1230   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1231   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1232   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1233   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1234   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1235   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1236   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1237   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1238   case bitc::CAST_BITCAST : return Instruction::BitCast;
1239   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1240   }
1241 }
1242 
1243 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1244   bool IsFP = Ty->isFPOrFPVectorTy();
1245   // UnOps are only valid for int/fp or vector of int/fp types
1246   if (!IsFP && !Ty->isIntOrIntVectorTy())
1247     return -1;
1248 
1249   switch (Val) {
1250   default:
1251     return -1;
1252   case bitc::UNOP_FNEG:
1253     return IsFP ? Instruction::FNeg : -1;
1254   }
1255 }
1256 
1257 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1258   bool IsFP = Ty->isFPOrFPVectorTy();
1259   // BinOps are only valid for int/fp or vector of int/fp types
1260   if (!IsFP && !Ty->isIntOrIntVectorTy())
1261     return -1;
1262 
1263   switch (Val) {
1264   default:
1265     return -1;
1266   case bitc::BINOP_ADD:
1267     return IsFP ? Instruction::FAdd : Instruction::Add;
1268   case bitc::BINOP_SUB:
1269     return IsFP ? Instruction::FSub : Instruction::Sub;
1270   case bitc::BINOP_MUL:
1271     return IsFP ? Instruction::FMul : Instruction::Mul;
1272   case bitc::BINOP_UDIV:
1273     return IsFP ? -1 : Instruction::UDiv;
1274   case bitc::BINOP_SDIV:
1275     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1276   case bitc::BINOP_UREM:
1277     return IsFP ? -1 : Instruction::URem;
1278   case bitc::BINOP_SREM:
1279     return IsFP ? Instruction::FRem : Instruction::SRem;
1280   case bitc::BINOP_SHL:
1281     return IsFP ? -1 : Instruction::Shl;
1282   case bitc::BINOP_LSHR:
1283     return IsFP ? -1 : Instruction::LShr;
1284   case bitc::BINOP_ASHR:
1285     return IsFP ? -1 : Instruction::AShr;
1286   case bitc::BINOP_AND:
1287     return IsFP ? -1 : Instruction::And;
1288   case bitc::BINOP_OR:
1289     return IsFP ? -1 : Instruction::Or;
1290   case bitc::BINOP_XOR:
1291     return IsFP ? -1 : Instruction::Xor;
1292   }
1293 }
1294 
1295 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1296   switch (Val) {
1297   default: return AtomicRMWInst::BAD_BINOP;
1298   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1299   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1300   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1301   case bitc::RMW_AND: return AtomicRMWInst::And;
1302   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1303   case bitc::RMW_OR: return AtomicRMWInst::Or;
1304   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1305   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1306   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1307   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1308   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1309   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1310   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1311   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1312   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1313   case bitc::RMW_UINC_WRAP:
1314     return AtomicRMWInst::UIncWrap;
1315   case bitc::RMW_UDEC_WRAP:
1316     return AtomicRMWInst::UDecWrap;
1317   }
1318 }
1319 
1320 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1321   switch (Val) {
1322   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1323   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1324   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1325   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1326   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1327   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1328   default: // Map unknown orderings to sequentially-consistent.
1329   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1330   }
1331 }
1332 
1333 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1334   switch (Val) {
1335   default: // Map unknown selection kinds to any.
1336   case bitc::COMDAT_SELECTION_KIND_ANY:
1337     return Comdat::Any;
1338   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1339     return Comdat::ExactMatch;
1340   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1341     return Comdat::Largest;
1342   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1343     return Comdat::NoDeduplicate;
1344   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1345     return Comdat::SameSize;
1346   }
1347 }
1348 
1349 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1350   FastMathFlags FMF;
1351   if (0 != (Val & bitc::UnsafeAlgebra))
1352     FMF.setFast();
1353   if (0 != (Val & bitc::AllowReassoc))
1354     FMF.setAllowReassoc();
1355   if (0 != (Val & bitc::NoNaNs))
1356     FMF.setNoNaNs();
1357   if (0 != (Val & bitc::NoInfs))
1358     FMF.setNoInfs();
1359   if (0 != (Val & bitc::NoSignedZeros))
1360     FMF.setNoSignedZeros();
1361   if (0 != (Val & bitc::AllowReciprocal))
1362     FMF.setAllowReciprocal();
1363   if (0 != (Val & bitc::AllowContract))
1364     FMF.setAllowContract(true);
1365   if (0 != (Val & bitc::ApproxFunc))
1366     FMF.setApproxFunc();
1367   return FMF;
1368 }
1369 
1370 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1371   // A GlobalValue with local linkage cannot have a DLL storage class.
1372   if (GV->hasLocalLinkage())
1373     return;
1374   switch (Val) {
1375   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1376   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1377   }
1378 }
1379 
1380 Type *BitcodeReader::getTypeByID(unsigned ID) {
1381   // The type table size is always specified correctly.
1382   if (ID >= TypeList.size())
1383     return nullptr;
1384 
1385   if (Type *Ty = TypeList[ID])
1386     return Ty;
1387 
1388   // If we have a forward reference, the only possible case is when it is to a
1389   // named struct.  Just create a placeholder for now.
1390   return TypeList[ID] = createIdentifiedStructType(Context);
1391 }
1392 
1393 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1394   auto It = ContainedTypeIDs.find(ID);
1395   if (It == ContainedTypeIDs.end())
1396     return InvalidTypeID;
1397 
1398   if (Idx >= It->second.size())
1399     return InvalidTypeID;
1400 
1401   return It->second[Idx];
1402 }
1403 
1404 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1405   if (ID >= TypeList.size())
1406     return nullptr;
1407 
1408   Type *Ty = TypeList[ID];
1409   if (!Ty->isPointerTy())
1410     return nullptr;
1411 
1412   return getTypeByID(getContainedTypeID(ID, 0));
1413 }
1414 
1415 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1416                                          ArrayRef<unsigned> ChildTypeIDs) {
1417   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1418   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1419   auto It = VirtualTypeIDs.find(CacheKey);
1420   if (It != VirtualTypeIDs.end()) {
1421     // The cmpxchg return value is the only place we need more than one
1422     // contained type ID, however the second one will always be the same (i1),
1423     // so we don't need to include it in the cache key. This asserts that the
1424     // contained types are indeed as expected and there are no collisions.
1425     assert((ChildTypeIDs.empty() ||
1426             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1427            "Incorrect cached contained type IDs");
1428     return It->second;
1429   }
1430 
1431   unsigned TypeID = TypeList.size();
1432   TypeList.push_back(Ty);
1433   if (!ChildTypeIDs.empty())
1434     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1435   VirtualTypeIDs.insert({CacheKey, TypeID});
1436   return TypeID;
1437 }
1438 
1439 static bool isConstExprSupported(const BitcodeConstant *BC) {
1440   uint8_t Opcode = BC->Opcode;
1441 
1442   // These are not real constant expressions, always consider them supported.
1443   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1444     return true;
1445 
1446   // If -expand-constant-exprs is set, we want to consider all expressions
1447   // as unsupported.
1448   if (ExpandConstantExprs)
1449     return false;
1450 
1451   if (Instruction::isBinaryOp(Opcode))
1452     return ConstantExpr::isSupportedBinOp(Opcode);
1453 
1454   if (Instruction::isCast(Opcode))
1455     return ConstantExpr::isSupportedCastOp(Opcode);
1456 
1457   if (Opcode == Instruction::GetElementPtr)
1458     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1459 
1460   switch (Opcode) {
1461   case Instruction::FNeg:
1462   case Instruction::Select:
1463     return false;
1464   default:
1465     return true;
1466   }
1467 }
1468 
1469 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1470                                                   BasicBlock *InsertBB) {
1471   // Quickly handle the case where there is no BitcodeConstant to resolve.
1472   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1473       !isa<BitcodeConstant>(ValueList[StartValID]))
1474     return ValueList[StartValID];
1475 
1476   SmallDenseMap<unsigned, Value *> MaterializedValues;
1477   SmallVector<unsigned> Worklist;
1478   Worklist.push_back(StartValID);
1479   while (!Worklist.empty()) {
1480     unsigned ValID = Worklist.back();
1481     if (MaterializedValues.count(ValID)) {
1482       // Duplicate expression that was already handled.
1483       Worklist.pop_back();
1484       continue;
1485     }
1486 
1487     if (ValID >= ValueList.size() || !ValueList[ValID])
1488       return error("Invalid value ID");
1489 
1490     Value *V = ValueList[ValID];
1491     auto *BC = dyn_cast<BitcodeConstant>(V);
1492     if (!BC) {
1493       MaterializedValues.insert({ValID, V});
1494       Worklist.pop_back();
1495       continue;
1496     }
1497 
1498     // Iterate in reverse, so values will get popped from the worklist in
1499     // expected order.
1500     SmallVector<Value *> Ops;
1501     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1502       auto It = MaterializedValues.find(OpID);
1503       if (It != MaterializedValues.end())
1504         Ops.push_back(It->second);
1505       else
1506         Worklist.push_back(OpID);
1507     }
1508 
1509     // Some expressions have not been resolved yet, handle them first and then
1510     // revisit this one.
1511     if (Ops.size() != BC->getOperandIDs().size())
1512       continue;
1513     std::reverse(Ops.begin(), Ops.end());
1514 
1515     SmallVector<Constant *> ConstOps;
1516     for (Value *Op : Ops)
1517       if (auto *C = dyn_cast<Constant>(Op))
1518         ConstOps.push_back(C);
1519 
1520     // Materialize as constant expression if possible.
1521     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1522       Constant *C;
1523       if (Instruction::isCast(BC->Opcode)) {
1524         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1525         if (!C)
1526           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1527       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1528         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1529       } else {
1530         switch (BC->Opcode) {
1531         case BitcodeConstant::NoCFIOpcode: {
1532           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1533           if (!GV)
1534             return error("no_cfi operand must be GlobalValue");
1535           C = NoCFIValue::get(GV);
1536           break;
1537         }
1538         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1539           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1540           if (!GV)
1541             return error("dso_local operand must be GlobalValue");
1542           C = DSOLocalEquivalent::get(GV);
1543           break;
1544         }
1545         case BitcodeConstant::BlockAddressOpcode: {
1546           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1547           if (!Fn)
1548             return error("blockaddress operand must be a function");
1549 
1550           // If the function is already parsed we can insert the block address
1551           // right away.
1552           BasicBlock *BB;
1553           unsigned BBID = BC->Extra;
1554           if (!BBID)
1555             // Invalid reference to entry block.
1556             return error("Invalid ID");
1557           if (!Fn->empty()) {
1558             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1559             for (size_t I = 0, E = BBID; I != E; ++I) {
1560               if (BBI == BBE)
1561                 return error("Invalid ID");
1562               ++BBI;
1563             }
1564             BB = &*BBI;
1565           } else {
1566             // Otherwise insert a placeholder and remember it so it can be
1567             // inserted when the function is parsed.
1568             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1569             if (FwdBBs.empty())
1570               BasicBlockFwdRefQueue.push_back(Fn);
1571             if (FwdBBs.size() < BBID + 1)
1572               FwdBBs.resize(BBID + 1);
1573             if (!FwdBBs[BBID])
1574               FwdBBs[BBID] = BasicBlock::Create(Context);
1575             BB = FwdBBs[BBID];
1576           }
1577           C = BlockAddress::get(Fn, BB);
1578           break;
1579         }
1580         case BitcodeConstant::ConstantStructOpcode:
1581           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1582           break;
1583         case BitcodeConstant::ConstantArrayOpcode:
1584           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1585           break;
1586         case BitcodeConstant::ConstantVectorOpcode:
1587           C = ConstantVector::get(ConstOps);
1588           break;
1589         case Instruction::ICmp:
1590         case Instruction::FCmp:
1591           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1592           break;
1593         case Instruction::GetElementPtr:
1594           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1595                                              ArrayRef(ConstOps).drop_front(),
1596                                              BC->Flags, BC->getInRangeIndex());
1597           break;
1598         case Instruction::ExtractElement:
1599           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1600           break;
1601         case Instruction::InsertElement:
1602           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1603                                              ConstOps[2]);
1604           break;
1605         case Instruction::ShuffleVector: {
1606           SmallVector<int, 16> Mask;
1607           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1608           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1609           break;
1610         }
1611         default:
1612           llvm_unreachable("Unhandled bitcode constant");
1613         }
1614       }
1615 
1616       // Cache resolved constant.
1617       ValueList.replaceValueWithoutRAUW(ValID, C);
1618       MaterializedValues.insert({ValID, C});
1619       Worklist.pop_back();
1620       continue;
1621     }
1622 
1623     if (!InsertBB)
1624       return error(Twine("Value referenced by initializer is an unsupported "
1625                          "constant expression of type ") +
1626                    BC->getOpcodeName());
1627 
1628     // Materialize as instructions if necessary.
1629     Instruction *I;
1630     if (Instruction::isCast(BC->Opcode)) {
1631       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1632                            BC->getType(), "constexpr", InsertBB);
1633     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1634       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1635                                 "constexpr", InsertBB);
1636     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1637       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1638                                  Ops[1], "constexpr", InsertBB);
1639       if (isa<OverflowingBinaryOperator>(I)) {
1640         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1641           I->setHasNoSignedWrap();
1642         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1643           I->setHasNoUnsignedWrap();
1644       }
1645       if (isa<PossiblyExactOperator>(I) &&
1646           (BC->Flags & PossiblyExactOperator::IsExact))
1647         I->setIsExact();
1648     } else {
1649       switch (BC->Opcode) {
1650       case BitcodeConstant::ConstantVectorOpcode: {
1651         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1652         Value *V = PoisonValue::get(BC->getType());
1653         for (auto Pair : enumerate(Ops)) {
1654           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1655           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1656                                         InsertBB);
1657         }
1658         I = cast<Instruction>(V);
1659         break;
1660       }
1661       case BitcodeConstant::ConstantStructOpcode:
1662       case BitcodeConstant::ConstantArrayOpcode: {
1663         Value *V = PoisonValue::get(BC->getType());
1664         for (auto Pair : enumerate(Ops))
1665           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1666                                       "constexpr.ins", InsertBB);
1667         I = cast<Instruction>(V);
1668         break;
1669       }
1670       case Instruction::ICmp:
1671       case Instruction::FCmp:
1672         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1673                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1674                             "constexpr", InsertBB);
1675         break;
1676       case Instruction::GetElementPtr:
1677         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1678                                       ArrayRef(Ops).drop_front(), "constexpr",
1679                                       InsertBB);
1680         if (BC->Flags)
1681           cast<GetElementPtrInst>(I)->setIsInBounds();
1682         break;
1683       case Instruction::Select:
1684         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1685         break;
1686       case Instruction::ExtractElement:
1687         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1688         break;
1689       case Instruction::InsertElement:
1690         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1691                                       InsertBB);
1692         break;
1693       case Instruction::ShuffleVector:
1694         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1695                                   InsertBB);
1696         break;
1697       default:
1698         llvm_unreachable("Unhandled bitcode constant");
1699       }
1700     }
1701 
1702     MaterializedValues.insert({ValID, I});
1703     Worklist.pop_back();
1704   }
1705 
1706   return MaterializedValues[StartValID];
1707 }
1708 
1709 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1710   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1711   if (!MaybeV)
1712     return MaybeV.takeError();
1713 
1714   // Result must be Constant if InsertBB is nullptr.
1715   return cast<Constant>(MaybeV.get());
1716 }
1717 
1718 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1719                                                       StringRef Name) {
1720   auto *Ret = StructType::create(Context, Name);
1721   IdentifiedStructTypes.push_back(Ret);
1722   return Ret;
1723 }
1724 
1725 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1726   auto *Ret = StructType::create(Context);
1727   IdentifiedStructTypes.push_back(Ret);
1728   return Ret;
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 //  Functions for parsing blocks from the bitcode file
1733 //===----------------------------------------------------------------------===//
1734 
1735 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1736   switch (Val) {
1737   case Attribute::EndAttrKinds:
1738   case Attribute::EmptyKey:
1739   case Attribute::TombstoneKey:
1740     llvm_unreachable("Synthetic enumerators which should never get here");
1741 
1742   case Attribute::None:            return 0;
1743   case Attribute::ZExt:            return 1 << 0;
1744   case Attribute::SExt:            return 1 << 1;
1745   case Attribute::NoReturn:        return 1 << 2;
1746   case Attribute::InReg:           return 1 << 3;
1747   case Attribute::StructRet:       return 1 << 4;
1748   case Attribute::NoUnwind:        return 1 << 5;
1749   case Attribute::NoAlias:         return 1 << 6;
1750   case Attribute::ByVal:           return 1 << 7;
1751   case Attribute::Nest:            return 1 << 8;
1752   case Attribute::ReadNone:        return 1 << 9;
1753   case Attribute::ReadOnly:        return 1 << 10;
1754   case Attribute::NoInline:        return 1 << 11;
1755   case Attribute::AlwaysInline:    return 1 << 12;
1756   case Attribute::OptimizeForSize: return 1 << 13;
1757   case Attribute::StackProtect:    return 1 << 14;
1758   case Attribute::StackProtectReq: return 1 << 15;
1759   case Attribute::Alignment:       return 31 << 16;
1760   case Attribute::NoCapture:       return 1 << 21;
1761   case Attribute::NoRedZone:       return 1 << 22;
1762   case Attribute::NoImplicitFloat: return 1 << 23;
1763   case Attribute::Naked:           return 1 << 24;
1764   case Attribute::InlineHint:      return 1 << 25;
1765   case Attribute::StackAlignment:  return 7 << 26;
1766   case Attribute::ReturnsTwice:    return 1 << 29;
1767   case Attribute::UWTable:         return 1 << 30;
1768   case Attribute::NonLazyBind:     return 1U << 31;
1769   case Attribute::SanitizeAddress: return 1ULL << 32;
1770   case Attribute::MinSize:         return 1ULL << 33;
1771   case Attribute::NoDuplicate:     return 1ULL << 34;
1772   case Attribute::StackProtectStrong: return 1ULL << 35;
1773   case Attribute::SanitizeThread:  return 1ULL << 36;
1774   case Attribute::SanitizeMemory:  return 1ULL << 37;
1775   case Attribute::NoBuiltin:       return 1ULL << 38;
1776   case Attribute::Returned:        return 1ULL << 39;
1777   case Attribute::Cold:            return 1ULL << 40;
1778   case Attribute::Builtin:         return 1ULL << 41;
1779   case Attribute::OptimizeNone:    return 1ULL << 42;
1780   case Attribute::InAlloca:        return 1ULL << 43;
1781   case Attribute::NonNull:         return 1ULL << 44;
1782   case Attribute::JumpTable:       return 1ULL << 45;
1783   case Attribute::Convergent:      return 1ULL << 46;
1784   case Attribute::SafeStack:       return 1ULL << 47;
1785   case Attribute::NoRecurse:       return 1ULL << 48;
1786   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1787   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1788   case Attribute::SwiftSelf:       return 1ULL << 51;
1789   case Attribute::SwiftError:      return 1ULL << 52;
1790   case Attribute::WriteOnly:       return 1ULL << 53;
1791   case Attribute::Speculatable:    return 1ULL << 54;
1792   case Attribute::StrictFP:        return 1ULL << 55;
1793   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1794   case Attribute::NoCfCheck:       return 1ULL << 57;
1795   case Attribute::OptForFuzzing:   return 1ULL << 58;
1796   case Attribute::ShadowCallStack: return 1ULL << 59;
1797   case Attribute::SpeculativeLoadHardening:
1798     return 1ULL << 60;
1799   case Attribute::ImmArg:
1800     return 1ULL << 61;
1801   case Attribute::WillReturn:
1802     return 1ULL << 62;
1803   case Attribute::NoFree:
1804     return 1ULL << 63;
1805   default:
1806     // Other attributes are not supported in the raw format,
1807     // as we ran out of space.
1808     return 0;
1809   }
1810   llvm_unreachable("Unsupported attribute type");
1811 }
1812 
1813 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1814   if (!Val) return;
1815 
1816   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1817        I = Attribute::AttrKind(I + 1)) {
1818     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1819       if (I == Attribute::Alignment)
1820         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1821       else if (I == Attribute::StackAlignment)
1822         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1823       else if (Attribute::isTypeAttrKind(I))
1824         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1825       else
1826         B.addAttribute(I);
1827     }
1828   }
1829 }
1830 
1831 /// This fills an AttrBuilder object with the LLVM attributes that have
1832 /// been decoded from the given integer. This function must stay in sync with
1833 /// 'encodeLLVMAttributesForBitcode'.
1834 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1835                                            uint64_t EncodedAttrs,
1836                                            uint64_t AttrIdx) {
1837   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1838   // the bits above 31 down by 11 bits.
1839   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1840   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1841          "Alignment must be a power of two.");
1842 
1843   if (Alignment)
1844     B.addAlignmentAttr(Alignment);
1845 
1846   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1847                    (EncodedAttrs & 0xffff);
1848 
1849   if (AttrIdx == AttributeList::FunctionIndex) {
1850     // Upgrade old memory attributes.
1851     MemoryEffects ME = MemoryEffects::unknown();
1852     if (Attrs & (1ULL << 9)) {
1853       // ReadNone
1854       Attrs &= ~(1ULL << 9);
1855       ME &= MemoryEffects::none();
1856     }
1857     if (Attrs & (1ULL << 10)) {
1858       // ReadOnly
1859       Attrs &= ~(1ULL << 10);
1860       ME &= MemoryEffects::readOnly();
1861     }
1862     if (Attrs & (1ULL << 49)) {
1863       // InaccessibleMemOnly
1864       Attrs &= ~(1ULL << 49);
1865       ME &= MemoryEffects::inaccessibleMemOnly();
1866     }
1867     if (Attrs & (1ULL << 50)) {
1868       // InaccessibleMemOrArgMemOnly
1869       Attrs &= ~(1ULL << 50);
1870       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1871     }
1872     if (Attrs & (1ULL << 53)) {
1873       // WriteOnly
1874       Attrs &= ~(1ULL << 53);
1875       ME &= MemoryEffects::writeOnly();
1876     }
1877     if (ME != MemoryEffects::unknown())
1878       B.addMemoryAttr(ME);
1879   }
1880 
1881   addRawAttributeValue(B, Attrs);
1882 }
1883 
1884 Error BitcodeReader::parseAttributeBlock() {
1885   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1886     return Err;
1887 
1888   if (!MAttributes.empty())
1889     return error("Invalid multiple blocks");
1890 
1891   SmallVector<uint64_t, 64> Record;
1892 
1893   SmallVector<AttributeList, 8> Attrs;
1894 
1895   // Read all the records.
1896   while (true) {
1897     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1898     if (!MaybeEntry)
1899       return MaybeEntry.takeError();
1900     BitstreamEntry Entry = MaybeEntry.get();
1901 
1902     switch (Entry.Kind) {
1903     case BitstreamEntry::SubBlock: // Handled for us already.
1904     case BitstreamEntry::Error:
1905       return error("Malformed block");
1906     case BitstreamEntry::EndBlock:
1907       return Error::success();
1908     case BitstreamEntry::Record:
1909       // The interesting case.
1910       break;
1911     }
1912 
1913     // Read a record.
1914     Record.clear();
1915     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1916     if (!MaybeRecord)
1917       return MaybeRecord.takeError();
1918     switch (MaybeRecord.get()) {
1919     default:  // Default behavior: ignore.
1920       break;
1921     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1922       // Deprecated, but still needed to read old bitcode files.
1923       if (Record.size() & 1)
1924         return error("Invalid parameter attribute record");
1925 
1926       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1927         AttrBuilder B(Context);
1928         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1929         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1930       }
1931 
1932       MAttributes.push_back(AttributeList::get(Context, Attrs));
1933       Attrs.clear();
1934       break;
1935     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1936       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1937         Attrs.push_back(MAttributeGroups[Record[i]]);
1938 
1939       MAttributes.push_back(AttributeList::get(Context, Attrs));
1940       Attrs.clear();
1941       break;
1942     }
1943   }
1944 }
1945 
1946 // Returns Attribute::None on unrecognized codes.
1947 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1948   switch (Code) {
1949   default:
1950     return Attribute::None;
1951   case bitc::ATTR_KIND_ALIGNMENT:
1952     return Attribute::Alignment;
1953   case bitc::ATTR_KIND_ALWAYS_INLINE:
1954     return Attribute::AlwaysInline;
1955   case bitc::ATTR_KIND_BUILTIN:
1956     return Attribute::Builtin;
1957   case bitc::ATTR_KIND_BY_VAL:
1958     return Attribute::ByVal;
1959   case bitc::ATTR_KIND_IN_ALLOCA:
1960     return Attribute::InAlloca;
1961   case bitc::ATTR_KIND_COLD:
1962     return Attribute::Cold;
1963   case bitc::ATTR_KIND_CONVERGENT:
1964     return Attribute::Convergent;
1965   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1966     return Attribute::DisableSanitizerInstrumentation;
1967   case bitc::ATTR_KIND_ELEMENTTYPE:
1968     return Attribute::ElementType;
1969   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1970     return Attribute::FnRetThunkExtern;
1971   case bitc::ATTR_KIND_INLINE_HINT:
1972     return Attribute::InlineHint;
1973   case bitc::ATTR_KIND_IN_REG:
1974     return Attribute::InReg;
1975   case bitc::ATTR_KIND_JUMP_TABLE:
1976     return Attribute::JumpTable;
1977   case bitc::ATTR_KIND_MEMORY:
1978     return Attribute::Memory;
1979   case bitc::ATTR_KIND_NOFPCLASS:
1980     return Attribute::NoFPClass;
1981   case bitc::ATTR_KIND_MIN_SIZE:
1982     return Attribute::MinSize;
1983   case bitc::ATTR_KIND_NAKED:
1984     return Attribute::Naked;
1985   case bitc::ATTR_KIND_NEST:
1986     return Attribute::Nest;
1987   case bitc::ATTR_KIND_NO_ALIAS:
1988     return Attribute::NoAlias;
1989   case bitc::ATTR_KIND_NO_BUILTIN:
1990     return Attribute::NoBuiltin;
1991   case bitc::ATTR_KIND_NO_CALLBACK:
1992     return Attribute::NoCallback;
1993   case bitc::ATTR_KIND_NO_CAPTURE:
1994     return Attribute::NoCapture;
1995   case bitc::ATTR_KIND_NO_DUPLICATE:
1996     return Attribute::NoDuplicate;
1997   case bitc::ATTR_KIND_NOFREE:
1998     return Attribute::NoFree;
1999   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2000     return Attribute::NoImplicitFloat;
2001   case bitc::ATTR_KIND_NO_INLINE:
2002     return Attribute::NoInline;
2003   case bitc::ATTR_KIND_NO_RECURSE:
2004     return Attribute::NoRecurse;
2005   case bitc::ATTR_KIND_NO_MERGE:
2006     return Attribute::NoMerge;
2007   case bitc::ATTR_KIND_NON_LAZY_BIND:
2008     return Attribute::NonLazyBind;
2009   case bitc::ATTR_KIND_NON_NULL:
2010     return Attribute::NonNull;
2011   case bitc::ATTR_KIND_DEREFERENCEABLE:
2012     return Attribute::Dereferenceable;
2013   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2014     return Attribute::DereferenceableOrNull;
2015   case bitc::ATTR_KIND_ALLOC_ALIGN:
2016     return Attribute::AllocAlign;
2017   case bitc::ATTR_KIND_ALLOC_KIND:
2018     return Attribute::AllocKind;
2019   case bitc::ATTR_KIND_ALLOC_SIZE:
2020     return Attribute::AllocSize;
2021   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2022     return Attribute::AllocatedPointer;
2023   case bitc::ATTR_KIND_NO_RED_ZONE:
2024     return Attribute::NoRedZone;
2025   case bitc::ATTR_KIND_NO_RETURN:
2026     return Attribute::NoReturn;
2027   case bitc::ATTR_KIND_NOSYNC:
2028     return Attribute::NoSync;
2029   case bitc::ATTR_KIND_NOCF_CHECK:
2030     return Attribute::NoCfCheck;
2031   case bitc::ATTR_KIND_NO_PROFILE:
2032     return Attribute::NoProfile;
2033   case bitc::ATTR_KIND_SKIP_PROFILE:
2034     return Attribute::SkipProfile;
2035   case bitc::ATTR_KIND_NO_UNWIND:
2036     return Attribute::NoUnwind;
2037   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2038     return Attribute::NoSanitizeBounds;
2039   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2040     return Attribute::NoSanitizeCoverage;
2041   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2042     return Attribute::NullPointerIsValid;
2043   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2044     return Attribute::OptimizeForDebugging;
2045   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2046     return Attribute::OptForFuzzing;
2047   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2048     return Attribute::OptimizeForSize;
2049   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2050     return Attribute::OptimizeNone;
2051   case bitc::ATTR_KIND_READ_NONE:
2052     return Attribute::ReadNone;
2053   case bitc::ATTR_KIND_READ_ONLY:
2054     return Attribute::ReadOnly;
2055   case bitc::ATTR_KIND_RETURNED:
2056     return Attribute::Returned;
2057   case bitc::ATTR_KIND_RETURNS_TWICE:
2058     return Attribute::ReturnsTwice;
2059   case bitc::ATTR_KIND_S_EXT:
2060     return Attribute::SExt;
2061   case bitc::ATTR_KIND_SPECULATABLE:
2062     return Attribute::Speculatable;
2063   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2064     return Attribute::StackAlignment;
2065   case bitc::ATTR_KIND_STACK_PROTECT:
2066     return Attribute::StackProtect;
2067   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2068     return Attribute::StackProtectReq;
2069   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2070     return Attribute::StackProtectStrong;
2071   case bitc::ATTR_KIND_SAFESTACK:
2072     return Attribute::SafeStack;
2073   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2074     return Attribute::ShadowCallStack;
2075   case bitc::ATTR_KIND_STRICT_FP:
2076     return Attribute::StrictFP;
2077   case bitc::ATTR_KIND_STRUCT_RET:
2078     return Attribute::StructRet;
2079   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2080     return Attribute::SanitizeAddress;
2081   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2082     return Attribute::SanitizeHWAddress;
2083   case bitc::ATTR_KIND_SANITIZE_THREAD:
2084     return Attribute::SanitizeThread;
2085   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2086     return Attribute::SanitizeMemory;
2087   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2088     return Attribute::SpeculativeLoadHardening;
2089   case bitc::ATTR_KIND_SWIFT_ERROR:
2090     return Attribute::SwiftError;
2091   case bitc::ATTR_KIND_SWIFT_SELF:
2092     return Attribute::SwiftSelf;
2093   case bitc::ATTR_KIND_SWIFT_ASYNC:
2094     return Attribute::SwiftAsync;
2095   case bitc::ATTR_KIND_UW_TABLE:
2096     return Attribute::UWTable;
2097   case bitc::ATTR_KIND_VSCALE_RANGE:
2098     return Attribute::VScaleRange;
2099   case bitc::ATTR_KIND_WILLRETURN:
2100     return Attribute::WillReturn;
2101   case bitc::ATTR_KIND_WRITEONLY:
2102     return Attribute::WriteOnly;
2103   case bitc::ATTR_KIND_Z_EXT:
2104     return Attribute::ZExt;
2105   case bitc::ATTR_KIND_IMMARG:
2106     return Attribute::ImmArg;
2107   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2108     return Attribute::SanitizeMemTag;
2109   case bitc::ATTR_KIND_PREALLOCATED:
2110     return Attribute::Preallocated;
2111   case bitc::ATTR_KIND_NOUNDEF:
2112     return Attribute::NoUndef;
2113   case bitc::ATTR_KIND_BYREF:
2114     return Attribute::ByRef;
2115   case bitc::ATTR_KIND_MUSTPROGRESS:
2116     return Attribute::MustProgress;
2117   case bitc::ATTR_KIND_HOT:
2118     return Attribute::Hot;
2119   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2120     return Attribute::PresplitCoroutine;
2121   case bitc::ATTR_KIND_WRITABLE:
2122     return Attribute::Writable;
2123   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2124     return Attribute::CoroDestroyOnlyWhenComplete;
2125   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2126     return Attribute::DeadOnUnwind;
2127   case bitc::ATTR_KIND_RANGE:
2128     return Attribute::Range;
2129   }
2130 }
2131 
2132 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2133                                          MaybeAlign &Alignment) {
2134   // Note: Alignment in bitcode files is incremented by 1, so that zero
2135   // can be used for default alignment.
2136   if (Exponent > Value::MaxAlignmentExponent + 1)
2137     return error("Invalid alignment value");
2138   Alignment = decodeMaybeAlign(Exponent);
2139   return Error::success();
2140 }
2141 
2142 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2143   *Kind = getAttrFromCode(Code);
2144   if (*Kind == Attribute::None)
2145     return error("Unknown attribute kind (" + Twine(Code) + ")");
2146   return Error::success();
2147 }
2148 
2149 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2150   switch (EncodedKind) {
2151   case bitc::ATTR_KIND_READ_NONE:
2152     ME &= MemoryEffects::none();
2153     return true;
2154   case bitc::ATTR_KIND_READ_ONLY:
2155     ME &= MemoryEffects::readOnly();
2156     return true;
2157   case bitc::ATTR_KIND_WRITEONLY:
2158     ME &= MemoryEffects::writeOnly();
2159     return true;
2160   case bitc::ATTR_KIND_ARGMEMONLY:
2161     ME &= MemoryEffects::argMemOnly();
2162     return true;
2163   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2164     ME &= MemoryEffects::inaccessibleMemOnly();
2165     return true;
2166   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2167     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2168     return true;
2169   default:
2170     return false;
2171   }
2172 }
2173 
2174 Error BitcodeReader::parseAttributeGroupBlock() {
2175   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2176     return Err;
2177 
2178   if (!MAttributeGroups.empty())
2179     return error("Invalid multiple blocks");
2180 
2181   SmallVector<uint64_t, 64> Record;
2182 
2183   // Read all the records.
2184   while (true) {
2185     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2186     if (!MaybeEntry)
2187       return MaybeEntry.takeError();
2188     BitstreamEntry Entry = MaybeEntry.get();
2189 
2190     switch (Entry.Kind) {
2191     case BitstreamEntry::SubBlock: // Handled for us already.
2192     case BitstreamEntry::Error:
2193       return error("Malformed block");
2194     case BitstreamEntry::EndBlock:
2195       return Error::success();
2196     case BitstreamEntry::Record:
2197       // The interesting case.
2198       break;
2199     }
2200 
2201     // Read a record.
2202     Record.clear();
2203     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2204     if (!MaybeRecord)
2205       return MaybeRecord.takeError();
2206     switch (MaybeRecord.get()) {
2207     default:  // Default behavior: ignore.
2208       break;
2209     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2210       if (Record.size() < 3)
2211         return error("Invalid grp record");
2212 
2213       uint64_t GrpID = Record[0];
2214       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2215 
2216       AttrBuilder B(Context);
2217       MemoryEffects ME = MemoryEffects::unknown();
2218       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2219         if (Record[i] == 0) {        // Enum attribute
2220           Attribute::AttrKind Kind;
2221           uint64_t EncodedKind = Record[++i];
2222           if (Idx == AttributeList::FunctionIndex &&
2223               upgradeOldMemoryAttribute(ME, EncodedKind))
2224             continue;
2225 
2226           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2227             return Err;
2228 
2229           // Upgrade old-style byval attribute to one with a type, even if it's
2230           // nullptr. We will have to insert the real type when we associate
2231           // this AttributeList with a function.
2232           if (Kind == Attribute::ByVal)
2233             B.addByValAttr(nullptr);
2234           else if (Kind == Attribute::StructRet)
2235             B.addStructRetAttr(nullptr);
2236           else if (Kind == Attribute::InAlloca)
2237             B.addInAllocaAttr(nullptr);
2238           else if (Kind == Attribute::UWTable)
2239             B.addUWTableAttr(UWTableKind::Default);
2240           else if (Attribute::isEnumAttrKind(Kind))
2241             B.addAttribute(Kind);
2242           else
2243             return error("Not an enum attribute");
2244         } else if (Record[i] == 1) { // Integer attribute
2245           Attribute::AttrKind Kind;
2246           if (Error Err = parseAttrKind(Record[++i], &Kind))
2247             return Err;
2248           if (!Attribute::isIntAttrKind(Kind))
2249             return error("Not an int attribute");
2250           if (Kind == Attribute::Alignment)
2251             B.addAlignmentAttr(Record[++i]);
2252           else if (Kind == Attribute::StackAlignment)
2253             B.addStackAlignmentAttr(Record[++i]);
2254           else if (Kind == Attribute::Dereferenceable)
2255             B.addDereferenceableAttr(Record[++i]);
2256           else if (Kind == Attribute::DereferenceableOrNull)
2257             B.addDereferenceableOrNullAttr(Record[++i]);
2258           else if (Kind == Attribute::AllocSize)
2259             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2260           else if (Kind == Attribute::VScaleRange)
2261             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2262           else if (Kind == Attribute::UWTable)
2263             B.addUWTableAttr(UWTableKind(Record[++i]));
2264           else if (Kind == Attribute::AllocKind)
2265             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2266           else if (Kind == Attribute::Memory)
2267             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2268           else if (Kind == Attribute::NoFPClass)
2269             B.addNoFPClassAttr(
2270                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2271         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2272           bool HasValue = (Record[i++] == 4);
2273           SmallString<64> KindStr;
2274           SmallString<64> ValStr;
2275 
2276           while (Record[i] != 0 && i != e)
2277             KindStr += Record[i++];
2278           assert(Record[i] == 0 && "Kind string not null terminated");
2279 
2280           if (HasValue) {
2281             // Has a value associated with it.
2282             ++i; // Skip the '0' that terminates the "kind" string.
2283             while (Record[i] != 0 && i != e)
2284               ValStr += Record[i++];
2285             assert(Record[i] == 0 && "Value string not null terminated");
2286           }
2287 
2288           B.addAttribute(KindStr.str(), ValStr.str());
2289         } else if (Record[i] == 5 || Record[i] == 6) {
2290           bool HasType = Record[i] == 6;
2291           Attribute::AttrKind Kind;
2292           if (Error Err = parseAttrKind(Record[++i], &Kind))
2293             return Err;
2294           if (!Attribute::isTypeAttrKind(Kind))
2295             return error("Not a type attribute");
2296 
2297           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2298         } else if (Record[i] == 7) {
2299           Attribute::AttrKind Kind;
2300 
2301           i++;
2302           if (Error Err = parseAttrKind(Record[i++], &Kind))
2303             return Err;
2304           if (!Attribute::isConstantRangeAttrKind(Kind))
2305             return error("Not a ConstantRange attribute");
2306 
2307           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2308           if (!MaybeCR)
2309             return MaybeCR.takeError();
2310           i--;
2311 
2312           B.addConstantRangeAttr(Kind, MaybeCR.get());
2313         } else {
2314           return error("Invalid attribute group entry");
2315         }
2316       }
2317 
2318       if (ME != MemoryEffects::unknown())
2319         B.addMemoryAttr(ME);
2320 
2321       UpgradeAttributes(B);
2322       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2323       break;
2324     }
2325     }
2326   }
2327 }
2328 
2329 Error BitcodeReader::parseTypeTable() {
2330   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2331     return Err;
2332 
2333   return parseTypeTableBody();
2334 }
2335 
2336 Error BitcodeReader::parseTypeTableBody() {
2337   if (!TypeList.empty())
2338     return error("Invalid multiple blocks");
2339 
2340   SmallVector<uint64_t, 64> Record;
2341   unsigned NumRecords = 0;
2342 
2343   SmallString<64> TypeName;
2344 
2345   // Read all the records for this type table.
2346   while (true) {
2347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2348     if (!MaybeEntry)
2349       return MaybeEntry.takeError();
2350     BitstreamEntry Entry = MaybeEntry.get();
2351 
2352     switch (Entry.Kind) {
2353     case BitstreamEntry::SubBlock: // Handled for us already.
2354     case BitstreamEntry::Error:
2355       return error("Malformed block");
2356     case BitstreamEntry::EndBlock:
2357       if (NumRecords != TypeList.size())
2358         return error("Malformed block");
2359       return Error::success();
2360     case BitstreamEntry::Record:
2361       // The interesting case.
2362       break;
2363     }
2364 
2365     // Read a record.
2366     Record.clear();
2367     Type *ResultTy = nullptr;
2368     SmallVector<unsigned> ContainedIDs;
2369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2370     if (!MaybeRecord)
2371       return MaybeRecord.takeError();
2372     switch (MaybeRecord.get()) {
2373     default:
2374       return error("Invalid value");
2375     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2376       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2377       // type list.  This allows us to reserve space.
2378       if (Record.empty())
2379         return error("Invalid numentry record");
2380       TypeList.resize(Record[0]);
2381       continue;
2382     case bitc::TYPE_CODE_VOID:      // VOID
2383       ResultTy = Type::getVoidTy(Context);
2384       break;
2385     case bitc::TYPE_CODE_HALF:     // HALF
2386       ResultTy = Type::getHalfTy(Context);
2387       break;
2388     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2389       ResultTy = Type::getBFloatTy(Context);
2390       break;
2391     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2392       ResultTy = Type::getFloatTy(Context);
2393       break;
2394     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2395       ResultTy = Type::getDoubleTy(Context);
2396       break;
2397     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2398       ResultTy = Type::getX86_FP80Ty(Context);
2399       break;
2400     case bitc::TYPE_CODE_FP128:     // FP128
2401       ResultTy = Type::getFP128Ty(Context);
2402       break;
2403     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2404       ResultTy = Type::getPPC_FP128Ty(Context);
2405       break;
2406     case bitc::TYPE_CODE_LABEL:     // LABEL
2407       ResultTy = Type::getLabelTy(Context);
2408       break;
2409     case bitc::TYPE_CODE_METADATA:  // METADATA
2410       ResultTy = Type::getMetadataTy(Context);
2411       break;
2412     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2413       ResultTy = Type::getX86_MMXTy(Context);
2414       break;
2415     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2416       ResultTy = Type::getX86_AMXTy(Context);
2417       break;
2418     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2419       ResultTy = Type::getTokenTy(Context);
2420       break;
2421     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2422       if (Record.empty())
2423         return error("Invalid integer record");
2424 
2425       uint64_t NumBits = Record[0];
2426       if (NumBits < IntegerType::MIN_INT_BITS ||
2427           NumBits > IntegerType::MAX_INT_BITS)
2428         return error("Bitwidth for integer type out of range");
2429       ResultTy = IntegerType::get(Context, NumBits);
2430       break;
2431     }
2432     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2433                                     //          [pointee type, address space]
2434       if (Record.empty())
2435         return error("Invalid pointer record");
2436       unsigned AddressSpace = 0;
2437       if (Record.size() == 2)
2438         AddressSpace = Record[1];
2439       ResultTy = getTypeByID(Record[0]);
2440       if (!ResultTy ||
2441           !PointerType::isValidElementType(ResultTy))
2442         return error("Invalid type");
2443       ContainedIDs.push_back(Record[0]);
2444       ResultTy = PointerType::get(ResultTy, AddressSpace);
2445       break;
2446     }
2447     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2448       if (Record.size() != 1)
2449         return error("Invalid opaque pointer record");
2450       unsigned AddressSpace = Record[0];
2451       ResultTy = PointerType::get(Context, AddressSpace);
2452       break;
2453     }
2454     case bitc::TYPE_CODE_FUNCTION_OLD: {
2455       // Deprecated, but still needed to read old bitcode files.
2456       // FUNCTION: [vararg, attrid, retty, paramty x N]
2457       if (Record.size() < 3)
2458         return error("Invalid function record");
2459       SmallVector<Type*, 8> ArgTys;
2460       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2461         if (Type *T = getTypeByID(Record[i]))
2462           ArgTys.push_back(T);
2463         else
2464           break;
2465       }
2466 
2467       ResultTy = getTypeByID(Record[2]);
2468       if (!ResultTy || ArgTys.size() < Record.size()-3)
2469         return error("Invalid type");
2470 
2471       ContainedIDs.append(Record.begin() + 2, Record.end());
2472       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2473       break;
2474     }
2475     case bitc::TYPE_CODE_FUNCTION: {
2476       // FUNCTION: [vararg, retty, paramty x N]
2477       if (Record.size() < 2)
2478         return error("Invalid function record");
2479       SmallVector<Type*, 8> ArgTys;
2480       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2481         if (Type *T = getTypeByID(Record[i])) {
2482           if (!FunctionType::isValidArgumentType(T))
2483             return error("Invalid function argument type");
2484           ArgTys.push_back(T);
2485         }
2486         else
2487           break;
2488       }
2489 
2490       ResultTy = getTypeByID(Record[1]);
2491       if (!ResultTy || ArgTys.size() < Record.size()-2)
2492         return error("Invalid type");
2493 
2494       ContainedIDs.append(Record.begin() + 1, Record.end());
2495       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2496       break;
2497     }
2498     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2499       if (Record.empty())
2500         return error("Invalid anon struct record");
2501       SmallVector<Type*, 8> EltTys;
2502       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2503         if (Type *T = getTypeByID(Record[i]))
2504           EltTys.push_back(T);
2505         else
2506           break;
2507       }
2508       if (EltTys.size() != Record.size()-1)
2509         return error("Invalid type");
2510       ContainedIDs.append(Record.begin() + 1, Record.end());
2511       ResultTy = StructType::get(Context, EltTys, Record[0]);
2512       break;
2513     }
2514     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2515       if (convertToString(Record, 0, TypeName))
2516         return error("Invalid struct name record");
2517       continue;
2518 
2519     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2520       if (Record.empty())
2521         return error("Invalid named struct record");
2522 
2523       if (NumRecords >= TypeList.size())
2524         return error("Invalid TYPE table");
2525 
2526       // Check to see if this was forward referenced, if so fill in the temp.
2527       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2528       if (Res) {
2529         Res->setName(TypeName);
2530         TypeList[NumRecords] = nullptr;
2531       } else  // Otherwise, create a new struct.
2532         Res = createIdentifiedStructType(Context, TypeName);
2533       TypeName.clear();
2534 
2535       SmallVector<Type*, 8> EltTys;
2536       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2537         if (Type *T = getTypeByID(Record[i]))
2538           EltTys.push_back(T);
2539         else
2540           break;
2541       }
2542       if (EltTys.size() != Record.size()-1)
2543         return error("Invalid named struct record");
2544       Res->setBody(EltTys, Record[0]);
2545       ContainedIDs.append(Record.begin() + 1, Record.end());
2546       ResultTy = Res;
2547       break;
2548     }
2549     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2550       if (Record.size() != 1)
2551         return error("Invalid opaque type record");
2552 
2553       if (NumRecords >= TypeList.size())
2554         return error("Invalid TYPE table");
2555 
2556       // Check to see if this was forward referenced, if so fill in the temp.
2557       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2558       if (Res) {
2559         Res->setName(TypeName);
2560         TypeList[NumRecords] = nullptr;
2561       } else  // Otherwise, create a new struct with no body.
2562         Res = createIdentifiedStructType(Context, TypeName);
2563       TypeName.clear();
2564       ResultTy = Res;
2565       break;
2566     }
2567     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2568       if (Record.size() < 1)
2569         return error("Invalid target extension type record");
2570 
2571       if (NumRecords >= TypeList.size())
2572         return error("Invalid TYPE table");
2573 
2574       if (Record[0] >= Record.size())
2575         return error("Too many type parameters");
2576 
2577       unsigned NumTys = Record[0];
2578       SmallVector<Type *, 4> TypeParams;
2579       SmallVector<unsigned, 8> IntParams;
2580       for (unsigned i = 0; i < NumTys; i++) {
2581         if (Type *T = getTypeByID(Record[i + 1]))
2582           TypeParams.push_back(T);
2583         else
2584           return error("Invalid type");
2585       }
2586 
2587       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2588         if (Record[i] > UINT_MAX)
2589           return error("Integer parameter too large");
2590         IntParams.push_back(Record[i]);
2591       }
2592       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2593       TypeName.clear();
2594       break;
2595     }
2596     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2597       if (Record.size() < 2)
2598         return error("Invalid array type record");
2599       ResultTy = getTypeByID(Record[1]);
2600       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2601         return error("Invalid type");
2602       ContainedIDs.push_back(Record[1]);
2603       ResultTy = ArrayType::get(ResultTy, Record[0]);
2604       break;
2605     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2606                                     //         [numelts, eltty, scalable]
2607       if (Record.size() < 2)
2608         return error("Invalid vector type record");
2609       if (Record[0] == 0)
2610         return error("Invalid vector length");
2611       ResultTy = getTypeByID(Record[1]);
2612       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2613         return error("Invalid type");
2614       bool Scalable = Record.size() > 2 ? Record[2] : false;
2615       ContainedIDs.push_back(Record[1]);
2616       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2617       break;
2618     }
2619 
2620     if (NumRecords >= TypeList.size())
2621       return error("Invalid TYPE table");
2622     if (TypeList[NumRecords])
2623       return error(
2624           "Invalid TYPE table: Only named structs can be forward referenced");
2625     assert(ResultTy && "Didn't read a type?");
2626     TypeList[NumRecords] = ResultTy;
2627     if (!ContainedIDs.empty())
2628       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2629     ++NumRecords;
2630   }
2631 }
2632 
2633 Error BitcodeReader::parseOperandBundleTags() {
2634   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2635     return Err;
2636 
2637   if (!BundleTags.empty())
2638     return error("Invalid multiple blocks");
2639 
2640   SmallVector<uint64_t, 64> Record;
2641 
2642   while (true) {
2643     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2644     if (!MaybeEntry)
2645       return MaybeEntry.takeError();
2646     BitstreamEntry Entry = MaybeEntry.get();
2647 
2648     switch (Entry.Kind) {
2649     case BitstreamEntry::SubBlock: // Handled for us already.
2650     case BitstreamEntry::Error:
2651       return error("Malformed block");
2652     case BitstreamEntry::EndBlock:
2653       return Error::success();
2654     case BitstreamEntry::Record:
2655       // The interesting case.
2656       break;
2657     }
2658 
2659     // Tags are implicitly mapped to integers by their order.
2660 
2661     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2662     if (!MaybeRecord)
2663       return MaybeRecord.takeError();
2664     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2665       return error("Invalid operand bundle record");
2666 
2667     // OPERAND_BUNDLE_TAG: [strchr x N]
2668     BundleTags.emplace_back();
2669     if (convertToString(Record, 0, BundleTags.back()))
2670       return error("Invalid operand bundle record");
2671     Record.clear();
2672   }
2673 }
2674 
2675 Error BitcodeReader::parseSyncScopeNames() {
2676   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2677     return Err;
2678 
2679   if (!SSIDs.empty())
2680     return error("Invalid multiple synchronization scope names blocks");
2681 
2682   SmallVector<uint64_t, 64> Record;
2683   while (true) {
2684     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2685     if (!MaybeEntry)
2686       return MaybeEntry.takeError();
2687     BitstreamEntry Entry = MaybeEntry.get();
2688 
2689     switch (Entry.Kind) {
2690     case BitstreamEntry::SubBlock: // Handled for us already.
2691     case BitstreamEntry::Error:
2692       return error("Malformed block");
2693     case BitstreamEntry::EndBlock:
2694       if (SSIDs.empty())
2695         return error("Invalid empty synchronization scope names block");
2696       return Error::success();
2697     case BitstreamEntry::Record:
2698       // The interesting case.
2699       break;
2700     }
2701 
2702     // Synchronization scope names are implicitly mapped to synchronization
2703     // scope IDs by their order.
2704 
2705     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2706     if (!MaybeRecord)
2707       return MaybeRecord.takeError();
2708     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2709       return error("Invalid sync scope record");
2710 
2711     SmallString<16> SSN;
2712     if (convertToString(Record, 0, SSN))
2713       return error("Invalid sync scope record");
2714 
2715     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2716     Record.clear();
2717   }
2718 }
2719 
2720 /// Associate a value with its name from the given index in the provided record.
2721 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2722                                              unsigned NameIndex, Triple &TT) {
2723   SmallString<128> ValueName;
2724   if (convertToString(Record, NameIndex, ValueName))
2725     return error("Invalid record");
2726   unsigned ValueID = Record[0];
2727   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2728     return error("Invalid record");
2729   Value *V = ValueList[ValueID];
2730 
2731   StringRef NameStr(ValueName.data(), ValueName.size());
2732   if (NameStr.contains(0))
2733     return error("Invalid value name");
2734   V->setName(NameStr);
2735   auto *GO = dyn_cast<GlobalObject>(V);
2736   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2737     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2738   return V;
2739 }
2740 
2741 /// Helper to note and return the current location, and jump to the given
2742 /// offset.
2743 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2744                                                  BitstreamCursor &Stream) {
2745   // Save the current parsing location so we can jump back at the end
2746   // of the VST read.
2747   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2748   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2749     return std::move(JumpFailed);
2750   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2751   if (!MaybeEntry)
2752     return MaybeEntry.takeError();
2753   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2754       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2755     return error("Expected value symbol table subblock");
2756   return CurrentBit;
2757 }
2758 
2759 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2760                                             Function *F,
2761                                             ArrayRef<uint64_t> Record) {
2762   // Note that we subtract 1 here because the offset is relative to one word
2763   // before the start of the identification or module block, which was
2764   // historically always the start of the regular bitcode header.
2765   uint64_t FuncWordOffset = Record[1] - 1;
2766   uint64_t FuncBitOffset = FuncWordOffset * 32;
2767   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2768   // Set the LastFunctionBlockBit to point to the last function block.
2769   // Later when parsing is resumed after function materialization,
2770   // we can simply skip that last function block.
2771   if (FuncBitOffset > LastFunctionBlockBit)
2772     LastFunctionBlockBit = FuncBitOffset;
2773 }
2774 
2775 /// Read a new-style GlobalValue symbol table.
2776 Error BitcodeReader::parseGlobalValueSymbolTable() {
2777   unsigned FuncBitcodeOffsetDelta =
2778       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2779 
2780   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2781     return Err;
2782 
2783   SmallVector<uint64_t, 64> Record;
2784   while (true) {
2785     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2786     if (!MaybeEntry)
2787       return MaybeEntry.takeError();
2788     BitstreamEntry Entry = MaybeEntry.get();
2789 
2790     switch (Entry.Kind) {
2791     case BitstreamEntry::SubBlock:
2792     case BitstreamEntry::Error:
2793       return error("Malformed block");
2794     case BitstreamEntry::EndBlock:
2795       return Error::success();
2796     case BitstreamEntry::Record:
2797       break;
2798     }
2799 
2800     Record.clear();
2801     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2802     if (!MaybeRecord)
2803       return MaybeRecord.takeError();
2804     switch (MaybeRecord.get()) {
2805     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2806       unsigned ValueID = Record[0];
2807       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2808         return error("Invalid value reference in symbol table");
2809       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2810                               cast<Function>(ValueList[ValueID]), Record);
2811       break;
2812     }
2813     }
2814   }
2815 }
2816 
2817 /// Parse the value symbol table at either the current parsing location or
2818 /// at the given bit offset if provided.
2819 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2820   uint64_t CurrentBit;
2821   // Pass in the Offset to distinguish between calling for the module-level
2822   // VST (where we want to jump to the VST offset) and the function-level
2823   // VST (where we don't).
2824   if (Offset > 0) {
2825     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2826     if (!MaybeCurrentBit)
2827       return MaybeCurrentBit.takeError();
2828     CurrentBit = MaybeCurrentBit.get();
2829     // If this module uses a string table, read this as a module-level VST.
2830     if (UseStrtab) {
2831       if (Error Err = parseGlobalValueSymbolTable())
2832         return Err;
2833       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2834         return JumpFailed;
2835       return Error::success();
2836     }
2837     // Otherwise, the VST will be in a similar format to a function-level VST,
2838     // and will contain symbol names.
2839   }
2840 
2841   // Compute the delta between the bitcode indices in the VST (the word offset
2842   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2843   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2844   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2845   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2846   // just before entering the VST subblock because: 1) the EnterSubBlock
2847   // changes the AbbrevID width; 2) the VST block is nested within the same
2848   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2849   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2850   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2851   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2852   unsigned FuncBitcodeOffsetDelta =
2853       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2854 
2855   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2856     return Err;
2857 
2858   SmallVector<uint64_t, 64> Record;
2859 
2860   Triple TT(TheModule->getTargetTriple());
2861 
2862   // Read all the records for this value table.
2863   SmallString<128> ValueName;
2864 
2865   while (true) {
2866     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2867     if (!MaybeEntry)
2868       return MaybeEntry.takeError();
2869     BitstreamEntry Entry = MaybeEntry.get();
2870 
2871     switch (Entry.Kind) {
2872     case BitstreamEntry::SubBlock: // Handled for us already.
2873     case BitstreamEntry::Error:
2874       return error("Malformed block");
2875     case BitstreamEntry::EndBlock:
2876       if (Offset > 0)
2877         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2878           return JumpFailed;
2879       return Error::success();
2880     case BitstreamEntry::Record:
2881       // The interesting case.
2882       break;
2883     }
2884 
2885     // Read a record.
2886     Record.clear();
2887     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2888     if (!MaybeRecord)
2889       return MaybeRecord.takeError();
2890     switch (MaybeRecord.get()) {
2891     default:  // Default behavior: unknown type.
2892       break;
2893     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2894       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2895       if (Error Err = ValOrErr.takeError())
2896         return Err;
2897       ValOrErr.get();
2898       break;
2899     }
2900     case bitc::VST_CODE_FNENTRY: {
2901       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2902       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2903       if (Error Err = ValOrErr.takeError())
2904         return Err;
2905       Value *V = ValOrErr.get();
2906 
2907       // Ignore function offsets emitted for aliases of functions in older
2908       // versions of LLVM.
2909       if (auto *F = dyn_cast<Function>(V))
2910         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2911       break;
2912     }
2913     case bitc::VST_CODE_BBENTRY: {
2914       if (convertToString(Record, 1, ValueName))
2915         return error("Invalid bbentry record");
2916       BasicBlock *BB = getBasicBlock(Record[0]);
2917       if (!BB)
2918         return error("Invalid bbentry record");
2919 
2920       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2921       ValueName.clear();
2922       break;
2923     }
2924     }
2925   }
2926 }
2927 
2928 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2929 /// encoding.
2930 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2931   if ((V & 1) == 0)
2932     return V >> 1;
2933   if (V != 1)
2934     return -(V >> 1);
2935   // There is no such thing as -0 with integers.  "-0" really means MININT.
2936   return 1ULL << 63;
2937 }
2938 
2939 /// Resolve all of the initializers for global values and aliases that we can.
2940 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2941   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2942   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2943   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2944 
2945   GlobalInitWorklist.swap(GlobalInits);
2946   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2947   FunctionOperandWorklist.swap(FunctionOperands);
2948 
2949   while (!GlobalInitWorklist.empty()) {
2950     unsigned ValID = GlobalInitWorklist.back().second;
2951     if (ValID >= ValueList.size()) {
2952       // Not ready to resolve this yet, it requires something later in the file.
2953       GlobalInits.push_back(GlobalInitWorklist.back());
2954     } else {
2955       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2956       if (!MaybeC)
2957         return MaybeC.takeError();
2958       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2959     }
2960     GlobalInitWorklist.pop_back();
2961   }
2962 
2963   while (!IndirectSymbolInitWorklist.empty()) {
2964     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2965     if (ValID >= ValueList.size()) {
2966       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2967     } else {
2968       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2969       if (!MaybeC)
2970         return MaybeC.takeError();
2971       Constant *C = MaybeC.get();
2972       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2973       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2974         if (C->getType() != GV->getType())
2975           return error("Alias and aliasee types don't match");
2976         GA->setAliasee(C);
2977       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2978         GI->setResolver(C);
2979       } else {
2980         return error("Expected an alias or an ifunc");
2981       }
2982     }
2983     IndirectSymbolInitWorklist.pop_back();
2984   }
2985 
2986   while (!FunctionOperandWorklist.empty()) {
2987     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2988     if (Info.PersonalityFn) {
2989       unsigned ValID = Info.PersonalityFn - 1;
2990       if (ValID < ValueList.size()) {
2991         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2992         if (!MaybeC)
2993           return MaybeC.takeError();
2994         Info.F->setPersonalityFn(MaybeC.get());
2995         Info.PersonalityFn = 0;
2996       }
2997     }
2998     if (Info.Prefix) {
2999       unsigned ValID = Info.Prefix - 1;
3000       if (ValID < ValueList.size()) {
3001         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3002         if (!MaybeC)
3003           return MaybeC.takeError();
3004         Info.F->setPrefixData(MaybeC.get());
3005         Info.Prefix = 0;
3006       }
3007     }
3008     if (Info.Prologue) {
3009       unsigned ValID = Info.Prologue - 1;
3010       if (ValID < ValueList.size()) {
3011         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3012         if (!MaybeC)
3013           return MaybeC.takeError();
3014         Info.F->setPrologueData(MaybeC.get());
3015         Info.Prologue = 0;
3016       }
3017     }
3018     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3019       FunctionOperands.push_back(Info);
3020     FunctionOperandWorklist.pop_back();
3021   }
3022 
3023   return Error::success();
3024 }
3025 
3026 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3027   SmallVector<uint64_t, 8> Words(Vals.size());
3028   transform(Vals, Words.begin(),
3029                  BitcodeReader::decodeSignRotatedValue);
3030 
3031   return APInt(TypeBits, Words);
3032 }
3033 
3034 Error BitcodeReader::parseConstants() {
3035   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3036     return Err;
3037 
3038   SmallVector<uint64_t, 64> Record;
3039 
3040   // Read all the records for this value table.
3041   Type *CurTy = Type::getInt32Ty(Context);
3042   unsigned Int32TyID = getVirtualTypeID(CurTy);
3043   unsigned CurTyID = Int32TyID;
3044   Type *CurElemTy = nullptr;
3045   unsigned NextCstNo = ValueList.size();
3046 
3047   while (true) {
3048     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3049     if (!MaybeEntry)
3050       return MaybeEntry.takeError();
3051     BitstreamEntry Entry = MaybeEntry.get();
3052 
3053     switch (Entry.Kind) {
3054     case BitstreamEntry::SubBlock: // Handled for us already.
3055     case BitstreamEntry::Error:
3056       return error("Malformed block");
3057     case BitstreamEntry::EndBlock:
3058       if (NextCstNo != ValueList.size())
3059         return error("Invalid constant reference");
3060       return Error::success();
3061     case BitstreamEntry::Record:
3062       // The interesting case.
3063       break;
3064     }
3065 
3066     // Read a record.
3067     Record.clear();
3068     Type *VoidType = Type::getVoidTy(Context);
3069     Value *V = nullptr;
3070     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3071     if (!MaybeBitCode)
3072       return MaybeBitCode.takeError();
3073     switch (unsigned BitCode = MaybeBitCode.get()) {
3074     default:  // Default behavior: unknown constant
3075     case bitc::CST_CODE_UNDEF:     // UNDEF
3076       V = UndefValue::get(CurTy);
3077       break;
3078     case bitc::CST_CODE_POISON:    // POISON
3079       V = PoisonValue::get(CurTy);
3080       break;
3081     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3082       if (Record.empty())
3083         return error("Invalid settype record");
3084       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3085         return error("Invalid settype record");
3086       if (TypeList[Record[0]] == VoidType)
3087         return error("Invalid constant type");
3088       CurTyID = Record[0];
3089       CurTy = TypeList[CurTyID];
3090       CurElemTy = getPtrElementTypeByID(CurTyID);
3091       continue;  // Skip the ValueList manipulation.
3092     case bitc::CST_CODE_NULL:      // NULL
3093       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3094         return error("Invalid type for a constant null value");
3095       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3096         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3097           return error("Invalid type for a constant null value");
3098       V = Constant::getNullValue(CurTy);
3099       break;
3100     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3101       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3102         return error("Invalid integer const record");
3103       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3104       break;
3105     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3106       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3107         return error("Invalid wide integer const record");
3108 
3109       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3110       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3111       V = ConstantInt::get(CurTy, VInt);
3112       break;
3113     }
3114     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3115       if (Record.empty())
3116         return error("Invalid float const record");
3117 
3118       auto *ScalarTy = CurTy->getScalarType();
3119       if (ScalarTy->isHalfTy())
3120         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3121                                            APInt(16, (uint16_t)Record[0])));
3122       else if (ScalarTy->isBFloatTy())
3123         V = ConstantFP::get(
3124             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3125       else if (ScalarTy->isFloatTy())
3126         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3127                                            APInt(32, (uint32_t)Record[0])));
3128       else if (ScalarTy->isDoubleTy())
3129         V = ConstantFP::get(
3130             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3131       else if (ScalarTy->isX86_FP80Ty()) {
3132         // Bits are not stored the same way as a normal i80 APInt, compensate.
3133         uint64_t Rearrange[2];
3134         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3135         Rearrange[1] = Record[0] >> 48;
3136         V = ConstantFP::get(
3137             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3138       } else if (ScalarTy->isFP128Ty())
3139         V = ConstantFP::get(CurTy,
3140                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3141       else if (ScalarTy->isPPC_FP128Ty())
3142         V = ConstantFP::get(
3143             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3144       else
3145         V = UndefValue::get(CurTy);
3146       break;
3147     }
3148 
3149     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3150       if (Record.empty())
3151         return error("Invalid aggregate record");
3152 
3153       unsigned Size = Record.size();
3154       SmallVector<unsigned, 16> Elts;
3155       for (unsigned i = 0; i != Size; ++i)
3156         Elts.push_back(Record[i]);
3157 
3158       if (isa<StructType>(CurTy)) {
3159         V = BitcodeConstant::create(
3160             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3161       } else if (isa<ArrayType>(CurTy)) {
3162         V = BitcodeConstant::create(Alloc, CurTy,
3163                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3164       } else if (isa<VectorType>(CurTy)) {
3165         V = BitcodeConstant::create(
3166             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3167       } else {
3168         V = UndefValue::get(CurTy);
3169       }
3170       break;
3171     }
3172     case bitc::CST_CODE_STRING:    // STRING: [values]
3173     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3174       if (Record.empty())
3175         return error("Invalid string record");
3176 
3177       SmallString<16> Elts(Record.begin(), Record.end());
3178       V = ConstantDataArray::getString(Context, Elts,
3179                                        BitCode == bitc::CST_CODE_CSTRING);
3180       break;
3181     }
3182     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3183       if (Record.empty())
3184         return error("Invalid data record");
3185 
3186       Type *EltTy;
3187       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3188         EltTy = Array->getElementType();
3189       else
3190         EltTy = cast<VectorType>(CurTy)->getElementType();
3191       if (EltTy->isIntegerTy(8)) {
3192         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3193         if (isa<VectorType>(CurTy))
3194           V = ConstantDataVector::get(Context, Elts);
3195         else
3196           V = ConstantDataArray::get(Context, Elts);
3197       } else if (EltTy->isIntegerTy(16)) {
3198         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3199         if (isa<VectorType>(CurTy))
3200           V = ConstantDataVector::get(Context, Elts);
3201         else
3202           V = ConstantDataArray::get(Context, Elts);
3203       } else if (EltTy->isIntegerTy(32)) {
3204         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3205         if (isa<VectorType>(CurTy))
3206           V = ConstantDataVector::get(Context, Elts);
3207         else
3208           V = ConstantDataArray::get(Context, Elts);
3209       } else if (EltTy->isIntegerTy(64)) {
3210         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3211         if (isa<VectorType>(CurTy))
3212           V = ConstantDataVector::get(Context, Elts);
3213         else
3214           V = ConstantDataArray::get(Context, Elts);
3215       } else if (EltTy->isHalfTy()) {
3216         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3217         if (isa<VectorType>(CurTy))
3218           V = ConstantDataVector::getFP(EltTy, Elts);
3219         else
3220           V = ConstantDataArray::getFP(EltTy, Elts);
3221       } else if (EltTy->isBFloatTy()) {
3222         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3223         if (isa<VectorType>(CurTy))
3224           V = ConstantDataVector::getFP(EltTy, Elts);
3225         else
3226           V = ConstantDataArray::getFP(EltTy, Elts);
3227       } else if (EltTy->isFloatTy()) {
3228         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3229         if (isa<VectorType>(CurTy))
3230           V = ConstantDataVector::getFP(EltTy, Elts);
3231         else
3232           V = ConstantDataArray::getFP(EltTy, Elts);
3233       } else if (EltTy->isDoubleTy()) {
3234         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3235         if (isa<VectorType>(CurTy))
3236           V = ConstantDataVector::getFP(EltTy, Elts);
3237         else
3238           V = ConstantDataArray::getFP(EltTy, Elts);
3239       } else {
3240         return error("Invalid type for value");
3241       }
3242       break;
3243     }
3244     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3245       if (Record.size() < 2)
3246         return error("Invalid unary op constexpr record");
3247       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3248       if (Opc < 0) {
3249         V = UndefValue::get(CurTy);  // Unknown unop.
3250       } else {
3251         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3252       }
3253       break;
3254     }
3255     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3256       if (Record.size() < 3)
3257         return error("Invalid binary op constexpr record");
3258       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3259       if (Opc < 0) {
3260         V = UndefValue::get(CurTy);  // Unknown binop.
3261       } else {
3262         uint8_t Flags = 0;
3263         if (Record.size() >= 4) {
3264           if (Opc == Instruction::Add ||
3265               Opc == Instruction::Sub ||
3266               Opc == Instruction::Mul ||
3267               Opc == Instruction::Shl) {
3268             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3269               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3270             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3271               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3272           } else if (Opc == Instruction::SDiv ||
3273                      Opc == Instruction::UDiv ||
3274                      Opc == Instruction::LShr ||
3275                      Opc == Instruction::AShr) {
3276             if (Record[3] & (1 << bitc::PEO_EXACT))
3277               Flags |= PossiblyExactOperator::IsExact;
3278           }
3279         }
3280         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3281                                     {(unsigned)Record[1], (unsigned)Record[2]});
3282       }
3283       break;
3284     }
3285     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3286       if (Record.size() < 3)
3287         return error("Invalid cast constexpr record");
3288       int Opc = getDecodedCastOpcode(Record[0]);
3289       if (Opc < 0) {
3290         V = UndefValue::get(CurTy);  // Unknown cast.
3291       } else {
3292         unsigned OpTyID = Record[1];
3293         Type *OpTy = getTypeByID(OpTyID);
3294         if (!OpTy)
3295           return error("Invalid cast constexpr record");
3296         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3297       }
3298       break;
3299     }
3300     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3301     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3302     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3303                                                      // operands]
3304       if (Record.size() < 2)
3305         return error("Constant GEP record must have at least two elements");
3306       unsigned OpNum = 0;
3307       Type *PointeeType = nullptr;
3308       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3309           Record.size() % 2)
3310         PointeeType = getTypeByID(Record[OpNum++]);
3311 
3312       bool InBounds = false;
3313       std::optional<unsigned> InRangeIndex;
3314       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3315         uint64_t Op = Record[OpNum++];
3316         InBounds = Op & 1;
3317         InRangeIndex = Op >> 1;
3318       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3319         InBounds = true;
3320 
3321       SmallVector<unsigned, 16> Elts;
3322       unsigned BaseTypeID = Record[OpNum];
3323       while (OpNum != Record.size()) {
3324         unsigned ElTyID = Record[OpNum++];
3325         Type *ElTy = getTypeByID(ElTyID);
3326         if (!ElTy)
3327           return error("Invalid getelementptr constexpr record");
3328         Elts.push_back(Record[OpNum++]);
3329       }
3330 
3331       if (Elts.size() < 1)
3332         return error("Invalid gep with no operands");
3333 
3334       Type *BaseType = getTypeByID(BaseTypeID);
3335       if (isa<VectorType>(BaseType)) {
3336         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3337         BaseType = getTypeByID(BaseTypeID);
3338       }
3339 
3340       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3341       if (!OrigPtrTy)
3342         return error("GEP base operand must be pointer or vector of pointer");
3343 
3344       if (!PointeeType) {
3345         PointeeType = getPtrElementTypeByID(BaseTypeID);
3346         if (!PointeeType)
3347           return error("Missing element type for old-style constant GEP");
3348       }
3349 
3350       V = BitcodeConstant::create(Alloc, CurTy,
3351                                   {Instruction::GetElementPtr, InBounds,
3352                                    InRangeIndex.value_or(-1), PointeeType},
3353                                   Elts);
3354       break;
3355     }
3356     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3357       if (Record.size() < 3)
3358         return error("Invalid select constexpr record");
3359 
3360       V = BitcodeConstant::create(
3361           Alloc, CurTy, Instruction::Select,
3362           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3363       break;
3364     }
3365     case bitc::CST_CODE_CE_EXTRACTELT
3366         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3367       if (Record.size() < 3)
3368         return error("Invalid extractelement constexpr record");
3369       unsigned OpTyID = Record[0];
3370       VectorType *OpTy =
3371         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3372       if (!OpTy)
3373         return error("Invalid extractelement constexpr record");
3374       unsigned IdxRecord;
3375       if (Record.size() == 4) {
3376         unsigned IdxTyID = Record[2];
3377         Type *IdxTy = getTypeByID(IdxTyID);
3378         if (!IdxTy)
3379           return error("Invalid extractelement constexpr record");
3380         IdxRecord = Record[3];
3381       } else {
3382         // Deprecated, but still needed to read old bitcode files.
3383         IdxRecord = Record[2];
3384       }
3385       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3386                                   {(unsigned)Record[1], IdxRecord});
3387       break;
3388     }
3389     case bitc::CST_CODE_CE_INSERTELT
3390         : { // CE_INSERTELT: [opval, opval, opty, opval]
3391       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3392       if (Record.size() < 3 || !OpTy)
3393         return error("Invalid insertelement constexpr record");
3394       unsigned IdxRecord;
3395       if (Record.size() == 4) {
3396         unsigned IdxTyID = Record[2];
3397         Type *IdxTy = getTypeByID(IdxTyID);
3398         if (!IdxTy)
3399           return error("Invalid insertelement constexpr record");
3400         IdxRecord = Record[3];
3401       } else {
3402         // Deprecated, but still needed to read old bitcode files.
3403         IdxRecord = Record[2];
3404       }
3405       V = BitcodeConstant::create(
3406           Alloc, CurTy, Instruction::InsertElement,
3407           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3408       break;
3409     }
3410     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3411       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3412       if (Record.size() < 3 || !OpTy)
3413         return error("Invalid shufflevector constexpr record");
3414       V = BitcodeConstant::create(
3415           Alloc, CurTy, Instruction::ShuffleVector,
3416           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3417       break;
3418     }
3419     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3420       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3421       VectorType *OpTy =
3422         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3423       if (Record.size() < 4 || !RTy || !OpTy)
3424         return error("Invalid shufflevector constexpr record");
3425       V = BitcodeConstant::create(
3426           Alloc, CurTy, Instruction::ShuffleVector,
3427           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3428       break;
3429     }
3430     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3431       if (Record.size() < 4)
3432         return error("Invalid cmp constexpt record");
3433       unsigned OpTyID = Record[0];
3434       Type *OpTy = getTypeByID(OpTyID);
3435       if (!OpTy)
3436         return error("Invalid cmp constexpr record");
3437       V = BitcodeConstant::create(
3438           Alloc, CurTy,
3439           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3440                                               : Instruction::ICmp),
3441            (uint8_t)Record[3]},
3442           {(unsigned)Record[1], (unsigned)Record[2]});
3443       break;
3444     }
3445     // This maintains backward compatibility, pre-asm dialect keywords.
3446     // Deprecated, but still needed to read old bitcode files.
3447     case bitc::CST_CODE_INLINEASM_OLD: {
3448       if (Record.size() < 2)
3449         return error("Invalid inlineasm record");
3450       std::string AsmStr, ConstrStr;
3451       bool HasSideEffects = Record[0] & 1;
3452       bool IsAlignStack = Record[0] >> 1;
3453       unsigned AsmStrSize = Record[1];
3454       if (2+AsmStrSize >= Record.size())
3455         return error("Invalid inlineasm record");
3456       unsigned ConstStrSize = Record[2+AsmStrSize];
3457       if (3+AsmStrSize+ConstStrSize > Record.size())
3458         return error("Invalid inlineasm record");
3459 
3460       for (unsigned i = 0; i != AsmStrSize; ++i)
3461         AsmStr += (char)Record[2+i];
3462       for (unsigned i = 0; i != ConstStrSize; ++i)
3463         ConstrStr += (char)Record[3+AsmStrSize+i];
3464       UpgradeInlineAsmString(&AsmStr);
3465       if (!CurElemTy)
3466         return error("Missing element type for old-style inlineasm");
3467       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3468                          HasSideEffects, IsAlignStack);
3469       break;
3470     }
3471     // This version adds support for the asm dialect keywords (e.g.,
3472     // inteldialect).
3473     case bitc::CST_CODE_INLINEASM_OLD2: {
3474       if (Record.size() < 2)
3475         return error("Invalid inlineasm record");
3476       std::string AsmStr, ConstrStr;
3477       bool HasSideEffects = Record[0] & 1;
3478       bool IsAlignStack = (Record[0] >> 1) & 1;
3479       unsigned AsmDialect = Record[0] >> 2;
3480       unsigned AsmStrSize = Record[1];
3481       if (2+AsmStrSize >= Record.size())
3482         return error("Invalid inlineasm record");
3483       unsigned ConstStrSize = Record[2+AsmStrSize];
3484       if (3+AsmStrSize+ConstStrSize > Record.size())
3485         return error("Invalid inlineasm record");
3486 
3487       for (unsigned i = 0; i != AsmStrSize; ++i)
3488         AsmStr += (char)Record[2+i];
3489       for (unsigned i = 0; i != ConstStrSize; ++i)
3490         ConstrStr += (char)Record[3+AsmStrSize+i];
3491       UpgradeInlineAsmString(&AsmStr);
3492       if (!CurElemTy)
3493         return error("Missing element type for old-style inlineasm");
3494       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3495                          HasSideEffects, IsAlignStack,
3496                          InlineAsm::AsmDialect(AsmDialect));
3497       break;
3498     }
3499     // This version adds support for the unwind keyword.
3500     case bitc::CST_CODE_INLINEASM_OLD3: {
3501       if (Record.size() < 2)
3502         return error("Invalid inlineasm record");
3503       unsigned OpNum = 0;
3504       std::string AsmStr, ConstrStr;
3505       bool HasSideEffects = Record[OpNum] & 1;
3506       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3507       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3508       bool CanThrow = (Record[OpNum] >> 3) & 1;
3509       ++OpNum;
3510       unsigned AsmStrSize = Record[OpNum];
3511       ++OpNum;
3512       if (OpNum + AsmStrSize >= Record.size())
3513         return error("Invalid inlineasm record");
3514       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3515       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3516         return error("Invalid inlineasm record");
3517 
3518       for (unsigned i = 0; i != AsmStrSize; ++i)
3519         AsmStr += (char)Record[OpNum + i];
3520       ++OpNum;
3521       for (unsigned i = 0; i != ConstStrSize; ++i)
3522         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3523       UpgradeInlineAsmString(&AsmStr);
3524       if (!CurElemTy)
3525         return error("Missing element type for old-style inlineasm");
3526       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3527                          HasSideEffects, IsAlignStack,
3528                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3529       break;
3530     }
3531     // This version adds explicit function type.
3532     case bitc::CST_CODE_INLINEASM: {
3533       if (Record.size() < 3)
3534         return error("Invalid inlineasm record");
3535       unsigned OpNum = 0;
3536       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3537       ++OpNum;
3538       if (!FnTy)
3539         return error("Invalid inlineasm record");
3540       std::string AsmStr, ConstrStr;
3541       bool HasSideEffects = Record[OpNum] & 1;
3542       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3543       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3544       bool CanThrow = (Record[OpNum] >> 3) & 1;
3545       ++OpNum;
3546       unsigned AsmStrSize = Record[OpNum];
3547       ++OpNum;
3548       if (OpNum + AsmStrSize >= Record.size())
3549         return error("Invalid inlineasm record");
3550       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3551       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3552         return error("Invalid inlineasm record");
3553 
3554       for (unsigned i = 0; i != AsmStrSize; ++i)
3555         AsmStr += (char)Record[OpNum + i];
3556       ++OpNum;
3557       for (unsigned i = 0; i != ConstStrSize; ++i)
3558         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3559       UpgradeInlineAsmString(&AsmStr);
3560       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3561                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3562       break;
3563     }
3564     case bitc::CST_CODE_BLOCKADDRESS:{
3565       if (Record.size() < 3)
3566         return error("Invalid blockaddress record");
3567       unsigned FnTyID = Record[0];
3568       Type *FnTy = getTypeByID(FnTyID);
3569       if (!FnTy)
3570         return error("Invalid blockaddress record");
3571       V = BitcodeConstant::create(
3572           Alloc, CurTy,
3573           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3574           Record[1]);
3575       break;
3576     }
3577     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3578       if (Record.size() < 2)
3579         return error("Invalid dso_local record");
3580       unsigned GVTyID = Record[0];
3581       Type *GVTy = getTypeByID(GVTyID);
3582       if (!GVTy)
3583         return error("Invalid dso_local record");
3584       V = BitcodeConstant::create(
3585           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3586       break;
3587     }
3588     case bitc::CST_CODE_NO_CFI_VALUE: {
3589       if (Record.size() < 2)
3590         return error("Invalid no_cfi record");
3591       unsigned GVTyID = Record[0];
3592       Type *GVTy = getTypeByID(GVTyID);
3593       if (!GVTy)
3594         return error("Invalid no_cfi record");
3595       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3596                                   Record[1]);
3597       break;
3598     }
3599     }
3600 
3601     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3602     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3603       return Err;
3604     ++NextCstNo;
3605   }
3606 }
3607 
3608 Error BitcodeReader::parseUseLists() {
3609   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3610     return Err;
3611 
3612   // Read all the records.
3613   SmallVector<uint64_t, 64> Record;
3614 
3615   while (true) {
3616     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3617     if (!MaybeEntry)
3618       return MaybeEntry.takeError();
3619     BitstreamEntry Entry = MaybeEntry.get();
3620 
3621     switch (Entry.Kind) {
3622     case BitstreamEntry::SubBlock: // Handled for us already.
3623     case BitstreamEntry::Error:
3624       return error("Malformed block");
3625     case BitstreamEntry::EndBlock:
3626       return Error::success();
3627     case BitstreamEntry::Record:
3628       // The interesting case.
3629       break;
3630     }
3631 
3632     // Read a use list record.
3633     Record.clear();
3634     bool IsBB = false;
3635     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3636     if (!MaybeRecord)
3637       return MaybeRecord.takeError();
3638     switch (MaybeRecord.get()) {
3639     default:  // Default behavior: unknown type.
3640       break;
3641     case bitc::USELIST_CODE_BB:
3642       IsBB = true;
3643       [[fallthrough]];
3644     case bitc::USELIST_CODE_DEFAULT: {
3645       unsigned RecordLength = Record.size();
3646       if (RecordLength < 3)
3647         // Records should have at least an ID and two indexes.
3648         return error("Invalid record");
3649       unsigned ID = Record.pop_back_val();
3650 
3651       Value *V;
3652       if (IsBB) {
3653         assert(ID < FunctionBBs.size() && "Basic block not found");
3654         V = FunctionBBs[ID];
3655       } else
3656         V = ValueList[ID];
3657       unsigned NumUses = 0;
3658       SmallDenseMap<const Use *, unsigned, 16> Order;
3659       for (const Use &U : V->materialized_uses()) {
3660         if (++NumUses > Record.size())
3661           break;
3662         Order[&U] = Record[NumUses - 1];
3663       }
3664       if (Order.size() != Record.size() || NumUses > Record.size())
3665         // Mismatches can happen if the functions are being materialized lazily
3666         // (out-of-order), or a value has been upgraded.
3667         break;
3668 
3669       V->sortUseList([&](const Use &L, const Use &R) {
3670         return Order.lookup(&L) < Order.lookup(&R);
3671       });
3672       break;
3673     }
3674     }
3675   }
3676 }
3677 
3678 /// When we see the block for metadata, remember where it is and then skip it.
3679 /// This lets us lazily deserialize the metadata.
3680 Error BitcodeReader::rememberAndSkipMetadata() {
3681   // Save the current stream state.
3682   uint64_t CurBit = Stream.GetCurrentBitNo();
3683   DeferredMetadataInfo.push_back(CurBit);
3684 
3685   // Skip over the block for now.
3686   if (Error Err = Stream.SkipBlock())
3687     return Err;
3688   return Error::success();
3689 }
3690 
3691 Error BitcodeReader::materializeMetadata() {
3692   for (uint64_t BitPos : DeferredMetadataInfo) {
3693     // Move the bit stream to the saved position.
3694     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3695       return JumpFailed;
3696     if (Error Err = MDLoader->parseModuleMetadata())
3697       return Err;
3698   }
3699 
3700   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3701   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3702   // multiple times.
3703   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3704     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3705       NamedMDNode *LinkerOpts =
3706           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3707       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3708         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3709     }
3710   }
3711 
3712   DeferredMetadataInfo.clear();
3713   return Error::success();
3714 }
3715 
3716 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3717 
3718 /// When we see the block for a function body, remember where it is and then
3719 /// skip it.  This lets us lazily deserialize the functions.
3720 Error BitcodeReader::rememberAndSkipFunctionBody() {
3721   // Get the function we are talking about.
3722   if (FunctionsWithBodies.empty())
3723     return error("Insufficient function protos");
3724 
3725   Function *Fn = FunctionsWithBodies.back();
3726   FunctionsWithBodies.pop_back();
3727 
3728   // Save the current stream state.
3729   uint64_t CurBit = Stream.GetCurrentBitNo();
3730   assert(
3731       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3732       "Mismatch between VST and scanned function offsets");
3733   DeferredFunctionInfo[Fn] = CurBit;
3734 
3735   // Skip over the function block for now.
3736   if (Error Err = Stream.SkipBlock())
3737     return Err;
3738   return Error::success();
3739 }
3740 
3741 Error BitcodeReader::globalCleanup() {
3742   // Patch the initializers for globals and aliases up.
3743   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3744     return Err;
3745   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3746     return error("Malformed global initializer set");
3747 
3748   // Look for intrinsic functions which need to be upgraded at some point
3749   // and functions that need to have their function attributes upgraded.
3750   for (Function &F : *TheModule) {
3751     MDLoader->upgradeDebugIntrinsics(F);
3752     Function *NewFn;
3753     if (UpgradeIntrinsicFunction(&F, NewFn))
3754       UpgradedIntrinsics[&F] = NewFn;
3755     // Look for functions that rely on old function attribute behavior.
3756     UpgradeFunctionAttributes(F);
3757   }
3758 
3759   // Look for global variables which need to be renamed.
3760   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3761   for (GlobalVariable &GV : TheModule->globals())
3762     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3763       UpgradedVariables.emplace_back(&GV, Upgraded);
3764   for (auto &Pair : UpgradedVariables) {
3765     Pair.first->eraseFromParent();
3766     TheModule->insertGlobalVariable(Pair.second);
3767   }
3768 
3769   // Force deallocation of memory for these vectors to favor the client that
3770   // want lazy deserialization.
3771   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3772   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3773   return Error::success();
3774 }
3775 
3776 /// Support for lazy parsing of function bodies. This is required if we
3777 /// either have an old bitcode file without a VST forward declaration record,
3778 /// or if we have an anonymous function being materialized, since anonymous
3779 /// functions do not have a name and are therefore not in the VST.
3780 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3781   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3782     return JumpFailed;
3783 
3784   if (Stream.AtEndOfStream())
3785     return error("Could not find function in stream");
3786 
3787   if (!SeenFirstFunctionBody)
3788     return error("Trying to materialize functions before seeing function blocks");
3789 
3790   // An old bitcode file with the symbol table at the end would have
3791   // finished the parse greedily.
3792   assert(SeenValueSymbolTable);
3793 
3794   SmallVector<uint64_t, 64> Record;
3795 
3796   while (true) {
3797     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3798     if (!MaybeEntry)
3799       return MaybeEntry.takeError();
3800     llvm::BitstreamEntry Entry = MaybeEntry.get();
3801 
3802     switch (Entry.Kind) {
3803     default:
3804       return error("Expect SubBlock");
3805     case BitstreamEntry::SubBlock:
3806       switch (Entry.ID) {
3807       default:
3808         return error("Expect function block");
3809       case bitc::FUNCTION_BLOCK_ID:
3810         if (Error Err = rememberAndSkipFunctionBody())
3811           return Err;
3812         NextUnreadBit = Stream.GetCurrentBitNo();
3813         return Error::success();
3814       }
3815     }
3816   }
3817 }
3818 
3819 Error BitcodeReaderBase::readBlockInfo() {
3820   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3821       Stream.ReadBlockInfoBlock();
3822   if (!MaybeNewBlockInfo)
3823     return MaybeNewBlockInfo.takeError();
3824   std::optional<BitstreamBlockInfo> NewBlockInfo =
3825       std::move(MaybeNewBlockInfo.get());
3826   if (!NewBlockInfo)
3827     return error("Malformed block");
3828   BlockInfo = std::move(*NewBlockInfo);
3829   return Error::success();
3830 }
3831 
3832 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3833   // v1: [selection_kind, name]
3834   // v2: [strtab_offset, strtab_size, selection_kind]
3835   StringRef Name;
3836   std::tie(Name, Record) = readNameFromStrtab(Record);
3837 
3838   if (Record.empty())
3839     return error("Invalid record");
3840   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3841   std::string OldFormatName;
3842   if (!UseStrtab) {
3843     if (Record.size() < 2)
3844       return error("Invalid record");
3845     unsigned ComdatNameSize = Record[1];
3846     if (ComdatNameSize > Record.size() - 2)
3847       return error("Comdat name size too large");
3848     OldFormatName.reserve(ComdatNameSize);
3849     for (unsigned i = 0; i != ComdatNameSize; ++i)
3850       OldFormatName += (char)Record[2 + i];
3851     Name = OldFormatName;
3852   }
3853   Comdat *C = TheModule->getOrInsertComdat(Name);
3854   C->setSelectionKind(SK);
3855   ComdatList.push_back(C);
3856   return Error::success();
3857 }
3858 
3859 static void inferDSOLocal(GlobalValue *GV) {
3860   // infer dso_local from linkage and visibility if it is not encoded.
3861   if (GV->hasLocalLinkage() ||
3862       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3863     GV->setDSOLocal(true);
3864 }
3865 
3866 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3867   GlobalValue::SanitizerMetadata Meta;
3868   if (V & (1 << 0))
3869     Meta.NoAddress = true;
3870   if (V & (1 << 1))
3871     Meta.NoHWAddress = true;
3872   if (V & (1 << 2))
3873     Meta.Memtag = true;
3874   if (V & (1 << 3))
3875     Meta.IsDynInit = true;
3876   return Meta;
3877 }
3878 
3879 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3880   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3881   // visibility, threadlocal, unnamed_addr, externally_initialized,
3882   // dllstorageclass, comdat, attributes, preemption specifier,
3883   // partition strtab offset, partition strtab size] (name in VST)
3884   // v2: [strtab_offset, strtab_size, v1]
3885   // v3: [v2, code_model]
3886   StringRef Name;
3887   std::tie(Name, Record) = readNameFromStrtab(Record);
3888 
3889   if (Record.size() < 6)
3890     return error("Invalid record");
3891   unsigned TyID = Record[0];
3892   Type *Ty = getTypeByID(TyID);
3893   if (!Ty)
3894     return error("Invalid record");
3895   bool isConstant = Record[1] & 1;
3896   bool explicitType = Record[1] & 2;
3897   unsigned AddressSpace;
3898   if (explicitType) {
3899     AddressSpace = Record[1] >> 2;
3900   } else {
3901     if (!Ty->isPointerTy())
3902       return error("Invalid type for value");
3903     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3904     TyID = getContainedTypeID(TyID);
3905     Ty = getTypeByID(TyID);
3906     if (!Ty)
3907       return error("Missing element type for old-style global");
3908   }
3909 
3910   uint64_t RawLinkage = Record[3];
3911   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3912   MaybeAlign Alignment;
3913   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3914     return Err;
3915   std::string Section;
3916   if (Record[5]) {
3917     if (Record[5] - 1 >= SectionTable.size())
3918       return error("Invalid ID");
3919     Section = SectionTable[Record[5] - 1];
3920   }
3921   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3922   // Local linkage must have default visibility.
3923   // auto-upgrade `hidden` and `protected` for old bitcode.
3924   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3925     Visibility = getDecodedVisibility(Record[6]);
3926 
3927   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3928   if (Record.size() > 7)
3929     TLM = getDecodedThreadLocalMode(Record[7]);
3930 
3931   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3932   if (Record.size() > 8)
3933     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3934 
3935   bool ExternallyInitialized = false;
3936   if (Record.size() > 9)
3937     ExternallyInitialized = Record[9];
3938 
3939   GlobalVariable *NewGV =
3940       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3941                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3942   if (Alignment)
3943     NewGV->setAlignment(*Alignment);
3944   if (!Section.empty())
3945     NewGV->setSection(Section);
3946   NewGV->setVisibility(Visibility);
3947   NewGV->setUnnamedAddr(UnnamedAddr);
3948 
3949   if (Record.size() > 10) {
3950     // A GlobalValue with local linkage cannot have a DLL storage class.
3951     if (!NewGV->hasLocalLinkage()) {
3952       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3953     }
3954   } else {
3955     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3956   }
3957 
3958   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3959 
3960   // Remember which value to use for the global initializer.
3961   if (unsigned InitID = Record[2])
3962     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3963 
3964   if (Record.size() > 11) {
3965     if (unsigned ComdatID = Record[11]) {
3966       if (ComdatID > ComdatList.size())
3967         return error("Invalid global variable comdat ID");
3968       NewGV->setComdat(ComdatList[ComdatID - 1]);
3969     }
3970   } else if (hasImplicitComdat(RawLinkage)) {
3971     ImplicitComdatObjects.insert(NewGV);
3972   }
3973 
3974   if (Record.size() > 12) {
3975     auto AS = getAttributes(Record[12]).getFnAttrs();
3976     NewGV->setAttributes(AS);
3977   }
3978 
3979   if (Record.size() > 13) {
3980     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3981   }
3982   inferDSOLocal(NewGV);
3983 
3984   // Check whether we have enough values to read a partition name.
3985   if (Record.size() > 15)
3986     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3987 
3988   if (Record.size() > 16 && Record[16]) {
3989     llvm::GlobalValue::SanitizerMetadata Meta =
3990         deserializeSanitizerMetadata(Record[16]);
3991     NewGV->setSanitizerMetadata(Meta);
3992   }
3993 
3994   if (Record.size() > 17 && Record[17]) {
3995     if (auto CM = getDecodedCodeModel(Record[17]))
3996       NewGV->setCodeModel(*CM);
3997     else
3998       return error("Invalid global variable code model");
3999   }
4000 
4001   return Error::success();
4002 }
4003 
4004 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4005   if (ValueTypeCallback) {
4006     (*ValueTypeCallback)(
4007         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4008         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4009   }
4010 }
4011 
4012 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4013   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4014   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4015   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4016   // v2: [strtab_offset, strtab_size, v1]
4017   StringRef Name;
4018   std::tie(Name, Record) = readNameFromStrtab(Record);
4019 
4020   if (Record.size() < 8)
4021     return error("Invalid record");
4022   unsigned FTyID = Record[0];
4023   Type *FTy = getTypeByID(FTyID);
4024   if (!FTy)
4025     return error("Invalid record");
4026   if (isa<PointerType>(FTy)) {
4027     FTyID = getContainedTypeID(FTyID, 0);
4028     FTy = getTypeByID(FTyID);
4029     if (!FTy)
4030       return error("Missing element type for old-style function");
4031   }
4032 
4033   if (!isa<FunctionType>(FTy))
4034     return error("Invalid type for value");
4035   auto CC = static_cast<CallingConv::ID>(Record[1]);
4036   if (CC & ~CallingConv::MaxID)
4037     return error("Invalid calling convention ID");
4038 
4039   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4040   if (Record.size() > 16)
4041     AddrSpace = Record[16];
4042 
4043   Function *Func =
4044       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4045                        AddrSpace, Name, TheModule);
4046 
4047   assert(Func->getFunctionType() == FTy &&
4048          "Incorrect fully specified type provided for function");
4049   FunctionTypeIDs[Func] = FTyID;
4050 
4051   Func->setCallingConv(CC);
4052   bool isProto = Record[2];
4053   uint64_t RawLinkage = Record[3];
4054   Func->setLinkage(getDecodedLinkage(RawLinkage));
4055   Func->setAttributes(getAttributes(Record[4]));
4056   callValueTypeCallback(Func, FTyID);
4057 
4058   // Upgrade any old-style byval or sret without a type by propagating the
4059   // argument's pointee type. There should be no opaque pointers where the byval
4060   // type is implicit.
4061   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4062     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4063                                      Attribute::InAlloca}) {
4064       if (!Func->hasParamAttribute(i, Kind))
4065         continue;
4066 
4067       if (Func->getParamAttribute(i, Kind).getValueAsType())
4068         continue;
4069 
4070       Func->removeParamAttr(i, Kind);
4071 
4072       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4073       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4074       if (!PtrEltTy)
4075         return error("Missing param element type for attribute upgrade");
4076 
4077       Attribute NewAttr;
4078       switch (Kind) {
4079       case Attribute::ByVal:
4080         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4081         break;
4082       case Attribute::StructRet:
4083         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4084         break;
4085       case Attribute::InAlloca:
4086         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4087         break;
4088       default:
4089         llvm_unreachable("not an upgraded type attribute");
4090       }
4091 
4092       Func->addParamAttr(i, NewAttr);
4093     }
4094   }
4095 
4096   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4097       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4098     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4099     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4100     if (!ByValTy)
4101       return error("Missing param element type for x86_intrcc upgrade");
4102     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4103     Func->addParamAttr(0, NewAttr);
4104   }
4105 
4106   MaybeAlign Alignment;
4107   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4108     return Err;
4109   if (Alignment)
4110     Func->setAlignment(*Alignment);
4111   if (Record[6]) {
4112     if (Record[6] - 1 >= SectionTable.size())
4113       return error("Invalid ID");
4114     Func->setSection(SectionTable[Record[6] - 1]);
4115   }
4116   // Local linkage must have default visibility.
4117   // auto-upgrade `hidden` and `protected` for old bitcode.
4118   if (!Func->hasLocalLinkage())
4119     Func->setVisibility(getDecodedVisibility(Record[7]));
4120   if (Record.size() > 8 && Record[8]) {
4121     if (Record[8] - 1 >= GCTable.size())
4122       return error("Invalid ID");
4123     Func->setGC(GCTable[Record[8] - 1]);
4124   }
4125   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4126   if (Record.size() > 9)
4127     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4128   Func->setUnnamedAddr(UnnamedAddr);
4129 
4130   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4131   if (Record.size() > 10)
4132     OperandInfo.Prologue = Record[10];
4133 
4134   if (Record.size() > 11) {
4135     // A GlobalValue with local linkage cannot have a DLL storage class.
4136     if (!Func->hasLocalLinkage()) {
4137       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4138     }
4139   } else {
4140     upgradeDLLImportExportLinkage(Func, RawLinkage);
4141   }
4142 
4143   if (Record.size() > 12) {
4144     if (unsigned ComdatID = Record[12]) {
4145       if (ComdatID > ComdatList.size())
4146         return error("Invalid function comdat ID");
4147       Func->setComdat(ComdatList[ComdatID - 1]);
4148     }
4149   } else if (hasImplicitComdat(RawLinkage)) {
4150     ImplicitComdatObjects.insert(Func);
4151   }
4152 
4153   if (Record.size() > 13)
4154     OperandInfo.Prefix = Record[13];
4155 
4156   if (Record.size() > 14)
4157     OperandInfo.PersonalityFn = Record[14];
4158 
4159   if (Record.size() > 15) {
4160     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4161   }
4162   inferDSOLocal(Func);
4163 
4164   // Record[16] is the address space number.
4165 
4166   // Check whether we have enough values to read a partition name. Also make
4167   // sure Strtab has enough values.
4168   if (Record.size() > 18 && Strtab.data() &&
4169       Record[17] + Record[18] <= Strtab.size()) {
4170     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4171   }
4172 
4173   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4174 
4175   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4176     FunctionOperands.push_back(OperandInfo);
4177 
4178   // If this is a function with a body, remember the prototype we are
4179   // creating now, so that we can match up the body with them later.
4180   if (!isProto) {
4181     Func->setIsMaterializable(true);
4182     FunctionsWithBodies.push_back(Func);
4183     DeferredFunctionInfo[Func] = 0;
4184   }
4185   return Error::success();
4186 }
4187 
4188 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4189     unsigned BitCode, ArrayRef<uint64_t> Record) {
4190   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4191   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4192   // dllstorageclass, threadlocal, unnamed_addr,
4193   // preemption specifier] (name in VST)
4194   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4195   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4196   // preemption specifier] (name in VST)
4197   // v2: [strtab_offset, strtab_size, v1]
4198   StringRef Name;
4199   std::tie(Name, Record) = readNameFromStrtab(Record);
4200 
4201   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4202   if (Record.size() < (3 + (unsigned)NewRecord))
4203     return error("Invalid record");
4204   unsigned OpNum = 0;
4205   unsigned TypeID = Record[OpNum++];
4206   Type *Ty = getTypeByID(TypeID);
4207   if (!Ty)
4208     return error("Invalid record");
4209 
4210   unsigned AddrSpace;
4211   if (!NewRecord) {
4212     auto *PTy = dyn_cast<PointerType>(Ty);
4213     if (!PTy)
4214       return error("Invalid type for value");
4215     AddrSpace = PTy->getAddressSpace();
4216     TypeID = getContainedTypeID(TypeID);
4217     Ty = getTypeByID(TypeID);
4218     if (!Ty)
4219       return error("Missing element type for old-style indirect symbol");
4220   } else {
4221     AddrSpace = Record[OpNum++];
4222   }
4223 
4224   auto Val = Record[OpNum++];
4225   auto Linkage = Record[OpNum++];
4226   GlobalValue *NewGA;
4227   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4228       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4229     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4230                                 TheModule);
4231   else
4232     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4233                                 nullptr, TheModule);
4234 
4235   // Local linkage must have default visibility.
4236   // auto-upgrade `hidden` and `protected` for old bitcode.
4237   if (OpNum != Record.size()) {
4238     auto VisInd = OpNum++;
4239     if (!NewGA->hasLocalLinkage())
4240       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4241   }
4242   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4243       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4244     if (OpNum != Record.size()) {
4245       auto S = Record[OpNum++];
4246       // A GlobalValue with local linkage cannot have a DLL storage class.
4247       if (!NewGA->hasLocalLinkage())
4248         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4249     }
4250     else
4251       upgradeDLLImportExportLinkage(NewGA, Linkage);
4252     if (OpNum != Record.size())
4253       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4254     if (OpNum != Record.size())
4255       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4256   }
4257   if (OpNum != Record.size())
4258     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4259   inferDSOLocal(NewGA);
4260 
4261   // Check whether we have enough values to read a partition name.
4262   if (OpNum + 1 < Record.size()) {
4263     // Check Strtab has enough values for the partition.
4264     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4265       return error("Malformed partition, too large.");
4266     NewGA->setPartition(
4267         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4268     OpNum += 2;
4269   }
4270 
4271   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4272   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4273   return Error::success();
4274 }
4275 
4276 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4277                                  bool ShouldLazyLoadMetadata,
4278                                  ParserCallbacks Callbacks) {
4279   // Force the debug-info mode into the old format for now.
4280   // FIXME: Remove this once all tools support RemoveDIs.
4281   TheModule->IsNewDbgInfoFormat = false;
4282 
4283   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4284   if (ResumeBit) {
4285     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4286       return JumpFailed;
4287   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4288     return Err;
4289 
4290   SmallVector<uint64_t, 64> Record;
4291 
4292   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4293   // finalize the datalayout before we run any of that code.
4294   bool ResolvedDataLayout = false;
4295   // In order to support importing modules with illegal data layout strings,
4296   // delay parsing the data layout string until after upgrades and overrides
4297   // have been applied, allowing to fix illegal data layout strings.
4298   // Initialize to the current module's layout string in case none is specified.
4299   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4300 
4301   auto ResolveDataLayout = [&]() -> Error {
4302     if (ResolvedDataLayout)
4303       return Error::success();
4304 
4305     // Datalayout and triple can't be parsed after this point.
4306     ResolvedDataLayout = true;
4307 
4308     // Auto-upgrade the layout string
4309     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4310         TentativeDataLayoutStr, TheModule->getTargetTriple());
4311 
4312     // Apply override
4313     if (Callbacks.DataLayout) {
4314       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4315               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4316         TentativeDataLayoutStr = *LayoutOverride;
4317     }
4318 
4319     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4320     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4321     if (!MaybeDL)
4322       return MaybeDL.takeError();
4323 
4324     TheModule->setDataLayout(MaybeDL.get());
4325     return Error::success();
4326   };
4327 
4328   // Read all the records for this module.
4329   while (true) {
4330     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4331     if (!MaybeEntry)
4332       return MaybeEntry.takeError();
4333     llvm::BitstreamEntry Entry = MaybeEntry.get();
4334 
4335     switch (Entry.Kind) {
4336     case BitstreamEntry::Error:
4337       return error("Malformed block");
4338     case BitstreamEntry::EndBlock:
4339       if (Error Err = ResolveDataLayout())
4340         return Err;
4341       return globalCleanup();
4342 
4343     case BitstreamEntry::SubBlock:
4344       switch (Entry.ID) {
4345       default:  // Skip unknown content.
4346         if (Error Err = Stream.SkipBlock())
4347           return Err;
4348         break;
4349       case bitc::BLOCKINFO_BLOCK_ID:
4350         if (Error Err = readBlockInfo())
4351           return Err;
4352         break;
4353       case bitc::PARAMATTR_BLOCK_ID:
4354         if (Error Err = parseAttributeBlock())
4355           return Err;
4356         break;
4357       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4358         if (Error Err = parseAttributeGroupBlock())
4359           return Err;
4360         break;
4361       case bitc::TYPE_BLOCK_ID_NEW:
4362         if (Error Err = parseTypeTable())
4363           return Err;
4364         break;
4365       case bitc::VALUE_SYMTAB_BLOCK_ID:
4366         if (!SeenValueSymbolTable) {
4367           // Either this is an old form VST without function index and an
4368           // associated VST forward declaration record (which would have caused
4369           // the VST to be jumped to and parsed before it was encountered
4370           // normally in the stream), or there were no function blocks to
4371           // trigger an earlier parsing of the VST.
4372           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4373           if (Error Err = parseValueSymbolTable())
4374             return Err;
4375           SeenValueSymbolTable = true;
4376         } else {
4377           // We must have had a VST forward declaration record, which caused
4378           // the parser to jump to and parse the VST earlier.
4379           assert(VSTOffset > 0);
4380           if (Error Err = Stream.SkipBlock())
4381             return Err;
4382         }
4383         break;
4384       case bitc::CONSTANTS_BLOCK_ID:
4385         if (Error Err = parseConstants())
4386           return Err;
4387         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4388           return Err;
4389         break;
4390       case bitc::METADATA_BLOCK_ID:
4391         if (ShouldLazyLoadMetadata) {
4392           if (Error Err = rememberAndSkipMetadata())
4393             return Err;
4394           break;
4395         }
4396         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4397         if (Error Err = MDLoader->parseModuleMetadata())
4398           return Err;
4399         break;
4400       case bitc::METADATA_KIND_BLOCK_ID:
4401         if (Error Err = MDLoader->parseMetadataKinds())
4402           return Err;
4403         break;
4404       case bitc::FUNCTION_BLOCK_ID:
4405         if (Error Err = ResolveDataLayout())
4406           return Err;
4407 
4408         // If this is the first function body we've seen, reverse the
4409         // FunctionsWithBodies list.
4410         if (!SeenFirstFunctionBody) {
4411           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4412           if (Error Err = globalCleanup())
4413             return Err;
4414           SeenFirstFunctionBody = true;
4415         }
4416 
4417         if (VSTOffset > 0) {
4418           // If we have a VST forward declaration record, make sure we
4419           // parse the VST now if we haven't already. It is needed to
4420           // set up the DeferredFunctionInfo vector for lazy reading.
4421           if (!SeenValueSymbolTable) {
4422             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4423               return Err;
4424             SeenValueSymbolTable = true;
4425             // Fall through so that we record the NextUnreadBit below.
4426             // This is necessary in case we have an anonymous function that
4427             // is later materialized. Since it will not have a VST entry we
4428             // need to fall back to the lazy parse to find its offset.
4429           } else {
4430             // If we have a VST forward declaration record, but have already
4431             // parsed the VST (just above, when the first function body was
4432             // encountered here), then we are resuming the parse after
4433             // materializing functions. The ResumeBit points to the
4434             // start of the last function block recorded in the
4435             // DeferredFunctionInfo map. Skip it.
4436             if (Error Err = Stream.SkipBlock())
4437               return Err;
4438             continue;
4439           }
4440         }
4441 
4442         // Support older bitcode files that did not have the function
4443         // index in the VST, nor a VST forward declaration record, as
4444         // well as anonymous functions that do not have VST entries.
4445         // Build the DeferredFunctionInfo vector on the fly.
4446         if (Error Err = rememberAndSkipFunctionBody())
4447           return Err;
4448 
4449         // Suspend parsing when we reach the function bodies. Subsequent
4450         // materialization calls will resume it when necessary. If the bitcode
4451         // file is old, the symbol table will be at the end instead and will not
4452         // have been seen yet. In this case, just finish the parse now.
4453         if (SeenValueSymbolTable) {
4454           NextUnreadBit = Stream.GetCurrentBitNo();
4455           // After the VST has been parsed, we need to make sure intrinsic name
4456           // are auto-upgraded.
4457           return globalCleanup();
4458         }
4459         break;
4460       case bitc::USELIST_BLOCK_ID:
4461         if (Error Err = parseUseLists())
4462           return Err;
4463         break;
4464       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4465         if (Error Err = parseOperandBundleTags())
4466           return Err;
4467         break;
4468       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4469         if (Error Err = parseSyncScopeNames())
4470           return Err;
4471         break;
4472       }
4473       continue;
4474 
4475     case BitstreamEntry::Record:
4476       // The interesting case.
4477       break;
4478     }
4479 
4480     // Read a record.
4481     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4482     if (!MaybeBitCode)
4483       return MaybeBitCode.takeError();
4484     switch (unsigned BitCode = MaybeBitCode.get()) {
4485     default: break;  // Default behavior, ignore unknown content.
4486     case bitc::MODULE_CODE_VERSION: {
4487       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4488       if (!VersionOrErr)
4489         return VersionOrErr.takeError();
4490       UseRelativeIDs = *VersionOrErr >= 1;
4491       break;
4492     }
4493     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4494       if (ResolvedDataLayout)
4495         return error("target triple too late in module");
4496       std::string S;
4497       if (convertToString(Record, 0, S))
4498         return error("Invalid record");
4499       TheModule->setTargetTriple(S);
4500       break;
4501     }
4502     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4503       if (ResolvedDataLayout)
4504         return error("datalayout too late in module");
4505       if (convertToString(Record, 0, TentativeDataLayoutStr))
4506         return error("Invalid record");
4507       break;
4508     }
4509     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4510       std::string S;
4511       if (convertToString(Record, 0, S))
4512         return error("Invalid record");
4513       TheModule->setModuleInlineAsm(S);
4514       break;
4515     }
4516     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4517       // Deprecated, but still needed to read old bitcode files.
4518       std::string S;
4519       if (convertToString(Record, 0, S))
4520         return error("Invalid record");
4521       // Ignore value.
4522       break;
4523     }
4524     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4525       std::string S;
4526       if (convertToString(Record, 0, S))
4527         return error("Invalid record");
4528       SectionTable.push_back(S);
4529       break;
4530     }
4531     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4532       std::string S;
4533       if (convertToString(Record, 0, S))
4534         return error("Invalid record");
4535       GCTable.push_back(S);
4536       break;
4537     }
4538     case bitc::MODULE_CODE_COMDAT:
4539       if (Error Err = parseComdatRecord(Record))
4540         return Err;
4541       break;
4542     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4543     // written by ThinLinkBitcodeWriter. See
4544     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4545     // record
4546     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4547     case bitc::MODULE_CODE_GLOBALVAR:
4548       if (Error Err = parseGlobalVarRecord(Record))
4549         return Err;
4550       break;
4551     case bitc::MODULE_CODE_FUNCTION:
4552       if (Error Err = ResolveDataLayout())
4553         return Err;
4554       if (Error Err = parseFunctionRecord(Record))
4555         return Err;
4556       break;
4557     case bitc::MODULE_CODE_IFUNC:
4558     case bitc::MODULE_CODE_ALIAS:
4559     case bitc::MODULE_CODE_ALIAS_OLD:
4560       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4561         return Err;
4562       break;
4563     /// MODULE_CODE_VSTOFFSET: [offset]
4564     case bitc::MODULE_CODE_VSTOFFSET:
4565       if (Record.empty())
4566         return error("Invalid record");
4567       // Note that we subtract 1 here because the offset is relative to one word
4568       // before the start of the identification or module block, which was
4569       // historically always the start of the regular bitcode header.
4570       VSTOffset = Record[0] - 1;
4571       break;
4572     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4573     case bitc::MODULE_CODE_SOURCE_FILENAME:
4574       SmallString<128> ValueName;
4575       if (convertToString(Record, 0, ValueName))
4576         return error("Invalid record");
4577       TheModule->setSourceFileName(ValueName);
4578       break;
4579     }
4580     Record.clear();
4581   }
4582   this->ValueTypeCallback = std::nullopt;
4583   return Error::success();
4584 }
4585 
4586 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4587                                       bool IsImporting,
4588                                       ParserCallbacks Callbacks) {
4589   TheModule = M;
4590   MetadataLoaderCallbacks MDCallbacks;
4591   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4592   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4593     return getContainedTypeID(I, J);
4594   };
4595   MDCallbacks.MDType = Callbacks.MDType;
4596   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4597   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4598 }
4599 
4600 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4601   if (!isa<PointerType>(PtrType))
4602     return error("Load/Store operand is not a pointer type");
4603   if (!PointerType::isLoadableOrStorableType(ValType))
4604     return error("Cannot load/store from pointer");
4605   return Error::success();
4606 }
4607 
4608 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4609                                              ArrayRef<unsigned> ArgTyIDs) {
4610   AttributeList Attrs = CB->getAttributes();
4611   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4612     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4613                                      Attribute::InAlloca}) {
4614       if (!Attrs.hasParamAttr(i, Kind) ||
4615           Attrs.getParamAttr(i, Kind).getValueAsType())
4616         continue;
4617 
4618       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4619       if (!PtrEltTy)
4620         return error("Missing element type for typed attribute upgrade");
4621 
4622       Attribute NewAttr;
4623       switch (Kind) {
4624       case Attribute::ByVal:
4625         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4626         break;
4627       case Attribute::StructRet:
4628         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4629         break;
4630       case Attribute::InAlloca:
4631         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4632         break;
4633       default:
4634         llvm_unreachable("not an upgraded type attribute");
4635       }
4636 
4637       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4638     }
4639   }
4640 
4641   if (CB->isInlineAsm()) {
4642     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4643     unsigned ArgNo = 0;
4644     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4645       if (!CI.hasArg())
4646         continue;
4647 
4648       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4649         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4650         if (!ElemTy)
4651           return error("Missing element type for inline asm upgrade");
4652         Attrs = Attrs.addParamAttribute(
4653             Context, ArgNo,
4654             Attribute::get(Context, Attribute::ElementType, ElemTy));
4655       }
4656 
4657       ArgNo++;
4658     }
4659   }
4660 
4661   switch (CB->getIntrinsicID()) {
4662   case Intrinsic::preserve_array_access_index:
4663   case Intrinsic::preserve_struct_access_index:
4664   case Intrinsic::aarch64_ldaxr:
4665   case Intrinsic::aarch64_ldxr:
4666   case Intrinsic::aarch64_stlxr:
4667   case Intrinsic::aarch64_stxr:
4668   case Intrinsic::arm_ldaex:
4669   case Intrinsic::arm_ldrex:
4670   case Intrinsic::arm_stlex:
4671   case Intrinsic::arm_strex: {
4672     unsigned ArgNo;
4673     switch (CB->getIntrinsicID()) {
4674     case Intrinsic::aarch64_stlxr:
4675     case Intrinsic::aarch64_stxr:
4676     case Intrinsic::arm_stlex:
4677     case Intrinsic::arm_strex:
4678       ArgNo = 1;
4679       break;
4680     default:
4681       ArgNo = 0;
4682       break;
4683     }
4684     if (!Attrs.getParamElementType(ArgNo)) {
4685       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4686       if (!ElTy)
4687         return error("Missing element type for elementtype upgrade");
4688       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4689       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4690     }
4691     break;
4692   }
4693   default:
4694     break;
4695   }
4696 
4697   CB->setAttributes(Attrs);
4698   return Error::success();
4699 }
4700 
4701 /// Lazily parse the specified function body block.
4702 Error BitcodeReader::parseFunctionBody(Function *F) {
4703   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4704     return Err;
4705 
4706   // Unexpected unresolved metadata when parsing function.
4707   if (MDLoader->hasFwdRefs())
4708     return error("Invalid function metadata: incoming forward references");
4709 
4710   InstructionList.clear();
4711   unsigned ModuleValueListSize = ValueList.size();
4712   unsigned ModuleMDLoaderSize = MDLoader->size();
4713 
4714   // Add all the function arguments to the value table.
4715   unsigned ArgNo = 0;
4716   unsigned FTyID = FunctionTypeIDs[F];
4717   for (Argument &I : F->args()) {
4718     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4719     assert(I.getType() == getTypeByID(ArgTyID) &&
4720            "Incorrect fully specified type for Function Argument");
4721     ValueList.push_back(&I, ArgTyID);
4722     ++ArgNo;
4723   }
4724   unsigned NextValueNo = ValueList.size();
4725   BasicBlock *CurBB = nullptr;
4726   unsigned CurBBNo = 0;
4727   // Block into which constant expressions from phi nodes are materialized.
4728   BasicBlock *PhiConstExprBB = nullptr;
4729   // Edge blocks for phi nodes into which constant expressions have been
4730   // expanded.
4731   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4732     ConstExprEdgeBBs;
4733 
4734   DebugLoc LastLoc;
4735   auto getLastInstruction = [&]() -> Instruction * {
4736     if (CurBB && !CurBB->empty())
4737       return &CurBB->back();
4738     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4739              !FunctionBBs[CurBBNo - 1]->empty())
4740       return &FunctionBBs[CurBBNo - 1]->back();
4741     return nullptr;
4742   };
4743 
4744   std::vector<OperandBundleDef> OperandBundles;
4745 
4746   // Read all the records.
4747   SmallVector<uint64_t, 64> Record;
4748 
4749   while (true) {
4750     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4751     if (!MaybeEntry)
4752       return MaybeEntry.takeError();
4753     llvm::BitstreamEntry Entry = MaybeEntry.get();
4754 
4755     switch (Entry.Kind) {
4756     case BitstreamEntry::Error:
4757       return error("Malformed block");
4758     case BitstreamEntry::EndBlock:
4759       goto OutOfRecordLoop;
4760 
4761     case BitstreamEntry::SubBlock:
4762       switch (Entry.ID) {
4763       default:  // Skip unknown content.
4764         if (Error Err = Stream.SkipBlock())
4765           return Err;
4766         break;
4767       case bitc::CONSTANTS_BLOCK_ID:
4768         if (Error Err = parseConstants())
4769           return Err;
4770         NextValueNo = ValueList.size();
4771         break;
4772       case bitc::VALUE_SYMTAB_BLOCK_ID:
4773         if (Error Err = parseValueSymbolTable())
4774           return Err;
4775         break;
4776       case bitc::METADATA_ATTACHMENT_ID:
4777         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4778           return Err;
4779         break;
4780       case bitc::METADATA_BLOCK_ID:
4781         assert(DeferredMetadataInfo.empty() &&
4782                "Must read all module-level metadata before function-level");
4783         if (Error Err = MDLoader->parseFunctionMetadata())
4784           return Err;
4785         break;
4786       case bitc::USELIST_BLOCK_ID:
4787         if (Error Err = parseUseLists())
4788           return Err;
4789         break;
4790       }
4791       continue;
4792 
4793     case BitstreamEntry::Record:
4794       // The interesting case.
4795       break;
4796     }
4797 
4798     // Read a record.
4799     Record.clear();
4800     Instruction *I = nullptr;
4801     unsigned ResTypeID = InvalidTypeID;
4802     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4803     if (!MaybeBitCode)
4804       return MaybeBitCode.takeError();
4805     switch (unsigned BitCode = MaybeBitCode.get()) {
4806     default: // Default behavior: reject
4807       return error("Invalid value");
4808     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4809       if (Record.empty() || Record[0] == 0)
4810         return error("Invalid record");
4811       // Create all the basic blocks for the function.
4812       FunctionBBs.resize(Record[0]);
4813 
4814       // See if anything took the address of blocks in this function.
4815       auto BBFRI = BasicBlockFwdRefs.find(F);
4816       if (BBFRI == BasicBlockFwdRefs.end()) {
4817         for (BasicBlock *&BB : FunctionBBs)
4818           BB = BasicBlock::Create(Context, "", F);
4819       } else {
4820         auto &BBRefs = BBFRI->second;
4821         // Check for invalid basic block references.
4822         if (BBRefs.size() > FunctionBBs.size())
4823           return error("Invalid ID");
4824         assert(!BBRefs.empty() && "Unexpected empty array");
4825         assert(!BBRefs.front() && "Invalid reference to entry block");
4826         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4827              ++I)
4828           if (I < RE && BBRefs[I]) {
4829             BBRefs[I]->insertInto(F);
4830             FunctionBBs[I] = BBRefs[I];
4831           } else {
4832             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4833           }
4834 
4835         // Erase from the table.
4836         BasicBlockFwdRefs.erase(BBFRI);
4837       }
4838 
4839       CurBB = FunctionBBs[0];
4840       continue;
4841     }
4842 
4843     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4844       // The record should not be emitted if it's an empty list.
4845       if (Record.empty())
4846         return error("Invalid record");
4847       // When we have the RARE case of a BlockAddress Constant that is not
4848       // scoped to the Function it refers to, we need to conservatively
4849       // materialize the referred to Function, regardless of whether or not
4850       // that Function will ultimately be linked, otherwise users of
4851       // BitcodeReader might start splicing out Function bodies such that we
4852       // might no longer be able to materialize the BlockAddress since the
4853       // BasicBlock (and entire body of the Function) the BlockAddress refers
4854       // to may have been moved. In the case that the user of BitcodeReader
4855       // decides ultimately not to link the Function body, materializing here
4856       // could be considered wasteful, but it's better than a deserialization
4857       // failure as described. This keeps BitcodeReader unaware of complex
4858       // linkage policy decisions such as those use by LTO, leaving those
4859       // decisions "one layer up."
4860       for (uint64_t ValID : Record)
4861         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4862           BackwardRefFunctions.push_back(F);
4863         else
4864           return error("Invalid record");
4865 
4866       continue;
4867 
4868     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4869       // This record indicates that the last instruction is at the same
4870       // location as the previous instruction with a location.
4871       I = getLastInstruction();
4872 
4873       if (!I)
4874         return error("Invalid record");
4875       I->setDebugLoc(LastLoc);
4876       I = nullptr;
4877       continue;
4878 
4879     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4880       I = getLastInstruction();
4881       if (!I || Record.size() < 4)
4882         return error("Invalid record");
4883 
4884       unsigned Line = Record[0], Col = Record[1];
4885       unsigned ScopeID = Record[2], IAID = Record[3];
4886       bool isImplicitCode = Record.size() == 5 && Record[4];
4887 
4888       MDNode *Scope = nullptr, *IA = nullptr;
4889       if (ScopeID) {
4890         Scope = dyn_cast_or_null<MDNode>(
4891             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4892         if (!Scope)
4893           return error("Invalid record");
4894       }
4895       if (IAID) {
4896         IA = dyn_cast_or_null<MDNode>(
4897             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4898         if (!IA)
4899           return error("Invalid record");
4900       }
4901       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4902                                 isImplicitCode);
4903       I->setDebugLoc(LastLoc);
4904       I = nullptr;
4905       continue;
4906     }
4907     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4908       unsigned OpNum = 0;
4909       Value *LHS;
4910       unsigned TypeID;
4911       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4912           OpNum+1 > Record.size())
4913         return error("Invalid record");
4914 
4915       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4916       if (Opc == -1)
4917         return error("Invalid record");
4918       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4919       ResTypeID = TypeID;
4920       InstructionList.push_back(I);
4921       if (OpNum < Record.size()) {
4922         if (isa<FPMathOperator>(I)) {
4923           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4924           if (FMF.any())
4925             I->setFastMathFlags(FMF);
4926         }
4927       }
4928       break;
4929     }
4930     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4931       unsigned OpNum = 0;
4932       Value *LHS, *RHS;
4933       unsigned TypeID;
4934       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4935           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4936                    CurBB) ||
4937           OpNum+1 > Record.size())
4938         return error("Invalid record");
4939 
4940       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4941       if (Opc == -1)
4942         return error("Invalid record");
4943       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4944       ResTypeID = TypeID;
4945       InstructionList.push_back(I);
4946       if (OpNum < Record.size()) {
4947         if (Opc == Instruction::Add ||
4948             Opc == Instruction::Sub ||
4949             Opc == Instruction::Mul ||
4950             Opc == Instruction::Shl) {
4951           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4952             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4953           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4954             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4955         } else if (Opc == Instruction::SDiv ||
4956                    Opc == Instruction::UDiv ||
4957                    Opc == Instruction::LShr ||
4958                    Opc == Instruction::AShr) {
4959           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4960             cast<BinaryOperator>(I)->setIsExact(true);
4961         } else if (Opc == Instruction::Or) {
4962           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4963             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4964         } else if (isa<FPMathOperator>(I)) {
4965           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4966           if (FMF.any())
4967             I->setFastMathFlags(FMF);
4968         }
4969       }
4970       break;
4971     }
4972     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4973       unsigned OpNum = 0;
4974       Value *Op;
4975       unsigned OpTypeID;
4976       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4977           OpNum + 1 > Record.size())
4978         return error("Invalid record");
4979 
4980       ResTypeID = Record[OpNum++];
4981       Type *ResTy = getTypeByID(ResTypeID);
4982       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4983 
4984       if (Opc == -1 || !ResTy)
4985         return error("Invalid record");
4986       Instruction *Temp = nullptr;
4987       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4988         if (Temp) {
4989           InstructionList.push_back(Temp);
4990           assert(CurBB && "No current BB?");
4991           Temp->insertInto(CurBB, CurBB->end());
4992         }
4993       } else {
4994         auto CastOp = (Instruction::CastOps)Opc;
4995         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4996           return error("Invalid cast");
4997         I = CastInst::Create(CastOp, Op, ResTy);
4998       }
4999       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
5000           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
5001         I->setNonNeg(true);
5002       InstructionList.push_back(I);
5003       break;
5004     }
5005     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5006     case bitc::FUNC_CODE_INST_GEP_OLD:
5007     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5008       unsigned OpNum = 0;
5009 
5010       unsigned TyID;
5011       Type *Ty;
5012       bool InBounds;
5013 
5014       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5015         InBounds = Record[OpNum++];
5016         TyID = Record[OpNum++];
5017         Ty = getTypeByID(TyID);
5018       } else {
5019         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
5020         TyID = InvalidTypeID;
5021         Ty = nullptr;
5022       }
5023 
5024       Value *BasePtr;
5025       unsigned BasePtrTypeID;
5026       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5027                            CurBB))
5028         return error("Invalid record");
5029 
5030       if (!Ty) {
5031         TyID = getContainedTypeID(BasePtrTypeID);
5032         if (BasePtr->getType()->isVectorTy())
5033           TyID = getContainedTypeID(TyID);
5034         Ty = getTypeByID(TyID);
5035       }
5036 
5037       SmallVector<Value*, 16> GEPIdx;
5038       while (OpNum != Record.size()) {
5039         Value *Op;
5040         unsigned OpTypeID;
5041         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5042           return error("Invalid record");
5043         GEPIdx.push_back(Op);
5044       }
5045 
5046       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5047 
5048       ResTypeID = TyID;
5049       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5050         auto GTI = std::next(gep_type_begin(I));
5051         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5052           unsigned SubType = 0;
5053           if (GTI.isStruct()) {
5054             ConstantInt *IdxC =
5055                 Idx->getType()->isVectorTy()
5056                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5057                     : cast<ConstantInt>(Idx);
5058             SubType = IdxC->getZExtValue();
5059           }
5060           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5061           ++GTI;
5062         }
5063       }
5064 
5065       // At this point ResTypeID is the result element type. We need a pointer
5066       // or vector of pointer to it.
5067       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5068       if (I->getType()->isVectorTy())
5069         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5070 
5071       InstructionList.push_back(I);
5072       if (InBounds)
5073         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5074       break;
5075     }
5076 
5077     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5078                                        // EXTRACTVAL: [opty, opval, n x indices]
5079       unsigned OpNum = 0;
5080       Value *Agg;
5081       unsigned AggTypeID;
5082       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5083         return error("Invalid record");
5084       Type *Ty = Agg->getType();
5085 
5086       unsigned RecSize = Record.size();
5087       if (OpNum == RecSize)
5088         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5089 
5090       SmallVector<unsigned, 4> EXTRACTVALIdx;
5091       ResTypeID = AggTypeID;
5092       for (; OpNum != RecSize; ++OpNum) {
5093         bool IsArray = Ty->isArrayTy();
5094         bool IsStruct = Ty->isStructTy();
5095         uint64_t Index = Record[OpNum];
5096 
5097         if (!IsStruct && !IsArray)
5098           return error("EXTRACTVAL: Invalid type");
5099         if ((unsigned)Index != Index)
5100           return error("Invalid value");
5101         if (IsStruct && Index >= Ty->getStructNumElements())
5102           return error("EXTRACTVAL: Invalid struct index");
5103         if (IsArray && Index >= Ty->getArrayNumElements())
5104           return error("EXTRACTVAL: Invalid array index");
5105         EXTRACTVALIdx.push_back((unsigned)Index);
5106 
5107         if (IsStruct) {
5108           Ty = Ty->getStructElementType(Index);
5109           ResTypeID = getContainedTypeID(ResTypeID, Index);
5110         } else {
5111           Ty = Ty->getArrayElementType();
5112           ResTypeID = getContainedTypeID(ResTypeID);
5113         }
5114       }
5115 
5116       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5117       InstructionList.push_back(I);
5118       break;
5119     }
5120 
5121     case bitc::FUNC_CODE_INST_INSERTVAL: {
5122                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5123       unsigned OpNum = 0;
5124       Value *Agg;
5125       unsigned AggTypeID;
5126       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5127         return error("Invalid record");
5128       Value *Val;
5129       unsigned ValTypeID;
5130       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5131         return error("Invalid record");
5132 
5133       unsigned RecSize = Record.size();
5134       if (OpNum == RecSize)
5135         return error("INSERTVAL: Invalid instruction with 0 indices");
5136 
5137       SmallVector<unsigned, 4> INSERTVALIdx;
5138       Type *CurTy = Agg->getType();
5139       for (; OpNum != RecSize; ++OpNum) {
5140         bool IsArray = CurTy->isArrayTy();
5141         bool IsStruct = CurTy->isStructTy();
5142         uint64_t Index = Record[OpNum];
5143 
5144         if (!IsStruct && !IsArray)
5145           return error("INSERTVAL: Invalid type");
5146         if ((unsigned)Index != Index)
5147           return error("Invalid value");
5148         if (IsStruct && Index >= CurTy->getStructNumElements())
5149           return error("INSERTVAL: Invalid struct index");
5150         if (IsArray && Index >= CurTy->getArrayNumElements())
5151           return error("INSERTVAL: Invalid array index");
5152 
5153         INSERTVALIdx.push_back((unsigned)Index);
5154         if (IsStruct)
5155           CurTy = CurTy->getStructElementType(Index);
5156         else
5157           CurTy = CurTy->getArrayElementType();
5158       }
5159 
5160       if (CurTy != Val->getType())
5161         return error("Inserted value type doesn't match aggregate type");
5162 
5163       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5164       ResTypeID = AggTypeID;
5165       InstructionList.push_back(I);
5166       break;
5167     }
5168 
5169     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5170       // obsolete form of select
5171       // handles select i1 ... in old bitcode
5172       unsigned OpNum = 0;
5173       Value *TrueVal, *FalseVal, *Cond;
5174       unsigned TypeID;
5175       Type *CondType = Type::getInt1Ty(Context);
5176       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5177                            CurBB) ||
5178           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5179                    FalseVal, CurBB) ||
5180           popValue(Record, OpNum, NextValueNo, CondType,
5181                    getVirtualTypeID(CondType), Cond, CurBB))
5182         return error("Invalid record");
5183 
5184       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5185       ResTypeID = TypeID;
5186       InstructionList.push_back(I);
5187       break;
5188     }
5189 
5190     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5191       // new form of select
5192       // handles select i1 or select [N x i1]
5193       unsigned OpNum = 0;
5194       Value *TrueVal, *FalseVal, *Cond;
5195       unsigned ValTypeID, CondTypeID;
5196       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5197                            CurBB) ||
5198           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5199                    FalseVal, CurBB) ||
5200           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5201         return error("Invalid record");
5202 
5203       // select condition can be either i1 or [N x i1]
5204       if (VectorType* vector_type =
5205           dyn_cast<VectorType>(Cond->getType())) {
5206         // expect <n x i1>
5207         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5208           return error("Invalid type for value");
5209       } else {
5210         // expect i1
5211         if (Cond->getType() != Type::getInt1Ty(Context))
5212           return error("Invalid type for value");
5213       }
5214 
5215       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5216       ResTypeID = ValTypeID;
5217       InstructionList.push_back(I);
5218       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5219         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5220         if (FMF.any())
5221           I->setFastMathFlags(FMF);
5222       }
5223       break;
5224     }
5225 
5226     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5227       unsigned OpNum = 0;
5228       Value *Vec, *Idx;
5229       unsigned VecTypeID, IdxTypeID;
5230       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5231           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5232         return error("Invalid record");
5233       if (!Vec->getType()->isVectorTy())
5234         return error("Invalid type for value");
5235       I = ExtractElementInst::Create(Vec, Idx);
5236       ResTypeID = getContainedTypeID(VecTypeID);
5237       InstructionList.push_back(I);
5238       break;
5239     }
5240 
5241     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5242       unsigned OpNum = 0;
5243       Value *Vec, *Elt, *Idx;
5244       unsigned VecTypeID, IdxTypeID;
5245       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5246         return error("Invalid record");
5247       if (!Vec->getType()->isVectorTy())
5248         return error("Invalid type for value");
5249       if (popValue(Record, OpNum, NextValueNo,
5250                    cast<VectorType>(Vec->getType())->getElementType(),
5251                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5252           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5253         return error("Invalid record");
5254       I = InsertElementInst::Create(Vec, Elt, Idx);
5255       ResTypeID = VecTypeID;
5256       InstructionList.push_back(I);
5257       break;
5258     }
5259 
5260     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5261       unsigned OpNum = 0;
5262       Value *Vec1, *Vec2, *Mask;
5263       unsigned Vec1TypeID;
5264       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5265                            CurBB) ||
5266           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5267                    Vec2, CurBB))
5268         return error("Invalid record");
5269 
5270       unsigned MaskTypeID;
5271       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5272         return error("Invalid record");
5273       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5274         return error("Invalid type for value");
5275 
5276       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5277       ResTypeID =
5278           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5279       InstructionList.push_back(I);
5280       break;
5281     }
5282 
5283     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5284       // Old form of ICmp/FCmp returning bool
5285       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5286       // both legal on vectors but had different behaviour.
5287     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5288       // FCmp/ICmp returning bool or vector of bool
5289 
5290       unsigned OpNum = 0;
5291       Value *LHS, *RHS;
5292       unsigned LHSTypeID;
5293       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5294           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5295                    CurBB))
5296         return error("Invalid record");
5297 
5298       if (OpNum >= Record.size())
5299         return error(
5300             "Invalid record: operand number exceeded available operands");
5301 
5302       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5303       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5304       FastMathFlags FMF;
5305       if (IsFP && Record.size() > OpNum+1)
5306         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5307 
5308       if (OpNum+1 != Record.size())
5309         return error("Invalid record");
5310 
5311       if (IsFP) {
5312         if (!CmpInst::isFPPredicate(PredVal))
5313           return error("Invalid fcmp predicate");
5314         I = new FCmpInst(PredVal, LHS, RHS);
5315       } else {
5316         if (!CmpInst::isIntPredicate(PredVal))
5317           return error("Invalid icmp predicate");
5318         I = new ICmpInst(PredVal, LHS, RHS);
5319       }
5320 
5321       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5322       if (LHS->getType()->isVectorTy())
5323         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5324 
5325       if (FMF.any())
5326         I->setFastMathFlags(FMF);
5327       InstructionList.push_back(I);
5328       break;
5329     }
5330 
5331     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5332       {
5333         unsigned Size = Record.size();
5334         if (Size == 0) {
5335           I = ReturnInst::Create(Context);
5336           InstructionList.push_back(I);
5337           break;
5338         }
5339 
5340         unsigned OpNum = 0;
5341         Value *Op = nullptr;
5342         unsigned OpTypeID;
5343         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5344           return error("Invalid record");
5345         if (OpNum != Record.size())
5346           return error("Invalid record");
5347 
5348         I = ReturnInst::Create(Context, Op);
5349         InstructionList.push_back(I);
5350         break;
5351       }
5352     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5353       if (Record.size() != 1 && Record.size() != 3)
5354         return error("Invalid record");
5355       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5356       if (!TrueDest)
5357         return error("Invalid record");
5358 
5359       if (Record.size() == 1) {
5360         I = BranchInst::Create(TrueDest);
5361         InstructionList.push_back(I);
5362       }
5363       else {
5364         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5365         Type *CondType = Type::getInt1Ty(Context);
5366         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5367                                getVirtualTypeID(CondType), CurBB);
5368         if (!FalseDest || !Cond)
5369           return error("Invalid record");
5370         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5371         InstructionList.push_back(I);
5372       }
5373       break;
5374     }
5375     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5376       if (Record.size() != 1 && Record.size() != 2)
5377         return error("Invalid record");
5378       unsigned Idx = 0;
5379       Type *TokenTy = Type::getTokenTy(Context);
5380       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5381                                    getVirtualTypeID(TokenTy), CurBB);
5382       if (!CleanupPad)
5383         return error("Invalid record");
5384       BasicBlock *UnwindDest = nullptr;
5385       if (Record.size() == 2) {
5386         UnwindDest = getBasicBlock(Record[Idx++]);
5387         if (!UnwindDest)
5388           return error("Invalid record");
5389       }
5390 
5391       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5392       InstructionList.push_back(I);
5393       break;
5394     }
5395     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5396       if (Record.size() != 2)
5397         return error("Invalid record");
5398       unsigned Idx = 0;
5399       Type *TokenTy = Type::getTokenTy(Context);
5400       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5401                                  getVirtualTypeID(TokenTy), CurBB);
5402       if (!CatchPad)
5403         return error("Invalid record");
5404       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5405       if (!BB)
5406         return error("Invalid record");
5407 
5408       I = CatchReturnInst::Create(CatchPad, BB);
5409       InstructionList.push_back(I);
5410       break;
5411     }
5412     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5413       // We must have, at minimum, the outer scope and the number of arguments.
5414       if (Record.size() < 2)
5415         return error("Invalid record");
5416 
5417       unsigned Idx = 0;
5418 
5419       Type *TokenTy = Type::getTokenTy(Context);
5420       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5421                                   getVirtualTypeID(TokenTy), CurBB);
5422       if (!ParentPad)
5423         return error("Invalid record");
5424 
5425       unsigned NumHandlers = Record[Idx++];
5426 
5427       SmallVector<BasicBlock *, 2> Handlers;
5428       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5429         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5430         if (!BB)
5431           return error("Invalid record");
5432         Handlers.push_back(BB);
5433       }
5434 
5435       BasicBlock *UnwindDest = nullptr;
5436       if (Idx + 1 == Record.size()) {
5437         UnwindDest = getBasicBlock(Record[Idx++]);
5438         if (!UnwindDest)
5439           return error("Invalid record");
5440       }
5441 
5442       if (Record.size() != Idx)
5443         return error("Invalid record");
5444 
5445       auto *CatchSwitch =
5446           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5447       for (BasicBlock *Handler : Handlers)
5448         CatchSwitch->addHandler(Handler);
5449       I = CatchSwitch;
5450       ResTypeID = getVirtualTypeID(I->getType());
5451       InstructionList.push_back(I);
5452       break;
5453     }
5454     case bitc::FUNC_CODE_INST_CATCHPAD:
5455     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5456       // We must have, at minimum, the outer scope and the number of arguments.
5457       if (Record.size() < 2)
5458         return error("Invalid record");
5459 
5460       unsigned Idx = 0;
5461 
5462       Type *TokenTy = Type::getTokenTy(Context);
5463       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5464                                   getVirtualTypeID(TokenTy), CurBB);
5465       if (!ParentPad)
5466         return error("Invald record");
5467 
5468       unsigned NumArgOperands = Record[Idx++];
5469 
5470       SmallVector<Value *, 2> Args;
5471       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5472         Value *Val;
5473         unsigned ValTypeID;
5474         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5475           return error("Invalid record");
5476         Args.push_back(Val);
5477       }
5478 
5479       if (Record.size() != Idx)
5480         return error("Invalid record");
5481 
5482       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5483         I = CleanupPadInst::Create(ParentPad, Args);
5484       else
5485         I = CatchPadInst::Create(ParentPad, Args);
5486       ResTypeID = getVirtualTypeID(I->getType());
5487       InstructionList.push_back(I);
5488       break;
5489     }
5490     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5491       // Check magic
5492       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5493         // "New" SwitchInst format with case ranges. The changes to write this
5494         // format were reverted but we still recognize bitcode that uses it.
5495         // Hopefully someday we will have support for case ranges and can use
5496         // this format again.
5497 
5498         unsigned OpTyID = Record[1];
5499         Type *OpTy = getTypeByID(OpTyID);
5500         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5501 
5502         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5503         BasicBlock *Default = getBasicBlock(Record[3]);
5504         if (!OpTy || !Cond || !Default)
5505           return error("Invalid record");
5506 
5507         unsigned NumCases = Record[4];
5508 
5509         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5510         InstructionList.push_back(SI);
5511 
5512         unsigned CurIdx = 5;
5513         for (unsigned i = 0; i != NumCases; ++i) {
5514           SmallVector<ConstantInt*, 1> CaseVals;
5515           unsigned NumItems = Record[CurIdx++];
5516           for (unsigned ci = 0; ci != NumItems; ++ci) {
5517             bool isSingleNumber = Record[CurIdx++];
5518 
5519             APInt Low;
5520             unsigned ActiveWords = 1;
5521             if (ValueBitWidth > 64)
5522               ActiveWords = Record[CurIdx++];
5523             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5524                                 ValueBitWidth);
5525             CurIdx += ActiveWords;
5526 
5527             if (!isSingleNumber) {
5528               ActiveWords = 1;
5529               if (ValueBitWidth > 64)
5530                 ActiveWords = Record[CurIdx++];
5531               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5532                                          ValueBitWidth);
5533               CurIdx += ActiveWords;
5534 
5535               // FIXME: It is not clear whether values in the range should be
5536               // compared as signed or unsigned values. The partially
5537               // implemented changes that used this format in the past used
5538               // unsigned comparisons.
5539               for ( ; Low.ule(High); ++Low)
5540                 CaseVals.push_back(ConstantInt::get(Context, Low));
5541             } else
5542               CaseVals.push_back(ConstantInt::get(Context, Low));
5543           }
5544           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5545           for (ConstantInt *Cst : CaseVals)
5546             SI->addCase(Cst, DestBB);
5547         }
5548         I = SI;
5549         break;
5550       }
5551 
5552       // Old SwitchInst format without case ranges.
5553 
5554       if (Record.size() < 3 || (Record.size() & 1) == 0)
5555         return error("Invalid record");
5556       unsigned OpTyID = Record[0];
5557       Type *OpTy = getTypeByID(OpTyID);
5558       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5559       BasicBlock *Default = getBasicBlock(Record[2]);
5560       if (!OpTy || !Cond || !Default)
5561         return error("Invalid record");
5562       unsigned NumCases = (Record.size()-3)/2;
5563       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5564       InstructionList.push_back(SI);
5565       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5566         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5567             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5568         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5569         if (!CaseVal || !DestBB) {
5570           delete SI;
5571           return error("Invalid record");
5572         }
5573         SI->addCase(CaseVal, DestBB);
5574       }
5575       I = SI;
5576       break;
5577     }
5578     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5579       if (Record.size() < 2)
5580         return error("Invalid record");
5581       unsigned OpTyID = Record[0];
5582       Type *OpTy = getTypeByID(OpTyID);
5583       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5584       if (!OpTy || !Address)
5585         return error("Invalid record");
5586       unsigned NumDests = Record.size()-2;
5587       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5588       InstructionList.push_back(IBI);
5589       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5590         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5591           IBI->addDestination(DestBB);
5592         } else {
5593           delete IBI;
5594           return error("Invalid record");
5595         }
5596       }
5597       I = IBI;
5598       break;
5599     }
5600 
5601     case bitc::FUNC_CODE_INST_INVOKE: {
5602       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5603       if (Record.size() < 4)
5604         return error("Invalid record");
5605       unsigned OpNum = 0;
5606       AttributeList PAL = getAttributes(Record[OpNum++]);
5607       unsigned CCInfo = Record[OpNum++];
5608       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5609       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5610 
5611       unsigned FTyID = InvalidTypeID;
5612       FunctionType *FTy = nullptr;
5613       if ((CCInfo >> 13) & 1) {
5614         FTyID = Record[OpNum++];
5615         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5616         if (!FTy)
5617           return error("Explicit invoke type is not a function type");
5618       }
5619 
5620       Value *Callee;
5621       unsigned CalleeTypeID;
5622       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5623                            CurBB))
5624         return error("Invalid record");
5625 
5626       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5627       if (!CalleeTy)
5628         return error("Callee is not a pointer");
5629       if (!FTy) {
5630         FTyID = getContainedTypeID(CalleeTypeID);
5631         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5632         if (!FTy)
5633           return error("Callee is not of pointer to function type");
5634       }
5635       if (Record.size() < FTy->getNumParams() + OpNum)
5636         return error("Insufficient operands to call");
5637 
5638       SmallVector<Value*, 16> Ops;
5639       SmallVector<unsigned, 16> ArgTyIDs;
5640       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5641         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5642         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5643                                ArgTyID, CurBB));
5644         ArgTyIDs.push_back(ArgTyID);
5645         if (!Ops.back())
5646           return error("Invalid record");
5647       }
5648 
5649       if (!FTy->isVarArg()) {
5650         if (Record.size() != OpNum)
5651           return error("Invalid record");
5652       } else {
5653         // Read type/value pairs for varargs params.
5654         while (OpNum != Record.size()) {
5655           Value *Op;
5656           unsigned OpTypeID;
5657           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5658             return error("Invalid record");
5659           Ops.push_back(Op);
5660           ArgTyIDs.push_back(OpTypeID);
5661         }
5662       }
5663 
5664       // Upgrade the bundles if needed.
5665       if (!OperandBundles.empty())
5666         UpgradeOperandBundles(OperandBundles);
5667 
5668       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5669                              OperandBundles);
5670       ResTypeID = getContainedTypeID(FTyID);
5671       OperandBundles.clear();
5672       InstructionList.push_back(I);
5673       cast<InvokeInst>(I)->setCallingConv(
5674           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5675       cast<InvokeInst>(I)->setAttributes(PAL);
5676       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5677         I->deleteValue();
5678         return Err;
5679       }
5680 
5681       break;
5682     }
5683     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5684       unsigned Idx = 0;
5685       Value *Val = nullptr;
5686       unsigned ValTypeID;
5687       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5688         return error("Invalid record");
5689       I = ResumeInst::Create(Val);
5690       InstructionList.push_back(I);
5691       break;
5692     }
5693     case bitc::FUNC_CODE_INST_CALLBR: {
5694       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5695       unsigned OpNum = 0;
5696       AttributeList PAL = getAttributes(Record[OpNum++]);
5697       unsigned CCInfo = Record[OpNum++];
5698 
5699       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5700       unsigned NumIndirectDests = Record[OpNum++];
5701       SmallVector<BasicBlock *, 16> IndirectDests;
5702       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5703         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5704 
5705       unsigned FTyID = InvalidTypeID;
5706       FunctionType *FTy = nullptr;
5707       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5708         FTyID = Record[OpNum++];
5709         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5710         if (!FTy)
5711           return error("Explicit call type is not a function type");
5712       }
5713 
5714       Value *Callee;
5715       unsigned CalleeTypeID;
5716       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5717                            CurBB))
5718         return error("Invalid record");
5719 
5720       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5721       if (!OpTy)
5722         return error("Callee is not a pointer type");
5723       if (!FTy) {
5724         FTyID = getContainedTypeID(CalleeTypeID);
5725         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5726         if (!FTy)
5727           return error("Callee is not of pointer to function type");
5728       }
5729       if (Record.size() < FTy->getNumParams() + OpNum)
5730         return error("Insufficient operands to call");
5731 
5732       SmallVector<Value*, 16> Args;
5733       SmallVector<unsigned, 16> ArgTyIDs;
5734       // Read the fixed params.
5735       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5736         Value *Arg;
5737         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5738         if (FTy->getParamType(i)->isLabelTy())
5739           Arg = getBasicBlock(Record[OpNum]);
5740         else
5741           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5742                          ArgTyID, CurBB);
5743         if (!Arg)
5744           return error("Invalid record");
5745         Args.push_back(Arg);
5746         ArgTyIDs.push_back(ArgTyID);
5747       }
5748 
5749       // Read type/value pairs for varargs params.
5750       if (!FTy->isVarArg()) {
5751         if (OpNum != Record.size())
5752           return error("Invalid record");
5753       } else {
5754         while (OpNum != Record.size()) {
5755           Value *Op;
5756           unsigned OpTypeID;
5757           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5758             return error("Invalid record");
5759           Args.push_back(Op);
5760           ArgTyIDs.push_back(OpTypeID);
5761         }
5762       }
5763 
5764       // Upgrade the bundles if needed.
5765       if (!OperandBundles.empty())
5766         UpgradeOperandBundles(OperandBundles);
5767 
5768       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5769         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5770         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5771           return CI.Type == InlineAsm::isLabel;
5772         };
5773         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5774           // Upgrade explicit blockaddress arguments to label constraints.
5775           // Verify that the last arguments are blockaddress arguments that
5776           // match the indirect destinations. Clang always generates callbr
5777           // in this form. We could support reordering with more effort.
5778           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5779           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5780             unsigned LabelNo = ArgNo - FirstBlockArg;
5781             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5782             if (!BA || BA->getFunction() != F ||
5783                 LabelNo > IndirectDests.size() ||
5784                 BA->getBasicBlock() != IndirectDests[LabelNo])
5785               return error("callbr argument does not match indirect dest");
5786           }
5787 
5788           // Remove blockaddress arguments.
5789           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5790           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5791 
5792           // Recreate the function type with less arguments.
5793           SmallVector<Type *> ArgTys;
5794           for (Value *Arg : Args)
5795             ArgTys.push_back(Arg->getType());
5796           FTy =
5797               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5798 
5799           // Update constraint string to use label constraints.
5800           std::string Constraints = IA->getConstraintString();
5801           unsigned ArgNo = 0;
5802           size_t Pos = 0;
5803           for (const auto &CI : ConstraintInfo) {
5804             if (CI.hasArg()) {
5805               if (ArgNo >= FirstBlockArg)
5806                 Constraints.insert(Pos, "!");
5807               ++ArgNo;
5808             }
5809 
5810             // Go to next constraint in string.
5811             Pos = Constraints.find(',', Pos);
5812             if (Pos == std::string::npos)
5813               break;
5814             ++Pos;
5815           }
5816 
5817           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5818                                   IA->hasSideEffects(), IA->isAlignStack(),
5819                                   IA->getDialect(), IA->canThrow());
5820         }
5821       }
5822 
5823       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5824                              OperandBundles);
5825       ResTypeID = getContainedTypeID(FTyID);
5826       OperandBundles.clear();
5827       InstructionList.push_back(I);
5828       cast<CallBrInst>(I)->setCallingConv(
5829           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5830       cast<CallBrInst>(I)->setAttributes(PAL);
5831       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5832         I->deleteValue();
5833         return Err;
5834       }
5835       break;
5836     }
5837     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5838       I = new UnreachableInst(Context);
5839       InstructionList.push_back(I);
5840       break;
5841     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5842       if (Record.empty())
5843         return error("Invalid phi record");
5844       // The first record specifies the type.
5845       unsigned TyID = Record[0];
5846       Type *Ty = getTypeByID(TyID);
5847       if (!Ty)
5848         return error("Invalid phi record");
5849 
5850       // Phi arguments are pairs of records of [value, basic block].
5851       // There is an optional final record for fast-math-flags if this phi has a
5852       // floating-point type.
5853       size_t NumArgs = (Record.size() - 1) / 2;
5854       PHINode *PN = PHINode::Create(Ty, NumArgs);
5855       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5856         PN->deleteValue();
5857         return error("Invalid phi record");
5858       }
5859       InstructionList.push_back(PN);
5860 
5861       SmallDenseMap<BasicBlock *, Value *> Args;
5862       for (unsigned i = 0; i != NumArgs; i++) {
5863         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5864         if (!BB) {
5865           PN->deleteValue();
5866           return error("Invalid phi BB");
5867         }
5868 
5869         // Phi nodes may contain the same predecessor multiple times, in which
5870         // case the incoming value must be identical. Directly reuse the already
5871         // seen value here, to avoid expanding a constant expression multiple
5872         // times.
5873         auto It = Args.find(BB);
5874         if (It != Args.end()) {
5875           PN->addIncoming(It->second, BB);
5876           continue;
5877         }
5878 
5879         // If there already is a block for this edge (from a different phi),
5880         // use it.
5881         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5882         if (!EdgeBB) {
5883           // Otherwise, use a temporary block (that we will discard if it
5884           // turns out to be unnecessary).
5885           if (!PhiConstExprBB)
5886             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5887           EdgeBB = PhiConstExprBB;
5888         }
5889 
5890         // With the new function encoding, it is possible that operands have
5891         // negative IDs (for forward references).  Use a signed VBR
5892         // representation to keep the encoding small.
5893         Value *V;
5894         if (UseRelativeIDs)
5895           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5896         else
5897           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5898         if (!V) {
5899           PN->deleteValue();
5900           PhiConstExprBB->eraseFromParent();
5901           return error("Invalid phi record");
5902         }
5903 
5904         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5905           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5906           PhiConstExprBB = nullptr;
5907         }
5908         PN->addIncoming(V, BB);
5909         Args.insert({BB, V});
5910       }
5911       I = PN;
5912       ResTypeID = TyID;
5913 
5914       // If there are an even number of records, the final record must be FMF.
5915       if (Record.size() % 2 == 0) {
5916         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5917         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5918         if (FMF.any())
5919           I->setFastMathFlags(FMF);
5920       }
5921 
5922       break;
5923     }
5924 
5925     case bitc::FUNC_CODE_INST_LANDINGPAD:
5926     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5927       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5928       unsigned Idx = 0;
5929       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5930         if (Record.size() < 3)
5931           return error("Invalid record");
5932       } else {
5933         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5934         if (Record.size() < 4)
5935           return error("Invalid record");
5936       }
5937       ResTypeID = Record[Idx++];
5938       Type *Ty = getTypeByID(ResTypeID);
5939       if (!Ty)
5940         return error("Invalid record");
5941       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5942         Value *PersFn = nullptr;
5943         unsigned PersFnTypeID;
5944         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5945                              nullptr))
5946           return error("Invalid record");
5947 
5948         if (!F->hasPersonalityFn())
5949           F->setPersonalityFn(cast<Constant>(PersFn));
5950         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5951           return error("Personality function mismatch");
5952       }
5953 
5954       bool IsCleanup = !!Record[Idx++];
5955       unsigned NumClauses = Record[Idx++];
5956       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5957       LP->setCleanup(IsCleanup);
5958       for (unsigned J = 0; J != NumClauses; ++J) {
5959         LandingPadInst::ClauseType CT =
5960           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5961         Value *Val;
5962         unsigned ValTypeID;
5963 
5964         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5965                              nullptr)) {
5966           delete LP;
5967           return error("Invalid record");
5968         }
5969 
5970         assert((CT != LandingPadInst::Catch ||
5971                 !isa<ArrayType>(Val->getType())) &&
5972                "Catch clause has a invalid type!");
5973         assert((CT != LandingPadInst::Filter ||
5974                 isa<ArrayType>(Val->getType())) &&
5975                "Filter clause has invalid type!");
5976         LP->addClause(cast<Constant>(Val));
5977       }
5978 
5979       I = LP;
5980       InstructionList.push_back(I);
5981       break;
5982     }
5983 
5984     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5985       if (Record.size() != 4 && Record.size() != 5)
5986         return error("Invalid record");
5987       using APV = AllocaPackedValues;
5988       const uint64_t Rec = Record[3];
5989       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5990       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5991       unsigned TyID = Record[0];
5992       Type *Ty = getTypeByID(TyID);
5993       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5994         TyID = getContainedTypeID(TyID);
5995         Ty = getTypeByID(TyID);
5996         if (!Ty)
5997           return error("Missing element type for old-style alloca");
5998       }
5999       unsigned OpTyID = Record[1];
6000       Type *OpTy = getTypeByID(OpTyID);
6001       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6002       MaybeAlign Align;
6003       uint64_t AlignExp =
6004           Bitfield::get<APV::AlignLower>(Rec) |
6005           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6006       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6007         return Err;
6008       }
6009       if (!Ty || !Size)
6010         return error("Invalid record");
6011 
6012       const DataLayout &DL = TheModule->getDataLayout();
6013       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6014 
6015       SmallPtrSet<Type *, 4> Visited;
6016       if (!Align && !Ty->isSized(&Visited))
6017         return error("alloca of unsized type");
6018       if (!Align)
6019         Align = DL.getPrefTypeAlign(Ty);
6020 
6021       if (!Size->getType()->isIntegerTy())
6022         return error("alloca element count must have integer type");
6023 
6024       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6025       AI->setUsedWithInAlloca(InAlloca);
6026       AI->setSwiftError(SwiftError);
6027       I = AI;
6028       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6029       InstructionList.push_back(I);
6030       break;
6031     }
6032     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6033       unsigned OpNum = 0;
6034       Value *Op;
6035       unsigned OpTypeID;
6036       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6037           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6038         return error("Invalid record");
6039 
6040       if (!isa<PointerType>(Op->getType()))
6041         return error("Load operand is not a pointer type");
6042 
6043       Type *Ty = nullptr;
6044       if (OpNum + 3 == Record.size()) {
6045         ResTypeID = Record[OpNum++];
6046         Ty = getTypeByID(ResTypeID);
6047       } else {
6048         ResTypeID = getContainedTypeID(OpTypeID);
6049         Ty = getTypeByID(ResTypeID);
6050       }
6051 
6052       if (!Ty)
6053         return error("Missing load type");
6054 
6055       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6056         return Err;
6057 
6058       MaybeAlign Align;
6059       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6060         return Err;
6061       SmallPtrSet<Type *, 4> Visited;
6062       if (!Align && !Ty->isSized(&Visited))
6063         return error("load of unsized type");
6064       if (!Align)
6065         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6066       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6067       InstructionList.push_back(I);
6068       break;
6069     }
6070     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6071        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6072       unsigned OpNum = 0;
6073       Value *Op;
6074       unsigned OpTypeID;
6075       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6076           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6077         return error("Invalid record");
6078 
6079       if (!isa<PointerType>(Op->getType()))
6080         return error("Load operand is not a pointer type");
6081 
6082       Type *Ty = nullptr;
6083       if (OpNum + 5 == Record.size()) {
6084         ResTypeID = Record[OpNum++];
6085         Ty = getTypeByID(ResTypeID);
6086       } else {
6087         ResTypeID = getContainedTypeID(OpTypeID);
6088         Ty = getTypeByID(ResTypeID);
6089       }
6090 
6091       if (!Ty)
6092         return error("Missing atomic load type");
6093 
6094       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6095         return Err;
6096 
6097       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6098       if (Ordering == AtomicOrdering::NotAtomic ||
6099           Ordering == AtomicOrdering::Release ||
6100           Ordering == AtomicOrdering::AcquireRelease)
6101         return error("Invalid record");
6102       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6103         return error("Invalid record");
6104       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6105 
6106       MaybeAlign Align;
6107       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6108         return Err;
6109       if (!Align)
6110         return error("Alignment missing from atomic load");
6111       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6112       InstructionList.push_back(I);
6113       break;
6114     }
6115     case bitc::FUNC_CODE_INST_STORE:
6116     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6117       unsigned OpNum = 0;
6118       Value *Val, *Ptr;
6119       unsigned PtrTypeID, ValTypeID;
6120       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6121         return error("Invalid record");
6122 
6123       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6124         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6125           return error("Invalid record");
6126       } else {
6127         ValTypeID = getContainedTypeID(PtrTypeID);
6128         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6129                      ValTypeID, Val, CurBB))
6130           return error("Invalid record");
6131       }
6132 
6133       if (OpNum + 2 != Record.size())
6134         return error("Invalid record");
6135 
6136       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6137         return Err;
6138       MaybeAlign Align;
6139       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6140         return Err;
6141       SmallPtrSet<Type *, 4> Visited;
6142       if (!Align && !Val->getType()->isSized(&Visited))
6143         return error("store of unsized type");
6144       if (!Align)
6145         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6146       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6147       InstructionList.push_back(I);
6148       break;
6149     }
6150     case bitc::FUNC_CODE_INST_STOREATOMIC:
6151     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6152       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6153       unsigned OpNum = 0;
6154       Value *Val, *Ptr;
6155       unsigned PtrTypeID, ValTypeID;
6156       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6157           !isa<PointerType>(Ptr->getType()))
6158         return error("Invalid record");
6159       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6160         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6161           return error("Invalid record");
6162       } else {
6163         ValTypeID = getContainedTypeID(PtrTypeID);
6164         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6165                      ValTypeID, Val, CurBB))
6166           return error("Invalid record");
6167       }
6168 
6169       if (OpNum + 4 != Record.size())
6170         return error("Invalid record");
6171 
6172       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6173         return Err;
6174       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6175       if (Ordering == AtomicOrdering::NotAtomic ||
6176           Ordering == AtomicOrdering::Acquire ||
6177           Ordering == AtomicOrdering::AcquireRelease)
6178         return error("Invalid record");
6179       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6180       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6181         return error("Invalid record");
6182 
6183       MaybeAlign Align;
6184       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6185         return Err;
6186       if (!Align)
6187         return error("Alignment missing from atomic store");
6188       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6189       InstructionList.push_back(I);
6190       break;
6191     }
6192     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6193       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6194       // failure_ordering?, weak?]
6195       const size_t NumRecords = Record.size();
6196       unsigned OpNum = 0;
6197       Value *Ptr = nullptr;
6198       unsigned PtrTypeID;
6199       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6200         return error("Invalid record");
6201 
6202       if (!isa<PointerType>(Ptr->getType()))
6203         return error("Cmpxchg operand is not a pointer type");
6204 
6205       Value *Cmp = nullptr;
6206       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6207       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6208                    CmpTypeID, Cmp, CurBB))
6209         return error("Invalid record");
6210 
6211       Value *New = nullptr;
6212       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6213                    New, CurBB) ||
6214           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6215         return error("Invalid record");
6216 
6217       const AtomicOrdering SuccessOrdering =
6218           getDecodedOrdering(Record[OpNum + 1]);
6219       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6220           SuccessOrdering == AtomicOrdering::Unordered)
6221         return error("Invalid record");
6222 
6223       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6224 
6225       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6226         return Err;
6227 
6228       const AtomicOrdering FailureOrdering =
6229           NumRecords < 7
6230               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6231               : getDecodedOrdering(Record[OpNum + 3]);
6232 
6233       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6234           FailureOrdering == AtomicOrdering::Unordered)
6235         return error("Invalid record");
6236 
6237       const Align Alignment(
6238           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6239 
6240       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6241                                 FailureOrdering, SSID);
6242       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6243 
6244       if (NumRecords < 8) {
6245         // Before weak cmpxchgs existed, the instruction simply returned the
6246         // value loaded from memory, so bitcode files from that era will be
6247         // expecting the first component of a modern cmpxchg.
6248         I->insertInto(CurBB, CurBB->end());
6249         I = ExtractValueInst::Create(I, 0);
6250         ResTypeID = CmpTypeID;
6251       } else {
6252         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6253         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6254         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6255       }
6256 
6257       InstructionList.push_back(I);
6258       break;
6259     }
6260     case bitc::FUNC_CODE_INST_CMPXCHG: {
6261       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6262       // failure_ordering, weak, align?]
6263       const size_t NumRecords = Record.size();
6264       unsigned OpNum = 0;
6265       Value *Ptr = nullptr;
6266       unsigned PtrTypeID;
6267       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6268         return error("Invalid record");
6269 
6270       if (!isa<PointerType>(Ptr->getType()))
6271         return error("Cmpxchg operand is not a pointer type");
6272 
6273       Value *Cmp = nullptr;
6274       unsigned CmpTypeID;
6275       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6276         return error("Invalid record");
6277 
6278       Value *Val = nullptr;
6279       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6280                    CurBB))
6281         return error("Invalid record");
6282 
6283       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6284         return error("Invalid record");
6285 
6286       const bool IsVol = Record[OpNum];
6287 
6288       const AtomicOrdering SuccessOrdering =
6289           getDecodedOrdering(Record[OpNum + 1]);
6290       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6291         return error("Invalid cmpxchg success ordering");
6292 
6293       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6294 
6295       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6296         return Err;
6297 
6298       const AtomicOrdering FailureOrdering =
6299           getDecodedOrdering(Record[OpNum + 3]);
6300       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6301         return error("Invalid cmpxchg failure ordering");
6302 
6303       const bool IsWeak = Record[OpNum + 4];
6304 
6305       MaybeAlign Alignment;
6306 
6307       if (NumRecords == (OpNum + 6)) {
6308         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6309           return Err;
6310       }
6311       if (!Alignment)
6312         Alignment =
6313             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6314 
6315       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6316                                 FailureOrdering, SSID);
6317       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6318       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6319 
6320       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6321       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6322 
6323       InstructionList.push_back(I);
6324       break;
6325     }
6326     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6327     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6328       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6329       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6330       const size_t NumRecords = Record.size();
6331       unsigned OpNum = 0;
6332 
6333       Value *Ptr = nullptr;
6334       unsigned PtrTypeID;
6335       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6336         return error("Invalid record");
6337 
6338       if (!isa<PointerType>(Ptr->getType()))
6339         return error("Invalid record");
6340 
6341       Value *Val = nullptr;
6342       unsigned ValTypeID = InvalidTypeID;
6343       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6344         ValTypeID = getContainedTypeID(PtrTypeID);
6345         if (popValue(Record, OpNum, NextValueNo,
6346                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6347           return error("Invalid record");
6348       } else {
6349         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6350           return error("Invalid record");
6351       }
6352 
6353       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6354         return error("Invalid record");
6355 
6356       const AtomicRMWInst::BinOp Operation =
6357           getDecodedRMWOperation(Record[OpNum]);
6358       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6359           Operation > AtomicRMWInst::LAST_BINOP)
6360         return error("Invalid record");
6361 
6362       const bool IsVol = Record[OpNum + 1];
6363 
6364       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6365       if (Ordering == AtomicOrdering::NotAtomic ||
6366           Ordering == AtomicOrdering::Unordered)
6367         return error("Invalid record");
6368 
6369       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6370 
6371       MaybeAlign Alignment;
6372 
6373       if (NumRecords == (OpNum + 5)) {
6374         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6375           return Err;
6376       }
6377 
6378       if (!Alignment)
6379         Alignment =
6380             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6381 
6382       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6383       ResTypeID = ValTypeID;
6384       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6385 
6386       InstructionList.push_back(I);
6387       break;
6388     }
6389     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6390       if (2 != Record.size())
6391         return error("Invalid record");
6392       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6393       if (Ordering == AtomicOrdering::NotAtomic ||
6394           Ordering == AtomicOrdering::Unordered ||
6395           Ordering == AtomicOrdering::Monotonic)
6396         return error("Invalid record");
6397       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6398       I = new FenceInst(Context, Ordering, SSID);
6399       InstructionList.push_back(I);
6400       break;
6401     }
6402     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6403       // DPLabels are placed after the Instructions that they are attached to.
6404       Instruction *Inst = getLastInstruction();
6405       if (!Inst)
6406         return error("Invalid dbg record: missing instruction");
6407       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6408       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6409       Inst->getParent()->insertDbgRecordBefore(
6410           new DPLabel(Label, DebugLoc(DIL)), Inst->getIterator());
6411       continue; // This isn't an instruction.
6412     }
6413     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6414     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6415     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6416     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6417       // DPValues are placed after the Instructions that they are attached to.
6418       Instruction *Inst = getLastInstruction();
6419       if (!Inst)
6420         return error("Invalid dbg record: missing instruction");
6421 
6422       // First 3 fields are common to all kinds:
6423       //   DILocation, DILocalVariable, DIExpression
6424       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6425       //   ..., LocationMetadata
6426       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6427       //   ..., Value
6428       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6429       //   ..., LocationMetadata
6430       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6431       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6432       unsigned Slot = 0;
6433       // Common fields (0-2).
6434       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6435       DILocalVariable *Var =
6436           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6437       DIExpression *Expr =
6438           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6439 
6440       // Union field (3: LocationMetadata | Value).
6441       Metadata *RawLocation = nullptr;
6442       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6443         Value *V = nullptr;
6444         unsigned TyID = 0;
6445         // We never expect to see a fwd reference value here because
6446         // use-before-defs are encoded with the standard non-abbrev record
6447         // type (they'd require encoding the type too, and they're rare). As a
6448         // result, getValueTypePair only ever increments Slot by one here (once
6449         // for the value, never twice for value and type).
6450         unsigned SlotBefore = Slot;
6451         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6452           return error("Invalid dbg record: invalid value");
6453         (void)SlotBefore;
6454         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6455         RawLocation = ValueAsMetadata::get(V);
6456       } else {
6457         RawLocation = getFnMetadataByID(Record[Slot++]);
6458       }
6459 
6460       DPValue *DPV = nullptr;
6461       switch (BitCode) {
6462       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6463       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6464         DPV = new DPValue(RawLocation, Var, Expr, DIL,
6465                           DPValue::LocationType::Value);
6466         break;
6467       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6468         DPV = new DPValue(RawLocation, Var, Expr, DIL,
6469                           DPValue::LocationType::Declare);
6470         break;
6471       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6472         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6473         DIExpression *AddrExpr =
6474             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6475         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6476         DPV = new DPValue(RawLocation, Var, Expr, ID, Addr, AddrExpr, DIL);
6477         break;
6478       }
6479       default:
6480         llvm_unreachable("Unknown DPValue bitcode");
6481       }
6482       Inst->getParent()->insertDbgRecordBefore(DPV, Inst->getIterator());
6483       continue; // This isn't an instruction.
6484     }
6485     case bitc::FUNC_CODE_INST_CALL: {
6486       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6487       if (Record.size() < 3)
6488         return error("Invalid record");
6489 
6490       unsigned OpNum = 0;
6491       AttributeList PAL = getAttributes(Record[OpNum++]);
6492       unsigned CCInfo = Record[OpNum++];
6493 
6494       FastMathFlags FMF;
6495       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6496         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6497         if (!FMF.any())
6498           return error("Fast math flags indicator set for call with no FMF");
6499       }
6500 
6501       unsigned FTyID = InvalidTypeID;
6502       FunctionType *FTy = nullptr;
6503       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6504         FTyID = Record[OpNum++];
6505         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6506         if (!FTy)
6507           return error("Explicit call type is not a function type");
6508       }
6509 
6510       Value *Callee;
6511       unsigned CalleeTypeID;
6512       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6513                            CurBB))
6514         return error("Invalid record");
6515 
6516       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6517       if (!OpTy)
6518         return error("Callee is not a pointer type");
6519       if (!FTy) {
6520         FTyID = getContainedTypeID(CalleeTypeID);
6521         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6522         if (!FTy)
6523           return error("Callee is not of pointer to function type");
6524       }
6525       if (Record.size() < FTy->getNumParams() + OpNum)
6526         return error("Insufficient operands to call");
6527 
6528       SmallVector<Value*, 16> Args;
6529       SmallVector<unsigned, 16> ArgTyIDs;
6530       // Read the fixed params.
6531       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6532         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6533         if (FTy->getParamType(i)->isLabelTy())
6534           Args.push_back(getBasicBlock(Record[OpNum]));
6535         else
6536           Args.push_back(getValue(Record, OpNum, NextValueNo,
6537                                   FTy->getParamType(i), ArgTyID, CurBB));
6538         ArgTyIDs.push_back(ArgTyID);
6539         if (!Args.back())
6540           return error("Invalid record");
6541       }
6542 
6543       // Read type/value pairs for varargs params.
6544       if (!FTy->isVarArg()) {
6545         if (OpNum != Record.size())
6546           return error("Invalid record");
6547       } else {
6548         while (OpNum != Record.size()) {
6549           Value *Op;
6550           unsigned OpTypeID;
6551           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6552             return error("Invalid record");
6553           Args.push_back(Op);
6554           ArgTyIDs.push_back(OpTypeID);
6555         }
6556       }
6557 
6558       // Upgrade the bundles if needed.
6559       if (!OperandBundles.empty())
6560         UpgradeOperandBundles(OperandBundles);
6561 
6562       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6563       ResTypeID = getContainedTypeID(FTyID);
6564       OperandBundles.clear();
6565       InstructionList.push_back(I);
6566       cast<CallInst>(I)->setCallingConv(
6567           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6568       CallInst::TailCallKind TCK = CallInst::TCK_None;
6569       if (CCInfo & (1 << bitc::CALL_TAIL))
6570         TCK = CallInst::TCK_Tail;
6571       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6572         TCK = CallInst::TCK_MustTail;
6573       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6574         TCK = CallInst::TCK_NoTail;
6575       cast<CallInst>(I)->setTailCallKind(TCK);
6576       cast<CallInst>(I)->setAttributes(PAL);
6577       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6578         I->deleteValue();
6579         return Err;
6580       }
6581       if (FMF.any()) {
6582         if (!isa<FPMathOperator>(I))
6583           return error("Fast-math-flags specified for call without "
6584                        "floating-point scalar or vector return type");
6585         I->setFastMathFlags(FMF);
6586       }
6587       break;
6588     }
6589     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6590       if (Record.size() < 3)
6591         return error("Invalid record");
6592       unsigned OpTyID = Record[0];
6593       Type *OpTy = getTypeByID(OpTyID);
6594       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6595       ResTypeID = Record[2];
6596       Type *ResTy = getTypeByID(ResTypeID);
6597       if (!OpTy || !Op || !ResTy)
6598         return error("Invalid record");
6599       I = new VAArgInst(Op, ResTy);
6600       InstructionList.push_back(I);
6601       break;
6602     }
6603 
6604     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6605       // A call or an invoke can be optionally prefixed with some variable
6606       // number of operand bundle blocks.  These blocks are read into
6607       // OperandBundles and consumed at the next call or invoke instruction.
6608 
6609       if (Record.empty() || Record[0] >= BundleTags.size())
6610         return error("Invalid record");
6611 
6612       std::vector<Value *> Inputs;
6613 
6614       unsigned OpNum = 1;
6615       while (OpNum != Record.size()) {
6616         Value *Op;
6617         unsigned OpTypeID;
6618         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6619           return error("Invalid record");
6620         Inputs.push_back(Op);
6621       }
6622 
6623       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6624       continue;
6625     }
6626 
6627     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6628       unsigned OpNum = 0;
6629       Value *Op = nullptr;
6630       unsigned OpTypeID;
6631       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6632         return error("Invalid record");
6633       if (OpNum != Record.size())
6634         return error("Invalid record");
6635 
6636       I = new FreezeInst(Op);
6637       ResTypeID = OpTypeID;
6638       InstructionList.push_back(I);
6639       break;
6640     }
6641     }
6642 
6643     // Add instruction to end of current BB.  If there is no current BB, reject
6644     // this file.
6645     if (!CurBB) {
6646       I->deleteValue();
6647       return error("Invalid instruction with no BB");
6648     }
6649     if (!OperandBundles.empty()) {
6650       I->deleteValue();
6651       return error("Operand bundles found with no consumer");
6652     }
6653     I->insertInto(CurBB, CurBB->end());
6654 
6655     // If this was a terminator instruction, move to the next block.
6656     if (I->isTerminator()) {
6657       ++CurBBNo;
6658       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6659     }
6660 
6661     // Non-void values get registered in the value table for future use.
6662     if (!I->getType()->isVoidTy()) {
6663       assert(I->getType() == getTypeByID(ResTypeID) &&
6664              "Incorrect result type ID");
6665       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6666         return Err;
6667     }
6668   }
6669 
6670 OutOfRecordLoop:
6671 
6672   if (!OperandBundles.empty())
6673     return error("Operand bundles found with no consumer");
6674 
6675   // Check the function list for unresolved values.
6676   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6677     if (!A->getParent()) {
6678       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6679       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6680         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6681           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6682           delete A;
6683         }
6684       }
6685       return error("Never resolved value found in function");
6686     }
6687   }
6688 
6689   // Unexpected unresolved metadata about to be dropped.
6690   if (MDLoader->hasFwdRefs())
6691     return error("Invalid function metadata: outgoing forward refs");
6692 
6693   if (PhiConstExprBB)
6694     PhiConstExprBB->eraseFromParent();
6695 
6696   for (const auto &Pair : ConstExprEdgeBBs) {
6697     BasicBlock *From = Pair.first.first;
6698     BasicBlock *To = Pair.first.second;
6699     BasicBlock *EdgeBB = Pair.second;
6700     BranchInst::Create(To, EdgeBB);
6701     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6702     To->replacePhiUsesWith(From, EdgeBB);
6703     EdgeBB->moveBefore(To);
6704   }
6705 
6706   // Trim the value list down to the size it was before we parsed this function.
6707   ValueList.shrinkTo(ModuleValueListSize);
6708   MDLoader->shrinkTo(ModuleMDLoaderSize);
6709   std::vector<BasicBlock*>().swap(FunctionBBs);
6710   return Error::success();
6711 }
6712 
6713 /// Find the function body in the bitcode stream
6714 Error BitcodeReader::findFunctionInStream(
6715     Function *F,
6716     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6717   while (DeferredFunctionInfoIterator->second == 0) {
6718     // This is the fallback handling for the old format bitcode that
6719     // didn't contain the function index in the VST, or when we have
6720     // an anonymous function which would not have a VST entry.
6721     // Assert that we have one of those two cases.
6722     assert(VSTOffset == 0 || !F->hasName());
6723     // Parse the next body in the stream and set its position in the
6724     // DeferredFunctionInfo map.
6725     if (Error Err = rememberAndSkipFunctionBodies())
6726       return Err;
6727   }
6728   return Error::success();
6729 }
6730 
6731 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6732   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6733     return SyncScope::ID(Val);
6734   if (Val >= SSIDs.size())
6735     return SyncScope::System; // Map unknown synchronization scopes to system.
6736   return SSIDs[Val];
6737 }
6738 
6739 //===----------------------------------------------------------------------===//
6740 // GVMaterializer implementation
6741 //===----------------------------------------------------------------------===//
6742 
6743 Error BitcodeReader::materialize(GlobalValue *GV) {
6744   Function *F = dyn_cast<Function>(GV);
6745   // If it's not a function or is already material, ignore the request.
6746   if (!F || !F->isMaterializable())
6747     return Error::success();
6748 
6749   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6750   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6751   // If its position is recorded as 0, its body is somewhere in the stream
6752   // but we haven't seen it yet.
6753   if (DFII->second == 0)
6754     if (Error Err = findFunctionInStream(F, DFII))
6755       return Err;
6756 
6757   // Materialize metadata before parsing any function bodies.
6758   if (Error Err = materializeMetadata())
6759     return Err;
6760 
6761   // Move the bit stream to the saved position of the deferred function body.
6762   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6763     return JumpFailed;
6764 
6765   // Set the debug info mode to "new", forcing a mismatch between
6766   // module and function debug modes. This is okay because we'll convert
6767   // everything back to the old mode after parsing.
6768   // FIXME: Remove this once all tools support RemoveDIs.
6769   F->IsNewDbgInfoFormat = true;
6770 
6771   if (Error Err = parseFunctionBody(F))
6772     return Err;
6773   F->setIsMaterializable(false);
6774 
6775   // Convert new debug info records into intrinsics.
6776   // FIXME: Remove this once all tools support RemoveDIs.
6777   F->convertFromNewDbgValues();
6778 
6779   if (StripDebugInfo)
6780     stripDebugInfo(*F);
6781 
6782   // Upgrade any old intrinsic calls in the function.
6783   for (auto &I : UpgradedIntrinsics) {
6784     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6785       if (CallInst *CI = dyn_cast<CallInst>(U))
6786         UpgradeIntrinsicCall(CI, I.second);
6787   }
6788 
6789   // Finish fn->subprogram upgrade for materialized functions.
6790   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6791     F->setSubprogram(SP);
6792 
6793   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6794   if (!MDLoader->isStrippingTBAA()) {
6795     for (auto &I : instructions(F)) {
6796       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6797       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6798         continue;
6799       MDLoader->setStripTBAA(true);
6800       stripTBAA(F->getParent());
6801     }
6802   }
6803 
6804   for (auto &I : instructions(F)) {
6805     // "Upgrade" older incorrect branch weights by dropping them.
6806     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6807       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6808         MDString *MDS = cast<MDString>(MD->getOperand(0));
6809         StringRef ProfName = MDS->getString();
6810         // Check consistency of !prof branch_weights metadata.
6811         if (!ProfName.equals("branch_weights"))
6812           continue;
6813         unsigned ExpectedNumOperands = 0;
6814         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6815           ExpectedNumOperands = BI->getNumSuccessors();
6816         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6817           ExpectedNumOperands = SI->getNumSuccessors();
6818         else if (isa<CallInst>(&I))
6819           ExpectedNumOperands = 1;
6820         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6821           ExpectedNumOperands = IBI->getNumDestinations();
6822         else if (isa<SelectInst>(&I))
6823           ExpectedNumOperands = 2;
6824         else
6825           continue; // ignore and continue.
6826 
6827         // If branch weight doesn't match, just strip branch weight.
6828         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6829           I.setMetadata(LLVMContext::MD_prof, nullptr);
6830       }
6831     }
6832 
6833     // Remove incompatible attributes on function calls.
6834     if (auto *CI = dyn_cast<CallBase>(&I)) {
6835       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6836           CI->getFunctionType()->getReturnType()));
6837 
6838       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6839         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6840                                         CI->getArgOperand(ArgNo)->getType()));
6841     }
6842   }
6843 
6844   // Look for functions that rely on old function attribute behavior.
6845   UpgradeFunctionAttributes(*F);
6846 
6847   // Bring in any functions that this function forward-referenced via
6848   // blockaddresses.
6849   return materializeForwardReferencedFunctions();
6850 }
6851 
6852 Error BitcodeReader::materializeModule() {
6853   if (Error Err = materializeMetadata())
6854     return Err;
6855 
6856   // Promise to materialize all forward references.
6857   WillMaterializeAllForwardRefs = true;
6858 
6859   // Iterate over the module, deserializing any functions that are still on
6860   // disk.
6861   for (Function &F : *TheModule) {
6862     if (Error Err = materialize(&F))
6863       return Err;
6864   }
6865   // At this point, if there are any function bodies, parse the rest of
6866   // the bits in the module past the last function block we have recorded
6867   // through either lazy scanning or the VST.
6868   if (LastFunctionBlockBit || NextUnreadBit)
6869     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6870                                     ? LastFunctionBlockBit
6871                                     : NextUnreadBit))
6872       return Err;
6873 
6874   // Check that all block address forward references got resolved (as we
6875   // promised above).
6876   if (!BasicBlockFwdRefs.empty())
6877     return error("Never resolved function from blockaddress");
6878 
6879   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6880   // delete the old functions to clean up. We can't do this unless the entire
6881   // module is materialized because there could always be another function body
6882   // with calls to the old function.
6883   for (auto &I : UpgradedIntrinsics) {
6884     for (auto *U : I.first->users()) {
6885       if (CallInst *CI = dyn_cast<CallInst>(U))
6886         UpgradeIntrinsicCall(CI, I.second);
6887     }
6888     if (!I.first->use_empty())
6889       I.first->replaceAllUsesWith(I.second);
6890     I.first->eraseFromParent();
6891   }
6892   UpgradedIntrinsics.clear();
6893 
6894   UpgradeDebugInfo(*TheModule);
6895 
6896   UpgradeModuleFlags(*TheModule);
6897 
6898   UpgradeARCRuntime(*TheModule);
6899 
6900   return Error::success();
6901 }
6902 
6903 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6904   return IdentifiedStructTypes;
6905 }
6906 
6907 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6908     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6909     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6910     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6911       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6912 
6913 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6914   TheIndex.addModule(ModulePath);
6915 }
6916 
6917 ModuleSummaryIndex::ModuleInfo *
6918 ModuleSummaryIndexBitcodeReader::getThisModule() {
6919   return TheIndex.getModule(ModulePath);
6920 }
6921 
6922 template <bool AllowNullValueInfo>
6923 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6924 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6925   auto VGI = ValueIdToValueInfoMap[ValueId];
6926   // We can have a null value info for memprof callsite info records in
6927   // distributed ThinLTO index files when the callee function summary is not
6928   // included in the index. The bitcode writer records 0 in that case,
6929   // and the caller of this helper will set AllowNullValueInfo to true.
6930   assert(AllowNullValueInfo || std::get<0>(VGI));
6931   return VGI;
6932 }
6933 
6934 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6935     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6936     StringRef SourceFileName) {
6937   std::string GlobalId =
6938       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6939   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6940   auto OriginalNameID = ValueGUID;
6941   if (GlobalValue::isLocalLinkage(Linkage))
6942     OriginalNameID = GlobalValue::getGUID(ValueName);
6943   if (PrintSummaryGUIDs)
6944     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6945            << ValueName << "\n";
6946 
6947   // UseStrtab is false for legacy summary formats and value names are
6948   // created on stack. In that case we save the name in a string saver in
6949   // the index so that the value name can be recorded.
6950   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6951       TheIndex.getOrInsertValueInfo(
6952           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6953       OriginalNameID, ValueGUID);
6954 }
6955 
6956 // Specialized value symbol table parser used when reading module index
6957 // blocks where we don't actually create global values. The parsed information
6958 // is saved in the bitcode reader for use when later parsing summaries.
6959 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6960     uint64_t Offset,
6961     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6962   // With a strtab the VST is not required to parse the summary.
6963   if (UseStrtab)
6964     return Error::success();
6965 
6966   assert(Offset > 0 && "Expected non-zero VST offset");
6967   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6968   if (!MaybeCurrentBit)
6969     return MaybeCurrentBit.takeError();
6970   uint64_t CurrentBit = MaybeCurrentBit.get();
6971 
6972   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6973     return Err;
6974 
6975   SmallVector<uint64_t, 64> Record;
6976 
6977   // Read all the records for this value table.
6978   SmallString<128> ValueName;
6979 
6980   while (true) {
6981     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6982     if (!MaybeEntry)
6983       return MaybeEntry.takeError();
6984     BitstreamEntry Entry = MaybeEntry.get();
6985 
6986     switch (Entry.Kind) {
6987     case BitstreamEntry::SubBlock: // Handled for us already.
6988     case BitstreamEntry::Error:
6989       return error("Malformed block");
6990     case BitstreamEntry::EndBlock:
6991       // Done parsing VST, jump back to wherever we came from.
6992       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6993         return JumpFailed;
6994       return Error::success();
6995     case BitstreamEntry::Record:
6996       // The interesting case.
6997       break;
6998     }
6999 
7000     // Read a record.
7001     Record.clear();
7002     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7003     if (!MaybeRecord)
7004       return MaybeRecord.takeError();
7005     switch (MaybeRecord.get()) {
7006     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7007       break;
7008     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7009       if (convertToString(Record, 1, ValueName))
7010         return error("Invalid record");
7011       unsigned ValueID = Record[0];
7012       assert(!SourceFileName.empty());
7013       auto VLI = ValueIdToLinkageMap.find(ValueID);
7014       assert(VLI != ValueIdToLinkageMap.end() &&
7015              "No linkage found for VST entry?");
7016       auto Linkage = VLI->second;
7017       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7018       ValueName.clear();
7019       break;
7020     }
7021     case bitc::VST_CODE_FNENTRY: {
7022       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7023       if (convertToString(Record, 2, ValueName))
7024         return error("Invalid record");
7025       unsigned ValueID = Record[0];
7026       assert(!SourceFileName.empty());
7027       auto VLI = ValueIdToLinkageMap.find(ValueID);
7028       assert(VLI != ValueIdToLinkageMap.end() &&
7029              "No linkage found for VST entry?");
7030       auto Linkage = VLI->second;
7031       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7032       ValueName.clear();
7033       break;
7034     }
7035     case bitc::VST_CODE_COMBINED_ENTRY: {
7036       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7037       unsigned ValueID = Record[0];
7038       GlobalValue::GUID RefGUID = Record[1];
7039       // The "original name", which is the second value of the pair will be
7040       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7041       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7042           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7043       break;
7044     }
7045     }
7046   }
7047 }
7048 
7049 // Parse just the blocks needed for building the index out of the module.
7050 // At the end of this routine the module Index is populated with a map
7051 // from global value id to GlobalValueSummary objects.
7052 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7053   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7054     return Err;
7055 
7056   SmallVector<uint64_t, 64> Record;
7057   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7058   unsigned ValueId = 0;
7059 
7060   // Read the index for this module.
7061   while (true) {
7062     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7063     if (!MaybeEntry)
7064       return MaybeEntry.takeError();
7065     llvm::BitstreamEntry Entry = MaybeEntry.get();
7066 
7067     switch (Entry.Kind) {
7068     case BitstreamEntry::Error:
7069       return error("Malformed block");
7070     case BitstreamEntry::EndBlock:
7071       return Error::success();
7072 
7073     case BitstreamEntry::SubBlock:
7074       switch (Entry.ID) {
7075       default: // Skip unknown content.
7076         if (Error Err = Stream.SkipBlock())
7077           return Err;
7078         break;
7079       case bitc::BLOCKINFO_BLOCK_ID:
7080         // Need to parse these to get abbrev ids (e.g. for VST)
7081         if (Error Err = readBlockInfo())
7082           return Err;
7083         break;
7084       case bitc::VALUE_SYMTAB_BLOCK_ID:
7085         // Should have been parsed earlier via VSTOffset, unless there
7086         // is no summary section.
7087         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7088                 !SeenGlobalValSummary) &&
7089                "Expected early VST parse via VSTOffset record");
7090         if (Error Err = Stream.SkipBlock())
7091           return Err;
7092         break;
7093       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7094       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7095         // Add the module if it is a per-module index (has a source file name).
7096         if (!SourceFileName.empty())
7097           addThisModule();
7098         assert(!SeenValueSymbolTable &&
7099                "Already read VST when parsing summary block?");
7100         // We might not have a VST if there were no values in the
7101         // summary. An empty summary block generated when we are
7102         // performing ThinLTO compiles so we don't later invoke
7103         // the regular LTO process on them.
7104         if (VSTOffset > 0) {
7105           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7106             return Err;
7107           SeenValueSymbolTable = true;
7108         }
7109         SeenGlobalValSummary = true;
7110         if (Error Err = parseEntireSummary(Entry.ID))
7111           return Err;
7112         break;
7113       case bitc::MODULE_STRTAB_BLOCK_ID:
7114         if (Error Err = parseModuleStringTable())
7115           return Err;
7116         break;
7117       }
7118       continue;
7119 
7120     case BitstreamEntry::Record: {
7121         Record.clear();
7122         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7123         if (!MaybeBitCode)
7124           return MaybeBitCode.takeError();
7125         switch (MaybeBitCode.get()) {
7126         default:
7127           break; // Default behavior, ignore unknown content.
7128         case bitc::MODULE_CODE_VERSION: {
7129           if (Error Err = parseVersionRecord(Record).takeError())
7130             return Err;
7131           break;
7132         }
7133         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7134         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7135           SmallString<128> ValueName;
7136           if (convertToString(Record, 0, ValueName))
7137             return error("Invalid record");
7138           SourceFileName = ValueName.c_str();
7139           break;
7140         }
7141         /// MODULE_CODE_HASH: [5*i32]
7142         case bitc::MODULE_CODE_HASH: {
7143           if (Record.size() != 5)
7144             return error("Invalid hash length " + Twine(Record.size()).str());
7145           auto &Hash = getThisModule()->second;
7146           int Pos = 0;
7147           for (auto &Val : Record) {
7148             assert(!(Val >> 32) && "Unexpected high bits set");
7149             Hash[Pos++] = Val;
7150           }
7151           break;
7152         }
7153         /// MODULE_CODE_VSTOFFSET: [offset]
7154         case bitc::MODULE_CODE_VSTOFFSET:
7155           if (Record.empty())
7156             return error("Invalid record");
7157           // Note that we subtract 1 here because the offset is relative to one
7158           // word before the start of the identification or module block, which
7159           // was historically always the start of the regular bitcode header.
7160           VSTOffset = Record[0] - 1;
7161           break;
7162         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7163         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7164         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7165         // v2: [strtab offset, strtab size, v1]
7166         case bitc::MODULE_CODE_GLOBALVAR:
7167         case bitc::MODULE_CODE_FUNCTION:
7168         case bitc::MODULE_CODE_ALIAS: {
7169           StringRef Name;
7170           ArrayRef<uint64_t> GVRecord;
7171           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7172           if (GVRecord.size() <= 3)
7173             return error("Invalid record");
7174           uint64_t RawLinkage = GVRecord[3];
7175           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7176           if (!UseStrtab) {
7177             ValueIdToLinkageMap[ValueId++] = Linkage;
7178             break;
7179           }
7180 
7181           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7182           break;
7183         }
7184         }
7185       }
7186       continue;
7187     }
7188   }
7189 }
7190 
7191 std::vector<ValueInfo>
7192 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7193   std::vector<ValueInfo> Ret;
7194   Ret.reserve(Record.size());
7195   for (uint64_t RefValueId : Record)
7196     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7197   return Ret;
7198 }
7199 
7200 std::vector<FunctionSummary::EdgeTy>
7201 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7202                                               bool IsOldProfileFormat,
7203                                               bool HasProfile, bool HasRelBF) {
7204   std::vector<FunctionSummary::EdgeTy> Ret;
7205   Ret.reserve(Record.size());
7206   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7207     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7208     bool HasTailCall = false;
7209     uint64_t RelBF = 0;
7210     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7211     if (IsOldProfileFormat) {
7212       I += 1; // Skip old callsitecount field
7213       if (HasProfile)
7214         I += 1; // Skip old profilecount field
7215     } else if (HasProfile)
7216       std::tie(Hotness, HasTailCall) =
7217           getDecodedHotnessCallEdgeInfo(Record[++I]);
7218     else if (HasRelBF)
7219       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7220     Ret.push_back(FunctionSummary::EdgeTy{
7221         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7222   }
7223   return Ret;
7224 }
7225 
7226 static void
7227 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7228                                        WholeProgramDevirtResolution &Wpd) {
7229   uint64_t ArgNum = Record[Slot++];
7230   WholeProgramDevirtResolution::ByArg &B =
7231       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7232   Slot += ArgNum;
7233 
7234   B.TheKind =
7235       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7236   B.Info = Record[Slot++];
7237   B.Byte = Record[Slot++];
7238   B.Bit = Record[Slot++];
7239 }
7240 
7241 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7242                                               StringRef Strtab, size_t &Slot,
7243                                               TypeIdSummary &TypeId) {
7244   uint64_t Id = Record[Slot++];
7245   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7246 
7247   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7248   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7249                         static_cast<size_t>(Record[Slot + 1])};
7250   Slot += 2;
7251 
7252   uint64_t ResByArgNum = Record[Slot++];
7253   for (uint64_t I = 0; I != ResByArgNum; ++I)
7254     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7255 }
7256 
7257 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7258                                      StringRef Strtab,
7259                                      ModuleSummaryIndex &TheIndex) {
7260   size_t Slot = 0;
7261   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7262       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7263   Slot += 2;
7264 
7265   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7266   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7267   TypeId.TTRes.AlignLog2 = Record[Slot++];
7268   TypeId.TTRes.SizeM1 = Record[Slot++];
7269   TypeId.TTRes.BitMask = Record[Slot++];
7270   TypeId.TTRes.InlineBits = Record[Slot++];
7271 
7272   while (Slot < Record.size())
7273     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7274 }
7275 
7276 std::vector<FunctionSummary::ParamAccess>
7277 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7278   auto ReadRange = [&]() {
7279     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7280                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7281     Record = Record.drop_front();
7282     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7283                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7284     Record = Record.drop_front();
7285     ConstantRange Range{Lower, Upper};
7286     assert(!Range.isFullSet());
7287     assert(!Range.isUpperSignWrapped());
7288     return Range;
7289   };
7290 
7291   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7292   while (!Record.empty()) {
7293     PendingParamAccesses.emplace_back();
7294     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7295     ParamAccess.ParamNo = Record.front();
7296     Record = Record.drop_front();
7297     ParamAccess.Use = ReadRange();
7298     ParamAccess.Calls.resize(Record.front());
7299     Record = Record.drop_front();
7300     for (auto &Call : ParamAccess.Calls) {
7301       Call.ParamNo = Record.front();
7302       Record = Record.drop_front();
7303       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7304       Record = Record.drop_front();
7305       Call.Offsets = ReadRange();
7306     }
7307   }
7308   return PendingParamAccesses;
7309 }
7310 
7311 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7312     ArrayRef<uint64_t> Record, size_t &Slot,
7313     TypeIdCompatibleVtableInfo &TypeId) {
7314   uint64_t Offset = Record[Slot++];
7315   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7316   TypeId.push_back({Offset, Callee});
7317 }
7318 
7319 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7320     ArrayRef<uint64_t> Record) {
7321   size_t Slot = 0;
7322   TypeIdCompatibleVtableInfo &TypeId =
7323       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7324           {Strtab.data() + Record[Slot],
7325            static_cast<size_t>(Record[Slot + 1])});
7326   Slot += 2;
7327 
7328   while (Slot < Record.size())
7329     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7330 }
7331 
7332 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7333                            unsigned WOCnt) {
7334   // Readonly and writeonly refs are in the end of the refs list.
7335   assert(ROCnt + WOCnt <= Refs.size());
7336   unsigned FirstWORef = Refs.size() - WOCnt;
7337   unsigned RefNo = FirstWORef - ROCnt;
7338   for (; RefNo < FirstWORef; ++RefNo)
7339     Refs[RefNo].setReadOnly();
7340   for (; RefNo < Refs.size(); ++RefNo)
7341     Refs[RefNo].setWriteOnly();
7342 }
7343 
7344 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7345 // objects in the index.
7346 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7347   if (Error Err = Stream.EnterSubBlock(ID))
7348     return Err;
7349   SmallVector<uint64_t, 64> Record;
7350 
7351   // Parse version
7352   {
7353     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7354     if (!MaybeEntry)
7355       return MaybeEntry.takeError();
7356     BitstreamEntry Entry = MaybeEntry.get();
7357 
7358     if (Entry.Kind != BitstreamEntry::Record)
7359       return error("Invalid Summary Block: record for version expected");
7360     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7361     if (!MaybeRecord)
7362       return MaybeRecord.takeError();
7363     if (MaybeRecord.get() != bitc::FS_VERSION)
7364       return error("Invalid Summary Block: version expected");
7365   }
7366   const uint64_t Version = Record[0];
7367   const bool IsOldProfileFormat = Version == 1;
7368   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7369     return error("Invalid summary version " + Twine(Version) +
7370                  ". Version should be in the range [1-" +
7371                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7372                  "].");
7373   Record.clear();
7374 
7375   // Keep around the last seen summary to be used when we see an optional
7376   // "OriginalName" attachement.
7377   GlobalValueSummary *LastSeenSummary = nullptr;
7378   GlobalValue::GUID LastSeenGUID = 0;
7379 
7380   // We can expect to see any number of type ID information records before
7381   // each function summary records; these variables store the information
7382   // collected so far so that it can be used to create the summary object.
7383   std::vector<GlobalValue::GUID> PendingTypeTests;
7384   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7385       PendingTypeCheckedLoadVCalls;
7386   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7387       PendingTypeCheckedLoadConstVCalls;
7388   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7389 
7390   std::vector<CallsiteInfo> PendingCallsites;
7391   std::vector<AllocInfo> PendingAllocs;
7392 
7393   while (true) {
7394     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7395     if (!MaybeEntry)
7396       return MaybeEntry.takeError();
7397     BitstreamEntry Entry = MaybeEntry.get();
7398 
7399     switch (Entry.Kind) {
7400     case BitstreamEntry::SubBlock: // Handled for us already.
7401     case BitstreamEntry::Error:
7402       return error("Malformed block");
7403     case BitstreamEntry::EndBlock:
7404       return Error::success();
7405     case BitstreamEntry::Record:
7406       // The interesting case.
7407       break;
7408     }
7409 
7410     // Read a record. The record format depends on whether this
7411     // is a per-module index or a combined index file. In the per-module
7412     // case the records contain the associated value's ID for correlation
7413     // with VST entries. In the combined index the correlation is done
7414     // via the bitcode offset of the summary records (which were saved
7415     // in the combined index VST entries). The records also contain
7416     // information used for ThinLTO renaming and importing.
7417     Record.clear();
7418     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7419     if (!MaybeBitCode)
7420       return MaybeBitCode.takeError();
7421     switch (unsigned BitCode = MaybeBitCode.get()) {
7422     default: // Default behavior: ignore.
7423       break;
7424     case bitc::FS_FLAGS: {  // [flags]
7425       TheIndex.setFlags(Record[0]);
7426       break;
7427     }
7428     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7429       uint64_t ValueID = Record[0];
7430       GlobalValue::GUID RefGUID = Record[1];
7431       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7432           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7433       break;
7434     }
7435     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7436     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7437     //                numrefs x valueid, n x (valueid)]
7438     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7439     //                        numrefs x valueid,
7440     //                        n x (valueid, hotness+tailcall flags)]
7441     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7442     //                      numrefs x valueid,
7443     //                      n x (valueid, relblockfreq+tailcall)]
7444     case bitc::FS_PERMODULE:
7445     case bitc::FS_PERMODULE_RELBF:
7446     case bitc::FS_PERMODULE_PROFILE: {
7447       unsigned ValueID = Record[0];
7448       uint64_t RawFlags = Record[1];
7449       unsigned InstCount = Record[2];
7450       uint64_t RawFunFlags = 0;
7451       unsigned NumRefs = Record[3];
7452       unsigned NumRORefs = 0, NumWORefs = 0;
7453       int RefListStartIndex = 4;
7454       if (Version >= 4) {
7455         RawFunFlags = Record[3];
7456         NumRefs = Record[4];
7457         RefListStartIndex = 5;
7458         if (Version >= 5) {
7459           NumRORefs = Record[5];
7460           RefListStartIndex = 6;
7461           if (Version >= 7) {
7462             NumWORefs = Record[6];
7463             RefListStartIndex = 7;
7464           }
7465         }
7466       }
7467 
7468       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7469       // The module path string ref set in the summary must be owned by the
7470       // index's module string table. Since we don't have a module path
7471       // string table section in the per-module index, we create a single
7472       // module path string table entry with an empty (0) ID to take
7473       // ownership.
7474       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7475       assert(Record.size() >= RefListStartIndex + NumRefs &&
7476              "Record size inconsistent with number of references");
7477       std::vector<ValueInfo> Refs = makeRefList(
7478           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7479       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7480       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7481       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7482           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7483           IsOldProfileFormat, HasProfile, HasRelBF);
7484       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7485       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7486       // In order to save memory, only record the memprof summaries if this is
7487       // the prevailing copy of a symbol. The linker doesn't resolve local
7488       // linkage values so don't check whether those are prevailing.
7489       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7490       if (IsPrevailing &&
7491           !GlobalValue::isLocalLinkage(LT) &&
7492           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7493         PendingCallsites.clear();
7494         PendingAllocs.clear();
7495       }
7496       auto FS = std::make_unique<FunctionSummary>(
7497           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7498           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7499           std::move(PendingTypeTestAssumeVCalls),
7500           std::move(PendingTypeCheckedLoadVCalls),
7501           std::move(PendingTypeTestAssumeConstVCalls),
7502           std::move(PendingTypeCheckedLoadConstVCalls),
7503           std::move(PendingParamAccesses), std::move(PendingCallsites),
7504           std::move(PendingAllocs));
7505       FS->setModulePath(getThisModule()->first());
7506       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7507       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7508                                      std::move(FS));
7509       break;
7510     }
7511     // FS_ALIAS: [valueid, flags, valueid]
7512     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7513     // they expect all aliasee summaries to be available.
7514     case bitc::FS_ALIAS: {
7515       unsigned ValueID = Record[0];
7516       uint64_t RawFlags = Record[1];
7517       unsigned AliaseeID = Record[2];
7518       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7519       auto AS = std::make_unique<AliasSummary>(Flags);
7520       // The module path string ref set in the summary must be owned by the
7521       // index's module string table. Since we don't have a module path
7522       // string table section in the per-module index, we create a single
7523       // module path string table entry with an empty (0) ID to take
7524       // ownership.
7525       AS->setModulePath(getThisModule()->first());
7526 
7527       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7528       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7529       if (!AliaseeInModule)
7530         return error("Alias expects aliasee summary to be parsed");
7531       AS->setAliasee(AliaseeVI, AliaseeInModule);
7532 
7533       auto GUID = getValueInfoFromValueId(ValueID);
7534       AS->setOriginalName(std::get<1>(GUID));
7535       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7536       break;
7537     }
7538     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7539     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7540       unsigned ValueID = Record[0];
7541       uint64_t RawFlags = Record[1];
7542       unsigned RefArrayStart = 2;
7543       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7544                                       /* WriteOnly */ false,
7545                                       /* Constant */ false,
7546                                       GlobalObject::VCallVisibilityPublic);
7547       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7548       if (Version >= 5) {
7549         GVF = getDecodedGVarFlags(Record[2]);
7550         RefArrayStart = 3;
7551       }
7552       std::vector<ValueInfo> Refs =
7553           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7554       auto FS =
7555           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7556       FS->setModulePath(getThisModule()->first());
7557       auto GUID = getValueInfoFromValueId(ValueID);
7558       FS->setOriginalName(std::get<1>(GUID));
7559       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7560       break;
7561     }
7562     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7563     //                        numrefs, numrefs x valueid,
7564     //                        n x (valueid, offset)]
7565     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7566       unsigned ValueID = Record[0];
7567       uint64_t RawFlags = Record[1];
7568       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7569       unsigned NumRefs = Record[3];
7570       unsigned RefListStartIndex = 4;
7571       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7572       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7573       std::vector<ValueInfo> Refs = makeRefList(
7574           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7575       VTableFuncList VTableFuncs;
7576       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7577         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7578         uint64_t Offset = Record[++I];
7579         VTableFuncs.push_back({Callee, Offset});
7580       }
7581       auto VS =
7582           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7583       VS->setModulePath(getThisModule()->first());
7584       VS->setVTableFuncs(VTableFuncs);
7585       auto GUID = getValueInfoFromValueId(ValueID);
7586       VS->setOriginalName(std::get<1>(GUID));
7587       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7588       break;
7589     }
7590     // FS_COMBINED is legacy and does not have support for the tail call flag.
7591     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7592     //               numrefs x valueid, n x (valueid)]
7593     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7594     //                       numrefs x valueid,
7595     //                       n x (valueid, hotness+tailcall flags)]
7596     case bitc::FS_COMBINED:
7597     case bitc::FS_COMBINED_PROFILE: {
7598       unsigned ValueID = Record[0];
7599       uint64_t ModuleId = Record[1];
7600       uint64_t RawFlags = Record[2];
7601       unsigned InstCount = Record[3];
7602       uint64_t RawFunFlags = 0;
7603       uint64_t EntryCount = 0;
7604       unsigned NumRefs = Record[4];
7605       unsigned NumRORefs = 0, NumWORefs = 0;
7606       int RefListStartIndex = 5;
7607 
7608       if (Version >= 4) {
7609         RawFunFlags = Record[4];
7610         RefListStartIndex = 6;
7611         size_t NumRefsIndex = 5;
7612         if (Version >= 5) {
7613           unsigned NumRORefsOffset = 1;
7614           RefListStartIndex = 7;
7615           if (Version >= 6) {
7616             NumRefsIndex = 6;
7617             EntryCount = Record[5];
7618             RefListStartIndex = 8;
7619             if (Version >= 7) {
7620               RefListStartIndex = 9;
7621               NumWORefs = Record[8];
7622               NumRORefsOffset = 2;
7623             }
7624           }
7625           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7626         }
7627         NumRefs = Record[NumRefsIndex];
7628       }
7629 
7630       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7631       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7632       assert(Record.size() >= RefListStartIndex + NumRefs &&
7633              "Record size inconsistent with number of references");
7634       std::vector<ValueInfo> Refs = makeRefList(
7635           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7636       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7637       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7638           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7639           IsOldProfileFormat, HasProfile, false);
7640       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7641       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7642       auto FS = std::make_unique<FunctionSummary>(
7643           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7644           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7645           std::move(PendingTypeTestAssumeVCalls),
7646           std::move(PendingTypeCheckedLoadVCalls),
7647           std::move(PendingTypeTestAssumeConstVCalls),
7648           std::move(PendingTypeCheckedLoadConstVCalls),
7649           std::move(PendingParamAccesses), std::move(PendingCallsites),
7650           std::move(PendingAllocs));
7651       LastSeenSummary = FS.get();
7652       LastSeenGUID = VI.getGUID();
7653       FS->setModulePath(ModuleIdMap[ModuleId]);
7654       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7655       break;
7656     }
7657     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7658     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7659     // they expect all aliasee summaries to be available.
7660     case bitc::FS_COMBINED_ALIAS: {
7661       unsigned ValueID = Record[0];
7662       uint64_t ModuleId = Record[1];
7663       uint64_t RawFlags = Record[2];
7664       unsigned AliaseeValueId = Record[3];
7665       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7666       auto AS = std::make_unique<AliasSummary>(Flags);
7667       LastSeenSummary = AS.get();
7668       AS->setModulePath(ModuleIdMap[ModuleId]);
7669 
7670       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7671       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7672       AS->setAliasee(AliaseeVI, AliaseeInModule);
7673 
7674       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7675       LastSeenGUID = VI.getGUID();
7676       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7677       break;
7678     }
7679     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7680     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7681       unsigned ValueID = Record[0];
7682       uint64_t ModuleId = Record[1];
7683       uint64_t RawFlags = Record[2];
7684       unsigned RefArrayStart = 3;
7685       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7686                                       /* WriteOnly */ false,
7687                                       /* Constant */ false,
7688                                       GlobalObject::VCallVisibilityPublic);
7689       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7690       if (Version >= 5) {
7691         GVF = getDecodedGVarFlags(Record[3]);
7692         RefArrayStart = 4;
7693       }
7694       std::vector<ValueInfo> Refs =
7695           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7696       auto FS =
7697           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7698       LastSeenSummary = FS.get();
7699       FS->setModulePath(ModuleIdMap[ModuleId]);
7700       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7701       LastSeenGUID = VI.getGUID();
7702       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7703       break;
7704     }
7705     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7706     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7707       uint64_t OriginalName = Record[0];
7708       if (!LastSeenSummary)
7709         return error("Name attachment that does not follow a combined record");
7710       LastSeenSummary->setOriginalName(OriginalName);
7711       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7712       // Reset the LastSeenSummary
7713       LastSeenSummary = nullptr;
7714       LastSeenGUID = 0;
7715       break;
7716     }
7717     case bitc::FS_TYPE_TESTS:
7718       assert(PendingTypeTests.empty());
7719       llvm::append_range(PendingTypeTests, Record);
7720       break;
7721 
7722     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7723       assert(PendingTypeTestAssumeVCalls.empty());
7724       for (unsigned I = 0; I != Record.size(); I += 2)
7725         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7726       break;
7727 
7728     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7729       assert(PendingTypeCheckedLoadVCalls.empty());
7730       for (unsigned I = 0; I != Record.size(); I += 2)
7731         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7732       break;
7733 
7734     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7735       PendingTypeTestAssumeConstVCalls.push_back(
7736           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7737       break;
7738 
7739     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7740       PendingTypeCheckedLoadConstVCalls.push_back(
7741           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7742       break;
7743 
7744     case bitc::FS_CFI_FUNCTION_DEFS: {
7745       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7746       for (unsigned I = 0; I != Record.size(); I += 2)
7747         CfiFunctionDefs.insert(
7748             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7749       break;
7750     }
7751 
7752     case bitc::FS_CFI_FUNCTION_DECLS: {
7753       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7754       for (unsigned I = 0; I != Record.size(); I += 2)
7755         CfiFunctionDecls.insert(
7756             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7757       break;
7758     }
7759 
7760     case bitc::FS_TYPE_ID:
7761       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7762       break;
7763 
7764     case bitc::FS_TYPE_ID_METADATA:
7765       parseTypeIdCompatibleVtableSummaryRecord(Record);
7766       break;
7767 
7768     case bitc::FS_BLOCK_COUNT:
7769       TheIndex.addBlockCount(Record[0]);
7770       break;
7771 
7772     case bitc::FS_PARAM_ACCESS: {
7773       PendingParamAccesses = parseParamAccesses(Record);
7774       break;
7775     }
7776 
7777     case bitc::FS_STACK_IDS: { // [n x stackid]
7778       // Save stack ids in the reader to consult when adding stack ids from the
7779       // lists in the stack node and alloc node entries.
7780       StackIds = ArrayRef<uint64_t>(Record);
7781       break;
7782     }
7783 
7784     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7785       unsigned ValueID = Record[0];
7786       SmallVector<unsigned> StackIdList;
7787       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7788         assert(*R < StackIds.size());
7789         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7790       }
7791       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7792       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7793       break;
7794     }
7795 
7796     case bitc::FS_COMBINED_CALLSITE_INFO: {
7797       auto RecordIter = Record.begin();
7798       unsigned ValueID = *RecordIter++;
7799       unsigned NumStackIds = *RecordIter++;
7800       unsigned NumVersions = *RecordIter++;
7801       assert(Record.size() == 3 + NumStackIds + NumVersions);
7802       SmallVector<unsigned> StackIdList;
7803       for (unsigned J = 0; J < NumStackIds; J++) {
7804         assert(*RecordIter < StackIds.size());
7805         StackIdList.push_back(
7806             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7807       }
7808       SmallVector<unsigned> Versions;
7809       for (unsigned J = 0; J < NumVersions; J++)
7810         Versions.push_back(*RecordIter++);
7811       ValueInfo VI = std::get<0>(
7812           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7813       PendingCallsites.push_back(
7814           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7815       break;
7816     }
7817 
7818     case bitc::FS_PERMODULE_ALLOC_INFO: {
7819       unsigned I = 0;
7820       std::vector<MIBInfo> MIBs;
7821       while (I < Record.size()) {
7822         assert(Record.size() - I >= 2);
7823         AllocationType AllocType = (AllocationType)Record[I++];
7824         unsigned NumStackEntries = Record[I++];
7825         assert(Record.size() - I >= NumStackEntries);
7826         SmallVector<unsigned> StackIdList;
7827         for (unsigned J = 0; J < NumStackEntries; J++) {
7828           assert(Record[I] < StackIds.size());
7829           StackIdList.push_back(
7830               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7831         }
7832         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7833       }
7834       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7835       break;
7836     }
7837 
7838     case bitc::FS_COMBINED_ALLOC_INFO: {
7839       unsigned I = 0;
7840       std::vector<MIBInfo> MIBs;
7841       unsigned NumMIBs = Record[I++];
7842       unsigned NumVersions = Record[I++];
7843       unsigned MIBsRead = 0;
7844       while (MIBsRead++ < NumMIBs) {
7845         assert(Record.size() - I >= 2);
7846         AllocationType AllocType = (AllocationType)Record[I++];
7847         unsigned NumStackEntries = Record[I++];
7848         assert(Record.size() - I >= NumStackEntries);
7849         SmallVector<unsigned> StackIdList;
7850         for (unsigned J = 0; J < NumStackEntries; J++) {
7851           assert(Record[I] < StackIds.size());
7852           StackIdList.push_back(
7853               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7854         }
7855         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7856       }
7857       assert(Record.size() - I >= NumVersions);
7858       SmallVector<uint8_t> Versions;
7859       for (unsigned J = 0; J < NumVersions; J++)
7860         Versions.push_back(Record[I++]);
7861       PendingAllocs.push_back(
7862           AllocInfo(std::move(Versions), std::move(MIBs)));
7863       break;
7864     }
7865     }
7866   }
7867   llvm_unreachable("Exit infinite loop");
7868 }
7869 
7870 // Parse the  module string table block into the Index.
7871 // This populates the ModulePathStringTable map in the index.
7872 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7873   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7874     return Err;
7875 
7876   SmallVector<uint64_t, 64> Record;
7877 
7878   SmallString<128> ModulePath;
7879   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7880 
7881   while (true) {
7882     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7883     if (!MaybeEntry)
7884       return MaybeEntry.takeError();
7885     BitstreamEntry Entry = MaybeEntry.get();
7886 
7887     switch (Entry.Kind) {
7888     case BitstreamEntry::SubBlock: // Handled for us already.
7889     case BitstreamEntry::Error:
7890       return error("Malformed block");
7891     case BitstreamEntry::EndBlock:
7892       return Error::success();
7893     case BitstreamEntry::Record:
7894       // The interesting case.
7895       break;
7896     }
7897 
7898     Record.clear();
7899     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7900     if (!MaybeRecord)
7901       return MaybeRecord.takeError();
7902     switch (MaybeRecord.get()) {
7903     default: // Default behavior: ignore.
7904       break;
7905     case bitc::MST_CODE_ENTRY: {
7906       // MST_ENTRY: [modid, namechar x N]
7907       uint64_t ModuleId = Record[0];
7908 
7909       if (convertToString(Record, 1, ModulePath))
7910         return error("Invalid record");
7911 
7912       LastSeenModule = TheIndex.addModule(ModulePath);
7913       ModuleIdMap[ModuleId] = LastSeenModule->first();
7914 
7915       ModulePath.clear();
7916       break;
7917     }
7918     /// MST_CODE_HASH: [5*i32]
7919     case bitc::MST_CODE_HASH: {
7920       if (Record.size() != 5)
7921         return error("Invalid hash length " + Twine(Record.size()).str());
7922       if (!LastSeenModule)
7923         return error("Invalid hash that does not follow a module path");
7924       int Pos = 0;
7925       for (auto &Val : Record) {
7926         assert(!(Val >> 32) && "Unexpected high bits set");
7927         LastSeenModule->second[Pos++] = Val;
7928       }
7929       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7930       LastSeenModule = nullptr;
7931       break;
7932     }
7933     }
7934   }
7935   llvm_unreachable("Exit infinite loop");
7936 }
7937 
7938 namespace {
7939 
7940 // FIXME: This class is only here to support the transition to llvm::Error. It
7941 // will be removed once this transition is complete. Clients should prefer to
7942 // deal with the Error value directly, rather than converting to error_code.
7943 class BitcodeErrorCategoryType : public std::error_category {
7944   const char *name() const noexcept override {
7945     return "llvm.bitcode";
7946   }
7947 
7948   std::string message(int IE) const override {
7949     BitcodeError E = static_cast<BitcodeError>(IE);
7950     switch (E) {
7951     case BitcodeError::CorruptedBitcode:
7952       return "Corrupted bitcode";
7953     }
7954     llvm_unreachable("Unknown error type!");
7955   }
7956 };
7957 
7958 } // end anonymous namespace
7959 
7960 const std::error_category &llvm::BitcodeErrorCategory() {
7961   static BitcodeErrorCategoryType ErrorCategory;
7962   return ErrorCategory;
7963 }
7964 
7965 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7966                                             unsigned Block, unsigned RecordID) {
7967   if (Error Err = Stream.EnterSubBlock(Block))
7968     return std::move(Err);
7969 
7970   StringRef Strtab;
7971   while (true) {
7972     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7973     if (!MaybeEntry)
7974       return MaybeEntry.takeError();
7975     llvm::BitstreamEntry Entry = MaybeEntry.get();
7976 
7977     switch (Entry.Kind) {
7978     case BitstreamEntry::EndBlock:
7979       return Strtab;
7980 
7981     case BitstreamEntry::Error:
7982       return error("Malformed block");
7983 
7984     case BitstreamEntry::SubBlock:
7985       if (Error Err = Stream.SkipBlock())
7986         return std::move(Err);
7987       break;
7988 
7989     case BitstreamEntry::Record:
7990       StringRef Blob;
7991       SmallVector<uint64_t, 1> Record;
7992       Expected<unsigned> MaybeRecord =
7993           Stream.readRecord(Entry.ID, Record, &Blob);
7994       if (!MaybeRecord)
7995         return MaybeRecord.takeError();
7996       if (MaybeRecord.get() == RecordID)
7997         Strtab = Blob;
7998       break;
7999     }
8000   }
8001 }
8002 
8003 //===----------------------------------------------------------------------===//
8004 // External interface
8005 //===----------------------------------------------------------------------===//
8006 
8007 Expected<std::vector<BitcodeModule>>
8008 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8009   auto FOrErr = getBitcodeFileContents(Buffer);
8010   if (!FOrErr)
8011     return FOrErr.takeError();
8012   return std::move(FOrErr->Mods);
8013 }
8014 
8015 Expected<BitcodeFileContents>
8016 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8017   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8018   if (!StreamOrErr)
8019     return StreamOrErr.takeError();
8020   BitstreamCursor &Stream = *StreamOrErr;
8021 
8022   BitcodeFileContents F;
8023   while (true) {
8024     uint64_t BCBegin = Stream.getCurrentByteNo();
8025 
8026     // We may be consuming bitcode from a client that leaves garbage at the end
8027     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8028     // the end that there cannot possibly be another module, stop looking.
8029     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8030       return F;
8031 
8032     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8033     if (!MaybeEntry)
8034       return MaybeEntry.takeError();
8035     llvm::BitstreamEntry Entry = MaybeEntry.get();
8036 
8037     switch (Entry.Kind) {
8038     case BitstreamEntry::EndBlock:
8039     case BitstreamEntry::Error:
8040       return error("Malformed block");
8041 
8042     case BitstreamEntry::SubBlock: {
8043       uint64_t IdentificationBit = -1ull;
8044       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8045         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8046         if (Error Err = Stream.SkipBlock())
8047           return std::move(Err);
8048 
8049         {
8050           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8051           if (!MaybeEntry)
8052             return MaybeEntry.takeError();
8053           Entry = MaybeEntry.get();
8054         }
8055 
8056         if (Entry.Kind != BitstreamEntry::SubBlock ||
8057             Entry.ID != bitc::MODULE_BLOCK_ID)
8058           return error("Malformed block");
8059       }
8060 
8061       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8062         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8063         if (Error Err = Stream.SkipBlock())
8064           return std::move(Err);
8065 
8066         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8067                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8068                           Buffer.getBufferIdentifier(), IdentificationBit,
8069                           ModuleBit});
8070         continue;
8071       }
8072 
8073       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8074         Expected<StringRef> Strtab =
8075             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8076         if (!Strtab)
8077           return Strtab.takeError();
8078         // This string table is used by every preceding bitcode module that does
8079         // not have its own string table. A bitcode file may have multiple
8080         // string tables if it was created by binary concatenation, for example
8081         // with "llvm-cat -b".
8082         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8083           if (!I.Strtab.empty())
8084             break;
8085           I.Strtab = *Strtab;
8086         }
8087         // Similarly, the string table is used by every preceding symbol table;
8088         // normally there will be just one unless the bitcode file was created
8089         // by binary concatenation.
8090         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8091           F.StrtabForSymtab = *Strtab;
8092         continue;
8093       }
8094 
8095       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8096         Expected<StringRef> SymtabOrErr =
8097             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8098         if (!SymtabOrErr)
8099           return SymtabOrErr.takeError();
8100 
8101         // We can expect the bitcode file to have multiple symbol tables if it
8102         // was created by binary concatenation. In that case we silently
8103         // ignore any subsequent symbol tables, which is fine because this is a
8104         // low level function. The client is expected to notice that the number
8105         // of modules in the symbol table does not match the number of modules
8106         // in the input file and regenerate the symbol table.
8107         if (F.Symtab.empty())
8108           F.Symtab = *SymtabOrErr;
8109         continue;
8110       }
8111 
8112       if (Error Err = Stream.SkipBlock())
8113         return std::move(Err);
8114       continue;
8115     }
8116     case BitstreamEntry::Record:
8117       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8118         return std::move(E);
8119       continue;
8120     }
8121   }
8122 }
8123 
8124 /// Get a lazy one-at-time loading module from bitcode.
8125 ///
8126 /// This isn't always used in a lazy context.  In particular, it's also used by
8127 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8128 /// in forward-referenced functions from block address references.
8129 ///
8130 /// \param[in] MaterializeAll Set to \c true if we should materialize
8131 /// everything.
8132 Expected<std::unique_ptr<Module>>
8133 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8134                              bool ShouldLazyLoadMetadata, bool IsImporting,
8135                              ParserCallbacks Callbacks) {
8136   BitstreamCursor Stream(Buffer);
8137 
8138   std::string ProducerIdentification;
8139   if (IdentificationBit != -1ull) {
8140     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8141       return std::move(JumpFailed);
8142     if (Error E =
8143             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8144       return std::move(E);
8145   }
8146 
8147   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8148     return std::move(JumpFailed);
8149   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8150                               Context);
8151 
8152   std::unique_ptr<Module> M =
8153       std::make_unique<Module>(ModuleIdentifier, Context);
8154   M->setMaterializer(R);
8155 
8156   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8157   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8158                                       IsImporting, Callbacks))
8159     return std::move(Err);
8160 
8161   if (MaterializeAll) {
8162     // Read in the entire module, and destroy the BitcodeReader.
8163     if (Error Err = M->materializeAll())
8164       return std::move(Err);
8165   } else {
8166     // Resolve forward references from blockaddresses.
8167     if (Error Err = R->materializeForwardReferencedFunctions())
8168       return std::move(Err);
8169   }
8170 
8171   return std::move(M);
8172 }
8173 
8174 Expected<std::unique_ptr<Module>>
8175 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8176                              bool IsImporting, ParserCallbacks Callbacks) {
8177   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8178                        Callbacks);
8179 }
8180 
8181 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8182 // We don't use ModuleIdentifier here because the client may need to control the
8183 // module path used in the combined summary (e.g. when reading summaries for
8184 // regular LTO modules).
8185 Error BitcodeModule::readSummary(
8186     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8187     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8188   BitstreamCursor Stream(Buffer);
8189   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8190     return JumpFailed;
8191 
8192   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8193                                     ModulePath, IsPrevailing);
8194   return R.parseModule();
8195 }
8196 
8197 // Parse the specified bitcode buffer, returning the function info index.
8198 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8199   BitstreamCursor Stream(Buffer);
8200   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8201     return std::move(JumpFailed);
8202 
8203   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8204   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8205                                     ModuleIdentifier, 0);
8206 
8207   if (Error Err = R.parseModule())
8208     return std::move(Err);
8209 
8210   return std::move(Index);
8211 }
8212 
8213 static Expected<std::pair<bool, bool>>
8214 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8215                                                  unsigned ID,
8216                                                  BitcodeLTOInfo &LTOInfo) {
8217   if (Error Err = Stream.EnterSubBlock(ID))
8218     return std::move(Err);
8219   SmallVector<uint64_t, 64> Record;
8220 
8221   while (true) {
8222     BitstreamEntry Entry;
8223     std::pair<bool, bool> Result = {false,false};
8224     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8225       return std::move(E);
8226 
8227     switch (Entry.Kind) {
8228     case BitstreamEntry::SubBlock: // Handled for us already.
8229     case BitstreamEntry::Error:
8230       return error("Malformed block");
8231     case BitstreamEntry::EndBlock: {
8232       // If no flags record found, set both flags to false.
8233       return Result;
8234     }
8235     case BitstreamEntry::Record:
8236       // The interesting case.
8237       break;
8238     }
8239 
8240     // Look for the FS_FLAGS record.
8241     Record.clear();
8242     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8243     if (!MaybeBitCode)
8244       return MaybeBitCode.takeError();
8245     switch (MaybeBitCode.get()) {
8246     default: // Default behavior: ignore.
8247       break;
8248     case bitc::FS_FLAGS: { // [flags]
8249       uint64_t Flags = Record[0];
8250       // Scan flags.
8251       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8252 
8253       bool EnableSplitLTOUnit = Flags & 0x8;
8254       bool UnifiedLTO = Flags & 0x200;
8255       Result = {EnableSplitLTOUnit, UnifiedLTO};
8256 
8257       return Result;
8258     }
8259     }
8260   }
8261   llvm_unreachable("Exit infinite loop");
8262 }
8263 
8264 // Check if the given bitcode buffer contains a global value summary block.
8265 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8266   BitstreamCursor Stream(Buffer);
8267   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8268     return std::move(JumpFailed);
8269 
8270   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8271     return std::move(Err);
8272 
8273   while (true) {
8274     llvm::BitstreamEntry Entry;
8275     if (Error E = Stream.advance().moveInto(Entry))
8276       return std::move(E);
8277 
8278     switch (Entry.Kind) {
8279     case BitstreamEntry::Error:
8280       return error("Malformed block");
8281     case BitstreamEntry::EndBlock:
8282       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8283                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8284 
8285     case BitstreamEntry::SubBlock:
8286       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8287         BitcodeLTOInfo LTOInfo;
8288         Expected<std::pair<bool, bool>> Flags =
8289             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8290         if (!Flags)
8291           return Flags.takeError();
8292         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8293         LTOInfo.IsThinLTO = true;
8294         LTOInfo.HasSummary = true;
8295         return LTOInfo;
8296       }
8297 
8298       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8299         BitcodeLTOInfo LTOInfo;
8300         Expected<std::pair<bool, bool>> Flags =
8301             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8302         if (!Flags)
8303           return Flags.takeError();
8304         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8305         LTOInfo.IsThinLTO = false;
8306         LTOInfo.HasSummary = true;
8307         return LTOInfo;
8308       }
8309 
8310       // Ignore other sub-blocks.
8311       if (Error Err = Stream.SkipBlock())
8312         return std::move(Err);
8313       continue;
8314 
8315     case BitstreamEntry::Record:
8316       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8317         continue;
8318       else
8319         return StreamFailed.takeError();
8320     }
8321   }
8322 }
8323 
8324 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8325   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8326   if (!MsOrErr)
8327     return MsOrErr.takeError();
8328 
8329   if (MsOrErr->size() != 1)
8330     return error("Expected a single module");
8331 
8332   return (*MsOrErr)[0];
8333 }
8334 
8335 Expected<std::unique_ptr<Module>>
8336 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8337                            bool ShouldLazyLoadMetadata, bool IsImporting,
8338                            ParserCallbacks Callbacks) {
8339   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8340   if (!BM)
8341     return BM.takeError();
8342 
8343   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8344                            Callbacks);
8345 }
8346 
8347 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8348     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8349     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8350   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8351                                      IsImporting, Callbacks);
8352   if (MOrErr)
8353     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8354   return MOrErr;
8355 }
8356 
8357 Expected<std::unique_ptr<Module>>
8358 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8359   return getModuleImpl(Context, true, false, false, Callbacks);
8360   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8361   // written.  We must defer until the Module has been fully materialized.
8362 }
8363 
8364 Expected<std::unique_ptr<Module>>
8365 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8366                        ParserCallbacks Callbacks) {
8367   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8368   if (!BM)
8369     return BM.takeError();
8370 
8371   return BM->parseModule(Context, Callbacks);
8372 }
8373 
8374 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8375   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8376   if (!StreamOrErr)
8377     return StreamOrErr.takeError();
8378 
8379   return readTriple(*StreamOrErr);
8380 }
8381 
8382 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8383   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8384   if (!StreamOrErr)
8385     return StreamOrErr.takeError();
8386 
8387   return hasObjCCategory(*StreamOrErr);
8388 }
8389 
8390 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8391   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8392   if (!StreamOrErr)
8393     return StreamOrErr.takeError();
8394 
8395   return readIdentificationCode(*StreamOrErr);
8396 }
8397 
8398 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8399                                    ModuleSummaryIndex &CombinedIndex) {
8400   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8401   if (!BM)
8402     return BM.takeError();
8403 
8404   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8405 }
8406 
8407 Expected<std::unique_ptr<ModuleSummaryIndex>>
8408 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8409   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8410   if (!BM)
8411     return BM.takeError();
8412 
8413   return BM->getSummary();
8414 }
8415 
8416 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8417   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8418   if (!BM)
8419     return BM.takeError();
8420 
8421   return BM->getLTOInfo();
8422 }
8423 
8424 Expected<std::unique_ptr<ModuleSummaryIndex>>
8425 llvm::getModuleSummaryIndexForFile(StringRef Path,
8426                                    bool IgnoreEmptyThinLTOIndexFile) {
8427   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8428       MemoryBuffer::getFileOrSTDIN(Path);
8429   if (!FileOrErr)
8430     return errorCodeToError(FileOrErr.getError());
8431   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8432     return nullptr;
8433   return getModuleSummaryIndex(**FileOrErr);
8434 }
8435