xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision b143b2483fc5d7e73763ff9292dec6479552de9e)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
796   /// past the number of slots used by the value in the record. Return true if
797   /// there is an error.
798   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
799                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
800                 BasicBlock *ConstExprInsertBB) {
801     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
802       return true;
803     // All values currently take a single record slot.
804     ++Slot;
805     return false;
806   }
807 
808   /// Like popValue, but does not increment the Slot number.
809   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
810                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
811                 BasicBlock *ConstExprInsertBB) {
812     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
813     return ResVal == nullptr;
814   }
815 
816   /// Version of getValue that returns ResVal directly, or 0 if there is an
817   /// error.
818   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
819                   unsigned InstNum, Type *Ty, unsigned TyID,
820                   BasicBlock *ConstExprInsertBB) {
821     if (Slot == Record.size()) return nullptr;
822     unsigned ValNo = (unsigned)Record[Slot];
823     // Adjust the ValNo, if it was encoded relative to the InstNum.
824     if (UseRelativeIDs)
825       ValNo = InstNum - ValNo;
826     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
827   }
828 
829   /// Like getValue, but decodes signed VBRs.
830   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
831                         unsigned InstNum, Type *Ty, unsigned TyID,
832                         BasicBlock *ConstExprInsertBB) {
833     if (Slot == Record.size()) return nullptr;
834     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
835     // Adjust the ValNo, if it was encoded relative to the InstNum.
836     if (UseRelativeIDs)
837       ValNo = InstNum - ValNo;
838     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
839   }
840 
841   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
842                                             unsigned &OpNum,
843                                             unsigned BitWidth) {
844     if (Record.size() - OpNum < 2)
845       return error("Too few records for range");
846     if (BitWidth > 64) {
847       unsigned LowerActiveWords = Record[OpNum];
848       unsigned UpperActiveWords = Record[OpNum++] >> 32;
849       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
850         return error("Too few records for range");
851       APInt Lower =
852           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
853       OpNum += LowerActiveWords;
854       APInt Upper =
855           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
856       OpNum += UpperActiveWords;
857       return ConstantRange(Lower, Upper);
858     } else {
859       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
861       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
862     }
863   }
864 
865   Expected<ConstantRange>
866   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
867     if (Record.size() - OpNum < 1)
868       return error("Too few records for range");
869     unsigned BitWidth = Record[OpNum++];
870     return readConstantRange(Record, OpNum, BitWidth);
871   }
872 
873   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
874   /// corresponding argument's pointee type. Also upgrades intrinsics that now
875   /// require an elementtype attribute.
876   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
877 
878   /// Converts alignment exponent (i.e. power of two (or zero)) to the
879   /// corresponding alignment to use. If alignment is too large, returns
880   /// a corresponding error code.
881   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
882   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
883   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
884                     ParserCallbacks Callbacks = {});
885 
886   Error parseComdatRecord(ArrayRef<uint64_t> Record);
887   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
888   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
889   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
890                                         ArrayRef<uint64_t> Record);
891 
892   Error parseAttributeBlock();
893   Error parseAttributeGroupBlock();
894   Error parseTypeTable();
895   Error parseTypeTableBody();
896   Error parseOperandBundleTags();
897   Error parseSyncScopeNames();
898 
899   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
900                                 unsigned NameIndex, Triple &TT);
901   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
902                                ArrayRef<uint64_t> Record);
903   Error parseValueSymbolTable(uint64_t Offset = 0);
904   Error parseGlobalValueSymbolTable();
905   Error parseConstants();
906   Error rememberAndSkipFunctionBodies();
907   Error rememberAndSkipFunctionBody();
908   /// Save the positions of the Metadata blocks and skip parsing the blocks.
909   Error rememberAndSkipMetadata();
910   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
911   Error parseFunctionBody(Function *F);
912   Error globalCleanup();
913   Error resolveGlobalAndIndirectSymbolInits();
914   Error parseUseLists();
915   Error findFunctionInStream(
916       Function *F,
917       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
918 
919   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
920 };
921 
922 /// Class to manage reading and parsing function summary index bitcode
923 /// files/sections.
924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
925   /// The module index built during parsing.
926   ModuleSummaryIndex &TheIndex;
927 
928   /// Indicates whether we have encountered a global value summary section
929   /// yet during parsing.
930   bool SeenGlobalValSummary = false;
931 
932   /// Indicates whether we have already parsed the VST, used for error checking.
933   bool SeenValueSymbolTable = false;
934 
935   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
936   /// Used to enable on-demand parsing of the VST.
937   uint64_t VSTOffset = 0;
938 
939   // Map to save ValueId to ValueInfo association that was recorded in the
940   // ValueSymbolTable. It is used after the VST is parsed to convert
941   // call graph edges read from the function summary from referencing
942   // callees by their ValueId to using the ValueInfo instead, which is how
943   // they are recorded in the summary index being built.
944   // We save a GUID which refers to the same global as the ValueInfo, but
945   // ignoring the linkage, i.e. for values other than local linkage they are
946   // identical (this is the second tuple member).
947   // The third tuple member is the real GUID of the ValueInfo.
948   DenseMap<unsigned,
949            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
950       ValueIdToValueInfoMap;
951 
952   /// Map populated during module path string table parsing, from the
953   /// module ID to a string reference owned by the index's module
954   /// path string table, used to correlate with combined index
955   /// summary records.
956   DenseMap<uint64_t, StringRef> ModuleIdMap;
957 
958   /// Original source file name recorded in a bitcode record.
959   std::string SourceFileName;
960 
961   /// The string identifier given to this module by the client, normally the
962   /// path to the bitcode file.
963   StringRef ModulePath;
964 
965   /// Callback to ask whether a symbol is the prevailing copy when invoked
966   /// during combined index building.
967   std::function<bool(GlobalValue::GUID)> IsPrevailing;
968 
969   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
970   /// ids from the lists in the callsite and alloc entries to the index.
971   std::vector<uint64_t> StackIds;
972 
973 public:
974   ModuleSummaryIndexBitcodeReader(
975       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
976       StringRef ModulePath,
977       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
978 
979   Error parseModule();
980 
981 private:
982   void setValueGUID(uint64_t ValueID, StringRef ValueName,
983                     GlobalValue::LinkageTypes Linkage,
984                     StringRef SourceFileName);
985   Error parseValueSymbolTable(
986       uint64_t Offset,
987       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
988   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
989   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
990                                                     bool IsOldProfileFormat,
991                                                     bool HasProfile,
992                                                     bool HasRelBF);
993   Error parseEntireSummary(unsigned ID);
994   Error parseModuleStringTable();
995   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
996   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
997                                        TypeIdCompatibleVtableInfo &TypeId);
998   std::vector<FunctionSummary::ParamAccess>
999   parseParamAccesses(ArrayRef<uint64_t> Record);
1000 
1001   template <bool AllowNullValueInfo = false>
1002   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
1003   getValueInfoFromValueId(unsigned ValueId);
1004 
1005   void addThisModule();
1006   ModuleSummaryIndex::ModuleInfo *getThisModule();
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1012                                                     Error Err) {
1013   if (Err) {
1014     std::error_code EC;
1015     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1016       EC = EIB.convertToErrorCode();
1017       Ctx.emitError(EIB.message());
1018     });
1019     return EC;
1020   }
1021   return std::error_code();
1022 }
1023 
1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1025                              StringRef ProducerIdentification,
1026                              LLVMContext &Context)
1027     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1028       ValueList(this->Stream.SizeInBytes(),
1029                 [this](unsigned ValID, BasicBlock *InsertBB) {
1030                   return materializeValue(ValID, InsertBB);
1031                 }) {
1032   this->ProducerIdentification = std::string(ProducerIdentification);
1033 }
1034 
1035 Error BitcodeReader::materializeForwardReferencedFunctions() {
1036   if (WillMaterializeAllForwardRefs)
1037     return Error::success();
1038 
1039   // Prevent recursion.
1040   WillMaterializeAllForwardRefs = true;
1041 
1042   while (!BasicBlockFwdRefQueue.empty()) {
1043     Function *F = BasicBlockFwdRefQueue.front();
1044     BasicBlockFwdRefQueue.pop_front();
1045     assert(F && "Expected valid function");
1046     if (!BasicBlockFwdRefs.count(F))
1047       // Already materialized.
1048       continue;
1049 
1050     // Check for a function that isn't materializable to prevent an infinite
1051     // loop.  When parsing a blockaddress stored in a global variable, there
1052     // isn't a trivial way to check if a function will have a body without a
1053     // linear search through FunctionsWithBodies, so just check it here.
1054     if (!F->isMaterializable())
1055       return error("Never resolved function from blockaddress");
1056 
1057     // Try to materialize F.
1058     if (Error Err = materialize(F))
1059       return Err;
1060   }
1061   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1062 
1063   for (Function *F : BackwardRefFunctions)
1064     if (Error Err = materialize(F))
1065       return Err;
1066   BackwardRefFunctions.clear();
1067 
1068   // Reset state.
1069   WillMaterializeAllForwardRefs = false;
1070   return Error::success();
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 //  Helper functions to implement forward reference resolution, etc.
1075 //===----------------------------------------------------------------------===//
1076 
1077 static bool hasImplicitComdat(size_t Val) {
1078   switch (Val) {
1079   default:
1080     return false;
1081   case 1:  // Old WeakAnyLinkage
1082   case 4:  // Old LinkOnceAnyLinkage
1083   case 10: // Old WeakODRLinkage
1084   case 11: // Old LinkOnceODRLinkage
1085     return true;
1086   }
1087 }
1088 
1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1090   switch (Val) {
1091   default: // Map unknown/new linkages to external
1092   case 0:
1093     return GlobalValue::ExternalLinkage;
1094   case 2:
1095     return GlobalValue::AppendingLinkage;
1096   case 3:
1097     return GlobalValue::InternalLinkage;
1098   case 5:
1099     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1100   case 6:
1101     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1102   case 7:
1103     return GlobalValue::ExternalWeakLinkage;
1104   case 8:
1105     return GlobalValue::CommonLinkage;
1106   case 9:
1107     return GlobalValue::PrivateLinkage;
1108   case 12:
1109     return GlobalValue::AvailableExternallyLinkage;
1110   case 13:
1111     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1112   case 14:
1113     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1114   case 15:
1115     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1116   case 1: // Old value with implicit comdat.
1117   case 16:
1118     return GlobalValue::WeakAnyLinkage;
1119   case 10: // Old value with implicit comdat.
1120   case 17:
1121     return GlobalValue::WeakODRLinkage;
1122   case 4: // Old value with implicit comdat.
1123   case 18:
1124     return GlobalValue::LinkOnceAnyLinkage;
1125   case 11: // Old value with implicit comdat.
1126   case 19:
1127     return GlobalValue::LinkOnceODRLinkage;
1128   }
1129 }
1130 
1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1132   FunctionSummary::FFlags Flags;
1133   Flags.ReadNone = RawFlags & 0x1;
1134   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1135   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1136   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1137   Flags.NoInline = (RawFlags >> 4) & 0x1;
1138   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1139   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1140   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1141   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1142   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1143   return Flags;
1144 }
1145 
1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1147 //
1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1149 // visibility: [8, 10).
1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1151                                                             uint64_t Version) {
1152   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1153   // like getDecodedLinkage() above. Any future change to the linkage enum and
1154   // to getDecodedLinkage() will need to be taken into account here as above.
1155   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1156   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1157   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1158   RawFlags = RawFlags >> 4;
1159   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1160   // The Live flag wasn't introduced until version 3. For dead stripping
1161   // to work correctly on earlier versions, we must conservatively treat all
1162   // values as live.
1163   bool Live = (RawFlags & 0x2) || Version < 3;
1164   bool Local = (RawFlags & 0x4);
1165   bool AutoHide = (RawFlags & 0x8);
1166 
1167   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1168                                      Live, Local, AutoHide, IK);
1169 }
1170 
1171 // Decode the flags for GlobalVariable in the summary
1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1173   return GlobalVarSummary::GVarFlags(
1174       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1175       (RawFlags & 0x4) ? true : false,
1176       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1177 }
1178 
1179 static std::pair<CalleeInfo::HotnessType, bool>
1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1181   CalleeInfo::HotnessType Hotness =
1182       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1183   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1184   return {Hotness, HasTailCall};
1185 }
1186 
1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1188                                         bool &HasTailCall) {
1189   static constexpr uint64_t RelBlockFreqMask =
1190       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1191   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1192   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1193 }
1194 
1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1196   switch (Val) {
1197   default: // Map unknown visibilities to default.
1198   case 0: return GlobalValue::DefaultVisibility;
1199   case 1: return GlobalValue::HiddenVisibility;
1200   case 2: return GlobalValue::ProtectedVisibility;
1201   }
1202 }
1203 
1204 static GlobalValue::DLLStorageClassTypes
1205 getDecodedDLLStorageClass(unsigned Val) {
1206   switch (Val) {
1207   default: // Map unknown values to default.
1208   case 0: return GlobalValue::DefaultStorageClass;
1209   case 1: return GlobalValue::DLLImportStorageClass;
1210   case 2: return GlobalValue::DLLExportStorageClass;
1211   }
1212 }
1213 
1214 static bool getDecodedDSOLocal(unsigned Val) {
1215   switch(Val) {
1216   default: // Map unknown values to preemptable.
1217   case 0:  return false;
1218   case 1:  return true;
1219   }
1220 }
1221 
1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1223   switch (Val) {
1224   case 1:
1225     return CodeModel::Tiny;
1226   case 2:
1227     return CodeModel::Small;
1228   case 3:
1229     return CodeModel::Kernel;
1230   case 4:
1231     return CodeModel::Medium;
1232   case 5:
1233     return CodeModel::Large;
1234   }
1235 
1236   return {};
1237 }
1238 
1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1240   switch (Val) {
1241     case 0: return GlobalVariable::NotThreadLocal;
1242     default: // Map unknown non-zero value to general dynamic.
1243     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1244     case 2: return GlobalVariable::LocalDynamicTLSModel;
1245     case 3: return GlobalVariable::InitialExecTLSModel;
1246     case 4: return GlobalVariable::LocalExecTLSModel;
1247   }
1248 }
1249 
1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1251   switch (Val) {
1252     default: // Map unknown to UnnamedAddr::None.
1253     case 0: return GlobalVariable::UnnamedAddr::None;
1254     case 1: return GlobalVariable::UnnamedAddr::Global;
1255     case 2: return GlobalVariable::UnnamedAddr::Local;
1256   }
1257 }
1258 
1259 static int getDecodedCastOpcode(unsigned Val) {
1260   switch (Val) {
1261   default: return -1;
1262   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1263   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1264   case bitc::CAST_SEXT    : return Instruction::SExt;
1265   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1266   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1267   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1268   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1269   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1270   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1271   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1272   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1273   case bitc::CAST_BITCAST : return Instruction::BitCast;
1274   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1275   }
1276 }
1277 
1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1279   bool IsFP = Ty->isFPOrFPVectorTy();
1280   // UnOps are only valid for int/fp or vector of int/fp types
1281   if (!IsFP && !Ty->isIntOrIntVectorTy())
1282     return -1;
1283 
1284   switch (Val) {
1285   default:
1286     return -1;
1287   case bitc::UNOP_FNEG:
1288     return IsFP ? Instruction::FNeg : -1;
1289   }
1290 }
1291 
1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1293   bool IsFP = Ty->isFPOrFPVectorTy();
1294   // BinOps are only valid for int/fp or vector of int/fp types
1295   if (!IsFP && !Ty->isIntOrIntVectorTy())
1296     return -1;
1297 
1298   switch (Val) {
1299   default:
1300     return -1;
1301   case bitc::BINOP_ADD:
1302     return IsFP ? Instruction::FAdd : Instruction::Add;
1303   case bitc::BINOP_SUB:
1304     return IsFP ? Instruction::FSub : Instruction::Sub;
1305   case bitc::BINOP_MUL:
1306     return IsFP ? Instruction::FMul : Instruction::Mul;
1307   case bitc::BINOP_UDIV:
1308     return IsFP ? -1 : Instruction::UDiv;
1309   case bitc::BINOP_SDIV:
1310     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1311   case bitc::BINOP_UREM:
1312     return IsFP ? -1 : Instruction::URem;
1313   case bitc::BINOP_SREM:
1314     return IsFP ? Instruction::FRem : Instruction::SRem;
1315   case bitc::BINOP_SHL:
1316     return IsFP ? -1 : Instruction::Shl;
1317   case bitc::BINOP_LSHR:
1318     return IsFP ? -1 : Instruction::LShr;
1319   case bitc::BINOP_ASHR:
1320     return IsFP ? -1 : Instruction::AShr;
1321   case bitc::BINOP_AND:
1322     return IsFP ? -1 : Instruction::And;
1323   case bitc::BINOP_OR:
1324     return IsFP ? -1 : Instruction::Or;
1325   case bitc::BINOP_XOR:
1326     return IsFP ? -1 : Instruction::Xor;
1327   }
1328 }
1329 
1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1331   switch (Val) {
1332   default: return AtomicRMWInst::BAD_BINOP;
1333   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1334   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1335   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1336   case bitc::RMW_AND: return AtomicRMWInst::And;
1337   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1338   case bitc::RMW_OR: return AtomicRMWInst::Or;
1339   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1340   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1341   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1342   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1343   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1344   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1345   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1346   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1347   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1348   case bitc::RMW_UINC_WRAP:
1349     return AtomicRMWInst::UIncWrap;
1350   case bitc::RMW_UDEC_WRAP:
1351     return AtomicRMWInst::UDecWrap;
1352   }
1353 }
1354 
1355 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1356   switch (Val) {
1357   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1358   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1359   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1360   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1361   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1362   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1363   default: // Map unknown orderings to sequentially-consistent.
1364   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1365   }
1366 }
1367 
1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1369   switch (Val) {
1370   default: // Map unknown selection kinds to any.
1371   case bitc::COMDAT_SELECTION_KIND_ANY:
1372     return Comdat::Any;
1373   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1374     return Comdat::ExactMatch;
1375   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1376     return Comdat::Largest;
1377   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1378     return Comdat::NoDeduplicate;
1379   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1380     return Comdat::SameSize;
1381   }
1382 }
1383 
1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1385   FastMathFlags FMF;
1386   if (0 != (Val & bitc::UnsafeAlgebra))
1387     FMF.setFast();
1388   if (0 != (Val & bitc::AllowReassoc))
1389     FMF.setAllowReassoc();
1390   if (0 != (Val & bitc::NoNaNs))
1391     FMF.setNoNaNs();
1392   if (0 != (Val & bitc::NoInfs))
1393     FMF.setNoInfs();
1394   if (0 != (Val & bitc::NoSignedZeros))
1395     FMF.setNoSignedZeros();
1396   if (0 != (Val & bitc::AllowReciprocal))
1397     FMF.setAllowReciprocal();
1398   if (0 != (Val & bitc::AllowContract))
1399     FMF.setAllowContract(true);
1400   if (0 != (Val & bitc::ApproxFunc))
1401     FMF.setApproxFunc();
1402   return FMF;
1403 }
1404 
1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1406   // A GlobalValue with local linkage cannot have a DLL storage class.
1407   if (GV->hasLocalLinkage())
1408     return;
1409   switch (Val) {
1410   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1411   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1412   }
1413 }
1414 
1415 Type *BitcodeReader::getTypeByID(unsigned ID) {
1416   // The type table size is always specified correctly.
1417   if (ID >= TypeList.size())
1418     return nullptr;
1419 
1420   if (Type *Ty = TypeList[ID])
1421     return Ty;
1422 
1423   // If we have a forward reference, the only possible case is when it is to a
1424   // named struct.  Just create a placeholder for now.
1425   return TypeList[ID] = createIdentifiedStructType(Context);
1426 }
1427 
1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1429   auto It = ContainedTypeIDs.find(ID);
1430   if (It == ContainedTypeIDs.end())
1431     return InvalidTypeID;
1432 
1433   if (Idx >= It->second.size())
1434     return InvalidTypeID;
1435 
1436   return It->second[Idx];
1437 }
1438 
1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1440   if (ID >= TypeList.size())
1441     return nullptr;
1442 
1443   Type *Ty = TypeList[ID];
1444   if (!Ty->isPointerTy())
1445     return nullptr;
1446 
1447   return getTypeByID(getContainedTypeID(ID, 0));
1448 }
1449 
1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1451                                          ArrayRef<unsigned> ChildTypeIDs) {
1452   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1453   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1454   auto It = VirtualTypeIDs.find(CacheKey);
1455   if (It != VirtualTypeIDs.end()) {
1456     // The cmpxchg return value is the only place we need more than one
1457     // contained type ID, however the second one will always be the same (i1),
1458     // so we don't need to include it in the cache key. This asserts that the
1459     // contained types are indeed as expected and there are no collisions.
1460     assert((ChildTypeIDs.empty() ||
1461             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1462            "Incorrect cached contained type IDs");
1463     return It->second;
1464   }
1465 
1466   unsigned TypeID = TypeList.size();
1467   TypeList.push_back(Ty);
1468   if (!ChildTypeIDs.empty())
1469     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1470   VirtualTypeIDs.insert({CacheKey, TypeID});
1471   return TypeID;
1472 }
1473 
1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1475   GEPNoWrapFlags NW;
1476   if (Flags & (1 << bitc::GEP_INBOUNDS))
1477     NW |= GEPNoWrapFlags::inBounds();
1478   if (Flags & (1 << bitc::GEP_NUSW))
1479     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1480   if (Flags & (1 << bitc::GEP_NUW))
1481     NW |= GEPNoWrapFlags::noUnsignedWrap();
1482   return NW;
1483 }
1484 
1485 static bool isConstExprSupported(const BitcodeConstant *BC) {
1486   uint8_t Opcode = BC->Opcode;
1487 
1488   // These are not real constant expressions, always consider them supported.
1489   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1490     return true;
1491 
1492   // If -expand-constant-exprs is set, we want to consider all expressions
1493   // as unsupported.
1494   if (ExpandConstantExprs)
1495     return false;
1496 
1497   if (Instruction::isBinaryOp(Opcode))
1498     return ConstantExpr::isSupportedBinOp(Opcode);
1499 
1500   if (Instruction::isCast(Opcode))
1501     return ConstantExpr::isSupportedCastOp(Opcode);
1502 
1503   if (Opcode == Instruction::GetElementPtr)
1504     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1505 
1506   switch (Opcode) {
1507   case Instruction::FNeg:
1508   case Instruction::Select:
1509   case Instruction::ICmp:
1510   case Instruction::FCmp:
1511     return false;
1512   default:
1513     return true;
1514   }
1515 }
1516 
1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1518                                                   BasicBlock *InsertBB) {
1519   // Quickly handle the case where there is no BitcodeConstant to resolve.
1520   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1521       !isa<BitcodeConstant>(ValueList[StartValID]))
1522     return ValueList[StartValID];
1523 
1524   SmallDenseMap<unsigned, Value *> MaterializedValues;
1525   SmallVector<unsigned> Worklist;
1526   Worklist.push_back(StartValID);
1527   while (!Worklist.empty()) {
1528     unsigned ValID = Worklist.back();
1529     if (MaterializedValues.count(ValID)) {
1530       // Duplicate expression that was already handled.
1531       Worklist.pop_back();
1532       continue;
1533     }
1534 
1535     if (ValID >= ValueList.size() || !ValueList[ValID])
1536       return error("Invalid value ID");
1537 
1538     Value *V = ValueList[ValID];
1539     auto *BC = dyn_cast<BitcodeConstant>(V);
1540     if (!BC) {
1541       MaterializedValues.insert({ValID, V});
1542       Worklist.pop_back();
1543       continue;
1544     }
1545 
1546     // Iterate in reverse, so values will get popped from the worklist in
1547     // expected order.
1548     SmallVector<Value *> Ops;
1549     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1550       auto It = MaterializedValues.find(OpID);
1551       if (It != MaterializedValues.end())
1552         Ops.push_back(It->second);
1553       else
1554         Worklist.push_back(OpID);
1555     }
1556 
1557     // Some expressions have not been resolved yet, handle them first and then
1558     // revisit this one.
1559     if (Ops.size() != BC->getOperandIDs().size())
1560       continue;
1561     std::reverse(Ops.begin(), Ops.end());
1562 
1563     SmallVector<Constant *> ConstOps;
1564     for (Value *Op : Ops)
1565       if (auto *C = dyn_cast<Constant>(Op))
1566         ConstOps.push_back(C);
1567 
1568     // Materialize as constant expression if possible.
1569     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1570       Constant *C;
1571       if (Instruction::isCast(BC->Opcode)) {
1572         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1573         if (!C)
1574           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1575       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1576         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1577       } else {
1578         switch (BC->Opcode) {
1579         case BitcodeConstant::ConstantPtrAuthOpcode: {
1580           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1581           if (!Key)
1582             return error("ptrauth key operand must be ConstantInt");
1583 
1584           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1585           if (!Disc)
1586             return error("ptrauth disc operand must be ConstantInt");
1587 
1588           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1589           break;
1590         }
1591         case BitcodeConstant::NoCFIOpcode: {
1592           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1593           if (!GV)
1594             return error("no_cfi operand must be GlobalValue");
1595           C = NoCFIValue::get(GV);
1596           break;
1597         }
1598         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1599           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1600           if (!GV)
1601             return error("dso_local operand must be GlobalValue");
1602           C = DSOLocalEquivalent::get(GV);
1603           break;
1604         }
1605         case BitcodeConstant::BlockAddressOpcode: {
1606           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1607           if (!Fn)
1608             return error("blockaddress operand must be a function");
1609 
1610           // If the function is already parsed we can insert the block address
1611           // right away.
1612           BasicBlock *BB;
1613           unsigned BBID = BC->BlockAddressBB;
1614           if (!BBID)
1615             // Invalid reference to entry block.
1616             return error("Invalid ID");
1617           if (!Fn->empty()) {
1618             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1619             for (size_t I = 0, E = BBID; I != E; ++I) {
1620               if (BBI == BBE)
1621                 return error("Invalid ID");
1622               ++BBI;
1623             }
1624             BB = &*BBI;
1625           } else {
1626             // Otherwise insert a placeholder and remember it so it can be
1627             // inserted when the function is parsed.
1628             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1629             if (FwdBBs.empty())
1630               BasicBlockFwdRefQueue.push_back(Fn);
1631             if (FwdBBs.size() < BBID + 1)
1632               FwdBBs.resize(BBID + 1);
1633             if (!FwdBBs[BBID])
1634               FwdBBs[BBID] = BasicBlock::Create(Context);
1635             BB = FwdBBs[BBID];
1636           }
1637           C = BlockAddress::get(Fn, BB);
1638           break;
1639         }
1640         case BitcodeConstant::ConstantStructOpcode:
1641           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1642           break;
1643         case BitcodeConstant::ConstantArrayOpcode:
1644           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1645           break;
1646         case BitcodeConstant::ConstantVectorOpcode:
1647           C = ConstantVector::get(ConstOps);
1648           break;
1649         case Instruction::GetElementPtr:
1650           C = ConstantExpr::getGetElementPtr(
1651               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1652               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1653           break;
1654         case Instruction::ExtractElement:
1655           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1656           break;
1657         case Instruction::InsertElement:
1658           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1659                                              ConstOps[2]);
1660           break;
1661         case Instruction::ShuffleVector: {
1662           SmallVector<int, 16> Mask;
1663           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1664           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1665           break;
1666         }
1667         default:
1668           llvm_unreachable("Unhandled bitcode constant");
1669         }
1670       }
1671 
1672       // Cache resolved constant.
1673       ValueList.replaceValueWithoutRAUW(ValID, C);
1674       MaterializedValues.insert({ValID, C});
1675       Worklist.pop_back();
1676       continue;
1677     }
1678 
1679     if (!InsertBB)
1680       return error(Twine("Value referenced by initializer is an unsupported "
1681                          "constant expression of type ") +
1682                    BC->getOpcodeName());
1683 
1684     // Materialize as instructions if necessary.
1685     Instruction *I;
1686     if (Instruction::isCast(BC->Opcode)) {
1687       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1688                            BC->getType(), "constexpr", InsertBB);
1689     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1690       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1691                                 "constexpr", InsertBB);
1692     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1693       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1694                                  Ops[1], "constexpr", InsertBB);
1695       if (isa<OverflowingBinaryOperator>(I)) {
1696         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1697           I->setHasNoSignedWrap();
1698         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1699           I->setHasNoUnsignedWrap();
1700       }
1701       if (isa<PossiblyExactOperator>(I) &&
1702           (BC->Flags & PossiblyExactOperator::IsExact))
1703         I->setIsExact();
1704     } else {
1705       switch (BC->Opcode) {
1706       case BitcodeConstant::ConstantVectorOpcode: {
1707         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1708         Value *V = PoisonValue::get(BC->getType());
1709         for (auto Pair : enumerate(Ops)) {
1710           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1711           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1712                                         InsertBB);
1713         }
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case BitcodeConstant::ConstantStructOpcode:
1718       case BitcodeConstant::ConstantArrayOpcode: {
1719         Value *V = PoisonValue::get(BC->getType());
1720         for (auto Pair : enumerate(Ops))
1721           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1722                                       "constexpr.ins", InsertBB);
1723         I = cast<Instruction>(V);
1724         break;
1725       }
1726       case Instruction::ICmp:
1727       case Instruction::FCmp:
1728         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1729                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1730                             "constexpr", InsertBB);
1731         break;
1732       case Instruction::GetElementPtr:
1733         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1734                                       ArrayRef(Ops).drop_front(), "constexpr",
1735                                       InsertBB);
1736         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1737         break;
1738       case Instruction::Select:
1739         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1740         break;
1741       case Instruction::ExtractElement:
1742         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1743         break;
1744       case Instruction::InsertElement:
1745         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1746                                       InsertBB);
1747         break;
1748       case Instruction::ShuffleVector:
1749         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1750                                   InsertBB);
1751         break;
1752       default:
1753         llvm_unreachable("Unhandled bitcode constant");
1754       }
1755     }
1756 
1757     MaterializedValues.insert({ValID, I});
1758     Worklist.pop_back();
1759   }
1760 
1761   return MaterializedValues[StartValID];
1762 }
1763 
1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1765   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1766   if (!MaybeV)
1767     return MaybeV.takeError();
1768 
1769   // Result must be Constant if InsertBB is nullptr.
1770   return cast<Constant>(MaybeV.get());
1771 }
1772 
1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1774                                                       StringRef Name) {
1775   auto *Ret = StructType::create(Context, Name);
1776   IdentifiedStructTypes.push_back(Ret);
1777   return Ret;
1778 }
1779 
1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1781   auto *Ret = StructType::create(Context);
1782   IdentifiedStructTypes.push_back(Ret);
1783   return Ret;
1784 }
1785 
1786 //===----------------------------------------------------------------------===//
1787 //  Functions for parsing blocks from the bitcode file
1788 //===----------------------------------------------------------------------===//
1789 
1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1791   switch (Val) {
1792   case Attribute::EndAttrKinds:
1793   case Attribute::EmptyKey:
1794   case Attribute::TombstoneKey:
1795     llvm_unreachable("Synthetic enumerators which should never get here");
1796 
1797   case Attribute::None:            return 0;
1798   case Attribute::ZExt:            return 1 << 0;
1799   case Attribute::SExt:            return 1 << 1;
1800   case Attribute::NoReturn:        return 1 << 2;
1801   case Attribute::InReg:           return 1 << 3;
1802   case Attribute::StructRet:       return 1 << 4;
1803   case Attribute::NoUnwind:        return 1 << 5;
1804   case Attribute::NoAlias:         return 1 << 6;
1805   case Attribute::ByVal:           return 1 << 7;
1806   case Attribute::Nest:            return 1 << 8;
1807   case Attribute::ReadNone:        return 1 << 9;
1808   case Attribute::ReadOnly:        return 1 << 10;
1809   case Attribute::NoInline:        return 1 << 11;
1810   case Attribute::AlwaysInline:    return 1 << 12;
1811   case Attribute::OptimizeForSize: return 1 << 13;
1812   case Attribute::StackProtect:    return 1 << 14;
1813   case Attribute::StackProtectReq: return 1 << 15;
1814   case Attribute::Alignment:       return 31 << 16;
1815   case Attribute::NoCapture:       return 1 << 21;
1816   case Attribute::NoRedZone:       return 1 << 22;
1817   case Attribute::NoImplicitFloat: return 1 << 23;
1818   case Attribute::Naked:           return 1 << 24;
1819   case Attribute::InlineHint:      return 1 << 25;
1820   case Attribute::StackAlignment:  return 7 << 26;
1821   case Attribute::ReturnsTwice:    return 1 << 29;
1822   case Attribute::UWTable:         return 1 << 30;
1823   case Attribute::NonLazyBind:     return 1U << 31;
1824   case Attribute::SanitizeAddress: return 1ULL << 32;
1825   case Attribute::MinSize:         return 1ULL << 33;
1826   case Attribute::NoDuplicate:     return 1ULL << 34;
1827   case Attribute::StackProtectStrong: return 1ULL << 35;
1828   case Attribute::SanitizeThread:  return 1ULL << 36;
1829   case Attribute::SanitizeMemory:  return 1ULL << 37;
1830   case Attribute::NoBuiltin:       return 1ULL << 38;
1831   case Attribute::Returned:        return 1ULL << 39;
1832   case Attribute::Cold:            return 1ULL << 40;
1833   case Attribute::Builtin:         return 1ULL << 41;
1834   case Attribute::OptimizeNone:    return 1ULL << 42;
1835   case Attribute::InAlloca:        return 1ULL << 43;
1836   case Attribute::NonNull:         return 1ULL << 44;
1837   case Attribute::JumpTable:       return 1ULL << 45;
1838   case Attribute::Convergent:      return 1ULL << 46;
1839   case Attribute::SafeStack:       return 1ULL << 47;
1840   case Attribute::NoRecurse:       return 1ULL << 48;
1841   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1842   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1843   case Attribute::SwiftSelf:       return 1ULL << 51;
1844   case Attribute::SwiftError:      return 1ULL << 52;
1845   case Attribute::WriteOnly:       return 1ULL << 53;
1846   case Attribute::Speculatable:    return 1ULL << 54;
1847   case Attribute::StrictFP:        return 1ULL << 55;
1848   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1849   case Attribute::NoCfCheck:       return 1ULL << 57;
1850   case Attribute::OptForFuzzing:   return 1ULL << 58;
1851   case Attribute::ShadowCallStack: return 1ULL << 59;
1852   case Attribute::SpeculativeLoadHardening:
1853     return 1ULL << 60;
1854   case Attribute::ImmArg:
1855     return 1ULL << 61;
1856   case Attribute::WillReturn:
1857     return 1ULL << 62;
1858   case Attribute::NoFree:
1859     return 1ULL << 63;
1860   default:
1861     // Other attributes are not supported in the raw format,
1862     // as we ran out of space.
1863     return 0;
1864   }
1865   llvm_unreachable("Unsupported attribute type");
1866 }
1867 
1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1869   if (!Val) return;
1870 
1871   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1872        I = Attribute::AttrKind(I + 1)) {
1873     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1874       if (I == Attribute::Alignment)
1875         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1876       else if (I == Attribute::StackAlignment)
1877         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1878       else if (Attribute::isTypeAttrKind(I))
1879         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1880       else
1881         B.addAttribute(I);
1882     }
1883   }
1884 }
1885 
1886 /// This fills an AttrBuilder object with the LLVM attributes that have
1887 /// been decoded from the given integer. This function must stay in sync with
1888 /// 'encodeLLVMAttributesForBitcode'.
1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1890                                            uint64_t EncodedAttrs,
1891                                            uint64_t AttrIdx) {
1892   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1893   // the bits above 31 down by 11 bits.
1894   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1895   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1896          "Alignment must be a power of two.");
1897 
1898   if (Alignment)
1899     B.addAlignmentAttr(Alignment);
1900 
1901   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1902                    (EncodedAttrs & 0xffff);
1903 
1904   if (AttrIdx == AttributeList::FunctionIndex) {
1905     // Upgrade old memory attributes.
1906     MemoryEffects ME = MemoryEffects::unknown();
1907     if (Attrs & (1ULL << 9)) {
1908       // ReadNone
1909       Attrs &= ~(1ULL << 9);
1910       ME &= MemoryEffects::none();
1911     }
1912     if (Attrs & (1ULL << 10)) {
1913       // ReadOnly
1914       Attrs &= ~(1ULL << 10);
1915       ME &= MemoryEffects::readOnly();
1916     }
1917     if (Attrs & (1ULL << 49)) {
1918       // InaccessibleMemOnly
1919       Attrs &= ~(1ULL << 49);
1920       ME &= MemoryEffects::inaccessibleMemOnly();
1921     }
1922     if (Attrs & (1ULL << 50)) {
1923       // InaccessibleMemOrArgMemOnly
1924       Attrs &= ~(1ULL << 50);
1925       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1926     }
1927     if (Attrs & (1ULL << 53)) {
1928       // WriteOnly
1929       Attrs &= ~(1ULL << 53);
1930       ME &= MemoryEffects::writeOnly();
1931     }
1932     if (ME != MemoryEffects::unknown())
1933       B.addMemoryAttr(ME);
1934   }
1935 
1936   addRawAttributeValue(B, Attrs);
1937 }
1938 
1939 Error BitcodeReader::parseAttributeBlock() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1941     return Err;
1942 
1943   if (!MAttributes.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   SmallVector<AttributeList, 8> Attrs;
1949 
1950   // Read all the records.
1951   while (true) {
1952     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1953     if (!MaybeEntry)
1954       return MaybeEntry.takeError();
1955     BitstreamEntry Entry = MaybeEntry.get();
1956 
1957     switch (Entry.Kind) {
1958     case BitstreamEntry::SubBlock: // Handled for us already.
1959     case BitstreamEntry::Error:
1960       return error("Malformed block");
1961     case BitstreamEntry::EndBlock:
1962       return Error::success();
1963     case BitstreamEntry::Record:
1964       // The interesting case.
1965       break;
1966     }
1967 
1968     // Read a record.
1969     Record.clear();
1970     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1971     if (!MaybeRecord)
1972       return MaybeRecord.takeError();
1973     switch (MaybeRecord.get()) {
1974     default:  // Default behavior: ignore.
1975       break;
1976     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1977       // Deprecated, but still needed to read old bitcode files.
1978       if (Record.size() & 1)
1979         return error("Invalid parameter attribute record");
1980 
1981       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1982         AttrBuilder B(Context);
1983         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1984         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1985       }
1986 
1987       MAttributes.push_back(AttributeList::get(Context, Attrs));
1988       Attrs.clear();
1989       break;
1990     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1991       for (uint64_t Val : Record)
1992         Attrs.push_back(MAttributeGroups[Val]);
1993 
1994       MAttributes.push_back(AttributeList::get(Context, Attrs));
1995       Attrs.clear();
1996       break;
1997     }
1998   }
1999 }
2000 
2001 // Returns Attribute::None on unrecognized codes.
2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2003   switch (Code) {
2004   default:
2005     return Attribute::None;
2006   case bitc::ATTR_KIND_ALIGNMENT:
2007     return Attribute::Alignment;
2008   case bitc::ATTR_KIND_ALWAYS_INLINE:
2009     return Attribute::AlwaysInline;
2010   case bitc::ATTR_KIND_BUILTIN:
2011     return Attribute::Builtin;
2012   case bitc::ATTR_KIND_BY_VAL:
2013     return Attribute::ByVal;
2014   case bitc::ATTR_KIND_IN_ALLOCA:
2015     return Attribute::InAlloca;
2016   case bitc::ATTR_KIND_COLD:
2017     return Attribute::Cold;
2018   case bitc::ATTR_KIND_CONVERGENT:
2019     return Attribute::Convergent;
2020   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2021     return Attribute::DisableSanitizerInstrumentation;
2022   case bitc::ATTR_KIND_ELEMENTTYPE:
2023     return Attribute::ElementType;
2024   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2025     return Attribute::FnRetThunkExtern;
2026   case bitc::ATTR_KIND_INLINE_HINT:
2027     return Attribute::InlineHint;
2028   case bitc::ATTR_KIND_IN_REG:
2029     return Attribute::InReg;
2030   case bitc::ATTR_KIND_JUMP_TABLE:
2031     return Attribute::JumpTable;
2032   case bitc::ATTR_KIND_MEMORY:
2033     return Attribute::Memory;
2034   case bitc::ATTR_KIND_NOFPCLASS:
2035     return Attribute::NoFPClass;
2036   case bitc::ATTR_KIND_MIN_SIZE:
2037     return Attribute::MinSize;
2038   case bitc::ATTR_KIND_NAKED:
2039     return Attribute::Naked;
2040   case bitc::ATTR_KIND_NEST:
2041     return Attribute::Nest;
2042   case bitc::ATTR_KIND_NO_ALIAS:
2043     return Attribute::NoAlias;
2044   case bitc::ATTR_KIND_NO_BUILTIN:
2045     return Attribute::NoBuiltin;
2046   case bitc::ATTR_KIND_NO_CALLBACK:
2047     return Attribute::NoCallback;
2048   case bitc::ATTR_KIND_NO_CAPTURE:
2049     return Attribute::NoCapture;
2050   case bitc::ATTR_KIND_NO_DUPLICATE:
2051     return Attribute::NoDuplicate;
2052   case bitc::ATTR_KIND_NOFREE:
2053     return Attribute::NoFree;
2054   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2055     return Attribute::NoImplicitFloat;
2056   case bitc::ATTR_KIND_NO_INLINE:
2057     return Attribute::NoInline;
2058   case bitc::ATTR_KIND_NO_RECURSE:
2059     return Attribute::NoRecurse;
2060   case bitc::ATTR_KIND_NO_MERGE:
2061     return Attribute::NoMerge;
2062   case bitc::ATTR_KIND_NON_LAZY_BIND:
2063     return Attribute::NonLazyBind;
2064   case bitc::ATTR_KIND_NON_NULL:
2065     return Attribute::NonNull;
2066   case bitc::ATTR_KIND_DEREFERENCEABLE:
2067     return Attribute::Dereferenceable;
2068   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2069     return Attribute::DereferenceableOrNull;
2070   case bitc::ATTR_KIND_ALLOC_ALIGN:
2071     return Attribute::AllocAlign;
2072   case bitc::ATTR_KIND_ALLOC_KIND:
2073     return Attribute::AllocKind;
2074   case bitc::ATTR_KIND_ALLOC_SIZE:
2075     return Attribute::AllocSize;
2076   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2077     return Attribute::AllocatedPointer;
2078   case bitc::ATTR_KIND_NO_RED_ZONE:
2079     return Attribute::NoRedZone;
2080   case bitc::ATTR_KIND_NO_RETURN:
2081     return Attribute::NoReturn;
2082   case bitc::ATTR_KIND_NOSYNC:
2083     return Attribute::NoSync;
2084   case bitc::ATTR_KIND_NOCF_CHECK:
2085     return Attribute::NoCfCheck;
2086   case bitc::ATTR_KIND_NO_PROFILE:
2087     return Attribute::NoProfile;
2088   case bitc::ATTR_KIND_SKIP_PROFILE:
2089     return Attribute::SkipProfile;
2090   case bitc::ATTR_KIND_NO_UNWIND:
2091     return Attribute::NoUnwind;
2092   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2093     return Attribute::NoSanitizeBounds;
2094   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2095     return Attribute::NoSanitizeCoverage;
2096   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2097     return Attribute::NullPointerIsValid;
2098   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2099     return Attribute::OptimizeForDebugging;
2100   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2101     return Attribute::OptForFuzzing;
2102   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2103     return Attribute::OptimizeForSize;
2104   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2105     return Attribute::OptimizeNone;
2106   case bitc::ATTR_KIND_READ_NONE:
2107     return Attribute::ReadNone;
2108   case bitc::ATTR_KIND_READ_ONLY:
2109     return Attribute::ReadOnly;
2110   case bitc::ATTR_KIND_RETURNED:
2111     return Attribute::Returned;
2112   case bitc::ATTR_KIND_RETURNS_TWICE:
2113     return Attribute::ReturnsTwice;
2114   case bitc::ATTR_KIND_S_EXT:
2115     return Attribute::SExt;
2116   case bitc::ATTR_KIND_SPECULATABLE:
2117     return Attribute::Speculatable;
2118   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2119     return Attribute::StackAlignment;
2120   case bitc::ATTR_KIND_STACK_PROTECT:
2121     return Attribute::StackProtect;
2122   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2123     return Attribute::StackProtectReq;
2124   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2125     return Attribute::StackProtectStrong;
2126   case bitc::ATTR_KIND_SAFESTACK:
2127     return Attribute::SafeStack;
2128   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2129     return Attribute::ShadowCallStack;
2130   case bitc::ATTR_KIND_STRICT_FP:
2131     return Attribute::StrictFP;
2132   case bitc::ATTR_KIND_STRUCT_RET:
2133     return Attribute::StructRet;
2134   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2135     return Attribute::SanitizeAddress;
2136   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2137     return Attribute::SanitizeHWAddress;
2138   case bitc::ATTR_KIND_SANITIZE_THREAD:
2139     return Attribute::SanitizeThread;
2140   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2141     return Attribute::SanitizeMemory;
2142   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2143     return Attribute::SanitizeNumericalStability;
2144   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2145     return Attribute::SanitizeRealtime;
2146   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2147     return Attribute::SpeculativeLoadHardening;
2148   case bitc::ATTR_KIND_SWIFT_ERROR:
2149     return Attribute::SwiftError;
2150   case bitc::ATTR_KIND_SWIFT_SELF:
2151     return Attribute::SwiftSelf;
2152   case bitc::ATTR_KIND_SWIFT_ASYNC:
2153     return Attribute::SwiftAsync;
2154   case bitc::ATTR_KIND_UW_TABLE:
2155     return Attribute::UWTable;
2156   case bitc::ATTR_KIND_VSCALE_RANGE:
2157     return Attribute::VScaleRange;
2158   case bitc::ATTR_KIND_WILLRETURN:
2159     return Attribute::WillReturn;
2160   case bitc::ATTR_KIND_WRITEONLY:
2161     return Attribute::WriteOnly;
2162   case bitc::ATTR_KIND_Z_EXT:
2163     return Attribute::ZExt;
2164   case bitc::ATTR_KIND_IMMARG:
2165     return Attribute::ImmArg;
2166   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2167     return Attribute::SanitizeMemTag;
2168   case bitc::ATTR_KIND_PREALLOCATED:
2169     return Attribute::Preallocated;
2170   case bitc::ATTR_KIND_NOUNDEF:
2171     return Attribute::NoUndef;
2172   case bitc::ATTR_KIND_BYREF:
2173     return Attribute::ByRef;
2174   case bitc::ATTR_KIND_MUSTPROGRESS:
2175     return Attribute::MustProgress;
2176   case bitc::ATTR_KIND_HOT:
2177     return Attribute::Hot;
2178   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2179     return Attribute::PresplitCoroutine;
2180   case bitc::ATTR_KIND_WRITABLE:
2181     return Attribute::Writable;
2182   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2183     return Attribute::CoroDestroyOnlyWhenComplete;
2184   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2185     return Attribute::DeadOnUnwind;
2186   case bitc::ATTR_KIND_RANGE:
2187     return Attribute::Range;
2188   case bitc::ATTR_KIND_INITIALIZES:
2189     return Attribute::Initializes;
2190   }
2191 }
2192 
2193 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2194                                          MaybeAlign &Alignment) {
2195   // Note: Alignment in bitcode files is incremented by 1, so that zero
2196   // can be used for default alignment.
2197   if (Exponent > Value::MaxAlignmentExponent + 1)
2198     return error("Invalid alignment value");
2199   Alignment = decodeMaybeAlign(Exponent);
2200   return Error::success();
2201 }
2202 
2203 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2204   *Kind = getAttrFromCode(Code);
2205   if (*Kind == Attribute::None)
2206     return error("Unknown attribute kind (" + Twine(Code) + ")");
2207   return Error::success();
2208 }
2209 
2210 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2211   switch (EncodedKind) {
2212   case bitc::ATTR_KIND_READ_NONE:
2213     ME &= MemoryEffects::none();
2214     return true;
2215   case bitc::ATTR_KIND_READ_ONLY:
2216     ME &= MemoryEffects::readOnly();
2217     return true;
2218   case bitc::ATTR_KIND_WRITEONLY:
2219     ME &= MemoryEffects::writeOnly();
2220     return true;
2221   case bitc::ATTR_KIND_ARGMEMONLY:
2222     ME &= MemoryEffects::argMemOnly();
2223     return true;
2224   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2225     ME &= MemoryEffects::inaccessibleMemOnly();
2226     return true;
2227   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2228     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2229     return true;
2230   default:
2231     return false;
2232   }
2233 }
2234 
2235 Error BitcodeReader::parseAttributeGroupBlock() {
2236   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2237     return Err;
2238 
2239   if (!MAttributeGroups.empty())
2240     return error("Invalid multiple blocks");
2241 
2242   SmallVector<uint64_t, 64> Record;
2243 
2244   // Read all the records.
2245   while (true) {
2246     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2247     if (!MaybeEntry)
2248       return MaybeEntry.takeError();
2249     BitstreamEntry Entry = MaybeEntry.get();
2250 
2251     switch (Entry.Kind) {
2252     case BitstreamEntry::SubBlock: // Handled for us already.
2253     case BitstreamEntry::Error:
2254       return error("Malformed block");
2255     case BitstreamEntry::EndBlock:
2256       return Error::success();
2257     case BitstreamEntry::Record:
2258       // The interesting case.
2259       break;
2260     }
2261 
2262     // Read a record.
2263     Record.clear();
2264     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2265     if (!MaybeRecord)
2266       return MaybeRecord.takeError();
2267     switch (MaybeRecord.get()) {
2268     default:  // Default behavior: ignore.
2269       break;
2270     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2271       if (Record.size() < 3)
2272         return error("Invalid grp record");
2273 
2274       uint64_t GrpID = Record[0];
2275       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2276 
2277       AttrBuilder B(Context);
2278       MemoryEffects ME = MemoryEffects::unknown();
2279       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2280         if (Record[i] == 0) {        // Enum attribute
2281           Attribute::AttrKind Kind;
2282           uint64_t EncodedKind = Record[++i];
2283           if (Idx == AttributeList::FunctionIndex &&
2284               upgradeOldMemoryAttribute(ME, EncodedKind))
2285             continue;
2286 
2287           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2288             return Err;
2289 
2290           // Upgrade old-style byval attribute to one with a type, even if it's
2291           // nullptr. We will have to insert the real type when we associate
2292           // this AttributeList with a function.
2293           if (Kind == Attribute::ByVal)
2294             B.addByValAttr(nullptr);
2295           else if (Kind == Attribute::StructRet)
2296             B.addStructRetAttr(nullptr);
2297           else if (Kind == Attribute::InAlloca)
2298             B.addInAllocaAttr(nullptr);
2299           else if (Kind == Attribute::UWTable)
2300             B.addUWTableAttr(UWTableKind::Default);
2301           else if (Attribute::isEnumAttrKind(Kind))
2302             B.addAttribute(Kind);
2303           else
2304             return error("Not an enum attribute");
2305         } else if (Record[i] == 1) { // Integer attribute
2306           Attribute::AttrKind Kind;
2307           if (Error Err = parseAttrKind(Record[++i], &Kind))
2308             return Err;
2309           if (!Attribute::isIntAttrKind(Kind))
2310             return error("Not an int attribute");
2311           if (Kind == Attribute::Alignment)
2312             B.addAlignmentAttr(Record[++i]);
2313           else if (Kind == Attribute::StackAlignment)
2314             B.addStackAlignmentAttr(Record[++i]);
2315           else if (Kind == Attribute::Dereferenceable)
2316             B.addDereferenceableAttr(Record[++i]);
2317           else if (Kind == Attribute::DereferenceableOrNull)
2318             B.addDereferenceableOrNullAttr(Record[++i]);
2319           else if (Kind == Attribute::AllocSize)
2320             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2321           else if (Kind == Attribute::VScaleRange)
2322             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2323           else if (Kind == Attribute::UWTable)
2324             B.addUWTableAttr(UWTableKind(Record[++i]));
2325           else if (Kind == Attribute::AllocKind)
2326             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2327           else if (Kind == Attribute::Memory)
2328             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2329           else if (Kind == Attribute::NoFPClass)
2330             B.addNoFPClassAttr(
2331                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2332         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2333           bool HasValue = (Record[i++] == 4);
2334           SmallString<64> KindStr;
2335           SmallString<64> ValStr;
2336 
2337           while (Record[i] != 0 && i != e)
2338             KindStr += Record[i++];
2339           assert(Record[i] == 0 && "Kind string not null terminated");
2340 
2341           if (HasValue) {
2342             // Has a value associated with it.
2343             ++i; // Skip the '0' that terminates the "kind" string.
2344             while (Record[i] != 0 && i != e)
2345               ValStr += Record[i++];
2346             assert(Record[i] == 0 && "Value string not null terminated");
2347           }
2348 
2349           B.addAttribute(KindStr.str(), ValStr.str());
2350         } else if (Record[i] == 5 || Record[i] == 6) {
2351           bool HasType = Record[i] == 6;
2352           Attribute::AttrKind Kind;
2353           if (Error Err = parseAttrKind(Record[++i], &Kind))
2354             return Err;
2355           if (!Attribute::isTypeAttrKind(Kind))
2356             return error("Not a type attribute");
2357 
2358           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2359         } else if (Record[i] == 7) {
2360           Attribute::AttrKind Kind;
2361 
2362           i++;
2363           if (Error Err = parseAttrKind(Record[i++], &Kind))
2364             return Err;
2365           if (!Attribute::isConstantRangeAttrKind(Kind))
2366             return error("Not a ConstantRange attribute");
2367 
2368           Expected<ConstantRange> MaybeCR =
2369               readBitWidthAndConstantRange(Record, i);
2370           if (!MaybeCR)
2371             return MaybeCR.takeError();
2372           i--;
2373 
2374           B.addConstantRangeAttr(Kind, MaybeCR.get());
2375         } else if (Record[i] == 8) {
2376           Attribute::AttrKind Kind;
2377 
2378           i++;
2379           if (Error Err = parseAttrKind(Record[i++], &Kind))
2380             return Err;
2381           if (!Attribute::isConstantRangeListAttrKind(Kind))
2382             return error("Not a constant range list attribute");
2383 
2384           SmallVector<ConstantRange, 2> Val;
2385           if (i + 2 > e)
2386             return error("Too few records for constant range list");
2387           unsigned RangeSize = Record[i++];
2388           unsigned BitWidth = Record[i++];
2389           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2390             Expected<ConstantRange> MaybeCR =
2391                 readConstantRange(Record, i, BitWidth);
2392             if (!MaybeCR)
2393               return MaybeCR.takeError();
2394             Val.push_back(MaybeCR.get());
2395           }
2396           i--;
2397 
2398           if (!ConstantRangeList::isOrderedRanges(Val))
2399             return error("Invalid (unordered or overlapping) range list");
2400           B.addConstantRangeListAttr(Kind, Val);
2401         } else {
2402           return error("Invalid attribute group entry");
2403         }
2404       }
2405 
2406       if (ME != MemoryEffects::unknown())
2407         B.addMemoryAttr(ME);
2408 
2409       UpgradeAttributes(B);
2410       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2411       break;
2412     }
2413     }
2414   }
2415 }
2416 
2417 Error BitcodeReader::parseTypeTable() {
2418   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2419     return Err;
2420 
2421   return parseTypeTableBody();
2422 }
2423 
2424 Error BitcodeReader::parseTypeTableBody() {
2425   if (!TypeList.empty())
2426     return error("Invalid multiple blocks");
2427 
2428   SmallVector<uint64_t, 64> Record;
2429   unsigned NumRecords = 0;
2430 
2431   SmallString<64> TypeName;
2432 
2433   // Read all the records for this type table.
2434   while (true) {
2435     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2436     if (!MaybeEntry)
2437       return MaybeEntry.takeError();
2438     BitstreamEntry Entry = MaybeEntry.get();
2439 
2440     switch (Entry.Kind) {
2441     case BitstreamEntry::SubBlock: // Handled for us already.
2442     case BitstreamEntry::Error:
2443       return error("Malformed block");
2444     case BitstreamEntry::EndBlock:
2445       if (NumRecords != TypeList.size())
2446         return error("Malformed block");
2447       return Error::success();
2448     case BitstreamEntry::Record:
2449       // The interesting case.
2450       break;
2451     }
2452 
2453     // Read a record.
2454     Record.clear();
2455     Type *ResultTy = nullptr;
2456     SmallVector<unsigned> ContainedIDs;
2457     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2458     if (!MaybeRecord)
2459       return MaybeRecord.takeError();
2460     switch (MaybeRecord.get()) {
2461     default:
2462       return error("Invalid value");
2463     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2464       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2465       // type list.  This allows us to reserve space.
2466       if (Record.empty())
2467         return error("Invalid numentry record");
2468       TypeList.resize(Record[0]);
2469       continue;
2470     case bitc::TYPE_CODE_VOID:      // VOID
2471       ResultTy = Type::getVoidTy(Context);
2472       break;
2473     case bitc::TYPE_CODE_HALF:     // HALF
2474       ResultTy = Type::getHalfTy(Context);
2475       break;
2476     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2477       ResultTy = Type::getBFloatTy(Context);
2478       break;
2479     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2480       ResultTy = Type::getFloatTy(Context);
2481       break;
2482     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2483       ResultTy = Type::getDoubleTy(Context);
2484       break;
2485     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2486       ResultTy = Type::getX86_FP80Ty(Context);
2487       break;
2488     case bitc::TYPE_CODE_FP128:     // FP128
2489       ResultTy = Type::getFP128Ty(Context);
2490       break;
2491     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2492       ResultTy = Type::getPPC_FP128Ty(Context);
2493       break;
2494     case bitc::TYPE_CODE_LABEL:     // LABEL
2495       ResultTy = Type::getLabelTy(Context);
2496       break;
2497     case bitc::TYPE_CODE_METADATA:  // METADATA
2498       ResultTy = Type::getMetadataTy(Context);
2499       break;
2500     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2501       // Deprecated: decodes as <1 x i64>
2502       ResultTy =
2503           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2504       break;
2505     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2506       ResultTy = Type::getX86_AMXTy(Context);
2507       break;
2508     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2509       ResultTy = Type::getTokenTy(Context);
2510       break;
2511     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2512       if (Record.empty())
2513         return error("Invalid integer record");
2514 
2515       uint64_t NumBits = Record[0];
2516       if (NumBits < IntegerType::MIN_INT_BITS ||
2517           NumBits > IntegerType::MAX_INT_BITS)
2518         return error("Bitwidth for integer type out of range");
2519       ResultTy = IntegerType::get(Context, NumBits);
2520       break;
2521     }
2522     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2523                                     //          [pointee type, address space]
2524       if (Record.empty())
2525         return error("Invalid pointer record");
2526       unsigned AddressSpace = 0;
2527       if (Record.size() == 2)
2528         AddressSpace = Record[1];
2529       ResultTy = getTypeByID(Record[0]);
2530       if (!ResultTy ||
2531           !PointerType::isValidElementType(ResultTy))
2532         return error("Invalid type");
2533       ContainedIDs.push_back(Record[0]);
2534       ResultTy = PointerType::get(ResultTy, AddressSpace);
2535       break;
2536     }
2537     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2538       if (Record.size() != 1)
2539         return error("Invalid opaque pointer record");
2540       unsigned AddressSpace = Record[0];
2541       ResultTy = PointerType::get(Context, AddressSpace);
2542       break;
2543     }
2544     case bitc::TYPE_CODE_FUNCTION_OLD: {
2545       // Deprecated, but still needed to read old bitcode files.
2546       // FUNCTION: [vararg, attrid, retty, paramty x N]
2547       if (Record.size() < 3)
2548         return error("Invalid function record");
2549       SmallVector<Type*, 8> ArgTys;
2550       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2551         if (Type *T = getTypeByID(Record[i]))
2552           ArgTys.push_back(T);
2553         else
2554           break;
2555       }
2556 
2557       ResultTy = getTypeByID(Record[2]);
2558       if (!ResultTy || ArgTys.size() < Record.size()-3)
2559         return error("Invalid type");
2560 
2561       ContainedIDs.append(Record.begin() + 2, Record.end());
2562       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2563       break;
2564     }
2565     case bitc::TYPE_CODE_FUNCTION: {
2566       // FUNCTION: [vararg, retty, paramty x N]
2567       if (Record.size() < 2)
2568         return error("Invalid function record");
2569       SmallVector<Type*, 8> ArgTys;
2570       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2571         if (Type *T = getTypeByID(Record[i])) {
2572           if (!FunctionType::isValidArgumentType(T))
2573             return error("Invalid function argument type");
2574           ArgTys.push_back(T);
2575         }
2576         else
2577           break;
2578       }
2579 
2580       ResultTy = getTypeByID(Record[1]);
2581       if (!ResultTy || ArgTys.size() < Record.size()-2)
2582         return error("Invalid type");
2583 
2584       ContainedIDs.append(Record.begin() + 1, Record.end());
2585       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2586       break;
2587     }
2588     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2589       if (Record.empty())
2590         return error("Invalid anon struct record");
2591       SmallVector<Type*, 8> EltTys;
2592       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2593         if (Type *T = getTypeByID(Record[i]))
2594           EltTys.push_back(T);
2595         else
2596           break;
2597       }
2598       if (EltTys.size() != Record.size()-1)
2599         return error("Invalid type");
2600       ContainedIDs.append(Record.begin() + 1, Record.end());
2601       ResultTy = StructType::get(Context, EltTys, Record[0]);
2602       break;
2603     }
2604     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2605       if (convertToString(Record, 0, TypeName))
2606         return error("Invalid struct name record");
2607       continue;
2608 
2609     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2610       if (Record.empty())
2611         return error("Invalid named struct record");
2612 
2613       if (NumRecords >= TypeList.size())
2614         return error("Invalid TYPE table");
2615 
2616       // Check to see if this was forward referenced, if so fill in the temp.
2617       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2618       if (Res) {
2619         Res->setName(TypeName);
2620         TypeList[NumRecords] = nullptr;
2621       } else  // Otherwise, create a new struct.
2622         Res = createIdentifiedStructType(Context, TypeName);
2623       TypeName.clear();
2624 
2625       SmallVector<Type*, 8> EltTys;
2626       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2627         if (Type *T = getTypeByID(Record[i]))
2628           EltTys.push_back(T);
2629         else
2630           break;
2631       }
2632       if (EltTys.size() != Record.size()-1)
2633         return error("Invalid named struct record");
2634       Res->setBody(EltTys, Record[0]);
2635       ContainedIDs.append(Record.begin() + 1, Record.end());
2636       ResultTy = Res;
2637       break;
2638     }
2639     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2640       if (Record.size() != 1)
2641         return error("Invalid opaque type record");
2642 
2643       if (NumRecords >= TypeList.size())
2644         return error("Invalid TYPE table");
2645 
2646       // Check to see if this was forward referenced, if so fill in the temp.
2647       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2648       if (Res) {
2649         Res->setName(TypeName);
2650         TypeList[NumRecords] = nullptr;
2651       } else  // Otherwise, create a new struct with no body.
2652         Res = createIdentifiedStructType(Context, TypeName);
2653       TypeName.clear();
2654       ResultTy = Res;
2655       break;
2656     }
2657     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2658       if (Record.size() < 1)
2659         return error("Invalid target extension type record");
2660 
2661       if (NumRecords >= TypeList.size())
2662         return error("Invalid TYPE table");
2663 
2664       if (Record[0] >= Record.size())
2665         return error("Too many type parameters");
2666 
2667       unsigned NumTys = Record[0];
2668       SmallVector<Type *, 4> TypeParams;
2669       SmallVector<unsigned, 8> IntParams;
2670       for (unsigned i = 0; i < NumTys; i++) {
2671         if (Type *T = getTypeByID(Record[i + 1]))
2672           TypeParams.push_back(T);
2673         else
2674           return error("Invalid type");
2675       }
2676 
2677       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2678         if (Record[i] > UINT_MAX)
2679           return error("Integer parameter too large");
2680         IntParams.push_back(Record[i]);
2681       }
2682       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2683       TypeName.clear();
2684       break;
2685     }
2686     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2687       if (Record.size() < 2)
2688         return error("Invalid array type record");
2689       ResultTy = getTypeByID(Record[1]);
2690       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2691         return error("Invalid type");
2692       ContainedIDs.push_back(Record[1]);
2693       ResultTy = ArrayType::get(ResultTy, Record[0]);
2694       break;
2695     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2696                                     //         [numelts, eltty, scalable]
2697       if (Record.size() < 2)
2698         return error("Invalid vector type record");
2699       if (Record[0] == 0)
2700         return error("Invalid vector length");
2701       ResultTy = getTypeByID(Record[1]);
2702       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2703         return error("Invalid type");
2704       bool Scalable = Record.size() > 2 ? Record[2] : false;
2705       ContainedIDs.push_back(Record[1]);
2706       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2707       break;
2708     }
2709 
2710     if (NumRecords >= TypeList.size())
2711       return error("Invalid TYPE table");
2712     if (TypeList[NumRecords])
2713       return error(
2714           "Invalid TYPE table: Only named structs can be forward referenced");
2715     assert(ResultTy && "Didn't read a type?");
2716     TypeList[NumRecords] = ResultTy;
2717     if (!ContainedIDs.empty())
2718       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2719     ++NumRecords;
2720   }
2721 }
2722 
2723 Error BitcodeReader::parseOperandBundleTags() {
2724   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2725     return Err;
2726 
2727   if (!BundleTags.empty())
2728     return error("Invalid multiple blocks");
2729 
2730   SmallVector<uint64_t, 64> Record;
2731 
2732   while (true) {
2733     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2734     if (!MaybeEntry)
2735       return MaybeEntry.takeError();
2736     BitstreamEntry Entry = MaybeEntry.get();
2737 
2738     switch (Entry.Kind) {
2739     case BitstreamEntry::SubBlock: // Handled for us already.
2740     case BitstreamEntry::Error:
2741       return error("Malformed block");
2742     case BitstreamEntry::EndBlock:
2743       return Error::success();
2744     case BitstreamEntry::Record:
2745       // The interesting case.
2746       break;
2747     }
2748 
2749     // Tags are implicitly mapped to integers by their order.
2750 
2751     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2752     if (!MaybeRecord)
2753       return MaybeRecord.takeError();
2754     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2755       return error("Invalid operand bundle record");
2756 
2757     // OPERAND_BUNDLE_TAG: [strchr x N]
2758     BundleTags.emplace_back();
2759     if (convertToString(Record, 0, BundleTags.back()))
2760       return error("Invalid operand bundle record");
2761     Record.clear();
2762   }
2763 }
2764 
2765 Error BitcodeReader::parseSyncScopeNames() {
2766   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2767     return Err;
2768 
2769   if (!SSIDs.empty())
2770     return error("Invalid multiple synchronization scope names blocks");
2771 
2772   SmallVector<uint64_t, 64> Record;
2773   while (true) {
2774     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2775     if (!MaybeEntry)
2776       return MaybeEntry.takeError();
2777     BitstreamEntry Entry = MaybeEntry.get();
2778 
2779     switch (Entry.Kind) {
2780     case BitstreamEntry::SubBlock: // Handled for us already.
2781     case BitstreamEntry::Error:
2782       return error("Malformed block");
2783     case BitstreamEntry::EndBlock:
2784       if (SSIDs.empty())
2785         return error("Invalid empty synchronization scope names block");
2786       return Error::success();
2787     case BitstreamEntry::Record:
2788       // The interesting case.
2789       break;
2790     }
2791 
2792     // Synchronization scope names are implicitly mapped to synchronization
2793     // scope IDs by their order.
2794 
2795     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2796     if (!MaybeRecord)
2797       return MaybeRecord.takeError();
2798     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2799       return error("Invalid sync scope record");
2800 
2801     SmallString<16> SSN;
2802     if (convertToString(Record, 0, SSN))
2803       return error("Invalid sync scope record");
2804 
2805     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2806     Record.clear();
2807   }
2808 }
2809 
2810 /// Associate a value with its name from the given index in the provided record.
2811 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2812                                              unsigned NameIndex, Triple &TT) {
2813   SmallString<128> ValueName;
2814   if (convertToString(Record, NameIndex, ValueName))
2815     return error("Invalid record");
2816   unsigned ValueID = Record[0];
2817   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2818     return error("Invalid record");
2819   Value *V = ValueList[ValueID];
2820 
2821   StringRef NameStr(ValueName.data(), ValueName.size());
2822   if (NameStr.contains(0))
2823     return error("Invalid value name");
2824   V->setName(NameStr);
2825   auto *GO = dyn_cast<GlobalObject>(V);
2826   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2827     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2828   return V;
2829 }
2830 
2831 /// Helper to note and return the current location, and jump to the given
2832 /// offset.
2833 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2834                                                  BitstreamCursor &Stream) {
2835   // Save the current parsing location so we can jump back at the end
2836   // of the VST read.
2837   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2838   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2839     return std::move(JumpFailed);
2840   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2841   if (!MaybeEntry)
2842     return MaybeEntry.takeError();
2843   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2844       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2845     return error("Expected value symbol table subblock");
2846   return CurrentBit;
2847 }
2848 
2849 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2850                                             Function *F,
2851                                             ArrayRef<uint64_t> Record) {
2852   // Note that we subtract 1 here because the offset is relative to one word
2853   // before the start of the identification or module block, which was
2854   // historically always the start of the regular bitcode header.
2855   uint64_t FuncWordOffset = Record[1] - 1;
2856   uint64_t FuncBitOffset = FuncWordOffset * 32;
2857   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2858   // Set the LastFunctionBlockBit to point to the last function block.
2859   // Later when parsing is resumed after function materialization,
2860   // we can simply skip that last function block.
2861   if (FuncBitOffset > LastFunctionBlockBit)
2862     LastFunctionBlockBit = FuncBitOffset;
2863 }
2864 
2865 /// Read a new-style GlobalValue symbol table.
2866 Error BitcodeReader::parseGlobalValueSymbolTable() {
2867   unsigned FuncBitcodeOffsetDelta =
2868       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2869 
2870   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2871     return Err;
2872 
2873   SmallVector<uint64_t, 64> Record;
2874   while (true) {
2875     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2876     if (!MaybeEntry)
2877       return MaybeEntry.takeError();
2878     BitstreamEntry Entry = MaybeEntry.get();
2879 
2880     switch (Entry.Kind) {
2881     case BitstreamEntry::SubBlock:
2882     case BitstreamEntry::Error:
2883       return error("Malformed block");
2884     case BitstreamEntry::EndBlock:
2885       return Error::success();
2886     case BitstreamEntry::Record:
2887       break;
2888     }
2889 
2890     Record.clear();
2891     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2892     if (!MaybeRecord)
2893       return MaybeRecord.takeError();
2894     switch (MaybeRecord.get()) {
2895     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2896       unsigned ValueID = Record[0];
2897       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2898         return error("Invalid value reference in symbol table");
2899       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2900                               cast<Function>(ValueList[ValueID]), Record);
2901       break;
2902     }
2903     }
2904   }
2905 }
2906 
2907 /// Parse the value symbol table at either the current parsing location or
2908 /// at the given bit offset if provided.
2909 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2910   uint64_t CurrentBit;
2911   // Pass in the Offset to distinguish between calling for the module-level
2912   // VST (where we want to jump to the VST offset) and the function-level
2913   // VST (where we don't).
2914   if (Offset > 0) {
2915     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2916     if (!MaybeCurrentBit)
2917       return MaybeCurrentBit.takeError();
2918     CurrentBit = MaybeCurrentBit.get();
2919     // If this module uses a string table, read this as a module-level VST.
2920     if (UseStrtab) {
2921       if (Error Err = parseGlobalValueSymbolTable())
2922         return Err;
2923       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2924         return JumpFailed;
2925       return Error::success();
2926     }
2927     // Otherwise, the VST will be in a similar format to a function-level VST,
2928     // and will contain symbol names.
2929   }
2930 
2931   // Compute the delta between the bitcode indices in the VST (the word offset
2932   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2933   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2934   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2935   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2936   // just before entering the VST subblock because: 1) the EnterSubBlock
2937   // changes the AbbrevID width; 2) the VST block is nested within the same
2938   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2939   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2940   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2941   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2942   unsigned FuncBitcodeOffsetDelta =
2943       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2944 
2945   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2946     return Err;
2947 
2948   SmallVector<uint64_t, 64> Record;
2949 
2950   Triple TT(TheModule->getTargetTriple());
2951 
2952   // Read all the records for this value table.
2953   SmallString<128> ValueName;
2954 
2955   while (true) {
2956     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2957     if (!MaybeEntry)
2958       return MaybeEntry.takeError();
2959     BitstreamEntry Entry = MaybeEntry.get();
2960 
2961     switch (Entry.Kind) {
2962     case BitstreamEntry::SubBlock: // Handled for us already.
2963     case BitstreamEntry::Error:
2964       return error("Malformed block");
2965     case BitstreamEntry::EndBlock:
2966       if (Offset > 0)
2967         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2968           return JumpFailed;
2969       return Error::success();
2970     case BitstreamEntry::Record:
2971       // The interesting case.
2972       break;
2973     }
2974 
2975     // Read a record.
2976     Record.clear();
2977     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2978     if (!MaybeRecord)
2979       return MaybeRecord.takeError();
2980     switch (MaybeRecord.get()) {
2981     default:  // Default behavior: unknown type.
2982       break;
2983     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2984       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2985       if (Error Err = ValOrErr.takeError())
2986         return Err;
2987       ValOrErr.get();
2988       break;
2989     }
2990     case bitc::VST_CODE_FNENTRY: {
2991       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2992       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2993       if (Error Err = ValOrErr.takeError())
2994         return Err;
2995       Value *V = ValOrErr.get();
2996 
2997       // Ignore function offsets emitted for aliases of functions in older
2998       // versions of LLVM.
2999       if (auto *F = dyn_cast<Function>(V))
3000         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3001       break;
3002     }
3003     case bitc::VST_CODE_BBENTRY: {
3004       if (convertToString(Record, 1, ValueName))
3005         return error("Invalid bbentry record");
3006       BasicBlock *BB = getBasicBlock(Record[0]);
3007       if (!BB)
3008         return error("Invalid bbentry record");
3009 
3010       BB->setName(ValueName.str());
3011       ValueName.clear();
3012       break;
3013     }
3014     }
3015   }
3016 }
3017 
3018 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3019 /// encoding.
3020 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3021   if ((V & 1) == 0)
3022     return V >> 1;
3023   if (V != 1)
3024     return -(V >> 1);
3025   // There is no such thing as -0 with integers.  "-0" really means MININT.
3026   return 1ULL << 63;
3027 }
3028 
3029 /// Resolve all of the initializers for global values and aliases that we can.
3030 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3031   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3032   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3033   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3034 
3035   GlobalInitWorklist.swap(GlobalInits);
3036   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3037   FunctionOperandWorklist.swap(FunctionOperands);
3038 
3039   while (!GlobalInitWorklist.empty()) {
3040     unsigned ValID = GlobalInitWorklist.back().second;
3041     if (ValID >= ValueList.size()) {
3042       // Not ready to resolve this yet, it requires something later in the file.
3043       GlobalInits.push_back(GlobalInitWorklist.back());
3044     } else {
3045       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3046       if (!MaybeC)
3047         return MaybeC.takeError();
3048       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3049     }
3050     GlobalInitWorklist.pop_back();
3051   }
3052 
3053   while (!IndirectSymbolInitWorklist.empty()) {
3054     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3055     if (ValID >= ValueList.size()) {
3056       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3057     } else {
3058       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3059       if (!MaybeC)
3060         return MaybeC.takeError();
3061       Constant *C = MaybeC.get();
3062       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3063       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3064         if (C->getType() != GV->getType())
3065           return error("Alias and aliasee types don't match");
3066         GA->setAliasee(C);
3067       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3068         GI->setResolver(C);
3069       } else {
3070         return error("Expected an alias or an ifunc");
3071       }
3072     }
3073     IndirectSymbolInitWorklist.pop_back();
3074   }
3075 
3076   while (!FunctionOperandWorklist.empty()) {
3077     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3078     if (Info.PersonalityFn) {
3079       unsigned ValID = Info.PersonalityFn - 1;
3080       if (ValID < ValueList.size()) {
3081         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3082         if (!MaybeC)
3083           return MaybeC.takeError();
3084         Info.F->setPersonalityFn(MaybeC.get());
3085         Info.PersonalityFn = 0;
3086       }
3087     }
3088     if (Info.Prefix) {
3089       unsigned ValID = Info.Prefix - 1;
3090       if (ValID < ValueList.size()) {
3091         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3092         if (!MaybeC)
3093           return MaybeC.takeError();
3094         Info.F->setPrefixData(MaybeC.get());
3095         Info.Prefix = 0;
3096       }
3097     }
3098     if (Info.Prologue) {
3099       unsigned ValID = Info.Prologue - 1;
3100       if (ValID < ValueList.size()) {
3101         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3102         if (!MaybeC)
3103           return MaybeC.takeError();
3104         Info.F->setPrologueData(MaybeC.get());
3105         Info.Prologue = 0;
3106       }
3107     }
3108     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3109       FunctionOperands.push_back(Info);
3110     FunctionOperandWorklist.pop_back();
3111   }
3112 
3113   return Error::success();
3114 }
3115 
3116 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3117   SmallVector<uint64_t, 8> Words(Vals.size());
3118   transform(Vals, Words.begin(),
3119                  BitcodeReader::decodeSignRotatedValue);
3120 
3121   return APInt(TypeBits, Words);
3122 }
3123 
3124 Error BitcodeReader::parseConstants() {
3125   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3126     return Err;
3127 
3128   SmallVector<uint64_t, 64> Record;
3129 
3130   // Read all the records for this value table.
3131   Type *CurTy = Type::getInt32Ty(Context);
3132   unsigned Int32TyID = getVirtualTypeID(CurTy);
3133   unsigned CurTyID = Int32TyID;
3134   Type *CurElemTy = nullptr;
3135   unsigned NextCstNo = ValueList.size();
3136 
3137   while (true) {
3138     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3139     if (!MaybeEntry)
3140       return MaybeEntry.takeError();
3141     BitstreamEntry Entry = MaybeEntry.get();
3142 
3143     switch (Entry.Kind) {
3144     case BitstreamEntry::SubBlock: // Handled for us already.
3145     case BitstreamEntry::Error:
3146       return error("Malformed block");
3147     case BitstreamEntry::EndBlock:
3148       if (NextCstNo != ValueList.size())
3149         return error("Invalid constant reference");
3150       return Error::success();
3151     case BitstreamEntry::Record:
3152       // The interesting case.
3153       break;
3154     }
3155 
3156     // Read a record.
3157     Record.clear();
3158     Type *VoidType = Type::getVoidTy(Context);
3159     Value *V = nullptr;
3160     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3161     if (!MaybeBitCode)
3162       return MaybeBitCode.takeError();
3163     switch (unsigned BitCode = MaybeBitCode.get()) {
3164     default:  // Default behavior: unknown constant
3165     case bitc::CST_CODE_UNDEF:     // UNDEF
3166       V = UndefValue::get(CurTy);
3167       break;
3168     case bitc::CST_CODE_POISON:    // POISON
3169       V = PoisonValue::get(CurTy);
3170       break;
3171     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3172       if (Record.empty())
3173         return error("Invalid settype record");
3174       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3175         return error("Invalid settype record");
3176       if (TypeList[Record[0]] == VoidType)
3177         return error("Invalid constant type");
3178       CurTyID = Record[0];
3179       CurTy = TypeList[CurTyID];
3180       CurElemTy = getPtrElementTypeByID(CurTyID);
3181       continue;  // Skip the ValueList manipulation.
3182     case bitc::CST_CODE_NULL:      // NULL
3183       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3184         return error("Invalid type for a constant null value");
3185       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3186         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3187           return error("Invalid type for a constant null value");
3188       V = Constant::getNullValue(CurTy);
3189       break;
3190     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3191       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3192         return error("Invalid integer const record");
3193       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3194       break;
3195     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3196       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3197         return error("Invalid wide integer const record");
3198 
3199       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3200       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3201       V = ConstantInt::get(CurTy, VInt);
3202       break;
3203     }
3204     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3205       if (Record.empty())
3206         return error("Invalid float const record");
3207 
3208       auto *ScalarTy = CurTy->getScalarType();
3209       if (ScalarTy->isHalfTy())
3210         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3211                                            APInt(16, (uint16_t)Record[0])));
3212       else if (ScalarTy->isBFloatTy())
3213         V = ConstantFP::get(
3214             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3215       else if (ScalarTy->isFloatTy())
3216         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3217                                            APInt(32, (uint32_t)Record[0])));
3218       else if (ScalarTy->isDoubleTy())
3219         V = ConstantFP::get(
3220             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3221       else if (ScalarTy->isX86_FP80Ty()) {
3222         // Bits are not stored the same way as a normal i80 APInt, compensate.
3223         uint64_t Rearrange[2];
3224         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3225         Rearrange[1] = Record[0] >> 48;
3226         V = ConstantFP::get(
3227             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3228       } else if (ScalarTy->isFP128Ty())
3229         V = ConstantFP::get(CurTy,
3230                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3231       else if (ScalarTy->isPPC_FP128Ty())
3232         V = ConstantFP::get(
3233             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3234       else
3235         V = PoisonValue::get(CurTy);
3236       break;
3237     }
3238 
3239     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3240       if (Record.empty())
3241         return error("Invalid aggregate record");
3242 
3243       unsigned Size = Record.size();
3244       SmallVector<unsigned, 16> Elts;
3245       for (unsigned i = 0; i != Size; ++i)
3246         Elts.push_back(Record[i]);
3247 
3248       if (isa<StructType>(CurTy)) {
3249         V = BitcodeConstant::create(
3250             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3251       } else if (isa<ArrayType>(CurTy)) {
3252         V = BitcodeConstant::create(Alloc, CurTy,
3253                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3254       } else if (isa<VectorType>(CurTy)) {
3255         V = BitcodeConstant::create(
3256             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3257       } else {
3258         V = PoisonValue::get(CurTy);
3259       }
3260       break;
3261     }
3262     case bitc::CST_CODE_STRING:    // STRING: [values]
3263     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3264       if (Record.empty())
3265         return error("Invalid string record");
3266 
3267       SmallString<16> Elts(Record.begin(), Record.end());
3268       V = ConstantDataArray::getString(Context, Elts,
3269                                        BitCode == bitc::CST_CODE_CSTRING);
3270       break;
3271     }
3272     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3273       if (Record.empty())
3274         return error("Invalid data record");
3275 
3276       Type *EltTy;
3277       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3278         EltTy = Array->getElementType();
3279       else
3280         EltTy = cast<VectorType>(CurTy)->getElementType();
3281       if (EltTy->isIntegerTy(8)) {
3282         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3283         if (isa<VectorType>(CurTy))
3284           V = ConstantDataVector::get(Context, Elts);
3285         else
3286           V = ConstantDataArray::get(Context, Elts);
3287       } else if (EltTy->isIntegerTy(16)) {
3288         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3289         if (isa<VectorType>(CurTy))
3290           V = ConstantDataVector::get(Context, Elts);
3291         else
3292           V = ConstantDataArray::get(Context, Elts);
3293       } else if (EltTy->isIntegerTy(32)) {
3294         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3295         if (isa<VectorType>(CurTy))
3296           V = ConstantDataVector::get(Context, Elts);
3297         else
3298           V = ConstantDataArray::get(Context, Elts);
3299       } else if (EltTy->isIntegerTy(64)) {
3300         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3301         if (isa<VectorType>(CurTy))
3302           V = ConstantDataVector::get(Context, Elts);
3303         else
3304           V = ConstantDataArray::get(Context, Elts);
3305       } else if (EltTy->isHalfTy()) {
3306         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3307         if (isa<VectorType>(CurTy))
3308           V = ConstantDataVector::getFP(EltTy, Elts);
3309         else
3310           V = ConstantDataArray::getFP(EltTy, Elts);
3311       } else if (EltTy->isBFloatTy()) {
3312         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3313         if (isa<VectorType>(CurTy))
3314           V = ConstantDataVector::getFP(EltTy, Elts);
3315         else
3316           V = ConstantDataArray::getFP(EltTy, Elts);
3317       } else if (EltTy->isFloatTy()) {
3318         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3319         if (isa<VectorType>(CurTy))
3320           V = ConstantDataVector::getFP(EltTy, Elts);
3321         else
3322           V = ConstantDataArray::getFP(EltTy, Elts);
3323       } else if (EltTy->isDoubleTy()) {
3324         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3325         if (isa<VectorType>(CurTy))
3326           V = ConstantDataVector::getFP(EltTy, Elts);
3327         else
3328           V = ConstantDataArray::getFP(EltTy, Elts);
3329       } else {
3330         return error("Invalid type for value");
3331       }
3332       break;
3333     }
3334     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3335       if (Record.size() < 2)
3336         return error("Invalid unary op constexpr record");
3337       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3338       if (Opc < 0) {
3339         V = PoisonValue::get(CurTy);  // Unknown unop.
3340       } else {
3341         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3342       }
3343       break;
3344     }
3345     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3346       if (Record.size() < 3)
3347         return error("Invalid binary op constexpr record");
3348       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3349       if (Opc < 0) {
3350         V = PoisonValue::get(CurTy);  // Unknown binop.
3351       } else {
3352         uint8_t Flags = 0;
3353         if (Record.size() >= 4) {
3354           if (Opc == Instruction::Add ||
3355               Opc == Instruction::Sub ||
3356               Opc == Instruction::Mul ||
3357               Opc == Instruction::Shl) {
3358             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3359               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3360             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3361               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3362           } else if (Opc == Instruction::SDiv ||
3363                      Opc == Instruction::UDiv ||
3364                      Opc == Instruction::LShr ||
3365                      Opc == Instruction::AShr) {
3366             if (Record[3] & (1 << bitc::PEO_EXACT))
3367               Flags |= PossiblyExactOperator::IsExact;
3368           }
3369         }
3370         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3371                                     {(unsigned)Record[1], (unsigned)Record[2]});
3372       }
3373       break;
3374     }
3375     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3376       if (Record.size() < 3)
3377         return error("Invalid cast constexpr record");
3378       int Opc = getDecodedCastOpcode(Record[0]);
3379       if (Opc < 0) {
3380         V = PoisonValue::get(CurTy);  // Unknown cast.
3381       } else {
3382         unsigned OpTyID = Record[1];
3383         Type *OpTy = getTypeByID(OpTyID);
3384         if (!OpTy)
3385           return error("Invalid cast constexpr record");
3386         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3387       }
3388       break;
3389     }
3390     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3391     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3392     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3393                                                        // operands]
3394     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3395     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3396                                                // operands]
3397       if (Record.size() < 2)
3398         return error("Constant GEP record must have at least two elements");
3399       unsigned OpNum = 0;
3400       Type *PointeeType = nullptr;
3401       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3402           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3403           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3404         PointeeType = getTypeByID(Record[OpNum++]);
3405 
3406       uint64_t Flags = 0;
3407       std::optional<ConstantRange> InRange;
3408       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3409         uint64_t Op = Record[OpNum++];
3410         Flags = Op & 1; // inbounds
3411         unsigned InRangeIndex = Op >> 1;
3412         // "Upgrade" inrange by dropping it. The feature is too niche to
3413         // bother.
3414         (void)InRangeIndex;
3415       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3416         Flags = Record[OpNum++];
3417         Expected<ConstantRange> MaybeInRange =
3418             readBitWidthAndConstantRange(Record, OpNum);
3419         if (!MaybeInRange)
3420           return MaybeInRange.takeError();
3421         InRange = MaybeInRange.get();
3422       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3423         Flags = Record[OpNum++];
3424       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3425         Flags = (1 << bitc::GEP_INBOUNDS);
3426 
3427       SmallVector<unsigned, 16> Elts;
3428       unsigned BaseTypeID = Record[OpNum];
3429       while (OpNum != Record.size()) {
3430         unsigned ElTyID = Record[OpNum++];
3431         Type *ElTy = getTypeByID(ElTyID);
3432         if (!ElTy)
3433           return error("Invalid getelementptr constexpr record");
3434         Elts.push_back(Record[OpNum++]);
3435       }
3436 
3437       if (Elts.size() < 1)
3438         return error("Invalid gep with no operands");
3439 
3440       Type *BaseType = getTypeByID(BaseTypeID);
3441       if (isa<VectorType>(BaseType)) {
3442         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3443         BaseType = getTypeByID(BaseTypeID);
3444       }
3445 
3446       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3447       if (!OrigPtrTy)
3448         return error("GEP base operand must be pointer or vector of pointer");
3449 
3450       if (!PointeeType) {
3451         PointeeType = getPtrElementTypeByID(BaseTypeID);
3452         if (!PointeeType)
3453           return error("Missing element type for old-style constant GEP");
3454       }
3455 
3456       V = BitcodeConstant::create(
3457           Alloc, CurTy,
3458           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3459           Elts);
3460       break;
3461     }
3462     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3463       if (Record.size() < 3)
3464         return error("Invalid select constexpr record");
3465 
3466       V = BitcodeConstant::create(
3467           Alloc, CurTy, Instruction::Select,
3468           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3469       break;
3470     }
3471     case bitc::CST_CODE_CE_EXTRACTELT
3472         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3473       if (Record.size() < 3)
3474         return error("Invalid extractelement constexpr record");
3475       unsigned OpTyID = Record[0];
3476       VectorType *OpTy =
3477         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3478       if (!OpTy)
3479         return error("Invalid extractelement constexpr record");
3480       unsigned IdxRecord;
3481       if (Record.size() == 4) {
3482         unsigned IdxTyID = Record[2];
3483         Type *IdxTy = getTypeByID(IdxTyID);
3484         if (!IdxTy)
3485           return error("Invalid extractelement constexpr record");
3486         IdxRecord = Record[3];
3487       } else {
3488         // Deprecated, but still needed to read old bitcode files.
3489         IdxRecord = Record[2];
3490       }
3491       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3492                                   {(unsigned)Record[1], IdxRecord});
3493       break;
3494     }
3495     case bitc::CST_CODE_CE_INSERTELT
3496         : { // CE_INSERTELT: [opval, opval, opty, opval]
3497       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3498       if (Record.size() < 3 || !OpTy)
3499         return error("Invalid insertelement constexpr record");
3500       unsigned IdxRecord;
3501       if (Record.size() == 4) {
3502         unsigned IdxTyID = Record[2];
3503         Type *IdxTy = getTypeByID(IdxTyID);
3504         if (!IdxTy)
3505           return error("Invalid insertelement constexpr record");
3506         IdxRecord = Record[3];
3507       } else {
3508         // Deprecated, but still needed to read old bitcode files.
3509         IdxRecord = Record[2];
3510       }
3511       V = BitcodeConstant::create(
3512           Alloc, CurTy, Instruction::InsertElement,
3513           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3514       break;
3515     }
3516     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3517       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3518       if (Record.size() < 3 || !OpTy)
3519         return error("Invalid shufflevector constexpr record");
3520       V = BitcodeConstant::create(
3521           Alloc, CurTy, Instruction::ShuffleVector,
3522           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3523       break;
3524     }
3525     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3526       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3527       VectorType *OpTy =
3528         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3529       if (Record.size() < 4 || !RTy || !OpTy)
3530         return error("Invalid shufflevector constexpr record");
3531       V = BitcodeConstant::create(
3532           Alloc, CurTy, Instruction::ShuffleVector,
3533           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3534       break;
3535     }
3536     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3537       if (Record.size() < 4)
3538         return error("Invalid cmp constexpt record");
3539       unsigned OpTyID = Record[0];
3540       Type *OpTy = getTypeByID(OpTyID);
3541       if (!OpTy)
3542         return error("Invalid cmp constexpr record");
3543       V = BitcodeConstant::create(
3544           Alloc, CurTy,
3545           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3546                                               : Instruction::ICmp),
3547            (uint8_t)Record[3]},
3548           {(unsigned)Record[1], (unsigned)Record[2]});
3549       break;
3550     }
3551     // This maintains backward compatibility, pre-asm dialect keywords.
3552     // Deprecated, but still needed to read old bitcode files.
3553     case bitc::CST_CODE_INLINEASM_OLD: {
3554       if (Record.size() < 2)
3555         return error("Invalid inlineasm record");
3556       std::string AsmStr, ConstrStr;
3557       bool HasSideEffects = Record[0] & 1;
3558       bool IsAlignStack = Record[0] >> 1;
3559       unsigned AsmStrSize = Record[1];
3560       if (2+AsmStrSize >= Record.size())
3561         return error("Invalid inlineasm record");
3562       unsigned ConstStrSize = Record[2+AsmStrSize];
3563       if (3+AsmStrSize+ConstStrSize > Record.size())
3564         return error("Invalid inlineasm record");
3565 
3566       for (unsigned i = 0; i != AsmStrSize; ++i)
3567         AsmStr += (char)Record[2+i];
3568       for (unsigned i = 0; i != ConstStrSize; ++i)
3569         ConstrStr += (char)Record[3+AsmStrSize+i];
3570       UpgradeInlineAsmString(&AsmStr);
3571       if (!CurElemTy)
3572         return error("Missing element type for old-style inlineasm");
3573       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3574                          HasSideEffects, IsAlignStack);
3575       break;
3576     }
3577     // This version adds support for the asm dialect keywords (e.g.,
3578     // inteldialect).
3579     case bitc::CST_CODE_INLINEASM_OLD2: {
3580       if (Record.size() < 2)
3581         return error("Invalid inlineasm record");
3582       std::string AsmStr, ConstrStr;
3583       bool HasSideEffects = Record[0] & 1;
3584       bool IsAlignStack = (Record[0] >> 1) & 1;
3585       unsigned AsmDialect = Record[0] >> 2;
3586       unsigned AsmStrSize = Record[1];
3587       if (2+AsmStrSize >= Record.size())
3588         return error("Invalid inlineasm record");
3589       unsigned ConstStrSize = Record[2+AsmStrSize];
3590       if (3+AsmStrSize+ConstStrSize > Record.size())
3591         return error("Invalid inlineasm record");
3592 
3593       for (unsigned i = 0; i != AsmStrSize; ++i)
3594         AsmStr += (char)Record[2+i];
3595       for (unsigned i = 0; i != ConstStrSize; ++i)
3596         ConstrStr += (char)Record[3+AsmStrSize+i];
3597       UpgradeInlineAsmString(&AsmStr);
3598       if (!CurElemTy)
3599         return error("Missing element type for old-style inlineasm");
3600       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3601                          HasSideEffects, IsAlignStack,
3602                          InlineAsm::AsmDialect(AsmDialect));
3603       break;
3604     }
3605     // This version adds support for the unwind keyword.
3606     case bitc::CST_CODE_INLINEASM_OLD3: {
3607       if (Record.size() < 2)
3608         return error("Invalid inlineasm record");
3609       unsigned OpNum = 0;
3610       std::string AsmStr, ConstrStr;
3611       bool HasSideEffects = Record[OpNum] & 1;
3612       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3613       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3614       bool CanThrow = (Record[OpNum] >> 3) & 1;
3615       ++OpNum;
3616       unsigned AsmStrSize = Record[OpNum];
3617       ++OpNum;
3618       if (OpNum + AsmStrSize >= Record.size())
3619         return error("Invalid inlineasm record");
3620       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3621       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3622         return error("Invalid inlineasm record");
3623 
3624       for (unsigned i = 0; i != AsmStrSize; ++i)
3625         AsmStr += (char)Record[OpNum + i];
3626       ++OpNum;
3627       for (unsigned i = 0; i != ConstStrSize; ++i)
3628         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3629       UpgradeInlineAsmString(&AsmStr);
3630       if (!CurElemTy)
3631         return error("Missing element type for old-style inlineasm");
3632       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3633                          HasSideEffects, IsAlignStack,
3634                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3635       break;
3636     }
3637     // This version adds explicit function type.
3638     case bitc::CST_CODE_INLINEASM: {
3639       if (Record.size() < 3)
3640         return error("Invalid inlineasm record");
3641       unsigned OpNum = 0;
3642       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3643       ++OpNum;
3644       if (!FnTy)
3645         return error("Invalid inlineasm record");
3646       std::string AsmStr, ConstrStr;
3647       bool HasSideEffects = Record[OpNum] & 1;
3648       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3649       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3650       bool CanThrow = (Record[OpNum] >> 3) & 1;
3651       ++OpNum;
3652       unsigned AsmStrSize = Record[OpNum];
3653       ++OpNum;
3654       if (OpNum + AsmStrSize >= Record.size())
3655         return error("Invalid inlineasm record");
3656       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3657       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3658         return error("Invalid inlineasm record");
3659 
3660       for (unsigned i = 0; i != AsmStrSize; ++i)
3661         AsmStr += (char)Record[OpNum + i];
3662       ++OpNum;
3663       for (unsigned i = 0; i != ConstStrSize; ++i)
3664         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3665       UpgradeInlineAsmString(&AsmStr);
3666       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3667                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3668       break;
3669     }
3670     case bitc::CST_CODE_BLOCKADDRESS:{
3671       if (Record.size() < 3)
3672         return error("Invalid blockaddress record");
3673       unsigned FnTyID = Record[0];
3674       Type *FnTy = getTypeByID(FnTyID);
3675       if (!FnTy)
3676         return error("Invalid blockaddress record");
3677       V = BitcodeConstant::create(
3678           Alloc, CurTy,
3679           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3680           Record[1]);
3681       break;
3682     }
3683     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3684       if (Record.size() < 2)
3685         return error("Invalid dso_local record");
3686       unsigned GVTyID = Record[0];
3687       Type *GVTy = getTypeByID(GVTyID);
3688       if (!GVTy)
3689         return error("Invalid dso_local record");
3690       V = BitcodeConstant::create(
3691           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3692       break;
3693     }
3694     case bitc::CST_CODE_NO_CFI_VALUE: {
3695       if (Record.size() < 2)
3696         return error("Invalid no_cfi record");
3697       unsigned GVTyID = Record[0];
3698       Type *GVTy = getTypeByID(GVTyID);
3699       if (!GVTy)
3700         return error("Invalid no_cfi record");
3701       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3702                                   Record[1]);
3703       break;
3704     }
3705     case bitc::CST_CODE_PTRAUTH: {
3706       if (Record.size() < 4)
3707         return error("Invalid ptrauth record");
3708       // Ptr, Key, Disc, AddrDisc
3709       V = BitcodeConstant::create(Alloc, CurTy,
3710                                   BitcodeConstant::ConstantPtrAuthOpcode,
3711                                   {(unsigned)Record[0], (unsigned)Record[1],
3712                                    (unsigned)Record[2], (unsigned)Record[3]});
3713       break;
3714     }
3715     }
3716 
3717     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3718     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3719       return Err;
3720     ++NextCstNo;
3721   }
3722 }
3723 
3724 Error BitcodeReader::parseUseLists() {
3725   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3726     return Err;
3727 
3728   // Read all the records.
3729   SmallVector<uint64_t, 64> Record;
3730 
3731   while (true) {
3732     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3733     if (!MaybeEntry)
3734       return MaybeEntry.takeError();
3735     BitstreamEntry Entry = MaybeEntry.get();
3736 
3737     switch (Entry.Kind) {
3738     case BitstreamEntry::SubBlock: // Handled for us already.
3739     case BitstreamEntry::Error:
3740       return error("Malformed block");
3741     case BitstreamEntry::EndBlock:
3742       return Error::success();
3743     case BitstreamEntry::Record:
3744       // The interesting case.
3745       break;
3746     }
3747 
3748     // Read a use list record.
3749     Record.clear();
3750     bool IsBB = false;
3751     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3752     if (!MaybeRecord)
3753       return MaybeRecord.takeError();
3754     switch (MaybeRecord.get()) {
3755     default:  // Default behavior: unknown type.
3756       break;
3757     case bitc::USELIST_CODE_BB:
3758       IsBB = true;
3759       [[fallthrough]];
3760     case bitc::USELIST_CODE_DEFAULT: {
3761       unsigned RecordLength = Record.size();
3762       if (RecordLength < 3)
3763         // Records should have at least an ID and two indexes.
3764         return error("Invalid record");
3765       unsigned ID = Record.pop_back_val();
3766 
3767       Value *V;
3768       if (IsBB) {
3769         assert(ID < FunctionBBs.size() && "Basic block not found");
3770         V = FunctionBBs[ID];
3771       } else
3772         V = ValueList[ID];
3773       unsigned NumUses = 0;
3774       SmallDenseMap<const Use *, unsigned, 16> Order;
3775       for (const Use &U : V->materialized_uses()) {
3776         if (++NumUses > Record.size())
3777           break;
3778         Order[&U] = Record[NumUses - 1];
3779       }
3780       if (Order.size() != Record.size() || NumUses > Record.size())
3781         // Mismatches can happen if the functions are being materialized lazily
3782         // (out-of-order), or a value has been upgraded.
3783         break;
3784 
3785       V->sortUseList([&](const Use &L, const Use &R) {
3786         return Order.lookup(&L) < Order.lookup(&R);
3787       });
3788       break;
3789     }
3790     }
3791   }
3792 }
3793 
3794 /// When we see the block for metadata, remember where it is and then skip it.
3795 /// This lets us lazily deserialize the metadata.
3796 Error BitcodeReader::rememberAndSkipMetadata() {
3797   // Save the current stream state.
3798   uint64_t CurBit = Stream.GetCurrentBitNo();
3799   DeferredMetadataInfo.push_back(CurBit);
3800 
3801   // Skip over the block for now.
3802   if (Error Err = Stream.SkipBlock())
3803     return Err;
3804   return Error::success();
3805 }
3806 
3807 Error BitcodeReader::materializeMetadata() {
3808   for (uint64_t BitPos : DeferredMetadataInfo) {
3809     // Move the bit stream to the saved position.
3810     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3811       return JumpFailed;
3812     if (Error Err = MDLoader->parseModuleMetadata())
3813       return Err;
3814   }
3815 
3816   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3817   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3818   // multiple times.
3819   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3820     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3821       NamedMDNode *LinkerOpts =
3822           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3823       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3824         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3825     }
3826   }
3827 
3828   DeferredMetadataInfo.clear();
3829   return Error::success();
3830 }
3831 
3832 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3833 
3834 /// When we see the block for a function body, remember where it is and then
3835 /// skip it.  This lets us lazily deserialize the functions.
3836 Error BitcodeReader::rememberAndSkipFunctionBody() {
3837   // Get the function we are talking about.
3838   if (FunctionsWithBodies.empty())
3839     return error("Insufficient function protos");
3840 
3841   Function *Fn = FunctionsWithBodies.back();
3842   FunctionsWithBodies.pop_back();
3843 
3844   // Save the current stream state.
3845   uint64_t CurBit = Stream.GetCurrentBitNo();
3846   assert(
3847       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3848       "Mismatch between VST and scanned function offsets");
3849   DeferredFunctionInfo[Fn] = CurBit;
3850 
3851   // Skip over the function block for now.
3852   if (Error Err = Stream.SkipBlock())
3853     return Err;
3854   return Error::success();
3855 }
3856 
3857 Error BitcodeReader::globalCleanup() {
3858   // Patch the initializers for globals and aliases up.
3859   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3860     return Err;
3861   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3862     return error("Malformed global initializer set");
3863 
3864   // Look for intrinsic functions which need to be upgraded at some point
3865   // and functions that need to have their function attributes upgraded.
3866   for (Function &F : *TheModule) {
3867     MDLoader->upgradeDebugIntrinsics(F);
3868     Function *NewFn;
3869     // If PreserveInputDbgFormat=true, then we don't know whether we want
3870     // intrinsics or records, and we won't perform any conversions in either
3871     // case, so don't upgrade intrinsics to records.
3872     if (UpgradeIntrinsicFunction(
3873             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3874       UpgradedIntrinsics[&F] = NewFn;
3875     // Look for functions that rely on old function attribute behavior.
3876     UpgradeFunctionAttributes(F);
3877   }
3878 
3879   // Look for global variables which need to be renamed.
3880   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3881   for (GlobalVariable &GV : TheModule->globals())
3882     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3883       UpgradedVariables.emplace_back(&GV, Upgraded);
3884   for (auto &Pair : UpgradedVariables) {
3885     Pair.first->eraseFromParent();
3886     TheModule->insertGlobalVariable(Pair.second);
3887   }
3888 
3889   // Force deallocation of memory for these vectors to favor the client that
3890   // want lazy deserialization.
3891   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3892   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3893   return Error::success();
3894 }
3895 
3896 /// Support for lazy parsing of function bodies. This is required if we
3897 /// either have an old bitcode file without a VST forward declaration record,
3898 /// or if we have an anonymous function being materialized, since anonymous
3899 /// functions do not have a name and are therefore not in the VST.
3900 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3901   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3902     return JumpFailed;
3903 
3904   if (Stream.AtEndOfStream())
3905     return error("Could not find function in stream");
3906 
3907   if (!SeenFirstFunctionBody)
3908     return error("Trying to materialize functions before seeing function blocks");
3909 
3910   // An old bitcode file with the symbol table at the end would have
3911   // finished the parse greedily.
3912   assert(SeenValueSymbolTable);
3913 
3914   SmallVector<uint64_t, 64> Record;
3915 
3916   while (true) {
3917     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3918     if (!MaybeEntry)
3919       return MaybeEntry.takeError();
3920     llvm::BitstreamEntry Entry = MaybeEntry.get();
3921 
3922     switch (Entry.Kind) {
3923     default:
3924       return error("Expect SubBlock");
3925     case BitstreamEntry::SubBlock:
3926       switch (Entry.ID) {
3927       default:
3928         return error("Expect function block");
3929       case bitc::FUNCTION_BLOCK_ID:
3930         if (Error Err = rememberAndSkipFunctionBody())
3931           return Err;
3932         NextUnreadBit = Stream.GetCurrentBitNo();
3933         return Error::success();
3934       }
3935     }
3936   }
3937 }
3938 
3939 Error BitcodeReaderBase::readBlockInfo() {
3940   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3941       Stream.ReadBlockInfoBlock();
3942   if (!MaybeNewBlockInfo)
3943     return MaybeNewBlockInfo.takeError();
3944   std::optional<BitstreamBlockInfo> NewBlockInfo =
3945       std::move(MaybeNewBlockInfo.get());
3946   if (!NewBlockInfo)
3947     return error("Malformed block");
3948   BlockInfo = std::move(*NewBlockInfo);
3949   return Error::success();
3950 }
3951 
3952 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3953   // v1: [selection_kind, name]
3954   // v2: [strtab_offset, strtab_size, selection_kind]
3955   StringRef Name;
3956   std::tie(Name, Record) = readNameFromStrtab(Record);
3957 
3958   if (Record.empty())
3959     return error("Invalid record");
3960   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3961   std::string OldFormatName;
3962   if (!UseStrtab) {
3963     if (Record.size() < 2)
3964       return error("Invalid record");
3965     unsigned ComdatNameSize = Record[1];
3966     if (ComdatNameSize > Record.size() - 2)
3967       return error("Comdat name size too large");
3968     OldFormatName.reserve(ComdatNameSize);
3969     for (unsigned i = 0; i != ComdatNameSize; ++i)
3970       OldFormatName += (char)Record[2 + i];
3971     Name = OldFormatName;
3972   }
3973   Comdat *C = TheModule->getOrInsertComdat(Name);
3974   C->setSelectionKind(SK);
3975   ComdatList.push_back(C);
3976   return Error::success();
3977 }
3978 
3979 static void inferDSOLocal(GlobalValue *GV) {
3980   // infer dso_local from linkage and visibility if it is not encoded.
3981   if (GV->hasLocalLinkage() ||
3982       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3983     GV->setDSOLocal(true);
3984 }
3985 
3986 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3987   GlobalValue::SanitizerMetadata Meta;
3988   if (V & (1 << 0))
3989     Meta.NoAddress = true;
3990   if (V & (1 << 1))
3991     Meta.NoHWAddress = true;
3992   if (V & (1 << 2))
3993     Meta.Memtag = true;
3994   if (V & (1 << 3))
3995     Meta.IsDynInit = true;
3996   return Meta;
3997 }
3998 
3999 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4000   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4001   // visibility, threadlocal, unnamed_addr, externally_initialized,
4002   // dllstorageclass, comdat, attributes, preemption specifier,
4003   // partition strtab offset, partition strtab size] (name in VST)
4004   // v2: [strtab_offset, strtab_size, v1]
4005   // v3: [v2, code_model]
4006   StringRef Name;
4007   std::tie(Name, Record) = readNameFromStrtab(Record);
4008 
4009   if (Record.size() < 6)
4010     return error("Invalid record");
4011   unsigned TyID = Record[0];
4012   Type *Ty = getTypeByID(TyID);
4013   if (!Ty)
4014     return error("Invalid record");
4015   bool isConstant = Record[1] & 1;
4016   bool explicitType = Record[1] & 2;
4017   unsigned AddressSpace;
4018   if (explicitType) {
4019     AddressSpace = Record[1] >> 2;
4020   } else {
4021     if (!Ty->isPointerTy())
4022       return error("Invalid type for value");
4023     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4024     TyID = getContainedTypeID(TyID);
4025     Ty = getTypeByID(TyID);
4026     if (!Ty)
4027       return error("Missing element type for old-style global");
4028   }
4029 
4030   uint64_t RawLinkage = Record[3];
4031   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4032   MaybeAlign Alignment;
4033   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4034     return Err;
4035   std::string Section;
4036   if (Record[5]) {
4037     if (Record[5] - 1 >= SectionTable.size())
4038       return error("Invalid ID");
4039     Section = SectionTable[Record[5] - 1];
4040   }
4041   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4042   // Local linkage must have default visibility.
4043   // auto-upgrade `hidden` and `protected` for old bitcode.
4044   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4045     Visibility = getDecodedVisibility(Record[6]);
4046 
4047   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4048   if (Record.size() > 7)
4049     TLM = getDecodedThreadLocalMode(Record[7]);
4050 
4051   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4052   if (Record.size() > 8)
4053     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4054 
4055   bool ExternallyInitialized = false;
4056   if (Record.size() > 9)
4057     ExternallyInitialized = Record[9];
4058 
4059   GlobalVariable *NewGV =
4060       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4061                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4062   if (Alignment)
4063     NewGV->setAlignment(*Alignment);
4064   if (!Section.empty())
4065     NewGV->setSection(Section);
4066   NewGV->setVisibility(Visibility);
4067   NewGV->setUnnamedAddr(UnnamedAddr);
4068 
4069   if (Record.size() > 10) {
4070     // A GlobalValue with local linkage cannot have a DLL storage class.
4071     if (!NewGV->hasLocalLinkage()) {
4072       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4073     }
4074   } else {
4075     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4076   }
4077 
4078   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4079 
4080   // Remember which value to use for the global initializer.
4081   if (unsigned InitID = Record[2])
4082     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4083 
4084   if (Record.size() > 11) {
4085     if (unsigned ComdatID = Record[11]) {
4086       if (ComdatID > ComdatList.size())
4087         return error("Invalid global variable comdat ID");
4088       NewGV->setComdat(ComdatList[ComdatID - 1]);
4089     }
4090   } else if (hasImplicitComdat(RawLinkage)) {
4091     ImplicitComdatObjects.insert(NewGV);
4092   }
4093 
4094   if (Record.size() > 12) {
4095     auto AS = getAttributes(Record[12]).getFnAttrs();
4096     NewGV->setAttributes(AS);
4097   }
4098 
4099   if (Record.size() > 13) {
4100     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4101   }
4102   inferDSOLocal(NewGV);
4103 
4104   // Check whether we have enough values to read a partition name.
4105   if (Record.size() > 15)
4106     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4107 
4108   if (Record.size() > 16 && Record[16]) {
4109     llvm::GlobalValue::SanitizerMetadata Meta =
4110         deserializeSanitizerMetadata(Record[16]);
4111     NewGV->setSanitizerMetadata(Meta);
4112   }
4113 
4114   if (Record.size() > 17 && Record[17]) {
4115     if (auto CM = getDecodedCodeModel(Record[17]))
4116       NewGV->setCodeModel(*CM);
4117     else
4118       return error("Invalid global variable code model");
4119   }
4120 
4121   return Error::success();
4122 }
4123 
4124 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4125   if (ValueTypeCallback) {
4126     (*ValueTypeCallback)(
4127         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4128         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4129   }
4130 }
4131 
4132 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4133   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4134   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4135   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4136   // v2: [strtab_offset, strtab_size, v1]
4137   StringRef Name;
4138   std::tie(Name, Record) = readNameFromStrtab(Record);
4139 
4140   if (Record.size() < 8)
4141     return error("Invalid record");
4142   unsigned FTyID = Record[0];
4143   Type *FTy = getTypeByID(FTyID);
4144   if (!FTy)
4145     return error("Invalid record");
4146   if (isa<PointerType>(FTy)) {
4147     FTyID = getContainedTypeID(FTyID, 0);
4148     FTy = getTypeByID(FTyID);
4149     if (!FTy)
4150       return error("Missing element type for old-style function");
4151   }
4152 
4153   if (!isa<FunctionType>(FTy))
4154     return error("Invalid type for value");
4155   auto CC = static_cast<CallingConv::ID>(Record[1]);
4156   if (CC & ~CallingConv::MaxID)
4157     return error("Invalid calling convention ID");
4158 
4159   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4160   if (Record.size() > 16)
4161     AddrSpace = Record[16];
4162 
4163   Function *Func =
4164       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4165                        AddrSpace, Name, TheModule);
4166 
4167   assert(Func->getFunctionType() == FTy &&
4168          "Incorrect fully specified type provided for function");
4169   FunctionTypeIDs[Func] = FTyID;
4170 
4171   Func->setCallingConv(CC);
4172   bool isProto = Record[2];
4173   uint64_t RawLinkage = Record[3];
4174   Func->setLinkage(getDecodedLinkage(RawLinkage));
4175   Func->setAttributes(getAttributes(Record[4]));
4176   callValueTypeCallback(Func, FTyID);
4177 
4178   // Upgrade any old-style byval or sret without a type by propagating the
4179   // argument's pointee type. There should be no opaque pointers where the byval
4180   // type is implicit.
4181   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4182     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4183                                      Attribute::InAlloca}) {
4184       if (!Func->hasParamAttribute(i, Kind))
4185         continue;
4186 
4187       if (Func->getParamAttribute(i, Kind).getValueAsType())
4188         continue;
4189 
4190       Func->removeParamAttr(i, Kind);
4191 
4192       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4193       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4194       if (!PtrEltTy)
4195         return error("Missing param element type for attribute upgrade");
4196 
4197       Attribute NewAttr;
4198       switch (Kind) {
4199       case Attribute::ByVal:
4200         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4201         break;
4202       case Attribute::StructRet:
4203         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4204         break;
4205       case Attribute::InAlloca:
4206         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4207         break;
4208       default:
4209         llvm_unreachable("not an upgraded type attribute");
4210       }
4211 
4212       Func->addParamAttr(i, NewAttr);
4213     }
4214   }
4215 
4216   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4217       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4218     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4219     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4220     if (!ByValTy)
4221       return error("Missing param element type for x86_intrcc upgrade");
4222     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4223     Func->addParamAttr(0, NewAttr);
4224   }
4225 
4226   MaybeAlign Alignment;
4227   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4228     return Err;
4229   if (Alignment)
4230     Func->setAlignment(*Alignment);
4231   if (Record[6]) {
4232     if (Record[6] - 1 >= SectionTable.size())
4233       return error("Invalid ID");
4234     Func->setSection(SectionTable[Record[6] - 1]);
4235   }
4236   // Local linkage must have default visibility.
4237   // auto-upgrade `hidden` and `protected` for old bitcode.
4238   if (!Func->hasLocalLinkage())
4239     Func->setVisibility(getDecodedVisibility(Record[7]));
4240   if (Record.size() > 8 && Record[8]) {
4241     if (Record[8] - 1 >= GCTable.size())
4242       return error("Invalid ID");
4243     Func->setGC(GCTable[Record[8] - 1]);
4244   }
4245   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4246   if (Record.size() > 9)
4247     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4248   Func->setUnnamedAddr(UnnamedAddr);
4249 
4250   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4251   if (Record.size() > 10)
4252     OperandInfo.Prologue = Record[10];
4253 
4254   if (Record.size() > 11) {
4255     // A GlobalValue with local linkage cannot have a DLL storage class.
4256     if (!Func->hasLocalLinkage()) {
4257       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4258     }
4259   } else {
4260     upgradeDLLImportExportLinkage(Func, RawLinkage);
4261   }
4262 
4263   if (Record.size() > 12) {
4264     if (unsigned ComdatID = Record[12]) {
4265       if (ComdatID > ComdatList.size())
4266         return error("Invalid function comdat ID");
4267       Func->setComdat(ComdatList[ComdatID - 1]);
4268     }
4269   } else if (hasImplicitComdat(RawLinkage)) {
4270     ImplicitComdatObjects.insert(Func);
4271   }
4272 
4273   if (Record.size() > 13)
4274     OperandInfo.Prefix = Record[13];
4275 
4276   if (Record.size() > 14)
4277     OperandInfo.PersonalityFn = Record[14];
4278 
4279   if (Record.size() > 15) {
4280     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4281   }
4282   inferDSOLocal(Func);
4283 
4284   // Record[16] is the address space number.
4285 
4286   // Check whether we have enough values to read a partition name. Also make
4287   // sure Strtab has enough values.
4288   if (Record.size() > 18 && Strtab.data() &&
4289       Record[17] + Record[18] <= Strtab.size()) {
4290     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4291   }
4292 
4293   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4294 
4295   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4296     FunctionOperands.push_back(OperandInfo);
4297 
4298   // If this is a function with a body, remember the prototype we are
4299   // creating now, so that we can match up the body with them later.
4300   if (!isProto) {
4301     Func->setIsMaterializable(true);
4302     FunctionsWithBodies.push_back(Func);
4303     DeferredFunctionInfo[Func] = 0;
4304   }
4305   return Error::success();
4306 }
4307 
4308 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4309     unsigned BitCode, ArrayRef<uint64_t> Record) {
4310   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4311   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4312   // dllstorageclass, threadlocal, unnamed_addr,
4313   // preemption specifier] (name in VST)
4314   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4315   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4316   // preemption specifier] (name in VST)
4317   // v2: [strtab_offset, strtab_size, v1]
4318   StringRef Name;
4319   std::tie(Name, Record) = readNameFromStrtab(Record);
4320 
4321   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4322   if (Record.size() < (3 + (unsigned)NewRecord))
4323     return error("Invalid record");
4324   unsigned OpNum = 0;
4325   unsigned TypeID = Record[OpNum++];
4326   Type *Ty = getTypeByID(TypeID);
4327   if (!Ty)
4328     return error("Invalid record");
4329 
4330   unsigned AddrSpace;
4331   if (!NewRecord) {
4332     auto *PTy = dyn_cast<PointerType>(Ty);
4333     if (!PTy)
4334       return error("Invalid type for value");
4335     AddrSpace = PTy->getAddressSpace();
4336     TypeID = getContainedTypeID(TypeID);
4337     Ty = getTypeByID(TypeID);
4338     if (!Ty)
4339       return error("Missing element type for old-style indirect symbol");
4340   } else {
4341     AddrSpace = Record[OpNum++];
4342   }
4343 
4344   auto Val = Record[OpNum++];
4345   auto Linkage = Record[OpNum++];
4346   GlobalValue *NewGA;
4347   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4348       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4349     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4350                                 TheModule);
4351   else
4352     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4353                                 nullptr, TheModule);
4354 
4355   // Local linkage must have default visibility.
4356   // auto-upgrade `hidden` and `protected` for old bitcode.
4357   if (OpNum != Record.size()) {
4358     auto VisInd = OpNum++;
4359     if (!NewGA->hasLocalLinkage())
4360       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4361   }
4362   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4363       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4364     if (OpNum != Record.size()) {
4365       auto S = Record[OpNum++];
4366       // A GlobalValue with local linkage cannot have a DLL storage class.
4367       if (!NewGA->hasLocalLinkage())
4368         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4369     }
4370     else
4371       upgradeDLLImportExportLinkage(NewGA, Linkage);
4372     if (OpNum != Record.size())
4373       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4374     if (OpNum != Record.size())
4375       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4376   }
4377   if (OpNum != Record.size())
4378     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4379   inferDSOLocal(NewGA);
4380 
4381   // Check whether we have enough values to read a partition name.
4382   if (OpNum + 1 < Record.size()) {
4383     // Check Strtab has enough values for the partition.
4384     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4385       return error("Malformed partition, too large.");
4386     NewGA->setPartition(
4387         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4388   }
4389 
4390   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4391   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4392   return Error::success();
4393 }
4394 
4395 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4396                                  bool ShouldLazyLoadMetadata,
4397                                  ParserCallbacks Callbacks) {
4398   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4399   // has been set to true and we aren't attempting to preserve the existing
4400   // format in the bitcode (default action: load into the old debug format).
4401   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4402     TheModule->IsNewDbgInfoFormat =
4403         UseNewDbgInfoFormat &&
4404         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4405   }
4406 
4407   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4408   if (ResumeBit) {
4409     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4410       return JumpFailed;
4411   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4412     return Err;
4413 
4414   SmallVector<uint64_t, 64> Record;
4415 
4416   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4417   // finalize the datalayout before we run any of that code.
4418   bool ResolvedDataLayout = false;
4419   // In order to support importing modules with illegal data layout strings,
4420   // delay parsing the data layout string until after upgrades and overrides
4421   // have been applied, allowing to fix illegal data layout strings.
4422   // Initialize to the current module's layout string in case none is specified.
4423   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4424 
4425   auto ResolveDataLayout = [&]() -> Error {
4426     if (ResolvedDataLayout)
4427       return Error::success();
4428 
4429     // Datalayout and triple can't be parsed after this point.
4430     ResolvedDataLayout = true;
4431 
4432     // Auto-upgrade the layout string
4433     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4434         TentativeDataLayoutStr, TheModule->getTargetTriple());
4435 
4436     // Apply override
4437     if (Callbacks.DataLayout) {
4438       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4439               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4440         TentativeDataLayoutStr = *LayoutOverride;
4441     }
4442 
4443     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4444     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4445     if (!MaybeDL)
4446       return MaybeDL.takeError();
4447 
4448     TheModule->setDataLayout(MaybeDL.get());
4449     return Error::success();
4450   };
4451 
4452   // Read all the records for this module.
4453   while (true) {
4454     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4455     if (!MaybeEntry)
4456       return MaybeEntry.takeError();
4457     llvm::BitstreamEntry Entry = MaybeEntry.get();
4458 
4459     switch (Entry.Kind) {
4460     case BitstreamEntry::Error:
4461       return error("Malformed block");
4462     case BitstreamEntry::EndBlock:
4463       if (Error Err = ResolveDataLayout())
4464         return Err;
4465       return globalCleanup();
4466 
4467     case BitstreamEntry::SubBlock:
4468       switch (Entry.ID) {
4469       default:  // Skip unknown content.
4470         if (Error Err = Stream.SkipBlock())
4471           return Err;
4472         break;
4473       case bitc::BLOCKINFO_BLOCK_ID:
4474         if (Error Err = readBlockInfo())
4475           return Err;
4476         break;
4477       case bitc::PARAMATTR_BLOCK_ID:
4478         if (Error Err = parseAttributeBlock())
4479           return Err;
4480         break;
4481       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4482         if (Error Err = parseAttributeGroupBlock())
4483           return Err;
4484         break;
4485       case bitc::TYPE_BLOCK_ID_NEW:
4486         if (Error Err = parseTypeTable())
4487           return Err;
4488         break;
4489       case bitc::VALUE_SYMTAB_BLOCK_ID:
4490         if (!SeenValueSymbolTable) {
4491           // Either this is an old form VST without function index and an
4492           // associated VST forward declaration record (which would have caused
4493           // the VST to be jumped to and parsed before it was encountered
4494           // normally in the stream), or there were no function blocks to
4495           // trigger an earlier parsing of the VST.
4496           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4497           if (Error Err = parseValueSymbolTable())
4498             return Err;
4499           SeenValueSymbolTable = true;
4500         } else {
4501           // We must have had a VST forward declaration record, which caused
4502           // the parser to jump to and parse the VST earlier.
4503           assert(VSTOffset > 0);
4504           if (Error Err = Stream.SkipBlock())
4505             return Err;
4506         }
4507         break;
4508       case bitc::CONSTANTS_BLOCK_ID:
4509         if (Error Err = parseConstants())
4510           return Err;
4511         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4512           return Err;
4513         break;
4514       case bitc::METADATA_BLOCK_ID:
4515         if (ShouldLazyLoadMetadata) {
4516           if (Error Err = rememberAndSkipMetadata())
4517             return Err;
4518           break;
4519         }
4520         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4521         if (Error Err = MDLoader->parseModuleMetadata())
4522           return Err;
4523         break;
4524       case bitc::METADATA_KIND_BLOCK_ID:
4525         if (Error Err = MDLoader->parseMetadataKinds())
4526           return Err;
4527         break;
4528       case bitc::FUNCTION_BLOCK_ID:
4529         if (Error Err = ResolveDataLayout())
4530           return Err;
4531 
4532         // If this is the first function body we've seen, reverse the
4533         // FunctionsWithBodies list.
4534         if (!SeenFirstFunctionBody) {
4535           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4536           if (Error Err = globalCleanup())
4537             return Err;
4538           SeenFirstFunctionBody = true;
4539         }
4540 
4541         if (VSTOffset > 0) {
4542           // If we have a VST forward declaration record, make sure we
4543           // parse the VST now if we haven't already. It is needed to
4544           // set up the DeferredFunctionInfo vector for lazy reading.
4545           if (!SeenValueSymbolTable) {
4546             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4547               return Err;
4548             SeenValueSymbolTable = true;
4549             // Fall through so that we record the NextUnreadBit below.
4550             // This is necessary in case we have an anonymous function that
4551             // is later materialized. Since it will not have a VST entry we
4552             // need to fall back to the lazy parse to find its offset.
4553           } else {
4554             // If we have a VST forward declaration record, but have already
4555             // parsed the VST (just above, when the first function body was
4556             // encountered here), then we are resuming the parse after
4557             // materializing functions. The ResumeBit points to the
4558             // start of the last function block recorded in the
4559             // DeferredFunctionInfo map. Skip it.
4560             if (Error Err = Stream.SkipBlock())
4561               return Err;
4562             continue;
4563           }
4564         }
4565 
4566         // Support older bitcode files that did not have the function
4567         // index in the VST, nor a VST forward declaration record, as
4568         // well as anonymous functions that do not have VST entries.
4569         // Build the DeferredFunctionInfo vector on the fly.
4570         if (Error Err = rememberAndSkipFunctionBody())
4571           return Err;
4572 
4573         // Suspend parsing when we reach the function bodies. Subsequent
4574         // materialization calls will resume it when necessary. If the bitcode
4575         // file is old, the symbol table will be at the end instead and will not
4576         // have been seen yet. In this case, just finish the parse now.
4577         if (SeenValueSymbolTable) {
4578           NextUnreadBit = Stream.GetCurrentBitNo();
4579           // After the VST has been parsed, we need to make sure intrinsic name
4580           // are auto-upgraded.
4581           return globalCleanup();
4582         }
4583         break;
4584       case bitc::USELIST_BLOCK_ID:
4585         if (Error Err = parseUseLists())
4586           return Err;
4587         break;
4588       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4589         if (Error Err = parseOperandBundleTags())
4590           return Err;
4591         break;
4592       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4593         if (Error Err = parseSyncScopeNames())
4594           return Err;
4595         break;
4596       }
4597       continue;
4598 
4599     case BitstreamEntry::Record:
4600       // The interesting case.
4601       break;
4602     }
4603 
4604     // Read a record.
4605     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4606     if (!MaybeBitCode)
4607       return MaybeBitCode.takeError();
4608     switch (unsigned BitCode = MaybeBitCode.get()) {
4609     default: break;  // Default behavior, ignore unknown content.
4610     case bitc::MODULE_CODE_VERSION: {
4611       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4612       if (!VersionOrErr)
4613         return VersionOrErr.takeError();
4614       UseRelativeIDs = *VersionOrErr >= 1;
4615       break;
4616     }
4617     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4618       if (ResolvedDataLayout)
4619         return error("target triple too late in module");
4620       std::string S;
4621       if (convertToString(Record, 0, S))
4622         return error("Invalid record");
4623       TheModule->setTargetTriple(S);
4624       break;
4625     }
4626     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4627       if (ResolvedDataLayout)
4628         return error("datalayout too late in module");
4629       if (convertToString(Record, 0, TentativeDataLayoutStr))
4630         return error("Invalid record");
4631       break;
4632     }
4633     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4634       std::string S;
4635       if (convertToString(Record, 0, S))
4636         return error("Invalid record");
4637       TheModule->setModuleInlineAsm(S);
4638       break;
4639     }
4640     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4641       // Deprecated, but still needed to read old bitcode files.
4642       std::string S;
4643       if (convertToString(Record, 0, S))
4644         return error("Invalid record");
4645       // Ignore value.
4646       break;
4647     }
4648     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4649       std::string S;
4650       if (convertToString(Record, 0, S))
4651         return error("Invalid record");
4652       SectionTable.push_back(S);
4653       break;
4654     }
4655     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4656       std::string S;
4657       if (convertToString(Record, 0, S))
4658         return error("Invalid record");
4659       GCTable.push_back(S);
4660       break;
4661     }
4662     case bitc::MODULE_CODE_COMDAT:
4663       if (Error Err = parseComdatRecord(Record))
4664         return Err;
4665       break;
4666     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4667     // written by ThinLinkBitcodeWriter. See
4668     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4669     // record
4670     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4671     case bitc::MODULE_CODE_GLOBALVAR:
4672       if (Error Err = parseGlobalVarRecord(Record))
4673         return Err;
4674       break;
4675     case bitc::MODULE_CODE_FUNCTION:
4676       if (Error Err = ResolveDataLayout())
4677         return Err;
4678       if (Error Err = parseFunctionRecord(Record))
4679         return Err;
4680       break;
4681     case bitc::MODULE_CODE_IFUNC:
4682     case bitc::MODULE_CODE_ALIAS:
4683     case bitc::MODULE_CODE_ALIAS_OLD:
4684       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4685         return Err;
4686       break;
4687     /// MODULE_CODE_VSTOFFSET: [offset]
4688     case bitc::MODULE_CODE_VSTOFFSET:
4689       if (Record.empty())
4690         return error("Invalid record");
4691       // Note that we subtract 1 here because the offset is relative to one word
4692       // before the start of the identification or module block, which was
4693       // historically always the start of the regular bitcode header.
4694       VSTOffset = Record[0] - 1;
4695       break;
4696     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4697     case bitc::MODULE_CODE_SOURCE_FILENAME:
4698       SmallString<128> ValueName;
4699       if (convertToString(Record, 0, ValueName))
4700         return error("Invalid record");
4701       TheModule->setSourceFileName(ValueName);
4702       break;
4703     }
4704     Record.clear();
4705   }
4706   this->ValueTypeCallback = std::nullopt;
4707   return Error::success();
4708 }
4709 
4710 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4711                                       bool IsImporting,
4712                                       ParserCallbacks Callbacks) {
4713   TheModule = M;
4714   MetadataLoaderCallbacks MDCallbacks;
4715   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4716   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4717     return getContainedTypeID(I, J);
4718   };
4719   MDCallbacks.MDType = Callbacks.MDType;
4720   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4721   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4722 }
4723 
4724 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4725   if (!isa<PointerType>(PtrType))
4726     return error("Load/Store operand is not a pointer type");
4727   if (!PointerType::isLoadableOrStorableType(ValType))
4728     return error("Cannot load/store from pointer");
4729   return Error::success();
4730 }
4731 
4732 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4733                                              ArrayRef<unsigned> ArgTyIDs) {
4734   AttributeList Attrs = CB->getAttributes();
4735   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4736     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4737                                      Attribute::InAlloca}) {
4738       if (!Attrs.hasParamAttr(i, Kind) ||
4739           Attrs.getParamAttr(i, Kind).getValueAsType())
4740         continue;
4741 
4742       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4743       if (!PtrEltTy)
4744         return error("Missing element type for typed attribute upgrade");
4745 
4746       Attribute NewAttr;
4747       switch (Kind) {
4748       case Attribute::ByVal:
4749         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4750         break;
4751       case Attribute::StructRet:
4752         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4753         break;
4754       case Attribute::InAlloca:
4755         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4756         break;
4757       default:
4758         llvm_unreachable("not an upgraded type attribute");
4759       }
4760 
4761       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4762     }
4763   }
4764 
4765   if (CB->isInlineAsm()) {
4766     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4767     unsigned ArgNo = 0;
4768     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4769       if (!CI.hasArg())
4770         continue;
4771 
4772       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4773         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4774         if (!ElemTy)
4775           return error("Missing element type for inline asm upgrade");
4776         Attrs = Attrs.addParamAttribute(
4777             Context, ArgNo,
4778             Attribute::get(Context, Attribute::ElementType, ElemTy));
4779       }
4780 
4781       ArgNo++;
4782     }
4783   }
4784 
4785   switch (CB->getIntrinsicID()) {
4786   case Intrinsic::preserve_array_access_index:
4787   case Intrinsic::preserve_struct_access_index:
4788   case Intrinsic::aarch64_ldaxr:
4789   case Intrinsic::aarch64_ldxr:
4790   case Intrinsic::aarch64_stlxr:
4791   case Intrinsic::aarch64_stxr:
4792   case Intrinsic::arm_ldaex:
4793   case Intrinsic::arm_ldrex:
4794   case Intrinsic::arm_stlex:
4795   case Intrinsic::arm_strex: {
4796     unsigned ArgNo;
4797     switch (CB->getIntrinsicID()) {
4798     case Intrinsic::aarch64_stlxr:
4799     case Intrinsic::aarch64_stxr:
4800     case Intrinsic::arm_stlex:
4801     case Intrinsic::arm_strex:
4802       ArgNo = 1;
4803       break;
4804     default:
4805       ArgNo = 0;
4806       break;
4807     }
4808     if (!Attrs.getParamElementType(ArgNo)) {
4809       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4810       if (!ElTy)
4811         return error("Missing element type for elementtype upgrade");
4812       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4813       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4814     }
4815     break;
4816   }
4817   default:
4818     break;
4819   }
4820 
4821   CB->setAttributes(Attrs);
4822   return Error::success();
4823 }
4824 
4825 /// Lazily parse the specified function body block.
4826 Error BitcodeReader::parseFunctionBody(Function *F) {
4827   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4828     return Err;
4829 
4830   // Unexpected unresolved metadata when parsing function.
4831   if (MDLoader->hasFwdRefs())
4832     return error("Invalid function metadata: incoming forward references");
4833 
4834   InstructionList.clear();
4835   unsigned ModuleValueListSize = ValueList.size();
4836   unsigned ModuleMDLoaderSize = MDLoader->size();
4837 
4838   // Add all the function arguments to the value table.
4839   unsigned ArgNo = 0;
4840   unsigned FTyID = FunctionTypeIDs[F];
4841   for (Argument &I : F->args()) {
4842     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4843     assert(I.getType() == getTypeByID(ArgTyID) &&
4844            "Incorrect fully specified type for Function Argument");
4845     ValueList.push_back(&I, ArgTyID);
4846     ++ArgNo;
4847   }
4848   unsigned NextValueNo = ValueList.size();
4849   BasicBlock *CurBB = nullptr;
4850   unsigned CurBBNo = 0;
4851   // Block into which constant expressions from phi nodes are materialized.
4852   BasicBlock *PhiConstExprBB = nullptr;
4853   // Edge blocks for phi nodes into which constant expressions have been
4854   // expanded.
4855   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4856     ConstExprEdgeBBs;
4857 
4858   DebugLoc LastLoc;
4859   auto getLastInstruction = [&]() -> Instruction * {
4860     if (CurBB && !CurBB->empty())
4861       return &CurBB->back();
4862     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4863              !FunctionBBs[CurBBNo - 1]->empty())
4864       return &FunctionBBs[CurBBNo - 1]->back();
4865     return nullptr;
4866   };
4867 
4868   std::vector<OperandBundleDef> OperandBundles;
4869 
4870   // Read all the records.
4871   SmallVector<uint64_t, 64> Record;
4872 
4873   while (true) {
4874     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4875     if (!MaybeEntry)
4876       return MaybeEntry.takeError();
4877     llvm::BitstreamEntry Entry = MaybeEntry.get();
4878 
4879     switch (Entry.Kind) {
4880     case BitstreamEntry::Error:
4881       return error("Malformed block");
4882     case BitstreamEntry::EndBlock:
4883       goto OutOfRecordLoop;
4884 
4885     case BitstreamEntry::SubBlock:
4886       switch (Entry.ID) {
4887       default:  // Skip unknown content.
4888         if (Error Err = Stream.SkipBlock())
4889           return Err;
4890         break;
4891       case bitc::CONSTANTS_BLOCK_ID:
4892         if (Error Err = parseConstants())
4893           return Err;
4894         NextValueNo = ValueList.size();
4895         break;
4896       case bitc::VALUE_SYMTAB_BLOCK_ID:
4897         if (Error Err = parseValueSymbolTable())
4898           return Err;
4899         break;
4900       case bitc::METADATA_ATTACHMENT_ID:
4901         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4902           return Err;
4903         break;
4904       case bitc::METADATA_BLOCK_ID:
4905         assert(DeferredMetadataInfo.empty() &&
4906                "Must read all module-level metadata before function-level");
4907         if (Error Err = MDLoader->parseFunctionMetadata())
4908           return Err;
4909         break;
4910       case bitc::USELIST_BLOCK_ID:
4911         if (Error Err = parseUseLists())
4912           return Err;
4913         break;
4914       }
4915       continue;
4916 
4917     case BitstreamEntry::Record:
4918       // The interesting case.
4919       break;
4920     }
4921 
4922     // Read a record.
4923     Record.clear();
4924     Instruction *I = nullptr;
4925     unsigned ResTypeID = InvalidTypeID;
4926     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4927     if (!MaybeBitCode)
4928       return MaybeBitCode.takeError();
4929     switch (unsigned BitCode = MaybeBitCode.get()) {
4930     default: // Default behavior: reject
4931       return error("Invalid value");
4932     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4933       if (Record.empty() || Record[0] == 0)
4934         return error("Invalid record");
4935       // Create all the basic blocks for the function.
4936       FunctionBBs.resize(Record[0]);
4937 
4938       // See if anything took the address of blocks in this function.
4939       auto BBFRI = BasicBlockFwdRefs.find(F);
4940       if (BBFRI == BasicBlockFwdRefs.end()) {
4941         for (BasicBlock *&BB : FunctionBBs)
4942           BB = BasicBlock::Create(Context, "", F);
4943       } else {
4944         auto &BBRefs = BBFRI->second;
4945         // Check for invalid basic block references.
4946         if (BBRefs.size() > FunctionBBs.size())
4947           return error("Invalid ID");
4948         assert(!BBRefs.empty() && "Unexpected empty array");
4949         assert(!BBRefs.front() && "Invalid reference to entry block");
4950         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4951              ++I)
4952           if (I < RE && BBRefs[I]) {
4953             BBRefs[I]->insertInto(F);
4954             FunctionBBs[I] = BBRefs[I];
4955           } else {
4956             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4957           }
4958 
4959         // Erase from the table.
4960         BasicBlockFwdRefs.erase(BBFRI);
4961       }
4962 
4963       CurBB = FunctionBBs[0];
4964       continue;
4965     }
4966 
4967     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4968       // The record should not be emitted if it's an empty list.
4969       if (Record.empty())
4970         return error("Invalid record");
4971       // When we have the RARE case of a BlockAddress Constant that is not
4972       // scoped to the Function it refers to, we need to conservatively
4973       // materialize the referred to Function, regardless of whether or not
4974       // that Function will ultimately be linked, otherwise users of
4975       // BitcodeReader might start splicing out Function bodies such that we
4976       // might no longer be able to materialize the BlockAddress since the
4977       // BasicBlock (and entire body of the Function) the BlockAddress refers
4978       // to may have been moved. In the case that the user of BitcodeReader
4979       // decides ultimately not to link the Function body, materializing here
4980       // could be considered wasteful, but it's better than a deserialization
4981       // failure as described. This keeps BitcodeReader unaware of complex
4982       // linkage policy decisions such as those use by LTO, leaving those
4983       // decisions "one layer up."
4984       for (uint64_t ValID : Record)
4985         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4986           BackwardRefFunctions.push_back(F);
4987         else
4988           return error("Invalid record");
4989 
4990       continue;
4991 
4992     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4993       // This record indicates that the last instruction is at the same
4994       // location as the previous instruction with a location.
4995       I = getLastInstruction();
4996 
4997       if (!I)
4998         return error("Invalid record");
4999       I->setDebugLoc(LastLoc);
5000       I = nullptr;
5001       continue;
5002 
5003     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5004       I = getLastInstruction();
5005       if (!I || Record.size() < 4)
5006         return error("Invalid record");
5007 
5008       unsigned Line = Record[0], Col = Record[1];
5009       unsigned ScopeID = Record[2], IAID = Record[3];
5010       bool isImplicitCode = Record.size() == 5 && Record[4];
5011 
5012       MDNode *Scope = nullptr, *IA = nullptr;
5013       if (ScopeID) {
5014         Scope = dyn_cast_or_null<MDNode>(
5015             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5016         if (!Scope)
5017           return error("Invalid record");
5018       }
5019       if (IAID) {
5020         IA = dyn_cast_or_null<MDNode>(
5021             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5022         if (!IA)
5023           return error("Invalid record");
5024       }
5025       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5026                                 isImplicitCode);
5027       I->setDebugLoc(LastLoc);
5028       I = nullptr;
5029       continue;
5030     }
5031     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5032       unsigned OpNum = 0;
5033       Value *LHS;
5034       unsigned TypeID;
5035       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5036           OpNum+1 > Record.size())
5037         return error("Invalid record");
5038 
5039       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5040       if (Opc == -1)
5041         return error("Invalid record");
5042       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5043       ResTypeID = TypeID;
5044       InstructionList.push_back(I);
5045       if (OpNum < Record.size()) {
5046         if (isa<FPMathOperator>(I)) {
5047           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5048           if (FMF.any())
5049             I->setFastMathFlags(FMF);
5050         }
5051       }
5052       break;
5053     }
5054     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5055       unsigned OpNum = 0;
5056       Value *LHS, *RHS;
5057       unsigned TypeID;
5058       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5059           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5060                    CurBB) ||
5061           OpNum+1 > Record.size())
5062         return error("Invalid record");
5063 
5064       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5065       if (Opc == -1)
5066         return error("Invalid record");
5067       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5068       ResTypeID = TypeID;
5069       InstructionList.push_back(I);
5070       if (OpNum < Record.size()) {
5071         if (Opc == Instruction::Add ||
5072             Opc == Instruction::Sub ||
5073             Opc == Instruction::Mul ||
5074             Opc == Instruction::Shl) {
5075           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5076             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5077           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5078             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5079         } else if (Opc == Instruction::SDiv ||
5080                    Opc == Instruction::UDiv ||
5081                    Opc == Instruction::LShr ||
5082                    Opc == Instruction::AShr) {
5083           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5084             cast<BinaryOperator>(I)->setIsExact(true);
5085         } else if (Opc == Instruction::Or) {
5086           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5087             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5088         } else if (isa<FPMathOperator>(I)) {
5089           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5090           if (FMF.any())
5091             I->setFastMathFlags(FMF);
5092         }
5093       }
5094       break;
5095     }
5096     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5097       unsigned OpNum = 0;
5098       Value *Op;
5099       unsigned OpTypeID;
5100       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5101           OpNum + 1 > Record.size())
5102         return error("Invalid record");
5103 
5104       ResTypeID = Record[OpNum++];
5105       Type *ResTy = getTypeByID(ResTypeID);
5106       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5107 
5108       if (Opc == -1 || !ResTy)
5109         return error("Invalid record");
5110       Instruction *Temp = nullptr;
5111       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5112         if (Temp) {
5113           InstructionList.push_back(Temp);
5114           assert(CurBB && "No current BB?");
5115           Temp->insertInto(CurBB, CurBB->end());
5116         }
5117       } else {
5118         auto CastOp = (Instruction::CastOps)Opc;
5119         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5120           return error("Invalid cast");
5121         I = CastInst::Create(CastOp, Op, ResTy);
5122       }
5123 
5124       if (OpNum < Record.size()) {
5125         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5126           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5127             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5128         } else if (Opc == Instruction::Trunc) {
5129           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5130             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5131           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5132             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5133         }
5134       }
5135 
5136       InstructionList.push_back(I);
5137       break;
5138     }
5139     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5140     case bitc::FUNC_CODE_INST_GEP_OLD:
5141     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5142       unsigned OpNum = 0;
5143 
5144       unsigned TyID;
5145       Type *Ty;
5146       GEPNoWrapFlags NW;
5147 
5148       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5149         NW = toGEPNoWrapFlags(Record[OpNum++]);
5150         TyID = Record[OpNum++];
5151         Ty = getTypeByID(TyID);
5152       } else {
5153         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5154           NW = GEPNoWrapFlags::inBounds();
5155         TyID = InvalidTypeID;
5156         Ty = nullptr;
5157       }
5158 
5159       Value *BasePtr;
5160       unsigned BasePtrTypeID;
5161       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5162                            CurBB))
5163         return error("Invalid record");
5164 
5165       if (!Ty) {
5166         TyID = getContainedTypeID(BasePtrTypeID);
5167         if (BasePtr->getType()->isVectorTy())
5168           TyID = getContainedTypeID(TyID);
5169         Ty = getTypeByID(TyID);
5170       }
5171 
5172       SmallVector<Value*, 16> GEPIdx;
5173       while (OpNum != Record.size()) {
5174         Value *Op;
5175         unsigned OpTypeID;
5176         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5177           return error("Invalid record");
5178         GEPIdx.push_back(Op);
5179       }
5180 
5181       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5182       I = GEP;
5183 
5184       ResTypeID = TyID;
5185       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5186         auto GTI = std::next(gep_type_begin(I));
5187         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5188           unsigned SubType = 0;
5189           if (GTI.isStruct()) {
5190             ConstantInt *IdxC =
5191                 Idx->getType()->isVectorTy()
5192                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5193                     : cast<ConstantInt>(Idx);
5194             SubType = IdxC->getZExtValue();
5195           }
5196           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5197           ++GTI;
5198         }
5199       }
5200 
5201       // At this point ResTypeID is the result element type. We need a pointer
5202       // or vector of pointer to it.
5203       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5204       if (I->getType()->isVectorTy())
5205         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5206 
5207       InstructionList.push_back(I);
5208       GEP->setNoWrapFlags(NW);
5209       break;
5210     }
5211 
5212     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5213                                        // EXTRACTVAL: [opty, opval, n x indices]
5214       unsigned OpNum = 0;
5215       Value *Agg;
5216       unsigned AggTypeID;
5217       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5218         return error("Invalid record");
5219       Type *Ty = Agg->getType();
5220 
5221       unsigned RecSize = Record.size();
5222       if (OpNum == RecSize)
5223         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5224 
5225       SmallVector<unsigned, 4> EXTRACTVALIdx;
5226       ResTypeID = AggTypeID;
5227       for (; OpNum != RecSize; ++OpNum) {
5228         bool IsArray = Ty->isArrayTy();
5229         bool IsStruct = Ty->isStructTy();
5230         uint64_t Index = Record[OpNum];
5231 
5232         if (!IsStruct && !IsArray)
5233           return error("EXTRACTVAL: Invalid type");
5234         if ((unsigned)Index != Index)
5235           return error("Invalid value");
5236         if (IsStruct && Index >= Ty->getStructNumElements())
5237           return error("EXTRACTVAL: Invalid struct index");
5238         if (IsArray && Index >= Ty->getArrayNumElements())
5239           return error("EXTRACTVAL: Invalid array index");
5240         EXTRACTVALIdx.push_back((unsigned)Index);
5241 
5242         if (IsStruct) {
5243           Ty = Ty->getStructElementType(Index);
5244           ResTypeID = getContainedTypeID(ResTypeID, Index);
5245         } else {
5246           Ty = Ty->getArrayElementType();
5247           ResTypeID = getContainedTypeID(ResTypeID);
5248         }
5249       }
5250 
5251       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5252       InstructionList.push_back(I);
5253       break;
5254     }
5255 
5256     case bitc::FUNC_CODE_INST_INSERTVAL: {
5257                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5258       unsigned OpNum = 0;
5259       Value *Agg;
5260       unsigned AggTypeID;
5261       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5262         return error("Invalid record");
5263       Value *Val;
5264       unsigned ValTypeID;
5265       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5266         return error("Invalid record");
5267 
5268       unsigned RecSize = Record.size();
5269       if (OpNum == RecSize)
5270         return error("INSERTVAL: Invalid instruction with 0 indices");
5271 
5272       SmallVector<unsigned, 4> INSERTVALIdx;
5273       Type *CurTy = Agg->getType();
5274       for (; OpNum != RecSize; ++OpNum) {
5275         bool IsArray = CurTy->isArrayTy();
5276         bool IsStruct = CurTy->isStructTy();
5277         uint64_t Index = Record[OpNum];
5278 
5279         if (!IsStruct && !IsArray)
5280           return error("INSERTVAL: Invalid type");
5281         if ((unsigned)Index != Index)
5282           return error("Invalid value");
5283         if (IsStruct && Index >= CurTy->getStructNumElements())
5284           return error("INSERTVAL: Invalid struct index");
5285         if (IsArray && Index >= CurTy->getArrayNumElements())
5286           return error("INSERTVAL: Invalid array index");
5287 
5288         INSERTVALIdx.push_back((unsigned)Index);
5289         if (IsStruct)
5290           CurTy = CurTy->getStructElementType(Index);
5291         else
5292           CurTy = CurTy->getArrayElementType();
5293       }
5294 
5295       if (CurTy != Val->getType())
5296         return error("Inserted value type doesn't match aggregate type");
5297 
5298       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5299       ResTypeID = AggTypeID;
5300       InstructionList.push_back(I);
5301       break;
5302     }
5303 
5304     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5305       // obsolete form of select
5306       // handles select i1 ... in old bitcode
5307       unsigned OpNum = 0;
5308       Value *TrueVal, *FalseVal, *Cond;
5309       unsigned TypeID;
5310       Type *CondType = Type::getInt1Ty(Context);
5311       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5312                            CurBB) ||
5313           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5314                    FalseVal, CurBB) ||
5315           popValue(Record, OpNum, NextValueNo, CondType,
5316                    getVirtualTypeID(CondType), Cond, CurBB))
5317         return error("Invalid record");
5318 
5319       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5320       ResTypeID = TypeID;
5321       InstructionList.push_back(I);
5322       break;
5323     }
5324 
5325     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5326       // new form of select
5327       // handles select i1 or select [N x i1]
5328       unsigned OpNum = 0;
5329       Value *TrueVal, *FalseVal, *Cond;
5330       unsigned ValTypeID, CondTypeID;
5331       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5332                            CurBB) ||
5333           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5334                    FalseVal, CurBB) ||
5335           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5336         return error("Invalid record");
5337 
5338       // select condition can be either i1 or [N x i1]
5339       if (VectorType* vector_type =
5340           dyn_cast<VectorType>(Cond->getType())) {
5341         // expect <n x i1>
5342         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5343           return error("Invalid type for value");
5344       } else {
5345         // expect i1
5346         if (Cond->getType() != Type::getInt1Ty(Context))
5347           return error("Invalid type for value");
5348       }
5349 
5350       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5351       ResTypeID = ValTypeID;
5352       InstructionList.push_back(I);
5353       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5354         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5355         if (FMF.any())
5356           I->setFastMathFlags(FMF);
5357       }
5358       break;
5359     }
5360 
5361     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5362       unsigned OpNum = 0;
5363       Value *Vec, *Idx;
5364       unsigned VecTypeID, IdxTypeID;
5365       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5366           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5367         return error("Invalid record");
5368       if (!Vec->getType()->isVectorTy())
5369         return error("Invalid type for value");
5370       I = ExtractElementInst::Create(Vec, Idx);
5371       ResTypeID = getContainedTypeID(VecTypeID);
5372       InstructionList.push_back(I);
5373       break;
5374     }
5375 
5376     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5377       unsigned OpNum = 0;
5378       Value *Vec, *Elt, *Idx;
5379       unsigned VecTypeID, IdxTypeID;
5380       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5381         return error("Invalid record");
5382       if (!Vec->getType()->isVectorTy())
5383         return error("Invalid type for value");
5384       if (popValue(Record, OpNum, NextValueNo,
5385                    cast<VectorType>(Vec->getType())->getElementType(),
5386                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5387           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5388         return error("Invalid record");
5389       I = InsertElementInst::Create(Vec, Elt, Idx);
5390       ResTypeID = VecTypeID;
5391       InstructionList.push_back(I);
5392       break;
5393     }
5394 
5395     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5396       unsigned OpNum = 0;
5397       Value *Vec1, *Vec2, *Mask;
5398       unsigned Vec1TypeID;
5399       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5400                            CurBB) ||
5401           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5402                    Vec2, CurBB))
5403         return error("Invalid record");
5404 
5405       unsigned MaskTypeID;
5406       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5407         return error("Invalid record");
5408       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5409         return error("Invalid type for value");
5410 
5411       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5412       ResTypeID =
5413           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5414       InstructionList.push_back(I);
5415       break;
5416     }
5417 
5418     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5419       // Old form of ICmp/FCmp returning bool
5420       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5421       // both legal on vectors but had different behaviour.
5422     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5423       // FCmp/ICmp returning bool or vector of bool
5424 
5425       unsigned OpNum = 0;
5426       Value *LHS, *RHS;
5427       unsigned LHSTypeID;
5428       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5429           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5430                    CurBB))
5431         return error("Invalid record");
5432 
5433       if (OpNum >= Record.size())
5434         return error(
5435             "Invalid record: operand number exceeded available operands");
5436 
5437       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5438       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5439       FastMathFlags FMF;
5440       if (IsFP && Record.size() > OpNum+1)
5441         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5442 
5443       if (OpNum+1 != Record.size())
5444         return error("Invalid record");
5445 
5446       if (IsFP) {
5447         if (!CmpInst::isFPPredicate(PredVal))
5448           return error("Invalid fcmp predicate");
5449         I = new FCmpInst(PredVal, LHS, RHS);
5450       } else {
5451         if (!CmpInst::isIntPredicate(PredVal))
5452           return error("Invalid icmp predicate");
5453         I = new ICmpInst(PredVal, LHS, RHS);
5454       }
5455 
5456       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5457       if (LHS->getType()->isVectorTy())
5458         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5459 
5460       if (FMF.any())
5461         I->setFastMathFlags(FMF);
5462       InstructionList.push_back(I);
5463       break;
5464     }
5465 
5466     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5467       {
5468         unsigned Size = Record.size();
5469         if (Size == 0) {
5470           I = ReturnInst::Create(Context);
5471           InstructionList.push_back(I);
5472           break;
5473         }
5474 
5475         unsigned OpNum = 0;
5476         Value *Op = nullptr;
5477         unsigned OpTypeID;
5478         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5479           return error("Invalid record");
5480         if (OpNum != Record.size())
5481           return error("Invalid record");
5482 
5483         I = ReturnInst::Create(Context, Op);
5484         InstructionList.push_back(I);
5485         break;
5486       }
5487     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5488       if (Record.size() != 1 && Record.size() != 3)
5489         return error("Invalid record");
5490       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5491       if (!TrueDest)
5492         return error("Invalid record");
5493 
5494       if (Record.size() == 1) {
5495         I = BranchInst::Create(TrueDest);
5496         InstructionList.push_back(I);
5497       }
5498       else {
5499         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5500         Type *CondType = Type::getInt1Ty(Context);
5501         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5502                                getVirtualTypeID(CondType), CurBB);
5503         if (!FalseDest || !Cond)
5504           return error("Invalid record");
5505         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5506         InstructionList.push_back(I);
5507       }
5508       break;
5509     }
5510     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5511       if (Record.size() != 1 && Record.size() != 2)
5512         return error("Invalid record");
5513       unsigned Idx = 0;
5514       Type *TokenTy = Type::getTokenTy(Context);
5515       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5516                                    getVirtualTypeID(TokenTy), CurBB);
5517       if (!CleanupPad)
5518         return error("Invalid record");
5519       BasicBlock *UnwindDest = nullptr;
5520       if (Record.size() == 2) {
5521         UnwindDest = getBasicBlock(Record[Idx++]);
5522         if (!UnwindDest)
5523           return error("Invalid record");
5524       }
5525 
5526       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5527       InstructionList.push_back(I);
5528       break;
5529     }
5530     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5531       if (Record.size() != 2)
5532         return error("Invalid record");
5533       unsigned Idx = 0;
5534       Type *TokenTy = Type::getTokenTy(Context);
5535       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5536                                  getVirtualTypeID(TokenTy), CurBB);
5537       if (!CatchPad)
5538         return error("Invalid record");
5539       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5540       if (!BB)
5541         return error("Invalid record");
5542 
5543       I = CatchReturnInst::Create(CatchPad, BB);
5544       InstructionList.push_back(I);
5545       break;
5546     }
5547     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5548       // We must have, at minimum, the outer scope and the number of arguments.
5549       if (Record.size() < 2)
5550         return error("Invalid record");
5551 
5552       unsigned Idx = 0;
5553 
5554       Type *TokenTy = Type::getTokenTy(Context);
5555       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5556                                   getVirtualTypeID(TokenTy), CurBB);
5557       if (!ParentPad)
5558         return error("Invalid record");
5559 
5560       unsigned NumHandlers = Record[Idx++];
5561 
5562       SmallVector<BasicBlock *, 2> Handlers;
5563       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5564         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5565         if (!BB)
5566           return error("Invalid record");
5567         Handlers.push_back(BB);
5568       }
5569 
5570       BasicBlock *UnwindDest = nullptr;
5571       if (Idx + 1 == Record.size()) {
5572         UnwindDest = getBasicBlock(Record[Idx++]);
5573         if (!UnwindDest)
5574           return error("Invalid record");
5575       }
5576 
5577       if (Record.size() != Idx)
5578         return error("Invalid record");
5579 
5580       auto *CatchSwitch =
5581           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5582       for (BasicBlock *Handler : Handlers)
5583         CatchSwitch->addHandler(Handler);
5584       I = CatchSwitch;
5585       ResTypeID = getVirtualTypeID(I->getType());
5586       InstructionList.push_back(I);
5587       break;
5588     }
5589     case bitc::FUNC_CODE_INST_CATCHPAD:
5590     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5591       // We must have, at minimum, the outer scope and the number of arguments.
5592       if (Record.size() < 2)
5593         return error("Invalid record");
5594 
5595       unsigned Idx = 0;
5596 
5597       Type *TokenTy = Type::getTokenTy(Context);
5598       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5599                                   getVirtualTypeID(TokenTy), CurBB);
5600       if (!ParentPad)
5601         return error("Invald record");
5602 
5603       unsigned NumArgOperands = Record[Idx++];
5604 
5605       SmallVector<Value *, 2> Args;
5606       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5607         Value *Val;
5608         unsigned ValTypeID;
5609         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5610           return error("Invalid record");
5611         Args.push_back(Val);
5612       }
5613 
5614       if (Record.size() != Idx)
5615         return error("Invalid record");
5616 
5617       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5618         I = CleanupPadInst::Create(ParentPad, Args);
5619       else
5620         I = CatchPadInst::Create(ParentPad, Args);
5621       ResTypeID = getVirtualTypeID(I->getType());
5622       InstructionList.push_back(I);
5623       break;
5624     }
5625     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5626       // Check magic
5627       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5628         // "New" SwitchInst format with case ranges. The changes to write this
5629         // format were reverted but we still recognize bitcode that uses it.
5630         // Hopefully someday we will have support for case ranges and can use
5631         // this format again.
5632 
5633         unsigned OpTyID = Record[1];
5634         Type *OpTy = getTypeByID(OpTyID);
5635         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5636 
5637         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5638         BasicBlock *Default = getBasicBlock(Record[3]);
5639         if (!OpTy || !Cond || !Default)
5640           return error("Invalid record");
5641 
5642         unsigned NumCases = Record[4];
5643 
5644         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5645         InstructionList.push_back(SI);
5646 
5647         unsigned CurIdx = 5;
5648         for (unsigned i = 0; i != NumCases; ++i) {
5649           SmallVector<ConstantInt*, 1> CaseVals;
5650           unsigned NumItems = Record[CurIdx++];
5651           for (unsigned ci = 0; ci != NumItems; ++ci) {
5652             bool isSingleNumber = Record[CurIdx++];
5653 
5654             APInt Low;
5655             unsigned ActiveWords = 1;
5656             if (ValueBitWidth > 64)
5657               ActiveWords = Record[CurIdx++];
5658             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5659                                 ValueBitWidth);
5660             CurIdx += ActiveWords;
5661 
5662             if (!isSingleNumber) {
5663               ActiveWords = 1;
5664               if (ValueBitWidth > 64)
5665                 ActiveWords = Record[CurIdx++];
5666               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5667                                          ValueBitWidth);
5668               CurIdx += ActiveWords;
5669 
5670               // FIXME: It is not clear whether values in the range should be
5671               // compared as signed or unsigned values. The partially
5672               // implemented changes that used this format in the past used
5673               // unsigned comparisons.
5674               for ( ; Low.ule(High); ++Low)
5675                 CaseVals.push_back(ConstantInt::get(Context, Low));
5676             } else
5677               CaseVals.push_back(ConstantInt::get(Context, Low));
5678           }
5679           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5680           for (ConstantInt *Cst : CaseVals)
5681             SI->addCase(Cst, DestBB);
5682         }
5683         I = SI;
5684         break;
5685       }
5686 
5687       // Old SwitchInst format without case ranges.
5688 
5689       if (Record.size() < 3 || (Record.size() & 1) == 0)
5690         return error("Invalid record");
5691       unsigned OpTyID = Record[0];
5692       Type *OpTy = getTypeByID(OpTyID);
5693       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5694       BasicBlock *Default = getBasicBlock(Record[2]);
5695       if (!OpTy || !Cond || !Default)
5696         return error("Invalid record");
5697       unsigned NumCases = (Record.size()-3)/2;
5698       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5699       InstructionList.push_back(SI);
5700       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5701         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5702             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5703         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5704         if (!CaseVal || !DestBB) {
5705           delete SI;
5706           return error("Invalid record");
5707         }
5708         SI->addCase(CaseVal, DestBB);
5709       }
5710       I = SI;
5711       break;
5712     }
5713     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5714       if (Record.size() < 2)
5715         return error("Invalid record");
5716       unsigned OpTyID = Record[0];
5717       Type *OpTy = getTypeByID(OpTyID);
5718       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5719       if (!OpTy || !Address)
5720         return error("Invalid record");
5721       unsigned NumDests = Record.size()-2;
5722       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5723       InstructionList.push_back(IBI);
5724       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5725         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5726           IBI->addDestination(DestBB);
5727         } else {
5728           delete IBI;
5729           return error("Invalid record");
5730         }
5731       }
5732       I = IBI;
5733       break;
5734     }
5735 
5736     case bitc::FUNC_CODE_INST_INVOKE: {
5737       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5738       if (Record.size() < 4)
5739         return error("Invalid record");
5740       unsigned OpNum = 0;
5741       AttributeList PAL = getAttributes(Record[OpNum++]);
5742       unsigned CCInfo = Record[OpNum++];
5743       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5744       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5745 
5746       unsigned FTyID = InvalidTypeID;
5747       FunctionType *FTy = nullptr;
5748       if ((CCInfo >> 13) & 1) {
5749         FTyID = Record[OpNum++];
5750         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5751         if (!FTy)
5752           return error("Explicit invoke type is not a function type");
5753       }
5754 
5755       Value *Callee;
5756       unsigned CalleeTypeID;
5757       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5758                            CurBB))
5759         return error("Invalid record");
5760 
5761       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5762       if (!CalleeTy)
5763         return error("Callee is not a pointer");
5764       if (!FTy) {
5765         FTyID = getContainedTypeID(CalleeTypeID);
5766         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5767         if (!FTy)
5768           return error("Callee is not of pointer to function type");
5769       }
5770       if (Record.size() < FTy->getNumParams() + OpNum)
5771         return error("Insufficient operands to call");
5772 
5773       SmallVector<Value*, 16> Ops;
5774       SmallVector<unsigned, 16> ArgTyIDs;
5775       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5776         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5777         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5778                                ArgTyID, CurBB));
5779         ArgTyIDs.push_back(ArgTyID);
5780         if (!Ops.back())
5781           return error("Invalid record");
5782       }
5783 
5784       if (!FTy->isVarArg()) {
5785         if (Record.size() != OpNum)
5786           return error("Invalid record");
5787       } else {
5788         // Read type/value pairs for varargs params.
5789         while (OpNum != Record.size()) {
5790           Value *Op;
5791           unsigned OpTypeID;
5792           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5793             return error("Invalid record");
5794           Ops.push_back(Op);
5795           ArgTyIDs.push_back(OpTypeID);
5796         }
5797       }
5798 
5799       // Upgrade the bundles if needed.
5800       if (!OperandBundles.empty())
5801         UpgradeOperandBundles(OperandBundles);
5802 
5803       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5804                              OperandBundles);
5805       ResTypeID = getContainedTypeID(FTyID);
5806       OperandBundles.clear();
5807       InstructionList.push_back(I);
5808       cast<InvokeInst>(I)->setCallingConv(
5809           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5810       cast<InvokeInst>(I)->setAttributes(PAL);
5811       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5812         I->deleteValue();
5813         return Err;
5814       }
5815 
5816       break;
5817     }
5818     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5819       unsigned Idx = 0;
5820       Value *Val = nullptr;
5821       unsigned ValTypeID;
5822       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5823         return error("Invalid record");
5824       I = ResumeInst::Create(Val);
5825       InstructionList.push_back(I);
5826       break;
5827     }
5828     case bitc::FUNC_CODE_INST_CALLBR: {
5829       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5830       unsigned OpNum = 0;
5831       AttributeList PAL = getAttributes(Record[OpNum++]);
5832       unsigned CCInfo = Record[OpNum++];
5833 
5834       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5835       unsigned NumIndirectDests = Record[OpNum++];
5836       SmallVector<BasicBlock *, 16> IndirectDests;
5837       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5838         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5839 
5840       unsigned FTyID = InvalidTypeID;
5841       FunctionType *FTy = nullptr;
5842       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5843         FTyID = Record[OpNum++];
5844         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5845         if (!FTy)
5846           return error("Explicit call type is not a function type");
5847       }
5848 
5849       Value *Callee;
5850       unsigned CalleeTypeID;
5851       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5852                            CurBB))
5853         return error("Invalid record");
5854 
5855       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5856       if (!OpTy)
5857         return error("Callee is not a pointer type");
5858       if (!FTy) {
5859         FTyID = getContainedTypeID(CalleeTypeID);
5860         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5861         if (!FTy)
5862           return error("Callee is not of pointer to function type");
5863       }
5864       if (Record.size() < FTy->getNumParams() + OpNum)
5865         return error("Insufficient operands to call");
5866 
5867       SmallVector<Value*, 16> Args;
5868       SmallVector<unsigned, 16> ArgTyIDs;
5869       // Read the fixed params.
5870       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5871         Value *Arg;
5872         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5873         if (FTy->getParamType(i)->isLabelTy())
5874           Arg = getBasicBlock(Record[OpNum]);
5875         else
5876           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5877                          ArgTyID, CurBB);
5878         if (!Arg)
5879           return error("Invalid record");
5880         Args.push_back(Arg);
5881         ArgTyIDs.push_back(ArgTyID);
5882       }
5883 
5884       // Read type/value pairs for varargs params.
5885       if (!FTy->isVarArg()) {
5886         if (OpNum != Record.size())
5887           return error("Invalid record");
5888       } else {
5889         while (OpNum != Record.size()) {
5890           Value *Op;
5891           unsigned OpTypeID;
5892           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5893             return error("Invalid record");
5894           Args.push_back(Op);
5895           ArgTyIDs.push_back(OpTypeID);
5896         }
5897       }
5898 
5899       // Upgrade the bundles if needed.
5900       if (!OperandBundles.empty())
5901         UpgradeOperandBundles(OperandBundles);
5902 
5903       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5904         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5905         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5906           return CI.Type == InlineAsm::isLabel;
5907         };
5908         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5909           // Upgrade explicit blockaddress arguments to label constraints.
5910           // Verify that the last arguments are blockaddress arguments that
5911           // match the indirect destinations. Clang always generates callbr
5912           // in this form. We could support reordering with more effort.
5913           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5914           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5915             unsigned LabelNo = ArgNo - FirstBlockArg;
5916             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5917             if (!BA || BA->getFunction() != F ||
5918                 LabelNo > IndirectDests.size() ||
5919                 BA->getBasicBlock() != IndirectDests[LabelNo])
5920               return error("callbr argument does not match indirect dest");
5921           }
5922 
5923           // Remove blockaddress arguments.
5924           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5925           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5926 
5927           // Recreate the function type with less arguments.
5928           SmallVector<Type *> ArgTys;
5929           for (Value *Arg : Args)
5930             ArgTys.push_back(Arg->getType());
5931           FTy =
5932               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5933 
5934           // Update constraint string to use label constraints.
5935           std::string Constraints = IA->getConstraintString();
5936           unsigned ArgNo = 0;
5937           size_t Pos = 0;
5938           for (const auto &CI : ConstraintInfo) {
5939             if (CI.hasArg()) {
5940               if (ArgNo >= FirstBlockArg)
5941                 Constraints.insert(Pos, "!");
5942               ++ArgNo;
5943             }
5944 
5945             // Go to next constraint in string.
5946             Pos = Constraints.find(',', Pos);
5947             if (Pos == std::string::npos)
5948               break;
5949             ++Pos;
5950           }
5951 
5952           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5953                                   IA->hasSideEffects(), IA->isAlignStack(),
5954                                   IA->getDialect(), IA->canThrow());
5955         }
5956       }
5957 
5958       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5959                              OperandBundles);
5960       ResTypeID = getContainedTypeID(FTyID);
5961       OperandBundles.clear();
5962       InstructionList.push_back(I);
5963       cast<CallBrInst>(I)->setCallingConv(
5964           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5965       cast<CallBrInst>(I)->setAttributes(PAL);
5966       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5967         I->deleteValue();
5968         return Err;
5969       }
5970       break;
5971     }
5972     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5973       I = new UnreachableInst(Context);
5974       InstructionList.push_back(I);
5975       break;
5976     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5977       if (Record.empty())
5978         return error("Invalid phi record");
5979       // The first record specifies the type.
5980       unsigned TyID = Record[0];
5981       Type *Ty = getTypeByID(TyID);
5982       if (!Ty)
5983         return error("Invalid phi record");
5984 
5985       // Phi arguments are pairs of records of [value, basic block].
5986       // There is an optional final record for fast-math-flags if this phi has a
5987       // floating-point type.
5988       size_t NumArgs = (Record.size() - 1) / 2;
5989       PHINode *PN = PHINode::Create(Ty, NumArgs);
5990       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5991         PN->deleteValue();
5992         return error("Invalid phi record");
5993       }
5994       InstructionList.push_back(PN);
5995 
5996       SmallDenseMap<BasicBlock *, Value *> Args;
5997       for (unsigned i = 0; i != NumArgs; i++) {
5998         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5999         if (!BB) {
6000           PN->deleteValue();
6001           return error("Invalid phi BB");
6002         }
6003 
6004         // Phi nodes may contain the same predecessor multiple times, in which
6005         // case the incoming value must be identical. Directly reuse the already
6006         // seen value here, to avoid expanding a constant expression multiple
6007         // times.
6008         auto It = Args.find(BB);
6009         if (It != Args.end()) {
6010           PN->addIncoming(It->second, BB);
6011           continue;
6012         }
6013 
6014         // If there already is a block for this edge (from a different phi),
6015         // use it.
6016         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6017         if (!EdgeBB) {
6018           // Otherwise, use a temporary block (that we will discard if it
6019           // turns out to be unnecessary).
6020           if (!PhiConstExprBB)
6021             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6022           EdgeBB = PhiConstExprBB;
6023         }
6024 
6025         // With the new function encoding, it is possible that operands have
6026         // negative IDs (for forward references).  Use a signed VBR
6027         // representation to keep the encoding small.
6028         Value *V;
6029         if (UseRelativeIDs)
6030           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6031         else
6032           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6033         if (!V) {
6034           PN->deleteValue();
6035           PhiConstExprBB->eraseFromParent();
6036           return error("Invalid phi record");
6037         }
6038 
6039         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6040           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6041           PhiConstExprBB = nullptr;
6042         }
6043         PN->addIncoming(V, BB);
6044         Args.insert({BB, V});
6045       }
6046       I = PN;
6047       ResTypeID = TyID;
6048 
6049       // If there are an even number of records, the final record must be FMF.
6050       if (Record.size() % 2 == 0) {
6051         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6052         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6053         if (FMF.any())
6054           I->setFastMathFlags(FMF);
6055       }
6056 
6057       break;
6058     }
6059 
6060     case bitc::FUNC_CODE_INST_LANDINGPAD:
6061     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6062       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6063       unsigned Idx = 0;
6064       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6065         if (Record.size() < 3)
6066           return error("Invalid record");
6067       } else {
6068         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6069         if (Record.size() < 4)
6070           return error("Invalid record");
6071       }
6072       ResTypeID = Record[Idx++];
6073       Type *Ty = getTypeByID(ResTypeID);
6074       if (!Ty)
6075         return error("Invalid record");
6076       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6077         Value *PersFn = nullptr;
6078         unsigned PersFnTypeID;
6079         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6080                              nullptr))
6081           return error("Invalid record");
6082 
6083         if (!F->hasPersonalityFn())
6084           F->setPersonalityFn(cast<Constant>(PersFn));
6085         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6086           return error("Personality function mismatch");
6087       }
6088 
6089       bool IsCleanup = !!Record[Idx++];
6090       unsigned NumClauses = Record[Idx++];
6091       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6092       LP->setCleanup(IsCleanup);
6093       for (unsigned J = 0; J != NumClauses; ++J) {
6094         LandingPadInst::ClauseType CT =
6095           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6096         Value *Val;
6097         unsigned ValTypeID;
6098 
6099         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6100                              nullptr)) {
6101           delete LP;
6102           return error("Invalid record");
6103         }
6104 
6105         assert((CT != LandingPadInst::Catch ||
6106                 !isa<ArrayType>(Val->getType())) &&
6107                "Catch clause has a invalid type!");
6108         assert((CT != LandingPadInst::Filter ||
6109                 isa<ArrayType>(Val->getType())) &&
6110                "Filter clause has invalid type!");
6111         LP->addClause(cast<Constant>(Val));
6112       }
6113 
6114       I = LP;
6115       InstructionList.push_back(I);
6116       break;
6117     }
6118 
6119     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6120       if (Record.size() != 4 && Record.size() != 5)
6121         return error("Invalid record");
6122       using APV = AllocaPackedValues;
6123       const uint64_t Rec = Record[3];
6124       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6125       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6126       unsigned TyID = Record[0];
6127       Type *Ty = getTypeByID(TyID);
6128       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6129         TyID = getContainedTypeID(TyID);
6130         Ty = getTypeByID(TyID);
6131         if (!Ty)
6132           return error("Missing element type for old-style alloca");
6133       }
6134       unsigned OpTyID = Record[1];
6135       Type *OpTy = getTypeByID(OpTyID);
6136       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6137       MaybeAlign Align;
6138       uint64_t AlignExp =
6139           Bitfield::get<APV::AlignLower>(Rec) |
6140           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6141       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6142         return Err;
6143       }
6144       if (!Ty || !Size)
6145         return error("Invalid record");
6146 
6147       const DataLayout &DL = TheModule->getDataLayout();
6148       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6149 
6150       SmallPtrSet<Type *, 4> Visited;
6151       if (!Align && !Ty->isSized(&Visited))
6152         return error("alloca of unsized type");
6153       if (!Align)
6154         Align = DL.getPrefTypeAlign(Ty);
6155 
6156       if (!Size->getType()->isIntegerTy())
6157         return error("alloca element count must have integer type");
6158 
6159       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6160       AI->setUsedWithInAlloca(InAlloca);
6161       AI->setSwiftError(SwiftError);
6162       I = AI;
6163       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6164       InstructionList.push_back(I);
6165       break;
6166     }
6167     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6168       unsigned OpNum = 0;
6169       Value *Op;
6170       unsigned OpTypeID;
6171       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6172           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6173         return error("Invalid record");
6174 
6175       if (!isa<PointerType>(Op->getType()))
6176         return error("Load operand is not a pointer type");
6177 
6178       Type *Ty = nullptr;
6179       if (OpNum + 3 == Record.size()) {
6180         ResTypeID = Record[OpNum++];
6181         Ty = getTypeByID(ResTypeID);
6182       } else {
6183         ResTypeID = getContainedTypeID(OpTypeID);
6184         Ty = getTypeByID(ResTypeID);
6185       }
6186 
6187       if (!Ty)
6188         return error("Missing load type");
6189 
6190       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6191         return Err;
6192 
6193       MaybeAlign Align;
6194       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6195         return Err;
6196       SmallPtrSet<Type *, 4> Visited;
6197       if (!Align && !Ty->isSized(&Visited))
6198         return error("load of unsized type");
6199       if (!Align)
6200         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6201       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6202       InstructionList.push_back(I);
6203       break;
6204     }
6205     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6206        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6207       unsigned OpNum = 0;
6208       Value *Op;
6209       unsigned OpTypeID;
6210       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6211           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6212         return error("Invalid record");
6213 
6214       if (!isa<PointerType>(Op->getType()))
6215         return error("Load operand is not a pointer type");
6216 
6217       Type *Ty = nullptr;
6218       if (OpNum + 5 == Record.size()) {
6219         ResTypeID = Record[OpNum++];
6220         Ty = getTypeByID(ResTypeID);
6221       } else {
6222         ResTypeID = getContainedTypeID(OpTypeID);
6223         Ty = getTypeByID(ResTypeID);
6224       }
6225 
6226       if (!Ty)
6227         return error("Missing atomic load type");
6228 
6229       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6230         return Err;
6231 
6232       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6233       if (Ordering == AtomicOrdering::NotAtomic ||
6234           Ordering == AtomicOrdering::Release ||
6235           Ordering == AtomicOrdering::AcquireRelease)
6236         return error("Invalid record");
6237       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6238         return error("Invalid record");
6239       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6240 
6241       MaybeAlign Align;
6242       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6243         return Err;
6244       if (!Align)
6245         return error("Alignment missing from atomic load");
6246       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6247       InstructionList.push_back(I);
6248       break;
6249     }
6250     case bitc::FUNC_CODE_INST_STORE:
6251     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6252       unsigned OpNum = 0;
6253       Value *Val, *Ptr;
6254       unsigned PtrTypeID, ValTypeID;
6255       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6256         return error("Invalid record");
6257 
6258       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6259         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6260           return error("Invalid record");
6261       } else {
6262         ValTypeID = getContainedTypeID(PtrTypeID);
6263         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6264                      ValTypeID, Val, CurBB))
6265           return error("Invalid record");
6266       }
6267 
6268       if (OpNum + 2 != Record.size())
6269         return error("Invalid record");
6270 
6271       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6272         return Err;
6273       MaybeAlign Align;
6274       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6275         return Err;
6276       SmallPtrSet<Type *, 4> Visited;
6277       if (!Align && !Val->getType()->isSized(&Visited))
6278         return error("store of unsized type");
6279       if (!Align)
6280         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6281       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6282       InstructionList.push_back(I);
6283       break;
6284     }
6285     case bitc::FUNC_CODE_INST_STOREATOMIC:
6286     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6287       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6288       unsigned OpNum = 0;
6289       Value *Val, *Ptr;
6290       unsigned PtrTypeID, ValTypeID;
6291       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6292           !isa<PointerType>(Ptr->getType()))
6293         return error("Invalid record");
6294       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6295         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6296           return error("Invalid record");
6297       } else {
6298         ValTypeID = getContainedTypeID(PtrTypeID);
6299         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6300                      ValTypeID, Val, CurBB))
6301           return error("Invalid record");
6302       }
6303 
6304       if (OpNum + 4 != Record.size())
6305         return error("Invalid record");
6306 
6307       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6308         return Err;
6309       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6310       if (Ordering == AtomicOrdering::NotAtomic ||
6311           Ordering == AtomicOrdering::Acquire ||
6312           Ordering == AtomicOrdering::AcquireRelease)
6313         return error("Invalid record");
6314       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6315       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6316         return error("Invalid record");
6317 
6318       MaybeAlign Align;
6319       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6320         return Err;
6321       if (!Align)
6322         return error("Alignment missing from atomic store");
6323       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6324       InstructionList.push_back(I);
6325       break;
6326     }
6327     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6328       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6329       // failure_ordering?, weak?]
6330       const size_t NumRecords = Record.size();
6331       unsigned OpNum = 0;
6332       Value *Ptr = nullptr;
6333       unsigned PtrTypeID;
6334       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6335         return error("Invalid record");
6336 
6337       if (!isa<PointerType>(Ptr->getType()))
6338         return error("Cmpxchg operand is not a pointer type");
6339 
6340       Value *Cmp = nullptr;
6341       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6342       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6343                    CmpTypeID, Cmp, CurBB))
6344         return error("Invalid record");
6345 
6346       Value *New = nullptr;
6347       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6348                    New, CurBB) ||
6349           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6350         return error("Invalid record");
6351 
6352       const AtomicOrdering SuccessOrdering =
6353           getDecodedOrdering(Record[OpNum + 1]);
6354       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6355           SuccessOrdering == AtomicOrdering::Unordered)
6356         return error("Invalid record");
6357 
6358       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6359 
6360       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6361         return Err;
6362 
6363       const AtomicOrdering FailureOrdering =
6364           NumRecords < 7
6365               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6366               : getDecodedOrdering(Record[OpNum + 3]);
6367 
6368       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6369           FailureOrdering == AtomicOrdering::Unordered)
6370         return error("Invalid record");
6371 
6372       const Align Alignment(
6373           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6374 
6375       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6376                                 FailureOrdering, SSID);
6377       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6378 
6379       if (NumRecords < 8) {
6380         // Before weak cmpxchgs existed, the instruction simply returned the
6381         // value loaded from memory, so bitcode files from that era will be
6382         // expecting the first component of a modern cmpxchg.
6383         I->insertInto(CurBB, CurBB->end());
6384         I = ExtractValueInst::Create(I, 0);
6385         ResTypeID = CmpTypeID;
6386       } else {
6387         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6388         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6389         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6390       }
6391 
6392       InstructionList.push_back(I);
6393       break;
6394     }
6395     case bitc::FUNC_CODE_INST_CMPXCHG: {
6396       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6397       // failure_ordering, weak, align?]
6398       const size_t NumRecords = Record.size();
6399       unsigned OpNum = 0;
6400       Value *Ptr = nullptr;
6401       unsigned PtrTypeID;
6402       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6403         return error("Invalid record");
6404 
6405       if (!isa<PointerType>(Ptr->getType()))
6406         return error("Cmpxchg operand is not a pointer type");
6407 
6408       Value *Cmp = nullptr;
6409       unsigned CmpTypeID;
6410       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6411         return error("Invalid record");
6412 
6413       Value *Val = nullptr;
6414       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6415                    CurBB))
6416         return error("Invalid record");
6417 
6418       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6419         return error("Invalid record");
6420 
6421       const bool IsVol = Record[OpNum];
6422 
6423       const AtomicOrdering SuccessOrdering =
6424           getDecodedOrdering(Record[OpNum + 1]);
6425       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6426         return error("Invalid cmpxchg success ordering");
6427 
6428       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6429 
6430       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6431         return Err;
6432 
6433       const AtomicOrdering FailureOrdering =
6434           getDecodedOrdering(Record[OpNum + 3]);
6435       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6436         return error("Invalid cmpxchg failure ordering");
6437 
6438       const bool IsWeak = Record[OpNum + 4];
6439 
6440       MaybeAlign Alignment;
6441 
6442       if (NumRecords == (OpNum + 6)) {
6443         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6444           return Err;
6445       }
6446       if (!Alignment)
6447         Alignment =
6448             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6449 
6450       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6451                                 FailureOrdering, SSID);
6452       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6453       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6454 
6455       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6456       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6457 
6458       InstructionList.push_back(I);
6459       break;
6460     }
6461     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6462     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6463       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6464       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6465       const size_t NumRecords = Record.size();
6466       unsigned OpNum = 0;
6467 
6468       Value *Ptr = nullptr;
6469       unsigned PtrTypeID;
6470       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6471         return error("Invalid record");
6472 
6473       if (!isa<PointerType>(Ptr->getType()))
6474         return error("Invalid record");
6475 
6476       Value *Val = nullptr;
6477       unsigned ValTypeID = InvalidTypeID;
6478       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6479         ValTypeID = getContainedTypeID(PtrTypeID);
6480         if (popValue(Record, OpNum, NextValueNo,
6481                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6482           return error("Invalid record");
6483       } else {
6484         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6485           return error("Invalid record");
6486       }
6487 
6488       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6489         return error("Invalid record");
6490 
6491       const AtomicRMWInst::BinOp Operation =
6492           getDecodedRMWOperation(Record[OpNum]);
6493       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6494           Operation > AtomicRMWInst::LAST_BINOP)
6495         return error("Invalid record");
6496 
6497       const bool IsVol = Record[OpNum + 1];
6498 
6499       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6500       if (Ordering == AtomicOrdering::NotAtomic ||
6501           Ordering == AtomicOrdering::Unordered)
6502         return error("Invalid record");
6503 
6504       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6505 
6506       MaybeAlign Alignment;
6507 
6508       if (NumRecords == (OpNum + 5)) {
6509         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6510           return Err;
6511       }
6512 
6513       if (!Alignment)
6514         Alignment =
6515             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6516 
6517       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6518       ResTypeID = ValTypeID;
6519       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6520 
6521       InstructionList.push_back(I);
6522       break;
6523     }
6524     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6525       if (2 != Record.size())
6526         return error("Invalid record");
6527       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6528       if (Ordering == AtomicOrdering::NotAtomic ||
6529           Ordering == AtomicOrdering::Unordered ||
6530           Ordering == AtomicOrdering::Monotonic)
6531         return error("Invalid record");
6532       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6533       I = new FenceInst(Context, Ordering, SSID);
6534       InstructionList.push_back(I);
6535       break;
6536     }
6537     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6538       // DbgLabelRecords are placed after the Instructions that they are
6539       // attached to.
6540       SeenDebugRecord = true;
6541       Instruction *Inst = getLastInstruction();
6542       if (!Inst)
6543         return error("Invalid dbg record: missing instruction");
6544       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6545       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6546       Inst->getParent()->insertDbgRecordBefore(
6547           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6548       continue; // This isn't an instruction.
6549     }
6550     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6551     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6552     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6553     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6554       // DbgVariableRecords are placed after the Instructions that they are
6555       // attached to.
6556       SeenDebugRecord = true;
6557       Instruction *Inst = getLastInstruction();
6558       if (!Inst)
6559         return error("Invalid dbg record: missing instruction");
6560 
6561       // First 3 fields are common to all kinds:
6562       //   DILocation, DILocalVariable, DIExpression
6563       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6564       //   ..., LocationMetadata
6565       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6566       //   ..., Value
6567       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6568       //   ..., LocationMetadata
6569       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6570       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6571       unsigned Slot = 0;
6572       // Common fields (0-2).
6573       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6574       DILocalVariable *Var =
6575           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6576       DIExpression *Expr =
6577           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6578 
6579       // Union field (3: LocationMetadata | Value).
6580       Metadata *RawLocation = nullptr;
6581       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6582         Value *V = nullptr;
6583         unsigned TyID = 0;
6584         // We never expect to see a fwd reference value here because
6585         // use-before-defs are encoded with the standard non-abbrev record
6586         // type (they'd require encoding the type too, and they're rare). As a
6587         // result, getValueTypePair only ever increments Slot by one here (once
6588         // for the value, never twice for value and type).
6589         unsigned SlotBefore = Slot;
6590         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6591           return error("Invalid dbg record: invalid value");
6592         (void)SlotBefore;
6593         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6594         RawLocation = ValueAsMetadata::get(V);
6595       } else {
6596         RawLocation = getFnMetadataByID(Record[Slot++]);
6597       }
6598 
6599       DbgVariableRecord *DVR = nullptr;
6600       switch (BitCode) {
6601       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6602       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6603         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6604                                     DbgVariableRecord::LocationType::Value);
6605         break;
6606       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6607         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6608                                     DbgVariableRecord::LocationType::Declare);
6609         break;
6610       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6611         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6612         DIExpression *AddrExpr =
6613             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6614         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6615         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6616                                     DIL);
6617         break;
6618       }
6619       default:
6620         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6621       }
6622       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6623       continue; // This isn't an instruction.
6624     }
6625     case bitc::FUNC_CODE_INST_CALL: {
6626       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6627       if (Record.size() < 3)
6628         return error("Invalid record");
6629 
6630       unsigned OpNum = 0;
6631       AttributeList PAL = getAttributes(Record[OpNum++]);
6632       unsigned CCInfo = Record[OpNum++];
6633 
6634       FastMathFlags FMF;
6635       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6636         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6637         if (!FMF.any())
6638           return error("Fast math flags indicator set for call with no FMF");
6639       }
6640 
6641       unsigned FTyID = InvalidTypeID;
6642       FunctionType *FTy = nullptr;
6643       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6644         FTyID = Record[OpNum++];
6645         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6646         if (!FTy)
6647           return error("Explicit call type is not a function type");
6648       }
6649 
6650       Value *Callee;
6651       unsigned CalleeTypeID;
6652       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6653                            CurBB))
6654         return error("Invalid record");
6655 
6656       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6657       if (!OpTy)
6658         return error("Callee is not a pointer type");
6659       if (!FTy) {
6660         FTyID = getContainedTypeID(CalleeTypeID);
6661         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6662         if (!FTy)
6663           return error("Callee is not of pointer to function type");
6664       }
6665       if (Record.size() < FTy->getNumParams() + OpNum)
6666         return error("Insufficient operands to call");
6667 
6668       SmallVector<Value*, 16> Args;
6669       SmallVector<unsigned, 16> ArgTyIDs;
6670       // Read the fixed params.
6671       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6672         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6673         if (FTy->getParamType(i)->isLabelTy())
6674           Args.push_back(getBasicBlock(Record[OpNum]));
6675         else
6676           Args.push_back(getValue(Record, OpNum, NextValueNo,
6677                                   FTy->getParamType(i), ArgTyID, CurBB));
6678         ArgTyIDs.push_back(ArgTyID);
6679         if (!Args.back())
6680           return error("Invalid record");
6681       }
6682 
6683       // Read type/value pairs for varargs params.
6684       if (!FTy->isVarArg()) {
6685         if (OpNum != Record.size())
6686           return error("Invalid record");
6687       } else {
6688         while (OpNum != Record.size()) {
6689           Value *Op;
6690           unsigned OpTypeID;
6691           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6692             return error("Invalid record");
6693           Args.push_back(Op);
6694           ArgTyIDs.push_back(OpTypeID);
6695         }
6696       }
6697 
6698       // Upgrade the bundles if needed.
6699       if (!OperandBundles.empty())
6700         UpgradeOperandBundles(OperandBundles);
6701 
6702       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6703       ResTypeID = getContainedTypeID(FTyID);
6704       OperandBundles.clear();
6705       InstructionList.push_back(I);
6706       cast<CallInst>(I)->setCallingConv(
6707           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6708       CallInst::TailCallKind TCK = CallInst::TCK_None;
6709       if (CCInfo & (1 << bitc::CALL_TAIL))
6710         TCK = CallInst::TCK_Tail;
6711       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6712         TCK = CallInst::TCK_MustTail;
6713       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6714         TCK = CallInst::TCK_NoTail;
6715       cast<CallInst>(I)->setTailCallKind(TCK);
6716       cast<CallInst>(I)->setAttributes(PAL);
6717       if (isa<DbgInfoIntrinsic>(I))
6718         SeenDebugIntrinsic = true;
6719       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6720         I->deleteValue();
6721         return Err;
6722       }
6723       if (FMF.any()) {
6724         if (!isa<FPMathOperator>(I))
6725           return error("Fast-math-flags specified for call without "
6726                        "floating-point scalar or vector return type");
6727         I->setFastMathFlags(FMF);
6728       }
6729       break;
6730     }
6731     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6732       if (Record.size() < 3)
6733         return error("Invalid record");
6734       unsigned OpTyID = Record[0];
6735       Type *OpTy = getTypeByID(OpTyID);
6736       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6737       ResTypeID = Record[2];
6738       Type *ResTy = getTypeByID(ResTypeID);
6739       if (!OpTy || !Op || !ResTy)
6740         return error("Invalid record");
6741       I = new VAArgInst(Op, ResTy);
6742       InstructionList.push_back(I);
6743       break;
6744     }
6745 
6746     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6747       // A call or an invoke can be optionally prefixed with some variable
6748       // number of operand bundle blocks.  These blocks are read into
6749       // OperandBundles and consumed at the next call or invoke instruction.
6750 
6751       if (Record.empty() || Record[0] >= BundleTags.size())
6752         return error("Invalid record");
6753 
6754       std::vector<Value *> Inputs;
6755 
6756       unsigned OpNum = 1;
6757       while (OpNum != Record.size()) {
6758         Value *Op;
6759         unsigned OpTypeID;
6760         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6761           return error("Invalid record");
6762         Inputs.push_back(Op);
6763       }
6764 
6765       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6766       continue;
6767     }
6768 
6769     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6770       unsigned OpNum = 0;
6771       Value *Op = nullptr;
6772       unsigned OpTypeID;
6773       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6774         return error("Invalid record");
6775       if (OpNum != Record.size())
6776         return error("Invalid record");
6777 
6778       I = new FreezeInst(Op);
6779       ResTypeID = OpTypeID;
6780       InstructionList.push_back(I);
6781       break;
6782     }
6783     }
6784 
6785     // Add instruction to end of current BB.  If there is no current BB, reject
6786     // this file.
6787     if (!CurBB) {
6788       I->deleteValue();
6789       return error("Invalid instruction with no BB");
6790     }
6791     if (!OperandBundles.empty()) {
6792       I->deleteValue();
6793       return error("Operand bundles found with no consumer");
6794     }
6795     I->insertInto(CurBB, CurBB->end());
6796 
6797     // If this was a terminator instruction, move to the next block.
6798     if (I->isTerminator()) {
6799       ++CurBBNo;
6800       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6801     }
6802 
6803     // Non-void values get registered in the value table for future use.
6804     if (!I->getType()->isVoidTy()) {
6805       assert(I->getType() == getTypeByID(ResTypeID) &&
6806              "Incorrect result type ID");
6807       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6808         return Err;
6809     }
6810   }
6811 
6812 OutOfRecordLoop:
6813 
6814   if (!OperandBundles.empty())
6815     return error("Operand bundles found with no consumer");
6816 
6817   // Check the function list for unresolved values.
6818   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6819     if (!A->getParent()) {
6820       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6821       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6822         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6823           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6824           delete A;
6825         }
6826       }
6827       return error("Never resolved value found in function");
6828     }
6829   }
6830 
6831   // Unexpected unresolved metadata about to be dropped.
6832   if (MDLoader->hasFwdRefs())
6833     return error("Invalid function metadata: outgoing forward refs");
6834 
6835   if (PhiConstExprBB)
6836     PhiConstExprBB->eraseFromParent();
6837 
6838   for (const auto &Pair : ConstExprEdgeBBs) {
6839     BasicBlock *From = Pair.first.first;
6840     BasicBlock *To = Pair.first.second;
6841     BasicBlock *EdgeBB = Pair.second;
6842     BranchInst::Create(To, EdgeBB);
6843     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6844     To->replacePhiUsesWith(From, EdgeBB);
6845     EdgeBB->moveBefore(To);
6846   }
6847 
6848   // Trim the value list down to the size it was before we parsed this function.
6849   ValueList.shrinkTo(ModuleValueListSize);
6850   MDLoader->shrinkTo(ModuleMDLoaderSize);
6851   std::vector<BasicBlock*>().swap(FunctionBBs);
6852   return Error::success();
6853 }
6854 
6855 /// Find the function body in the bitcode stream
6856 Error BitcodeReader::findFunctionInStream(
6857     Function *F,
6858     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6859   while (DeferredFunctionInfoIterator->second == 0) {
6860     // This is the fallback handling for the old format bitcode that
6861     // didn't contain the function index in the VST, or when we have
6862     // an anonymous function which would not have a VST entry.
6863     // Assert that we have one of those two cases.
6864     assert(VSTOffset == 0 || !F->hasName());
6865     // Parse the next body in the stream and set its position in the
6866     // DeferredFunctionInfo map.
6867     if (Error Err = rememberAndSkipFunctionBodies())
6868       return Err;
6869   }
6870   return Error::success();
6871 }
6872 
6873 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6874   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6875     return SyncScope::ID(Val);
6876   if (Val >= SSIDs.size())
6877     return SyncScope::System; // Map unknown synchronization scopes to system.
6878   return SSIDs[Val];
6879 }
6880 
6881 //===----------------------------------------------------------------------===//
6882 // GVMaterializer implementation
6883 //===----------------------------------------------------------------------===//
6884 
6885 Error BitcodeReader::materialize(GlobalValue *GV) {
6886   Function *F = dyn_cast<Function>(GV);
6887   // If it's not a function or is already material, ignore the request.
6888   if (!F || !F->isMaterializable())
6889     return Error::success();
6890 
6891   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6892   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6893   // If its position is recorded as 0, its body is somewhere in the stream
6894   // but we haven't seen it yet.
6895   if (DFII->second == 0)
6896     if (Error Err = findFunctionInStream(F, DFII))
6897       return Err;
6898 
6899   // Materialize metadata before parsing any function bodies.
6900   if (Error Err = materializeMetadata())
6901     return Err;
6902 
6903   // Move the bit stream to the saved position of the deferred function body.
6904   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6905     return JumpFailed;
6906 
6907   // Regardless of the debug info format we want to end up in, we need
6908   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6909   F->IsNewDbgInfoFormat = true;
6910 
6911   if (Error Err = parseFunctionBody(F))
6912     return Err;
6913   F->setIsMaterializable(false);
6914 
6915   // All parsed Functions should load into the debug info format dictated by the
6916   // Module, unless we're attempting to preserve the input debug info format.
6917   if (SeenDebugIntrinsic && SeenDebugRecord)
6918     return error("Mixed debug intrinsics and debug records in bitcode module!");
6919   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6920     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6921     bool NewDbgInfoFormatDesired =
6922         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6923     if (SeenAnyDebugInfo) {
6924       UseNewDbgInfoFormat = SeenDebugRecord;
6925       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6926       WriteNewDbgInfoFormat = SeenDebugRecord;
6927     }
6928     // If the module's debug info format doesn't match the observed input
6929     // format, then set its format now; we don't need to call the conversion
6930     // function because there must be no existing intrinsics to convert.
6931     // Otherwise, just set the format on this function now.
6932     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6933       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6934     else
6935       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6936   } else {
6937     // If we aren't preserving formats, we use the Module flag to get our
6938     // desired format instead of reading flags, in case we are lazy-loading and
6939     // the format of the module has been changed since it was set by the flags.
6940     // We only need to convert debug info here if we have debug records but
6941     // desire the intrinsic format; everything else is a no-op or handled by the
6942     // autoupgrader.
6943     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6944     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6945       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6946     else
6947       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6948   }
6949 
6950   if (StripDebugInfo)
6951     stripDebugInfo(*F);
6952 
6953   // Upgrade any old intrinsic calls in the function.
6954   for (auto &I : UpgradedIntrinsics) {
6955     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6956       if (CallInst *CI = dyn_cast<CallInst>(U))
6957         UpgradeIntrinsicCall(CI, I.second);
6958   }
6959 
6960   // Finish fn->subprogram upgrade for materialized functions.
6961   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6962     F->setSubprogram(SP);
6963 
6964   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6965   if (!MDLoader->isStrippingTBAA()) {
6966     for (auto &I : instructions(F)) {
6967       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6968       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6969         continue;
6970       MDLoader->setStripTBAA(true);
6971       stripTBAA(F->getParent());
6972     }
6973   }
6974 
6975   for (auto &I : instructions(F)) {
6976     // "Upgrade" older incorrect branch weights by dropping them.
6977     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6978       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6979         MDString *MDS = cast<MDString>(MD->getOperand(0));
6980         StringRef ProfName = MDS->getString();
6981         // Check consistency of !prof branch_weights metadata.
6982         if (ProfName != "branch_weights")
6983           continue;
6984         unsigned ExpectedNumOperands = 0;
6985         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6986           ExpectedNumOperands = BI->getNumSuccessors();
6987         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6988           ExpectedNumOperands = SI->getNumSuccessors();
6989         else if (isa<CallInst>(&I))
6990           ExpectedNumOperands = 1;
6991         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6992           ExpectedNumOperands = IBI->getNumDestinations();
6993         else if (isa<SelectInst>(&I))
6994           ExpectedNumOperands = 2;
6995         else
6996           continue; // ignore and continue.
6997 
6998         unsigned Offset = getBranchWeightOffset(MD);
6999 
7000         // If branch weight doesn't match, just strip branch weight.
7001         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7002           I.setMetadata(LLVMContext::MD_prof, nullptr);
7003       }
7004     }
7005 
7006     // Remove incompatible attributes on function calls.
7007     if (auto *CI = dyn_cast<CallBase>(&I)) {
7008       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7009           CI->getFunctionType()->getReturnType()));
7010 
7011       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7012         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7013                                         CI->getArgOperand(ArgNo)->getType()));
7014     }
7015   }
7016 
7017   // Look for functions that rely on old function attribute behavior.
7018   UpgradeFunctionAttributes(*F);
7019 
7020   // Bring in any functions that this function forward-referenced via
7021   // blockaddresses.
7022   return materializeForwardReferencedFunctions();
7023 }
7024 
7025 Error BitcodeReader::materializeModule() {
7026   if (Error Err = materializeMetadata())
7027     return Err;
7028 
7029   // Promise to materialize all forward references.
7030   WillMaterializeAllForwardRefs = true;
7031 
7032   // Iterate over the module, deserializing any functions that are still on
7033   // disk.
7034   for (Function &F : *TheModule) {
7035     if (Error Err = materialize(&F))
7036       return Err;
7037   }
7038   // At this point, if there are any function bodies, parse the rest of
7039   // the bits in the module past the last function block we have recorded
7040   // through either lazy scanning or the VST.
7041   if (LastFunctionBlockBit || NextUnreadBit)
7042     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7043                                     ? LastFunctionBlockBit
7044                                     : NextUnreadBit))
7045       return Err;
7046 
7047   // Check that all block address forward references got resolved (as we
7048   // promised above).
7049   if (!BasicBlockFwdRefs.empty())
7050     return error("Never resolved function from blockaddress");
7051 
7052   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7053   // delete the old functions to clean up. We can't do this unless the entire
7054   // module is materialized because there could always be another function body
7055   // with calls to the old function.
7056   for (auto &I : UpgradedIntrinsics) {
7057     for (auto *U : I.first->users()) {
7058       if (CallInst *CI = dyn_cast<CallInst>(U))
7059         UpgradeIntrinsicCall(CI, I.second);
7060     }
7061     if (!I.first->use_empty())
7062       I.first->replaceAllUsesWith(I.second);
7063     I.first->eraseFromParent();
7064   }
7065   UpgradedIntrinsics.clear();
7066 
7067   UpgradeDebugInfo(*TheModule);
7068 
7069   UpgradeModuleFlags(*TheModule);
7070 
7071   UpgradeARCRuntime(*TheModule);
7072 
7073   return Error::success();
7074 }
7075 
7076 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7077   return IdentifiedStructTypes;
7078 }
7079 
7080 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7081     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7082     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7083     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7084       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7085 
7086 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7087   TheIndex.addModule(ModulePath);
7088 }
7089 
7090 ModuleSummaryIndex::ModuleInfo *
7091 ModuleSummaryIndexBitcodeReader::getThisModule() {
7092   return TheIndex.getModule(ModulePath);
7093 }
7094 
7095 template <bool AllowNullValueInfo>
7096 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7097 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7098   auto VGI = ValueIdToValueInfoMap[ValueId];
7099   // We can have a null value info for memprof callsite info records in
7100   // distributed ThinLTO index files when the callee function summary is not
7101   // included in the index. The bitcode writer records 0 in that case,
7102   // and the caller of this helper will set AllowNullValueInfo to true.
7103   assert(AllowNullValueInfo || std::get<0>(VGI));
7104   return VGI;
7105 }
7106 
7107 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7108     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7109     StringRef SourceFileName) {
7110   std::string GlobalId =
7111       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7112   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7113   auto OriginalNameID = ValueGUID;
7114   if (GlobalValue::isLocalLinkage(Linkage))
7115     OriginalNameID = GlobalValue::getGUID(ValueName);
7116   if (PrintSummaryGUIDs)
7117     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7118            << ValueName << "\n";
7119 
7120   // UseStrtab is false for legacy summary formats and value names are
7121   // created on stack. In that case we save the name in a string saver in
7122   // the index so that the value name can be recorded.
7123   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7124       TheIndex.getOrInsertValueInfo(
7125           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7126       OriginalNameID, ValueGUID);
7127 }
7128 
7129 // Specialized value symbol table parser used when reading module index
7130 // blocks where we don't actually create global values. The parsed information
7131 // is saved in the bitcode reader for use when later parsing summaries.
7132 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7133     uint64_t Offset,
7134     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7135   // With a strtab the VST is not required to parse the summary.
7136   if (UseStrtab)
7137     return Error::success();
7138 
7139   assert(Offset > 0 && "Expected non-zero VST offset");
7140   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7141   if (!MaybeCurrentBit)
7142     return MaybeCurrentBit.takeError();
7143   uint64_t CurrentBit = MaybeCurrentBit.get();
7144 
7145   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7146     return Err;
7147 
7148   SmallVector<uint64_t, 64> Record;
7149 
7150   // Read all the records for this value table.
7151   SmallString<128> ValueName;
7152 
7153   while (true) {
7154     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7155     if (!MaybeEntry)
7156       return MaybeEntry.takeError();
7157     BitstreamEntry Entry = MaybeEntry.get();
7158 
7159     switch (Entry.Kind) {
7160     case BitstreamEntry::SubBlock: // Handled for us already.
7161     case BitstreamEntry::Error:
7162       return error("Malformed block");
7163     case BitstreamEntry::EndBlock:
7164       // Done parsing VST, jump back to wherever we came from.
7165       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7166         return JumpFailed;
7167       return Error::success();
7168     case BitstreamEntry::Record:
7169       // The interesting case.
7170       break;
7171     }
7172 
7173     // Read a record.
7174     Record.clear();
7175     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7176     if (!MaybeRecord)
7177       return MaybeRecord.takeError();
7178     switch (MaybeRecord.get()) {
7179     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7180       break;
7181     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7182       if (convertToString(Record, 1, ValueName))
7183         return error("Invalid record");
7184       unsigned ValueID = Record[0];
7185       assert(!SourceFileName.empty());
7186       auto VLI = ValueIdToLinkageMap.find(ValueID);
7187       assert(VLI != ValueIdToLinkageMap.end() &&
7188              "No linkage found for VST entry?");
7189       auto Linkage = VLI->second;
7190       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7191       ValueName.clear();
7192       break;
7193     }
7194     case bitc::VST_CODE_FNENTRY: {
7195       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7196       if (convertToString(Record, 2, ValueName))
7197         return error("Invalid record");
7198       unsigned ValueID = Record[0];
7199       assert(!SourceFileName.empty());
7200       auto VLI = ValueIdToLinkageMap.find(ValueID);
7201       assert(VLI != ValueIdToLinkageMap.end() &&
7202              "No linkage found for VST entry?");
7203       auto Linkage = VLI->second;
7204       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7205       ValueName.clear();
7206       break;
7207     }
7208     case bitc::VST_CODE_COMBINED_ENTRY: {
7209       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7210       unsigned ValueID = Record[0];
7211       GlobalValue::GUID RefGUID = Record[1];
7212       // The "original name", which is the second value of the pair will be
7213       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7214       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7215           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7216       break;
7217     }
7218     }
7219   }
7220 }
7221 
7222 // Parse just the blocks needed for building the index out of the module.
7223 // At the end of this routine the module Index is populated with a map
7224 // from global value id to GlobalValueSummary objects.
7225 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7226   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7227     return Err;
7228 
7229   SmallVector<uint64_t, 64> Record;
7230   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7231   unsigned ValueId = 0;
7232 
7233   // Read the index for this module.
7234   while (true) {
7235     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7236     if (!MaybeEntry)
7237       return MaybeEntry.takeError();
7238     llvm::BitstreamEntry Entry = MaybeEntry.get();
7239 
7240     switch (Entry.Kind) {
7241     case BitstreamEntry::Error:
7242       return error("Malformed block");
7243     case BitstreamEntry::EndBlock:
7244       return Error::success();
7245 
7246     case BitstreamEntry::SubBlock:
7247       switch (Entry.ID) {
7248       default: // Skip unknown content.
7249         if (Error Err = Stream.SkipBlock())
7250           return Err;
7251         break;
7252       case bitc::BLOCKINFO_BLOCK_ID:
7253         // Need to parse these to get abbrev ids (e.g. for VST)
7254         if (Error Err = readBlockInfo())
7255           return Err;
7256         break;
7257       case bitc::VALUE_SYMTAB_BLOCK_ID:
7258         // Should have been parsed earlier via VSTOffset, unless there
7259         // is no summary section.
7260         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7261                 !SeenGlobalValSummary) &&
7262                "Expected early VST parse via VSTOffset record");
7263         if (Error Err = Stream.SkipBlock())
7264           return Err;
7265         break;
7266       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7267       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7268         // Add the module if it is a per-module index (has a source file name).
7269         if (!SourceFileName.empty())
7270           addThisModule();
7271         assert(!SeenValueSymbolTable &&
7272                "Already read VST when parsing summary block?");
7273         // We might not have a VST if there were no values in the
7274         // summary. An empty summary block generated when we are
7275         // performing ThinLTO compiles so we don't later invoke
7276         // the regular LTO process on them.
7277         if (VSTOffset > 0) {
7278           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7279             return Err;
7280           SeenValueSymbolTable = true;
7281         }
7282         SeenGlobalValSummary = true;
7283         if (Error Err = parseEntireSummary(Entry.ID))
7284           return Err;
7285         break;
7286       case bitc::MODULE_STRTAB_BLOCK_ID:
7287         if (Error Err = parseModuleStringTable())
7288           return Err;
7289         break;
7290       }
7291       continue;
7292 
7293     case BitstreamEntry::Record: {
7294         Record.clear();
7295         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7296         if (!MaybeBitCode)
7297           return MaybeBitCode.takeError();
7298         switch (MaybeBitCode.get()) {
7299         default:
7300           break; // Default behavior, ignore unknown content.
7301         case bitc::MODULE_CODE_VERSION: {
7302           if (Error Err = parseVersionRecord(Record).takeError())
7303             return Err;
7304           break;
7305         }
7306         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7307         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7308           SmallString<128> ValueName;
7309           if (convertToString(Record, 0, ValueName))
7310             return error("Invalid record");
7311           SourceFileName = ValueName.c_str();
7312           break;
7313         }
7314         /// MODULE_CODE_HASH: [5*i32]
7315         case bitc::MODULE_CODE_HASH: {
7316           if (Record.size() != 5)
7317             return error("Invalid hash length " + Twine(Record.size()).str());
7318           auto &Hash = getThisModule()->second;
7319           int Pos = 0;
7320           for (auto &Val : Record) {
7321             assert(!(Val >> 32) && "Unexpected high bits set");
7322             Hash[Pos++] = Val;
7323           }
7324           break;
7325         }
7326         /// MODULE_CODE_VSTOFFSET: [offset]
7327         case bitc::MODULE_CODE_VSTOFFSET:
7328           if (Record.empty())
7329             return error("Invalid record");
7330           // Note that we subtract 1 here because the offset is relative to one
7331           // word before the start of the identification or module block, which
7332           // was historically always the start of the regular bitcode header.
7333           VSTOffset = Record[0] - 1;
7334           break;
7335         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7336         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7337         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7338         // v2: [strtab offset, strtab size, v1]
7339         case bitc::MODULE_CODE_GLOBALVAR:
7340         case bitc::MODULE_CODE_FUNCTION:
7341         case bitc::MODULE_CODE_ALIAS: {
7342           StringRef Name;
7343           ArrayRef<uint64_t> GVRecord;
7344           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7345           if (GVRecord.size() <= 3)
7346             return error("Invalid record");
7347           uint64_t RawLinkage = GVRecord[3];
7348           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7349           if (!UseStrtab) {
7350             ValueIdToLinkageMap[ValueId++] = Linkage;
7351             break;
7352           }
7353 
7354           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7355           break;
7356         }
7357         }
7358       }
7359       continue;
7360     }
7361   }
7362 }
7363 
7364 std::vector<ValueInfo>
7365 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7366   std::vector<ValueInfo> Ret;
7367   Ret.reserve(Record.size());
7368   for (uint64_t RefValueId : Record)
7369     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7370   return Ret;
7371 }
7372 
7373 std::vector<FunctionSummary::EdgeTy>
7374 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7375                                               bool IsOldProfileFormat,
7376                                               bool HasProfile, bool HasRelBF) {
7377   std::vector<FunctionSummary::EdgeTy> Ret;
7378   // In the case of new profile formats, there are two Record entries per
7379   // Edge. Otherwise, conservatively reserve up to Record.size.
7380   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7381     Ret.reserve(Record.size() / 2);
7382   else
7383     Ret.reserve(Record.size());
7384 
7385   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7386     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7387     bool HasTailCall = false;
7388     uint64_t RelBF = 0;
7389     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7390     if (IsOldProfileFormat) {
7391       I += 1; // Skip old callsitecount field
7392       if (HasProfile)
7393         I += 1; // Skip old profilecount field
7394     } else if (HasProfile)
7395       std::tie(Hotness, HasTailCall) =
7396           getDecodedHotnessCallEdgeInfo(Record[++I]);
7397     else if (HasRelBF)
7398       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7399     Ret.push_back(FunctionSummary::EdgeTy{
7400         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7401   }
7402   return Ret;
7403 }
7404 
7405 static void
7406 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7407                                        WholeProgramDevirtResolution &Wpd) {
7408   uint64_t ArgNum = Record[Slot++];
7409   WholeProgramDevirtResolution::ByArg &B =
7410       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7411   Slot += ArgNum;
7412 
7413   B.TheKind =
7414       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7415   B.Info = Record[Slot++];
7416   B.Byte = Record[Slot++];
7417   B.Bit = Record[Slot++];
7418 }
7419 
7420 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7421                                               StringRef Strtab, size_t &Slot,
7422                                               TypeIdSummary &TypeId) {
7423   uint64_t Id = Record[Slot++];
7424   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7425 
7426   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7427   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7428                         static_cast<size_t>(Record[Slot + 1])};
7429   Slot += 2;
7430 
7431   uint64_t ResByArgNum = Record[Slot++];
7432   for (uint64_t I = 0; I != ResByArgNum; ++I)
7433     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7434 }
7435 
7436 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7437                                      StringRef Strtab,
7438                                      ModuleSummaryIndex &TheIndex) {
7439   size_t Slot = 0;
7440   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7441       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7442   Slot += 2;
7443 
7444   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7445   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7446   TypeId.TTRes.AlignLog2 = Record[Slot++];
7447   TypeId.TTRes.SizeM1 = Record[Slot++];
7448   TypeId.TTRes.BitMask = Record[Slot++];
7449   TypeId.TTRes.InlineBits = Record[Slot++];
7450 
7451   while (Slot < Record.size())
7452     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7453 }
7454 
7455 std::vector<FunctionSummary::ParamAccess>
7456 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7457   auto ReadRange = [&]() {
7458     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7459                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7460     Record = Record.drop_front();
7461     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7462                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7463     Record = Record.drop_front();
7464     ConstantRange Range{Lower, Upper};
7465     assert(!Range.isFullSet());
7466     assert(!Range.isUpperSignWrapped());
7467     return Range;
7468   };
7469 
7470   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7471   while (!Record.empty()) {
7472     PendingParamAccesses.emplace_back();
7473     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7474     ParamAccess.ParamNo = Record.front();
7475     Record = Record.drop_front();
7476     ParamAccess.Use = ReadRange();
7477     ParamAccess.Calls.resize(Record.front());
7478     Record = Record.drop_front();
7479     for (auto &Call : ParamAccess.Calls) {
7480       Call.ParamNo = Record.front();
7481       Record = Record.drop_front();
7482       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7483       Record = Record.drop_front();
7484       Call.Offsets = ReadRange();
7485     }
7486   }
7487   return PendingParamAccesses;
7488 }
7489 
7490 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7491     ArrayRef<uint64_t> Record, size_t &Slot,
7492     TypeIdCompatibleVtableInfo &TypeId) {
7493   uint64_t Offset = Record[Slot++];
7494   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7495   TypeId.push_back({Offset, Callee});
7496 }
7497 
7498 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7499     ArrayRef<uint64_t> Record) {
7500   size_t Slot = 0;
7501   TypeIdCompatibleVtableInfo &TypeId =
7502       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7503           {Strtab.data() + Record[Slot],
7504            static_cast<size_t>(Record[Slot + 1])});
7505   Slot += 2;
7506 
7507   while (Slot < Record.size())
7508     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7509 }
7510 
7511 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7512                            unsigned WOCnt) {
7513   // Readonly and writeonly refs are in the end of the refs list.
7514   assert(ROCnt + WOCnt <= Refs.size());
7515   unsigned FirstWORef = Refs.size() - WOCnt;
7516   unsigned RefNo = FirstWORef - ROCnt;
7517   for (; RefNo < FirstWORef; ++RefNo)
7518     Refs[RefNo].setReadOnly();
7519   for (; RefNo < Refs.size(); ++RefNo)
7520     Refs[RefNo].setWriteOnly();
7521 }
7522 
7523 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7524 // objects in the index.
7525 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7526   if (Error Err = Stream.EnterSubBlock(ID))
7527     return Err;
7528   SmallVector<uint64_t, 64> Record;
7529 
7530   // Parse version
7531   {
7532     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7533     if (!MaybeEntry)
7534       return MaybeEntry.takeError();
7535     BitstreamEntry Entry = MaybeEntry.get();
7536 
7537     if (Entry.Kind != BitstreamEntry::Record)
7538       return error("Invalid Summary Block: record for version expected");
7539     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7540     if (!MaybeRecord)
7541       return MaybeRecord.takeError();
7542     if (MaybeRecord.get() != bitc::FS_VERSION)
7543       return error("Invalid Summary Block: version expected");
7544   }
7545   const uint64_t Version = Record[0];
7546   const bool IsOldProfileFormat = Version == 1;
7547   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7548     return error("Invalid summary version " + Twine(Version) +
7549                  ". Version should be in the range [1-" +
7550                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7551                  "].");
7552   Record.clear();
7553 
7554   // Keep around the last seen summary to be used when we see an optional
7555   // "OriginalName" attachement.
7556   GlobalValueSummary *LastSeenSummary = nullptr;
7557   GlobalValue::GUID LastSeenGUID = 0;
7558 
7559   // We can expect to see any number of type ID information records before
7560   // each function summary records; these variables store the information
7561   // collected so far so that it can be used to create the summary object.
7562   std::vector<GlobalValue::GUID> PendingTypeTests;
7563   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7564       PendingTypeCheckedLoadVCalls;
7565   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7566       PendingTypeCheckedLoadConstVCalls;
7567   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7568 
7569   std::vector<CallsiteInfo> PendingCallsites;
7570   std::vector<AllocInfo> PendingAllocs;
7571 
7572   while (true) {
7573     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7574     if (!MaybeEntry)
7575       return MaybeEntry.takeError();
7576     BitstreamEntry Entry = MaybeEntry.get();
7577 
7578     switch (Entry.Kind) {
7579     case BitstreamEntry::SubBlock: // Handled for us already.
7580     case BitstreamEntry::Error:
7581       return error("Malformed block");
7582     case BitstreamEntry::EndBlock:
7583       return Error::success();
7584     case BitstreamEntry::Record:
7585       // The interesting case.
7586       break;
7587     }
7588 
7589     // Read a record. The record format depends on whether this
7590     // is a per-module index or a combined index file. In the per-module
7591     // case the records contain the associated value's ID for correlation
7592     // with VST entries. In the combined index the correlation is done
7593     // via the bitcode offset of the summary records (which were saved
7594     // in the combined index VST entries). The records also contain
7595     // information used for ThinLTO renaming and importing.
7596     Record.clear();
7597     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7598     if (!MaybeBitCode)
7599       return MaybeBitCode.takeError();
7600     switch (unsigned BitCode = MaybeBitCode.get()) {
7601     default: // Default behavior: ignore.
7602       break;
7603     case bitc::FS_FLAGS: {  // [flags]
7604       TheIndex.setFlags(Record[0]);
7605       break;
7606     }
7607     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7608       uint64_t ValueID = Record[0];
7609       GlobalValue::GUID RefGUID = Record[1];
7610       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7611           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7612       break;
7613     }
7614     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7615     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7616     //                numrefs x valueid, n x (valueid)]
7617     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7618     //                        numrefs x valueid,
7619     //                        n x (valueid, hotness+tailcall flags)]
7620     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7621     //                      numrefs x valueid,
7622     //                      n x (valueid, relblockfreq+tailcall)]
7623     case bitc::FS_PERMODULE:
7624     case bitc::FS_PERMODULE_RELBF:
7625     case bitc::FS_PERMODULE_PROFILE: {
7626       unsigned ValueID = Record[0];
7627       uint64_t RawFlags = Record[1];
7628       unsigned InstCount = Record[2];
7629       uint64_t RawFunFlags = 0;
7630       unsigned NumRefs = Record[3];
7631       unsigned NumRORefs = 0, NumWORefs = 0;
7632       int RefListStartIndex = 4;
7633       if (Version >= 4) {
7634         RawFunFlags = Record[3];
7635         NumRefs = Record[4];
7636         RefListStartIndex = 5;
7637         if (Version >= 5) {
7638           NumRORefs = Record[5];
7639           RefListStartIndex = 6;
7640           if (Version >= 7) {
7641             NumWORefs = Record[6];
7642             RefListStartIndex = 7;
7643           }
7644         }
7645       }
7646 
7647       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7648       // The module path string ref set in the summary must be owned by the
7649       // index's module string table. Since we don't have a module path
7650       // string table section in the per-module index, we create a single
7651       // module path string table entry with an empty (0) ID to take
7652       // ownership.
7653       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7654       assert(Record.size() >= RefListStartIndex + NumRefs &&
7655              "Record size inconsistent with number of references");
7656       std::vector<ValueInfo> Refs = makeRefList(
7657           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7658       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7659       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7660       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7661           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7662           IsOldProfileFormat, HasProfile, HasRelBF);
7663       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7664       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7665       // In order to save memory, only record the memprof summaries if this is
7666       // the prevailing copy of a symbol. The linker doesn't resolve local
7667       // linkage values so don't check whether those are prevailing.
7668       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7669       if (IsPrevailing &&
7670           !GlobalValue::isLocalLinkage(LT) &&
7671           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7672         PendingCallsites.clear();
7673         PendingAllocs.clear();
7674       }
7675       auto FS = std::make_unique<FunctionSummary>(
7676           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7677           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7678           std::move(PendingTypeTestAssumeVCalls),
7679           std::move(PendingTypeCheckedLoadVCalls),
7680           std::move(PendingTypeTestAssumeConstVCalls),
7681           std::move(PendingTypeCheckedLoadConstVCalls),
7682           std::move(PendingParamAccesses), std::move(PendingCallsites),
7683           std::move(PendingAllocs));
7684       FS->setModulePath(getThisModule()->first());
7685       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7686       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7687                                      std::move(FS));
7688       break;
7689     }
7690     // FS_ALIAS: [valueid, flags, valueid]
7691     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7692     // they expect all aliasee summaries to be available.
7693     case bitc::FS_ALIAS: {
7694       unsigned ValueID = Record[0];
7695       uint64_t RawFlags = Record[1];
7696       unsigned AliaseeID = Record[2];
7697       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7698       auto AS = std::make_unique<AliasSummary>(Flags);
7699       // The module path string ref set in the summary must be owned by the
7700       // index's module string table. Since we don't have a module path
7701       // string table section in the per-module index, we create a single
7702       // module path string table entry with an empty (0) ID to take
7703       // ownership.
7704       AS->setModulePath(getThisModule()->first());
7705 
7706       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7707       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7708       if (!AliaseeInModule)
7709         return error("Alias expects aliasee summary to be parsed");
7710       AS->setAliasee(AliaseeVI, AliaseeInModule);
7711 
7712       auto GUID = getValueInfoFromValueId(ValueID);
7713       AS->setOriginalName(std::get<1>(GUID));
7714       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7715       break;
7716     }
7717     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7718     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7719       unsigned ValueID = Record[0];
7720       uint64_t RawFlags = Record[1];
7721       unsigned RefArrayStart = 2;
7722       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7723                                       /* WriteOnly */ false,
7724                                       /* Constant */ false,
7725                                       GlobalObject::VCallVisibilityPublic);
7726       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7727       if (Version >= 5) {
7728         GVF = getDecodedGVarFlags(Record[2]);
7729         RefArrayStart = 3;
7730       }
7731       std::vector<ValueInfo> Refs =
7732           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7733       auto FS =
7734           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7735       FS->setModulePath(getThisModule()->first());
7736       auto GUID = getValueInfoFromValueId(ValueID);
7737       FS->setOriginalName(std::get<1>(GUID));
7738       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7739       break;
7740     }
7741     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7742     //                        numrefs, numrefs x valueid,
7743     //                        n x (valueid, offset)]
7744     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7745       unsigned ValueID = Record[0];
7746       uint64_t RawFlags = Record[1];
7747       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7748       unsigned NumRefs = Record[3];
7749       unsigned RefListStartIndex = 4;
7750       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7751       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7752       std::vector<ValueInfo> Refs = makeRefList(
7753           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7754       VTableFuncList VTableFuncs;
7755       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7756         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7757         uint64_t Offset = Record[++I];
7758         VTableFuncs.push_back({Callee, Offset});
7759       }
7760       auto VS =
7761           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7762       VS->setModulePath(getThisModule()->first());
7763       VS->setVTableFuncs(VTableFuncs);
7764       auto GUID = getValueInfoFromValueId(ValueID);
7765       VS->setOriginalName(std::get<1>(GUID));
7766       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7767       break;
7768     }
7769     // FS_COMBINED is legacy and does not have support for the tail call flag.
7770     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7771     //               numrefs x valueid, n x (valueid)]
7772     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7773     //                       numrefs x valueid,
7774     //                       n x (valueid, hotness+tailcall flags)]
7775     case bitc::FS_COMBINED:
7776     case bitc::FS_COMBINED_PROFILE: {
7777       unsigned ValueID = Record[0];
7778       uint64_t ModuleId = Record[1];
7779       uint64_t RawFlags = Record[2];
7780       unsigned InstCount = Record[3];
7781       uint64_t RawFunFlags = 0;
7782       uint64_t EntryCount = 0;
7783       unsigned NumRefs = Record[4];
7784       unsigned NumRORefs = 0, NumWORefs = 0;
7785       int RefListStartIndex = 5;
7786 
7787       if (Version >= 4) {
7788         RawFunFlags = Record[4];
7789         RefListStartIndex = 6;
7790         size_t NumRefsIndex = 5;
7791         if (Version >= 5) {
7792           unsigned NumRORefsOffset = 1;
7793           RefListStartIndex = 7;
7794           if (Version >= 6) {
7795             NumRefsIndex = 6;
7796             EntryCount = Record[5];
7797             RefListStartIndex = 8;
7798             if (Version >= 7) {
7799               RefListStartIndex = 9;
7800               NumWORefs = Record[8];
7801               NumRORefsOffset = 2;
7802             }
7803           }
7804           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7805         }
7806         NumRefs = Record[NumRefsIndex];
7807       }
7808 
7809       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7810       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7811       assert(Record.size() >= RefListStartIndex + NumRefs &&
7812              "Record size inconsistent with number of references");
7813       std::vector<ValueInfo> Refs = makeRefList(
7814           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7815       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7816       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7817           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7818           IsOldProfileFormat, HasProfile, false);
7819       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7820       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7821       auto FS = std::make_unique<FunctionSummary>(
7822           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7823           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7824           std::move(PendingTypeTestAssumeVCalls),
7825           std::move(PendingTypeCheckedLoadVCalls),
7826           std::move(PendingTypeTestAssumeConstVCalls),
7827           std::move(PendingTypeCheckedLoadConstVCalls),
7828           std::move(PendingParamAccesses), std::move(PendingCallsites),
7829           std::move(PendingAllocs));
7830       LastSeenSummary = FS.get();
7831       LastSeenGUID = VI.getGUID();
7832       FS->setModulePath(ModuleIdMap[ModuleId]);
7833       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7834       break;
7835     }
7836     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7837     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7838     // they expect all aliasee summaries to be available.
7839     case bitc::FS_COMBINED_ALIAS: {
7840       unsigned ValueID = Record[0];
7841       uint64_t ModuleId = Record[1];
7842       uint64_t RawFlags = Record[2];
7843       unsigned AliaseeValueId = Record[3];
7844       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7845       auto AS = std::make_unique<AliasSummary>(Flags);
7846       LastSeenSummary = AS.get();
7847       AS->setModulePath(ModuleIdMap[ModuleId]);
7848 
7849       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7850       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7851       AS->setAliasee(AliaseeVI, AliaseeInModule);
7852 
7853       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7854       LastSeenGUID = VI.getGUID();
7855       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7856       break;
7857     }
7858     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7859     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7860       unsigned ValueID = Record[0];
7861       uint64_t ModuleId = Record[1];
7862       uint64_t RawFlags = Record[2];
7863       unsigned RefArrayStart = 3;
7864       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7865                                       /* WriteOnly */ false,
7866                                       /* Constant */ false,
7867                                       GlobalObject::VCallVisibilityPublic);
7868       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7869       if (Version >= 5) {
7870         GVF = getDecodedGVarFlags(Record[3]);
7871         RefArrayStart = 4;
7872       }
7873       std::vector<ValueInfo> Refs =
7874           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7875       auto FS =
7876           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7877       LastSeenSummary = FS.get();
7878       FS->setModulePath(ModuleIdMap[ModuleId]);
7879       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7880       LastSeenGUID = VI.getGUID();
7881       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7882       break;
7883     }
7884     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7885     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7886       uint64_t OriginalName = Record[0];
7887       if (!LastSeenSummary)
7888         return error("Name attachment that does not follow a combined record");
7889       LastSeenSummary->setOriginalName(OriginalName);
7890       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7891       // Reset the LastSeenSummary
7892       LastSeenSummary = nullptr;
7893       LastSeenGUID = 0;
7894       break;
7895     }
7896     case bitc::FS_TYPE_TESTS:
7897       assert(PendingTypeTests.empty());
7898       llvm::append_range(PendingTypeTests, Record);
7899       break;
7900 
7901     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7902       assert(PendingTypeTestAssumeVCalls.empty());
7903       for (unsigned I = 0; I != Record.size(); I += 2)
7904         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7905       break;
7906 
7907     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7908       assert(PendingTypeCheckedLoadVCalls.empty());
7909       for (unsigned I = 0; I != Record.size(); I += 2)
7910         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7911       break;
7912 
7913     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7914       PendingTypeTestAssumeConstVCalls.push_back(
7915           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7916       break;
7917 
7918     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7919       PendingTypeCheckedLoadConstVCalls.push_back(
7920           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7921       break;
7922 
7923     case bitc::FS_CFI_FUNCTION_DEFS: {
7924       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7925       for (unsigned I = 0; I != Record.size(); I += 2)
7926         CfiFunctionDefs.insert(
7927             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7928       break;
7929     }
7930 
7931     case bitc::FS_CFI_FUNCTION_DECLS: {
7932       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7933       for (unsigned I = 0; I != Record.size(); I += 2)
7934         CfiFunctionDecls.insert(
7935             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7936       break;
7937     }
7938 
7939     case bitc::FS_TYPE_ID:
7940       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7941       break;
7942 
7943     case bitc::FS_TYPE_ID_METADATA:
7944       parseTypeIdCompatibleVtableSummaryRecord(Record);
7945       break;
7946 
7947     case bitc::FS_BLOCK_COUNT:
7948       TheIndex.addBlockCount(Record[0]);
7949       break;
7950 
7951     case bitc::FS_PARAM_ACCESS: {
7952       PendingParamAccesses = parseParamAccesses(Record);
7953       break;
7954     }
7955 
7956     case bitc::FS_STACK_IDS: { // [n x stackid]
7957       // Save stack ids in the reader to consult when adding stack ids from the
7958       // lists in the stack node and alloc node entries.
7959       StackIds = ArrayRef<uint64_t>(Record);
7960       break;
7961     }
7962 
7963     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7964       unsigned ValueID = Record[0];
7965       SmallVector<unsigned> StackIdList;
7966       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7967         assert(*R < StackIds.size());
7968         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7969       }
7970       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7971       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7972       break;
7973     }
7974 
7975     case bitc::FS_COMBINED_CALLSITE_INFO: {
7976       auto RecordIter = Record.begin();
7977       unsigned ValueID = *RecordIter++;
7978       unsigned NumStackIds = *RecordIter++;
7979       unsigned NumVersions = *RecordIter++;
7980       assert(Record.size() == 3 + NumStackIds + NumVersions);
7981       SmallVector<unsigned> StackIdList;
7982       for (unsigned J = 0; J < NumStackIds; J++) {
7983         assert(*RecordIter < StackIds.size());
7984         StackIdList.push_back(
7985             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7986       }
7987       SmallVector<unsigned> Versions;
7988       for (unsigned J = 0; J < NumVersions; J++)
7989         Versions.push_back(*RecordIter++);
7990       ValueInfo VI = std::get<0>(
7991           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7992       PendingCallsites.push_back(
7993           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7994       break;
7995     }
7996 
7997     case bitc::FS_PERMODULE_ALLOC_INFO: {
7998       unsigned I = 0;
7999       std::vector<MIBInfo> MIBs;
8000       unsigned NumMIBs = 0;
8001       if (Version >= 10)
8002         NumMIBs = Record[I++];
8003       unsigned MIBsRead = 0;
8004       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8005              (Version < 10 && I < Record.size())) {
8006         assert(Record.size() - I >= 2);
8007         AllocationType AllocType = (AllocationType)Record[I++];
8008         unsigned NumStackEntries = Record[I++];
8009         assert(Record.size() - I >= NumStackEntries);
8010         SmallVector<unsigned> StackIdList;
8011         for (unsigned J = 0; J < NumStackEntries; J++) {
8012           assert(Record[I] < StackIds.size());
8013           StackIdList.push_back(
8014               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8015         }
8016         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8017       }
8018       std::vector<uint64_t> TotalSizes;
8019       // We either have no sizes or NumMIBs of them.
8020       assert(I == Record.size() || Record.size() - I == NumMIBs);
8021       if (I < Record.size()) {
8022         MIBsRead = 0;
8023         while (MIBsRead++ < NumMIBs)
8024           TotalSizes.push_back(Record[I++]);
8025       }
8026       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8027       if (!TotalSizes.empty()) {
8028         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8029         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8030       }
8031       break;
8032     }
8033 
8034     case bitc::FS_COMBINED_ALLOC_INFO: {
8035       unsigned I = 0;
8036       std::vector<MIBInfo> MIBs;
8037       unsigned NumMIBs = Record[I++];
8038       unsigned NumVersions = Record[I++];
8039       unsigned MIBsRead = 0;
8040       while (MIBsRead++ < NumMIBs) {
8041         assert(Record.size() - I >= 2);
8042         AllocationType AllocType = (AllocationType)Record[I++];
8043         unsigned NumStackEntries = Record[I++];
8044         assert(Record.size() - I >= NumStackEntries);
8045         SmallVector<unsigned> StackIdList;
8046         for (unsigned J = 0; J < NumStackEntries; J++) {
8047           assert(Record[I] < StackIds.size());
8048           StackIdList.push_back(
8049               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8050         }
8051         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8052       }
8053       assert(Record.size() - I >= NumVersions);
8054       SmallVector<uint8_t> Versions;
8055       for (unsigned J = 0; J < NumVersions; J++)
8056         Versions.push_back(Record[I++]);
8057       std::vector<uint64_t> TotalSizes;
8058       // We either have no sizes or NumMIBs of them.
8059       assert(I == Record.size() || Record.size() - I == NumMIBs);
8060       if (I < Record.size()) {
8061         MIBsRead = 0;
8062         while (MIBsRead++ < NumMIBs) {
8063           TotalSizes.push_back(Record[I++]);
8064         }
8065       }
8066       PendingAllocs.push_back(
8067           AllocInfo(std::move(Versions), std::move(MIBs)));
8068       if (!TotalSizes.empty()) {
8069         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8070         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8071       }
8072       break;
8073     }
8074     }
8075   }
8076   llvm_unreachable("Exit infinite loop");
8077 }
8078 
8079 // Parse the  module string table block into the Index.
8080 // This populates the ModulePathStringTable map in the index.
8081 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8082   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8083     return Err;
8084 
8085   SmallVector<uint64_t, 64> Record;
8086 
8087   SmallString<128> ModulePath;
8088   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8089 
8090   while (true) {
8091     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8092     if (!MaybeEntry)
8093       return MaybeEntry.takeError();
8094     BitstreamEntry Entry = MaybeEntry.get();
8095 
8096     switch (Entry.Kind) {
8097     case BitstreamEntry::SubBlock: // Handled for us already.
8098     case BitstreamEntry::Error:
8099       return error("Malformed block");
8100     case BitstreamEntry::EndBlock:
8101       return Error::success();
8102     case BitstreamEntry::Record:
8103       // The interesting case.
8104       break;
8105     }
8106 
8107     Record.clear();
8108     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8109     if (!MaybeRecord)
8110       return MaybeRecord.takeError();
8111     switch (MaybeRecord.get()) {
8112     default: // Default behavior: ignore.
8113       break;
8114     case bitc::MST_CODE_ENTRY: {
8115       // MST_ENTRY: [modid, namechar x N]
8116       uint64_t ModuleId = Record[0];
8117 
8118       if (convertToString(Record, 1, ModulePath))
8119         return error("Invalid record");
8120 
8121       LastSeenModule = TheIndex.addModule(ModulePath);
8122       ModuleIdMap[ModuleId] = LastSeenModule->first();
8123 
8124       ModulePath.clear();
8125       break;
8126     }
8127     /// MST_CODE_HASH: [5*i32]
8128     case bitc::MST_CODE_HASH: {
8129       if (Record.size() != 5)
8130         return error("Invalid hash length " + Twine(Record.size()).str());
8131       if (!LastSeenModule)
8132         return error("Invalid hash that does not follow a module path");
8133       int Pos = 0;
8134       for (auto &Val : Record) {
8135         assert(!(Val >> 32) && "Unexpected high bits set");
8136         LastSeenModule->second[Pos++] = Val;
8137       }
8138       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8139       LastSeenModule = nullptr;
8140       break;
8141     }
8142     }
8143   }
8144   llvm_unreachable("Exit infinite loop");
8145 }
8146 
8147 namespace {
8148 
8149 // FIXME: This class is only here to support the transition to llvm::Error. It
8150 // will be removed once this transition is complete. Clients should prefer to
8151 // deal with the Error value directly, rather than converting to error_code.
8152 class BitcodeErrorCategoryType : public std::error_category {
8153   const char *name() const noexcept override {
8154     return "llvm.bitcode";
8155   }
8156 
8157   std::string message(int IE) const override {
8158     BitcodeError E = static_cast<BitcodeError>(IE);
8159     switch (E) {
8160     case BitcodeError::CorruptedBitcode:
8161       return "Corrupted bitcode";
8162     }
8163     llvm_unreachable("Unknown error type!");
8164   }
8165 };
8166 
8167 } // end anonymous namespace
8168 
8169 const std::error_category &llvm::BitcodeErrorCategory() {
8170   static BitcodeErrorCategoryType ErrorCategory;
8171   return ErrorCategory;
8172 }
8173 
8174 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8175                                             unsigned Block, unsigned RecordID) {
8176   if (Error Err = Stream.EnterSubBlock(Block))
8177     return std::move(Err);
8178 
8179   StringRef Strtab;
8180   while (true) {
8181     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8182     if (!MaybeEntry)
8183       return MaybeEntry.takeError();
8184     llvm::BitstreamEntry Entry = MaybeEntry.get();
8185 
8186     switch (Entry.Kind) {
8187     case BitstreamEntry::EndBlock:
8188       return Strtab;
8189 
8190     case BitstreamEntry::Error:
8191       return error("Malformed block");
8192 
8193     case BitstreamEntry::SubBlock:
8194       if (Error Err = Stream.SkipBlock())
8195         return std::move(Err);
8196       break;
8197 
8198     case BitstreamEntry::Record:
8199       StringRef Blob;
8200       SmallVector<uint64_t, 1> Record;
8201       Expected<unsigned> MaybeRecord =
8202           Stream.readRecord(Entry.ID, Record, &Blob);
8203       if (!MaybeRecord)
8204         return MaybeRecord.takeError();
8205       if (MaybeRecord.get() == RecordID)
8206         Strtab = Blob;
8207       break;
8208     }
8209   }
8210 }
8211 
8212 //===----------------------------------------------------------------------===//
8213 // External interface
8214 //===----------------------------------------------------------------------===//
8215 
8216 Expected<std::vector<BitcodeModule>>
8217 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8218   auto FOrErr = getBitcodeFileContents(Buffer);
8219   if (!FOrErr)
8220     return FOrErr.takeError();
8221   return std::move(FOrErr->Mods);
8222 }
8223 
8224 Expected<BitcodeFileContents>
8225 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8226   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8227   if (!StreamOrErr)
8228     return StreamOrErr.takeError();
8229   BitstreamCursor &Stream = *StreamOrErr;
8230 
8231   BitcodeFileContents F;
8232   while (true) {
8233     uint64_t BCBegin = Stream.getCurrentByteNo();
8234 
8235     // We may be consuming bitcode from a client that leaves garbage at the end
8236     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8237     // the end that there cannot possibly be another module, stop looking.
8238     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8239       return F;
8240 
8241     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8242     if (!MaybeEntry)
8243       return MaybeEntry.takeError();
8244     llvm::BitstreamEntry Entry = MaybeEntry.get();
8245 
8246     switch (Entry.Kind) {
8247     case BitstreamEntry::EndBlock:
8248     case BitstreamEntry::Error:
8249       return error("Malformed block");
8250 
8251     case BitstreamEntry::SubBlock: {
8252       uint64_t IdentificationBit = -1ull;
8253       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8254         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8255         if (Error Err = Stream.SkipBlock())
8256           return std::move(Err);
8257 
8258         {
8259           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8260           if (!MaybeEntry)
8261             return MaybeEntry.takeError();
8262           Entry = MaybeEntry.get();
8263         }
8264 
8265         if (Entry.Kind != BitstreamEntry::SubBlock ||
8266             Entry.ID != bitc::MODULE_BLOCK_ID)
8267           return error("Malformed block");
8268       }
8269 
8270       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8271         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8272         if (Error Err = Stream.SkipBlock())
8273           return std::move(Err);
8274 
8275         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8276                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8277                           Buffer.getBufferIdentifier(), IdentificationBit,
8278                           ModuleBit});
8279         continue;
8280       }
8281 
8282       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8283         Expected<StringRef> Strtab =
8284             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8285         if (!Strtab)
8286           return Strtab.takeError();
8287         // This string table is used by every preceding bitcode module that does
8288         // not have its own string table. A bitcode file may have multiple
8289         // string tables if it was created by binary concatenation, for example
8290         // with "llvm-cat -b".
8291         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8292           if (!I.Strtab.empty())
8293             break;
8294           I.Strtab = *Strtab;
8295         }
8296         // Similarly, the string table is used by every preceding symbol table;
8297         // normally there will be just one unless the bitcode file was created
8298         // by binary concatenation.
8299         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8300           F.StrtabForSymtab = *Strtab;
8301         continue;
8302       }
8303 
8304       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8305         Expected<StringRef> SymtabOrErr =
8306             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8307         if (!SymtabOrErr)
8308           return SymtabOrErr.takeError();
8309 
8310         // We can expect the bitcode file to have multiple symbol tables if it
8311         // was created by binary concatenation. In that case we silently
8312         // ignore any subsequent symbol tables, which is fine because this is a
8313         // low level function. The client is expected to notice that the number
8314         // of modules in the symbol table does not match the number of modules
8315         // in the input file and regenerate the symbol table.
8316         if (F.Symtab.empty())
8317           F.Symtab = *SymtabOrErr;
8318         continue;
8319       }
8320 
8321       if (Error Err = Stream.SkipBlock())
8322         return std::move(Err);
8323       continue;
8324     }
8325     case BitstreamEntry::Record:
8326       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8327         return std::move(E);
8328       continue;
8329     }
8330   }
8331 }
8332 
8333 /// Get a lazy one-at-time loading module from bitcode.
8334 ///
8335 /// This isn't always used in a lazy context.  In particular, it's also used by
8336 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8337 /// in forward-referenced functions from block address references.
8338 ///
8339 /// \param[in] MaterializeAll Set to \c true if we should materialize
8340 /// everything.
8341 Expected<std::unique_ptr<Module>>
8342 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8343                              bool ShouldLazyLoadMetadata, bool IsImporting,
8344                              ParserCallbacks Callbacks) {
8345   BitstreamCursor Stream(Buffer);
8346 
8347   std::string ProducerIdentification;
8348   if (IdentificationBit != -1ull) {
8349     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8350       return std::move(JumpFailed);
8351     if (Error E =
8352             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8353       return std::move(E);
8354   }
8355 
8356   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8357     return std::move(JumpFailed);
8358   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8359                               Context);
8360 
8361   std::unique_ptr<Module> M =
8362       std::make_unique<Module>(ModuleIdentifier, Context);
8363   M->setMaterializer(R);
8364 
8365   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8366   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8367                                       IsImporting, Callbacks))
8368     return std::move(Err);
8369 
8370   if (MaterializeAll) {
8371     // Read in the entire module, and destroy the BitcodeReader.
8372     if (Error Err = M->materializeAll())
8373       return std::move(Err);
8374   } else {
8375     // Resolve forward references from blockaddresses.
8376     if (Error Err = R->materializeForwardReferencedFunctions())
8377       return std::move(Err);
8378   }
8379 
8380   return std::move(M);
8381 }
8382 
8383 Expected<std::unique_ptr<Module>>
8384 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8385                              bool IsImporting, ParserCallbacks Callbacks) {
8386   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8387                        Callbacks);
8388 }
8389 
8390 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8391 // We don't use ModuleIdentifier here because the client may need to control the
8392 // module path used in the combined summary (e.g. when reading summaries for
8393 // regular LTO modules).
8394 Error BitcodeModule::readSummary(
8395     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8396     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8397   BitstreamCursor Stream(Buffer);
8398   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8399     return JumpFailed;
8400 
8401   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8402                                     ModulePath, IsPrevailing);
8403   return R.parseModule();
8404 }
8405 
8406 // Parse the specified bitcode buffer, returning the function info index.
8407 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8408   BitstreamCursor Stream(Buffer);
8409   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8410     return std::move(JumpFailed);
8411 
8412   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8413   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8414                                     ModuleIdentifier, 0);
8415 
8416   if (Error Err = R.parseModule())
8417     return std::move(Err);
8418 
8419   return std::move(Index);
8420 }
8421 
8422 static Expected<std::pair<bool, bool>>
8423 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8424                                                  unsigned ID,
8425                                                  BitcodeLTOInfo &LTOInfo) {
8426   if (Error Err = Stream.EnterSubBlock(ID))
8427     return std::move(Err);
8428   SmallVector<uint64_t, 64> Record;
8429 
8430   while (true) {
8431     BitstreamEntry Entry;
8432     std::pair<bool, bool> Result = {false,false};
8433     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8434       return std::move(E);
8435 
8436     switch (Entry.Kind) {
8437     case BitstreamEntry::SubBlock: // Handled for us already.
8438     case BitstreamEntry::Error:
8439       return error("Malformed block");
8440     case BitstreamEntry::EndBlock: {
8441       // If no flags record found, set both flags to false.
8442       return Result;
8443     }
8444     case BitstreamEntry::Record:
8445       // The interesting case.
8446       break;
8447     }
8448 
8449     // Look for the FS_FLAGS record.
8450     Record.clear();
8451     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8452     if (!MaybeBitCode)
8453       return MaybeBitCode.takeError();
8454     switch (MaybeBitCode.get()) {
8455     default: // Default behavior: ignore.
8456       break;
8457     case bitc::FS_FLAGS: { // [flags]
8458       uint64_t Flags = Record[0];
8459       // Scan flags.
8460       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8461 
8462       bool EnableSplitLTOUnit = Flags & 0x8;
8463       bool UnifiedLTO = Flags & 0x200;
8464       Result = {EnableSplitLTOUnit, UnifiedLTO};
8465 
8466       return Result;
8467     }
8468     }
8469   }
8470   llvm_unreachable("Exit infinite loop");
8471 }
8472 
8473 // Check if the given bitcode buffer contains a global value summary block.
8474 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8475   BitstreamCursor Stream(Buffer);
8476   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8477     return std::move(JumpFailed);
8478 
8479   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8480     return std::move(Err);
8481 
8482   while (true) {
8483     llvm::BitstreamEntry Entry;
8484     if (Error E = Stream.advance().moveInto(Entry))
8485       return std::move(E);
8486 
8487     switch (Entry.Kind) {
8488     case BitstreamEntry::Error:
8489       return error("Malformed block");
8490     case BitstreamEntry::EndBlock:
8491       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8492                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8493 
8494     case BitstreamEntry::SubBlock:
8495       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8496         BitcodeLTOInfo LTOInfo;
8497         Expected<std::pair<bool, bool>> Flags =
8498             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8499         if (!Flags)
8500           return Flags.takeError();
8501         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8502         LTOInfo.IsThinLTO = true;
8503         LTOInfo.HasSummary = true;
8504         return LTOInfo;
8505       }
8506 
8507       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8508         BitcodeLTOInfo LTOInfo;
8509         Expected<std::pair<bool, bool>> Flags =
8510             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8511         if (!Flags)
8512           return Flags.takeError();
8513         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8514         LTOInfo.IsThinLTO = false;
8515         LTOInfo.HasSummary = true;
8516         return LTOInfo;
8517       }
8518 
8519       // Ignore other sub-blocks.
8520       if (Error Err = Stream.SkipBlock())
8521         return std::move(Err);
8522       continue;
8523 
8524     case BitstreamEntry::Record:
8525       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8526         continue;
8527       else
8528         return StreamFailed.takeError();
8529     }
8530   }
8531 }
8532 
8533 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8534   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8535   if (!MsOrErr)
8536     return MsOrErr.takeError();
8537 
8538   if (MsOrErr->size() != 1)
8539     return error("Expected a single module");
8540 
8541   return (*MsOrErr)[0];
8542 }
8543 
8544 Expected<std::unique_ptr<Module>>
8545 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8546                            bool ShouldLazyLoadMetadata, bool IsImporting,
8547                            ParserCallbacks Callbacks) {
8548   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8549   if (!BM)
8550     return BM.takeError();
8551 
8552   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8553                            Callbacks);
8554 }
8555 
8556 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8557     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8558     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8559   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8560                                      IsImporting, Callbacks);
8561   if (MOrErr)
8562     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8563   return MOrErr;
8564 }
8565 
8566 Expected<std::unique_ptr<Module>>
8567 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8568   return getModuleImpl(Context, true, false, false, Callbacks);
8569   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8570   // written.  We must defer until the Module has been fully materialized.
8571 }
8572 
8573 Expected<std::unique_ptr<Module>>
8574 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8575                        ParserCallbacks Callbacks) {
8576   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8577   if (!BM)
8578     return BM.takeError();
8579 
8580   return BM->parseModule(Context, Callbacks);
8581 }
8582 
8583 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8584   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8585   if (!StreamOrErr)
8586     return StreamOrErr.takeError();
8587 
8588   return readTriple(*StreamOrErr);
8589 }
8590 
8591 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8592   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8593   if (!StreamOrErr)
8594     return StreamOrErr.takeError();
8595 
8596   return hasObjCCategory(*StreamOrErr);
8597 }
8598 
8599 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8600   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8601   if (!StreamOrErr)
8602     return StreamOrErr.takeError();
8603 
8604   return readIdentificationCode(*StreamOrErr);
8605 }
8606 
8607 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8608                                    ModuleSummaryIndex &CombinedIndex) {
8609   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8610   if (!BM)
8611     return BM.takeError();
8612 
8613   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8614 }
8615 
8616 Expected<std::unique_ptr<ModuleSummaryIndex>>
8617 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8618   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8619   if (!BM)
8620     return BM.takeError();
8621 
8622   return BM->getSummary();
8623 }
8624 
8625 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8626   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8627   if (!BM)
8628     return BM.takeError();
8629 
8630   return BM->getLTOInfo();
8631 }
8632 
8633 Expected<std::unique_ptr<ModuleSummaryIndex>>
8634 llvm::getModuleSummaryIndexForFile(StringRef Path,
8635                                    bool IgnoreEmptyThinLTOIndexFile) {
8636   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8637       MemoryBuffer::getFileOrSTDIN(Path);
8638   if (!FileOrErr)
8639     return errorCodeToError(FileOrErr.getError());
8640   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8641     return nullptr;
8642   return getModuleSummaryIndex(**FileOrErr);
8643 }
8644