xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision b13c8e5099ec7886fcd198b1f6aec14f928c963c)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 // Declare external flag for whether we're using the new debug-info format.
104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105 
106 namespace {
107 
108 enum {
109   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
110 };
111 
112 } // end anonymous namespace
113 
114 static Error error(const Twine &Message) {
115   return make_error<StringError>(
116       Message, make_error_code(BitcodeError::CorruptedBitcode));
117 }
118 
119 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
120   if (!Stream.canSkipToPos(4))
121     return createStringError(std::errc::illegal_byte_sequence,
122                              "file too small to contain bitcode header");
123   for (unsigned C : {'B', 'C'})
124     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
125       if (Res.get() != C)
126         return createStringError(std::errc::illegal_byte_sequence,
127                                  "file doesn't start with bitcode header");
128     } else
129       return Res.takeError();
130   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
131     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
132       if (Res.get() != C)
133         return createStringError(std::errc::illegal_byte_sequence,
134                                  "file doesn't start with bitcode header");
135     } else
136       return Res.takeError();
137   return Error::success();
138 }
139 
140 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
141   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
142   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
143 
144   if (Buffer.getBufferSize() & 3)
145     return error("Invalid bitcode signature");
146 
147   // If we have a wrapper header, parse it and ignore the non-bc file contents.
148   // The magic number is 0x0B17C0DE stored in little endian.
149   if (isBitcodeWrapper(BufPtr, BufEnd))
150     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
151       return error("Invalid bitcode wrapper header");
152 
153   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
154   if (Error Err = hasInvalidBitcodeHeader(Stream))
155     return std::move(Err);
156 
157   return std::move(Stream);
158 }
159 
160 /// Convert a string from a record into an std::string, return true on failure.
161 template <typename StrTy>
162 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
163                             StrTy &Result) {
164   if (Idx > Record.size())
165     return true;
166 
167   Result.append(Record.begin() + Idx, Record.end());
168   return false;
169 }
170 
171 // Strip all the TBAA attachment for the module.
172 static void stripTBAA(Module *M) {
173   for (auto &F : *M) {
174     if (F.isMaterializable())
175       continue;
176     for (auto &I : instructions(F))
177       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
178   }
179 }
180 
181 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
182 /// "epoch" encoded in the bitcode, and return the producer name if any.
183 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
184   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
185     return std::move(Err);
186 
187   // Read all the records.
188   SmallVector<uint64_t, 64> Record;
189 
190   std::string ProducerIdentification;
191 
192   while (true) {
193     BitstreamEntry Entry;
194     if (Error E = Stream.advance().moveInto(Entry))
195       return std::move(E);
196 
197     switch (Entry.Kind) {
198     default:
199     case BitstreamEntry::Error:
200       return error("Malformed block");
201     case BitstreamEntry::EndBlock:
202       return ProducerIdentification;
203     case BitstreamEntry::Record:
204       // The interesting case.
205       break;
206     }
207 
208     // Read a record.
209     Record.clear();
210     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
211     if (!MaybeBitCode)
212       return MaybeBitCode.takeError();
213     switch (MaybeBitCode.get()) {
214     default: // Default behavior: reject
215       return error("Invalid value");
216     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
217       convertToString(Record, 0, ProducerIdentification);
218       break;
219     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
220       unsigned epoch = (unsigned)Record[0];
221       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
222         return error(
223           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
224           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
225       }
226     }
227     }
228   }
229 }
230 
231 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
232   // We expect a number of well-defined blocks, though we don't necessarily
233   // need to understand them all.
234   while (true) {
235     if (Stream.AtEndOfStream())
236       return "";
237 
238     BitstreamEntry Entry;
239     if (Error E = Stream.advance().moveInto(Entry))
240       return std::move(E);
241 
242     switch (Entry.Kind) {
243     case BitstreamEntry::EndBlock:
244     case BitstreamEntry::Error:
245       return error("Malformed block");
246 
247     case BitstreamEntry::SubBlock:
248       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
249         return readIdentificationBlock(Stream);
250 
251       // Ignore other sub-blocks.
252       if (Error Err = Stream.SkipBlock())
253         return std::move(Err);
254       continue;
255     case BitstreamEntry::Record:
256       if (Error E = Stream.skipRecord(Entry.ID).takeError())
257         return std::move(E);
258       continue;
259     }
260   }
261 }
262 
263 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
264   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
265     return std::move(Err);
266 
267   SmallVector<uint64_t, 64> Record;
268   // Read all the records for this module.
269 
270   while (true) {
271     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
272     if (!MaybeEntry)
273       return MaybeEntry.takeError();
274     BitstreamEntry Entry = MaybeEntry.get();
275 
276     switch (Entry.Kind) {
277     case BitstreamEntry::SubBlock: // Handled for us already.
278     case BitstreamEntry::Error:
279       return error("Malformed block");
280     case BitstreamEntry::EndBlock:
281       return false;
282     case BitstreamEntry::Record:
283       // The interesting case.
284       break;
285     }
286 
287     // Read a record.
288     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
289     if (!MaybeRecord)
290       return MaybeRecord.takeError();
291     switch (MaybeRecord.get()) {
292     default:
293       break; // Default behavior, ignore unknown content.
294     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
295       std::string S;
296       if (convertToString(Record, 0, S))
297         return error("Invalid section name record");
298       // Check for the i386 and other (x86_64, ARM) conventions
299       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
300           S.find("__OBJC,__category") != std::string::npos)
301         return true;
302       break;
303     }
304     }
305     Record.clear();
306   }
307   llvm_unreachable("Exit infinite loop");
308 }
309 
310 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
311   // We expect a number of well-defined blocks, though we don't necessarily
312   // need to understand them all.
313   while (true) {
314     BitstreamEntry Entry;
315     if (Error E = Stream.advance().moveInto(Entry))
316       return std::move(E);
317 
318     switch (Entry.Kind) {
319     case BitstreamEntry::Error:
320       return error("Malformed block");
321     case BitstreamEntry::EndBlock:
322       return false;
323 
324     case BitstreamEntry::SubBlock:
325       if (Entry.ID == bitc::MODULE_BLOCK_ID)
326         return hasObjCCategoryInModule(Stream);
327 
328       // Ignore other sub-blocks.
329       if (Error Err = Stream.SkipBlock())
330         return std::move(Err);
331       continue;
332 
333     case BitstreamEntry::Record:
334       if (Error E = Stream.skipRecord(Entry.ID).takeError())
335         return std::move(E);
336       continue;
337     }
338   }
339 }
340 
341 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
342   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
343     return std::move(Err);
344 
345   SmallVector<uint64_t, 64> Record;
346 
347   std::string Triple;
348 
349   // Read all the records for this module.
350   while (true) {
351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
352     if (!MaybeEntry)
353       return MaybeEntry.takeError();
354     BitstreamEntry Entry = MaybeEntry.get();
355 
356     switch (Entry.Kind) {
357     case BitstreamEntry::SubBlock: // Handled for us already.
358     case BitstreamEntry::Error:
359       return error("Malformed block");
360     case BitstreamEntry::EndBlock:
361       return Triple;
362     case BitstreamEntry::Record:
363       // The interesting case.
364       break;
365     }
366 
367     // Read a record.
368     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
369     if (!MaybeRecord)
370       return MaybeRecord.takeError();
371     switch (MaybeRecord.get()) {
372     default: break;  // Default behavior, ignore unknown content.
373     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
374       std::string S;
375       if (convertToString(Record, 0, S))
376         return error("Invalid triple record");
377       Triple = S;
378       break;
379     }
380     }
381     Record.clear();
382   }
383   llvm_unreachable("Exit infinite loop");
384 }
385 
386 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
387   // We expect a number of well-defined blocks, though we don't necessarily
388   // need to understand them all.
389   while (true) {
390     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
391     if (!MaybeEntry)
392       return MaybeEntry.takeError();
393     BitstreamEntry Entry = MaybeEntry.get();
394 
395     switch (Entry.Kind) {
396     case BitstreamEntry::Error:
397       return error("Malformed block");
398     case BitstreamEntry::EndBlock:
399       return "";
400 
401     case BitstreamEntry::SubBlock:
402       if (Entry.ID == bitc::MODULE_BLOCK_ID)
403         return readModuleTriple(Stream);
404 
405       // Ignore other sub-blocks.
406       if (Error Err = Stream.SkipBlock())
407         return std::move(Err);
408       continue;
409 
410     case BitstreamEntry::Record:
411       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
412         continue;
413       else
414         return Skipped.takeError();
415     }
416   }
417 }
418 
419 namespace {
420 
421 class BitcodeReaderBase {
422 protected:
423   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
424       : Stream(std::move(Stream)), Strtab(Strtab) {
425     this->Stream.setBlockInfo(&BlockInfo);
426   }
427 
428   BitstreamBlockInfo BlockInfo;
429   BitstreamCursor Stream;
430   StringRef Strtab;
431 
432   /// In version 2 of the bitcode we store names of global values and comdats in
433   /// a string table rather than in the VST.
434   bool UseStrtab = false;
435 
436   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
437 
438   /// If this module uses a string table, pop the reference to the string table
439   /// and return the referenced string and the rest of the record. Otherwise
440   /// just return the record itself.
441   std::pair<StringRef, ArrayRef<uint64_t>>
442   readNameFromStrtab(ArrayRef<uint64_t> Record);
443 
444   Error readBlockInfo();
445 
446   // Contains an arbitrary and optional string identifying the bitcode producer
447   std::string ProducerIdentification;
448 
449   Error error(const Twine &Message);
450 };
451 
452 } // end anonymous namespace
453 
454 Error BitcodeReaderBase::error(const Twine &Message) {
455   std::string FullMsg = Message.str();
456   if (!ProducerIdentification.empty())
457     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
458                LLVM_VERSION_STRING "')";
459   return ::error(FullMsg);
460 }
461 
462 Expected<unsigned>
463 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
464   if (Record.empty())
465     return error("Invalid version record");
466   unsigned ModuleVersion = Record[0];
467   if (ModuleVersion > 2)
468     return error("Invalid value");
469   UseStrtab = ModuleVersion >= 2;
470   return ModuleVersion;
471 }
472 
473 std::pair<StringRef, ArrayRef<uint64_t>>
474 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
475   if (!UseStrtab)
476     return {"", Record};
477   // Invalid reference. Let the caller complain about the record being empty.
478   if (Record[0] + Record[1] > Strtab.size())
479     return {"", {}};
480   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
481 }
482 
483 namespace {
484 
485 /// This represents a constant expression or constant aggregate using a custom
486 /// structure internal to the bitcode reader. Later, this structure will be
487 /// expanded by materializeValue() either into a constant expression/aggregate,
488 /// or into an instruction sequence at the point of use. This allows us to
489 /// upgrade bitcode using constant expressions even if this kind of constant
490 /// expression is no longer supported.
491 class BitcodeConstant final : public Value,
492                               TrailingObjects<BitcodeConstant, unsigned> {
493   friend TrailingObjects;
494 
495   // Value subclass ID: Pick largest possible value to avoid any clashes.
496   static constexpr uint8_t SubclassID = 255;
497 
498 public:
499   // Opcodes used for non-expressions. This includes constant aggregates
500   // (struct, array, vector) that might need expansion, as well as non-leaf
501   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
502   // but still go through BitcodeConstant to avoid different uselist orders
503   // between the two cases.
504   static constexpr uint8_t ConstantStructOpcode = 255;
505   static constexpr uint8_t ConstantArrayOpcode = 254;
506   static constexpr uint8_t ConstantVectorOpcode = 253;
507   static constexpr uint8_t NoCFIOpcode = 252;
508   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
509   static constexpr uint8_t BlockAddressOpcode = 250;
510   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
511 
512   // Separate struct to make passing different number of parameters to
513   // BitcodeConstant::create() more convenient.
514   struct ExtraInfo {
515     uint8_t Opcode;
516     uint8_t Flags;
517     unsigned Extra;
518     Type *SrcElemTy;
519 
520     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
521               Type *SrcElemTy = nullptr)
522         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
523   };
524 
525   uint8_t Opcode;
526   uint8_t Flags;
527   unsigned NumOperands;
528   unsigned Extra;  // GEP inrange index or blockaddress BB id.
529   Type *SrcElemTy; // GEP source element type.
530 
531 private:
532   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
533       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
534         NumOperands(OpIDs.size()), Extra(Info.Extra),
535         SrcElemTy(Info.SrcElemTy) {
536     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
537                             getTrailingObjects<unsigned>());
538   }
539 
540   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
541 
542 public:
543   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
544                                  const ExtraInfo &Info,
545                                  ArrayRef<unsigned> OpIDs) {
546     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
547                            alignof(BitcodeConstant));
548     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
549   }
550 
551   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
552 
553   ArrayRef<unsigned> getOperandIDs() const {
554     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
555   }
556 
557   std::optional<unsigned> getInRangeIndex() const {
558     assert(Opcode == Instruction::GetElementPtr);
559     if (Extra == (unsigned)-1)
560       return std::nullopt;
561     return Extra;
562   }
563 
564   const char *getOpcodeName() const {
565     return Instruction::getOpcodeName(Opcode);
566   }
567 };
568 
569 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
570   LLVMContext &Context;
571   Module *TheModule = nullptr;
572   // Next offset to start scanning for lazy parsing of function bodies.
573   uint64_t NextUnreadBit = 0;
574   // Last function offset found in the VST.
575   uint64_t LastFunctionBlockBit = 0;
576   bool SeenValueSymbolTable = false;
577   uint64_t VSTOffset = 0;
578 
579   std::vector<std::string> SectionTable;
580   std::vector<std::string> GCTable;
581 
582   std::vector<Type *> TypeList;
583   /// Track type IDs of contained types. Order is the same as the contained
584   /// types of a Type*. This is used during upgrades of typed pointer IR in
585   /// opaque pointer mode.
586   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
587   /// In some cases, we need to create a type ID for a type that was not
588   /// explicitly encoded in the bitcode, or we don't know about at the current
589   /// point. For example, a global may explicitly encode the value type ID, but
590   /// not have a type ID for the pointer to value type, for which we create a
591   /// virtual type ID instead. This map stores the new type ID that was created
592   /// for the given pair of Type and contained type ID.
593   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
594   DenseMap<Function *, unsigned> FunctionTypeIDs;
595   /// Allocator for BitcodeConstants. This should come before ValueList,
596   /// because the ValueList might hold ValueHandles to these constants, so
597   /// ValueList must be destroyed before Alloc.
598   BumpPtrAllocator Alloc;
599   BitcodeReaderValueList ValueList;
600   std::optional<MetadataLoader> MDLoader;
601   std::vector<Comdat *> ComdatList;
602   DenseSet<GlobalObject *> ImplicitComdatObjects;
603   SmallVector<Instruction *, 64> InstructionList;
604 
605   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
606   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
607 
608   struct FunctionOperandInfo {
609     Function *F;
610     unsigned PersonalityFn;
611     unsigned Prefix;
612     unsigned Prologue;
613   };
614   std::vector<FunctionOperandInfo> FunctionOperands;
615 
616   /// The set of attributes by index.  Index zero in the file is for null, and
617   /// is thus not represented here.  As such all indices are off by one.
618   std::vector<AttributeList> MAttributes;
619 
620   /// The set of attribute groups.
621   std::map<unsigned, AttributeList> MAttributeGroups;
622 
623   /// While parsing a function body, this is a list of the basic blocks for the
624   /// function.
625   std::vector<BasicBlock*> FunctionBBs;
626 
627   // When reading the module header, this list is populated with functions that
628   // have bodies later in the file.
629   std::vector<Function*> FunctionsWithBodies;
630 
631   // When intrinsic functions are encountered which require upgrading they are
632   // stored here with their replacement function.
633   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
634   UpdatedIntrinsicMap UpgradedIntrinsics;
635 
636   // Several operations happen after the module header has been read, but
637   // before function bodies are processed. This keeps track of whether
638   // we've done this yet.
639   bool SeenFirstFunctionBody = false;
640 
641   /// When function bodies are initially scanned, this map contains info about
642   /// where to find deferred function body in the stream.
643   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
644 
645   /// When Metadata block is initially scanned when parsing the module, we may
646   /// choose to defer parsing of the metadata. This vector contains info about
647   /// which Metadata blocks are deferred.
648   std::vector<uint64_t> DeferredMetadataInfo;
649 
650   /// These are basic blocks forward-referenced by block addresses.  They are
651   /// inserted lazily into functions when they're loaded.  The basic block ID is
652   /// its index into the vector.
653   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
654   std::deque<Function *> BasicBlockFwdRefQueue;
655 
656   /// These are Functions that contain BlockAddresses which refer a different
657   /// Function. When parsing the different Function, queue Functions that refer
658   /// to the different Function. Those Functions must be materialized in order
659   /// to resolve their BlockAddress constants before the different Function
660   /// gets moved into another Module.
661   std::vector<Function *> BackwardRefFunctions;
662 
663   /// Indicates that we are using a new encoding for instruction operands where
664   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
665   /// instruction number, for a more compact encoding.  Some instruction
666   /// operands are not relative to the instruction ID: basic block numbers, and
667   /// types. Once the old style function blocks have been phased out, we would
668   /// not need this flag.
669   bool UseRelativeIDs = false;
670 
671   /// True if all functions will be materialized, negating the need to process
672   /// (e.g.) blockaddress forward references.
673   bool WillMaterializeAllForwardRefs = false;
674 
675   bool StripDebugInfo = false;
676   TBAAVerifier TBAAVerifyHelper;
677 
678   std::vector<std::string> BundleTags;
679   SmallVector<SyncScope::ID, 8> SSIDs;
680 
681   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
682 
683 public:
684   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
685                 StringRef ProducerIdentification, LLVMContext &Context);
686 
687   Error materializeForwardReferencedFunctions();
688 
689   Error materialize(GlobalValue *GV) override;
690   Error materializeModule() override;
691   std::vector<StructType *> getIdentifiedStructTypes() const override;
692 
693   /// Main interface to parsing a bitcode buffer.
694   /// \returns true if an error occurred.
695   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
696                          bool IsImporting, ParserCallbacks Callbacks = {});
697 
698   static uint64_t decodeSignRotatedValue(uint64_t V);
699 
700   /// Materialize any deferred Metadata block.
701   Error materializeMetadata() override;
702 
703   void setStripDebugInfo() override;
704 
705 private:
706   std::vector<StructType *> IdentifiedStructTypes;
707   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
708   StructType *createIdentifiedStructType(LLVMContext &Context);
709 
710   static constexpr unsigned InvalidTypeID = ~0u;
711 
712   Type *getTypeByID(unsigned ID);
713   Type *getPtrElementTypeByID(unsigned ID);
714   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
715   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
716 
717   void callValueTypeCallback(Value *F, unsigned TypeID);
718   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
719   Expected<Constant *> getValueForInitializer(unsigned ID);
720 
721   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
722                         BasicBlock *ConstExprInsertBB) {
723     if (Ty && Ty->isMetadataTy())
724       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
725     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
726   }
727 
728   Metadata *getFnMetadataByID(unsigned ID) {
729     return MDLoader->getMetadataFwdRefOrLoad(ID);
730   }
731 
732   BasicBlock *getBasicBlock(unsigned ID) const {
733     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
734     return FunctionBBs[ID];
735   }
736 
737   AttributeList getAttributes(unsigned i) const {
738     if (i-1 < MAttributes.size())
739       return MAttributes[i-1];
740     return AttributeList();
741   }
742 
743   /// Read a value/type pair out of the specified record from slot 'Slot'.
744   /// Increment Slot past the number of slots used in the record. Return true on
745   /// failure.
746   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
747                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
748                         BasicBlock *ConstExprInsertBB) {
749     if (Slot == Record.size()) return true;
750     unsigned ValNo = (unsigned)Record[Slot++];
751     // Adjust the ValNo, if it was encoded relative to the InstNum.
752     if (UseRelativeIDs)
753       ValNo = InstNum - ValNo;
754     if (ValNo < InstNum) {
755       // If this is not a forward reference, just return the value we already
756       // have.
757       TypeID = ValueList.getTypeID(ValNo);
758       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
759       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
760              "Incorrect type ID stored for value");
761       return ResVal == nullptr;
762     }
763     if (Slot == Record.size())
764       return true;
765 
766     TypeID = (unsigned)Record[Slot++];
767     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
768                             ConstExprInsertBB);
769     return ResVal == nullptr;
770   }
771 
772   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
773   /// past the number of slots used by the value in the record. Return true if
774   /// there is an error.
775   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
776                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
777                 BasicBlock *ConstExprInsertBB) {
778     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
779       return true;
780     // All values currently take a single record slot.
781     ++Slot;
782     return false;
783   }
784 
785   /// Like popValue, but does not increment the Slot number.
786   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
787                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
788                 BasicBlock *ConstExprInsertBB) {
789     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
790     return ResVal == nullptr;
791   }
792 
793   /// Version of getValue that returns ResVal directly, or 0 if there is an
794   /// error.
795   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
796                   unsigned InstNum, Type *Ty, unsigned TyID,
797                   BasicBlock *ConstExprInsertBB) {
798     if (Slot == Record.size()) return nullptr;
799     unsigned ValNo = (unsigned)Record[Slot];
800     // Adjust the ValNo, if it was encoded relative to the InstNum.
801     if (UseRelativeIDs)
802       ValNo = InstNum - ValNo;
803     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
804   }
805 
806   /// Like getValue, but decodes signed VBRs.
807   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
808                         unsigned InstNum, Type *Ty, unsigned TyID,
809                         BasicBlock *ConstExprInsertBB) {
810     if (Slot == Record.size()) return nullptr;
811     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
812     // Adjust the ValNo, if it was encoded relative to the InstNum.
813     if (UseRelativeIDs)
814       ValNo = InstNum - ValNo;
815     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
816   }
817 
818   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
819   /// corresponding argument's pointee type. Also upgrades intrinsics that now
820   /// require an elementtype attribute.
821   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
822 
823   /// Converts alignment exponent (i.e. power of two (or zero)) to the
824   /// corresponding alignment to use. If alignment is too large, returns
825   /// a corresponding error code.
826   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
827   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
828   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
829                     ParserCallbacks Callbacks = {});
830 
831   Error parseComdatRecord(ArrayRef<uint64_t> Record);
832   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
833   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
834   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
835                                         ArrayRef<uint64_t> Record);
836 
837   Error parseAttributeBlock();
838   Error parseAttributeGroupBlock();
839   Error parseTypeTable();
840   Error parseTypeTableBody();
841   Error parseOperandBundleTags();
842   Error parseSyncScopeNames();
843 
844   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
845                                 unsigned NameIndex, Triple &TT);
846   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
847                                ArrayRef<uint64_t> Record);
848   Error parseValueSymbolTable(uint64_t Offset = 0);
849   Error parseGlobalValueSymbolTable();
850   Error parseConstants();
851   Error rememberAndSkipFunctionBodies();
852   Error rememberAndSkipFunctionBody();
853   /// Save the positions of the Metadata blocks and skip parsing the blocks.
854   Error rememberAndSkipMetadata();
855   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
856   Error parseFunctionBody(Function *F);
857   Error globalCleanup();
858   Error resolveGlobalAndIndirectSymbolInits();
859   Error parseUseLists();
860   Error findFunctionInStream(
861       Function *F,
862       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
863 
864   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
865 };
866 
867 /// Class to manage reading and parsing function summary index bitcode
868 /// files/sections.
869 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
870   /// The module index built during parsing.
871   ModuleSummaryIndex &TheIndex;
872 
873   /// Indicates whether we have encountered a global value summary section
874   /// yet during parsing.
875   bool SeenGlobalValSummary = false;
876 
877   /// Indicates whether we have already parsed the VST, used for error checking.
878   bool SeenValueSymbolTable = false;
879 
880   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
881   /// Used to enable on-demand parsing of the VST.
882   uint64_t VSTOffset = 0;
883 
884   // Map to save ValueId to ValueInfo association that was recorded in the
885   // ValueSymbolTable. It is used after the VST is parsed to convert
886   // call graph edges read from the function summary from referencing
887   // callees by their ValueId to using the ValueInfo instead, which is how
888   // they are recorded in the summary index being built.
889   // We save a GUID which refers to the same global as the ValueInfo, but
890   // ignoring the linkage, i.e. for values other than local linkage they are
891   // identical (this is the second tuple member).
892   // The third tuple member is the real GUID of the ValueInfo.
893   DenseMap<unsigned,
894            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
895       ValueIdToValueInfoMap;
896 
897   /// Map populated during module path string table parsing, from the
898   /// module ID to a string reference owned by the index's module
899   /// path string table, used to correlate with combined index
900   /// summary records.
901   DenseMap<uint64_t, StringRef> ModuleIdMap;
902 
903   /// Original source file name recorded in a bitcode record.
904   std::string SourceFileName;
905 
906   /// The string identifier given to this module by the client, normally the
907   /// path to the bitcode file.
908   StringRef ModulePath;
909 
910   /// Callback to ask whether a symbol is the prevailing copy when invoked
911   /// during combined index building.
912   std::function<bool(GlobalValue::GUID)> IsPrevailing;
913 
914   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
915   /// ids from the lists in the callsite and alloc entries to the index.
916   std::vector<uint64_t> StackIds;
917 
918 public:
919   ModuleSummaryIndexBitcodeReader(
920       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
921       StringRef ModulePath,
922       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
923 
924   Error parseModule();
925 
926 private:
927   void setValueGUID(uint64_t ValueID, StringRef ValueName,
928                     GlobalValue::LinkageTypes Linkage,
929                     StringRef SourceFileName);
930   Error parseValueSymbolTable(
931       uint64_t Offset,
932       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
933   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
934   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
935                                                     bool IsOldProfileFormat,
936                                                     bool HasProfile,
937                                                     bool HasRelBF);
938   Error parseEntireSummary(unsigned ID);
939   Error parseModuleStringTable();
940   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
941   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
942                                        TypeIdCompatibleVtableInfo &TypeId);
943   std::vector<FunctionSummary::ParamAccess>
944   parseParamAccesses(ArrayRef<uint64_t> Record);
945 
946   template <bool AllowNullValueInfo = false>
947   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
948   getValueInfoFromValueId(unsigned ValueId);
949 
950   void addThisModule();
951   ModuleSummaryIndex::ModuleInfo *getThisModule();
952 };
953 
954 } // end anonymous namespace
955 
956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
957                                                     Error Err) {
958   if (Err) {
959     std::error_code EC;
960     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
961       EC = EIB.convertToErrorCode();
962       Ctx.emitError(EIB.message());
963     });
964     return EC;
965   }
966   return std::error_code();
967 }
968 
969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
970                              StringRef ProducerIdentification,
971                              LLVMContext &Context)
972     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
973       ValueList(this->Stream.SizeInBytes(),
974                 [this](unsigned ValID, BasicBlock *InsertBB) {
975                   return materializeValue(ValID, InsertBB);
976                 }) {
977   this->ProducerIdentification = std::string(ProducerIdentification);
978 }
979 
980 Error BitcodeReader::materializeForwardReferencedFunctions() {
981   if (WillMaterializeAllForwardRefs)
982     return Error::success();
983 
984   // Prevent recursion.
985   WillMaterializeAllForwardRefs = true;
986 
987   while (!BasicBlockFwdRefQueue.empty()) {
988     Function *F = BasicBlockFwdRefQueue.front();
989     BasicBlockFwdRefQueue.pop_front();
990     assert(F && "Expected valid function");
991     if (!BasicBlockFwdRefs.count(F))
992       // Already materialized.
993       continue;
994 
995     // Check for a function that isn't materializable to prevent an infinite
996     // loop.  When parsing a blockaddress stored in a global variable, there
997     // isn't a trivial way to check if a function will have a body without a
998     // linear search through FunctionsWithBodies, so just check it here.
999     if (!F->isMaterializable())
1000       return error("Never resolved function from blockaddress");
1001 
1002     // Try to materialize F.
1003     if (Error Err = materialize(F))
1004       return Err;
1005   }
1006   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1007 
1008   for (Function *F : BackwardRefFunctions)
1009     if (Error Err = materialize(F))
1010       return Err;
1011   BackwardRefFunctions.clear();
1012 
1013   // Reset state.
1014   WillMaterializeAllForwardRefs = false;
1015   return Error::success();
1016 }
1017 
1018 //===----------------------------------------------------------------------===//
1019 //  Helper functions to implement forward reference resolution, etc.
1020 //===----------------------------------------------------------------------===//
1021 
1022 static bool hasImplicitComdat(size_t Val) {
1023   switch (Val) {
1024   default:
1025     return false;
1026   case 1:  // Old WeakAnyLinkage
1027   case 4:  // Old LinkOnceAnyLinkage
1028   case 10: // Old WeakODRLinkage
1029   case 11: // Old LinkOnceODRLinkage
1030     return true;
1031   }
1032 }
1033 
1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1035   switch (Val) {
1036   default: // Map unknown/new linkages to external
1037   case 0:
1038     return GlobalValue::ExternalLinkage;
1039   case 2:
1040     return GlobalValue::AppendingLinkage;
1041   case 3:
1042     return GlobalValue::InternalLinkage;
1043   case 5:
1044     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1045   case 6:
1046     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1047   case 7:
1048     return GlobalValue::ExternalWeakLinkage;
1049   case 8:
1050     return GlobalValue::CommonLinkage;
1051   case 9:
1052     return GlobalValue::PrivateLinkage;
1053   case 12:
1054     return GlobalValue::AvailableExternallyLinkage;
1055   case 13:
1056     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1057   case 14:
1058     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1059   case 15:
1060     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1061   case 1: // Old value with implicit comdat.
1062   case 16:
1063     return GlobalValue::WeakAnyLinkage;
1064   case 10: // Old value with implicit comdat.
1065   case 17:
1066     return GlobalValue::WeakODRLinkage;
1067   case 4: // Old value with implicit comdat.
1068   case 18:
1069     return GlobalValue::LinkOnceAnyLinkage;
1070   case 11: // Old value with implicit comdat.
1071   case 19:
1072     return GlobalValue::LinkOnceODRLinkage;
1073   }
1074 }
1075 
1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1077   FunctionSummary::FFlags Flags;
1078   Flags.ReadNone = RawFlags & 0x1;
1079   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1080   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1081   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1082   Flags.NoInline = (RawFlags >> 4) & 0x1;
1083   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1084   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1085   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1086   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1087   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1088   return Flags;
1089 }
1090 
1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1092 //
1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1094 // visibility: [8, 10).
1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1096                                                             uint64_t Version) {
1097   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1098   // like getDecodedLinkage() above. Any future change to the linkage enum and
1099   // to getDecodedLinkage() will need to be taken into account here as above.
1100   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1101   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1102   RawFlags = RawFlags >> 4;
1103   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1104   // The Live flag wasn't introduced until version 3. For dead stripping
1105   // to work correctly on earlier versions, we must conservatively treat all
1106   // values as live.
1107   bool Live = (RawFlags & 0x2) || Version < 3;
1108   bool Local = (RawFlags & 0x4);
1109   bool AutoHide = (RawFlags & 0x8);
1110 
1111   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1112                                      Live, Local, AutoHide);
1113 }
1114 
1115 // Decode the flags for GlobalVariable in the summary
1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1117   return GlobalVarSummary::GVarFlags(
1118       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1119       (RawFlags & 0x4) ? true : false,
1120       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1121 }
1122 
1123 static std::pair<CalleeInfo::HotnessType, bool>
1124 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1125   CalleeInfo::HotnessType Hotness =
1126       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1127   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1128   return {Hotness, HasTailCall};
1129 }
1130 
1131 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1132                                         bool &HasTailCall) {
1133   static constexpr uint64_t RelBlockFreqMask =
1134       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1135   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1136   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1137 }
1138 
1139 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1140   switch (Val) {
1141   default: // Map unknown visibilities to default.
1142   case 0: return GlobalValue::DefaultVisibility;
1143   case 1: return GlobalValue::HiddenVisibility;
1144   case 2: return GlobalValue::ProtectedVisibility;
1145   }
1146 }
1147 
1148 static GlobalValue::DLLStorageClassTypes
1149 getDecodedDLLStorageClass(unsigned Val) {
1150   switch (Val) {
1151   default: // Map unknown values to default.
1152   case 0: return GlobalValue::DefaultStorageClass;
1153   case 1: return GlobalValue::DLLImportStorageClass;
1154   case 2: return GlobalValue::DLLExportStorageClass;
1155   }
1156 }
1157 
1158 static bool getDecodedDSOLocal(unsigned Val) {
1159   switch(Val) {
1160   default: // Map unknown values to preemptable.
1161   case 0:  return false;
1162   case 1:  return true;
1163   }
1164 }
1165 
1166 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1167   switch (Val) {
1168   case 1:
1169     return CodeModel::Tiny;
1170   case 2:
1171     return CodeModel::Small;
1172   case 3:
1173     return CodeModel::Kernel;
1174   case 4:
1175     return CodeModel::Medium;
1176   case 5:
1177     return CodeModel::Large;
1178   }
1179 
1180   return {};
1181 }
1182 
1183 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1184   switch (Val) {
1185     case 0: return GlobalVariable::NotThreadLocal;
1186     default: // Map unknown non-zero value to general dynamic.
1187     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1188     case 2: return GlobalVariable::LocalDynamicTLSModel;
1189     case 3: return GlobalVariable::InitialExecTLSModel;
1190     case 4: return GlobalVariable::LocalExecTLSModel;
1191   }
1192 }
1193 
1194 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1195   switch (Val) {
1196     default: // Map unknown to UnnamedAddr::None.
1197     case 0: return GlobalVariable::UnnamedAddr::None;
1198     case 1: return GlobalVariable::UnnamedAddr::Global;
1199     case 2: return GlobalVariable::UnnamedAddr::Local;
1200   }
1201 }
1202 
1203 static int getDecodedCastOpcode(unsigned Val) {
1204   switch (Val) {
1205   default: return -1;
1206   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1207   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1208   case bitc::CAST_SEXT    : return Instruction::SExt;
1209   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1210   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1211   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1212   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1213   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1214   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1215   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1216   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1217   case bitc::CAST_BITCAST : return Instruction::BitCast;
1218   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1219   }
1220 }
1221 
1222 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1223   bool IsFP = Ty->isFPOrFPVectorTy();
1224   // UnOps are only valid for int/fp or vector of int/fp types
1225   if (!IsFP && !Ty->isIntOrIntVectorTy())
1226     return -1;
1227 
1228   switch (Val) {
1229   default:
1230     return -1;
1231   case bitc::UNOP_FNEG:
1232     return IsFP ? Instruction::FNeg : -1;
1233   }
1234 }
1235 
1236 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1237   bool IsFP = Ty->isFPOrFPVectorTy();
1238   // BinOps are only valid for int/fp or vector of int/fp types
1239   if (!IsFP && !Ty->isIntOrIntVectorTy())
1240     return -1;
1241 
1242   switch (Val) {
1243   default:
1244     return -1;
1245   case bitc::BINOP_ADD:
1246     return IsFP ? Instruction::FAdd : Instruction::Add;
1247   case bitc::BINOP_SUB:
1248     return IsFP ? Instruction::FSub : Instruction::Sub;
1249   case bitc::BINOP_MUL:
1250     return IsFP ? Instruction::FMul : Instruction::Mul;
1251   case bitc::BINOP_UDIV:
1252     return IsFP ? -1 : Instruction::UDiv;
1253   case bitc::BINOP_SDIV:
1254     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1255   case bitc::BINOP_UREM:
1256     return IsFP ? -1 : Instruction::URem;
1257   case bitc::BINOP_SREM:
1258     return IsFP ? Instruction::FRem : Instruction::SRem;
1259   case bitc::BINOP_SHL:
1260     return IsFP ? -1 : Instruction::Shl;
1261   case bitc::BINOP_LSHR:
1262     return IsFP ? -1 : Instruction::LShr;
1263   case bitc::BINOP_ASHR:
1264     return IsFP ? -1 : Instruction::AShr;
1265   case bitc::BINOP_AND:
1266     return IsFP ? -1 : Instruction::And;
1267   case bitc::BINOP_OR:
1268     return IsFP ? -1 : Instruction::Or;
1269   case bitc::BINOP_XOR:
1270     return IsFP ? -1 : Instruction::Xor;
1271   }
1272 }
1273 
1274 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1275   switch (Val) {
1276   default: return AtomicRMWInst::BAD_BINOP;
1277   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1278   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1279   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1280   case bitc::RMW_AND: return AtomicRMWInst::And;
1281   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1282   case bitc::RMW_OR: return AtomicRMWInst::Or;
1283   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1284   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1285   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1286   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1287   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1288   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1289   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1290   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1291   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1292   case bitc::RMW_UINC_WRAP:
1293     return AtomicRMWInst::UIncWrap;
1294   case bitc::RMW_UDEC_WRAP:
1295     return AtomicRMWInst::UDecWrap;
1296   }
1297 }
1298 
1299 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1300   switch (Val) {
1301   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1302   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1303   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1304   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1305   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1306   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1307   default: // Map unknown orderings to sequentially-consistent.
1308   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1309   }
1310 }
1311 
1312 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1313   switch (Val) {
1314   default: // Map unknown selection kinds to any.
1315   case bitc::COMDAT_SELECTION_KIND_ANY:
1316     return Comdat::Any;
1317   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1318     return Comdat::ExactMatch;
1319   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1320     return Comdat::Largest;
1321   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1322     return Comdat::NoDeduplicate;
1323   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1324     return Comdat::SameSize;
1325   }
1326 }
1327 
1328 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1329   FastMathFlags FMF;
1330   if (0 != (Val & bitc::UnsafeAlgebra))
1331     FMF.setFast();
1332   if (0 != (Val & bitc::AllowReassoc))
1333     FMF.setAllowReassoc();
1334   if (0 != (Val & bitc::NoNaNs))
1335     FMF.setNoNaNs();
1336   if (0 != (Val & bitc::NoInfs))
1337     FMF.setNoInfs();
1338   if (0 != (Val & bitc::NoSignedZeros))
1339     FMF.setNoSignedZeros();
1340   if (0 != (Val & bitc::AllowReciprocal))
1341     FMF.setAllowReciprocal();
1342   if (0 != (Val & bitc::AllowContract))
1343     FMF.setAllowContract(true);
1344   if (0 != (Val & bitc::ApproxFunc))
1345     FMF.setApproxFunc();
1346   return FMF;
1347 }
1348 
1349 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1350   // A GlobalValue with local linkage cannot have a DLL storage class.
1351   if (GV->hasLocalLinkage())
1352     return;
1353   switch (Val) {
1354   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1355   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1356   }
1357 }
1358 
1359 Type *BitcodeReader::getTypeByID(unsigned ID) {
1360   // The type table size is always specified correctly.
1361   if (ID >= TypeList.size())
1362     return nullptr;
1363 
1364   if (Type *Ty = TypeList[ID])
1365     return Ty;
1366 
1367   // If we have a forward reference, the only possible case is when it is to a
1368   // named struct.  Just create a placeholder for now.
1369   return TypeList[ID] = createIdentifiedStructType(Context);
1370 }
1371 
1372 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1373   auto It = ContainedTypeIDs.find(ID);
1374   if (It == ContainedTypeIDs.end())
1375     return InvalidTypeID;
1376 
1377   if (Idx >= It->second.size())
1378     return InvalidTypeID;
1379 
1380   return It->second[Idx];
1381 }
1382 
1383 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1384   if (ID >= TypeList.size())
1385     return nullptr;
1386 
1387   Type *Ty = TypeList[ID];
1388   if (!Ty->isPointerTy())
1389     return nullptr;
1390 
1391   return getTypeByID(getContainedTypeID(ID, 0));
1392 }
1393 
1394 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1395                                          ArrayRef<unsigned> ChildTypeIDs) {
1396   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1397   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1398   auto It = VirtualTypeIDs.find(CacheKey);
1399   if (It != VirtualTypeIDs.end()) {
1400     // The cmpxchg return value is the only place we need more than one
1401     // contained type ID, however the second one will always be the same (i1),
1402     // so we don't need to include it in the cache key. This asserts that the
1403     // contained types are indeed as expected and there are no collisions.
1404     assert((ChildTypeIDs.empty() ||
1405             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1406            "Incorrect cached contained type IDs");
1407     return It->second;
1408   }
1409 
1410   unsigned TypeID = TypeList.size();
1411   TypeList.push_back(Ty);
1412   if (!ChildTypeIDs.empty())
1413     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1414   VirtualTypeIDs.insert({CacheKey, TypeID});
1415   return TypeID;
1416 }
1417 
1418 static bool isConstExprSupported(const BitcodeConstant *BC) {
1419   uint8_t Opcode = BC->Opcode;
1420 
1421   // These are not real constant expressions, always consider them supported.
1422   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1423     return true;
1424 
1425   // If -expand-constant-exprs is set, we want to consider all expressions
1426   // as unsupported.
1427   if (ExpandConstantExprs)
1428     return false;
1429 
1430   if (Instruction::isBinaryOp(Opcode))
1431     return ConstantExpr::isSupportedBinOp(Opcode);
1432 
1433   if (Instruction::isCast(Opcode))
1434     return ConstantExpr::isSupportedCastOp(Opcode);
1435 
1436   if (Opcode == Instruction::GetElementPtr)
1437     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1438 
1439   switch (Opcode) {
1440   case Instruction::FNeg:
1441   case Instruction::Select:
1442     return false;
1443   default:
1444     return true;
1445   }
1446 }
1447 
1448 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1449                                                   BasicBlock *InsertBB) {
1450   // Quickly handle the case where there is no BitcodeConstant to resolve.
1451   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1452       !isa<BitcodeConstant>(ValueList[StartValID]))
1453     return ValueList[StartValID];
1454 
1455   SmallDenseMap<unsigned, Value *> MaterializedValues;
1456   SmallVector<unsigned> Worklist;
1457   Worklist.push_back(StartValID);
1458   while (!Worklist.empty()) {
1459     unsigned ValID = Worklist.back();
1460     if (MaterializedValues.count(ValID)) {
1461       // Duplicate expression that was already handled.
1462       Worklist.pop_back();
1463       continue;
1464     }
1465 
1466     if (ValID >= ValueList.size() || !ValueList[ValID])
1467       return error("Invalid value ID");
1468 
1469     Value *V = ValueList[ValID];
1470     auto *BC = dyn_cast<BitcodeConstant>(V);
1471     if (!BC) {
1472       MaterializedValues.insert({ValID, V});
1473       Worklist.pop_back();
1474       continue;
1475     }
1476 
1477     // Iterate in reverse, so values will get popped from the worklist in
1478     // expected order.
1479     SmallVector<Value *> Ops;
1480     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1481       auto It = MaterializedValues.find(OpID);
1482       if (It != MaterializedValues.end())
1483         Ops.push_back(It->second);
1484       else
1485         Worklist.push_back(OpID);
1486     }
1487 
1488     // Some expressions have not been resolved yet, handle them first and then
1489     // revisit this one.
1490     if (Ops.size() != BC->getOperandIDs().size())
1491       continue;
1492     std::reverse(Ops.begin(), Ops.end());
1493 
1494     SmallVector<Constant *> ConstOps;
1495     for (Value *Op : Ops)
1496       if (auto *C = dyn_cast<Constant>(Op))
1497         ConstOps.push_back(C);
1498 
1499     // Materialize as constant expression if possible.
1500     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1501       Constant *C;
1502       if (Instruction::isCast(BC->Opcode)) {
1503         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1504         if (!C)
1505           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1506       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1507         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1508       } else {
1509         switch (BC->Opcode) {
1510         case BitcodeConstant::NoCFIOpcode: {
1511           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1512           if (!GV)
1513             return error("no_cfi operand must be GlobalValue");
1514           C = NoCFIValue::get(GV);
1515           break;
1516         }
1517         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1518           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1519           if (!GV)
1520             return error("dso_local operand must be GlobalValue");
1521           C = DSOLocalEquivalent::get(GV);
1522           break;
1523         }
1524         case BitcodeConstant::BlockAddressOpcode: {
1525           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1526           if (!Fn)
1527             return error("blockaddress operand must be a function");
1528 
1529           // If the function is already parsed we can insert the block address
1530           // right away.
1531           BasicBlock *BB;
1532           unsigned BBID = BC->Extra;
1533           if (!BBID)
1534             // Invalid reference to entry block.
1535             return error("Invalid ID");
1536           if (!Fn->empty()) {
1537             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1538             for (size_t I = 0, E = BBID; I != E; ++I) {
1539               if (BBI == BBE)
1540                 return error("Invalid ID");
1541               ++BBI;
1542             }
1543             BB = &*BBI;
1544           } else {
1545             // Otherwise insert a placeholder and remember it so it can be
1546             // inserted when the function is parsed.
1547             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1548             if (FwdBBs.empty())
1549               BasicBlockFwdRefQueue.push_back(Fn);
1550             if (FwdBBs.size() < BBID + 1)
1551               FwdBBs.resize(BBID + 1);
1552             if (!FwdBBs[BBID])
1553               FwdBBs[BBID] = BasicBlock::Create(Context);
1554             BB = FwdBBs[BBID];
1555           }
1556           C = BlockAddress::get(Fn, BB);
1557           break;
1558         }
1559         case BitcodeConstant::ConstantStructOpcode:
1560           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1561           break;
1562         case BitcodeConstant::ConstantArrayOpcode:
1563           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1564           break;
1565         case BitcodeConstant::ConstantVectorOpcode:
1566           C = ConstantVector::get(ConstOps);
1567           break;
1568         case Instruction::ICmp:
1569         case Instruction::FCmp:
1570           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1571           break;
1572         case Instruction::GetElementPtr:
1573           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1574                                              ArrayRef(ConstOps).drop_front(),
1575                                              BC->Flags, BC->getInRangeIndex());
1576           break;
1577         case Instruction::ExtractElement:
1578           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1579           break;
1580         case Instruction::InsertElement:
1581           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1582                                              ConstOps[2]);
1583           break;
1584         case Instruction::ShuffleVector: {
1585           SmallVector<int, 16> Mask;
1586           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1587           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1588           break;
1589         }
1590         default:
1591           llvm_unreachable("Unhandled bitcode constant");
1592         }
1593       }
1594 
1595       // Cache resolved constant.
1596       ValueList.replaceValueWithoutRAUW(ValID, C);
1597       MaterializedValues.insert({ValID, C});
1598       Worklist.pop_back();
1599       continue;
1600     }
1601 
1602     if (!InsertBB)
1603       return error(Twine("Value referenced by initializer is an unsupported "
1604                          "constant expression of type ") +
1605                    BC->getOpcodeName());
1606 
1607     // Materialize as instructions if necessary.
1608     Instruction *I;
1609     if (Instruction::isCast(BC->Opcode)) {
1610       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1611                            BC->getType(), "constexpr", InsertBB);
1612     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1613       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1614                                 "constexpr", InsertBB);
1615     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1616       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1617                                  Ops[1], "constexpr", InsertBB);
1618       if (isa<OverflowingBinaryOperator>(I)) {
1619         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1620           I->setHasNoSignedWrap();
1621         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1622           I->setHasNoUnsignedWrap();
1623       }
1624       if (isa<PossiblyExactOperator>(I) &&
1625           (BC->Flags & PossiblyExactOperator::IsExact))
1626         I->setIsExact();
1627     } else {
1628       switch (BC->Opcode) {
1629       case BitcodeConstant::ConstantVectorOpcode: {
1630         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1631         Value *V = PoisonValue::get(BC->getType());
1632         for (auto Pair : enumerate(Ops)) {
1633           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1634           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1635                                         InsertBB);
1636         }
1637         I = cast<Instruction>(V);
1638         break;
1639       }
1640       case BitcodeConstant::ConstantStructOpcode:
1641       case BitcodeConstant::ConstantArrayOpcode: {
1642         Value *V = PoisonValue::get(BC->getType());
1643         for (auto Pair : enumerate(Ops))
1644           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1645                                       "constexpr.ins", InsertBB);
1646         I = cast<Instruction>(V);
1647         break;
1648       }
1649       case Instruction::ICmp:
1650       case Instruction::FCmp:
1651         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1652                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1653                             "constexpr", InsertBB);
1654         break;
1655       case Instruction::GetElementPtr:
1656         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1657                                       ArrayRef(Ops).drop_front(), "constexpr",
1658                                       InsertBB);
1659         if (BC->Flags)
1660           cast<GetElementPtrInst>(I)->setIsInBounds();
1661         break;
1662       case Instruction::Select:
1663         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1664         break;
1665       case Instruction::ExtractElement:
1666         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1667         break;
1668       case Instruction::InsertElement:
1669         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1670                                       InsertBB);
1671         break;
1672       case Instruction::ShuffleVector:
1673         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1674                                   InsertBB);
1675         break;
1676       default:
1677         llvm_unreachable("Unhandled bitcode constant");
1678       }
1679     }
1680 
1681     MaterializedValues.insert({ValID, I});
1682     Worklist.pop_back();
1683   }
1684 
1685   return MaterializedValues[StartValID];
1686 }
1687 
1688 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1689   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1690   if (!MaybeV)
1691     return MaybeV.takeError();
1692 
1693   // Result must be Constant if InsertBB is nullptr.
1694   return cast<Constant>(MaybeV.get());
1695 }
1696 
1697 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1698                                                       StringRef Name) {
1699   auto *Ret = StructType::create(Context, Name);
1700   IdentifiedStructTypes.push_back(Ret);
1701   return Ret;
1702 }
1703 
1704 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1705   auto *Ret = StructType::create(Context);
1706   IdentifiedStructTypes.push_back(Ret);
1707   return Ret;
1708 }
1709 
1710 //===----------------------------------------------------------------------===//
1711 //  Functions for parsing blocks from the bitcode file
1712 //===----------------------------------------------------------------------===//
1713 
1714 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1715   switch (Val) {
1716   case Attribute::EndAttrKinds:
1717   case Attribute::EmptyKey:
1718   case Attribute::TombstoneKey:
1719     llvm_unreachable("Synthetic enumerators which should never get here");
1720 
1721   case Attribute::None:            return 0;
1722   case Attribute::ZExt:            return 1 << 0;
1723   case Attribute::SExt:            return 1 << 1;
1724   case Attribute::NoReturn:        return 1 << 2;
1725   case Attribute::InReg:           return 1 << 3;
1726   case Attribute::StructRet:       return 1 << 4;
1727   case Attribute::NoUnwind:        return 1 << 5;
1728   case Attribute::NoAlias:         return 1 << 6;
1729   case Attribute::ByVal:           return 1 << 7;
1730   case Attribute::Nest:            return 1 << 8;
1731   case Attribute::ReadNone:        return 1 << 9;
1732   case Attribute::ReadOnly:        return 1 << 10;
1733   case Attribute::NoInline:        return 1 << 11;
1734   case Attribute::AlwaysInline:    return 1 << 12;
1735   case Attribute::OptimizeForSize: return 1 << 13;
1736   case Attribute::StackProtect:    return 1 << 14;
1737   case Attribute::StackProtectReq: return 1 << 15;
1738   case Attribute::Alignment:       return 31 << 16;
1739   case Attribute::NoCapture:       return 1 << 21;
1740   case Attribute::NoRedZone:       return 1 << 22;
1741   case Attribute::NoImplicitFloat: return 1 << 23;
1742   case Attribute::Naked:           return 1 << 24;
1743   case Attribute::InlineHint:      return 1 << 25;
1744   case Attribute::StackAlignment:  return 7 << 26;
1745   case Attribute::ReturnsTwice:    return 1 << 29;
1746   case Attribute::UWTable:         return 1 << 30;
1747   case Attribute::NonLazyBind:     return 1U << 31;
1748   case Attribute::SanitizeAddress: return 1ULL << 32;
1749   case Attribute::MinSize:         return 1ULL << 33;
1750   case Attribute::NoDuplicate:     return 1ULL << 34;
1751   case Attribute::StackProtectStrong: return 1ULL << 35;
1752   case Attribute::SanitizeThread:  return 1ULL << 36;
1753   case Attribute::SanitizeMemory:  return 1ULL << 37;
1754   case Attribute::NoBuiltin:       return 1ULL << 38;
1755   case Attribute::Returned:        return 1ULL << 39;
1756   case Attribute::Cold:            return 1ULL << 40;
1757   case Attribute::Builtin:         return 1ULL << 41;
1758   case Attribute::OptimizeNone:    return 1ULL << 42;
1759   case Attribute::InAlloca:        return 1ULL << 43;
1760   case Attribute::NonNull:         return 1ULL << 44;
1761   case Attribute::JumpTable:       return 1ULL << 45;
1762   case Attribute::Convergent:      return 1ULL << 46;
1763   case Attribute::SafeStack:       return 1ULL << 47;
1764   case Attribute::NoRecurse:       return 1ULL << 48;
1765   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1766   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1767   case Attribute::SwiftSelf:       return 1ULL << 51;
1768   case Attribute::SwiftError:      return 1ULL << 52;
1769   case Attribute::WriteOnly:       return 1ULL << 53;
1770   case Attribute::Speculatable:    return 1ULL << 54;
1771   case Attribute::StrictFP:        return 1ULL << 55;
1772   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1773   case Attribute::NoCfCheck:       return 1ULL << 57;
1774   case Attribute::OptForFuzzing:   return 1ULL << 58;
1775   case Attribute::ShadowCallStack: return 1ULL << 59;
1776   case Attribute::SpeculativeLoadHardening:
1777     return 1ULL << 60;
1778   case Attribute::ImmArg:
1779     return 1ULL << 61;
1780   case Attribute::WillReturn:
1781     return 1ULL << 62;
1782   case Attribute::NoFree:
1783     return 1ULL << 63;
1784   default:
1785     // Other attributes are not supported in the raw format,
1786     // as we ran out of space.
1787     return 0;
1788   }
1789   llvm_unreachable("Unsupported attribute type");
1790 }
1791 
1792 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1793   if (!Val) return;
1794 
1795   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1796        I = Attribute::AttrKind(I + 1)) {
1797     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1798       if (I == Attribute::Alignment)
1799         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1800       else if (I == Attribute::StackAlignment)
1801         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1802       else if (Attribute::isTypeAttrKind(I))
1803         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1804       else
1805         B.addAttribute(I);
1806     }
1807   }
1808 }
1809 
1810 /// This fills an AttrBuilder object with the LLVM attributes that have
1811 /// been decoded from the given integer. This function must stay in sync with
1812 /// 'encodeLLVMAttributesForBitcode'.
1813 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1814                                            uint64_t EncodedAttrs,
1815                                            uint64_t AttrIdx) {
1816   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1817   // the bits above 31 down by 11 bits.
1818   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1819   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1820          "Alignment must be a power of two.");
1821 
1822   if (Alignment)
1823     B.addAlignmentAttr(Alignment);
1824 
1825   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1826                    (EncodedAttrs & 0xffff);
1827 
1828   if (AttrIdx == AttributeList::FunctionIndex) {
1829     // Upgrade old memory attributes.
1830     MemoryEffects ME = MemoryEffects::unknown();
1831     if (Attrs & (1ULL << 9)) {
1832       // ReadNone
1833       Attrs &= ~(1ULL << 9);
1834       ME &= MemoryEffects::none();
1835     }
1836     if (Attrs & (1ULL << 10)) {
1837       // ReadOnly
1838       Attrs &= ~(1ULL << 10);
1839       ME &= MemoryEffects::readOnly();
1840     }
1841     if (Attrs & (1ULL << 49)) {
1842       // InaccessibleMemOnly
1843       Attrs &= ~(1ULL << 49);
1844       ME &= MemoryEffects::inaccessibleMemOnly();
1845     }
1846     if (Attrs & (1ULL << 50)) {
1847       // InaccessibleMemOrArgMemOnly
1848       Attrs &= ~(1ULL << 50);
1849       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1850     }
1851     if (Attrs & (1ULL << 53)) {
1852       // WriteOnly
1853       Attrs &= ~(1ULL << 53);
1854       ME &= MemoryEffects::writeOnly();
1855     }
1856     if (ME != MemoryEffects::unknown())
1857       B.addMemoryAttr(ME);
1858   }
1859 
1860   addRawAttributeValue(B, Attrs);
1861 }
1862 
1863 Error BitcodeReader::parseAttributeBlock() {
1864   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1865     return Err;
1866 
1867   if (!MAttributes.empty())
1868     return error("Invalid multiple blocks");
1869 
1870   SmallVector<uint64_t, 64> Record;
1871 
1872   SmallVector<AttributeList, 8> Attrs;
1873 
1874   // Read all the records.
1875   while (true) {
1876     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1877     if (!MaybeEntry)
1878       return MaybeEntry.takeError();
1879     BitstreamEntry Entry = MaybeEntry.get();
1880 
1881     switch (Entry.Kind) {
1882     case BitstreamEntry::SubBlock: // Handled for us already.
1883     case BitstreamEntry::Error:
1884       return error("Malformed block");
1885     case BitstreamEntry::EndBlock:
1886       return Error::success();
1887     case BitstreamEntry::Record:
1888       // The interesting case.
1889       break;
1890     }
1891 
1892     // Read a record.
1893     Record.clear();
1894     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1895     if (!MaybeRecord)
1896       return MaybeRecord.takeError();
1897     switch (MaybeRecord.get()) {
1898     default:  // Default behavior: ignore.
1899       break;
1900     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1901       // Deprecated, but still needed to read old bitcode files.
1902       if (Record.size() & 1)
1903         return error("Invalid parameter attribute record");
1904 
1905       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1906         AttrBuilder B(Context);
1907         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1908         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1909       }
1910 
1911       MAttributes.push_back(AttributeList::get(Context, Attrs));
1912       Attrs.clear();
1913       break;
1914     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1915       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1916         Attrs.push_back(MAttributeGroups[Record[i]]);
1917 
1918       MAttributes.push_back(AttributeList::get(Context, Attrs));
1919       Attrs.clear();
1920       break;
1921     }
1922   }
1923 }
1924 
1925 // Returns Attribute::None on unrecognized codes.
1926 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1927   switch (Code) {
1928   default:
1929     return Attribute::None;
1930   case bitc::ATTR_KIND_ALIGNMENT:
1931     return Attribute::Alignment;
1932   case bitc::ATTR_KIND_ALWAYS_INLINE:
1933     return Attribute::AlwaysInline;
1934   case bitc::ATTR_KIND_BUILTIN:
1935     return Attribute::Builtin;
1936   case bitc::ATTR_KIND_BY_VAL:
1937     return Attribute::ByVal;
1938   case bitc::ATTR_KIND_IN_ALLOCA:
1939     return Attribute::InAlloca;
1940   case bitc::ATTR_KIND_COLD:
1941     return Attribute::Cold;
1942   case bitc::ATTR_KIND_CONVERGENT:
1943     return Attribute::Convergent;
1944   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1945     return Attribute::DisableSanitizerInstrumentation;
1946   case bitc::ATTR_KIND_ELEMENTTYPE:
1947     return Attribute::ElementType;
1948   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1949     return Attribute::FnRetThunkExtern;
1950   case bitc::ATTR_KIND_INLINE_HINT:
1951     return Attribute::InlineHint;
1952   case bitc::ATTR_KIND_IN_REG:
1953     return Attribute::InReg;
1954   case bitc::ATTR_KIND_JUMP_TABLE:
1955     return Attribute::JumpTable;
1956   case bitc::ATTR_KIND_MEMORY:
1957     return Attribute::Memory;
1958   case bitc::ATTR_KIND_NOFPCLASS:
1959     return Attribute::NoFPClass;
1960   case bitc::ATTR_KIND_MIN_SIZE:
1961     return Attribute::MinSize;
1962   case bitc::ATTR_KIND_NAKED:
1963     return Attribute::Naked;
1964   case bitc::ATTR_KIND_NEST:
1965     return Attribute::Nest;
1966   case bitc::ATTR_KIND_NO_ALIAS:
1967     return Attribute::NoAlias;
1968   case bitc::ATTR_KIND_NO_BUILTIN:
1969     return Attribute::NoBuiltin;
1970   case bitc::ATTR_KIND_NO_CALLBACK:
1971     return Attribute::NoCallback;
1972   case bitc::ATTR_KIND_NO_CAPTURE:
1973     return Attribute::NoCapture;
1974   case bitc::ATTR_KIND_NO_DUPLICATE:
1975     return Attribute::NoDuplicate;
1976   case bitc::ATTR_KIND_NOFREE:
1977     return Attribute::NoFree;
1978   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1979     return Attribute::NoImplicitFloat;
1980   case bitc::ATTR_KIND_NO_INLINE:
1981     return Attribute::NoInline;
1982   case bitc::ATTR_KIND_NO_RECURSE:
1983     return Attribute::NoRecurse;
1984   case bitc::ATTR_KIND_NO_MERGE:
1985     return Attribute::NoMerge;
1986   case bitc::ATTR_KIND_NON_LAZY_BIND:
1987     return Attribute::NonLazyBind;
1988   case bitc::ATTR_KIND_NON_NULL:
1989     return Attribute::NonNull;
1990   case bitc::ATTR_KIND_DEREFERENCEABLE:
1991     return Attribute::Dereferenceable;
1992   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1993     return Attribute::DereferenceableOrNull;
1994   case bitc::ATTR_KIND_ALLOC_ALIGN:
1995     return Attribute::AllocAlign;
1996   case bitc::ATTR_KIND_ALLOC_KIND:
1997     return Attribute::AllocKind;
1998   case bitc::ATTR_KIND_ALLOC_SIZE:
1999     return Attribute::AllocSize;
2000   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2001     return Attribute::AllocatedPointer;
2002   case bitc::ATTR_KIND_NO_RED_ZONE:
2003     return Attribute::NoRedZone;
2004   case bitc::ATTR_KIND_NO_RETURN:
2005     return Attribute::NoReturn;
2006   case bitc::ATTR_KIND_NOSYNC:
2007     return Attribute::NoSync;
2008   case bitc::ATTR_KIND_NOCF_CHECK:
2009     return Attribute::NoCfCheck;
2010   case bitc::ATTR_KIND_NO_PROFILE:
2011     return Attribute::NoProfile;
2012   case bitc::ATTR_KIND_SKIP_PROFILE:
2013     return Attribute::SkipProfile;
2014   case bitc::ATTR_KIND_NO_UNWIND:
2015     return Attribute::NoUnwind;
2016   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2017     return Attribute::NoSanitizeBounds;
2018   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2019     return Attribute::NoSanitizeCoverage;
2020   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2021     return Attribute::NullPointerIsValid;
2022   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2023     return Attribute::OptimizeForDebugging;
2024   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2025     return Attribute::OptForFuzzing;
2026   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2027     return Attribute::OptimizeForSize;
2028   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2029     return Attribute::OptimizeNone;
2030   case bitc::ATTR_KIND_READ_NONE:
2031     return Attribute::ReadNone;
2032   case bitc::ATTR_KIND_READ_ONLY:
2033     return Attribute::ReadOnly;
2034   case bitc::ATTR_KIND_RETURNED:
2035     return Attribute::Returned;
2036   case bitc::ATTR_KIND_RETURNS_TWICE:
2037     return Attribute::ReturnsTwice;
2038   case bitc::ATTR_KIND_S_EXT:
2039     return Attribute::SExt;
2040   case bitc::ATTR_KIND_SPECULATABLE:
2041     return Attribute::Speculatable;
2042   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2043     return Attribute::StackAlignment;
2044   case bitc::ATTR_KIND_STACK_PROTECT:
2045     return Attribute::StackProtect;
2046   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2047     return Attribute::StackProtectReq;
2048   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2049     return Attribute::StackProtectStrong;
2050   case bitc::ATTR_KIND_SAFESTACK:
2051     return Attribute::SafeStack;
2052   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2053     return Attribute::ShadowCallStack;
2054   case bitc::ATTR_KIND_STRICT_FP:
2055     return Attribute::StrictFP;
2056   case bitc::ATTR_KIND_STRUCT_RET:
2057     return Attribute::StructRet;
2058   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2059     return Attribute::SanitizeAddress;
2060   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2061     return Attribute::SanitizeHWAddress;
2062   case bitc::ATTR_KIND_SANITIZE_THREAD:
2063     return Attribute::SanitizeThread;
2064   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2065     return Attribute::SanitizeMemory;
2066   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2067     return Attribute::SpeculativeLoadHardening;
2068   case bitc::ATTR_KIND_SWIFT_ERROR:
2069     return Attribute::SwiftError;
2070   case bitc::ATTR_KIND_SWIFT_SELF:
2071     return Attribute::SwiftSelf;
2072   case bitc::ATTR_KIND_SWIFT_ASYNC:
2073     return Attribute::SwiftAsync;
2074   case bitc::ATTR_KIND_UW_TABLE:
2075     return Attribute::UWTable;
2076   case bitc::ATTR_KIND_VSCALE_RANGE:
2077     return Attribute::VScaleRange;
2078   case bitc::ATTR_KIND_WILLRETURN:
2079     return Attribute::WillReturn;
2080   case bitc::ATTR_KIND_WRITEONLY:
2081     return Attribute::WriteOnly;
2082   case bitc::ATTR_KIND_Z_EXT:
2083     return Attribute::ZExt;
2084   case bitc::ATTR_KIND_IMMARG:
2085     return Attribute::ImmArg;
2086   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2087     return Attribute::SanitizeMemTag;
2088   case bitc::ATTR_KIND_PREALLOCATED:
2089     return Attribute::Preallocated;
2090   case bitc::ATTR_KIND_NOUNDEF:
2091     return Attribute::NoUndef;
2092   case bitc::ATTR_KIND_BYREF:
2093     return Attribute::ByRef;
2094   case bitc::ATTR_KIND_MUSTPROGRESS:
2095     return Attribute::MustProgress;
2096   case bitc::ATTR_KIND_HOT:
2097     return Attribute::Hot;
2098   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2099     return Attribute::PresplitCoroutine;
2100   case bitc::ATTR_KIND_WRITABLE:
2101     return Attribute::Writable;
2102   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2103     return Attribute::CoroDestroyOnlyWhenComplete;
2104   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2105     return Attribute::DeadOnUnwind;
2106   }
2107 }
2108 
2109 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2110                                          MaybeAlign &Alignment) {
2111   // Note: Alignment in bitcode files is incremented by 1, so that zero
2112   // can be used for default alignment.
2113   if (Exponent > Value::MaxAlignmentExponent + 1)
2114     return error("Invalid alignment value");
2115   Alignment = decodeMaybeAlign(Exponent);
2116   return Error::success();
2117 }
2118 
2119 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2120   *Kind = getAttrFromCode(Code);
2121   if (*Kind == Attribute::None)
2122     return error("Unknown attribute kind (" + Twine(Code) + ")");
2123   return Error::success();
2124 }
2125 
2126 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2127   switch (EncodedKind) {
2128   case bitc::ATTR_KIND_READ_NONE:
2129     ME &= MemoryEffects::none();
2130     return true;
2131   case bitc::ATTR_KIND_READ_ONLY:
2132     ME &= MemoryEffects::readOnly();
2133     return true;
2134   case bitc::ATTR_KIND_WRITEONLY:
2135     ME &= MemoryEffects::writeOnly();
2136     return true;
2137   case bitc::ATTR_KIND_ARGMEMONLY:
2138     ME &= MemoryEffects::argMemOnly();
2139     return true;
2140   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2141     ME &= MemoryEffects::inaccessibleMemOnly();
2142     return true;
2143   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2144     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2145     return true;
2146   default:
2147     return false;
2148   }
2149 }
2150 
2151 Error BitcodeReader::parseAttributeGroupBlock() {
2152   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2153     return Err;
2154 
2155   if (!MAttributeGroups.empty())
2156     return error("Invalid multiple blocks");
2157 
2158   SmallVector<uint64_t, 64> Record;
2159 
2160   // Read all the records.
2161   while (true) {
2162     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2163     if (!MaybeEntry)
2164       return MaybeEntry.takeError();
2165     BitstreamEntry Entry = MaybeEntry.get();
2166 
2167     switch (Entry.Kind) {
2168     case BitstreamEntry::SubBlock: // Handled for us already.
2169     case BitstreamEntry::Error:
2170       return error("Malformed block");
2171     case BitstreamEntry::EndBlock:
2172       return Error::success();
2173     case BitstreamEntry::Record:
2174       // The interesting case.
2175       break;
2176     }
2177 
2178     // Read a record.
2179     Record.clear();
2180     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2181     if (!MaybeRecord)
2182       return MaybeRecord.takeError();
2183     switch (MaybeRecord.get()) {
2184     default:  // Default behavior: ignore.
2185       break;
2186     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2187       if (Record.size() < 3)
2188         return error("Invalid grp record");
2189 
2190       uint64_t GrpID = Record[0];
2191       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2192 
2193       AttrBuilder B(Context);
2194       MemoryEffects ME = MemoryEffects::unknown();
2195       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2196         if (Record[i] == 0) {        // Enum attribute
2197           Attribute::AttrKind Kind;
2198           uint64_t EncodedKind = Record[++i];
2199           if (Idx == AttributeList::FunctionIndex &&
2200               upgradeOldMemoryAttribute(ME, EncodedKind))
2201             continue;
2202 
2203           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2204             return Err;
2205 
2206           // Upgrade old-style byval attribute to one with a type, even if it's
2207           // nullptr. We will have to insert the real type when we associate
2208           // this AttributeList with a function.
2209           if (Kind == Attribute::ByVal)
2210             B.addByValAttr(nullptr);
2211           else if (Kind == Attribute::StructRet)
2212             B.addStructRetAttr(nullptr);
2213           else if (Kind == Attribute::InAlloca)
2214             B.addInAllocaAttr(nullptr);
2215           else if (Kind == Attribute::UWTable)
2216             B.addUWTableAttr(UWTableKind::Default);
2217           else if (Attribute::isEnumAttrKind(Kind))
2218             B.addAttribute(Kind);
2219           else
2220             return error("Not an enum attribute");
2221         } else if (Record[i] == 1) { // Integer attribute
2222           Attribute::AttrKind Kind;
2223           if (Error Err = parseAttrKind(Record[++i], &Kind))
2224             return Err;
2225           if (!Attribute::isIntAttrKind(Kind))
2226             return error("Not an int attribute");
2227           if (Kind == Attribute::Alignment)
2228             B.addAlignmentAttr(Record[++i]);
2229           else if (Kind == Attribute::StackAlignment)
2230             B.addStackAlignmentAttr(Record[++i]);
2231           else if (Kind == Attribute::Dereferenceable)
2232             B.addDereferenceableAttr(Record[++i]);
2233           else if (Kind == Attribute::DereferenceableOrNull)
2234             B.addDereferenceableOrNullAttr(Record[++i]);
2235           else if (Kind == Attribute::AllocSize)
2236             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2237           else if (Kind == Attribute::VScaleRange)
2238             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2239           else if (Kind == Attribute::UWTable)
2240             B.addUWTableAttr(UWTableKind(Record[++i]));
2241           else if (Kind == Attribute::AllocKind)
2242             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2243           else if (Kind == Attribute::Memory)
2244             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2245           else if (Kind == Attribute::NoFPClass)
2246             B.addNoFPClassAttr(
2247                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2248         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2249           bool HasValue = (Record[i++] == 4);
2250           SmallString<64> KindStr;
2251           SmallString<64> ValStr;
2252 
2253           while (Record[i] != 0 && i != e)
2254             KindStr += Record[i++];
2255           assert(Record[i] == 0 && "Kind string not null terminated");
2256 
2257           if (HasValue) {
2258             // Has a value associated with it.
2259             ++i; // Skip the '0' that terminates the "kind" string.
2260             while (Record[i] != 0 && i != e)
2261               ValStr += Record[i++];
2262             assert(Record[i] == 0 && "Value string not null terminated");
2263           }
2264 
2265           B.addAttribute(KindStr.str(), ValStr.str());
2266         } else if (Record[i] == 5 || Record[i] == 6) {
2267           bool HasType = Record[i] == 6;
2268           Attribute::AttrKind Kind;
2269           if (Error Err = parseAttrKind(Record[++i], &Kind))
2270             return Err;
2271           if (!Attribute::isTypeAttrKind(Kind))
2272             return error("Not a type attribute");
2273 
2274           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2275         } else {
2276           return error("Invalid attribute group entry");
2277         }
2278       }
2279 
2280       if (ME != MemoryEffects::unknown())
2281         B.addMemoryAttr(ME);
2282 
2283       UpgradeAttributes(B);
2284       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2285       break;
2286     }
2287     }
2288   }
2289 }
2290 
2291 Error BitcodeReader::parseTypeTable() {
2292   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2293     return Err;
2294 
2295   return parseTypeTableBody();
2296 }
2297 
2298 Error BitcodeReader::parseTypeTableBody() {
2299   if (!TypeList.empty())
2300     return error("Invalid multiple blocks");
2301 
2302   SmallVector<uint64_t, 64> Record;
2303   unsigned NumRecords = 0;
2304 
2305   SmallString<64> TypeName;
2306 
2307   // Read all the records for this type table.
2308   while (true) {
2309     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2310     if (!MaybeEntry)
2311       return MaybeEntry.takeError();
2312     BitstreamEntry Entry = MaybeEntry.get();
2313 
2314     switch (Entry.Kind) {
2315     case BitstreamEntry::SubBlock: // Handled for us already.
2316     case BitstreamEntry::Error:
2317       return error("Malformed block");
2318     case BitstreamEntry::EndBlock:
2319       if (NumRecords != TypeList.size())
2320         return error("Malformed block");
2321       return Error::success();
2322     case BitstreamEntry::Record:
2323       // The interesting case.
2324       break;
2325     }
2326 
2327     // Read a record.
2328     Record.clear();
2329     Type *ResultTy = nullptr;
2330     SmallVector<unsigned> ContainedIDs;
2331     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2332     if (!MaybeRecord)
2333       return MaybeRecord.takeError();
2334     switch (MaybeRecord.get()) {
2335     default:
2336       return error("Invalid value");
2337     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2338       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2339       // type list.  This allows us to reserve space.
2340       if (Record.empty())
2341         return error("Invalid numentry record");
2342       TypeList.resize(Record[0]);
2343       continue;
2344     case bitc::TYPE_CODE_VOID:      // VOID
2345       ResultTy = Type::getVoidTy(Context);
2346       break;
2347     case bitc::TYPE_CODE_HALF:     // HALF
2348       ResultTy = Type::getHalfTy(Context);
2349       break;
2350     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2351       ResultTy = Type::getBFloatTy(Context);
2352       break;
2353     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2354       ResultTy = Type::getFloatTy(Context);
2355       break;
2356     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2357       ResultTy = Type::getDoubleTy(Context);
2358       break;
2359     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2360       ResultTy = Type::getX86_FP80Ty(Context);
2361       break;
2362     case bitc::TYPE_CODE_FP128:     // FP128
2363       ResultTy = Type::getFP128Ty(Context);
2364       break;
2365     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2366       ResultTy = Type::getPPC_FP128Ty(Context);
2367       break;
2368     case bitc::TYPE_CODE_LABEL:     // LABEL
2369       ResultTy = Type::getLabelTy(Context);
2370       break;
2371     case bitc::TYPE_CODE_METADATA:  // METADATA
2372       ResultTy = Type::getMetadataTy(Context);
2373       break;
2374     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2375       ResultTy = Type::getX86_MMXTy(Context);
2376       break;
2377     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2378       ResultTy = Type::getX86_AMXTy(Context);
2379       break;
2380     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2381       ResultTy = Type::getTokenTy(Context);
2382       break;
2383     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2384       if (Record.empty())
2385         return error("Invalid integer record");
2386 
2387       uint64_t NumBits = Record[0];
2388       if (NumBits < IntegerType::MIN_INT_BITS ||
2389           NumBits > IntegerType::MAX_INT_BITS)
2390         return error("Bitwidth for integer type out of range");
2391       ResultTy = IntegerType::get(Context, NumBits);
2392       break;
2393     }
2394     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2395                                     //          [pointee type, address space]
2396       if (Record.empty())
2397         return error("Invalid pointer record");
2398       unsigned AddressSpace = 0;
2399       if (Record.size() == 2)
2400         AddressSpace = Record[1];
2401       ResultTy = getTypeByID(Record[0]);
2402       if (!ResultTy ||
2403           !PointerType::isValidElementType(ResultTy))
2404         return error("Invalid type");
2405       ContainedIDs.push_back(Record[0]);
2406       ResultTy = PointerType::get(ResultTy, AddressSpace);
2407       break;
2408     }
2409     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2410       if (Record.size() != 1)
2411         return error("Invalid opaque pointer record");
2412       unsigned AddressSpace = Record[0];
2413       ResultTy = PointerType::get(Context, AddressSpace);
2414       break;
2415     }
2416     case bitc::TYPE_CODE_FUNCTION_OLD: {
2417       // Deprecated, but still needed to read old bitcode files.
2418       // FUNCTION: [vararg, attrid, retty, paramty x N]
2419       if (Record.size() < 3)
2420         return error("Invalid function record");
2421       SmallVector<Type*, 8> ArgTys;
2422       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2423         if (Type *T = getTypeByID(Record[i]))
2424           ArgTys.push_back(T);
2425         else
2426           break;
2427       }
2428 
2429       ResultTy = getTypeByID(Record[2]);
2430       if (!ResultTy || ArgTys.size() < Record.size()-3)
2431         return error("Invalid type");
2432 
2433       ContainedIDs.append(Record.begin() + 2, Record.end());
2434       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2435       break;
2436     }
2437     case bitc::TYPE_CODE_FUNCTION: {
2438       // FUNCTION: [vararg, retty, paramty x N]
2439       if (Record.size() < 2)
2440         return error("Invalid function record");
2441       SmallVector<Type*, 8> ArgTys;
2442       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2443         if (Type *T = getTypeByID(Record[i])) {
2444           if (!FunctionType::isValidArgumentType(T))
2445             return error("Invalid function argument type");
2446           ArgTys.push_back(T);
2447         }
2448         else
2449           break;
2450       }
2451 
2452       ResultTy = getTypeByID(Record[1]);
2453       if (!ResultTy || ArgTys.size() < Record.size()-2)
2454         return error("Invalid type");
2455 
2456       ContainedIDs.append(Record.begin() + 1, Record.end());
2457       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2458       break;
2459     }
2460     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2461       if (Record.empty())
2462         return error("Invalid anon struct record");
2463       SmallVector<Type*, 8> EltTys;
2464       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2465         if (Type *T = getTypeByID(Record[i]))
2466           EltTys.push_back(T);
2467         else
2468           break;
2469       }
2470       if (EltTys.size() != Record.size()-1)
2471         return error("Invalid type");
2472       ContainedIDs.append(Record.begin() + 1, Record.end());
2473       ResultTy = StructType::get(Context, EltTys, Record[0]);
2474       break;
2475     }
2476     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2477       if (convertToString(Record, 0, TypeName))
2478         return error("Invalid struct name record");
2479       continue;
2480 
2481     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2482       if (Record.empty())
2483         return error("Invalid named struct record");
2484 
2485       if (NumRecords >= TypeList.size())
2486         return error("Invalid TYPE table");
2487 
2488       // Check to see if this was forward referenced, if so fill in the temp.
2489       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2490       if (Res) {
2491         Res->setName(TypeName);
2492         TypeList[NumRecords] = nullptr;
2493       } else  // Otherwise, create a new struct.
2494         Res = createIdentifiedStructType(Context, TypeName);
2495       TypeName.clear();
2496 
2497       SmallVector<Type*, 8> EltTys;
2498       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2499         if (Type *T = getTypeByID(Record[i]))
2500           EltTys.push_back(T);
2501         else
2502           break;
2503       }
2504       if (EltTys.size() != Record.size()-1)
2505         return error("Invalid named struct record");
2506       Res->setBody(EltTys, Record[0]);
2507       ContainedIDs.append(Record.begin() + 1, Record.end());
2508       ResultTy = Res;
2509       break;
2510     }
2511     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2512       if (Record.size() != 1)
2513         return error("Invalid opaque type record");
2514 
2515       if (NumRecords >= TypeList.size())
2516         return error("Invalid TYPE table");
2517 
2518       // Check to see if this was forward referenced, if so fill in the temp.
2519       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2520       if (Res) {
2521         Res->setName(TypeName);
2522         TypeList[NumRecords] = nullptr;
2523       } else  // Otherwise, create a new struct with no body.
2524         Res = createIdentifiedStructType(Context, TypeName);
2525       TypeName.clear();
2526       ResultTy = Res;
2527       break;
2528     }
2529     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2530       if (Record.size() < 1)
2531         return error("Invalid target extension type record");
2532 
2533       if (NumRecords >= TypeList.size())
2534         return error("Invalid TYPE table");
2535 
2536       if (Record[0] >= Record.size())
2537         return error("Too many type parameters");
2538 
2539       unsigned NumTys = Record[0];
2540       SmallVector<Type *, 4> TypeParams;
2541       SmallVector<unsigned, 8> IntParams;
2542       for (unsigned i = 0; i < NumTys; i++) {
2543         if (Type *T = getTypeByID(Record[i + 1]))
2544           TypeParams.push_back(T);
2545         else
2546           return error("Invalid type");
2547       }
2548 
2549       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2550         if (Record[i] > UINT_MAX)
2551           return error("Integer parameter too large");
2552         IntParams.push_back(Record[i]);
2553       }
2554       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2555       TypeName.clear();
2556       break;
2557     }
2558     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2559       if (Record.size() < 2)
2560         return error("Invalid array type record");
2561       ResultTy = getTypeByID(Record[1]);
2562       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2563         return error("Invalid type");
2564       ContainedIDs.push_back(Record[1]);
2565       ResultTy = ArrayType::get(ResultTy, Record[0]);
2566       break;
2567     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2568                                     //         [numelts, eltty, scalable]
2569       if (Record.size() < 2)
2570         return error("Invalid vector type record");
2571       if (Record[0] == 0)
2572         return error("Invalid vector length");
2573       ResultTy = getTypeByID(Record[1]);
2574       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2575         return error("Invalid type");
2576       bool Scalable = Record.size() > 2 ? Record[2] : false;
2577       ContainedIDs.push_back(Record[1]);
2578       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2579       break;
2580     }
2581 
2582     if (NumRecords >= TypeList.size())
2583       return error("Invalid TYPE table");
2584     if (TypeList[NumRecords])
2585       return error(
2586           "Invalid TYPE table: Only named structs can be forward referenced");
2587     assert(ResultTy && "Didn't read a type?");
2588     TypeList[NumRecords] = ResultTy;
2589     if (!ContainedIDs.empty())
2590       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2591     ++NumRecords;
2592   }
2593 }
2594 
2595 Error BitcodeReader::parseOperandBundleTags() {
2596   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2597     return Err;
2598 
2599   if (!BundleTags.empty())
2600     return error("Invalid multiple blocks");
2601 
2602   SmallVector<uint64_t, 64> Record;
2603 
2604   while (true) {
2605     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2606     if (!MaybeEntry)
2607       return MaybeEntry.takeError();
2608     BitstreamEntry Entry = MaybeEntry.get();
2609 
2610     switch (Entry.Kind) {
2611     case BitstreamEntry::SubBlock: // Handled for us already.
2612     case BitstreamEntry::Error:
2613       return error("Malformed block");
2614     case BitstreamEntry::EndBlock:
2615       return Error::success();
2616     case BitstreamEntry::Record:
2617       // The interesting case.
2618       break;
2619     }
2620 
2621     // Tags are implicitly mapped to integers by their order.
2622 
2623     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2624     if (!MaybeRecord)
2625       return MaybeRecord.takeError();
2626     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2627       return error("Invalid operand bundle record");
2628 
2629     // OPERAND_BUNDLE_TAG: [strchr x N]
2630     BundleTags.emplace_back();
2631     if (convertToString(Record, 0, BundleTags.back()))
2632       return error("Invalid operand bundle record");
2633     Record.clear();
2634   }
2635 }
2636 
2637 Error BitcodeReader::parseSyncScopeNames() {
2638   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2639     return Err;
2640 
2641   if (!SSIDs.empty())
2642     return error("Invalid multiple synchronization scope names blocks");
2643 
2644   SmallVector<uint64_t, 64> Record;
2645   while (true) {
2646     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2647     if (!MaybeEntry)
2648       return MaybeEntry.takeError();
2649     BitstreamEntry Entry = MaybeEntry.get();
2650 
2651     switch (Entry.Kind) {
2652     case BitstreamEntry::SubBlock: // Handled for us already.
2653     case BitstreamEntry::Error:
2654       return error("Malformed block");
2655     case BitstreamEntry::EndBlock:
2656       if (SSIDs.empty())
2657         return error("Invalid empty synchronization scope names block");
2658       return Error::success();
2659     case BitstreamEntry::Record:
2660       // The interesting case.
2661       break;
2662     }
2663 
2664     // Synchronization scope names are implicitly mapped to synchronization
2665     // scope IDs by their order.
2666 
2667     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2668     if (!MaybeRecord)
2669       return MaybeRecord.takeError();
2670     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2671       return error("Invalid sync scope record");
2672 
2673     SmallString<16> SSN;
2674     if (convertToString(Record, 0, SSN))
2675       return error("Invalid sync scope record");
2676 
2677     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2678     Record.clear();
2679   }
2680 }
2681 
2682 /// Associate a value with its name from the given index in the provided record.
2683 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2684                                              unsigned NameIndex, Triple &TT) {
2685   SmallString<128> ValueName;
2686   if (convertToString(Record, NameIndex, ValueName))
2687     return error("Invalid record");
2688   unsigned ValueID = Record[0];
2689   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2690     return error("Invalid record");
2691   Value *V = ValueList[ValueID];
2692 
2693   StringRef NameStr(ValueName.data(), ValueName.size());
2694   if (NameStr.contains(0))
2695     return error("Invalid value name");
2696   V->setName(NameStr);
2697   auto *GO = dyn_cast<GlobalObject>(V);
2698   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2699     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2700   return V;
2701 }
2702 
2703 /// Helper to note and return the current location, and jump to the given
2704 /// offset.
2705 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2706                                                  BitstreamCursor &Stream) {
2707   // Save the current parsing location so we can jump back at the end
2708   // of the VST read.
2709   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2710   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2711     return std::move(JumpFailed);
2712   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2713   if (!MaybeEntry)
2714     return MaybeEntry.takeError();
2715   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2716       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2717     return error("Expected value symbol table subblock");
2718   return CurrentBit;
2719 }
2720 
2721 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2722                                             Function *F,
2723                                             ArrayRef<uint64_t> Record) {
2724   // Note that we subtract 1 here because the offset is relative to one word
2725   // before the start of the identification or module block, which was
2726   // historically always the start of the regular bitcode header.
2727   uint64_t FuncWordOffset = Record[1] - 1;
2728   uint64_t FuncBitOffset = FuncWordOffset * 32;
2729   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2730   // Set the LastFunctionBlockBit to point to the last function block.
2731   // Later when parsing is resumed after function materialization,
2732   // we can simply skip that last function block.
2733   if (FuncBitOffset > LastFunctionBlockBit)
2734     LastFunctionBlockBit = FuncBitOffset;
2735 }
2736 
2737 /// Read a new-style GlobalValue symbol table.
2738 Error BitcodeReader::parseGlobalValueSymbolTable() {
2739   unsigned FuncBitcodeOffsetDelta =
2740       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2741 
2742   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2743     return Err;
2744 
2745   SmallVector<uint64_t, 64> Record;
2746   while (true) {
2747     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2748     if (!MaybeEntry)
2749       return MaybeEntry.takeError();
2750     BitstreamEntry Entry = MaybeEntry.get();
2751 
2752     switch (Entry.Kind) {
2753     case BitstreamEntry::SubBlock:
2754     case BitstreamEntry::Error:
2755       return error("Malformed block");
2756     case BitstreamEntry::EndBlock:
2757       return Error::success();
2758     case BitstreamEntry::Record:
2759       break;
2760     }
2761 
2762     Record.clear();
2763     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2764     if (!MaybeRecord)
2765       return MaybeRecord.takeError();
2766     switch (MaybeRecord.get()) {
2767     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2768       unsigned ValueID = Record[0];
2769       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2770         return error("Invalid value reference in symbol table");
2771       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2772                               cast<Function>(ValueList[ValueID]), Record);
2773       break;
2774     }
2775     }
2776   }
2777 }
2778 
2779 /// Parse the value symbol table at either the current parsing location or
2780 /// at the given bit offset if provided.
2781 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2782   uint64_t CurrentBit;
2783   // Pass in the Offset to distinguish between calling for the module-level
2784   // VST (where we want to jump to the VST offset) and the function-level
2785   // VST (where we don't).
2786   if (Offset > 0) {
2787     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2788     if (!MaybeCurrentBit)
2789       return MaybeCurrentBit.takeError();
2790     CurrentBit = MaybeCurrentBit.get();
2791     // If this module uses a string table, read this as a module-level VST.
2792     if (UseStrtab) {
2793       if (Error Err = parseGlobalValueSymbolTable())
2794         return Err;
2795       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2796         return JumpFailed;
2797       return Error::success();
2798     }
2799     // Otherwise, the VST will be in a similar format to a function-level VST,
2800     // and will contain symbol names.
2801   }
2802 
2803   // Compute the delta between the bitcode indices in the VST (the word offset
2804   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2805   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2806   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2807   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2808   // just before entering the VST subblock because: 1) the EnterSubBlock
2809   // changes the AbbrevID width; 2) the VST block is nested within the same
2810   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2811   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2812   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2813   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2814   unsigned FuncBitcodeOffsetDelta =
2815       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2816 
2817   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2818     return Err;
2819 
2820   SmallVector<uint64_t, 64> Record;
2821 
2822   Triple TT(TheModule->getTargetTriple());
2823 
2824   // Read all the records for this value table.
2825   SmallString<128> ValueName;
2826 
2827   while (true) {
2828     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2829     if (!MaybeEntry)
2830       return MaybeEntry.takeError();
2831     BitstreamEntry Entry = MaybeEntry.get();
2832 
2833     switch (Entry.Kind) {
2834     case BitstreamEntry::SubBlock: // Handled for us already.
2835     case BitstreamEntry::Error:
2836       return error("Malformed block");
2837     case BitstreamEntry::EndBlock:
2838       if (Offset > 0)
2839         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2840           return JumpFailed;
2841       return Error::success();
2842     case BitstreamEntry::Record:
2843       // The interesting case.
2844       break;
2845     }
2846 
2847     // Read a record.
2848     Record.clear();
2849     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2850     if (!MaybeRecord)
2851       return MaybeRecord.takeError();
2852     switch (MaybeRecord.get()) {
2853     default:  // Default behavior: unknown type.
2854       break;
2855     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2856       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2857       if (Error Err = ValOrErr.takeError())
2858         return Err;
2859       ValOrErr.get();
2860       break;
2861     }
2862     case bitc::VST_CODE_FNENTRY: {
2863       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2864       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2865       if (Error Err = ValOrErr.takeError())
2866         return Err;
2867       Value *V = ValOrErr.get();
2868 
2869       // Ignore function offsets emitted for aliases of functions in older
2870       // versions of LLVM.
2871       if (auto *F = dyn_cast<Function>(V))
2872         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2873       break;
2874     }
2875     case bitc::VST_CODE_BBENTRY: {
2876       if (convertToString(Record, 1, ValueName))
2877         return error("Invalid bbentry record");
2878       BasicBlock *BB = getBasicBlock(Record[0]);
2879       if (!BB)
2880         return error("Invalid bbentry record");
2881 
2882       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2883       ValueName.clear();
2884       break;
2885     }
2886     }
2887   }
2888 }
2889 
2890 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2891 /// encoding.
2892 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2893   if ((V & 1) == 0)
2894     return V >> 1;
2895   if (V != 1)
2896     return -(V >> 1);
2897   // There is no such thing as -0 with integers.  "-0" really means MININT.
2898   return 1ULL << 63;
2899 }
2900 
2901 /// Resolve all of the initializers for global values and aliases that we can.
2902 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2903   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2904   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2905   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2906 
2907   GlobalInitWorklist.swap(GlobalInits);
2908   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2909   FunctionOperandWorklist.swap(FunctionOperands);
2910 
2911   while (!GlobalInitWorklist.empty()) {
2912     unsigned ValID = GlobalInitWorklist.back().second;
2913     if (ValID >= ValueList.size()) {
2914       // Not ready to resolve this yet, it requires something later in the file.
2915       GlobalInits.push_back(GlobalInitWorklist.back());
2916     } else {
2917       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2918       if (!MaybeC)
2919         return MaybeC.takeError();
2920       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2921     }
2922     GlobalInitWorklist.pop_back();
2923   }
2924 
2925   while (!IndirectSymbolInitWorklist.empty()) {
2926     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2927     if (ValID >= ValueList.size()) {
2928       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2929     } else {
2930       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2931       if (!MaybeC)
2932         return MaybeC.takeError();
2933       Constant *C = MaybeC.get();
2934       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2935       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2936         if (C->getType() != GV->getType())
2937           return error("Alias and aliasee types don't match");
2938         GA->setAliasee(C);
2939       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2940         GI->setResolver(C);
2941       } else {
2942         return error("Expected an alias or an ifunc");
2943       }
2944     }
2945     IndirectSymbolInitWorklist.pop_back();
2946   }
2947 
2948   while (!FunctionOperandWorklist.empty()) {
2949     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2950     if (Info.PersonalityFn) {
2951       unsigned ValID = Info.PersonalityFn - 1;
2952       if (ValID < ValueList.size()) {
2953         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2954         if (!MaybeC)
2955           return MaybeC.takeError();
2956         Info.F->setPersonalityFn(MaybeC.get());
2957         Info.PersonalityFn = 0;
2958       }
2959     }
2960     if (Info.Prefix) {
2961       unsigned ValID = Info.Prefix - 1;
2962       if (ValID < ValueList.size()) {
2963         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2964         if (!MaybeC)
2965           return MaybeC.takeError();
2966         Info.F->setPrefixData(MaybeC.get());
2967         Info.Prefix = 0;
2968       }
2969     }
2970     if (Info.Prologue) {
2971       unsigned ValID = Info.Prologue - 1;
2972       if (ValID < ValueList.size()) {
2973         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2974         if (!MaybeC)
2975           return MaybeC.takeError();
2976         Info.F->setPrologueData(MaybeC.get());
2977         Info.Prologue = 0;
2978       }
2979     }
2980     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2981       FunctionOperands.push_back(Info);
2982     FunctionOperandWorklist.pop_back();
2983   }
2984 
2985   return Error::success();
2986 }
2987 
2988 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2989   SmallVector<uint64_t, 8> Words(Vals.size());
2990   transform(Vals, Words.begin(),
2991                  BitcodeReader::decodeSignRotatedValue);
2992 
2993   return APInt(TypeBits, Words);
2994 }
2995 
2996 Error BitcodeReader::parseConstants() {
2997   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2998     return Err;
2999 
3000   SmallVector<uint64_t, 64> Record;
3001 
3002   // Read all the records for this value table.
3003   Type *CurTy = Type::getInt32Ty(Context);
3004   unsigned Int32TyID = getVirtualTypeID(CurTy);
3005   unsigned CurTyID = Int32TyID;
3006   Type *CurElemTy = nullptr;
3007   unsigned NextCstNo = ValueList.size();
3008 
3009   while (true) {
3010     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3011     if (!MaybeEntry)
3012       return MaybeEntry.takeError();
3013     BitstreamEntry Entry = MaybeEntry.get();
3014 
3015     switch (Entry.Kind) {
3016     case BitstreamEntry::SubBlock: // Handled for us already.
3017     case BitstreamEntry::Error:
3018       return error("Malformed block");
3019     case BitstreamEntry::EndBlock:
3020       if (NextCstNo != ValueList.size())
3021         return error("Invalid constant reference");
3022       return Error::success();
3023     case BitstreamEntry::Record:
3024       // The interesting case.
3025       break;
3026     }
3027 
3028     // Read a record.
3029     Record.clear();
3030     Type *VoidType = Type::getVoidTy(Context);
3031     Value *V = nullptr;
3032     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3033     if (!MaybeBitCode)
3034       return MaybeBitCode.takeError();
3035     switch (unsigned BitCode = MaybeBitCode.get()) {
3036     default:  // Default behavior: unknown constant
3037     case bitc::CST_CODE_UNDEF:     // UNDEF
3038       V = UndefValue::get(CurTy);
3039       break;
3040     case bitc::CST_CODE_POISON:    // POISON
3041       V = PoisonValue::get(CurTy);
3042       break;
3043     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3044       if (Record.empty())
3045         return error("Invalid settype record");
3046       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3047         return error("Invalid settype record");
3048       if (TypeList[Record[0]] == VoidType)
3049         return error("Invalid constant type");
3050       CurTyID = Record[0];
3051       CurTy = TypeList[CurTyID];
3052       CurElemTy = getPtrElementTypeByID(CurTyID);
3053       continue;  // Skip the ValueList manipulation.
3054     case bitc::CST_CODE_NULL:      // NULL
3055       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3056         return error("Invalid type for a constant null value");
3057       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3058         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3059           return error("Invalid type for a constant null value");
3060       V = Constant::getNullValue(CurTy);
3061       break;
3062     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3063       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3064         return error("Invalid integer const record");
3065       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3066       break;
3067     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3068       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3069         return error("Invalid wide integer const record");
3070 
3071       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3072       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3073       V = ConstantInt::get(CurTy, VInt);
3074       break;
3075     }
3076     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3077       if (Record.empty())
3078         return error("Invalid float const record");
3079 
3080       auto *ScalarTy = CurTy->getScalarType();
3081       if (ScalarTy->isHalfTy())
3082         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3083                                            APInt(16, (uint16_t)Record[0])));
3084       else if (ScalarTy->isBFloatTy())
3085         V = ConstantFP::get(
3086             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3087       else if (ScalarTy->isFloatTy())
3088         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3089                                            APInt(32, (uint32_t)Record[0])));
3090       else if (ScalarTy->isDoubleTy())
3091         V = ConstantFP::get(
3092             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3093       else if (ScalarTy->isX86_FP80Ty()) {
3094         // Bits are not stored the same way as a normal i80 APInt, compensate.
3095         uint64_t Rearrange[2];
3096         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3097         Rearrange[1] = Record[0] >> 48;
3098         V = ConstantFP::get(
3099             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3100       } else if (ScalarTy->isFP128Ty())
3101         V = ConstantFP::get(CurTy,
3102                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3103       else if (ScalarTy->isPPC_FP128Ty())
3104         V = ConstantFP::get(
3105             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3106       else
3107         V = UndefValue::get(CurTy);
3108       break;
3109     }
3110 
3111     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3112       if (Record.empty())
3113         return error("Invalid aggregate record");
3114 
3115       unsigned Size = Record.size();
3116       SmallVector<unsigned, 16> Elts;
3117       for (unsigned i = 0; i != Size; ++i)
3118         Elts.push_back(Record[i]);
3119 
3120       if (isa<StructType>(CurTy)) {
3121         V = BitcodeConstant::create(
3122             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3123       } else if (isa<ArrayType>(CurTy)) {
3124         V = BitcodeConstant::create(Alloc, CurTy,
3125                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3126       } else if (isa<VectorType>(CurTy)) {
3127         V = BitcodeConstant::create(
3128             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3129       } else {
3130         V = UndefValue::get(CurTy);
3131       }
3132       break;
3133     }
3134     case bitc::CST_CODE_STRING:    // STRING: [values]
3135     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3136       if (Record.empty())
3137         return error("Invalid string record");
3138 
3139       SmallString<16> Elts(Record.begin(), Record.end());
3140       V = ConstantDataArray::getString(Context, Elts,
3141                                        BitCode == bitc::CST_CODE_CSTRING);
3142       break;
3143     }
3144     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3145       if (Record.empty())
3146         return error("Invalid data record");
3147 
3148       Type *EltTy;
3149       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3150         EltTy = Array->getElementType();
3151       else
3152         EltTy = cast<VectorType>(CurTy)->getElementType();
3153       if (EltTy->isIntegerTy(8)) {
3154         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3155         if (isa<VectorType>(CurTy))
3156           V = ConstantDataVector::get(Context, Elts);
3157         else
3158           V = ConstantDataArray::get(Context, Elts);
3159       } else if (EltTy->isIntegerTy(16)) {
3160         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3161         if (isa<VectorType>(CurTy))
3162           V = ConstantDataVector::get(Context, Elts);
3163         else
3164           V = ConstantDataArray::get(Context, Elts);
3165       } else if (EltTy->isIntegerTy(32)) {
3166         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3167         if (isa<VectorType>(CurTy))
3168           V = ConstantDataVector::get(Context, Elts);
3169         else
3170           V = ConstantDataArray::get(Context, Elts);
3171       } else if (EltTy->isIntegerTy(64)) {
3172         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3173         if (isa<VectorType>(CurTy))
3174           V = ConstantDataVector::get(Context, Elts);
3175         else
3176           V = ConstantDataArray::get(Context, Elts);
3177       } else if (EltTy->isHalfTy()) {
3178         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3179         if (isa<VectorType>(CurTy))
3180           V = ConstantDataVector::getFP(EltTy, Elts);
3181         else
3182           V = ConstantDataArray::getFP(EltTy, Elts);
3183       } else if (EltTy->isBFloatTy()) {
3184         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3185         if (isa<VectorType>(CurTy))
3186           V = ConstantDataVector::getFP(EltTy, Elts);
3187         else
3188           V = ConstantDataArray::getFP(EltTy, Elts);
3189       } else if (EltTy->isFloatTy()) {
3190         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3191         if (isa<VectorType>(CurTy))
3192           V = ConstantDataVector::getFP(EltTy, Elts);
3193         else
3194           V = ConstantDataArray::getFP(EltTy, Elts);
3195       } else if (EltTy->isDoubleTy()) {
3196         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3197         if (isa<VectorType>(CurTy))
3198           V = ConstantDataVector::getFP(EltTy, Elts);
3199         else
3200           V = ConstantDataArray::getFP(EltTy, Elts);
3201       } else {
3202         return error("Invalid type for value");
3203       }
3204       break;
3205     }
3206     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3207       if (Record.size() < 2)
3208         return error("Invalid unary op constexpr record");
3209       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3210       if (Opc < 0) {
3211         V = UndefValue::get(CurTy);  // Unknown unop.
3212       } else {
3213         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3214       }
3215       break;
3216     }
3217     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3218       if (Record.size() < 3)
3219         return error("Invalid binary op constexpr record");
3220       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3221       if (Opc < 0) {
3222         V = UndefValue::get(CurTy);  // Unknown binop.
3223       } else {
3224         uint8_t Flags = 0;
3225         if (Record.size() >= 4) {
3226           if (Opc == Instruction::Add ||
3227               Opc == Instruction::Sub ||
3228               Opc == Instruction::Mul ||
3229               Opc == Instruction::Shl) {
3230             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3231               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3232             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3233               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3234           } else if (Opc == Instruction::SDiv ||
3235                      Opc == Instruction::UDiv ||
3236                      Opc == Instruction::LShr ||
3237                      Opc == Instruction::AShr) {
3238             if (Record[3] & (1 << bitc::PEO_EXACT))
3239               Flags |= PossiblyExactOperator::IsExact;
3240           }
3241         }
3242         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3243                                     {(unsigned)Record[1], (unsigned)Record[2]});
3244       }
3245       break;
3246     }
3247     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3248       if (Record.size() < 3)
3249         return error("Invalid cast constexpr record");
3250       int Opc = getDecodedCastOpcode(Record[0]);
3251       if (Opc < 0) {
3252         V = UndefValue::get(CurTy);  // Unknown cast.
3253       } else {
3254         unsigned OpTyID = Record[1];
3255         Type *OpTy = getTypeByID(OpTyID);
3256         if (!OpTy)
3257           return error("Invalid cast constexpr record");
3258         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3259       }
3260       break;
3261     }
3262     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3263     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3264     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3265                                                      // operands]
3266       if (Record.size() < 2)
3267         return error("Constant GEP record must have at least two elements");
3268       unsigned OpNum = 0;
3269       Type *PointeeType = nullptr;
3270       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3271           Record.size() % 2)
3272         PointeeType = getTypeByID(Record[OpNum++]);
3273 
3274       bool InBounds = false;
3275       std::optional<unsigned> InRangeIndex;
3276       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3277         uint64_t Op = Record[OpNum++];
3278         InBounds = Op & 1;
3279         InRangeIndex = Op >> 1;
3280       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3281         InBounds = true;
3282 
3283       SmallVector<unsigned, 16> Elts;
3284       unsigned BaseTypeID = Record[OpNum];
3285       while (OpNum != Record.size()) {
3286         unsigned ElTyID = Record[OpNum++];
3287         Type *ElTy = getTypeByID(ElTyID);
3288         if (!ElTy)
3289           return error("Invalid getelementptr constexpr record");
3290         Elts.push_back(Record[OpNum++]);
3291       }
3292 
3293       if (Elts.size() < 1)
3294         return error("Invalid gep with no operands");
3295 
3296       Type *BaseType = getTypeByID(BaseTypeID);
3297       if (isa<VectorType>(BaseType)) {
3298         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3299         BaseType = getTypeByID(BaseTypeID);
3300       }
3301 
3302       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3303       if (!OrigPtrTy)
3304         return error("GEP base operand must be pointer or vector of pointer");
3305 
3306       if (!PointeeType) {
3307         PointeeType = getPtrElementTypeByID(BaseTypeID);
3308         if (!PointeeType)
3309           return error("Missing element type for old-style constant GEP");
3310       }
3311 
3312       V = BitcodeConstant::create(Alloc, CurTy,
3313                                   {Instruction::GetElementPtr, InBounds,
3314                                    InRangeIndex.value_or(-1), PointeeType},
3315                                   Elts);
3316       break;
3317     }
3318     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3319       if (Record.size() < 3)
3320         return error("Invalid select constexpr record");
3321 
3322       V = BitcodeConstant::create(
3323           Alloc, CurTy, Instruction::Select,
3324           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3325       break;
3326     }
3327     case bitc::CST_CODE_CE_EXTRACTELT
3328         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3329       if (Record.size() < 3)
3330         return error("Invalid extractelement constexpr record");
3331       unsigned OpTyID = Record[0];
3332       VectorType *OpTy =
3333         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3334       if (!OpTy)
3335         return error("Invalid extractelement constexpr record");
3336       unsigned IdxRecord;
3337       if (Record.size() == 4) {
3338         unsigned IdxTyID = Record[2];
3339         Type *IdxTy = getTypeByID(IdxTyID);
3340         if (!IdxTy)
3341           return error("Invalid extractelement constexpr record");
3342         IdxRecord = Record[3];
3343       } else {
3344         // Deprecated, but still needed to read old bitcode files.
3345         IdxRecord = Record[2];
3346       }
3347       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3348                                   {(unsigned)Record[1], IdxRecord});
3349       break;
3350     }
3351     case bitc::CST_CODE_CE_INSERTELT
3352         : { // CE_INSERTELT: [opval, opval, opty, opval]
3353       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3354       if (Record.size() < 3 || !OpTy)
3355         return error("Invalid insertelement constexpr record");
3356       unsigned IdxRecord;
3357       if (Record.size() == 4) {
3358         unsigned IdxTyID = Record[2];
3359         Type *IdxTy = getTypeByID(IdxTyID);
3360         if (!IdxTy)
3361           return error("Invalid insertelement constexpr record");
3362         IdxRecord = Record[3];
3363       } else {
3364         // Deprecated, but still needed to read old bitcode files.
3365         IdxRecord = Record[2];
3366       }
3367       V = BitcodeConstant::create(
3368           Alloc, CurTy, Instruction::InsertElement,
3369           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3370       break;
3371     }
3372     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3373       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3374       if (Record.size() < 3 || !OpTy)
3375         return error("Invalid shufflevector constexpr record");
3376       V = BitcodeConstant::create(
3377           Alloc, CurTy, Instruction::ShuffleVector,
3378           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3379       break;
3380     }
3381     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3382       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3383       VectorType *OpTy =
3384         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3385       if (Record.size() < 4 || !RTy || !OpTy)
3386         return error("Invalid shufflevector constexpr record");
3387       V = BitcodeConstant::create(
3388           Alloc, CurTy, Instruction::ShuffleVector,
3389           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3390       break;
3391     }
3392     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3393       if (Record.size() < 4)
3394         return error("Invalid cmp constexpt record");
3395       unsigned OpTyID = Record[0];
3396       Type *OpTy = getTypeByID(OpTyID);
3397       if (!OpTy)
3398         return error("Invalid cmp constexpr record");
3399       V = BitcodeConstant::create(
3400           Alloc, CurTy,
3401           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3402                                               : Instruction::ICmp),
3403            (uint8_t)Record[3]},
3404           {(unsigned)Record[1], (unsigned)Record[2]});
3405       break;
3406     }
3407     // This maintains backward compatibility, pre-asm dialect keywords.
3408     // Deprecated, but still needed to read old bitcode files.
3409     case bitc::CST_CODE_INLINEASM_OLD: {
3410       if (Record.size() < 2)
3411         return error("Invalid inlineasm record");
3412       std::string AsmStr, ConstrStr;
3413       bool HasSideEffects = Record[0] & 1;
3414       bool IsAlignStack = Record[0] >> 1;
3415       unsigned AsmStrSize = Record[1];
3416       if (2+AsmStrSize >= Record.size())
3417         return error("Invalid inlineasm record");
3418       unsigned ConstStrSize = Record[2+AsmStrSize];
3419       if (3+AsmStrSize+ConstStrSize > Record.size())
3420         return error("Invalid inlineasm record");
3421 
3422       for (unsigned i = 0; i != AsmStrSize; ++i)
3423         AsmStr += (char)Record[2+i];
3424       for (unsigned i = 0; i != ConstStrSize; ++i)
3425         ConstrStr += (char)Record[3+AsmStrSize+i];
3426       UpgradeInlineAsmString(&AsmStr);
3427       if (!CurElemTy)
3428         return error("Missing element type for old-style inlineasm");
3429       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3430                          HasSideEffects, IsAlignStack);
3431       break;
3432     }
3433     // This version adds support for the asm dialect keywords (e.g.,
3434     // inteldialect).
3435     case bitc::CST_CODE_INLINEASM_OLD2: {
3436       if (Record.size() < 2)
3437         return error("Invalid inlineasm record");
3438       std::string AsmStr, ConstrStr;
3439       bool HasSideEffects = Record[0] & 1;
3440       bool IsAlignStack = (Record[0] >> 1) & 1;
3441       unsigned AsmDialect = Record[0] >> 2;
3442       unsigned AsmStrSize = Record[1];
3443       if (2+AsmStrSize >= Record.size())
3444         return error("Invalid inlineasm record");
3445       unsigned ConstStrSize = Record[2+AsmStrSize];
3446       if (3+AsmStrSize+ConstStrSize > Record.size())
3447         return error("Invalid inlineasm record");
3448 
3449       for (unsigned i = 0; i != AsmStrSize; ++i)
3450         AsmStr += (char)Record[2+i];
3451       for (unsigned i = 0; i != ConstStrSize; ++i)
3452         ConstrStr += (char)Record[3+AsmStrSize+i];
3453       UpgradeInlineAsmString(&AsmStr);
3454       if (!CurElemTy)
3455         return error("Missing element type for old-style inlineasm");
3456       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3457                          HasSideEffects, IsAlignStack,
3458                          InlineAsm::AsmDialect(AsmDialect));
3459       break;
3460     }
3461     // This version adds support for the unwind keyword.
3462     case bitc::CST_CODE_INLINEASM_OLD3: {
3463       if (Record.size() < 2)
3464         return error("Invalid inlineasm record");
3465       unsigned OpNum = 0;
3466       std::string AsmStr, ConstrStr;
3467       bool HasSideEffects = Record[OpNum] & 1;
3468       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3469       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3470       bool CanThrow = (Record[OpNum] >> 3) & 1;
3471       ++OpNum;
3472       unsigned AsmStrSize = Record[OpNum];
3473       ++OpNum;
3474       if (OpNum + AsmStrSize >= Record.size())
3475         return error("Invalid inlineasm record");
3476       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3477       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3478         return error("Invalid inlineasm record");
3479 
3480       for (unsigned i = 0; i != AsmStrSize; ++i)
3481         AsmStr += (char)Record[OpNum + i];
3482       ++OpNum;
3483       for (unsigned i = 0; i != ConstStrSize; ++i)
3484         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3485       UpgradeInlineAsmString(&AsmStr);
3486       if (!CurElemTy)
3487         return error("Missing element type for old-style inlineasm");
3488       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3489                          HasSideEffects, IsAlignStack,
3490                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3491       break;
3492     }
3493     // This version adds explicit function type.
3494     case bitc::CST_CODE_INLINEASM: {
3495       if (Record.size() < 3)
3496         return error("Invalid inlineasm record");
3497       unsigned OpNum = 0;
3498       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3499       ++OpNum;
3500       if (!FnTy)
3501         return error("Invalid inlineasm record");
3502       std::string AsmStr, ConstrStr;
3503       bool HasSideEffects = Record[OpNum] & 1;
3504       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3505       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3506       bool CanThrow = (Record[OpNum] >> 3) & 1;
3507       ++OpNum;
3508       unsigned AsmStrSize = Record[OpNum];
3509       ++OpNum;
3510       if (OpNum + AsmStrSize >= Record.size())
3511         return error("Invalid inlineasm record");
3512       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3513       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3514         return error("Invalid inlineasm record");
3515 
3516       for (unsigned i = 0; i != AsmStrSize; ++i)
3517         AsmStr += (char)Record[OpNum + i];
3518       ++OpNum;
3519       for (unsigned i = 0; i != ConstStrSize; ++i)
3520         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3521       UpgradeInlineAsmString(&AsmStr);
3522       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3523                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3524       break;
3525     }
3526     case bitc::CST_CODE_BLOCKADDRESS:{
3527       if (Record.size() < 3)
3528         return error("Invalid blockaddress record");
3529       unsigned FnTyID = Record[0];
3530       Type *FnTy = getTypeByID(FnTyID);
3531       if (!FnTy)
3532         return error("Invalid blockaddress record");
3533       V = BitcodeConstant::create(
3534           Alloc, CurTy,
3535           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3536           Record[1]);
3537       break;
3538     }
3539     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3540       if (Record.size() < 2)
3541         return error("Invalid dso_local record");
3542       unsigned GVTyID = Record[0];
3543       Type *GVTy = getTypeByID(GVTyID);
3544       if (!GVTy)
3545         return error("Invalid dso_local record");
3546       V = BitcodeConstant::create(
3547           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3548       break;
3549     }
3550     case bitc::CST_CODE_NO_CFI_VALUE: {
3551       if (Record.size() < 2)
3552         return error("Invalid no_cfi record");
3553       unsigned GVTyID = Record[0];
3554       Type *GVTy = getTypeByID(GVTyID);
3555       if (!GVTy)
3556         return error("Invalid no_cfi record");
3557       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3558                                   Record[1]);
3559       break;
3560     }
3561     }
3562 
3563     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3564     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3565       return Err;
3566     ++NextCstNo;
3567   }
3568 }
3569 
3570 Error BitcodeReader::parseUseLists() {
3571   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3572     return Err;
3573 
3574   // Read all the records.
3575   SmallVector<uint64_t, 64> Record;
3576 
3577   while (true) {
3578     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3579     if (!MaybeEntry)
3580       return MaybeEntry.takeError();
3581     BitstreamEntry Entry = MaybeEntry.get();
3582 
3583     switch (Entry.Kind) {
3584     case BitstreamEntry::SubBlock: // Handled for us already.
3585     case BitstreamEntry::Error:
3586       return error("Malformed block");
3587     case BitstreamEntry::EndBlock:
3588       return Error::success();
3589     case BitstreamEntry::Record:
3590       // The interesting case.
3591       break;
3592     }
3593 
3594     // Read a use list record.
3595     Record.clear();
3596     bool IsBB = false;
3597     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3598     if (!MaybeRecord)
3599       return MaybeRecord.takeError();
3600     switch (MaybeRecord.get()) {
3601     default:  // Default behavior: unknown type.
3602       break;
3603     case bitc::USELIST_CODE_BB:
3604       IsBB = true;
3605       [[fallthrough]];
3606     case bitc::USELIST_CODE_DEFAULT: {
3607       unsigned RecordLength = Record.size();
3608       if (RecordLength < 3)
3609         // Records should have at least an ID and two indexes.
3610         return error("Invalid record");
3611       unsigned ID = Record.pop_back_val();
3612 
3613       Value *V;
3614       if (IsBB) {
3615         assert(ID < FunctionBBs.size() && "Basic block not found");
3616         V = FunctionBBs[ID];
3617       } else
3618         V = ValueList[ID];
3619       unsigned NumUses = 0;
3620       SmallDenseMap<const Use *, unsigned, 16> Order;
3621       for (const Use &U : V->materialized_uses()) {
3622         if (++NumUses > Record.size())
3623           break;
3624         Order[&U] = Record[NumUses - 1];
3625       }
3626       if (Order.size() != Record.size() || NumUses > Record.size())
3627         // Mismatches can happen if the functions are being materialized lazily
3628         // (out-of-order), or a value has been upgraded.
3629         break;
3630 
3631       V->sortUseList([&](const Use &L, const Use &R) {
3632         return Order.lookup(&L) < Order.lookup(&R);
3633       });
3634       break;
3635     }
3636     }
3637   }
3638 }
3639 
3640 /// When we see the block for metadata, remember where it is and then skip it.
3641 /// This lets us lazily deserialize the metadata.
3642 Error BitcodeReader::rememberAndSkipMetadata() {
3643   // Save the current stream state.
3644   uint64_t CurBit = Stream.GetCurrentBitNo();
3645   DeferredMetadataInfo.push_back(CurBit);
3646 
3647   // Skip over the block for now.
3648   if (Error Err = Stream.SkipBlock())
3649     return Err;
3650   return Error::success();
3651 }
3652 
3653 Error BitcodeReader::materializeMetadata() {
3654   for (uint64_t BitPos : DeferredMetadataInfo) {
3655     // Move the bit stream to the saved position.
3656     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3657       return JumpFailed;
3658     if (Error Err = MDLoader->parseModuleMetadata())
3659       return Err;
3660   }
3661 
3662   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3663   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3664   // multiple times.
3665   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3666     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3667       NamedMDNode *LinkerOpts =
3668           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3669       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3670         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3671     }
3672   }
3673 
3674   DeferredMetadataInfo.clear();
3675   return Error::success();
3676 }
3677 
3678 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3679 
3680 /// When we see the block for a function body, remember where it is and then
3681 /// skip it.  This lets us lazily deserialize the functions.
3682 Error BitcodeReader::rememberAndSkipFunctionBody() {
3683   // Get the function we are talking about.
3684   if (FunctionsWithBodies.empty())
3685     return error("Insufficient function protos");
3686 
3687   Function *Fn = FunctionsWithBodies.back();
3688   FunctionsWithBodies.pop_back();
3689 
3690   // Save the current stream state.
3691   uint64_t CurBit = Stream.GetCurrentBitNo();
3692   assert(
3693       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3694       "Mismatch between VST and scanned function offsets");
3695   DeferredFunctionInfo[Fn] = CurBit;
3696 
3697   // Skip over the function block for now.
3698   if (Error Err = Stream.SkipBlock())
3699     return Err;
3700   return Error::success();
3701 }
3702 
3703 Error BitcodeReader::globalCleanup() {
3704   // Patch the initializers for globals and aliases up.
3705   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3706     return Err;
3707   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3708     return error("Malformed global initializer set");
3709 
3710   // Look for intrinsic functions which need to be upgraded at some point
3711   // and functions that need to have their function attributes upgraded.
3712   for (Function &F : *TheModule) {
3713     MDLoader->upgradeDebugIntrinsics(F);
3714     Function *NewFn;
3715     if (UpgradeIntrinsicFunction(&F, NewFn))
3716       UpgradedIntrinsics[&F] = NewFn;
3717     // Look for functions that rely on old function attribute behavior.
3718     UpgradeFunctionAttributes(F);
3719   }
3720 
3721   // Look for global variables which need to be renamed.
3722   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3723   for (GlobalVariable &GV : TheModule->globals())
3724     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3725       UpgradedVariables.emplace_back(&GV, Upgraded);
3726   for (auto &Pair : UpgradedVariables) {
3727     Pair.first->eraseFromParent();
3728     TheModule->insertGlobalVariable(Pair.second);
3729   }
3730 
3731   // Force deallocation of memory for these vectors to favor the client that
3732   // want lazy deserialization.
3733   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3734   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3735   return Error::success();
3736 }
3737 
3738 /// Support for lazy parsing of function bodies. This is required if we
3739 /// either have an old bitcode file without a VST forward declaration record,
3740 /// or if we have an anonymous function being materialized, since anonymous
3741 /// functions do not have a name and are therefore not in the VST.
3742 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3743   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3744     return JumpFailed;
3745 
3746   if (Stream.AtEndOfStream())
3747     return error("Could not find function in stream");
3748 
3749   if (!SeenFirstFunctionBody)
3750     return error("Trying to materialize functions before seeing function blocks");
3751 
3752   // An old bitcode file with the symbol table at the end would have
3753   // finished the parse greedily.
3754   assert(SeenValueSymbolTable);
3755 
3756   SmallVector<uint64_t, 64> Record;
3757 
3758   while (true) {
3759     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3760     if (!MaybeEntry)
3761       return MaybeEntry.takeError();
3762     llvm::BitstreamEntry Entry = MaybeEntry.get();
3763 
3764     switch (Entry.Kind) {
3765     default:
3766       return error("Expect SubBlock");
3767     case BitstreamEntry::SubBlock:
3768       switch (Entry.ID) {
3769       default:
3770         return error("Expect function block");
3771       case bitc::FUNCTION_BLOCK_ID:
3772         if (Error Err = rememberAndSkipFunctionBody())
3773           return Err;
3774         NextUnreadBit = Stream.GetCurrentBitNo();
3775         return Error::success();
3776       }
3777     }
3778   }
3779 }
3780 
3781 Error BitcodeReaderBase::readBlockInfo() {
3782   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3783       Stream.ReadBlockInfoBlock();
3784   if (!MaybeNewBlockInfo)
3785     return MaybeNewBlockInfo.takeError();
3786   std::optional<BitstreamBlockInfo> NewBlockInfo =
3787       std::move(MaybeNewBlockInfo.get());
3788   if (!NewBlockInfo)
3789     return error("Malformed block");
3790   BlockInfo = std::move(*NewBlockInfo);
3791   return Error::success();
3792 }
3793 
3794 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3795   // v1: [selection_kind, name]
3796   // v2: [strtab_offset, strtab_size, selection_kind]
3797   StringRef Name;
3798   std::tie(Name, Record) = readNameFromStrtab(Record);
3799 
3800   if (Record.empty())
3801     return error("Invalid record");
3802   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3803   std::string OldFormatName;
3804   if (!UseStrtab) {
3805     if (Record.size() < 2)
3806       return error("Invalid record");
3807     unsigned ComdatNameSize = Record[1];
3808     if (ComdatNameSize > Record.size() - 2)
3809       return error("Comdat name size too large");
3810     OldFormatName.reserve(ComdatNameSize);
3811     for (unsigned i = 0; i != ComdatNameSize; ++i)
3812       OldFormatName += (char)Record[2 + i];
3813     Name = OldFormatName;
3814   }
3815   Comdat *C = TheModule->getOrInsertComdat(Name);
3816   C->setSelectionKind(SK);
3817   ComdatList.push_back(C);
3818   return Error::success();
3819 }
3820 
3821 static void inferDSOLocal(GlobalValue *GV) {
3822   // infer dso_local from linkage and visibility if it is not encoded.
3823   if (GV->hasLocalLinkage() ||
3824       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3825     GV->setDSOLocal(true);
3826 }
3827 
3828 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3829   GlobalValue::SanitizerMetadata Meta;
3830   if (V & (1 << 0))
3831     Meta.NoAddress = true;
3832   if (V & (1 << 1))
3833     Meta.NoHWAddress = true;
3834   if (V & (1 << 2))
3835     Meta.Memtag = true;
3836   if (V & (1 << 3))
3837     Meta.IsDynInit = true;
3838   return Meta;
3839 }
3840 
3841 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3842   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3843   // visibility, threadlocal, unnamed_addr, externally_initialized,
3844   // dllstorageclass, comdat, attributes, preemption specifier,
3845   // partition strtab offset, partition strtab size] (name in VST)
3846   // v2: [strtab_offset, strtab_size, v1]
3847   // v3: [v2, code_model]
3848   StringRef Name;
3849   std::tie(Name, Record) = readNameFromStrtab(Record);
3850 
3851   if (Record.size() < 6)
3852     return error("Invalid record");
3853   unsigned TyID = Record[0];
3854   Type *Ty = getTypeByID(TyID);
3855   if (!Ty)
3856     return error("Invalid record");
3857   bool isConstant = Record[1] & 1;
3858   bool explicitType = Record[1] & 2;
3859   unsigned AddressSpace;
3860   if (explicitType) {
3861     AddressSpace = Record[1] >> 2;
3862   } else {
3863     if (!Ty->isPointerTy())
3864       return error("Invalid type for value");
3865     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3866     TyID = getContainedTypeID(TyID);
3867     Ty = getTypeByID(TyID);
3868     if (!Ty)
3869       return error("Missing element type for old-style global");
3870   }
3871 
3872   uint64_t RawLinkage = Record[3];
3873   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3874   MaybeAlign Alignment;
3875   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3876     return Err;
3877   std::string Section;
3878   if (Record[5]) {
3879     if (Record[5] - 1 >= SectionTable.size())
3880       return error("Invalid ID");
3881     Section = SectionTable[Record[5] - 1];
3882   }
3883   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3884   // Local linkage must have default visibility.
3885   // auto-upgrade `hidden` and `protected` for old bitcode.
3886   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3887     Visibility = getDecodedVisibility(Record[6]);
3888 
3889   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3890   if (Record.size() > 7)
3891     TLM = getDecodedThreadLocalMode(Record[7]);
3892 
3893   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3894   if (Record.size() > 8)
3895     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3896 
3897   bool ExternallyInitialized = false;
3898   if (Record.size() > 9)
3899     ExternallyInitialized = Record[9];
3900 
3901   GlobalVariable *NewGV =
3902       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3903                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3904   if (Alignment)
3905     NewGV->setAlignment(*Alignment);
3906   if (!Section.empty())
3907     NewGV->setSection(Section);
3908   NewGV->setVisibility(Visibility);
3909   NewGV->setUnnamedAddr(UnnamedAddr);
3910 
3911   if (Record.size() > 10) {
3912     // A GlobalValue with local linkage cannot have a DLL storage class.
3913     if (!NewGV->hasLocalLinkage()) {
3914       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3915     }
3916   } else {
3917     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3918   }
3919 
3920   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3921 
3922   // Remember which value to use for the global initializer.
3923   if (unsigned InitID = Record[2])
3924     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3925 
3926   if (Record.size() > 11) {
3927     if (unsigned ComdatID = Record[11]) {
3928       if (ComdatID > ComdatList.size())
3929         return error("Invalid global variable comdat ID");
3930       NewGV->setComdat(ComdatList[ComdatID - 1]);
3931     }
3932   } else if (hasImplicitComdat(RawLinkage)) {
3933     ImplicitComdatObjects.insert(NewGV);
3934   }
3935 
3936   if (Record.size() > 12) {
3937     auto AS = getAttributes(Record[12]).getFnAttrs();
3938     NewGV->setAttributes(AS);
3939   }
3940 
3941   if (Record.size() > 13) {
3942     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3943   }
3944   inferDSOLocal(NewGV);
3945 
3946   // Check whether we have enough values to read a partition name.
3947   if (Record.size() > 15)
3948     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3949 
3950   if (Record.size() > 16 && Record[16]) {
3951     llvm::GlobalValue::SanitizerMetadata Meta =
3952         deserializeSanitizerMetadata(Record[16]);
3953     NewGV->setSanitizerMetadata(Meta);
3954   }
3955 
3956   if (Record.size() > 17 && Record[17]) {
3957     if (auto CM = getDecodedCodeModel(Record[17]))
3958       NewGV->setCodeModel(*CM);
3959     else
3960       return error("Invalid global variable code model");
3961   }
3962 
3963   return Error::success();
3964 }
3965 
3966 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3967   if (ValueTypeCallback) {
3968     (*ValueTypeCallback)(
3969         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3970         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3971   }
3972 }
3973 
3974 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3975   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3976   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3977   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3978   // v2: [strtab_offset, strtab_size, v1]
3979   StringRef Name;
3980   std::tie(Name, Record) = readNameFromStrtab(Record);
3981 
3982   if (Record.size() < 8)
3983     return error("Invalid record");
3984   unsigned FTyID = Record[0];
3985   Type *FTy = getTypeByID(FTyID);
3986   if (!FTy)
3987     return error("Invalid record");
3988   if (isa<PointerType>(FTy)) {
3989     FTyID = getContainedTypeID(FTyID, 0);
3990     FTy = getTypeByID(FTyID);
3991     if (!FTy)
3992       return error("Missing element type for old-style function");
3993   }
3994 
3995   if (!isa<FunctionType>(FTy))
3996     return error("Invalid type for value");
3997   auto CC = static_cast<CallingConv::ID>(Record[1]);
3998   if (CC & ~CallingConv::MaxID)
3999     return error("Invalid calling convention ID");
4000 
4001   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4002   if (Record.size() > 16)
4003     AddrSpace = Record[16];
4004 
4005   Function *Func =
4006       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4007                        AddrSpace, Name, TheModule);
4008 
4009   assert(Func->getFunctionType() == FTy &&
4010          "Incorrect fully specified type provided for function");
4011   FunctionTypeIDs[Func] = FTyID;
4012 
4013   Func->setCallingConv(CC);
4014   bool isProto = Record[2];
4015   uint64_t RawLinkage = Record[3];
4016   Func->setLinkage(getDecodedLinkage(RawLinkage));
4017   Func->setAttributes(getAttributes(Record[4]));
4018   callValueTypeCallback(Func, FTyID);
4019 
4020   // Upgrade any old-style byval or sret without a type by propagating the
4021   // argument's pointee type. There should be no opaque pointers where the byval
4022   // type is implicit.
4023   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4024     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4025                                      Attribute::InAlloca}) {
4026       if (!Func->hasParamAttribute(i, Kind))
4027         continue;
4028 
4029       if (Func->getParamAttribute(i, Kind).getValueAsType())
4030         continue;
4031 
4032       Func->removeParamAttr(i, Kind);
4033 
4034       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4035       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4036       if (!PtrEltTy)
4037         return error("Missing param element type for attribute upgrade");
4038 
4039       Attribute NewAttr;
4040       switch (Kind) {
4041       case Attribute::ByVal:
4042         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4043         break;
4044       case Attribute::StructRet:
4045         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4046         break;
4047       case Attribute::InAlloca:
4048         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4049         break;
4050       default:
4051         llvm_unreachable("not an upgraded type attribute");
4052       }
4053 
4054       Func->addParamAttr(i, NewAttr);
4055     }
4056   }
4057 
4058   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4059       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4060     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4061     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4062     if (!ByValTy)
4063       return error("Missing param element type for x86_intrcc upgrade");
4064     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4065     Func->addParamAttr(0, NewAttr);
4066   }
4067 
4068   MaybeAlign Alignment;
4069   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4070     return Err;
4071   if (Alignment)
4072     Func->setAlignment(*Alignment);
4073   if (Record[6]) {
4074     if (Record[6] - 1 >= SectionTable.size())
4075       return error("Invalid ID");
4076     Func->setSection(SectionTable[Record[6] - 1]);
4077   }
4078   // Local linkage must have default visibility.
4079   // auto-upgrade `hidden` and `protected` for old bitcode.
4080   if (!Func->hasLocalLinkage())
4081     Func->setVisibility(getDecodedVisibility(Record[7]));
4082   if (Record.size() > 8 && Record[8]) {
4083     if (Record[8] - 1 >= GCTable.size())
4084       return error("Invalid ID");
4085     Func->setGC(GCTable[Record[8] - 1]);
4086   }
4087   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4088   if (Record.size() > 9)
4089     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4090   Func->setUnnamedAddr(UnnamedAddr);
4091 
4092   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4093   if (Record.size() > 10)
4094     OperandInfo.Prologue = Record[10];
4095 
4096   if (Record.size() > 11) {
4097     // A GlobalValue with local linkage cannot have a DLL storage class.
4098     if (!Func->hasLocalLinkage()) {
4099       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4100     }
4101   } else {
4102     upgradeDLLImportExportLinkage(Func, RawLinkage);
4103   }
4104 
4105   if (Record.size() > 12) {
4106     if (unsigned ComdatID = Record[12]) {
4107       if (ComdatID > ComdatList.size())
4108         return error("Invalid function comdat ID");
4109       Func->setComdat(ComdatList[ComdatID - 1]);
4110     }
4111   } else if (hasImplicitComdat(RawLinkage)) {
4112     ImplicitComdatObjects.insert(Func);
4113   }
4114 
4115   if (Record.size() > 13)
4116     OperandInfo.Prefix = Record[13];
4117 
4118   if (Record.size() > 14)
4119     OperandInfo.PersonalityFn = Record[14];
4120 
4121   if (Record.size() > 15) {
4122     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4123   }
4124   inferDSOLocal(Func);
4125 
4126   // Record[16] is the address space number.
4127 
4128   // Check whether we have enough values to read a partition name. Also make
4129   // sure Strtab has enough values.
4130   if (Record.size() > 18 && Strtab.data() &&
4131       Record[17] + Record[18] <= Strtab.size()) {
4132     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4133   }
4134 
4135   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4136 
4137   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4138     FunctionOperands.push_back(OperandInfo);
4139 
4140   // If this is a function with a body, remember the prototype we are
4141   // creating now, so that we can match up the body with them later.
4142   if (!isProto) {
4143     Func->setIsMaterializable(true);
4144     FunctionsWithBodies.push_back(Func);
4145     DeferredFunctionInfo[Func] = 0;
4146   }
4147   return Error::success();
4148 }
4149 
4150 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4151     unsigned BitCode, ArrayRef<uint64_t> Record) {
4152   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4153   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4154   // dllstorageclass, threadlocal, unnamed_addr,
4155   // preemption specifier] (name in VST)
4156   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4157   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4158   // preemption specifier] (name in VST)
4159   // v2: [strtab_offset, strtab_size, v1]
4160   StringRef Name;
4161   std::tie(Name, Record) = readNameFromStrtab(Record);
4162 
4163   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4164   if (Record.size() < (3 + (unsigned)NewRecord))
4165     return error("Invalid record");
4166   unsigned OpNum = 0;
4167   unsigned TypeID = Record[OpNum++];
4168   Type *Ty = getTypeByID(TypeID);
4169   if (!Ty)
4170     return error("Invalid record");
4171 
4172   unsigned AddrSpace;
4173   if (!NewRecord) {
4174     auto *PTy = dyn_cast<PointerType>(Ty);
4175     if (!PTy)
4176       return error("Invalid type for value");
4177     AddrSpace = PTy->getAddressSpace();
4178     TypeID = getContainedTypeID(TypeID);
4179     Ty = getTypeByID(TypeID);
4180     if (!Ty)
4181       return error("Missing element type for old-style indirect symbol");
4182   } else {
4183     AddrSpace = Record[OpNum++];
4184   }
4185 
4186   auto Val = Record[OpNum++];
4187   auto Linkage = Record[OpNum++];
4188   GlobalValue *NewGA;
4189   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4190       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4191     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4192                                 TheModule);
4193   else
4194     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4195                                 nullptr, TheModule);
4196 
4197   // Local linkage must have default visibility.
4198   // auto-upgrade `hidden` and `protected` for old bitcode.
4199   if (OpNum != Record.size()) {
4200     auto VisInd = OpNum++;
4201     if (!NewGA->hasLocalLinkage())
4202       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4203   }
4204   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4205       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4206     if (OpNum != Record.size()) {
4207       auto S = Record[OpNum++];
4208       // A GlobalValue with local linkage cannot have a DLL storage class.
4209       if (!NewGA->hasLocalLinkage())
4210         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4211     }
4212     else
4213       upgradeDLLImportExportLinkage(NewGA, Linkage);
4214     if (OpNum != Record.size())
4215       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4216     if (OpNum != Record.size())
4217       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4218   }
4219   if (OpNum != Record.size())
4220     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4221   inferDSOLocal(NewGA);
4222 
4223   // Check whether we have enough values to read a partition name.
4224   if (OpNum + 1 < Record.size()) {
4225     // Check Strtab has enough values for the partition.
4226     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4227       return error("Malformed partition, too large.");
4228     NewGA->setPartition(
4229         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4230     OpNum += 2;
4231   }
4232 
4233   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4234   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4235   return Error::success();
4236 }
4237 
4238 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4239                                  bool ShouldLazyLoadMetadata,
4240                                  ParserCallbacks Callbacks) {
4241   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4242   if (ResumeBit) {
4243     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4244       return JumpFailed;
4245   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4246     return Err;
4247 
4248   SmallVector<uint64_t, 64> Record;
4249 
4250   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4251   // finalize the datalayout before we run any of that code.
4252   bool ResolvedDataLayout = false;
4253   // In order to support importing modules with illegal data layout strings,
4254   // delay parsing the data layout string until after upgrades and overrides
4255   // have been applied, allowing to fix illegal data layout strings.
4256   // Initialize to the current module's layout string in case none is specified.
4257   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4258 
4259   auto ResolveDataLayout = [&]() -> Error {
4260     if (ResolvedDataLayout)
4261       return Error::success();
4262 
4263     // Datalayout and triple can't be parsed after this point.
4264     ResolvedDataLayout = true;
4265 
4266     // Auto-upgrade the layout string
4267     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4268         TentativeDataLayoutStr, TheModule->getTargetTriple());
4269 
4270     // Apply override
4271     if (Callbacks.DataLayout) {
4272       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4273               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4274         TentativeDataLayoutStr = *LayoutOverride;
4275     }
4276 
4277     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4278     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4279     if (!MaybeDL)
4280       return MaybeDL.takeError();
4281 
4282     TheModule->setDataLayout(MaybeDL.get());
4283     return Error::success();
4284   };
4285 
4286   // Read all the records for this module.
4287   while (true) {
4288     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4289     if (!MaybeEntry)
4290       return MaybeEntry.takeError();
4291     llvm::BitstreamEntry Entry = MaybeEntry.get();
4292 
4293     switch (Entry.Kind) {
4294     case BitstreamEntry::Error:
4295       return error("Malformed block");
4296     case BitstreamEntry::EndBlock:
4297       if (Error Err = ResolveDataLayout())
4298         return Err;
4299       return globalCleanup();
4300 
4301     case BitstreamEntry::SubBlock:
4302       switch (Entry.ID) {
4303       default:  // Skip unknown content.
4304         if (Error Err = Stream.SkipBlock())
4305           return Err;
4306         break;
4307       case bitc::BLOCKINFO_BLOCK_ID:
4308         if (Error Err = readBlockInfo())
4309           return Err;
4310         break;
4311       case bitc::PARAMATTR_BLOCK_ID:
4312         if (Error Err = parseAttributeBlock())
4313           return Err;
4314         break;
4315       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4316         if (Error Err = parseAttributeGroupBlock())
4317           return Err;
4318         break;
4319       case bitc::TYPE_BLOCK_ID_NEW:
4320         if (Error Err = parseTypeTable())
4321           return Err;
4322         break;
4323       case bitc::VALUE_SYMTAB_BLOCK_ID:
4324         if (!SeenValueSymbolTable) {
4325           // Either this is an old form VST without function index and an
4326           // associated VST forward declaration record (which would have caused
4327           // the VST to be jumped to and parsed before it was encountered
4328           // normally in the stream), or there were no function blocks to
4329           // trigger an earlier parsing of the VST.
4330           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4331           if (Error Err = parseValueSymbolTable())
4332             return Err;
4333           SeenValueSymbolTable = true;
4334         } else {
4335           // We must have had a VST forward declaration record, which caused
4336           // the parser to jump to and parse the VST earlier.
4337           assert(VSTOffset > 0);
4338           if (Error Err = Stream.SkipBlock())
4339             return Err;
4340         }
4341         break;
4342       case bitc::CONSTANTS_BLOCK_ID:
4343         if (Error Err = parseConstants())
4344           return Err;
4345         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4346           return Err;
4347         break;
4348       case bitc::METADATA_BLOCK_ID:
4349         if (ShouldLazyLoadMetadata) {
4350           if (Error Err = rememberAndSkipMetadata())
4351             return Err;
4352           break;
4353         }
4354         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4355         if (Error Err = MDLoader->parseModuleMetadata())
4356           return Err;
4357         break;
4358       case bitc::METADATA_KIND_BLOCK_ID:
4359         if (Error Err = MDLoader->parseMetadataKinds())
4360           return Err;
4361         break;
4362       case bitc::FUNCTION_BLOCK_ID:
4363         if (Error Err = ResolveDataLayout())
4364           return Err;
4365 
4366         // If this is the first function body we've seen, reverse the
4367         // FunctionsWithBodies list.
4368         if (!SeenFirstFunctionBody) {
4369           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4370           if (Error Err = globalCleanup())
4371             return Err;
4372           SeenFirstFunctionBody = true;
4373         }
4374 
4375         if (VSTOffset > 0) {
4376           // If we have a VST forward declaration record, make sure we
4377           // parse the VST now if we haven't already. It is needed to
4378           // set up the DeferredFunctionInfo vector for lazy reading.
4379           if (!SeenValueSymbolTable) {
4380             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4381               return Err;
4382             SeenValueSymbolTable = true;
4383             // Fall through so that we record the NextUnreadBit below.
4384             // This is necessary in case we have an anonymous function that
4385             // is later materialized. Since it will not have a VST entry we
4386             // need to fall back to the lazy parse to find its offset.
4387           } else {
4388             // If we have a VST forward declaration record, but have already
4389             // parsed the VST (just above, when the first function body was
4390             // encountered here), then we are resuming the parse after
4391             // materializing functions. The ResumeBit points to the
4392             // start of the last function block recorded in the
4393             // DeferredFunctionInfo map. Skip it.
4394             if (Error Err = Stream.SkipBlock())
4395               return Err;
4396             continue;
4397           }
4398         }
4399 
4400         // Support older bitcode files that did not have the function
4401         // index in the VST, nor a VST forward declaration record, as
4402         // well as anonymous functions that do not have VST entries.
4403         // Build the DeferredFunctionInfo vector on the fly.
4404         if (Error Err = rememberAndSkipFunctionBody())
4405           return Err;
4406 
4407         // Suspend parsing when we reach the function bodies. Subsequent
4408         // materialization calls will resume it when necessary. If the bitcode
4409         // file is old, the symbol table will be at the end instead and will not
4410         // have been seen yet. In this case, just finish the parse now.
4411         if (SeenValueSymbolTable) {
4412           NextUnreadBit = Stream.GetCurrentBitNo();
4413           // After the VST has been parsed, we need to make sure intrinsic name
4414           // are auto-upgraded.
4415           return globalCleanup();
4416         }
4417         break;
4418       case bitc::USELIST_BLOCK_ID:
4419         if (Error Err = parseUseLists())
4420           return Err;
4421         break;
4422       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4423         if (Error Err = parseOperandBundleTags())
4424           return Err;
4425         break;
4426       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4427         if (Error Err = parseSyncScopeNames())
4428           return Err;
4429         break;
4430       }
4431       continue;
4432 
4433     case BitstreamEntry::Record:
4434       // The interesting case.
4435       break;
4436     }
4437 
4438     // Read a record.
4439     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4440     if (!MaybeBitCode)
4441       return MaybeBitCode.takeError();
4442     switch (unsigned BitCode = MaybeBitCode.get()) {
4443     default: break;  // Default behavior, ignore unknown content.
4444     case bitc::MODULE_CODE_VERSION: {
4445       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4446       if (!VersionOrErr)
4447         return VersionOrErr.takeError();
4448       UseRelativeIDs = *VersionOrErr >= 1;
4449       break;
4450     }
4451     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4452       if (ResolvedDataLayout)
4453         return error("target triple too late in module");
4454       std::string S;
4455       if (convertToString(Record, 0, S))
4456         return error("Invalid record");
4457       TheModule->setTargetTriple(S);
4458       break;
4459     }
4460     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4461       if (ResolvedDataLayout)
4462         return error("datalayout too late in module");
4463       if (convertToString(Record, 0, TentativeDataLayoutStr))
4464         return error("Invalid record");
4465       break;
4466     }
4467     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4468       std::string S;
4469       if (convertToString(Record, 0, S))
4470         return error("Invalid record");
4471       TheModule->setModuleInlineAsm(S);
4472       break;
4473     }
4474     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4475       // Deprecated, but still needed to read old bitcode files.
4476       std::string S;
4477       if (convertToString(Record, 0, S))
4478         return error("Invalid record");
4479       // Ignore value.
4480       break;
4481     }
4482     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4483       std::string S;
4484       if (convertToString(Record, 0, S))
4485         return error("Invalid record");
4486       SectionTable.push_back(S);
4487       break;
4488     }
4489     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4490       std::string S;
4491       if (convertToString(Record, 0, S))
4492         return error("Invalid record");
4493       GCTable.push_back(S);
4494       break;
4495     }
4496     case bitc::MODULE_CODE_COMDAT:
4497       if (Error Err = parseComdatRecord(Record))
4498         return Err;
4499       break;
4500     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4501     // written by ThinLinkBitcodeWriter. See
4502     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4503     // record
4504     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4505     case bitc::MODULE_CODE_GLOBALVAR:
4506       if (Error Err = parseGlobalVarRecord(Record))
4507         return Err;
4508       break;
4509     case bitc::MODULE_CODE_FUNCTION:
4510       if (Error Err = ResolveDataLayout())
4511         return Err;
4512       if (Error Err = parseFunctionRecord(Record))
4513         return Err;
4514       break;
4515     case bitc::MODULE_CODE_IFUNC:
4516     case bitc::MODULE_CODE_ALIAS:
4517     case bitc::MODULE_CODE_ALIAS_OLD:
4518       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4519         return Err;
4520       break;
4521     /// MODULE_CODE_VSTOFFSET: [offset]
4522     case bitc::MODULE_CODE_VSTOFFSET:
4523       if (Record.empty())
4524         return error("Invalid record");
4525       // Note that we subtract 1 here because the offset is relative to one word
4526       // before the start of the identification or module block, which was
4527       // historically always the start of the regular bitcode header.
4528       VSTOffset = Record[0] - 1;
4529       break;
4530     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4531     case bitc::MODULE_CODE_SOURCE_FILENAME:
4532       SmallString<128> ValueName;
4533       if (convertToString(Record, 0, ValueName))
4534         return error("Invalid record");
4535       TheModule->setSourceFileName(ValueName);
4536       break;
4537     }
4538     Record.clear();
4539   }
4540   this->ValueTypeCallback = std::nullopt;
4541   return Error::success();
4542 }
4543 
4544 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4545                                       bool IsImporting,
4546                                       ParserCallbacks Callbacks) {
4547   TheModule = M;
4548   MetadataLoaderCallbacks MDCallbacks;
4549   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4550   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4551     return getContainedTypeID(I, J);
4552   };
4553   MDCallbacks.MDType = Callbacks.MDType;
4554   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4555   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4556 }
4557 
4558 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4559   if (!isa<PointerType>(PtrType))
4560     return error("Load/Store operand is not a pointer type");
4561   if (!PointerType::isLoadableOrStorableType(ValType))
4562     return error("Cannot load/store from pointer");
4563   return Error::success();
4564 }
4565 
4566 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4567                                              ArrayRef<unsigned> ArgTyIDs) {
4568   AttributeList Attrs = CB->getAttributes();
4569   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4570     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4571                                      Attribute::InAlloca}) {
4572       if (!Attrs.hasParamAttr(i, Kind) ||
4573           Attrs.getParamAttr(i, Kind).getValueAsType())
4574         continue;
4575 
4576       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4577       if (!PtrEltTy)
4578         return error("Missing element type for typed attribute upgrade");
4579 
4580       Attribute NewAttr;
4581       switch (Kind) {
4582       case Attribute::ByVal:
4583         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4584         break;
4585       case Attribute::StructRet:
4586         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4587         break;
4588       case Attribute::InAlloca:
4589         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4590         break;
4591       default:
4592         llvm_unreachable("not an upgraded type attribute");
4593       }
4594 
4595       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4596     }
4597   }
4598 
4599   if (CB->isInlineAsm()) {
4600     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4601     unsigned ArgNo = 0;
4602     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4603       if (!CI.hasArg())
4604         continue;
4605 
4606       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4607         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4608         if (!ElemTy)
4609           return error("Missing element type for inline asm upgrade");
4610         Attrs = Attrs.addParamAttribute(
4611             Context, ArgNo,
4612             Attribute::get(Context, Attribute::ElementType, ElemTy));
4613       }
4614 
4615       ArgNo++;
4616     }
4617   }
4618 
4619   switch (CB->getIntrinsicID()) {
4620   case Intrinsic::preserve_array_access_index:
4621   case Intrinsic::preserve_struct_access_index:
4622   case Intrinsic::aarch64_ldaxr:
4623   case Intrinsic::aarch64_ldxr:
4624   case Intrinsic::aarch64_stlxr:
4625   case Intrinsic::aarch64_stxr:
4626   case Intrinsic::arm_ldaex:
4627   case Intrinsic::arm_ldrex:
4628   case Intrinsic::arm_stlex:
4629   case Intrinsic::arm_strex: {
4630     unsigned ArgNo;
4631     switch (CB->getIntrinsicID()) {
4632     case Intrinsic::aarch64_stlxr:
4633     case Intrinsic::aarch64_stxr:
4634     case Intrinsic::arm_stlex:
4635     case Intrinsic::arm_strex:
4636       ArgNo = 1;
4637       break;
4638     default:
4639       ArgNo = 0;
4640       break;
4641     }
4642     if (!Attrs.getParamElementType(ArgNo)) {
4643       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4644       if (!ElTy)
4645         return error("Missing element type for elementtype upgrade");
4646       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4647       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4648     }
4649     break;
4650   }
4651   default:
4652     break;
4653   }
4654 
4655   CB->setAttributes(Attrs);
4656   return Error::success();
4657 }
4658 
4659 /// Lazily parse the specified function body block.
4660 Error BitcodeReader::parseFunctionBody(Function *F) {
4661   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4662     return Err;
4663 
4664   // Unexpected unresolved metadata when parsing function.
4665   if (MDLoader->hasFwdRefs())
4666     return error("Invalid function metadata: incoming forward references");
4667 
4668   InstructionList.clear();
4669   unsigned ModuleValueListSize = ValueList.size();
4670   unsigned ModuleMDLoaderSize = MDLoader->size();
4671 
4672   // Add all the function arguments to the value table.
4673   unsigned ArgNo = 0;
4674   unsigned FTyID = FunctionTypeIDs[F];
4675   for (Argument &I : F->args()) {
4676     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4677     assert(I.getType() == getTypeByID(ArgTyID) &&
4678            "Incorrect fully specified type for Function Argument");
4679     ValueList.push_back(&I, ArgTyID);
4680     ++ArgNo;
4681   }
4682   unsigned NextValueNo = ValueList.size();
4683   BasicBlock *CurBB = nullptr;
4684   unsigned CurBBNo = 0;
4685   // Block into which constant expressions from phi nodes are materialized.
4686   BasicBlock *PhiConstExprBB = nullptr;
4687   // Edge blocks for phi nodes into which constant expressions have been
4688   // expanded.
4689   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4690     ConstExprEdgeBBs;
4691 
4692   DebugLoc LastLoc;
4693   auto getLastInstruction = [&]() -> Instruction * {
4694     if (CurBB && !CurBB->empty())
4695       return &CurBB->back();
4696     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4697              !FunctionBBs[CurBBNo - 1]->empty())
4698       return &FunctionBBs[CurBBNo - 1]->back();
4699     return nullptr;
4700   };
4701 
4702   std::vector<OperandBundleDef> OperandBundles;
4703 
4704   // Read all the records.
4705   SmallVector<uint64_t, 64> Record;
4706 
4707   while (true) {
4708     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4709     if (!MaybeEntry)
4710       return MaybeEntry.takeError();
4711     llvm::BitstreamEntry Entry = MaybeEntry.get();
4712 
4713     switch (Entry.Kind) {
4714     case BitstreamEntry::Error:
4715       return error("Malformed block");
4716     case BitstreamEntry::EndBlock:
4717       goto OutOfRecordLoop;
4718 
4719     case BitstreamEntry::SubBlock:
4720       switch (Entry.ID) {
4721       default:  // Skip unknown content.
4722         if (Error Err = Stream.SkipBlock())
4723           return Err;
4724         break;
4725       case bitc::CONSTANTS_BLOCK_ID:
4726         if (Error Err = parseConstants())
4727           return Err;
4728         NextValueNo = ValueList.size();
4729         break;
4730       case bitc::VALUE_SYMTAB_BLOCK_ID:
4731         if (Error Err = parseValueSymbolTable())
4732           return Err;
4733         break;
4734       case bitc::METADATA_ATTACHMENT_ID:
4735         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4736           return Err;
4737         break;
4738       case bitc::METADATA_BLOCK_ID:
4739         assert(DeferredMetadataInfo.empty() &&
4740                "Must read all module-level metadata before function-level");
4741         if (Error Err = MDLoader->parseFunctionMetadata())
4742           return Err;
4743         break;
4744       case bitc::USELIST_BLOCK_ID:
4745         if (Error Err = parseUseLists())
4746           return Err;
4747         break;
4748       }
4749       continue;
4750 
4751     case BitstreamEntry::Record:
4752       // The interesting case.
4753       break;
4754     }
4755 
4756     // Read a record.
4757     Record.clear();
4758     Instruction *I = nullptr;
4759     unsigned ResTypeID = InvalidTypeID;
4760     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4761     if (!MaybeBitCode)
4762       return MaybeBitCode.takeError();
4763     switch (unsigned BitCode = MaybeBitCode.get()) {
4764     default: // Default behavior: reject
4765       return error("Invalid value");
4766     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4767       if (Record.empty() || Record[0] == 0)
4768         return error("Invalid record");
4769       // Create all the basic blocks for the function.
4770       FunctionBBs.resize(Record[0]);
4771 
4772       // See if anything took the address of blocks in this function.
4773       auto BBFRI = BasicBlockFwdRefs.find(F);
4774       if (BBFRI == BasicBlockFwdRefs.end()) {
4775         for (BasicBlock *&BB : FunctionBBs)
4776           BB = BasicBlock::Create(Context, "", F);
4777       } else {
4778         auto &BBRefs = BBFRI->second;
4779         // Check for invalid basic block references.
4780         if (BBRefs.size() > FunctionBBs.size())
4781           return error("Invalid ID");
4782         assert(!BBRefs.empty() && "Unexpected empty array");
4783         assert(!BBRefs.front() && "Invalid reference to entry block");
4784         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4785              ++I)
4786           if (I < RE && BBRefs[I]) {
4787             BBRefs[I]->insertInto(F);
4788             FunctionBBs[I] = BBRefs[I];
4789           } else {
4790             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4791           }
4792 
4793         // Erase from the table.
4794         BasicBlockFwdRefs.erase(BBFRI);
4795       }
4796 
4797       CurBB = FunctionBBs[0];
4798       continue;
4799     }
4800 
4801     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4802       // The record should not be emitted if it's an empty list.
4803       if (Record.empty())
4804         return error("Invalid record");
4805       // When we have the RARE case of a BlockAddress Constant that is not
4806       // scoped to the Function it refers to, we need to conservatively
4807       // materialize the referred to Function, regardless of whether or not
4808       // that Function will ultimately be linked, otherwise users of
4809       // BitcodeReader might start splicing out Function bodies such that we
4810       // might no longer be able to materialize the BlockAddress since the
4811       // BasicBlock (and entire body of the Function) the BlockAddress refers
4812       // to may have been moved. In the case that the user of BitcodeReader
4813       // decides ultimately not to link the Function body, materializing here
4814       // could be considered wasteful, but it's better than a deserialization
4815       // failure as described. This keeps BitcodeReader unaware of complex
4816       // linkage policy decisions such as those use by LTO, leaving those
4817       // decisions "one layer up."
4818       for (uint64_t ValID : Record)
4819         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4820           BackwardRefFunctions.push_back(F);
4821         else
4822           return error("Invalid record");
4823 
4824       continue;
4825 
4826     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4827       // This record indicates that the last instruction is at the same
4828       // location as the previous instruction with a location.
4829       I = getLastInstruction();
4830 
4831       if (!I)
4832         return error("Invalid record");
4833       I->setDebugLoc(LastLoc);
4834       I = nullptr;
4835       continue;
4836 
4837     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4838       I = getLastInstruction();
4839       if (!I || Record.size() < 4)
4840         return error("Invalid record");
4841 
4842       unsigned Line = Record[0], Col = Record[1];
4843       unsigned ScopeID = Record[2], IAID = Record[3];
4844       bool isImplicitCode = Record.size() == 5 && Record[4];
4845 
4846       MDNode *Scope = nullptr, *IA = nullptr;
4847       if (ScopeID) {
4848         Scope = dyn_cast_or_null<MDNode>(
4849             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4850         if (!Scope)
4851           return error("Invalid record");
4852       }
4853       if (IAID) {
4854         IA = dyn_cast_or_null<MDNode>(
4855             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4856         if (!IA)
4857           return error("Invalid record");
4858       }
4859       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4860                                 isImplicitCode);
4861       I->setDebugLoc(LastLoc);
4862       I = nullptr;
4863       continue;
4864     }
4865     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4866       unsigned OpNum = 0;
4867       Value *LHS;
4868       unsigned TypeID;
4869       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4870           OpNum+1 > Record.size())
4871         return error("Invalid record");
4872 
4873       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4874       if (Opc == -1)
4875         return error("Invalid record");
4876       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4877       ResTypeID = TypeID;
4878       InstructionList.push_back(I);
4879       if (OpNum < Record.size()) {
4880         if (isa<FPMathOperator>(I)) {
4881           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4882           if (FMF.any())
4883             I->setFastMathFlags(FMF);
4884         }
4885       }
4886       break;
4887     }
4888     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4889       unsigned OpNum = 0;
4890       Value *LHS, *RHS;
4891       unsigned TypeID;
4892       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4893           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4894                    CurBB) ||
4895           OpNum+1 > Record.size())
4896         return error("Invalid record");
4897 
4898       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4899       if (Opc == -1)
4900         return error("Invalid record");
4901       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4902       ResTypeID = TypeID;
4903       InstructionList.push_back(I);
4904       if (OpNum < Record.size()) {
4905         if (Opc == Instruction::Add ||
4906             Opc == Instruction::Sub ||
4907             Opc == Instruction::Mul ||
4908             Opc == Instruction::Shl) {
4909           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4910             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4911           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4912             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4913         } else if (Opc == Instruction::SDiv ||
4914                    Opc == Instruction::UDiv ||
4915                    Opc == Instruction::LShr ||
4916                    Opc == Instruction::AShr) {
4917           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4918             cast<BinaryOperator>(I)->setIsExact(true);
4919         } else if (Opc == Instruction::Or) {
4920           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4921             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4922         } else if (isa<FPMathOperator>(I)) {
4923           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4924           if (FMF.any())
4925             I->setFastMathFlags(FMF);
4926         }
4927       }
4928       break;
4929     }
4930     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4931       unsigned OpNum = 0;
4932       Value *Op;
4933       unsigned OpTypeID;
4934       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4935           OpNum + 1 > Record.size())
4936         return error("Invalid record");
4937 
4938       ResTypeID = Record[OpNum++];
4939       Type *ResTy = getTypeByID(ResTypeID);
4940       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4941 
4942       if (Opc == -1 || !ResTy)
4943         return error("Invalid record");
4944       Instruction *Temp = nullptr;
4945       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4946         if (Temp) {
4947           InstructionList.push_back(Temp);
4948           assert(CurBB && "No current BB?");
4949           Temp->insertInto(CurBB, CurBB->end());
4950         }
4951       } else {
4952         auto CastOp = (Instruction::CastOps)Opc;
4953         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4954           return error("Invalid cast");
4955         I = CastInst::Create(CastOp, Op, ResTy);
4956       }
4957       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4958           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4959         I->setNonNeg(true);
4960       InstructionList.push_back(I);
4961       break;
4962     }
4963     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4964     case bitc::FUNC_CODE_INST_GEP_OLD:
4965     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4966       unsigned OpNum = 0;
4967 
4968       unsigned TyID;
4969       Type *Ty;
4970       bool InBounds;
4971 
4972       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4973         InBounds = Record[OpNum++];
4974         TyID = Record[OpNum++];
4975         Ty = getTypeByID(TyID);
4976       } else {
4977         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4978         TyID = InvalidTypeID;
4979         Ty = nullptr;
4980       }
4981 
4982       Value *BasePtr;
4983       unsigned BasePtrTypeID;
4984       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4985                            CurBB))
4986         return error("Invalid record");
4987 
4988       if (!Ty) {
4989         TyID = getContainedTypeID(BasePtrTypeID);
4990         if (BasePtr->getType()->isVectorTy())
4991           TyID = getContainedTypeID(TyID);
4992         Ty = getTypeByID(TyID);
4993       }
4994 
4995       SmallVector<Value*, 16> GEPIdx;
4996       while (OpNum != Record.size()) {
4997         Value *Op;
4998         unsigned OpTypeID;
4999         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5000           return error("Invalid record");
5001         GEPIdx.push_back(Op);
5002       }
5003 
5004       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5005 
5006       ResTypeID = TyID;
5007       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5008         auto GTI = std::next(gep_type_begin(I));
5009         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5010           unsigned SubType = 0;
5011           if (GTI.isStruct()) {
5012             ConstantInt *IdxC =
5013                 Idx->getType()->isVectorTy()
5014                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5015                     : cast<ConstantInt>(Idx);
5016             SubType = IdxC->getZExtValue();
5017           }
5018           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5019           ++GTI;
5020         }
5021       }
5022 
5023       // At this point ResTypeID is the result element type. We need a pointer
5024       // or vector of pointer to it.
5025       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5026       if (I->getType()->isVectorTy())
5027         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5028 
5029       InstructionList.push_back(I);
5030       if (InBounds)
5031         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5032       break;
5033     }
5034 
5035     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5036                                        // EXTRACTVAL: [opty, opval, n x indices]
5037       unsigned OpNum = 0;
5038       Value *Agg;
5039       unsigned AggTypeID;
5040       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5041         return error("Invalid record");
5042       Type *Ty = Agg->getType();
5043 
5044       unsigned RecSize = Record.size();
5045       if (OpNum == RecSize)
5046         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5047 
5048       SmallVector<unsigned, 4> EXTRACTVALIdx;
5049       ResTypeID = AggTypeID;
5050       for (; OpNum != RecSize; ++OpNum) {
5051         bool IsArray = Ty->isArrayTy();
5052         bool IsStruct = Ty->isStructTy();
5053         uint64_t Index = Record[OpNum];
5054 
5055         if (!IsStruct && !IsArray)
5056           return error("EXTRACTVAL: Invalid type");
5057         if ((unsigned)Index != Index)
5058           return error("Invalid value");
5059         if (IsStruct && Index >= Ty->getStructNumElements())
5060           return error("EXTRACTVAL: Invalid struct index");
5061         if (IsArray && Index >= Ty->getArrayNumElements())
5062           return error("EXTRACTVAL: Invalid array index");
5063         EXTRACTVALIdx.push_back((unsigned)Index);
5064 
5065         if (IsStruct) {
5066           Ty = Ty->getStructElementType(Index);
5067           ResTypeID = getContainedTypeID(ResTypeID, Index);
5068         } else {
5069           Ty = Ty->getArrayElementType();
5070           ResTypeID = getContainedTypeID(ResTypeID);
5071         }
5072       }
5073 
5074       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5075       InstructionList.push_back(I);
5076       break;
5077     }
5078 
5079     case bitc::FUNC_CODE_INST_INSERTVAL: {
5080                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5081       unsigned OpNum = 0;
5082       Value *Agg;
5083       unsigned AggTypeID;
5084       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5085         return error("Invalid record");
5086       Value *Val;
5087       unsigned ValTypeID;
5088       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5089         return error("Invalid record");
5090 
5091       unsigned RecSize = Record.size();
5092       if (OpNum == RecSize)
5093         return error("INSERTVAL: Invalid instruction with 0 indices");
5094 
5095       SmallVector<unsigned, 4> INSERTVALIdx;
5096       Type *CurTy = Agg->getType();
5097       for (; OpNum != RecSize; ++OpNum) {
5098         bool IsArray = CurTy->isArrayTy();
5099         bool IsStruct = CurTy->isStructTy();
5100         uint64_t Index = Record[OpNum];
5101 
5102         if (!IsStruct && !IsArray)
5103           return error("INSERTVAL: Invalid type");
5104         if ((unsigned)Index != Index)
5105           return error("Invalid value");
5106         if (IsStruct && Index >= CurTy->getStructNumElements())
5107           return error("INSERTVAL: Invalid struct index");
5108         if (IsArray && Index >= CurTy->getArrayNumElements())
5109           return error("INSERTVAL: Invalid array index");
5110 
5111         INSERTVALIdx.push_back((unsigned)Index);
5112         if (IsStruct)
5113           CurTy = CurTy->getStructElementType(Index);
5114         else
5115           CurTy = CurTy->getArrayElementType();
5116       }
5117 
5118       if (CurTy != Val->getType())
5119         return error("Inserted value type doesn't match aggregate type");
5120 
5121       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5122       ResTypeID = AggTypeID;
5123       InstructionList.push_back(I);
5124       break;
5125     }
5126 
5127     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5128       // obsolete form of select
5129       // handles select i1 ... in old bitcode
5130       unsigned OpNum = 0;
5131       Value *TrueVal, *FalseVal, *Cond;
5132       unsigned TypeID;
5133       Type *CondType = Type::getInt1Ty(Context);
5134       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5135                            CurBB) ||
5136           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5137                    FalseVal, CurBB) ||
5138           popValue(Record, OpNum, NextValueNo, CondType,
5139                    getVirtualTypeID(CondType), Cond, CurBB))
5140         return error("Invalid record");
5141 
5142       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5143       ResTypeID = TypeID;
5144       InstructionList.push_back(I);
5145       break;
5146     }
5147 
5148     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5149       // new form of select
5150       // handles select i1 or select [N x i1]
5151       unsigned OpNum = 0;
5152       Value *TrueVal, *FalseVal, *Cond;
5153       unsigned ValTypeID, CondTypeID;
5154       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5155                            CurBB) ||
5156           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5157                    FalseVal, CurBB) ||
5158           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5159         return error("Invalid record");
5160 
5161       // select condition can be either i1 or [N x i1]
5162       if (VectorType* vector_type =
5163           dyn_cast<VectorType>(Cond->getType())) {
5164         // expect <n x i1>
5165         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5166           return error("Invalid type for value");
5167       } else {
5168         // expect i1
5169         if (Cond->getType() != Type::getInt1Ty(Context))
5170           return error("Invalid type for value");
5171       }
5172 
5173       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5174       ResTypeID = ValTypeID;
5175       InstructionList.push_back(I);
5176       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5177         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5178         if (FMF.any())
5179           I->setFastMathFlags(FMF);
5180       }
5181       break;
5182     }
5183 
5184     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5185       unsigned OpNum = 0;
5186       Value *Vec, *Idx;
5187       unsigned VecTypeID, IdxTypeID;
5188       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5189           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5190         return error("Invalid record");
5191       if (!Vec->getType()->isVectorTy())
5192         return error("Invalid type for value");
5193       I = ExtractElementInst::Create(Vec, Idx);
5194       ResTypeID = getContainedTypeID(VecTypeID);
5195       InstructionList.push_back(I);
5196       break;
5197     }
5198 
5199     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5200       unsigned OpNum = 0;
5201       Value *Vec, *Elt, *Idx;
5202       unsigned VecTypeID, IdxTypeID;
5203       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5204         return error("Invalid record");
5205       if (!Vec->getType()->isVectorTy())
5206         return error("Invalid type for value");
5207       if (popValue(Record, OpNum, NextValueNo,
5208                    cast<VectorType>(Vec->getType())->getElementType(),
5209                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5210           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5211         return error("Invalid record");
5212       I = InsertElementInst::Create(Vec, Elt, Idx);
5213       ResTypeID = VecTypeID;
5214       InstructionList.push_back(I);
5215       break;
5216     }
5217 
5218     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5219       unsigned OpNum = 0;
5220       Value *Vec1, *Vec2, *Mask;
5221       unsigned Vec1TypeID;
5222       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5223                            CurBB) ||
5224           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5225                    Vec2, CurBB))
5226         return error("Invalid record");
5227 
5228       unsigned MaskTypeID;
5229       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5230         return error("Invalid record");
5231       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5232         return error("Invalid type for value");
5233 
5234       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5235       ResTypeID =
5236           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5237       InstructionList.push_back(I);
5238       break;
5239     }
5240 
5241     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5242       // Old form of ICmp/FCmp returning bool
5243       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5244       // both legal on vectors but had different behaviour.
5245     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5246       // FCmp/ICmp returning bool or vector of bool
5247 
5248       unsigned OpNum = 0;
5249       Value *LHS, *RHS;
5250       unsigned LHSTypeID;
5251       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5252           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5253                    CurBB))
5254         return error("Invalid record");
5255 
5256       if (OpNum >= Record.size())
5257         return error(
5258             "Invalid record: operand number exceeded available operands");
5259 
5260       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5261       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5262       FastMathFlags FMF;
5263       if (IsFP && Record.size() > OpNum+1)
5264         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5265 
5266       if (OpNum+1 != Record.size())
5267         return error("Invalid record");
5268 
5269       if (IsFP) {
5270         if (!CmpInst::isFPPredicate(PredVal))
5271           return error("Invalid fcmp predicate");
5272         I = new FCmpInst(PredVal, LHS, RHS);
5273       } else {
5274         if (!CmpInst::isIntPredicate(PredVal))
5275           return error("Invalid icmp predicate");
5276         I = new ICmpInst(PredVal, LHS, RHS);
5277       }
5278 
5279       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5280       if (LHS->getType()->isVectorTy())
5281         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5282 
5283       if (FMF.any())
5284         I->setFastMathFlags(FMF);
5285       InstructionList.push_back(I);
5286       break;
5287     }
5288 
5289     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5290       {
5291         unsigned Size = Record.size();
5292         if (Size == 0) {
5293           I = ReturnInst::Create(Context);
5294           InstructionList.push_back(I);
5295           break;
5296         }
5297 
5298         unsigned OpNum = 0;
5299         Value *Op = nullptr;
5300         unsigned OpTypeID;
5301         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5302           return error("Invalid record");
5303         if (OpNum != Record.size())
5304           return error("Invalid record");
5305 
5306         I = ReturnInst::Create(Context, Op);
5307         InstructionList.push_back(I);
5308         break;
5309       }
5310     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5311       if (Record.size() != 1 && Record.size() != 3)
5312         return error("Invalid record");
5313       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5314       if (!TrueDest)
5315         return error("Invalid record");
5316 
5317       if (Record.size() == 1) {
5318         I = BranchInst::Create(TrueDest);
5319         InstructionList.push_back(I);
5320       }
5321       else {
5322         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5323         Type *CondType = Type::getInt1Ty(Context);
5324         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5325                                getVirtualTypeID(CondType), CurBB);
5326         if (!FalseDest || !Cond)
5327           return error("Invalid record");
5328         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5329         InstructionList.push_back(I);
5330       }
5331       break;
5332     }
5333     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5334       if (Record.size() != 1 && Record.size() != 2)
5335         return error("Invalid record");
5336       unsigned Idx = 0;
5337       Type *TokenTy = Type::getTokenTy(Context);
5338       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5339                                    getVirtualTypeID(TokenTy), CurBB);
5340       if (!CleanupPad)
5341         return error("Invalid record");
5342       BasicBlock *UnwindDest = nullptr;
5343       if (Record.size() == 2) {
5344         UnwindDest = getBasicBlock(Record[Idx++]);
5345         if (!UnwindDest)
5346           return error("Invalid record");
5347       }
5348 
5349       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5350       InstructionList.push_back(I);
5351       break;
5352     }
5353     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5354       if (Record.size() != 2)
5355         return error("Invalid record");
5356       unsigned Idx = 0;
5357       Type *TokenTy = Type::getTokenTy(Context);
5358       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5359                                  getVirtualTypeID(TokenTy), CurBB);
5360       if (!CatchPad)
5361         return error("Invalid record");
5362       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5363       if (!BB)
5364         return error("Invalid record");
5365 
5366       I = CatchReturnInst::Create(CatchPad, BB);
5367       InstructionList.push_back(I);
5368       break;
5369     }
5370     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5371       // We must have, at minimum, the outer scope and the number of arguments.
5372       if (Record.size() < 2)
5373         return error("Invalid record");
5374 
5375       unsigned Idx = 0;
5376 
5377       Type *TokenTy = Type::getTokenTy(Context);
5378       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5379                                   getVirtualTypeID(TokenTy), CurBB);
5380       if (!ParentPad)
5381         return error("Invalid record");
5382 
5383       unsigned NumHandlers = Record[Idx++];
5384 
5385       SmallVector<BasicBlock *, 2> Handlers;
5386       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5387         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5388         if (!BB)
5389           return error("Invalid record");
5390         Handlers.push_back(BB);
5391       }
5392 
5393       BasicBlock *UnwindDest = nullptr;
5394       if (Idx + 1 == Record.size()) {
5395         UnwindDest = getBasicBlock(Record[Idx++]);
5396         if (!UnwindDest)
5397           return error("Invalid record");
5398       }
5399 
5400       if (Record.size() != Idx)
5401         return error("Invalid record");
5402 
5403       auto *CatchSwitch =
5404           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5405       for (BasicBlock *Handler : Handlers)
5406         CatchSwitch->addHandler(Handler);
5407       I = CatchSwitch;
5408       ResTypeID = getVirtualTypeID(I->getType());
5409       InstructionList.push_back(I);
5410       break;
5411     }
5412     case bitc::FUNC_CODE_INST_CATCHPAD:
5413     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5414       // We must have, at minimum, the outer scope and the number of arguments.
5415       if (Record.size() < 2)
5416         return error("Invalid record");
5417 
5418       unsigned Idx = 0;
5419 
5420       Type *TokenTy = Type::getTokenTy(Context);
5421       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5422                                   getVirtualTypeID(TokenTy), CurBB);
5423       if (!ParentPad)
5424         return error("Invald record");
5425 
5426       unsigned NumArgOperands = Record[Idx++];
5427 
5428       SmallVector<Value *, 2> Args;
5429       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5430         Value *Val;
5431         unsigned ValTypeID;
5432         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5433           return error("Invalid record");
5434         Args.push_back(Val);
5435       }
5436 
5437       if (Record.size() != Idx)
5438         return error("Invalid record");
5439 
5440       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5441         I = CleanupPadInst::Create(ParentPad, Args);
5442       else
5443         I = CatchPadInst::Create(ParentPad, Args);
5444       ResTypeID = getVirtualTypeID(I->getType());
5445       InstructionList.push_back(I);
5446       break;
5447     }
5448     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5449       // Check magic
5450       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5451         // "New" SwitchInst format with case ranges. The changes to write this
5452         // format were reverted but we still recognize bitcode that uses it.
5453         // Hopefully someday we will have support for case ranges and can use
5454         // this format again.
5455 
5456         unsigned OpTyID = Record[1];
5457         Type *OpTy = getTypeByID(OpTyID);
5458         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5459 
5460         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5461         BasicBlock *Default = getBasicBlock(Record[3]);
5462         if (!OpTy || !Cond || !Default)
5463           return error("Invalid record");
5464 
5465         unsigned NumCases = Record[4];
5466 
5467         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5468         InstructionList.push_back(SI);
5469 
5470         unsigned CurIdx = 5;
5471         for (unsigned i = 0; i != NumCases; ++i) {
5472           SmallVector<ConstantInt*, 1> CaseVals;
5473           unsigned NumItems = Record[CurIdx++];
5474           for (unsigned ci = 0; ci != NumItems; ++ci) {
5475             bool isSingleNumber = Record[CurIdx++];
5476 
5477             APInt Low;
5478             unsigned ActiveWords = 1;
5479             if (ValueBitWidth > 64)
5480               ActiveWords = Record[CurIdx++];
5481             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5482                                 ValueBitWidth);
5483             CurIdx += ActiveWords;
5484 
5485             if (!isSingleNumber) {
5486               ActiveWords = 1;
5487               if (ValueBitWidth > 64)
5488                 ActiveWords = Record[CurIdx++];
5489               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5490                                          ValueBitWidth);
5491               CurIdx += ActiveWords;
5492 
5493               // FIXME: It is not clear whether values in the range should be
5494               // compared as signed or unsigned values. The partially
5495               // implemented changes that used this format in the past used
5496               // unsigned comparisons.
5497               for ( ; Low.ule(High); ++Low)
5498                 CaseVals.push_back(ConstantInt::get(Context, Low));
5499             } else
5500               CaseVals.push_back(ConstantInt::get(Context, Low));
5501           }
5502           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5503           for (ConstantInt *Cst : CaseVals)
5504             SI->addCase(Cst, DestBB);
5505         }
5506         I = SI;
5507         break;
5508       }
5509 
5510       // Old SwitchInst format without case ranges.
5511 
5512       if (Record.size() < 3 || (Record.size() & 1) == 0)
5513         return error("Invalid record");
5514       unsigned OpTyID = Record[0];
5515       Type *OpTy = getTypeByID(OpTyID);
5516       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5517       BasicBlock *Default = getBasicBlock(Record[2]);
5518       if (!OpTy || !Cond || !Default)
5519         return error("Invalid record");
5520       unsigned NumCases = (Record.size()-3)/2;
5521       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5522       InstructionList.push_back(SI);
5523       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5524         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5525             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5526         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5527         if (!CaseVal || !DestBB) {
5528           delete SI;
5529           return error("Invalid record");
5530         }
5531         SI->addCase(CaseVal, DestBB);
5532       }
5533       I = SI;
5534       break;
5535     }
5536     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5537       if (Record.size() < 2)
5538         return error("Invalid record");
5539       unsigned OpTyID = Record[0];
5540       Type *OpTy = getTypeByID(OpTyID);
5541       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5542       if (!OpTy || !Address)
5543         return error("Invalid record");
5544       unsigned NumDests = Record.size()-2;
5545       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5546       InstructionList.push_back(IBI);
5547       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5548         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5549           IBI->addDestination(DestBB);
5550         } else {
5551           delete IBI;
5552           return error("Invalid record");
5553         }
5554       }
5555       I = IBI;
5556       break;
5557     }
5558 
5559     case bitc::FUNC_CODE_INST_INVOKE: {
5560       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5561       if (Record.size() < 4)
5562         return error("Invalid record");
5563       unsigned OpNum = 0;
5564       AttributeList PAL = getAttributes(Record[OpNum++]);
5565       unsigned CCInfo = Record[OpNum++];
5566       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5567       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5568 
5569       unsigned FTyID = InvalidTypeID;
5570       FunctionType *FTy = nullptr;
5571       if ((CCInfo >> 13) & 1) {
5572         FTyID = Record[OpNum++];
5573         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5574         if (!FTy)
5575           return error("Explicit invoke type is not a function type");
5576       }
5577 
5578       Value *Callee;
5579       unsigned CalleeTypeID;
5580       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5581                            CurBB))
5582         return error("Invalid record");
5583 
5584       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5585       if (!CalleeTy)
5586         return error("Callee is not a pointer");
5587       if (!FTy) {
5588         FTyID = getContainedTypeID(CalleeTypeID);
5589         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5590         if (!FTy)
5591           return error("Callee is not of pointer to function type");
5592       }
5593       if (Record.size() < FTy->getNumParams() + OpNum)
5594         return error("Insufficient operands to call");
5595 
5596       SmallVector<Value*, 16> Ops;
5597       SmallVector<unsigned, 16> ArgTyIDs;
5598       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5599         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5600         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5601                                ArgTyID, CurBB));
5602         ArgTyIDs.push_back(ArgTyID);
5603         if (!Ops.back())
5604           return error("Invalid record");
5605       }
5606 
5607       if (!FTy->isVarArg()) {
5608         if (Record.size() != OpNum)
5609           return error("Invalid record");
5610       } else {
5611         // Read type/value pairs for varargs params.
5612         while (OpNum != Record.size()) {
5613           Value *Op;
5614           unsigned OpTypeID;
5615           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5616             return error("Invalid record");
5617           Ops.push_back(Op);
5618           ArgTyIDs.push_back(OpTypeID);
5619         }
5620       }
5621 
5622       // Upgrade the bundles if needed.
5623       if (!OperandBundles.empty())
5624         UpgradeOperandBundles(OperandBundles);
5625 
5626       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5627                              OperandBundles);
5628       ResTypeID = getContainedTypeID(FTyID);
5629       OperandBundles.clear();
5630       InstructionList.push_back(I);
5631       cast<InvokeInst>(I)->setCallingConv(
5632           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5633       cast<InvokeInst>(I)->setAttributes(PAL);
5634       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5635         I->deleteValue();
5636         return Err;
5637       }
5638 
5639       break;
5640     }
5641     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5642       unsigned Idx = 0;
5643       Value *Val = nullptr;
5644       unsigned ValTypeID;
5645       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5646         return error("Invalid record");
5647       I = ResumeInst::Create(Val);
5648       InstructionList.push_back(I);
5649       break;
5650     }
5651     case bitc::FUNC_CODE_INST_CALLBR: {
5652       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5653       unsigned OpNum = 0;
5654       AttributeList PAL = getAttributes(Record[OpNum++]);
5655       unsigned CCInfo = Record[OpNum++];
5656 
5657       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5658       unsigned NumIndirectDests = Record[OpNum++];
5659       SmallVector<BasicBlock *, 16> IndirectDests;
5660       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5661         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5662 
5663       unsigned FTyID = InvalidTypeID;
5664       FunctionType *FTy = nullptr;
5665       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5666         FTyID = Record[OpNum++];
5667         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5668         if (!FTy)
5669           return error("Explicit call type is not a function type");
5670       }
5671 
5672       Value *Callee;
5673       unsigned CalleeTypeID;
5674       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5675                            CurBB))
5676         return error("Invalid record");
5677 
5678       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5679       if (!OpTy)
5680         return error("Callee is not a pointer type");
5681       if (!FTy) {
5682         FTyID = getContainedTypeID(CalleeTypeID);
5683         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5684         if (!FTy)
5685           return error("Callee is not of pointer to function type");
5686       }
5687       if (Record.size() < FTy->getNumParams() + OpNum)
5688         return error("Insufficient operands to call");
5689 
5690       SmallVector<Value*, 16> Args;
5691       SmallVector<unsigned, 16> ArgTyIDs;
5692       // Read the fixed params.
5693       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5694         Value *Arg;
5695         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5696         if (FTy->getParamType(i)->isLabelTy())
5697           Arg = getBasicBlock(Record[OpNum]);
5698         else
5699           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5700                          ArgTyID, CurBB);
5701         if (!Arg)
5702           return error("Invalid record");
5703         Args.push_back(Arg);
5704         ArgTyIDs.push_back(ArgTyID);
5705       }
5706 
5707       // Read type/value pairs for varargs params.
5708       if (!FTy->isVarArg()) {
5709         if (OpNum != Record.size())
5710           return error("Invalid record");
5711       } else {
5712         while (OpNum != Record.size()) {
5713           Value *Op;
5714           unsigned OpTypeID;
5715           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5716             return error("Invalid record");
5717           Args.push_back(Op);
5718           ArgTyIDs.push_back(OpTypeID);
5719         }
5720       }
5721 
5722       // Upgrade the bundles if needed.
5723       if (!OperandBundles.empty())
5724         UpgradeOperandBundles(OperandBundles);
5725 
5726       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5727         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5728         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5729           return CI.Type == InlineAsm::isLabel;
5730         };
5731         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5732           // Upgrade explicit blockaddress arguments to label constraints.
5733           // Verify that the last arguments are blockaddress arguments that
5734           // match the indirect destinations. Clang always generates callbr
5735           // in this form. We could support reordering with more effort.
5736           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5737           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5738             unsigned LabelNo = ArgNo - FirstBlockArg;
5739             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5740             if (!BA || BA->getFunction() != F ||
5741                 LabelNo > IndirectDests.size() ||
5742                 BA->getBasicBlock() != IndirectDests[LabelNo])
5743               return error("callbr argument does not match indirect dest");
5744           }
5745 
5746           // Remove blockaddress arguments.
5747           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5748           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5749 
5750           // Recreate the function type with less arguments.
5751           SmallVector<Type *> ArgTys;
5752           for (Value *Arg : Args)
5753             ArgTys.push_back(Arg->getType());
5754           FTy =
5755               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5756 
5757           // Update constraint string to use label constraints.
5758           std::string Constraints = IA->getConstraintString();
5759           unsigned ArgNo = 0;
5760           size_t Pos = 0;
5761           for (const auto &CI : ConstraintInfo) {
5762             if (CI.hasArg()) {
5763               if (ArgNo >= FirstBlockArg)
5764                 Constraints.insert(Pos, "!");
5765               ++ArgNo;
5766             }
5767 
5768             // Go to next constraint in string.
5769             Pos = Constraints.find(',', Pos);
5770             if (Pos == std::string::npos)
5771               break;
5772             ++Pos;
5773           }
5774 
5775           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5776                                   IA->hasSideEffects(), IA->isAlignStack(),
5777                                   IA->getDialect(), IA->canThrow());
5778         }
5779       }
5780 
5781       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5782                              OperandBundles);
5783       ResTypeID = getContainedTypeID(FTyID);
5784       OperandBundles.clear();
5785       InstructionList.push_back(I);
5786       cast<CallBrInst>(I)->setCallingConv(
5787           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5788       cast<CallBrInst>(I)->setAttributes(PAL);
5789       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5790         I->deleteValue();
5791         return Err;
5792       }
5793       break;
5794     }
5795     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5796       I = new UnreachableInst(Context);
5797       InstructionList.push_back(I);
5798       break;
5799     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5800       if (Record.empty())
5801         return error("Invalid phi record");
5802       // The first record specifies the type.
5803       unsigned TyID = Record[0];
5804       Type *Ty = getTypeByID(TyID);
5805       if (!Ty)
5806         return error("Invalid phi record");
5807 
5808       // Phi arguments are pairs of records of [value, basic block].
5809       // There is an optional final record for fast-math-flags if this phi has a
5810       // floating-point type.
5811       size_t NumArgs = (Record.size() - 1) / 2;
5812       PHINode *PN = PHINode::Create(Ty, NumArgs);
5813       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5814         PN->deleteValue();
5815         return error("Invalid phi record");
5816       }
5817       InstructionList.push_back(PN);
5818 
5819       SmallDenseMap<BasicBlock *, Value *> Args;
5820       for (unsigned i = 0; i != NumArgs; i++) {
5821         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5822         if (!BB) {
5823           PN->deleteValue();
5824           return error("Invalid phi BB");
5825         }
5826 
5827         // Phi nodes may contain the same predecessor multiple times, in which
5828         // case the incoming value must be identical. Directly reuse the already
5829         // seen value here, to avoid expanding a constant expression multiple
5830         // times.
5831         auto It = Args.find(BB);
5832         if (It != Args.end()) {
5833           PN->addIncoming(It->second, BB);
5834           continue;
5835         }
5836 
5837         // If there already is a block for this edge (from a different phi),
5838         // use it.
5839         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5840         if (!EdgeBB) {
5841           // Otherwise, use a temporary block (that we will discard if it
5842           // turns out to be unnecessary).
5843           if (!PhiConstExprBB)
5844             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5845           EdgeBB = PhiConstExprBB;
5846         }
5847 
5848         // With the new function encoding, it is possible that operands have
5849         // negative IDs (for forward references).  Use a signed VBR
5850         // representation to keep the encoding small.
5851         Value *V;
5852         if (UseRelativeIDs)
5853           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5854         else
5855           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5856         if (!V) {
5857           PN->deleteValue();
5858           PhiConstExprBB->eraseFromParent();
5859           return error("Invalid phi record");
5860         }
5861 
5862         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5863           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5864           PhiConstExprBB = nullptr;
5865         }
5866         PN->addIncoming(V, BB);
5867         Args.insert({BB, V});
5868       }
5869       I = PN;
5870       ResTypeID = TyID;
5871 
5872       // If there are an even number of records, the final record must be FMF.
5873       if (Record.size() % 2 == 0) {
5874         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5875         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5876         if (FMF.any())
5877           I->setFastMathFlags(FMF);
5878       }
5879 
5880       break;
5881     }
5882 
5883     case bitc::FUNC_CODE_INST_LANDINGPAD:
5884     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5885       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5886       unsigned Idx = 0;
5887       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5888         if (Record.size() < 3)
5889           return error("Invalid record");
5890       } else {
5891         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5892         if (Record.size() < 4)
5893           return error("Invalid record");
5894       }
5895       ResTypeID = Record[Idx++];
5896       Type *Ty = getTypeByID(ResTypeID);
5897       if (!Ty)
5898         return error("Invalid record");
5899       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5900         Value *PersFn = nullptr;
5901         unsigned PersFnTypeID;
5902         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5903                              nullptr))
5904           return error("Invalid record");
5905 
5906         if (!F->hasPersonalityFn())
5907           F->setPersonalityFn(cast<Constant>(PersFn));
5908         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5909           return error("Personality function mismatch");
5910       }
5911 
5912       bool IsCleanup = !!Record[Idx++];
5913       unsigned NumClauses = Record[Idx++];
5914       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5915       LP->setCleanup(IsCleanup);
5916       for (unsigned J = 0; J != NumClauses; ++J) {
5917         LandingPadInst::ClauseType CT =
5918           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5919         Value *Val;
5920         unsigned ValTypeID;
5921 
5922         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5923                              nullptr)) {
5924           delete LP;
5925           return error("Invalid record");
5926         }
5927 
5928         assert((CT != LandingPadInst::Catch ||
5929                 !isa<ArrayType>(Val->getType())) &&
5930                "Catch clause has a invalid type!");
5931         assert((CT != LandingPadInst::Filter ||
5932                 isa<ArrayType>(Val->getType())) &&
5933                "Filter clause has invalid type!");
5934         LP->addClause(cast<Constant>(Val));
5935       }
5936 
5937       I = LP;
5938       InstructionList.push_back(I);
5939       break;
5940     }
5941 
5942     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5943       if (Record.size() != 4 && Record.size() != 5)
5944         return error("Invalid record");
5945       using APV = AllocaPackedValues;
5946       const uint64_t Rec = Record[3];
5947       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5948       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5949       unsigned TyID = Record[0];
5950       Type *Ty = getTypeByID(TyID);
5951       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5952         TyID = getContainedTypeID(TyID);
5953         Ty = getTypeByID(TyID);
5954         if (!Ty)
5955           return error("Missing element type for old-style alloca");
5956       }
5957       unsigned OpTyID = Record[1];
5958       Type *OpTy = getTypeByID(OpTyID);
5959       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5960       MaybeAlign Align;
5961       uint64_t AlignExp =
5962           Bitfield::get<APV::AlignLower>(Rec) |
5963           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5964       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5965         return Err;
5966       }
5967       if (!Ty || !Size)
5968         return error("Invalid record");
5969 
5970       const DataLayout &DL = TheModule->getDataLayout();
5971       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5972 
5973       SmallPtrSet<Type *, 4> Visited;
5974       if (!Align && !Ty->isSized(&Visited))
5975         return error("alloca of unsized type");
5976       if (!Align)
5977         Align = DL.getPrefTypeAlign(Ty);
5978 
5979       if (!Size->getType()->isIntegerTy())
5980         return error("alloca element count must have integer type");
5981 
5982       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5983       AI->setUsedWithInAlloca(InAlloca);
5984       AI->setSwiftError(SwiftError);
5985       I = AI;
5986       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5987       InstructionList.push_back(I);
5988       break;
5989     }
5990     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5991       unsigned OpNum = 0;
5992       Value *Op;
5993       unsigned OpTypeID;
5994       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5995           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5996         return error("Invalid record");
5997 
5998       if (!isa<PointerType>(Op->getType()))
5999         return error("Load operand is not a pointer type");
6000 
6001       Type *Ty = nullptr;
6002       if (OpNum + 3 == Record.size()) {
6003         ResTypeID = Record[OpNum++];
6004         Ty = getTypeByID(ResTypeID);
6005       } else {
6006         ResTypeID = getContainedTypeID(OpTypeID);
6007         Ty = getTypeByID(ResTypeID);
6008       }
6009 
6010       if (!Ty)
6011         return error("Missing load type");
6012 
6013       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6014         return Err;
6015 
6016       MaybeAlign Align;
6017       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6018         return Err;
6019       SmallPtrSet<Type *, 4> Visited;
6020       if (!Align && !Ty->isSized(&Visited))
6021         return error("load of unsized type");
6022       if (!Align)
6023         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6024       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6025       InstructionList.push_back(I);
6026       break;
6027     }
6028     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6029        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6030       unsigned OpNum = 0;
6031       Value *Op;
6032       unsigned OpTypeID;
6033       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6034           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6035         return error("Invalid record");
6036 
6037       if (!isa<PointerType>(Op->getType()))
6038         return error("Load operand is not a pointer type");
6039 
6040       Type *Ty = nullptr;
6041       if (OpNum + 5 == Record.size()) {
6042         ResTypeID = Record[OpNum++];
6043         Ty = getTypeByID(ResTypeID);
6044       } else {
6045         ResTypeID = getContainedTypeID(OpTypeID);
6046         Ty = getTypeByID(ResTypeID);
6047       }
6048 
6049       if (!Ty)
6050         return error("Missing atomic load type");
6051 
6052       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6053         return Err;
6054 
6055       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6056       if (Ordering == AtomicOrdering::NotAtomic ||
6057           Ordering == AtomicOrdering::Release ||
6058           Ordering == AtomicOrdering::AcquireRelease)
6059         return error("Invalid record");
6060       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6061         return error("Invalid record");
6062       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6063 
6064       MaybeAlign Align;
6065       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6066         return Err;
6067       if (!Align)
6068         return error("Alignment missing from atomic load");
6069       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6070       InstructionList.push_back(I);
6071       break;
6072     }
6073     case bitc::FUNC_CODE_INST_STORE:
6074     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6075       unsigned OpNum = 0;
6076       Value *Val, *Ptr;
6077       unsigned PtrTypeID, ValTypeID;
6078       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6079         return error("Invalid record");
6080 
6081       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6082         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6083           return error("Invalid record");
6084       } else {
6085         ValTypeID = getContainedTypeID(PtrTypeID);
6086         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6087                      ValTypeID, Val, CurBB))
6088           return error("Invalid record");
6089       }
6090 
6091       if (OpNum + 2 != Record.size())
6092         return error("Invalid record");
6093 
6094       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6095         return Err;
6096       MaybeAlign Align;
6097       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6098         return Err;
6099       SmallPtrSet<Type *, 4> Visited;
6100       if (!Align && !Val->getType()->isSized(&Visited))
6101         return error("store of unsized type");
6102       if (!Align)
6103         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6104       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6105       InstructionList.push_back(I);
6106       break;
6107     }
6108     case bitc::FUNC_CODE_INST_STOREATOMIC:
6109     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6110       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6111       unsigned OpNum = 0;
6112       Value *Val, *Ptr;
6113       unsigned PtrTypeID, ValTypeID;
6114       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6115           !isa<PointerType>(Ptr->getType()))
6116         return error("Invalid record");
6117       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6118         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6119           return error("Invalid record");
6120       } else {
6121         ValTypeID = getContainedTypeID(PtrTypeID);
6122         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6123                      ValTypeID, Val, CurBB))
6124           return error("Invalid record");
6125       }
6126 
6127       if (OpNum + 4 != Record.size())
6128         return error("Invalid record");
6129 
6130       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6131         return Err;
6132       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6133       if (Ordering == AtomicOrdering::NotAtomic ||
6134           Ordering == AtomicOrdering::Acquire ||
6135           Ordering == AtomicOrdering::AcquireRelease)
6136         return error("Invalid record");
6137       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6138       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6139         return error("Invalid record");
6140 
6141       MaybeAlign Align;
6142       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6143         return Err;
6144       if (!Align)
6145         return error("Alignment missing from atomic store");
6146       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6147       InstructionList.push_back(I);
6148       break;
6149     }
6150     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6151       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6152       // failure_ordering?, weak?]
6153       const size_t NumRecords = Record.size();
6154       unsigned OpNum = 0;
6155       Value *Ptr = nullptr;
6156       unsigned PtrTypeID;
6157       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6158         return error("Invalid record");
6159 
6160       if (!isa<PointerType>(Ptr->getType()))
6161         return error("Cmpxchg operand is not a pointer type");
6162 
6163       Value *Cmp = nullptr;
6164       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6165       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6166                    CmpTypeID, Cmp, CurBB))
6167         return error("Invalid record");
6168 
6169       Value *New = nullptr;
6170       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6171                    New, CurBB) ||
6172           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6173         return error("Invalid record");
6174 
6175       const AtomicOrdering SuccessOrdering =
6176           getDecodedOrdering(Record[OpNum + 1]);
6177       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6178           SuccessOrdering == AtomicOrdering::Unordered)
6179         return error("Invalid record");
6180 
6181       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6182 
6183       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6184         return Err;
6185 
6186       const AtomicOrdering FailureOrdering =
6187           NumRecords < 7
6188               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6189               : getDecodedOrdering(Record[OpNum + 3]);
6190 
6191       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6192           FailureOrdering == AtomicOrdering::Unordered)
6193         return error("Invalid record");
6194 
6195       const Align Alignment(
6196           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6197 
6198       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6199                                 FailureOrdering, SSID);
6200       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6201 
6202       if (NumRecords < 8) {
6203         // Before weak cmpxchgs existed, the instruction simply returned the
6204         // value loaded from memory, so bitcode files from that era will be
6205         // expecting the first component of a modern cmpxchg.
6206         I->insertInto(CurBB, CurBB->end());
6207         I = ExtractValueInst::Create(I, 0);
6208         ResTypeID = CmpTypeID;
6209       } else {
6210         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6211         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6212         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6213       }
6214 
6215       InstructionList.push_back(I);
6216       break;
6217     }
6218     case bitc::FUNC_CODE_INST_CMPXCHG: {
6219       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6220       // failure_ordering, weak, align?]
6221       const size_t NumRecords = Record.size();
6222       unsigned OpNum = 0;
6223       Value *Ptr = nullptr;
6224       unsigned PtrTypeID;
6225       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6226         return error("Invalid record");
6227 
6228       if (!isa<PointerType>(Ptr->getType()))
6229         return error("Cmpxchg operand is not a pointer type");
6230 
6231       Value *Cmp = nullptr;
6232       unsigned CmpTypeID;
6233       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6234         return error("Invalid record");
6235 
6236       Value *Val = nullptr;
6237       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6238                    CurBB))
6239         return error("Invalid record");
6240 
6241       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6242         return error("Invalid record");
6243 
6244       const bool IsVol = Record[OpNum];
6245 
6246       const AtomicOrdering SuccessOrdering =
6247           getDecodedOrdering(Record[OpNum + 1]);
6248       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6249         return error("Invalid cmpxchg success ordering");
6250 
6251       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6252 
6253       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6254         return Err;
6255 
6256       const AtomicOrdering FailureOrdering =
6257           getDecodedOrdering(Record[OpNum + 3]);
6258       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6259         return error("Invalid cmpxchg failure ordering");
6260 
6261       const bool IsWeak = Record[OpNum + 4];
6262 
6263       MaybeAlign Alignment;
6264 
6265       if (NumRecords == (OpNum + 6)) {
6266         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6267           return Err;
6268       }
6269       if (!Alignment)
6270         Alignment =
6271             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6272 
6273       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6274                                 FailureOrdering, SSID);
6275       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6276       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6277 
6278       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6279       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6280 
6281       InstructionList.push_back(I);
6282       break;
6283     }
6284     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6285     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6286       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6287       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6288       const size_t NumRecords = Record.size();
6289       unsigned OpNum = 0;
6290 
6291       Value *Ptr = nullptr;
6292       unsigned PtrTypeID;
6293       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6294         return error("Invalid record");
6295 
6296       if (!isa<PointerType>(Ptr->getType()))
6297         return error("Invalid record");
6298 
6299       Value *Val = nullptr;
6300       unsigned ValTypeID = InvalidTypeID;
6301       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6302         ValTypeID = getContainedTypeID(PtrTypeID);
6303         if (popValue(Record, OpNum, NextValueNo,
6304                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6305           return error("Invalid record");
6306       } else {
6307         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6308           return error("Invalid record");
6309       }
6310 
6311       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6312         return error("Invalid record");
6313 
6314       const AtomicRMWInst::BinOp Operation =
6315           getDecodedRMWOperation(Record[OpNum]);
6316       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6317           Operation > AtomicRMWInst::LAST_BINOP)
6318         return error("Invalid record");
6319 
6320       const bool IsVol = Record[OpNum + 1];
6321 
6322       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6323       if (Ordering == AtomicOrdering::NotAtomic ||
6324           Ordering == AtomicOrdering::Unordered)
6325         return error("Invalid record");
6326 
6327       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6328 
6329       MaybeAlign Alignment;
6330 
6331       if (NumRecords == (OpNum + 5)) {
6332         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6333           return Err;
6334       }
6335 
6336       if (!Alignment)
6337         Alignment =
6338             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6339 
6340       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6341       ResTypeID = ValTypeID;
6342       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6343 
6344       InstructionList.push_back(I);
6345       break;
6346     }
6347     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6348       if (2 != Record.size())
6349         return error("Invalid record");
6350       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6351       if (Ordering == AtomicOrdering::NotAtomic ||
6352           Ordering == AtomicOrdering::Unordered ||
6353           Ordering == AtomicOrdering::Monotonic)
6354         return error("Invalid record");
6355       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6356       I = new FenceInst(Context, Ordering, SSID);
6357       InstructionList.push_back(I);
6358       break;
6359     }
6360     case bitc::FUNC_CODE_INST_CALL: {
6361       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6362       if (Record.size() < 3)
6363         return error("Invalid record");
6364 
6365       unsigned OpNum = 0;
6366       AttributeList PAL = getAttributes(Record[OpNum++]);
6367       unsigned CCInfo = Record[OpNum++];
6368 
6369       FastMathFlags FMF;
6370       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6371         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6372         if (!FMF.any())
6373           return error("Fast math flags indicator set for call with no FMF");
6374       }
6375 
6376       unsigned FTyID = InvalidTypeID;
6377       FunctionType *FTy = nullptr;
6378       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6379         FTyID = Record[OpNum++];
6380         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6381         if (!FTy)
6382           return error("Explicit call type is not a function type");
6383       }
6384 
6385       Value *Callee;
6386       unsigned CalleeTypeID;
6387       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6388                            CurBB))
6389         return error("Invalid record");
6390 
6391       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6392       if (!OpTy)
6393         return error("Callee is not a pointer type");
6394       if (!FTy) {
6395         FTyID = getContainedTypeID(CalleeTypeID);
6396         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6397         if (!FTy)
6398           return error("Callee is not of pointer to function type");
6399       }
6400       if (Record.size() < FTy->getNumParams() + OpNum)
6401         return error("Insufficient operands to call");
6402 
6403       SmallVector<Value*, 16> Args;
6404       SmallVector<unsigned, 16> ArgTyIDs;
6405       // Read the fixed params.
6406       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6407         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6408         if (FTy->getParamType(i)->isLabelTy())
6409           Args.push_back(getBasicBlock(Record[OpNum]));
6410         else
6411           Args.push_back(getValue(Record, OpNum, NextValueNo,
6412                                   FTy->getParamType(i), ArgTyID, CurBB));
6413         ArgTyIDs.push_back(ArgTyID);
6414         if (!Args.back())
6415           return error("Invalid record");
6416       }
6417 
6418       // Read type/value pairs for varargs params.
6419       if (!FTy->isVarArg()) {
6420         if (OpNum != Record.size())
6421           return error("Invalid record");
6422       } else {
6423         while (OpNum != Record.size()) {
6424           Value *Op;
6425           unsigned OpTypeID;
6426           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6427             return error("Invalid record");
6428           Args.push_back(Op);
6429           ArgTyIDs.push_back(OpTypeID);
6430         }
6431       }
6432 
6433       // Upgrade the bundles if needed.
6434       if (!OperandBundles.empty())
6435         UpgradeOperandBundles(OperandBundles);
6436 
6437       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6438       ResTypeID = getContainedTypeID(FTyID);
6439       OperandBundles.clear();
6440       InstructionList.push_back(I);
6441       cast<CallInst>(I)->setCallingConv(
6442           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6443       CallInst::TailCallKind TCK = CallInst::TCK_None;
6444       if (CCInfo & (1 << bitc::CALL_TAIL))
6445         TCK = CallInst::TCK_Tail;
6446       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6447         TCK = CallInst::TCK_MustTail;
6448       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6449         TCK = CallInst::TCK_NoTail;
6450       cast<CallInst>(I)->setTailCallKind(TCK);
6451       cast<CallInst>(I)->setAttributes(PAL);
6452       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6453         I->deleteValue();
6454         return Err;
6455       }
6456       if (FMF.any()) {
6457         if (!isa<FPMathOperator>(I))
6458           return error("Fast-math-flags specified for call without "
6459                        "floating-point scalar or vector return type");
6460         I->setFastMathFlags(FMF);
6461       }
6462       break;
6463     }
6464     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6465       if (Record.size() < 3)
6466         return error("Invalid record");
6467       unsigned OpTyID = Record[0];
6468       Type *OpTy = getTypeByID(OpTyID);
6469       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6470       ResTypeID = Record[2];
6471       Type *ResTy = getTypeByID(ResTypeID);
6472       if (!OpTy || !Op || !ResTy)
6473         return error("Invalid record");
6474       I = new VAArgInst(Op, ResTy);
6475       InstructionList.push_back(I);
6476       break;
6477     }
6478 
6479     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6480       // A call or an invoke can be optionally prefixed with some variable
6481       // number of operand bundle blocks.  These blocks are read into
6482       // OperandBundles and consumed at the next call or invoke instruction.
6483 
6484       if (Record.empty() || Record[0] >= BundleTags.size())
6485         return error("Invalid record");
6486 
6487       std::vector<Value *> Inputs;
6488 
6489       unsigned OpNum = 1;
6490       while (OpNum != Record.size()) {
6491         Value *Op;
6492         unsigned OpTypeID;
6493         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6494           return error("Invalid record");
6495         Inputs.push_back(Op);
6496       }
6497 
6498       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6499       continue;
6500     }
6501 
6502     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6503       unsigned OpNum = 0;
6504       Value *Op = nullptr;
6505       unsigned OpTypeID;
6506       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6507         return error("Invalid record");
6508       if (OpNum != Record.size())
6509         return error("Invalid record");
6510 
6511       I = new FreezeInst(Op);
6512       ResTypeID = OpTypeID;
6513       InstructionList.push_back(I);
6514       break;
6515     }
6516     }
6517 
6518     // Add instruction to end of current BB.  If there is no current BB, reject
6519     // this file.
6520     if (!CurBB) {
6521       I->deleteValue();
6522       return error("Invalid instruction with no BB");
6523     }
6524     if (!OperandBundles.empty()) {
6525       I->deleteValue();
6526       return error("Operand bundles found with no consumer");
6527     }
6528     I->insertInto(CurBB, CurBB->end());
6529 
6530     // If this was a terminator instruction, move to the next block.
6531     if (I->isTerminator()) {
6532       ++CurBBNo;
6533       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6534     }
6535 
6536     // Non-void values get registered in the value table for future use.
6537     if (!I->getType()->isVoidTy()) {
6538       assert(I->getType() == getTypeByID(ResTypeID) &&
6539              "Incorrect result type ID");
6540       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6541         return Err;
6542     }
6543   }
6544 
6545 OutOfRecordLoop:
6546 
6547   if (!OperandBundles.empty())
6548     return error("Operand bundles found with no consumer");
6549 
6550   // Check the function list for unresolved values.
6551   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6552     if (!A->getParent()) {
6553       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6554       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6555         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6556           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6557           delete A;
6558         }
6559       }
6560       return error("Never resolved value found in function");
6561     }
6562   }
6563 
6564   // Unexpected unresolved metadata about to be dropped.
6565   if (MDLoader->hasFwdRefs())
6566     return error("Invalid function metadata: outgoing forward refs");
6567 
6568   if (PhiConstExprBB)
6569     PhiConstExprBB->eraseFromParent();
6570 
6571   for (const auto &Pair : ConstExprEdgeBBs) {
6572     BasicBlock *From = Pair.first.first;
6573     BasicBlock *To = Pair.first.second;
6574     BasicBlock *EdgeBB = Pair.second;
6575     BranchInst::Create(To, EdgeBB);
6576     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6577     To->replacePhiUsesWith(From, EdgeBB);
6578     EdgeBB->moveBefore(To);
6579   }
6580 
6581   // Trim the value list down to the size it was before we parsed this function.
6582   ValueList.shrinkTo(ModuleValueListSize);
6583   MDLoader->shrinkTo(ModuleMDLoaderSize);
6584   std::vector<BasicBlock*>().swap(FunctionBBs);
6585   return Error::success();
6586 }
6587 
6588 /// Find the function body in the bitcode stream
6589 Error BitcodeReader::findFunctionInStream(
6590     Function *F,
6591     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6592   while (DeferredFunctionInfoIterator->second == 0) {
6593     // This is the fallback handling for the old format bitcode that
6594     // didn't contain the function index in the VST, or when we have
6595     // an anonymous function which would not have a VST entry.
6596     // Assert that we have one of those two cases.
6597     assert(VSTOffset == 0 || !F->hasName());
6598     // Parse the next body in the stream and set its position in the
6599     // DeferredFunctionInfo map.
6600     if (Error Err = rememberAndSkipFunctionBodies())
6601       return Err;
6602   }
6603   return Error::success();
6604 }
6605 
6606 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6607   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6608     return SyncScope::ID(Val);
6609   if (Val >= SSIDs.size())
6610     return SyncScope::System; // Map unknown synchronization scopes to system.
6611   return SSIDs[Val];
6612 }
6613 
6614 //===----------------------------------------------------------------------===//
6615 // GVMaterializer implementation
6616 //===----------------------------------------------------------------------===//
6617 
6618 Error BitcodeReader::materialize(GlobalValue *GV) {
6619   Function *F = dyn_cast<Function>(GV);
6620   // If it's not a function or is already material, ignore the request.
6621   if (!F || !F->isMaterializable())
6622     return Error::success();
6623 
6624   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6625   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6626   // If its position is recorded as 0, its body is somewhere in the stream
6627   // but we haven't seen it yet.
6628   if (DFII->second == 0)
6629     if (Error Err = findFunctionInStream(F, DFII))
6630       return Err;
6631 
6632   // Materialize metadata before parsing any function bodies.
6633   if (Error Err = materializeMetadata())
6634     return Err;
6635 
6636   // Move the bit stream to the saved position of the deferred function body.
6637   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6638     return JumpFailed;
6639   if (Error Err = parseFunctionBody(F))
6640     return Err;
6641   F->setIsMaterializable(false);
6642 
6643   if (StripDebugInfo)
6644     stripDebugInfo(*F);
6645 
6646   // Upgrade any old intrinsic calls in the function.
6647   for (auto &I : UpgradedIntrinsics) {
6648     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6649       if (CallInst *CI = dyn_cast<CallInst>(U))
6650         UpgradeIntrinsicCall(CI, I.second);
6651   }
6652 
6653   // Finish fn->subprogram upgrade for materialized functions.
6654   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6655     F->setSubprogram(SP);
6656 
6657   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6658   if (!MDLoader->isStrippingTBAA()) {
6659     for (auto &I : instructions(F)) {
6660       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6661       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6662         continue;
6663       MDLoader->setStripTBAA(true);
6664       stripTBAA(F->getParent());
6665     }
6666   }
6667 
6668   for (auto &I : instructions(F)) {
6669     // "Upgrade" older incorrect branch weights by dropping them.
6670     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6671       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6672         MDString *MDS = cast<MDString>(MD->getOperand(0));
6673         StringRef ProfName = MDS->getString();
6674         // Check consistency of !prof branch_weights metadata.
6675         if (!ProfName.equals("branch_weights"))
6676           continue;
6677         unsigned ExpectedNumOperands = 0;
6678         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6679           ExpectedNumOperands = BI->getNumSuccessors();
6680         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6681           ExpectedNumOperands = SI->getNumSuccessors();
6682         else if (isa<CallInst>(&I))
6683           ExpectedNumOperands = 1;
6684         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6685           ExpectedNumOperands = IBI->getNumDestinations();
6686         else if (isa<SelectInst>(&I))
6687           ExpectedNumOperands = 2;
6688         else
6689           continue; // ignore and continue.
6690 
6691         // If branch weight doesn't match, just strip branch weight.
6692         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6693           I.setMetadata(LLVMContext::MD_prof, nullptr);
6694       }
6695     }
6696 
6697     // Remove incompatible attributes on function calls.
6698     if (auto *CI = dyn_cast<CallBase>(&I)) {
6699       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6700           CI->getFunctionType()->getReturnType()));
6701 
6702       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6703         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6704                                         CI->getArgOperand(ArgNo)->getType()));
6705     }
6706   }
6707 
6708   // Look for functions that rely on old function attribute behavior.
6709   UpgradeFunctionAttributes(*F);
6710 
6711   // Bring in any functions that this function forward-referenced via
6712   // blockaddresses.
6713   return materializeForwardReferencedFunctions();
6714 }
6715 
6716 Error BitcodeReader::materializeModule() {
6717   if (Error Err = materializeMetadata())
6718     return Err;
6719 
6720   // Promise to materialize all forward references.
6721   WillMaterializeAllForwardRefs = true;
6722 
6723   // Iterate over the module, deserializing any functions that are still on
6724   // disk.
6725   for (Function &F : *TheModule) {
6726     if (Error Err = materialize(&F))
6727       return Err;
6728   }
6729   // At this point, if there are any function bodies, parse the rest of
6730   // the bits in the module past the last function block we have recorded
6731   // through either lazy scanning or the VST.
6732   if (LastFunctionBlockBit || NextUnreadBit)
6733     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6734                                     ? LastFunctionBlockBit
6735                                     : NextUnreadBit))
6736       return Err;
6737 
6738   // Check that all block address forward references got resolved (as we
6739   // promised above).
6740   if (!BasicBlockFwdRefs.empty())
6741     return error("Never resolved function from blockaddress");
6742 
6743   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6744   // delete the old functions to clean up. We can't do this unless the entire
6745   // module is materialized because there could always be another function body
6746   // with calls to the old function.
6747   for (auto &I : UpgradedIntrinsics) {
6748     for (auto *U : I.first->users()) {
6749       if (CallInst *CI = dyn_cast<CallInst>(U))
6750         UpgradeIntrinsicCall(CI, I.second);
6751     }
6752     if (!I.first->use_empty())
6753       I.first->replaceAllUsesWith(I.second);
6754     I.first->eraseFromParent();
6755   }
6756   UpgradedIntrinsics.clear();
6757 
6758   UpgradeDebugInfo(*TheModule);
6759 
6760   UpgradeModuleFlags(*TheModule);
6761 
6762   UpgradeARCRuntime(*TheModule);
6763 
6764   return Error::success();
6765 }
6766 
6767 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6768   return IdentifiedStructTypes;
6769 }
6770 
6771 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6772     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6773     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6774     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6775       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6776 
6777 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6778   TheIndex.addModule(ModulePath);
6779 }
6780 
6781 ModuleSummaryIndex::ModuleInfo *
6782 ModuleSummaryIndexBitcodeReader::getThisModule() {
6783   return TheIndex.getModule(ModulePath);
6784 }
6785 
6786 template <bool AllowNullValueInfo>
6787 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6788 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6789   auto VGI = ValueIdToValueInfoMap[ValueId];
6790   // We can have a null value info for memprof callsite info records in
6791   // distributed ThinLTO index files when the callee function summary is not
6792   // included in the index. The bitcode writer records 0 in that case,
6793   // and the caller of this helper will set AllowNullValueInfo to true.
6794   assert(AllowNullValueInfo || std::get<0>(VGI));
6795   return VGI;
6796 }
6797 
6798 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6799     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6800     StringRef SourceFileName) {
6801   std::string GlobalId =
6802       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6803   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6804   auto OriginalNameID = ValueGUID;
6805   if (GlobalValue::isLocalLinkage(Linkage))
6806     OriginalNameID = GlobalValue::getGUID(ValueName);
6807   if (PrintSummaryGUIDs)
6808     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6809            << ValueName << "\n";
6810 
6811   // UseStrtab is false for legacy summary formats and value names are
6812   // created on stack. In that case we save the name in a string saver in
6813   // the index so that the value name can be recorded.
6814   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6815       TheIndex.getOrInsertValueInfo(
6816           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6817       OriginalNameID, ValueGUID);
6818 }
6819 
6820 // Specialized value symbol table parser used when reading module index
6821 // blocks where we don't actually create global values. The parsed information
6822 // is saved in the bitcode reader for use when later parsing summaries.
6823 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6824     uint64_t Offset,
6825     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6826   // With a strtab the VST is not required to parse the summary.
6827   if (UseStrtab)
6828     return Error::success();
6829 
6830   assert(Offset > 0 && "Expected non-zero VST offset");
6831   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6832   if (!MaybeCurrentBit)
6833     return MaybeCurrentBit.takeError();
6834   uint64_t CurrentBit = MaybeCurrentBit.get();
6835 
6836   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6837     return Err;
6838 
6839   SmallVector<uint64_t, 64> Record;
6840 
6841   // Read all the records for this value table.
6842   SmallString<128> ValueName;
6843 
6844   while (true) {
6845     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6846     if (!MaybeEntry)
6847       return MaybeEntry.takeError();
6848     BitstreamEntry Entry = MaybeEntry.get();
6849 
6850     switch (Entry.Kind) {
6851     case BitstreamEntry::SubBlock: // Handled for us already.
6852     case BitstreamEntry::Error:
6853       return error("Malformed block");
6854     case BitstreamEntry::EndBlock:
6855       // Done parsing VST, jump back to wherever we came from.
6856       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6857         return JumpFailed;
6858       return Error::success();
6859     case BitstreamEntry::Record:
6860       // The interesting case.
6861       break;
6862     }
6863 
6864     // Read a record.
6865     Record.clear();
6866     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6867     if (!MaybeRecord)
6868       return MaybeRecord.takeError();
6869     switch (MaybeRecord.get()) {
6870     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6871       break;
6872     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6873       if (convertToString(Record, 1, ValueName))
6874         return error("Invalid record");
6875       unsigned ValueID = Record[0];
6876       assert(!SourceFileName.empty());
6877       auto VLI = ValueIdToLinkageMap.find(ValueID);
6878       assert(VLI != ValueIdToLinkageMap.end() &&
6879              "No linkage found for VST entry?");
6880       auto Linkage = VLI->second;
6881       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6882       ValueName.clear();
6883       break;
6884     }
6885     case bitc::VST_CODE_FNENTRY: {
6886       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6887       if (convertToString(Record, 2, ValueName))
6888         return error("Invalid record");
6889       unsigned ValueID = Record[0];
6890       assert(!SourceFileName.empty());
6891       auto VLI = ValueIdToLinkageMap.find(ValueID);
6892       assert(VLI != ValueIdToLinkageMap.end() &&
6893              "No linkage found for VST entry?");
6894       auto Linkage = VLI->second;
6895       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6896       ValueName.clear();
6897       break;
6898     }
6899     case bitc::VST_CODE_COMBINED_ENTRY: {
6900       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6901       unsigned ValueID = Record[0];
6902       GlobalValue::GUID RefGUID = Record[1];
6903       // The "original name", which is the second value of the pair will be
6904       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6905       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6906           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6907       break;
6908     }
6909     }
6910   }
6911 }
6912 
6913 // Parse just the blocks needed for building the index out of the module.
6914 // At the end of this routine the module Index is populated with a map
6915 // from global value id to GlobalValueSummary objects.
6916 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6917   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6918     return Err;
6919 
6920   SmallVector<uint64_t, 64> Record;
6921   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6922   unsigned ValueId = 0;
6923 
6924   // Read the index for this module.
6925   while (true) {
6926     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6927     if (!MaybeEntry)
6928       return MaybeEntry.takeError();
6929     llvm::BitstreamEntry Entry = MaybeEntry.get();
6930 
6931     switch (Entry.Kind) {
6932     case BitstreamEntry::Error:
6933       return error("Malformed block");
6934     case BitstreamEntry::EndBlock:
6935       return Error::success();
6936 
6937     case BitstreamEntry::SubBlock:
6938       switch (Entry.ID) {
6939       default: // Skip unknown content.
6940         if (Error Err = Stream.SkipBlock())
6941           return Err;
6942         break;
6943       case bitc::BLOCKINFO_BLOCK_ID:
6944         // Need to parse these to get abbrev ids (e.g. for VST)
6945         if (Error Err = readBlockInfo())
6946           return Err;
6947         break;
6948       case bitc::VALUE_SYMTAB_BLOCK_ID:
6949         // Should have been parsed earlier via VSTOffset, unless there
6950         // is no summary section.
6951         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6952                 !SeenGlobalValSummary) &&
6953                "Expected early VST parse via VSTOffset record");
6954         if (Error Err = Stream.SkipBlock())
6955           return Err;
6956         break;
6957       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6958       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6959         // Add the module if it is a per-module index (has a source file name).
6960         if (!SourceFileName.empty())
6961           addThisModule();
6962         assert(!SeenValueSymbolTable &&
6963                "Already read VST when parsing summary block?");
6964         // We might not have a VST if there were no values in the
6965         // summary. An empty summary block generated when we are
6966         // performing ThinLTO compiles so we don't later invoke
6967         // the regular LTO process on them.
6968         if (VSTOffset > 0) {
6969           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6970             return Err;
6971           SeenValueSymbolTable = true;
6972         }
6973         SeenGlobalValSummary = true;
6974         if (Error Err = parseEntireSummary(Entry.ID))
6975           return Err;
6976         break;
6977       case bitc::MODULE_STRTAB_BLOCK_ID:
6978         if (Error Err = parseModuleStringTable())
6979           return Err;
6980         break;
6981       }
6982       continue;
6983 
6984     case BitstreamEntry::Record: {
6985         Record.clear();
6986         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6987         if (!MaybeBitCode)
6988           return MaybeBitCode.takeError();
6989         switch (MaybeBitCode.get()) {
6990         default:
6991           break; // Default behavior, ignore unknown content.
6992         case bitc::MODULE_CODE_VERSION: {
6993           if (Error Err = parseVersionRecord(Record).takeError())
6994             return Err;
6995           break;
6996         }
6997         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6998         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6999           SmallString<128> ValueName;
7000           if (convertToString(Record, 0, ValueName))
7001             return error("Invalid record");
7002           SourceFileName = ValueName.c_str();
7003           break;
7004         }
7005         /// MODULE_CODE_HASH: [5*i32]
7006         case bitc::MODULE_CODE_HASH: {
7007           if (Record.size() != 5)
7008             return error("Invalid hash length " + Twine(Record.size()).str());
7009           auto &Hash = getThisModule()->second;
7010           int Pos = 0;
7011           for (auto &Val : Record) {
7012             assert(!(Val >> 32) && "Unexpected high bits set");
7013             Hash[Pos++] = Val;
7014           }
7015           break;
7016         }
7017         /// MODULE_CODE_VSTOFFSET: [offset]
7018         case bitc::MODULE_CODE_VSTOFFSET:
7019           if (Record.empty())
7020             return error("Invalid record");
7021           // Note that we subtract 1 here because the offset is relative to one
7022           // word before the start of the identification or module block, which
7023           // was historically always the start of the regular bitcode header.
7024           VSTOffset = Record[0] - 1;
7025           break;
7026         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7027         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7028         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7029         // v2: [strtab offset, strtab size, v1]
7030         case bitc::MODULE_CODE_GLOBALVAR:
7031         case bitc::MODULE_CODE_FUNCTION:
7032         case bitc::MODULE_CODE_ALIAS: {
7033           StringRef Name;
7034           ArrayRef<uint64_t> GVRecord;
7035           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7036           if (GVRecord.size() <= 3)
7037             return error("Invalid record");
7038           uint64_t RawLinkage = GVRecord[3];
7039           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7040           if (!UseStrtab) {
7041             ValueIdToLinkageMap[ValueId++] = Linkage;
7042             break;
7043           }
7044 
7045           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7046           break;
7047         }
7048         }
7049       }
7050       continue;
7051     }
7052   }
7053 }
7054 
7055 std::vector<ValueInfo>
7056 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7057   std::vector<ValueInfo> Ret;
7058   Ret.reserve(Record.size());
7059   for (uint64_t RefValueId : Record)
7060     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7061   return Ret;
7062 }
7063 
7064 std::vector<FunctionSummary::EdgeTy>
7065 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7066                                               bool IsOldProfileFormat,
7067                                               bool HasProfile, bool HasRelBF) {
7068   std::vector<FunctionSummary::EdgeTy> Ret;
7069   Ret.reserve(Record.size());
7070   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7071     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7072     bool HasTailCall = false;
7073     uint64_t RelBF = 0;
7074     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7075     if (IsOldProfileFormat) {
7076       I += 1; // Skip old callsitecount field
7077       if (HasProfile)
7078         I += 1; // Skip old profilecount field
7079     } else if (HasProfile)
7080       std::tie(Hotness, HasTailCall) =
7081           getDecodedHotnessCallEdgeInfo(Record[++I]);
7082     else if (HasRelBF)
7083       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7084     Ret.push_back(FunctionSummary::EdgeTy{
7085         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7086   }
7087   return Ret;
7088 }
7089 
7090 static void
7091 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7092                                        WholeProgramDevirtResolution &Wpd) {
7093   uint64_t ArgNum = Record[Slot++];
7094   WholeProgramDevirtResolution::ByArg &B =
7095       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7096   Slot += ArgNum;
7097 
7098   B.TheKind =
7099       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7100   B.Info = Record[Slot++];
7101   B.Byte = Record[Slot++];
7102   B.Bit = Record[Slot++];
7103 }
7104 
7105 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7106                                               StringRef Strtab, size_t &Slot,
7107                                               TypeIdSummary &TypeId) {
7108   uint64_t Id = Record[Slot++];
7109   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7110 
7111   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7112   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7113                         static_cast<size_t>(Record[Slot + 1])};
7114   Slot += 2;
7115 
7116   uint64_t ResByArgNum = Record[Slot++];
7117   for (uint64_t I = 0; I != ResByArgNum; ++I)
7118     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7119 }
7120 
7121 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7122                                      StringRef Strtab,
7123                                      ModuleSummaryIndex &TheIndex) {
7124   size_t Slot = 0;
7125   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7126       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7127   Slot += 2;
7128 
7129   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7130   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7131   TypeId.TTRes.AlignLog2 = Record[Slot++];
7132   TypeId.TTRes.SizeM1 = Record[Slot++];
7133   TypeId.TTRes.BitMask = Record[Slot++];
7134   TypeId.TTRes.InlineBits = Record[Slot++];
7135 
7136   while (Slot < Record.size())
7137     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7138 }
7139 
7140 std::vector<FunctionSummary::ParamAccess>
7141 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7142   auto ReadRange = [&]() {
7143     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7144                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7145     Record = Record.drop_front();
7146     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7147                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7148     Record = Record.drop_front();
7149     ConstantRange Range{Lower, Upper};
7150     assert(!Range.isFullSet());
7151     assert(!Range.isUpperSignWrapped());
7152     return Range;
7153   };
7154 
7155   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7156   while (!Record.empty()) {
7157     PendingParamAccesses.emplace_back();
7158     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7159     ParamAccess.ParamNo = Record.front();
7160     Record = Record.drop_front();
7161     ParamAccess.Use = ReadRange();
7162     ParamAccess.Calls.resize(Record.front());
7163     Record = Record.drop_front();
7164     for (auto &Call : ParamAccess.Calls) {
7165       Call.ParamNo = Record.front();
7166       Record = Record.drop_front();
7167       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7168       Record = Record.drop_front();
7169       Call.Offsets = ReadRange();
7170     }
7171   }
7172   return PendingParamAccesses;
7173 }
7174 
7175 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7176     ArrayRef<uint64_t> Record, size_t &Slot,
7177     TypeIdCompatibleVtableInfo &TypeId) {
7178   uint64_t Offset = Record[Slot++];
7179   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7180   TypeId.push_back({Offset, Callee});
7181 }
7182 
7183 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7184     ArrayRef<uint64_t> Record) {
7185   size_t Slot = 0;
7186   TypeIdCompatibleVtableInfo &TypeId =
7187       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7188           {Strtab.data() + Record[Slot],
7189            static_cast<size_t>(Record[Slot + 1])});
7190   Slot += 2;
7191 
7192   while (Slot < Record.size())
7193     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7194 }
7195 
7196 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7197                            unsigned WOCnt) {
7198   // Readonly and writeonly refs are in the end of the refs list.
7199   assert(ROCnt + WOCnt <= Refs.size());
7200   unsigned FirstWORef = Refs.size() - WOCnt;
7201   unsigned RefNo = FirstWORef - ROCnt;
7202   for (; RefNo < FirstWORef; ++RefNo)
7203     Refs[RefNo].setReadOnly();
7204   for (; RefNo < Refs.size(); ++RefNo)
7205     Refs[RefNo].setWriteOnly();
7206 }
7207 
7208 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7209 // objects in the index.
7210 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7211   if (Error Err = Stream.EnterSubBlock(ID))
7212     return Err;
7213   SmallVector<uint64_t, 64> Record;
7214 
7215   // Parse version
7216   {
7217     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7218     if (!MaybeEntry)
7219       return MaybeEntry.takeError();
7220     BitstreamEntry Entry = MaybeEntry.get();
7221 
7222     if (Entry.Kind != BitstreamEntry::Record)
7223       return error("Invalid Summary Block: record for version expected");
7224     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7225     if (!MaybeRecord)
7226       return MaybeRecord.takeError();
7227     if (MaybeRecord.get() != bitc::FS_VERSION)
7228       return error("Invalid Summary Block: version expected");
7229   }
7230   const uint64_t Version = Record[0];
7231   const bool IsOldProfileFormat = Version == 1;
7232   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7233     return error("Invalid summary version " + Twine(Version) +
7234                  ". Version should be in the range [1-" +
7235                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7236                  "].");
7237   Record.clear();
7238 
7239   // Keep around the last seen summary to be used when we see an optional
7240   // "OriginalName" attachement.
7241   GlobalValueSummary *LastSeenSummary = nullptr;
7242   GlobalValue::GUID LastSeenGUID = 0;
7243 
7244   // We can expect to see any number of type ID information records before
7245   // each function summary records; these variables store the information
7246   // collected so far so that it can be used to create the summary object.
7247   std::vector<GlobalValue::GUID> PendingTypeTests;
7248   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7249       PendingTypeCheckedLoadVCalls;
7250   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7251       PendingTypeCheckedLoadConstVCalls;
7252   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7253 
7254   std::vector<CallsiteInfo> PendingCallsites;
7255   std::vector<AllocInfo> PendingAllocs;
7256 
7257   while (true) {
7258     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7259     if (!MaybeEntry)
7260       return MaybeEntry.takeError();
7261     BitstreamEntry Entry = MaybeEntry.get();
7262 
7263     switch (Entry.Kind) {
7264     case BitstreamEntry::SubBlock: // Handled for us already.
7265     case BitstreamEntry::Error:
7266       return error("Malformed block");
7267     case BitstreamEntry::EndBlock:
7268       return Error::success();
7269     case BitstreamEntry::Record:
7270       // The interesting case.
7271       break;
7272     }
7273 
7274     // Read a record. The record format depends on whether this
7275     // is a per-module index or a combined index file. In the per-module
7276     // case the records contain the associated value's ID for correlation
7277     // with VST entries. In the combined index the correlation is done
7278     // via the bitcode offset of the summary records (which were saved
7279     // in the combined index VST entries). The records also contain
7280     // information used for ThinLTO renaming and importing.
7281     Record.clear();
7282     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7283     if (!MaybeBitCode)
7284       return MaybeBitCode.takeError();
7285     switch (unsigned BitCode = MaybeBitCode.get()) {
7286     default: // Default behavior: ignore.
7287       break;
7288     case bitc::FS_FLAGS: {  // [flags]
7289       TheIndex.setFlags(Record[0]);
7290       break;
7291     }
7292     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7293       uint64_t ValueID = Record[0];
7294       GlobalValue::GUID RefGUID = Record[1];
7295       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7296           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7297       break;
7298     }
7299     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7300     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7301     //                numrefs x valueid, n x (valueid)]
7302     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7303     //                        numrefs x valueid,
7304     //                        n x (valueid, hotness+tailcall flags)]
7305     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7306     //                      numrefs x valueid,
7307     //                      n x (valueid, relblockfreq+tailcall)]
7308     case bitc::FS_PERMODULE:
7309     case bitc::FS_PERMODULE_RELBF:
7310     case bitc::FS_PERMODULE_PROFILE: {
7311       unsigned ValueID = Record[0];
7312       uint64_t RawFlags = Record[1];
7313       unsigned InstCount = Record[2];
7314       uint64_t RawFunFlags = 0;
7315       unsigned NumRefs = Record[3];
7316       unsigned NumRORefs = 0, NumWORefs = 0;
7317       int RefListStartIndex = 4;
7318       if (Version >= 4) {
7319         RawFunFlags = Record[3];
7320         NumRefs = Record[4];
7321         RefListStartIndex = 5;
7322         if (Version >= 5) {
7323           NumRORefs = Record[5];
7324           RefListStartIndex = 6;
7325           if (Version >= 7) {
7326             NumWORefs = Record[6];
7327             RefListStartIndex = 7;
7328           }
7329         }
7330       }
7331 
7332       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7333       // The module path string ref set in the summary must be owned by the
7334       // index's module string table. Since we don't have a module path
7335       // string table section in the per-module index, we create a single
7336       // module path string table entry with an empty (0) ID to take
7337       // ownership.
7338       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7339       assert(Record.size() >= RefListStartIndex + NumRefs &&
7340              "Record size inconsistent with number of references");
7341       std::vector<ValueInfo> Refs = makeRefList(
7342           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7343       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7344       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7345       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7346           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7347           IsOldProfileFormat, HasProfile, HasRelBF);
7348       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7349       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7350       // In order to save memory, only record the memprof summaries if this is
7351       // the prevailing copy of a symbol. The linker doesn't resolve local
7352       // linkage values so don't check whether those are prevailing.
7353       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7354       if (IsPrevailing &&
7355           !GlobalValue::isLocalLinkage(LT) &&
7356           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7357         PendingCallsites.clear();
7358         PendingAllocs.clear();
7359       }
7360       auto FS = std::make_unique<FunctionSummary>(
7361           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7362           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7363           std::move(PendingTypeTestAssumeVCalls),
7364           std::move(PendingTypeCheckedLoadVCalls),
7365           std::move(PendingTypeTestAssumeConstVCalls),
7366           std::move(PendingTypeCheckedLoadConstVCalls),
7367           std::move(PendingParamAccesses), std::move(PendingCallsites),
7368           std::move(PendingAllocs));
7369       FS->setModulePath(getThisModule()->first());
7370       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7371       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7372                                      std::move(FS));
7373       break;
7374     }
7375     // FS_ALIAS: [valueid, flags, valueid]
7376     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7377     // they expect all aliasee summaries to be available.
7378     case bitc::FS_ALIAS: {
7379       unsigned ValueID = Record[0];
7380       uint64_t RawFlags = Record[1];
7381       unsigned AliaseeID = Record[2];
7382       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7383       auto AS = std::make_unique<AliasSummary>(Flags);
7384       // The module path string ref set in the summary must be owned by the
7385       // index's module string table. Since we don't have a module path
7386       // string table section in the per-module index, we create a single
7387       // module path string table entry with an empty (0) ID to take
7388       // ownership.
7389       AS->setModulePath(getThisModule()->first());
7390 
7391       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7392       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7393       if (!AliaseeInModule)
7394         return error("Alias expects aliasee summary to be parsed");
7395       AS->setAliasee(AliaseeVI, AliaseeInModule);
7396 
7397       auto GUID = getValueInfoFromValueId(ValueID);
7398       AS->setOriginalName(std::get<1>(GUID));
7399       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7400       break;
7401     }
7402     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7403     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7404       unsigned ValueID = Record[0];
7405       uint64_t RawFlags = Record[1];
7406       unsigned RefArrayStart = 2;
7407       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7408                                       /* WriteOnly */ false,
7409                                       /* Constant */ false,
7410                                       GlobalObject::VCallVisibilityPublic);
7411       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7412       if (Version >= 5) {
7413         GVF = getDecodedGVarFlags(Record[2]);
7414         RefArrayStart = 3;
7415       }
7416       std::vector<ValueInfo> Refs =
7417           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7418       auto FS =
7419           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7420       FS->setModulePath(getThisModule()->first());
7421       auto GUID = getValueInfoFromValueId(ValueID);
7422       FS->setOriginalName(std::get<1>(GUID));
7423       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7424       break;
7425     }
7426     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7427     //                        numrefs, numrefs x valueid,
7428     //                        n x (valueid, offset)]
7429     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7430       unsigned ValueID = Record[0];
7431       uint64_t RawFlags = Record[1];
7432       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7433       unsigned NumRefs = Record[3];
7434       unsigned RefListStartIndex = 4;
7435       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7436       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7437       std::vector<ValueInfo> Refs = makeRefList(
7438           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7439       VTableFuncList VTableFuncs;
7440       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7441         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7442         uint64_t Offset = Record[++I];
7443         VTableFuncs.push_back({Callee, Offset});
7444       }
7445       auto VS =
7446           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7447       VS->setModulePath(getThisModule()->first());
7448       VS->setVTableFuncs(VTableFuncs);
7449       auto GUID = getValueInfoFromValueId(ValueID);
7450       VS->setOriginalName(std::get<1>(GUID));
7451       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7452       break;
7453     }
7454     // FS_COMBINED is legacy and does not have support for the tail call flag.
7455     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7456     //               numrefs x valueid, n x (valueid)]
7457     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7458     //                       numrefs x valueid,
7459     //                       n x (valueid, hotness+tailcall flags)]
7460     case bitc::FS_COMBINED:
7461     case bitc::FS_COMBINED_PROFILE: {
7462       unsigned ValueID = Record[0];
7463       uint64_t ModuleId = Record[1];
7464       uint64_t RawFlags = Record[2];
7465       unsigned InstCount = Record[3];
7466       uint64_t RawFunFlags = 0;
7467       uint64_t EntryCount = 0;
7468       unsigned NumRefs = Record[4];
7469       unsigned NumRORefs = 0, NumWORefs = 0;
7470       int RefListStartIndex = 5;
7471 
7472       if (Version >= 4) {
7473         RawFunFlags = Record[4];
7474         RefListStartIndex = 6;
7475         size_t NumRefsIndex = 5;
7476         if (Version >= 5) {
7477           unsigned NumRORefsOffset = 1;
7478           RefListStartIndex = 7;
7479           if (Version >= 6) {
7480             NumRefsIndex = 6;
7481             EntryCount = Record[5];
7482             RefListStartIndex = 8;
7483             if (Version >= 7) {
7484               RefListStartIndex = 9;
7485               NumWORefs = Record[8];
7486               NumRORefsOffset = 2;
7487             }
7488           }
7489           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7490         }
7491         NumRefs = Record[NumRefsIndex];
7492       }
7493 
7494       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7495       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7496       assert(Record.size() >= RefListStartIndex + NumRefs &&
7497              "Record size inconsistent with number of references");
7498       std::vector<ValueInfo> Refs = makeRefList(
7499           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7500       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7501       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7502           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7503           IsOldProfileFormat, HasProfile, false);
7504       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7505       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7506       auto FS = std::make_unique<FunctionSummary>(
7507           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7508           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7509           std::move(PendingTypeTestAssumeVCalls),
7510           std::move(PendingTypeCheckedLoadVCalls),
7511           std::move(PendingTypeTestAssumeConstVCalls),
7512           std::move(PendingTypeCheckedLoadConstVCalls),
7513           std::move(PendingParamAccesses), std::move(PendingCallsites),
7514           std::move(PendingAllocs));
7515       LastSeenSummary = FS.get();
7516       LastSeenGUID = VI.getGUID();
7517       FS->setModulePath(ModuleIdMap[ModuleId]);
7518       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7519       break;
7520     }
7521     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7522     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7523     // they expect all aliasee summaries to be available.
7524     case bitc::FS_COMBINED_ALIAS: {
7525       unsigned ValueID = Record[0];
7526       uint64_t ModuleId = Record[1];
7527       uint64_t RawFlags = Record[2];
7528       unsigned AliaseeValueId = Record[3];
7529       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7530       auto AS = std::make_unique<AliasSummary>(Flags);
7531       LastSeenSummary = AS.get();
7532       AS->setModulePath(ModuleIdMap[ModuleId]);
7533 
7534       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7535       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7536       AS->setAliasee(AliaseeVI, AliaseeInModule);
7537 
7538       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7539       LastSeenGUID = VI.getGUID();
7540       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7541       break;
7542     }
7543     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7544     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7545       unsigned ValueID = Record[0];
7546       uint64_t ModuleId = Record[1];
7547       uint64_t RawFlags = Record[2];
7548       unsigned RefArrayStart = 3;
7549       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7550                                       /* WriteOnly */ false,
7551                                       /* Constant */ false,
7552                                       GlobalObject::VCallVisibilityPublic);
7553       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7554       if (Version >= 5) {
7555         GVF = getDecodedGVarFlags(Record[3]);
7556         RefArrayStart = 4;
7557       }
7558       std::vector<ValueInfo> Refs =
7559           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7560       auto FS =
7561           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7562       LastSeenSummary = FS.get();
7563       FS->setModulePath(ModuleIdMap[ModuleId]);
7564       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7565       LastSeenGUID = VI.getGUID();
7566       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7567       break;
7568     }
7569     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7570     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7571       uint64_t OriginalName = Record[0];
7572       if (!LastSeenSummary)
7573         return error("Name attachment that does not follow a combined record");
7574       LastSeenSummary->setOriginalName(OriginalName);
7575       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7576       // Reset the LastSeenSummary
7577       LastSeenSummary = nullptr;
7578       LastSeenGUID = 0;
7579       break;
7580     }
7581     case bitc::FS_TYPE_TESTS:
7582       assert(PendingTypeTests.empty());
7583       llvm::append_range(PendingTypeTests, Record);
7584       break;
7585 
7586     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7587       assert(PendingTypeTestAssumeVCalls.empty());
7588       for (unsigned I = 0; I != Record.size(); I += 2)
7589         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7590       break;
7591 
7592     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7593       assert(PendingTypeCheckedLoadVCalls.empty());
7594       for (unsigned I = 0; I != Record.size(); I += 2)
7595         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7596       break;
7597 
7598     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7599       PendingTypeTestAssumeConstVCalls.push_back(
7600           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7601       break;
7602 
7603     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7604       PendingTypeCheckedLoadConstVCalls.push_back(
7605           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7606       break;
7607 
7608     case bitc::FS_CFI_FUNCTION_DEFS: {
7609       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7610       for (unsigned I = 0; I != Record.size(); I += 2)
7611         CfiFunctionDefs.insert(
7612             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7613       break;
7614     }
7615 
7616     case bitc::FS_CFI_FUNCTION_DECLS: {
7617       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7618       for (unsigned I = 0; I != Record.size(); I += 2)
7619         CfiFunctionDecls.insert(
7620             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7621       break;
7622     }
7623 
7624     case bitc::FS_TYPE_ID:
7625       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7626       break;
7627 
7628     case bitc::FS_TYPE_ID_METADATA:
7629       parseTypeIdCompatibleVtableSummaryRecord(Record);
7630       break;
7631 
7632     case bitc::FS_BLOCK_COUNT:
7633       TheIndex.addBlockCount(Record[0]);
7634       break;
7635 
7636     case bitc::FS_PARAM_ACCESS: {
7637       PendingParamAccesses = parseParamAccesses(Record);
7638       break;
7639     }
7640 
7641     case bitc::FS_STACK_IDS: { // [n x stackid]
7642       // Save stack ids in the reader to consult when adding stack ids from the
7643       // lists in the stack node and alloc node entries.
7644       StackIds = ArrayRef<uint64_t>(Record);
7645       break;
7646     }
7647 
7648     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7649       unsigned ValueID = Record[0];
7650       SmallVector<unsigned> StackIdList;
7651       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7652         assert(*R < StackIds.size());
7653         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7654       }
7655       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7656       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7657       break;
7658     }
7659 
7660     case bitc::FS_COMBINED_CALLSITE_INFO: {
7661       auto RecordIter = Record.begin();
7662       unsigned ValueID = *RecordIter++;
7663       unsigned NumStackIds = *RecordIter++;
7664       unsigned NumVersions = *RecordIter++;
7665       assert(Record.size() == 3 + NumStackIds + NumVersions);
7666       SmallVector<unsigned> StackIdList;
7667       for (unsigned J = 0; J < NumStackIds; J++) {
7668         assert(*RecordIter < StackIds.size());
7669         StackIdList.push_back(
7670             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7671       }
7672       SmallVector<unsigned> Versions;
7673       for (unsigned J = 0; J < NumVersions; J++)
7674         Versions.push_back(*RecordIter++);
7675       ValueInfo VI = std::get<0>(
7676           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7677       PendingCallsites.push_back(
7678           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7679       break;
7680     }
7681 
7682     case bitc::FS_PERMODULE_ALLOC_INFO: {
7683       unsigned I = 0;
7684       std::vector<MIBInfo> MIBs;
7685       while (I < Record.size()) {
7686         assert(Record.size() - I >= 2);
7687         AllocationType AllocType = (AllocationType)Record[I++];
7688         unsigned NumStackEntries = Record[I++];
7689         assert(Record.size() - I >= NumStackEntries);
7690         SmallVector<unsigned> StackIdList;
7691         for (unsigned J = 0; J < NumStackEntries; J++) {
7692           assert(Record[I] < StackIds.size());
7693           StackIdList.push_back(
7694               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7695         }
7696         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7697       }
7698       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7699       break;
7700     }
7701 
7702     case bitc::FS_COMBINED_ALLOC_INFO: {
7703       unsigned I = 0;
7704       std::vector<MIBInfo> MIBs;
7705       unsigned NumMIBs = Record[I++];
7706       unsigned NumVersions = Record[I++];
7707       unsigned MIBsRead = 0;
7708       while (MIBsRead++ < NumMIBs) {
7709         assert(Record.size() - I >= 2);
7710         AllocationType AllocType = (AllocationType)Record[I++];
7711         unsigned NumStackEntries = Record[I++];
7712         assert(Record.size() - I >= NumStackEntries);
7713         SmallVector<unsigned> StackIdList;
7714         for (unsigned J = 0; J < NumStackEntries; J++) {
7715           assert(Record[I] < StackIds.size());
7716           StackIdList.push_back(
7717               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7718         }
7719         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7720       }
7721       assert(Record.size() - I >= NumVersions);
7722       SmallVector<uint8_t> Versions;
7723       for (unsigned J = 0; J < NumVersions; J++)
7724         Versions.push_back(Record[I++]);
7725       PendingAllocs.push_back(
7726           AllocInfo(std::move(Versions), std::move(MIBs)));
7727       break;
7728     }
7729     }
7730   }
7731   llvm_unreachable("Exit infinite loop");
7732 }
7733 
7734 // Parse the  module string table block into the Index.
7735 // This populates the ModulePathStringTable map in the index.
7736 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7737   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7738     return Err;
7739 
7740   SmallVector<uint64_t, 64> Record;
7741 
7742   SmallString<128> ModulePath;
7743   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7744 
7745   while (true) {
7746     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7747     if (!MaybeEntry)
7748       return MaybeEntry.takeError();
7749     BitstreamEntry Entry = MaybeEntry.get();
7750 
7751     switch (Entry.Kind) {
7752     case BitstreamEntry::SubBlock: // Handled for us already.
7753     case BitstreamEntry::Error:
7754       return error("Malformed block");
7755     case BitstreamEntry::EndBlock:
7756       return Error::success();
7757     case BitstreamEntry::Record:
7758       // The interesting case.
7759       break;
7760     }
7761 
7762     Record.clear();
7763     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7764     if (!MaybeRecord)
7765       return MaybeRecord.takeError();
7766     switch (MaybeRecord.get()) {
7767     default: // Default behavior: ignore.
7768       break;
7769     case bitc::MST_CODE_ENTRY: {
7770       // MST_ENTRY: [modid, namechar x N]
7771       uint64_t ModuleId = Record[0];
7772 
7773       if (convertToString(Record, 1, ModulePath))
7774         return error("Invalid record");
7775 
7776       LastSeenModule = TheIndex.addModule(ModulePath);
7777       ModuleIdMap[ModuleId] = LastSeenModule->first();
7778 
7779       ModulePath.clear();
7780       break;
7781     }
7782     /// MST_CODE_HASH: [5*i32]
7783     case bitc::MST_CODE_HASH: {
7784       if (Record.size() != 5)
7785         return error("Invalid hash length " + Twine(Record.size()).str());
7786       if (!LastSeenModule)
7787         return error("Invalid hash that does not follow a module path");
7788       int Pos = 0;
7789       for (auto &Val : Record) {
7790         assert(!(Val >> 32) && "Unexpected high bits set");
7791         LastSeenModule->second[Pos++] = Val;
7792       }
7793       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7794       LastSeenModule = nullptr;
7795       break;
7796     }
7797     }
7798   }
7799   llvm_unreachable("Exit infinite loop");
7800 }
7801 
7802 namespace {
7803 
7804 // FIXME: This class is only here to support the transition to llvm::Error. It
7805 // will be removed once this transition is complete. Clients should prefer to
7806 // deal with the Error value directly, rather than converting to error_code.
7807 class BitcodeErrorCategoryType : public std::error_category {
7808   const char *name() const noexcept override {
7809     return "llvm.bitcode";
7810   }
7811 
7812   std::string message(int IE) const override {
7813     BitcodeError E = static_cast<BitcodeError>(IE);
7814     switch (E) {
7815     case BitcodeError::CorruptedBitcode:
7816       return "Corrupted bitcode";
7817     }
7818     llvm_unreachable("Unknown error type!");
7819   }
7820 };
7821 
7822 } // end anonymous namespace
7823 
7824 const std::error_category &llvm::BitcodeErrorCategory() {
7825   static BitcodeErrorCategoryType ErrorCategory;
7826   return ErrorCategory;
7827 }
7828 
7829 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7830                                             unsigned Block, unsigned RecordID) {
7831   if (Error Err = Stream.EnterSubBlock(Block))
7832     return std::move(Err);
7833 
7834   StringRef Strtab;
7835   while (true) {
7836     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7837     if (!MaybeEntry)
7838       return MaybeEntry.takeError();
7839     llvm::BitstreamEntry Entry = MaybeEntry.get();
7840 
7841     switch (Entry.Kind) {
7842     case BitstreamEntry::EndBlock:
7843       return Strtab;
7844 
7845     case BitstreamEntry::Error:
7846       return error("Malformed block");
7847 
7848     case BitstreamEntry::SubBlock:
7849       if (Error Err = Stream.SkipBlock())
7850         return std::move(Err);
7851       break;
7852 
7853     case BitstreamEntry::Record:
7854       StringRef Blob;
7855       SmallVector<uint64_t, 1> Record;
7856       Expected<unsigned> MaybeRecord =
7857           Stream.readRecord(Entry.ID, Record, &Blob);
7858       if (!MaybeRecord)
7859         return MaybeRecord.takeError();
7860       if (MaybeRecord.get() == RecordID)
7861         Strtab = Blob;
7862       break;
7863     }
7864   }
7865 }
7866 
7867 //===----------------------------------------------------------------------===//
7868 // External interface
7869 //===----------------------------------------------------------------------===//
7870 
7871 Expected<std::vector<BitcodeModule>>
7872 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7873   auto FOrErr = getBitcodeFileContents(Buffer);
7874   if (!FOrErr)
7875     return FOrErr.takeError();
7876   return std::move(FOrErr->Mods);
7877 }
7878 
7879 Expected<BitcodeFileContents>
7880 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7881   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7882   if (!StreamOrErr)
7883     return StreamOrErr.takeError();
7884   BitstreamCursor &Stream = *StreamOrErr;
7885 
7886   BitcodeFileContents F;
7887   while (true) {
7888     uint64_t BCBegin = Stream.getCurrentByteNo();
7889 
7890     // We may be consuming bitcode from a client that leaves garbage at the end
7891     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7892     // the end that there cannot possibly be another module, stop looking.
7893     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7894       return F;
7895 
7896     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7897     if (!MaybeEntry)
7898       return MaybeEntry.takeError();
7899     llvm::BitstreamEntry Entry = MaybeEntry.get();
7900 
7901     switch (Entry.Kind) {
7902     case BitstreamEntry::EndBlock:
7903     case BitstreamEntry::Error:
7904       return error("Malformed block");
7905 
7906     case BitstreamEntry::SubBlock: {
7907       uint64_t IdentificationBit = -1ull;
7908       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7909         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7910         if (Error Err = Stream.SkipBlock())
7911           return std::move(Err);
7912 
7913         {
7914           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7915           if (!MaybeEntry)
7916             return MaybeEntry.takeError();
7917           Entry = MaybeEntry.get();
7918         }
7919 
7920         if (Entry.Kind != BitstreamEntry::SubBlock ||
7921             Entry.ID != bitc::MODULE_BLOCK_ID)
7922           return error("Malformed block");
7923       }
7924 
7925       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7926         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7927         if (Error Err = Stream.SkipBlock())
7928           return std::move(Err);
7929 
7930         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7931                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7932                           Buffer.getBufferIdentifier(), IdentificationBit,
7933                           ModuleBit});
7934         continue;
7935       }
7936 
7937       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7938         Expected<StringRef> Strtab =
7939             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7940         if (!Strtab)
7941           return Strtab.takeError();
7942         // This string table is used by every preceding bitcode module that does
7943         // not have its own string table. A bitcode file may have multiple
7944         // string tables if it was created by binary concatenation, for example
7945         // with "llvm-cat -b".
7946         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7947           if (!I.Strtab.empty())
7948             break;
7949           I.Strtab = *Strtab;
7950         }
7951         // Similarly, the string table is used by every preceding symbol table;
7952         // normally there will be just one unless the bitcode file was created
7953         // by binary concatenation.
7954         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7955           F.StrtabForSymtab = *Strtab;
7956         continue;
7957       }
7958 
7959       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7960         Expected<StringRef> SymtabOrErr =
7961             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7962         if (!SymtabOrErr)
7963           return SymtabOrErr.takeError();
7964 
7965         // We can expect the bitcode file to have multiple symbol tables if it
7966         // was created by binary concatenation. In that case we silently
7967         // ignore any subsequent symbol tables, which is fine because this is a
7968         // low level function. The client is expected to notice that the number
7969         // of modules in the symbol table does not match the number of modules
7970         // in the input file and regenerate the symbol table.
7971         if (F.Symtab.empty())
7972           F.Symtab = *SymtabOrErr;
7973         continue;
7974       }
7975 
7976       if (Error Err = Stream.SkipBlock())
7977         return std::move(Err);
7978       continue;
7979     }
7980     case BitstreamEntry::Record:
7981       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7982         return std::move(E);
7983       continue;
7984     }
7985   }
7986 }
7987 
7988 /// Get a lazy one-at-time loading module from bitcode.
7989 ///
7990 /// This isn't always used in a lazy context.  In particular, it's also used by
7991 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7992 /// in forward-referenced functions from block address references.
7993 ///
7994 /// \param[in] MaterializeAll Set to \c true if we should materialize
7995 /// everything.
7996 Expected<std::unique_ptr<Module>>
7997 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7998                              bool ShouldLazyLoadMetadata, bool IsImporting,
7999                              ParserCallbacks Callbacks) {
8000   BitstreamCursor Stream(Buffer);
8001 
8002   std::string ProducerIdentification;
8003   if (IdentificationBit != -1ull) {
8004     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8005       return std::move(JumpFailed);
8006     if (Error E =
8007             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8008       return std::move(E);
8009   }
8010 
8011   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8012     return std::move(JumpFailed);
8013   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8014                               Context);
8015 
8016   std::unique_ptr<Module> M =
8017       std::make_unique<Module>(ModuleIdentifier, Context);
8018   M->setMaterializer(R);
8019 
8020   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8021   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8022                                       IsImporting, Callbacks))
8023     return std::move(Err);
8024 
8025   if (MaterializeAll) {
8026     // Read in the entire module, and destroy the BitcodeReader.
8027     if (Error Err = M->materializeAll())
8028       return std::move(Err);
8029   } else {
8030     // Resolve forward references from blockaddresses.
8031     if (Error Err = R->materializeForwardReferencedFunctions())
8032       return std::move(Err);
8033   }
8034 
8035   return std::move(M);
8036 }
8037 
8038 Expected<std::unique_ptr<Module>>
8039 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8040                              bool IsImporting, ParserCallbacks Callbacks) {
8041   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8042                        Callbacks);
8043 }
8044 
8045 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8046 // We don't use ModuleIdentifier here because the client may need to control the
8047 // module path used in the combined summary (e.g. when reading summaries for
8048 // regular LTO modules).
8049 Error BitcodeModule::readSummary(
8050     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8051     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8052   BitstreamCursor Stream(Buffer);
8053   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8054     return JumpFailed;
8055 
8056   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8057                                     ModulePath, IsPrevailing);
8058   return R.parseModule();
8059 }
8060 
8061 // Parse the specified bitcode buffer, returning the function info index.
8062 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8063   BitstreamCursor Stream(Buffer);
8064   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8065     return std::move(JumpFailed);
8066 
8067   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8068   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8069                                     ModuleIdentifier, 0);
8070 
8071   if (Error Err = R.parseModule())
8072     return std::move(Err);
8073 
8074   return std::move(Index);
8075 }
8076 
8077 static Expected<std::pair<bool, bool>>
8078 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8079                                                  unsigned ID,
8080                                                  BitcodeLTOInfo &LTOInfo) {
8081   if (Error Err = Stream.EnterSubBlock(ID))
8082     return std::move(Err);
8083   SmallVector<uint64_t, 64> Record;
8084 
8085   while (true) {
8086     BitstreamEntry Entry;
8087     std::pair<bool, bool> Result = {false,false};
8088     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8089       return std::move(E);
8090 
8091     switch (Entry.Kind) {
8092     case BitstreamEntry::SubBlock: // Handled for us already.
8093     case BitstreamEntry::Error:
8094       return error("Malformed block");
8095     case BitstreamEntry::EndBlock: {
8096       // If no flags record found, set both flags to false.
8097       return Result;
8098     }
8099     case BitstreamEntry::Record:
8100       // The interesting case.
8101       break;
8102     }
8103 
8104     // Look for the FS_FLAGS record.
8105     Record.clear();
8106     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8107     if (!MaybeBitCode)
8108       return MaybeBitCode.takeError();
8109     switch (MaybeBitCode.get()) {
8110     default: // Default behavior: ignore.
8111       break;
8112     case bitc::FS_FLAGS: { // [flags]
8113       uint64_t Flags = Record[0];
8114       // Scan flags.
8115       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8116 
8117       bool EnableSplitLTOUnit = Flags & 0x8;
8118       bool UnifiedLTO = Flags & 0x200;
8119       Result = {EnableSplitLTOUnit, UnifiedLTO};
8120 
8121       return Result;
8122     }
8123     }
8124   }
8125   llvm_unreachable("Exit infinite loop");
8126 }
8127 
8128 // Check if the given bitcode buffer contains a global value summary block.
8129 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8130   BitstreamCursor Stream(Buffer);
8131   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8132     return std::move(JumpFailed);
8133 
8134   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8135     return std::move(Err);
8136 
8137   while (true) {
8138     llvm::BitstreamEntry Entry;
8139     if (Error E = Stream.advance().moveInto(Entry))
8140       return std::move(E);
8141 
8142     switch (Entry.Kind) {
8143     case BitstreamEntry::Error:
8144       return error("Malformed block");
8145     case BitstreamEntry::EndBlock:
8146       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8147                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8148 
8149     case BitstreamEntry::SubBlock:
8150       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8151         BitcodeLTOInfo LTOInfo;
8152         Expected<std::pair<bool, bool>> Flags =
8153             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8154         if (!Flags)
8155           return Flags.takeError();
8156         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8157         LTOInfo.IsThinLTO = true;
8158         LTOInfo.HasSummary = true;
8159         return LTOInfo;
8160       }
8161 
8162       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8163         BitcodeLTOInfo LTOInfo;
8164         Expected<std::pair<bool, bool>> Flags =
8165             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8166         if (!Flags)
8167           return Flags.takeError();
8168         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8169         LTOInfo.IsThinLTO = false;
8170         LTOInfo.HasSummary = true;
8171         return LTOInfo;
8172       }
8173 
8174       // Ignore other sub-blocks.
8175       if (Error Err = Stream.SkipBlock())
8176         return std::move(Err);
8177       continue;
8178 
8179     case BitstreamEntry::Record:
8180       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8181         continue;
8182       else
8183         return StreamFailed.takeError();
8184     }
8185   }
8186 }
8187 
8188 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8189   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8190   if (!MsOrErr)
8191     return MsOrErr.takeError();
8192 
8193   if (MsOrErr->size() != 1)
8194     return error("Expected a single module");
8195 
8196   return (*MsOrErr)[0];
8197 }
8198 
8199 Expected<std::unique_ptr<Module>>
8200 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8201                            bool ShouldLazyLoadMetadata, bool IsImporting,
8202                            ParserCallbacks Callbacks) {
8203   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8204   if (!BM)
8205     return BM.takeError();
8206 
8207   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8208                            Callbacks);
8209 }
8210 
8211 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8212     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8213     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8214   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8215                                      IsImporting, Callbacks);
8216   if (MOrErr)
8217     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8218   return MOrErr;
8219 }
8220 
8221 Expected<std::unique_ptr<Module>>
8222 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8223   return getModuleImpl(Context, true, false, false, Callbacks);
8224   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8225   // written.  We must defer until the Module has been fully materialized.
8226 }
8227 
8228 Expected<std::unique_ptr<Module>>
8229 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8230                        ParserCallbacks Callbacks) {
8231   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8232   if (!BM)
8233     return BM.takeError();
8234 
8235   return BM->parseModule(Context, Callbacks);
8236 }
8237 
8238 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8239   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8240   if (!StreamOrErr)
8241     return StreamOrErr.takeError();
8242 
8243   return readTriple(*StreamOrErr);
8244 }
8245 
8246 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8247   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8248   if (!StreamOrErr)
8249     return StreamOrErr.takeError();
8250 
8251   return hasObjCCategory(*StreamOrErr);
8252 }
8253 
8254 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8255   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8256   if (!StreamOrErr)
8257     return StreamOrErr.takeError();
8258 
8259   return readIdentificationCode(*StreamOrErr);
8260 }
8261 
8262 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8263                                    ModuleSummaryIndex &CombinedIndex) {
8264   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8265   if (!BM)
8266     return BM.takeError();
8267 
8268   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8269 }
8270 
8271 Expected<std::unique_ptr<ModuleSummaryIndex>>
8272 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8273   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8274   if (!BM)
8275     return BM.takeError();
8276 
8277   return BM->getSummary();
8278 }
8279 
8280 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8281   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8282   if (!BM)
8283     return BM.takeError();
8284 
8285   return BM->getLTOInfo();
8286 }
8287 
8288 Expected<std::unique_ptr<ModuleSummaryIndex>>
8289 llvm::getModuleSummaryIndexForFile(StringRef Path,
8290                                    bool IgnoreEmptyThinLTOIndexFile) {
8291   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8292       MemoryBuffer::getFileOrSTDIN(Path);
8293   if (!FileOrErr)
8294     return errorCodeToError(FileOrErr.getError());
8295   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8296     return nullptr;
8297   return getModuleSummaryIndex(**FileOrErr);
8298 }
8299