xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision b7b5907b56e98719b1dba8364ebcfb264fc09bfe)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// Callback to ask whether a symbol is the prevailing copy when invoked
908   /// during combined index building.
909   std::function<bool(GlobalValue::GUID)> IsPrevailing;
910 
911   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912   /// ids from the lists in the callsite and alloc entries to the index.
913   std::vector<uint64_t> StackIds;
914 
915 public:
916   ModuleSummaryIndexBitcodeReader(
917       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918       StringRef ModulePath,
919       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
920 
921   Error parseModule();
922 
923 private:
924   void setValueGUID(uint64_t ValueID, StringRef ValueName,
925                     GlobalValue::LinkageTypes Linkage,
926                     StringRef SourceFileName);
927   Error parseValueSymbolTable(
928       uint64_t Offset,
929       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932                                                     bool IsOldProfileFormat,
933                                                     bool HasProfile,
934                                                     bool HasRelBF);
935   Error parseEntireSummary(unsigned ID);
936   Error parseModuleStringTable();
937   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939                                        TypeIdCompatibleVtableInfo &TypeId);
940   std::vector<FunctionSummary::ParamAccess>
941   parseParamAccesses(ArrayRef<uint64_t> Record);
942 
943   template <bool AllowNullValueInfo = false>
944   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945   getValueInfoFromValueId(unsigned ValueId);
946 
947   void addThisModule();
948   ModuleSummaryIndex::ModuleInfo *getThisModule();
949 };
950 
951 } // end anonymous namespace
952 
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954                                                     Error Err) {
955   if (Err) {
956     std::error_code EC;
957     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958       EC = EIB.convertToErrorCode();
959       Ctx.emitError(EIB.message());
960     });
961     return EC;
962   }
963   return std::error_code();
964 }
965 
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967                              StringRef ProducerIdentification,
968                              LLVMContext &Context)
969     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970       ValueList(this->Stream.SizeInBytes(),
971                 [this](unsigned ValID, BasicBlock *InsertBB) {
972                   return materializeValue(ValID, InsertBB);
973                 }) {
974   this->ProducerIdentification = std::string(ProducerIdentification);
975 }
976 
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978   if (WillMaterializeAllForwardRefs)
979     return Error::success();
980 
981   // Prevent recursion.
982   WillMaterializeAllForwardRefs = true;
983 
984   while (!BasicBlockFwdRefQueue.empty()) {
985     Function *F = BasicBlockFwdRefQueue.front();
986     BasicBlockFwdRefQueue.pop_front();
987     assert(F && "Expected valid function");
988     if (!BasicBlockFwdRefs.count(F))
989       // Already materialized.
990       continue;
991 
992     // Check for a function that isn't materializable to prevent an infinite
993     // loop.  When parsing a blockaddress stored in a global variable, there
994     // isn't a trivial way to check if a function will have a body without a
995     // linear search through FunctionsWithBodies, so just check it here.
996     if (!F->isMaterializable())
997       return error("Never resolved function from blockaddress");
998 
999     // Try to materialize F.
1000     if (Error Err = materialize(F))
1001       return Err;
1002   }
1003   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1004 
1005   for (Function *F : BackwardRefFunctions)
1006     if (Error Err = materialize(F))
1007       return Err;
1008   BackwardRefFunctions.clear();
1009 
1010   // Reset state.
1011   WillMaterializeAllForwardRefs = false;
1012   return Error::success();
1013 }
1014 
1015 //===----------------------------------------------------------------------===//
1016 //  Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1018 
1019 static bool hasImplicitComdat(size_t Val) {
1020   switch (Val) {
1021   default:
1022     return false;
1023   case 1:  // Old WeakAnyLinkage
1024   case 4:  // Old LinkOnceAnyLinkage
1025   case 10: // Old WeakODRLinkage
1026   case 11: // Old LinkOnceODRLinkage
1027     return true;
1028   }
1029 }
1030 
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown/new linkages to external
1034   case 0:
1035     return GlobalValue::ExternalLinkage;
1036   case 2:
1037     return GlobalValue::AppendingLinkage;
1038   case 3:
1039     return GlobalValue::InternalLinkage;
1040   case 5:
1041     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042   case 6:
1043     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044   case 7:
1045     return GlobalValue::ExternalWeakLinkage;
1046   case 8:
1047     return GlobalValue::CommonLinkage;
1048   case 9:
1049     return GlobalValue::PrivateLinkage;
1050   case 12:
1051     return GlobalValue::AvailableExternallyLinkage;
1052   case 13:
1053     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054   case 14:
1055     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056   case 15:
1057     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058   case 1: // Old value with implicit comdat.
1059   case 16:
1060     return GlobalValue::WeakAnyLinkage;
1061   case 10: // Old value with implicit comdat.
1062   case 17:
1063     return GlobalValue::WeakODRLinkage;
1064   case 4: // Old value with implicit comdat.
1065   case 18:
1066     return GlobalValue::LinkOnceAnyLinkage;
1067   case 11: // Old value with implicit comdat.
1068   case 19:
1069     return GlobalValue::LinkOnceODRLinkage;
1070   }
1071 }
1072 
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074   FunctionSummary::FFlags Flags;
1075   Flags.ReadNone = RawFlags & 0x1;
1076   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079   Flags.NoInline = (RawFlags >> 4) & 0x1;
1080   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085   return Flags;
1086 }
1087 
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1089 //
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093                                                             uint64_t Version) {
1094   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095   // like getDecodedLinkage() above. Any future change to the linkage enum and
1096   // to getDecodedLinkage() will need to be taken into account here as above.
1097   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099   RawFlags = RawFlags >> 4;
1100   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101   // The Live flag wasn't introduced until version 3. For dead stripping
1102   // to work correctly on earlier versions, we must conservatively treat all
1103   // values as live.
1104   bool Live = (RawFlags & 0x2) || Version < 3;
1105   bool Local = (RawFlags & 0x4);
1106   bool AutoHide = (RawFlags & 0x8);
1107 
1108   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109                                      Live, Local, AutoHide);
1110 }
1111 
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114   return GlobalVarSummary::GVarFlags(
1115       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116       (RawFlags & 0x4) ? true : false,
1117       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1118 }
1119 
1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown visibilities to default.
1123   case 0: return GlobalValue::DefaultVisibility;
1124   case 1: return GlobalValue::HiddenVisibility;
1125   case 2: return GlobalValue::ProtectedVisibility;
1126   }
1127 }
1128 
1129 static GlobalValue::DLLStorageClassTypes
1130 getDecodedDLLStorageClass(unsigned Val) {
1131   switch (Val) {
1132   default: // Map unknown values to default.
1133   case 0: return GlobalValue::DefaultStorageClass;
1134   case 1: return GlobalValue::DLLImportStorageClass;
1135   case 2: return GlobalValue::DLLExportStorageClass;
1136   }
1137 }
1138 
1139 static bool getDecodedDSOLocal(unsigned Val) {
1140   switch(Val) {
1141   default: // Map unknown values to preemptable.
1142   case 0:  return false;
1143   case 1:  return true;
1144   }
1145 }
1146 
1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1148   switch (Val) {
1149     case 0: return GlobalVariable::NotThreadLocal;
1150     default: // Map unknown non-zero value to general dynamic.
1151     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1152     case 2: return GlobalVariable::LocalDynamicTLSModel;
1153     case 3: return GlobalVariable::InitialExecTLSModel;
1154     case 4: return GlobalVariable::LocalExecTLSModel;
1155   }
1156 }
1157 
1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1159   switch (Val) {
1160     default: // Map unknown to UnnamedAddr::None.
1161     case 0: return GlobalVariable::UnnamedAddr::None;
1162     case 1: return GlobalVariable::UnnamedAddr::Global;
1163     case 2: return GlobalVariable::UnnamedAddr::Local;
1164   }
1165 }
1166 
1167 static int getDecodedCastOpcode(unsigned Val) {
1168   switch (Val) {
1169   default: return -1;
1170   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1171   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1172   case bitc::CAST_SEXT    : return Instruction::SExt;
1173   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1174   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1175   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1176   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1177   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1178   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1179   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1180   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1181   case bitc::CAST_BITCAST : return Instruction::BitCast;
1182   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1183   }
1184 }
1185 
1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1187   bool IsFP = Ty->isFPOrFPVectorTy();
1188   // UnOps are only valid for int/fp or vector of int/fp types
1189   if (!IsFP && !Ty->isIntOrIntVectorTy())
1190     return -1;
1191 
1192   switch (Val) {
1193   default:
1194     return -1;
1195   case bitc::UNOP_FNEG:
1196     return IsFP ? Instruction::FNeg : -1;
1197   }
1198 }
1199 
1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1201   bool IsFP = Ty->isFPOrFPVectorTy();
1202   // BinOps are only valid for int/fp or vector of int/fp types
1203   if (!IsFP && !Ty->isIntOrIntVectorTy())
1204     return -1;
1205 
1206   switch (Val) {
1207   default:
1208     return -1;
1209   case bitc::BINOP_ADD:
1210     return IsFP ? Instruction::FAdd : Instruction::Add;
1211   case bitc::BINOP_SUB:
1212     return IsFP ? Instruction::FSub : Instruction::Sub;
1213   case bitc::BINOP_MUL:
1214     return IsFP ? Instruction::FMul : Instruction::Mul;
1215   case bitc::BINOP_UDIV:
1216     return IsFP ? -1 : Instruction::UDiv;
1217   case bitc::BINOP_SDIV:
1218     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1219   case bitc::BINOP_UREM:
1220     return IsFP ? -1 : Instruction::URem;
1221   case bitc::BINOP_SREM:
1222     return IsFP ? Instruction::FRem : Instruction::SRem;
1223   case bitc::BINOP_SHL:
1224     return IsFP ? -1 : Instruction::Shl;
1225   case bitc::BINOP_LSHR:
1226     return IsFP ? -1 : Instruction::LShr;
1227   case bitc::BINOP_ASHR:
1228     return IsFP ? -1 : Instruction::AShr;
1229   case bitc::BINOP_AND:
1230     return IsFP ? -1 : Instruction::And;
1231   case bitc::BINOP_OR:
1232     return IsFP ? -1 : Instruction::Or;
1233   case bitc::BINOP_XOR:
1234     return IsFP ? -1 : Instruction::Xor;
1235   }
1236 }
1237 
1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1239   switch (Val) {
1240   default: return AtomicRMWInst::BAD_BINOP;
1241   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1242   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1243   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1244   case bitc::RMW_AND: return AtomicRMWInst::And;
1245   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1246   case bitc::RMW_OR: return AtomicRMWInst::Or;
1247   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1248   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1249   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1250   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1251   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1252   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1253   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1254   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1255   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1256   case bitc::RMW_UINC_WRAP:
1257     return AtomicRMWInst::UIncWrap;
1258   case bitc::RMW_UDEC_WRAP:
1259     return AtomicRMWInst::UDecWrap;
1260   }
1261 }
1262 
1263 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1264   switch (Val) {
1265   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1266   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1267   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1268   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1269   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1270   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1271   default: // Map unknown orderings to sequentially-consistent.
1272   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1273   }
1274 }
1275 
1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1277   switch (Val) {
1278   default: // Map unknown selection kinds to any.
1279   case bitc::COMDAT_SELECTION_KIND_ANY:
1280     return Comdat::Any;
1281   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1282     return Comdat::ExactMatch;
1283   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1284     return Comdat::Largest;
1285   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1286     return Comdat::NoDeduplicate;
1287   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1288     return Comdat::SameSize;
1289   }
1290 }
1291 
1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1293   FastMathFlags FMF;
1294   if (0 != (Val & bitc::UnsafeAlgebra))
1295     FMF.setFast();
1296   if (0 != (Val & bitc::AllowReassoc))
1297     FMF.setAllowReassoc();
1298   if (0 != (Val & bitc::NoNaNs))
1299     FMF.setNoNaNs();
1300   if (0 != (Val & bitc::NoInfs))
1301     FMF.setNoInfs();
1302   if (0 != (Val & bitc::NoSignedZeros))
1303     FMF.setNoSignedZeros();
1304   if (0 != (Val & bitc::AllowReciprocal))
1305     FMF.setAllowReciprocal();
1306   if (0 != (Val & bitc::AllowContract))
1307     FMF.setAllowContract(true);
1308   if (0 != (Val & bitc::ApproxFunc))
1309     FMF.setApproxFunc();
1310   return FMF;
1311 }
1312 
1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1314   // A GlobalValue with local linkage cannot have a DLL storage class.
1315   if (GV->hasLocalLinkage())
1316     return;
1317   switch (Val) {
1318   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1319   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1320   }
1321 }
1322 
1323 Type *BitcodeReader::getTypeByID(unsigned ID) {
1324   // The type table size is always specified correctly.
1325   if (ID >= TypeList.size())
1326     return nullptr;
1327 
1328   if (Type *Ty = TypeList[ID])
1329     return Ty;
1330 
1331   // If we have a forward reference, the only possible case is when it is to a
1332   // named struct.  Just create a placeholder for now.
1333   return TypeList[ID] = createIdentifiedStructType(Context);
1334 }
1335 
1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1337   auto It = ContainedTypeIDs.find(ID);
1338   if (It == ContainedTypeIDs.end())
1339     return InvalidTypeID;
1340 
1341   if (Idx >= It->second.size())
1342     return InvalidTypeID;
1343 
1344   return It->second[Idx];
1345 }
1346 
1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1348   if (ID >= TypeList.size())
1349     return nullptr;
1350 
1351   Type *Ty = TypeList[ID];
1352   if (!Ty->isPointerTy())
1353     return nullptr;
1354 
1355   return getTypeByID(getContainedTypeID(ID, 0));
1356 }
1357 
1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1359                                          ArrayRef<unsigned> ChildTypeIDs) {
1360   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1361   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1362   auto It = VirtualTypeIDs.find(CacheKey);
1363   if (It != VirtualTypeIDs.end()) {
1364     // The cmpxchg return value is the only place we need more than one
1365     // contained type ID, however the second one will always be the same (i1),
1366     // so we don't need to include it in the cache key. This asserts that the
1367     // contained types are indeed as expected and there are no collisions.
1368     assert((ChildTypeIDs.empty() ||
1369             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1370            "Incorrect cached contained type IDs");
1371     return It->second;
1372   }
1373 
1374   unsigned TypeID = TypeList.size();
1375   TypeList.push_back(Ty);
1376   if (!ChildTypeIDs.empty())
1377     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1378   VirtualTypeIDs.insert({CacheKey, TypeID});
1379   return TypeID;
1380 }
1381 
1382 static bool isConstExprSupported(const BitcodeConstant *BC) {
1383   uint8_t Opcode = BC->Opcode;
1384 
1385   // These are not real constant expressions, always consider them supported.
1386   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1387     return true;
1388 
1389   // If -expand-constant-exprs is set, we want to consider all expressions
1390   // as unsupported.
1391   if (ExpandConstantExprs)
1392     return false;
1393 
1394   if (Instruction::isBinaryOp(Opcode))
1395     return ConstantExpr::isSupportedBinOp(Opcode);
1396 
1397   if (Instruction::isCast(Opcode))
1398     return ConstantExpr::isSupportedCastOp(Opcode);
1399 
1400   if (Opcode == Instruction::GetElementPtr)
1401     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1402 
1403   switch (Opcode) {
1404   case Instruction::FNeg:
1405   case Instruction::Select:
1406     return false;
1407   default:
1408     return true;
1409   }
1410 }
1411 
1412 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1413                                                   BasicBlock *InsertBB) {
1414   // Quickly handle the case where there is no BitcodeConstant to resolve.
1415   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1416       !isa<BitcodeConstant>(ValueList[StartValID]))
1417     return ValueList[StartValID];
1418 
1419   SmallDenseMap<unsigned, Value *> MaterializedValues;
1420   SmallVector<unsigned> Worklist;
1421   Worklist.push_back(StartValID);
1422   while (!Worklist.empty()) {
1423     unsigned ValID = Worklist.back();
1424     if (MaterializedValues.count(ValID)) {
1425       // Duplicate expression that was already handled.
1426       Worklist.pop_back();
1427       continue;
1428     }
1429 
1430     if (ValID >= ValueList.size() || !ValueList[ValID])
1431       return error("Invalid value ID");
1432 
1433     Value *V = ValueList[ValID];
1434     auto *BC = dyn_cast<BitcodeConstant>(V);
1435     if (!BC) {
1436       MaterializedValues.insert({ValID, V});
1437       Worklist.pop_back();
1438       continue;
1439     }
1440 
1441     // Iterate in reverse, so values will get popped from the worklist in
1442     // expected order.
1443     SmallVector<Value *> Ops;
1444     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1445       auto It = MaterializedValues.find(OpID);
1446       if (It != MaterializedValues.end())
1447         Ops.push_back(It->second);
1448       else
1449         Worklist.push_back(OpID);
1450     }
1451 
1452     // Some expressions have not been resolved yet, handle them first and then
1453     // revisit this one.
1454     if (Ops.size() != BC->getOperandIDs().size())
1455       continue;
1456     std::reverse(Ops.begin(), Ops.end());
1457 
1458     SmallVector<Constant *> ConstOps;
1459     for (Value *Op : Ops)
1460       if (auto *C = dyn_cast<Constant>(Op))
1461         ConstOps.push_back(C);
1462 
1463     // Materialize as constant expression if possible.
1464     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1465       Constant *C;
1466       if (Instruction::isCast(BC->Opcode)) {
1467         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1468         if (!C)
1469           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1470       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1471         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1472       } else {
1473         switch (BC->Opcode) {
1474         case BitcodeConstant::NoCFIOpcode: {
1475           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1476           if (!GV)
1477             return error("no_cfi operand must be GlobalValue");
1478           C = NoCFIValue::get(GV);
1479           break;
1480         }
1481         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1482           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1483           if (!GV)
1484             return error("dso_local operand must be GlobalValue");
1485           C = DSOLocalEquivalent::get(GV);
1486           break;
1487         }
1488         case BitcodeConstant::BlockAddressOpcode: {
1489           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1490           if (!Fn)
1491             return error("blockaddress operand must be a function");
1492 
1493           // If the function is already parsed we can insert the block address
1494           // right away.
1495           BasicBlock *BB;
1496           unsigned BBID = BC->Extra;
1497           if (!BBID)
1498             // Invalid reference to entry block.
1499             return error("Invalid ID");
1500           if (!Fn->empty()) {
1501             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1502             for (size_t I = 0, E = BBID; I != E; ++I) {
1503               if (BBI == BBE)
1504                 return error("Invalid ID");
1505               ++BBI;
1506             }
1507             BB = &*BBI;
1508           } else {
1509             // Otherwise insert a placeholder and remember it so it can be
1510             // inserted when the function is parsed.
1511             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1512             if (FwdBBs.empty())
1513               BasicBlockFwdRefQueue.push_back(Fn);
1514             if (FwdBBs.size() < BBID + 1)
1515               FwdBBs.resize(BBID + 1);
1516             if (!FwdBBs[BBID])
1517               FwdBBs[BBID] = BasicBlock::Create(Context);
1518             BB = FwdBBs[BBID];
1519           }
1520           C = BlockAddress::get(Fn, BB);
1521           break;
1522         }
1523         case BitcodeConstant::ConstantStructOpcode:
1524           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1525           break;
1526         case BitcodeConstant::ConstantArrayOpcode:
1527           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1528           break;
1529         case BitcodeConstant::ConstantVectorOpcode:
1530           C = ConstantVector::get(ConstOps);
1531           break;
1532         case Instruction::ICmp:
1533         case Instruction::FCmp:
1534           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1535           break;
1536         case Instruction::GetElementPtr:
1537           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1538                                              ArrayRef(ConstOps).drop_front(),
1539                                              BC->Flags, BC->getInRangeIndex());
1540           break;
1541         case Instruction::ExtractElement:
1542           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1543           break;
1544         case Instruction::InsertElement:
1545           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1546                                              ConstOps[2]);
1547           break;
1548         case Instruction::ShuffleVector: {
1549           SmallVector<int, 16> Mask;
1550           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1551           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1552           break;
1553         }
1554         default:
1555           llvm_unreachable("Unhandled bitcode constant");
1556         }
1557       }
1558 
1559       // Cache resolved constant.
1560       ValueList.replaceValueWithoutRAUW(ValID, C);
1561       MaterializedValues.insert({ValID, C});
1562       Worklist.pop_back();
1563       continue;
1564     }
1565 
1566     if (!InsertBB)
1567       return error(Twine("Value referenced by initializer is an unsupported "
1568                          "constant expression of type ") +
1569                    BC->getOpcodeName());
1570 
1571     // Materialize as instructions if necessary.
1572     Instruction *I;
1573     if (Instruction::isCast(BC->Opcode)) {
1574       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1575                            BC->getType(), "constexpr", InsertBB);
1576     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1577       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1578                                 "constexpr", InsertBB);
1579     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1580       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1581                                  Ops[1], "constexpr", InsertBB);
1582       if (isa<OverflowingBinaryOperator>(I)) {
1583         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1584           I->setHasNoSignedWrap();
1585         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1586           I->setHasNoUnsignedWrap();
1587       }
1588       if (isa<PossiblyExactOperator>(I) &&
1589           (BC->Flags & PossiblyExactOperator::IsExact))
1590         I->setIsExact();
1591     } else {
1592       switch (BC->Opcode) {
1593       case BitcodeConstant::ConstantVectorOpcode: {
1594         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1595         Value *V = PoisonValue::get(BC->getType());
1596         for (auto Pair : enumerate(Ops)) {
1597           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1598           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1599                                         InsertBB);
1600         }
1601         I = cast<Instruction>(V);
1602         break;
1603       }
1604       case BitcodeConstant::ConstantStructOpcode:
1605       case BitcodeConstant::ConstantArrayOpcode: {
1606         Value *V = PoisonValue::get(BC->getType());
1607         for (auto Pair : enumerate(Ops))
1608           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1609                                       "constexpr.ins", InsertBB);
1610         I = cast<Instruction>(V);
1611         break;
1612       }
1613       case Instruction::ICmp:
1614       case Instruction::FCmp:
1615         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1616                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1617                             "constexpr", InsertBB);
1618         break;
1619       case Instruction::GetElementPtr:
1620         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1621                                       ArrayRef(Ops).drop_front(), "constexpr",
1622                                       InsertBB);
1623         if (BC->Flags)
1624           cast<GetElementPtrInst>(I)->setIsInBounds();
1625         break;
1626       case Instruction::Select:
1627         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1628         break;
1629       case Instruction::ExtractElement:
1630         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1631         break;
1632       case Instruction::InsertElement:
1633         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1634                                       InsertBB);
1635         break;
1636       case Instruction::ShuffleVector:
1637         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1638                                   InsertBB);
1639         break;
1640       default:
1641         llvm_unreachable("Unhandled bitcode constant");
1642       }
1643     }
1644 
1645     MaterializedValues.insert({ValID, I});
1646     Worklist.pop_back();
1647   }
1648 
1649   return MaterializedValues[StartValID];
1650 }
1651 
1652 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1653   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1654   if (!MaybeV)
1655     return MaybeV.takeError();
1656 
1657   // Result must be Constant if InsertBB is nullptr.
1658   return cast<Constant>(MaybeV.get());
1659 }
1660 
1661 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1662                                                       StringRef Name) {
1663   auto *Ret = StructType::create(Context, Name);
1664   IdentifiedStructTypes.push_back(Ret);
1665   return Ret;
1666 }
1667 
1668 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1669   auto *Ret = StructType::create(Context);
1670   IdentifiedStructTypes.push_back(Ret);
1671   return Ret;
1672 }
1673 
1674 //===----------------------------------------------------------------------===//
1675 //  Functions for parsing blocks from the bitcode file
1676 //===----------------------------------------------------------------------===//
1677 
1678 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1679   switch (Val) {
1680   case Attribute::EndAttrKinds:
1681   case Attribute::EmptyKey:
1682   case Attribute::TombstoneKey:
1683     llvm_unreachable("Synthetic enumerators which should never get here");
1684 
1685   case Attribute::None:            return 0;
1686   case Attribute::ZExt:            return 1 << 0;
1687   case Attribute::SExt:            return 1 << 1;
1688   case Attribute::NoReturn:        return 1 << 2;
1689   case Attribute::InReg:           return 1 << 3;
1690   case Attribute::StructRet:       return 1 << 4;
1691   case Attribute::NoUnwind:        return 1 << 5;
1692   case Attribute::NoAlias:         return 1 << 6;
1693   case Attribute::ByVal:           return 1 << 7;
1694   case Attribute::Nest:            return 1 << 8;
1695   case Attribute::ReadNone:        return 1 << 9;
1696   case Attribute::ReadOnly:        return 1 << 10;
1697   case Attribute::NoInline:        return 1 << 11;
1698   case Attribute::AlwaysInline:    return 1 << 12;
1699   case Attribute::OptimizeForSize: return 1 << 13;
1700   case Attribute::StackProtect:    return 1 << 14;
1701   case Attribute::StackProtectReq: return 1 << 15;
1702   case Attribute::Alignment:       return 31 << 16;
1703   case Attribute::NoCapture:       return 1 << 21;
1704   case Attribute::NoRedZone:       return 1 << 22;
1705   case Attribute::NoImplicitFloat: return 1 << 23;
1706   case Attribute::Naked:           return 1 << 24;
1707   case Attribute::InlineHint:      return 1 << 25;
1708   case Attribute::StackAlignment:  return 7 << 26;
1709   case Attribute::ReturnsTwice:    return 1 << 29;
1710   case Attribute::UWTable:         return 1 << 30;
1711   case Attribute::NonLazyBind:     return 1U << 31;
1712   case Attribute::SanitizeAddress: return 1ULL << 32;
1713   case Attribute::MinSize:         return 1ULL << 33;
1714   case Attribute::NoDuplicate:     return 1ULL << 34;
1715   case Attribute::StackProtectStrong: return 1ULL << 35;
1716   case Attribute::SanitizeThread:  return 1ULL << 36;
1717   case Attribute::SanitizeMemory:  return 1ULL << 37;
1718   case Attribute::NoBuiltin:       return 1ULL << 38;
1719   case Attribute::Returned:        return 1ULL << 39;
1720   case Attribute::Cold:            return 1ULL << 40;
1721   case Attribute::Builtin:         return 1ULL << 41;
1722   case Attribute::OptimizeNone:    return 1ULL << 42;
1723   case Attribute::InAlloca:        return 1ULL << 43;
1724   case Attribute::NonNull:         return 1ULL << 44;
1725   case Attribute::JumpTable:       return 1ULL << 45;
1726   case Attribute::Convergent:      return 1ULL << 46;
1727   case Attribute::SafeStack:       return 1ULL << 47;
1728   case Attribute::NoRecurse:       return 1ULL << 48;
1729   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1730   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1731   case Attribute::SwiftSelf:       return 1ULL << 51;
1732   case Attribute::SwiftError:      return 1ULL << 52;
1733   case Attribute::WriteOnly:       return 1ULL << 53;
1734   case Attribute::Speculatable:    return 1ULL << 54;
1735   case Attribute::StrictFP:        return 1ULL << 55;
1736   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1737   case Attribute::NoCfCheck:       return 1ULL << 57;
1738   case Attribute::OptForFuzzing:   return 1ULL << 58;
1739   case Attribute::ShadowCallStack: return 1ULL << 59;
1740   case Attribute::SpeculativeLoadHardening:
1741     return 1ULL << 60;
1742   case Attribute::ImmArg:
1743     return 1ULL << 61;
1744   case Attribute::WillReturn:
1745     return 1ULL << 62;
1746   case Attribute::NoFree:
1747     return 1ULL << 63;
1748   default:
1749     // Other attributes are not supported in the raw format,
1750     // as we ran out of space.
1751     return 0;
1752   }
1753   llvm_unreachable("Unsupported attribute type");
1754 }
1755 
1756 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1757   if (!Val) return;
1758 
1759   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1760        I = Attribute::AttrKind(I + 1)) {
1761     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1762       if (I == Attribute::Alignment)
1763         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1764       else if (I == Attribute::StackAlignment)
1765         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1766       else if (Attribute::isTypeAttrKind(I))
1767         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1768       else
1769         B.addAttribute(I);
1770     }
1771   }
1772 }
1773 
1774 /// This fills an AttrBuilder object with the LLVM attributes that have
1775 /// been decoded from the given integer. This function must stay in sync with
1776 /// 'encodeLLVMAttributesForBitcode'.
1777 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1778                                            uint64_t EncodedAttrs,
1779                                            uint64_t AttrIdx) {
1780   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1781   // the bits above 31 down by 11 bits.
1782   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1783   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1784          "Alignment must be a power of two.");
1785 
1786   if (Alignment)
1787     B.addAlignmentAttr(Alignment);
1788 
1789   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1790                    (EncodedAttrs & 0xffff);
1791 
1792   if (AttrIdx == AttributeList::FunctionIndex) {
1793     // Upgrade old memory attributes.
1794     MemoryEffects ME = MemoryEffects::unknown();
1795     if (Attrs & (1ULL << 9)) {
1796       // ReadNone
1797       Attrs &= ~(1ULL << 9);
1798       ME &= MemoryEffects::none();
1799     }
1800     if (Attrs & (1ULL << 10)) {
1801       // ReadOnly
1802       Attrs &= ~(1ULL << 10);
1803       ME &= MemoryEffects::readOnly();
1804     }
1805     if (Attrs & (1ULL << 49)) {
1806       // InaccessibleMemOnly
1807       Attrs &= ~(1ULL << 49);
1808       ME &= MemoryEffects::inaccessibleMemOnly();
1809     }
1810     if (Attrs & (1ULL << 50)) {
1811       // InaccessibleMemOrArgMemOnly
1812       Attrs &= ~(1ULL << 50);
1813       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1814     }
1815     if (Attrs & (1ULL << 53)) {
1816       // WriteOnly
1817       Attrs &= ~(1ULL << 53);
1818       ME &= MemoryEffects::writeOnly();
1819     }
1820     if (ME != MemoryEffects::unknown())
1821       B.addMemoryAttr(ME);
1822   }
1823 
1824   addRawAttributeValue(B, Attrs);
1825 }
1826 
1827 Error BitcodeReader::parseAttributeBlock() {
1828   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1829     return Err;
1830 
1831   if (!MAttributes.empty())
1832     return error("Invalid multiple blocks");
1833 
1834   SmallVector<uint64_t, 64> Record;
1835 
1836   SmallVector<AttributeList, 8> Attrs;
1837 
1838   // Read all the records.
1839   while (true) {
1840     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1841     if (!MaybeEntry)
1842       return MaybeEntry.takeError();
1843     BitstreamEntry Entry = MaybeEntry.get();
1844 
1845     switch (Entry.Kind) {
1846     case BitstreamEntry::SubBlock: // Handled for us already.
1847     case BitstreamEntry::Error:
1848       return error("Malformed block");
1849     case BitstreamEntry::EndBlock:
1850       return Error::success();
1851     case BitstreamEntry::Record:
1852       // The interesting case.
1853       break;
1854     }
1855 
1856     // Read a record.
1857     Record.clear();
1858     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1859     if (!MaybeRecord)
1860       return MaybeRecord.takeError();
1861     switch (MaybeRecord.get()) {
1862     default:  // Default behavior: ignore.
1863       break;
1864     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1865       // Deprecated, but still needed to read old bitcode files.
1866       if (Record.size() & 1)
1867         return error("Invalid parameter attribute record");
1868 
1869       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1870         AttrBuilder B(Context);
1871         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1872         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1873       }
1874 
1875       MAttributes.push_back(AttributeList::get(Context, Attrs));
1876       Attrs.clear();
1877       break;
1878     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1879       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1880         Attrs.push_back(MAttributeGroups[Record[i]]);
1881 
1882       MAttributes.push_back(AttributeList::get(Context, Attrs));
1883       Attrs.clear();
1884       break;
1885     }
1886   }
1887 }
1888 
1889 // Returns Attribute::None on unrecognized codes.
1890 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1891   switch (Code) {
1892   default:
1893     return Attribute::None;
1894   case bitc::ATTR_KIND_ALIGNMENT:
1895     return Attribute::Alignment;
1896   case bitc::ATTR_KIND_ALWAYS_INLINE:
1897     return Attribute::AlwaysInline;
1898   case bitc::ATTR_KIND_BUILTIN:
1899     return Attribute::Builtin;
1900   case bitc::ATTR_KIND_BY_VAL:
1901     return Attribute::ByVal;
1902   case bitc::ATTR_KIND_IN_ALLOCA:
1903     return Attribute::InAlloca;
1904   case bitc::ATTR_KIND_COLD:
1905     return Attribute::Cold;
1906   case bitc::ATTR_KIND_CONVERGENT:
1907     return Attribute::Convergent;
1908   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1909     return Attribute::DisableSanitizerInstrumentation;
1910   case bitc::ATTR_KIND_ELEMENTTYPE:
1911     return Attribute::ElementType;
1912   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1913     return Attribute::FnRetThunkExtern;
1914   case bitc::ATTR_KIND_INLINE_HINT:
1915     return Attribute::InlineHint;
1916   case bitc::ATTR_KIND_IN_REG:
1917     return Attribute::InReg;
1918   case bitc::ATTR_KIND_JUMP_TABLE:
1919     return Attribute::JumpTable;
1920   case bitc::ATTR_KIND_MEMORY:
1921     return Attribute::Memory;
1922   case bitc::ATTR_KIND_NOFPCLASS:
1923     return Attribute::NoFPClass;
1924   case bitc::ATTR_KIND_MIN_SIZE:
1925     return Attribute::MinSize;
1926   case bitc::ATTR_KIND_NAKED:
1927     return Attribute::Naked;
1928   case bitc::ATTR_KIND_NEST:
1929     return Attribute::Nest;
1930   case bitc::ATTR_KIND_NO_ALIAS:
1931     return Attribute::NoAlias;
1932   case bitc::ATTR_KIND_NO_BUILTIN:
1933     return Attribute::NoBuiltin;
1934   case bitc::ATTR_KIND_NO_CALLBACK:
1935     return Attribute::NoCallback;
1936   case bitc::ATTR_KIND_NO_CAPTURE:
1937     return Attribute::NoCapture;
1938   case bitc::ATTR_KIND_NO_DUPLICATE:
1939     return Attribute::NoDuplicate;
1940   case bitc::ATTR_KIND_NOFREE:
1941     return Attribute::NoFree;
1942   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1943     return Attribute::NoImplicitFloat;
1944   case bitc::ATTR_KIND_NO_INLINE:
1945     return Attribute::NoInline;
1946   case bitc::ATTR_KIND_NO_RECURSE:
1947     return Attribute::NoRecurse;
1948   case bitc::ATTR_KIND_NO_MERGE:
1949     return Attribute::NoMerge;
1950   case bitc::ATTR_KIND_NON_LAZY_BIND:
1951     return Attribute::NonLazyBind;
1952   case bitc::ATTR_KIND_NON_NULL:
1953     return Attribute::NonNull;
1954   case bitc::ATTR_KIND_DEREFERENCEABLE:
1955     return Attribute::Dereferenceable;
1956   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1957     return Attribute::DereferenceableOrNull;
1958   case bitc::ATTR_KIND_ALLOC_ALIGN:
1959     return Attribute::AllocAlign;
1960   case bitc::ATTR_KIND_ALLOC_KIND:
1961     return Attribute::AllocKind;
1962   case bitc::ATTR_KIND_ALLOC_SIZE:
1963     return Attribute::AllocSize;
1964   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1965     return Attribute::AllocatedPointer;
1966   case bitc::ATTR_KIND_NO_RED_ZONE:
1967     return Attribute::NoRedZone;
1968   case bitc::ATTR_KIND_NO_RETURN:
1969     return Attribute::NoReturn;
1970   case bitc::ATTR_KIND_NOSYNC:
1971     return Attribute::NoSync;
1972   case bitc::ATTR_KIND_NOCF_CHECK:
1973     return Attribute::NoCfCheck;
1974   case bitc::ATTR_KIND_NO_PROFILE:
1975     return Attribute::NoProfile;
1976   case bitc::ATTR_KIND_SKIP_PROFILE:
1977     return Attribute::SkipProfile;
1978   case bitc::ATTR_KIND_NO_UNWIND:
1979     return Attribute::NoUnwind;
1980   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1981     return Attribute::NoSanitizeBounds;
1982   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1983     return Attribute::NoSanitizeCoverage;
1984   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1985     return Attribute::NullPointerIsValid;
1986   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
1987     return Attribute::OptimizeForDebugging;
1988   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1989     return Attribute::OptForFuzzing;
1990   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1991     return Attribute::OptimizeForSize;
1992   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1993     return Attribute::OptimizeNone;
1994   case bitc::ATTR_KIND_READ_NONE:
1995     return Attribute::ReadNone;
1996   case bitc::ATTR_KIND_READ_ONLY:
1997     return Attribute::ReadOnly;
1998   case bitc::ATTR_KIND_RETURNED:
1999     return Attribute::Returned;
2000   case bitc::ATTR_KIND_RETURNS_TWICE:
2001     return Attribute::ReturnsTwice;
2002   case bitc::ATTR_KIND_S_EXT:
2003     return Attribute::SExt;
2004   case bitc::ATTR_KIND_SPECULATABLE:
2005     return Attribute::Speculatable;
2006   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2007     return Attribute::StackAlignment;
2008   case bitc::ATTR_KIND_STACK_PROTECT:
2009     return Attribute::StackProtect;
2010   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2011     return Attribute::StackProtectReq;
2012   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2013     return Attribute::StackProtectStrong;
2014   case bitc::ATTR_KIND_SAFESTACK:
2015     return Attribute::SafeStack;
2016   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2017     return Attribute::ShadowCallStack;
2018   case bitc::ATTR_KIND_STRICT_FP:
2019     return Attribute::StrictFP;
2020   case bitc::ATTR_KIND_STRUCT_RET:
2021     return Attribute::StructRet;
2022   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2023     return Attribute::SanitizeAddress;
2024   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2025     return Attribute::SanitizeHWAddress;
2026   case bitc::ATTR_KIND_SANITIZE_THREAD:
2027     return Attribute::SanitizeThread;
2028   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2029     return Attribute::SanitizeMemory;
2030   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2031     return Attribute::SpeculativeLoadHardening;
2032   case bitc::ATTR_KIND_SWIFT_ERROR:
2033     return Attribute::SwiftError;
2034   case bitc::ATTR_KIND_SWIFT_SELF:
2035     return Attribute::SwiftSelf;
2036   case bitc::ATTR_KIND_SWIFT_ASYNC:
2037     return Attribute::SwiftAsync;
2038   case bitc::ATTR_KIND_UW_TABLE:
2039     return Attribute::UWTable;
2040   case bitc::ATTR_KIND_VSCALE_RANGE:
2041     return Attribute::VScaleRange;
2042   case bitc::ATTR_KIND_WILLRETURN:
2043     return Attribute::WillReturn;
2044   case bitc::ATTR_KIND_WRITEONLY:
2045     return Attribute::WriteOnly;
2046   case bitc::ATTR_KIND_Z_EXT:
2047     return Attribute::ZExt;
2048   case bitc::ATTR_KIND_IMMARG:
2049     return Attribute::ImmArg;
2050   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2051     return Attribute::SanitizeMemTag;
2052   case bitc::ATTR_KIND_PREALLOCATED:
2053     return Attribute::Preallocated;
2054   case bitc::ATTR_KIND_NOUNDEF:
2055     return Attribute::NoUndef;
2056   case bitc::ATTR_KIND_BYREF:
2057     return Attribute::ByRef;
2058   case bitc::ATTR_KIND_MUSTPROGRESS:
2059     return Attribute::MustProgress;
2060   case bitc::ATTR_KIND_HOT:
2061     return Attribute::Hot;
2062   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2063     return Attribute::PresplitCoroutine;
2064   case bitc::ATTR_KIND_WRITABLE:
2065     return Attribute::Writable;
2066   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2067     return Attribute::CoroDestroyOnlyWhenComplete;
2068   }
2069 }
2070 
2071 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2072                                          MaybeAlign &Alignment) {
2073   // Note: Alignment in bitcode files is incremented by 1, so that zero
2074   // can be used for default alignment.
2075   if (Exponent > Value::MaxAlignmentExponent + 1)
2076     return error("Invalid alignment value");
2077   Alignment = decodeMaybeAlign(Exponent);
2078   return Error::success();
2079 }
2080 
2081 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2082   *Kind = getAttrFromCode(Code);
2083   if (*Kind == Attribute::None)
2084     return error("Unknown attribute kind (" + Twine(Code) + ")");
2085   return Error::success();
2086 }
2087 
2088 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2089   switch (EncodedKind) {
2090   case bitc::ATTR_KIND_READ_NONE:
2091     ME &= MemoryEffects::none();
2092     return true;
2093   case bitc::ATTR_KIND_READ_ONLY:
2094     ME &= MemoryEffects::readOnly();
2095     return true;
2096   case bitc::ATTR_KIND_WRITEONLY:
2097     ME &= MemoryEffects::writeOnly();
2098     return true;
2099   case bitc::ATTR_KIND_ARGMEMONLY:
2100     ME &= MemoryEffects::argMemOnly();
2101     return true;
2102   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2103     ME &= MemoryEffects::inaccessibleMemOnly();
2104     return true;
2105   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2106     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2107     return true;
2108   default:
2109     return false;
2110   }
2111 }
2112 
2113 Error BitcodeReader::parseAttributeGroupBlock() {
2114   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2115     return Err;
2116 
2117   if (!MAttributeGroups.empty())
2118     return error("Invalid multiple blocks");
2119 
2120   SmallVector<uint64_t, 64> Record;
2121 
2122   // Read all the records.
2123   while (true) {
2124     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2125     if (!MaybeEntry)
2126       return MaybeEntry.takeError();
2127     BitstreamEntry Entry = MaybeEntry.get();
2128 
2129     switch (Entry.Kind) {
2130     case BitstreamEntry::SubBlock: // Handled for us already.
2131     case BitstreamEntry::Error:
2132       return error("Malformed block");
2133     case BitstreamEntry::EndBlock:
2134       return Error::success();
2135     case BitstreamEntry::Record:
2136       // The interesting case.
2137       break;
2138     }
2139 
2140     // Read a record.
2141     Record.clear();
2142     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2143     if (!MaybeRecord)
2144       return MaybeRecord.takeError();
2145     switch (MaybeRecord.get()) {
2146     default:  // Default behavior: ignore.
2147       break;
2148     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2149       if (Record.size() < 3)
2150         return error("Invalid grp record");
2151 
2152       uint64_t GrpID = Record[0];
2153       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2154 
2155       AttrBuilder B(Context);
2156       MemoryEffects ME = MemoryEffects::unknown();
2157       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2158         if (Record[i] == 0) {        // Enum attribute
2159           Attribute::AttrKind Kind;
2160           uint64_t EncodedKind = Record[++i];
2161           if (Idx == AttributeList::FunctionIndex &&
2162               upgradeOldMemoryAttribute(ME, EncodedKind))
2163             continue;
2164 
2165           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2166             return Err;
2167 
2168           // Upgrade old-style byval attribute to one with a type, even if it's
2169           // nullptr. We will have to insert the real type when we associate
2170           // this AttributeList with a function.
2171           if (Kind == Attribute::ByVal)
2172             B.addByValAttr(nullptr);
2173           else if (Kind == Attribute::StructRet)
2174             B.addStructRetAttr(nullptr);
2175           else if (Kind == Attribute::InAlloca)
2176             B.addInAllocaAttr(nullptr);
2177           else if (Kind == Attribute::UWTable)
2178             B.addUWTableAttr(UWTableKind::Default);
2179           else if (Attribute::isEnumAttrKind(Kind))
2180             B.addAttribute(Kind);
2181           else
2182             return error("Not an enum attribute");
2183         } else if (Record[i] == 1) { // Integer attribute
2184           Attribute::AttrKind Kind;
2185           if (Error Err = parseAttrKind(Record[++i], &Kind))
2186             return Err;
2187           if (!Attribute::isIntAttrKind(Kind))
2188             return error("Not an int attribute");
2189           if (Kind == Attribute::Alignment)
2190             B.addAlignmentAttr(Record[++i]);
2191           else if (Kind == Attribute::StackAlignment)
2192             B.addStackAlignmentAttr(Record[++i]);
2193           else if (Kind == Attribute::Dereferenceable)
2194             B.addDereferenceableAttr(Record[++i]);
2195           else if (Kind == Attribute::DereferenceableOrNull)
2196             B.addDereferenceableOrNullAttr(Record[++i]);
2197           else if (Kind == Attribute::AllocSize)
2198             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2199           else if (Kind == Attribute::VScaleRange)
2200             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2201           else if (Kind == Attribute::UWTable)
2202             B.addUWTableAttr(UWTableKind(Record[++i]));
2203           else if (Kind == Attribute::AllocKind)
2204             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2205           else if (Kind == Attribute::Memory)
2206             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2207           else if (Kind == Attribute::NoFPClass)
2208             B.addNoFPClassAttr(
2209                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2210         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2211           bool HasValue = (Record[i++] == 4);
2212           SmallString<64> KindStr;
2213           SmallString<64> ValStr;
2214 
2215           while (Record[i] != 0 && i != e)
2216             KindStr += Record[i++];
2217           assert(Record[i] == 0 && "Kind string not null terminated");
2218 
2219           if (HasValue) {
2220             // Has a value associated with it.
2221             ++i; // Skip the '0' that terminates the "kind" string.
2222             while (Record[i] != 0 && i != e)
2223               ValStr += Record[i++];
2224             assert(Record[i] == 0 && "Value string not null terminated");
2225           }
2226 
2227           B.addAttribute(KindStr.str(), ValStr.str());
2228         } else if (Record[i] == 5 || Record[i] == 6) {
2229           bool HasType = Record[i] == 6;
2230           Attribute::AttrKind Kind;
2231           if (Error Err = parseAttrKind(Record[++i], &Kind))
2232             return Err;
2233           if (!Attribute::isTypeAttrKind(Kind))
2234             return error("Not a type attribute");
2235 
2236           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2237         } else {
2238           return error("Invalid attribute group entry");
2239         }
2240       }
2241 
2242       if (ME != MemoryEffects::unknown())
2243         B.addMemoryAttr(ME);
2244 
2245       UpgradeAttributes(B);
2246       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2247       break;
2248     }
2249     }
2250   }
2251 }
2252 
2253 Error BitcodeReader::parseTypeTable() {
2254   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2255     return Err;
2256 
2257   return parseTypeTableBody();
2258 }
2259 
2260 Error BitcodeReader::parseTypeTableBody() {
2261   if (!TypeList.empty())
2262     return error("Invalid multiple blocks");
2263 
2264   SmallVector<uint64_t, 64> Record;
2265   unsigned NumRecords = 0;
2266 
2267   SmallString<64> TypeName;
2268 
2269   // Read all the records for this type table.
2270   while (true) {
2271     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2272     if (!MaybeEntry)
2273       return MaybeEntry.takeError();
2274     BitstreamEntry Entry = MaybeEntry.get();
2275 
2276     switch (Entry.Kind) {
2277     case BitstreamEntry::SubBlock: // Handled for us already.
2278     case BitstreamEntry::Error:
2279       return error("Malformed block");
2280     case BitstreamEntry::EndBlock:
2281       if (NumRecords != TypeList.size())
2282         return error("Malformed block");
2283       return Error::success();
2284     case BitstreamEntry::Record:
2285       // The interesting case.
2286       break;
2287     }
2288 
2289     // Read a record.
2290     Record.clear();
2291     Type *ResultTy = nullptr;
2292     SmallVector<unsigned> ContainedIDs;
2293     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2294     if (!MaybeRecord)
2295       return MaybeRecord.takeError();
2296     switch (MaybeRecord.get()) {
2297     default:
2298       return error("Invalid value");
2299     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2300       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2301       // type list.  This allows us to reserve space.
2302       if (Record.empty())
2303         return error("Invalid numentry record");
2304       TypeList.resize(Record[0]);
2305       continue;
2306     case bitc::TYPE_CODE_VOID:      // VOID
2307       ResultTy = Type::getVoidTy(Context);
2308       break;
2309     case bitc::TYPE_CODE_HALF:     // HALF
2310       ResultTy = Type::getHalfTy(Context);
2311       break;
2312     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2313       ResultTy = Type::getBFloatTy(Context);
2314       break;
2315     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2316       ResultTy = Type::getFloatTy(Context);
2317       break;
2318     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2319       ResultTy = Type::getDoubleTy(Context);
2320       break;
2321     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2322       ResultTy = Type::getX86_FP80Ty(Context);
2323       break;
2324     case bitc::TYPE_CODE_FP128:     // FP128
2325       ResultTy = Type::getFP128Ty(Context);
2326       break;
2327     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2328       ResultTy = Type::getPPC_FP128Ty(Context);
2329       break;
2330     case bitc::TYPE_CODE_LABEL:     // LABEL
2331       ResultTy = Type::getLabelTy(Context);
2332       break;
2333     case bitc::TYPE_CODE_METADATA:  // METADATA
2334       ResultTy = Type::getMetadataTy(Context);
2335       break;
2336     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2337       ResultTy = Type::getX86_MMXTy(Context);
2338       break;
2339     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2340       ResultTy = Type::getX86_AMXTy(Context);
2341       break;
2342     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2343       ResultTy = Type::getTokenTy(Context);
2344       break;
2345     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2346       if (Record.empty())
2347         return error("Invalid integer record");
2348 
2349       uint64_t NumBits = Record[0];
2350       if (NumBits < IntegerType::MIN_INT_BITS ||
2351           NumBits > IntegerType::MAX_INT_BITS)
2352         return error("Bitwidth for integer type out of range");
2353       ResultTy = IntegerType::get(Context, NumBits);
2354       break;
2355     }
2356     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2357                                     //          [pointee type, address space]
2358       if (Record.empty())
2359         return error("Invalid pointer record");
2360       unsigned AddressSpace = 0;
2361       if (Record.size() == 2)
2362         AddressSpace = Record[1];
2363       ResultTy = getTypeByID(Record[0]);
2364       if (!ResultTy ||
2365           !PointerType::isValidElementType(ResultTy))
2366         return error("Invalid type");
2367       ContainedIDs.push_back(Record[0]);
2368       ResultTy = PointerType::get(ResultTy, AddressSpace);
2369       break;
2370     }
2371     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2372       if (Record.size() != 1)
2373         return error("Invalid opaque pointer record");
2374       unsigned AddressSpace = Record[0];
2375       ResultTy = PointerType::get(Context, AddressSpace);
2376       break;
2377     }
2378     case bitc::TYPE_CODE_FUNCTION_OLD: {
2379       // Deprecated, but still needed to read old bitcode files.
2380       // FUNCTION: [vararg, attrid, retty, paramty x N]
2381       if (Record.size() < 3)
2382         return error("Invalid function record");
2383       SmallVector<Type*, 8> ArgTys;
2384       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2385         if (Type *T = getTypeByID(Record[i]))
2386           ArgTys.push_back(T);
2387         else
2388           break;
2389       }
2390 
2391       ResultTy = getTypeByID(Record[2]);
2392       if (!ResultTy || ArgTys.size() < Record.size()-3)
2393         return error("Invalid type");
2394 
2395       ContainedIDs.append(Record.begin() + 2, Record.end());
2396       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2397       break;
2398     }
2399     case bitc::TYPE_CODE_FUNCTION: {
2400       // FUNCTION: [vararg, retty, paramty x N]
2401       if (Record.size() < 2)
2402         return error("Invalid function record");
2403       SmallVector<Type*, 8> ArgTys;
2404       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2405         if (Type *T = getTypeByID(Record[i])) {
2406           if (!FunctionType::isValidArgumentType(T))
2407             return error("Invalid function argument type");
2408           ArgTys.push_back(T);
2409         }
2410         else
2411           break;
2412       }
2413 
2414       ResultTy = getTypeByID(Record[1]);
2415       if (!ResultTy || ArgTys.size() < Record.size()-2)
2416         return error("Invalid type");
2417 
2418       ContainedIDs.append(Record.begin() + 1, Record.end());
2419       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2420       break;
2421     }
2422     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2423       if (Record.empty())
2424         return error("Invalid anon struct record");
2425       SmallVector<Type*, 8> EltTys;
2426       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2427         if (Type *T = getTypeByID(Record[i]))
2428           EltTys.push_back(T);
2429         else
2430           break;
2431       }
2432       if (EltTys.size() != Record.size()-1)
2433         return error("Invalid type");
2434       ContainedIDs.append(Record.begin() + 1, Record.end());
2435       ResultTy = StructType::get(Context, EltTys, Record[0]);
2436       break;
2437     }
2438     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2439       if (convertToString(Record, 0, TypeName))
2440         return error("Invalid struct name record");
2441       continue;
2442 
2443     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2444       if (Record.empty())
2445         return error("Invalid named struct record");
2446 
2447       if (NumRecords >= TypeList.size())
2448         return error("Invalid TYPE table");
2449 
2450       // Check to see if this was forward referenced, if so fill in the temp.
2451       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2452       if (Res) {
2453         Res->setName(TypeName);
2454         TypeList[NumRecords] = nullptr;
2455       } else  // Otherwise, create a new struct.
2456         Res = createIdentifiedStructType(Context, TypeName);
2457       TypeName.clear();
2458 
2459       SmallVector<Type*, 8> EltTys;
2460       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2461         if (Type *T = getTypeByID(Record[i]))
2462           EltTys.push_back(T);
2463         else
2464           break;
2465       }
2466       if (EltTys.size() != Record.size()-1)
2467         return error("Invalid named struct record");
2468       Res->setBody(EltTys, Record[0]);
2469       ContainedIDs.append(Record.begin() + 1, Record.end());
2470       ResultTy = Res;
2471       break;
2472     }
2473     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2474       if (Record.size() != 1)
2475         return error("Invalid opaque type record");
2476 
2477       if (NumRecords >= TypeList.size())
2478         return error("Invalid TYPE table");
2479 
2480       // Check to see if this was forward referenced, if so fill in the temp.
2481       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2482       if (Res) {
2483         Res->setName(TypeName);
2484         TypeList[NumRecords] = nullptr;
2485       } else  // Otherwise, create a new struct with no body.
2486         Res = createIdentifiedStructType(Context, TypeName);
2487       TypeName.clear();
2488       ResultTy = Res;
2489       break;
2490     }
2491     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2492       if (Record.size() < 1)
2493         return error("Invalid target extension type record");
2494 
2495       if (NumRecords >= TypeList.size())
2496         return error("Invalid TYPE table");
2497 
2498       if (Record[0] >= Record.size())
2499         return error("Too many type parameters");
2500 
2501       unsigned NumTys = Record[0];
2502       SmallVector<Type *, 4> TypeParams;
2503       SmallVector<unsigned, 8> IntParams;
2504       for (unsigned i = 0; i < NumTys; i++) {
2505         if (Type *T = getTypeByID(Record[i + 1]))
2506           TypeParams.push_back(T);
2507         else
2508           return error("Invalid type");
2509       }
2510 
2511       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2512         if (Record[i] > UINT_MAX)
2513           return error("Integer parameter too large");
2514         IntParams.push_back(Record[i]);
2515       }
2516       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2517       TypeName.clear();
2518       break;
2519     }
2520     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2521       if (Record.size() < 2)
2522         return error("Invalid array type record");
2523       ResultTy = getTypeByID(Record[1]);
2524       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2525         return error("Invalid type");
2526       ContainedIDs.push_back(Record[1]);
2527       ResultTy = ArrayType::get(ResultTy, Record[0]);
2528       break;
2529     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2530                                     //         [numelts, eltty, scalable]
2531       if (Record.size() < 2)
2532         return error("Invalid vector type record");
2533       if (Record[0] == 0)
2534         return error("Invalid vector length");
2535       ResultTy = getTypeByID(Record[1]);
2536       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2537         return error("Invalid type");
2538       bool Scalable = Record.size() > 2 ? Record[2] : false;
2539       ContainedIDs.push_back(Record[1]);
2540       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2541       break;
2542     }
2543 
2544     if (NumRecords >= TypeList.size())
2545       return error("Invalid TYPE table");
2546     if (TypeList[NumRecords])
2547       return error(
2548           "Invalid TYPE table: Only named structs can be forward referenced");
2549     assert(ResultTy && "Didn't read a type?");
2550     TypeList[NumRecords] = ResultTy;
2551     if (!ContainedIDs.empty())
2552       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2553     ++NumRecords;
2554   }
2555 }
2556 
2557 Error BitcodeReader::parseOperandBundleTags() {
2558   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2559     return Err;
2560 
2561   if (!BundleTags.empty())
2562     return error("Invalid multiple blocks");
2563 
2564   SmallVector<uint64_t, 64> Record;
2565 
2566   while (true) {
2567     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2568     if (!MaybeEntry)
2569       return MaybeEntry.takeError();
2570     BitstreamEntry Entry = MaybeEntry.get();
2571 
2572     switch (Entry.Kind) {
2573     case BitstreamEntry::SubBlock: // Handled for us already.
2574     case BitstreamEntry::Error:
2575       return error("Malformed block");
2576     case BitstreamEntry::EndBlock:
2577       return Error::success();
2578     case BitstreamEntry::Record:
2579       // The interesting case.
2580       break;
2581     }
2582 
2583     // Tags are implicitly mapped to integers by their order.
2584 
2585     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2586     if (!MaybeRecord)
2587       return MaybeRecord.takeError();
2588     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2589       return error("Invalid operand bundle record");
2590 
2591     // OPERAND_BUNDLE_TAG: [strchr x N]
2592     BundleTags.emplace_back();
2593     if (convertToString(Record, 0, BundleTags.back()))
2594       return error("Invalid operand bundle record");
2595     Record.clear();
2596   }
2597 }
2598 
2599 Error BitcodeReader::parseSyncScopeNames() {
2600   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2601     return Err;
2602 
2603   if (!SSIDs.empty())
2604     return error("Invalid multiple synchronization scope names blocks");
2605 
2606   SmallVector<uint64_t, 64> Record;
2607   while (true) {
2608     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2609     if (!MaybeEntry)
2610       return MaybeEntry.takeError();
2611     BitstreamEntry Entry = MaybeEntry.get();
2612 
2613     switch (Entry.Kind) {
2614     case BitstreamEntry::SubBlock: // Handled for us already.
2615     case BitstreamEntry::Error:
2616       return error("Malformed block");
2617     case BitstreamEntry::EndBlock:
2618       if (SSIDs.empty())
2619         return error("Invalid empty synchronization scope names block");
2620       return Error::success();
2621     case BitstreamEntry::Record:
2622       // The interesting case.
2623       break;
2624     }
2625 
2626     // Synchronization scope names are implicitly mapped to synchronization
2627     // scope IDs by their order.
2628 
2629     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2630     if (!MaybeRecord)
2631       return MaybeRecord.takeError();
2632     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2633       return error("Invalid sync scope record");
2634 
2635     SmallString<16> SSN;
2636     if (convertToString(Record, 0, SSN))
2637       return error("Invalid sync scope record");
2638 
2639     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2640     Record.clear();
2641   }
2642 }
2643 
2644 /// Associate a value with its name from the given index in the provided record.
2645 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2646                                              unsigned NameIndex, Triple &TT) {
2647   SmallString<128> ValueName;
2648   if (convertToString(Record, NameIndex, ValueName))
2649     return error("Invalid record");
2650   unsigned ValueID = Record[0];
2651   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2652     return error("Invalid record");
2653   Value *V = ValueList[ValueID];
2654 
2655   StringRef NameStr(ValueName.data(), ValueName.size());
2656   if (NameStr.contains(0))
2657     return error("Invalid value name");
2658   V->setName(NameStr);
2659   auto *GO = dyn_cast<GlobalObject>(V);
2660   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2661     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2662   return V;
2663 }
2664 
2665 /// Helper to note and return the current location, and jump to the given
2666 /// offset.
2667 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2668                                                  BitstreamCursor &Stream) {
2669   // Save the current parsing location so we can jump back at the end
2670   // of the VST read.
2671   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2672   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2673     return std::move(JumpFailed);
2674   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2675   if (!MaybeEntry)
2676     return MaybeEntry.takeError();
2677   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2678       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2679     return error("Expected value symbol table subblock");
2680   return CurrentBit;
2681 }
2682 
2683 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2684                                             Function *F,
2685                                             ArrayRef<uint64_t> Record) {
2686   // Note that we subtract 1 here because the offset is relative to one word
2687   // before the start of the identification or module block, which was
2688   // historically always the start of the regular bitcode header.
2689   uint64_t FuncWordOffset = Record[1] - 1;
2690   uint64_t FuncBitOffset = FuncWordOffset * 32;
2691   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2692   // Set the LastFunctionBlockBit to point to the last function block.
2693   // Later when parsing is resumed after function materialization,
2694   // we can simply skip that last function block.
2695   if (FuncBitOffset > LastFunctionBlockBit)
2696     LastFunctionBlockBit = FuncBitOffset;
2697 }
2698 
2699 /// Read a new-style GlobalValue symbol table.
2700 Error BitcodeReader::parseGlobalValueSymbolTable() {
2701   unsigned FuncBitcodeOffsetDelta =
2702       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2703 
2704   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2705     return Err;
2706 
2707   SmallVector<uint64_t, 64> Record;
2708   while (true) {
2709     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2710     if (!MaybeEntry)
2711       return MaybeEntry.takeError();
2712     BitstreamEntry Entry = MaybeEntry.get();
2713 
2714     switch (Entry.Kind) {
2715     case BitstreamEntry::SubBlock:
2716     case BitstreamEntry::Error:
2717       return error("Malformed block");
2718     case BitstreamEntry::EndBlock:
2719       return Error::success();
2720     case BitstreamEntry::Record:
2721       break;
2722     }
2723 
2724     Record.clear();
2725     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2726     if (!MaybeRecord)
2727       return MaybeRecord.takeError();
2728     switch (MaybeRecord.get()) {
2729     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2730       unsigned ValueID = Record[0];
2731       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2732         return error("Invalid value reference in symbol table");
2733       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2734                               cast<Function>(ValueList[ValueID]), Record);
2735       break;
2736     }
2737     }
2738   }
2739 }
2740 
2741 /// Parse the value symbol table at either the current parsing location or
2742 /// at the given bit offset if provided.
2743 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2744   uint64_t CurrentBit;
2745   // Pass in the Offset to distinguish between calling for the module-level
2746   // VST (where we want to jump to the VST offset) and the function-level
2747   // VST (where we don't).
2748   if (Offset > 0) {
2749     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2750     if (!MaybeCurrentBit)
2751       return MaybeCurrentBit.takeError();
2752     CurrentBit = MaybeCurrentBit.get();
2753     // If this module uses a string table, read this as a module-level VST.
2754     if (UseStrtab) {
2755       if (Error Err = parseGlobalValueSymbolTable())
2756         return Err;
2757       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2758         return JumpFailed;
2759       return Error::success();
2760     }
2761     // Otherwise, the VST will be in a similar format to a function-level VST,
2762     // and will contain symbol names.
2763   }
2764 
2765   // Compute the delta between the bitcode indices in the VST (the word offset
2766   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2767   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2768   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2769   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2770   // just before entering the VST subblock because: 1) the EnterSubBlock
2771   // changes the AbbrevID width; 2) the VST block is nested within the same
2772   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2773   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2774   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2775   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2776   unsigned FuncBitcodeOffsetDelta =
2777       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2778 
2779   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2780     return Err;
2781 
2782   SmallVector<uint64_t, 64> Record;
2783 
2784   Triple TT(TheModule->getTargetTriple());
2785 
2786   // Read all the records for this value table.
2787   SmallString<128> ValueName;
2788 
2789   while (true) {
2790     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2791     if (!MaybeEntry)
2792       return MaybeEntry.takeError();
2793     BitstreamEntry Entry = MaybeEntry.get();
2794 
2795     switch (Entry.Kind) {
2796     case BitstreamEntry::SubBlock: // Handled for us already.
2797     case BitstreamEntry::Error:
2798       return error("Malformed block");
2799     case BitstreamEntry::EndBlock:
2800       if (Offset > 0)
2801         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2802           return JumpFailed;
2803       return Error::success();
2804     case BitstreamEntry::Record:
2805       // The interesting case.
2806       break;
2807     }
2808 
2809     // Read a record.
2810     Record.clear();
2811     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2812     if (!MaybeRecord)
2813       return MaybeRecord.takeError();
2814     switch (MaybeRecord.get()) {
2815     default:  // Default behavior: unknown type.
2816       break;
2817     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2818       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2819       if (Error Err = ValOrErr.takeError())
2820         return Err;
2821       ValOrErr.get();
2822       break;
2823     }
2824     case bitc::VST_CODE_FNENTRY: {
2825       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2826       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2827       if (Error Err = ValOrErr.takeError())
2828         return Err;
2829       Value *V = ValOrErr.get();
2830 
2831       // Ignore function offsets emitted for aliases of functions in older
2832       // versions of LLVM.
2833       if (auto *F = dyn_cast<Function>(V))
2834         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2835       break;
2836     }
2837     case bitc::VST_CODE_BBENTRY: {
2838       if (convertToString(Record, 1, ValueName))
2839         return error("Invalid bbentry record");
2840       BasicBlock *BB = getBasicBlock(Record[0]);
2841       if (!BB)
2842         return error("Invalid bbentry record");
2843 
2844       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2845       ValueName.clear();
2846       break;
2847     }
2848     }
2849   }
2850 }
2851 
2852 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2853 /// encoding.
2854 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2855   if ((V & 1) == 0)
2856     return V >> 1;
2857   if (V != 1)
2858     return -(V >> 1);
2859   // There is no such thing as -0 with integers.  "-0" really means MININT.
2860   return 1ULL << 63;
2861 }
2862 
2863 /// Resolve all of the initializers for global values and aliases that we can.
2864 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2865   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2866   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2867   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2868 
2869   GlobalInitWorklist.swap(GlobalInits);
2870   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2871   FunctionOperandWorklist.swap(FunctionOperands);
2872 
2873   while (!GlobalInitWorklist.empty()) {
2874     unsigned ValID = GlobalInitWorklist.back().second;
2875     if (ValID >= ValueList.size()) {
2876       // Not ready to resolve this yet, it requires something later in the file.
2877       GlobalInits.push_back(GlobalInitWorklist.back());
2878     } else {
2879       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2880       if (!MaybeC)
2881         return MaybeC.takeError();
2882       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2883     }
2884     GlobalInitWorklist.pop_back();
2885   }
2886 
2887   while (!IndirectSymbolInitWorklist.empty()) {
2888     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2889     if (ValID >= ValueList.size()) {
2890       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2891     } else {
2892       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2893       if (!MaybeC)
2894         return MaybeC.takeError();
2895       Constant *C = MaybeC.get();
2896       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2897       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2898         if (C->getType() != GV->getType())
2899           return error("Alias and aliasee types don't match");
2900         GA->setAliasee(C);
2901       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2902         Type *ResolverFTy =
2903             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2904         // Transparently fix up the type for compatibility with older bitcode
2905         GI->setResolver(ConstantExpr::getBitCast(
2906             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2907       } else {
2908         return error("Expected an alias or an ifunc");
2909       }
2910     }
2911     IndirectSymbolInitWorklist.pop_back();
2912   }
2913 
2914   while (!FunctionOperandWorklist.empty()) {
2915     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2916     if (Info.PersonalityFn) {
2917       unsigned ValID = Info.PersonalityFn - 1;
2918       if (ValID < ValueList.size()) {
2919         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2920         if (!MaybeC)
2921           return MaybeC.takeError();
2922         Info.F->setPersonalityFn(MaybeC.get());
2923         Info.PersonalityFn = 0;
2924       }
2925     }
2926     if (Info.Prefix) {
2927       unsigned ValID = Info.Prefix - 1;
2928       if (ValID < ValueList.size()) {
2929         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2930         if (!MaybeC)
2931           return MaybeC.takeError();
2932         Info.F->setPrefixData(MaybeC.get());
2933         Info.Prefix = 0;
2934       }
2935     }
2936     if (Info.Prologue) {
2937       unsigned ValID = Info.Prologue - 1;
2938       if (ValID < ValueList.size()) {
2939         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2940         if (!MaybeC)
2941           return MaybeC.takeError();
2942         Info.F->setPrologueData(MaybeC.get());
2943         Info.Prologue = 0;
2944       }
2945     }
2946     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2947       FunctionOperands.push_back(Info);
2948     FunctionOperandWorklist.pop_back();
2949   }
2950 
2951   return Error::success();
2952 }
2953 
2954 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2955   SmallVector<uint64_t, 8> Words(Vals.size());
2956   transform(Vals, Words.begin(),
2957                  BitcodeReader::decodeSignRotatedValue);
2958 
2959   return APInt(TypeBits, Words);
2960 }
2961 
2962 Error BitcodeReader::parseConstants() {
2963   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2964     return Err;
2965 
2966   SmallVector<uint64_t, 64> Record;
2967 
2968   // Read all the records for this value table.
2969   Type *CurTy = Type::getInt32Ty(Context);
2970   unsigned Int32TyID = getVirtualTypeID(CurTy);
2971   unsigned CurTyID = Int32TyID;
2972   Type *CurElemTy = nullptr;
2973   unsigned NextCstNo = ValueList.size();
2974 
2975   while (true) {
2976     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2977     if (!MaybeEntry)
2978       return MaybeEntry.takeError();
2979     BitstreamEntry Entry = MaybeEntry.get();
2980 
2981     switch (Entry.Kind) {
2982     case BitstreamEntry::SubBlock: // Handled for us already.
2983     case BitstreamEntry::Error:
2984       return error("Malformed block");
2985     case BitstreamEntry::EndBlock:
2986       if (NextCstNo != ValueList.size())
2987         return error("Invalid constant reference");
2988       return Error::success();
2989     case BitstreamEntry::Record:
2990       // The interesting case.
2991       break;
2992     }
2993 
2994     // Read a record.
2995     Record.clear();
2996     Type *VoidType = Type::getVoidTy(Context);
2997     Value *V = nullptr;
2998     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2999     if (!MaybeBitCode)
3000       return MaybeBitCode.takeError();
3001     switch (unsigned BitCode = MaybeBitCode.get()) {
3002     default:  // Default behavior: unknown constant
3003     case bitc::CST_CODE_UNDEF:     // UNDEF
3004       V = UndefValue::get(CurTy);
3005       break;
3006     case bitc::CST_CODE_POISON:    // POISON
3007       V = PoisonValue::get(CurTy);
3008       break;
3009     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3010       if (Record.empty())
3011         return error("Invalid settype record");
3012       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3013         return error("Invalid settype record");
3014       if (TypeList[Record[0]] == VoidType)
3015         return error("Invalid constant type");
3016       CurTyID = Record[0];
3017       CurTy = TypeList[CurTyID];
3018       CurElemTy = getPtrElementTypeByID(CurTyID);
3019       continue;  // Skip the ValueList manipulation.
3020     case bitc::CST_CODE_NULL:      // NULL
3021       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3022         return error("Invalid type for a constant null value");
3023       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3024         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3025           return error("Invalid type for a constant null value");
3026       V = Constant::getNullValue(CurTy);
3027       break;
3028     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3029       if (!CurTy->isIntegerTy() || Record.empty())
3030         return error("Invalid integer const record");
3031       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3032       break;
3033     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3034       if (!CurTy->isIntegerTy() || Record.empty())
3035         return error("Invalid wide integer const record");
3036 
3037       APInt VInt =
3038           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3039       V = ConstantInt::get(Context, VInt);
3040 
3041       break;
3042     }
3043     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3044       if (Record.empty())
3045         return error("Invalid float const record");
3046       if (CurTy->isHalfTy())
3047         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3048                                              APInt(16, (uint16_t)Record[0])));
3049       else if (CurTy->isBFloatTy())
3050         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3051                                              APInt(16, (uint32_t)Record[0])));
3052       else if (CurTy->isFloatTy())
3053         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3054                                              APInt(32, (uint32_t)Record[0])));
3055       else if (CurTy->isDoubleTy())
3056         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3057                                              APInt(64, Record[0])));
3058       else if (CurTy->isX86_FP80Ty()) {
3059         // Bits are not stored the same way as a normal i80 APInt, compensate.
3060         uint64_t Rearrange[2];
3061         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3062         Rearrange[1] = Record[0] >> 48;
3063         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3064                                              APInt(80, Rearrange)));
3065       } else if (CurTy->isFP128Ty())
3066         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3067                                              APInt(128, Record)));
3068       else if (CurTy->isPPC_FP128Ty())
3069         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3070                                              APInt(128, Record)));
3071       else
3072         V = UndefValue::get(CurTy);
3073       break;
3074     }
3075 
3076     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3077       if (Record.empty())
3078         return error("Invalid aggregate record");
3079 
3080       unsigned Size = Record.size();
3081       SmallVector<unsigned, 16> Elts;
3082       for (unsigned i = 0; i != Size; ++i)
3083         Elts.push_back(Record[i]);
3084 
3085       if (isa<StructType>(CurTy)) {
3086         V = BitcodeConstant::create(
3087             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3088       } else if (isa<ArrayType>(CurTy)) {
3089         V = BitcodeConstant::create(Alloc, CurTy,
3090                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3091       } else if (isa<VectorType>(CurTy)) {
3092         V = BitcodeConstant::create(
3093             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3094       } else {
3095         V = UndefValue::get(CurTy);
3096       }
3097       break;
3098     }
3099     case bitc::CST_CODE_STRING:    // STRING: [values]
3100     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3101       if (Record.empty())
3102         return error("Invalid string record");
3103 
3104       SmallString<16> Elts(Record.begin(), Record.end());
3105       V = ConstantDataArray::getString(Context, Elts,
3106                                        BitCode == bitc::CST_CODE_CSTRING);
3107       break;
3108     }
3109     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3110       if (Record.empty())
3111         return error("Invalid data record");
3112 
3113       Type *EltTy;
3114       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3115         EltTy = Array->getElementType();
3116       else
3117         EltTy = cast<VectorType>(CurTy)->getElementType();
3118       if (EltTy->isIntegerTy(8)) {
3119         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3120         if (isa<VectorType>(CurTy))
3121           V = ConstantDataVector::get(Context, Elts);
3122         else
3123           V = ConstantDataArray::get(Context, Elts);
3124       } else if (EltTy->isIntegerTy(16)) {
3125         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3126         if (isa<VectorType>(CurTy))
3127           V = ConstantDataVector::get(Context, Elts);
3128         else
3129           V = ConstantDataArray::get(Context, Elts);
3130       } else if (EltTy->isIntegerTy(32)) {
3131         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3132         if (isa<VectorType>(CurTy))
3133           V = ConstantDataVector::get(Context, Elts);
3134         else
3135           V = ConstantDataArray::get(Context, Elts);
3136       } else if (EltTy->isIntegerTy(64)) {
3137         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3138         if (isa<VectorType>(CurTy))
3139           V = ConstantDataVector::get(Context, Elts);
3140         else
3141           V = ConstantDataArray::get(Context, Elts);
3142       } else if (EltTy->isHalfTy()) {
3143         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3144         if (isa<VectorType>(CurTy))
3145           V = ConstantDataVector::getFP(EltTy, Elts);
3146         else
3147           V = ConstantDataArray::getFP(EltTy, Elts);
3148       } else if (EltTy->isBFloatTy()) {
3149         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3150         if (isa<VectorType>(CurTy))
3151           V = ConstantDataVector::getFP(EltTy, Elts);
3152         else
3153           V = ConstantDataArray::getFP(EltTy, Elts);
3154       } else if (EltTy->isFloatTy()) {
3155         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3156         if (isa<VectorType>(CurTy))
3157           V = ConstantDataVector::getFP(EltTy, Elts);
3158         else
3159           V = ConstantDataArray::getFP(EltTy, Elts);
3160       } else if (EltTy->isDoubleTy()) {
3161         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3162         if (isa<VectorType>(CurTy))
3163           V = ConstantDataVector::getFP(EltTy, Elts);
3164         else
3165           V = ConstantDataArray::getFP(EltTy, Elts);
3166       } else {
3167         return error("Invalid type for value");
3168       }
3169       break;
3170     }
3171     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3172       if (Record.size() < 2)
3173         return error("Invalid unary op constexpr record");
3174       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3175       if (Opc < 0) {
3176         V = UndefValue::get(CurTy);  // Unknown unop.
3177       } else {
3178         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3179       }
3180       break;
3181     }
3182     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3183       if (Record.size() < 3)
3184         return error("Invalid binary op constexpr record");
3185       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3186       if (Opc < 0) {
3187         V = UndefValue::get(CurTy);  // Unknown binop.
3188       } else {
3189         uint8_t Flags = 0;
3190         if (Record.size() >= 4) {
3191           if (Opc == Instruction::Add ||
3192               Opc == Instruction::Sub ||
3193               Opc == Instruction::Mul ||
3194               Opc == Instruction::Shl) {
3195             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3196               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3197             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3198               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3199           } else if (Opc == Instruction::SDiv ||
3200                      Opc == Instruction::UDiv ||
3201                      Opc == Instruction::LShr ||
3202                      Opc == Instruction::AShr) {
3203             if (Record[3] & (1 << bitc::PEO_EXACT))
3204               Flags |= PossiblyExactOperator::IsExact;
3205           }
3206         }
3207         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3208                                     {(unsigned)Record[1], (unsigned)Record[2]});
3209       }
3210       break;
3211     }
3212     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3213       if (Record.size() < 3)
3214         return error("Invalid cast constexpr record");
3215       int Opc = getDecodedCastOpcode(Record[0]);
3216       if (Opc < 0) {
3217         V = UndefValue::get(CurTy);  // Unknown cast.
3218       } else {
3219         unsigned OpTyID = Record[1];
3220         Type *OpTy = getTypeByID(OpTyID);
3221         if (!OpTy)
3222           return error("Invalid cast constexpr record");
3223         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3224       }
3225       break;
3226     }
3227     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3228     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3229     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3230                                                      // operands]
3231       if (Record.size() < 2)
3232         return error("Constant GEP record must have at least two elements");
3233       unsigned OpNum = 0;
3234       Type *PointeeType = nullptr;
3235       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3236           Record.size() % 2)
3237         PointeeType = getTypeByID(Record[OpNum++]);
3238 
3239       bool InBounds = false;
3240       std::optional<unsigned> InRangeIndex;
3241       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3242         uint64_t Op = Record[OpNum++];
3243         InBounds = Op & 1;
3244         InRangeIndex = Op >> 1;
3245       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3246         InBounds = true;
3247 
3248       SmallVector<unsigned, 16> Elts;
3249       unsigned BaseTypeID = Record[OpNum];
3250       while (OpNum != Record.size()) {
3251         unsigned ElTyID = Record[OpNum++];
3252         Type *ElTy = getTypeByID(ElTyID);
3253         if (!ElTy)
3254           return error("Invalid getelementptr constexpr record");
3255         Elts.push_back(Record[OpNum++]);
3256       }
3257 
3258       if (Elts.size() < 1)
3259         return error("Invalid gep with no operands");
3260 
3261       Type *BaseType = getTypeByID(BaseTypeID);
3262       if (isa<VectorType>(BaseType)) {
3263         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3264         BaseType = getTypeByID(BaseTypeID);
3265       }
3266 
3267       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3268       if (!OrigPtrTy)
3269         return error("GEP base operand must be pointer or vector of pointer");
3270 
3271       if (!PointeeType) {
3272         PointeeType = getPtrElementTypeByID(BaseTypeID);
3273         if (!PointeeType)
3274           return error("Missing element type for old-style constant GEP");
3275       }
3276 
3277       V = BitcodeConstant::create(Alloc, CurTy,
3278                                   {Instruction::GetElementPtr, InBounds,
3279                                    InRangeIndex.value_or(-1), PointeeType},
3280                                   Elts);
3281       break;
3282     }
3283     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3284       if (Record.size() < 3)
3285         return error("Invalid select constexpr record");
3286 
3287       V = BitcodeConstant::create(
3288           Alloc, CurTy, Instruction::Select,
3289           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3290       break;
3291     }
3292     case bitc::CST_CODE_CE_EXTRACTELT
3293         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3294       if (Record.size() < 3)
3295         return error("Invalid extractelement constexpr record");
3296       unsigned OpTyID = Record[0];
3297       VectorType *OpTy =
3298         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3299       if (!OpTy)
3300         return error("Invalid extractelement constexpr record");
3301       unsigned IdxRecord;
3302       if (Record.size() == 4) {
3303         unsigned IdxTyID = Record[2];
3304         Type *IdxTy = getTypeByID(IdxTyID);
3305         if (!IdxTy)
3306           return error("Invalid extractelement constexpr record");
3307         IdxRecord = Record[3];
3308       } else {
3309         // Deprecated, but still needed to read old bitcode files.
3310         IdxRecord = Record[2];
3311       }
3312       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3313                                   {(unsigned)Record[1], IdxRecord});
3314       break;
3315     }
3316     case bitc::CST_CODE_CE_INSERTELT
3317         : { // CE_INSERTELT: [opval, opval, opty, opval]
3318       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3319       if (Record.size() < 3 || !OpTy)
3320         return error("Invalid insertelement constexpr record");
3321       unsigned IdxRecord;
3322       if (Record.size() == 4) {
3323         unsigned IdxTyID = Record[2];
3324         Type *IdxTy = getTypeByID(IdxTyID);
3325         if (!IdxTy)
3326           return error("Invalid insertelement constexpr record");
3327         IdxRecord = Record[3];
3328       } else {
3329         // Deprecated, but still needed to read old bitcode files.
3330         IdxRecord = Record[2];
3331       }
3332       V = BitcodeConstant::create(
3333           Alloc, CurTy, Instruction::InsertElement,
3334           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3335       break;
3336     }
3337     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3338       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3339       if (Record.size() < 3 || !OpTy)
3340         return error("Invalid shufflevector constexpr record");
3341       V = BitcodeConstant::create(
3342           Alloc, CurTy, Instruction::ShuffleVector,
3343           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3344       break;
3345     }
3346     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3347       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3348       VectorType *OpTy =
3349         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3350       if (Record.size() < 4 || !RTy || !OpTy)
3351         return error("Invalid shufflevector constexpr record");
3352       V = BitcodeConstant::create(
3353           Alloc, CurTy, Instruction::ShuffleVector,
3354           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3355       break;
3356     }
3357     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3358       if (Record.size() < 4)
3359         return error("Invalid cmp constexpt record");
3360       unsigned OpTyID = Record[0];
3361       Type *OpTy = getTypeByID(OpTyID);
3362       if (!OpTy)
3363         return error("Invalid cmp constexpr record");
3364       V = BitcodeConstant::create(
3365           Alloc, CurTy,
3366           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3367                                               : Instruction::ICmp),
3368            (uint8_t)Record[3]},
3369           {(unsigned)Record[1], (unsigned)Record[2]});
3370       break;
3371     }
3372     // This maintains backward compatibility, pre-asm dialect keywords.
3373     // Deprecated, but still needed to read old bitcode files.
3374     case bitc::CST_CODE_INLINEASM_OLD: {
3375       if (Record.size() < 2)
3376         return error("Invalid inlineasm record");
3377       std::string AsmStr, ConstrStr;
3378       bool HasSideEffects = Record[0] & 1;
3379       bool IsAlignStack = Record[0] >> 1;
3380       unsigned AsmStrSize = Record[1];
3381       if (2+AsmStrSize >= Record.size())
3382         return error("Invalid inlineasm record");
3383       unsigned ConstStrSize = Record[2+AsmStrSize];
3384       if (3+AsmStrSize+ConstStrSize > Record.size())
3385         return error("Invalid inlineasm record");
3386 
3387       for (unsigned i = 0; i != AsmStrSize; ++i)
3388         AsmStr += (char)Record[2+i];
3389       for (unsigned i = 0; i != ConstStrSize; ++i)
3390         ConstrStr += (char)Record[3+AsmStrSize+i];
3391       UpgradeInlineAsmString(&AsmStr);
3392       if (!CurElemTy)
3393         return error("Missing element type for old-style inlineasm");
3394       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3395                          HasSideEffects, IsAlignStack);
3396       break;
3397     }
3398     // This version adds support for the asm dialect keywords (e.g.,
3399     // inteldialect).
3400     case bitc::CST_CODE_INLINEASM_OLD2: {
3401       if (Record.size() < 2)
3402         return error("Invalid inlineasm record");
3403       std::string AsmStr, ConstrStr;
3404       bool HasSideEffects = Record[0] & 1;
3405       bool IsAlignStack = (Record[0] >> 1) & 1;
3406       unsigned AsmDialect = Record[0] >> 2;
3407       unsigned AsmStrSize = Record[1];
3408       if (2+AsmStrSize >= Record.size())
3409         return error("Invalid inlineasm record");
3410       unsigned ConstStrSize = Record[2+AsmStrSize];
3411       if (3+AsmStrSize+ConstStrSize > Record.size())
3412         return error("Invalid inlineasm record");
3413 
3414       for (unsigned i = 0; i != AsmStrSize; ++i)
3415         AsmStr += (char)Record[2+i];
3416       for (unsigned i = 0; i != ConstStrSize; ++i)
3417         ConstrStr += (char)Record[3+AsmStrSize+i];
3418       UpgradeInlineAsmString(&AsmStr);
3419       if (!CurElemTy)
3420         return error("Missing element type for old-style inlineasm");
3421       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3422                          HasSideEffects, IsAlignStack,
3423                          InlineAsm::AsmDialect(AsmDialect));
3424       break;
3425     }
3426     // This version adds support for the unwind keyword.
3427     case bitc::CST_CODE_INLINEASM_OLD3: {
3428       if (Record.size() < 2)
3429         return error("Invalid inlineasm record");
3430       unsigned OpNum = 0;
3431       std::string AsmStr, ConstrStr;
3432       bool HasSideEffects = Record[OpNum] & 1;
3433       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3434       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3435       bool CanThrow = (Record[OpNum] >> 3) & 1;
3436       ++OpNum;
3437       unsigned AsmStrSize = Record[OpNum];
3438       ++OpNum;
3439       if (OpNum + AsmStrSize >= Record.size())
3440         return error("Invalid inlineasm record");
3441       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3442       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3443         return error("Invalid inlineasm record");
3444 
3445       for (unsigned i = 0; i != AsmStrSize; ++i)
3446         AsmStr += (char)Record[OpNum + i];
3447       ++OpNum;
3448       for (unsigned i = 0; i != ConstStrSize; ++i)
3449         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3450       UpgradeInlineAsmString(&AsmStr);
3451       if (!CurElemTy)
3452         return error("Missing element type for old-style inlineasm");
3453       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3454                          HasSideEffects, IsAlignStack,
3455                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3456       break;
3457     }
3458     // This version adds explicit function type.
3459     case bitc::CST_CODE_INLINEASM: {
3460       if (Record.size() < 3)
3461         return error("Invalid inlineasm record");
3462       unsigned OpNum = 0;
3463       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3464       ++OpNum;
3465       if (!FnTy)
3466         return error("Invalid inlineasm record");
3467       std::string AsmStr, ConstrStr;
3468       bool HasSideEffects = Record[OpNum] & 1;
3469       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3470       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3471       bool CanThrow = (Record[OpNum] >> 3) & 1;
3472       ++OpNum;
3473       unsigned AsmStrSize = Record[OpNum];
3474       ++OpNum;
3475       if (OpNum + AsmStrSize >= Record.size())
3476         return error("Invalid inlineasm record");
3477       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3478       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3479         return error("Invalid inlineasm record");
3480 
3481       for (unsigned i = 0; i != AsmStrSize; ++i)
3482         AsmStr += (char)Record[OpNum + i];
3483       ++OpNum;
3484       for (unsigned i = 0; i != ConstStrSize; ++i)
3485         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3486       UpgradeInlineAsmString(&AsmStr);
3487       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3488                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3489       break;
3490     }
3491     case bitc::CST_CODE_BLOCKADDRESS:{
3492       if (Record.size() < 3)
3493         return error("Invalid blockaddress record");
3494       unsigned FnTyID = Record[0];
3495       Type *FnTy = getTypeByID(FnTyID);
3496       if (!FnTy)
3497         return error("Invalid blockaddress record");
3498       V = BitcodeConstant::create(
3499           Alloc, CurTy,
3500           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3501           Record[1]);
3502       break;
3503     }
3504     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3505       if (Record.size() < 2)
3506         return error("Invalid dso_local record");
3507       unsigned GVTyID = Record[0];
3508       Type *GVTy = getTypeByID(GVTyID);
3509       if (!GVTy)
3510         return error("Invalid dso_local record");
3511       V = BitcodeConstant::create(
3512           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3513       break;
3514     }
3515     case bitc::CST_CODE_NO_CFI_VALUE: {
3516       if (Record.size() < 2)
3517         return error("Invalid no_cfi record");
3518       unsigned GVTyID = Record[0];
3519       Type *GVTy = getTypeByID(GVTyID);
3520       if (!GVTy)
3521         return error("Invalid no_cfi record");
3522       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3523                                   Record[1]);
3524       break;
3525     }
3526     }
3527 
3528     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3529     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3530       return Err;
3531     ++NextCstNo;
3532   }
3533 }
3534 
3535 Error BitcodeReader::parseUseLists() {
3536   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3537     return Err;
3538 
3539   // Read all the records.
3540   SmallVector<uint64_t, 64> Record;
3541 
3542   while (true) {
3543     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3544     if (!MaybeEntry)
3545       return MaybeEntry.takeError();
3546     BitstreamEntry Entry = MaybeEntry.get();
3547 
3548     switch (Entry.Kind) {
3549     case BitstreamEntry::SubBlock: // Handled for us already.
3550     case BitstreamEntry::Error:
3551       return error("Malformed block");
3552     case BitstreamEntry::EndBlock:
3553       return Error::success();
3554     case BitstreamEntry::Record:
3555       // The interesting case.
3556       break;
3557     }
3558 
3559     // Read a use list record.
3560     Record.clear();
3561     bool IsBB = false;
3562     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3563     if (!MaybeRecord)
3564       return MaybeRecord.takeError();
3565     switch (MaybeRecord.get()) {
3566     default:  // Default behavior: unknown type.
3567       break;
3568     case bitc::USELIST_CODE_BB:
3569       IsBB = true;
3570       [[fallthrough]];
3571     case bitc::USELIST_CODE_DEFAULT: {
3572       unsigned RecordLength = Record.size();
3573       if (RecordLength < 3)
3574         // Records should have at least an ID and two indexes.
3575         return error("Invalid record");
3576       unsigned ID = Record.pop_back_val();
3577 
3578       Value *V;
3579       if (IsBB) {
3580         assert(ID < FunctionBBs.size() && "Basic block not found");
3581         V = FunctionBBs[ID];
3582       } else
3583         V = ValueList[ID];
3584       unsigned NumUses = 0;
3585       SmallDenseMap<const Use *, unsigned, 16> Order;
3586       for (const Use &U : V->materialized_uses()) {
3587         if (++NumUses > Record.size())
3588           break;
3589         Order[&U] = Record[NumUses - 1];
3590       }
3591       if (Order.size() != Record.size() || NumUses > Record.size())
3592         // Mismatches can happen if the functions are being materialized lazily
3593         // (out-of-order), or a value has been upgraded.
3594         break;
3595 
3596       V->sortUseList([&](const Use &L, const Use &R) {
3597         return Order.lookup(&L) < Order.lookup(&R);
3598       });
3599       break;
3600     }
3601     }
3602   }
3603 }
3604 
3605 /// When we see the block for metadata, remember where it is and then skip it.
3606 /// This lets us lazily deserialize the metadata.
3607 Error BitcodeReader::rememberAndSkipMetadata() {
3608   // Save the current stream state.
3609   uint64_t CurBit = Stream.GetCurrentBitNo();
3610   DeferredMetadataInfo.push_back(CurBit);
3611 
3612   // Skip over the block for now.
3613   if (Error Err = Stream.SkipBlock())
3614     return Err;
3615   return Error::success();
3616 }
3617 
3618 Error BitcodeReader::materializeMetadata() {
3619   for (uint64_t BitPos : DeferredMetadataInfo) {
3620     // Move the bit stream to the saved position.
3621     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3622       return JumpFailed;
3623     if (Error Err = MDLoader->parseModuleMetadata())
3624       return Err;
3625   }
3626 
3627   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3628   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3629   // multiple times.
3630   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3631     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3632       NamedMDNode *LinkerOpts =
3633           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3634       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3635         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3636     }
3637   }
3638 
3639   DeferredMetadataInfo.clear();
3640   return Error::success();
3641 }
3642 
3643 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3644 
3645 /// When we see the block for a function body, remember where it is and then
3646 /// skip it.  This lets us lazily deserialize the functions.
3647 Error BitcodeReader::rememberAndSkipFunctionBody() {
3648   // Get the function we are talking about.
3649   if (FunctionsWithBodies.empty())
3650     return error("Insufficient function protos");
3651 
3652   Function *Fn = FunctionsWithBodies.back();
3653   FunctionsWithBodies.pop_back();
3654 
3655   // Save the current stream state.
3656   uint64_t CurBit = Stream.GetCurrentBitNo();
3657   assert(
3658       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3659       "Mismatch between VST and scanned function offsets");
3660   DeferredFunctionInfo[Fn] = CurBit;
3661 
3662   // Skip over the function block for now.
3663   if (Error Err = Stream.SkipBlock())
3664     return Err;
3665   return Error::success();
3666 }
3667 
3668 Error BitcodeReader::globalCleanup() {
3669   // Patch the initializers for globals and aliases up.
3670   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3671     return Err;
3672   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3673     return error("Malformed global initializer set");
3674 
3675   // Look for intrinsic functions which need to be upgraded at some point
3676   // and functions that need to have their function attributes upgraded.
3677   for (Function &F : *TheModule) {
3678     MDLoader->upgradeDebugIntrinsics(F);
3679     Function *NewFn;
3680     if (UpgradeIntrinsicFunction(&F, NewFn))
3681       UpgradedIntrinsics[&F] = NewFn;
3682     // Look for functions that rely on old function attribute behavior.
3683     UpgradeFunctionAttributes(F);
3684   }
3685 
3686   // Look for global variables which need to be renamed.
3687   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3688   for (GlobalVariable &GV : TheModule->globals())
3689     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3690       UpgradedVariables.emplace_back(&GV, Upgraded);
3691   for (auto &Pair : UpgradedVariables) {
3692     Pair.first->eraseFromParent();
3693     TheModule->insertGlobalVariable(Pair.second);
3694   }
3695 
3696   // Force deallocation of memory for these vectors to favor the client that
3697   // want lazy deserialization.
3698   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3699   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3700   return Error::success();
3701 }
3702 
3703 /// Support for lazy parsing of function bodies. This is required if we
3704 /// either have an old bitcode file without a VST forward declaration record,
3705 /// or if we have an anonymous function being materialized, since anonymous
3706 /// functions do not have a name and are therefore not in the VST.
3707 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3708   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3709     return JumpFailed;
3710 
3711   if (Stream.AtEndOfStream())
3712     return error("Could not find function in stream");
3713 
3714   if (!SeenFirstFunctionBody)
3715     return error("Trying to materialize functions before seeing function blocks");
3716 
3717   // An old bitcode file with the symbol table at the end would have
3718   // finished the parse greedily.
3719   assert(SeenValueSymbolTable);
3720 
3721   SmallVector<uint64_t, 64> Record;
3722 
3723   while (true) {
3724     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3725     if (!MaybeEntry)
3726       return MaybeEntry.takeError();
3727     llvm::BitstreamEntry Entry = MaybeEntry.get();
3728 
3729     switch (Entry.Kind) {
3730     default:
3731       return error("Expect SubBlock");
3732     case BitstreamEntry::SubBlock:
3733       switch (Entry.ID) {
3734       default:
3735         return error("Expect function block");
3736       case bitc::FUNCTION_BLOCK_ID:
3737         if (Error Err = rememberAndSkipFunctionBody())
3738           return Err;
3739         NextUnreadBit = Stream.GetCurrentBitNo();
3740         return Error::success();
3741       }
3742     }
3743   }
3744 }
3745 
3746 Error BitcodeReaderBase::readBlockInfo() {
3747   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3748       Stream.ReadBlockInfoBlock();
3749   if (!MaybeNewBlockInfo)
3750     return MaybeNewBlockInfo.takeError();
3751   std::optional<BitstreamBlockInfo> NewBlockInfo =
3752       std::move(MaybeNewBlockInfo.get());
3753   if (!NewBlockInfo)
3754     return error("Malformed block");
3755   BlockInfo = std::move(*NewBlockInfo);
3756   return Error::success();
3757 }
3758 
3759 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3760   // v1: [selection_kind, name]
3761   // v2: [strtab_offset, strtab_size, selection_kind]
3762   StringRef Name;
3763   std::tie(Name, Record) = readNameFromStrtab(Record);
3764 
3765   if (Record.empty())
3766     return error("Invalid record");
3767   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3768   std::string OldFormatName;
3769   if (!UseStrtab) {
3770     if (Record.size() < 2)
3771       return error("Invalid record");
3772     unsigned ComdatNameSize = Record[1];
3773     if (ComdatNameSize > Record.size() - 2)
3774       return error("Comdat name size too large");
3775     OldFormatName.reserve(ComdatNameSize);
3776     for (unsigned i = 0; i != ComdatNameSize; ++i)
3777       OldFormatName += (char)Record[2 + i];
3778     Name = OldFormatName;
3779   }
3780   Comdat *C = TheModule->getOrInsertComdat(Name);
3781   C->setSelectionKind(SK);
3782   ComdatList.push_back(C);
3783   return Error::success();
3784 }
3785 
3786 static void inferDSOLocal(GlobalValue *GV) {
3787   // infer dso_local from linkage and visibility if it is not encoded.
3788   if (GV->hasLocalLinkage() ||
3789       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3790     GV->setDSOLocal(true);
3791 }
3792 
3793 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3794   GlobalValue::SanitizerMetadata Meta;
3795   if (V & (1 << 0))
3796     Meta.NoAddress = true;
3797   if (V & (1 << 1))
3798     Meta.NoHWAddress = true;
3799   if (V & (1 << 2))
3800     Meta.Memtag = true;
3801   if (V & (1 << 3))
3802     Meta.IsDynInit = true;
3803   return Meta;
3804 }
3805 
3806 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3807   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3808   // visibility, threadlocal, unnamed_addr, externally_initialized,
3809   // dllstorageclass, comdat, attributes, preemption specifier,
3810   // partition strtab offset, partition strtab size] (name in VST)
3811   // v2: [strtab_offset, strtab_size, v1]
3812   StringRef Name;
3813   std::tie(Name, Record) = readNameFromStrtab(Record);
3814 
3815   if (Record.size() < 6)
3816     return error("Invalid record");
3817   unsigned TyID = Record[0];
3818   Type *Ty = getTypeByID(TyID);
3819   if (!Ty)
3820     return error("Invalid record");
3821   bool isConstant = Record[1] & 1;
3822   bool explicitType = Record[1] & 2;
3823   unsigned AddressSpace;
3824   if (explicitType) {
3825     AddressSpace = Record[1] >> 2;
3826   } else {
3827     if (!Ty->isPointerTy())
3828       return error("Invalid type for value");
3829     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3830     TyID = getContainedTypeID(TyID);
3831     Ty = getTypeByID(TyID);
3832     if (!Ty)
3833       return error("Missing element type for old-style global");
3834   }
3835 
3836   uint64_t RawLinkage = Record[3];
3837   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3838   MaybeAlign Alignment;
3839   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3840     return Err;
3841   std::string Section;
3842   if (Record[5]) {
3843     if (Record[5] - 1 >= SectionTable.size())
3844       return error("Invalid ID");
3845     Section = SectionTable[Record[5] - 1];
3846   }
3847   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3848   // Local linkage must have default visibility.
3849   // auto-upgrade `hidden` and `protected` for old bitcode.
3850   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3851     Visibility = getDecodedVisibility(Record[6]);
3852 
3853   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3854   if (Record.size() > 7)
3855     TLM = getDecodedThreadLocalMode(Record[7]);
3856 
3857   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3858   if (Record.size() > 8)
3859     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3860 
3861   bool ExternallyInitialized = false;
3862   if (Record.size() > 9)
3863     ExternallyInitialized = Record[9];
3864 
3865   GlobalVariable *NewGV =
3866       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3867                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3868   if (Alignment)
3869     NewGV->setAlignment(*Alignment);
3870   if (!Section.empty())
3871     NewGV->setSection(Section);
3872   NewGV->setVisibility(Visibility);
3873   NewGV->setUnnamedAddr(UnnamedAddr);
3874 
3875   if (Record.size() > 10) {
3876     // A GlobalValue with local linkage cannot have a DLL storage class.
3877     if (!NewGV->hasLocalLinkage()) {
3878       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3879     }
3880   } else {
3881     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3882   }
3883 
3884   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3885 
3886   // Remember which value to use for the global initializer.
3887   if (unsigned InitID = Record[2])
3888     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3889 
3890   if (Record.size() > 11) {
3891     if (unsigned ComdatID = Record[11]) {
3892       if (ComdatID > ComdatList.size())
3893         return error("Invalid global variable comdat ID");
3894       NewGV->setComdat(ComdatList[ComdatID - 1]);
3895     }
3896   } else if (hasImplicitComdat(RawLinkage)) {
3897     ImplicitComdatObjects.insert(NewGV);
3898   }
3899 
3900   if (Record.size() > 12) {
3901     auto AS = getAttributes(Record[12]).getFnAttrs();
3902     NewGV->setAttributes(AS);
3903   }
3904 
3905   if (Record.size() > 13) {
3906     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3907   }
3908   inferDSOLocal(NewGV);
3909 
3910   // Check whether we have enough values to read a partition name.
3911   if (Record.size() > 15)
3912     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3913 
3914   if (Record.size() > 16 && Record[16]) {
3915     llvm::GlobalValue::SanitizerMetadata Meta =
3916         deserializeSanitizerMetadata(Record[16]);
3917     NewGV->setSanitizerMetadata(Meta);
3918   }
3919 
3920   return Error::success();
3921 }
3922 
3923 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3924   if (ValueTypeCallback) {
3925     (*ValueTypeCallback)(
3926         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3927         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3928   }
3929 }
3930 
3931 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3932   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3933   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3934   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3935   // v2: [strtab_offset, strtab_size, v1]
3936   StringRef Name;
3937   std::tie(Name, Record) = readNameFromStrtab(Record);
3938 
3939   if (Record.size() < 8)
3940     return error("Invalid record");
3941   unsigned FTyID = Record[0];
3942   Type *FTy = getTypeByID(FTyID);
3943   if (!FTy)
3944     return error("Invalid record");
3945   if (isa<PointerType>(FTy)) {
3946     FTyID = getContainedTypeID(FTyID, 0);
3947     FTy = getTypeByID(FTyID);
3948     if (!FTy)
3949       return error("Missing element type for old-style function");
3950   }
3951 
3952   if (!isa<FunctionType>(FTy))
3953     return error("Invalid type for value");
3954   auto CC = static_cast<CallingConv::ID>(Record[1]);
3955   if (CC & ~CallingConv::MaxID)
3956     return error("Invalid calling convention ID");
3957 
3958   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3959   if (Record.size() > 16)
3960     AddrSpace = Record[16];
3961 
3962   Function *Func =
3963       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3964                        AddrSpace, Name, TheModule);
3965 
3966   assert(Func->getFunctionType() == FTy &&
3967          "Incorrect fully specified type provided for function");
3968   FunctionTypeIDs[Func] = FTyID;
3969 
3970   Func->setCallingConv(CC);
3971   bool isProto = Record[2];
3972   uint64_t RawLinkage = Record[3];
3973   Func->setLinkage(getDecodedLinkage(RawLinkage));
3974   Func->setAttributes(getAttributes(Record[4]));
3975   callValueTypeCallback(Func, FTyID);
3976 
3977   // Upgrade any old-style byval or sret without a type by propagating the
3978   // argument's pointee type. There should be no opaque pointers where the byval
3979   // type is implicit.
3980   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3981     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3982                                      Attribute::InAlloca}) {
3983       if (!Func->hasParamAttribute(i, Kind))
3984         continue;
3985 
3986       if (Func->getParamAttribute(i, Kind).getValueAsType())
3987         continue;
3988 
3989       Func->removeParamAttr(i, Kind);
3990 
3991       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3992       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3993       if (!PtrEltTy)
3994         return error("Missing param element type for attribute upgrade");
3995 
3996       Attribute NewAttr;
3997       switch (Kind) {
3998       case Attribute::ByVal:
3999         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4000         break;
4001       case Attribute::StructRet:
4002         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4003         break;
4004       case Attribute::InAlloca:
4005         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4006         break;
4007       default:
4008         llvm_unreachable("not an upgraded type attribute");
4009       }
4010 
4011       Func->addParamAttr(i, NewAttr);
4012     }
4013   }
4014 
4015   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4016       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4017     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4018     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4019     if (!ByValTy)
4020       return error("Missing param element type for x86_intrcc upgrade");
4021     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4022     Func->addParamAttr(0, NewAttr);
4023   }
4024 
4025   MaybeAlign Alignment;
4026   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4027     return Err;
4028   if (Alignment)
4029     Func->setAlignment(*Alignment);
4030   if (Record[6]) {
4031     if (Record[6] - 1 >= SectionTable.size())
4032       return error("Invalid ID");
4033     Func->setSection(SectionTable[Record[6] - 1]);
4034   }
4035   // Local linkage must have default visibility.
4036   // auto-upgrade `hidden` and `protected` for old bitcode.
4037   if (!Func->hasLocalLinkage())
4038     Func->setVisibility(getDecodedVisibility(Record[7]));
4039   if (Record.size() > 8 && Record[8]) {
4040     if (Record[8] - 1 >= GCTable.size())
4041       return error("Invalid ID");
4042     Func->setGC(GCTable[Record[8] - 1]);
4043   }
4044   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4045   if (Record.size() > 9)
4046     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4047   Func->setUnnamedAddr(UnnamedAddr);
4048 
4049   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4050   if (Record.size() > 10)
4051     OperandInfo.Prologue = Record[10];
4052 
4053   if (Record.size() > 11) {
4054     // A GlobalValue with local linkage cannot have a DLL storage class.
4055     if (!Func->hasLocalLinkage()) {
4056       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4057     }
4058   } else {
4059     upgradeDLLImportExportLinkage(Func, RawLinkage);
4060   }
4061 
4062   if (Record.size() > 12) {
4063     if (unsigned ComdatID = Record[12]) {
4064       if (ComdatID > ComdatList.size())
4065         return error("Invalid function comdat ID");
4066       Func->setComdat(ComdatList[ComdatID - 1]);
4067     }
4068   } else if (hasImplicitComdat(RawLinkage)) {
4069     ImplicitComdatObjects.insert(Func);
4070   }
4071 
4072   if (Record.size() > 13)
4073     OperandInfo.Prefix = Record[13];
4074 
4075   if (Record.size() > 14)
4076     OperandInfo.PersonalityFn = Record[14];
4077 
4078   if (Record.size() > 15) {
4079     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4080   }
4081   inferDSOLocal(Func);
4082 
4083   // Record[16] is the address space number.
4084 
4085   // Check whether we have enough values to read a partition name. Also make
4086   // sure Strtab has enough values.
4087   if (Record.size() > 18 && Strtab.data() &&
4088       Record[17] + Record[18] <= Strtab.size()) {
4089     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4090   }
4091 
4092   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4093 
4094   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4095     FunctionOperands.push_back(OperandInfo);
4096 
4097   // If this is a function with a body, remember the prototype we are
4098   // creating now, so that we can match up the body with them later.
4099   if (!isProto) {
4100     Func->setIsMaterializable(true);
4101     FunctionsWithBodies.push_back(Func);
4102     DeferredFunctionInfo[Func] = 0;
4103   }
4104   return Error::success();
4105 }
4106 
4107 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4108     unsigned BitCode, ArrayRef<uint64_t> Record) {
4109   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4110   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4111   // dllstorageclass, threadlocal, unnamed_addr,
4112   // preemption specifier] (name in VST)
4113   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4114   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4115   // preemption specifier] (name in VST)
4116   // v2: [strtab_offset, strtab_size, v1]
4117   StringRef Name;
4118   std::tie(Name, Record) = readNameFromStrtab(Record);
4119 
4120   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4121   if (Record.size() < (3 + (unsigned)NewRecord))
4122     return error("Invalid record");
4123   unsigned OpNum = 0;
4124   unsigned TypeID = Record[OpNum++];
4125   Type *Ty = getTypeByID(TypeID);
4126   if (!Ty)
4127     return error("Invalid record");
4128 
4129   unsigned AddrSpace;
4130   if (!NewRecord) {
4131     auto *PTy = dyn_cast<PointerType>(Ty);
4132     if (!PTy)
4133       return error("Invalid type for value");
4134     AddrSpace = PTy->getAddressSpace();
4135     TypeID = getContainedTypeID(TypeID);
4136     Ty = getTypeByID(TypeID);
4137     if (!Ty)
4138       return error("Missing element type for old-style indirect symbol");
4139   } else {
4140     AddrSpace = Record[OpNum++];
4141   }
4142 
4143   auto Val = Record[OpNum++];
4144   auto Linkage = Record[OpNum++];
4145   GlobalValue *NewGA;
4146   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4147       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4148     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4149                                 TheModule);
4150   else
4151     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4152                                 nullptr, TheModule);
4153 
4154   // Local linkage must have default visibility.
4155   // auto-upgrade `hidden` and `protected` for old bitcode.
4156   if (OpNum != Record.size()) {
4157     auto VisInd = OpNum++;
4158     if (!NewGA->hasLocalLinkage())
4159       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4160   }
4161   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4162       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4163     if (OpNum != Record.size()) {
4164       auto S = Record[OpNum++];
4165       // A GlobalValue with local linkage cannot have a DLL storage class.
4166       if (!NewGA->hasLocalLinkage())
4167         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4168     }
4169     else
4170       upgradeDLLImportExportLinkage(NewGA, Linkage);
4171     if (OpNum != Record.size())
4172       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4173     if (OpNum != Record.size())
4174       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4175   }
4176   if (OpNum != Record.size())
4177     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4178   inferDSOLocal(NewGA);
4179 
4180   // Check whether we have enough values to read a partition name.
4181   if (OpNum + 1 < Record.size()) {
4182     NewGA->setPartition(
4183         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4184     OpNum += 2;
4185   }
4186 
4187   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4188   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4189   return Error::success();
4190 }
4191 
4192 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4193                                  bool ShouldLazyLoadMetadata,
4194                                  ParserCallbacks Callbacks) {
4195   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4196   if (ResumeBit) {
4197     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4198       return JumpFailed;
4199   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4200     return Err;
4201 
4202   SmallVector<uint64_t, 64> Record;
4203 
4204   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4205   // finalize the datalayout before we run any of that code.
4206   bool ResolvedDataLayout = false;
4207   // In order to support importing modules with illegal data layout strings,
4208   // delay parsing the data layout string until after upgrades and overrides
4209   // have been applied, allowing to fix illegal data layout strings.
4210   // Initialize to the current module's layout string in case none is specified.
4211   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4212 
4213   auto ResolveDataLayout = [&]() -> Error {
4214     if (ResolvedDataLayout)
4215       return Error::success();
4216 
4217     // Datalayout and triple can't be parsed after this point.
4218     ResolvedDataLayout = true;
4219 
4220     // Auto-upgrade the layout string
4221     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4222         TentativeDataLayoutStr, TheModule->getTargetTriple());
4223 
4224     // Apply override
4225     if (Callbacks.DataLayout) {
4226       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4227               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4228         TentativeDataLayoutStr = *LayoutOverride;
4229     }
4230 
4231     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4232     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4233     if (!MaybeDL)
4234       return MaybeDL.takeError();
4235 
4236     TheModule->setDataLayout(MaybeDL.get());
4237     return Error::success();
4238   };
4239 
4240   // Read all the records for this module.
4241   while (true) {
4242     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4243     if (!MaybeEntry)
4244       return MaybeEntry.takeError();
4245     llvm::BitstreamEntry Entry = MaybeEntry.get();
4246 
4247     switch (Entry.Kind) {
4248     case BitstreamEntry::Error:
4249       return error("Malformed block");
4250     case BitstreamEntry::EndBlock:
4251       if (Error Err = ResolveDataLayout())
4252         return Err;
4253       return globalCleanup();
4254 
4255     case BitstreamEntry::SubBlock:
4256       switch (Entry.ID) {
4257       default:  // Skip unknown content.
4258         if (Error Err = Stream.SkipBlock())
4259           return Err;
4260         break;
4261       case bitc::BLOCKINFO_BLOCK_ID:
4262         if (Error Err = readBlockInfo())
4263           return Err;
4264         break;
4265       case bitc::PARAMATTR_BLOCK_ID:
4266         if (Error Err = parseAttributeBlock())
4267           return Err;
4268         break;
4269       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4270         if (Error Err = parseAttributeGroupBlock())
4271           return Err;
4272         break;
4273       case bitc::TYPE_BLOCK_ID_NEW:
4274         if (Error Err = parseTypeTable())
4275           return Err;
4276         break;
4277       case bitc::VALUE_SYMTAB_BLOCK_ID:
4278         if (!SeenValueSymbolTable) {
4279           // Either this is an old form VST without function index and an
4280           // associated VST forward declaration record (which would have caused
4281           // the VST to be jumped to and parsed before it was encountered
4282           // normally in the stream), or there were no function blocks to
4283           // trigger an earlier parsing of the VST.
4284           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4285           if (Error Err = parseValueSymbolTable())
4286             return Err;
4287           SeenValueSymbolTable = true;
4288         } else {
4289           // We must have had a VST forward declaration record, which caused
4290           // the parser to jump to and parse the VST earlier.
4291           assert(VSTOffset > 0);
4292           if (Error Err = Stream.SkipBlock())
4293             return Err;
4294         }
4295         break;
4296       case bitc::CONSTANTS_BLOCK_ID:
4297         if (Error Err = parseConstants())
4298           return Err;
4299         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4300           return Err;
4301         break;
4302       case bitc::METADATA_BLOCK_ID:
4303         if (ShouldLazyLoadMetadata) {
4304           if (Error Err = rememberAndSkipMetadata())
4305             return Err;
4306           break;
4307         }
4308         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4309         if (Error Err = MDLoader->parseModuleMetadata())
4310           return Err;
4311         break;
4312       case bitc::METADATA_KIND_BLOCK_ID:
4313         if (Error Err = MDLoader->parseMetadataKinds())
4314           return Err;
4315         break;
4316       case bitc::FUNCTION_BLOCK_ID:
4317         if (Error Err = ResolveDataLayout())
4318           return Err;
4319 
4320         // If this is the first function body we've seen, reverse the
4321         // FunctionsWithBodies list.
4322         if (!SeenFirstFunctionBody) {
4323           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4324           if (Error Err = globalCleanup())
4325             return Err;
4326           SeenFirstFunctionBody = true;
4327         }
4328 
4329         if (VSTOffset > 0) {
4330           // If we have a VST forward declaration record, make sure we
4331           // parse the VST now if we haven't already. It is needed to
4332           // set up the DeferredFunctionInfo vector for lazy reading.
4333           if (!SeenValueSymbolTable) {
4334             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4335               return Err;
4336             SeenValueSymbolTable = true;
4337             // Fall through so that we record the NextUnreadBit below.
4338             // This is necessary in case we have an anonymous function that
4339             // is later materialized. Since it will not have a VST entry we
4340             // need to fall back to the lazy parse to find its offset.
4341           } else {
4342             // If we have a VST forward declaration record, but have already
4343             // parsed the VST (just above, when the first function body was
4344             // encountered here), then we are resuming the parse after
4345             // materializing functions. The ResumeBit points to the
4346             // start of the last function block recorded in the
4347             // DeferredFunctionInfo map. Skip it.
4348             if (Error Err = Stream.SkipBlock())
4349               return Err;
4350             continue;
4351           }
4352         }
4353 
4354         // Support older bitcode files that did not have the function
4355         // index in the VST, nor a VST forward declaration record, as
4356         // well as anonymous functions that do not have VST entries.
4357         // Build the DeferredFunctionInfo vector on the fly.
4358         if (Error Err = rememberAndSkipFunctionBody())
4359           return Err;
4360 
4361         // Suspend parsing when we reach the function bodies. Subsequent
4362         // materialization calls will resume it when necessary. If the bitcode
4363         // file is old, the symbol table will be at the end instead and will not
4364         // have been seen yet. In this case, just finish the parse now.
4365         if (SeenValueSymbolTable) {
4366           NextUnreadBit = Stream.GetCurrentBitNo();
4367           // After the VST has been parsed, we need to make sure intrinsic name
4368           // are auto-upgraded.
4369           return globalCleanup();
4370         }
4371         break;
4372       case bitc::USELIST_BLOCK_ID:
4373         if (Error Err = parseUseLists())
4374           return Err;
4375         break;
4376       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4377         if (Error Err = parseOperandBundleTags())
4378           return Err;
4379         break;
4380       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4381         if (Error Err = parseSyncScopeNames())
4382           return Err;
4383         break;
4384       }
4385       continue;
4386 
4387     case BitstreamEntry::Record:
4388       // The interesting case.
4389       break;
4390     }
4391 
4392     // Read a record.
4393     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4394     if (!MaybeBitCode)
4395       return MaybeBitCode.takeError();
4396     switch (unsigned BitCode = MaybeBitCode.get()) {
4397     default: break;  // Default behavior, ignore unknown content.
4398     case bitc::MODULE_CODE_VERSION: {
4399       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4400       if (!VersionOrErr)
4401         return VersionOrErr.takeError();
4402       UseRelativeIDs = *VersionOrErr >= 1;
4403       break;
4404     }
4405     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4406       if (ResolvedDataLayout)
4407         return error("target triple too late in module");
4408       std::string S;
4409       if (convertToString(Record, 0, S))
4410         return error("Invalid record");
4411       TheModule->setTargetTriple(S);
4412       break;
4413     }
4414     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4415       if (ResolvedDataLayout)
4416         return error("datalayout too late in module");
4417       if (convertToString(Record, 0, TentativeDataLayoutStr))
4418         return error("Invalid record");
4419       break;
4420     }
4421     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4422       std::string S;
4423       if (convertToString(Record, 0, S))
4424         return error("Invalid record");
4425       TheModule->setModuleInlineAsm(S);
4426       break;
4427     }
4428     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4429       // Deprecated, but still needed to read old bitcode files.
4430       std::string S;
4431       if (convertToString(Record, 0, S))
4432         return error("Invalid record");
4433       // Ignore value.
4434       break;
4435     }
4436     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4437       std::string S;
4438       if (convertToString(Record, 0, S))
4439         return error("Invalid record");
4440       SectionTable.push_back(S);
4441       break;
4442     }
4443     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4444       std::string S;
4445       if (convertToString(Record, 0, S))
4446         return error("Invalid record");
4447       GCTable.push_back(S);
4448       break;
4449     }
4450     case bitc::MODULE_CODE_COMDAT:
4451       if (Error Err = parseComdatRecord(Record))
4452         return Err;
4453       break;
4454     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4455     // written by ThinLinkBitcodeWriter. See
4456     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4457     // record
4458     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4459     case bitc::MODULE_CODE_GLOBALVAR:
4460       if (Error Err = parseGlobalVarRecord(Record))
4461         return Err;
4462       break;
4463     case bitc::MODULE_CODE_FUNCTION:
4464       if (Error Err = ResolveDataLayout())
4465         return Err;
4466       if (Error Err = parseFunctionRecord(Record))
4467         return Err;
4468       break;
4469     case bitc::MODULE_CODE_IFUNC:
4470     case bitc::MODULE_CODE_ALIAS:
4471     case bitc::MODULE_CODE_ALIAS_OLD:
4472       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4473         return Err;
4474       break;
4475     /// MODULE_CODE_VSTOFFSET: [offset]
4476     case bitc::MODULE_CODE_VSTOFFSET:
4477       if (Record.empty())
4478         return error("Invalid record");
4479       // Note that we subtract 1 here because the offset is relative to one word
4480       // before the start of the identification or module block, which was
4481       // historically always the start of the regular bitcode header.
4482       VSTOffset = Record[0] - 1;
4483       break;
4484     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4485     case bitc::MODULE_CODE_SOURCE_FILENAME:
4486       SmallString<128> ValueName;
4487       if (convertToString(Record, 0, ValueName))
4488         return error("Invalid record");
4489       TheModule->setSourceFileName(ValueName);
4490       break;
4491     }
4492     Record.clear();
4493   }
4494   this->ValueTypeCallback = std::nullopt;
4495   return Error::success();
4496 }
4497 
4498 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4499                                       bool IsImporting,
4500                                       ParserCallbacks Callbacks) {
4501   TheModule = M;
4502   MetadataLoaderCallbacks MDCallbacks;
4503   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4504   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4505     return getContainedTypeID(I, J);
4506   };
4507   MDCallbacks.MDType = Callbacks.MDType;
4508   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4509   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4510 }
4511 
4512 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4513   if (!isa<PointerType>(PtrType))
4514     return error("Load/Store operand is not a pointer type");
4515   if (!PointerType::isLoadableOrStorableType(ValType))
4516     return error("Cannot load/store from pointer");
4517   return Error::success();
4518 }
4519 
4520 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4521                                              ArrayRef<unsigned> ArgTyIDs) {
4522   AttributeList Attrs = CB->getAttributes();
4523   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4524     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4525                                      Attribute::InAlloca}) {
4526       if (!Attrs.hasParamAttr(i, Kind) ||
4527           Attrs.getParamAttr(i, Kind).getValueAsType())
4528         continue;
4529 
4530       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4531       if (!PtrEltTy)
4532         return error("Missing element type for typed attribute upgrade");
4533 
4534       Attribute NewAttr;
4535       switch (Kind) {
4536       case Attribute::ByVal:
4537         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4538         break;
4539       case Attribute::StructRet:
4540         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4541         break;
4542       case Attribute::InAlloca:
4543         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4544         break;
4545       default:
4546         llvm_unreachable("not an upgraded type attribute");
4547       }
4548 
4549       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4550     }
4551   }
4552 
4553   if (CB->isInlineAsm()) {
4554     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4555     unsigned ArgNo = 0;
4556     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4557       if (!CI.hasArg())
4558         continue;
4559 
4560       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4561         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4562         if (!ElemTy)
4563           return error("Missing element type for inline asm upgrade");
4564         Attrs = Attrs.addParamAttribute(
4565             Context, ArgNo,
4566             Attribute::get(Context, Attribute::ElementType, ElemTy));
4567       }
4568 
4569       ArgNo++;
4570     }
4571   }
4572 
4573   switch (CB->getIntrinsicID()) {
4574   case Intrinsic::preserve_array_access_index:
4575   case Intrinsic::preserve_struct_access_index:
4576   case Intrinsic::aarch64_ldaxr:
4577   case Intrinsic::aarch64_ldxr:
4578   case Intrinsic::aarch64_stlxr:
4579   case Intrinsic::aarch64_stxr:
4580   case Intrinsic::arm_ldaex:
4581   case Intrinsic::arm_ldrex:
4582   case Intrinsic::arm_stlex:
4583   case Intrinsic::arm_strex: {
4584     unsigned ArgNo;
4585     switch (CB->getIntrinsicID()) {
4586     case Intrinsic::aarch64_stlxr:
4587     case Intrinsic::aarch64_stxr:
4588     case Intrinsic::arm_stlex:
4589     case Intrinsic::arm_strex:
4590       ArgNo = 1;
4591       break;
4592     default:
4593       ArgNo = 0;
4594       break;
4595     }
4596     if (!Attrs.getParamElementType(ArgNo)) {
4597       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4598       if (!ElTy)
4599         return error("Missing element type for elementtype upgrade");
4600       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4601       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4602     }
4603     break;
4604   }
4605   default:
4606     break;
4607   }
4608 
4609   CB->setAttributes(Attrs);
4610   return Error::success();
4611 }
4612 
4613 /// Lazily parse the specified function body block.
4614 Error BitcodeReader::parseFunctionBody(Function *F) {
4615   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4616     return Err;
4617 
4618   // Unexpected unresolved metadata when parsing function.
4619   if (MDLoader->hasFwdRefs())
4620     return error("Invalid function metadata: incoming forward references");
4621 
4622   InstructionList.clear();
4623   unsigned ModuleValueListSize = ValueList.size();
4624   unsigned ModuleMDLoaderSize = MDLoader->size();
4625 
4626   // Add all the function arguments to the value table.
4627   unsigned ArgNo = 0;
4628   unsigned FTyID = FunctionTypeIDs[F];
4629   for (Argument &I : F->args()) {
4630     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4631     assert(I.getType() == getTypeByID(ArgTyID) &&
4632            "Incorrect fully specified type for Function Argument");
4633     ValueList.push_back(&I, ArgTyID);
4634     ++ArgNo;
4635   }
4636   unsigned NextValueNo = ValueList.size();
4637   BasicBlock *CurBB = nullptr;
4638   unsigned CurBBNo = 0;
4639   // Block into which constant expressions from phi nodes are materialized.
4640   BasicBlock *PhiConstExprBB = nullptr;
4641   // Edge blocks for phi nodes into which constant expressions have been
4642   // expanded.
4643   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4644     ConstExprEdgeBBs;
4645 
4646   DebugLoc LastLoc;
4647   auto getLastInstruction = [&]() -> Instruction * {
4648     if (CurBB && !CurBB->empty())
4649       return &CurBB->back();
4650     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4651              !FunctionBBs[CurBBNo - 1]->empty())
4652       return &FunctionBBs[CurBBNo - 1]->back();
4653     return nullptr;
4654   };
4655 
4656   std::vector<OperandBundleDef> OperandBundles;
4657 
4658   // Read all the records.
4659   SmallVector<uint64_t, 64> Record;
4660 
4661   while (true) {
4662     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4663     if (!MaybeEntry)
4664       return MaybeEntry.takeError();
4665     llvm::BitstreamEntry Entry = MaybeEntry.get();
4666 
4667     switch (Entry.Kind) {
4668     case BitstreamEntry::Error:
4669       return error("Malformed block");
4670     case BitstreamEntry::EndBlock:
4671       goto OutOfRecordLoop;
4672 
4673     case BitstreamEntry::SubBlock:
4674       switch (Entry.ID) {
4675       default:  // Skip unknown content.
4676         if (Error Err = Stream.SkipBlock())
4677           return Err;
4678         break;
4679       case bitc::CONSTANTS_BLOCK_ID:
4680         if (Error Err = parseConstants())
4681           return Err;
4682         NextValueNo = ValueList.size();
4683         break;
4684       case bitc::VALUE_SYMTAB_BLOCK_ID:
4685         if (Error Err = parseValueSymbolTable())
4686           return Err;
4687         break;
4688       case bitc::METADATA_ATTACHMENT_ID:
4689         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4690           return Err;
4691         break;
4692       case bitc::METADATA_BLOCK_ID:
4693         assert(DeferredMetadataInfo.empty() &&
4694                "Must read all module-level metadata before function-level");
4695         if (Error Err = MDLoader->parseFunctionMetadata())
4696           return Err;
4697         break;
4698       case bitc::USELIST_BLOCK_ID:
4699         if (Error Err = parseUseLists())
4700           return Err;
4701         break;
4702       }
4703       continue;
4704 
4705     case BitstreamEntry::Record:
4706       // The interesting case.
4707       break;
4708     }
4709 
4710     // Read a record.
4711     Record.clear();
4712     Instruction *I = nullptr;
4713     unsigned ResTypeID = InvalidTypeID;
4714     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4715     if (!MaybeBitCode)
4716       return MaybeBitCode.takeError();
4717     switch (unsigned BitCode = MaybeBitCode.get()) {
4718     default: // Default behavior: reject
4719       return error("Invalid value");
4720     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4721       if (Record.empty() || Record[0] == 0)
4722         return error("Invalid record");
4723       // Create all the basic blocks for the function.
4724       FunctionBBs.resize(Record[0]);
4725 
4726       // See if anything took the address of blocks in this function.
4727       auto BBFRI = BasicBlockFwdRefs.find(F);
4728       if (BBFRI == BasicBlockFwdRefs.end()) {
4729         for (BasicBlock *&BB : FunctionBBs)
4730           BB = BasicBlock::Create(Context, "", F);
4731       } else {
4732         auto &BBRefs = BBFRI->second;
4733         // Check for invalid basic block references.
4734         if (BBRefs.size() > FunctionBBs.size())
4735           return error("Invalid ID");
4736         assert(!BBRefs.empty() && "Unexpected empty array");
4737         assert(!BBRefs.front() && "Invalid reference to entry block");
4738         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4739              ++I)
4740           if (I < RE && BBRefs[I]) {
4741             BBRefs[I]->insertInto(F);
4742             FunctionBBs[I] = BBRefs[I];
4743           } else {
4744             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4745           }
4746 
4747         // Erase from the table.
4748         BasicBlockFwdRefs.erase(BBFRI);
4749       }
4750 
4751       CurBB = FunctionBBs[0];
4752       continue;
4753     }
4754 
4755     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4756       // The record should not be emitted if it's an empty list.
4757       if (Record.empty())
4758         return error("Invalid record");
4759       // When we have the RARE case of a BlockAddress Constant that is not
4760       // scoped to the Function it refers to, we need to conservatively
4761       // materialize the referred to Function, regardless of whether or not
4762       // that Function will ultimately be linked, otherwise users of
4763       // BitcodeReader might start splicing out Function bodies such that we
4764       // might no longer be able to materialize the BlockAddress since the
4765       // BasicBlock (and entire body of the Function) the BlockAddress refers
4766       // to may have been moved. In the case that the user of BitcodeReader
4767       // decides ultimately not to link the Function body, materializing here
4768       // could be considered wasteful, but it's better than a deserialization
4769       // failure as described. This keeps BitcodeReader unaware of complex
4770       // linkage policy decisions such as those use by LTO, leaving those
4771       // decisions "one layer up."
4772       for (uint64_t ValID : Record)
4773         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4774           BackwardRefFunctions.push_back(F);
4775         else
4776           return error("Invalid record");
4777 
4778       continue;
4779 
4780     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4781       // This record indicates that the last instruction is at the same
4782       // location as the previous instruction with a location.
4783       I = getLastInstruction();
4784 
4785       if (!I)
4786         return error("Invalid record");
4787       I->setDebugLoc(LastLoc);
4788       I = nullptr;
4789       continue;
4790 
4791     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4792       I = getLastInstruction();
4793       if (!I || Record.size() < 4)
4794         return error("Invalid record");
4795 
4796       unsigned Line = Record[0], Col = Record[1];
4797       unsigned ScopeID = Record[2], IAID = Record[3];
4798       bool isImplicitCode = Record.size() == 5 && Record[4];
4799 
4800       MDNode *Scope = nullptr, *IA = nullptr;
4801       if (ScopeID) {
4802         Scope = dyn_cast_or_null<MDNode>(
4803             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4804         if (!Scope)
4805           return error("Invalid record");
4806       }
4807       if (IAID) {
4808         IA = dyn_cast_or_null<MDNode>(
4809             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4810         if (!IA)
4811           return error("Invalid record");
4812       }
4813       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4814                                 isImplicitCode);
4815       I->setDebugLoc(LastLoc);
4816       I = nullptr;
4817       continue;
4818     }
4819     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4820       unsigned OpNum = 0;
4821       Value *LHS;
4822       unsigned TypeID;
4823       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4824           OpNum+1 > Record.size())
4825         return error("Invalid record");
4826 
4827       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4828       if (Opc == -1)
4829         return error("Invalid record");
4830       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4831       ResTypeID = TypeID;
4832       InstructionList.push_back(I);
4833       if (OpNum < Record.size()) {
4834         if (isa<FPMathOperator>(I)) {
4835           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4836           if (FMF.any())
4837             I->setFastMathFlags(FMF);
4838         }
4839       }
4840       break;
4841     }
4842     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4843       unsigned OpNum = 0;
4844       Value *LHS, *RHS;
4845       unsigned TypeID;
4846       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4847           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4848                    CurBB) ||
4849           OpNum+1 > Record.size())
4850         return error("Invalid record");
4851 
4852       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4853       if (Opc == -1)
4854         return error("Invalid record");
4855       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4856       ResTypeID = TypeID;
4857       InstructionList.push_back(I);
4858       if (OpNum < Record.size()) {
4859         if (Opc == Instruction::Add ||
4860             Opc == Instruction::Sub ||
4861             Opc == Instruction::Mul ||
4862             Opc == Instruction::Shl) {
4863           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4864             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4865           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4866             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4867         } else if (Opc == Instruction::SDiv ||
4868                    Opc == Instruction::UDiv ||
4869                    Opc == Instruction::LShr ||
4870                    Opc == Instruction::AShr) {
4871           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4872             cast<BinaryOperator>(I)->setIsExact(true);
4873         } else if (isa<FPMathOperator>(I)) {
4874           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4875           if (FMF.any())
4876             I->setFastMathFlags(FMF);
4877         }
4878 
4879       }
4880       break;
4881     }
4882     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4883       unsigned OpNum = 0;
4884       Value *Op;
4885       unsigned OpTypeID;
4886       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4887           OpNum + 1 > Record.size())
4888         return error("Invalid record");
4889 
4890       ResTypeID = Record[OpNum++];
4891       Type *ResTy = getTypeByID(ResTypeID);
4892       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4893 
4894       if (Opc == -1 || !ResTy)
4895         return error("Invalid record");
4896       Instruction *Temp = nullptr;
4897       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4898         if (Temp) {
4899           InstructionList.push_back(Temp);
4900           assert(CurBB && "No current BB?");
4901           Temp->insertInto(CurBB, CurBB->end());
4902         }
4903       } else {
4904         auto CastOp = (Instruction::CastOps)Opc;
4905         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4906           return error("Invalid cast");
4907         I = CastInst::Create(CastOp, Op, ResTy);
4908       }
4909       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4910           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4911         I->setNonNeg(true);
4912       InstructionList.push_back(I);
4913       break;
4914     }
4915     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4916     case bitc::FUNC_CODE_INST_GEP_OLD:
4917     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4918       unsigned OpNum = 0;
4919 
4920       unsigned TyID;
4921       Type *Ty;
4922       bool InBounds;
4923 
4924       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4925         InBounds = Record[OpNum++];
4926         TyID = Record[OpNum++];
4927         Ty = getTypeByID(TyID);
4928       } else {
4929         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4930         TyID = InvalidTypeID;
4931         Ty = nullptr;
4932       }
4933 
4934       Value *BasePtr;
4935       unsigned BasePtrTypeID;
4936       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4937                            CurBB))
4938         return error("Invalid record");
4939 
4940       if (!Ty) {
4941         TyID = getContainedTypeID(BasePtrTypeID);
4942         if (BasePtr->getType()->isVectorTy())
4943           TyID = getContainedTypeID(TyID);
4944         Ty = getTypeByID(TyID);
4945       }
4946 
4947       SmallVector<Value*, 16> GEPIdx;
4948       while (OpNum != Record.size()) {
4949         Value *Op;
4950         unsigned OpTypeID;
4951         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4952           return error("Invalid record");
4953         GEPIdx.push_back(Op);
4954       }
4955 
4956       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4957 
4958       ResTypeID = TyID;
4959       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4960         auto GTI = std::next(gep_type_begin(I));
4961         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4962           unsigned SubType = 0;
4963           if (GTI.isStruct()) {
4964             ConstantInt *IdxC =
4965                 Idx->getType()->isVectorTy()
4966                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4967                     : cast<ConstantInt>(Idx);
4968             SubType = IdxC->getZExtValue();
4969           }
4970           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4971           ++GTI;
4972         }
4973       }
4974 
4975       // At this point ResTypeID is the result element type. We need a pointer
4976       // or vector of pointer to it.
4977       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4978       if (I->getType()->isVectorTy())
4979         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4980 
4981       InstructionList.push_back(I);
4982       if (InBounds)
4983         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4984       break;
4985     }
4986 
4987     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4988                                        // EXTRACTVAL: [opty, opval, n x indices]
4989       unsigned OpNum = 0;
4990       Value *Agg;
4991       unsigned AggTypeID;
4992       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4993         return error("Invalid record");
4994       Type *Ty = Agg->getType();
4995 
4996       unsigned RecSize = Record.size();
4997       if (OpNum == RecSize)
4998         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4999 
5000       SmallVector<unsigned, 4> EXTRACTVALIdx;
5001       ResTypeID = AggTypeID;
5002       for (; OpNum != RecSize; ++OpNum) {
5003         bool IsArray = Ty->isArrayTy();
5004         bool IsStruct = Ty->isStructTy();
5005         uint64_t Index = Record[OpNum];
5006 
5007         if (!IsStruct && !IsArray)
5008           return error("EXTRACTVAL: Invalid type");
5009         if ((unsigned)Index != Index)
5010           return error("Invalid value");
5011         if (IsStruct && Index >= Ty->getStructNumElements())
5012           return error("EXTRACTVAL: Invalid struct index");
5013         if (IsArray && Index >= Ty->getArrayNumElements())
5014           return error("EXTRACTVAL: Invalid array index");
5015         EXTRACTVALIdx.push_back((unsigned)Index);
5016 
5017         if (IsStruct) {
5018           Ty = Ty->getStructElementType(Index);
5019           ResTypeID = getContainedTypeID(ResTypeID, Index);
5020         } else {
5021           Ty = Ty->getArrayElementType();
5022           ResTypeID = getContainedTypeID(ResTypeID);
5023         }
5024       }
5025 
5026       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5027       InstructionList.push_back(I);
5028       break;
5029     }
5030 
5031     case bitc::FUNC_CODE_INST_INSERTVAL: {
5032                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5033       unsigned OpNum = 0;
5034       Value *Agg;
5035       unsigned AggTypeID;
5036       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5037         return error("Invalid record");
5038       Value *Val;
5039       unsigned ValTypeID;
5040       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5041         return error("Invalid record");
5042 
5043       unsigned RecSize = Record.size();
5044       if (OpNum == RecSize)
5045         return error("INSERTVAL: Invalid instruction with 0 indices");
5046 
5047       SmallVector<unsigned, 4> INSERTVALIdx;
5048       Type *CurTy = Agg->getType();
5049       for (; OpNum != RecSize; ++OpNum) {
5050         bool IsArray = CurTy->isArrayTy();
5051         bool IsStruct = CurTy->isStructTy();
5052         uint64_t Index = Record[OpNum];
5053 
5054         if (!IsStruct && !IsArray)
5055           return error("INSERTVAL: Invalid type");
5056         if ((unsigned)Index != Index)
5057           return error("Invalid value");
5058         if (IsStruct && Index >= CurTy->getStructNumElements())
5059           return error("INSERTVAL: Invalid struct index");
5060         if (IsArray && Index >= CurTy->getArrayNumElements())
5061           return error("INSERTVAL: Invalid array index");
5062 
5063         INSERTVALIdx.push_back((unsigned)Index);
5064         if (IsStruct)
5065           CurTy = CurTy->getStructElementType(Index);
5066         else
5067           CurTy = CurTy->getArrayElementType();
5068       }
5069 
5070       if (CurTy != Val->getType())
5071         return error("Inserted value type doesn't match aggregate type");
5072 
5073       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5074       ResTypeID = AggTypeID;
5075       InstructionList.push_back(I);
5076       break;
5077     }
5078 
5079     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5080       // obsolete form of select
5081       // handles select i1 ... in old bitcode
5082       unsigned OpNum = 0;
5083       Value *TrueVal, *FalseVal, *Cond;
5084       unsigned TypeID;
5085       Type *CondType = Type::getInt1Ty(Context);
5086       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5087                            CurBB) ||
5088           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5089                    FalseVal, CurBB) ||
5090           popValue(Record, OpNum, NextValueNo, CondType,
5091                    getVirtualTypeID(CondType), Cond, CurBB))
5092         return error("Invalid record");
5093 
5094       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5095       ResTypeID = TypeID;
5096       InstructionList.push_back(I);
5097       break;
5098     }
5099 
5100     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5101       // new form of select
5102       // handles select i1 or select [N x i1]
5103       unsigned OpNum = 0;
5104       Value *TrueVal, *FalseVal, *Cond;
5105       unsigned ValTypeID, CondTypeID;
5106       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5107                            CurBB) ||
5108           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5109                    FalseVal, CurBB) ||
5110           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5111         return error("Invalid record");
5112 
5113       // select condition can be either i1 or [N x i1]
5114       if (VectorType* vector_type =
5115           dyn_cast<VectorType>(Cond->getType())) {
5116         // expect <n x i1>
5117         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5118           return error("Invalid type for value");
5119       } else {
5120         // expect i1
5121         if (Cond->getType() != Type::getInt1Ty(Context))
5122           return error("Invalid type for value");
5123       }
5124 
5125       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5126       ResTypeID = ValTypeID;
5127       InstructionList.push_back(I);
5128       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5129         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5130         if (FMF.any())
5131           I->setFastMathFlags(FMF);
5132       }
5133       break;
5134     }
5135 
5136     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5137       unsigned OpNum = 0;
5138       Value *Vec, *Idx;
5139       unsigned VecTypeID, IdxTypeID;
5140       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5141           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5142         return error("Invalid record");
5143       if (!Vec->getType()->isVectorTy())
5144         return error("Invalid type for value");
5145       I = ExtractElementInst::Create(Vec, Idx);
5146       ResTypeID = getContainedTypeID(VecTypeID);
5147       InstructionList.push_back(I);
5148       break;
5149     }
5150 
5151     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5152       unsigned OpNum = 0;
5153       Value *Vec, *Elt, *Idx;
5154       unsigned VecTypeID, IdxTypeID;
5155       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5156         return error("Invalid record");
5157       if (!Vec->getType()->isVectorTy())
5158         return error("Invalid type for value");
5159       if (popValue(Record, OpNum, NextValueNo,
5160                    cast<VectorType>(Vec->getType())->getElementType(),
5161                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5162           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5163         return error("Invalid record");
5164       I = InsertElementInst::Create(Vec, Elt, Idx);
5165       ResTypeID = VecTypeID;
5166       InstructionList.push_back(I);
5167       break;
5168     }
5169 
5170     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5171       unsigned OpNum = 0;
5172       Value *Vec1, *Vec2, *Mask;
5173       unsigned Vec1TypeID;
5174       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5175                            CurBB) ||
5176           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5177                    Vec2, CurBB))
5178         return error("Invalid record");
5179 
5180       unsigned MaskTypeID;
5181       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5182         return error("Invalid record");
5183       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5184         return error("Invalid type for value");
5185 
5186       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5187       ResTypeID =
5188           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5189       InstructionList.push_back(I);
5190       break;
5191     }
5192 
5193     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5194       // Old form of ICmp/FCmp returning bool
5195       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5196       // both legal on vectors but had different behaviour.
5197     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5198       // FCmp/ICmp returning bool or vector of bool
5199 
5200       unsigned OpNum = 0;
5201       Value *LHS, *RHS;
5202       unsigned LHSTypeID;
5203       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5204           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5205                    CurBB))
5206         return error("Invalid record");
5207 
5208       if (OpNum >= Record.size())
5209         return error(
5210             "Invalid record: operand number exceeded available operands");
5211 
5212       unsigned PredVal = Record[OpNum];
5213       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5214       FastMathFlags FMF;
5215       if (IsFP && Record.size() > OpNum+1)
5216         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5217 
5218       if (OpNum+1 != Record.size())
5219         return error("Invalid record");
5220 
5221       if (LHS->getType()->isFPOrFPVectorTy())
5222         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5223       else
5224         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5225 
5226       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5227       if (LHS->getType()->isVectorTy())
5228         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5229 
5230       if (FMF.any())
5231         I->setFastMathFlags(FMF);
5232       InstructionList.push_back(I);
5233       break;
5234     }
5235 
5236     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5237       {
5238         unsigned Size = Record.size();
5239         if (Size == 0) {
5240           I = ReturnInst::Create(Context);
5241           InstructionList.push_back(I);
5242           break;
5243         }
5244 
5245         unsigned OpNum = 0;
5246         Value *Op = nullptr;
5247         unsigned OpTypeID;
5248         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5249           return error("Invalid record");
5250         if (OpNum != Record.size())
5251           return error("Invalid record");
5252 
5253         I = ReturnInst::Create(Context, Op);
5254         InstructionList.push_back(I);
5255         break;
5256       }
5257     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5258       if (Record.size() != 1 && Record.size() != 3)
5259         return error("Invalid record");
5260       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5261       if (!TrueDest)
5262         return error("Invalid record");
5263 
5264       if (Record.size() == 1) {
5265         I = BranchInst::Create(TrueDest);
5266         InstructionList.push_back(I);
5267       }
5268       else {
5269         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5270         Type *CondType = Type::getInt1Ty(Context);
5271         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5272                                getVirtualTypeID(CondType), CurBB);
5273         if (!FalseDest || !Cond)
5274           return error("Invalid record");
5275         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5276         InstructionList.push_back(I);
5277       }
5278       break;
5279     }
5280     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5281       if (Record.size() != 1 && Record.size() != 2)
5282         return error("Invalid record");
5283       unsigned Idx = 0;
5284       Type *TokenTy = Type::getTokenTy(Context);
5285       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5286                                    getVirtualTypeID(TokenTy), CurBB);
5287       if (!CleanupPad)
5288         return error("Invalid record");
5289       BasicBlock *UnwindDest = nullptr;
5290       if (Record.size() == 2) {
5291         UnwindDest = getBasicBlock(Record[Idx++]);
5292         if (!UnwindDest)
5293           return error("Invalid record");
5294       }
5295 
5296       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5297       InstructionList.push_back(I);
5298       break;
5299     }
5300     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5301       if (Record.size() != 2)
5302         return error("Invalid record");
5303       unsigned Idx = 0;
5304       Type *TokenTy = Type::getTokenTy(Context);
5305       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5306                                  getVirtualTypeID(TokenTy), CurBB);
5307       if (!CatchPad)
5308         return error("Invalid record");
5309       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5310       if (!BB)
5311         return error("Invalid record");
5312 
5313       I = CatchReturnInst::Create(CatchPad, BB);
5314       InstructionList.push_back(I);
5315       break;
5316     }
5317     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5318       // We must have, at minimum, the outer scope and the number of arguments.
5319       if (Record.size() < 2)
5320         return error("Invalid record");
5321 
5322       unsigned Idx = 0;
5323 
5324       Type *TokenTy = Type::getTokenTy(Context);
5325       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5326                                   getVirtualTypeID(TokenTy), CurBB);
5327 
5328       unsigned NumHandlers = Record[Idx++];
5329 
5330       SmallVector<BasicBlock *, 2> Handlers;
5331       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5332         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5333         if (!BB)
5334           return error("Invalid record");
5335         Handlers.push_back(BB);
5336       }
5337 
5338       BasicBlock *UnwindDest = nullptr;
5339       if (Idx + 1 == Record.size()) {
5340         UnwindDest = getBasicBlock(Record[Idx++]);
5341         if (!UnwindDest)
5342           return error("Invalid record");
5343       }
5344 
5345       if (Record.size() != Idx)
5346         return error("Invalid record");
5347 
5348       auto *CatchSwitch =
5349           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5350       for (BasicBlock *Handler : Handlers)
5351         CatchSwitch->addHandler(Handler);
5352       I = CatchSwitch;
5353       ResTypeID = getVirtualTypeID(I->getType());
5354       InstructionList.push_back(I);
5355       break;
5356     }
5357     case bitc::FUNC_CODE_INST_CATCHPAD:
5358     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5359       // We must have, at minimum, the outer scope and the number of arguments.
5360       if (Record.size() < 2)
5361         return error("Invalid record");
5362 
5363       unsigned Idx = 0;
5364 
5365       Type *TokenTy = Type::getTokenTy(Context);
5366       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5367                                   getVirtualTypeID(TokenTy), CurBB);
5368 
5369       unsigned NumArgOperands = Record[Idx++];
5370 
5371       SmallVector<Value *, 2> Args;
5372       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5373         Value *Val;
5374         unsigned ValTypeID;
5375         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5376           return error("Invalid record");
5377         Args.push_back(Val);
5378       }
5379 
5380       if (Record.size() != Idx)
5381         return error("Invalid record");
5382 
5383       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5384         I = CleanupPadInst::Create(ParentPad, Args);
5385       else
5386         I = CatchPadInst::Create(ParentPad, Args);
5387       ResTypeID = getVirtualTypeID(I->getType());
5388       InstructionList.push_back(I);
5389       break;
5390     }
5391     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5392       // Check magic
5393       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5394         // "New" SwitchInst format with case ranges. The changes to write this
5395         // format were reverted but we still recognize bitcode that uses it.
5396         // Hopefully someday we will have support for case ranges and can use
5397         // this format again.
5398 
5399         unsigned OpTyID = Record[1];
5400         Type *OpTy = getTypeByID(OpTyID);
5401         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5402 
5403         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5404         BasicBlock *Default = getBasicBlock(Record[3]);
5405         if (!OpTy || !Cond || !Default)
5406           return error("Invalid record");
5407 
5408         unsigned NumCases = Record[4];
5409 
5410         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5411         InstructionList.push_back(SI);
5412 
5413         unsigned CurIdx = 5;
5414         for (unsigned i = 0; i != NumCases; ++i) {
5415           SmallVector<ConstantInt*, 1> CaseVals;
5416           unsigned NumItems = Record[CurIdx++];
5417           for (unsigned ci = 0; ci != NumItems; ++ci) {
5418             bool isSingleNumber = Record[CurIdx++];
5419 
5420             APInt Low;
5421             unsigned ActiveWords = 1;
5422             if (ValueBitWidth > 64)
5423               ActiveWords = Record[CurIdx++];
5424             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5425                                 ValueBitWidth);
5426             CurIdx += ActiveWords;
5427 
5428             if (!isSingleNumber) {
5429               ActiveWords = 1;
5430               if (ValueBitWidth > 64)
5431                 ActiveWords = Record[CurIdx++];
5432               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5433                                          ValueBitWidth);
5434               CurIdx += ActiveWords;
5435 
5436               // FIXME: It is not clear whether values in the range should be
5437               // compared as signed or unsigned values. The partially
5438               // implemented changes that used this format in the past used
5439               // unsigned comparisons.
5440               for ( ; Low.ule(High); ++Low)
5441                 CaseVals.push_back(ConstantInt::get(Context, Low));
5442             } else
5443               CaseVals.push_back(ConstantInt::get(Context, Low));
5444           }
5445           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5446           for (ConstantInt *Cst : CaseVals)
5447             SI->addCase(Cst, DestBB);
5448         }
5449         I = SI;
5450         break;
5451       }
5452 
5453       // Old SwitchInst format without case ranges.
5454 
5455       if (Record.size() < 3 || (Record.size() & 1) == 0)
5456         return error("Invalid record");
5457       unsigned OpTyID = Record[0];
5458       Type *OpTy = getTypeByID(OpTyID);
5459       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5460       BasicBlock *Default = getBasicBlock(Record[2]);
5461       if (!OpTy || !Cond || !Default)
5462         return error("Invalid record");
5463       unsigned NumCases = (Record.size()-3)/2;
5464       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5465       InstructionList.push_back(SI);
5466       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5467         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5468             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5469         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5470         if (!CaseVal || !DestBB) {
5471           delete SI;
5472           return error("Invalid record");
5473         }
5474         SI->addCase(CaseVal, DestBB);
5475       }
5476       I = SI;
5477       break;
5478     }
5479     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5480       if (Record.size() < 2)
5481         return error("Invalid record");
5482       unsigned OpTyID = Record[0];
5483       Type *OpTy = getTypeByID(OpTyID);
5484       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5485       if (!OpTy || !Address)
5486         return error("Invalid record");
5487       unsigned NumDests = Record.size()-2;
5488       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5489       InstructionList.push_back(IBI);
5490       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5491         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5492           IBI->addDestination(DestBB);
5493         } else {
5494           delete IBI;
5495           return error("Invalid record");
5496         }
5497       }
5498       I = IBI;
5499       break;
5500     }
5501 
5502     case bitc::FUNC_CODE_INST_INVOKE: {
5503       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5504       if (Record.size() < 4)
5505         return error("Invalid record");
5506       unsigned OpNum = 0;
5507       AttributeList PAL = getAttributes(Record[OpNum++]);
5508       unsigned CCInfo = Record[OpNum++];
5509       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5510       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5511 
5512       unsigned FTyID = InvalidTypeID;
5513       FunctionType *FTy = nullptr;
5514       if ((CCInfo >> 13) & 1) {
5515         FTyID = Record[OpNum++];
5516         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5517         if (!FTy)
5518           return error("Explicit invoke type is not a function type");
5519       }
5520 
5521       Value *Callee;
5522       unsigned CalleeTypeID;
5523       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5524                            CurBB))
5525         return error("Invalid record");
5526 
5527       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5528       if (!CalleeTy)
5529         return error("Callee is not a pointer");
5530       if (!FTy) {
5531         FTyID = getContainedTypeID(CalleeTypeID);
5532         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5533         if (!FTy)
5534           return error("Callee is not of pointer to function type");
5535       }
5536       if (Record.size() < FTy->getNumParams() + OpNum)
5537         return error("Insufficient operands to call");
5538 
5539       SmallVector<Value*, 16> Ops;
5540       SmallVector<unsigned, 16> ArgTyIDs;
5541       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5542         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5543         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5544                                ArgTyID, CurBB));
5545         ArgTyIDs.push_back(ArgTyID);
5546         if (!Ops.back())
5547           return error("Invalid record");
5548       }
5549 
5550       if (!FTy->isVarArg()) {
5551         if (Record.size() != OpNum)
5552           return error("Invalid record");
5553       } else {
5554         // Read type/value pairs for varargs params.
5555         while (OpNum != Record.size()) {
5556           Value *Op;
5557           unsigned OpTypeID;
5558           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5559             return error("Invalid record");
5560           Ops.push_back(Op);
5561           ArgTyIDs.push_back(OpTypeID);
5562         }
5563       }
5564 
5565       // Upgrade the bundles if needed.
5566       if (!OperandBundles.empty())
5567         UpgradeOperandBundles(OperandBundles);
5568 
5569       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5570                              OperandBundles);
5571       ResTypeID = getContainedTypeID(FTyID);
5572       OperandBundles.clear();
5573       InstructionList.push_back(I);
5574       cast<InvokeInst>(I)->setCallingConv(
5575           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5576       cast<InvokeInst>(I)->setAttributes(PAL);
5577       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5578         I->deleteValue();
5579         return Err;
5580       }
5581 
5582       break;
5583     }
5584     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5585       unsigned Idx = 0;
5586       Value *Val = nullptr;
5587       unsigned ValTypeID;
5588       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5589         return error("Invalid record");
5590       I = ResumeInst::Create(Val);
5591       InstructionList.push_back(I);
5592       break;
5593     }
5594     case bitc::FUNC_CODE_INST_CALLBR: {
5595       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5596       unsigned OpNum = 0;
5597       AttributeList PAL = getAttributes(Record[OpNum++]);
5598       unsigned CCInfo = Record[OpNum++];
5599 
5600       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5601       unsigned NumIndirectDests = Record[OpNum++];
5602       SmallVector<BasicBlock *, 16> IndirectDests;
5603       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5604         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5605 
5606       unsigned FTyID = InvalidTypeID;
5607       FunctionType *FTy = nullptr;
5608       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5609         FTyID = Record[OpNum++];
5610         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5611         if (!FTy)
5612           return error("Explicit call type is not a function type");
5613       }
5614 
5615       Value *Callee;
5616       unsigned CalleeTypeID;
5617       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5618                            CurBB))
5619         return error("Invalid record");
5620 
5621       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5622       if (!OpTy)
5623         return error("Callee is not a pointer type");
5624       if (!FTy) {
5625         FTyID = getContainedTypeID(CalleeTypeID);
5626         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5627         if (!FTy)
5628           return error("Callee is not of pointer to function type");
5629       }
5630       if (Record.size() < FTy->getNumParams() + OpNum)
5631         return error("Insufficient operands to call");
5632 
5633       SmallVector<Value*, 16> Args;
5634       SmallVector<unsigned, 16> ArgTyIDs;
5635       // Read the fixed params.
5636       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5637         Value *Arg;
5638         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5639         if (FTy->getParamType(i)->isLabelTy())
5640           Arg = getBasicBlock(Record[OpNum]);
5641         else
5642           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5643                          ArgTyID, CurBB);
5644         if (!Arg)
5645           return error("Invalid record");
5646         Args.push_back(Arg);
5647         ArgTyIDs.push_back(ArgTyID);
5648       }
5649 
5650       // Read type/value pairs for varargs params.
5651       if (!FTy->isVarArg()) {
5652         if (OpNum != Record.size())
5653           return error("Invalid record");
5654       } else {
5655         while (OpNum != Record.size()) {
5656           Value *Op;
5657           unsigned OpTypeID;
5658           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5659             return error("Invalid record");
5660           Args.push_back(Op);
5661           ArgTyIDs.push_back(OpTypeID);
5662         }
5663       }
5664 
5665       // Upgrade the bundles if needed.
5666       if (!OperandBundles.empty())
5667         UpgradeOperandBundles(OperandBundles);
5668 
5669       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5670         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5671         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5672           return CI.Type == InlineAsm::isLabel;
5673         };
5674         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5675           // Upgrade explicit blockaddress arguments to label constraints.
5676           // Verify that the last arguments are blockaddress arguments that
5677           // match the indirect destinations. Clang always generates callbr
5678           // in this form. We could support reordering with more effort.
5679           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5680           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5681             unsigned LabelNo = ArgNo - FirstBlockArg;
5682             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5683             if (!BA || BA->getFunction() != F ||
5684                 LabelNo > IndirectDests.size() ||
5685                 BA->getBasicBlock() != IndirectDests[LabelNo])
5686               return error("callbr argument does not match indirect dest");
5687           }
5688 
5689           // Remove blockaddress arguments.
5690           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5691           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5692 
5693           // Recreate the function type with less arguments.
5694           SmallVector<Type *> ArgTys;
5695           for (Value *Arg : Args)
5696             ArgTys.push_back(Arg->getType());
5697           FTy =
5698               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5699 
5700           // Update constraint string to use label constraints.
5701           std::string Constraints = IA->getConstraintString();
5702           unsigned ArgNo = 0;
5703           size_t Pos = 0;
5704           for (const auto &CI : ConstraintInfo) {
5705             if (CI.hasArg()) {
5706               if (ArgNo >= FirstBlockArg)
5707                 Constraints.insert(Pos, "!");
5708               ++ArgNo;
5709             }
5710 
5711             // Go to next constraint in string.
5712             Pos = Constraints.find(',', Pos);
5713             if (Pos == std::string::npos)
5714               break;
5715             ++Pos;
5716           }
5717 
5718           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5719                                   IA->hasSideEffects(), IA->isAlignStack(),
5720                                   IA->getDialect(), IA->canThrow());
5721         }
5722       }
5723 
5724       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5725                              OperandBundles);
5726       ResTypeID = getContainedTypeID(FTyID);
5727       OperandBundles.clear();
5728       InstructionList.push_back(I);
5729       cast<CallBrInst>(I)->setCallingConv(
5730           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5731       cast<CallBrInst>(I)->setAttributes(PAL);
5732       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5733         I->deleteValue();
5734         return Err;
5735       }
5736       break;
5737     }
5738     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5739       I = new UnreachableInst(Context);
5740       InstructionList.push_back(I);
5741       break;
5742     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5743       if (Record.empty())
5744         return error("Invalid phi record");
5745       // The first record specifies the type.
5746       unsigned TyID = Record[0];
5747       Type *Ty = getTypeByID(TyID);
5748       if (!Ty)
5749         return error("Invalid phi record");
5750 
5751       // Phi arguments are pairs of records of [value, basic block].
5752       // There is an optional final record for fast-math-flags if this phi has a
5753       // floating-point type.
5754       size_t NumArgs = (Record.size() - 1) / 2;
5755       PHINode *PN = PHINode::Create(Ty, NumArgs);
5756       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5757         PN->deleteValue();
5758         return error("Invalid phi record");
5759       }
5760       InstructionList.push_back(PN);
5761 
5762       SmallDenseMap<BasicBlock *, Value *> Args;
5763       for (unsigned i = 0; i != NumArgs; i++) {
5764         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5765         if (!BB) {
5766           PN->deleteValue();
5767           return error("Invalid phi BB");
5768         }
5769 
5770         // Phi nodes may contain the same predecessor multiple times, in which
5771         // case the incoming value must be identical. Directly reuse the already
5772         // seen value here, to avoid expanding a constant expression multiple
5773         // times.
5774         auto It = Args.find(BB);
5775         if (It != Args.end()) {
5776           PN->addIncoming(It->second, BB);
5777           continue;
5778         }
5779 
5780         // If there already is a block for this edge (from a different phi),
5781         // use it.
5782         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5783         if (!EdgeBB) {
5784           // Otherwise, use a temporary block (that we will discard if it
5785           // turns out to be unnecessary).
5786           if (!PhiConstExprBB)
5787             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5788           EdgeBB = PhiConstExprBB;
5789         }
5790 
5791         // With the new function encoding, it is possible that operands have
5792         // negative IDs (for forward references).  Use a signed VBR
5793         // representation to keep the encoding small.
5794         Value *V;
5795         if (UseRelativeIDs)
5796           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5797         else
5798           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5799         if (!V) {
5800           PN->deleteValue();
5801           PhiConstExprBB->eraseFromParent();
5802           return error("Invalid phi record");
5803         }
5804 
5805         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5806           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5807           PhiConstExprBB = nullptr;
5808         }
5809         PN->addIncoming(V, BB);
5810         Args.insert({BB, V});
5811       }
5812       I = PN;
5813       ResTypeID = TyID;
5814 
5815       // If there are an even number of records, the final record must be FMF.
5816       if (Record.size() % 2 == 0) {
5817         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5818         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5819         if (FMF.any())
5820           I->setFastMathFlags(FMF);
5821       }
5822 
5823       break;
5824     }
5825 
5826     case bitc::FUNC_CODE_INST_LANDINGPAD:
5827     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5828       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5829       unsigned Idx = 0;
5830       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5831         if (Record.size() < 3)
5832           return error("Invalid record");
5833       } else {
5834         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5835         if (Record.size() < 4)
5836           return error("Invalid record");
5837       }
5838       ResTypeID = Record[Idx++];
5839       Type *Ty = getTypeByID(ResTypeID);
5840       if (!Ty)
5841         return error("Invalid record");
5842       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5843         Value *PersFn = nullptr;
5844         unsigned PersFnTypeID;
5845         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5846                              nullptr))
5847           return error("Invalid record");
5848 
5849         if (!F->hasPersonalityFn())
5850           F->setPersonalityFn(cast<Constant>(PersFn));
5851         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5852           return error("Personality function mismatch");
5853       }
5854 
5855       bool IsCleanup = !!Record[Idx++];
5856       unsigned NumClauses = Record[Idx++];
5857       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5858       LP->setCleanup(IsCleanup);
5859       for (unsigned J = 0; J != NumClauses; ++J) {
5860         LandingPadInst::ClauseType CT =
5861           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5862         Value *Val;
5863         unsigned ValTypeID;
5864 
5865         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5866                              nullptr)) {
5867           delete LP;
5868           return error("Invalid record");
5869         }
5870 
5871         assert((CT != LandingPadInst::Catch ||
5872                 !isa<ArrayType>(Val->getType())) &&
5873                "Catch clause has a invalid type!");
5874         assert((CT != LandingPadInst::Filter ||
5875                 isa<ArrayType>(Val->getType())) &&
5876                "Filter clause has invalid type!");
5877         LP->addClause(cast<Constant>(Val));
5878       }
5879 
5880       I = LP;
5881       InstructionList.push_back(I);
5882       break;
5883     }
5884 
5885     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5886       if (Record.size() != 4 && Record.size() != 5)
5887         return error("Invalid record");
5888       using APV = AllocaPackedValues;
5889       const uint64_t Rec = Record[3];
5890       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5891       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5892       unsigned TyID = Record[0];
5893       Type *Ty = getTypeByID(TyID);
5894       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5895         TyID = getContainedTypeID(TyID);
5896         Ty = getTypeByID(TyID);
5897         if (!Ty)
5898           return error("Missing element type for old-style alloca");
5899       }
5900       unsigned OpTyID = Record[1];
5901       Type *OpTy = getTypeByID(OpTyID);
5902       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5903       MaybeAlign Align;
5904       uint64_t AlignExp =
5905           Bitfield::get<APV::AlignLower>(Rec) |
5906           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5907       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5908         return Err;
5909       }
5910       if (!Ty || !Size)
5911         return error("Invalid record");
5912 
5913       const DataLayout &DL = TheModule->getDataLayout();
5914       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5915 
5916       SmallPtrSet<Type *, 4> Visited;
5917       if (!Align && !Ty->isSized(&Visited))
5918         return error("alloca of unsized type");
5919       if (!Align)
5920         Align = DL.getPrefTypeAlign(Ty);
5921 
5922       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5923       AI->setUsedWithInAlloca(InAlloca);
5924       AI->setSwiftError(SwiftError);
5925       I = AI;
5926       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5927       InstructionList.push_back(I);
5928       break;
5929     }
5930     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5931       unsigned OpNum = 0;
5932       Value *Op;
5933       unsigned OpTypeID;
5934       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5935           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5936         return error("Invalid record");
5937 
5938       if (!isa<PointerType>(Op->getType()))
5939         return error("Load operand is not a pointer type");
5940 
5941       Type *Ty = nullptr;
5942       if (OpNum + 3 == Record.size()) {
5943         ResTypeID = Record[OpNum++];
5944         Ty = getTypeByID(ResTypeID);
5945       } else {
5946         ResTypeID = getContainedTypeID(OpTypeID);
5947         Ty = getTypeByID(ResTypeID);
5948         if (!Ty)
5949           return error("Missing element type for old-style load");
5950       }
5951 
5952       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5953         return Err;
5954 
5955       MaybeAlign Align;
5956       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5957         return Err;
5958       SmallPtrSet<Type *, 4> Visited;
5959       if (!Align && !Ty->isSized(&Visited))
5960         return error("load of unsized type");
5961       if (!Align)
5962         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5963       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5964       InstructionList.push_back(I);
5965       break;
5966     }
5967     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5968        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5969       unsigned OpNum = 0;
5970       Value *Op;
5971       unsigned OpTypeID;
5972       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5973           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5974         return error("Invalid record");
5975 
5976       if (!isa<PointerType>(Op->getType()))
5977         return error("Load operand is not a pointer type");
5978 
5979       Type *Ty = nullptr;
5980       if (OpNum + 5 == Record.size()) {
5981         ResTypeID = Record[OpNum++];
5982         Ty = getTypeByID(ResTypeID);
5983       } else {
5984         ResTypeID = getContainedTypeID(OpTypeID);
5985         Ty = getTypeByID(ResTypeID);
5986         if (!Ty)
5987           return error("Missing element type for old style atomic load");
5988       }
5989 
5990       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5991         return Err;
5992 
5993       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5994       if (Ordering == AtomicOrdering::NotAtomic ||
5995           Ordering == AtomicOrdering::Release ||
5996           Ordering == AtomicOrdering::AcquireRelease)
5997         return error("Invalid record");
5998       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5999         return error("Invalid record");
6000       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6001 
6002       MaybeAlign Align;
6003       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6004         return Err;
6005       if (!Align)
6006         return error("Alignment missing from atomic load");
6007       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6008       InstructionList.push_back(I);
6009       break;
6010     }
6011     case bitc::FUNC_CODE_INST_STORE:
6012     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6013       unsigned OpNum = 0;
6014       Value *Val, *Ptr;
6015       unsigned PtrTypeID, ValTypeID;
6016       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6017         return error("Invalid record");
6018 
6019       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6020         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6021           return error("Invalid record");
6022       } else {
6023         ValTypeID = getContainedTypeID(PtrTypeID);
6024         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6025                      ValTypeID, Val, CurBB))
6026           return error("Invalid record");
6027       }
6028 
6029       if (OpNum + 2 != Record.size())
6030         return error("Invalid record");
6031 
6032       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6033         return Err;
6034       MaybeAlign Align;
6035       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6036         return Err;
6037       SmallPtrSet<Type *, 4> Visited;
6038       if (!Align && !Val->getType()->isSized(&Visited))
6039         return error("store of unsized type");
6040       if (!Align)
6041         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6042       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6043       InstructionList.push_back(I);
6044       break;
6045     }
6046     case bitc::FUNC_CODE_INST_STOREATOMIC:
6047     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6048       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6049       unsigned OpNum = 0;
6050       Value *Val, *Ptr;
6051       unsigned PtrTypeID, ValTypeID;
6052       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6053           !isa<PointerType>(Ptr->getType()))
6054         return error("Invalid record");
6055       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6056         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6057           return error("Invalid record");
6058       } else {
6059         ValTypeID = getContainedTypeID(PtrTypeID);
6060         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6061                      ValTypeID, Val, CurBB))
6062           return error("Invalid record");
6063       }
6064 
6065       if (OpNum + 4 != Record.size())
6066         return error("Invalid record");
6067 
6068       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6069         return Err;
6070       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6071       if (Ordering == AtomicOrdering::NotAtomic ||
6072           Ordering == AtomicOrdering::Acquire ||
6073           Ordering == AtomicOrdering::AcquireRelease)
6074         return error("Invalid record");
6075       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6076       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6077         return error("Invalid record");
6078 
6079       MaybeAlign Align;
6080       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6081         return Err;
6082       if (!Align)
6083         return error("Alignment missing from atomic store");
6084       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6085       InstructionList.push_back(I);
6086       break;
6087     }
6088     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6089       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6090       // failure_ordering?, weak?]
6091       const size_t NumRecords = Record.size();
6092       unsigned OpNum = 0;
6093       Value *Ptr = nullptr;
6094       unsigned PtrTypeID;
6095       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6096         return error("Invalid record");
6097 
6098       if (!isa<PointerType>(Ptr->getType()))
6099         return error("Cmpxchg operand is not a pointer type");
6100 
6101       Value *Cmp = nullptr;
6102       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6103       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6104                    CmpTypeID, Cmp, CurBB))
6105         return error("Invalid record");
6106 
6107       Value *New = nullptr;
6108       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6109                    New, CurBB) ||
6110           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6111         return error("Invalid record");
6112 
6113       const AtomicOrdering SuccessOrdering =
6114           getDecodedOrdering(Record[OpNum + 1]);
6115       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6116           SuccessOrdering == AtomicOrdering::Unordered)
6117         return error("Invalid record");
6118 
6119       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6120 
6121       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6122         return Err;
6123 
6124       const AtomicOrdering FailureOrdering =
6125           NumRecords < 7
6126               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6127               : getDecodedOrdering(Record[OpNum + 3]);
6128 
6129       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6130           FailureOrdering == AtomicOrdering::Unordered)
6131         return error("Invalid record");
6132 
6133       const Align Alignment(
6134           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6135 
6136       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6137                                 FailureOrdering, SSID);
6138       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6139 
6140       if (NumRecords < 8) {
6141         // Before weak cmpxchgs existed, the instruction simply returned the
6142         // value loaded from memory, so bitcode files from that era will be
6143         // expecting the first component of a modern cmpxchg.
6144         I->insertInto(CurBB, CurBB->end());
6145         I = ExtractValueInst::Create(I, 0);
6146         ResTypeID = CmpTypeID;
6147       } else {
6148         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6149         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6150         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6151       }
6152 
6153       InstructionList.push_back(I);
6154       break;
6155     }
6156     case bitc::FUNC_CODE_INST_CMPXCHG: {
6157       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6158       // failure_ordering, weak, align?]
6159       const size_t NumRecords = Record.size();
6160       unsigned OpNum = 0;
6161       Value *Ptr = nullptr;
6162       unsigned PtrTypeID;
6163       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6164         return error("Invalid record");
6165 
6166       if (!isa<PointerType>(Ptr->getType()))
6167         return error("Cmpxchg operand is not a pointer type");
6168 
6169       Value *Cmp = nullptr;
6170       unsigned CmpTypeID;
6171       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6172         return error("Invalid record");
6173 
6174       Value *Val = nullptr;
6175       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6176                    CurBB))
6177         return error("Invalid record");
6178 
6179       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6180         return error("Invalid record");
6181 
6182       const bool IsVol = Record[OpNum];
6183 
6184       const AtomicOrdering SuccessOrdering =
6185           getDecodedOrdering(Record[OpNum + 1]);
6186       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6187         return error("Invalid cmpxchg success ordering");
6188 
6189       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6190 
6191       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6192         return Err;
6193 
6194       const AtomicOrdering FailureOrdering =
6195           getDecodedOrdering(Record[OpNum + 3]);
6196       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6197         return error("Invalid cmpxchg failure ordering");
6198 
6199       const bool IsWeak = Record[OpNum + 4];
6200 
6201       MaybeAlign Alignment;
6202 
6203       if (NumRecords == (OpNum + 6)) {
6204         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6205           return Err;
6206       }
6207       if (!Alignment)
6208         Alignment =
6209             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6210 
6211       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6212                                 FailureOrdering, SSID);
6213       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6214       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6215 
6216       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6217       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6218 
6219       InstructionList.push_back(I);
6220       break;
6221     }
6222     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6223     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6224       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6225       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6226       const size_t NumRecords = Record.size();
6227       unsigned OpNum = 0;
6228 
6229       Value *Ptr = nullptr;
6230       unsigned PtrTypeID;
6231       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6232         return error("Invalid record");
6233 
6234       if (!isa<PointerType>(Ptr->getType()))
6235         return error("Invalid record");
6236 
6237       Value *Val = nullptr;
6238       unsigned ValTypeID = InvalidTypeID;
6239       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6240         ValTypeID = getContainedTypeID(PtrTypeID);
6241         if (popValue(Record, OpNum, NextValueNo,
6242                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6243           return error("Invalid record");
6244       } else {
6245         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6246           return error("Invalid record");
6247       }
6248 
6249       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6250         return error("Invalid record");
6251 
6252       const AtomicRMWInst::BinOp Operation =
6253           getDecodedRMWOperation(Record[OpNum]);
6254       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6255           Operation > AtomicRMWInst::LAST_BINOP)
6256         return error("Invalid record");
6257 
6258       const bool IsVol = Record[OpNum + 1];
6259 
6260       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6261       if (Ordering == AtomicOrdering::NotAtomic ||
6262           Ordering == AtomicOrdering::Unordered)
6263         return error("Invalid record");
6264 
6265       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6266 
6267       MaybeAlign Alignment;
6268 
6269       if (NumRecords == (OpNum + 5)) {
6270         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6271           return Err;
6272       }
6273 
6274       if (!Alignment)
6275         Alignment =
6276             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6277 
6278       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6279       ResTypeID = ValTypeID;
6280       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6281 
6282       InstructionList.push_back(I);
6283       break;
6284     }
6285     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6286       if (2 != Record.size())
6287         return error("Invalid record");
6288       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6289       if (Ordering == AtomicOrdering::NotAtomic ||
6290           Ordering == AtomicOrdering::Unordered ||
6291           Ordering == AtomicOrdering::Monotonic)
6292         return error("Invalid record");
6293       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6294       I = new FenceInst(Context, Ordering, SSID);
6295       InstructionList.push_back(I);
6296       break;
6297     }
6298     case bitc::FUNC_CODE_INST_CALL: {
6299       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6300       if (Record.size() < 3)
6301         return error("Invalid record");
6302 
6303       unsigned OpNum = 0;
6304       AttributeList PAL = getAttributes(Record[OpNum++]);
6305       unsigned CCInfo = Record[OpNum++];
6306 
6307       FastMathFlags FMF;
6308       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6309         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6310         if (!FMF.any())
6311           return error("Fast math flags indicator set for call with no FMF");
6312       }
6313 
6314       unsigned FTyID = InvalidTypeID;
6315       FunctionType *FTy = nullptr;
6316       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6317         FTyID = Record[OpNum++];
6318         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6319         if (!FTy)
6320           return error("Explicit call type is not a function type");
6321       }
6322 
6323       Value *Callee;
6324       unsigned CalleeTypeID;
6325       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6326                            CurBB))
6327         return error("Invalid record");
6328 
6329       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6330       if (!OpTy)
6331         return error("Callee is not a pointer type");
6332       if (!FTy) {
6333         FTyID = getContainedTypeID(CalleeTypeID);
6334         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6335         if (!FTy)
6336           return error("Callee is not of pointer to function type");
6337       }
6338       if (Record.size() < FTy->getNumParams() + OpNum)
6339         return error("Insufficient operands to call");
6340 
6341       SmallVector<Value*, 16> Args;
6342       SmallVector<unsigned, 16> ArgTyIDs;
6343       // Read the fixed params.
6344       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6345         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6346         if (FTy->getParamType(i)->isLabelTy())
6347           Args.push_back(getBasicBlock(Record[OpNum]));
6348         else
6349           Args.push_back(getValue(Record, OpNum, NextValueNo,
6350                                   FTy->getParamType(i), ArgTyID, CurBB));
6351         ArgTyIDs.push_back(ArgTyID);
6352         if (!Args.back())
6353           return error("Invalid record");
6354       }
6355 
6356       // Read type/value pairs for varargs params.
6357       if (!FTy->isVarArg()) {
6358         if (OpNum != Record.size())
6359           return error("Invalid record");
6360       } else {
6361         while (OpNum != Record.size()) {
6362           Value *Op;
6363           unsigned OpTypeID;
6364           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6365             return error("Invalid record");
6366           Args.push_back(Op);
6367           ArgTyIDs.push_back(OpTypeID);
6368         }
6369       }
6370 
6371       // Upgrade the bundles if needed.
6372       if (!OperandBundles.empty())
6373         UpgradeOperandBundles(OperandBundles);
6374 
6375       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6376       ResTypeID = getContainedTypeID(FTyID);
6377       OperandBundles.clear();
6378       InstructionList.push_back(I);
6379       cast<CallInst>(I)->setCallingConv(
6380           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6381       CallInst::TailCallKind TCK = CallInst::TCK_None;
6382       if (CCInfo & (1 << bitc::CALL_TAIL))
6383         TCK = CallInst::TCK_Tail;
6384       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6385         TCK = CallInst::TCK_MustTail;
6386       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6387         TCK = CallInst::TCK_NoTail;
6388       cast<CallInst>(I)->setTailCallKind(TCK);
6389       cast<CallInst>(I)->setAttributes(PAL);
6390       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6391         I->deleteValue();
6392         return Err;
6393       }
6394       if (FMF.any()) {
6395         if (!isa<FPMathOperator>(I))
6396           return error("Fast-math-flags specified for call without "
6397                        "floating-point scalar or vector return type");
6398         I->setFastMathFlags(FMF);
6399       }
6400       break;
6401     }
6402     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6403       if (Record.size() < 3)
6404         return error("Invalid record");
6405       unsigned OpTyID = Record[0];
6406       Type *OpTy = getTypeByID(OpTyID);
6407       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6408       ResTypeID = Record[2];
6409       Type *ResTy = getTypeByID(ResTypeID);
6410       if (!OpTy || !Op || !ResTy)
6411         return error("Invalid record");
6412       I = new VAArgInst(Op, ResTy);
6413       InstructionList.push_back(I);
6414       break;
6415     }
6416 
6417     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6418       // A call or an invoke can be optionally prefixed with some variable
6419       // number of operand bundle blocks.  These blocks are read into
6420       // OperandBundles and consumed at the next call or invoke instruction.
6421 
6422       if (Record.empty() || Record[0] >= BundleTags.size())
6423         return error("Invalid record");
6424 
6425       std::vector<Value *> Inputs;
6426 
6427       unsigned OpNum = 1;
6428       while (OpNum != Record.size()) {
6429         Value *Op;
6430         unsigned OpTypeID;
6431         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6432           return error("Invalid record");
6433         Inputs.push_back(Op);
6434       }
6435 
6436       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6437       continue;
6438     }
6439 
6440     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6441       unsigned OpNum = 0;
6442       Value *Op = nullptr;
6443       unsigned OpTypeID;
6444       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6445         return error("Invalid record");
6446       if (OpNum != Record.size())
6447         return error("Invalid record");
6448 
6449       I = new FreezeInst(Op);
6450       ResTypeID = OpTypeID;
6451       InstructionList.push_back(I);
6452       break;
6453     }
6454     }
6455 
6456     // Add instruction to end of current BB.  If there is no current BB, reject
6457     // this file.
6458     if (!CurBB) {
6459       I->deleteValue();
6460       return error("Invalid instruction with no BB");
6461     }
6462     if (!OperandBundles.empty()) {
6463       I->deleteValue();
6464       return error("Operand bundles found with no consumer");
6465     }
6466     I->insertInto(CurBB, CurBB->end());
6467 
6468     // If this was a terminator instruction, move to the next block.
6469     if (I->isTerminator()) {
6470       ++CurBBNo;
6471       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6472     }
6473 
6474     // Non-void values get registered in the value table for future use.
6475     if (!I->getType()->isVoidTy()) {
6476       assert(I->getType() == getTypeByID(ResTypeID) &&
6477              "Incorrect result type ID");
6478       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6479         return Err;
6480     }
6481   }
6482 
6483 OutOfRecordLoop:
6484 
6485   if (!OperandBundles.empty())
6486     return error("Operand bundles found with no consumer");
6487 
6488   // Check the function list for unresolved values.
6489   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6490     if (!A->getParent()) {
6491       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6492       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6493         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6494           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6495           delete A;
6496         }
6497       }
6498       return error("Never resolved value found in function");
6499     }
6500   }
6501 
6502   // Unexpected unresolved metadata about to be dropped.
6503   if (MDLoader->hasFwdRefs())
6504     return error("Invalid function metadata: outgoing forward refs");
6505 
6506   if (PhiConstExprBB)
6507     PhiConstExprBB->eraseFromParent();
6508 
6509   for (const auto &Pair : ConstExprEdgeBBs) {
6510     BasicBlock *From = Pair.first.first;
6511     BasicBlock *To = Pair.first.second;
6512     BasicBlock *EdgeBB = Pair.second;
6513     BranchInst::Create(To, EdgeBB);
6514     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6515     To->replacePhiUsesWith(From, EdgeBB);
6516     EdgeBB->moveBefore(To);
6517   }
6518 
6519   // Trim the value list down to the size it was before we parsed this function.
6520   ValueList.shrinkTo(ModuleValueListSize);
6521   MDLoader->shrinkTo(ModuleMDLoaderSize);
6522   std::vector<BasicBlock*>().swap(FunctionBBs);
6523   return Error::success();
6524 }
6525 
6526 /// Find the function body in the bitcode stream
6527 Error BitcodeReader::findFunctionInStream(
6528     Function *F,
6529     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6530   while (DeferredFunctionInfoIterator->second == 0) {
6531     // This is the fallback handling for the old format bitcode that
6532     // didn't contain the function index in the VST, or when we have
6533     // an anonymous function which would not have a VST entry.
6534     // Assert that we have one of those two cases.
6535     assert(VSTOffset == 0 || !F->hasName());
6536     // Parse the next body in the stream and set its position in the
6537     // DeferredFunctionInfo map.
6538     if (Error Err = rememberAndSkipFunctionBodies())
6539       return Err;
6540   }
6541   return Error::success();
6542 }
6543 
6544 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6545   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6546     return SyncScope::ID(Val);
6547   if (Val >= SSIDs.size())
6548     return SyncScope::System; // Map unknown synchronization scopes to system.
6549   return SSIDs[Val];
6550 }
6551 
6552 //===----------------------------------------------------------------------===//
6553 // GVMaterializer implementation
6554 //===----------------------------------------------------------------------===//
6555 
6556 Error BitcodeReader::materialize(GlobalValue *GV) {
6557   Function *F = dyn_cast<Function>(GV);
6558   // If it's not a function or is already material, ignore the request.
6559   if (!F || !F->isMaterializable())
6560     return Error::success();
6561 
6562   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6563   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6564   // If its position is recorded as 0, its body is somewhere in the stream
6565   // but we haven't seen it yet.
6566   if (DFII->second == 0)
6567     if (Error Err = findFunctionInStream(F, DFII))
6568       return Err;
6569 
6570   // Materialize metadata before parsing any function bodies.
6571   if (Error Err = materializeMetadata())
6572     return Err;
6573 
6574   // Move the bit stream to the saved position of the deferred function body.
6575   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6576     return JumpFailed;
6577   if (Error Err = parseFunctionBody(F))
6578     return Err;
6579   F->setIsMaterializable(false);
6580 
6581   if (StripDebugInfo)
6582     stripDebugInfo(*F);
6583 
6584   // Upgrade any old intrinsic calls in the function.
6585   for (auto &I : UpgradedIntrinsics) {
6586     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6587       if (CallInst *CI = dyn_cast<CallInst>(U))
6588         UpgradeIntrinsicCall(CI, I.second);
6589   }
6590 
6591   // Finish fn->subprogram upgrade for materialized functions.
6592   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6593     F->setSubprogram(SP);
6594 
6595   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6596   if (!MDLoader->isStrippingTBAA()) {
6597     for (auto &I : instructions(F)) {
6598       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6599       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6600         continue;
6601       MDLoader->setStripTBAA(true);
6602       stripTBAA(F->getParent());
6603     }
6604   }
6605 
6606   for (auto &I : instructions(F)) {
6607     // "Upgrade" older incorrect branch weights by dropping them.
6608     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6609       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6610         MDString *MDS = cast<MDString>(MD->getOperand(0));
6611         StringRef ProfName = MDS->getString();
6612         // Check consistency of !prof branch_weights metadata.
6613         if (!ProfName.equals("branch_weights"))
6614           continue;
6615         unsigned ExpectedNumOperands = 0;
6616         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6617           ExpectedNumOperands = BI->getNumSuccessors();
6618         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6619           ExpectedNumOperands = SI->getNumSuccessors();
6620         else if (isa<CallInst>(&I))
6621           ExpectedNumOperands = 1;
6622         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6623           ExpectedNumOperands = IBI->getNumDestinations();
6624         else if (isa<SelectInst>(&I))
6625           ExpectedNumOperands = 2;
6626         else
6627           continue; // ignore and continue.
6628 
6629         // If branch weight doesn't match, just strip branch weight.
6630         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6631           I.setMetadata(LLVMContext::MD_prof, nullptr);
6632       }
6633     }
6634 
6635     // Remove incompatible attributes on function calls.
6636     if (auto *CI = dyn_cast<CallBase>(&I)) {
6637       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6638           CI->getFunctionType()->getReturnType()));
6639 
6640       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6641         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6642                                         CI->getArgOperand(ArgNo)->getType()));
6643     }
6644   }
6645 
6646   // Look for functions that rely on old function attribute behavior.
6647   UpgradeFunctionAttributes(*F);
6648 
6649   // Bring in any functions that this function forward-referenced via
6650   // blockaddresses.
6651   return materializeForwardReferencedFunctions();
6652 }
6653 
6654 Error BitcodeReader::materializeModule() {
6655   if (Error Err = materializeMetadata())
6656     return Err;
6657 
6658   // Promise to materialize all forward references.
6659   WillMaterializeAllForwardRefs = true;
6660 
6661   // Iterate over the module, deserializing any functions that are still on
6662   // disk.
6663   for (Function &F : *TheModule) {
6664     if (Error Err = materialize(&F))
6665       return Err;
6666   }
6667   // At this point, if there are any function bodies, parse the rest of
6668   // the bits in the module past the last function block we have recorded
6669   // through either lazy scanning or the VST.
6670   if (LastFunctionBlockBit || NextUnreadBit)
6671     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6672                                     ? LastFunctionBlockBit
6673                                     : NextUnreadBit))
6674       return Err;
6675 
6676   // Check that all block address forward references got resolved (as we
6677   // promised above).
6678   if (!BasicBlockFwdRefs.empty())
6679     return error("Never resolved function from blockaddress");
6680 
6681   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6682   // delete the old functions to clean up. We can't do this unless the entire
6683   // module is materialized because there could always be another function body
6684   // with calls to the old function.
6685   for (auto &I : UpgradedIntrinsics) {
6686     for (auto *U : I.first->users()) {
6687       if (CallInst *CI = dyn_cast<CallInst>(U))
6688         UpgradeIntrinsicCall(CI, I.second);
6689     }
6690     if (!I.first->use_empty())
6691       I.first->replaceAllUsesWith(I.second);
6692     I.first->eraseFromParent();
6693   }
6694   UpgradedIntrinsics.clear();
6695 
6696   UpgradeDebugInfo(*TheModule);
6697 
6698   UpgradeModuleFlags(*TheModule);
6699 
6700   UpgradeARCRuntime(*TheModule);
6701 
6702   return Error::success();
6703 }
6704 
6705 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6706   return IdentifiedStructTypes;
6707 }
6708 
6709 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6710     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6711     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6712     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6713       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6714 
6715 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6716   TheIndex.addModule(ModulePath);
6717 }
6718 
6719 ModuleSummaryIndex::ModuleInfo *
6720 ModuleSummaryIndexBitcodeReader::getThisModule() {
6721   return TheIndex.getModule(ModulePath);
6722 }
6723 
6724 template <bool AllowNullValueInfo>
6725 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6726 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6727   auto VGI = ValueIdToValueInfoMap[ValueId];
6728   // We can have a null value info for memprof callsite info records in
6729   // distributed ThinLTO index files when the callee function summary is not
6730   // included in the index. The bitcode writer records 0 in that case,
6731   // and the caller of this helper will set AllowNullValueInfo to true.
6732   assert(AllowNullValueInfo || std::get<0>(VGI));
6733   return VGI;
6734 }
6735 
6736 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6737     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6738     StringRef SourceFileName) {
6739   std::string GlobalId =
6740       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6741   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6742   auto OriginalNameID = ValueGUID;
6743   if (GlobalValue::isLocalLinkage(Linkage))
6744     OriginalNameID = GlobalValue::getGUID(ValueName);
6745   if (PrintSummaryGUIDs)
6746     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6747            << ValueName << "\n";
6748 
6749   // UseStrtab is false for legacy summary formats and value names are
6750   // created on stack. In that case we save the name in a string saver in
6751   // the index so that the value name can be recorded.
6752   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6753       TheIndex.getOrInsertValueInfo(
6754           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6755       OriginalNameID, ValueGUID);
6756 }
6757 
6758 // Specialized value symbol table parser used when reading module index
6759 // blocks where we don't actually create global values. The parsed information
6760 // is saved in the bitcode reader for use when later parsing summaries.
6761 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6762     uint64_t Offset,
6763     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6764   // With a strtab the VST is not required to parse the summary.
6765   if (UseStrtab)
6766     return Error::success();
6767 
6768   assert(Offset > 0 && "Expected non-zero VST offset");
6769   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6770   if (!MaybeCurrentBit)
6771     return MaybeCurrentBit.takeError();
6772   uint64_t CurrentBit = MaybeCurrentBit.get();
6773 
6774   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6775     return Err;
6776 
6777   SmallVector<uint64_t, 64> Record;
6778 
6779   // Read all the records for this value table.
6780   SmallString<128> ValueName;
6781 
6782   while (true) {
6783     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6784     if (!MaybeEntry)
6785       return MaybeEntry.takeError();
6786     BitstreamEntry Entry = MaybeEntry.get();
6787 
6788     switch (Entry.Kind) {
6789     case BitstreamEntry::SubBlock: // Handled for us already.
6790     case BitstreamEntry::Error:
6791       return error("Malformed block");
6792     case BitstreamEntry::EndBlock:
6793       // Done parsing VST, jump back to wherever we came from.
6794       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6795         return JumpFailed;
6796       return Error::success();
6797     case BitstreamEntry::Record:
6798       // The interesting case.
6799       break;
6800     }
6801 
6802     // Read a record.
6803     Record.clear();
6804     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6805     if (!MaybeRecord)
6806       return MaybeRecord.takeError();
6807     switch (MaybeRecord.get()) {
6808     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6809       break;
6810     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6811       if (convertToString(Record, 1, ValueName))
6812         return error("Invalid record");
6813       unsigned ValueID = Record[0];
6814       assert(!SourceFileName.empty());
6815       auto VLI = ValueIdToLinkageMap.find(ValueID);
6816       assert(VLI != ValueIdToLinkageMap.end() &&
6817              "No linkage found for VST entry?");
6818       auto Linkage = VLI->second;
6819       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6820       ValueName.clear();
6821       break;
6822     }
6823     case bitc::VST_CODE_FNENTRY: {
6824       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6825       if (convertToString(Record, 2, ValueName))
6826         return error("Invalid record");
6827       unsigned ValueID = Record[0];
6828       assert(!SourceFileName.empty());
6829       auto VLI = ValueIdToLinkageMap.find(ValueID);
6830       assert(VLI != ValueIdToLinkageMap.end() &&
6831              "No linkage found for VST entry?");
6832       auto Linkage = VLI->second;
6833       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6834       ValueName.clear();
6835       break;
6836     }
6837     case bitc::VST_CODE_COMBINED_ENTRY: {
6838       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6839       unsigned ValueID = Record[0];
6840       GlobalValue::GUID RefGUID = Record[1];
6841       // The "original name", which is the second value of the pair will be
6842       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6843       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6844           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6845       break;
6846     }
6847     }
6848   }
6849 }
6850 
6851 // Parse just the blocks needed for building the index out of the module.
6852 // At the end of this routine the module Index is populated with a map
6853 // from global value id to GlobalValueSummary objects.
6854 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6855   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6856     return Err;
6857 
6858   SmallVector<uint64_t, 64> Record;
6859   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6860   unsigned ValueId = 0;
6861 
6862   // Read the index for this module.
6863   while (true) {
6864     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6865     if (!MaybeEntry)
6866       return MaybeEntry.takeError();
6867     llvm::BitstreamEntry Entry = MaybeEntry.get();
6868 
6869     switch (Entry.Kind) {
6870     case BitstreamEntry::Error:
6871       return error("Malformed block");
6872     case BitstreamEntry::EndBlock:
6873       return Error::success();
6874 
6875     case BitstreamEntry::SubBlock:
6876       switch (Entry.ID) {
6877       default: // Skip unknown content.
6878         if (Error Err = Stream.SkipBlock())
6879           return Err;
6880         break;
6881       case bitc::BLOCKINFO_BLOCK_ID:
6882         // Need to parse these to get abbrev ids (e.g. for VST)
6883         if (Error Err = readBlockInfo())
6884           return Err;
6885         break;
6886       case bitc::VALUE_SYMTAB_BLOCK_ID:
6887         // Should have been parsed earlier via VSTOffset, unless there
6888         // is no summary section.
6889         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6890                 !SeenGlobalValSummary) &&
6891                "Expected early VST parse via VSTOffset record");
6892         if (Error Err = Stream.SkipBlock())
6893           return Err;
6894         break;
6895       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6896       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6897         // Add the module if it is a per-module index (has a source file name).
6898         if (!SourceFileName.empty())
6899           addThisModule();
6900         assert(!SeenValueSymbolTable &&
6901                "Already read VST when parsing summary block?");
6902         // We might not have a VST if there were no values in the
6903         // summary. An empty summary block generated when we are
6904         // performing ThinLTO compiles so we don't later invoke
6905         // the regular LTO process on them.
6906         if (VSTOffset > 0) {
6907           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6908             return Err;
6909           SeenValueSymbolTable = true;
6910         }
6911         SeenGlobalValSummary = true;
6912         if (Error Err = parseEntireSummary(Entry.ID))
6913           return Err;
6914         break;
6915       case bitc::MODULE_STRTAB_BLOCK_ID:
6916         if (Error Err = parseModuleStringTable())
6917           return Err;
6918         break;
6919       }
6920       continue;
6921 
6922     case BitstreamEntry::Record: {
6923         Record.clear();
6924         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6925         if (!MaybeBitCode)
6926           return MaybeBitCode.takeError();
6927         switch (MaybeBitCode.get()) {
6928         default:
6929           break; // Default behavior, ignore unknown content.
6930         case bitc::MODULE_CODE_VERSION: {
6931           if (Error Err = parseVersionRecord(Record).takeError())
6932             return Err;
6933           break;
6934         }
6935         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6936         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6937           SmallString<128> ValueName;
6938           if (convertToString(Record, 0, ValueName))
6939             return error("Invalid record");
6940           SourceFileName = ValueName.c_str();
6941           break;
6942         }
6943         /// MODULE_CODE_HASH: [5*i32]
6944         case bitc::MODULE_CODE_HASH: {
6945           if (Record.size() != 5)
6946             return error("Invalid hash length " + Twine(Record.size()).str());
6947           auto &Hash = getThisModule()->second;
6948           int Pos = 0;
6949           for (auto &Val : Record) {
6950             assert(!(Val >> 32) && "Unexpected high bits set");
6951             Hash[Pos++] = Val;
6952           }
6953           break;
6954         }
6955         /// MODULE_CODE_VSTOFFSET: [offset]
6956         case bitc::MODULE_CODE_VSTOFFSET:
6957           if (Record.empty())
6958             return error("Invalid record");
6959           // Note that we subtract 1 here because the offset is relative to one
6960           // word before the start of the identification or module block, which
6961           // was historically always the start of the regular bitcode header.
6962           VSTOffset = Record[0] - 1;
6963           break;
6964         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6965         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6966         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6967         // v2: [strtab offset, strtab size, v1]
6968         case bitc::MODULE_CODE_GLOBALVAR:
6969         case bitc::MODULE_CODE_FUNCTION:
6970         case bitc::MODULE_CODE_ALIAS: {
6971           StringRef Name;
6972           ArrayRef<uint64_t> GVRecord;
6973           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6974           if (GVRecord.size() <= 3)
6975             return error("Invalid record");
6976           uint64_t RawLinkage = GVRecord[3];
6977           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6978           if (!UseStrtab) {
6979             ValueIdToLinkageMap[ValueId++] = Linkage;
6980             break;
6981           }
6982 
6983           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6984           break;
6985         }
6986         }
6987       }
6988       continue;
6989     }
6990   }
6991 }
6992 
6993 std::vector<ValueInfo>
6994 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6995   std::vector<ValueInfo> Ret;
6996   Ret.reserve(Record.size());
6997   for (uint64_t RefValueId : Record)
6998     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
6999   return Ret;
7000 }
7001 
7002 std::vector<FunctionSummary::EdgeTy>
7003 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7004                                               bool IsOldProfileFormat,
7005                                               bool HasProfile, bool HasRelBF) {
7006   std::vector<FunctionSummary::EdgeTy> Ret;
7007   Ret.reserve(Record.size());
7008   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7009     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7010     uint64_t RelBF = 0;
7011     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7012     if (IsOldProfileFormat) {
7013       I += 1; // Skip old callsitecount field
7014       if (HasProfile)
7015         I += 1; // Skip old profilecount field
7016     } else if (HasProfile)
7017       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7018     else if (HasRelBF)
7019       RelBF = Record[++I];
7020     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7021   }
7022   return Ret;
7023 }
7024 
7025 static void
7026 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7027                                        WholeProgramDevirtResolution &Wpd) {
7028   uint64_t ArgNum = Record[Slot++];
7029   WholeProgramDevirtResolution::ByArg &B =
7030       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7031   Slot += ArgNum;
7032 
7033   B.TheKind =
7034       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7035   B.Info = Record[Slot++];
7036   B.Byte = Record[Slot++];
7037   B.Bit = Record[Slot++];
7038 }
7039 
7040 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7041                                               StringRef Strtab, size_t &Slot,
7042                                               TypeIdSummary &TypeId) {
7043   uint64_t Id = Record[Slot++];
7044   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7045 
7046   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7047   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7048                         static_cast<size_t>(Record[Slot + 1])};
7049   Slot += 2;
7050 
7051   uint64_t ResByArgNum = Record[Slot++];
7052   for (uint64_t I = 0; I != ResByArgNum; ++I)
7053     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7054 }
7055 
7056 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7057                                      StringRef Strtab,
7058                                      ModuleSummaryIndex &TheIndex) {
7059   size_t Slot = 0;
7060   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7061       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7062   Slot += 2;
7063 
7064   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7065   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7066   TypeId.TTRes.AlignLog2 = Record[Slot++];
7067   TypeId.TTRes.SizeM1 = Record[Slot++];
7068   TypeId.TTRes.BitMask = Record[Slot++];
7069   TypeId.TTRes.InlineBits = Record[Slot++];
7070 
7071   while (Slot < Record.size())
7072     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7073 }
7074 
7075 std::vector<FunctionSummary::ParamAccess>
7076 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7077   auto ReadRange = [&]() {
7078     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7079                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7080     Record = Record.drop_front();
7081     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7082                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7083     Record = Record.drop_front();
7084     ConstantRange Range{Lower, Upper};
7085     assert(!Range.isFullSet());
7086     assert(!Range.isUpperSignWrapped());
7087     return Range;
7088   };
7089 
7090   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7091   while (!Record.empty()) {
7092     PendingParamAccesses.emplace_back();
7093     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7094     ParamAccess.ParamNo = Record.front();
7095     Record = Record.drop_front();
7096     ParamAccess.Use = ReadRange();
7097     ParamAccess.Calls.resize(Record.front());
7098     Record = Record.drop_front();
7099     for (auto &Call : ParamAccess.Calls) {
7100       Call.ParamNo = Record.front();
7101       Record = Record.drop_front();
7102       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7103       Record = Record.drop_front();
7104       Call.Offsets = ReadRange();
7105     }
7106   }
7107   return PendingParamAccesses;
7108 }
7109 
7110 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7111     ArrayRef<uint64_t> Record, size_t &Slot,
7112     TypeIdCompatibleVtableInfo &TypeId) {
7113   uint64_t Offset = Record[Slot++];
7114   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7115   TypeId.push_back({Offset, Callee});
7116 }
7117 
7118 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7119     ArrayRef<uint64_t> Record) {
7120   size_t Slot = 0;
7121   TypeIdCompatibleVtableInfo &TypeId =
7122       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7123           {Strtab.data() + Record[Slot],
7124            static_cast<size_t>(Record[Slot + 1])});
7125   Slot += 2;
7126 
7127   while (Slot < Record.size())
7128     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7129 }
7130 
7131 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7132                            unsigned WOCnt) {
7133   // Readonly and writeonly refs are in the end of the refs list.
7134   assert(ROCnt + WOCnt <= Refs.size());
7135   unsigned FirstWORef = Refs.size() - WOCnt;
7136   unsigned RefNo = FirstWORef - ROCnt;
7137   for (; RefNo < FirstWORef; ++RefNo)
7138     Refs[RefNo].setReadOnly();
7139   for (; RefNo < Refs.size(); ++RefNo)
7140     Refs[RefNo].setWriteOnly();
7141 }
7142 
7143 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7144 // objects in the index.
7145 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7146   if (Error Err = Stream.EnterSubBlock(ID))
7147     return Err;
7148   SmallVector<uint64_t, 64> Record;
7149 
7150   // Parse version
7151   {
7152     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7153     if (!MaybeEntry)
7154       return MaybeEntry.takeError();
7155     BitstreamEntry Entry = MaybeEntry.get();
7156 
7157     if (Entry.Kind != BitstreamEntry::Record)
7158       return error("Invalid Summary Block: record for version expected");
7159     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7160     if (!MaybeRecord)
7161       return MaybeRecord.takeError();
7162     if (MaybeRecord.get() != bitc::FS_VERSION)
7163       return error("Invalid Summary Block: version expected");
7164   }
7165   const uint64_t Version = Record[0];
7166   const bool IsOldProfileFormat = Version == 1;
7167   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7168     return error("Invalid summary version " + Twine(Version) +
7169                  ". Version should be in the range [1-" +
7170                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7171                  "].");
7172   Record.clear();
7173 
7174   // Keep around the last seen summary to be used when we see an optional
7175   // "OriginalName" attachement.
7176   GlobalValueSummary *LastSeenSummary = nullptr;
7177   GlobalValue::GUID LastSeenGUID = 0;
7178 
7179   // We can expect to see any number of type ID information records before
7180   // each function summary records; these variables store the information
7181   // collected so far so that it can be used to create the summary object.
7182   std::vector<GlobalValue::GUID> PendingTypeTests;
7183   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7184       PendingTypeCheckedLoadVCalls;
7185   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7186       PendingTypeCheckedLoadConstVCalls;
7187   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7188 
7189   std::vector<CallsiteInfo> PendingCallsites;
7190   std::vector<AllocInfo> PendingAllocs;
7191 
7192   while (true) {
7193     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7194     if (!MaybeEntry)
7195       return MaybeEntry.takeError();
7196     BitstreamEntry Entry = MaybeEntry.get();
7197 
7198     switch (Entry.Kind) {
7199     case BitstreamEntry::SubBlock: // Handled for us already.
7200     case BitstreamEntry::Error:
7201       return error("Malformed block");
7202     case BitstreamEntry::EndBlock:
7203       return Error::success();
7204     case BitstreamEntry::Record:
7205       // The interesting case.
7206       break;
7207     }
7208 
7209     // Read a record. The record format depends on whether this
7210     // is a per-module index or a combined index file. In the per-module
7211     // case the records contain the associated value's ID for correlation
7212     // with VST entries. In the combined index the correlation is done
7213     // via the bitcode offset of the summary records (which were saved
7214     // in the combined index VST entries). The records also contain
7215     // information used for ThinLTO renaming and importing.
7216     Record.clear();
7217     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7218     if (!MaybeBitCode)
7219       return MaybeBitCode.takeError();
7220     switch (unsigned BitCode = MaybeBitCode.get()) {
7221     default: // Default behavior: ignore.
7222       break;
7223     case bitc::FS_FLAGS: {  // [flags]
7224       TheIndex.setFlags(Record[0]);
7225       break;
7226     }
7227     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7228       uint64_t ValueID = Record[0];
7229       GlobalValue::GUID RefGUID = Record[1];
7230       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7231           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7232       break;
7233     }
7234     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7235     //                numrefs x valueid, n x (valueid)]
7236     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7237     //                        numrefs x valueid,
7238     //                        n x (valueid, hotness)]
7239     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7240     //                      numrefs x valueid,
7241     //                      n x (valueid, relblockfreq)]
7242     case bitc::FS_PERMODULE:
7243     case bitc::FS_PERMODULE_RELBF:
7244     case bitc::FS_PERMODULE_PROFILE: {
7245       unsigned ValueID = Record[0];
7246       uint64_t RawFlags = Record[1];
7247       unsigned InstCount = Record[2];
7248       uint64_t RawFunFlags = 0;
7249       unsigned NumRefs = Record[3];
7250       unsigned NumRORefs = 0, NumWORefs = 0;
7251       int RefListStartIndex = 4;
7252       if (Version >= 4) {
7253         RawFunFlags = Record[3];
7254         NumRefs = Record[4];
7255         RefListStartIndex = 5;
7256         if (Version >= 5) {
7257           NumRORefs = Record[5];
7258           RefListStartIndex = 6;
7259           if (Version >= 7) {
7260             NumWORefs = Record[6];
7261             RefListStartIndex = 7;
7262           }
7263         }
7264       }
7265 
7266       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7267       // The module path string ref set in the summary must be owned by the
7268       // index's module string table. Since we don't have a module path
7269       // string table section in the per-module index, we create a single
7270       // module path string table entry with an empty (0) ID to take
7271       // ownership.
7272       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7273       assert(Record.size() >= RefListStartIndex + NumRefs &&
7274              "Record size inconsistent with number of references");
7275       std::vector<ValueInfo> Refs = makeRefList(
7276           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7277       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7278       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7279       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7280           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7281           IsOldProfileFormat, HasProfile, HasRelBF);
7282       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7283       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7284       // In order to save memory, only record the memprof summaries if this is
7285       // the prevailing copy of a symbol. The linker doesn't resolve local
7286       // linkage values so don't check whether those are prevailing.
7287       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7288       if (IsPrevailing &&
7289           !GlobalValue::isLocalLinkage(LT) &&
7290           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7291         PendingCallsites.clear();
7292         PendingAllocs.clear();
7293       }
7294       auto FS = std::make_unique<FunctionSummary>(
7295           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7296           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7297           std::move(PendingTypeTestAssumeVCalls),
7298           std::move(PendingTypeCheckedLoadVCalls),
7299           std::move(PendingTypeTestAssumeConstVCalls),
7300           std::move(PendingTypeCheckedLoadConstVCalls),
7301           std::move(PendingParamAccesses), std::move(PendingCallsites),
7302           std::move(PendingAllocs));
7303       FS->setModulePath(getThisModule()->first());
7304       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7305       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7306                                      std::move(FS));
7307       break;
7308     }
7309     // FS_ALIAS: [valueid, flags, valueid]
7310     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7311     // they expect all aliasee summaries to be available.
7312     case bitc::FS_ALIAS: {
7313       unsigned ValueID = Record[0];
7314       uint64_t RawFlags = Record[1];
7315       unsigned AliaseeID = Record[2];
7316       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7317       auto AS = std::make_unique<AliasSummary>(Flags);
7318       // The module path string ref set in the summary must be owned by the
7319       // index's module string table. Since we don't have a module path
7320       // string table section in the per-module index, we create a single
7321       // module path string table entry with an empty (0) ID to take
7322       // ownership.
7323       AS->setModulePath(getThisModule()->first());
7324 
7325       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7326       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7327       if (!AliaseeInModule)
7328         return error("Alias expects aliasee summary to be parsed");
7329       AS->setAliasee(AliaseeVI, AliaseeInModule);
7330 
7331       auto GUID = getValueInfoFromValueId(ValueID);
7332       AS->setOriginalName(std::get<1>(GUID));
7333       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7334       break;
7335     }
7336     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7337     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7338       unsigned ValueID = Record[0];
7339       uint64_t RawFlags = Record[1];
7340       unsigned RefArrayStart = 2;
7341       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7342                                       /* WriteOnly */ false,
7343                                       /* Constant */ false,
7344                                       GlobalObject::VCallVisibilityPublic);
7345       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7346       if (Version >= 5) {
7347         GVF = getDecodedGVarFlags(Record[2]);
7348         RefArrayStart = 3;
7349       }
7350       std::vector<ValueInfo> Refs =
7351           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7352       auto FS =
7353           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7354       FS->setModulePath(getThisModule()->first());
7355       auto GUID = getValueInfoFromValueId(ValueID);
7356       FS->setOriginalName(std::get<1>(GUID));
7357       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7358       break;
7359     }
7360     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7361     //                        numrefs, numrefs x valueid,
7362     //                        n x (valueid, offset)]
7363     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7364       unsigned ValueID = Record[0];
7365       uint64_t RawFlags = Record[1];
7366       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7367       unsigned NumRefs = Record[3];
7368       unsigned RefListStartIndex = 4;
7369       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7370       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7371       std::vector<ValueInfo> Refs = makeRefList(
7372           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7373       VTableFuncList VTableFuncs;
7374       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7375         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7376         uint64_t Offset = Record[++I];
7377         VTableFuncs.push_back({Callee, Offset});
7378       }
7379       auto VS =
7380           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7381       VS->setModulePath(getThisModule()->first());
7382       VS->setVTableFuncs(VTableFuncs);
7383       auto GUID = getValueInfoFromValueId(ValueID);
7384       VS->setOriginalName(std::get<1>(GUID));
7385       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7386       break;
7387     }
7388     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7389     //               numrefs x valueid, n x (valueid)]
7390     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7391     //                       numrefs x valueid, n x (valueid, hotness)]
7392     case bitc::FS_COMBINED:
7393     case bitc::FS_COMBINED_PROFILE: {
7394       unsigned ValueID = Record[0];
7395       uint64_t ModuleId = Record[1];
7396       uint64_t RawFlags = Record[2];
7397       unsigned InstCount = Record[3];
7398       uint64_t RawFunFlags = 0;
7399       uint64_t EntryCount = 0;
7400       unsigned NumRefs = Record[4];
7401       unsigned NumRORefs = 0, NumWORefs = 0;
7402       int RefListStartIndex = 5;
7403 
7404       if (Version >= 4) {
7405         RawFunFlags = Record[4];
7406         RefListStartIndex = 6;
7407         size_t NumRefsIndex = 5;
7408         if (Version >= 5) {
7409           unsigned NumRORefsOffset = 1;
7410           RefListStartIndex = 7;
7411           if (Version >= 6) {
7412             NumRefsIndex = 6;
7413             EntryCount = Record[5];
7414             RefListStartIndex = 8;
7415             if (Version >= 7) {
7416               RefListStartIndex = 9;
7417               NumWORefs = Record[8];
7418               NumRORefsOffset = 2;
7419             }
7420           }
7421           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7422         }
7423         NumRefs = Record[NumRefsIndex];
7424       }
7425 
7426       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7427       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7428       assert(Record.size() >= RefListStartIndex + NumRefs &&
7429              "Record size inconsistent with number of references");
7430       std::vector<ValueInfo> Refs = makeRefList(
7431           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7432       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7433       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7434           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7435           IsOldProfileFormat, HasProfile, false);
7436       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7437       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7438       auto FS = std::make_unique<FunctionSummary>(
7439           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7440           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7441           std::move(PendingTypeTestAssumeVCalls),
7442           std::move(PendingTypeCheckedLoadVCalls),
7443           std::move(PendingTypeTestAssumeConstVCalls),
7444           std::move(PendingTypeCheckedLoadConstVCalls),
7445           std::move(PendingParamAccesses), std::move(PendingCallsites),
7446           std::move(PendingAllocs));
7447       LastSeenSummary = FS.get();
7448       LastSeenGUID = VI.getGUID();
7449       FS->setModulePath(ModuleIdMap[ModuleId]);
7450       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7451       break;
7452     }
7453     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7454     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7455     // they expect all aliasee summaries to be available.
7456     case bitc::FS_COMBINED_ALIAS: {
7457       unsigned ValueID = Record[0];
7458       uint64_t ModuleId = Record[1];
7459       uint64_t RawFlags = Record[2];
7460       unsigned AliaseeValueId = Record[3];
7461       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7462       auto AS = std::make_unique<AliasSummary>(Flags);
7463       LastSeenSummary = AS.get();
7464       AS->setModulePath(ModuleIdMap[ModuleId]);
7465 
7466       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7467       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7468       AS->setAliasee(AliaseeVI, AliaseeInModule);
7469 
7470       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7471       LastSeenGUID = VI.getGUID();
7472       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7473       break;
7474     }
7475     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7476     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7477       unsigned ValueID = Record[0];
7478       uint64_t ModuleId = Record[1];
7479       uint64_t RawFlags = Record[2];
7480       unsigned RefArrayStart = 3;
7481       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7482                                       /* WriteOnly */ false,
7483                                       /* Constant */ false,
7484                                       GlobalObject::VCallVisibilityPublic);
7485       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7486       if (Version >= 5) {
7487         GVF = getDecodedGVarFlags(Record[3]);
7488         RefArrayStart = 4;
7489       }
7490       std::vector<ValueInfo> Refs =
7491           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7492       auto FS =
7493           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7494       LastSeenSummary = FS.get();
7495       FS->setModulePath(ModuleIdMap[ModuleId]);
7496       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7497       LastSeenGUID = VI.getGUID();
7498       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7499       break;
7500     }
7501     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7502     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7503       uint64_t OriginalName = Record[0];
7504       if (!LastSeenSummary)
7505         return error("Name attachment that does not follow a combined record");
7506       LastSeenSummary->setOriginalName(OriginalName);
7507       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7508       // Reset the LastSeenSummary
7509       LastSeenSummary = nullptr;
7510       LastSeenGUID = 0;
7511       break;
7512     }
7513     case bitc::FS_TYPE_TESTS:
7514       assert(PendingTypeTests.empty());
7515       llvm::append_range(PendingTypeTests, Record);
7516       break;
7517 
7518     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7519       assert(PendingTypeTestAssumeVCalls.empty());
7520       for (unsigned I = 0; I != Record.size(); I += 2)
7521         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7522       break;
7523 
7524     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7525       assert(PendingTypeCheckedLoadVCalls.empty());
7526       for (unsigned I = 0; I != Record.size(); I += 2)
7527         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7528       break;
7529 
7530     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7531       PendingTypeTestAssumeConstVCalls.push_back(
7532           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7533       break;
7534 
7535     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7536       PendingTypeCheckedLoadConstVCalls.push_back(
7537           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7538       break;
7539 
7540     case bitc::FS_CFI_FUNCTION_DEFS: {
7541       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7542       for (unsigned I = 0; I != Record.size(); I += 2)
7543         CfiFunctionDefs.insert(
7544             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7545       break;
7546     }
7547 
7548     case bitc::FS_CFI_FUNCTION_DECLS: {
7549       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7550       for (unsigned I = 0; I != Record.size(); I += 2)
7551         CfiFunctionDecls.insert(
7552             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7553       break;
7554     }
7555 
7556     case bitc::FS_TYPE_ID:
7557       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7558       break;
7559 
7560     case bitc::FS_TYPE_ID_METADATA:
7561       parseTypeIdCompatibleVtableSummaryRecord(Record);
7562       break;
7563 
7564     case bitc::FS_BLOCK_COUNT:
7565       TheIndex.addBlockCount(Record[0]);
7566       break;
7567 
7568     case bitc::FS_PARAM_ACCESS: {
7569       PendingParamAccesses = parseParamAccesses(Record);
7570       break;
7571     }
7572 
7573     case bitc::FS_STACK_IDS: { // [n x stackid]
7574       // Save stack ids in the reader to consult when adding stack ids from the
7575       // lists in the stack node and alloc node entries.
7576       StackIds = ArrayRef<uint64_t>(Record);
7577       break;
7578     }
7579 
7580     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7581       unsigned ValueID = Record[0];
7582       SmallVector<unsigned> StackIdList;
7583       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7584         assert(*R < StackIds.size());
7585         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7586       }
7587       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7588       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7589       break;
7590     }
7591 
7592     case bitc::FS_COMBINED_CALLSITE_INFO: {
7593       auto RecordIter = Record.begin();
7594       unsigned ValueID = *RecordIter++;
7595       unsigned NumStackIds = *RecordIter++;
7596       unsigned NumVersions = *RecordIter++;
7597       assert(Record.size() == 3 + NumStackIds + NumVersions);
7598       SmallVector<unsigned> StackIdList;
7599       for (unsigned J = 0; J < NumStackIds; J++) {
7600         assert(*RecordIter < StackIds.size());
7601         StackIdList.push_back(
7602             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7603       }
7604       SmallVector<unsigned> Versions;
7605       for (unsigned J = 0; J < NumVersions; J++)
7606         Versions.push_back(*RecordIter++);
7607       ValueInfo VI = std::get<0>(
7608           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7609       PendingCallsites.push_back(
7610           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7611       break;
7612     }
7613 
7614     case bitc::FS_PERMODULE_ALLOC_INFO: {
7615       unsigned I = 0;
7616       std::vector<MIBInfo> MIBs;
7617       while (I < Record.size()) {
7618         assert(Record.size() - I >= 2);
7619         AllocationType AllocType = (AllocationType)Record[I++];
7620         unsigned NumStackEntries = Record[I++];
7621         assert(Record.size() - I >= NumStackEntries);
7622         SmallVector<unsigned> StackIdList;
7623         for (unsigned J = 0; J < NumStackEntries; J++) {
7624           assert(Record[I] < StackIds.size());
7625           StackIdList.push_back(
7626               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7627         }
7628         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7629       }
7630       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7631       break;
7632     }
7633 
7634     case bitc::FS_COMBINED_ALLOC_INFO: {
7635       unsigned I = 0;
7636       std::vector<MIBInfo> MIBs;
7637       unsigned NumMIBs = Record[I++];
7638       unsigned NumVersions = Record[I++];
7639       unsigned MIBsRead = 0;
7640       while (MIBsRead++ < NumMIBs) {
7641         assert(Record.size() - I >= 2);
7642         AllocationType AllocType = (AllocationType)Record[I++];
7643         unsigned NumStackEntries = Record[I++];
7644         assert(Record.size() - I >= NumStackEntries);
7645         SmallVector<unsigned> StackIdList;
7646         for (unsigned J = 0; J < NumStackEntries; J++) {
7647           assert(Record[I] < StackIds.size());
7648           StackIdList.push_back(
7649               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7650         }
7651         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7652       }
7653       assert(Record.size() - I >= NumVersions);
7654       SmallVector<uint8_t> Versions;
7655       for (unsigned J = 0; J < NumVersions; J++)
7656         Versions.push_back(Record[I++]);
7657       PendingAllocs.push_back(
7658           AllocInfo(std::move(Versions), std::move(MIBs)));
7659       break;
7660     }
7661     }
7662   }
7663   llvm_unreachable("Exit infinite loop");
7664 }
7665 
7666 // Parse the  module string table block into the Index.
7667 // This populates the ModulePathStringTable map in the index.
7668 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7669   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7670     return Err;
7671 
7672   SmallVector<uint64_t, 64> Record;
7673 
7674   SmallString<128> ModulePath;
7675   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7676 
7677   while (true) {
7678     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7679     if (!MaybeEntry)
7680       return MaybeEntry.takeError();
7681     BitstreamEntry Entry = MaybeEntry.get();
7682 
7683     switch (Entry.Kind) {
7684     case BitstreamEntry::SubBlock: // Handled for us already.
7685     case BitstreamEntry::Error:
7686       return error("Malformed block");
7687     case BitstreamEntry::EndBlock:
7688       return Error::success();
7689     case BitstreamEntry::Record:
7690       // The interesting case.
7691       break;
7692     }
7693 
7694     Record.clear();
7695     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7696     if (!MaybeRecord)
7697       return MaybeRecord.takeError();
7698     switch (MaybeRecord.get()) {
7699     default: // Default behavior: ignore.
7700       break;
7701     case bitc::MST_CODE_ENTRY: {
7702       // MST_ENTRY: [modid, namechar x N]
7703       uint64_t ModuleId = Record[0];
7704 
7705       if (convertToString(Record, 1, ModulePath))
7706         return error("Invalid record");
7707 
7708       LastSeenModule = TheIndex.addModule(ModulePath);
7709       ModuleIdMap[ModuleId] = LastSeenModule->first();
7710 
7711       ModulePath.clear();
7712       break;
7713     }
7714     /// MST_CODE_HASH: [5*i32]
7715     case bitc::MST_CODE_HASH: {
7716       if (Record.size() != 5)
7717         return error("Invalid hash length " + Twine(Record.size()).str());
7718       if (!LastSeenModule)
7719         return error("Invalid hash that does not follow a module path");
7720       int Pos = 0;
7721       for (auto &Val : Record) {
7722         assert(!(Val >> 32) && "Unexpected high bits set");
7723         LastSeenModule->second[Pos++] = Val;
7724       }
7725       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7726       LastSeenModule = nullptr;
7727       break;
7728     }
7729     }
7730   }
7731   llvm_unreachable("Exit infinite loop");
7732 }
7733 
7734 namespace {
7735 
7736 // FIXME: This class is only here to support the transition to llvm::Error. It
7737 // will be removed once this transition is complete. Clients should prefer to
7738 // deal with the Error value directly, rather than converting to error_code.
7739 class BitcodeErrorCategoryType : public std::error_category {
7740   const char *name() const noexcept override {
7741     return "llvm.bitcode";
7742   }
7743 
7744   std::string message(int IE) const override {
7745     BitcodeError E = static_cast<BitcodeError>(IE);
7746     switch (E) {
7747     case BitcodeError::CorruptedBitcode:
7748       return "Corrupted bitcode";
7749     }
7750     llvm_unreachable("Unknown error type!");
7751   }
7752 };
7753 
7754 } // end anonymous namespace
7755 
7756 const std::error_category &llvm::BitcodeErrorCategory() {
7757   static BitcodeErrorCategoryType ErrorCategory;
7758   return ErrorCategory;
7759 }
7760 
7761 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7762                                             unsigned Block, unsigned RecordID) {
7763   if (Error Err = Stream.EnterSubBlock(Block))
7764     return std::move(Err);
7765 
7766   StringRef Strtab;
7767   while (true) {
7768     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7769     if (!MaybeEntry)
7770       return MaybeEntry.takeError();
7771     llvm::BitstreamEntry Entry = MaybeEntry.get();
7772 
7773     switch (Entry.Kind) {
7774     case BitstreamEntry::EndBlock:
7775       return Strtab;
7776 
7777     case BitstreamEntry::Error:
7778       return error("Malformed block");
7779 
7780     case BitstreamEntry::SubBlock:
7781       if (Error Err = Stream.SkipBlock())
7782         return std::move(Err);
7783       break;
7784 
7785     case BitstreamEntry::Record:
7786       StringRef Blob;
7787       SmallVector<uint64_t, 1> Record;
7788       Expected<unsigned> MaybeRecord =
7789           Stream.readRecord(Entry.ID, Record, &Blob);
7790       if (!MaybeRecord)
7791         return MaybeRecord.takeError();
7792       if (MaybeRecord.get() == RecordID)
7793         Strtab = Blob;
7794       break;
7795     }
7796   }
7797 }
7798 
7799 //===----------------------------------------------------------------------===//
7800 // External interface
7801 //===----------------------------------------------------------------------===//
7802 
7803 Expected<std::vector<BitcodeModule>>
7804 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7805   auto FOrErr = getBitcodeFileContents(Buffer);
7806   if (!FOrErr)
7807     return FOrErr.takeError();
7808   return std::move(FOrErr->Mods);
7809 }
7810 
7811 Expected<BitcodeFileContents>
7812 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7813   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7814   if (!StreamOrErr)
7815     return StreamOrErr.takeError();
7816   BitstreamCursor &Stream = *StreamOrErr;
7817 
7818   BitcodeFileContents F;
7819   while (true) {
7820     uint64_t BCBegin = Stream.getCurrentByteNo();
7821 
7822     // We may be consuming bitcode from a client that leaves garbage at the end
7823     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7824     // the end that there cannot possibly be another module, stop looking.
7825     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7826       return F;
7827 
7828     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7829     if (!MaybeEntry)
7830       return MaybeEntry.takeError();
7831     llvm::BitstreamEntry Entry = MaybeEntry.get();
7832 
7833     switch (Entry.Kind) {
7834     case BitstreamEntry::EndBlock:
7835     case BitstreamEntry::Error:
7836       return error("Malformed block");
7837 
7838     case BitstreamEntry::SubBlock: {
7839       uint64_t IdentificationBit = -1ull;
7840       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7841         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7842         if (Error Err = Stream.SkipBlock())
7843           return std::move(Err);
7844 
7845         {
7846           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7847           if (!MaybeEntry)
7848             return MaybeEntry.takeError();
7849           Entry = MaybeEntry.get();
7850         }
7851 
7852         if (Entry.Kind != BitstreamEntry::SubBlock ||
7853             Entry.ID != bitc::MODULE_BLOCK_ID)
7854           return error("Malformed block");
7855       }
7856 
7857       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7858         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7859         if (Error Err = Stream.SkipBlock())
7860           return std::move(Err);
7861 
7862         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7863                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7864                           Buffer.getBufferIdentifier(), IdentificationBit,
7865                           ModuleBit});
7866         continue;
7867       }
7868 
7869       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7870         Expected<StringRef> Strtab =
7871             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7872         if (!Strtab)
7873           return Strtab.takeError();
7874         // This string table is used by every preceding bitcode module that does
7875         // not have its own string table. A bitcode file may have multiple
7876         // string tables if it was created by binary concatenation, for example
7877         // with "llvm-cat -b".
7878         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7879           if (!I.Strtab.empty())
7880             break;
7881           I.Strtab = *Strtab;
7882         }
7883         // Similarly, the string table is used by every preceding symbol table;
7884         // normally there will be just one unless the bitcode file was created
7885         // by binary concatenation.
7886         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7887           F.StrtabForSymtab = *Strtab;
7888         continue;
7889       }
7890 
7891       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7892         Expected<StringRef> SymtabOrErr =
7893             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7894         if (!SymtabOrErr)
7895           return SymtabOrErr.takeError();
7896 
7897         // We can expect the bitcode file to have multiple symbol tables if it
7898         // was created by binary concatenation. In that case we silently
7899         // ignore any subsequent symbol tables, which is fine because this is a
7900         // low level function. The client is expected to notice that the number
7901         // of modules in the symbol table does not match the number of modules
7902         // in the input file and regenerate the symbol table.
7903         if (F.Symtab.empty())
7904           F.Symtab = *SymtabOrErr;
7905         continue;
7906       }
7907 
7908       if (Error Err = Stream.SkipBlock())
7909         return std::move(Err);
7910       continue;
7911     }
7912     case BitstreamEntry::Record:
7913       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7914         return std::move(E);
7915       continue;
7916     }
7917   }
7918 }
7919 
7920 /// Get a lazy one-at-time loading module from bitcode.
7921 ///
7922 /// This isn't always used in a lazy context.  In particular, it's also used by
7923 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7924 /// in forward-referenced functions from block address references.
7925 ///
7926 /// \param[in] MaterializeAll Set to \c true if we should materialize
7927 /// everything.
7928 Expected<std::unique_ptr<Module>>
7929 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7930                              bool ShouldLazyLoadMetadata, bool IsImporting,
7931                              ParserCallbacks Callbacks) {
7932   BitstreamCursor Stream(Buffer);
7933 
7934   std::string ProducerIdentification;
7935   if (IdentificationBit != -1ull) {
7936     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7937       return std::move(JumpFailed);
7938     if (Error E =
7939             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7940       return std::move(E);
7941   }
7942 
7943   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7944     return std::move(JumpFailed);
7945   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7946                               Context);
7947 
7948   std::unique_ptr<Module> M =
7949       std::make_unique<Module>(ModuleIdentifier, Context);
7950   M->setMaterializer(R);
7951 
7952   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7953   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7954                                       IsImporting, Callbacks))
7955     return std::move(Err);
7956 
7957   if (MaterializeAll) {
7958     // Read in the entire module, and destroy the BitcodeReader.
7959     if (Error Err = M->materializeAll())
7960       return std::move(Err);
7961   } else {
7962     // Resolve forward references from blockaddresses.
7963     if (Error Err = R->materializeForwardReferencedFunctions())
7964       return std::move(Err);
7965   }
7966   return std::move(M);
7967 }
7968 
7969 Expected<std::unique_ptr<Module>>
7970 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7971                              bool IsImporting, ParserCallbacks Callbacks) {
7972   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7973                        Callbacks);
7974 }
7975 
7976 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7977 // We don't use ModuleIdentifier here because the client may need to control the
7978 // module path used in the combined summary (e.g. when reading summaries for
7979 // regular LTO modules).
7980 Error BitcodeModule::readSummary(
7981     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
7982     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
7983   BitstreamCursor Stream(Buffer);
7984   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7985     return JumpFailed;
7986 
7987   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7988                                     ModulePath, IsPrevailing);
7989   return R.parseModule();
7990 }
7991 
7992 // Parse the specified bitcode buffer, returning the function info index.
7993 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7994   BitstreamCursor Stream(Buffer);
7995   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7996     return std::move(JumpFailed);
7997 
7998   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7999   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8000                                     ModuleIdentifier, 0);
8001 
8002   if (Error Err = R.parseModule())
8003     return std::move(Err);
8004 
8005   return std::move(Index);
8006 }
8007 
8008 static Expected<std::pair<bool, bool>>
8009 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8010                                                  unsigned ID,
8011                                                  BitcodeLTOInfo &LTOInfo) {
8012   if (Error Err = Stream.EnterSubBlock(ID))
8013     return std::move(Err);
8014   SmallVector<uint64_t, 64> Record;
8015 
8016   while (true) {
8017     BitstreamEntry Entry;
8018     std::pair<bool, bool> Result = {false,false};
8019     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8020       return std::move(E);
8021 
8022     switch (Entry.Kind) {
8023     case BitstreamEntry::SubBlock: // Handled for us already.
8024     case BitstreamEntry::Error:
8025       return error("Malformed block");
8026     case BitstreamEntry::EndBlock: {
8027       // If no flags record found, set both flags to false.
8028       return Result;
8029     }
8030     case BitstreamEntry::Record:
8031       // The interesting case.
8032       break;
8033     }
8034 
8035     // Look for the FS_FLAGS record.
8036     Record.clear();
8037     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8038     if (!MaybeBitCode)
8039       return MaybeBitCode.takeError();
8040     switch (MaybeBitCode.get()) {
8041     default: // Default behavior: ignore.
8042       break;
8043     case bitc::FS_FLAGS: { // [flags]
8044       uint64_t Flags = Record[0];
8045       // Scan flags.
8046       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8047 
8048       bool EnableSplitLTOUnit = Flags & 0x8;
8049       bool UnifiedLTO = Flags & 0x200;
8050       Result = {EnableSplitLTOUnit, UnifiedLTO};
8051 
8052       return Result;
8053     }
8054     }
8055   }
8056   llvm_unreachable("Exit infinite loop");
8057 }
8058 
8059 // Check if the given bitcode buffer contains a global value summary block.
8060 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8061   BitstreamCursor Stream(Buffer);
8062   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8063     return std::move(JumpFailed);
8064 
8065   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8066     return std::move(Err);
8067 
8068   while (true) {
8069     llvm::BitstreamEntry Entry;
8070     if (Error E = Stream.advance().moveInto(Entry))
8071       return std::move(E);
8072 
8073     switch (Entry.Kind) {
8074     case BitstreamEntry::Error:
8075       return error("Malformed block");
8076     case BitstreamEntry::EndBlock:
8077       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8078                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8079 
8080     case BitstreamEntry::SubBlock:
8081       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8082         BitcodeLTOInfo LTOInfo;
8083         Expected<std::pair<bool, bool>> Flags =
8084             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8085         if (!Flags)
8086           return Flags.takeError();
8087         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8088         LTOInfo.IsThinLTO = true;
8089         LTOInfo.HasSummary = true;
8090         return LTOInfo;
8091       }
8092 
8093       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8094         BitcodeLTOInfo LTOInfo;
8095         Expected<std::pair<bool, bool>> Flags =
8096             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8097         if (!Flags)
8098           return Flags.takeError();
8099         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8100         LTOInfo.IsThinLTO = false;
8101         LTOInfo.HasSummary = true;
8102         return LTOInfo;
8103       }
8104 
8105       // Ignore other sub-blocks.
8106       if (Error Err = Stream.SkipBlock())
8107         return std::move(Err);
8108       continue;
8109 
8110     case BitstreamEntry::Record:
8111       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8112         continue;
8113       else
8114         return StreamFailed.takeError();
8115     }
8116   }
8117 }
8118 
8119 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8120   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8121   if (!MsOrErr)
8122     return MsOrErr.takeError();
8123 
8124   if (MsOrErr->size() != 1)
8125     return error("Expected a single module");
8126 
8127   return (*MsOrErr)[0];
8128 }
8129 
8130 Expected<std::unique_ptr<Module>>
8131 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8132                            bool ShouldLazyLoadMetadata, bool IsImporting,
8133                            ParserCallbacks Callbacks) {
8134   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8135   if (!BM)
8136     return BM.takeError();
8137 
8138   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8139                            Callbacks);
8140 }
8141 
8142 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8143     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8144     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8145   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8146                                      IsImporting, Callbacks);
8147   if (MOrErr)
8148     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8149   return MOrErr;
8150 }
8151 
8152 Expected<std::unique_ptr<Module>>
8153 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8154   return getModuleImpl(Context, true, false, false, Callbacks);
8155   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8156   // written.  We must defer until the Module has been fully materialized.
8157 }
8158 
8159 Expected<std::unique_ptr<Module>>
8160 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8161                        ParserCallbacks Callbacks) {
8162   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8163   if (!BM)
8164     return BM.takeError();
8165 
8166   return BM->parseModule(Context, Callbacks);
8167 }
8168 
8169 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8170   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8171   if (!StreamOrErr)
8172     return StreamOrErr.takeError();
8173 
8174   return readTriple(*StreamOrErr);
8175 }
8176 
8177 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8178   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8179   if (!StreamOrErr)
8180     return StreamOrErr.takeError();
8181 
8182   return hasObjCCategory(*StreamOrErr);
8183 }
8184 
8185 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8186   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8187   if (!StreamOrErr)
8188     return StreamOrErr.takeError();
8189 
8190   return readIdentificationCode(*StreamOrErr);
8191 }
8192 
8193 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8194                                    ModuleSummaryIndex &CombinedIndex) {
8195   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8196   if (!BM)
8197     return BM.takeError();
8198 
8199   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8200 }
8201 
8202 Expected<std::unique_ptr<ModuleSummaryIndex>>
8203 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8204   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8205   if (!BM)
8206     return BM.takeError();
8207 
8208   return BM->getSummary();
8209 }
8210 
8211 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8212   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8213   if (!BM)
8214     return BM.takeError();
8215 
8216   return BM->getLTOInfo();
8217 }
8218 
8219 Expected<std::unique_ptr<ModuleSummaryIndex>>
8220 llvm::getModuleSummaryIndexForFile(StringRef Path,
8221                                    bool IgnoreEmptyThinLTOIndexFile) {
8222   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8223       MemoryBuffer::getFileOrSTDIN(Path);
8224   if (!FileOrErr)
8225     return errorCodeToError(FileOrErr.getError());
8226   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8227     return nullptr;
8228   return getModuleSummaryIndex(**FileOrErr);
8229 }
8230