1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitcodeCommon.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitstream/BitstreamReader.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <optional> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 std::optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return std::nullopt; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 std::optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 632 // Several operations happen after the module header has been read, but 633 // before function bodies are processed. This keeps track of whether 634 // we've done this yet. 635 bool SeenFirstFunctionBody = false; 636 637 /// When function bodies are initially scanned, this map contains info about 638 /// where to find deferred function body in the stream. 639 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 640 641 /// When Metadata block is initially scanned when parsing the module, we may 642 /// choose to defer parsing of the metadata. This vector contains info about 643 /// which Metadata blocks are deferred. 644 std::vector<uint64_t> DeferredMetadataInfo; 645 646 /// These are basic blocks forward-referenced by block addresses. They are 647 /// inserted lazily into functions when they're loaded. The basic block ID is 648 /// its index into the vector. 649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 650 std::deque<Function *> BasicBlockFwdRefQueue; 651 652 /// These are Functions that contain BlockAddresses which refer a different 653 /// Function. When parsing the different Function, queue Functions that refer 654 /// to the different Function. Those Functions must be materialized in order 655 /// to resolve their BlockAddress constants before the different Function 656 /// gets moved into another Module. 657 std::vector<Function *> BackwardRefFunctions; 658 659 /// Indicates that we are using a new encoding for instruction operands where 660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 661 /// instruction number, for a more compact encoding. Some instruction 662 /// operands are not relative to the instruction ID: basic block numbers, and 663 /// types. Once the old style function blocks have been phased out, we would 664 /// not need this flag. 665 bool UseRelativeIDs = false; 666 667 /// True if all functions will be materialized, negating the need to process 668 /// (e.g.) blockaddress forward references. 669 bool WillMaterializeAllForwardRefs = false; 670 671 bool StripDebugInfo = false; 672 TBAAVerifier TBAAVerifyHelper; 673 674 std::vector<std::string> BundleTags; 675 SmallVector<SyncScope::ID, 8> SSIDs; 676 677 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 692 bool IsImporting, ParserCallbacks Callbacks = {}); 693 694 static uint64_t decodeSignRotatedValue(uint64_t V); 695 696 /// Materialize any deferred Metadata block. 697 Error materializeMetadata() override; 698 699 void setStripDebugInfo() override; 700 701 private: 702 std::vector<StructType *> IdentifiedStructTypes; 703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 704 StructType *createIdentifiedStructType(LLVMContext &Context); 705 706 static constexpr unsigned InvalidTypeID = ~0u; 707 708 Type *getTypeByID(unsigned ID); 709 Type *getPtrElementTypeByID(unsigned ID); 710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 712 713 void callValueTypeCallback(Value *F, unsigned TypeID); 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 825 ParserCallbacks Callbacks = {}); 826 827 Error parseComdatRecord(ArrayRef<uint64_t> Record); 828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 829 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 831 ArrayRef<uint64_t> Record); 832 833 Error parseAttributeBlock(); 834 Error parseAttributeGroupBlock(); 835 Error parseTypeTable(); 836 Error parseTypeTableBody(); 837 Error parseOperandBundleTags(); 838 Error parseSyncScopeNames(); 839 840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 841 unsigned NameIndex, Triple &TT); 842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 843 ArrayRef<uint64_t> Record); 844 Error parseValueSymbolTable(uint64_t Offset = 0); 845 Error parseGlobalValueSymbolTable(); 846 Error parseConstants(); 847 Error rememberAndSkipFunctionBodies(); 848 Error rememberAndSkipFunctionBody(); 849 /// Save the positions of the Metadata blocks and skip parsing the blocks. 850 Error rememberAndSkipMetadata(); 851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 852 Error parseFunctionBody(Function *F); 853 Error globalCleanup(); 854 Error resolveGlobalAndIndirectSymbolInits(); 855 Error parseUseLists(); 856 Error findFunctionInStream( 857 Function *F, 858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 859 860 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 861 }; 862 863 /// Class to manage reading and parsing function summary index bitcode 864 /// files/sections. 865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 866 /// The module index built during parsing. 867 ModuleSummaryIndex &TheIndex; 868 869 /// Indicates whether we have encountered a global value summary section 870 /// yet during parsing. 871 bool SeenGlobalValSummary = false; 872 873 /// Indicates whether we have already parsed the VST, used for error checking. 874 bool SeenValueSymbolTable = false; 875 876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 877 /// Used to enable on-demand parsing of the VST. 878 uint64_t VSTOffset = 0; 879 880 // Map to save ValueId to ValueInfo association that was recorded in the 881 // ValueSymbolTable. It is used after the VST is parsed to convert 882 // call graph edges read from the function summary from referencing 883 // callees by their ValueId to using the ValueInfo instead, which is how 884 // they are recorded in the summary index being built. 885 // We save a GUID which refers to the same global as the ValueInfo, but 886 // ignoring the linkage, i.e. for values other than local linkage they are 887 // identical (this is the second tuple member). 888 // The third tuple member is the real GUID of the ValueInfo. 889 DenseMap<unsigned, 890 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 891 ValueIdToValueInfoMap; 892 893 /// Map populated during module path string table parsing, from the 894 /// module ID to a string reference owned by the index's module 895 /// path string table, used to correlate with combined index 896 /// summary records. 897 DenseMap<uint64_t, StringRef> ModuleIdMap; 898 899 /// Original source file name recorded in a bitcode record. 900 std::string SourceFileName; 901 902 /// The string identifier given to this module by the client, normally the 903 /// path to the bitcode file. 904 StringRef ModulePath; 905 906 /// For per-module summary indexes, the unique numerical identifier given to 907 /// this module by the client. 908 unsigned ModuleId; 909 910 /// Callback to ask whether a symbol is the prevailing copy when invoked 911 /// during combined index building. 912 std::function<bool(GlobalValue::GUID)> IsPrevailing; 913 914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 915 /// ids from the lists in the callsite and alloc entries to the index. 916 std::vector<uint64_t> StackIds; 917 918 public: 919 ModuleSummaryIndexBitcodeReader( 920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 921 StringRef ModulePath, unsigned ModuleId, 922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 923 924 Error parseModule(); 925 926 private: 927 void setValueGUID(uint64_t ValueID, StringRef ValueName, 928 GlobalValue::LinkageTypes Linkage, 929 StringRef SourceFileName); 930 Error parseValueSymbolTable( 931 uint64_t Offset, 932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 935 bool IsOldProfileFormat, 936 bool HasProfile, 937 bool HasRelBF); 938 Error parseEntireSummary(unsigned ID); 939 Error parseModuleStringTable(); 940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 942 TypeIdCompatibleVtableInfo &TypeId); 943 std::vector<FunctionSummary::ParamAccess> 944 parseParamAccesses(ArrayRef<uint64_t> Record); 945 946 template <bool AllowNullValueInfo = false> 947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 948 getValueInfoFromValueId(unsigned ValueId); 949 950 void addThisModule(); 951 ModuleSummaryIndex::ModuleInfo *getThisModule(); 952 }; 953 954 } // end anonymous namespace 955 956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 957 Error Err) { 958 if (Err) { 959 std::error_code EC; 960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 961 EC = EIB.convertToErrorCode(); 962 Ctx.emitError(EIB.message()); 963 }); 964 return EC; 965 } 966 return std::error_code(); 967 } 968 969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 970 StringRef ProducerIdentification, 971 LLVMContext &Context) 972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 973 ValueList(this->Stream.SizeInBytes(), 974 [this](unsigned ValID, BasicBlock *InsertBB) { 975 return materializeValue(ValID, InsertBB); 976 }) { 977 this->ProducerIdentification = std::string(ProducerIdentification); 978 } 979 980 Error BitcodeReader::materializeForwardReferencedFunctions() { 981 if (WillMaterializeAllForwardRefs) 982 return Error::success(); 983 984 // Prevent recursion. 985 WillMaterializeAllForwardRefs = true; 986 987 while (!BasicBlockFwdRefQueue.empty()) { 988 Function *F = BasicBlockFwdRefQueue.front(); 989 BasicBlockFwdRefQueue.pop_front(); 990 assert(F && "Expected valid function"); 991 if (!BasicBlockFwdRefs.count(F)) 992 // Already materialized. 993 continue; 994 995 // Check for a function that isn't materializable to prevent an infinite 996 // loop. When parsing a blockaddress stored in a global variable, there 997 // isn't a trivial way to check if a function will have a body without a 998 // linear search through FunctionsWithBodies, so just check it here. 999 if (!F->isMaterializable()) 1000 return error("Never resolved function from blockaddress"); 1001 1002 // Try to materialize F. 1003 if (Error Err = materialize(F)) 1004 return Err; 1005 } 1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1007 1008 for (Function *F : BackwardRefFunctions) 1009 if (Error Err = materialize(F)) 1010 return Err; 1011 BackwardRefFunctions.clear(); 1012 1013 // Reset state. 1014 WillMaterializeAllForwardRefs = false; 1015 return Error::success(); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Helper functions to implement forward reference resolution, etc. 1020 //===----------------------------------------------------------------------===// 1021 1022 static bool hasImplicitComdat(size_t Val) { 1023 switch (Val) { 1024 default: 1025 return false; 1026 case 1: // Old WeakAnyLinkage 1027 case 4: // Old LinkOnceAnyLinkage 1028 case 10: // Old WeakODRLinkage 1029 case 11: // Old LinkOnceODRLinkage 1030 return true; 1031 } 1032 } 1033 1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown/new linkages to external 1037 case 0: 1038 return GlobalValue::ExternalLinkage; 1039 case 2: 1040 return GlobalValue::AppendingLinkage; 1041 case 3: 1042 return GlobalValue::InternalLinkage; 1043 case 5: 1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1045 case 6: 1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1047 case 7: 1048 return GlobalValue::ExternalWeakLinkage; 1049 case 8: 1050 return GlobalValue::CommonLinkage; 1051 case 9: 1052 return GlobalValue::PrivateLinkage; 1053 case 12: 1054 return GlobalValue::AvailableExternallyLinkage; 1055 case 13: 1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1057 case 14: 1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1059 case 15: 1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1061 case 1: // Old value with implicit comdat. 1062 case 16: 1063 return GlobalValue::WeakAnyLinkage; 1064 case 10: // Old value with implicit comdat. 1065 case 17: 1066 return GlobalValue::WeakODRLinkage; 1067 case 4: // Old value with implicit comdat. 1068 case 18: 1069 return GlobalValue::LinkOnceAnyLinkage; 1070 case 11: // Old value with implicit comdat. 1071 case 19: 1072 return GlobalValue::LinkOnceODRLinkage; 1073 } 1074 } 1075 1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1077 FunctionSummary::FFlags Flags; 1078 Flags.ReadNone = RawFlags & 0x1; 1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1082 Flags.NoInline = (RawFlags >> 4) & 0x1; 1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1085 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1088 return Flags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1092 // 1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1094 // visibility: [8, 10). 1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1096 uint64_t Version) { 1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1098 // like getDecodedLinkage() above. Any future change to the linkage enum and 1099 // to getDecodedLinkage() will need to be taken into account here as above. 1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1102 RawFlags = RawFlags >> 4; 1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1104 // The Live flag wasn't introduced until version 3. For dead stripping 1105 // to work correctly on earlier versions, we must conservatively treat all 1106 // values as live. 1107 bool Live = (RawFlags & 0x2) || Version < 3; 1108 bool Local = (RawFlags & 0x4); 1109 bool AutoHide = (RawFlags & 0x8); 1110 1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1112 Live, Local, AutoHide); 1113 } 1114 1115 // Decode the flags for GlobalVariable in the summary 1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1117 return GlobalVarSummary::GVarFlags( 1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1119 (RawFlags & 0x4) ? true : false, 1120 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1121 } 1122 1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1124 switch (Val) { 1125 default: // Map unknown visibilities to default. 1126 case 0: return GlobalValue::DefaultVisibility; 1127 case 1: return GlobalValue::HiddenVisibility; 1128 case 2: return GlobalValue::ProtectedVisibility; 1129 } 1130 } 1131 1132 static GlobalValue::DLLStorageClassTypes 1133 getDecodedDLLStorageClass(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown values to default. 1136 case 0: return GlobalValue::DefaultStorageClass; 1137 case 1: return GlobalValue::DLLImportStorageClass; 1138 case 2: return GlobalValue::DLLExportStorageClass; 1139 } 1140 } 1141 1142 static bool getDecodedDSOLocal(unsigned Val) { 1143 switch(Val) { 1144 default: // Map unknown values to preemptable. 1145 case 0: return false; 1146 case 1: return true; 1147 } 1148 } 1149 1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1151 switch (Val) { 1152 case 0: return GlobalVariable::NotThreadLocal; 1153 default: // Map unknown non-zero value to general dynamic. 1154 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1155 case 2: return GlobalVariable::LocalDynamicTLSModel; 1156 case 3: return GlobalVariable::InitialExecTLSModel; 1157 case 4: return GlobalVariable::LocalExecTLSModel; 1158 } 1159 } 1160 1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1162 switch (Val) { 1163 default: // Map unknown to UnnamedAddr::None. 1164 case 0: return GlobalVariable::UnnamedAddr::None; 1165 case 1: return GlobalVariable::UnnamedAddr::Global; 1166 case 2: return GlobalVariable::UnnamedAddr::Local; 1167 } 1168 } 1169 1170 static int getDecodedCastOpcode(unsigned Val) { 1171 switch (Val) { 1172 default: return -1; 1173 case bitc::CAST_TRUNC : return Instruction::Trunc; 1174 case bitc::CAST_ZEXT : return Instruction::ZExt; 1175 case bitc::CAST_SEXT : return Instruction::SExt; 1176 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1177 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1178 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1179 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1180 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1181 case bitc::CAST_FPEXT : return Instruction::FPExt; 1182 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1183 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1184 case bitc::CAST_BITCAST : return Instruction::BitCast; 1185 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1186 } 1187 } 1188 1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1190 bool IsFP = Ty->isFPOrFPVectorTy(); 1191 // UnOps are only valid for int/fp or vector of int/fp types 1192 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1193 return -1; 1194 1195 switch (Val) { 1196 default: 1197 return -1; 1198 case bitc::UNOP_FNEG: 1199 return IsFP ? Instruction::FNeg : -1; 1200 } 1201 } 1202 1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1204 bool IsFP = Ty->isFPOrFPVectorTy(); 1205 // BinOps are only valid for int/fp or vector of int/fp types 1206 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1207 return -1; 1208 1209 switch (Val) { 1210 default: 1211 return -1; 1212 case bitc::BINOP_ADD: 1213 return IsFP ? Instruction::FAdd : Instruction::Add; 1214 case bitc::BINOP_SUB: 1215 return IsFP ? Instruction::FSub : Instruction::Sub; 1216 case bitc::BINOP_MUL: 1217 return IsFP ? Instruction::FMul : Instruction::Mul; 1218 case bitc::BINOP_UDIV: 1219 return IsFP ? -1 : Instruction::UDiv; 1220 case bitc::BINOP_SDIV: 1221 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1222 case bitc::BINOP_UREM: 1223 return IsFP ? -1 : Instruction::URem; 1224 case bitc::BINOP_SREM: 1225 return IsFP ? Instruction::FRem : Instruction::SRem; 1226 case bitc::BINOP_SHL: 1227 return IsFP ? -1 : Instruction::Shl; 1228 case bitc::BINOP_LSHR: 1229 return IsFP ? -1 : Instruction::LShr; 1230 case bitc::BINOP_ASHR: 1231 return IsFP ? -1 : Instruction::AShr; 1232 case bitc::BINOP_AND: 1233 return IsFP ? -1 : Instruction::And; 1234 case bitc::BINOP_OR: 1235 return IsFP ? -1 : Instruction::Or; 1236 case bitc::BINOP_XOR: 1237 return IsFP ? -1 : Instruction::Xor; 1238 } 1239 } 1240 1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1242 switch (Val) { 1243 default: return AtomicRMWInst::BAD_BINOP; 1244 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1245 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1246 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1247 case bitc::RMW_AND: return AtomicRMWInst::And; 1248 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1249 case bitc::RMW_OR: return AtomicRMWInst::Or; 1250 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1251 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1252 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1253 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1254 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1255 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1256 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1257 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1258 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1259 } 1260 } 1261 1262 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1263 switch (Val) { 1264 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1265 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1266 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1267 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1268 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1269 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1270 default: // Map unknown orderings to sequentially-consistent. 1271 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1272 } 1273 } 1274 1275 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1276 switch (Val) { 1277 default: // Map unknown selection kinds to any. 1278 case bitc::COMDAT_SELECTION_KIND_ANY: 1279 return Comdat::Any; 1280 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1281 return Comdat::ExactMatch; 1282 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1283 return Comdat::Largest; 1284 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1285 return Comdat::NoDeduplicate; 1286 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1287 return Comdat::SameSize; 1288 } 1289 } 1290 1291 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1292 FastMathFlags FMF; 1293 if (0 != (Val & bitc::UnsafeAlgebra)) 1294 FMF.setFast(); 1295 if (0 != (Val & bitc::AllowReassoc)) 1296 FMF.setAllowReassoc(); 1297 if (0 != (Val & bitc::NoNaNs)) 1298 FMF.setNoNaNs(); 1299 if (0 != (Val & bitc::NoInfs)) 1300 FMF.setNoInfs(); 1301 if (0 != (Val & bitc::NoSignedZeros)) 1302 FMF.setNoSignedZeros(); 1303 if (0 != (Val & bitc::AllowReciprocal)) 1304 FMF.setAllowReciprocal(); 1305 if (0 != (Val & bitc::AllowContract)) 1306 FMF.setAllowContract(true); 1307 if (0 != (Val & bitc::ApproxFunc)) 1308 FMF.setApproxFunc(); 1309 return FMF; 1310 } 1311 1312 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1313 // A GlobalValue with local linkage cannot have a DLL storage class. 1314 if (GV->hasLocalLinkage()) 1315 return; 1316 switch (Val) { 1317 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1318 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1319 } 1320 } 1321 1322 Type *BitcodeReader::getTypeByID(unsigned ID) { 1323 // The type table size is always specified correctly. 1324 if (ID >= TypeList.size()) 1325 return nullptr; 1326 1327 if (Type *Ty = TypeList[ID]) 1328 return Ty; 1329 1330 // If we have a forward reference, the only possible case is when it is to a 1331 // named struct. Just create a placeholder for now. 1332 return TypeList[ID] = createIdentifiedStructType(Context); 1333 } 1334 1335 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1336 auto It = ContainedTypeIDs.find(ID); 1337 if (It == ContainedTypeIDs.end()) 1338 return InvalidTypeID; 1339 1340 if (Idx >= It->second.size()) 1341 return InvalidTypeID; 1342 1343 return It->second[Idx]; 1344 } 1345 1346 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1347 if (ID >= TypeList.size()) 1348 return nullptr; 1349 1350 Type *Ty = TypeList[ID]; 1351 if (!Ty->isPointerTy()) 1352 return nullptr; 1353 1354 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1355 if (!ElemTy) 1356 return nullptr; 1357 1358 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1359 "Incorrect element type"); 1360 return ElemTy; 1361 } 1362 1363 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1364 ArrayRef<unsigned> ChildTypeIDs) { 1365 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1366 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1367 auto It = VirtualTypeIDs.find(CacheKey); 1368 if (It != VirtualTypeIDs.end()) { 1369 // The cmpxchg return value is the only place we need more than one 1370 // contained type ID, however the second one will always be the same (i1), 1371 // so we don't need to include it in the cache key. This asserts that the 1372 // contained types are indeed as expected and there are no collisions. 1373 assert((ChildTypeIDs.empty() || 1374 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1375 "Incorrect cached contained type IDs"); 1376 return It->second; 1377 } 1378 1379 #ifndef NDEBUG 1380 if (!Ty->isOpaquePointerTy()) { 1381 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1382 "Wrong number of contained types"); 1383 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1384 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1385 "Incorrect contained type ID"); 1386 } 1387 } 1388 #endif 1389 1390 unsigned TypeID = TypeList.size(); 1391 TypeList.push_back(Ty); 1392 if (!ChildTypeIDs.empty()) 1393 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1394 VirtualTypeIDs.insert({CacheKey, TypeID}); 1395 return TypeID; 1396 } 1397 1398 static bool isConstExprSupported(uint8_t Opcode) { 1399 // These are not real constant expressions, always consider them supported. 1400 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1401 return true; 1402 1403 // If -expand-constant-exprs is set, we want to consider all expressions 1404 // as unsupported. 1405 if (ExpandConstantExprs) 1406 return false; 1407 1408 if (Instruction::isBinaryOp(Opcode)) 1409 return ConstantExpr::isSupportedBinOp(Opcode); 1410 1411 return Opcode != Instruction::FNeg; 1412 } 1413 1414 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1415 BasicBlock *InsertBB) { 1416 // Quickly handle the case where there is no BitcodeConstant to resolve. 1417 if (StartValID < ValueList.size() && ValueList[StartValID] && 1418 !isa<BitcodeConstant>(ValueList[StartValID])) 1419 return ValueList[StartValID]; 1420 1421 SmallDenseMap<unsigned, Value *> MaterializedValues; 1422 SmallVector<unsigned> Worklist; 1423 Worklist.push_back(StartValID); 1424 while (!Worklist.empty()) { 1425 unsigned ValID = Worklist.back(); 1426 if (MaterializedValues.count(ValID)) { 1427 // Duplicate expression that was already handled. 1428 Worklist.pop_back(); 1429 continue; 1430 } 1431 1432 if (ValID >= ValueList.size() || !ValueList[ValID]) 1433 return error("Invalid value ID"); 1434 1435 Value *V = ValueList[ValID]; 1436 auto *BC = dyn_cast<BitcodeConstant>(V); 1437 if (!BC) { 1438 MaterializedValues.insert({ValID, V}); 1439 Worklist.pop_back(); 1440 continue; 1441 } 1442 1443 // Iterate in reverse, so values will get popped from the worklist in 1444 // expected order. 1445 SmallVector<Value *> Ops; 1446 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1447 auto It = MaterializedValues.find(OpID); 1448 if (It != MaterializedValues.end()) 1449 Ops.push_back(It->second); 1450 else 1451 Worklist.push_back(OpID); 1452 } 1453 1454 // Some expressions have not been resolved yet, handle them first and then 1455 // revisit this one. 1456 if (Ops.size() != BC->getOperandIDs().size()) 1457 continue; 1458 std::reverse(Ops.begin(), Ops.end()); 1459 1460 SmallVector<Constant *> ConstOps; 1461 for (Value *Op : Ops) 1462 if (auto *C = dyn_cast<Constant>(Op)) 1463 ConstOps.push_back(C); 1464 1465 // Materialize as constant expression if possible. 1466 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1467 Constant *C; 1468 if (Instruction::isCast(BC->Opcode)) { 1469 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1470 if (!C) 1471 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1472 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1473 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1474 } else { 1475 switch (BC->Opcode) { 1476 case BitcodeConstant::NoCFIOpcode: { 1477 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1478 if (!GV) 1479 return error("no_cfi operand must be GlobalValue"); 1480 C = NoCFIValue::get(GV); 1481 break; 1482 } 1483 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1484 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1485 if (!GV) 1486 return error("dso_local operand must be GlobalValue"); 1487 C = DSOLocalEquivalent::get(GV); 1488 break; 1489 } 1490 case BitcodeConstant::BlockAddressOpcode: { 1491 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1492 if (!Fn) 1493 return error("blockaddress operand must be a function"); 1494 1495 // If the function is already parsed we can insert the block address 1496 // right away. 1497 BasicBlock *BB; 1498 unsigned BBID = BC->Extra; 1499 if (!BBID) 1500 // Invalid reference to entry block. 1501 return error("Invalid ID"); 1502 if (!Fn->empty()) { 1503 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1504 for (size_t I = 0, E = BBID; I != E; ++I) { 1505 if (BBI == BBE) 1506 return error("Invalid ID"); 1507 ++BBI; 1508 } 1509 BB = &*BBI; 1510 } else { 1511 // Otherwise insert a placeholder and remember it so it can be 1512 // inserted when the function is parsed. 1513 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1514 if (FwdBBs.empty()) 1515 BasicBlockFwdRefQueue.push_back(Fn); 1516 if (FwdBBs.size() < BBID + 1) 1517 FwdBBs.resize(BBID + 1); 1518 if (!FwdBBs[BBID]) 1519 FwdBBs[BBID] = BasicBlock::Create(Context); 1520 BB = FwdBBs[BBID]; 1521 } 1522 C = BlockAddress::get(Fn, BB); 1523 break; 1524 } 1525 case BitcodeConstant::ConstantStructOpcode: 1526 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1527 break; 1528 case BitcodeConstant::ConstantArrayOpcode: 1529 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1530 break; 1531 case BitcodeConstant::ConstantVectorOpcode: 1532 C = ConstantVector::get(ConstOps); 1533 break; 1534 case Instruction::ICmp: 1535 case Instruction::FCmp: 1536 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1537 break; 1538 case Instruction::GetElementPtr: 1539 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1540 ArrayRef(ConstOps).drop_front(), 1541 BC->Flags, BC->getInRangeIndex()); 1542 break; 1543 case Instruction::Select: 1544 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1545 break; 1546 case Instruction::ExtractElement: 1547 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1548 break; 1549 case Instruction::InsertElement: 1550 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1551 ConstOps[2]); 1552 break; 1553 case Instruction::ShuffleVector: { 1554 SmallVector<int, 16> Mask; 1555 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1556 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1557 break; 1558 } 1559 default: 1560 llvm_unreachable("Unhandled bitcode constant"); 1561 } 1562 } 1563 1564 // Cache resolved constant. 1565 ValueList.replaceValueWithoutRAUW(ValID, C); 1566 MaterializedValues.insert({ValID, C}); 1567 Worklist.pop_back(); 1568 continue; 1569 } 1570 1571 if (!InsertBB) 1572 return error(Twine("Value referenced by initializer is an unsupported " 1573 "constant expression of type ") + 1574 BC->getOpcodeName()); 1575 1576 // Materialize as instructions if necessary. 1577 Instruction *I; 1578 if (Instruction::isCast(BC->Opcode)) { 1579 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1580 BC->getType(), "constexpr", InsertBB); 1581 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1582 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1583 "constexpr", InsertBB); 1584 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1585 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1586 Ops[1], "constexpr", InsertBB); 1587 if (isa<OverflowingBinaryOperator>(I)) { 1588 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1589 I->setHasNoSignedWrap(); 1590 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1591 I->setHasNoUnsignedWrap(); 1592 } 1593 if (isa<PossiblyExactOperator>(I) && 1594 (BC->Flags & PossiblyExactOperator::IsExact)) 1595 I->setIsExact(); 1596 } else { 1597 switch (BC->Opcode) { 1598 case BitcodeConstant::ConstantVectorOpcode: { 1599 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1600 Value *V = PoisonValue::get(BC->getType()); 1601 for (auto Pair : enumerate(Ops)) { 1602 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1603 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1604 InsertBB); 1605 } 1606 I = cast<Instruction>(V); 1607 break; 1608 } 1609 case BitcodeConstant::ConstantStructOpcode: 1610 case BitcodeConstant::ConstantArrayOpcode: { 1611 Value *V = PoisonValue::get(BC->getType()); 1612 for (auto Pair : enumerate(Ops)) 1613 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1614 "constexpr.ins", InsertBB); 1615 I = cast<Instruction>(V); 1616 break; 1617 } 1618 case Instruction::ICmp: 1619 case Instruction::FCmp: 1620 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1621 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1622 "constexpr", InsertBB); 1623 break; 1624 case Instruction::GetElementPtr: 1625 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1626 ArrayRef(Ops).drop_front(), "constexpr", 1627 InsertBB); 1628 if (BC->Flags) 1629 cast<GetElementPtrInst>(I)->setIsInBounds(); 1630 break; 1631 case Instruction::Select: 1632 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1633 break; 1634 case Instruction::ExtractElement: 1635 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1636 break; 1637 case Instruction::InsertElement: 1638 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1639 InsertBB); 1640 break; 1641 case Instruction::ShuffleVector: 1642 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1643 InsertBB); 1644 break; 1645 default: 1646 llvm_unreachable("Unhandled bitcode constant"); 1647 } 1648 } 1649 1650 MaterializedValues.insert({ValID, I}); 1651 Worklist.pop_back(); 1652 } 1653 1654 return MaterializedValues[StartValID]; 1655 } 1656 1657 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1658 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1659 if (!MaybeV) 1660 return MaybeV.takeError(); 1661 1662 // Result must be Constant if InsertBB is nullptr. 1663 return cast<Constant>(MaybeV.get()); 1664 } 1665 1666 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1667 StringRef Name) { 1668 auto *Ret = StructType::create(Context, Name); 1669 IdentifiedStructTypes.push_back(Ret); 1670 return Ret; 1671 } 1672 1673 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1674 auto *Ret = StructType::create(Context); 1675 IdentifiedStructTypes.push_back(Ret); 1676 return Ret; 1677 } 1678 1679 //===----------------------------------------------------------------------===// 1680 // Functions for parsing blocks from the bitcode file 1681 //===----------------------------------------------------------------------===// 1682 1683 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1684 switch (Val) { 1685 case Attribute::EndAttrKinds: 1686 case Attribute::EmptyKey: 1687 case Attribute::TombstoneKey: 1688 llvm_unreachable("Synthetic enumerators which should never get here"); 1689 1690 case Attribute::None: return 0; 1691 case Attribute::ZExt: return 1 << 0; 1692 case Attribute::SExt: return 1 << 1; 1693 case Attribute::NoReturn: return 1 << 2; 1694 case Attribute::InReg: return 1 << 3; 1695 case Attribute::StructRet: return 1 << 4; 1696 case Attribute::NoUnwind: return 1 << 5; 1697 case Attribute::NoAlias: return 1 << 6; 1698 case Attribute::ByVal: return 1 << 7; 1699 case Attribute::Nest: return 1 << 8; 1700 case Attribute::ReadNone: return 1 << 9; 1701 case Attribute::ReadOnly: return 1 << 10; 1702 case Attribute::NoInline: return 1 << 11; 1703 case Attribute::AlwaysInline: return 1 << 12; 1704 case Attribute::OptimizeForSize: return 1 << 13; 1705 case Attribute::StackProtect: return 1 << 14; 1706 case Attribute::StackProtectReq: return 1 << 15; 1707 case Attribute::Alignment: return 31 << 16; 1708 case Attribute::NoCapture: return 1 << 21; 1709 case Attribute::NoRedZone: return 1 << 22; 1710 case Attribute::NoImplicitFloat: return 1 << 23; 1711 case Attribute::Naked: return 1 << 24; 1712 case Attribute::InlineHint: return 1 << 25; 1713 case Attribute::StackAlignment: return 7 << 26; 1714 case Attribute::ReturnsTwice: return 1 << 29; 1715 case Attribute::UWTable: return 1 << 30; 1716 case Attribute::NonLazyBind: return 1U << 31; 1717 case Attribute::SanitizeAddress: return 1ULL << 32; 1718 case Attribute::MinSize: return 1ULL << 33; 1719 case Attribute::NoDuplicate: return 1ULL << 34; 1720 case Attribute::StackProtectStrong: return 1ULL << 35; 1721 case Attribute::SanitizeThread: return 1ULL << 36; 1722 case Attribute::SanitizeMemory: return 1ULL << 37; 1723 case Attribute::NoBuiltin: return 1ULL << 38; 1724 case Attribute::Returned: return 1ULL << 39; 1725 case Attribute::Cold: return 1ULL << 40; 1726 case Attribute::Builtin: return 1ULL << 41; 1727 case Attribute::OptimizeNone: return 1ULL << 42; 1728 case Attribute::InAlloca: return 1ULL << 43; 1729 case Attribute::NonNull: return 1ULL << 44; 1730 case Attribute::JumpTable: return 1ULL << 45; 1731 case Attribute::Convergent: return 1ULL << 46; 1732 case Attribute::SafeStack: return 1ULL << 47; 1733 case Attribute::NoRecurse: return 1ULL << 48; 1734 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1735 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1736 case Attribute::SwiftSelf: return 1ULL << 51; 1737 case Attribute::SwiftError: return 1ULL << 52; 1738 case Attribute::WriteOnly: return 1ULL << 53; 1739 case Attribute::Speculatable: return 1ULL << 54; 1740 case Attribute::StrictFP: return 1ULL << 55; 1741 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1742 case Attribute::NoCfCheck: return 1ULL << 57; 1743 case Attribute::OptForFuzzing: return 1ULL << 58; 1744 case Attribute::ShadowCallStack: return 1ULL << 59; 1745 case Attribute::SpeculativeLoadHardening: 1746 return 1ULL << 60; 1747 case Attribute::ImmArg: 1748 return 1ULL << 61; 1749 case Attribute::WillReturn: 1750 return 1ULL << 62; 1751 case Attribute::NoFree: 1752 return 1ULL << 63; 1753 default: 1754 // Other attributes are not supported in the raw format, 1755 // as we ran out of space. 1756 return 0; 1757 } 1758 llvm_unreachable("Unsupported attribute type"); 1759 } 1760 1761 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1762 if (!Val) return; 1763 1764 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1765 I = Attribute::AttrKind(I + 1)) { 1766 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1767 if (I == Attribute::Alignment) 1768 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1769 else if (I == Attribute::StackAlignment) 1770 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1771 else if (Attribute::isTypeAttrKind(I)) 1772 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1773 else 1774 B.addAttribute(I); 1775 } 1776 } 1777 } 1778 1779 /// This fills an AttrBuilder object with the LLVM attributes that have 1780 /// been decoded from the given integer. This function must stay in sync with 1781 /// 'encodeLLVMAttributesForBitcode'. 1782 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1783 uint64_t EncodedAttrs, 1784 uint64_t AttrIdx) { 1785 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1786 // the bits above 31 down by 11 bits. 1787 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1788 assert((!Alignment || isPowerOf2_32(Alignment)) && 1789 "Alignment must be a power of two."); 1790 1791 if (Alignment) 1792 B.addAlignmentAttr(Alignment); 1793 1794 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1795 (EncodedAttrs & 0xffff); 1796 1797 if (AttrIdx == AttributeList::FunctionIndex) { 1798 // Upgrade old memory attributes. 1799 MemoryEffects ME = MemoryEffects::unknown(); 1800 if (Attrs & (1ULL << 9)) { 1801 // ReadNone 1802 Attrs &= ~(1ULL << 9); 1803 ME &= MemoryEffects::none(); 1804 } 1805 if (Attrs & (1ULL << 10)) { 1806 // ReadOnly 1807 Attrs &= ~(1ULL << 10); 1808 ME &= MemoryEffects::readOnly(); 1809 } 1810 if (Attrs & (1ULL << 49)) { 1811 // InaccessibleMemOnly 1812 Attrs &= ~(1ULL << 49); 1813 ME &= MemoryEffects::inaccessibleMemOnly(); 1814 } 1815 if (Attrs & (1ULL << 50)) { 1816 // InaccessibleMemOrArgMemOnly 1817 Attrs &= ~(1ULL << 50); 1818 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1819 } 1820 if (Attrs & (1ULL << 53)) { 1821 // WriteOnly 1822 Attrs &= ~(1ULL << 53); 1823 ME &= MemoryEffects::writeOnly(); 1824 } 1825 if (ME != MemoryEffects::unknown()) 1826 B.addMemoryAttr(ME); 1827 } 1828 1829 addRawAttributeValue(B, Attrs); 1830 } 1831 1832 Error BitcodeReader::parseAttributeBlock() { 1833 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1834 return Err; 1835 1836 if (!MAttributes.empty()) 1837 return error("Invalid multiple blocks"); 1838 1839 SmallVector<uint64_t, 64> Record; 1840 1841 SmallVector<AttributeList, 8> Attrs; 1842 1843 // Read all the records. 1844 while (true) { 1845 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1846 if (!MaybeEntry) 1847 return MaybeEntry.takeError(); 1848 BitstreamEntry Entry = MaybeEntry.get(); 1849 1850 switch (Entry.Kind) { 1851 case BitstreamEntry::SubBlock: // Handled for us already. 1852 case BitstreamEntry::Error: 1853 return error("Malformed block"); 1854 case BitstreamEntry::EndBlock: 1855 return Error::success(); 1856 case BitstreamEntry::Record: 1857 // The interesting case. 1858 break; 1859 } 1860 1861 // Read a record. 1862 Record.clear(); 1863 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1864 if (!MaybeRecord) 1865 return MaybeRecord.takeError(); 1866 switch (MaybeRecord.get()) { 1867 default: // Default behavior: ignore. 1868 break; 1869 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1870 // Deprecated, but still needed to read old bitcode files. 1871 if (Record.size() & 1) 1872 return error("Invalid parameter attribute record"); 1873 1874 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1875 AttrBuilder B(Context); 1876 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1877 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1878 } 1879 1880 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1881 Attrs.clear(); 1882 break; 1883 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1884 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1885 Attrs.push_back(MAttributeGroups[Record[i]]); 1886 1887 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1888 Attrs.clear(); 1889 break; 1890 } 1891 } 1892 } 1893 1894 // Returns Attribute::None on unrecognized codes. 1895 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1896 switch (Code) { 1897 default: 1898 return Attribute::None; 1899 case bitc::ATTR_KIND_ALIGNMENT: 1900 return Attribute::Alignment; 1901 case bitc::ATTR_KIND_ALWAYS_INLINE: 1902 return Attribute::AlwaysInline; 1903 case bitc::ATTR_KIND_BUILTIN: 1904 return Attribute::Builtin; 1905 case bitc::ATTR_KIND_BY_VAL: 1906 return Attribute::ByVal; 1907 case bitc::ATTR_KIND_IN_ALLOCA: 1908 return Attribute::InAlloca; 1909 case bitc::ATTR_KIND_COLD: 1910 return Attribute::Cold; 1911 case bitc::ATTR_KIND_CONVERGENT: 1912 return Attribute::Convergent; 1913 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1914 return Attribute::DisableSanitizerInstrumentation; 1915 case bitc::ATTR_KIND_ELEMENTTYPE: 1916 return Attribute::ElementType; 1917 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1918 return Attribute::FnRetThunkExtern; 1919 case bitc::ATTR_KIND_INLINE_HINT: 1920 return Attribute::InlineHint; 1921 case bitc::ATTR_KIND_IN_REG: 1922 return Attribute::InReg; 1923 case bitc::ATTR_KIND_JUMP_TABLE: 1924 return Attribute::JumpTable; 1925 case bitc::ATTR_KIND_MEMORY: 1926 return Attribute::Memory; 1927 case bitc::ATTR_KIND_MIN_SIZE: 1928 return Attribute::MinSize; 1929 case bitc::ATTR_KIND_NAKED: 1930 return Attribute::Naked; 1931 case bitc::ATTR_KIND_NEST: 1932 return Attribute::Nest; 1933 case bitc::ATTR_KIND_NO_ALIAS: 1934 return Attribute::NoAlias; 1935 case bitc::ATTR_KIND_NO_BUILTIN: 1936 return Attribute::NoBuiltin; 1937 case bitc::ATTR_KIND_NO_CALLBACK: 1938 return Attribute::NoCallback; 1939 case bitc::ATTR_KIND_NO_CAPTURE: 1940 return Attribute::NoCapture; 1941 case bitc::ATTR_KIND_NO_DUPLICATE: 1942 return Attribute::NoDuplicate; 1943 case bitc::ATTR_KIND_NOFREE: 1944 return Attribute::NoFree; 1945 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1946 return Attribute::NoImplicitFloat; 1947 case bitc::ATTR_KIND_NO_INLINE: 1948 return Attribute::NoInline; 1949 case bitc::ATTR_KIND_NO_RECURSE: 1950 return Attribute::NoRecurse; 1951 case bitc::ATTR_KIND_NO_MERGE: 1952 return Attribute::NoMerge; 1953 case bitc::ATTR_KIND_NON_LAZY_BIND: 1954 return Attribute::NonLazyBind; 1955 case bitc::ATTR_KIND_NON_NULL: 1956 return Attribute::NonNull; 1957 case bitc::ATTR_KIND_DEREFERENCEABLE: 1958 return Attribute::Dereferenceable; 1959 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1960 return Attribute::DereferenceableOrNull; 1961 case bitc::ATTR_KIND_ALLOC_ALIGN: 1962 return Attribute::AllocAlign; 1963 case bitc::ATTR_KIND_ALLOC_KIND: 1964 return Attribute::AllocKind; 1965 case bitc::ATTR_KIND_ALLOC_SIZE: 1966 return Attribute::AllocSize; 1967 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1968 return Attribute::AllocatedPointer; 1969 case bitc::ATTR_KIND_NO_RED_ZONE: 1970 return Attribute::NoRedZone; 1971 case bitc::ATTR_KIND_NO_RETURN: 1972 return Attribute::NoReturn; 1973 case bitc::ATTR_KIND_NOSYNC: 1974 return Attribute::NoSync; 1975 case bitc::ATTR_KIND_NOCF_CHECK: 1976 return Attribute::NoCfCheck; 1977 case bitc::ATTR_KIND_NO_PROFILE: 1978 return Attribute::NoProfile; 1979 case bitc::ATTR_KIND_SKIP_PROFILE: 1980 return Attribute::SkipProfile; 1981 case bitc::ATTR_KIND_NO_UNWIND: 1982 return Attribute::NoUnwind; 1983 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1984 return Attribute::NoSanitizeBounds; 1985 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1986 return Attribute::NoSanitizeCoverage; 1987 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1988 return Attribute::NullPointerIsValid; 1989 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1990 return Attribute::OptForFuzzing; 1991 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1992 return Attribute::OptimizeForSize; 1993 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1994 return Attribute::OptimizeNone; 1995 case bitc::ATTR_KIND_READ_NONE: 1996 return Attribute::ReadNone; 1997 case bitc::ATTR_KIND_READ_ONLY: 1998 return Attribute::ReadOnly; 1999 case bitc::ATTR_KIND_RETURNED: 2000 return Attribute::Returned; 2001 case bitc::ATTR_KIND_RETURNS_TWICE: 2002 return Attribute::ReturnsTwice; 2003 case bitc::ATTR_KIND_S_EXT: 2004 return Attribute::SExt; 2005 case bitc::ATTR_KIND_SPECULATABLE: 2006 return Attribute::Speculatable; 2007 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2008 return Attribute::StackAlignment; 2009 case bitc::ATTR_KIND_STACK_PROTECT: 2010 return Attribute::StackProtect; 2011 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2012 return Attribute::StackProtectReq; 2013 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2014 return Attribute::StackProtectStrong; 2015 case bitc::ATTR_KIND_SAFESTACK: 2016 return Attribute::SafeStack; 2017 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2018 return Attribute::ShadowCallStack; 2019 case bitc::ATTR_KIND_STRICT_FP: 2020 return Attribute::StrictFP; 2021 case bitc::ATTR_KIND_STRUCT_RET: 2022 return Attribute::StructRet; 2023 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2024 return Attribute::SanitizeAddress; 2025 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2026 return Attribute::SanitizeHWAddress; 2027 case bitc::ATTR_KIND_SANITIZE_THREAD: 2028 return Attribute::SanitizeThread; 2029 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2030 return Attribute::SanitizeMemory; 2031 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2032 return Attribute::SpeculativeLoadHardening; 2033 case bitc::ATTR_KIND_SWIFT_ERROR: 2034 return Attribute::SwiftError; 2035 case bitc::ATTR_KIND_SWIFT_SELF: 2036 return Attribute::SwiftSelf; 2037 case bitc::ATTR_KIND_SWIFT_ASYNC: 2038 return Attribute::SwiftAsync; 2039 case bitc::ATTR_KIND_UW_TABLE: 2040 return Attribute::UWTable; 2041 case bitc::ATTR_KIND_VSCALE_RANGE: 2042 return Attribute::VScaleRange; 2043 case bitc::ATTR_KIND_WILLRETURN: 2044 return Attribute::WillReturn; 2045 case bitc::ATTR_KIND_WRITEONLY: 2046 return Attribute::WriteOnly; 2047 case bitc::ATTR_KIND_Z_EXT: 2048 return Attribute::ZExt; 2049 case bitc::ATTR_KIND_IMMARG: 2050 return Attribute::ImmArg; 2051 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2052 return Attribute::SanitizeMemTag; 2053 case bitc::ATTR_KIND_PREALLOCATED: 2054 return Attribute::Preallocated; 2055 case bitc::ATTR_KIND_NOUNDEF: 2056 return Attribute::NoUndef; 2057 case bitc::ATTR_KIND_BYREF: 2058 return Attribute::ByRef; 2059 case bitc::ATTR_KIND_MUSTPROGRESS: 2060 return Attribute::MustProgress; 2061 case bitc::ATTR_KIND_HOT: 2062 return Attribute::Hot; 2063 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2064 return Attribute::PresplitCoroutine; 2065 } 2066 } 2067 2068 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2069 MaybeAlign &Alignment) { 2070 // Note: Alignment in bitcode files is incremented by 1, so that zero 2071 // can be used for default alignment. 2072 if (Exponent > Value::MaxAlignmentExponent + 1) 2073 return error("Invalid alignment value"); 2074 Alignment = decodeMaybeAlign(Exponent); 2075 return Error::success(); 2076 } 2077 2078 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2079 *Kind = getAttrFromCode(Code); 2080 if (*Kind == Attribute::None) 2081 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2082 return Error::success(); 2083 } 2084 2085 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2086 switch (EncodedKind) { 2087 case bitc::ATTR_KIND_READ_NONE: 2088 ME &= MemoryEffects::none(); 2089 return true; 2090 case bitc::ATTR_KIND_READ_ONLY: 2091 ME &= MemoryEffects::readOnly(); 2092 return true; 2093 case bitc::ATTR_KIND_WRITEONLY: 2094 ME &= MemoryEffects::writeOnly(); 2095 return true; 2096 case bitc::ATTR_KIND_ARGMEMONLY: 2097 ME &= MemoryEffects::argMemOnly(); 2098 return true; 2099 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2100 ME &= MemoryEffects::inaccessibleMemOnly(); 2101 return true; 2102 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2103 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2104 return true; 2105 default: 2106 return false; 2107 } 2108 } 2109 2110 Error BitcodeReader::parseAttributeGroupBlock() { 2111 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2112 return Err; 2113 2114 if (!MAttributeGroups.empty()) 2115 return error("Invalid multiple blocks"); 2116 2117 SmallVector<uint64_t, 64> Record; 2118 2119 // Read all the records. 2120 while (true) { 2121 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2122 if (!MaybeEntry) 2123 return MaybeEntry.takeError(); 2124 BitstreamEntry Entry = MaybeEntry.get(); 2125 2126 switch (Entry.Kind) { 2127 case BitstreamEntry::SubBlock: // Handled for us already. 2128 case BitstreamEntry::Error: 2129 return error("Malformed block"); 2130 case BitstreamEntry::EndBlock: 2131 return Error::success(); 2132 case BitstreamEntry::Record: 2133 // The interesting case. 2134 break; 2135 } 2136 2137 // Read a record. 2138 Record.clear(); 2139 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2140 if (!MaybeRecord) 2141 return MaybeRecord.takeError(); 2142 switch (MaybeRecord.get()) { 2143 default: // Default behavior: ignore. 2144 break; 2145 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2146 if (Record.size() < 3) 2147 return error("Invalid grp record"); 2148 2149 uint64_t GrpID = Record[0]; 2150 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2151 2152 AttrBuilder B(Context); 2153 MemoryEffects ME = MemoryEffects::unknown(); 2154 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2155 if (Record[i] == 0) { // Enum attribute 2156 Attribute::AttrKind Kind; 2157 uint64_t EncodedKind = Record[++i]; 2158 if (Idx == AttributeList::FunctionIndex && 2159 upgradeOldMemoryAttribute(ME, EncodedKind)) 2160 continue; 2161 2162 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2163 return Err; 2164 2165 // Upgrade old-style byval attribute to one with a type, even if it's 2166 // nullptr. We will have to insert the real type when we associate 2167 // this AttributeList with a function. 2168 if (Kind == Attribute::ByVal) 2169 B.addByValAttr(nullptr); 2170 else if (Kind == Attribute::StructRet) 2171 B.addStructRetAttr(nullptr); 2172 else if (Kind == Attribute::InAlloca) 2173 B.addInAllocaAttr(nullptr); 2174 else if (Kind == Attribute::UWTable) 2175 B.addUWTableAttr(UWTableKind::Default); 2176 else if (Attribute::isEnumAttrKind(Kind)) 2177 B.addAttribute(Kind); 2178 else 2179 return error("Not an enum attribute"); 2180 } else if (Record[i] == 1) { // Integer attribute 2181 Attribute::AttrKind Kind; 2182 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2183 return Err; 2184 if (!Attribute::isIntAttrKind(Kind)) 2185 return error("Not an int attribute"); 2186 if (Kind == Attribute::Alignment) 2187 B.addAlignmentAttr(Record[++i]); 2188 else if (Kind == Attribute::StackAlignment) 2189 B.addStackAlignmentAttr(Record[++i]); 2190 else if (Kind == Attribute::Dereferenceable) 2191 B.addDereferenceableAttr(Record[++i]); 2192 else if (Kind == Attribute::DereferenceableOrNull) 2193 B.addDereferenceableOrNullAttr(Record[++i]); 2194 else if (Kind == Attribute::AllocSize) 2195 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2196 else if (Kind == Attribute::VScaleRange) 2197 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2198 else if (Kind == Attribute::UWTable) 2199 B.addUWTableAttr(UWTableKind(Record[++i])); 2200 else if (Kind == Attribute::AllocKind) 2201 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2202 else if (Kind == Attribute::Memory) 2203 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2204 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2205 bool HasValue = (Record[i++] == 4); 2206 SmallString<64> KindStr; 2207 SmallString<64> ValStr; 2208 2209 while (Record[i] != 0 && i != e) 2210 KindStr += Record[i++]; 2211 assert(Record[i] == 0 && "Kind string not null terminated"); 2212 2213 if (HasValue) { 2214 // Has a value associated with it. 2215 ++i; // Skip the '0' that terminates the "kind" string. 2216 while (Record[i] != 0 && i != e) 2217 ValStr += Record[i++]; 2218 assert(Record[i] == 0 && "Value string not null terminated"); 2219 } 2220 2221 B.addAttribute(KindStr.str(), ValStr.str()); 2222 } else if (Record[i] == 5 || Record[i] == 6) { 2223 bool HasType = Record[i] == 6; 2224 Attribute::AttrKind Kind; 2225 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2226 return Err; 2227 if (!Attribute::isTypeAttrKind(Kind)) 2228 return error("Not a type attribute"); 2229 2230 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2231 } else { 2232 return error("Invalid attribute group entry"); 2233 } 2234 } 2235 2236 if (ME != MemoryEffects::unknown()) 2237 B.addMemoryAttr(ME); 2238 2239 UpgradeAttributes(B); 2240 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2241 break; 2242 } 2243 } 2244 } 2245 } 2246 2247 Error BitcodeReader::parseTypeTable() { 2248 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2249 return Err; 2250 2251 return parseTypeTableBody(); 2252 } 2253 2254 Error BitcodeReader::parseTypeTableBody() { 2255 if (!TypeList.empty()) 2256 return error("Invalid multiple blocks"); 2257 2258 SmallVector<uint64_t, 64> Record; 2259 unsigned NumRecords = 0; 2260 2261 SmallString<64> TypeName; 2262 2263 // Read all the records for this type table. 2264 while (true) { 2265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2266 if (!MaybeEntry) 2267 return MaybeEntry.takeError(); 2268 BitstreamEntry Entry = MaybeEntry.get(); 2269 2270 switch (Entry.Kind) { 2271 case BitstreamEntry::SubBlock: // Handled for us already. 2272 case BitstreamEntry::Error: 2273 return error("Malformed block"); 2274 case BitstreamEntry::EndBlock: 2275 if (NumRecords != TypeList.size()) 2276 return error("Malformed block"); 2277 return Error::success(); 2278 case BitstreamEntry::Record: 2279 // The interesting case. 2280 break; 2281 } 2282 2283 // Read a record. 2284 Record.clear(); 2285 Type *ResultTy = nullptr; 2286 SmallVector<unsigned> ContainedIDs; 2287 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2288 if (!MaybeRecord) 2289 return MaybeRecord.takeError(); 2290 switch (MaybeRecord.get()) { 2291 default: 2292 return error("Invalid value"); 2293 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2294 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2295 // type list. This allows us to reserve space. 2296 if (Record.empty()) 2297 return error("Invalid numentry record"); 2298 TypeList.resize(Record[0]); 2299 continue; 2300 case bitc::TYPE_CODE_VOID: // VOID 2301 ResultTy = Type::getVoidTy(Context); 2302 break; 2303 case bitc::TYPE_CODE_HALF: // HALF 2304 ResultTy = Type::getHalfTy(Context); 2305 break; 2306 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2307 ResultTy = Type::getBFloatTy(Context); 2308 break; 2309 case bitc::TYPE_CODE_FLOAT: // FLOAT 2310 ResultTy = Type::getFloatTy(Context); 2311 break; 2312 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2313 ResultTy = Type::getDoubleTy(Context); 2314 break; 2315 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2316 ResultTy = Type::getX86_FP80Ty(Context); 2317 break; 2318 case bitc::TYPE_CODE_FP128: // FP128 2319 ResultTy = Type::getFP128Ty(Context); 2320 break; 2321 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2322 ResultTy = Type::getPPC_FP128Ty(Context); 2323 break; 2324 case bitc::TYPE_CODE_LABEL: // LABEL 2325 ResultTy = Type::getLabelTy(Context); 2326 break; 2327 case bitc::TYPE_CODE_METADATA: // METADATA 2328 ResultTy = Type::getMetadataTy(Context); 2329 break; 2330 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2331 ResultTy = Type::getX86_MMXTy(Context); 2332 break; 2333 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2334 ResultTy = Type::getX86_AMXTy(Context); 2335 break; 2336 case bitc::TYPE_CODE_TOKEN: // TOKEN 2337 ResultTy = Type::getTokenTy(Context); 2338 break; 2339 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2340 if (Record.empty()) 2341 return error("Invalid integer record"); 2342 2343 uint64_t NumBits = Record[0]; 2344 if (NumBits < IntegerType::MIN_INT_BITS || 2345 NumBits > IntegerType::MAX_INT_BITS) 2346 return error("Bitwidth for integer type out of range"); 2347 ResultTy = IntegerType::get(Context, NumBits); 2348 break; 2349 } 2350 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2351 // [pointee type, address space] 2352 if (Record.empty()) 2353 return error("Invalid pointer record"); 2354 unsigned AddressSpace = 0; 2355 if (Record.size() == 2) 2356 AddressSpace = Record[1]; 2357 ResultTy = getTypeByID(Record[0]); 2358 if (!ResultTy || 2359 !PointerType::isValidElementType(ResultTy)) 2360 return error("Invalid type"); 2361 ContainedIDs.push_back(Record[0]); 2362 ResultTy = PointerType::get(ResultTy, AddressSpace); 2363 break; 2364 } 2365 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2366 if (Record.size() != 1) 2367 return error("Invalid opaque pointer record"); 2368 if (Context.supportsTypedPointers()) 2369 return error( 2370 "Opaque pointers are only supported in -opaque-pointers mode"); 2371 unsigned AddressSpace = Record[0]; 2372 ResultTy = PointerType::get(Context, AddressSpace); 2373 break; 2374 } 2375 case bitc::TYPE_CODE_FUNCTION_OLD: { 2376 // Deprecated, but still needed to read old bitcode files. 2377 // FUNCTION: [vararg, attrid, retty, paramty x N] 2378 if (Record.size() < 3) 2379 return error("Invalid function record"); 2380 SmallVector<Type*, 8> ArgTys; 2381 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2382 if (Type *T = getTypeByID(Record[i])) 2383 ArgTys.push_back(T); 2384 else 2385 break; 2386 } 2387 2388 ResultTy = getTypeByID(Record[2]); 2389 if (!ResultTy || ArgTys.size() < Record.size()-3) 2390 return error("Invalid type"); 2391 2392 ContainedIDs.append(Record.begin() + 2, Record.end()); 2393 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2394 break; 2395 } 2396 case bitc::TYPE_CODE_FUNCTION: { 2397 // FUNCTION: [vararg, retty, paramty x N] 2398 if (Record.size() < 2) 2399 return error("Invalid function record"); 2400 SmallVector<Type*, 8> ArgTys; 2401 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2402 if (Type *T = getTypeByID(Record[i])) { 2403 if (!FunctionType::isValidArgumentType(T)) 2404 return error("Invalid function argument type"); 2405 ArgTys.push_back(T); 2406 } 2407 else 2408 break; 2409 } 2410 2411 ResultTy = getTypeByID(Record[1]); 2412 if (!ResultTy || ArgTys.size() < Record.size()-2) 2413 return error("Invalid type"); 2414 2415 ContainedIDs.append(Record.begin() + 1, Record.end()); 2416 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2417 break; 2418 } 2419 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2420 if (Record.empty()) 2421 return error("Invalid anon struct record"); 2422 SmallVector<Type*, 8> EltTys; 2423 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2424 if (Type *T = getTypeByID(Record[i])) 2425 EltTys.push_back(T); 2426 else 2427 break; 2428 } 2429 if (EltTys.size() != Record.size()-1) 2430 return error("Invalid type"); 2431 ContainedIDs.append(Record.begin() + 1, Record.end()); 2432 ResultTy = StructType::get(Context, EltTys, Record[0]); 2433 break; 2434 } 2435 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2436 if (convertToString(Record, 0, TypeName)) 2437 return error("Invalid struct name record"); 2438 continue; 2439 2440 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2441 if (Record.empty()) 2442 return error("Invalid named struct record"); 2443 2444 if (NumRecords >= TypeList.size()) 2445 return error("Invalid TYPE table"); 2446 2447 // Check to see if this was forward referenced, if so fill in the temp. 2448 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2449 if (Res) { 2450 Res->setName(TypeName); 2451 TypeList[NumRecords] = nullptr; 2452 } else // Otherwise, create a new struct. 2453 Res = createIdentifiedStructType(Context, TypeName); 2454 TypeName.clear(); 2455 2456 SmallVector<Type*, 8> EltTys; 2457 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2458 if (Type *T = getTypeByID(Record[i])) 2459 EltTys.push_back(T); 2460 else 2461 break; 2462 } 2463 if (EltTys.size() != Record.size()-1) 2464 return error("Invalid named struct record"); 2465 Res->setBody(EltTys, Record[0]); 2466 ContainedIDs.append(Record.begin() + 1, Record.end()); 2467 ResultTy = Res; 2468 break; 2469 } 2470 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2471 if (Record.size() != 1) 2472 return error("Invalid opaque type record"); 2473 2474 if (NumRecords >= TypeList.size()) 2475 return error("Invalid TYPE table"); 2476 2477 // Check to see if this was forward referenced, if so fill in the temp. 2478 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2479 if (Res) { 2480 Res->setName(TypeName); 2481 TypeList[NumRecords] = nullptr; 2482 } else // Otherwise, create a new struct with no body. 2483 Res = createIdentifiedStructType(Context, TypeName); 2484 TypeName.clear(); 2485 ResultTy = Res; 2486 break; 2487 } 2488 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2489 if (Record.size() < 1) 2490 return error("Invalid target extension type record"); 2491 2492 if (NumRecords >= TypeList.size()) 2493 return error("Invalid TYPE table"); 2494 2495 if (Record[0] >= Record.size()) 2496 return error("Too many type parameters"); 2497 2498 unsigned NumTys = Record[0]; 2499 SmallVector<Type *, 4> TypeParams; 2500 SmallVector<unsigned, 8> IntParams; 2501 for (unsigned i = 0; i < NumTys; i++) { 2502 if (Type *T = getTypeByID(Record[i + 1])) 2503 TypeParams.push_back(T); 2504 else 2505 return error("Invalid type"); 2506 } 2507 2508 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2509 if (Record[i] > UINT_MAX) 2510 return error("Integer parameter too large"); 2511 IntParams.push_back(Record[i]); 2512 } 2513 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2514 TypeName.clear(); 2515 break; 2516 } 2517 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2518 if (Record.size() < 2) 2519 return error("Invalid array type record"); 2520 ResultTy = getTypeByID(Record[1]); 2521 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2522 return error("Invalid type"); 2523 ContainedIDs.push_back(Record[1]); 2524 ResultTy = ArrayType::get(ResultTy, Record[0]); 2525 break; 2526 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2527 // [numelts, eltty, scalable] 2528 if (Record.size() < 2) 2529 return error("Invalid vector type record"); 2530 if (Record[0] == 0) 2531 return error("Invalid vector length"); 2532 ResultTy = getTypeByID(Record[1]); 2533 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2534 return error("Invalid type"); 2535 bool Scalable = Record.size() > 2 ? Record[2] : false; 2536 ContainedIDs.push_back(Record[1]); 2537 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2538 break; 2539 } 2540 2541 if (NumRecords >= TypeList.size()) 2542 return error("Invalid TYPE table"); 2543 if (TypeList[NumRecords]) 2544 return error( 2545 "Invalid TYPE table: Only named structs can be forward referenced"); 2546 assert(ResultTy && "Didn't read a type?"); 2547 TypeList[NumRecords] = ResultTy; 2548 if (!ContainedIDs.empty()) 2549 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2550 ++NumRecords; 2551 } 2552 } 2553 2554 Error BitcodeReader::parseOperandBundleTags() { 2555 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2556 return Err; 2557 2558 if (!BundleTags.empty()) 2559 return error("Invalid multiple blocks"); 2560 2561 SmallVector<uint64_t, 64> Record; 2562 2563 while (true) { 2564 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2565 if (!MaybeEntry) 2566 return MaybeEntry.takeError(); 2567 BitstreamEntry Entry = MaybeEntry.get(); 2568 2569 switch (Entry.Kind) { 2570 case BitstreamEntry::SubBlock: // Handled for us already. 2571 case BitstreamEntry::Error: 2572 return error("Malformed block"); 2573 case BitstreamEntry::EndBlock: 2574 return Error::success(); 2575 case BitstreamEntry::Record: 2576 // The interesting case. 2577 break; 2578 } 2579 2580 // Tags are implicitly mapped to integers by their order. 2581 2582 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2583 if (!MaybeRecord) 2584 return MaybeRecord.takeError(); 2585 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2586 return error("Invalid operand bundle record"); 2587 2588 // OPERAND_BUNDLE_TAG: [strchr x N] 2589 BundleTags.emplace_back(); 2590 if (convertToString(Record, 0, BundleTags.back())) 2591 return error("Invalid operand bundle record"); 2592 Record.clear(); 2593 } 2594 } 2595 2596 Error BitcodeReader::parseSyncScopeNames() { 2597 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2598 return Err; 2599 2600 if (!SSIDs.empty()) 2601 return error("Invalid multiple synchronization scope names blocks"); 2602 2603 SmallVector<uint64_t, 64> Record; 2604 while (true) { 2605 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2606 if (!MaybeEntry) 2607 return MaybeEntry.takeError(); 2608 BitstreamEntry Entry = MaybeEntry.get(); 2609 2610 switch (Entry.Kind) { 2611 case BitstreamEntry::SubBlock: // Handled for us already. 2612 case BitstreamEntry::Error: 2613 return error("Malformed block"); 2614 case BitstreamEntry::EndBlock: 2615 if (SSIDs.empty()) 2616 return error("Invalid empty synchronization scope names block"); 2617 return Error::success(); 2618 case BitstreamEntry::Record: 2619 // The interesting case. 2620 break; 2621 } 2622 2623 // Synchronization scope names are implicitly mapped to synchronization 2624 // scope IDs by their order. 2625 2626 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2627 if (!MaybeRecord) 2628 return MaybeRecord.takeError(); 2629 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2630 return error("Invalid sync scope record"); 2631 2632 SmallString<16> SSN; 2633 if (convertToString(Record, 0, SSN)) 2634 return error("Invalid sync scope record"); 2635 2636 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2637 Record.clear(); 2638 } 2639 } 2640 2641 /// Associate a value with its name from the given index in the provided record. 2642 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2643 unsigned NameIndex, Triple &TT) { 2644 SmallString<128> ValueName; 2645 if (convertToString(Record, NameIndex, ValueName)) 2646 return error("Invalid record"); 2647 unsigned ValueID = Record[0]; 2648 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2649 return error("Invalid record"); 2650 Value *V = ValueList[ValueID]; 2651 2652 StringRef NameStr(ValueName.data(), ValueName.size()); 2653 if (NameStr.find_first_of(0) != StringRef::npos) 2654 return error("Invalid value name"); 2655 V->setName(NameStr); 2656 auto *GO = dyn_cast<GlobalObject>(V); 2657 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2658 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2659 return V; 2660 } 2661 2662 /// Helper to note and return the current location, and jump to the given 2663 /// offset. 2664 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2665 BitstreamCursor &Stream) { 2666 // Save the current parsing location so we can jump back at the end 2667 // of the VST read. 2668 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2669 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2670 return std::move(JumpFailed); 2671 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2672 if (!MaybeEntry) 2673 return MaybeEntry.takeError(); 2674 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2675 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2676 return error("Expected value symbol table subblock"); 2677 return CurrentBit; 2678 } 2679 2680 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2681 Function *F, 2682 ArrayRef<uint64_t> Record) { 2683 // Note that we subtract 1 here because the offset is relative to one word 2684 // before the start of the identification or module block, which was 2685 // historically always the start of the regular bitcode header. 2686 uint64_t FuncWordOffset = Record[1] - 1; 2687 uint64_t FuncBitOffset = FuncWordOffset * 32; 2688 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2689 // Set the LastFunctionBlockBit to point to the last function block. 2690 // Later when parsing is resumed after function materialization, 2691 // we can simply skip that last function block. 2692 if (FuncBitOffset > LastFunctionBlockBit) 2693 LastFunctionBlockBit = FuncBitOffset; 2694 } 2695 2696 /// Read a new-style GlobalValue symbol table. 2697 Error BitcodeReader::parseGlobalValueSymbolTable() { 2698 unsigned FuncBitcodeOffsetDelta = 2699 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2700 2701 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2702 return Err; 2703 2704 SmallVector<uint64_t, 64> Record; 2705 while (true) { 2706 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2707 if (!MaybeEntry) 2708 return MaybeEntry.takeError(); 2709 BitstreamEntry Entry = MaybeEntry.get(); 2710 2711 switch (Entry.Kind) { 2712 case BitstreamEntry::SubBlock: 2713 case BitstreamEntry::Error: 2714 return error("Malformed block"); 2715 case BitstreamEntry::EndBlock: 2716 return Error::success(); 2717 case BitstreamEntry::Record: 2718 break; 2719 } 2720 2721 Record.clear(); 2722 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2723 if (!MaybeRecord) 2724 return MaybeRecord.takeError(); 2725 switch (MaybeRecord.get()) { 2726 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2727 unsigned ValueID = Record[0]; 2728 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2729 return error("Invalid value reference in symbol table"); 2730 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2731 cast<Function>(ValueList[ValueID]), Record); 2732 break; 2733 } 2734 } 2735 } 2736 } 2737 2738 /// Parse the value symbol table at either the current parsing location or 2739 /// at the given bit offset if provided. 2740 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2741 uint64_t CurrentBit; 2742 // Pass in the Offset to distinguish between calling for the module-level 2743 // VST (where we want to jump to the VST offset) and the function-level 2744 // VST (where we don't). 2745 if (Offset > 0) { 2746 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2747 if (!MaybeCurrentBit) 2748 return MaybeCurrentBit.takeError(); 2749 CurrentBit = MaybeCurrentBit.get(); 2750 // If this module uses a string table, read this as a module-level VST. 2751 if (UseStrtab) { 2752 if (Error Err = parseGlobalValueSymbolTable()) 2753 return Err; 2754 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2755 return JumpFailed; 2756 return Error::success(); 2757 } 2758 // Otherwise, the VST will be in a similar format to a function-level VST, 2759 // and will contain symbol names. 2760 } 2761 2762 // Compute the delta between the bitcode indices in the VST (the word offset 2763 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2764 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2765 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2766 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2767 // just before entering the VST subblock because: 1) the EnterSubBlock 2768 // changes the AbbrevID width; 2) the VST block is nested within the same 2769 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2770 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2771 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2772 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2773 unsigned FuncBitcodeOffsetDelta = 2774 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2775 2776 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2777 return Err; 2778 2779 SmallVector<uint64_t, 64> Record; 2780 2781 Triple TT(TheModule->getTargetTriple()); 2782 2783 // Read all the records for this value table. 2784 SmallString<128> ValueName; 2785 2786 while (true) { 2787 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2788 if (!MaybeEntry) 2789 return MaybeEntry.takeError(); 2790 BitstreamEntry Entry = MaybeEntry.get(); 2791 2792 switch (Entry.Kind) { 2793 case BitstreamEntry::SubBlock: // Handled for us already. 2794 case BitstreamEntry::Error: 2795 return error("Malformed block"); 2796 case BitstreamEntry::EndBlock: 2797 if (Offset > 0) 2798 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2799 return JumpFailed; 2800 return Error::success(); 2801 case BitstreamEntry::Record: 2802 // The interesting case. 2803 break; 2804 } 2805 2806 // Read a record. 2807 Record.clear(); 2808 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2809 if (!MaybeRecord) 2810 return MaybeRecord.takeError(); 2811 switch (MaybeRecord.get()) { 2812 default: // Default behavior: unknown type. 2813 break; 2814 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2815 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2816 if (Error Err = ValOrErr.takeError()) 2817 return Err; 2818 ValOrErr.get(); 2819 break; 2820 } 2821 case bitc::VST_CODE_FNENTRY: { 2822 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2823 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2824 if (Error Err = ValOrErr.takeError()) 2825 return Err; 2826 Value *V = ValOrErr.get(); 2827 2828 // Ignore function offsets emitted for aliases of functions in older 2829 // versions of LLVM. 2830 if (auto *F = dyn_cast<Function>(V)) 2831 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2832 break; 2833 } 2834 case bitc::VST_CODE_BBENTRY: { 2835 if (convertToString(Record, 1, ValueName)) 2836 return error("Invalid bbentry record"); 2837 BasicBlock *BB = getBasicBlock(Record[0]); 2838 if (!BB) 2839 return error("Invalid bbentry record"); 2840 2841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2842 ValueName.clear(); 2843 break; 2844 } 2845 } 2846 } 2847 } 2848 2849 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2850 /// encoding. 2851 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2852 if ((V & 1) == 0) 2853 return V >> 1; 2854 if (V != 1) 2855 return -(V >> 1); 2856 // There is no such thing as -0 with integers. "-0" really means MININT. 2857 return 1ULL << 63; 2858 } 2859 2860 /// Resolve all of the initializers for global values and aliases that we can. 2861 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2862 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2863 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2864 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2865 2866 GlobalInitWorklist.swap(GlobalInits); 2867 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2868 FunctionOperandWorklist.swap(FunctionOperands); 2869 2870 while (!GlobalInitWorklist.empty()) { 2871 unsigned ValID = GlobalInitWorklist.back().second; 2872 if (ValID >= ValueList.size()) { 2873 // Not ready to resolve this yet, it requires something later in the file. 2874 GlobalInits.push_back(GlobalInitWorklist.back()); 2875 } else { 2876 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2877 if (!MaybeC) 2878 return MaybeC.takeError(); 2879 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2880 } 2881 GlobalInitWorklist.pop_back(); 2882 } 2883 2884 while (!IndirectSymbolInitWorklist.empty()) { 2885 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2886 if (ValID >= ValueList.size()) { 2887 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2888 } else { 2889 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2890 if (!MaybeC) 2891 return MaybeC.takeError(); 2892 Constant *C = MaybeC.get(); 2893 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2894 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2895 if (C->getType() != GV->getType()) 2896 return error("Alias and aliasee types don't match"); 2897 GA->setAliasee(C); 2898 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2899 Type *ResolverFTy = 2900 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2901 // Transparently fix up the type for compatibility with older bitcode 2902 GI->setResolver(ConstantExpr::getBitCast( 2903 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2904 } else { 2905 return error("Expected an alias or an ifunc"); 2906 } 2907 } 2908 IndirectSymbolInitWorklist.pop_back(); 2909 } 2910 2911 while (!FunctionOperandWorklist.empty()) { 2912 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2913 if (Info.PersonalityFn) { 2914 unsigned ValID = Info.PersonalityFn - 1; 2915 if (ValID < ValueList.size()) { 2916 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2917 if (!MaybeC) 2918 return MaybeC.takeError(); 2919 Info.F->setPersonalityFn(MaybeC.get()); 2920 Info.PersonalityFn = 0; 2921 } 2922 } 2923 if (Info.Prefix) { 2924 unsigned ValID = Info.Prefix - 1; 2925 if (ValID < ValueList.size()) { 2926 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2927 if (!MaybeC) 2928 return MaybeC.takeError(); 2929 Info.F->setPrefixData(MaybeC.get()); 2930 Info.Prefix = 0; 2931 } 2932 } 2933 if (Info.Prologue) { 2934 unsigned ValID = Info.Prologue - 1; 2935 if (ValID < ValueList.size()) { 2936 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2937 if (!MaybeC) 2938 return MaybeC.takeError(); 2939 Info.F->setPrologueData(MaybeC.get()); 2940 Info.Prologue = 0; 2941 } 2942 } 2943 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2944 FunctionOperands.push_back(Info); 2945 FunctionOperandWorklist.pop_back(); 2946 } 2947 2948 return Error::success(); 2949 } 2950 2951 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2952 SmallVector<uint64_t, 8> Words(Vals.size()); 2953 transform(Vals, Words.begin(), 2954 BitcodeReader::decodeSignRotatedValue); 2955 2956 return APInt(TypeBits, Words); 2957 } 2958 2959 Error BitcodeReader::parseConstants() { 2960 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2961 return Err; 2962 2963 SmallVector<uint64_t, 64> Record; 2964 2965 // Read all the records for this value table. 2966 Type *CurTy = Type::getInt32Ty(Context); 2967 unsigned Int32TyID = getVirtualTypeID(CurTy); 2968 unsigned CurTyID = Int32TyID; 2969 Type *CurElemTy = nullptr; 2970 unsigned NextCstNo = ValueList.size(); 2971 2972 while (true) { 2973 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2974 if (!MaybeEntry) 2975 return MaybeEntry.takeError(); 2976 BitstreamEntry Entry = MaybeEntry.get(); 2977 2978 switch (Entry.Kind) { 2979 case BitstreamEntry::SubBlock: // Handled for us already. 2980 case BitstreamEntry::Error: 2981 return error("Malformed block"); 2982 case BitstreamEntry::EndBlock: 2983 if (NextCstNo != ValueList.size()) 2984 return error("Invalid constant reference"); 2985 return Error::success(); 2986 case BitstreamEntry::Record: 2987 // The interesting case. 2988 break; 2989 } 2990 2991 // Read a record. 2992 Record.clear(); 2993 Type *VoidType = Type::getVoidTy(Context); 2994 Value *V = nullptr; 2995 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2996 if (!MaybeBitCode) 2997 return MaybeBitCode.takeError(); 2998 switch (unsigned BitCode = MaybeBitCode.get()) { 2999 default: // Default behavior: unknown constant 3000 case bitc::CST_CODE_UNDEF: // UNDEF 3001 V = UndefValue::get(CurTy); 3002 break; 3003 case bitc::CST_CODE_POISON: // POISON 3004 V = PoisonValue::get(CurTy); 3005 break; 3006 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3007 if (Record.empty()) 3008 return error("Invalid settype record"); 3009 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3010 return error("Invalid settype record"); 3011 if (TypeList[Record[0]] == VoidType) 3012 return error("Invalid constant type"); 3013 CurTyID = Record[0]; 3014 CurTy = TypeList[CurTyID]; 3015 CurElemTy = getPtrElementTypeByID(CurTyID); 3016 continue; // Skip the ValueList manipulation. 3017 case bitc::CST_CODE_NULL: // NULL 3018 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3019 return error("Invalid type for a constant null value"); 3020 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3021 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3022 return error("Invalid type for a constant null value"); 3023 V = Constant::getNullValue(CurTy); 3024 break; 3025 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3026 if (!CurTy->isIntegerTy() || Record.empty()) 3027 return error("Invalid integer const record"); 3028 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3029 break; 3030 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3031 if (!CurTy->isIntegerTy() || Record.empty()) 3032 return error("Invalid wide integer const record"); 3033 3034 APInt VInt = 3035 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3036 V = ConstantInt::get(Context, VInt); 3037 3038 break; 3039 } 3040 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3041 if (Record.empty()) 3042 return error("Invalid float const record"); 3043 if (CurTy->isHalfTy()) 3044 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3045 APInt(16, (uint16_t)Record[0]))); 3046 else if (CurTy->isBFloatTy()) 3047 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3048 APInt(16, (uint32_t)Record[0]))); 3049 else if (CurTy->isFloatTy()) 3050 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3051 APInt(32, (uint32_t)Record[0]))); 3052 else if (CurTy->isDoubleTy()) 3053 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3054 APInt(64, Record[0]))); 3055 else if (CurTy->isX86_FP80Ty()) { 3056 // Bits are not stored the same way as a normal i80 APInt, compensate. 3057 uint64_t Rearrange[2]; 3058 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3059 Rearrange[1] = Record[0] >> 48; 3060 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3061 APInt(80, Rearrange))); 3062 } else if (CurTy->isFP128Ty()) 3063 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3064 APInt(128, Record))); 3065 else if (CurTy->isPPC_FP128Ty()) 3066 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3067 APInt(128, Record))); 3068 else 3069 V = UndefValue::get(CurTy); 3070 break; 3071 } 3072 3073 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3074 if (Record.empty()) 3075 return error("Invalid aggregate record"); 3076 3077 unsigned Size = Record.size(); 3078 SmallVector<unsigned, 16> Elts; 3079 for (unsigned i = 0; i != Size; ++i) 3080 Elts.push_back(Record[i]); 3081 3082 if (isa<StructType>(CurTy)) { 3083 V = BitcodeConstant::create( 3084 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3085 } else if (isa<ArrayType>(CurTy)) { 3086 V = BitcodeConstant::create(Alloc, CurTy, 3087 BitcodeConstant::ConstantArrayOpcode, Elts); 3088 } else if (isa<VectorType>(CurTy)) { 3089 V = BitcodeConstant::create( 3090 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3091 } else { 3092 V = UndefValue::get(CurTy); 3093 } 3094 break; 3095 } 3096 case bitc::CST_CODE_STRING: // STRING: [values] 3097 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3098 if (Record.empty()) 3099 return error("Invalid string record"); 3100 3101 SmallString<16> Elts(Record.begin(), Record.end()); 3102 V = ConstantDataArray::getString(Context, Elts, 3103 BitCode == bitc::CST_CODE_CSTRING); 3104 break; 3105 } 3106 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3107 if (Record.empty()) 3108 return error("Invalid data record"); 3109 3110 Type *EltTy; 3111 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3112 EltTy = Array->getElementType(); 3113 else 3114 EltTy = cast<VectorType>(CurTy)->getElementType(); 3115 if (EltTy->isIntegerTy(8)) { 3116 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3117 if (isa<VectorType>(CurTy)) 3118 V = ConstantDataVector::get(Context, Elts); 3119 else 3120 V = ConstantDataArray::get(Context, Elts); 3121 } else if (EltTy->isIntegerTy(16)) { 3122 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3123 if (isa<VectorType>(CurTy)) 3124 V = ConstantDataVector::get(Context, Elts); 3125 else 3126 V = ConstantDataArray::get(Context, Elts); 3127 } else if (EltTy->isIntegerTy(32)) { 3128 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3129 if (isa<VectorType>(CurTy)) 3130 V = ConstantDataVector::get(Context, Elts); 3131 else 3132 V = ConstantDataArray::get(Context, Elts); 3133 } else if (EltTy->isIntegerTy(64)) { 3134 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3135 if (isa<VectorType>(CurTy)) 3136 V = ConstantDataVector::get(Context, Elts); 3137 else 3138 V = ConstantDataArray::get(Context, Elts); 3139 } else if (EltTy->isHalfTy()) { 3140 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3141 if (isa<VectorType>(CurTy)) 3142 V = ConstantDataVector::getFP(EltTy, Elts); 3143 else 3144 V = ConstantDataArray::getFP(EltTy, Elts); 3145 } else if (EltTy->isBFloatTy()) { 3146 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3147 if (isa<VectorType>(CurTy)) 3148 V = ConstantDataVector::getFP(EltTy, Elts); 3149 else 3150 V = ConstantDataArray::getFP(EltTy, Elts); 3151 } else if (EltTy->isFloatTy()) { 3152 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3153 if (isa<VectorType>(CurTy)) 3154 V = ConstantDataVector::getFP(EltTy, Elts); 3155 else 3156 V = ConstantDataArray::getFP(EltTy, Elts); 3157 } else if (EltTy->isDoubleTy()) { 3158 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3159 if (isa<VectorType>(CurTy)) 3160 V = ConstantDataVector::getFP(EltTy, Elts); 3161 else 3162 V = ConstantDataArray::getFP(EltTy, Elts); 3163 } else { 3164 return error("Invalid type for value"); 3165 } 3166 break; 3167 } 3168 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3169 if (Record.size() < 2) 3170 return error("Invalid unary op constexpr record"); 3171 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3172 if (Opc < 0) { 3173 V = UndefValue::get(CurTy); // Unknown unop. 3174 } else { 3175 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3176 } 3177 break; 3178 } 3179 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3180 if (Record.size() < 3) 3181 return error("Invalid binary op constexpr record"); 3182 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3183 if (Opc < 0) { 3184 V = UndefValue::get(CurTy); // Unknown binop. 3185 } else { 3186 uint8_t Flags = 0; 3187 if (Record.size() >= 4) { 3188 if (Opc == Instruction::Add || 3189 Opc == Instruction::Sub || 3190 Opc == Instruction::Mul || 3191 Opc == Instruction::Shl) { 3192 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3193 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3194 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3195 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3196 } else if (Opc == Instruction::SDiv || 3197 Opc == Instruction::UDiv || 3198 Opc == Instruction::LShr || 3199 Opc == Instruction::AShr) { 3200 if (Record[3] & (1 << bitc::PEO_EXACT)) 3201 Flags |= SDivOperator::IsExact; 3202 } 3203 } 3204 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3205 {(unsigned)Record[1], (unsigned)Record[2]}); 3206 } 3207 break; 3208 } 3209 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3210 if (Record.size() < 3) 3211 return error("Invalid cast constexpr record"); 3212 int Opc = getDecodedCastOpcode(Record[0]); 3213 if (Opc < 0) { 3214 V = UndefValue::get(CurTy); // Unknown cast. 3215 } else { 3216 unsigned OpTyID = Record[1]; 3217 Type *OpTy = getTypeByID(OpTyID); 3218 if (!OpTy) 3219 return error("Invalid cast constexpr record"); 3220 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3221 } 3222 break; 3223 } 3224 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3225 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3226 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3227 // operands] 3228 if (Record.size() < 2) 3229 return error("Constant GEP record must have at least two elements"); 3230 unsigned OpNum = 0; 3231 Type *PointeeType = nullptr; 3232 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3233 Record.size() % 2) 3234 PointeeType = getTypeByID(Record[OpNum++]); 3235 3236 bool InBounds = false; 3237 std::optional<unsigned> InRangeIndex; 3238 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3239 uint64_t Op = Record[OpNum++]; 3240 InBounds = Op & 1; 3241 InRangeIndex = Op >> 1; 3242 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3243 InBounds = true; 3244 3245 SmallVector<unsigned, 16> Elts; 3246 unsigned BaseTypeID = Record[OpNum]; 3247 while (OpNum != Record.size()) { 3248 unsigned ElTyID = Record[OpNum++]; 3249 Type *ElTy = getTypeByID(ElTyID); 3250 if (!ElTy) 3251 return error("Invalid getelementptr constexpr record"); 3252 Elts.push_back(Record[OpNum++]); 3253 } 3254 3255 if (Elts.size() < 1) 3256 return error("Invalid gep with no operands"); 3257 3258 Type *BaseType = getTypeByID(BaseTypeID); 3259 if (isa<VectorType>(BaseType)) { 3260 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3261 BaseType = getTypeByID(BaseTypeID); 3262 } 3263 3264 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3265 if (!OrigPtrTy) 3266 return error("GEP base operand must be pointer or vector of pointer"); 3267 3268 if (!PointeeType) { 3269 PointeeType = getPtrElementTypeByID(BaseTypeID); 3270 if (!PointeeType) 3271 return error("Missing element type for old-style constant GEP"); 3272 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3273 return error("Explicit gep operator type does not match pointee type " 3274 "of pointer operand"); 3275 3276 V = BitcodeConstant::create(Alloc, CurTy, 3277 {Instruction::GetElementPtr, InBounds, 3278 InRangeIndex.value_or(-1), PointeeType}, 3279 Elts); 3280 break; 3281 } 3282 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3283 if (Record.size() < 3) 3284 return error("Invalid select constexpr record"); 3285 3286 V = BitcodeConstant::create( 3287 Alloc, CurTy, Instruction::Select, 3288 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3289 break; 3290 } 3291 case bitc::CST_CODE_CE_EXTRACTELT 3292 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3293 if (Record.size() < 3) 3294 return error("Invalid extractelement constexpr record"); 3295 unsigned OpTyID = Record[0]; 3296 VectorType *OpTy = 3297 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3298 if (!OpTy) 3299 return error("Invalid extractelement constexpr record"); 3300 unsigned IdxRecord; 3301 if (Record.size() == 4) { 3302 unsigned IdxTyID = Record[2]; 3303 Type *IdxTy = getTypeByID(IdxTyID); 3304 if (!IdxTy) 3305 return error("Invalid extractelement constexpr record"); 3306 IdxRecord = Record[3]; 3307 } else { 3308 // Deprecated, but still needed to read old bitcode files. 3309 IdxRecord = Record[2]; 3310 } 3311 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3312 {(unsigned)Record[1], IdxRecord}); 3313 break; 3314 } 3315 case bitc::CST_CODE_CE_INSERTELT 3316 : { // CE_INSERTELT: [opval, opval, opty, opval] 3317 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3318 if (Record.size() < 3 || !OpTy) 3319 return error("Invalid insertelement constexpr record"); 3320 unsigned IdxRecord; 3321 if (Record.size() == 4) { 3322 unsigned IdxTyID = Record[2]; 3323 Type *IdxTy = getTypeByID(IdxTyID); 3324 if (!IdxTy) 3325 return error("Invalid insertelement constexpr record"); 3326 IdxRecord = Record[3]; 3327 } else { 3328 // Deprecated, but still needed to read old bitcode files. 3329 IdxRecord = Record[2]; 3330 } 3331 V = BitcodeConstant::create( 3332 Alloc, CurTy, Instruction::InsertElement, 3333 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3334 break; 3335 } 3336 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3337 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3338 if (Record.size() < 3 || !OpTy) 3339 return error("Invalid shufflevector constexpr record"); 3340 V = BitcodeConstant::create( 3341 Alloc, CurTy, Instruction::ShuffleVector, 3342 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3343 break; 3344 } 3345 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3346 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3347 VectorType *OpTy = 3348 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3349 if (Record.size() < 4 || !RTy || !OpTy) 3350 return error("Invalid shufflevector constexpr record"); 3351 V = BitcodeConstant::create( 3352 Alloc, CurTy, Instruction::ShuffleVector, 3353 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3354 break; 3355 } 3356 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3357 if (Record.size() < 4) 3358 return error("Invalid cmp constexpt record"); 3359 unsigned OpTyID = Record[0]; 3360 Type *OpTy = getTypeByID(OpTyID); 3361 if (!OpTy) 3362 return error("Invalid cmp constexpr record"); 3363 V = BitcodeConstant::create( 3364 Alloc, CurTy, 3365 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3366 : Instruction::ICmp), 3367 (uint8_t)Record[3]}, 3368 {(unsigned)Record[1], (unsigned)Record[2]}); 3369 break; 3370 } 3371 // This maintains backward compatibility, pre-asm dialect keywords. 3372 // Deprecated, but still needed to read old bitcode files. 3373 case bitc::CST_CODE_INLINEASM_OLD: { 3374 if (Record.size() < 2) 3375 return error("Invalid inlineasm record"); 3376 std::string AsmStr, ConstrStr; 3377 bool HasSideEffects = Record[0] & 1; 3378 bool IsAlignStack = Record[0] >> 1; 3379 unsigned AsmStrSize = Record[1]; 3380 if (2+AsmStrSize >= Record.size()) 3381 return error("Invalid inlineasm record"); 3382 unsigned ConstStrSize = Record[2+AsmStrSize]; 3383 if (3+AsmStrSize+ConstStrSize > Record.size()) 3384 return error("Invalid inlineasm record"); 3385 3386 for (unsigned i = 0; i != AsmStrSize; ++i) 3387 AsmStr += (char)Record[2+i]; 3388 for (unsigned i = 0; i != ConstStrSize; ++i) 3389 ConstrStr += (char)Record[3+AsmStrSize+i]; 3390 UpgradeInlineAsmString(&AsmStr); 3391 if (!CurElemTy) 3392 return error("Missing element type for old-style inlineasm"); 3393 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3394 HasSideEffects, IsAlignStack); 3395 break; 3396 } 3397 // This version adds support for the asm dialect keywords (e.g., 3398 // inteldialect). 3399 case bitc::CST_CODE_INLINEASM_OLD2: { 3400 if (Record.size() < 2) 3401 return error("Invalid inlineasm record"); 3402 std::string AsmStr, ConstrStr; 3403 bool HasSideEffects = Record[0] & 1; 3404 bool IsAlignStack = (Record[0] >> 1) & 1; 3405 unsigned AsmDialect = Record[0] >> 2; 3406 unsigned AsmStrSize = Record[1]; 3407 if (2+AsmStrSize >= Record.size()) 3408 return error("Invalid inlineasm record"); 3409 unsigned ConstStrSize = Record[2+AsmStrSize]; 3410 if (3+AsmStrSize+ConstStrSize > Record.size()) 3411 return error("Invalid inlineasm record"); 3412 3413 for (unsigned i = 0; i != AsmStrSize; ++i) 3414 AsmStr += (char)Record[2+i]; 3415 for (unsigned i = 0; i != ConstStrSize; ++i) 3416 ConstrStr += (char)Record[3+AsmStrSize+i]; 3417 UpgradeInlineAsmString(&AsmStr); 3418 if (!CurElemTy) 3419 return error("Missing element type for old-style inlineasm"); 3420 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3421 HasSideEffects, IsAlignStack, 3422 InlineAsm::AsmDialect(AsmDialect)); 3423 break; 3424 } 3425 // This version adds support for the unwind keyword. 3426 case bitc::CST_CODE_INLINEASM_OLD3: { 3427 if (Record.size() < 2) 3428 return error("Invalid inlineasm record"); 3429 unsigned OpNum = 0; 3430 std::string AsmStr, ConstrStr; 3431 bool HasSideEffects = Record[OpNum] & 1; 3432 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3433 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3434 bool CanThrow = (Record[OpNum] >> 3) & 1; 3435 ++OpNum; 3436 unsigned AsmStrSize = Record[OpNum]; 3437 ++OpNum; 3438 if (OpNum + AsmStrSize >= Record.size()) 3439 return error("Invalid inlineasm record"); 3440 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3441 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3442 return error("Invalid inlineasm record"); 3443 3444 for (unsigned i = 0; i != AsmStrSize; ++i) 3445 AsmStr += (char)Record[OpNum + i]; 3446 ++OpNum; 3447 for (unsigned i = 0; i != ConstStrSize; ++i) 3448 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3449 UpgradeInlineAsmString(&AsmStr); 3450 if (!CurElemTy) 3451 return error("Missing element type for old-style inlineasm"); 3452 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3453 HasSideEffects, IsAlignStack, 3454 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3455 break; 3456 } 3457 // This version adds explicit function type. 3458 case bitc::CST_CODE_INLINEASM: { 3459 if (Record.size() < 3) 3460 return error("Invalid inlineasm record"); 3461 unsigned OpNum = 0; 3462 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3463 ++OpNum; 3464 if (!FnTy) 3465 return error("Invalid inlineasm record"); 3466 std::string AsmStr, ConstrStr; 3467 bool HasSideEffects = Record[OpNum] & 1; 3468 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3469 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3470 bool CanThrow = (Record[OpNum] >> 3) & 1; 3471 ++OpNum; 3472 unsigned AsmStrSize = Record[OpNum]; 3473 ++OpNum; 3474 if (OpNum + AsmStrSize >= Record.size()) 3475 return error("Invalid inlineasm record"); 3476 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3477 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3478 return error("Invalid inlineasm record"); 3479 3480 for (unsigned i = 0; i != AsmStrSize; ++i) 3481 AsmStr += (char)Record[OpNum + i]; 3482 ++OpNum; 3483 for (unsigned i = 0; i != ConstStrSize; ++i) 3484 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3485 UpgradeInlineAsmString(&AsmStr); 3486 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3487 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3488 break; 3489 } 3490 case bitc::CST_CODE_BLOCKADDRESS:{ 3491 if (Record.size() < 3) 3492 return error("Invalid blockaddress record"); 3493 unsigned FnTyID = Record[0]; 3494 Type *FnTy = getTypeByID(FnTyID); 3495 if (!FnTy) 3496 return error("Invalid blockaddress record"); 3497 V = BitcodeConstant::create( 3498 Alloc, CurTy, 3499 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3500 Record[1]); 3501 break; 3502 } 3503 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3504 if (Record.size() < 2) 3505 return error("Invalid dso_local record"); 3506 unsigned GVTyID = Record[0]; 3507 Type *GVTy = getTypeByID(GVTyID); 3508 if (!GVTy) 3509 return error("Invalid dso_local record"); 3510 V = BitcodeConstant::create( 3511 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3512 break; 3513 } 3514 case bitc::CST_CODE_NO_CFI_VALUE: { 3515 if (Record.size() < 2) 3516 return error("Invalid no_cfi record"); 3517 unsigned GVTyID = Record[0]; 3518 Type *GVTy = getTypeByID(GVTyID); 3519 if (!GVTy) 3520 return error("Invalid no_cfi record"); 3521 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3522 Record[1]); 3523 break; 3524 } 3525 } 3526 3527 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3528 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3529 return Err; 3530 ++NextCstNo; 3531 } 3532 } 3533 3534 Error BitcodeReader::parseUseLists() { 3535 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3536 return Err; 3537 3538 // Read all the records. 3539 SmallVector<uint64_t, 64> Record; 3540 3541 while (true) { 3542 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3543 if (!MaybeEntry) 3544 return MaybeEntry.takeError(); 3545 BitstreamEntry Entry = MaybeEntry.get(); 3546 3547 switch (Entry.Kind) { 3548 case BitstreamEntry::SubBlock: // Handled for us already. 3549 case BitstreamEntry::Error: 3550 return error("Malformed block"); 3551 case BitstreamEntry::EndBlock: 3552 return Error::success(); 3553 case BitstreamEntry::Record: 3554 // The interesting case. 3555 break; 3556 } 3557 3558 // Read a use list record. 3559 Record.clear(); 3560 bool IsBB = false; 3561 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3562 if (!MaybeRecord) 3563 return MaybeRecord.takeError(); 3564 switch (MaybeRecord.get()) { 3565 default: // Default behavior: unknown type. 3566 break; 3567 case bitc::USELIST_CODE_BB: 3568 IsBB = true; 3569 [[fallthrough]]; 3570 case bitc::USELIST_CODE_DEFAULT: { 3571 unsigned RecordLength = Record.size(); 3572 if (RecordLength < 3) 3573 // Records should have at least an ID and two indexes. 3574 return error("Invalid record"); 3575 unsigned ID = Record.pop_back_val(); 3576 3577 Value *V; 3578 if (IsBB) { 3579 assert(ID < FunctionBBs.size() && "Basic block not found"); 3580 V = FunctionBBs[ID]; 3581 } else 3582 V = ValueList[ID]; 3583 unsigned NumUses = 0; 3584 SmallDenseMap<const Use *, unsigned, 16> Order; 3585 for (const Use &U : V->materialized_uses()) { 3586 if (++NumUses > Record.size()) 3587 break; 3588 Order[&U] = Record[NumUses - 1]; 3589 } 3590 if (Order.size() != Record.size() || NumUses > Record.size()) 3591 // Mismatches can happen if the functions are being materialized lazily 3592 // (out-of-order), or a value has been upgraded. 3593 break; 3594 3595 V->sortUseList([&](const Use &L, const Use &R) { 3596 return Order.lookup(&L) < Order.lookup(&R); 3597 }); 3598 break; 3599 } 3600 } 3601 } 3602 } 3603 3604 /// When we see the block for metadata, remember where it is and then skip it. 3605 /// This lets us lazily deserialize the metadata. 3606 Error BitcodeReader::rememberAndSkipMetadata() { 3607 // Save the current stream state. 3608 uint64_t CurBit = Stream.GetCurrentBitNo(); 3609 DeferredMetadataInfo.push_back(CurBit); 3610 3611 // Skip over the block for now. 3612 if (Error Err = Stream.SkipBlock()) 3613 return Err; 3614 return Error::success(); 3615 } 3616 3617 Error BitcodeReader::materializeMetadata() { 3618 for (uint64_t BitPos : DeferredMetadataInfo) { 3619 // Move the bit stream to the saved position. 3620 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3621 return JumpFailed; 3622 if (Error Err = MDLoader->parseModuleMetadata()) 3623 return Err; 3624 } 3625 3626 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3627 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3628 // multiple times. 3629 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3630 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3631 NamedMDNode *LinkerOpts = 3632 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3633 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3634 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3635 } 3636 } 3637 3638 DeferredMetadataInfo.clear(); 3639 return Error::success(); 3640 } 3641 3642 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3643 3644 /// When we see the block for a function body, remember where it is and then 3645 /// skip it. This lets us lazily deserialize the functions. 3646 Error BitcodeReader::rememberAndSkipFunctionBody() { 3647 // Get the function we are talking about. 3648 if (FunctionsWithBodies.empty()) 3649 return error("Insufficient function protos"); 3650 3651 Function *Fn = FunctionsWithBodies.back(); 3652 FunctionsWithBodies.pop_back(); 3653 3654 // Save the current stream state. 3655 uint64_t CurBit = Stream.GetCurrentBitNo(); 3656 assert( 3657 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3658 "Mismatch between VST and scanned function offsets"); 3659 DeferredFunctionInfo[Fn] = CurBit; 3660 3661 // Skip over the function block for now. 3662 if (Error Err = Stream.SkipBlock()) 3663 return Err; 3664 return Error::success(); 3665 } 3666 3667 Error BitcodeReader::globalCleanup() { 3668 // Patch the initializers for globals and aliases up. 3669 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3670 return Err; 3671 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3672 return error("Malformed global initializer set"); 3673 3674 // Look for intrinsic functions which need to be upgraded at some point 3675 // and functions that need to have their function attributes upgraded. 3676 for (Function &F : *TheModule) { 3677 MDLoader->upgradeDebugIntrinsics(F); 3678 Function *NewFn; 3679 if (UpgradeIntrinsicFunction(&F, NewFn)) 3680 UpgradedIntrinsics[&F] = NewFn; 3681 // Look for functions that rely on old function attribute behavior. 3682 UpgradeFunctionAttributes(F); 3683 } 3684 3685 // Look for global variables which need to be renamed. 3686 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3687 for (GlobalVariable &GV : TheModule->globals()) 3688 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3689 UpgradedVariables.emplace_back(&GV, Upgraded); 3690 for (auto &Pair : UpgradedVariables) { 3691 Pair.first->eraseFromParent(); 3692 TheModule->getGlobalList().push_back(Pair.second); 3693 } 3694 3695 // Force deallocation of memory for these vectors to favor the client that 3696 // want lazy deserialization. 3697 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3698 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3699 return Error::success(); 3700 } 3701 3702 /// Support for lazy parsing of function bodies. This is required if we 3703 /// either have an old bitcode file without a VST forward declaration record, 3704 /// or if we have an anonymous function being materialized, since anonymous 3705 /// functions do not have a name and are therefore not in the VST. 3706 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3707 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3708 return JumpFailed; 3709 3710 if (Stream.AtEndOfStream()) 3711 return error("Could not find function in stream"); 3712 3713 if (!SeenFirstFunctionBody) 3714 return error("Trying to materialize functions before seeing function blocks"); 3715 3716 // An old bitcode file with the symbol table at the end would have 3717 // finished the parse greedily. 3718 assert(SeenValueSymbolTable); 3719 3720 SmallVector<uint64_t, 64> Record; 3721 3722 while (true) { 3723 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3724 if (!MaybeEntry) 3725 return MaybeEntry.takeError(); 3726 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3727 3728 switch (Entry.Kind) { 3729 default: 3730 return error("Expect SubBlock"); 3731 case BitstreamEntry::SubBlock: 3732 switch (Entry.ID) { 3733 default: 3734 return error("Expect function block"); 3735 case bitc::FUNCTION_BLOCK_ID: 3736 if (Error Err = rememberAndSkipFunctionBody()) 3737 return Err; 3738 NextUnreadBit = Stream.GetCurrentBitNo(); 3739 return Error::success(); 3740 } 3741 } 3742 } 3743 } 3744 3745 Error BitcodeReaderBase::readBlockInfo() { 3746 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3747 Stream.ReadBlockInfoBlock(); 3748 if (!MaybeNewBlockInfo) 3749 return MaybeNewBlockInfo.takeError(); 3750 std::optional<BitstreamBlockInfo> NewBlockInfo = 3751 std::move(MaybeNewBlockInfo.get()); 3752 if (!NewBlockInfo) 3753 return error("Malformed block"); 3754 BlockInfo = std::move(*NewBlockInfo); 3755 return Error::success(); 3756 } 3757 3758 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3759 // v1: [selection_kind, name] 3760 // v2: [strtab_offset, strtab_size, selection_kind] 3761 StringRef Name; 3762 std::tie(Name, Record) = readNameFromStrtab(Record); 3763 3764 if (Record.empty()) 3765 return error("Invalid record"); 3766 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3767 std::string OldFormatName; 3768 if (!UseStrtab) { 3769 if (Record.size() < 2) 3770 return error("Invalid record"); 3771 unsigned ComdatNameSize = Record[1]; 3772 if (ComdatNameSize > Record.size() - 2) 3773 return error("Comdat name size too large"); 3774 OldFormatName.reserve(ComdatNameSize); 3775 for (unsigned i = 0; i != ComdatNameSize; ++i) 3776 OldFormatName += (char)Record[2 + i]; 3777 Name = OldFormatName; 3778 } 3779 Comdat *C = TheModule->getOrInsertComdat(Name); 3780 C->setSelectionKind(SK); 3781 ComdatList.push_back(C); 3782 return Error::success(); 3783 } 3784 3785 static void inferDSOLocal(GlobalValue *GV) { 3786 // infer dso_local from linkage and visibility if it is not encoded. 3787 if (GV->hasLocalLinkage() || 3788 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3789 GV->setDSOLocal(true); 3790 } 3791 3792 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3793 GlobalValue::SanitizerMetadata Meta; 3794 if (V & (1 << 0)) 3795 Meta.NoAddress = true; 3796 if (V & (1 << 1)) 3797 Meta.NoHWAddress = true; 3798 if (V & (1 << 2)) 3799 Meta.Memtag = true; 3800 if (V & (1 << 3)) 3801 Meta.IsDynInit = true; 3802 return Meta; 3803 } 3804 3805 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3806 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3807 // visibility, threadlocal, unnamed_addr, externally_initialized, 3808 // dllstorageclass, comdat, attributes, preemption specifier, 3809 // partition strtab offset, partition strtab size] (name in VST) 3810 // v2: [strtab_offset, strtab_size, v1] 3811 StringRef Name; 3812 std::tie(Name, Record) = readNameFromStrtab(Record); 3813 3814 if (Record.size() < 6) 3815 return error("Invalid record"); 3816 unsigned TyID = Record[0]; 3817 Type *Ty = getTypeByID(TyID); 3818 if (!Ty) 3819 return error("Invalid record"); 3820 bool isConstant = Record[1] & 1; 3821 bool explicitType = Record[1] & 2; 3822 unsigned AddressSpace; 3823 if (explicitType) { 3824 AddressSpace = Record[1] >> 2; 3825 } else { 3826 if (!Ty->isPointerTy()) 3827 return error("Invalid type for value"); 3828 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3829 TyID = getContainedTypeID(TyID); 3830 Ty = getTypeByID(TyID); 3831 if (!Ty) 3832 return error("Missing element type for old-style global"); 3833 } 3834 3835 uint64_t RawLinkage = Record[3]; 3836 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3837 MaybeAlign Alignment; 3838 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3839 return Err; 3840 std::string Section; 3841 if (Record[5]) { 3842 if (Record[5] - 1 >= SectionTable.size()) 3843 return error("Invalid ID"); 3844 Section = SectionTable[Record[5] - 1]; 3845 } 3846 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3847 // Local linkage must have default visibility. 3848 // auto-upgrade `hidden` and `protected` for old bitcode. 3849 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3850 Visibility = getDecodedVisibility(Record[6]); 3851 3852 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3853 if (Record.size() > 7) 3854 TLM = getDecodedThreadLocalMode(Record[7]); 3855 3856 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3857 if (Record.size() > 8) 3858 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3859 3860 bool ExternallyInitialized = false; 3861 if (Record.size() > 9) 3862 ExternallyInitialized = Record[9]; 3863 3864 GlobalVariable *NewGV = 3865 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3866 nullptr, TLM, AddressSpace, ExternallyInitialized); 3867 NewGV->setAlignment(Alignment); 3868 if (!Section.empty()) 3869 NewGV->setSection(Section); 3870 NewGV->setVisibility(Visibility); 3871 NewGV->setUnnamedAddr(UnnamedAddr); 3872 3873 if (Record.size() > 10) { 3874 // A GlobalValue with local linkage cannot have a DLL storage class. 3875 if (!NewGV->hasLocalLinkage()) { 3876 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3877 } 3878 } else { 3879 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3880 } 3881 3882 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3883 3884 // Remember which value to use for the global initializer. 3885 if (unsigned InitID = Record[2]) 3886 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3887 3888 if (Record.size() > 11) { 3889 if (unsigned ComdatID = Record[11]) { 3890 if (ComdatID > ComdatList.size()) 3891 return error("Invalid global variable comdat ID"); 3892 NewGV->setComdat(ComdatList[ComdatID - 1]); 3893 } 3894 } else if (hasImplicitComdat(RawLinkage)) { 3895 ImplicitComdatObjects.insert(NewGV); 3896 } 3897 3898 if (Record.size() > 12) { 3899 auto AS = getAttributes(Record[12]).getFnAttrs(); 3900 NewGV->setAttributes(AS); 3901 } 3902 3903 if (Record.size() > 13) { 3904 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3905 } 3906 inferDSOLocal(NewGV); 3907 3908 // Check whether we have enough values to read a partition name. 3909 if (Record.size() > 15) 3910 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3911 3912 if (Record.size() > 16 && Record[16]) { 3913 llvm::GlobalValue::SanitizerMetadata Meta = 3914 deserializeSanitizerMetadata(Record[16]); 3915 NewGV->setSanitizerMetadata(Meta); 3916 } 3917 3918 return Error::success(); 3919 } 3920 3921 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3922 if (ValueTypeCallback) { 3923 (*ValueTypeCallback)( 3924 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3925 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3926 } 3927 } 3928 3929 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3930 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3931 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3932 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3933 // v2: [strtab_offset, strtab_size, v1] 3934 StringRef Name; 3935 std::tie(Name, Record) = readNameFromStrtab(Record); 3936 3937 if (Record.size() < 8) 3938 return error("Invalid record"); 3939 unsigned FTyID = Record[0]; 3940 Type *FTy = getTypeByID(FTyID); 3941 if (!FTy) 3942 return error("Invalid record"); 3943 if (isa<PointerType>(FTy)) { 3944 FTyID = getContainedTypeID(FTyID, 0); 3945 FTy = getTypeByID(FTyID); 3946 if (!FTy) 3947 return error("Missing element type for old-style function"); 3948 } 3949 3950 if (!isa<FunctionType>(FTy)) 3951 return error("Invalid type for value"); 3952 auto CC = static_cast<CallingConv::ID>(Record[1]); 3953 if (CC & ~CallingConv::MaxID) 3954 return error("Invalid calling convention ID"); 3955 3956 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3957 if (Record.size() > 16) 3958 AddrSpace = Record[16]; 3959 3960 Function *Func = 3961 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3962 AddrSpace, Name, TheModule); 3963 3964 assert(Func->getFunctionType() == FTy && 3965 "Incorrect fully specified type provided for function"); 3966 FunctionTypeIDs[Func] = FTyID; 3967 3968 Func->setCallingConv(CC); 3969 bool isProto = Record[2]; 3970 uint64_t RawLinkage = Record[3]; 3971 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3972 Func->setAttributes(getAttributes(Record[4])); 3973 callValueTypeCallback(Func, FTyID); 3974 3975 // Upgrade any old-style byval or sret without a type by propagating the 3976 // argument's pointee type. There should be no opaque pointers where the byval 3977 // type is implicit. 3978 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3979 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3980 Attribute::InAlloca}) { 3981 if (!Func->hasParamAttribute(i, Kind)) 3982 continue; 3983 3984 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3985 continue; 3986 3987 Func->removeParamAttr(i, Kind); 3988 3989 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3990 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3991 if (!PtrEltTy) 3992 return error("Missing param element type for attribute upgrade"); 3993 3994 Attribute NewAttr; 3995 switch (Kind) { 3996 case Attribute::ByVal: 3997 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3998 break; 3999 case Attribute::StructRet: 4000 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4001 break; 4002 case Attribute::InAlloca: 4003 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4004 break; 4005 default: 4006 llvm_unreachable("not an upgraded type attribute"); 4007 } 4008 4009 Func->addParamAttr(i, NewAttr); 4010 } 4011 } 4012 4013 if (Func->getCallingConv() == CallingConv::X86_INTR && 4014 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4015 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4016 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4017 if (!ByValTy) 4018 return error("Missing param element type for x86_intrcc upgrade"); 4019 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4020 Func->addParamAttr(0, NewAttr); 4021 } 4022 4023 MaybeAlign Alignment; 4024 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4025 return Err; 4026 Func->setAlignment(Alignment); 4027 if (Record[6]) { 4028 if (Record[6] - 1 >= SectionTable.size()) 4029 return error("Invalid ID"); 4030 Func->setSection(SectionTable[Record[6] - 1]); 4031 } 4032 // Local linkage must have default visibility. 4033 // auto-upgrade `hidden` and `protected` for old bitcode. 4034 if (!Func->hasLocalLinkage()) 4035 Func->setVisibility(getDecodedVisibility(Record[7])); 4036 if (Record.size() > 8 && Record[8]) { 4037 if (Record[8] - 1 >= GCTable.size()) 4038 return error("Invalid ID"); 4039 Func->setGC(GCTable[Record[8] - 1]); 4040 } 4041 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4042 if (Record.size() > 9) 4043 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4044 Func->setUnnamedAddr(UnnamedAddr); 4045 4046 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4047 if (Record.size() > 10) 4048 OperandInfo.Prologue = Record[10]; 4049 4050 if (Record.size() > 11) { 4051 // A GlobalValue with local linkage cannot have a DLL storage class. 4052 if (!Func->hasLocalLinkage()) { 4053 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4054 } 4055 } else { 4056 upgradeDLLImportExportLinkage(Func, RawLinkage); 4057 } 4058 4059 if (Record.size() > 12) { 4060 if (unsigned ComdatID = Record[12]) { 4061 if (ComdatID > ComdatList.size()) 4062 return error("Invalid function comdat ID"); 4063 Func->setComdat(ComdatList[ComdatID - 1]); 4064 } 4065 } else if (hasImplicitComdat(RawLinkage)) { 4066 ImplicitComdatObjects.insert(Func); 4067 } 4068 4069 if (Record.size() > 13) 4070 OperandInfo.Prefix = Record[13]; 4071 4072 if (Record.size() > 14) 4073 OperandInfo.PersonalityFn = Record[14]; 4074 4075 if (Record.size() > 15) { 4076 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4077 } 4078 inferDSOLocal(Func); 4079 4080 // Record[16] is the address space number. 4081 4082 // Check whether we have enough values to read a partition name. Also make 4083 // sure Strtab has enough values. 4084 if (Record.size() > 18 && Strtab.data() && 4085 Record[17] + Record[18] <= Strtab.size()) { 4086 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4087 } 4088 4089 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4090 4091 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4092 FunctionOperands.push_back(OperandInfo); 4093 4094 // If this is a function with a body, remember the prototype we are 4095 // creating now, so that we can match up the body with them later. 4096 if (!isProto) { 4097 Func->setIsMaterializable(true); 4098 FunctionsWithBodies.push_back(Func); 4099 DeferredFunctionInfo[Func] = 0; 4100 } 4101 return Error::success(); 4102 } 4103 4104 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4105 unsigned BitCode, ArrayRef<uint64_t> Record) { 4106 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4107 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4108 // dllstorageclass, threadlocal, unnamed_addr, 4109 // preemption specifier] (name in VST) 4110 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4111 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4112 // preemption specifier] (name in VST) 4113 // v2: [strtab_offset, strtab_size, v1] 4114 StringRef Name; 4115 std::tie(Name, Record) = readNameFromStrtab(Record); 4116 4117 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4118 if (Record.size() < (3 + (unsigned)NewRecord)) 4119 return error("Invalid record"); 4120 unsigned OpNum = 0; 4121 unsigned TypeID = Record[OpNum++]; 4122 Type *Ty = getTypeByID(TypeID); 4123 if (!Ty) 4124 return error("Invalid record"); 4125 4126 unsigned AddrSpace; 4127 if (!NewRecord) { 4128 auto *PTy = dyn_cast<PointerType>(Ty); 4129 if (!PTy) 4130 return error("Invalid type for value"); 4131 AddrSpace = PTy->getAddressSpace(); 4132 TypeID = getContainedTypeID(TypeID); 4133 Ty = getTypeByID(TypeID); 4134 if (!Ty) 4135 return error("Missing element type for old-style indirect symbol"); 4136 } else { 4137 AddrSpace = Record[OpNum++]; 4138 } 4139 4140 auto Val = Record[OpNum++]; 4141 auto Linkage = Record[OpNum++]; 4142 GlobalValue *NewGA; 4143 if (BitCode == bitc::MODULE_CODE_ALIAS || 4144 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4145 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4146 TheModule); 4147 else 4148 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4149 nullptr, TheModule); 4150 4151 // Local linkage must have default visibility. 4152 // auto-upgrade `hidden` and `protected` for old bitcode. 4153 if (OpNum != Record.size()) { 4154 auto VisInd = OpNum++; 4155 if (!NewGA->hasLocalLinkage()) 4156 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4157 } 4158 if (BitCode == bitc::MODULE_CODE_ALIAS || 4159 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4160 if (OpNum != Record.size()) { 4161 auto S = Record[OpNum++]; 4162 // A GlobalValue with local linkage cannot have a DLL storage class. 4163 if (!NewGA->hasLocalLinkage()) 4164 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4165 } 4166 else 4167 upgradeDLLImportExportLinkage(NewGA, Linkage); 4168 if (OpNum != Record.size()) 4169 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4170 if (OpNum != Record.size()) 4171 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4172 } 4173 if (OpNum != Record.size()) 4174 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4175 inferDSOLocal(NewGA); 4176 4177 // Check whether we have enough values to read a partition name. 4178 if (OpNum + 1 < Record.size()) { 4179 NewGA->setPartition( 4180 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4181 OpNum += 2; 4182 } 4183 4184 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4185 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4186 return Error::success(); 4187 } 4188 4189 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4190 bool ShouldLazyLoadMetadata, 4191 ParserCallbacks Callbacks) { 4192 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4193 if (ResumeBit) { 4194 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4195 return JumpFailed; 4196 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4197 return Err; 4198 4199 SmallVector<uint64_t, 64> Record; 4200 4201 // Parts of bitcode parsing depend on the datalayout. Make sure we 4202 // finalize the datalayout before we run any of that code. 4203 bool ResolvedDataLayout = false; 4204 // In order to support importing modules with illegal data layout strings, 4205 // delay parsing the data layout string until after upgrades and overrides 4206 // have been applied, allowing to fix illegal data layout strings. 4207 // Initialize to the current module's layout string in case none is specified. 4208 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4209 4210 auto ResolveDataLayout = [&]() -> Error { 4211 if (ResolvedDataLayout) 4212 return Error::success(); 4213 4214 // Datalayout and triple can't be parsed after this point. 4215 ResolvedDataLayout = true; 4216 4217 // Auto-upgrade the layout string 4218 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4219 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4220 4221 // Apply override 4222 if (Callbacks.DataLayout) { 4223 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4224 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4225 TentativeDataLayoutStr = *LayoutOverride; 4226 } 4227 4228 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4229 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4230 if (!MaybeDL) 4231 return MaybeDL.takeError(); 4232 4233 TheModule->setDataLayout(MaybeDL.get()); 4234 return Error::success(); 4235 }; 4236 4237 // Read all the records for this module. 4238 while (true) { 4239 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4240 if (!MaybeEntry) 4241 return MaybeEntry.takeError(); 4242 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4243 4244 switch (Entry.Kind) { 4245 case BitstreamEntry::Error: 4246 return error("Malformed block"); 4247 case BitstreamEntry::EndBlock: 4248 if (Error Err = ResolveDataLayout()) 4249 return Err; 4250 return globalCleanup(); 4251 4252 case BitstreamEntry::SubBlock: 4253 switch (Entry.ID) { 4254 default: // Skip unknown content. 4255 if (Error Err = Stream.SkipBlock()) 4256 return Err; 4257 break; 4258 case bitc::BLOCKINFO_BLOCK_ID: 4259 if (Error Err = readBlockInfo()) 4260 return Err; 4261 break; 4262 case bitc::PARAMATTR_BLOCK_ID: 4263 if (Error Err = parseAttributeBlock()) 4264 return Err; 4265 break; 4266 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4267 if (Error Err = parseAttributeGroupBlock()) 4268 return Err; 4269 break; 4270 case bitc::TYPE_BLOCK_ID_NEW: 4271 if (Error Err = parseTypeTable()) 4272 return Err; 4273 break; 4274 case bitc::VALUE_SYMTAB_BLOCK_ID: 4275 if (!SeenValueSymbolTable) { 4276 // Either this is an old form VST without function index and an 4277 // associated VST forward declaration record (which would have caused 4278 // the VST to be jumped to and parsed before it was encountered 4279 // normally in the stream), or there were no function blocks to 4280 // trigger an earlier parsing of the VST. 4281 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4282 if (Error Err = parseValueSymbolTable()) 4283 return Err; 4284 SeenValueSymbolTable = true; 4285 } else { 4286 // We must have had a VST forward declaration record, which caused 4287 // the parser to jump to and parse the VST earlier. 4288 assert(VSTOffset > 0); 4289 if (Error Err = Stream.SkipBlock()) 4290 return Err; 4291 } 4292 break; 4293 case bitc::CONSTANTS_BLOCK_ID: 4294 if (Error Err = parseConstants()) 4295 return Err; 4296 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4297 return Err; 4298 break; 4299 case bitc::METADATA_BLOCK_ID: 4300 if (ShouldLazyLoadMetadata) { 4301 if (Error Err = rememberAndSkipMetadata()) 4302 return Err; 4303 break; 4304 } 4305 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4306 if (Error Err = MDLoader->parseModuleMetadata()) 4307 return Err; 4308 break; 4309 case bitc::METADATA_KIND_BLOCK_ID: 4310 if (Error Err = MDLoader->parseMetadataKinds()) 4311 return Err; 4312 break; 4313 case bitc::FUNCTION_BLOCK_ID: 4314 if (Error Err = ResolveDataLayout()) 4315 return Err; 4316 4317 // If this is the first function body we've seen, reverse the 4318 // FunctionsWithBodies list. 4319 if (!SeenFirstFunctionBody) { 4320 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4321 if (Error Err = globalCleanup()) 4322 return Err; 4323 SeenFirstFunctionBody = true; 4324 } 4325 4326 if (VSTOffset > 0) { 4327 // If we have a VST forward declaration record, make sure we 4328 // parse the VST now if we haven't already. It is needed to 4329 // set up the DeferredFunctionInfo vector for lazy reading. 4330 if (!SeenValueSymbolTable) { 4331 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4332 return Err; 4333 SeenValueSymbolTable = true; 4334 // Fall through so that we record the NextUnreadBit below. 4335 // This is necessary in case we have an anonymous function that 4336 // is later materialized. Since it will not have a VST entry we 4337 // need to fall back to the lazy parse to find its offset. 4338 } else { 4339 // If we have a VST forward declaration record, but have already 4340 // parsed the VST (just above, when the first function body was 4341 // encountered here), then we are resuming the parse after 4342 // materializing functions. The ResumeBit points to the 4343 // start of the last function block recorded in the 4344 // DeferredFunctionInfo map. Skip it. 4345 if (Error Err = Stream.SkipBlock()) 4346 return Err; 4347 continue; 4348 } 4349 } 4350 4351 // Support older bitcode files that did not have the function 4352 // index in the VST, nor a VST forward declaration record, as 4353 // well as anonymous functions that do not have VST entries. 4354 // Build the DeferredFunctionInfo vector on the fly. 4355 if (Error Err = rememberAndSkipFunctionBody()) 4356 return Err; 4357 4358 // Suspend parsing when we reach the function bodies. Subsequent 4359 // materialization calls will resume it when necessary. If the bitcode 4360 // file is old, the symbol table will be at the end instead and will not 4361 // have been seen yet. In this case, just finish the parse now. 4362 if (SeenValueSymbolTable) { 4363 NextUnreadBit = Stream.GetCurrentBitNo(); 4364 // After the VST has been parsed, we need to make sure intrinsic name 4365 // are auto-upgraded. 4366 return globalCleanup(); 4367 } 4368 break; 4369 case bitc::USELIST_BLOCK_ID: 4370 if (Error Err = parseUseLists()) 4371 return Err; 4372 break; 4373 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4374 if (Error Err = parseOperandBundleTags()) 4375 return Err; 4376 break; 4377 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4378 if (Error Err = parseSyncScopeNames()) 4379 return Err; 4380 break; 4381 } 4382 continue; 4383 4384 case BitstreamEntry::Record: 4385 // The interesting case. 4386 break; 4387 } 4388 4389 // Read a record. 4390 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4391 if (!MaybeBitCode) 4392 return MaybeBitCode.takeError(); 4393 switch (unsigned BitCode = MaybeBitCode.get()) { 4394 default: break; // Default behavior, ignore unknown content. 4395 case bitc::MODULE_CODE_VERSION: { 4396 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4397 if (!VersionOrErr) 4398 return VersionOrErr.takeError(); 4399 UseRelativeIDs = *VersionOrErr >= 1; 4400 break; 4401 } 4402 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4403 if (ResolvedDataLayout) 4404 return error("target triple too late in module"); 4405 std::string S; 4406 if (convertToString(Record, 0, S)) 4407 return error("Invalid record"); 4408 TheModule->setTargetTriple(S); 4409 break; 4410 } 4411 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4412 if (ResolvedDataLayout) 4413 return error("datalayout too late in module"); 4414 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4415 return error("Invalid record"); 4416 break; 4417 } 4418 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4419 std::string S; 4420 if (convertToString(Record, 0, S)) 4421 return error("Invalid record"); 4422 TheModule->setModuleInlineAsm(S); 4423 break; 4424 } 4425 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4426 // Deprecated, but still needed to read old bitcode files. 4427 std::string S; 4428 if (convertToString(Record, 0, S)) 4429 return error("Invalid record"); 4430 // Ignore value. 4431 break; 4432 } 4433 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4434 std::string S; 4435 if (convertToString(Record, 0, S)) 4436 return error("Invalid record"); 4437 SectionTable.push_back(S); 4438 break; 4439 } 4440 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4441 std::string S; 4442 if (convertToString(Record, 0, S)) 4443 return error("Invalid record"); 4444 GCTable.push_back(S); 4445 break; 4446 } 4447 case bitc::MODULE_CODE_COMDAT: 4448 if (Error Err = parseComdatRecord(Record)) 4449 return Err; 4450 break; 4451 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4452 // written by ThinLinkBitcodeWriter. See 4453 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4454 // record 4455 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4456 case bitc::MODULE_CODE_GLOBALVAR: 4457 if (Error Err = parseGlobalVarRecord(Record)) 4458 return Err; 4459 break; 4460 case bitc::MODULE_CODE_FUNCTION: 4461 if (Error Err = ResolveDataLayout()) 4462 return Err; 4463 if (Error Err = parseFunctionRecord(Record)) 4464 return Err; 4465 break; 4466 case bitc::MODULE_CODE_IFUNC: 4467 case bitc::MODULE_CODE_ALIAS: 4468 case bitc::MODULE_CODE_ALIAS_OLD: 4469 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4470 return Err; 4471 break; 4472 /// MODULE_CODE_VSTOFFSET: [offset] 4473 case bitc::MODULE_CODE_VSTOFFSET: 4474 if (Record.empty()) 4475 return error("Invalid record"); 4476 // Note that we subtract 1 here because the offset is relative to one word 4477 // before the start of the identification or module block, which was 4478 // historically always the start of the regular bitcode header. 4479 VSTOffset = Record[0] - 1; 4480 break; 4481 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4482 case bitc::MODULE_CODE_SOURCE_FILENAME: 4483 SmallString<128> ValueName; 4484 if (convertToString(Record, 0, ValueName)) 4485 return error("Invalid record"); 4486 TheModule->setSourceFileName(ValueName); 4487 break; 4488 } 4489 Record.clear(); 4490 } 4491 this->ValueTypeCallback = std::nullopt; 4492 return Error::success(); 4493 } 4494 4495 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4496 bool IsImporting, 4497 ParserCallbacks Callbacks) { 4498 TheModule = M; 4499 MetadataLoaderCallbacks MDCallbacks; 4500 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4501 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4502 return getContainedTypeID(I, J); 4503 }; 4504 MDCallbacks.MDType = Callbacks.MDType; 4505 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4506 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4507 } 4508 4509 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4510 if (!isa<PointerType>(PtrType)) 4511 return error("Load/Store operand is not a pointer type"); 4512 4513 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4514 return error("Explicit load/store type does not match pointee " 4515 "type of pointer operand"); 4516 if (!PointerType::isLoadableOrStorableType(ValType)) 4517 return error("Cannot load/store from pointer"); 4518 return Error::success(); 4519 } 4520 4521 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4522 ArrayRef<unsigned> ArgTyIDs) { 4523 AttributeList Attrs = CB->getAttributes(); 4524 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4525 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4526 Attribute::InAlloca}) { 4527 if (!Attrs.hasParamAttr(i, Kind) || 4528 Attrs.getParamAttr(i, Kind).getValueAsType()) 4529 continue; 4530 4531 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4532 if (!PtrEltTy) 4533 return error("Missing element type for typed attribute upgrade"); 4534 4535 Attribute NewAttr; 4536 switch (Kind) { 4537 case Attribute::ByVal: 4538 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4539 break; 4540 case Attribute::StructRet: 4541 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4542 break; 4543 case Attribute::InAlloca: 4544 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4545 break; 4546 default: 4547 llvm_unreachable("not an upgraded type attribute"); 4548 } 4549 4550 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4551 } 4552 } 4553 4554 if (CB->isInlineAsm()) { 4555 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4556 unsigned ArgNo = 0; 4557 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4558 if (!CI.hasArg()) 4559 continue; 4560 4561 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4562 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4563 if (!ElemTy) 4564 return error("Missing element type for inline asm upgrade"); 4565 Attrs = Attrs.addParamAttribute( 4566 Context, ArgNo, 4567 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4568 } 4569 4570 ArgNo++; 4571 } 4572 } 4573 4574 switch (CB->getIntrinsicID()) { 4575 case Intrinsic::preserve_array_access_index: 4576 case Intrinsic::preserve_struct_access_index: 4577 case Intrinsic::aarch64_ldaxr: 4578 case Intrinsic::aarch64_ldxr: 4579 case Intrinsic::aarch64_stlxr: 4580 case Intrinsic::aarch64_stxr: 4581 case Intrinsic::arm_ldaex: 4582 case Intrinsic::arm_ldrex: 4583 case Intrinsic::arm_stlex: 4584 case Intrinsic::arm_strex: { 4585 unsigned ArgNo; 4586 switch (CB->getIntrinsicID()) { 4587 case Intrinsic::aarch64_stlxr: 4588 case Intrinsic::aarch64_stxr: 4589 case Intrinsic::arm_stlex: 4590 case Intrinsic::arm_strex: 4591 ArgNo = 1; 4592 break; 4593 default: 4594 ArgNo = 0; 4595 break; 4596 } 4597 if (!Attrs.getParamElementType(ArgNo)) { 4598 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4599 if (!ElTy) 4600 return error("Missing element type for elementtype upgrade"); 4601 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4602 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4603 } 4604 break; 4605 } 4606 default: 4607 break; 4608 } 4609 4610 CB->setAttributes(Attrs); 4611 return Error::success(); 4612 } 4613 4614 /// Lazily parse the specified function body block. 4615 Error BitcodeReader::parseFunctionBody(Function *F) { 4616 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4617 return Err; 4618 4619 // Unexpected unresolved metadata when parsing function. 4620 if (MDLoader->hasFwdRefs()) 4621 return error("Invalid function metadata: incoming forward references"); 4622 4623 InstructionList.clear(); 4624 unsigned ModuleValueListSize = ValueList.size(); 4625 unsigned ModuleMDLoaderSize = MDLoader->size(); 4626 4627 // Add all the function arguments to the value table. 4628 unsigned ArgNo = 0; 4629 unsigned FTyID = FunctionTypeIDs[F]; 4630 for (Argument &I : F->args()) { 4631 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4632 assert(I.getType() == getTypeByID(ArgTyID) && 4633 "Incorrect fully specified type for Function Argument"); 4634 ValueList.push_back(&I, ArgTyID); 4635 ++ArgNo; 4636 } 4637 unsigned NextValueNo = ValueList.size(); 4638 BasicBlock *CurBB = nullptr; 4639 unsigned CurBBNo = 0; 4640 // Block into which constant expressions from phi nodes are materialized. 4641 BasicBlock *PhiConstExprBB = nullptr; 4642 // Edge blocks for phi nodes into which constant expressions have been 4643 // expanded. 4644 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4645 ConstExprEdgeBBs; 4646 4647 DebugLoc LastLoc; 4648 auto getLastInstruction = [&]() -> Instruction * { 4649 if (CurBB && !CurBB->empty()) 4650 return &CurBB->back(); 4651 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4652 !FunctionBBs[CurBBNo - 1]->empty()) 4653 return &FunctionBBs[CurBBNo - 1]->back(); 4654 return nullptr; 4655 }; 4656 4657 std::vector<OperandBundleDef> OperandBundles; 4658 4659 // Read all the records. 4660 SmallVector<uint64_t, 64> Record; 4661 4662 while (true) { 4663 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4664 if (!MaybeEntry) 4665 return MaybeEntry.takeError(); 4666 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4667 4668 switch (Entry.Kind) { 4669 case BitstreamEntry::Error: 4670 return error("Malformed block"); 4671 case BitstreamEntry::EndBlock: 4672 goto OutOfRecordLoop; 4673 4674 case BitstreamEntry::SubBlock: 4675 switch (Entry.ID) { 4676 default: // Skip unknown content. 4677 if (Error Err = Stream.SkipBlock()) 4678 return Err; 4679 break; 4680 case bitc::CONSTANTS_BLOCK_ID: 4681 if (Error Err = parseConstants()) 4682 return Err; 4683 NextValueNo = ValueList.size(); 4684 break; 4685 case bitc::VALUE_SYMTAB_BLOCK_ID: 4686 if (Error Err = parseValueSymbolTable()) 4687 return Err; 4688 break; 4689 case bitc::METADATA_ATTACHMENT_ID: 4690 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4691 return Err; 4692 break; 4693 case bitc::METADATA_BLOCK_ID: 4694 assert(DeferredMetadataInfo.empty() && 4695 "Must read all module-level metadata before function-level"); 4696 if (Error Err = MDLoader->parseFunctionMetadata()) 4697 return Err; 4698 break; 4699 case bitc::USELIST_BLOCK_ID: 4700 if (Error Err = parseUseLists()) 4701 return Err; 4702 break; 4703 } 4704 continue; 4705 4706 case BitstreamEntry::Record: 4707 // The interesting case. 4708 break; 4709 } 4710 4711 // Read a record. 4712 Record.clear(); 4713 Instruction *I = nullptr; 4714 unsigned ResTypeID = InvalidTypeID; 4715 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4716 if (!MaybeBitCode) 4717 return MaybeBitCode.takeError(); 4718 switch (unsigned BitCode = MaybeBitCode.get()) { 4719 default: // Default behavior: reject 4720 return error("Invalid value"); 4721 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4722 if (Record.empty() || Record[0] == 0) 4723 return error("Invalid record"); 4724 // Create all the basic blocks for the function. 4725 FunctionBBs.resize(Record[0]); 4726 4727 // See if anything took the address of blocks in this function. 4728 auto BBFRI = BasicBlockFwdRefs.find(F); 4729 if (BBFRI == BasicBlockFwdRefs.end()) { 4730 for (BasicBlock *&BB : FunctionBBs) 4731 BB = BasicBlock::Create(Context, "", F); 4732 } else { 4733 auto &BBRefs = BBFRI->second; 4734 // Check for invalid basic block references. 4735 if (BBRefs.size() > FunctionBBs.size()) 4736 return error("Invalid ID"); 4737 assert(!BBRefs.empty() && "Unexpected empty array"); 4738 assert(!BBRefs.front() && "Invalid reference to entry block"); 4739 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4740 ++I) 4741 if (I < RE && BBRefs[I]) { 4742 BBRefs[I]->insertInto(F); 4743 FunctionBBs[I] = BBRefs[I]; 4744 } else { 4745 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4746 } 4747 4748 // Erase from the table. 4749 BasicBlockFwdRefs.erase(BBFRI); 4750 } 4751 4752 CurBB = FunctionBBs[0]; 4753 continue; 4754 } 4755 4756 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4757 // The record should not be emitted if it's an empty list. 4758 if (Record.empty()) 4759 return error("Invalid record"); 4760 // When we have the RARE case of a BlockAddress Constant that is not 4761 // scoped to the Function it refers to, we need to conservatively 4762 // materialize the referred to Function, regardless of whether or not 4763 // that Function will ultimately be linked, otherwise users of 4764 // BitcodeReader might start splicing out Function bodies such that we 4765 // might no longer be able to materialize the BlockAddress since the 4766 // BasicBlock (and entire body of the Function) the BlockAddress refers 4767 // to may have been moved. In the case that the user of BitcodeReader 4768 // decides ultimately not to link the Function body, materializing here 4769 // could be considered wasteful, but it's better than a deserialization 4770 // failure as described. This keeps BitcodeReader unaware of complex 4771 // linkage policy decisions such as those use by LTO, leaving those 4772 // decisions "one layer up." 4773 for (uint64_t ValID : Record) 4774 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4775 BackwardRefFunctions.push_back(F); 4776 else 4777 return error("Invalid record"); 4778 4779 continue; 4780 4781 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4782 // This record indicates that the last instruction is at the same 4783 // location as the previous instruction with a location. 4784 I = getLastInstruction(); 4785 4786 if (!I) 4787 return error("Invalid record"); 4788 I->setDebugLoc(LastLoc); 4789 I = nullptr; 4790 continue; 4791 4792 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4793 I = getLastInstruction(); 4794 if (!I || Record.size() < 4) 4795 return error("Invalid record"); 4796 4797 unsigned Line = Record[0], Col = Record[1]; 4798 unsigned ScopeID = Record[2], IAID = Record[3]; 4799 bool isImplicitCode = Record.size() == 5 && Record[4]; 4800 4801 MDNode *Scope = nullptr, *IA = nullptr; 4802 if (ScopeID) { 4803 Scope = dyn_cast_or_null<MDNode>( 4804 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4805 if (!Scope) 4806 return error("Invalid record"); 4807 } 4808 if (IAID) { 4809 IA = dyn_cast_or_null<MDNode>( 4810 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4811 if (!IA) 4812 return error("Invalid record"); 4813 } 4814 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4815 isImplicitCode); 4816 I->setDebugLoc(LastLoc); 4817 I = nullptr; 4818 continue; 4819 } 4820 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4821 unsigned OpNum = 0; 4822 Value *LHS; 4823 unsigned TypeID; 4824 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4825 OpNum+1 > Record.size()) 4826 return error("Invalid record"); 4827 4828 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4829 if (Opc == -1) 4830 return error("Invalid record"); 4831 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4832 ResTypeID = TypeID; 4833 InstructionList.push_back(I); 4834 if (OpNum < Record.size()) { 4835 if (isa<FPMathOperator>(I)) { 4836 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4837 if (FMF.any()) 4838 I->setFastMathFlags(FMF); 4839 } 4840 } 4841 break; 4842 } 4843 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4844 unsigned OpNum = 0; 4845 Value *LHS, *RHS; 4846 unsigned TypeID; 4847 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4848 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4849 CurBB) || 4850 OpNum+1 > Record.size()) 4851 return error("Invalid record"); 4852 4853 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4854 if (Opc == -1) 4855 return error("Invalid record"); 4856 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4857 ResTypeID = TypeID; 4858 InstructionList.push_back(I); 4859 if (OpNum < Record.size()) { 4860 if (Opc == Instruction::Add || 4861 Opc == Instruction::Sub || 4862 Opc == Instruction::Mul || 4863 Opc == Instruction::Shl) { 4864 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4865 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4866 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4867 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4868 } else if (Opc == Instruction::SDiv || 4869 Opc == Instruction::UDiv || 4870 Opc == Instruction::LShr || 4871 Opc == Instruction::AShr) { 4872 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4873 cast<BinaryOperator>(I)->setIsExact(true); 4874 } else if (isa<FPMathOperator>(I)) { 4875 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4876 if (FMF.any()) 4877 I->setFastMathFlags(FMF); 4878 } 4879 4880 } 4881 break; 4882 } 4883 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4884 unsigned OpNum = 0; 4885 Value *Op; 4886 unsigned OpTypeID; 4887 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4888 OpNum+2 != Record.size()) 4889 return error("Invalid record"); 4890 4891 ResTypeID = Record[OpNum]; 4892 Type *ResTy = getTypeByID(ResTypeID); 4893 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4894 if (Opc == -1 || !ResTy) 4895 return error("Invalid record"); 4896 Instruction *Temp = nullptr; 4897 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4898 if (Temp) { 4899 InstructionList.push_back(Temp); 4900 assert(CurBB && "No current BB?"); 4901 Temp->insertInto(CurBB, CurBB->end()); 4902 } 4903 } else { 4904 auto CastOp = (Instruction::CastOps)Opc; 4905 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4906 return error("Invalid cast"); 4907 I = CastInst::Create(CastOp, Op, ResTy); 4908 } 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4913 case bitc::FUNC_CODE_INST_GEP_OLD: 4914 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4915 unsigned OpNum = 0; 4916 4917 unsigned TyID; 4918 Type *Ty; 4919 bool InBounds; 4920 4921 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4922 InBounds = Record[OpNum++]; 4923 TyID = Record[OpNum++]; 4924 Ty = getTypeByID(TyID); 4925 } else { 4926 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4927 TyID = InvalidTypeID; 4928 Ty = nullptr; 4929 } 4930 4931 Value *BasePtr; 4932 unsigned BasePtrTypeID; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4934 CurBB)) 4935 return error("Invalid record"); 4936 4937 if (!Ty) { 4938 TyID = getContainedTypeID(BasePtrTypeID); 4939 if (BasePtr->getType()->isVectorTy()) 4940 TyID = getContainedTypeID(TyID); 4941 Ty = getTypeByID(TyID); 4942 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4943 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4944 return error( 4945 "Explicit gep type does not match pointee type of pointer operand"); 4946 } 4947 4948 SmallVector<Value*, 16> GEPIdx; 4949 while (OpNum != Record.size()) { 4950 Value *Op; 4951 unsigned OpTypeID; 4952 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4953 return error("Invalid record"); 4954 GEPIdx.push_back(Op); 4955 } 4956 4957 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4958 4959 ResTypeID = TyID; 4960 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4961 auto GTI = std::next(gep_type_begin(I)); 4962 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4963 unsigned SubType = 0; 4964 if (GTI.isStruct()) { 4965 ConstantInt *IdxC = 4966 Idx->getType()->isVectorTy() 4967 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4968 : cast<ConstantInt>(Idx); 4969 SubType = IdxC->getZExtValue(); 4970 } 4971 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4972 ++GTI; 4973 } 4974 } 4975 4976 // At this point ResTypeID is the result element type. We need a pointer 4977 // or vector of pointer to it. 4978 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4979 if (I->getType()->isVectorTy()) 4980 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4981 4982 InstructionList.push_back(I); 4983 if (InBounds) 4984 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4985 break; 4986 } 4987 4988 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4989 // EXTRACTVAL: [opty, opval, n x indices] 4990 unsigned OpNum = 0; 4991 Value *Agg; 4992 unsigned AggTypeID; 4993 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4994 return error("Invalid record"); 4995 Type *Ty = Agg->getType(); 4996 4997 unsigned RecSize = Record.size(); 4998 if (OpNum == RecSize) 4999 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5000 5001 SmallVector<unsigned, 4> EXTRACTVALIdx; 5002 ResTypeID = AggTypeID; 5003 for (; OpNum != RecSize; ++OpNum) { 5004 bool IsArray = Ty->isArrayTy(); 5005 bool IsStruct = Ty->isStructTy(); 5006 uint64_t Index = Record[OpNum]; 5007 5008 if (!IsStruct && !IsArray) 5009 return error("EXTRACTVAL: Invalid type"); 5010 if ((unsigned)Index != Index) 5011 return error("Invalid value"); 5012 if (IsStruct && Index >= Ty->getStructNumElements()) 5013 return error("EXTRACTVAL: Invalid struct index"); 5014 if (IsArray && Index >= Ty->getArrayNumElements()) 5015 return error("EXTRACTVAL: Invalid array index"); 5016 EXTRACTVALIdx.push_back((unsigned)Index); 5017 5018 if (IsStruct) { 5019 Ty = Ty->getStructElementType(Index); 5020 ResTypeID = getContainedTypeID(ResTypeID, Index); 5021 } else { 5022 Ty = Ty->getArrayElementType(); 5023 ResTypeID = getContainedTypeID(ResTypeID); 5024 } 5025 } 5026 5027 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5028 InstructionList.push_back(I); 5029 break; 5030 } 5031 5032 case bitc::FUNC_CODE_INST_INSERTVAL: { 5033 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5034 unsigned OpNum = 0; 5035 Value *Agg; 5036 unsigned AggTypeID; 5037 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5038 return error("Invalid record"); 5039 Value *Val; 5040 unsigned ValTypeID; 5041 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5042 return error("Invalid record"); 5043 5044 unsigned RecSize = Record.size(); 5045 if (OpNum == RecSize) 5046 return error("INSERTVAL: Invalid instruction with 0 indices"); 5047 5048 SmallVector<unsigned, 4> INSERTVALIdx; 5049 Type *CurTy = Agg->getType(); 5050 for (; OpNum != RecSize; ++OpNum) { 5051 bool IsArray = CurTy->isArrayTy(); 5052 bool IsStruct = CurTy->isStructTy(); 5053 uint64_t Index = Record[OpNum]; 5054 5055 if (!IsStruct && !IsArray) 5056 return error("INSERTVAL: Invalid type"); 5057 if ((unsigned)Index != Index) 5058 return error("Invalid value"); 5059 if (IsStruct && Index >= CurTy->getStructNumElements()) 5060 return error("INSERTVAL: Invalid struct index"); 5061 if (IsArray && Index >= CurTy->getArrayNumElements()) 5062 return error("INSERTVAL: Invalid array index"); 5063 5064 INSERTVALIdx.push_back((unsigned)Index); 5065 if (IsStruct) 5066 CurTy = CurTy->getStructElementType(Index); 5067 else 5068 CurTy = CurTy->getArrayElementType(); 5069 } 5070 5071 if (CurTy != Val->getType()) 5072 return error("Inserted value type doesn't match aggregate type"); 5073 5074 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5075 ResTypeID = AggTypeID; 5076 InstructionList.push_back(I); 5077 break; 5078 } 5079 5080 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5081 // obsolete form of select 5082 // handles select i1 ... in old bitcode 5083 unsigned OpNum = 0; 5084 Value *TrueVal, *FalseVal, *Cond; 5085 unsigned TypeID; 5086 Type *CondType = Type::getInt1Ty(Context); 5087 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5088 CurBB) || 5089 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5090 FalseVal, CurBB) || 5091 popValue(Record, OpNum, NextValueNo, CondType, 5092 getVirtualTypeID(CondType), Cond, CurBB)) 5093 return error("Invalid record"); 5094 5095 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5096 ResTypeID = TypeID; 5097 InstructionList.push_back(I); 5098 break; 5099 } 5100 5101 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5102 // new form of select 5103 // handles select i1 or select [N x i1] 5104 unsigned OpNum = 0; 5105 Value *TrueVal, *FalseVal, *Cond; 5106 unsigned ValTypeID, CondTypeID; 5107 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5108 CurBB) || 5109 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5110 FalseVal, CurBB) || 5111 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5112 return error("Invalid record"); 5113 5114 // select condition can be either i1 or [N x i1] 5115 if (VectorType* vector_type = 5116 dyn_cast<VectorType>(Cond->getType())) { 5117 // expect <n x i1> 5118 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5119 return error("Invalid type for value"); 5120 } else { 5121 // expect i1 5122 if (Cond->getType() != Type::getInt1Ty(Context)) 5123 return error("Invalid type for value"); 5124 } 5125 5126 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5127 ResTypeID = ValTypeID; 5128 InstructionList.push_back(I); 5129 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5130 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5131 if (FMF.any()) 5132 I->setFastMathFlags(FMF); 5133 } 5134 break; 5135 } 5136 5137 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5138 unsigned OpNum = 0; 5139 Value *Vec, *Idx; 5140 unsigned VecTypeID, IdxTypeID; 5141 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5142 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5143 return error("Invalid record"); 5144 if (!Vec->getType()->isVectorTy()) 5145 return error("Invalid type for value"); 5146 I = ExtractElementInst::Create(Vec, Idx); 5147 ResTypeID = getContainedTypeID(VecTypeID); 5148 InstructionList.push_back(I); 5149 break; 5150 } 5151 5152 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5153 unsigned OpNum = 0; 5154 Value *Vec, *Elt, *Idx; 5155 unsigned VecTypeID, IdxTypeID; 5156 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5157 return error("Invalid record"); 5158 if (!Vec->getType()->isVectorTy()) 5159 return error("Invalid type for value"); 5160 if (popValue(Record, OpNum, NextValueNo, 5161 cast<VectorType>(Vec->getType())->getElementType(), 5162 getContainedTypeID(VecTypeID), Elt, CurBB) || 5163 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5164 return error("Invalid record"); 5165 I = InsertElementInst::Create(Vec, Elt, Idx); 5166 ResTypeID = VecTypeID; 5167 InstructionList.push_back(I); 5168 break; 5169 } 5170 5171 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5172 unsigned OpNum = 0; 5173 Value *Vec1, *Vec2, *Mask; 5174 unsigned Vec1TypeID; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5176 CurBB) || 5177 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5178 Vec2, CurBB)) 5179 return error("Invalid record"); 5180 5181 unsigned MaskTypeID; 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5183 return error("Invalid record"); 5184 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5185 return error("Invalid type for value"); 5186 5187 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5188 ResTypeID = 5189 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5190 InstructionList.push_back(I); 5191 break; 5192 } 5193 5194 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5195 // Old form of ICmp/FCmp returning bool 5196 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5197 // both legal on vectors but had different behaviour. 5198 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5199 // FCmp/ICmp returning bool or vector of bool 5200 5201 unsigned OpNum = 0; 5202 Value *LHS, *RHS; 5203 unsigned LHSTypeID; 5204 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5205 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5206 CurBB)) 5207 return error("Invalid record"); 5208 5209 if (OpNum >= Record.size()) 5210 return error( 5211 "Invalid record: operand number exceeded available operands"); 5212 5213 unsigned PredVal = Record[OpNum]; 5214 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5215 FastMathFlags FMF; 5216 if (IsFP && Record.size() > OpNum+1) 5217 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5218 5219 if (OpNum+1 != Record.size()) 5220 return error("Invalid record"); 5221 5222 if (LHS->getType()->isFPOrFPVectorTy()) 5223 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5224 else 5225 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5226 5227 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5228 if (LHS->getType()->isVectorTy()) 5229 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5230 5231 if (FMF.any()) 5232 I->setFastMathFlags(FMF); 5233 InstructionList.push_back(I); 5234 break; 5235 } 5236 5237 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5238 { 5239 unsigned Size = Record.size(); 5240 if (Size == 0) { 5241 I = ReturnInst::Create(Context); 5242 InstructionList.push_back(I); 5243 break; 5244 } 5245 5246 unsigned OpNum = 0; 5247 Value *Op = nullptr; 5248 unsigned OpTypeID; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5250 return error("Invalid record"); 5251 if (OpNum != Record.size()) 5252 return error("Invalid record"); 5253 5254 I = ReturnInst::Create(Context, Op); 5255 InstructionList.push_back(I); 5256 break; 5257 } 5258 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5259 if (Record.size() != 1 && Record.size() != 3) 5260 return error("Invalid record"); 5261 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5262 if (!TrueDest) 5263 return error("Invalid record"); 5264 5265 if (Record.size() == 1) { 5266 I = BranchInst::Create(TrueDest); 5267 InstructionList.push_back(I); 5268 } 5269 else { 5270 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5271 Type *CondType = Type::getInt1Ty(Context); 5272 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5273 getVirtualTypeID(CondType), CurBB); 5274 if (!FalseDest || !Cond) 5275 return error("Invalid record"); 5276 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5277 InstructionList.push_back(I); 5278 } 5279 break; 5280 } 5281 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5282 if (Record.size() != 1 && Record.size() != 2) 5283 return error("Invalid record"); 5284 unsigned Idx = 0; 5285 Type *TokenTy = Type::getTokenTy(Context); 5286 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5287 getVirtualTypeID(TokenTy), CurBB); 5288 if (!CleanupPad) 5289 return error("Invalid record"); 5290 BasicBlock *UnwindDest = nullptr; 5291 if (Record.size() == 2) { 5292 UnwindDest = getBasicBlock(Record[Idx++]); 5293 if (!UnwindDest) 5294 return error("Invalid record"); 5295 } 5296 5297 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5298 InstructionList.push_back(I); 5299 break; 5300 } 5301 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5302 if (Record.size() != 2) 5303 return error("Invalid record"); 5304 unsigned Idx = 0; 5305 Type *TokenTy = Type::getTokenTy(Context); 5306 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5307 getVirtualTypeID(TokenTy), CurBB); 5308 if (!CatchPad) 5309 return error("Invalid record"); 5310 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5311 if (!BB) 5312 return error("Invalid record"); 5313 5314 I = CatchReturnInst::Create(CatchPad, BB); 5315 InstructionList.push_back(I); 5316 break; 5317 } 5318 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5319 // We must have, at minimum, the outer scope and the number of arguments. 5320 if (Record.size() < 2) 5321 return error("Invalid record"); 5322 5323 unsigned Idx = 0; 5324 5325 Type *TokenTy = Type::getTokenTy(Context); 5326 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5327 getVirtualTypeID(TokenTy), CurBB); 5328 5329 unsigned NumHandlers = Record[Idx++]; 5330 5331 SmallVector<BasicBlock *, 2> Handlers; 5332 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5333 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5334 if (!BB) 5335 return error("Invalid record"); 5336 Handlers.push_back(BB); 5337 } 5338 5339 BasicBlock *UnwindDest = nullptr; 5340 if (Idx + 1 == Record.size()) { 5341 UnwindDest = getBasicBlock(Record[Idx++]); 5342 if (!UnwindDest) 5343 return error("Invalid record"); 5344 } 5345 5346 if (Record.size() != Idx) 5347 return error("Invalid record"); 5348 5349 auto *CatchSwitch = 5350 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5351 for (BasicBlock *Handler : Handlers) 5352 CatchSwitch->addHandler(Handler); 5353 I = CatchSwitch; 5354 ResTypeID = getVirtualTypeID(I->getType()); 5355 InstructionList.push_back(I); 5356 break; 5357 } 5358 case bitc::FUNC_CODE_INST_CATCHPAD: 5359 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5360 // We must have, at minimum, the outer scope and the number of arguments. 5361 if (Record.size() < 2) 5362 return error("Invalid record"); 5363 5364 unsigned Idx = 0; 5365 5366 Type *TokenTy = Type::getTokenTy(Context); 5367 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5368 getVirtualTypeID(TokenTy), CurBB); 5369 5370 unsigned NumArgOperands = Record[Idx++]; 5371 5372 SmallVector<Value *, 2> Args; 5373 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5374 Value *Val; 5375 unsigned ValTypeID; 5376 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5377 return error("Invalid record"); 5378 Args.push_back(Val); 5379 } 5380 5381 if (Record.size() != Idx) 5382 return error("Invalid record"); 5383 5384 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5385 I = CleanupPadInst::Create(ParentPad, Args); 5386 else 5387 I = CatchPadInst::Create(ParentPad, Args); 5388 ResTypeID = getVirtualTypeID(I->getType()); 5389 InstructionList.push_back(I); 5390 break; 5391 } 5392 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5393 // Check magic 5394 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5395 // "New" SwitchInst format with case ranges. The changes to write this 5396 // format were reverted but we still recognize bitcode that uses it. 5397 // Hopefully someday we will have support for case ranges and can use 5398 // this format again. 5399 5400 unsigned OpTyID = Record[1]; 5401 Type *OpTy = getTypeByID(OpTyID); 5402 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5403 5404 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5405 BasicBlock *Default = getBasicBlock(Record[3]); 5406 if (!OpTy || !Cond || !Default) 5407 return error("Invalid record"); 5408 5409 unsigned NumCases = Record[4]; 5410 5411 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5412 InstructionList.push_back(SI); 5413 5414 unsigned CurIdx = 5; 5415 for (unsigned i = 0; i != NumCases; ++i) { 5416 SmallVector<ConstantInt*, 1> CaseVals; 5417 unsigned NumItems = Record[CurIdx++]; 5418 for (unsigned ci = 0; ci != NumItems; ++ci) { 5419 bool isSingleNumber = Record[CurIdx++]; 5420 5421 APInt Low; 5422 unsigned ActiveWords = 1; 5423 if (ValueBitWidth > 64) 5424 ActiveWords = Record[CurIdx++]; 5425 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5426 ValueBitWidth); 5427 CurIdx += ActiveWords; 5428 5429 if (!isSingleNumber) { 5430 ActiveWords = 1; 5431 if (ValueBitWidth > 64) 5432 ActiveWords = Record[CurIdx++]; 5433 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5434 ValueBitWidth); 5435 CurIdx += ActiveWords; 5436 5437 // FIXME: It is not clear whether values in the range should be 5438 // compared as signed or unsigned values. The partially 5439 // implemented changes that used this format in the past used 5440 // unsigned comparisons. 5441 for ( ; Low.ule(High); ++Low) 5442 CaseVals.push_back(ConstantInt::get(Context, Low)); 5443 } else 5444 CaseVals.push_back(ConstantInt::get(Context, Low)); 5445 } 5446 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5447 for (ConstantInt *Cst : CaseVals) 5448 SI->addCase(Cst, DestBB); 5449 } 5450 I = SI; 5451 break; 5452 } 5453 5454 // Old SwitchInst format without case ranges. 5455 5456 if (Record.size() < 3 || (Record.size() & 1) == 0) 5457 return error("Invalid record"); 5458 unsigned OpTyID = Record[0]; 5459 Type *OpTy = getTypeByID(OpTyID); 5460 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5461 BasicBlock *Default = getBasicBlock(Record[2]); 5462 if (!OpTy || !Cond || !Default) 5463 return error("Invalid record"); 5464 unsigned NumCases = (Record.size()-3)/2; 5465 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5466 InstructionList.push_back(SI); 5467 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5468 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5469 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5470 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5471 if (!CaseVal || !DestBB) { 5472 delete SI; 5473 return error("Invalid record"); 5474 } 5475 SI->addCase(CaseVal, DestBB); 5476 } 5477 I = SI; 5478 break; 5479 } 5480 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5481 if (Record.size() < 2) 5482 return error("Invalid record"); 5483 unsigned OpTyID = Record[0]; 5484 Type *OpTy = getTypeByID(OpTyID); 5485 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5486 if (!OpTy || !Address) 5487 return error("Invalid record"); 5488 unsigned NumDests = Record.size()-2; 5489 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5490 InstructionList.push_back(IBI); 5491 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5492 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5493 IBI->addDestination(DestBB); 5494 } else { 5495 delete IBI; 5496 return error("Invalid record"); 5497 } 5498 } 5499 I = IBI; 5500 break; 5501 } 5502 5503 case bitc::FUNC_CODE_INST_INVOKE: { 5504 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5505 if (Record.size() < 4) 5506 return error("Invalid record"); 5507 unsigned OpNum = 0; 5508 AttributeList PAL = getAttributes(Record[OpNum++]); 5509 unsigned CCInfo = Record[OpNum++]; 5510 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5511 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5512 5513 unsigned FTyID = InvalidTypeID; 5514 FunctionType *FTy = nullptr; 5515 if ((CCInfo >> 13) & 1) { 5516 FTyID = Record[OpNum++]; 5517 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5518 if (!FTy) 5519 return error("Explicit invoke type is not a function type"); 5520 } 5521 5522 Value *Callee; 5523 unsigned CalleeTypeID; 5524 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5525 CurBB)) 5526 return error("Invalid record"); 5527 5528 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5529 if (!CalleeTy) 5530 return error("Callee is not a pointer"); 5531 if (!FTy) { 5532 FTyID = getContainedTypeID(CalleeTypeID); 5533 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5534 if (!FTy) 5535 return error("Callee is not of pointer to function type"); 5536 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5537 return error("Explicit invoke type does not match pointee type of " 5538 "callee operand"); 5539 if (Record.size() < FTy->getNumParams() + OpNum) 5540 return error("Insufficient operands to call"); 5541 5542 SmallVector<Value*, 16> Ops; 5543 SmallVector<unsigned, 16> ArgTyIDs; 5544 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5545 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5546 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5547 ArgTyID, CurBB)); 5548 ArgTyIDs.push_back(ArgTyID); 5549 if (!Ops.back()) 5550 return error("Invalid record"); 5551 } 5552 5553 if (!FTy->isVarArg()) { 5554 if (Record.size() != OpNum) 5555 return error("Invalid record"); 5556 } else { 5557 // Read type/value pairs for varargs params. 5558 while (OpNum != Record.size()) { 5559 Value *Op; 5560 unsigned OpTypeID; 5561 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5562 return error("Invalid record"); 5563 Ops.push_back(Op); 5564 ArgTyIDs.push_back(OpTypeID); 5565 } 5566 } 5567 5568 // Upgrade the bundles if needed. 5569 if (!OperandBundles.empty()) 5570 UpgradeOperandBundles(OperandBundles); 5571 5572 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5573 OperandBundles); 5574 ResTypeID = getContainedTypeID(FTyID); 5575 OperandBundles.clear(); 5576 InstructionList.push_back(I); 5577 cast<InvokeInst>(I)->setCallingConv( 5578 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5579 cast<InvokeInst>(I)->setAttributes(PAL); 5580 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5581 I->deleteValue(); 5582 return Err; 5583 } 5584 5585 break; 5586 } 5587 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5588 unsigned Idx = 0; 5589 Value *Val = nullptr; 5590 unsigned ValTypeID; 5591 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5592 return error("Invalid record"); 5593 I = ResumeInst::Create(Val); 5594 InstructionList.push_back(I); 5595 break; 5596 } 5597 case bitc::FUNC_CODE_INST_CALLBR: { 5598 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5599 unsigned OpNum = 0; 5600 AttributeList PAL = getAttributes(Record[OpNum++]); 5601 unsigned CCInfo = Record[OpNum++]; 5602 5603 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5604 unsigned NumIndirectDests = Record[OpNum++]; 5605 SmallVector<BasicBlock *, 16> IndirectDests; 5606 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5607 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5608 5609 unsigned FTyID = InvalidTypeID; 5610 FunctionType *FTy = nullptr; 5611 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5612 FTyID = Record[OpNum++]; 5613 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5614 if (!FTy) 5615 return error("Explicit call type is not a function type"); 5616 } 5617 5618 Value *Callee; 5619 unsigned CalleeTypeID; 5620 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5621 CurBB)) 5622 return error("Invalid record"); 5623 5624 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5625 if (!OpTy) 5626 return error("Callee is not a pointer type"); 5627 if (!FTy) { 5628 FTyID = getContainedTypeID(CalleeTypeID); 5629 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5630 if (!FTy) 5631 return error("Callee is not of pointer to function type"); 5632 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5633 return error("Explicit call type does not match pointee type of " 5634 "callee operand"); 5635 if (Record.size() < FTy->getNumParams() + OpNum) 5636 return error("Insufficient operands to call"); 5637 5638 SmallVector<Value*, 16> Args; 5639 SmallVector<unsigned, 16> ArgTyIDs; 5640 // Read the fixed params. 5641 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5642 Value *Arg; 5643 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5644 if (FTy->getParamType(i)->isLabelTy()) 5645 Arg = getBasicBlock(Record[OpNum]); 5646 else 5647 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5648 ArgTyID, CurBB); 5649 if (!Arg) 5650 return error("Invalid record"); 5651 Args.push_back(Arg); 5652 ArgTyIDs.push_back(ArgTyID); 5653 } 5654 5655 // Read type/value pairs for varargs params. 5656 if (!FTy->isVarArg()) { 5657 if (OpNum != Record.size()) 5658 return error("Invalid record"); 5659 } else { 5660 while (OpNum != Record.size()) { 5661 Value *Op; 5662 unsigned OpTypeID; 5663 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5664 return error("Invalid record"); 5665 Args.push_back(Op); 5666 ArgTyIDs.push_back(OpTypeID); 5667 } 5668 } 5669 5670 // Upgrade the bundles if needed. 5671 if (!OperandBundles.empty()) 5672 UpgradeOperandBundles(OperandBundles); 5673 5674 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5675 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5676 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5677 return CI.Type == InlineAsm::isLabel; 5678 }; 5679 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5680 // Upgrade explicit blockaddress arguments to label constraints. 5681 // Verify that the last arguments are blockaddress arguments that 5682 // match the indirect destinations. Clang always generates callbr 5683 // in this form. We could support reordering with more effort. 5684 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5685 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5686 unsigned LabelNo = ArgNo - FirstBlockArg; 5687 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5688 if (!BA || BA->getFunction() != F || 5689 LabelNo > IndirectDests.size() || 5690 BA->getBasicBlock() != IndirectDests[LabelNo]) 5691 return error("callbr argument does not match indirect dest"); 5692 } 5693 5694 // Remove blockaddress arguments. 5695 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5696 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5697 5698 // Recreate the function type with less arguments. 5699 SmallVector<Type *> ArgTys; 5700 for (Value *Arg : Args) 5701 ArgTys.push_back(Arg->getType()); 5702 FTy = 5703 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5704 5705 // Update constraint string to use label constraints. 5706 std::string Constraints = IA->getConstraintString(); 5707 unsigned ArgNo = 0; 5708 size_t Pos = 0; 5709 for (const auto &CI : ConstraintInfo) { 5710 if (CI.hasArg()) { 5711 if (ArgNo >= FirstBlockArg) 5712 Constraints.insert(Pos, "!"); 5713 ++ArgNo; 5714 } 5715 5716 // Go to next constraint in string. 5717 Pos = Constraints.find(',', Pos); 5718 if (Pos == std::string::npos) 5719 break; 5720 ++Pos; 5721 } 5722 5723 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5724 IA->hasSideEffects(), IA->isAlignStack(), 5725 IA->getDialect(), IA->canThrow()); 5726 } 5727 } 5728 5729 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5730 OperandBundles); 5731 ResTypeID = getContainedTypeID(FTyID); 5732 OperandBundles.clear(); 5733 InstructionList.push_back(I); 5734 cast<CallBrInst>(I)->setCallingConv( 5735 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5736 cast<CallBrInst>(I)->setAttributes(PAL); 5737 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5738 I->deleteValue(); 5739 return Err; 5740 } 5741 break; 5742 } 5743 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5744 I = new UnreachableInst(Context); 5745 InstructionList.push_back(I); 5746 break; 5747 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5748 if (Record.empty()) 5749 return error("Invalid phi record"); 5750 // The first record specifies the type. 5751 unsigned TyID = Record[0]; 5752 Type *Ty = getTypeByID(TyID); 5753 if (!Ty) 5754 return error("Invalid phi record"); 5755 5756 // Phi arguments are pairs of records of [value, basic block]. 5757 // There is an optional final record for fast-math-flags if this phi has a 5758 // floating-point type. 5759 size_t NumArgs = (Record.size() - 1) / 2; 5760 PHINode *PN = PHINode::Create(Ty, NumArgs); 5761 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5762 PN->deleteValue(); 5763 return error("Invalid phi record"); 5764 } 5765 InstructionList.push_back(PN); 5766 5767 SmallDenseMap<BasicBlock *, Value *> Args; 5768 for (unsigned i = 0; i != NumArgs; i++) { 5769 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5770 if (!BB) { 5771 PN->deleteValue(); 5772 return error("Invalid phi BB"); 5773 } 5774 5775 // Phi nodes may contain the same predecessor multiple times, in which 5776 // case the incoming value must be identical. Directly reuse the already 5777 // seen value here, to avoid expanding a constant expression multiple 5778 // times. 5779 auto It = Args.find(BB); 5780 if (It != Args.end()) { 5781 PN->addIncoming(It->second, BB); 5782 continue; 5783 } 5784 5785 // If there already is a block for this edge (from a different phi), 5786 // use it. 5787 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5788 if (!EdgeBB) { 5789 // Otherwise, use a temporary block (that we will discard if it 5790 // turns out to be unnecessary). 5791 if (!PhiConstExprBB) 5792 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5793 EdgeBB = PhiConstExprBB; 5794 } 5795 5796 // With the new function encoding, it is possible that operands have 5797 // negative IDs (for forward references). Use a signed VBR 5798 // representation to keep the encoding small. 5799 Value *V; 5800 if (UseRelativeIDs) 5801 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5802 else 5803 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5804 if (!V) { 5805 PN->deleteValue(); 5806 PhiConstExprBB->eraseFromParent(); 5807 return error("Invalid phi record"); 5808 } 5809 5810 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5811 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5812 PhiConstExprBB = nullptr; 5813 } 5814 PN->addIncoming(V, BB); 5815 Args.insert({BB, V}); 5816 } 5817 I = PN; 5818 ResTypeID = TyID; 5819 5820 // If there are an even number of records, the final record must be FMF. 5821 if (Record.size() % 2 == 0) { 5822 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5823 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5824 if (FMF.any()) 5825 I->setFastMathFlags(FMF); 5826 } 5827 5828 break; 5829 } 5830 5831 case bitc::FUNC_CODE_INST_LANDINGPAD: 5832 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5833 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5834 unsigned Idx = 0; 5835 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5836 if (Record.size() < 3) 5837 return error("Invalid record"); 5838 } else { 5839 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5840 if (Record.size() < 4) 5841 return error("Invalid record"); 5842 } 5843 ResTypeID = Record[Idx++]; 5844 Type *Ty = getTypeByID(ResTypeID); 5845 if (!Ty) 5846 return error("Invalid record"); 5847 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5848 Value *PersFn = nullptr; 5849 unsigned PersFnTypeID; 5850 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5851 nullptr)) 5852 return error("Invalid record"); 5853 5854 if (!F->hasPersonalityFn()) 5855 F->setPersonalityFn(cast<Constant>(PersFn)); 5856 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5857 return error("Personality function mismatch"); 5858 } 5859 5860 bool IsCleanup = !!Record[Idx++]; 5861 unsigned NumClauses = Record[Idx++]; 5862 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5863 LP->setCleanup(IsCleanup); 5864 for (unsigned J = 0; J != NumClauses; ++J) { 5865 LandingPadInst::ClauseType CT = 5866 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5867 Value *Val; 5868 unsigned ValTypeID; 5869 5870 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5871 nullptr)) { 5872 delete LP; 5873 return error("Invalid record"); 5874 } 5875 5876 assert((CT != LandingPadInst::Catch || 5877 !isa<ArrayType>(Val->getType())) && 5878 "Catch clause has a invalid type!"); 5879 assert((CT != LandingPadInst::Filter || 5880 isa<ArrayType>(Val->getType())) && 5881 "Filter clause has invalid type!"); 5882 LP->addClause(cast<Constant>(Val)); 5883 } 5884 5885 I = LP; 5886 InstructionList.push_back(I); 5887 break; 5888 } 5889 5890 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5891 if (Record.size() != 4 && Record.size() != 5) 5892 return error("Invalid record"); 5893 using APV = AllocaPackedValues; 5894 const uint64_t Rec = Record[3]; 5895 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5896 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5897 unsigned TyID = Record[0]; 5898 Type *Ty = getTypeByID(TyID); 5899 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5900 TyID = getContainedTypeID(TyID); 5901 Ty = getTypeByID(TyID); 5902 if (!Ty) 5903 return error("Missing element type for old-style alloca"); 5904 } 5905 unsigned OpTyID = Record[1]; 5906 Type *OpTy = getTypeByID(OpTyID); 5907 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5908 MaybeAlign Align; 5909 uint64_t AlignExp = 5910 Bitfield::get<APV::AlignLower>(Rec) | 5911 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5912 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5913 return Err; 5914 } 5915 if (!Ty || !Size) 5916 return error("Invalid record"); 5917 5918 const DataLayout &DL = TheModule->getDataLayout(); 5919 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5920 5921 SmallPtrSet<Type *, 4> Visited; 5922 if (!Align && !Ty->isSized(&Visited)) 5923 return error("alloca of unsized type"); 5924 if (!Align) 5925 Align = DL.getPrefTypeAlign(Ty); 5926 5927 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5928 AI->setUsedWithInAlloca(InAlloca); 5929 AI->setSwiftError(SwiftError); 5930 I = AI; 5931 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5932 InstructionList.push_back(I); 5933 break; 5934 } 5935 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5936 unsigned OpNum = 0; 5937 Value *Op; 5938 unsigned OpTypeID; 5939 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5940 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5941 return error("Invalid record"); 5942 5943 if (!isa<PointerType>(Op->getType())) 5944 return error("Load operand is not a pointer type"); 5945 5946 Type *Ty = nullptr; 5947 if (OpNum + 3 == Record.size()) { 5948 ResTypeID = Record[OpNum++]; 5949 Ty = getTypeByID(ResTypeID); 5950 } else { 5951 ResTypeID = getContainedTypeID(OpTypeID); 5952 Ty = getTypeByID(ResTypeID); 5953 if (!Ty) 5954 return error("Missing element type for old-style load"); 5955 } 5956 5957 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5958 return Err; 5959 5960 MaybeAlign Align; 5961 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5962 return Err; 5963 SmallPtrSet<Type *, 4> Visited; 5964 if (!Align && !Ty->isSized(&Visited)) 5965 return error("load of unsized type"); 5966 if (!Align) 5967 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5968 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5969 InstructionList.push_back(I); 5970 break; 5971 } 5972 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5973 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5974 unsigned OpNum = 0; 5975 Value *Op; 5976 unsigned OpTypeID; 5977 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5978 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5979 return error("Invalid record"); 5980 5981 if (!isa<PointerType>(Op->getType())) 5982 return error("Load operand is not a pointer type"); 5983 5984 Type *Ty = nullptr; 5985 if (OpNum + 5 == Record.size()) { 5986 ResTypeID = Record[OpNum++]; 5987 Ty = getTypeByID(ResTypeID); 5988 } else { 5989 ResTypeID = getContainedTypeID(OpTypeID); 5990 Ty = getTypeByID(ResTypeID); 5991 if (!Ty) 5992 return error("Missing element type for old style atomic load"); 5993 } 5994 5995 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5996 return Err; 5997 5998 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5999 if (Ordering == AtomicOrdering::NotAtomic || 6000 Ordering == AtomicOrdering::Release || 6001 Ordering == AtomicOrdering::AcquireRelease) 6002 return error("Invalid record"); 6003 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6004 return error("Invalid record"); 6005 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6006 6007 MaybeAlign Align; 6008 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6009 return Err; 6010 if (!Align) 6011 return error("Alignment missing from atomic load"); 6012 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6013 InstructionList.push_back(I); 6014 break; 6015 } 6016 case bitc::FUNC_CODE_INST_STORE: 6017 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6018 unsigned OpNum = 0; 6019 Value *Val, *Ptr; 6020 unsigned PtrTypeID, ValTypeID; 6021 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6022 return error("Invalid record"); 6023 6024 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6025 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6026 return error("Invalid record"); 6027 } else { 6028 ValTypeID = getContainedTypeID(PtrTypeID); 6029 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6030 ValTypeID, Val, CurBB)) 6031 return error("Invalid record"); 6032 } 6033 6034 if (OpNum + 2 != Record.size()) 6035 return error("Invalid record"); 6036 6037 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6038 return Err; 6039 MaybeAlign Align; 6040 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6041 return Err; 6042 SmallPtrSet<Type *, 4> Visited; 6043 if (!Align && !Val->getType()->isSized(&Visited)) 6044 return error("store of unsized type"); 6045 if (!Align) 6046 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6047 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6048 InstructionList.push_back(I); 6049 break; 6050 } 6051 case bitc::FUNC_CODE_INST_STOREATOMIC: 6052 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6053 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6054 unsigned OpNum = 0; 6055 Value *Val, *Ptr; 6056 unsigned PtrTypeID, ValTypeID; 6057 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6058 !isa<PointerType>(Ptr->getType())) 6059 return error("Invalid record"); 6060 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6061 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6062 return error("Invalid record"); 6063 } else { 6064 ValTypeID = getContainedTypeID(PtrTypeID); 6065 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6066 ValTypeID, Val, CurBB)) 6067 return error("Invalid record"); 6068 } 6069 6070 if (OpNum + 4 != Record.size()) 6071 return error("Invalid record"); 6072 6073 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6074 return Err; 6075 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6076 if (Ordering == AtomicOrdering::NotAtomic || 6077 Ordering == AtomicOrdering::Acquire || 6078 Ordering == AtomicOrdering::AcquireRelease) 6079 return error("Invalid record"); 6080 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6081 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6082 return error("Invalid record"); 6083 6084 MaybeAlign Align; 6085 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6086 return Err; 6087 if (!Align) 6088 return error("Alignment missing from atomic store"); 6089 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6090 InstructionList.push_back(I); 6091 break; 6092 } 6093 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6094 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6095 // failure_ordering?, weak?] 6096 const size_t NumRecords = Record.size(); 6097 unsigned OpNum = 0; 6098 Value *Ptr = nullptr; 6099 unsigned PtrTypeID; 6100 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6101 return error("Invalid record"); 6102 6103 if (!isa<PointerType>(Ptr->getType())) 6104 return error("Cmpxchg operand is not a pointer type"); 6105 6106 Value *Cmp = nullptr; 6107 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6108 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6109 CmpTypeID, Cmp, CurBB)) 6110 return error("Invalid record"); 6111 6112 Value *New = nullptr; 6113 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6114 New, CurBB) || 6115 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6116 return error("Invalid record"); 6117 6118 const AtomicOrdering SuccessOrdering = 6119 getDecodedOrdering(Record[OpNum + 1]); 6120 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6121 SuccessOrdering == AtomicOrdering::Unordered) 6122 return error("Invalid record"); 6123 6124 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6125 6126 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6127 return Err; 6128 6129 const AtomicOrdering FailureOrdering = 6130 NumRecords < 7 6131 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6132 : getDecodedOrdering(Record[OpNum + 3]); 6133 6134 if (FailureOrdering == AtomicOrdering::NotAtomic || 6135 FailureOrdering == AtomicOrdering::Unordered) 6136 return error("Invalid record"); 6137 6138 const Align Alignment( 6139 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6140 6141 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6142 FailureOrdering, SSID); 6143 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6144 6145 if (NumRecords < 8) { 6146 // Before weak cmpxchgs existed, the instruction simply returned the 6147 // value loaded from memory, so bitcode files from that era will be 6148 // expecting the first component of a modern cmpxchg. 6149 I->insertInto(CurBB, CurBB->end()); 6150 I = ExtractValueInst::Create(I, 0); 6151 ResTypeID = CmpTypeID; 6152 } else { 6153 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6154 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6155 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6156 } 6157 6158 InstructionList.push_back(I); 6159 break; 6160 } 6161 case bitc::FUNC_CODE_INST_CMPXCHG: { 6162 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6163 // failure_ordering, weak, align?] 6164 const size_t NumRecords = Record.size(); 6165 unsigned OpNum = 0; 6166 Value *Ptr = nullptr; 6167 unsigned PtrTypeID; 6168 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6169 return error("Invalid record"); 6170 6171 if (!isa<PointerType>(Ptr->getType())) 6172 return error("Cmpxchg operand is not a pointer type"); 6173 6174 Value *Cmp = nullptr; 6175 unsigned CmpTypeID; 6176 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6177 return error("Invalid record"); 6178 6179 Value *Val = nullptr; 6180 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6181 CurBB)) 6182 return error("Invalid record"); 6183 6184 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6185 return error("Invalid record"); 6186 6187 const bool IsVol = Record[OpNum]; 6188 6189 const AtomicOrdering SuccessOrdering = 6190 getDecodedOrdering(Record[OpNum + 1]); 6191 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6192 return error("Invalid cmpxchg success ordering"); 6193 6194 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6195 6196 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6197 return Err; 6198 6199 const AtomicOrdering FailureOrdering = 6200 getDecodedOrdering(Record[OpNum + 3]); 6201 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6202 return error("Invalid cmpxchg failure ordering"); 6203 6204 const bool IsWeak = Record[OpNum + 4]; 6205 6206 MaybeAlign Alignment; 6207 6208 if (NumRecords == (OpNum + 6)) { 6209 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6210 return Err; 6211 } 6212 if (!Alignment) 6213 Alignment = 6214 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6215 6216 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6217 FailureOrdering, SSID); 6218 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6219 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6220 6221 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6222 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6223 6224 InstructionList.push_back(I); 6225 break; 6226 } 6227 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6228 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6229 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6230 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6231 const size_t NumRecords = Record.size(); 6232 unsigned OpNum = 0; 6233 6234 Value *Ptr = nullptr; 6235 unsigned PtrTypeID; 6236 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6237 return error("Invalid record"); 6238 6239 if (!isa<PointerType>(Ptr->getType())) 6240 return error("Invalid record"); 6241 6242 Value *Val = nullptr; 6243 unsigned ValTypeID = InvalidTypeID; 6244 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6245 ValTypeID = getContainedTypeID(PtrTypeID); 6246 if (popValue(Record, OpNum, NextValueNo, 6247 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6248 return error("Invalid record"); 6249 } else { 6250 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6251 return error("Invalid record"); 6252 } 6253 6254 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6255 return error("Invalid record"); 6256 6257 const AtomicRMWInst::BinOp Operation = 6258 getDecodedRMWOperation(Record[OpNum]); 6259 if (Operation < AtomicRMWInst::FIRST_BINOP || 6260 Operation > AtomicRMWInst::LAST_BINOP) 6261 return error("Invalid record"); 6262 6263 const bool IsVol = Record[OpNum + 1]; 6264 6265 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6266 if (Ordering == AtomicOrdering::NotAtomic || 6267 Ordering == AtomicOrdering::Unordered) 6268 return error("Invalid record"); 6269 6270 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6271 6272 MaybeAlign Alignment; 6273 6274 if (NumRecords == (OpNum + 5)) { 6275 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6276 return Err; 6277 } 6278 6279 if (!Alignment) 6280 Alignment = 6281 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6282 6283 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6284 ResTypeID = ValTypeID; 6285 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6286 6287 InstructionList.push_back(I); 6288 break; 6289 } 6290 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6291 if (2 != Record.size()) 6292 return error("Invalid record"); 6293 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6294 if (Ordering == AtomicOrdering::NotAtomic || 6295 Ordering == AtomicOrdering::Unordered || 6296 Ordering == AtomicOrdering::Monotonic) 6297 return error("Invalid record"); 6298 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6299 I = new FenceInst(Context, Ordering, SSID); 6300 InstructionList.push_back(I); 6301 break; 6302 } 6303 case bitc::FUNC_CODE_INST_CALL: { 6304 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6305 if (Record.size() < 3) 6306 return error("Invalid record"); 6307 6308 unsigned OpNum = 0; 6309 AttributeList PAL = getAttributes(Record[OpNum++]); 6310 unsigned CCInfo = Record[OpNum++]; 6311 6312 FastMathFlags FMF; 6313 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6314 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6315 if (!FMF.any()) 6316 return error("Fast math flags indicator set for call with no FMF"); 6317 } 6318 6319 unsigned FTyID = InvalidTypeID; 6320 FunctionType *FTy = nullptr; 6321 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6322 FTyID = Record[OpNum++]; 6323 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6324 if (!FTy) 6325 return error("Explicit call type is not a function type"); 6326 } 6327 6328 Value *Callee; 6329 unsigned CalleeTypeID; 6330 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6331 CurBB)) 6332 return error("Invalid record"); 6333 6334 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6335 if (!OpTy) 6336 return error("Callee is not a pointer type"); 6337 if (!FTy) { 6338 FTyID = getContainedTypeID(CalleeTypeID); 6339 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6340 if (!FTy) 6341 return error("Callee is not of pointer to function type"); 6342 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6343 return error("Explicit call type does not match pointee type of " 6344 "callee operand"); 6345 if (Record.size() < FTy->getNumParams() + OpNum) 6346 return error("Insufficient operands to call"); 6347 6348 SmallVector<Value*, 16> Args; 6349 SmallVector<unsigned, 16> ArgTyIDs; 6350 // Read the fixed params. 6351 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6352 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6353 if (FTy->getParamType(i)->isLabelTy()) 6354 Args.push_back(getBasicBlock(Record[OpNum])); 6355 else 6356 Args.push_back(getValue(Record, OpNum, NextValueNo, 6357 FTy->getParamType(i), ArgTyID, CurBB)); 6358 ArgTyIDs.push_back(ArgTyID); 6359 if (!Args.back()) 6360 return error("Invalid record"); 6361 } 6362 6363 // Read type/value pairs for varargs params. 6364 if (!FTy->isVarArg()) { 6365 if (OpNum != Record.size()) 6366 return error("Invalid record"); 6367 } else { 6368 while (OpNum != Record.size()) { 6369 Value *Op; 6370 unsigned OpTypeID; 6371 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6372 return error("Invalid record"); 6373 Args.push_back(Op); 6374 ArgTyIDs.push_back(OpTypeID); 6375 } 6376 } 6377 6378 // Upgrade the bundles if needed. 6379 if (!OperandBundles.empty()) 6380 UpgradeOperandBundles(OperandBundles); 6381 6382 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6383 ResTypeID = getContainedTypeID(FTyID); 6384 OperandBundles.clear(); 6385 InstructionList.push_back(I); 6386 cast<CallInst>(I)->setCallingConv( 6387 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6388 CallInst::TailCallKind TCK = CallInst::TCK_None; 6389 if (CCInfo & 1 << bitc::CALL_TAIL) 6390 TCK = CallInst::TCK_Tail; 6391 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6392 TCK = CallInst::TCK_MustTail; 6393 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6394 TCK = CallInst::TCK_NoTail; 6395 cast<CallInst>(I)->setTailCallKind(TCK); 6396 cast<CallInst>(I)->setAttributes(PAL); 6397 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6398 I->deleteValue(); 6399 return Err; 6400 } 6401 if (FMF.any()) { 6402 if (!isa<FPMathOperator>(I)) 6403 return error("Fast-math-flags specified for call without " 6404 "floating-point scalar or vector return type"); 6405 I->setFastMathFlags(FMF); 6406 } 6407 break; 6408 } 6409 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6410 if (Record.size() < 3) 6411 return error("Invalid record"); 6412 unsigned OpTyID = Record[0]; 6413 Type *OpTy = getTypeByID(OpTyID); 6414 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6415 ResTypeID = Record[2]; 6416 Type *ResTy = getTypeByID(ResTypeID); 6417 if (!OpTy || !Op || !ResTy) 6418 return error("Invalid record"); 6419 I = new VAArgInst(Op, ResTy); 6420 InstructionList.push_back(I); 6421 break; 6422 } 6423 6424 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6425 // A call or an invoke can be optionally prefixed with some variable 6426 // number of operand bundle blocks. These blocks are read into 6427 // OperandBundles and consumed at the next call or invoke instruction. 6428 6429 if (Record.empty() || Record[0] >= BundleTags.size()) 6430 return error("Invalid record"); 6431 6432 std::vector<Value *> Inputs; 6433 6434 unsigned OpNum = 1; 6435 while (OpNum != Record.size()) { 6436 Value *Op; 6437 unsigned OpTypeID; 6438 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6439 return error("Invalid record"); 6440 Inputs.push_back(Op); 6441 } 6442 6443 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6444 continue; 6445 } 6446 6447 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6448 unsigned OpNum = 0; 6449 Value *Op = nullptr; 6450 unsigned OpTypeID; 6451 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6452 return error("Invalid record"); 6453 if (OpNum != Record.size()) 6454 return error("Invalid record"); 6455 6456 I = new FreezeInst(Op); 6457 ResTypeID = OpTypeID; 6458 InstructionList.push_back(I); 6459 break; 6460 } 6461 } 6462 6463 // Add instruction to end of current BB. If there is no current BB, reject 6464 // this file. 6465 if (!CurBB) { 6466 I->deleteValue(); 6467 return error("Invalid instruction with no BB"); 6468 } 6469 if (!OperandBundles.empty()) { 6470 I->deleteValue(); 6471 return error("Operand bundles found with no consumer"); 6472 } 6473 I->insertInto(CurBB, CurBB->end()); 6474 6475 // If this was a terminator instruction, move to the next block. 6476 if (I->isTerminator()) { 6477 ++CurBBNo; 6478 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6479 } 6480 6481 // Non-void values get registered in the value table for future use. 6482 if (!I->getType()->isVoidTy()) { 6483 assert(I->getType() == getTypeByID(ResTypeID) && 6484 "Incorrect result type ID"); 6485 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6486 return Err; 6487 } 6488 } 6489 6490 OutOfRecordLoop: 6491 6492 if (!OperandBundles.empty()) 6493 return error("Operand bundles found with no consumer"); 6494 6495 // Check the function list for unresolved values. 6496 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6497 if (!A->getParent()) { 6498 // We found at least one unresolved value. Nuke them all to avoid leaks. 6499 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6500 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6501 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6502 delete A; 6503 } 6504 } 6505 return error("Never resolved value found in function"); 6506 } 6507 } 6508 6509 // Unexpected unresolved metadata about to be dropped. 6510 if (MDLoader->hasFwdRefs()) 6511 return error("Invalid function metadata: outgoing forward refs"); 6512 6513 if (PhiConstExprBB) 6514 PhiConstExprBB->eraseFromParent(); 6515 6516 for (const auto &Pair : ConstExprEdgeBBs) { 6517 BasicBlock *From = Pair.first.first; 6518 BasicBlock *To = Pair.first.second; 6519 BasicBlock *EdgeBB = Pair.second; 6520 BranchInst::Create(To, EdgeBB); 6521 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6522 To->replacePhiUsesWith(From, EdgeBB); 6523 EdgeBB->moveBefore(To); 6524 } 6525 6526 // Trim the value list down to the size it was before we parsed this function. 6527 ValueList.shrinkTo(ModuleValueListSize); 6528 MDLoader->shrinkTo(ModuleMDLoaderSize); 6529 std::vector<BasicBlock*>().swap(FunctionBBs); 6530 return Error::success(); 6531 } 6532 6533 /// Find the function body in the bitcode stream 6534 Error BitcodeReader::findFunctionInStream( 6535 Function *F, 6536 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6537 while (DeferredFunctionInfoIterator->second == 0) { 6538 // This is the fallback handling for the old format bitcode that 6539 // didn't contain the function index in the VST, or when we have 6540 // an anonymous function which would not have a VST entry. 6541 // Assert that we have one of those two cases. 6542 assert(VSTOffset == 0 || !F->hasName()); 6543 // Parse the next body in the stream and set its position in the 6544 // DeferredFunctionInfo map. 6545 if (Error Err = rememberAndSkipFunctionBodies()) 6546 return Err; 6547 } 6548 return Error::success(); 6549 } 6550 6551 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6552 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6553 return SyncScope::ID(Val); 6554 if (Val >= SSIDs.size()) 6555 return SyncScope::System; // Map unknown synchronization scopes to system. 6556 return SSIDs[Val]; 6557 } 6558 6559 //===----------------------------------------------------------------------===// 6560 // GVMaterializer implementation 6561 //===----------------------------------------------------------------------===// 6562 6563 Error BitcodeReader::materialize(GlobalValue *GV) { 6564 Function *F = dyn_cast<Function>(GV); 6565 // If it's not a function or is already material, ignore the request. 6566 if (!F || !F->isMaterializable()) 6567 return Error::success(); 6568 6569 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6570 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6571 // If its position is recorded as 0, its body is somewhere in the stream 6572 // but we haven't seen it yet. 6573 if (DFII->second == 0) 6574 if (Error Err = findFunctionInStream(F, DFII)) 6575 return Err; 6576 6577 // Materialize metadata before parsing any function bodies. 6578 if (Error Err = materializeMetadata()) 6579 return Err; 6580 6581 // Move the bit stream to the saved position of the deferred function body. 6582 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6583 return JumpFailed; 6584 if (Error Err = parseFunctionBody(F)) 6585 return Err; 6586 F->setIsMaterializable(false); 6587 6588 if (StripDebugInfo) 6589 stripDebugInfo(*F); 6590 6591 // Upgrade any old intrinsic calls in the function. 6592 for (auto &I : UpgradedIntrinsics) { 6593 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6594 if (CallInst *CI = dyn_cast<CallInst>(U)) 6595 UpgradeIntrinsicCall(CI, I.second); 6596 } 6597 6598 // Finish fn->subprogram upgrade for materialized functions. 6599 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6600 F->setSubprogram(SP); 6601 6602 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6603 if (!MDLoader->isStrippingTBAA()) { 6604 for (auto &I : instructions(F)) { 6605 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6606 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6607 continue; 6608 MDLoader->setStripTBAA(true); 6609 stripTBAA(F->getParent()); 6610 } 6611 } 6612 6613 for (auto &I : instructions(F)) { 6614 // "Upgrade" older incorrect branch weights by dropping them. 6615 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6616 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6617 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6618 StringRef ProfName = MDS->getString(); 6619 // Check consistency of !prof branch_weights metadata. 6620 if (!ProfName.equals("branch_weights")) 6621 continue; 6622 unsigned ExpectedNumOperands = 0; 6623 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6624 ExpectedNumOperands = BI->getNumSuccessors(); 6625 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6626 ExpectedNumOperands = SI->getNumSuccessors(); 6627 else if (isa<CallInst>(&I)) 6628 ExpectedNumOperands = 1; 6629 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6630 ExpectedNumOperands = IBI->getNumDestinations(); 6631 else if (isa<SelectInst>(&I)) 6632 ExpectedNumOperands = 2; 6633 else 6634 continue; // ignore and continue. 6635 6636 // If branch weight doesn't match, just strip branch weight. 6637 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6638 I.setMetadata(LLVMContext::MD_prof, nullptr); 6639 } 6640 } 6641 6642 // Remove incompatible attributes on function calls. 6643 if (auto *CI = dyn_cast<CallBase>(&I)) { 6644 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6645 CI->getFunctionType()->getReturnType())); 6646 6647 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6648 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6649 CI->getArgOperand(ArgNo)->getType())); 6650 } 6651 } 6652 6653 // Look for functions that rely on old function attribute behavior. 6654 UpgradeFunctionAttributes(*F); 6655 6656 // Bring in any functions that this function forward-referenced via 6657 // blockaddresses. 6658 return materializeForwardReferencedFunctions(); 6659 } 6660 6661 Error BitcodeReader::materializeModule() { 6662 if (Error Err = materializeMetadata()) 6663 return Err; 6664 6665 // Promise to materialize all forward references. 6666 WillMaterializeAllForwardRefs = true; 6667 6668 // Iterate over the module, deserializing any functions that are still on 6669 // disk. 6670 for (Function &F : *TheModule) { 6671 if (Error Err = materialize(&F)) 6672 return Err; 6673 } 6674 // At this point, if there are any function bodies, parse the rest of 6675 // the bits in the module past the last function block we have recorded 6676 // through either lazy scanning or the VST. 6677 if (LastFunctionBlockBit || NextUnreadBit) 6678 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6679 ? LastFunctionBlockBit 6680 : NextUnreadBit)) 6681 return Err; 6682 6683 // Check that all block address forward references got resolved (as we 6684 // promised above). 6685 if (!BasicBlockFwdRefs.empty()) 6686 return error("Never resolved function from blockaddress"); 6687 6688 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6689 // delete the old functions to clean up. We can't do this unless the entire 6690 // module is materialized because there could always be another function body 6691 // with calls to the old function. 6692 for (auto &I : UpgradedIntrinsics) { 6693 for (auto *U : I.first->users()) { 6694 if (CallInst *CI = dyn_cast<CallInst>(U)) 6695 UpgradeIntrinsicCall(CI, I.second); 6696 } 6697 if (!I.first->use_empty()) 6698 I.first->replaceAllUsesWith(I.second); 6699 I.first->eraseFromParent(); 6700 } 6701 UpgradedIntrinsics.clear(); 6702 6703 UpgradeDebugInfo(*TheModule); 6704 6705 UpgradeModuleFlags(*TheModule); 6706 6707 UpgradeARCRuntime(*TheModule); 6708 6709 return Error::success(); 6710 } 6711 6712 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6713 return IdentifiedStructTypes; 6714 } 6715 6716 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6717 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6718 StringRef ModulePath, unsigned ModuleId, 6719 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6720 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6721 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6722 6723 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6724 TheIndex.addModule(ModulePath, ModuleId); 6725 } 6726 6727 ModuleSummaryIndex::ModuleInfo * 6728 ModuleSummaryIndexBitcodeReader::getThisModule() { 6729 return TheIndex.getModule(ModulePath); 6730 } 6731 6732 template <bool AllowNullValueInfo> 6733 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6734 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6735 auto VGI = ValueIdToValueInfoMap[ValueId]; 6736 // We can have a null value info for memprof callsite info records in 6737 // distributed ThinLTO index files when the callee function summary is not 6738 // included in the index. The bitcode writer records 0 in that case, 6739 // and the caller of this helper will set AllowNullValueInfo to true. 6740 assert(AllowNullValueInfo || std::get<0>(VGI)); 6741 return VGI; 6742 } 6743 6744 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6745 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6746 StringRef SourceFileName) { 6747 std::string GlobalId = 6748 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6749 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6750 auto OriginalNameID = ValueGUID; 6751 if (GlobalValue::isLocalLinkage(Linkage)) 6752 OriginalNameID = GlobalValue::getGUID(ValueName); 6753 if (PrintSummaryGUIDs) 6754 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6755 << ValueName << "\n"; 6756 6757 // UseStrtab is false for legacy summary formats and value names are 6758 // created on stack. In that case we save the name in a string saver in 6759 // the index so that the value name can be recorded. 6760 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6761 TheIndex.getOrInsertValueInfo( 6762 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6763 OriginalNameID, ValueGUID); 6764 } 6765 6766 // Specialized value symbol table parser used when reading module index 6767 // blocks where we don't actually create global values. The parsed information 6768 // is saved in the bitcode reader for use when later parsing summaries. 6769 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6770 uint64_t Offset, 6771 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6772 // With a strtab the VST is not required to parse the summary. 6773 if (UseStrtab) 6774 return Error::success(); 6775 6776 assert(Offset > 0 && "Expected non-zero VST offset"); 6777 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6778 if (!MaybeCurrentBit) 6779 return MaybeCurrentBit.takeError(); 6780 uint64_t CurrentBit = MaybeCurrentBit.get(); 6781 6782 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6783 return Err; 6784 6785 SmallVector<uint64_t, 64> Record; 6786 6787 // Read all the records for this value table. 6788 SmallString<128> ValueName; 6789 6790 while (true) { 6791 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6792 if (!MaybeEntry) 6793 return MaybeEntry.takeError(); 6794 BitstreamEntry Entry = MaybeEntry.get(); 6795 6796 switch (Entry.Kind) { 6797 case BitstreamEntry::SubBlock: // Handled for us already. 6798 case BitstreamEntry::Error: 6799 return error("Malformed block"); 6800 case BitstreamEntry::EndBlock: 6801 // Done parsing VST, jump back to wherever we came from. 6802 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6803 return JumpFailed; 6804 return Error::success(); 6805 case BitstreamEntry::Record: 6806 // The interesting case. 6807 break; 6808 } 6809 6810 // Read a record. 6811 Record.clear(); 6812 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6813 if (!MaybeRecord) 6814 return MaybeRecord.takeError(); 6815 switch (MaybeRecord.get()) { 6816 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6817 break; 6818 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6819 if (convertToString(Record, 1, ValueName)) 6820 return error("Invalid record"); 6821 unsigned ValueID = Record[0]; 6822 assert(!SourceFileName.empty()); 6823 auto VLI = ValueIdToLinkageMap.find(ValueID); 6824 assert(VLI != ValueIdToLinkageMap.end() && 6825 "No linkage found for VST entry?"); 6826 auto Linkage = VLI->second; 6827 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6828 ValueName.clear(); 6829 break; 6830 } 6831 case bitc::VST_CODE_FNENTRY: { 6832 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6833 if (convertToString(Record, 2, ValueName)) 6834 return error("Invalid record"); 6835 unsigned ValueID = Record[0]; 6836 assert(!SourceFileName.empty()); 6837 auto VLI = ValueIdToLinkageMap.find(ValueID); 6838 assert(VLI != ValueIdToLinkageMap.end() && 6839 "No linkage found for VST entry?"); 6840 auto Linkage = VLI->second; 6841 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6842 ValueName.clear(); 6843 break; 6844 } 6845 case bitc::VST_CODE_COMBINED_ENTRY: { 6846 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6847 unsigned ValueID = Record[0]; 6848 GlobalValue::GUID RefGUID = Record[1]; 6849 // The "original name", which is the second value of the pair will be 6850 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6851 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6852 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6853 break; 6854 } 6855 } 6856 } 6857 } 6858 6859 // Parse just the blocks needed for building the index out of the module. 6860 // At the end of this routine the module Index is populated with a map 6861 // from global value id to GlobalValueSummary objects. 6862 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6863 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6864 return Err; 6865 6866 SmallVector<uint64_t, 64> Record; 6867 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6868 unsigned ValueId = 0; 6869 6870 // Read the index for this module. 6871 while (true) { 6872 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6873 if (!MaybeEntry) 6874 return MaybeEntry.takeError(); 6875 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6876 6877 switch (Entry.Kind) { 6878 case BitstreamEntry::Error: 6879 return error("Malformed block"); 6880 case BitstreamEntry::EndBlock: 6881 return Error::success(); 6882 6883 case BitstreamEntry::SubBlock: 6884 switch (Entry.ID) { 6885 default: // Skip unknown content. 6886 if (Error Err = Stream.SkipBlock()) 6887 return Err; 6888 break; 6889 case bitc::BLOCKINFO_BLOCK_ID: 6890 // Need to parse these to get abbrev ids (e.g. for VST) 6891 if (Error Err = readBlockInfo()) 6892 return Err; 6893 break; 6894 case bitc::VALUE_SYMTAB_BLOCK_ID: 6895 // Should have been parsed earlier via VSTOffset, unless there 6896 // is no summary section. 6897 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6898 !SeenGlobalValSummary) && 6899 "Expected early VST parse via VSTOffset record"); 6900 if (Error Err = Stream.SkipBlock()) 6901 return Err; 6902 break; 6903 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6904 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6905 // Add the module if it is a per-module index (has a source file name). 6906 if (!SourceFileName.empty()) 6907 addThisModule(); 6908 assert(!SeenValueSymbolTable && 6909 "Already read VST when parsing summary block?"); 6910 // We might not have a VST if there were no values in the 6911 // summary. An empty summary block generated when we are 6912 // performing ThinLTO compiles so we don't later invoke 6913 // the regular LTO process on them. 6914 if (VSTOffset > 0) { 6915 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6916 return Err; 6917 SeenValueSymbolTable = true; 6918 } 6919 SeenGlobalValSummary = true; 6920 if (Error Err = parseEntireSummary(Entry.ID)) 6921 return Err; 6922 break; 6923 case bitc::MODULE_STRTAB_BLOCK_ID: 6924 if (Error Err = parseModuleStringTable()) 6925 return Err; 6926 break; 6927 } 6928 continue; 6929 6930 case BitstreamEntry::Record: { 6931 Record.clear(); 6932 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6933 if (!MaybeBitCode) 6934 return MaybeBitCode.takeError(); 6935 switch (MaybeBitCode.get()) { 6936 default: 6937 break; // Default behavior, ignore unknown content. 6938 case bitc::MODULE_CODE_VERSION: { 6939 if (Error Err = parseVersionRecord(Record).takeError()) 6940 return Err; 6941 break; 6942 } 6943 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6944 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6945 SmallString<128> ValueName; 6946 if (convertToString(Record, 0, ValueName)) 6947 return error("Invalid record"); 6948 SourceFileName = ValueName.c_str(); 6949 break; 6950 } 6951 /// MODULE_CODE_HASH: [5*i32] 6952 case bitc::MODULE_CODE_HASH: { 6953 if (Record.size() != 5) 6954 return error("Invalid hash length " + Twine(Record.size()).str()); 6955 auto &Hash = getThisModule()->second.second; 6956 int Pos = 0; 6957 for (auto &Val : Record) { 6958 assert(!(Val >> 32) && "Unexpected high bits set"); 6959 Hash[Pos++] = Val; 6960 } 6961 break; 6962 } 6963 /// MODULE_CODE_VSTOFFSET: [offset] 6964 case bitc::MODULE_CODE_VSTOFFSET: 6965 if (Record.empty()) 6966 return error("Invalid record"); 6967 // Note that we subtract 1 here because the offset is relative to one 6968 // word before the start of the identification or module block, which 6969 // was historically always the start of the regular bitcode header. 6970 VSTOffset = Record[0] - 1; 6971 break; 6972 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6973 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6974 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6975 // v2: [strtab offset, strtab size, v1] 6976 case bitc::MODULE_CODE_GLOBALVAR: 6977 case bitc::MODULE_CODE_FUNCTION: 6978 case bitc::MODULE_CODE_ALIAS: { 6979 StringRef Name; 6980 ArrayRef<uint64_t> GVRecord; 6981 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6982 if (GVRecord.size() <= 3) 6983 return error("Invalid record"); 6984 uint64_t RawLinkage = GVRecord[3]; 6985 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6986 if (!UseStrtab) { 6987 ValueIdToLinkageMap[ValueId++] = Linkage; 6988 break; 6989 } 6990 6991 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6992 break; 6993 } 6994 } 6995 } 6996 continue; 6997 } 6998 } 6999 } 7000 7001 std::vector<ValueInfo> 7002 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7003 std::vector<ValueInfo> Ret; 7004 Ret.reserve(Record.size()); 7005 for (uint64_t RefValueId : Record) 7006 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7007 return Ret; 7008 } 7009 7010 std::vector<FunctionSummary::EdgeTy> 7011 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7012 bool IsOldProfileFormat, 7013 bool HasProfile, bool HasRelBF) { 7014 std::vector<FunctionSummary::EdgeTy> Ret; 7015 Ret.reserve(Record.size()); 7016 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7017 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7018 uint64_t RelBF = 0; 7019 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7020 if (IsOldProfileFormat) { 7021 I += 1; // Skip old callsitecount field 7022 if (HasProfile) 7023 I += 1; // Skip old profilecount field 7024 } else if (HasProfile) 7025 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7026 else if (HasRelBF) 7027 RelBF = Record[++I]; 7028 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7029 } 7030 return Ret; 7031 } 7032 7033 static void 7034 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7035 WholeProgramDevirtResolution &Wpd) { 7036 uint64_t ArgNum = Record[Slot++]; 7037 WholeProgramDevirtResolution::ByArg &B = 7038 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7039 Slot += ArgNum; 7040 7041 B.TheKind = 7042 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7043 B.Info = Record[Slot++]; 7044 B.Byte = Record[Slot++]; 7045 B.Bit = Record[Slot++]; 7046 } 7047 7048 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7049 StringRef Strtab, size_t &Slot, 7050 TypeIdSummary &TypeId) { 7051 uint64_t Id = Record[Slot++]; 7052 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7053 7054 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7055 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7056 static_cast<size_t>(Record[Slot + 1])}; 7057 Slot += 2; 7058 7059 uint64_t ResByArgNum = Record[Slot++]; 7060 for (uint64_t I = 0; I != ResByArgNum; ++I) 7061 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7062 } 7063 7064 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7065 StringRef Strtab, 7066 ModuleSummaryIndex &TheIndex) { 7067 size_t Slot = 0; 7068 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7069 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7070 Slot += 2; 7071 7072 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7073 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7074 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7075 TypeId.TTRes.SizeM1 = Record[Slot++]; 7076 TypeId.TTRes.BitMask = Record[Slot++]; 7077 TypeId.TTRes.InlineBits = Record[Slot++]; 7078 7079 while (Slot < Record.size()) 7080 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7081 } 7082 7083 std::vector<FunctionSummary::ParamAccess> 7084 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7085 auto ReadRange = [&]() { 7086 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7087 BitcodeReader::decodeSignRotatedValue(Record.front())); 7088 Record = Record.drop_front(); 7089 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7090 BitcodeReader::decodeSignRotatedValue(Record.front())); 7091 Record = Record.drop_front(); 7092 ConstantRange Range{Lower, Upper}; 7093 assert(!Range.isFullSet()); 7094 assert(!Range.isUpperSignWrapped()); 7095 return Range; 7096 }; 7097 7098 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7099 while (!Record.empty()) { 7100 PendingParamAccesses.emplace_back(); 7101 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7102 ParamAccess.ParamNo = Record.front(); 7103 Record = Record.drop_front(); 7104 ParamAccess.Use = ReadRange(); 7105 ParamAccess.Calls.resize(Record.front()); 7106 Record = Record.drop_front(); 7107 for (auto &Call : ParamAccess.Calls) { 7108 Call.ParamNo = Record.front(); 7109 Record = Record.drop_front(); 7110 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7111 Record = Record.drop_front(); 7112 Call.Offsets = ReadRange(); 7113 } 7114 } 7115 return PendingParamAccesses; 7116 } 7117 7118 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7119 ArrayRef<uint64_t> Record, size_t &Slot, 7120 TypeIdCompatibleVtableInfo &TypeId) { 7121 uint64_t Offset = Record[Slot++]; 7122 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7123 TypeId.push_back({Offset, Callee}); 7124 } 7125 7126 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7127 ArrayRef<uint64_t> Record) { 7128 size_t Slot = 0; 7129 TypeIdCompatibleVtableInfo &TypeId = 7130 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7131 {Strtab.data() + Record[Slot], 7132 static_cast<size_t>(Record[Slot + 1])}); 7133 Slot += 2; 7134 7135 while (Slot < Record.size()) 7136 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7137 } 7138 7139 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7140 unsigned WOCnt) { 7141 // Readonly and writeonly refs are in the end of the refs list. 7142 assert(ROCnt + WOCnt <= Refs.size()); 7143 unsigned FirstWORef = Refs.size() - WOCnt; 7144 unsigned RefNo = FirstWORef - ROCnt; 7145 for (; RefNo < FirstWORef; ++RefNo) 7146 Refs[RefNo].setReadOnly(); 7147 for (; RefNo < Refs.size(); ++RefNo) 7148 Refs[RefNo].setWriteOnly(); 7149 } 7150 7151 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7152 // objects in the index. 7153 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7154 if (Error Err = Stream.EnterSubBlock(ID)) 7155 return Err; 7156 SmallVector<uint64_t, 64> Record; 7157 7158 // Parse version 7159 { 7160 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7161 if (!MaybeEntry) 7162 return MaybeEntry.takeError(); 7163 BitstreamEntry Entry = MaybeEntry.get(); 7164 7165 if (Entry.Kind != BitstreamEntry::Record) 7166 return error("Invalid Summary Block: record for version expected"); 7167 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7168 if (!MaybeRecord) 7169 return MaybeRecord.takeError(); 7170 if (MaybeRecord.get() != bitc::FS_VERSION) 7171 return error("Invalid Summary Block: version expected"); 7172 } 7173 const uint64_t Version = Record[0]; 7174 const bool IsOldProfileFormat = Version == 1; 7175 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7176 return error("Invalid summary version " + Twine(Version) + 7177 ". Version should be in the range [1-" + 7178 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7179 "]."); 7180 Record.clear(); 7181 7182 // Keep around the last seen summary to be used when we see an optional 7183 // "OriginalName" attachement. 7184 GlobalValueSummary *LastSeenSummary = nullptr; 7185 GlobalValue::GUID LastSeenGUID = 0; 7186 7187 // We can expect to see any number of type ID information records before 7188 // each function summary records; these variables store the information 7189 // collected so far so that it can be used to create the summary object. 7190 std::vector<GlobalValue::GUID> PendingTypeTests; 7191 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7192 PendingTypeCheckedLoadVCalls; 7193 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7194 PendingTypeCheckedLoadConstVCalls; 7195 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7196 7197 std::vector<CallsiteInfo> PendingCallsites; 7198 std::vector<AllocInfo> PendingAllocs; 7199 7200 while (true) { 7201 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7202 if (!MaybeEntry) 7203 return MaybeEntry.takeError(); 7204 BitstreamEntry Entry = MaybeEntry.get(); 7205 7206 switch (Entry.Kind) { 7207 case BitstreamEntry::SubBlock: // Handled for us already. 7208 case BitstreamEntry::Error: 7209 return error("Malformed block"); 7210 case BitstreamEntry::EndBlock: 7211 return Error::success(); 7212 case BitstreamEntry::Record: 7213 // The interesting case. 7214 break; 7215 } 7216 7217 // Read a record. The record format depends on whether this 7218 // is a per-module index or a combined index file. In the per-module 7219 // case the records contain the associated value's ID for correlation 7220 // with VST entries. In the combined index the correlation is done 7221 // via the bitcode offset of the summary records (which were saved 7222 // in the combined index VST entries). The records also contain 7223 // information used for ThinLTO renaming and importing. 7224 Record.clear(); 7225 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7226 if (!MaybeBitCode) 7227 return MaybeBitCode.takeError(); 7228 switch (unsigned BitCode = MaybeBitCode.get()) { 7229 default: // Default behavior: ignore. 7230 break; 7231 case bitc::FS_FLAGS: { // [flags] 7232 TheIndex.setFlags(Record[0]); 7233 break; 7234 } 7235 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7236 uint64_t ValueID = Record[0]; 7237 GlobalValue::GUID RefGUID = Record[1]; 7238 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7239 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7240 break; 7241 } 7242 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7243 // numrefs x valueid, n x (valueid)] 7244 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7245 // numrefs x valueid, 7246 // n x (valueid, hotness)] 7247 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7248 // numrefs x valueid, 7249 // n x (valueid, relblockfreq)] 7250 case bitc::FS_PERMODULE: 7251 case bitc::FS_PERMODULE_RELBF: 7252 case bitc::FS_PERMODULE_PROFILE: { 7253 unsigned ValueID = Record[0]; 7254 uint64_t RawFlags = Record[1]; 7255 unsigned InstCount = Record[2]; 7256 uint64_t RawFunFlags = 0; 7257 unsigned NumRefs = Record[3]; 7258 unsigned NumRORefs = 0, NumWORefs = 0; 7259 int RefListStartIndex = 4; 7260 if (Version >= 4) { 7261 RawFunFlags = Record[3]; 7262 NumRefs = Record[4]; 7263 RefListStartIndex = 5; 7264 if (Version >= 5) { 7265 NumRORefs = Record[5]; 7266 RefListStartIndex = 6; 7267 if (Version >= 7) { 7268 NumWORefs = Record[6]; 7269 RefListStartIndex = 7; 7270 } 7271 } 7272 } 7273 7274 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7275 // The module path string ref set in the summary must be owned by the 7276 // index's module string table. Since we don't have a module path 7277 // string table section in the per-module index, we create a single 7278 // module path string table entry with an empty (0) ID to take 7279 // ownership. 7280 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7281 assert(Record.size() >= RefListStartIndex + NumRefs && 7282 "Record size inconsistent with number of references"); 7283 std::vector<ValueInfo> Refs = makeRefList( 7284 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7285 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7286 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7287 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7288 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7289 IsOldProfileFormat, HasProfile, HasRelBF); 7290 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7291 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7292 // In order to save memory, only record the memprof summaries if this is 7293 // the prevailing copy of a symbol. The linker doesn't resolve local 7294 // linkage values so don't check whether those are prevailing. 7295 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7296 if (IsPrevailing && 7297 !GlobalValue::isLocalLinkage(LT) && 7298 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7299 PendingCallsites.clear(); 7300 PendingAllocs.clear(); 7301 } 7302 auto FS = std::make_unique<FunctionSummary>( 7303 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7304 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7305 std::move(PendingTypeTestAssumeVCalls), 7306 std::move(PendingTypeCheckedLoadVCalls), 7307 std::move(PendingTypeTestAssumeConstVCalls), 7308 std::move(PendingTypeCheckedLoadConstVCalls), 7309 std::move(PendingParamAccesses), std::move(PendingCallsites), 7310 std::move(PendingAllocs)); 7311 FS->setModulePath(getThisModule()->first()); 7312 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7313 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7314 std::move(FS)); 7315 break; 7316 } 7317 // FS_ALIAS: [valueid, flags, valueid] 7318 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7319 // they expect all aliasee summaries to be available. 7320 case bitc::FS_ALIAS: { 7321 unsigned ValueID = Record[0]; 7322 uint64_t RawFlags = Record[1]; 7323 unsigned AliaseeID = Record[2]; 7324 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7325 auto AS = std::make_unique<AliasSummary>(Flags); 7326 // The module path string ref set in the summary must be owned by the 7327 // index's module string table. Since we don't have a module path 7328 // string table section in the per-module index, we create a single 7329 // module path string table entry with an empty (0) ID to take 7330 // ownership. 7331 AS->setModulePath(getThisModule()->first()); 7332 7333 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7334 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7335 if (!AliaseeInModule) 7336 return error("Alias expects aliasee summary to be parsed"); 7337 AS->setAliasee(AliaseeVI, AliaseeInModule); 7338 7339 auto GUID = getValueInfoFromValueId(ValueID); 7340 AS->setOriginalName(std::get<1>(GUID)); 7341 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7342 break; 7343 } 7344 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7345 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7346 unsigned ValueID = Record[0]; 7347 uint64_t RawFlags = Record[1]; 7348 unsigned RefArrayStart = 2; 7349 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7350 /* WriteOnly */ false, 7351 /* Constant */ false, 7352 GlobalObject::VCallVisibilityPublic); 7353 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7354 if (Version >= 5) { 7355 GVF = getDecodedGVarFlags(Record[2]); 7356 RefArrayStart = 3; 7357 } 7358 std::vector<ValueInfo> Refs = 7359 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7360 auto FS = 7361 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7362 FS->setModulePath(getThisModule()->first()); 7363 auto GUID = getValueInfoFromValueId(ValueID); 7364 FS->setOriginalName(std::get<1>(GUID)); 7365 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7366 break; 7367 } 7368 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7369 // numrefs, numrefs x valueid, 7370 // n x (valueid, offset)] 7371 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7372 unsigned ValueID = Record[0]; 7373 uint64_t RawFlags = Record[1]; 7374 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7375 unsigned NumRefs = Record[3]; 7376 unsigned RefListStartIndex = 4; 7377 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7378 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7379 std::vector<ValueInfo> Refs = makeRefList( 7380 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7381 VTableFuncList VTableFuncs; 7382 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7383 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7384 uint64_t Offset = Record[++I]; 7385 VTableFuncs.push_back({Callee, Offset}); 7386 } 7387 auto VS = 7388 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7389 VS->setModulePath(getThisModule()->first()); 7390 VS->setVTableFuncs(VTableFuncs); 7391 auto GUID = getValueInfoFromValueId(ValueID); 7392 VS->setOriginalName(std::get<1>(GUID)); 7393 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7394 break; 7395 } 7396 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7397 // numrefs x valueid, n x (valueid)] 7398 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7399 // numrefs x valueid, n x (valueid, hotness)] 7400 case bitc::FS_COMBINED: 7401 case bitc::FS_COMBINED_PROFILE: { 7402 unsigned ValueID = Record[0]; 7403 uint64_t ModuleId = Record[1]; 7404 uint64_t RawFlags = Record[2]; 7405 unsigned InstCount = Record[3]; 7406 uint64_t RawFunFlags = 0; 7407 uint64_t EntryCount = 0; 7408 unsigned NumRefs = Record[4]; 7409 unsigned NumRORefs = 0, NumWORefs = 0; 7410 int RefListStartIndex = 5; 7411 7412 if (Version >= 4) { 7413 RawFunFlags = Record[4]; 7414 RefListStartIndex = 6; 7415 size_t NumRefsIndex = 5; 7416 if (Version >= 5) { 7417 unsigned NumRORefsOffset = 1; 7418 RefListStartIndex = 7; 7419 if (Version >= 6) { 7420 NumRefsIndex = 6; 7421 EntryCount = Record[5]; 7422 RefListStartIndex = 8; 7423 if (Version >= 7) { 7424 RefListStartIndex = 9; 7425 NumWORefs = Record[8]; 7426 NumRORefsOffset = 2; 7427 } 7428 } 7429 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7430 } 7431 NumRefs = Record[NumRefsIndex]; 7432 } 7433 7434 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7435 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7436 assert(Record.size() >= RefListStartIndex + NumRefs && 7437 "Record size inconsistent with number of references"); 7438 std::vector<ValueInfo> Refs = makeRefList( 7439 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7440 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7441 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7442 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7443 IsOldProfileFormat, HasProfile, false); 7444 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7445 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7446 auto FS = std::make_unique<FunctionSummary>( 7447 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7448 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7449 std::move(PendingTypeTestAssumeVCalls), 7450 std::move(PendingTypeCheckedLoadVCalls), 7451 std::move(PendingTypeTestAssumeConstVCalls), 7452 std::move(PendingTypeCheckedLoadConstVCalls), 7453 std::move(PendingParamAccesses), std::move(PendingCallsites), 7454 std::move(PendingAllocs)); 7455 LastSeenSummary = FS.get(); 7456 LastSeenGUID = VI.getGUID(); 7457 FS->setModulePath(ModuleIdMap[ModuleId]); 7458 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7459 break; 7460 } 7461 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7462 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7463 // they expect all aliasee summaries to be available. 7464 case bitc::FS_COMBINED_ALIAS: { 7465 unsigned ValueID = Record[0]; 7466 uint64_t ModuleId = Record[1]; 7467 uint64_t RawFlags = Record[2]; 7468 unsigned AliaseeValueId = Record[3]; 7469 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7470 auto AS = std::make_unique<AliasSummary>(Flags); 7471 LastSeenSummary = AS.get(); 7472 AS->setModulePath(ModuleIdMap[ModuleId]); 7473 7474 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7475 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7476 AS->setAliasee(AliaseeVI, AliaseeInModule); 7477 7478 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7479 LastSeenGUID = VI.getGUID(); 7480 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7481 break; 7482 } 7483 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7484 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7485 unsigned ValueID = Record[0]; 7486 uint64_t ModuleId = Record[1]; 7487 uint64_t RawFlags = Record[2]; 7488 unsigned RefArrayStart = 3; 7489 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7490 /* WriteOnly */ false, 7491 /* Constant */ false, 7492 GlobalObject::VCallVisibilityPublic); 7493 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7494 if (Version >= 5) { 7495 GVF = getDecodedGVarFlags(Record[3]); 7496 RefArrayStart = 4; 7497 } 7498 std::vector<ValueInfo> Refs = 7499 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7500 auto FS = 7501 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7502 LastSeenSummary = FS.get(); 7503 FS->setModulePath(ModuleIdMap[ModuleId]); 7504 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7505 LastSeenGUID = VI.getGUID(); 7506 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7507 break; 7508 } 7509 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7510 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7511 uint64_t OriginalName = Record[0]; 7512 if (!LastSeenSummary) 7513 return error("Name attachment that does not follow a combined record"); 7514 LastSeenSummary->setOriginalName(OriginalName); 7515 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7516 // Reset the LastSeenSummary 7517 LastSeenSummary = nullptr; 7518 LastSeenGUID = 0; 7519 break; 7520 } 7521 case bitc::FS_TYPE_TESTS: 7522 assert(PendingTypeTests.empty()); 7523 llvm::append_range(PendingTypeTests, Record); 7524 break; 7525 7526 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7527 assert(PendingTypeTestAssumeVCalls.empty()); 7528 for (unsigned I = 0; I != Record.size(); I += 2) 7529 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7530 break; 7531 7532 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7533 assert(PendingTypeCheckedLoadVCalls.empty()); 7534 for (unsigned I = 0; I != Record.size(); I += 2) 7535 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7536 break; 7537 7538 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7539 PendingTypeTestAssumeConstVCalls.push_back( 7540 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7541 break; 7542 7543 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7544 PendingTypeCheckedLoadConstVCalls.push_back( 7545 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7546 break; 7547 7548 case bitc::FS_CFI_FUNCTION_DEFS: { 7549 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7550 for (unsigned I = 0; I != Record.size(); I += 2) 7551 CfiFunctionDefs.insert( 7552 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7553 break; 7554 } 7555 7556 case bitc::FS_CFI_FUNCTION_DECLS: { 7557 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7558 for (unsigned I = 0; I != Record.size(); I += 2) 7559 CfiFunctionDecls.insert( 7560 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7561 break; 7562 } 7563 7564 case bitc::FS_TYPE_ID: 7565 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7566 break; 7567 7568 case bitc::FS_TYPE_ID_METADATA: 7569 parseTypeIdCompatibleVtableSummaryRecord(Record); 7570 break; 7571 7572 case bitc::FS_BLOCK_COUNT: 7573 TheIndex.addBlockCount(Record[0]); 7574 break; 7575 7576 case bitc::FS_PARAM_ACCESS: { 7577 PendingParamAccesses = parseParamAccesses(Record); 7578 break; 7579 } 7580 7581 case bitc::FS_STACK_IDS: { // [n x stackid] 7582 // Save stack ids in the reader to consult when adding stack ids from the 7583 // lists in the stack node and alloc node entries. 7584 StackIds = ArrayRef<uint64_t>(Record); 7585 break; 7586 } 7587 7588 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7589 unsigned ValueID = Record[0]; 7590 SmallVector<unsigned> StackIdList; 7591 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7592 assert(*R < StackIds.size()); 7593 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7594 } 7595 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7596 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7597 break; 7598 } 7599 7600 case bitc::FS_COMBINED_CALLSITE_INFO: { 7601 auto RecordIter = Record.begin(); 7602 unsigned ValueID = *RecordIter++; 7603 unsigned NumStackIds = *RecordIter++; 7604 unsigned NumVersions = *RecordIter++; 7605 assert(Record.size() == 3 + NumStackIds + NumVersions); 7606 SmallVector<unsigned> StackIdList; 7607 for (unsigned J = 0; J < NumStackIds; J++) { 7608 assert(*RecordIter < StackIds.size()); 7609 StackIdList.push_back( 7610 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7611 } 7612 SmallVector<unsigned> Versions; 7613 for (unsigned J = 0; J < NumVersions; J++) 7614 Versions.push_back(*RecordIter++); 7615 ValueInfo VI = std::get<0>( 7616 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7617 PendingCallsites.push_back( 7618 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7619 break; 7620 } 7621 7622 case bitc::FS_PERMODULE_ALLOC_INFO: { 7623 unsigned I = 0; 7624 std::vector<MIBInfo> MIBs; 7625 while (I < Record.size()) { 7626 assert(Record.size() - I >= 2); 7627 AllocationType AllocType = (AllocationType)Record[I++]; 7628 unsigned NumStackEntries = Record[I++]; 7629 assert(Record.size() - I >= NumStackEntries); 7630 SmallVector<unsigned> StackIdList; 7631 for (unsigned J = 0; J < NumStackEntries; J++) { 7632 assert(Record[I] < StackIds.size()); 7633 StackIdList.push_back( 7634 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7635 } 7636 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7637 } 7638 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7639 break; 7640 } 7641 7642 case bitc::FS_COMBINED_ALLOC_INFO: { 7643 unsigned I = 0; 7644 std::vector<MIBInfo> MIBs; 7645 unsigned NumMIBs = Record[I++]; 7646 unsigned NumVersions = Record[I++]; 7647 unsigned MIBsRead = 0; 7648 while (MIBsRead++ < NumMIBs) { 7649 assert(Record.size() - I >= 2); 7650 AllocationType AllocType = (AllocationType)Record[I++]; 7651 unsigned NumStackEntries = Record[I++]; 7652 assert(Record.size() - I >= NumStackEntries); 7653 SmallVector<unsigned> StackIdList; 7654 for (unsigned J = 0; J < NumStackEntries; J++) { 7655 assert(Record[I] < StackIds.size()); 7656 StackIdList.push_back( 7657 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7658 } 7659 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7660 } 7661 assert(Record.size() - I >= NumVersions); 7662 SmallVector<uint8_t> Versions; 7663 for (unsigned J = 0; J < NumVersions; J++) 7664 Versions.push_back(Record[I++]); 7665 PendingAllocs.push_back( 7666 AllocInfo(std::move(Versions), std::move(MIBs))); 7667 break; 7668 } 7669 } 7670 } 7671 llvm_unreachable("Exit infinite loop"); 7672 } 7673 7674 // Parse the module string table block into the Index. 7675 // This populates the ModulePathStringTable map in the index. 7676 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7677 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7678 return Err; 7679 7680 SmallVector<uint64_t, 64> Record; 7681 7682 SmallString<128> ModulePath; 7683 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7684 7685 while (true) { 7686 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7687 if (!MaybeEntry) 7688 return MaybeEntry.takeError(); 7689 BitstreamEntry Entry = MaybeEntry.get(); 7690 7691 switch (Entry.Kind) { 7692 case BitstreamEntry::SubBlock: // Handled for us already. 7693 case BitstreamEntry::Error: 7694 return error("Malformed block"); 7695 case BitstreamEntry::EndBlock: 7696 return Error::success(); 7697 case BitstreamEntry::Record: 7698 // The interesting case. 7699 break; 7700 } 7701 7702 Record.clear(); 7703 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7704 if (!MaybeRecord) 7705 return MaybeRecord.takeError(); 7706 switch (MaybeRecord.get()) { 7707 default: // Default behavior: ignore. 7708 break; 7709 case bitc::MST_CODE_ENTRY: { 7710 // MST_ENTRY: [modid, namechar x N] 7711 uint64_t ModuleId = Record[0]; 7712 7713 if (convertToString(Record, 1, ModulePath)) 7714 return error("Invalid record"); 7715 7716 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7717 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7718 7719 ModulePath.clear(); 7720 break; 7721 } 7722 /// MST_CODE_HASH: [5*i32] 7723 case bitc::MST_CODE_HASH: { 7724 if (Record.size() != 5) 7725 return error("Invalid hash length " + Twine(Record.size()).str()); 7726 if (!LastSeenModule) 7727 return error("Invalid hash that does not follow a module path"); 7728 int Pos = 0; 7729 for (auto &Val : Record) { 7730 assert(!(Val >> 32) && "Unexpected high bits set"); 7731 LastSeenModule->second.second[Pos++] = Val; 7732 } 7733 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7734 LastSeenModule = nullptr; 7735 break; 7736 } 7737 } 7738 } 7739 llvm_unreachable("Exit infinite loop"); 7740 } 7741 7742 namespace { 7743 7744 // FIXME: This class is only here to support the transition to llvm::Error. It 7745 // will be removed once this transition is complete. Clients should prefer to 7746 // deal with the Error value directly, rather than converting to error_code. 7747 class BitcodeErrorCategoryType : public std::error_category { 7748 const char *name() const noexcept override { 7749 return "llvm.bitcode"; 7750 } 7751 7752 std::string message(int IE) const override { 7753 BitcodeError E = static_cast<BitcodeError>(IE); 7754 switch (E) { 7755 case BitcodeError::CorruptedBitcode: 7756 return "Corrupted bitcode"; 7757 } 7758 llvm_unreachable("Unknown error type!"); 7759 } 7760 }; 7761 7762 } // end anonymous namespace 7763 7764 const std::error_category &llvm::BitcodeErrorCategory() { 7765 static BitcodeErrorCategoryType ErrorCategory; 7766 return ErrorCategory; 7767 } 7768 7769 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7770 unsigned Block, unsigned RecordID) { 7771 if (Error Err = Stream.EnterSubBlock(Block)) 7772 return std::move(Err); 7773 7774 StringRef Strtab; 7775 while (true) { 7776 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7777 if (!MaybeEntry) 7778 return MaybeEntry.takeError(); 7779 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7780 7781 switch (Entry.Kind) { 7782 case BitstreamEntry::EndBlock: 7783 return Strtab; 7784 7785 case BitstreamEntry::Error: 7786 return error("Malformed block"); 7787 7788 case BitstreamEntry::SubBlock: 7789 if (Error Err = Stream.SkipBlock()) 7790 return std::move(Err); 7791 break; 7792 7793 case BitstreamEntry::Record: 7794 StringRef Blob; 7795 SmallVector<uint64_t, 1> Record; 7796 Expected<unsigned> MaybeRecord = 7797 Stream.readRecord(Entry.ID, Record, &Blob); 7798 if (!MaybeRecord) 7799 return MaybeRecord.takeError(); 7800 if (MaybeRecord.get() == RecordID) 7801 Strtab = Blob; 7802 break; 7803 } 7804 } 7805 } 7806 7807 //===----------------------------------------------------------------------===// 7808 // External interface 7809 //===----------------------------------------------------------------------===// 7810 7811 Expected<std::vector<BitcodeModule>> 7812 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7813 auto FOrErr = getBitcodeFileContents(Buffer); 7814 if (!FOrErr) 7815 return FOrErr.takeError(); 7816 return std::move(FOrErr->Mods); 7817 } 7818 7819 Expected<BitcodeFileContents> 7820 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7821 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7822 if (!StreamOrErr) 7823 return StreamOrErr.takeError(); 7824 BitstreamCursor &Stream = *StreamOrErr; 7825 7826 BitcodeFileContents F; 7827 while (true) { 7828 uint64_t BCBegin = Stream.getCurrentByteNo(); 7829 7830 // We may be consuming bitcode from a client that leaves garbage at the end 7831 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7832 // the end that there cannot possibly be another module, stop looking. 7833 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7834 return F; 7835 7836 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7837 if (!MaybeEntry) 7838 return MaybeEntry.takeError(); 7839 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7840 7841 switch (Entry.Kind) { 7842 case BitstreamEntry::EndBlock: 7843 case BitstreamEntry::Error: 7844 return error("Malformed block"); 7845 7846 case BitstreamEntry::SubBlock: { 7847 uint64_t IdentificationBit = -1ull; 7848 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7849 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7850 if (Error Err = Stream.SkipBlock()) 7851 return std::move(Err); 7852 7853 { 7854 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7855 if (!MaybeEntry) 7856 return MaybeEntry.takeError(); 7857 Entry = MaybeEntry.get(); 7858 } 7859 7860 if (Entry.Kind != BitstreamEntry::SubBlock || 7861 Entry.ID != bitc::MODULE_BLOCK_ID) 7862 return error("Malformed block"); 7863 } 7864 7865 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7866 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7867 if (Error Err = Stream.SkipBlock()) 7868 return std::move(Err); 7869 7870 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7871 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7872 Buffer.getBufferIdentifier(), IdentificationBit, 7873 ModuleBit}); 7874 continue; 7875 } 7876 7877 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7878 Expected<StringRef> Strtab = 7879 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7880 if (!Strtab) 7881 return Strtab.takeError(); 7882 // This string table is used by every preceding bitcode module that does 7883 // not have its own string table. A bitcode file may have multiple 7884 // string tables if it was created by binary concatenation, for example 7885 // with "llvm-cat -b". 7886 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7887 if (!I.Strtab.empty()) 7888 break; 7889 I.Strtab = *Strtab; 7890 } 7891 // Similarly, the string table is used by every preceding symbol table; 7892 // normally there will be just one unless the bitcode file was created 7893 // by binary concatenation. 7894 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7895 F.StrtabForSymtab = *Strtab; 7896 continue; 7897 } 7898 7899 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7900 Expected<StringRef> SymtabOrErr = 7901 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7902 if (!SymtabOrErr) 7903 return SymtabOrErr.takeError(); 7904 7905 // We can expect the bitcode file to have multiple symbol tables if it 7906 // was created by binary concatenation. In that case we silently 7907 // ignore any subsequent symbol tables, which is fine because this is a 7908 // low level function. The client is expected to notice that the number 7909 // of modules in the symbol table does not match the number of modules 7910 // in the input file and regenerate the symbol table. 7911 if (F.Symtab.empty()) 7912 F.Symtab = *SymtabOrErr; 7913 continue; 7914 } 7915 7916 if (Error Err = Stream.SkipBlock()) 7917 return std::move(Err); 7918 continue; 7919 } 7920 case BitstreamEntry::Record: 7921 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7922 return std::move(E); 7923 continue; 7924 } 7925 } 7926 } 7927 7928 /// Get a lazy one-at-time loading module from bitcode. 7929 /// 7930 /// This isn't always used in a lazy context. In particular, it's also used by 7931 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7932 /// in forward-referenced functions from block address references. 7933 /// 7934 /// \param[in] MaterializeAll Set to \c true if we should materialize 7935 /// everything. 7936 Expected<std::unique_ptr<Module>> 7937 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7938 bool ShouldLazyLoadMetadata, bool IsImporting, 7939 ParserCallbacks Callbacks) { 7940 BitstreamCursor Stream(Buffer); 7941 7942 std::string ProducerIdentification; 7943 if (IdentificationBit != -1ull) { 7944 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7945 return std::move(JumpFailed); 7946 if (Error E = 7947 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7948 return std::move(E); 7949 } 7950 7951 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7952 return std::move(JumpFailed); 7953 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7954 Context); 7955 7956 std::unique_ptr<Module> M = 7957 std::make_unique<Module>(ModuleIdentifier, Context); 7958 M->setMaterializer(R); 7959 7960 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7961 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7962 IsImporting, Callbacks)) 7963 return std::move(Err); 7964 7965 if (MaterializeAll) { 7966 // Read in the entire module, and destroy the BitcodeReader. 7967 if (Error Err = M->materializeAll()) 7968 return std::move(Err); 7969 } else { 7970 // Resolve forward references from blockaddresses. 7971 if (Error Err = R->materializeForwardReferencedFunctions()) 7972 return std::move(Err); 7973 } 7974 return std::move(M); 7975 } 7976 7977 Expected<std::unique_ptr<Module>> 7978 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7979 bool IsImporting, ParserCallbacks Callbacks) { 7980 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7981 Callbacks); 7982 } 7983 7984 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7985 // We don't use ModuleIdentifier here because the client may need to control the 7986 // module path used in the combined summary (e.g. when reading summaries for 7987 // regular LTO modules). 7988 Error BitcodeModule::readSummary( 7989 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 7990 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7991 BitstreamCursor Stream(Buffer); 7992 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7993 return JumpFailed; 7994 7995 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7996 ModulePath, ModuleId, IsPrevailing); 7997 return R.parseModule(); 7998 } 7999 8000 // Parse the specified bitcode buffer, returning the function info index. 8001 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8002 BitstreamCursor Stream(Buffer); 8003 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8004 return std::move(JumpFailed); 8005 8006 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8007 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8008 ModuleIdentifier, 0); 8009 8010 if (Error Err = R.parseModule()) 8011 return std::move(Err); 8012 8013 return std::move(Index); 8014 } 8015 8016 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 8017 unsigned ID) { 8018 if (Error Err = Stream.EnterSubBlock(ID)) 8019 return std::move(Err); 8020 SmallVector<uint64_t, 64> Record; 8021 8022 while (true) { 8023 BitstreamEntry Entry; 8024 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8025 return std::move(E); 8026 8027 switch (Entry.Kind) { 8028 case BitstreamEntry::SubBlock: // Handled for us already. 8029 case BitstreamEntry::Error: 8030 return error("Malformed block"); 8031 case BitstreamEntry::EndBlock: 8032 // If no flags record found, conservatively return true to mimic 8033 // behavior before this flag was added. 8034 return true; 8035 case BitstreamEntry::Record: 8036 // The interesting case. 8037 break; 8038 } 8039 8040 // Look for the FS_FLAGS record. 8041 Record.clear(); 8042 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8043 if (!MaybeBitCode) 8044 return MaybeBitCode.takeError(); 8045 switch (MaybeBitCode.get()) { 8046 default: // Default behavior: ignore. 8047 break; 8048 case bitc::FS_FLAGS: { // [flags] 8049 uint64_t Flags = Record[0]; 8050 // Scan flags. 8051 assert(Flags <= 0xff && "Unexpected bits in flag"); 8052 8053 return Flags & 0x8; 8054 } 8055 } 8056 } 8057 llvm_unreachable("Exit infinite loop"); 8058 } 8059 8060 // Check if the given bitcode buffer contains a global value summary block. 8061 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8062 BitstreamCursor Stream(Buffer); 8063 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8064 return std::move(JumpFailed); 8065 8066 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8067 return std::move(Err); 8068 8069 while (true) { 8070 llvm::BitstreamEntry Entry; 8071 if (Error E = Stream.advance().moveInto(Entry)) 8072 return std::move(E); 8073 8074 switch (Entry.Kind) { 8075 case BitstreamEntry::Error: 8076 return error("Malformed block"); 8077 case BitstreamEntry::EndBlock: 8078 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8079 /*EnableSplitLTOUnit=*/false}; 8080 8081 case BitstreamEntry::SubBlock: 8082 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8083 Expected<bool> EnableSplitLTOUnit = 8084 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8085 if (!EnableSplitLTOUnit) 8086 return EnableSplitLTOUnit.takeError(); 8087 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 8088 *EnableSplitLTOUnit}; 8089 } 8090 8091 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8092 Expected<bool> EnableSplitLTOUnit = 8093 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8094 if (!EnableSplitLTOUnit) 8095 return EnableSplitLTOUnit.takeError(); 8096 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 8097 *EnableSplitLTOUnit}; 8098 } 8099 8100 // Ignore other sub-blocks. 8101 if (Error Err = Stream.SkipBlock()) 8102 return std::move(Err); 8103 continue; 8104 8105 case BitstreamEntry::Record: 8106 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8107 continue; 8108 else 8109 return StreamFailed.takeError(); 8110 } 8111 } 8112 } 8113 8114 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8115 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8116 if (!MsOrErr) 8117 return MsOrErr.takeError(); 8118 8119 if (MsOrErr->size() != 1) 8120 return error("Expected a single module"); 8121 8122 return (*MsOrErr)[0]; 8123 } 8124 8125 Expected<std::unique_ptr<Module>> 8126 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8127 bool ShouldLazyLoadMetadata, bool IsImporting, 8128 ParserCallbacks Callbacks) { 8129 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8130 if (!BM) 8131 return BM.takeError(); 8132 8133 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8134 Callbacks); 8135 } 8136 8137 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8138 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8139 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8140 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8141 IsImporting, Callbacks); 8142 if (MOrErr) 8143 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8144 return MOrErr; 8145 } 8146 8147 Expected<std::unique_ptr<Module>> 8148 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8149 return getModuleImpl(Context, true, false, false, Callbacks); 8150 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8151 // written. We must defer until the Module has been fully materialized. 8152 } 8153 8154 Expected<std::unique_ptr<Module>> 8155 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8156 ParserCallbacks Callbacks) { 8157 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8158 if (!BM) 8159 return BM.takeError(); 8160 8161 return BM->parseModule(Context, Callbacks); 8162 } 8163 8164 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8165 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8166 if (!StreamOrErr) 8167 return StreamOrErr.takeError(); 8168 8169 return readTriple(*StreamOrErr); 8170 } 8171 8172 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8173 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8174 if (!StreamOrErr) 8175 return StreamOrErr.takeError(); 8176 8177 return hasObjCCategory(*StreamOrErr); 8178 } 8179 8180 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8181 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8182 if (!StreamOrErr) 8183 return StreamOrErr.takeError(); 8184 8185 return readIdentificationCode(*StreamOrErr); 8186 } 8187 8188 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8189 ModuleSummaryIndex &CombinedIndex, 8190 uint64_t ModuleId) { 8191 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8192 if (!BM) 8193 return BM.takeError(); 8194 8195 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8196 } 8197 8198 Expected<std::unique_ptr<ModuleSummaryIndex>> 8199 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8200 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8201 if (!BM) 8202 return BM.takeError(); 8203 8204 return BM->getSummary(); 8205 } 8206 8207 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8208 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8209 if (!BM) 8210 return BM.takeError(); 8211 8212 return BM->getLTOInfo(); 8213 } 8214 8215 Expected<std::unique_ptr<ModuleSummaryIndex>> 8216 llvm::getModuleSummaryIndexForFile(StringRef Path, 8217 bool IgnoreEmptyThinLTOIndexFile) { 8218 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8219 MemoryBuffer::getFileOrSTDIN(Path); 8220 if (!FileOrErr) 8221 return errorCodeToError(FileOrErr.getError()); 8222 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8223 return nullptr; 8224 return getModuleSummaryIndex(**FileOrErr); 8225 } 8226