1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<Type*>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 135 switch (Val) { 136 default: return AtomicRMWInst::BAD_BINOP; 137 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 138 case bitc::RMW_ADD: return AtomicRMWInst::Add; 139 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 140 case bitc::RMW_AND: return AtomicRMWInst::And; 141 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 142 case bitc::RMW_OR: return AtomicRMWInst::Or; 143 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 144 case bitc::RMW_MAX: return AtomicRMWInst::Max; 145 case bitc::RMW_MIN: return AtomicRMWInst::Min; 146 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 147 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 148 } 149 } 150 151 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 152 switch (Val) { 153 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 154 case bitc::ORDERING_UNORDERED: return Unordered; 155 case bitc::ORDERING_MONOTONIC: return Monotonic; 156 case bitc::ORDERING_ACQUIRE: return Acquire; 157 case bitc::ORDERING_RELEASE: return Release; 158 case bitc::ORDERING_ACQREL: return AcquireRelease; 159 default: // Map unknown orderings to sequentially-consistent. 160 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 161 } 162 } 163 164 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 165 switch (Val) { 166 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 167 default: // Map unknown scopes to cross-thread. 168 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 169 } 170 } 171 172 namespace llvm { 173 namespace { 174 /// @brief A class for maintaining the slot number definition 175 /// as a placeholder for the actual definition for forward constants defs. 176 class ConstantPlaceHolder : public ConstantExpr { 177 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 178 public: 179 // allocate space for exactly one operand 180 void *operator new(size_t s) { 181 return User::operator new(s, 1); 182 } 183 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 184 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 185 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 186 } 187 188 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 189 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 190 static bool classof(const Value *V) { 191 return isa<ConstantExpr>(V) && 192 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 193 } 194 195 196 /// Provide fast operand accessors 197 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 198 }; 199 } 200 201 // FIXME: can we inherit this from ConstantExpr? 202 template <> 203 struct OperandTraits<ConstantPlaceHolder> : 204 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 205 }; 206 } 207 208 209 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 210 if (Idx == size()) { 211 push_back(V); 212 return; 213 } 214 215 if (Idx >= size()) 216 resize(Idx+1); 217 218 WeakVH &OldV = ValuePtrs[Idx]; 219 if (OldV == 0) { 220 OldV = V; 221 return; 222 } 223 224 // Handle constants and non-constants (e.g. instrs) differently for 225 // efficiency. 226 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 227 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 228 OldV = V; 229 } else { 230 // If there was a forward reference to this value, replace it. 231 Value *PrevVal = OldV; 232 OldV->replaceAllUsesWith(V); 233 delete PrevVal; 234 } 235 } 236 237 238 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 239 Type *Ty) { 240 if (Idx >= size()) 241 resize(Idx + 1); 242 243 if (Value *V = ValuePtrs[Idx]) { 244 assert(Ty == V->getType() && "Type mismatch in constant table!"); 245 return cast<Constant>(V); 246 } 247 248 // Create and return a placeholder, which will later be RAUW'd. 249 Constant *C = new ConstantPlaceHolder(Ty, Context); 250 ValuePtrs[Idx] = C; 251 return C; 252 } 253 254 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 255 if (Idx >= size()) 256 resize(Idx + 1); 257 258 if (Value *V = ValuePtrs[Idx]) { 259 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 260 return V; 261 } 262 263 // No type specified, must be invalid reference. 264 if (Ty == 0) return 0; 265 266 // Create and return a placeholder, which will later be RAUW'd. 267 Value *V = new Argument(Ty); 268 ValuePtrs[Idx] = V; 269 return V; 270 } 271 272 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 273 /// resolves any forward references. The idea behind this is that we sometimes 274 /// get constants (such as large arrays) which reference *many* forward ref 275 /// constants. Replacing each of these causes a lot of thrashing when 276 /// building/reuniquing the constant. Instead of doing this, we look at all the 277 /// uses and rewrite all the place holders at once for any constant that uses 278 /// a placeholder. 279 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 280 // Sort the values by-pointer so that they are efficient to look up with a 281 // binary search. 282 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 283 284 SmallVector<Constant*, 64> NewOps; 285 286 while (!ResolveConstants.empty()) { 287 Value *RealVal = operator[](ResolveConstants.back().second); 288 Constant *Placeholder = ResolveConstants.back().first; 289 ResolveConstants.pop_back(); 290 291 // Loop over all users of the placeholder, updating them to reference the 292 // new value. If they reference more than one placeholder, update them all 293 // at once. 294 while (!Placeholder->use_empty()) { 295 Value::use_iterator UI = Placeholder->use_begin(); 296 User *U = *UI; 297 298 // If the using object isn't uniqued, just update the operands. This 299 // handles instructions and initializers for global variables. 300 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 301 UI.getUse().set(RealVal); 302 continue; 303 } 304 305 // Otherwise, we have a constant that uses the placeholder. Replace that 306 // constant with a new constant that has *all* placeholder uses updated. 307 Constant *UserC = cast<Constant>(U); 308 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 309 I != E; ++I) { 310 Value *NewOp; 311 if (!isa<ConstantPlaceHolder>(*I)) { 312 // Not a placeholder reference. 313 NewOp = *I; 314 } else if (*I == Placeholder) { 315 // Common case is that it just references this one placeholder. 316 NewOp = RealVal; 317 } else { 318 // Otherwise, look up the placeholder in ResolveConstants. 319 ResolveConstantsTy::iterator It = 320 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 321 std::pair<Constant*, unsigned>(cast<Constant>(*I), 322 0)); 323 assert(It != ResolveConstants.end() && It->first == *I); 324 NewOp = operator[](It->second); 325 } 326 327 NewOps.push_back(cast<Constant>(NewOp)); 328 } 329 330 // Make the new constant. 331 Constant *NewC; 332 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 333 NewC = ConstantArray::get(UserCA->getType(), NewOps); 334 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 335 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 336 } else if (isa<ConstantVector>(UserC)) { 337 NewC = ConstantVector::get(NewOps); 338 } else { 339 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 340 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 341 } 342 343 UserC->replaceAllUsesWith(NewC); 344 UserC->destroyConstant(); 345 NewOps.clear(); 346 } 347 348 // Update all ValueHandles, they should be the only users at this point. 349 Placeholder->replaceAllUsesWith(RealVal); 350 delete Placeholder; 351 } 352 } 353 354 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 355 if (Idx == size()) { 356 push_back(V); 357 return; 358 } 359 360 if (Idx >= size()) 361 resize(Idx+1); 362 363 WeakVH &OldV = MDValuePtrs[Idx]; 364 if (OldV == 0) { 365 OldV = V; 366 return; 367 } 368 369 // If there was a forward reference to this value, replace it. 370 MDNode *PrevVal = cast<MDNode>(OldV); 371 OldV->replaceAllUsesWith(V); 372 MDNode::deleteTemporary(PrevVal); 373 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 374 // value for Idx. 375 MDValuePtrs[Idx] = V; 376 } 377 378 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 379 if (Idx >= size()) 380 resize(Idx + 1); 381 382 if (Value *V = MDValuePtrs[Idx]) { 383 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 384 return V; 385 } 386 387 // Create and return a placeholder, which will later be RAUW'd. 388 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); 389 MDValuePtrs[Idx] = V; 390 return V; 391 } 392 393 Type *BitcodeReader::getTypeByID(unsigned ID) { 394 // The type table size is always specified correctly. 395 if (ID >= TypeList.size()) 396 return 0; 397 398 if (Type *Ty = TypeList[ID]) 399 return Ty; 400 401 // If we have a forward reference, the only possible case is when it is to a 402 // named struct. Just create a placeholder for now. 403 return TypeList[ID] = StructType::create(Context); 404 } 405 406 407 //===----------------------------------------------------------------------===// 408 // Functions for parsing blocks from the bitcode file 409 //===----------------------------------------------------------------------===// 410 411 bool BitcodeReader::ParseAttributeBlock() { 412 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 413 return Error("Malformed block record"); 414 415 if (!MAttributes.empty()) 416 return Error("Multiple PARAMATTR blocks found!"); 417 418 SmallVector<uint64_t, 64> Record; 419 420 SmallVector<AttributeWithIndex, 8> Attrs; 421 422 // Read all the records. 423 while (1) { 424 unsigned Code = Stream.ReadCode(); 425 if (Code == bitc::END_BLOCK) { 426 if (Stream.ReadBlockEnd()) 427 return Error("Error at end of PARAMATTR block"); 428 return false; 429 } 430 431 if (Code == bitc::ENTER_SUBBLOCK) { 432 // No known subblocks, always skip them. 433 Stream.ReadSubBlockID(); 434 if (Stream.SkipBlock()) 435 return Error("Malformed block record"); 436 continue; 437 } 438 439 if (Code == bitc::DEFINE_ABBREV) { 440 Stream.ReadAbbrevRecord(); 441 continue; 442 } 443 444 // Read a record. 445 Record.clear(); 446 switch (Stream.ReadRecord(Code, Record)) { 447 default: // Default behavior: ignore. 448 break; 449 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 450 if (Record.size() & 1) 451 return Error("Invalid ENTRY record"); 452 453 // FIXME : Remove this autoupgrade code in LLVM 3.0. 454 // If Function attributes are using index 0 then transfer them 455 // to index ~0. Index 0 is used for return value attributes but used to be 456 // used for function attributes. 457 Attributes RetAttribute = Attribute::None; 458 Attributes FnAttribute = Attribute::None; 459 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 460 // FIXME: remove in LLVM 3.0 461 // The alignment is stored as a 16-bit raw value from bits 31--16. 462 // We shift the bits above 31 down by 11 bits. 463 464 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 465 if (Alignment && !isPowerOf2_32(Alignment)) 466 return Error("Alignment is not a power of two."); 467 468 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 469 if (Alignment) 470 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 471 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 472 Record[i+1] = ReconstitutedAttr; 473 474 if (Record[i] == 0) 475 RetAttribute = Record[i+1]; 476 else if (Record[i] == ~0U) 477 FnAttribute = Record[i+1]; 478 } 479 480 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 481 Attribute::ReadOnly|Attribute::ReadNone); 482 483 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 484 (RetAttribute & OldRetAttrs) != 0) { 485 if (FnAttribute == Attribute::None) { // add a slot so they get added. 486 Record.push_back(~0U); 487 Record.push_back(0); 488 } 489 490 FnAttribute |= RetAttribute & OldRetAttrs; 491 RetAttribute &= ~OldRetAttrs; 492 } 493 494 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 495 if (Record[i] == 0) { 496 if (RetAttribute != Attribute::None) 497 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 498 } else if (Record[i] == ~0U) { 499 if (FnAttribute != Attribute::None) 500 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 501 } else if (Record[i+1] != Attribute::None) 502 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 503 } 504 505 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 506 Attrs.clear(); 507 break; 508 } 509 } 510 } 511 } 512 513 bool BitcodeReader::ParseTypeTable() { 514 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 515 return Error("Malformed block record"); 516 517 return ParseTypeTableBody(); 518 } 519 520 bool BitcodeReader::ParseTypeTableBody() { 521 if (!TypeList.empty()) 522 return Error("Multiple TYPE_BLOCKs found!"); 523 524 SmallVector<uint64_t, 64> Record; 525 unsigned NumRecords = 0; 526 527 SmallString<64> TypeName; 528 529 // Read all the records for this type table. 530 while (1) { 531 unsigned Code = Stream.ReadCode(); 532 if (Code == bitc::END_BLOCK) { 533 if (NumRecords != TypeList.size()) 534 return Error("Invalid type forward reference in TYPE_BLOCK"); 535 if (Stream.ReadBlockEnd()) 536 return Error("Error at end of type table block"); 537 return false; 538 } 539 540 if (Code == bitc::ENTER_SUBBLOCK) { 541 // No known subblocks, always skip them. 542 Stream.ReadSubBlockID(); 543 if (Stream.SkipBlock()) 544 return Error("Malformed block record"); 545 continue; 546 } 547 548 if (Code == bitc::DEFINE_ABBREV) { 549 Stream.ReadAbbrevRecord(); 550 continue; 551 } 552 553 // Read a record. 554 Record.clear(); 555 Type *ResultTy = 0; 556 switch (Stream.ReadRecord(Code, Record)) { 557 default: return Error("unknown type in type table"); 558 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 559 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 560 // type list. This allows us to reserve space. 561 if (Record.size() < 1) 562 return Error("Invalid TYPE_CODE_NUMENTRY record"); 563 TypeList.resize(Record[0]); 564 continue; 565 case bitc::TYPE_CODE_VOID: // VOID 566 ResultTy = Type::getVoidTy(Context); 567 break; 568 case bitc::TYPE_CODE_FLOAT: // FLOAT 569 ResultTy = Type::getFloatTy(Context); 570 break; 571 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 572 ResultTy = Type::getDoubleTy(Context); 573 break; 574 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 575 ResultTy = Type::getX86_FP80Ty(Context); 576 break; 577 case bitc::TYPE_CODE_FP128: // FP128 578 ResultTy = Type::getFP128Ty(Context); 579 break; 580 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 581 ResultTy = Type::getPPC_FP128Ty(Context); 582 break; 583 case bitc::TYPE_CODE_LABEL: // LABEL 584 ResultTy = Type::getLabelTy(Context); 585 break; 586 case bitc::TYPE_CODE_METADATA: // METADATA 587 ResultTy = Type::getMetadataTy(Context); 588 break; 589 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 590 ResultTy = Type::getX86_MMXTy(Context); 591 break; 592 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 593 if (Record.size() < 1) 594 return Error("Invalid Integer type record"); 595 596 ResultTy = IntegerType::get(Context, Record[0]); 597 break; 598 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 599 // [pointee type, address space] 600 if (Record.size() < 1) 601 return Error("Invalid POINTER type record"); 602 unsigned AddressSpace = 0; 603 if (Record.size() == 2) 604 AddressSpace = Record[1]; 605 ResultTy = getTypeByID(Record[0]); 606 if (ResultTy == 0) return Error("invalid element type in pointer type"); 607 ResultTy = PointerType::get(ResultTy, AddressSpace); 608 break; 609 } 610 case bitc::TYPE_CODE_FUNCTION_OLD: { 611 // FIXME: attrid is dead, remove it in LLVM 3.0 612 // FUNCTION: [vararg, attrid, retty, paramty x N] 613 if (Record.size() < 3) 614 return Error("Invalid FUNCTION type record"); 615 std::vector<Type*> ArgTys; 616 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 617 if (Type *T = getTypeByID(Record[i])) 618 ArgTys.push_back(T); 619 else 620 break; 621 } 622 623 ResultTy = getTypeByID(Record[2]); 624 if (ResultTy == 0 || ArgTys.size() < Record.size()-3) 625 return Error("invalid type in function type"); 626 627 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 628 break; 629 } 630 case bitc::TYPE_CODE_FUNCTION: { 631 // FUNCTION: [vararg, retty, paramty x N] 632 if (Record.size() < 2) 633 return Error("Invalid FUNCTION type record"); 634 std::vector<Type*> ArgTys; 635 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 636 if (Type *T = getTypeByID(Record[i])) 637 ArgTys.push_back(T); 638 else 639 break; 640 } 641 642 ResultTy = getTypeByID(Record[1]); 643 if (ResultTy == 0 || ArgTys.size() < Record.size()-2) 644 return Error("invalid type in function type"); 645 646 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 647 break; 648 } 649 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 650 if (Record.size() < 1) 651 return Error("Invalid STRUCT type record"); 652 std::vector<Type*> EltTys; 653 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 654 if (Type *T = getTypeByID(Record[i])) 655 EltTys.push_back(T); 656 else 657 break; 658 } 659 if (EltTys.size() != Record.size()-1) 660 return Error("invalid type in struct type"); 661 ResultTy = StructType::get(Context, EltTys, Record[0]); 662 break; 663 } 664 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 665 if (ConvertToString(Record, 0, TypeName)) 666 return Error("Invalid STRUCT_NAME record"); 667 continue; 668 669 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 670 if (Record.size() < 1) 671 return Error("Invalid STRUCT type record"); 672 673 if (NumRecords >= TypeList.size()) 674 return Error("invalid TYPE table"); 675 676 // Check to see if this was forward referenced, if so fill in the temp. 677 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 678 if (Res) { 679 Res->setName(TypeName); 680 TypeList[NumRecords] = 0; 681 } else // Otherwise, create a new struct. 682 Res = StructType::create(Context, TypeName); 683 TypeName.clear(); 684 685 SmallVector<Type*, 8> EltTys; 686 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 687 if (Type *T = getTypeByID(Record[i])) 688 EltTys.push_back(T); 689 else 690 break; 691 } 692 if (EltTys.size() != Record.size()-1) 693 return Error("invalid STRUCT type record"); 694 Res->setBody(EltTys, Record[0]); 695 ResultTy = Res; 696 break; 697 } 698 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 699 if (Record.size() != 1) 700 return Error("Invalid OPAQUE type record"); 701 702 if (NumRecords >= TypeList.size()) 703 return Error("invalid TYPE table"); 704 705 // Check to see if this was forward referenced, if so fill in the temp. 706 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 707 if (Res) { 708 Res->setName(TypeName); 709 TypeList[NumRecords] = 0; 710 } else // Otherwise, create a new struct with no body. 711 Res = StructType::create(Context, TypeName); 712 TypeName.clear(); 713 ResultTy = Res; 714 break; 715 } 716 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 717 if (Record.size() < 2) 718 return Error("Invalid ARRAY type record"); 719 if ((ResultTy = getTypeByID(Record[1]))) 720 ResultTy = ArrayType::get(ResultTy, Record[0]); 721 else 722 return Error("Invalid ARRAY type element"); 723 break; 724 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 725 if (Record.size() < 2) 726 return Error("Invalid VECTOR type record"); 727 if ((ResultTy = getTypeByID(Record[1]))) 728 ResultTy = VectorType::get(ResultTy, Record[0]); 729 else 730 return Error("Invalid ARRAY type element"); 731 break; 732 } 733 734 if (NumRecords >= TypeList.size()) 735 return Error("invalid TYPE table"); 736 assert(ResultTy && "Didn't read a type?"); 737 assert(TypeList[NumRecords] == 0 && "Already read type?"); 738 TypeList[NumRecords++] = ResultTy; 739 } 740 } 741 742 bool BitcodeReader::ParseValueSymbolTable() { 743 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 744 return Error("Malformed block record"); 745 746 SmallVector<uint64_t, 64> Record; 747 748 // Read all the records for this value table. 749 SmallString<128> ValueName; 750 while (1) { 751 unsigned Code = Stream.ReadCode(); 752 if (Code == bitc::END_BLOCK) { 753 if (Stream.ReadBlockEnd()) 754 return Error("Error at end of value symbol table block"); 755 return false; 756 } 757 if (Code == bitc::ENTER_SUBBLOCK) { 758 // No known subblocks, always skip them. 759 Stream.ReadSubBlockID(); 760 if (Stream.SkipBlock()) 761 return Error("Malformed block record"); 762 continue; 763 } 764 765 if (Code == bitc::DEFINE_ABBREV) { 766 Stream.ReadAbbrevRecord(); 767 continue; 768 } 769 770 // Read a record. 771 Record.clear(); 772 switch (Stream.ReadRecord(Code, Record)) { 773 default: // Default behavior: unknown type. 774 break; 775 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 776 if (ConvertToString(Record, 1, ValueName)) 777 return Error("Invalid VST_ENTRY record"); 778 unsigned ValueID = Record[0]; 779 if (ValueID >= ValueList.size()) 780 return Error("Invalid Value ID in VST_ENTRY record"); 781 Value *V = ValueList[ValueID]; 782 783 V->setName(StringRef(ValueName.data(), ValueName.size())); 784 ValueName.clear(); 785 break; 786 } 787 case bitc::VST_CODE_BBENTRY: { 788 if (ConvertToString(Record, 1, ValueName)) 789 return Error("Invalid VST_BBENTRY record"); 790 BasicBlock *BB = getBasicBlock(Record[0]); 791 if (BB == 0) 792 return Error("Invalid BB ID in VST_BBENTRY record"); 793 794 BB->setName(StringRef(ValueName.data(), ValueName.size())); 795 ValueName.clear(); 796 break; 797 } 798 } 799 } 800 } 801 802 bool BitcodeReader::ParseMetadata() { 803 unsigned NextMDValueNo = MDValueList.size(); 804 805 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 806 return Error("Malformed block record"); 807 808 SmallVector<uint64_t, 64> Record; 809 810 // Read all the records. 811 while (1) { 812 unsigned Code = Stream.ReadCode(); 813 if (Code == bitc::END_BLOCK) { 814 if (Stream.ReadBlockEnd()) 815 return Error("Error at end of PARAMATTR block"); 816 return false; 817 } 818 819 if (Code == bitc::ENTER_SUBBLOCK) { 820 // No known subblocks, always skip them. 821 Stream.ReadSubBlockID(); 822 if (Stream.SkipBlock()) 823 return Error("Malformed block record"); 824 continue; 825 } 826 827 if (Code == bitc::DEFINE_ABBREV) { 828 Stream.ReadAbbrevRecord(); 829 continue; 830 } 831 832 bool IsFunctionLocal = false; 833 // Read a record. 834 Record.clear(); 835 Code = Stream.ReadRecord(Code, Record); 836 switch (Code) { 837 default: // Default behavior: ignore. 838 break; 839 case bitc::METADATA_NAME: { 840 // Read named of the named metadata. 841 unsigned NameLength = Record.size(); 842 SmallString<8> Name; 843 Name.resize(NameLength); 844 for (unsigned i = 0; i != NameLength; ++i) 845 Name[i] = Record[i]; 846 Record.clear(); 847 Code = Stream.ReadCode(); 848 849 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 850 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 851 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 852 853 // Read named metadata elements. 854 unsigned Size = Record.size(); 855 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 856 for (unsigned i = 0; i != Size; ++i) { 857 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 858 if (MD == 0) 859 return Error("Malformed metadata record"); 860 NMD->addOperand(MD); 861 } 862 break; 863 } 864 case bitc::METADATA_FN_NODE: 865 IsFunctionLocal = true; 866 // fall-through 867 case bitc::METADATA_NODE: { 868 if (Record.size() % 2 == 1) 869 return Error("Invalid METADATA_NODE record"); 870 871 unsigned Size = Record.size(); 872 SmallVector<Value*, 8> Elts; 873 for (unsigned i = 0; i != Size; i += 2) { 874 Type *Ty = getTypeByID(Record[i]); 875 if (!Ty) return Error("Invalid METADATA_NODE record"); 876 if (Ty->isMetadataTy()) 877 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 878 else if (!Ty->isVoidTy()) 879 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 880 else 881 Elts.push_back(NULL); 882 } 883 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 884 IsFunctionLocal = false; 885 MDValueList.AssignValue(V, NextMDValueNo++); 886 break; 887 } 888 case bitc::METADATA_STRING: { 889 unsigned MDStringLength = Record.size(); 890 SmallString<8> String; 891 String.resize(MDStringLength); 892 for (unsigned i = 0; i != MDStringLength; ++i) 893 String[i] = Record[i]; 894 Value *V = MDString::get(Context, 895 StringRef(String.data(), String.size())); 896 MDValueList.AssignValue(V, NextMDValueNo++); 897 break; 898 } 899 case bitc::METADATA_KIND: { 900 unsigned RecordLength = Record.size(); 901 if (Record.empty() || RecordLength < 2) 902 return Error("Invalid METADATA_KIND record"); 903 SmallString<8> Name; 904 Name.resize(RecordLength-1); 905 unsigned Kind = Record[0]; 906 for (unsigned i = 1; i != RecordLength; ++i) 907 Name[i-1] = Record[i]; 908 909 unsigned NewKind = TheModule->getMDKindID(Name.str()); 910 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 911 return Error("Conflicting METADATA_KIND records"); 912 break; 913 } 914 } 915 } 916 } 917 918 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 919 /// the LSB for dense VBR encoding. 920 static uint64_t DecodeSignRotatedValue(uint64_t V) { 921 if ((V & 1) == 0) 922 return V >> 1; 923 if (V != 1) 924 return -(V >> 1); 925 // There is no such thing as -0 with integers. "-0" really means MININT. 926 return 1ULL << 63; 927 } 928 929 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 930 /// values and aliases that we can. 931 bool BitcodeReader::ResolveGlobalAndAliasInits() { 932 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 933 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 934 935 GlobalInitWorklist.swap(GlobalInits); 936 AliasInitWorklist.swap(AliasInits); 937 938 while (!GlobalInitWorklist.empty()) { 939 unsigned ValID = GlobalInitWorklist.back().second; 940 if (ValID >= ValueList.size()) { 941 // Not ready to resolve this yet, it requires something later in the file. 942 GlobalInits.push_back(GlobalInitWorklist.back()); 943 } else { 944 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 945 GlobalInitWorklist.back().first->setInitializer(C); 946 else 947 return Error("Global variable initializer is not a constant!"); 948 } 949 GlobalInitWorklist.pop_back(); 950 } 951 952 while (!AliasInitWorklist.empty()) { 953 unsigned ValID = AliasInitWorklist.back().second; 954 if (ValID >= ValueList.size()) { 955 AliasInits.push_back(AliasInitWorklist.back()); 956 } else { 957 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 958 AliasInitWorklist.back().first->setAliasee(C); 959 else 960 return Error("Alias initializer is not a constant!"); 961 } 962 AliasInitWorklist.pop_back(); 963 } 964 return false; 965 } 966 967 bool BitcodeReader::ParseConstants() { 968 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 969 return Error("Malformed block record"); 970 971 SmallVector<uint64_t, 64> Record; 972 973 // Read all the records for this value table. 974 Type *CurTy = Type::getInt32Ty(Context); 975 unsigned NextCstNo = ValueList.size(); 976 while (1) { 977 unsigned Code = Stream.ReadCode(); 978 if (Code == bitc::END_BLOCK) 979 break; 980 981 if (Code == bitc::ENTER_SUBBLOCK) { 982 // No known subblocks, always skip them. 983 Stream.ReadSubBlockID(); 984 if (Stream.SkipBlock()) 985 return Error("Malformed block record"); 986 continue; 987 } 988 989 if (Code == bitc::DEFINE_ABBREV) { 990 Stream.ReadAbbrevRecord(); 991 continue; 992 } 993 994 // Read a record. 995 Record.clear(); 996 Value *V = 0; 997 unsigned BitCode = Stream.ReadRecord(Code, Record); 998 switch (BitCode) { 999 default: // Default behavior: unknown constant 1000 case bitc::CST_CODE_UNDEF: // UNDEF 1001 V = UndefValue::get(CurTy); 1002 break; 1003 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1004 if (Record.empty()) 1005 return Error("Malformed CST_SETTYPE record"); 1006 if (Record[0] >= TypeList.size()) 1007 return Error("Invalid Type ID in CST_SETTYPE record"); 1008 CurTy = TypeList[Record[0]]; 1009 continue; // Skip the ValueList manipulation. 1010 case bitc::CST_CODE_NULL: // NULL 1011 V = Constant::getNullValue(CurTy); 1012 break; 1013 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1014 if (!CurTy->isIntegerTy() || Record.empty()) 1015 return Error("Invalid CST_INTEGER record"); 1016 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 1017 break; 1018 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1019 if (!CurTy->isIntegerTy() || Record.empty()) 1020 return Error("Invalid WIDE_INTEGER record"); 1021 1022 unsigned NumWords = Record.size(); 1023 SmallVector<uint64_t, 8> Words; 1024 Words.resize(NumWords); 1025 for (unsigned i = 0; i != NumWords; ++i) 1026 Words[i] = DecodeSignRotatedValue(Record[i]); 1027 V = ConstantInt::get(Context, 1028 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 1029 Words)); 1030 break; 1031 } 1032 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1033 if (Record.empty()) 1034 return Error("Invalid FLOAT record"); 1035 if (CurTy->isFloatTy()) 1036 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 1037 else if (CurTy->isDoubleTy()) 1038 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 1039 else if (CurTy->isX86_FP80Ty()) { 1040 // Bits are not stored the same way as a normal i80 APInt, compensate. 1041 uint64_t Rearrange[2]; 1042 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1043 Rearrange[1] = Record[0] >> 48; 1044 V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange))); 1045 } else if (CurTy->isFP128Ty()) 1046 V = ConstantFP::get(Context, APFloat(APInt(128, Record), true)); 1047 else if (CurTy->isPPC_FP128Ty()) 1048 V = ConstantFP::get(Context, APFloat(APInt(128, Record))); 1049 else 1050 V = UndefValue::get(CurTy); 1051 break; 1052 } 1053 1054 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1055 if (Record.empty()) 1056 return Error("Invalid CST_AGGREGATE record"); 1057 1058 unsigned Size = Record.size(); 1059 std::vector<Constant*> Elts; 1060 1061 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1062 for (unsigned i = 0; i != Size; ++i) 1063 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1064 STy->getElementType(i))); 1065 V = ConstantStruct::get(STy, Elts); 1066 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1067 Type *EltTy = ATy->getElementType(); 1068 for (unsigned i = 0; i != Size; ++i) 1069 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1070 V = ConstantArray::get(ATy, Elts); 1071 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1072 Type *EltTy = VTy->getElementType(); 1073 for (unsigned i = 0; i != Size; ++i) 1074 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1075 V = ConstantVector::get(Elts); 1076 } else { 1077 V = UndefValue::get(CurTy); 1078 } 1079 break; 1080 } 1081 case bitc::CST_CODE_STRING: { // STRING: [values] 1082 if (Record.empty()) 1083 return Error("Invalid CST_AGGREGATE record"); 1084 1085 ArrayType *ATy = cast<ArrayType>(CurTy); 1086 Type *EltTy = ATy->getElementType(); 1087 1088 unsigned Size = Record.size(); 1089 std::vector<Constant*> Elts; 1090 for (unsigned i = 0; i != Size; ++i) 1091 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1092 V = ConstantArray::get(ATy, Elts); 1093 break; 1094 } 1095 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1096 if (Record.empty()) 1097 return Error("Invalid CST_AGGREGATE record"); 1098 1099 ArrayType *ATy = cast<ArrayType>(CurTy); 1100 Type *EltTy = ATy->getElementType(); 1101 1102 unsigned Size = Record.size(); 1103 std::vector<Constant*> Elts; 1104 for (unsigned i = 0; i != Size; ++i) 1105 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1106 Elts.push_back(Constant::getNullValue(EltTy)); 1107 V = ConstantArray::get(ATy, Elts); 1108 break; 1109 } 1110 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1111 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1112 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1113 if (Opc < 0) { 1114 V = UndefValue::get(CurTy); // Unknown binop. 1115 } else { 1116 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1117 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1118 unsigned Flags = 0; 1119 if (Record.size() >= 4) { 1120 if (Opc == Instruction::Add || 1121 Opc == Instruction::Sub || 1122 Opc == Instruction::Mul || 1123 Opc == Instruction::Shl) { 1124 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1125 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1126 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1127 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1128 } else if (Opc == Instruction::SDiv || 1129 Opc == Instruction::UDiv || 1130 Opc == Instruction::LShr || 1131 Opc == Instruction::AShr) { 1132 if (Record[3] & (1 << bitc::PEO_EXACT)) 1133 Flags |= SDivOperator::IsExact; 1134 } 1135 } 1136 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1137 } 1138 break; 1139 } 1140 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1141 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1142 int Opc = GetDecodedCastOpcode(Record[0]); 1143 if (Opc < 0) { 1144 V = UndefValue::get(CurTy); // Unknown cast. 1145 } else { 1146 Type *OpTy = getTypeByID(Record[1]); 1147 if (!OpTy) return Error("Invalid CE_CAST record"); 1148 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1149 V = ConstantExpr::getCast(Opc, Op, CurTy); 1150 } 1151 break; 1152 } 1153 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1154 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1155 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1156 SmallVector<Constant*, 16> Elts; 1157 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1158 Type *ElTy = getTypeByID(Record[i]); 1159 if (!ElTy) return Error("Invalid CE_GEP record"); 1160 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1161 } 1162 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1163 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1164 BitCode == 1165 bitc::CST_CODE_CE_INBOUNDS_GEP); 1166 break; 1167 } 1168 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1169 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1170 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1171 Type::getInt1Ty(Context)), 1172 ValueList.getConstantFwdRef(Record[1],CurTy), 1173 ValueList.getConstantFwdRef(Record[2],CurTy)); 1174 break; 1175 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1176 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1177 VectorType *OpTy = 1178 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1179 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1180 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1181 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1182 V = ConstantExpr::getExtractElement(Op0, Op1); 1183 break; 1184 } 1185 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1186 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1187 if (Record.size() < 3 || OpTy == 0) 1188 return Error("Invalid CE_INSERTELT record"); 1189 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1190 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1191 OpTy->getElementType()); 1192 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1193 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1194 break; 1195 } 1196 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1197 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1198 if (Record.size() < 3 || OpTy == 0) 1199 return Error("Invalid CE_SHUFFLEVEC record"); 1200 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1201 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1202 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1203 OpTy->getNumElements()); 1204 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1205 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1206 break; 1207 } 1208 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1209 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1210 VectorType *OpTy = 1211 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1212 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1213 return Error("Invalid CE_SHUFVEC_EX record"); 1214 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1215 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1216 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1217 RTy->getNumElements()); 1218 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1219 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1220 break; 1221 } 1222 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1223 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1224 Type *OpTy = getTypeByID(Record[0]); 1225 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1226 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1227 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1228 1229 if (OpTy->isFPOrFPVectorTy()) 1230 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1231 else 1232 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1233 break; 1234 } 1235 case bitc::CST_CODE_INLINEASM: { 1236 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1237 std::string AsmStr, ConstrStr; 1238 bool HasSideEffects = Record[0] & 1; 1239 bool IsAlignStack = Record[0] >> 1; 1240 unsigned AsmStrSize = Record[1]; 1241 if (2+AsmStrSize >= Record.size()) 1242 return Error("Invalid INLINEASM record"); 1243 unsigned ConstStrSize = Record[2+AsmStrSize]; 1244 if (3+AsmStrSize+ConstStrSize > Record.size()) 1245 return Error("Invalid INLINEASM record"); 1246 1247 for (unsigned i = 0; i != AsmStrSize; ++i) 1248 AsmStr += (char)Record[2+i]; 1249 for (unsigned i = 0; i != ConstStrSize; ++i) 1250 ConstrStr += (char)Record[3+AsmStrSize+i]; 1251 PointerType *PTy = cast<PointerType>(CurTy); 1252 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1253 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1254 break; 1255 } 1256 case bitc::CST_CODE_BLOCKADDRESS:{ 1257 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1258 Type *FnTy = getTypeByID(Record[0]); 1259 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1260 Function *Fn = 1261 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1262 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1263 1264 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1265 Type::getInt8Ty(Context), 1266 false, GlobalValue::InternalLinkage, 1267 0, ""); 1268 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1269 V = FwdRef; 1270 break; 1271 } 1272 } 1273 1274 ValueList.AssignValue(V, NextCstNo); 1275 ++NextCstNo; 1276 } 1277 1278 if (NextCstNo != ValueList.size()) 1279 return Error("Invalid constant reference!"); 1280 1281 if (Stream.ReadBlockEnd()) 1282 return Error("Error at end of constants block"); 1283 1284 // Once all the constants have been read, go through and resolve forward 1285 // references. 1286 ValueList.ResolveConstantForwardRefs(); 1287 return false; 1288 } 1289 1290 bool BitcodeReader::ParseUseLists() { 1291 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1292 return Error("Malformed block record"); 1293 1294 SmallVector<uint64_t, 64> Record; 1295 1296 // Read all the records. 1297 while (1) { 1298 unsigned Code = Stream.ReadCode(); 1299 if (Code == bitc::END_BLOCK) { 1300 if (Stream.ReadBlockEnd()) 1301 return Error("Error at end of use-list table block"); 1302 return false; 1303 } 1304 1305 if (Code == bitc::ENTER_SUBBLOCK) { 1306 // No known subblocks, always skip them. 1307 Stream.ReadSubBlockID(); 1308 if (Stream.SkipBlock()) 1309 return Error("Malformed block record"); 1310 continue; 1311 } 1312 1313 if (Code == bitc::DEFINE_ABBREV) { 1314 Stream.ReadAbbrevRecord(); 1315 continue; 1316 } 1317 1318 // Read a use list record. 1319 Record.clear(); 1320 switch (Stream.ReadRecord(Code, Record)) { 1321 default: // Default behavior: unknown type. 1322 break; 1323 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1324 unsigned RecordLength = Record.size(); 1325 if (RecordLength < 1) 1326 return Error ("Invalid UseList reader!"); 1327 UseListRecords.push_back(Record); 1328 break; 1329 } 1330 } 1331 } 1332 } 1333 1334 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1335 /// remember where it is and then skip it. This lets us lazily deserialize the 1336 /// functions. 1337 bool BitcodeReader::RememberAndSkipFunctionBody() { 1338 // Get the function we are talking about. 1339 if (FunctionsWithBodies.empty()) 1340 return Error("Insufficient function protos"); 1341 1342 Function *Fn = FunctionsWithBodies.back(); 1343 FunctionsWithBodies.pop_back(); 1344 1345 // Save the current stream state. 1346 uint64_t CurBit = Stream.GetCurrentBitNo(); 1347 DeferredFunctionInfo[Fn] = CurBit; 1348 1349 // Skip over the function block for now. 1350 if (Stream.SkipBlock()) 1351 return Error("Malformed block record"); 1352 return false; 1353 } 1354 1355 bool BitcodeReader::ParseModule() { 1356 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1357 return Error("Malformed block record"); 1358 1359 SmallVector<uint64_t, 64> Record; 1360 std::vector<std::string> SectionTable; 1361 std::vector<std::string> GCTable; 1362 1363 // Read all the records for this module. 1364 while (!Stream.AtEndOfStream()) { 1365 unsigned Code = Stream.ReadCode(); 1366 if (Code == bitc::END_BLOCK) { 1367 if (Stream.ReadBlockEnd()) 1368 return Error("Error at end of module block"); 1369 1370 // Patch the initializers for globals and aliases up. 1371 ResolveGlobalAndAliasInits(); 1372 if (!GlobalInits.empty() || !AliasInits.empty()) 1373 return Error("Malformed global initializer set"); 1374 if (!FunctionsWithBodies.empty()) 1375 return Error("Too few function bodies found"); 1376 1377 // Look for intrinsic functions which need to be upgraded at some point 1378 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1379 FI != FE; ++FI) { 1380 Function* NewFn; 1381 if (UpgradeIntrinsicFunction(FI, NewFn)) 1382 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1383 } 1384 1385 // Look for global variables which need to be renamed. 1386 for (Module::global_iterator 1387 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1388 GI != GE; ++GI) 1389 UpgradeGlobalVariable(GI); 1390 1391 // Force deallocation of memory for these vectors to favor the client that 1392 // want lazy deserialization. 1393 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1394 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1395 std::vector<Function*>().swap(FunctionsWithBodies); 1396 return false; 1397 } 1398 1399 if (Code == bitc::ENTER_SUBBLOCK) { 1400 switch (Stream.ReadSubBlockID()) { 1401 default: // Skip unknown content. 1402 if (Stream.SkipBlock()) 1403 return Error("Malformed block record"); 1404 break; 1405 case bitc::BLOCKINFO_BLOCK_ID: 1406 if (Stream.ReadBlockInfoBlock()) 1407 return Error("Malformed BlockInfoBlock"); 1408 break; 1409 case bitc::PARAMATTR_BLOCK_ID: 1410 if (ParseAttributeBlock()) 1411 return true; 1412 break; 1413 case bitc::TYPE_BLOCK_ID_NEW: 1414 if (ParseTypeTable()) 1415 return true; 1416 break; 1417 case bitc::VALUE_SYMTAB_BLOCK_ID: 1418 if (ParseValueSymbolTable()) 1419 return true; 1420 break; 1421 case bitc::CONSTANTS_BLOCK_ID: 1422 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1423 return true; 1424 break; 1425 case bitc::METADATA_BLOCK_ID: 1426 if (ParseMetadata()) 1427 return true; 1428 break; 1429 case bitc::FUNCTION_BLOCK_ID: 1430 // If this is the first function body we've seen, reverse the 1431 // FunctionsWithBodies list. 1432 if (!HasReversedFunctionsWithBodies) { 1433 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1434 HasReversedFunctionsWithBodies = true; 1435 } 1436 1437 if (RememberAndSkipFunctionBody()) 1438 return true; 1439 break; 1440 case bitc::USELIST_BLOCK_ID: 1441 if (ParseUseLists()) 1442 return true; 1443 break; 1444 } 1445 continue; 1446 } 1447 1448 if (Code == bitc::DEFINE_ABBREV) { 1449 Stream.ReadAbbrevRecord(); 1450 continue; 1451 } 1452 1453 // Read a record. 1454 switch (Stream.ReadRecord(Code, Record)) { 1455 default: break; // Default behavior, ignore unknown content. 1456 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1457 if (Record.size() < 1) 1458 return Error("Malformed MODULE_CODE_VERSION"); 1459 // Only version #0 is supported so far. 1460 if (Record[0] != 0) 1461 return Error("Unknown bitstream version!"); 1462 break; 1463 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1464 std::string S; 1465 if (ConvertToString(Record, 0, S)) 1466 return Error("Invalid MODULE_CODE_TRIPLE record"); 1467 TheModule->setTargetTriple(S); 1468 break; 1469 } 1470 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1471 std::string S; 1472 if (ConvertToString(Record, 0, S)) 1473 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1474 TheModule->setDataLayout(S); 1475 break; 1476 } 1477 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1478 std::string S; 1479 if (ConvertToString(Record, 0, S)) 1480 return Error("Invalid MODULE_CODE_ASM record"); 1481 TheModule->setModuleInlineAsm(S); 1482 break; 1483 } 1484 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1485 std::string S; 1486 if (ConvertToString(Record, 0, S)) 1487 return Error("Invalid MODULE_CODE_DEPLIB record"); 1488 TheModule->addLibrary(S); 1489 break; 1490 } 1491 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1492 std::string S; 1493 if (ConvertToString(Record, 0, S)) 1494 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1495 SectionTable.push_back(S); 1496 break; 1497 } 1498 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1499 std::string S; 1500 if (ConvertToString(Record, 0, S)) 1501 return Error("Invalid MODULE_CODE_GCNAME record"); 1502 GCTable.push_back(S); 1503 break; 1504 } 1505 // GLOBALVAR: [pointer type, isconst, initid, 1506 // linkage, alignment, section, visibility, threadlocal, 1507 // unnamed_addr] 1508 case bitc::MODULE_CODE_GLOBALVAR: { 1509 if (Record.size() < 6) 1510 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1511 Type *Ty = getTypeByID(Record[0]); 1512 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1513 if (!Ty->isPointerTy()) 1514 return Error("Global not a pointer type!"); 1515 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1516 Ty = cast<PointerType>(Ty)->getElementType(); 1517 1518 bool isConstant = Record[1]; 1519 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1520 unsigned Alignment = (1 << Record[4]) >> 1; 1521 std::string Section; 1522 if (Record[5]) { 1523 if (Record[5]-1 >= SectionTable.size()) 1524 return Error("Invalid section ID"); 1525 Section = SectionTable[Record[5]-1]; 1526 } 1527 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1528 if (Record.size() > 6) 1529 Visibility = GetDecodedVisibility(Record[6]); 1530 bool isThreadLocal = false; 1531 if (Record.size() > 7) 1532 isThreadLocal = Record[7]; 1533 1534 bool UnnamedAddr = false; 1535 if (Record.size() > 8) 1536 UnnamedAddr = Record[8]; 1537 1538 GlobalVariable *NewGV = 1539 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1540 isThreadLocal, AddressSpace); 1541 NewGV->setAlignment(Alignment); 1542 if (!Section.empty()) 1543 NewGV->setSection(Section); 1544 NewGV->setVisibility(Visibility); 1545 NewGV->setThreadLocal(isThreadLocal); 1546 NewGV->setUnnamedAddr(UnnamedAddr); 1547 1548 ValueList.push_back(NewGV); 1549 1550 // Remember which value to use for the global initializer. 1551 if (unsigned InitID = Record[2]) 1552 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1553 break; 1554 } 1555 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1556 // alignment, section, visibility, gc, unnamed_addr] 1557 case bitc::MODULE_CODE_FUNCTION: { 1558 if (Record.size() < 8) 1559 return Error("Invalid MODULE_CODE_FUNCTION record"); 1560 Type *Ty = getTypeByID(Record[0]); 1561 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1562 if (!Ty->isPointerTy()) 1563 return Error("Function not a pointer type!"); 1564 FunctionType *FTy = 1565 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1566 if (!FTy) 1567 return Error("Function not a pointer to function type!"); 1568 1569 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1570 "", TheModule); 1571 1572 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1573 bool isProto = Record[2]; 1574 Func->setLinkage(GetDecodedLinkage(Record[3])); 1575 Func->setAttributes(getAttributes(Record[4])); 1576 1577 Func->setAlignment((1 << Record[5]) >> 1); 1578 if (Record[6]) { 1579 if (Record[6]-1 >= SectionTable.size()) 1580 return Error("Invalid section ID"); 1581 Func->setSection(SectionTable[Record[6]-1]); 1582 } 1583 Func->setVisibility(GetDecodedVisibility(Record[7])); 1584 if (Record.size() > 8 && Record[8]) { 1585 if (Record[8]-1 > GCTable.size()) 1586 return Error("Invalid GC ID"); 1587 Func->setGC(GCTable[Record[8]-1].c_str()); 1588 } 1589 bool UnnamedAddr = false; 1590 if (Record.size() > 9) 1591 UnnamedAddr = Record[9]; 1592 Func->setUnnamedAddr(UnnamedAddr); 1593 ValueList.push_back(Func); 1594 1595 // If this is a function with a body, remember the prototype we are 1596 // creating now, so that we can match up the body with them later. 1597 if (!isProto) 1598 FunctionsWithBodies.push_back(Func); 1599 break; 1600 } 1601 // ALIAS: [alias type, aliasee val#, linkage] 1602 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1603 case bitc::MODULE_CODE_ALIAS: { 1604 if (Record.size() < 3) 1605 return Error("Invalid MODULE_ALIAS record"); 1606 Type *Ty = getTypeByID(Record[0]); 1607 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1608 if (!Ty->isPointerTy()) 1609 return Error("Function not a pointer type!"); 1610 1611 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1612 "", 0, TheModule); 1613 // Old bitcode files didn't have visibility field. 1614 if (Record.size() > 3) 1615 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1616 ValueList.push_back(NewGA); 1617 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1618 break; 1619 } 1620 /// MODULE_CODE_PURGEVALS: [numvals] 1621 case bitc::MODULE_CODE_PURGEVALS: 1622 // Trim down the value list to the specified size. 1623 if (Record.size() < 1 || Record[0] > ValueList.size()) 1624 return Error("Invalid MODULE_PURGEVALS record"); 1625 ValueList.shrinkTo(Record[0]); 1626 break; 1627 } 1628 Record.clear(); 1629 } 1630 1631 return Error("Premature end of bitstream"); 1632 } 1633 1634 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1635 TheModule = 0; 1636 1637 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1638 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1639 1640 if (Buffer->getBufferSize() & 3) { 1641 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1642 return Error("Invalid bitcode signature"); 1643 else 1644 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1645 } 1646 1647 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1648 // The magic number is 0x0B17C0DE stored in little endian. 1649 if (isBitcodeWrapper(BufPtr, BufEnd)) 1650 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1651 return Error("Invalid bitcode wrapper header"); 1652 1653 StreamFile.init(BufPtr, BufEnd); 1654 Stream.init(StreamFile); 1655 1656 // Sniff for the signature. 1657 if (Stream.Read(8) != 'B' || 1658 Stream.Read(8) != 'C' || 1659 Stream.Read(4) != 0x0 || 1660 Stream.Read(4) != 0xC || 1661 Stream.Read(4) != 0xE || 1662 Stream.Read(4) != 0xD) 1663 return Error("Invalid bitcode signature"); 1664 1665 // We expect a number of well-defined blocks, though we don't necessarily 1666 // need to understand them all. 1667 while (!Stream.AtEndOfStream()) { 1668 unsigned Code = Stream.ReadCode(); 1669 1670 if (Code != bitc::ENTER_SUBBLOCK) { 1671 1672 // The ranlib in xcode 4 will align archive members by appending newlines 1673 // to the end of them. If this file size is a multiple of 4 but not 8, we 1674 // have to read and ignore these final 4 bytes :-( 1675 if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 && 1676 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 1677 Stream.AtEndOfStream()) 1678 return false; 1679 1680 return Error("Invalid record at top-level"); 1681 } 1682 1683 unsigned BlockID = Stream.ReadSubBlockID(); 1684 1685 // We only know the MODULE subblock ID. 1686 switch (BlockID) { 1687 case bitc::BLOCKINFO_BLOCK_ID: 1688 if (Stream.ReadBlockInfoBlock()) 1689 return Error("Malformed BlockInfoBlock"); 1690 break; 1691 case bitc::MODULE_BLOCK_ID: 1692 // Reject multiple MODULE_BLOCK's in a single bitstream. 1693 if (TheModule) 1694 return Error("Multiple MODULE_BLOCKs in same stream"); 1695 TheModule = M; 1696 if (ParseModule()) 1697 return true; 1698 break; 1699 default: 1700 if (Stream.SkipBlock()) 1701 return Error("Malformed block record"); 1702 break; 1703 } 1704 } 1705 1706 return false; 1707 } 1708 1709 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1710 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1711 return Error("Malformed block record"); 1712 1713 SmallVector<uint64_t, 64> Record; 1714 1715 // Read all the records for this module. 1716 while (!Stream.AtEndOfStream()) { 1717 unsigned Code = Stream.ReadCode(); 1718 if (Code == bitc::END_BLOCK) { 1719 if (Stream.ReadBlockEnd()) 1720 return Error("Error at end of module block"); 1721 1722 return false; 1723 } 1724 1725 if (Code == bitc::ENTER_SUBBLOCK) { 1726 switch (Stream.ReadSubBlockID()) { 1727 default: // Skip unknown content. 1728 if (Stream.SkipBlock()) 1729 return Error("Malformed block record"); 1730 break; 1731 } 1732 continue; 1733 } 1734 1735 if (Code == bitc::DEFINE_ABBREV) { 1736 Stream.ReadAbbrevRecord(); 1737 continue; 1738 } 1739 1740 // Read a record. 1741 switch (Stream.ReadRecord(Code, Record)) { 1742 default: break; // Default behavior, ignore unknown content. 1743 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1744 if (Record.size() < 1) 1745 return Error("Malformed MODULE_CODE_VERSION"); 1746 // Only version #0 is supported so far. 1747 if (Record[0] != 0) 1748 return Error("Unknown bitstream version!"); 1749 break; 1750 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1751 std::string S; 1752 if (ConvertToString(Record, 0, S)) 1753 return Error("Invalid MODULE_CODE_TRIPLE record"); 1754 Triple = S; 1755 break; 1756 } 1757 } 1758 Record.clear(); 1759 } 1760 1761 return Error("Premature end of bitstream"); 1762 } 1763 1764 bool BitcodeReader::ParseTriple(std::string &Triple) { 1765 if (Buffer->getBufferSize() & 3) 1766 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1767 1768 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1769 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1770 1771 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1772 // The magic number is 0x0B17C0DE stored in little endian. 1773 if (isBitcodeWrapper(BufPtr, BufEnd)) 1774 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1775 return Error("Invalid bitcode wrapper header"); 1776 1777 StreamFile.init(BufPtr, BufEnd); 1778 Stream.init(StreamFile); 1779 1780 // Sniff for the signature. 1781 if (Stream.Read(8) != 'B' || 1782 Stream.Read(8) != 'C' || 1783 Stream.Read(4) != 0x0 || 1784 Stream.Read(4) != 0xC || 1785 Stream.Read(4) != 0xE || 1786 Stream.Read(4) != 0xD) 1787 return Error("Invalid bitcode signature"); 1788 1789 // We expect a number of well-defined blocks, though we don't necessarily 1790 // need to understand them all. 1791 while (!Stream.AtEndOfStream()) { 1792 unsigned Code = Stream.ReadCode(); 1793 1794 if (Code != bitc::ENTER_SUBBLOCK) 1795 return Error("Invalid record at top-level"); 1796 1797 unsigned BlockID = Stream.ReadSubBlockID(); 1798 1799 // We only know the MODULE subblock ID. 1800 switch (BlockID) { 1801 case bitc::MODULE_BLOCK_ID: 1802 if (ParseModuleTriple(Triple)) 1803 return true; 1804 break; 1805 default: 1806 if (Stream.SkipBlock()) 1807 return Error("Malformed block record"); 1808 break; 1809 } 1810 } 1811 1812 return false; 1813 } 1814 1815 /// ParseMetadataAttachment - Parse metadata attachments. 1816 bool BitcodeReader::ParseMetadataAttachment() { 1817 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1818 return Error("Malformed block record"); 1819 1820 SmallVector<uint64_t, 64> Record; 1821 while(1) { 1822 unsigned Code = Stream.ReadCode(); 1823 if (Code == bitc::END_BLOCK) { 1824 if (Stream.ReadBlockEnd()) 1825 return Error("Error at end of PARAMATTR block"); 1826 break; 1827 } 1828 if (Code == bitc::DEFINE_ABBREV) { 1829 Stream.ReadAbbrevRecord(); 1830 continue; 1831 } 1832 // Read a metadata attachment record. 1833 Record.clear(); 1834 switch (Stream.ReadRecord(Code, Record)) { 1835 default: // Default behavior: ignore. 1836 break; 1837 case bitc::METADATA_ATTACHMENT: { 1838 unsigned RecordLength = Record.size(); 1839 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1840 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1841 Instruction *Inst = InstructionList[Record[0]]; 1842 for (unsigned i = 1; i != RecordLength; i = i+2) { 1843 unsigned Kind = Record[i]; 1844 DenseMap<unsigned, unsigned>::iterator I = 1845 MDKindMap.find(Kind); 1846 if (I == MDKindMap.end()) 1847 return Error("Invalid metadata kind ID"); 1848 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1849 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1850 } 1851 break; 1852 } 1853 } 1854 } 1855 return false; 1856 } 1857 1858 /// ParseFunctionBody - Lazily parse the specified function body block. 1859 bool BitcodeReader::ParseFunctionBody(Function *F) { 1860 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1861 return Error("Malformed block record"); 1862 1863 InstructionList.clear(); 1864 unsigned ModuleValueListSize = ValueList.size(); 1865 unsigned ModuleMDValueListSize = MDValueList.size(); 1866 1867 // Add all the function arguments to the value table. 1868 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1869 ValueList.push_back(I); 1870 1871 unsigned NextValueNo = ValueList.size(); 1872 BasicBlock *CurBB = 0; 1873 unsigned CurBBNo = 0; 1874 1875 DebugLoc LastLoc; 1876 1877 // Read all the records. 1878 SmallVector<uint64_t, 64> Record; 1879 while (1) { 1880 unsigned Code = Stream.ReadCode(); 1881 if (Code == bitc::END_BLOCK) { 1882 if (Stream.ReadBlockEnd()) 1883 return Error("Error at end of function block"); 1884 break; 1885 } 1886 1887 if (Code == bitc::ENTER_SUBBLOCK) { 1888 switch (Stream.ReadSubBlockID()) { 1889 default: // Skip unknown content. 1890 if (Stream.SkipBlock()) 1891 return Error("Malformed block record"); 1892 break; 1893 case bitc::CONSTANTS_BLOCK_ID: 1894 if (ParseConstants()) return true; 1895 NextValueNo = ValueList.size(); 1896 break; 1897 case bitc::VALUE_SYMTAB_BLOCK_ID: 1898 if (ParseValueSymbolTable()) return true; 1899 break; 1900 case bitc::METADATA_ATTACHMENT_ID: 1901 if (ParseMetadataAttachment()) return true; 1902 break; 1903 case bitc::METADATA_BLOCK_ID: 1904 if (ParseMetadata()) return true; 1905 break; 1906 } 1907 continue; 1908 } 1909 1910 if (Code == bitc::DEFINE_ABBREV) { 1911 Stream.ReadAbbrevRecord(); 1912 continue; 1913 } 1914 1915 // Read a record. 1916 Record.clear(); 1917 Instruction *I = 0; 1918 unsigned BitCode = Stream.ReadRecord(Code, Record); 1919 switch (BitCode) { 1920 default: // Default behavior: reject 1921 return Error("Unknown instruction"); 1922 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1923 if (Record.size() < 1 || Record[0] == 0) 1924 return Error("Invalid DECLAREBLOCKS record"); 1925 // Create all the basic blocks for the function. 1926 FunctionBBs.resize(Record[0]); 1927 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1928 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1929 CurBB = FunctionBBs[0]; 1930 continue; 1931 1932 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1933 // This record indicates that the last instruction is at the same 1934 // location as the previous instruction with a location. 1935 I = 0; 1936 1937 // Get the last instruction emitted. 1938 if (CurBB && !CurBB->empty()) 1939 I = &CurBB->back(); 1940 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1941 !FunctionBBs[CurBBNo-1]->empty()) 1942 I = &FunctionBBs[CurBBNo-1]->back(); 1943 1944 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1945 I->setDebugLoc(LastLoc); 1946 I = 0; 1947 continue; 1948 1949 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1950 I = 0; // Get the last instruction emitted. 1951 if (CurBB && !CurBB->empty()) 1952 I = &CurBB->back(); 1953 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1954 !FunctionBBs[CurBBNo-1]->empty()) 1955 I = &FunctionBBs[CurBBNo-1]->back(); 1956 if (I == 0 || Record.size() < 4) 1957 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1958 1959 unsigned Line = Record[0], Col = Record[1]; 1960 unsigned ScopeID = Record[2], IAID = Record[3]; 1961 1962 MDNode *Scope = 0, *IA = 0; 1963 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1964 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1965 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1966 I->setDebugLoc(LastLoc); 1967 I = 0; 1968 continue; 1969 } 1970 1971 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1972 unsigned OpNum = 0; 1973 Value *LHS, *RHS; 1974 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1975 getValue(Record, OpNum, LHS->getType(), RHS) || 1976 OpNum+1 > Record.size()) 1977 return Error("Invalid BINOP record"); 1978 1979 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1980 if (Opc == -1) return Error("Invalid BINOP record"); 1981 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1982 InstructionList.push_back(I); 1983 if (OpNum < Record.size()) { 1984 if (Opc == Instruction::Add || 1985 Opc == Instruction::Sub || 1986 Opc == Instruction::Mul || 1987 Opc == Instruction::Shl) { 1988 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1989 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1990 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1991 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1992 } else if (Opc == Instruction::SDiv || 1993 Opc == Instruction::UDiv || 1994 Opc == Instruction::LShr || 1995 Opc == Instruction::AShr) { 1996 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 1997 cast<BinaryOperator>(I)->setIsExact(true); 1998 } 1999 } 2000 break; 2001 } 2002 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2003 unsigned OpNum = 0; 2004 Value *Op; 2005 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2006 OpNum+2 != Record.size()) 2007 return Error("Invalid CAST record"); 2008 2009 Type *ResTy = getTypeByID(Record[OpNum]); 2010 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2011 if (Opc == -1 || ResTy == 0) 2012 return Error("Invalid CAST record"); 2013 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2014 InstructionList.push_back(I); 2015 break; 2016 } 2017 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2018 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2019 unsigned OpNum = 0; 2020 Value *BasePtr; 2021 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2022 return Error("Invalid GEP record"); 2023 2024 SmallVector<Value*, 16> GEPIdx; 2025 while (OpNum != Record.size()) { 2026 Value *Op; 2027 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2028 return Error("Invalid GEP record"); 2029 GEPIdx.push_back(Op); 2030 } 2031 2032 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2033 InstructionList.push_back(I); 2034 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2035 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2036 break; 2037 } 2038 2039 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2040 // EXTRACTVAL: [opty, opval, n x indices] 2041 unsigned OpNum = 0; 2042 Value *Agg; 2043 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2044 return Error("Invalid EXTRACTVAL record"); 2045 2046 SmallVector<unsigned, 4> EXTRACTVALIdx; 2047 for (unsigned RecSize = Record.size(); 2048 OpNum != RecSize; ++OpNum) { 2049 uint64_t Index = Record[OpNum]; 2050 if ((unsigned)Index != Index) 2051 return Error("Invalid EXTRACTVAL index"); 2052 EXTRACTVALIdx.push_back((unsigned)Index); 2053 } 2054 2055 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2056 InstructionList.push_back(I); 2057 break; 2058 } 2059 2060 case bitc::FUNC_CODE_INST_INSERTVAL: { 2061 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2062 unsigned OpNum = 0; 2063 Value *Agg; 2064 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2065 return Error("Invalid INSERTVAL record"); 2066 Value *Val; 2067 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2068 return Error("Invalid INSERTVAL record"); 2069 2070 SmallVector<unsigned, 4> INSERTVALIdx; 2071 for (unsigned RecSize = Record.size(); 2072 OpNum != RecSize; ++OpNum) { 2073 uint64_t Index = Record[OpNum]; 2074 if ((unsigned)Index != Index) 2075 return Error("Invalid INSERTVAL index"); 2076 INSERTVALIdx.push_back((unsigned)Index); 2077 } 2078 2079 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2080 InstructionList.push_back(I); 2081 break; 2082 } 2083 2084 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2085 // obsolete form of select 2086 // handles select i1 ... in old bitcode 2087 unsigned OpNum = 0; 2088 Value *TrueVal, *FalseVal, *Cond; 2089 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2090 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2091 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 2092 return Error("Invalid SELECT record"); 2093 2094 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2095 InstructionList.push_back(I); 2096 break; 2097 } 2098 2099 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2100 // new form of select 2101 // handles select i1 or select [N x i1] 2102 unsigned OpNum = 0; 2103 Value *TrueVal, *FalseVal, *Cond; 2104 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2105 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2106 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2107 return Error("Invalid SELECT record"); 2108 2109 // select condition can be either i1 or [N x i1] 2110 if (VectorType* vector_type = 2111 dyn_cast<VectorType>(Cond->getType())) { 2112 // expect <n x i1> 2113 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2114 return Error("Invalid SELECT condition type"); 2115 } else { 2116 // expect i1 2117 if (Cond->getType() != Type::getInt1Ty(Context)) 2118 return Error("Invalid SELECT condition type"); 2119 } 2120 2121 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2122 InstructionList.push_back(I); 2123 break; 2124 } 2125 2126 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2127 unsigned OpNum = 0; 2128 Value *Vec, *Idx; 2129 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2130 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2131 return Error("Invalid EXTRACTELT record"); 2132 I = ExtractElementInst::Create(Vec, Idx); 2133 InstructionList.push_back(I); 2134 break; 2135 } 2136 2137 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2138 unsigned OpNum = 0; 2139 Value *Vec, *Elt, *Idx; 2140 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2141 getValue(Record, OpNum, 2142 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2143 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2144 return Error("Invalid INSERTELT record"); 2145 I = InsertElementInst::Create(Vec, Elt, Idx); 2146 InstructionList.push_back(I); 2147 break; 2148 } 2149 2150 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2151 unsigned OpNum = 0; 2152 Value *Vec1, *Vec2, *Mask; 2153 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2154 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2155 return Error("Invalid SHUFFLEVEC record"); 2156 2157 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2158 return Error("Invalid SHUFFLEVEC record"); 2159 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2160 InstructionList.push_back(I); 2161 break; 2162 } 2163 2164 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2165 // Old form of ICmp/FCmp returning bool 2166 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2167 // both legal on vectors but had different behaviour. 2168 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2169 // FCmp/ICmp returning bool or vector of bool 2170 2171 unsigned OpNum = 0; 2172 Value *LHS, *RHS; 2173 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2174 getValue(Record, OpNum, LHS->getType(), RHS) || 2175 OpNum+1 != Record.size()) 2176 return Error("Invalid CMP record"); 2177 2178 if (LHS->getType()->isFPOrFPVectorTy()) 2179 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2180 else 2181 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2182 InstructionList.push_back(I); 2183 break; 2184 } 2185 2186 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2187 { 2188 unsigned Size = Record.size(); 2189 if (Size == 0) { 2190 I = ReturnInst::Create(Context); 2191 InstructionList.push_back(I); 2192 break; 2193 } 2194 2195 unsigned OpNum = 0; 2196 Value *Op = NULL; 2197 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2198 return Error("Invalid RET record"); 2199 if (OpNum != Record.size()) 2200 return Error("Invalid RET record"); 2201 2202 I = ReturnInst::Create(Context, Op); 2203 InstructionList.push_back(I); 2204 break; 2205 } 2206 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2207 if (Record.size() != 1 && Record.size() != 3) 2208 return Error("Invalid BR record"); 2209 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2210 if (TrueDest == 0) 2211 return Error("Invalid BR record"); 2212 2213 if (Record.size() == 1) { 2214 I = BranchInst::Create(TrueDest); 2215 InstructionList.push_back(I); 2216 } 2217 else { 2218 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2219 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2220 if (FalseDest == 0 || Cond == 0) 2221 return Error("Invalid BR record"); 2222 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2223 InstructionList.push_back(I); 2224 } 2225 break; 2226 } 2227 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2228 if (Record.size() < 3 || (Record.size() & 1) == 0) 2229 return Error("Invalid SWITCH record"); 2230 Type *OpTy = getTypeByID(Record[0]); 2231 Value *Cond = getFnValueByID(Record[1], OpTy); 2232 BasicBlock *Default = getBasicBlock(Record[2]); 2233 if (OpTy == 0 || Cond == 0 || Default == 0) 2234 return Error("Invalid SWITCH record"); 2235 unsigned NumCases = (Record.size()-3)/2; 2236 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2237 InstructionList.push_back(SI); 2238 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2239 ConstantInt *CaseVal = 2240 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2241 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2242 if (CaseVal == 0 || DestBB == 0) { 2243 delete SI; 2244 return Error("Invalid SWITCH record!"); 2245 } 2246 SI->addCase(CaseVal, DestBB); 2247 } 2248 I = SI; 2249 break; 2250 } 2251 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2252 if (Record.size() < 2) 2253 return Error("Invalid INDIRECTBR record"); 2254 Type *OpTy = getTypeByID(Record[0]); 2255 Value *Address = getFnValueByID(Record[1], OpTy); 2256 if (OpTy == 0 || Address == 0) 2257 return Error("Invalid INDIRECTBR record"); 2258 unsigned NumDests = Record.size()-2; 2259 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2260 InstructionList.push_back(IBI); 2261 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2262 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2263 IBI->addDestination(DestBB); 2264 } else { 2265 delete IBI; 2266 return Error("Invalid INDIRECTBR record!"); 2267 } 2268 } 2269 I = IBI; 2270 break; 2271 } 2272 2273 case bitc::FUNC_CODE_INST_INVOKE: { 2274 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2275 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2276 AttrListPtr PAL = getAttributes(Record[0]); 2277 unsigned CCInfo = Record[1]; 2278 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2279 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2280 2281 unsigned OpNum = 4; 2282 Value *Callee; 2283 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2284 return Error("Invalid INVOKE record"); 2285 2286 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2287 FunctionType *FTy = !CalleeTy ? 0 : 2288 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2289 2290 // Check that the right number of fixed parameters are here. 2291 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2292 Record.size() < OpNum+FTy->getNumParams()) 2293 return Error("Invalid INVOKE record"); 2294 2295 SmallVector<Value*, 16> Ops; 2296 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2297 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2298 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2299 } 2300 2301 if (!FTy->isVarArg()) { 2302 if (Record.size() != OpNum) 2303 return Error("Invalid INVOKE record"); 2304 } else { 2305 // Read type/value pairs for varargs params. 2306 while (OpNum != Record.size()) { 2307 Value *Op; 2308 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2309 return Error("Invalid INVOKE record"); 2310 Ops.push_back(Op); 2311 } 2312 } 2313 2314 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2315 InstructionList.push_back(I); 2316 cast<InvokeInst>(I)->setCallingConv( 2317 static_cast<CallingConv::ID>(CCInfo)); 2318 cast<InvokeInst>(I)->setAttributes(PAL); 2319 break; 2320 } 2321 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2322 unsigned Idx = 0; 2323 Value *Val = 0; 2324 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2325 return Error("Invalid RESUME record"); 2326 I = ResumeInst::Create(Val); 2327 InstructionList.push_back(I); 2328 break; 2329 } 2330 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2331 I = new UnwindInst(Context); 2332 InstructionList.push_back(I); 2333 break; 2334 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2335 I = new UnreachableInst(Context); 2336 InstructionList.push_back(I); 2337 break; 2338 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2339 if (Record.size() < 1 || ((Record.size()-1)&1)) 2340 return Error("Invalid PHI record"); 2341 Type *Ty = getTypeByID(Record[0]); 2342 if (!Ty) return Error("Invalid PHI record"); 2343 2344 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2345 InstructionList.push_back(PN); 2346 2347 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2348 Value *V = getFnValueByID(Record[1+i], Ty); 2349 BasicBlock *BB = getBasicBlock(Record[2+i]); 2350 if (!V || !BB) return Error("Invalid PHI record"); 2351 PN->addIncoming(V, BB); 2352 } 2353 I = PN; 2354 break; 2355 } 2356 2357 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2358 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2359 unsigned Idx = 0; 2360 if (Record.size() < 4) 2361 return Error("Invalid LANDINGPAD record"); 2362 Type *Ty = getTypeByID(Record[Idx++]); 2363 if (!Ty) return Error("Invalid LANDINGPAD record"); 2364 Value *PersFn = 0; 2365 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2366 return Error("Invalid LANDINGPAD record"); 2367 2368 bool IsCleanup = !!Record[Idx++]; 2369 unsigned NumClauses = Record[Idx++]; 2370 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2371 LP->setCleanup(IsCleanup); 2372 for (unsigned J = 0; J != NumClauses; ++J) { 2373 LandingPadInst::ClauseType CT = 2374 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2375 Value *Val; 2376 2377 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2378 delete LP; 2379 return Error("Invalid LANDINGPAD record"); 2380 } 2381 2382 assert((CT != LandingPadInst::Catch || 2383 !isa<ArrayType>(Val->getType())) && 2384 "Catch clause has a invalid type!"); 2385 assert((CT != LandingPadInst::Filter || 2386 isa<ArrayType>(Val->getType())) && 2387 "Filter clause has invalid type!"); 2388 LP->addClause(Val); 2389 } 2390 2391 I = LP; 2392 InstructionList.push_back(I); 2393 break; 2394 } 2395 2396 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2397 if (Record.size() != 4) 2398 return Error("Invalid ALLOCA record"); 2399 PointerType *Ty = 2400 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2401 Type *OpTy = getTypeByID(Record[1]); 2402 Value *Size = getFnValueByID(Record[2], OpTy); 2403 unsigned Align = Record[3]; 2404 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2405 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2406 InstructionList.push_back(I); 2407 break; 2408 } 2409 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2410 unsigned OpNum = 0; 2411 Value *Op; 2412 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2413 OpNum+2 != Record.size()) 2414 return Error("Invalid LOAD record"); 2415 2416 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2417 InstructionList.push_back(I); 2418 break; 2419 } 2420 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2421 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2422 unsigned OpNum = 0; 2423 Value *Op; 2424 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2425 OpNum+4 != Record.size()) 2426 return Error("Invalid LOADATOMIC record"); 2427 2428 2429 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2430 if (Ordering == NotAtomic || Ordering == Release || 2431 Ordering == AcquireRelease) 2432 return Error("Invalid LOADATOMIC record"); 2433 if (Ordering != NotAtomic && Record[OpNum] == 0) 2434 return Error("Invalid LOADATOMIC record"); 2435 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2436 2437 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2438 Ordering, SynchScope); 2439 InstructionList.push_back(I); 2440 break; 2441 } 2442 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2443 unsigned OpNum = 0; 2444 Value *Val, *Ptr; 2445 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2446 getValue(Record, OpNum, 2447 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2448 OpNum+2 != Record.size()) 2449 return Error("Invalid STORE record"); 2450 2451 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2452 InstructionList.push_back(I); 2453 break; 2454 } 2455 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2456 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2457 unsigned OpNum = 0; 2458 Value *Val, *Ptr; 2459 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2460 getValue(Record, OpNum, 2461 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2462 OpNum+4 != Record.size()) 2463 return Error("Invalid STOREATOMIC record"); 2464 2465 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2466 if (Ordering == NotAtomic || Ordering == Acquire || 2467 Ordering == AcquireRelease) 2468 return Error("Invalid STOREATOMIC record"); 2469 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2470 if (Ordering != NotAtomic && Record[OpNum] == 0) 2471 return Error("Invalid STOREATOMIC record"); 2472 2473 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2474 Ordering, SynchScope); 2475 InstructionList.push_back(I); 2476 break; 2477 } 2478 case bitc::FUNC_CODE_INST_CMPXCHG: { 2479 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] 2480 unsigned OpNum = 0; 2481 Value *Ptr, *Cmp, *New; 2482 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2483 getValue(Record, OpNum, 2484 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2485 getValue(Record, OpNum, 2486 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2487 OpNum+3 != Record.size()) 2488 return Error("Invalid CMPXCHG record"); 2489 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); 2490 if (Ordering == NotAtomic || Ordering == Unordered) 2491 return Error("Invalid CMPXCHG record"); 2492 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2493 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope); 2494 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2495 InstructionList.push_back(I); 2496 break; 2497 } 2498 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2499 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2500 unsigned OpNum = 0; 2501 Value *Ptr, *Val; 2502 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2503 getValue(Record, OpNum, 2504 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2505 OpNum+4 != Record.size()) 2506 return Error("Invalid ATOMICRMW record"); 2507 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2508 if (Operation < AtomicRMWInst::FIRST_BINOP || 2509 Operation > AtomicRMWInst::LAST_BINOP) 2510 return Error("Invalid ATOMICRMW record"); 2511 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2512 if (Ordering == NotAtomic || Ordering == Unordered) 2513 return Error("Invalid ATOMICRMW record"); 2514 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2515 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2516 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2517 InstructionList.push_back(I); 2518 break; 2519 } 2520 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2521 if (2 != Record.size()) 2522 return Error("Invalid FENCE record"); 2523 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2524 if (Ordering == NotAtomic || Ordering == Unordered || 2525 Ordering == Monotonic) 2526 return Error("Invalid FENCE record"); 2527 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2528 I = new FenceInst(Context, Ordering, SynchScope); 2529 InstructionList.push_back(I); 2530 break; 2531 } 2532 case bitc::FUNC_CODE_INST_CALL: { 2533 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2534 if (Record.size() < 3) 2535 return Error("Invalid CALL record"); 2536 2537 AttrListPtr PAL = getAttributes(Record[0]); 2538 unsigned CCInfo = Record[1]; 2539 2540 unsigned OpNum = 2; 2541 Value *Callee; 2542 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2543 return Error("Invalid CALL record"); 2544 2545 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2546 FunctionType *FTy = 0; 2547 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2548 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2549 return Error("Invalid CALL record"); 2550 2551 SmallVector<Value*, 16> Args; 2552 // Read the fixed params. 2553 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2554 if (FTy->getParamType(i)->isLabelTy()) 2555 Args.push_back(getBasicBlock(Record[OpNum])); 2556 else 2557 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2558 if (Args.back() == 0) return Error("Invalid CALL record"); 2559 } 2560 2561 // Read type/value pairs for varargs params. 2562 if (!FTy->isVarArg()) { 2563 if (OpNum != Record.size()) 2564 return Error("Invalid CALL record"); 2565 } else { 2566 while (OpNum != Record.size()) { 2567 Value *Op; 2568 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2569 return Error("Invalid CALL record"); 2570 Args.push_back(Op); 2571 } 2572 } 2573 2574 I = CallInst::Create(Callee, Args); 2575 InstructionList.push_back(I); 2576 cast<CallInst>(I)->setCallingConv( 2577 static_cast<CallingConv::ID>(CCInfo>>1)); 2578 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2579 cast<CallInst>(I)->setAttributes(PAL); 2580 break; 2581 } 2582 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2583 if (Record.size() < 3) 2584 return Error("Invalid VAARG record"); 2585 Type *OpTy = getTypeByID(Record[0]); 2586 Value *Op = getFnValueByID(Record[1], OpTy); 2587 Type *ResTy = getTypeByID(Record[2]); 2588 if (!OpTy || !Op || !ResTy) 2589 return Error("Invalid VAARG record"); 2590 I = new VAArgInst(Op, ResTy); 2591 InstructionList.push_back(I); 2592 break; 2593 } 2594 } 2595 2596 // Add instruction to end of current BB. If there is no current BB, reject 2597 // this file. 2598 if (CurBB == 0) { 2599 delete I; 2600 return Error("Invalid instruction with no BB"); 2601 } 2602 CurBB->getInstList().push_back(I); 2603 2604 // If this was a terminator instruction, move to the next block. 2605 if (isa<TerminatorInst>(I)) { 2606 ++CurBBNo; 2607 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2608 } 2609 2610 // Non-void values get registered in the value table for future use. 2611 if (I && !I->getType()->isVoidTy()) 2612 ValueList.AssignValue(I, NextValueNo++); 2613 } 2614 2615 // Check the function list for unresolved values. 2616 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2617 if (A->getParent() == 0) { 2618 // We found at least one unresolved value. Nuke them all to avoid leaks. 2619 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2620 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2621 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2622 delete A; 2623 } 2624 } 2625 return Error("Never resolved value found in function!"); 2626 } 2627 } 2628 2629 // FIXME: Check for unresolved forward-declared metadata references 2630 // and clean up leaks. 2631 2632 // See if anything took the address of blocks in this function. If so, 2633 // resolve them now. 2634 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2635 BlockAddrFwdRefs.find(F); 2636 if (BAFRI != BlockAddrFwdRefs.end()) { 2637 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2638 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2639 unsigned BlockIdx = RefList[i].first; 2640 if (BlockIdx >= FunctionBBs.size()) 2641 return Error("Invalid blockaddress block #"); 2642 2643 GlobalVariable *FwdRef = RefList[i].second; 2644 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2645 FwdRef->eraseFromParent(); 2646 } 2647 2648 BlockAddrFwdRefs.erase(BAFRI); 2649 } 2650 2651 // Trim the value list down to the size it was before we parsed this function. 2652 ValueList.shrinkTo(ModuleValueListSize); 2653 MDValueList.shrinkTo(ModuleMDValueListSize); 2654 std::vector<BasicBlock*>().swap(FunctionBBs); 2655 return false; 2656 } 2657 2658 //===----------------------------------------------------------------------===// 2659 // GVMaterializer implementation 2660 //===----------------------------------------------------------------------===// 2661 2662 2663 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2664 if (const Function *F = dyn_cast<Function>(GV)) { 2665 return F->isDeclaration() && 2666 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2667 } 2668 return false; 2669 } 2670 2671 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2672 Function *F = dyn_cast<Function>(GV); 2673 // If it's not a function or is already material, ignore the request. 2674 if (!F || !F->isMaterializable()) return false; 2675 2676 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2677 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2678 2679 // Move the bit stream to the saved position of the deferred function body. 2680 Stream.JumpToBit(DFII->second); 2681 2682 if (ParseFunctionBody(F)) { 2683 if (ErrInfo) *ErrInfo = ErrorString; 2684 return true; 2685 } 2686 2687 // Upgrade any old intrinsic calls in the function. 2688 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2689 E = UpgradedIntrinsics.end(); I != E; ++I) { 2690 if (I->first != I->second) { 2691 for (Value::use_iterator UI = I->first->use_begin(), 2692 UE = I->first->use_end(); UI != UE; ) { 2693 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2694 UpgradeIntrinsicCall(CI, I->second); 2695 } 2696 } 2697 } 2698 2699 return false; 2700 } 2701 2702 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2703 const Function *F = dyn_cast<Function>(GV); 2704 if (!F || F->isDeclaration()) 2705 return false; 2706 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2707 } 2708 2709 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2710 Function *F = dyn_cast<Function>(GV); 2711 // If this function isn't dematerializable, this is a noop. 2712 if (!F || !isDematerializable(F)) 2713 return; 2714 2715 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2716 2717 // Just forget the function body, we can remat it later. 2718 F->deleteBody(); 2719 } 2720 2721 2722 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2723 assert(M == TheModule && 2724 "Can only Materialize the Module this BitcodeReader is attached to."); 2725 // Iterate over the module, deserializing any functions that are still on 2726 // disk. 2727 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2728 F != E; ++F) 2729 if (F->isMaterializable() && 2730 Materialize(F, ErrInfo)) 2731 return true; 2732 2733 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2734 // delete the old functions to clean up. We can't do this unless the entire 2735 // module is materialized because there could always be another function body 2736 // with calls to the old function. 2737 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2738 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2739 if (I->first != I->second) { 2740 for (Value::use_iterator UI = I->first->use_begin(), 2741 UE = I->first->use_end(); UI != UE; ) { 2742 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2743 UpgradeIntrinsicCall(CI, I->second); 2744 } 2745 if (!I->first->use_empty()) 2746 I->first->replaceAllUsesWith(I->second); 2747 I->first->eraseFromParent(); 2748 } 2749 } 2750 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2751 2752 return false; 2753 } 2754 2755 2756 //===----------------------------------------------------------------------===// 2757 // External interface 2758 //===----------------------------------------------------------------------===// 2759 2760 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2761 /// 2762 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2763 LLVMContext& Context, 2764 std::string *ErrMsg) { 2765 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2766 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2767 M->setMaterializer(R); 2768 if (R->ParseBitcodeInto(M)) { 2769 if (ErrMsg) 2770 *ErrMsg = R->getErrorString(); 2771 2772 delete M; // Also deletes R. 2773 return 0; 2774 } 2775 // Have the BitcodeReader dtor delete 'Buffer'. 2776 R->setBufferOwned(true); 2777 return M; 2778 } 2779 2780 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2781 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2782 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2783 std::string *ErrMsg){ 2784 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2785 if (!M) return 0; 2786 2787 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2788 // there was an error. 2789 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2790 2791 // Read in the entire module, and destroy the BitcodeReader. 2792 if (M->MaterializeAllPermanently(ErrMsg)) { 2793 delete M; 2794 return 0; 2795 } 2796 2797 // TODO: Restore the use-lists to the in-memory state when the bitcode was 2798 // written. We must defer until the Module has been fully materialized. 2799 2800 return M; 2801 } 2802 2803 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2804 LLVMContext& Context, 2805 std::string *ErrMsg) { 2806 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2807 // Don't let the BitcodeReader dtor delete 'Buffer'. 2808 R->setBufferOwned(false); 2809 2810 std::string Triple(""); 2811 if (R->ParseTriple(Triple)) 2812 if (ErrMsg) 2813 *ErrMsg = R->getErrorString(); 2814 2815 delete R; 2816 return Triple; 2817 } 2818