1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : 166 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 167 }; 168 } 169 170 171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 172 if (Idx == size()) { 173 push_back(V); 174 return; 175 } 176 177 if (Idx >= size()) 178 resize(Idx+1); 179 180 WeakVH &OldV = ValuePtrs[Idx]; 181 if (OldV == 0) { 182 OldV = V; 183 return; 184 } 185 186 // Handle constants and non-constants (e.g. instrs) differently for 187 // efficiency. 188 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 189 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 190 OldV = V; 191 } else { 192 // If there was a forward reference to this value, replace it. 193 Value *PrevVal = OldV; 194 OldV->replaceAllUsesWith(V); 195 delete PrevVal; 196 } 197 } 198 199 200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 201 const Type *Ty) { 202 if (Idx >= size()) 203 resize(Idx + 1); 204 205 if (Value *V = ValuePtrs[Idx]) { 206 assert(Ty == V->getType() && "Type mismatch in constant table!"); 207 return cast<Constant>(V); 208 } 209 210 // Create and return a placeholder, which will later be RAUW'd. 211 Constant *C = new ConstantPlaceHolder(Ty, Context); 212 ValuePtrs[Idx] = C; 213 return C; 214 } 215 216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 217 if (Idx >= size()) 218 resize(Idx + 1); 219 220 if (Value *V = ValuePtrs[Idx]) { 221 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 222 return V; 223 } 224 225 // No type specified, must be invalid reference. 226 if (Ty == 0) return 0; 227 228 // Create and return a placeholder, which will later be RAUW'd. 229 Value *V = new Argument(Ty); 230 ValuePtrs[Idx] = V; 231 return V; 232 } 233 234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 235 /// resolves any forward references. The idea behind this is that we sometimes 236 /// get constants (such as large arrays) which reference *many* forward ref 237 /// constants. Replacing each of these causes a lot of thrashing when 238 /// building/reuniquing the constant. Instead of doing this, we look at all the 239 /// uses and rewrite all the place holders at once for any constant that uses 240 /// a placeholder. 241 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 242 // Sort the values by-pointer so that they are efficient to look up with a 243 // binary search. 244 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 245 246 SmallVector<Constant*, 64> NewOps; 247 248 while (!ResolveConstants.empty()) { 249 Value *RealVal = operator[](ResolveConstants.back().second); 250 Constant *Placeholder = ResolveConstants.back().first; 251 ResolveConstants.pop_back(); 252 253 // Loop over all users of the placeholder, updating them to reference the 254 // new value. If they reference more than one placeholder, update them all 255 // at once. 256 while (!Placeholder->use_empty()) { 257 Value::use_iterator UI = Placeholder->use_begin(); 258 User *U = *UI; 259 260 // If the using object isn't uniqued, just update the operands. This 261 // handles instructions and initializers for global variables. 262 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 263 UI.getUse().set(RealVal); 264 continue; 265 } 266 267 // Otherwise, we have a constant that uses the placeholder. Replace that 268 // constant with a new constant that has *all* placeholder uses updated. 269 Constant *UserC = cast<Constant>(U); 270 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 271 I != E; ++I) { 272 Value *NewOp; 273 if (!isa<ConstantPlaceHolder>(*I)) { 274 // Not a placeholder reference. 275 NewOp = *I; 276 } else if (*I == Placeholder) { 277 // Common case is that it just references this one placeholder. 278 NewOp = RealVal; 279 } else { 280 // Otherwise, look up the placeholder in ResolveConstants. 281 ResolveConstantsTy::iterator It = 282 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 283 std::pair<Constant*, unsigned>(cast<Constant>(*I), 284 0)); 285 assert(It != ResolveConstants.end() && It->first == *I); 286 NewOp = operator[](It->second); 287 } 288 289 NewOps.push_back(cast<Constant>(NewOp)); 290 } 291 292 // Make the new constant. 293 Constant *NewC; 294 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 295 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 298 } else if (isa<ConstantVector>(UserC)) { 299 NewC = ConstantVector::get(NewOps); 300 } else { 301 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 302 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 303 } 304 305 UserC->replaceAllUsesWith(NewC); 306 UserC->destroyConstant(); 307 NewOps.clear(); 308 } 309 310 // Update all ValueHandles, they should be the only users at this point. 311 Placeholder->replaceAllUsesWith(RealVal); 312 delete Placeholder; 313 } 314 } 315 316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 317 if (Idx == size()) { 318 push_back(V); 319 return; 320 } 321 322 if (Idx >= size()) 323 resize(Idx+1); 324 325 WeakVH &OldV = MDValuePtrs[Idx]; 326 if (OldV == 0) { 327 OldV = V; 328 return; 329 } 330 331 // If there was a forward reference to this value, replace it. 332 MDNode *PrevVal = cast<MDNode>(OldV); 333 OldV->replaceAllUsesWith(V); 334 MDNode::deleteTemporary(PrevVal); 335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 336 // value for Idx. 337 MDValuePtrs[Idx] = V; 338 } 339 340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 341 if (Idx >= size()) 342 resize(Idx + 1); 343 344 if (Value *V = MDValuePtrs[Idx]) { 345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 346 return V; 347 } 348 349 // Create and return a placeholder, which will later be RAUW'd. 350 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); 351 MDValuePtrs[Idx] = V; 352 return V; 353 } 354 355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 356 // If the TypeID is in range, return it. 357 if (ID < TypeList.size()) 358 return TypeList[ID].get(); 359 if (!isTypeTable) return 0; 360 361 // The type table allows forward references. Push as many Opaque types as 362 // needed to get up to ID. 363 while (TypeList.size() <= ID) 364 TypeList.push_back(OpaqueType::get(Context)); 365 return TypeList.back().get(); 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Functions for parsing blocks from the bitcode file 370 //===----------------------------------------------------------------------===// 371 372 bool BitcodeReader::ParseAttributeBlock() { 373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!MAttributes.empty()) 377 return Error("Multiple PARAMATTR blocks found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 381 SmallVector<AttributeWithIndex, 8> Attrs; 382 383 // Read all the records. 384 while (1) { 385 unsigned Code = Stream.ReadCode(); 386 if (Code == bitc::END_BLOCK) { 387 if (Stream.ReadBlockEnd()) 388 return Error("Error at end of PARAMATTR block"); 389 return false; 390 } 391 392 if (Code == bitc::ENTER_SUBBLOCK) { 393 // No known subblocks, always skip them. 394 Stream.ReadSubBlockID(); 395 if (Stream.SkipBlock()) 396 return Error("Malformed block record"); 397 continue; 398 } 399 400 if (Code == bitc::DEFINE_ABBREV) { 401 Stream.ReadAbbrevRecord(); 402 continue; 403 } 404 405 // Read a record. 406 Record.clear(); 407 switch (Stream.ReadRecord(Code, Record)) { 408 default: // Default behavior: ignore. 409 break; 410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 411 if (Record.size() & 1) 412 return Error("Invalid ENTRY record"); 413 414 // FIXME : Remove this autoupgrade code in LLVM 3.0. 415 // If Function attributes are using index 0 then transfer them 416 // to index ~0. Index 0 is used for return value attributes but used to be 417 // used for function attributes. 418 Attributes RetAttribute = Attribute::None; 419 Attributes FnAttribute = Attribute::None; 420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 421 // FIXME: remove in LLVM 3.0 422 // The alignment is stored as a 16-bit raw value from bits 31--16. 423 // We shift the bits above 31 down by 11 bits. 424 425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 426 if (Alignment && !isPowerOf2_32(Alignment)) 427 return Error("Alignment is not a power of two."); 428 429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 430 if (Alignment) 431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 433 Record[i+1] = ReconstitutedAttr; 434 435 if (Record[i] == 0) 436 RetAttribute = Record[i+1]; 437 else if (Record[i] == ~0U) 438 FnAttribute = Record[i+1]; 439 } 440 441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 442 Attribute::ReadOnly|Attribute::ReadNone); 443 444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 445 (RetAttribute & OldRetAttrs) != 0) { 446 if (FnAttribute == Attribute::None) { // add a slot so they get added. 447 Record.push_back(~0U); 448 Record.push_back(0); 449 } 450 451 FnAttribute |= RetAttribute & OldRetAttrs; 452 RetAttribute &= ~OldRetAttrs; 453 } 454 455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 456 if (Record[i] == 0) { 457 if (RetAttribute != Attribute::None) 458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 459 } else if (Record[i] == ~0U) { 460 if (FnAttribute != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 462 } else if (Record[i+1] != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 464 } 465 466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 467 Attrs.clear(); 468 break; 469 } 470 } 471 } 472 } 473 474 475 bool BitcodeReader::ParseTypeTable() { 476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 477 return Error("Malformed block record"); 478 479 if (!TypeList.empty()) 480 return Error("Multiple TYPE_BLOCKs found!"); 481 482 SmallVector<uint64_t, 64> Record; 483 unsigned NumRecords = 0; 484 485 // Read all the records for this type table. 486 while (1) { 487 unsigned Code = Stream.ReadCode(); 488 if (Code == bitc::END_BLOCK) { 489 if (NumRecords != TypeList.size()) 490 return Error("Invalid type forward reference in TYPE_BLOCK"); 491 if (Stream.ReadBlockEnd()) 492 return Error("Error at end of type table block"); 493 return false; 494 } 495 496 if (Code == bitc::ENTER_SUBBLOCK) { 497 // No known subblocks, always skip them. 498 Stream.ReadSubBlockID(); 499 if (Stream.SkipBlock()) 500 return Error("Malformed block record"); 501 continue; 502 } 503 504 if (Code == bitc::DEFINE_ABBREV) { 505 Stream.ReadAbbrevRecord(); 506 continue; 507 } 508 509 // Read a record. 510 Record.clear(); 511 const Type *ResultTy = 0; 512 switch (Stream.ReadRecord(Code, Record)) { 513 default: // Default behavior: unknown type. 514 ResultTy = 0; 515 break; 516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 518 // type list. This allows us to reserve space. 519 if (Record.size() < 1) 520 return Error("Invalid TYPE_CODE_NUMENTRY record"); 521 TypeList.reserve(Record[0]); 522 continue; 523 case bitc::TYPE_CODE_VOID: // VOID 524 ResultTy = Type::getVoidTy(Context); 525 break; 526 case bitc::TYPE_CODE_FLOAT: // FLOAT 527 ResultTy = Type::getFloatTy(Context); 528 break; 529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 530 ResultTy = Type::getDoubleTy(Context); 531 break; 532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 533 ResultTy = Type::getX86_FP80Ty(Context); 534 break; 535 case bitc::TYPE_CODE_FP128: // FP128 536 ResultTy = Type::getFP128Ty(Context); 537 break; 538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 539 ResultTy = Type::getPPC_FP128Ty(Context); 540 break; 541 case bitc::TYPE_CODE_LABEL: // LABEL 542 ResultTy = Type::getLabelTy(Context); 543 break; 544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 545 ResultTy = 0; 546 break; 547 case bitc::TYPE_CODE_METADATA: // METADATA 548 ResultTy = Type::getMetadataTy(Context); 549 break; 550 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 551 ResultTy = Type::getX86_MMXTy(Context); 552 break; 553 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 554 if (Record.size() < 1) 555 return Error("Invalid Integer type record"); 556 557 ResultTy = IntegerType::get(Context, Record[0]); 558 break; 559 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 560 // [pointee type, address space] 561 if (Record.size() < 1) 562 return Error("Invalid POINTER type record"); 563 unsigned AddressSpace = 0; 564 if (Record.size() == 2) 565 AddressSpace = Record[1]; 566 ResultTy = PointerType::get(getTypeByID(Record[0], true), 567 AddressSpace); 568 break; 569 } 570 case bitc::TYPE_CODE_FUNCTION: { 571 // FIXME: attrid is dead, remove it in LLVM 3.0 572 // FUNCTION: [vararg, attrid, retty, paramty x N] 573 if (Record.size() < 3) 574 return Error("Invalid FUNCTION type record"); 575 std::vector<const Type*> ArgTys; 576 for (unsigned i = 3, e = Record.size(); i != e; ++i) 577 ArgTys.push_back(getTypeByID(Record[i], true)); 578 579 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 580 Record[0]); 581 break; 582 } 583 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 584 if (Record.size() < 1) 585 return Error("Invalid STRUCT type record"); 586 std::vector<const Type*> EltTys; 587 for (unsigned i = 1, e = Record.size(); i != e; ++i) 588 EltTys.push_back(getTypeByID(Record[i], true)); 589 ResultTy = StructType::get(Context, EltTys, Record[0]); 590 break; 591 } 592 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 593 if (Record.size() < 2) 594 return Error("Invalid ARRAY type record"); 595 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 596 break; 597 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 598 if (Record.size() < 2) 599 return Error("Invalid VECTOR type record"); 600 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 601 break; 602 } 603 604 if (NumRecords == TypeList.size()) { 605 // If this is a new type slot, just append it. 606 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 607 ++NumRecords; 608 } else if (ResultTy == 0) { 609 // Otherwise, this was forward referenced, so an opaque type was created, 610 // but the result type is actually just an opaque. Leave the one we 611 // created previously. 612 ++NumRecords; 613 } else { 614 // Otherwise, this was forward referenced, so an opaque type was created. 615 // Resolve the opaque type to the real type now. 616 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 617 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 618 619 // Don't directly push the new type on the Tab. Instead we want to replace 620 // the opaque type we previously inserted with the new concrete value. The 621 // refinement from the abstract (opaque) type to the new type causes all 622 // uses of the abstract type to use the concrete type (NewTy). This will 623 // also cause the opaque type to be deleted. 624 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 625 626 // This should have replaced the old opaque type with the new type in the 627 // value table... or with a preexisting type that was already in the 628 // system. Let's just make sure it did. 629 assert(TypeList[NumRecords-1].get() != OldTy && 630 "refineAbstractType didn't work!"); 631 } 632 } 633 } 634 635 636 bool BitcodeReader::ParseTypeSymbolTable() { 637 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 638 return Error("Malformed block record"); 639 640 SmallVector<uint64_t, 64> Record; 641 642 // Read all the records for this type table. 643 std::string TypeName; 644 while (1) { 645 unsigned Code = Stream.ReadCode(); 646 if (Code == bitc::END_BLOCK) { 647 if (Stream.ReadBlockEnd()) 648 return Error("Error at end of type symbol table block"); 649 return false; 650 } 651 652 if (Code == bitc::ENTER_SUBBLOCK) { 653 // No known subblocks, always skip them. 654 Stream.ReadSubBlockID(); 655 if (Stream.SkipBlock()) 656 return Error("Malformed block record"); 657 continue; 658 } 659 660 if (Code == bitc::DEFINE_ABBREV) { 661 Stream.ReadAbbrevRecord(); 662 continue; 663 } 664 665 // Read a record. 666 Record.clear(); 667 switch (Stream.ReadRecord(Code, Record)) { 668 default: // Default behavior: unknown type. 669 break; 670 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 671 if (ConvertToString(Record, 1, TypeName)) 672 return Error("Invalid TST_ENTRY record"); 673 unsigned TypeID = Record[0]; 674 if (TypeID >= TypeList.size()) 675 return Error("Invalid Type ID in TST_ENTRY record"); 676 677 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 678 TypeName.clear(); 679 break; 680 } 681 } 682 } 683 684 bool BitcodeReader::ParseValueSymbolTable() { 685 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 686 return Error("Malformed block record"); 687 688 SmallVector<uint64_t, 64> Record; 689 690 // Read all the records for this value table. 691 SmallString<128> ValueName; 692 while (1) { 693 unsigned Code = Stream.ReadCode(); 694 if (Code == bitc::END_BLOCK) { 695 if (Stream.ReadBlockEnd()) 696 return Error("Error at end of value symbol table block"); 697 return false; 698 } 699 if (Code == bitc::ENTER_SUBBLOCK) { 700 // No known subblocks, always skip them. 701 Stream.ReadSubBlockID(); 702 if (Stream.SkipBlock()) 703 return Error("Malformed block record"); 704 continue; 705 } 706 707 if (Code == bitc::DEFINE_ABBREV) { 708 Stream.ReadAbbrevRecord(); 709 continue; 710 } 711 712 // Read a record. 713 Record.clear(); 714 switch (Stream.ReadRecord(Code, Record)) { 715 default: // Default behavior: unknown type. 716 break; 717 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 718 if (ConvertToString(Record, 1, ValueName)) 719 return Error("Invalid VST_ENTRY record"); 720 unsigned ValueID = Record[0]; 721 if (ValueID >= ValueList.size()) 722 return Error("Invalid Value ID in VST_ENTRY record"); 723 Value *V = ValueList[ValueID]; 724 725 V->setName(StringRef(ValueName.data(), ValueName.size())); 726 ValueName.clear(); 727 break; 728 } 729 case bitc::VST_CODE_BBENTRY: { 730 if (ConvertToString(Record, 1, ValueName)) 731 return Error("Invalid VST_BBENTRY record"); 732 BasicBlock *BB = getBasicBlock(Record[0]); 733 if (BB == 0) 734 return Error("Invalid BB ID in VST_BBENTRY record"); 735 736 BB->setName(StringRef(ValueName.data(), ValueName.size())); 737 ValueName.clear(); 738 break; 739 } 740 } 741 } 742 } 743 744 bool BitcodeReader::ParseMetadata() { 745 unsigned NextMDValueNo = MDValueList.size(); 746 747 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 748 return Error("Malformed block record"); 749 750 SmallVector<uint64_t, 64> Record; 751 752 // Read all the records. 753 while (1) { 754 unsigned Code = Stream.ReadCode(); 755 if (Code == bitc::END_BLOCK) { 756 if (Stream.ReadBlockEnd()) 757 return Error("Error at end of PARAMATTR block"); 758 return false; 759 } 760 761 if (Code == bitc::ENTER_SUBBLOCK) { 762 // No known subblocks, always skip them. 763 Stream.ReadSubBlockID(); 764 if (Stream.SkipBlock()) 765 return Error("Malformed block record"); 766 continue; 767 } 768 769 if (Code == bitc::DEFINE_ABBREV) { 770 Stream.ReadAbbrevRecord(); 771 continue; 772 } 773 774 bool IsFunctionLocal = false; 775 // Read a record. 776 Record.clear(); 777 Code = Stream.ReadRecord(Code, Record); 778 switch (Code) { 779 default: // Default behavior: ignore. 780 break; 781 case bitc::METADATA_NAME: { 782 // Read named of the named metadata. 783 unsigned NameLength = Record.size(); 784 SmallString<8> Name; 785 Name.resize(NameLength); 786 for (unsigned i = 0; i != NameLength; ++i) 787 Name[i] = Record[i]; 788 Record.clear(); 789 Code = Stream.ReadCode(); 790 791 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 792 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 793 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 794 795 // Read named metadata elements. 796 unsigned Size = Record.size(); 797 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 798 for (unsigned i = 0; i != Size; ++i) { 799 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 800 if (MD == 0) 801 return Error("Malformed metadata record"); 802 NMD->addOperand(MD); 803 } 804 break; 805 } 806 case bitc::METADATA_FN_NODE: 807 IsFunctionLocal = true; 808 // fall-through 809 case bitc::METADATA_NODE: { 810 if (Record.size() % 2 == 1) 811 return Error("Invalid METADATA_NODE record"); 812 813 unsigned Size = Record.size(); 814 SmallVector<Value*, 8> Elts; 815 for (unsigned i = 0; i != Size; i += 2) { 816 const Type *Ty = getTypeByID(Record[i]); 817 if (!Ty) return Error("Invalid METADATA_NODE record"); 818 if (Ty->isMetadataTy()) 819 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 820 else if (!Ty->isVoidTy()) 821 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 822 else 823 Elts.push_back(NULL); 824 } 825 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 826 IsFunctionLocal = false; 827 MDValueList.AssignValue(V, NextMDValueNo++); 828 break; 829 } 830 case bitc::METADATA_STRING: { 831 unsigned MDStringLength = Record.size(); 832 SmallString<8> String; 833 String.resize(MDStringLength); 834 for (unsigned i = 0; i != MDStringLength; ++i) 835 String[i] = Record[i]; 836 Value *V = MDString::get(Context, 837 StringRef(String.data(), String.size())); 838 MDValueList.AssignValue(V, NextMDValueNo++); 839 break; 840 } 841 case bitc::METADATA_KIND: { 842 unsigned RecordLength = Record.size(); 843 if (Record.empty() || RecordLength < 2) 844 return Error("Invalid METADATA_KIND record"); 845 SmallString<8> Name; 846 Name.resize(RecordLength-1); 847 unsigned Kind = Record[0]; 848 for (unsigned i = 1; i != RecordLength; ++i) 849 Name[i-1] = Record[i]; 850 851 unsigned NewKind = TheModule->getMDKindID(Name.str()); 852 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 853 return Error("Conflicting METADATA_KIND records"); 854 break; 855 } 856 } 857 } 858 } 859 860 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 861 /// the LSB for dense VBR encoding. 862 static uint64_t DecodeSignRotatedValue(uint64_t V) { 863 if ((V & 1) == 0) 864 return V >> 1; 865 if (V != 1) 866 return -(V >> 1); 867 // There is no such thing as -0 with integers. "-0" really means MININT. 868 return 1ULL << 63; 869 } 870 871 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 872 /// values and aliases that we can. 873 bool BitcodeReader::ResolveGlobalAndAliasInits() { 874 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 875 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 876 877 GlobalInitWorklist.swap(GlobalInits); 878 AliasInitWorklist.swap(AliasInits); 879 880 while (!GlobalInitWorklist.empty()) { 881 unsigned ValID = GlobalInitWorklist.back().second; 882 if (ValID >= ValueList.size()) { 883 // Not ready to resolve this yet, it requires something later in the file. 884 GlobalInits.push_back(GlobalInitWorklist.back()); 885 } else { 886 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 887 GlobalInitWorklist.back().first->setInitializer(C); 888 else 889 return Error("Global variable initializer is not a constant!"); 890 } 891 GlobalInitWorklist.pop_back(); 892 } 893 894 while (!AliasInitWorklist.empty()) { 895 unsigned ValID = AliasInitWorklist.back().second; 896 if (ValID >= ValueList.size()) { 897 AliasInits.push_back(AliasInitWorklist.back()); 898 } else { 899 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 900 AliasInitWorklist.back().first->setAliasee(C); 901 else 902 return Error("Alias initializer is not a constant!"); 903 } 904 AliasInitWorklist.pop_back(); 905 } 906 return false; 907 } 908 909 bool BitcodeReader::ParseConstants() { 910 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 911 return Error("Malformed block record"); 912 913 SmallVector<uint64_t, 64> Record; 914 915 // Read all the records for this value table. 916 const Type *CurTy = Type::getInt32Ty(Context); 917 unsigned NextCstNo = ValueList.size(); 918 while (1) { 919 unsigned Code = Stream.ReadCode(); 920 if (Code == bitc::END_BLOCK) 921 break; 922 923 if (Code == bitc::ENTER_SUBBLOCK) { 924 // No known subblocks, always skip them. 925 Stream.ReadSubBlockID(); 926 if (Stream.SkipBlock()) 927 return Error("Malformed block record"); 928 continue; 929 } 930 931 if (Code == bitc::DEFINE_ABBREV) { 932 Stream.ReadAbbrevRecord(); 933 continue; 934 } 935 936 // Read a record. 937 Record.clear(); 938 Value *V = 0; 939 unsigned BitCode = Stream.ReadRecord(Code, Record); 940 switch (BitCode) { 941 default: // Default behavior: unknown constant 942 case bitc::CST_CODE_UNDEF: // UNDEF 943 V = UndefValue::get(CurTy); 944 break; 945 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 946 if (Record.empty()) 947 return Error("Malformed CST_SETTYPE record"); 948 if (Record[0] >= TypeList.size()) 949 return Error("Invalid Type ID in CST_SETTYPE record"); 950 CurTy = TypeList[Record[0]]; 951 continue; // Skip the ValueList manipulation. 952 case bitc::CST_CODE_NULL: // NULL 953 V = Constant::getNullValue(CurTy); 954 break; 955 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 956 if (!CurTy->isIntegerTy() || Record.empty()) 957 return Error("Invalid CST_INTEGER record"); 958 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 959 break; 960 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 961 if (!CurTy->isIntegerTy() || Record.empty()) 962 return Error("Invalid WIDE_INTEGER record"); 963 964 unsigned NumWords = Record.size(); 965 SmallVector<uint64_t, 8> Words; 966 Words.resize(NumWords); 967 for (unsigned i = 0; i != NumWords; ++i) 968 Words[i] = DecodeSignRotatedValue(Record[i]); 969 V = ConstantInt::get(Context, 970 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 971 NumWords, &Words[0])); 972 break; 973 } 974 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 975 if (Record.empty()) 976 return Error("Invalid FLOAT record"); 977 if (CurTy->isFloatTy()) 978 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 979 else if (CurTy->isDoubleTy()) 980 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 981 else if (CurTy->isX86_FP80Ty()) { 982 // Bits are not stored the same way as a normal i80 APInt, compensate. 983 uint64_t Rearrange[2]; 984 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 985 Rearrange[1] = Record[0] >> 48; 986 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 987 } else if (CurTy->isFP128Ty()) 988 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 989 else if (CurTy->isPPC_FP128Ty()) 990 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 991 else 992 V = UndefValue::get(CurTy); 993 break; 994 } 995 996 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 997 if (Record.empty()) 998 return Error("Invalid CST_AGGREGATE record"); 999 1000 unsigned Size = Record.size(); 1001 std::vector<Constant*> Elts; 1002 1003 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1004 for (unsigned i = 0; i != Size; ++i) 1005 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1006 STy->getElementType(i))); 1007 V = ConstantStruct::get(STy, Elts); 1008 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1009 const Type *EltTy = ATy->getElementType(); 1010 for (unsigned i = 0; i != Size; ++i) 1011 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1012 V = ConstantArray::get(ATy, Elts); 1013 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1014 const Type *EltTy = VTy->getElementType(); 1015 for (unsigned i = 0; i != Size; ++i) 1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1017 V = ConstantVector::get(Elts); 1018 } else { 1019 V = UndefValue::get(CurTy); 1020 } 1021 break; 1022 } 1023 case bitc::CST_CODE_STRING: { // STRING: [values] 1024 if (Record.empty()) 1025 return Error("Invalid CST_AGGREGATE record"); 1026 1027 const ArrayType *ATy = cast<ArrayType>(CurTy); 1028 const Type *EltTy = ATy->getElementType(); 1029 1030 unsigned Size = Record.size(); 1031 std::vector<Constant*> Elts; 1032 for (unsigned i = 0; i != Size; ++i) 1033 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1034 V = ConstantArray::get(ATy, Elts); 1035 break; 1036 } 1037 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1038 if (Record.empty()) 1039 return Error("Invalid CST_AGGREGATE record"); 1040 1041 const ArrayType *ATy = cast<ArrayType>(CurTy); 1042 const Type *EltTy = ATy->getElementType(); 1043 1044 unsigned Size = Record.size(); 1045 std::vector<Constant*> Elts; 1046 for (unsigned i = 0; i != Size; ++i) 1047 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1048 Elts.push_back(Constant::getNullValue(EltTy)); 1049 V = ConstantArray::get(ATy, Elts); 1050 break; 1051 } 1052 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1053 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1054 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1055 if (Opc < 0) { 1056 V = UndefValue::get(CurTy); // Unknown binop. 1057 } else { 1058 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1059 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1060 unsigned Flags = 0; 1061 if (Record.size() >= 4) { 1062 if (Opc == Instruction::Add || 1063 Opc == Instruction::Sub || 1064 Opc == Instruction::Mul || 1065 Opc == Instruction::Shl) { 1066 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1067 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1068 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1069 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1070 } else if (Opc == Instruction::SDiv || 1071 Opc == Instruction::UDiv || 1072 Opc == Instruction::LShr || 1073 Opc == Instruction::AShr) { 1074 if (Record[3] & (1 << bitc::PEO_EXACT)) 1075 Flags |= SDivOperator::IsExact; 1076 } 1077 } 1078 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1079 } 1080 break; 1081 } 1082 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1083 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1084 int Opc = GetDecodedCastOpcode(Record[0]); 1085 if (Opc < 0) { 1086 V = UndefValue::get(CurTy); // Unknown cast. 1087 } else { 1088 const Type *OpTy = getTypeByID(Record[1]); 1089 if (!OpTy) return Error("Invalid CE_CAST record"); 1090 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1091 V = ConstantExpr::getCast(Opc, Op, CurTy); 1092 } 1093 break; 1094 } 1095 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1096 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1097 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1098 SmallVector<Constant*, 16> Elts; 1099 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1100 const Type *ElTy = getTypeByID(Record[i]); 1101 if (!ElTy) return Error("Invalid CE_GEP record"); 1102 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1103 } 1104 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1105 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1106 Elts.size()-1); 1107 else 1108 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1109 Elts.size()-1); 1110 break; 1111 } 1112 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1113 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1114 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1115 Type::getInt1Ty(Context)), 1116 ValueList.getConstantFwdRef(Record[1],CurTy), 1117 ValueList.getConstantFwdRef(Record[2],CurTy)); 1118 break; 1119 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1120 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1121 const VectorType *OpTy = 1122 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1123 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1124 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1125 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1126 V = ConstantExpr::getExtractElement(Op0, Op1); 1127 break; 1128 } 1129 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1130 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1131 if (Record.size() < 3 || OpTy == 0) 1132 return Error("Invalid CE_INSERTELT record"); 1133 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1134 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1135 OpTy->getElementType()); 1136 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1137 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1138 break; 1139 } 1140 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1141 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1142 if (Record.size() < 3 || OpTy == 0) 1143 return Error("Invalid CE_SHUFFLEVEC record"); 1144 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1145 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1146 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1147 OpTy->getNumElements()); 1148 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1149 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1150 break; 1151 } 1152 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1153 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1154 const VectorType *OpTy = 1155 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1156 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1157 return Error("Invalid CE_SHUFVEC_EX record"); 1158 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1159 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1160 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1161 RTy->getNumElements()); 1162 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1163 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1164 break; 1165 } 1166 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1167 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1168 const Type *OpTy = getTypeByID(Record[0]); 1169 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1170 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1171 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1172 1173 if (OpTy->isFPOrFPVectorTy()) 1174 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1175 else 1176 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1177 break; 1178 } 1179 case bitc::CST_CODE_INLINEASM: { 1180 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1181 std::string AsmStr, ConstrStr; 1182 bool HasSideEffects = Record[0] & 1; 1183 bool IsAlignStack = Record[0] >> 1; 1184 unsigned AsmStrSize = Record[1]; 1185 if (2+AsmStrSize >= Record.size()) 1186 return Error("Invalid INLINEASM record"); 1187 unsigned ConstStrSize = Record[2+AsmStrSize]; 1188 if (3+AsmStrSize+ConstStrSize > Record.size()) 1189 return Error("Invalid INLINEASM record"); 1190 1191 for (unsigned i = 0; i != AsmStrSize; ++i) 1192 AsmStr += (char)Record[2+i]; 1193 for (unsigned i = 0; i != ConstStrSize; ++i) 1194 ConstrStr += (char)Record[3+AsmStrSize+i]; 1195 const PointerType *PTy = cast<PointerType>(CurTy); 1196 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1197 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1198 break; 1199 } 1200 case bitc::CST_CODE_BLOCKADDRESS:{ 1201 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1202 const Type *FnTy = getTypeByID(Record[0]); 1203 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1204 Function *Fn = 1205 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1206 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1207 1208 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1209 Type::getInt8Ty(Context), 1210 false, GlobalValue::InternalLinkage, 1211 0, ""); 1212 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1213 V = FwdRef; 1214 break; 1215 } 1216 } 1217 1218 ValueList.AssignValue(V, NextCstNo); 1219 ++NextCstNo; 1220 } 1221 1222 if (NextCstNo != ValueList.size()) 1223 return Error("Invalid constant reference!"); 1224 1225 if (Stream.ReadBlockEnd()) 1226 return Error("Error at end of constants block"); 1227 1228 // Once all the constants have been read, go through and resolve forward 1229 // references. 1230 ValueList.ResolveConstantForwardRefs(); 1231 return false; 1232 } 1233 1234 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1235 /// remember where it is and then skip it. This lets us lazily deserialize the 1236 /// functions. 1237 bool BitcodeReader::RememberAndSkipFunctionBody() { 1238 // Get the function we are talking about. 1239 if (FunctionsWithBodies.empty()) 1240 return Error("Insufficient function protos"); 1241 1242 Function *Fn = FunctionsWithBodies.back(); 1243 FunctionsWithBodies.pop_back(); 1244 1245 // Save the current stream state. 1246 uint64_t CurBit = Stream.GetCurrentBitNo(); 1247 DeferredFunctionInfo[Fn] = CurBit; 1248 1249 // Skip over the function block for now. 1250 if (Stream.SkipBlock()) 1251 return Error("Malformed block record"); 1252 return false; 1253 } 1254 1255 bool BitcodeReader::ParseModule() { 1256 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1257 return Error("Malformed block record"); 1258 1259 SmallVector<uint64_t, 64> Record; 1260 std::vector<std::string> SectionTable; 1261 std::vector<std::string> GCTable; 1262 1263 // Read all the records for this module. 1264 while (!Stream.AtEndOfStream()) { 1265 unsigned Code = Stream.ReadCode(); 1266 if (Code == bitc::END_BLOCK) { 1267 if (Stream.ReadBlockEnd()) 1268 return Error("Error at end of module block"); 1269 1270 // Patch the initializers for globals and aliases up. 1271 ResolveGlobalAndAliasInits(); 1272 if (!GlobalInits.empty() || !AliasInits.empty()) 1273 return Error("Malformed global initializer set"); 1274 if (!FunctionsWithBodies.empty()) 1275 return Error("Too few function bodies found"); 1276 1277 // Look for intrinsic functions which need to be upgraded at some point 1278 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1279 FI != FE; ++FI) { 1280 Function* NewFn; 1281 if (UpgradeIntrinsicFunction(FI, NewFn)) 1282 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1283 } 1284 1285 // Look for global variables which need to be renamed. 1286 for (Module::global_iterator 1287 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1288 GI != GE; ++GI) 1289 UpgradeGlobalVariable(GI); 1290 1291 // Force deallocation of memory for these vectors to favor the client that 1292 // want lazy deserialization. 1293 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1294 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1295 std::vector<Function*>().swap(FunctionsWithBodies); 1296 return false; 1297 } 1298 1299 if (Code == bitc::ENTER_SUBBLOCK) { 1300 switch (Stream.ReadSubBlockID()) { 1301 default: // Skip unknown content. 1302 if (Stream.SkipBlock()) 1303 return Error("Malformed block record"); 1304 break; 1305 case bitc::BLOCKINFO_BLOCK_ID: 1306 if (Stream.ReadBlockInfoBlock()) 1307 return Error("Malformed BlockInfoBlock"); 1308 break; 1309 case bitc::PARAMATTR_BLOCK_ID: 1310 if (ParseAttributeBlock()) 1311 return true; 1312 break; 1313 case bitc::TYPE_BLOCK_ID: 1314 if (ParseTypeTable()) 1315 return true; 1316 break; 1317 case bitc::TYPE_SYMTAB_BLOCK_ID: 1318 if (ParseTypeSymbolTable()) 1319 return true; 1320 break; 1321 case bitc::VALUE_SYMTAB_BLOCK_ID: 1322 if (ParseValueSymbolTable()) 1323 return true; 1324 break; 1325 case bitc::CONSTANTS_BLOCK_ID: 1326 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1327 return true; 1328 break; 1329 case bitc::METADATA_BLOCK_ID: 1330 if (ParseMetadata()) 1331 return true; 1332 break; 1333 case bitc::FUNCTION_BLOCK_ID: 1334 // If this is the first function body we've seen, reverse the 1335 // FunctionsWithBodies list. 1336 if (!HasReversedFunctionsWithBodies) { 1337 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1338 HasReversedFunctionsWithBodies = true; 1339 } 1340 1341 if (RememberAndSkipFunctionBody()) 1342 return true; 1343 break; 1344 } 1345 continue; 1346 } 1347 1348 if (Code == bitc::DEFINE_ABBREV) { 1349 Stream.ReadAbbrevRecord(); 1350 continue; 1351 } 1352 1353 // Read a record. 1354 switch (Stream.ReadRecord(Code, Record)) { 1355 default: break; // Default behavior, ignore unknown content. 1356 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1357 if (Record.size() < 1) 1358 return Error("Malformed MODULE_CODE_VERSION"); 1359 // Only version #0 is supported so far. 1360 if (Record[0] != 0) 1361 return Error("Unknown bitstream version!"); 1362 break; 1363 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1364 std::string S; 1365 if (ConvertToString(Record, 0, S)) 1366 return Error("Invalid MODULE_CODE_TRIPLE record"); 1367 TheModule->setTargetTriple(S); 1368 break; 1369 } 1370 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1371 std::string S; 1372 if (ConvertToString(Record, 0, S)) 1373 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1374 TheModule->setDataLayout(S); 1375 break; 1376 } 1377 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1378 std::string S; 1379 if (ConvertToString(Record, 0, S)) 1380 return Error("Invalid MODULE_CODE_ASM record"); 1381 TheModule->setModuleInlineAsm(S); 1382 break; 1383 } 1384 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1385 std::string S; 1386 if (ConvertToString(Record, 0, S)) 1387 return Error("Invalid MODULE_CODE_DEPLIB record"); 1388 TheModule->addLibrary(S); 1389 break; 1390 } 1391 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1392 std::string S; 1393 if (ConvertToString(Record, 0, S)) 1394 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1395 SectionTable.push_back(S); 1396 break; 1397 } 1398 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1399 std::string S; 1400 if (ConvertToString(Record, 0, S)) 1401 return Error("Invalid MODULE_CODE_GCNAME record"); 1402 GCTable.push_back(S); 1403 break; 1404 } 1405 // GLOBALVAR: [pointer type, isconst, initid, 1406 // linkage, alignment, section, visibility, threadlocal, 1407 // unnamed_addr] 1408 case bitc::MODULE_CODE_GLOBALVAR: { 1409 if (Record.size() < 6) 1410 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1411 const Type *Ty = getTypeByID(Record[0]); 1412 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1413 if (!Ty->isPointerTy()) 1414 return Error("Global not a pointer type!"); 1415 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1416 Ty = cast<PointerType>(Ty)->getElementType(); 1417 1418 bool isConstant = Record[1]; 1419 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1420 unsigned Alignment = (1 << Record[4]) >> 1; 1421 std::string Section; 1422 if (Record[5]) { 1423 if (Record[5]-1 >= SectionTable.size()) 1424 return Error("Invalid section ID"); 1425 Section = SectionTable[Record[5]-1]; 1426 } 1427 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1428 if (Record.size() > 6) 1429 Visibility = GetDecodedVisibility(Record[6]); 1430 bool isThreadLocal = false; 1431 if (Record.size() > 7) 1432 isThreadLocal = Record[7]; 1433 1434 bool UnnamedAddr = false; 1435 if (Record.size() > 8) 1436 UnnamedAddr = Record[8]; 1437 1438 GlobalVariable *NewGV = 1439 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1440 isThreadLocal, AddressSpace); 1441 NewGV->setAlignment(Alignment); 1442 if (!Section.empty()) 1443 NewGV->setSection(Section); 1444 NewGV->setVisibility(Visibility); 1445 NewGV->setThreadLocal(isThreadLocal); 1446 NewGV->setUnnamedAddr(UnnamedAddr); 1447 1448 ValueList.push_back(NewGV); 1449 1450 // Remember which value to use for the global initializer. 1451 if (unsigned InitID = Record[2]) 1452 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1453 break; 1454 } 1455 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1456 // alignment, section, visibility, gc, unnamed_addr] 1457 case bitc::MODULE_CODE_FUNCTION: { 1458 if (Record.size() < 8) 1459 return Error("Invalid MODULE_CODE_FUNCTION record"); 1460 const Type *Ty = getTypeByID(Record[0]); 1461 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1462 if (!Ty->isPointerTy()) 1463 return Error("Function not a pointer type!"); 1464 const FunctionType *FTy = 1465 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1466 if (!FTy) 1467 return Error("Function not a pointer to function type!"); 1468 1469 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1470 "", TheModule); 1471 1472 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1473 bool isProto = Record[2]; 1474 Func->setLinkage(GetDecodedLinkage(Record[3])); 1475 Func->setAttributes(getAttributes(Record[4])); 1476 1477 Func->setAlignment((1 << Record[5]) >> 1); 1478 if (Record[6]) { 1479 if (Record[6]-1 >= SectionTable.size()) 1480 return Error("Invalid section ID"); 1481 Func->setSection(SectionTable[Record[6]-1]); 1482 } 1483 Func->setVisibility(GetDecodedVisibility(Record[7])); 1484 if (Record.size() > 8 && Record[8]) { 1485 if (Record[8]-1 > GCTable.size()) 1486 return Error("Invalid GC ID"); 1487 Func->setGC(GCTable[Record[8]-1].c_str()); 1488 } 1489 bool UnnamedAddr = false; 1490 if (Record.size() > 9) 1491 UnnamedAddr = Record[9]; 1492 Func->setUnnamedAddr(UnnamedAddr); 1493 ValueList.push_back(Func); 1494 1495 // If this is a function with a body, remember the prototype we are 1496 // creating now, so that we can match up the body with them later. 1497 if (!isProto) 1498 FunctionsWithBodies.push_back(Func); 1499 break; 1500 } 1501 // ALIAS: [alias type, aliasee val#, linkage] 1502 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1503 case bitc::MODULE_CODE_ALIAS: { 1504 if (Record.size() < 3) 1505 return Error("Invalid MODULE_ALIAS record"); 1506 const Type *Ty = getTypeByID(Record[0]); 1507 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1508 if (!Ty->isPointerTy()) 1509 return Error("Function not a pointer type!"); 1510 1511 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1512 "", 0, TheModule); 1513 // Old bitcode files didn't have visibility field. 1514 if (Record.size() > 3) 1515 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1516 ValueList.push_back(NewGA); 1517 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1518 break; 1519 } 1520 /// MODULE_CODE_PURGEVALS: [numvals] 1521 case bitc::MODULE_CODE_PURGEVALS: 1522 // Trim down the value list to the specified size. 1523 if (Record.size() < 1 || Record[0] > ValueList.size()) 1524 return Error("Invalid MODULE_PURGEVALS record"); 1525 ValueList.shrinkTo(Record[0]); 1526 break; 1527 } 1528 Record.clear(); 1529 } 1530 1531 return Error("Premature end of bitstream"); 1532 } 1533 1534 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1535 TheModule = 0; 1536 1537 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1538 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1539 1540 if (Buffer->getBufferSize() & 3) { 1541 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1542 return Error("Invalid bitcode signature"); 1543 else 1544 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1545 } 1546 1547 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1548 // The magic number is 0x0B17C0DE stored in little endian. 1549 if (isBitcodeWrapper(BufPtr, BufEnd)) 1550 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1551 return Error("Invalid bitcode wrapper header"); 1552 1553 StreamFile.init(BufPtr, BufEnd); 1554 Stream.init(StreamFile); 1555 1556 // Sniff for the signature. 1557 if (Stream.Read(8) != 'B' || 1558 Stream.Read(8) != 'C' || 1559 Stream.Read(4) != 0x0 || 1560 Stream.Read(4) != 0xC || 1561 Stream.Read(4) != 0xE || 1562 Stream.Read(4) != 0xD) 1563 return Error("Invalid bitcode signature"); 1564 1565 // We expect a number of well-defined blocks, though we don't necessarily 1566 // need to understand them all. 1567 while (!Stream.AtEndOfStream()) { 1568 unsigned Code = Stream.ReadCode(); 1569 1570 if (Code != bitc::ENTER_SUBBLOCK) { 1571 1572 // The ranlib in xcode 4 will align archive members by appending newlines to the 1573 // end of them. If this file size is a multiple of 4 but not 8, we have to read and 1574 // ignore these final 4 bytes :-( 1575 if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 && 1576 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 1577 Stream.AtEndOfStream()) 1578 return false; 1579 1580 return Error("Invalid record at top-level"); 1581 } 1582 1583 unsigned BlockID = Stream.ReadSubBlockID(); 1584 1585 // We only know the MODULE subblock ID. 1586 switch (BlockID) { 1587 case bitc::BLOCKINFO_BLOCK_ID: 1588 if (Stream.ReadBlockInfoBlock()) 1589 return Error("Malformed BlockInfoBlock"); 1590 break; 1591 case bitc::MODULE_BLOCK_ID: 1592 // Reject multiple MODULE_BLOCK's in a single bitstream. 1593 if (TheModule) 1594 return Error("Multiple MODULE_BLOCKs in same stream"); 1595 TheModule = M; 1596 if (ParseModule()) 1597 return true; 1598 break; 1599 default: 1600 if (Stream.SkipBlock()) 1601 return Error("Malformed block record"); 1602 break; 1603 } 1604 } 1605 1606 return false; 1607 } 1608 1609 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1610 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1611 return Error("Malformed block record"); 1612 1613 SmallVector<uint64_t, 64> Record; 1614 1615 // Read all the records for this module. 1616 while (!Stream.AtEndOfStream()) { 1617 unsigned Code = Stream.ReadCode(); 1618 if (Code == bitc::END_BLOCK) { 1619 if (Stream.ReadBlockEnd()) 1620 return Error("Error at end of module block"); 1621 1622 return false; 1623 } 1624 1625 if (Code == bitc::ENTER_SUBBLOCK) { 1626 switch (Stream.ReadSubBlockID()) { 1627 default: // Skip unknown content. 1628 if (Stream.SkipBlock()) 1629 return Error("Malformed block record"); 1630 break; 1631 } 1632 continue; 1633 } 1634 1635 if (Code == bitc::DEFINE_ABBREV) { 1636 Stream.ReadAbbrevRecord(); 1637 continue; 1638 } 1639 1640 // Read a record. 1641 switch (Stream.ReadRecord(Code, Record)) { 1642 default: break; // Default behavior, ignore unknown content. 1643 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1644 if (Record.size() < 1) 1645 return Error("Malformed MODULE_CODE_VERSION"); 1646 // Only version #0 is supported so far. 1647 if (Record[0] != 0) 1648 return Error("Unknown bitstream version!"); 1649 break; 1650 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1651 std::string S; 1652 if (ConvertToString(Record, 0, S)) 1653 return Error("Invalid MODULE_CODE_TRIPLE record"); 1654 Triple = S; 1655 break; 1656 } 1657 } 1658 Record.clear(); 1659 } 1660 1661 return Error("Premature end of bitstream"); 1662 } 1663 1664 bool BitcodeReader::ParseTriple(std::string &Triple) { 1665 if (Buffer->getBufferSize() & 3) 1666 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1667 1668 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1669 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1670 1671 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1672 // The magic number is 0x0B17C0DE stored in little endian. 1673 if (isBitcodeWrapper(BufPtr, BufEnd)) 1674 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1675 return Error("Invalid bitcode wrapper header"); 1676 1677 StreamFile.init(BufPtr, BufEnd); 1678 Stream.init(StreamFile); 1679 1680 // Sniff for the signature. 1681 if (Stream.Read(8) != 'B' || 1682 Stream.Read(8) != 'C' || 1683 Stream.Read(4) != 0x0 || 1684 Stream.Read(4) != 0xC || 1685 Stream.Read(4) != 0xE || 1686 Stream.Read(4) != 0xD) 1687 return Error("Invalid bitcode signature"); 1688 1689 // We expect a number of well-defined blocks, though we don't necessarily 1690 // need to understand them all. 1691 while (!Stream.AtEndOfStream()) { 1692 unsigned Code = Stream.ReadCode(); 1693 1694 if (Code != bitc::ENTER_SUBBLOCK) 1695 return Error("Invalid record at top-level"); 1696 1697 unsigned BlockID = Stream.ReadSubBlockID(); 1698 1699 // We only know the MODULE subblock ID. 1700 switch (BlockID) { 1701 case bitc::MODULE_BLOCK_ID: 1702 if (ParseModuleTriple(Triple)) 1703 return true; 1704 break; 1705 default: 1706 if (Stream.SkipBlock()) 1707 return Error("Malformed block record"); 1708 break; 1709 } 1710 } 1711 1712 return false; 1713 } 1714 1715 /// ParseMetadataAttachment - Parse metadata attachments. 1716 bool BitcodeReader::ParseMetadataAttachment() { 1717 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1718 return Error("Malformed block record"); 1719 1720 SmallVector<uint64_t, 64> Record; 1721 while(1) { 1722 unsigned Code = Stream.ReadCode(); 1723 if (Code == bitc::END_BLOCK) { 1724 if (Stream.ReadBlockEnd()) 1725 return Error("Error at end of PARAMATTR block"); 1726 break; 1727 } 1728 if (Code == bitc::DEFINE_ABBREV) { 1729 Stream.ReadAbbrevRecord(); 1730 continue; 1731 } 1732 // Read a metadata attachment record. 1733 Record.clear(); 1734 switch (Stream.ReadRecord(Code, Record)) { 1735 default: // Default behavior: ignore. 1736 break; 1737 case bitc::METADATA_ATTACHMENT: { 1738 unsigned RecordLength = Record.size(); 1739 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1740 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1741 Instruction *Inst = InstructionList[Record[0]]; 1742 for (unsigned i = 1; i != RecordLength; i = i+2) { 1743 unsigned Kind = Record[i]; 1744 DenseMap<unsigned, unsigned>::iterator I = 1745 MDKindMap.find(Kind); 1746 if (I == MDKindMap.end()) 1747 return Error("Invalid metadata kind ID"); 1748 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1749 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1750 } 1751 break; 1752 } 1753 } 1754 } 1755 return false; 1756 } 1757 1758 /// ParseFunctionBody - Lazily parse the specified function body block. 1759 bool BitcodeReader::ParseFunctionBody(Function *F) { 1760 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1761 return Error("Malformed block record"); 1762 1763 InstructionList.clear(); 1764 unsigned ModuleValueListSize = ValueList.size(); 1765 unsigned ModuleMDValueListSize = MDValueList.size(); 1766 1767 // Add all the function arguments to the value table. 1768 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1769 ValueList.push_back(I); 1770 1771 unsigned NextValueNo = ValueList.size(); 1772 BasicBlock *CurBB = 0; 1773 unsigned CurBBNo = 0; 1774 1775 DebugLoc LastLoc; 1776 1777 // Read all the records. 1778 SmallVector<uint64_t, 64> Record; 1779 while (1) { 1780 unsigned Code = Stream.ReadCode(); 1781 if (Code == bitc::END_BLOCK) { 1782 if (Stream.ReadBlockEnd()) 1783 return Error("Error at end of function block"); 1784 break; 1785 } 1786 1787 if (Code == bitc::ENTER_SUBBLOCK) { 1788 switch (Stream.ReadSubBlockID()) { 1789 default: // Skip unknown content. 1790 if (Stream.SkipBlock()) 1791 return Error("Malformed block record"); 1792 break; 1793 case bitc::CONSTANTS_BLOCK_ID: 1794 if (ParseConstants()) return true; 1795 NextValueNo = ValueList.size(); 1796 break; 1797 case bitc::VALUE_SYMTAB_BLOCK_ID: 1798 if (ParseValueSymbolTable()) return true; 1799 break; 1800 case bitc::METADATA_ATTACHMENT_ID: 1801 if (ParseMetadataAttachment()) return true; 1802 break; 1803 case bitc::METADATA_BLOCK_ID: 1804 if (ParseMetadata()) return true; 1805 break; 1806 } 1807 continue; 1808 } 1809 1810 if (Code == bitc::DEFINE_ABBREV) { 1811 Stream.ReadAbbrevRecord(); 1812 continue; 1813 } 1814 1815 // Read a record. 1816 Record.clear(); 1817 Instruction *I = 0; 1818 unsigned BitCode = Stream.ReadRecord(Code, Record); 1819 switch (BitCode) { 1820 default: // Default behavior: reject 1821 return Error("Unknown instruction"); 1822 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1823 if (Record.size() < 1 || Record[0] == 0) 1824 return Error("Invalid DECLAREBLOCKS record"); 1825 // Create all the basic blocks for the function. 1826 FunctionBBs.resize(Record[0]); 1827 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1828 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1829 CurBB = FunctionBBs[0]; 1830 continue; 1831 1832 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1833 // This record indicates that the last instruction is at the same 1834 // location as the previous instruction with a location. 1835 I = 0; 1836 1837 // Get the last instruction emitted. 1838 if (CurBB && !CurBB->empty()) 1839 I = &CurBB->back(); 1840 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1841 !FunctionBBs[CurBBNo-1]->empty()) 1842 I = &FunctionBBs[CurBBNo-1]->back(); 1843 1844 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1845 I->setDebugLoc(LastLoc); 1846 I = 0; 1847 continue; 1848 1849 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1850 I = 0; // Get the last instruction emitted. 1851 if (CurBB && !CurBB->empty()) 1852 I = &CurBB->back(); 1853 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1854 !FunctionBBs[CurBBNo-1]->empty()) 1855 I = &FunctionBBs[CurBBNo-1]->back(); 1856 if (I == 0 || Record.size() < 4) 1857 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1858 1859 unsigned Line = Record[0], Col = Record[1]; 1860 unsigned ScopeID = Record[2], IAID = Record[3]; 1861 1862 MDNode *Scope = 0, *IA = 0; 1863 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1864 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1865 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1866 I->setDebugLoc(LastLoc); 1867 I = 0; 1868 continue; 1869 } 1870 1871 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1872 unsigned OpNum = 0; 1873 Value *LHS, *RHS; 1874 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1875 getValue(Record, OpNum, LHS->getType(), RHS) || 1876 OpNum+1 > Record.size()) 1877 return Error("Invalid BINOP record"); 1878 1879 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1880 if (Opc == -1) return Error("Invalid BINOP record"); 1881 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1882 InstructionList.push_back(I); 1883 if (OpNum < Record.size()) { 1884 if (Opc == Instruction::Add || 1885 Opc == Instruction::Sub || 1886 Opc == Instruction::Mul || 1887 Opc == Instruction::Shl) { 1888 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1889 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1890 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1891 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1892 } else if (Opc == Instruction::SDiv || 1893 Opc == Instruction::UDiv || 1894 Opc == Instruction::LShr || 1895 Opc == Instruction::AShr) { 1896 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 1897 cast<BinaryOperator>(I)->setIsExact(true); 1898 } 1899 } 1900 break; 1901 } 1902 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1903 unsigned OpNum = 0; 1904 Value *Op; 1905 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1906 OpNum+2 != Record.size()) 1907 return Error("Invalid CAST record"); 1908 1909 const Type *ResTy = getTypeByID(Record[OpNum]); 1910 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1911 if (Opc == -1 || ResTy == 0) 1912 return Error("Invalid CAST record"); 1913 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1914 InstructionList.push_back(I); 1915 break; 1916 } 1917 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1918 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1919 unsigned OpNum = 0; 1920 Value *BasePtr; 1921 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1922 return Error("Invalid GEP record"); 1923 1924 SmallVector<Value*, 16> GEPIdx; 1925 while (OpNum != Record.size()) { 1926 Value *Op; 1927 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1928 return Error("Invalid GEP record"); 1929 GEPIdx.push_back(Op); 1930 } 1931 1932 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1933 InstructionList.push_back(I); 1934 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1935 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1936 break; 1937 } 1938 1939 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1940 // EXTRACTVAL: [opty, opval, n x indices] 1941 unsigned OpNum = 0; 1942 Value *Agg; 1943 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1944 return Error("Invalid EXTRACTVAL record"); 1945 1946 SmallVector<unsigned, 4> EXTRACTVALIdx; 1947 for (unsigned RecSize = Record.size(); 1948 OpNum != RecSize; ++OpNum) { 1949 uint64_t Index = Record[OpNum]; 1950 if ((unsigned)Index != Index) 1951 return Error("Invalid EXTRACTVAL index"); 1952 EXTRACTVALIdx.push_back((unsigned)Index); 1953 } 1954 1955 I = ExtractValueInst::Create(Agg, 1956 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1957 InstructionList.push_back(I); 1958 break; 1959 } 1960 1961 case bitc::FUNC_CODE_INST_INSERTVAL: { 1962 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1963 unsigned OpNum = 0; 1964 Value *Agg; 1965 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1966 return Error("Invalid INSERTVAL record"); 1967 Value *Val; 1968 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1969 return Error("Invalid INSERTVAL record"); 1970 1971 SmallVector<unsigned, 4> INSERTVALIdx; 1972 for (unsigned RecSize = Record.size(); 1973 OpNum != RecSize; ++OpNum) { 1974 uint64_t Index = Record[OpNum]; 1975 if ((unsigned)Index != Index) 1976 return Error("Invalid INSERTVAL index"); 1977 INSERTVALIdx.push_back((unsigned)Index); 1978 } 1979 1980 I = InsertValueInst::Create(Agg, Val, 1981 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1982 InstructionList.push_back(I); 1983 break; 1984 } 1985 1986 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1987 // obsolete form of select 1988 // handles select i1 ... in old bitcode 1989 unsigned OpNum = 0; 1990 Value *TrueVal, *FalseVal, *Cond; 1991 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1992 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1993 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1994 return Error("Invalid SELECT record"); 1995 1996 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1997 InstructionList.push_back(I); 1998 break; 1999 } 2000 2001 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2002 // new form of select 2003 // handles select i1 or select [N x i1] 2004 unsigned OpNum = 0; 2005 Value *TrueVal, *FalseVal, *Cond; 2006 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2007 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2008 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2009 return Error("Invalid SELECT record"); 2010 2011 // select condition can be either i1 or [N x i1] 2012 if (const VectorType* vector_type = 2013 dyn_cast<const VectorType>(Cond->getType())) { 2014 // expect <n x i1> 2015 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2016 return Error("Invalid SELECT condition type"); 2017 } else { 2018 // expect i1 2019 if (Cond->getType() != Type::getInt1Ty(Context)) 2020 return Error("Invalid SELECT condition type"); 2021 } 2022 2023 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2024 InstructionList.push_back(I); 2025 break; 2026 } 2027 2028 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2029 unsigned OpNum = 0; 2030 Value *Vec, *Idx; 2031 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2032 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2033 return Error("Invalid EXTRACTELT record"); 2034 I = ExtractElementInst::Create(Vec, Idx); 2035 InstructionList.push_back(I); 2036 break; 2037 } 2038 2039 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2040 unsigned OpNum = 0; 2041 Value *Vec, *Elt, *Idx; 2042 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2043 getValue(Record, OpNum, 2044 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2045 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2046 return Error("Invalid INSERTELT record"); 2047 I = InsertElementInst::Create(Vec, Elt, Idx); 2048 InstructionList.push_back(I); 2049 break; 2050 } 2051 2052 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2053 unsigned OpNum = 0; 2054 Value *Vec1, *Vec2, *Mask; 2055 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2056 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2057 return Error("Invalid SHUFFLEVEC record"); 2058 2059 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2060 return Error("Invalid SHUFFLEVEC record"); 2061 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2062 InstructionList.push_back(I); 2063 break; 2064 } 2065 2066 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2067 // Old form of ICmp/FCmp returning bool 2068 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2069 // both legal on vectors but had different behaviour. 2070 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2071 // FCmp/ICmp returning bool or vector of bool 2072 2073 unsigned OpNum = 0; 2074 Value *LHS, *RHS; 2075 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2076 getValue(Record, OpNum, LHS->getType(), RHS) || 2077 OpNum+1 != Record.size()) 2078 return Error("Invalid CMP record"); 2079 2080 if (LHS->getType()->isFPOrFPVectorTy()) 2081 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2082 else 2083 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2084 InstructionList.push_back(I); 2085 break; 2086 } 2087 2088 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2089 { 2090 unsigned Size = Record.size(); 2091 if (Size == 0) { 2092 I = ReturnInst::Create(Context); 2093 InstructionList.push_back(I); 2094 break; 2095 } 2096 2097 unsigned OpNum = 0; 2098 Value *Op = NULL; 2099 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2100 return Error("Invalid RET record"); 2101 if (OpNum != Record.size()) 2102 return Error("Invalid RET record"); 2103 2104 I = ReturnInst::Create(Context, Op); 2105 InstructionList.push_back(I); 2106 break; 2107 } 2108 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2109 if (Record.size() != 1 && Record.size() != 3) 2110 return Error("Invalid BR record"); 2111 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2112 if (TrueDest == 0) 2113 return Error("Invalid BR record"); 2114 2115 if (Record.size() == 1) { 2116 I = BranchInst::Create(TrueDest); 2117 InstructionList.push_back(I); 2118 } 2119 else { 2120 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2121 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2122 if (FalseDest == 0 || Cond == 0) 2123 return Error("Invalid BR record"); 2124 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2125 InstructionList.push_back(I); 2126 } 2127 break; 2128 } 2129 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2130 if (Record.size() < 3 || (Record.size() & 1) == 0) 2131 return Error("Invalid SWITCH record"); 2132 const Type *OpTy = getTypeByID(Record[0]); 2133 Value *Cond = getFnValueByID(Record[1], OpTy); 2134 BasicBlock *Default = getBasicBlock(Record[2]); 2135 if (OpTy == 0 || Cond == 0 || Default == 0) 2136 return Error("Invalid SWITCH record"); 2137 unsigned NumCases = (Record.size()-3)/2; 2138 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2139 InstructionList.push_back(SI); 2140 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2141 ConstantInt *CaseVal = 2142 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2143 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2144 if (CaseVal == 0 || DestBB == 0) { 2145 delete SI; 2146 return Error("Invalid SWITCH record!"); 2147 } 2148 SI->addCase(CaseVal, DestBB); 2149 } 2150 I = SI; 2151 break; 2152 } 2153 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2154 if (Record.size() < 2) 2155 return Error("Invalid INDIRECTBR record"); 2156 const Type *OpTy = getTypeByID(Record[0]); 2157 Value *Address = getFnValueByID(Record[1], OpTy); 2158 if (OpTy == 0 || Address == 0) 2159 return Error("Invalid INDIRECTBR record"); 2160 unsigned NumDests = Record.size()-2; 2161 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2162 InstructionList.push_back(IBI); 2163 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2164 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2165 IBI->addDestination(DestBB); 2166 } else { 2167 delete IBI; 2168 return Error("Invalid INDIRECTBR record!"); 2169 } 2170 } 2171 I = IBI; 2172 break; 2173 } 2174 2175 case bitc::FUNC_CODE_INST_INVOKE: { 2176 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2177 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2178 AttrListPtr PAL = getAttributes(Record[0]); 2179 unsigned CCInfo = Record[1]; 2180 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2181 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2182 2183 unsigned OpNum = 4; 2184 Value *Callee; 2185 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2186 return Error("Invalid INVOKE record"); 2187 2188 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2189 const FunctionType *FTy = !CalleeTy ? 0 : 2190 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2191 2192 // Check that the right number of fixed parameters are here. 2193 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2194 Record.size() < OpNum+FTy->getNumParams()) 2195 return Error("Invalid INVOKE record"); 2196 2197 SmallVector<Value*, 16> Ops; 2198 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2199 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2200 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2201 } 2202 2203 if (!FTy->isVarArg()) { 2204 if (Record.size() != OpNum) 2205 return Error("Invalid INVOKE record"); 2206 } else { 2207 // Read type/value pairs for varargs params. 2208 while (OpNum != Record.size()) { 2209 Value *Op; 2210 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2211 return Error("Invalid INVOKE record"); 2212 Ops.push_back(Op); 2213 } 2214 } 2215 2216 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2217 Ops.begin(), Ops.end()); 2218 InstructionList.push_back(I); 2219 cast<InvokeInst>(I)->setCallingConv( 2220 static_cast<CallingConv::ID>(CCInfo)); 2221 cast<InvokeInst>(I)->setAttributes(PAL); 2222 break; 2223 } 2224 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2225 I = new UnwindInst(Context); 2226 InstructionList.push_back(I); 2227 break; 2228 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2229 I = new UnreachableInst(Context); 2230 InstructionList.push_back(I); 2231 break; 2232 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2233 if (Record.size() < 1 || ((Record.size()-1)&1)) 2234 return Error("Invalid PHI record"); 2235 const Type *Ty = getTypeByID(Record[0]); 2236 if (!Ty) return Error("Invalid PHI record"); 2237 2238 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2239 InstructionList.push_back(PN); 2240 2241 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2242 Value *V = getFnValueByID(Record[1+i], Ty); 2243 BasicBlock *BB = getBasicBlock(Record[2+i]); 2244 if (!V || !BB) return Error("Invalid PHI record"); 2245 PN->addIncoming(V, BB); 2246 } 2247 I = PN; 2248 break; 2249 } 2250 2251 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2252 if (Record.size() != 4) 2253 return Error("Invalid ALLOCA record"); 2254 const PointerType *Ty = 2255 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2256 const Type *OpTy = getTypeByID(Record[1]); 2257 Value *Size = getFnValueByID(Record[2], OpTy); 2258 unsigned Align = Record[3]; 2259 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2260 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2261 InstructionList.push_back(I); 2262 break; 2263 } 2264 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2265 unsigned OpNum = 0; 2266 Value *Op; 2267 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2268 OpNum+2 != Record.size()) 2269 return Error("Invalid LOAD record"); 2270 2271 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2272 InstructionList.push_back(I); 2273 break; 2274 } 2275 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2276 unsigned OpNum = 0; 2277 Value *Val, *Ptr; 2278 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2279 getValue(Record, OpNum, 2280 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2281 OpNum+2 != Record.size()) 2282 return Error("Invalid STORE record"); 2283 2284 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2285 InstructionList.push_back(I); 2286 break; 2287 } 2288 case bitc::FUNC_CODE_INST_CALL: { 2289 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2290 if (Record.size() < 3) 2291 return Error("Invalid CALL record"); 2292 2293 AttrListPtr PAL = getAttributes(Record[0]); 2294 unsigned CCInfo = Record[1]; 2295 2296 unsigned OpNum = 2; 2297 Value *Callee; 2298 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2299 return Error("Invalid CALL record"); 2300 2301 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2302 const FunctionType *FTy = 0; 2303 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2304 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2305 return Error("Invalid CALL record"); 2306 2307 SmallVector<Value*, 16> Args; 2308 // Read the fixed params. 2309 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2310 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2311 Args.push_back(getBasicBlock(Record[OpNum])); 2312 else 2313 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2314 if (Args.back() == 0) return Error("Invalid CALL record"); 2315 } 2316 2317 // Read type/value pairs for varargs params. 2318 if (!FTy->isVarArg()) { 2319 if (OpNum != Record.size()) 2320 return Error("Invalid CALL record"); 2321 } else { 2322 while (OpNum != Record.size()) { 2323 Value *Op; 2324 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2325 return Error("Invalid CALL record"); 2326 Args.push_back(Op); 2327 } 2328 } 2329 2330 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2331 InstructionList.push_back(I); 2332 cast<CallInst>(I)->setCallingConv( 2333 static_cast<CallingConv::ID>(CCInfo>>1)); 2334 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2335 cast<CallInst>(I)->setAttributes(PAL); 2336 break; 2337 } 2338 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2339 if (Record.size() < 3) 2340 return Error("Invalid VAARG record"); 2341 const Type *OpTy = getTypeByID(Record[0]); 2342 Value *Op = getFnValueByID(Record[1], OpTy); 2343 const Type *ResTy = getTypeByID(Record[2]); 2344 if (!OpTy || !Op || !ResTy) 2345 return Error("Invalid VAARG record"); 2346 I = new VAArgInst(Op, ResTy); 2347 InstructionList.push_back(I); 2348 break; 2349 } 2350 } 2351 2352 // Add instruction to end of current BB. If there is no current BB, reject 2353 // this file. 2354 if (CurBB == 0) { 2355 delete I; 2356 return Error("Invalid instruction with no BB"); 2357 } 2358 CurBB->getInstList().push_back(I); 2359 2360 // If this was a terminator instruction, move to the next block. 2361 if (isa<TerminatorInst>(I)) { 2362 ++CurBBNo; 2363 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2364 } 2365 2366 // Non-void values get registered in the value table for future use. 2367 if (I && !I->getType()->isVoidTy()) 2368 ValueList.AssignValue(I, NextValueNo++); 2369 } 2370 2371 // Check the function list for unresolved values. 2372 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2373 if (A->getParent() == 0) { 2374 // We found at least one unresolved value. Nuke them all to avoid leaks. 2375 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2376 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2377 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2378 delete A; 2379 } 2380 } 2381 return Error("Never resolved value found in function!"); 2382 } 2383 } 2384 2385 // FIXME: Check for unresolved forward-declared metadata references 2386 // and clean up leaks. 2387 2388 // See if anything took the address of blocks in this function. If so, 2389 // resolve them now. 2390 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2391 BlockAddrFwdRefs.find(F); 2392 if (BAFRI != BlockAddrFwdRefs.end()) { 2393 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2394 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2395 unsigned BlockIdx = RefList[i].first; 2396 if (BlockIdx >= FunctionBBs.size()) 2397 return Error("Invalid blockaddress block #"); 2398 2399 GlobalVariable *FwdRef = RefList[i].second; 2400 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2401 FwdRef->eraseFromParent(); 2402 } 2403 2404 BlockAddrFwdRefs.erase(BAFRI); 2405 } 2406 2407 // Trim the value list down to the size it was before we parsed this function. 2408 ValueList.shrinkTo(ModuleValueListSize); 2409 MDValueList.shrinkTo(ModuleMDValueListSize); 2410 std::vector<BasicBlock*>().swap(FunctionBBs); 2411 return false; 2412 } 2413 2414 //===----------------------------------------------------------------------===// 2415 // GVMaterializer implementation 2416 //===----------------------------------------------------------------------===// 2417 2418 2419 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2420 if (const Function *F = dyn_cast<Function>(GV)) { 2421 return F->isDeclaration() && 2422 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2423 } 2424 return false; 2425 } 2426 2427 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2428 Function *F = dyn_cast<Function>(GV); 2429 // If it's not a function or is already material, ignore the request. 2430 if (!F || !F->isMaterializable()) return false; 2431 2432 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2433 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2434 2435 // Move the bit stream to the saved position of the deferred function body. 2436 Stream.JumpToBit(DFII->second); 2437 2438 if (ParseFunctionBody(F)) { 2439 if (ErrInfo) *ErrInfo = ErrorString; 2440 return true; 2441 } 2442 2443 // Upgrade any old intrinsic calls in the function. 2444 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2445 E = UpgradedIntrinsics.end(); I != E; ++I) { 2446 if (I->first != I->second) { 2447 for (Value::use_iterator UI = I->first->use_begin(), 2448 UE = I->first->use_end(); UI != UE; ) { 2449 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2450 UpgradeIntrinsicCall(CI, I->second); 2451 } 2452 } 2453 } 2454 2455 return false; 2456 } 2457 2458 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2459 const Function *F = dyn_cast<Function>(GV); 2460 if (!F || F->isDeclaration()) 2461 return false; 2462 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2463 } 2464 2465 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2466 Function *F = dyn_cast<Function>(GV); 2467 // If this function isn't dematerializable, this is a noop. 2468 if (!F || !isDematerializable(F)) 2469 return; 2470 2471 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2472 2473 // Just forget the function body, we can remat it later. 2474 F->deleteBody(); 2475 } 2476 2477 2478 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2479 assert(M == TheModule && 2480 "Can only Materialize the Module this BitcodeReader is attached to."); 2481 // Iterate over the module, deserializing any functions that are still on 2482 // disk. 2483 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2484 F != E; ++F) 2485 if (F->isMaterializable() && 2486 Materialize(F, ErrInfo)) 2487 return true; 2488 2489 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2490 // delete the old functions to clean up. We can't do this unless the entire 2491 // module is materialized because there could always be another function body 2492 // with calls to the old function. 2493 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2494 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2495 if (I->first != I->second) { 2496 for (Value::use_iterator UI = I->first->use_begin(), 2497 UE = I->first->use_end(); UI != UE; ) { 2498 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2499 UpgradeIntrinsicCall(CI, I->second); 2500 } 2501 if (!I->first->use_empty()) 2502 I->first->replaceAllUsesWith(I->second); 2503 I->first->eraseFromParent(); 2504 } 2505 } 2506 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2507 2508 // Check debug info intrinsics. 2509 CheckDebugInfoIntrinsics(TheModule); 2510 2511 return false; 2512 } 2513 2514 2515 //===----------------------------------------------------------------------===// 2516 // External interface 2517 //===----------------------------------------------------------------------===// 2518 2519 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2520 /// 2521 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2522 LLVMContext& Context, 2523 std::string *ErrMsg) { 2524 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2525 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2526 M->setMaterializer(R); 2527 if (R->ParseBitcodeInto(M)) { 2528 if (ErrMsg) 2529 *ErrMsg = R->getErrorString(); 2530 2531 delete M; // Also deletes R. 2532 return 0; 2533 } 2534 // Have the BitcodeReader dtor delete 'Buffer'. 2535 R->setBufferOwned(true); 2536 return M; 2537 } 2538 2539 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2540 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2541 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2542 std::string *ErrMsg){ 2543 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2544 if (!M) return 0; 2545 2546 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2547 // there was an error. 2548 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2549 2550 // Read in the entire module, and destroy the BitcodeReader. 2551 if (M->MaterializeAllPermanently(ErrMsg)) { 2552 delete M; 2553 return 0; 2554 } 2555 2556 return M; 2557 } 2558 2559 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2560 LLVMContext& Context, 2561 std::string *ErrMsg) { 2562 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2563 // Don't let the BitcodeReader dtor delete 'Buffer'. 2564 R->setBufferOwned(false); 2565 2566 std::string Triple(""); 2567 if (R->ParseTriple(Triple)) 2568 if (ErrMsg) 2569 *ErrMsg = R->getErrorString(); 2570 2571 delete R; 2572 return Triple; 2573 } 2574