1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 // Declare external flag for whether we're using the new debug-info format. 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 enum { 109 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 110 }; 111 112 } // end anonymous namespace 113 114 static Error error(const Twine &Message) { 115 return make_error<StringError>( 116 Message, make_error_code(BitcodeError::CorruptedBitcode)); 117 } 118 119 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 120 if (!Stream.canSkipToPos(4)) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file too small to contain bitcode header"); 123 for (unsigned C : {'B', 'C'}) 124 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 125 if (Res.get() != C) 126 return createStringError(std::errc::illegal_byte_sequence, 127 "file doesn't start with bitcode header"); 128 } else 129 return Res.takeError(); 130 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 131 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 132 if (Res.get() != C) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file doesn't start with bitcode header"); 135 } else 136 return Res.takeError(); 137 return Error::success(); 138 } 139 140 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 141 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 142 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 143 144 if (Buffer.getBufferSize() & 3) 145 return error("Invalid bitcode signature"); 146 147 // If we have a wrapper header, parse it and ignore the non-bc file contents. 148 // The magic number is 0x0B17C0DE stored in little endian. 149 if (isBitcodeWrapper(BufPtr, BufEnd)) 150 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 151 return error("Invalid bitcode wrapper header"); 152 153 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 154 if (Error Err = hasInvalidBitcodeHeader(Stream)) 155 return std::move(Err); 156 157 return std::move(Stream); 158 } 159 160 /// Convert a string from a record into an std::string, return true on failure. 161 template <typename StrTy> 162 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 163 StrTy &Result) { 164 if (Idx > Record.size()) 165 return true; 166 167 Result.append(Record.begin() + Idx, Record.end()); 168 return false; 169 } 170 171 // Strip all the TBAA attachment for the module. 172 static void stripTBAA(Module *M) { 173 for (auto &F : *M) { 174 if (F.isMaterializable()) 175 continue; 176 for (auto &I : instructions(F)) 177 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 178 } 179 } 180 181 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 182 /// "epoch" encoded in the bitcode, and return the producer name if any. 183 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 184 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 185 return std::move(Err); 186 187 // Read all the records. 188 SmallVector<uint64_t, 64> Record; 189 190 std::string ProducerIdentification; 191 192 while (true) { 193 BitstreamEntry Entry; 194 if (Error E = Stream.advance().moveInto(Entry)) 195 return std::move(E); 196 197 switch (Entry.Kind) { 198 default: 199 case BitstreamEntry::Error: 200 return error("Malformed block"); 201 case BitstreamEntry::EndBlock: 202 return ProducerIdentification; 203 case BitstreamEntry::Record: 204 // The interesting case. 205 break; 206 } 207 208 // Read a record. 209 Record.clear(); 210 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 211 if (!MaybeBitCode) 212 return MaybeBitCode.takeError(); 213 switch (MaybeBitCode.get()) { 214 default: // Default behavior: reject 215 return error("Invalid value"); 216 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 217 convertToString(Record, 0, ProducerIdentification); 218 break; 219 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 220 unsigned epoch = (unsigned)Record[0]; 221 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 222 return error( 223 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 224 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 225 } 226 } 227 } 228 } 229 } 230 231 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 232 // We expect a number of well-defined blocks, though we don't necessarily 233 // need to understand them all. 234 while (true) { 235 if (Stream.AtEndOfStream()) 236 return ""; 237 238 BitstreamEntry Entry; 239 if (Error E = Stream.advance().moveInto(Entry)) 240 return std::move(E); 241 242 switch (Entry.Kind) { 243 case BitstreamEntry::EndBlock: 244 case BitstreamEntry::Error: 245 return error("Malformed block"); 246 247 case BitstreamEntry::SubBlock: 248 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 249 return readIdentificationBlock(Stream); 250 251 // Ignore other sub-blocks. 252 if (Error Err = Stream.SkipBlock()) 253 return std::move(Err); 254 continue; 255 case BitstreamEntry::Record: 256 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 257 return std::move(E); 258 continue; 259 } 260 } 261 } 262 263 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 264 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 265 return std::move(Err); 266 267 SmallVector<uint64_t, 64> Record; 268 // Read all the records for this module. 269 270 while (true) { 271 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 272 if (!MaybeEntry) 273 return MaybeEntry.takeError(); 274 BitstreamEntry Entry = MaybeEntry.get(); 275 276 switch (Entry.Kind) { 277 case BitstreamEntry::SubBlock: // Handled for us already. 278 case BitstreamEntry::Error: 279 return error("Malformed block"); 280 case BitstreamEntry::EndBlock: 281 return false; 282 case BitstreamEntry::Record: 283 // The interesting case. 284 break; 285 } 286 287 // Read a record. 288 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 289 if (!MaybeRecord) 290 return MaybeRecord.takeError(); 291 switch (MaybeRecord.get()) { 292 default: 293 break; // Default behavior, ignore unknown content. 294 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 295 std::string S; 296 if (convertToString(Record, 0, S)) 297 return error("Invalid section name record"); 298 // Check for the i386 and other (x86_64, ARM) conventions 299 if (S.find("__DATA,__objc_catlist") != std::string::npos || 300 S.find("__OBJC,__category") != std::string::npos) 301 return true; 302 break; 303 } 304 } 305 Record.clear(); 306 } 307 llvm_unreachable("Exit infinite loop"); 308 } 309 310 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 311 // We expect a number of well-defined blocks, though we don't necessarily 312 // need to understand them all. 313 while (true) { 314 BitstreamEntry Entry; 315 if (Error E = Stream.advance().moveInto(Entry)) 316 return std::move(E); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::Error: 320 return error("Malformed block"); 321 case BitstreamEntry::EndBlock: 322 return false; 323 324 case BitstreamEntry::SubBlock: 325 if (Entry.ID == bitc::MODULE_BLOCK_ID) 326 return hasObjCCategoryInModule(Stream); 327 328 // Ignore other sub-blocks. 329 if (Error Err = Stream.SkipBlock()) 330 return std::move(Err); 331 continue; 332 333 case BitstreamEntry::Record: 334 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 335 return std::move(E); 336 continue; 337 } 338 } 339 } 340 341 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 342 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 343 return std::move(Err); 344 345 SmallVector<uint64_t, 64> Record; 346 347 std::string Triple; 348 349 // Read all the records for this module. 350 while (true) { 351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 352 if (!MaybeEntry) 353 return MaybeEntry.takeError(); 354 BitstreamEntry Entry = MaybeEntry.get(); 355 356 switch (Entry.Kind) { 357 case BitstreamEntry::SubBlock: // Handled for us already. 358 case BitstreamEntry::Error: 359 return error("Malformed block"); 360 case BitstreamEntry::EndBlock: 361 return Triple; 362 case BitstreamEntry::Record: 363 // The interesting case. 364 break; 365 } 366 367 // Read a record. 368 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 369 if (!MaybeRecord) 370 return MaybeRecord.takeError(); 371 switch (MaybeRecord.get()) { 372 default: break; // Default behavior, ignore unknown content. 373 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 374 std::string S; 375 if (convertToString(Record, 0, S)) 376 return error("Invalid triple record"); 377 Triple = S; 378 break; 379 } 380 } 381 Record.clear(); 382 } 383 llvm_unreachable("Exit infinite loop"); 384 } 385 386 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 387 // We expect a number of well-defined blocks, though we don't necessarily 388 // need to understand them all. 389 while (true) { 390 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 391 if (!MaybeEntry) 392 return MaybeEntry.takeError(); 393 BitstreamEntry Entry = MaybeEntry.get(); 394 395 switch (Entry.Kind) { 396 case BitstreamEntry::Error: 397 return error("Malformed block"); 398 case BitstreamEntry::EndBlock: 399 return ""; 400 401 case BitstreamEntry::SubBlock: 402 if (Entry.ID == bitc::MODULE_BLOCK_ID) 403 return readModuleTriple(Stream); 404 405 // Ignore other sub-blocks. 406 if (Error Err = Stream.SkipBlock()) 407 return std::move(Err); 408 continue; 409 410 case BitstreamEntry::Record: 411 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 412 continue; 413 else 414 return Skipped.takeError(); 415 } 416 } 417 } 418 419 namespace { 420 421 class BitcodeReaderBase { 422 protected: 423 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 424 : Stream(std::move(Stream)), Strtab(Strtab) { 425 this->Stream.setBlockInfo(&BlockInfo); 426 } 427 428 BitstreamBlockInfo BlockInfo; 429 BitstreamCursor Stream; 430 StringRef Strtab; 431 432 /// In version 2 of the bitcode we store names of global values and comdats in 433 /// a string table rather than in the VST. 434 bool UseStrtab = false; 435 436 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 437 438 /// If this module uses a string table, pop the reference to the string table 439 /// and return the referenced string and the rest of the record. Otherwise 440 /// just return the record itself. 441 std::pair<StringRef, ArrayRef<uint64_t>> 442 readNameFromStrtab(ArrayRef<uint64_t> Record); 443 444 Error readBlockInfo(); 445 446 // Contains an arbitrary and optional string identifying the bitcode producer 447 std::string ProducerIdentification; 448 449 Error error(const Twine &Message); 450 }; 451 452 } // end anonymous namespace 453 454 Error BitcodeReaderBase::error(const Twine &Message) { 455 std::string FullMsg = Message.str(); 456 if (!ProducerIdentification.empty()) 457 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 458 LLVM_VERSION_STRING "')"; 459 return ::error(FullMsg); 460 } 461 462 Expected<unsigned> 463 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 464 if (Record.empty()) 465 return error("Invalid version record"); 466 unsigned ModuleVersion = Record[0]; 467 if (ModuleVersion > 2) 468 return error("Invalid value"); 469 UseStrtab = ModuleVersion >= 2; 470 return ModuleVersion; 471 } 472 473 std::pair<StringRef, ArrayRef<uint64_t>> 474 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 475 if (!UseStrtab) 476 return {"", Record}; 477 // Invalid reference. Let the caller complain about the record being empty. 478 if (Record[0] + Record[1] > Strtab.size()) 479 return {"", {}}; 480 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 481 } 482 483 namespace { 484 485 /// This represents a constant expression or constant aggregate using a custom 486 /// structure internal to the bitcode reader. Later, this structure will be 487 /// expanded by materializeValue() either into a constant expression/aggregate, 488 /// or into an instruction sequence at the point of use. This allows us to 489 /// upgrade bitcode using constant expressions even if this kind of constant 490 /// expression is no longer supported. 491 class BitcodeConstant final : public Value, 492 TrailingObjects<BitcodeConstant, unsigned> { 493 friend TrailingObjects; 494 495 // Value subclass ID: Pick largest possible value to avoid any clashes. 496 static constexpr uint8_t SubclassID = 255; 497 498 public: 499 // Opcodes used for non-expressions. This includes constant aggregates 500 // (struct, array, vector) that might need expansion, as well as non-leaf 501 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 502 // but still go through BitcodeConstant to avoid different uselist orders 503 // between the two cases. 504 static constexpr uint8_t ConstantStructOpcode = 255; 505 static constexpr uint8_t ConstantArrayOpcode = 254; 506 static constexpr uint8_t ConstantVectorOpcode = 253; 507 static constexpr uint8_t NoCFIOpcode = 252; 508 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 509 static constexpr uint8_t BlockAddressOpcode = 250; 510 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 511 512 // Separate struct to make passing different number of parameters to 513 // BitcodeConstant::create() more convenient. 514 struct ExtraInfo { 515 uint8_t Opcode; 516 uint8_t Flags; 517 unsigned Extra; 518 Type *SrcElemTy; 519 520 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 521 Type *SrcElemTy = nullptr) 522 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 523 }; 524 525 uint8_t Opcode; 526 uint8_t Flags; 527 unsigned NumOperands; 528 unsigned Extra; // GEP inrange index or blockaddress BB id. 529 Type *SrcElemTy; // GEP source element type. 530 531 private: 532 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 533 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 534 NumOperands(OpIDs.size()), Extra(Info.Extra), 535 SrcElemTy(Info.SrcElemTy) { 536 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 537 getTrailingObjects<unsigned>()); 538 } 539 540 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 541 542 public: 543 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 544 const ExtraInfo &Info, 545 ArrayRef<unsigned> OpIDs) { 546 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 547 alignof(BitcodeConstant)); 548 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 549 } 550 551 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 552 553 ArrayRef<unsigned> getOperandIDs() const { 554 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 555 } 556 557 std::optional<unsigned> getInRangeIndex() const { 558 assert(Opcode == Instruction::GetElementPtr); 559 if (Extra == (unsigned)-1) 560 return std::nullopt; 561 return Extra; 562 } 563 564 const char *getOpcodeName() const { 565 return Instruction::getOpcodeName(Opcode); 566 } 567 }; 568 569 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 570 LLVMContext &Context; 571 Module *TheModule = nullptr; 572 // Next offset to start scanning for lazy parsing of function bodies. 573 uint64_t NextUnreadBit = 0; 574 // Last function offset found in the VST. 575 uint64_t LastFunctionBlockBit = 0; 576 bool SeenValueSymbolTable = false; 577 uint64_t VSTOffset = 0; 578 579 std::vector<std::string> SectionTable; 580 std::vector<std::string> GCTable; 581 582 std::vector<Type *> TypeList; 583 /// Track type IDs of contained types. Order is the same as the contained 584 /// types of a Type*. This is used during upgrades of typed pointer IR in 585 /// opaque pointer mode. 586 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 587 /// In some cases, we need to create a type ID for a type that was not 588 /// explicitly encoded in the bitcode, or we don't know about at the current 589 /// point. For example, a global may explicitly encode the value type ID, but 590 /// not have a type ID for the pointer to value type, for which we create a 591 /// virtual type ID instead. This map stores the new type ID that was created 592 /// for the given pair of Type and contained type ID. 593 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 594 DenseMap<Function *, unsigned> FunctionTypeIDs; 595 /// Allocator for BitcodeConstants. This should come before ValueList, 596 /// because the ValueList might hold ValueHandles to these constants, so 597 /// ValueList must be destroyed before Alloc. 598 BumpPtrAllocator Alloc; 599 BitcodeReaderValueList ValueList; 600 std::optional<MetadataLoader> MDLoader; 601 std::vector<Comdat *> ComdatList; 602 DenseSet<GlobalObject *> ImplicitComdatObjects; 603 SmallVector<Instruction *, 64> InstructionList; 604 605 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 606 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 607 608 struct FunctionOperandInfo { 609 Function *F; 610 unsigned PersonalityFn; 611 unsigned Prefix; 612 unsigned Prologue; 613 }; 614 std::vector<FunctionOperandInfo> FunctionOperands; 615 616 /// The set of attributes by index. Index zero in the file is for null, and 617 /// is thus not represented here. As such all indices are off by one. 618 std::vector<AttributeList> MAttributes; 619 620 /// The set of attribute groups. 621 std::map<unsigned, AttributeList> MAttributeGroups; 622 623 /// While parsing a function body, this is a list of the basic blocks for the 624 /// function. 625 std::vector<BasicBlock*> FunctionBBs; 626 627 // When reading the module header, this list is populated with functions that 628 // have bodies later in the file. 629 std::vector<Function*> FunctionsWithBodies; 630 631 // When intrinsic functions are encountered which require upgrading they are 632 // stored here with their replacement function. 633 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 634 UpdatedIntrinsicMap UpgradedIntrinsics; 635 636 // Several operations happen after the module header has been read, but 637 // before function bodies are processed. This keeps track of whether 638 // we've done this yet. 639 bool SeenFirstFunctionBody = false; 640 641 /// When function bodies are initially scanned, this map contains info about 642 /// where to find deferred function body in the stream. 643 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 644 645 /// When Metadata block is initially scanned when parsing the module, we may 646 /// choose to defer parsing of the metadata. This vector contains info about 647 /// which Metadata blocks are deferred. 648 std::vector<uint64_t> DeferredMetadataInfo; 649 650 /// These are basic blocks forward-referenced by block addresses. They are 651 /// inserted lazily into functions when they're loaded. The basic block ID is 652 /// its index into the vector. 653 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 654 std::deque<Function *> BasicBlockFwdRefQueue; 655 656 /// These are Functions that contain BlockAddresses which refer a different 657 /// Function. When parsing the different Function, queue Functions that refer 658 /// to the different Function. Those Functions must be materialized in order 659 /// to resolve their BlockAddress constants before the different Function 660 /// gets moved into another Module. 661 std::vector<Function *> BackwardRefFunctions; 662 663 /// Indicates that we are using a new encoding for instruction operands where 664 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 665 /// instruction number, for a more compact encoding. Some instruction 666 /// operands are not relative to the instruction ID: basic block numbers, and 667 /// types. Once the old style function blocks have been phased out, we would 668 /// not need this flag. 669 bool UseRelativeIDs = false; 670 671 /// True if all functions will be materialized, negating the need to process 672 /// (e.g.) blockaddress forward references. 673 bool WillMaterializeAllForwardRefs = false; 674 675 bool StripDebugInfo = false; 676 TBAAVerifier TBAAVerifyHelper; 677 678 std::vector<std::string> BundleTags; 679 SmallVector<SyncScope::ID, 8> SSIDs; 680 681 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 682 683 public: 684 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 685 StringRef ProducerIdentification, LLVMContext &Context); 686 687 Error materializeForwardReferencedFunctions(); 688 689 Error materialize(GlobalValue *GV) override; 690 Error materializeModule() override; 691 std::vector<StructType *> getIdentifiedStructTypes() const override; 692 693 /// Main interface to parsing a bitcode buffer. 694 /// \returns true if an error occurred. 695 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 696 bool IsImporting, ParserCallbacks Callbacks = {}); 697 698 static uint64_t decodeSignRotatedValue(uint64_t V); 699 700 /// Materialize any deferred Metadata block. 701 Error materializeMetadata() override; 702 703 void setStripDebugInfo() override; 704 705 private: 706 std::vector<StructType *> IdentifiedStructTypes; 707 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 708 StructType *createIdentifiedStructType(LLVMContext &Context); 709 710 static constexpr unsigned InvalidTypeID = ~0u; 711 712 Type *getTypeByID(unsigned ID); 713 Type *getPtrElementTypeByID(unsigned ID); 714 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 715 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 716 717 void callValueTypeCallback(Value *F, unsigned TypeID); 718 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 719 Expected<Constant *> getValueForInitializer(unsigned ID); 720 721 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 722 BasicBlock *ConstExprInsertBB) { 723 if (Ty && Ty->isMetadataTy()) 724 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 725 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 726 } 727 728 Metadata *getFnMetadataByID(unsigned ID) { 729 return MDLoader->getMetadataFwdRefOrLoad(ID); 730 } 731 732 BasicBlock *getBasicBlock(unsigned ID) const { 733 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 734 return FunctionBBs[ID]; 735 } 736 737 AttributeList getAttributes(unsigned i) const { 738 if (i-1 < MAttributes.size()) 739 return MAttributes[i-1]; 740 return AttributeList(); 741 } 742 743 /// Read a value/type pair out of the specified record from slot 'Slot'. 744 /// Increment Slot past the number of slots used in the record. Return true on 745 /// failure. 746 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 747 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 748 BasicBlock *ConstExprInsertBB) { 749 if (Slot == Record.size()) return true; 750 unsigned ValNo = (unsigned)Record[Slot++]; 751 // Adjust the ValNo, if it was encoded relative to the InstNum. 752 if (UseRelativeIDs) 753 ValNo = InstNum - ValNo; 754 if (ValNo < InstNum) { 755 // If this is not a forward reference, just return the value we already 756 // have. 757 TypeID = ValueList.getTypeID(ValNo); 758 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 759 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 760 "Incorrect type ID stored for value"); 761 return ResVal == nullptr; 762 } 763 if (Slot == Record.size()) 764 return true; 765 766 TypeID = (unsigned)Record[Slot++]; 767 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 768 ConstExprInsertBB); 769 return ResVal == nullptr; 770 } 771 772 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 773 /// past the number of slots used by the value in the record. Return true if 774 /// there is an error. 775 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 776 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 777 BasicBlock *ConstExprInsertBB) { 778 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 779 return true; 780 // All values currently take a single record slot. 781 ++Slot; 782 return false; 783 } 784 785 /// Like popValue, but does not increment the Slot number. 786 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 787 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 788 BasicBlock *ConstExprInsertBB) { 789 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 790 return ResVal == nullptr; 791 } 792 793 /// Version of getValue that returns ResVal directly, or 0 if there is an 794 /// error. 795 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 796 unsigned InstNum, Type *Ty, unsigned TyID, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) return nullptr; 799 unsigned ValNo = (unsigned)Record[Slot]; 800 // Adjust the ValNo, if it was encoded relative to the InstNum. 801 if (UseRelativeIDs) 802 ValNo = InstNum - ValNo; 803 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 804 } 805 806 /// Like getValue, but decodes signed VBRs. 807 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 808 unsigned InstNum, Type *Ty, unsigned TyID, 809 BasicBlock *ConstExprInsertBB) { 810 if (Slot == Record.size()) return nullptr; 811 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 812 // Adjust the ValNo, if it was encoded relative to the InstNum. 813 if (UseRelativeIDs) 814 ValNo = InstNum - ValNo; 815 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 816 } 817 818 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 819 /// corresponding argument's pointee type. Also upgrades intrinsics that now 820 /// require an elementtype attribute. 821 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 822 823 /// Converts alignment exponent (i.e. power of two (or zero)) to the 824 /// corresponding alignment to use. If alignment is too large, returns 825 /// a corresponding error code. 826 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 827 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 828 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 829 ParserCallbacks Callbacks = {}); 830 831 Error parseComdatRecord(ArrayRef<uint64_t> Record); 832 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 833 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 834 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 835 ArrayRef<uint64_t> Record); 836 837 Error parseAttributeBlock(); 838 Error parseAttributeGroupBlock(); 839 Error parseTypeTable(); 840 Error parseTypeTableBody(); 841 Error parseOperandBundleTags(); 842 Error parseSyncScopeNames(); 843 844 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 845 unsigned NameIndex, Triple &TT); 846 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 847 ArrayRef<uint64_t> Record); 848 Error parseValueSymbolTable(uint64_t Offset = 0); 849 Error parseGlobalValueSymbolTable(); 850 Error parseConstants(); 851 Error rememberAndSkipFunctionBodies(); 852 Error rememberAndSkipFunctionBody(); 853 /// Save the positions of the Metadata blocks and skip parsing the blocks. 854 Error rememberAndSkipMetadata(); 855 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 856 Error parseFunctionBody(Function *F); 857 Error globalCleanup(); 858 Error resolveGlobalAndIndirectSymbolInits(); 859 Error parseUseLists(); 860 Error findFunctionInStream( 861 Function *F, 862 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 863 864 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 865 }; 866 867 /// Class to manage reading and parsing function summary index bitcode 868 /// files/sections. 869 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 870 /// The module index built during parsing. 871 ModuleSummaryIndex &TheIndex; 872 873 /// Indicates whether we have encountered a global value summary section 874 /// yet during parsing. 875 bool SeenGlobalValSummary = false; 876 877 /// Indicates whether we have already parsed the VST, used for error checking. 878 bool SeenValueSymbolTable = false; 879 880 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 881 /// Used to enable on-demand parsing of the VST. 882 uint64_t VSTOffset = 0; 883 884 // Map to save ValueId to ValueInfo association that was recorded in the 885 // ValueSymbolTable. It is used after the VST is parsed to convert 886 // call graph edges read from the function summary from referencing 887 // callees by their ValueId to using the ValueInfo instead, which is how 888 // they are recorded in the summary index being built. 889 // We save a GUID which refers to the same global as the ValueInfo, but 890 // ignoring the linkage, i.e. for values other than local linkage they are 891 // identical (this is the second tuple member). 892 // The third tuple member is the real GUID of the ValueInfo. 893 DenseMap<unsigned, 894 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 895 ValueIdToValueInfoMap; 896 897 /// Map populated during module path string table parsing, from the 898 /// module ID to a string reference owned by the index's module 899 /// path string table, used to correlate with combined index 900 /// summary records. 901 DenseMap<uint64_t, StringRef> ModuleIdMap; 902 903 /// Original source file name recorded in a bitcode record. 904 std::string SourceFileName; 905 906 /// The string identifier given to this module by the client, normally the 907 /// path to the bitcode file. 908 StringRef ModulePath; 909 910 /// Callback to ask whether a symbol is the prevailing copy when invoked 911 /// during combined index building. 912 std::function<bool(GlobalValue::GUID)> IsPrevailing; 913 914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 915 /// ids from the lists in the callsite and alloc entries to the index. 916 std::vector<uint64_t> StackIds; 917 918 public: 919 ModuleSummaryIndexBitcodeReader( 920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 921 StringRef ModulePath, 922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 923 924 Error parseModule(); 925 926 private: 927 void setValueGUID(uint64_t ValueID, StringRef ValueName, 928 GlobalValue::LinkageTypes Linkage, 929 StringRef SourceFileName); 930 Error parseValueSymbolTable( 931 uint64_t Offset, 932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 935 bool IsOldProfileFormat, 936 bool HasProfile, 937 bool HasRelBF); 938 Error parseEntireSummary(unsigned ID); 939 Error parseModuleStringTable(); 940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 942 TypeIdCompatibleVtableInfo &TypeId); 943 std::vector<FunctionSummary::ParamAccess> 944 parseParamAccesses(ArrayRef<uint64_t> Record); 945 946 template <bool AllowNullValueInfo = false> 947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 948 getValueInfoFromValueId(unsigned ValueId); 949 950 void addThisModule(); 951 ModuleSummaryIndex::ModuleInfo *getThisModule(); 952 }; 953 954 } // end anonymous namespace 955 956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 957 Error Err) { 958 if (Err) { 959 std::error_code EC; 960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 961 EC = EIB.convertToErrorCode(); 962 Ctx.emitError(EIB.message()); 963 }); 964 return EC; 965 } 966 return std::error_code(); 967 } 968 969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 970 StringRef ProducerIdentification, 971 LLVMContext &Context) 972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 973 ValueList(this->Stream.SizeInBytes(), 974 [this](unsigned ValID, BasicBlock *InsertBB) { 975 return materializeValue(ValID, InsertBB); 976 }) { 977 this->ProducerIdentification = std::string(ProducerIdentification); 978 } 979 980 Error BitcodeReader::materializeForwardReferencedFunctions() { 981 if (WillMaterializeAllForwardRefs) 982 return Error::success(); 983 984 // Prevent recursion. 985 WillMaterializeAllForwardRefs = true; 986 987 while (!BasicBlockFwdRefQueue.empty()) { 988 Function *F = BasicBlockFwdRefQueue.front(); 989 BasicBlockFwdRefQueue.pop_front(); 990 assert(F && "Expected valid function"); 991 if (!BasicBlockFwdRefs.count(F)) 992 // Already materialized. 993 continue; 994 995 // Check for a function that isn't materializable to prevent an infinite 996 // loop. When parsing a blockaddress stored in a global variable, there 997 // isn't a trivial way to check if a function will have a body without a 998 // linear search through FunctionsWithBodies, so just check it here. 999 if (!F->isMaterializable()) 1000 return error("Never resolved function from blockaddress"); 1001 1002 // Try to materialize F. 1003 if (Error Err = materialize(F)) 1004 return Err; 1005 } 1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1007 1008 for (Function *F : BackwardRefFunctions) 1009 if (Error Err = materialize(F)) 1010 return Err; 1011 BackwardRefFunctions.clear(); 1012 1013 // Reset state. 1014 WillMaterializeAllForwardRefs = false; 1015 return Error::success(); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Helper functions to implement forward reference resolution, etc. 1020 //===----------------------------------------------------------------------===// 1021 1022 static bool hasImplicitComdat(size_t Val) { 1023 switch (Val) { 1024 default: 1025 return false; 1026 case 1: // Old WeakAnyLinkage 1027 case 4: // Old LinkOnceAnyLinkage 1028 case 10: // Old WeakODRLinkage 1029 case 11: // Old LinkOnceODRLinkage 1030 return true; 1031 } 1032 } 1033 1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown/new linkages to external 1037 case 0: 1038 return GlobalValue::ExternalLinkage; 1039 case 2: 1040 return GlobalValue::AppendingLinkage; 1041 case 3: 1042 return GlobalValue::InternalLinkage; 1043 case 5: 1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1045 case 6: 1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1047 case 7: 1048 return GlobalValue::ExternalWeakLinkage; 1049 case 8: 1050 return GlobalValue::CommonLinkage; 1051 case 9: 1052 return GlobalValue::PrivateLinkage; 1053 case 12: 1054 return GlobalValue::AvailableExternallyLinkage; 1055 case 13: 1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1057 case 14: 1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1059 case 15: 1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1061 case 1: // Old value with implicit comdat. 1062 case 16: 1063 return GlobalValue::WeakAnyLinkage; 1064 case 10: // Old value with implicit comdat. 1065 case 17: 1066 return GlobalValue::WeakODRLinkage; 1067 case 4: // Old value with implicit comdat. 1068 case 18: 1069 return GlobalValue::LinkOnceAnyLinkage; 1070 case 11: // Old value with implicit comdat. 1071 case 19: 1072 return GlobalValue::LinkOnceODRLinkage; 1073 } 1074 } 1075 1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1077 FunctionSummary::FFlags Flags; 1078 Flags.ReadNone = RawFlags & 0x1; 1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1082 Flags.NoInline = (RawFlags >> 4) & 0x1; 1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1085 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1088 return Flags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1092 // 1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1094 // visibility: [8, 10). 1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1096 uint64_t Version) { 1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1098 // like getDecodedLinkage() above. Any future change to the linkage enum and 1099 // to getDecodedLinkage() will need to be taken into account here as above. 1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1102 RawFlags = RawFlags >> 4; 1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1104 // The Live flag wasn't introduced until version 3. For dead stripping 1105 // to work correctly on earlier versions, we must conservatively treat all 1106 // values as live. 1107 bool Live = (RawFlags & 0x2) || Version < 3; 1108 bool Local = (RawFlags & 0x4); 1109 bool AutoHide = (RawFlags & 0x8); 1110 1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1112 Live, Local, AutoHide); 1113 } 1114 1115 // Decode the flags for GlobalVariable in the summary 1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1117 return GlobalVarSummary::GVarFlags( 1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1119 (RawFlags & 0x4) ? true : false, 1120 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1121 } 1122 1123 static std::pair<CalleeInfo::HotnessType, bool> 1124 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1125 CalleeInfo::HotnessType Hotness = 1126 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1127 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1128 return {Hotness, HasTailCall}; 1129 } 1130 1131 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1132 bool &HasTailCall) { 1133 static constexpr uint64_t RelBlockFreqMask = 1134 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1135 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1136 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1137 } 1138 1139 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1140 switch (Val) { 1141 default: // Map unknown visibilities to default. 1142 case 0: return GlobalValue::DefaultVisibility; 1143 case 1: return GlobalValue::HiddenVisibility; 1144 case 2: return GlobalValue::ProtectedVisibility; 1145 } 1146 } 1147 1148 static GlobalValue::DLLStorageClassTypes 1149 getDecodedDLLStorageClass(unsigned Val) { 1150 switch (Val) { 1151 default: // Map unknown values to default. 1152 case 0: return GlobalValue::DefaultStorageClass; 1153 case 1: return GlobalValue::DLLImportStorageClass; 1154 case 2: return GlobalValue::DLLExportStorageClass; 1155 } 1156 } 1157 1158 static bool getDecodedDSOLocal(unsigned Val) { 1159 switch(Val) { 1160 default: // Map unknown values to preemptable. 1161 case 0: return false; 1162 case 1: return true; 1163 } 1164 } 1165 1166 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1167 switch (Val) { 1168 case 1: 1169 return CodeModel::Tiny; 1170 case 2: 1171 return CodeModel::Small; 1172 case 3: 1173 return CodeModel::Kernel; 1174 case 4: 1175 return CodeModel::Medium; 1176 case 5: 1177 return CodeModel::Large; 1178 } 1179 1180 return {}; 1181 } 1182 1183 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1184 switch (Val) { 1185 case 0: return GlobalVariable::NotThreadLocal; 1186 default: // Map unknown non-zero value to general dynamic. 1187 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1188 case 2: return GlobalVariable::LocalDynamicTLSModel; 1189 case 3: return GlobalVariable::InitialExecTLSModel; 1190 case 4: return GlobalVariable::LocalExecTLSModel; 1191 } 1192 } 1193 1194 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1195 switch (Val) { 1196 default: // Map unknown to UnnamedAddr::None. 1197 case 0: return GlobalVariable::UnnamedAddr::None; 1198 case 1: return GlobalVariable::UnnamedAddr::Global; 1199 case 2: return GlobalVariable::UnnamedAddr::Local; 1200 } 1201 } 1202 1203 static int getDecodedCastOpcode(unsigned Val) { 1204 switch (Val) { 1205 default: return -1; 1206 case bitc::CAST_TRUNC : return Instruction::Trunc; 1207 case bitc::CAST_ZEXT : return Instruction::ZExt; 1208 case bitc::CAST_SEXT : return Instruction::SExt; 1209 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1210 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1211 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1212 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1213 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1214 case bitc::CAST_FPEXT : return Instruction::FPExt; 1215 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1216 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1217 case bitc::CAST_BITCAST : return Instruction::BitCast; 1218 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1219 } 1220 } 1221 1222 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1223 bool IsFP = Ty->isFPOrFPVectorTy(); 1224 // UnOps are only valid for int/fp or vector of int/fp types 1225 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1226 return -1; 1227 1228 switch (Val) { 1229 default: 1230 return -1; 1231 case bitc::UNOP_FNEG: 1232 return IsFP ? Instruction::FNeg : -1; 1233 } 1234 } 1235 1236 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1237 bool IsFP = Ty->isFPOrFPVectorTy(); 1238 // BinOps are only valid for int/fp or vector of int/fp types 1239 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1240 return -1; 1241 1242 switch (Val) { 1243 default: 1244 return -1; 1245 case bitc::BINOP_ADD: 1246 return IsFP ? Instruction::FAdd : Instruction::Add; 1247 case bitc::BINOP_SUB: 1248 return IsFP ? Instruction::FSub : Instruction::Sub; 1249 case bitc::BINOP_MUL: 1250 return IsFP ? Instruction::FMul : Instruction::Mul; 1251 case bitc::BINOP_UDIV: 1252 return IsFP ? -1 : Instruction::UDiv; 1253 case bitc::BINOP_SDIV: 1254 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1255 case bitc::BINOP_UREM: 1256 return IsFP ? -1 : Instruction::URem; 1257 case bitc::BINOP_SREM: 1258 return IsFP ? Instruction::FRem : Instruction::SRem; 1259 case bitc::BINOP_SHL: 1260 return IsFP ? -1 : Instruction::Shl; 1261 case bitc::BINOP_LSHR: 1262 return IsFP ? -1 : Instruction::LShr; 1263 case bitc::BINOP_ASHR: 1264 return IsFP ? -1 : Instruction::AShr; 1265 case bitc::BINOP_AND: 1266 return IsFP ? -1 : Instruction::And; 1267 case bitc::BINOP_OR: 1268 return IsFP ? -1 : Instruction::Or; 1269 case bitc::BINOP_XOR: 1270 return IsFP ? -1 : Instruction::Xor; 1271 } 1272 } 1273 1274 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1275 switch (Val) { 1276 default: return AtomicRMWInst::BAD_BINOP; 1277 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1278 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1279 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1280 case bitc::RMW_AND: return AtomicRMWInst::And; 1281 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1282 case bitc::RMW_OR: return AtomicRMWInst::Or; 1283 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1284 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1285 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1286 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1287 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1288 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1289 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1290 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1291 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1292 case bitc::RMW_UINC_WRAP: 1293 return AtomicRMWInst::UIncWrap; 1294 case bitc::RMW_UDEC_WRAP: 1295 return AtomicRMWInst::UDecWrap; 1296 } 1297 } 1298 1299 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1300 switch (Val) { 1301 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1302 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1303 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1304 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1305 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1306 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1307 default: // Map unknown orderings to sequentially-consistent. 1308 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1309 } 1310 } 1311 1312 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1313 switch (Val) { 1314 default: // Map unknown selection kinds to any. 1315 case bitc::COMDAT_SELECTION_KIND_ANY: 1316 return Comdat::Any; 1317 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1318 return Comdat::ExactMatch; 1319 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1320 return Comdat::Largest; 1321 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1322 return Comdat::NoDeduplicate; 1323 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1324 return Comdat::SameSize; 1325 } 1326 } 1327 1328 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1329 FastMathFlags FMF; 1330 if (0 != (Val & bitc::UnsafeAlgebra)) 1331 FMF.setFast(); 1332 if (0 != (Val & bitc::AllowReassoc)) 1333 FMF.setAllowReassoc(); 1334 if (0 != (Val & bitc::NoNaNs)) 1335 FMF.setNoNaNs(); 1336 if (0 != (Val & bitc::NoInfs)) 1337 FMF.setNoInfs(); 1338 if (0 != (Val & bitc::NoSignedZeros)) 1339 FMF.setNoSignedZeros(); 1340 if (0 != (Val & bitc::AllowReciprocal)) 1341 FMF.setAllowReciprocal(); 1342 if (0 != (Val & bitc::AllowContract)) 1343 FMF.setAllowContract(true); 1344 if (0 != (Val & bitc::ApproxFunc)) 1345 FMF.setApproxFunc(); 1346 return FMF; 1347 } 1348 1349 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1350 // A GlobalValue with local linkage cannot have a DLL storage class. 1351 if (GV->hasLocalLinkage()) 1352 return; 1353 switch (Val) { 1354 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1355 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1356 } 1357 } 1358 1359 Type *BitcodeReader::getTypeByID(unsigned ID) { 1360 // The type table size is always specified correctly. 1361 if (ID >= TypeList.size()) 1362 return nullptr; 1363 1364 if (Type *Ty = TypeList[ID]) 1365 return Ty; 1366 1367 // If we have a forward reference, the only possible case is when it is to a 1368 // named struct. Just create a placeholder for now. 1369 return TypeList[ID] = createIdentifiedStructType(Context); 1370 } 1371 1372 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1373 auto It = ContainedTypeIDs.find(ID); 1374 if (It == ContainedTypeIDs.end()) 1375 return InvalidTypeID; 1376 1377 if (Idx >= It->second.size()) 1378 return InvalidTypeID; 1379 1380 return It->second[Idx]; 1381 } 1382 1383 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1384 if (ID >= TypeList.size()) 1385 return nullptr; 1386 1387 Type *Ty = TypeList[ID]; 1388 if (!Ty->isPointerTy()) 1389 return nullptr; 1390 1391 return getTypeByID(getContainedTypeID(ID, 0)); 1392 } 1393 1394 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1395 ArrayRef<unsigned> ChildTypeIDs) { 1396 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1397 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1398 auto It = VirtualTypeIDs.find(CacheKey); 1399 if (It != VirtualTypeIDs.end()) { 1400 // The cmpxchg return value is the only place we need more than one 1401 // contained type ID, however the second one will always be the same (i1), 1402 // so we don't need to include it in the cache key. This asserts that the 1403 // contained types are indeed as expected and there are no collisions. 1404 assert((ChildTypeIDs.empty() || 1405 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1406 "Incorrect cached contained type IDs"); 1407 return It->second; 1408 } 1409 1410 unsigned TypeID = TypeList.size(); 1411 TypeList.push_back(Ty); 1412 if (!ChildTypeIDs.empty()) 1413 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1414 VirtualTypeIDs.insert({CacheKey, TypeID}); 1415 return TypeID; 1416 } 1417 1418 static bool isConstExprSupported(const BitcodeConstant *BC) { 1419 uint8_t Opcode = BC->Opcode; 1420 1421 // These are not real constant expressions, always consider them supported. 1422 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1423 return true; 1424 1425 // If -expand-constant-exprs is set, we want to consider all expressions 1426 // as unsupported. 1427 if (ExpandConstantExprs) 1428 return false; 1429 1430 if (Instruction::isBinaryOp(Opcode)) 1431 return ConstantExpr::isSupportedBinOp(Opcode); 1432 1433 if (Instruction::isCast(Opcode)) 1434 return ConstantExpr::isSupportedCastOp(Opcode); 1435 1436 if (Opcode == Instruction::GetElementPtr) 1437 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1438 1439 switch (Opcode) { 1440 case Instruction::FNeg: 1441 case Instruction::Select: 1442 return false; 1443 default: 1444 return true; 1445 } 1446 } 1447 1448 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1449 BasicBlock *InsertBB) { 1450 // Quickly handle the case where there is no BitcodeConstant to resolve. 1451 if (StartValID < ValueList.size() && ValueList[StartValID] && 1452 !isa<BitcodeConstant>(ValueList[StartValID])) 1453 return ValueList[StartValID]; 1454 1455 SmallDenseMap<unsigned, Value *> MaterializedValues; 1456 SmallVector<unsigned> Worklist; 1457 Worklist.push_back(StartValID); 1458 while (!Worklist.empty()) { 1459 unsigned ValID = Worklist.back(); 1460 if (MaterializedValues.count(ValID)) { 1461 // Duplicate expression that was already handled. 1462 Worklist.pop_back(); 1463 continue; 1464 } 1465 1466 if (ValID >= ValueList.size() || !ValueList[ValID]) 1467 return error("Invalid value ID"); 1468 1469 Value *V = ValueList[ValID]; 1470 auto *BC = dyn_cast<BitcodeConstant>(V); 1471 if (!BC) { 1472 MaterializedValues.insert({ValID, V}); 1473 Worklist.pop_back(); 1474 continue; 1475 } 1476 1477 // Iterate in reverse, so values will get popped from the worklist in 1478 // expected order. 1479 SmallVector<Value *> Ops; 1480 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1481 auto It = MaterializedValues.find(OpID); 1482 if (It != MaterializedValues.end()) 1483 Ops.push_back(It->second); 1484 else 1485 Worklist.push_back(OpID); 1486 } 1487 1488 // Some expressions have not been resolved yet, handle them first and then 1489 // revisit this one. 1490 if (Ops.size() != BC->getOperandIDs().size()) 1491 continue; 1492 std::reverse(Ops.begin(), Ops.end()); 1493 1494 SmallVector<Constant *> ConstOps; 1495 for (Value *Op : Ops) 1496 if (auto *C = dyn_cast<Constant>(Op)) 1497 ConstOps.push_back(C); 1498 1499 // Materialize as constant expression if possible. 1500 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1501 Constant *C; 1502 if (Instruction::isCast(BC->Opcode)) { 1503 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1504 if (!C) 1505 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1506 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1507 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1508 } else { 1509 switch (BC->Opcode) { 1510 case BitcodeConstant::NoCFIOpcode: { 1511 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1512 if (!GV) 1513 return error("no_cfi operand must be GlobalValue"); 1514 C = NoCFIValue::get(GV); 1515 break; 1516 } 1517 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1518 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1519 if (!GV) 1520 return error("dso_local operand must be GlobalValue"); 1521 C = DSOLocalEquivalent::get(GV); 1522 break; 1523 } 1524 case BitcodeConstant::BlockAddressOpcode: { 1525 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1526 if (!Fn) 1527 return error("blockaddress operand must be a function"); 1528 1529 // If the function is already parsed we can insert the block address 1530 // right away. 1531 BasicBlock *BB; 1532 unsigned BBID = BC->Extra; 1533 if (!BBID) 1534 // Invalid reference to entry block. 1535 return error("Invalid ID"); 1536 if (!Fn->empty()) { 1537 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1538 for (size_t I = 0, E = BBID; I != E; ++I) { 1539 if (BBI == BBE) 1540 return error("Invalid ID"); 1541 ++BBI; 1542 } 1543 BB = &*BBI; 1544 } else { 1545 // Otherwise insert a placeholder and remember it so it can be 1546 // inserted when the function is parsed. 1547 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1548 if (FwdBBs.empty()) 1549 BasicBlockFwdRefQueue.push_back(Fn); 1550 if (FwdBBs.size() < BBID + 1) 1551 FwdBBs.resize(BBID + 1); 1552 if (!FwdBBs[BBID]) 1553 FwdBBs[BBID] = BasicBlock::Create(Context); 1554 BB = FwdBBs[BBID]; 1555 } 1556 C = BlockAddress::get(Fn, BB); 1557 break; 1558 } 1559 case BitcodeConstant::ConstantStructOpcode: 1560 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1561 break; 1562 case BitcodeConstant::ConstantArrayOpcode: 1563 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1564 break; 1565 case BitcodeConstant::ConstantVectorOpcode: 1566 C = ConstantVector::get(ConstOps); 1567 break; 1568 case Instruction::ICmp: 1569 case Instruction::FCmp: 1570 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1571 break; 1572 case Instruction::GetElementPtr: 1573 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1574 ArrayRef(ConstOps).drop_front(), 1575 BC->Flags, BC->getInRangeIndex()); 1576 break; 1577 case Instruction::ExtractElement: 1578 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1579 break; 1580 case Instruction::InsertElement: 1581 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1582 ConstOps[2]); 1583 break; 1584 case Instruction::ShuffleVector: { 1585 SmallVector<int, 16> Mask; 1586 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1587 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1588 break; 1589 } 1590 default: 1591 llvm_unreachable("Unhandled bitcode constant"); 1592 } 1593 } 1594 1595 // Cache resolved constant. 1596 ValueList.replaceValueWithoutRAUW(ValID, C); 1597 MaterializedValues.insert({ValID, C}); 1598 Worklist.pop_back(); 1599 continue; 1600 } 1601 1602 if (!InsertBB) 1603 return error(Twine("Value referenced by initializer is an unsupported " 1604 "constant expression of type ") + 1605 BC->getOpcodeName()); 1606 1607 // Materialize as instructions if necessary. 1608 Instruction *I; 1609 if (Instruction::isCast(BC->Opcode)) { 1610 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1611 BC->getType(), "constexpr", InsertBB); 1612 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1613 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1614 "constexpr", InsertBB); 1615 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1616 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1617 Ops[1], "constexpr", InsertBB); 1618 if (isa<OverflowingBinaryOperator>(I)) { 1619 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1620 I->setHasNoSignedWrap(); 1621 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1622 I->setHasNoUnsignedWrap(); 1623 } 1624 if (isa<PossiblyExactOperator>(I) && 1625 (BC->Flags & PossiblyExactOperator::IsExact)) 1626 I->setIsExact(); 1627 } else { 1628 switch (BC->Opcode) { 1629 case BitcodeConstant::ConstantVectorOpcode: { 1630 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1631 Value *V = PoisonValue::get(BC->getType()); 1632 for (auto Pair : enumerate(Ops)) { 1633 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1634 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1635 InsertBB); 1636 } 1637 I = cast<Instruction>(V); 1638 break; 1639 } 1640 case BitcodeConstant::ConstantStructOpcode: 1641 case BitcodeConstant::ConstantArrayOpcode: { 1642 Value *V = PoisonValue::get(BC->getType()); 1643 for (auto Pair : enumerate(Ops)) 1644 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1645 "constexpr.ins", InsertBB); 1646 I = cast<Instruction>(V); 1647 break; 1648 } 1649 case Instruction::ICmp: 1650 case Instruction::FCmp: 1651 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1652 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1653 "constexpr", InsertBB); 1654 break; 1655 case Instruction::GetElementPtr: 1656 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1657 ArrayRef(Ops).drop_front(), "constexpr", 1658 InsertBB); 1659 if (BC->Flags) 1660 cast<GetElementPtrInst>(I)->setIsInBounds(); 1661 break; 1662 case Instruction::Select: 1663 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1664 break; 1665 case Instruction::ExtractElement: 1666 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1667 break; 1668 case Instruction::InsertElement: 1669 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1670 InsertBB); 1671 break; 1672 case Instruction::ShuffleVector: 1673 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1674 InsertBB); 1675 break; 1676 default: 1677 llvm_unreachable("Unhandled bitcode constant"); 1678 } 1679 } 1680 1681 MaterializedValues.insert({ValID, I}); 1682 Worklist.pop_back(); 1683 } 1684 1685 return MaterializedValues[StartValID]; 1686 } 1687 1688 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1689 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1690 if (!MaybeV) 1691 return MaybeV.takeError(); 1692 1693 // Result must be Constant if InsertBB is nullptr. 1694 return cast<Constant>(MaybeV.get()); 1695 } 1696 1697 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1698 StringRef Name) { 1699 auto *Ret = StructType::create(Context, Name); 1700 IdentifiedStructTypes.push_back(Ret); 1701 return Ret; 1702 } 1703 1704 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1705 auto *Ret = StructType::create(Context); 1706 IdentifiedStructTypes.push_back(Ret); 1707 return Ret; 1708 } 1709 1710 //===----------------------------------------------------------------------===// 1711 // Functions for parsing blocks from the bitcode file 1712 //===----------------------------------------------------------------------===// 1713 1714 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1715 switch (Val) { 1716 case Attribute::EndAttrKinds: 1717 case Attribute::EmptyKey: 1718 case Attribute::TombstoneKey: 1719 llvm_unreachable("Synthetic enumerators which should never get here"); 1720 1721 case Attribute::None: return 0; 1722 case Attribute::ZExt: return 1 << 0; 1723 case Attribute::SExt: return 1 << 1; 1724 case Attribute::NoReturn: return 1 << 2; 1725 case Attribute::InReg: return 1 << 3; 1726 case Attribute::StructRet: return 1 << 4; 1727 case Attribute::NoUnwind: return 1 << 5; 1728 case Attribute::NoAlias: return 1 << 6; 1729 case Attribute::ByVal: return 1 << 7; 1730 case Attribute::Nest: return 1 << 8; 1731 case Attribute::ReadNone: return 1 << 9; 1732 case Attribute::ReadOnly: return 1 << 10; 1733 case Attribute::NoInline: return 1 << 11; 1734 case Attribute::AlwaysInline: return 1 << 12; 1735 case Attribute::OptimizeForSize: return 1 << 13; 1736 case Attribute::StackProtect: return 1 << 14; 1737 case Attribute::StackProtectReq: return 1 << 15; 1738 case Attribute::Alignment: return 31 << 16; 1739 case Attribute::NoCapture: return 1 << 21; 1740 case Attribute::NoRedZone: return 1 << 22; 1741 case Attribute::NoImplicitFloat: return 1 << 23; 1742 case Attribute::Naked: return 1 << 24; 1743 case Attribute::InlineHint: return 1 << 25; 1744 case Attribute::StackAlignment: return 7 << 26; 1745 case Attribute::ReturnsTwice: return 1 << 29; 1746 case Attribute::UWTable: return 1 << 30; 1747 case Attribute::NonLazyBind: return 1U << 31; 1748 case Attribute::SanitizeAddress: return 1ULL << 32; 1749 case Attribute::MinSize: return 1ULL << 33; 1750 case Attribute::NoDuplicate: return 1ULL << 34; 1751 case Attribute::StackProtectStrong: return 1ULL << 35; 1752 case Attribute::SanitizeThread: return 1ULL << 36; 1753 case Attribute::SanitizeMemory: return 1ULL << 37; 1754 case Attribute::NoBuiltin: return 1ULL << 38; 1755 case Attribute::Returned: return 1ULL << 39; 1756 case Attribute::Cold: return 1ULL << 40; 1757 case Attribute::Builtin: return 1ULL << 41; 1758 case Attribute::OptimizeNone: return 1ULL << 42; 1759 case Attribute::InAlloca: return 1ULL << 43; 1760 case Attribute::NonNull: return 1ULL << 44; 1761 case Attribute::JumpTable: return 1ULL << 45; 1762 case Attribute::Convergent: return 1ULL << 46; 1763 case Attribute::SafeStack: return 1ULL << 47; 1764 case Attribute::NoRecurse: return 1ULL << 48; 1765 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1766 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1767 case Attribute::SwiftSelf: return 1ULL << 51; 1768 case Attribute::SwiftError: return 1ULL << 52; 1769 case Attribute::WriteOnly: return 1ULL << 53; 1770 case Attribute::Speculatable: return 1ULL << 54; 1771 case Attribute::StrictFP: return 1ULL << 55; 1772 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1773 case Attribute::NoCfCheck: return 1ULL << 57; 1774 case Attribute::OptForFuzzing: return 1ULL << 58; 1775 case Attribute::ShadowCallStack: return 1ULL << 59; 1776 case Attribute::SpeculativeLoadHardening: 1777 return 1ULL << 60; 1778 case Attribute::ImmArg: 1779 return 1ULL << 61; 1780 case Attribute::WillReturn: 1781 return 1ULL << 62; 1782 case Attribute::NoFree: 1783 return 1ULL << 63; 1784 default: 1785 // Other attributes are not supported in the raw format, 1786 // as we ran out of space. 1787 return 0; 1788 } 1789 llvm_unreachable("Unsupported attribute type"); 1790 } 1791 1792 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1793 if (!Val) return; 1794 1795 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1796 I = Attribute::AttrKind(I + 1)) { 1797 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1798 if (I == Attribute::Alignment) 1799 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1800 else if (I == Attribute::StackAlignment) 1801 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1802 else if (Attribute::isTypeAttrKind(I)) 1803 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1804 else 1805 B.addAttribute(I); 1806 } 1807 } 1808 } 1809 1810 /// This fills an AttrBuilder object with the LLVM attributes that have 1811 /// been decoded from the given integer. This function must stay in sync with 1812 /// 'encodeLLVMAttributesForBitcode'. 1813 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1814 uint64_t EncodedAttrs, 1815 uint64_t AttrIdx) { 1816 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1817 // the bits above 31 down by 11 bits. 1818 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1819 assert((!Alignment || isPowerOf2_32(Alignment)) && 1820 "Alignment must be a power of two."); 1821 1822 if (Alignment) 1823 B.addAlignmentAttr(Alignment); 1824 1825 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1826 (EncodedAttrs & 0xffff); 1827 1828 if (AttrIdx == AttributeList::FunctionIndex) { 1829 // Upgrade old memory attributes. 1830 MemoryEffects ME = MemoryEffects::unknown(); 1831 if (Attrs & (1ULL << 9)) { 1832 // ReadNone 1833 Attrs &= ~(1ULL << 9); 1834 ME &= MemoryEffects::none(); 1835 } 1836 if (Attrs & (1ULL << 10)) { 1837 // ReadOnly 1838 Attrs &= ~(1ULL << 10); 1839 ME &= MemoryEffects::readOnly(); 1840 } 1841 if (Attrs & (1ULL << 49)) { 1842 // InaccessibleMemOnly 1843 Attrs &= ~(1ULL << 49); 1844 ME &= MemoryEffects::inaccessibleMemOnly(); 1845 } 1846 if (Attrs & (1ULL << 50)) { 1847 // InaccessibleMemOrArgMemOnly 1848 Attrs &= ~(1ULL << 50); 1849 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1850 } 1851 if (Attrs & (1ULL << 53)) { 1852 // WriteOnly 1853 Attrs &= ~(1ULL << 53); 1854 ME &= MemoryEffects::writeOnly(); 1855 } 1856 if (ME != MemoryEffects::unknown()) 1857 B.addMemoryAttr(ME); 1858 } 1859 1860 addRawAttributeValue(B, Attrs); 1861 } 1862 1863 Error BitcodeReader::parseAttributeBlock() { 1864 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1865 return Err; 1866 1867 if (!MAttributes.empty()) 1868 return error("Invalid multiple blocks"); 1869 1870 SmallVector<uint64_t, 64> Record; 1871 1872 SmallVector<AttributeList, 8> Attrs; 1873 1874 // Read all the records. 1875 while (true) { 1876 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1877 if (!MaybeEntry) 1878 return MaybeEntry.takeError(); 1879 BitstreamEntry Entry = MaybeEntry.get(); 1880 1881 switch (Entry.Kind) { 1882 case BitstreamEntry::SubBlock: // Handled for us already. 1883 case BitstreamEntry::Error: 1884 return error("Malformed block"); 1885 case BitstreamEntry::EndBlock: 1886 return Error::success(); 1887 case BitstreamEntry::Record: 1888 // The interesting case. 1889 break; 1890 } 1891 1892 // Read a record. 1893 Record.clear(); 1894 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1895 if (!MaybeRecord) 1896 return MaybeRecord.takeError(); 1897 switch (MaybeRecord.get()) { 1898 default: // Default behavior: ignore. 1899 break; 1900 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1901 // Deprecated, but still needed to read old bitcode files. 1902 if (Record.size() & 1) 1903 return error("Invalid parameter attribute record"); 1904 1905 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1906 AttrBuilder B(Context); 1907 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1908 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1909 } 1910 1911 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1912 Attrs.clear(); 1913 break; 1914 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1915 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1916 Attrs.push_back(MAttributeGroups[Record[i]]); 1917 1918 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1919 Attrs.clear(); 1920 break; 1921 } 1922 } 1923 } 1924 1925 // Returns Attribute::None on unrecognized codes. 1926 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1927 switch (Code) { 1928 default: 1929 return Attribute::None; 1930 case bitc::ATTR_KIND_ALIGNMENT: 1931 return Attribute::Alignment; 1932 case bitc::ATTR_KIND_ALWAYS_INLINE: 1933 return Attribute::AlwaysInline; 1934 case bitc::ATTR_KIND_BUILTIN: 1935 return Attribute::Builtin; 1936 case bitc::ATTR_KIND_BY_VAL: 1937 return Attribute::ByVal; 1938 case bitc::ATTR_KIND_IN_ALLOCA: 1939 return Attribute::InAlloca; 1940 case bitc::ATTR_KIND_COLD: 1941 return Attribute::Cold; 1942 case bitc::ATTR_KIND_CONVERGENT: 1943 return Attribute::Convergent; 1944 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1945 return Attribute::DisableSanitizerInstrumentation; 1946 case bitc::ATTR_KIND_ELEMENTTYPE: 1947 return Attribute::ElementType; 1948 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1949 return Attribute::FnRetThunkExtern; 1950 case bitc::ATTR_KIND_INLINE_HINT: 1951 return Attribute::InlineHint; 1952 case bitc::ATTR_KIND_IN_REG: 1953 return Attribute::InReg; 1954 case bitc::ATTR_KIND_JUMP_TABLE: 1955 return Attribute::JumpTable; 1956 case bitc::ATTR_KIND_MEMORY: 1957 return Attribute::Memory; 1958 case bitc::ATTR_KIND_NOFPCLASS: 1959 return Attribute::NoFPClass; 1960 case bitc::ATTR_KIND_MIN_SIZE: 1961 return Attribute::MinSize; 1962 case bitc::ATTR_KIND_NAKED: 1963 return Attribute::Naked; 1964 case bitc::ATTR_KIND_NEST: 1965 return Attribute::Nest; 1966 case bitc::ATTR_KIND_NO_ALIAS: 1967 return Attribute::NoAlias; 1968 case bitc::ATTR_KIND_NO_BUILTIN: 1969 return Attribute::NoBuiltin; 1970 case bitc::ATTR_KIND_NO_CALLBACK: 1971 return Attribute::NoCallback; 1972 case bitc::ATTR_KIND_NO_CAPTURE: 1973 return Attribute::NoCapture; 1974 case bitc::ATTR_KIND_NO_DUPLICATE: 1975 return Attribute::NoDuplicate; 1976 case bitc::ATTR_KIND_NOFREE: 1977 return Attribute::NoFree; 1978 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1979 return Attribute::NoImplicitFloat; 1980 case bitc::ATTR_KIND_NO_INLINE: 1981 return Attribute::NoInline; 1982 case bitc::ATTR_KIND_NO_RECURSE: 1983 return Attribute::NoRecurse; 1984 case bitc::ATTR_KIND_NO_MERGE: 1985 return Attribute::NoMerge; 1986 case bitc::ATTR_KIND_NON_LAZY_BIND: 1987 return Attribute::NonLazyBind; 1988 case bitc::ATTR_KIND_NON_NULL: 1989 return Attribute::NonNull; 1990 case bitc::ATTR_KIND_DEREFERENCEABLE: 1991 return Attribute::Dereferenceable; 1992 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1993 return Attribute::DereferenceableOrNull; 1994 case bitc::ATTR_KIND_ALLOC_ALIGN: 1995 return Attribute::AllocAlign; 1996 case bitc::ATTR_KIND_ALLOC_KIND: 1997 return Attribute::AllocKind; 1998 case bitc::ATTR_KIND_ALLOC_SIZE: 1999 return Attribute::AllocSize; 2000 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2001 return Attribute::AllocatedPointer; 2002 case bitc::ATTR_KIND_NO_RED_ZONE: 2003 return Attribute::NoRedZone; 2004 case bitc::ATTR_KIND_NO_RETURN: 2005 return Attribute::NoReturn; 2006 case bitc::ATTR_KIND_NOSYNC: 2007 return Attribute::NoSync; 2008 case bitc::ATTR_KIND_NOCF_CHECK: 2009 return Attribute::NoCfCheck; 2010 case bitc::ATTR_KIND_NO_PROFILE: 2011 return Attribute::NoProfile; 2012 case bitc::ATTR_KIND_SKIP_PROFILE: 2013 return Attribute::SkipProfile; 2014 case bitc::ATTR_KIND_NO_UNWIND: 2015 return Attribute::NoUnwind; 2016 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2017 return Attribute::NoSanitizeBounds; 2018 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2019 return Attribute::NoSanitizeCoverage; 2020 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2021 return Attribute::NullPointerIsValid; 2022 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2023 return Attribute::OptimizeForDebugging; 2024 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2025 return Attribute::OptForFuzzing; 2026 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2027 return Attribute::OptimizeForSize; 2028 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2029 return Attribute::OptimizeNone; 2030 case bitc::ATTR_KIND_READ_NONE: 2031 return Attribute::ReadNone; 2032 case bitc::ATTR_KIND_READ_ONLY: 2033 return Attribute::ReadOnly; 2034 case bitc::ATTR_KIND_RETURNED: 2035 return Attribute::Returned; 2036 case bitc::ATTR_KIND_RETURNS_TWICE: 2037 return Attribute::ReturnsTwice; 2038 case bitc::ATTR_KIND_S_EXT: 2039 return Attribute::SExt; 2040 case bitc::ATTR_KIND_SPECULATABLE: 2041 return Attribute::Speculatable; 2042 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2043 return Attribute::StackAlignment; 2044 case bitc::ATTR_KIND_STACK_PROTECT: 2045 return Attribute::StackProtect; 2046 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2047 return Attribute::StackProtectReq; 2048 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2049 return Attribute::StackProtectStrong; 2050 case bitc::ATTR_KIND_SAFESTACK: 2051 return Attribute::SafeStack; 2052 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2053 return Attribute::ShadowCallStack; 2054 case bitc::ATTR_KIND_STRICT_FP: 2055 return Attribute::StrictFP; 2056 case bitc::ATTR_KIND_STRUCT_RET: 2057 return Attribute::StructRet; 2058 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2059 return Attribute::SanitizeAddress; 2060 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2061 return Attribute::SanitizeHWAddress; 2062 case bitc::ATTR_KIND_SANITIZE_THREAD: 2063 return Attribute::SanitizeThread; 2064 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2065 return Attribute::SanitizeMemory; 2066 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2067 return Attribute::SpeculativeLoadHardening; 2068 case bitc::ATTR_KIND_SWIFT_ERROR: 2069 return Attribute::SwiftError; 2070 case bitc::ATTR_KIND_SWIFT_SELF: 2071 return Attribute::SwiftSelf; 2072 case bitc::ATTR_KIND_SWIFT_ASYNC: 2073 return Attribute::SwiftAsync; 2074 case bitc::ATTR_KIND_UW_TABLE: 2075 return Attribute::UWTable; 2076 case bitc::ATTR_KIND_VSCALE_RANGE: 2077 return Attribute::VScaleRange; 2078 case bitc::ATTR_KIND_WILLRETURN: 2079 return Attribute::WillReturn; 2080 case bitc::ATTR_KIND_WRITEONLY: 2081 return Attribute::WriteOnly; 2082 case bitc::ATTR_KIND_Z_EXT: 2083 return Attribute::ZExt; 2084 case bitc::ATTR_KIND_IMMARG: 2085 return Attribute::ImmArg; 2086 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2087 return Attribute::SanitizeMemTag; 2088 case bitc::ATTR_KIND_PREALLOCATED: 2089 return Attribute::Preallocated; 2090 case bitc::ATTR_KIND_NOUNDEF: 2091 return Attribute::NoUndef; 2092 case bitc::ATTR_KIND_BYREF: 2093 return Attribute::ByRef; 2094 case bitc::ATTR_KIND_MUSTPROGRESS: 2095 return Attribute::MustProgress; 2096 case bitc::ATTR_KIND_HOT: 2097 return Attribute::Hot; 2098 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2099 return Attribute::PresplitCoroutine; 2100 case bitc::ATTR_KIND_WRITABLE: 2101 return Attribute::Writable; 2102 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2103 return Attribute::CoroDestroyOnlyWhenComplete; 2104 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2105 return Attribute::DeadOnUnwind; 2106 } 2107 } 2108 2109 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2110 MaybeAlign &Alignment) { 2111 // Note: Alignment in bitcode files is incremented by 1, so that zero 2112 // can be used for default alignment. 2113 if (Exponent > Value::MaxAlignmentExponent + 1) 2114 return error("Invalid alignment value"); 2115 Alignment = decodeMaybeAlign(Exponent); 2116 return Error::success(); 2117 } 2118 2119 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2120 *Kind = getAttrFromCode(Code); 2121 if (*Kind == Attribute::None) 2122 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2123 return Error::success(); 2124 } 2125 2126 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2127 switch (EncodedKind) { 2128 case bitc::ATTR_KIND_READ_NONE: 2129 ME &= MemoryEffects::none(); 2130 return true; 2131 case bitc::ATTR_KIND_READ_ONLY: 2132 ME &= MemoryEffects::readOnly(); 2133 return true; 2134 case bitc::ATTR_KIND_WRITEONLY: 2135 ME &= MemoryEffects::writeOnly(); 2136 return true; 2137 case bitc::ATTR_KIND_ARGMEMONLY: 2138 ME &= MemoryEffects::argMemOnly(); 2139 return true; 2140 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2141 ME &= MemoryEffects::inaccessibleMemOnly(); 2142 return true; 2143 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2144 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2145 return true; 2146 default: 2147 return false; 2148 } 2149 } 2150 2151 Error BitcodeReader::parseAttributeGroupBlock() { 2152 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2153 return Err; 2154 2155 if (!MAttributeGroups.empty()) 2156 return error("Invalid multiple blocks"); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 2160 // Read all the records. 2161 while (true) { 2162 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2163 if (!MaybeEntry) 2164 return MaybeEntry.takeError(); 2165 BitstreamEntry Entry = MaybeEntry.get(); 2166 2167 switch (Entry.Kind) { 2168 case BitstreamEntry::SubBlock: // Handled for us already. 2169 case BitstreamEntry::Error: 2170 return error("Malformed block"); 2171 case BitstreamEntry::EndBlock: 2172 return Error::success(); 2173 case BitstreamEntry::Record: 2174 // The interesting case. 2175 break; 2176 } 2177 2178 // Read a record. 2179 Record.clear(); 2180 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2181 if (!MaybeRecord) 2182 return MaybeRecord.takeError(); 2183 switch (MaybeRecord.get()) { 2184 default: // Default behavior: ignore. 2185 break; 2186 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2187 if (Record.size() < 3) 2188 return error("Invalid grp record"); 2189 2190 uint64_t GrpID = Record[0]; 2191 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2192 2193 AttrBuilder B(Context); 2194 MemoryEffects ME = MemoryEffects::unknown(); 2195 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2196 if (Record[i] == 0) { // Enum attribute 2197 Attribute::AttrKind Kind; 2198 uint64_t EncodedKind = Record[++i]; 2199 if (Idx == AttributeList::FunctionIndex && 2200 upgradeOldMemoryAttribute(ME, EncodedKind)) 2201 continue; 2202 2203 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2204 return Err; 2205 2206 // Upgrade old-style byval attribute to one with a type, even if it's 2207 // nullptr. We will have to insert the real type when we associate 2208 // this AttributeList with a function. 2209 if (Kind == Attribute::ByVal) 2210 B.addByValAttr(nullptr); 2211 else if (Kind == Attribute::StructRet) 2212 B.addStructRetAttr(nullptr); 2213 else if (Kind == Attribute::InAlloca) 2214 B.addInAllocaAttr(nullptr); 2215 else if (Kind == Attribute::UWTable) 2216 B.addUWTableAttr(UWTableKind::Default); 2217 else if (Attribute::isEnumAttrKind(Kind)) 2218 B.addAttribute(Kind); 2219 else 2220 return error("Not an enum attribute"); 2221 } else if (Record[i] == 1) { // Integer attribute 2222 Attribute::AttrKind Kind; 2223 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2224 return Err; 2225 if (!Attribute::isIntAttrKind(Kind)) 2226 return error("Not an int attribute"); 2227 if (Kind == Attribute::Alignment) 2228 B.addAlignmentAttr(Record[++i]); 2229 else if (Kind == Attribute::StackAlignment) 2230 B.addStackAlignmentAttr(Record[++i]); 2231 else if (Kind == Attribute::Dereferenceable) 2232 B.addDereferenceableAttr(Record[++i]); 2233 else if (Kind == Attribute::DereferenceableOrNull) 2234 B.addDereferenceableOrNullAttr(Record[++i]); 2235 else if (Kind == Attribute::AllocSize) 2236 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2237 else if (Kind == Attribute::VScaleRange) 2238 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2239 else if (Kind == Attribute::UWTable) 2240 B.addUWTableAttr(UWTableKind(Record[++i])); 2241 else if (Kind == Attribute::AllocKind) 2242 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2243 else if (Kind == Attribute::Memory) 2244 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2245 else if (Kind == Attribute::NoFPClass) 2246 B.addNoFPClassAttr( 2247 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2248 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2249 bool HasValue = (Record[i++] == 4); 2250 SmallString<64> KindStr; 2251 SmallString<64> ValStr; 2252 2253 while (Record[i] != 0 && i != e) 2254 KindStr += Record[i++]; 2255 assert(Record[i] == 0 && "Kind string not null terminated"); 2256 2257 if (HasValue) { 2258 // Has a value associated with it. 2259 ++i; // Skip the '0' that terminates the "kind" string. 2260 while (Record[i] != 0 && i != e) 2261 ValStr += Record[i++]; 2262 assert(Record[i] == 0 && "Value string not null terminated"); 2263 } 2264 2265 B.addAttribute(KindStr.str(), ValStr.str()); 2266 } else if (Record[i] == 5 || Record[i] == 6) { 2267 bool HasType = Record[i] == 6; 2268 Attribute::AttrKind Kind; 2269 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2270 return Err; 2271 if (!Attribute::isTypeAttrKind(Kind)) 2272 return error("Not a type attribute"); 2273 2274 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2275 } else { 2276 return error("Invalid attribute group entry"); 2277 } 2278 } 2279 2280 if (ME != MemoryEffects::unknown()) 2281 B.addMemoryAttr(ME); 2282 2283 UpgradeAttributes(B); 2284 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2285 break; 2286 } 2287 } 2288 } 2289 } 2290 2291 Error BitcodeReader::parseTypeTable() { 2292 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2293 return Err; 2294 2295 return parseTypeTableBody(); 2296 } 2297 2298 Error BitcodeReader::parseTypeTableBody() { 2299 if (!TypeList.empty()) 2300 return error("Invalid multiple blocks"); 2301 2302 SmallVector<uint64_t, 64> Record; 2303 unsigned NumRecords = 0; 2304 2305 SmallString<64> TypeName; 2306 2307 // Read all the records for this type table. 2308 while (true) { 2309 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2310 if (!MaybeEntry) 2311 return MaybeEntry.takeError(); 2312 BitstreamEntry Entry = MaybeEntry.get(); 2313 2314 switch (Entry.Kind) { 2315 case BitstreamEntry::SubBlock: // Handled for us already. 2316 case BitstreamEntry::Error: 2317 return error("Malformed block"); 2318 case BitstreamEntry::EndBlock: 2319 if (NumRecords != TypeList.size()) 2320 return error("Malformed block"); 2321 return Error::success(); 2322 case BitstreamEntry::Record: 2323 // The interesting case. 2324 break; 2325 } 2326 2327 // Read a record. 2328 Record.clear(); 2329 Type *ResultTy = nullptr; 2330 SmallVector<unsigned> ContainedIDs; 2331 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2332 if (!MaybeRecord) 2333 return MaybeRecord.takeError(); 2334 switch (MaybeRecord.get()) { 2335 default: 2336 return error("Invalid value"); 2337 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2338 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2339 // type list. This allows us to reserve space. 2340 if (Record.empty()) 2341 return error("Invalid numentry record"); 2342 TypeList.resize(Record[0]); 2343 continue; 2344 case bitc::TYPE_CODE_VOID: // VOID 2345 ResultTy = Type::getVoidTy(Context); 2346 break; 2347 case bitc::TYPE_CODE_HALF: // HALF 2348 ResultTy = Type::getHalfTy(Context); 2349 break; 2350 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2351 ResultTy = Type::getBFloatTy(Context); 2352 break; 2353 case bitc::TYPE_CODE_FLOAT: // FLOAT 2354 ResultTy = Type::getFloatTy(Context); 2355 break; 2356 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2357 ResultTy = Type::getDoubleTy(Context); 2358 break; 2359 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2360 ResultTy = Type::getX86_FP80Ty(Context); 2361 break; 2362 case bitc::TYPE_CODE_FP128: // FP128 2363 ResultTy = Type::getFP128Ty(Context); 2364 break; 2365 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2366 ResultTy = Type::getPPC_FP128Ty(Context); 2367 break; 2368 case bitc::TYPE_CODE_LABEL: // LABEL 2369 ResultTy = Type::getLabelTy(Context); 2370 break; 2371 case bitc::TYPE_CODE_METADATA: // METADATA 2372 ResultTy = Type::getMetadataTy(Context); 2373 break; 2374 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2375 ResultTy = Type::getX86_MMXTy(Context); 2376 break; 2377 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2378 ResultTy = Type::getX86_AMXTy(Context); 2379 break; 2380 case bitc::TYPE_CODE_TOKEN: // TOKEN 2381 ResultTy = Type::getTokenTy(Context); 2382 break; 2383 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2384 if (Record.empty()) 2385 return error("Invalid integer record"); 2386 2387 uint64_t NumBits = Record[0]; 2388 if (NumBits < IntegerType::MIN_INT_BITS || 2389 NumBits > IntegerType::MAX_INT_BITS) 2390 return error("Bitwidth for integer type out of range"); 2391 ResultTy = IntegerType::get(Context, NumBits); 2392 break; 2393 } 2394 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2395 // [pointee type, address space] 2396 if (Record.empty()) 2397 return error("Invalid pointer record"); 2398 unsigned AddressSpace = 0; 2399 if (Record.size() == 2) 2400 AddressSpace = Record[1]; 2401 ResultTy = getTypeByID(Record[0]); 2402 if (!ResultTy || 2403 !PointerType::isValidElementType(ResultTy)) 2404 return error("Invalid type"); 2405 ContainedIDs.push_back(Record[0]); 2406 ResultTy = PointerType::get(ResultTy, AddressSpace); 2407 break; 2408 } 2409 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2410 if (Record.size() != 1) 2411 return error("Invalid opaque pointer record"); 2412 unsigned AddressSpace = Record[0]; 2413 ResultTy = PointerType::get(Context, AddressSpace); 2414 break; 2415 } 2416 case bitc::TYPE_CODE_FUNCTION_OLD: { 2417 // Deprecated, but still needed to read old bitcode files. 2418 // FUNCTION: [vararg, attrid, retty, paramty x N] 2419 if (Record.size() < 3) 2420 return error("Invalid function record"); 2421 SmallVector<Type*, 8> ArgTys; 2422 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2423 if (Type *T = getTypeByID(Record[i])) 2424 ArgTys.push_back(T); 2425 else 2426 break; 2427 } 2428 2429 ResultTy = getTypeByID(Record[2]); 2430 if (!ResultTy || ArgTys.size() < Record.size()-3) 2431 return error("Invalid type"); 2432 2433 ContainedIDs.append(Record.begin() + 2, Record.end()); 2434 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2435 break; 2436 } 2437 case bitc::TYPE_CODE_FUNCTION: { 2438 // FUNCTION: [vararg, retty, paramty x N] 2439 if (Record.size() < 2) 2440 return error("Invalid function record"); 2441 SmallVector<Type*, 8> ArgTys; 2442 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2443 if (Type *T = getTypeByID(Record[i])) { 2444 if (!FunctionType::isValidArgumentType(T)) 2445 return error("Invalid function argument type"); 2446 ArgTys.push_back(T); 2447 } 2448 else 2449 break; 2450 } 2451 2452 ResultTy = getTypeByID(Record[1]); 2453 if (!ResultTy || ArgTys.size() < Record.size()-2) 2454 return error("Invalid type"); 2455 2456 ContainedIDs.append(Record.begin() + 1, Record.end()); 2457 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2458 break; 2459 } 2460 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2461 if (Record.empty()) 2462 return error("Invalid anon struct record"); 2463 SmallVector<Type*, 8> EltTys; 2464 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2465 if (Type *T = getTypeByID(Record[i])) 2466 EltTys.push_back(T); 2467 else 2468 break; 2469 } 2470 if (EltTys.size() != Record.size()-1) 2471 return error("Invalid type"); 2472 ContainedIDs.append(Record.begin() + 1, Record.end()); 2473 ResultTy = StructType::get(Context, EltTys, Record[0]); 2474 break; 2475 } 2476 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2477 if (convertToString(Record, 0, TypeName)) 2478 return error("Invalid struct name record"); 2479 continue; 2480 2481 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2482 if (Record.empty()) 2483 return error("Invalid named struct record"); 2484 2485 if (NumRecords >= TypeList.size()) 2486 return error("Invalid TYPE table"); 2487 2488 // Check to see if this was forward referenced, if so fill in the temp. 2489 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2490 if (Res) { 2491 Res->setName(TypeName); 2492 TypeList[NumRecords] = nullptr; 2493 } else // Otherwise, create a new struct. 2494 Res = createIdentifiedStructType(Context, TypeName); 2495 TypeName.clear(); 2496 2497 SmallVector<Type*, 8> EltTys; 2498 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2499 if (Type *T = getTypeByID(Record[i])) 2500 EltTys.push_back(T); 2501 else 2502 break; 2503 } 2504 if (EltTys.size() != Record.size()-1) 2505 return error("Invalid named struct record"); 2506 Res->setBody(EltTys, Record[0]); 2507 ContainedIDs.append(Record.begin() + 1, Record.end()); 2508 ResultTy = Res; 2509 break; 2510 } 2511 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2512 if (Record.size() != 1) 2513 return error("Invalid opaque type record"); 2514 2515 if (NumRecords >= TypeList.size()) 2516 return error("Invalid TYPE table"); 2517 2518 // Check to see if this was forward referenced, if so fill in the temp. 2519 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2520 if (Res) { 2521 Res->setName(TypeName); 2522 TypeList[NumRecords] = nullptr; 2523 } else // Otherwise, create a new struct with no body. 2524 Res = createIdentifiedStructType(Context, TypeName); 2525 TypeName.clear(); 2526 ResultTy = Res; 2527 break; 2528 } 2529 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2530 if (Record.size() < 1) 2531 return error("Invalid target extension type record"); 2532 2533 if (NumRecords >= TypeList.size()) 2534 return error("Invalid TYPE table"); 2535 2536 if (Record[0] >= Record.size()) 2537 return error("Too many type parameters"); 2538 2539 unsigned NumTys = Record[0]; 2540 SmallVector<Type *, 4> TypeParams; 2541 SmallVector<unsigned, 8> IntParams; 2542 for (unsigned i = 0; i < NumTys; i++) { 2543 if (Type *T = getTypeByID(Record[i + 1])) 2544 TypeParams.push_back(T); 2545 else 2546 return error("Invalid type"); 2547 } 2548 2549 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2550 if (Record[i] > UINT_MAX) 2551 return error("Integer parameter too large"); 2552 IntParams.push_back(Record[i]); 2553 } 2554 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2555 TypeName.clear(); 2556 break; 2557 } 2558 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2559 if (Record.size() < 2) 2560 return error("Invalid array type record"); 2561 ResultTy = getTypeByID(Record[1]); 2562 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2563 return error("Invalid type"); 2564 ContainedIDs.push_back(Record[1]); 2565 ResultTy = ArrayType::get(ResultTy, Record[0]); 2566 break; 2567 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2568 // [numelts, eltty, scalable] 2569 if (Record.size() < 2) 2570 return error("Invalid vector type record"); 2571 if (Record[0] == 0) 2572 return error("Invalid vector length"); 2573 ResultTy = getTypeByID(Record[1]); 2574 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2575 return error("Invalid type"); 2576 bool Scalable = Record.size() > 2 ? Record[2] : false; 2577 ContainedIDs.push_back(Record[1]); 2578 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2579 break; 2580 } 2581 2582 if (NumRecords >= TypeList.size()) 2583 return error("Invalid TYPE table"); 2584 if (TypeList[NumRecords]) 2585 return error( 2586 "Invalid TYPE table: Only named structs can be forward referenced"); 2587 assert(ResultTy && "Didn't read a type?"); 2588 TypeList[NumRecords] = ResultTy; 2589 if (!ContainedIDs.empty()) 2590 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2591 ++NumRecords; 2592 } 2593 } 2594 2595 Error BitcodeReader::parseOperandBundleTags() { 2596 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2597 return Err; 2598 2599 if (!BundleTags.empty()) 2600 return error("Invalid multiple blocks"); 2601 2602 SmallVector<uint64_t, 64> Record; 2603 2604 while (true) { 2605 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2606 if (!MaybeEntry) 2607 return MaybeEntry.takeError(); 2608 BitstreamEntry Entry = MaybeEntry.get(); 2609 2610 switch (Entry.Kind) { 2611 case BitstreamEntry::SubBlock: // Handled for us already. 2612 case BitstreamEntry::Error: 2613 return error("Malformed block"); 2614 case BitstreamEntry::EndBlock: 2615 return Error::success(); 2616 case BitstreamEntry::Record: 2617 // The interesting case. 2618 break; 2619 } 2620 2621 // Tags are implicitly mapped to integers by their order. 2622 2623 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2624 if (!MaybeRecord) 2625 return MaybeRecord.takeError(); 2626 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2627 return error("Invalid operand bundle record"); 2628 2629 // OPERAND_BUNDLE_TAG: [strchr x N] 2630 BundleTags.emplace_back(); 2631 if (convertToString(Record, 0, BundleTags.back())) 2632 return error("Invalid operand bundle record"); 2633 Record.clear(); 2634 } 2635 } 2636 2637 Error BitcodeReader::parseSyncScopeNames() { 2638 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2639 return Err; 2640 2641 if (!SSIDs.empty()) 2642 return error("Invalid multiple synchronization scope names blocks"); 2643 2644 SmallVector<uint64_t, 64> Record; 2645 while (true) { 2646 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2647 if (!MaybeEntry) 2648 return MaybeEntry.takeError(); 2649 BitstreamEntry Entry = MaybeEntry.get(); 2650 2651 switch (Entry.Kind) { 2652 case BitstreamEntry::SubBlock: // Handled for us already. 2653 case BitstreamEntry::Error: 2654 return error("Malformed block"); 2655 case BitstreamEntry::EndBlock: 2656 if (SSIDs.empty()) 2657 return error("Invalid empty synchronization scope names block"); 2658 return Error::success(); 2659 case BitstreamEntry::Record: 2660 // The interesting case. 2661 break; 2662 } 2663 2664 // Synchronization scope names are implicitly mapped to synchronization 2665 // scope IDs by their order. 2666 2667 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2668 if (!MaybeRecord) 2669 return MaybeRecord.takeError(); 2670 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2671 return error("Invalid sync scope record"); 2672 2673 SmallString<16> SSN; 2674 if (convertToString(Record, 0, SSN)) 2675 return error("Invalid sync scope record"); 2676 2677 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2678 Record.clear(); 2679 } 2680 } 2681 2682 /// Associate a value with its name from the given index in the provided record. 2683 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2684 unsigned NameIndex, Triple &TT) { 2685 SmallString<128> ValueName; 2686 if (convertToString(Record, NameIndex, ValueName)) 2687 return error("Invalid record"); 2688 unsigned ValueID = Record[0]; 2689 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2690 return error("Invalid record"); 2691 Value *V = ValueList[ValueID]; 2692 2693 StringRef NameStr(ValueName.data(), ValueName.size()); 2694 if (NameStr.contains(0)) 2695 return error("Invalid value name"); 2696 V->setName(NameStr); 2697 auto *GO = dyn_cast<GlobalObject>(V); 2698 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2699 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2700 return V; 2701 } 2702 2703 /// Helper to note and return the current location, and jump to the given 2704 /// offset. 2705 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2706 BitstreamCursor &Stream) { 2707 // Save the current parsing location so we can jump back at the end 2708 // of the VST read. 2709 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2710 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2711 return std::move(JumpFailed); 2712 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2713 if (!MaybeEntry) 2714 return MaybeEntry.takeError(); 2715 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2716 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2717 return error("Expected value symbol table subblock"); 2718 return CurrentBit; 2719 } 2720 2721 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2722 Function *F, 2723 ArrayRef<uint64_t> Record) { 2724 // Note that we subtract 1 here because the offset is relative to one word 2725 // before the start of the identification or module block, which was 2726 // historically always the start of the regular bitcode header. 2727 uint64_t FuncWordOffset = Record[1] - 1; 2728 uint64_t FuncBitOffset = FuncWordOffset * 32; 2729 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2730 // Set the LastFunctionBlockBit to point to the last function block. 2731 // Later when parsing is resumed after function materialization, 2732 // we can simply skip that last function block. 2733 if (FuncBitOffset > LastFunctionBlockBit) 2734 LastFunctionBlockBit = FuncBitOffset; 2735 } 2736 2737 /// Read a new-style GlobalValue symbol table. 2738 Error BitcodeReader::parseGlobalValueSymbolTable() { 2739 unsigned FuncBitcodeOffsetDelta = 2740 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2741 2742 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2743 return Err; 2744 2745 SmallVector<uint64_t, 64> Record; 2746 while (true) { 2747 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2748 if (!MaybeEntry) 2749 return MaybeEntry.takeError(); 2750 BitstreamEntry Entry = MaybeEntry.get(); 2751 2752 switch (Entry.Kind) { 2753 case BitstreamEntry::SubBlock: 2754 case BitstreamEntry::Error: 2755 return error("Malformed block"); 2756 case BitstreamEntry::EndBlock: 2757 return Error::success(); 2758 case BitstreamEntry::Record: 2759 break; 2760 } 2761 2762 Record.clear(); 2763 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2764 if (!MaybeRecord) 2765 return MaybeRecord.takeError(); 2766 switch (MaybeRecord.get()) { 2767 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2768 unsigned ValueID = Record[0]; 2769 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2770 return error("Invalid value reference in symbol table"); 2771 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2772 cast<Function>(ValueList[ValueID]), Record); 2773 break; 2774 } 2775 } 2776 } 2777 } 2778 2779 /// Parse the value symbol table at either the current parsing location or 2780 /// at the given bit offset if provided. 2781 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2782 uint64_t CurrentBit; 2783 // Pass in the Offset to distinguish between calling for the module-level 2784 // VST (where we want to jump to the VST offset) and the function-level 2785 // VST (where we don't). 2786 if (Offset > 0) { 2787 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2788 if (!MaybeCurrentBit) 2789 return MaybeCurrentBit.takeError(); 2790 CurrentBit = MaybeCurrentBit.get(); 2791 // If this module uses a string table, read this as a module-level VST. 2792 if (UseStrtab) { 2793 if (Error Err = parseGlobalValueSymbolTable()) 2794 return Err; 2795 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2796 return JumpFailed; 2797 return Error::success(); 2798 } 2799 // Otherwise, the VST will be in a similar format to a function-level VST, 2800 // and will contain symbol names. 2801 } 2802 2803 // Compute the delta between the bitcode indices in the VST (the word offset 2804 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2805 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2806 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2807 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2808 // just before entering the VST subblock because: 1) the EnterSubBlock 2809 // changes the AbbrevID width; 2) the VST block is nested within the same 2810 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2811 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2812 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2813 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2814 unsigned FuncBitcodeOffsetDelta = 2815 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2816 2817 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2818 return Err; 2819 2820 SmallVector<uint64_t, 64> Record; 2821 2822 Triple TT(TheModule->getTargetTriple()); 2823 2824 // Read all the records for this value table. 2825 SmallString<128> ValueName; 2826 2827 while (true) { 2828 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2829 if (!MaybeEntry) 2830 return MaybeEntry.takeError(); 2831 BitstreamEntry Entry = MaybeEntry.get(); 2832 2833 switch (Entry.Kind) { 2834 case BitstreamEntry::SubBlock: // Handled for us already. 2835 case BitstreamEntry::Error: 2836 return error("Malformed block"); 2837 case BitstreamEntry::EndBlock: 2838 if (Offset > 0) 2839 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2840 return JumpFailed; 2841 return Error::success(); 2842 case BitstreamEntry::Record: 2843 // The interesting case. 2844 break; 2845 } 2846 2847 // Read a record. 2848 Record.clear(); 2849 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2850 if (!MaybeRecord) 2851 return MaybeRecord.takeError(); 2852 switch (MaybeRecord.get()) { 2853 default: // Default behavior: unknown type. 2854 break; 2855 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2856 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2857 if (Error Err = ValOrErr.takeError()) 2858 return Err; 2859 ValOrErr.get(); 2860 break; 2861 } 2862 case bitc::VST_CODE_FNENTRY: { 2863 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2864 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2865 if (Error Err = ValOrErr.takeError()) 2866 return Err; 2867 Value *V = ValOrErr.get(); 2868 2869 // Ignore function offsets emitted for aliases of functions in older 2870 // versions of LLVM. 2871 if (auto *F = dyn_cast<Function>(V)) 2872 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2873 break; 2874 } 2875 case bitc::VST_CODE_BBENTRY: { 2876 if (convertToString(Record, 1, ValueName)) 2877 return error("Invalid bbentry record"); 2878 BasicBlock *BB = getBasicBlock(Record[0]); 2879 if (!BB) 2880 return error("Invalid bbentry record"); 2881 2882 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2883 ValueName.clear(); 2884 break; 2885 } 2886 } 2887 } 2888 } 2889 2890 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2891 /// encoding. 2892 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2893 if ((V & 1) == 0) 2894 return V >> 1; 2895 if (V != 1) 2896 return -(V >> 1); 2897 // There is no such thing as -0 with integers. "-0" really means MININT. 2898 return 1ULL << 63; 2899 } 2900 2901 /// Resolve all of the initializers for global values and aliases that we can. 2902 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2903 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2904 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2905 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2906 2907 GlobalInitWorklist.swap(GlobalInits); 2908 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2909 FunctionOperandWorklist.swap(FunctionOperands); 2910 2911 while (!GlobalInitWorklist.empty()) { 2912 unsigned ValID = GlobalInitWorklist.back().second; 2913 if (ValID >= ValueList.size()) { 2914 // Not ready to resolve this yet, it requires something later in the file. 2915 GlobalInits.push_back(GlobalInitWorklist.back()); 2916 } else { 2917 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2918 if (!MaybeC) 2919 return MaybeC.takeError(); 2920 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2921 } 2922 GlobalInitWorklist.pop_back(); 2923 } 2924 2925 while (!IndirectSymbolInitWorklist.empty()) { 2926 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2927 if (ValID >= ValueList.size()) { 2928 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2929 } else { 2930 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2931 if (!MaybeC) 2932 return MaybeC.takeError(); 2933 Constant *C = MaybeC.get(); 2934 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2935 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2936 if (C->getType() != GV->getType()) 2937 return error("Alias and aliasee types don't match"); 2938 GA->setAliasee(C); 2939 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2940 GI->setResolver(C); 2941 } else { 2942 return error("Expected an alias or an ifunc"); 2943 } 2944 } 2945 IndirectSymbolInitWorklist.pop_back(); 2946 } 2947 2948 while (!FunctionOperandWorklist.empty()) { 2949 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2950 if (Info.PersonalityFn) { 2951 unsigned ValID = Info.PersonalityFn - 1; 2952 if (ValID < ValueList.size()) { 2953 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2954 if (!MaybeC) 2955 return MaybeC.takeError(); 2956 Info.F->setPersonalityFn(MaybeC.get()); 2957 Info.PersonalityFn = 0; 2958 } 2959 } 2960 if (Info.Prefix) { 2961 unsigned ValID = Info.Prefix - 1; 2962 if (ValID < ValueList.size()) { 2963 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2964 if (!MaybeC) 2965 return MaybeC.takeError(); 2966 Info.F->setPrefixData(MaybeC.get()); 2967 Info.Prefix = 0; 2968 } 2969 } 2970 if (Info.Prologue) { 2971 unsigned ValID = Info.Prologue - 1; 2972 if (ValID < ValueList.size()) { 2973 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2974 if (!MaybeC) 2975 return MaybeC.takeError(); 2976 Info.F->setPrologueData(MaybeC.get()); 2977 Info.Prologue = 0; 2978 } 2979 } 2980 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2981 FunctionOperands.push_back(Info); 2982 FunctionOperandWorklist.pop_back(); 2983 } 2984 2985 return Error::success(); 2986 } 2987 2988 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2989 SmallVector<uint64_t, 8> Words(Vals.size()); 2990 transform(Vals, Words.begin(), 2991 BitcodeReader::decodeSignRotatedValue); 2992 2993 return APInt(TypeBits, Words); 2994 } 2995 2996 Error BitcodeReader::parseConstants() { 2997 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2998 return Err; 2999 3000 SmallVector<uint64_t, 64> Record; 3001 3002 // Read all the records for this value table. 3003 Type *CurTy = Type::getInt32Ty(Context); 3004 unsigned Int32TyID = getVirtualTypeID(CurTy); 3005 unsigned CurTyID = Int32TyID; 3006 Type *CurElemTy = nullptr; 3007 unsigned NextCstNo = ValueList.size(); 3008 3009 while (true) { 3010 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3011 if (!MaybeEntry) 3012 return MaybeEntry.takeError(); 3013 BitstreamEntry Entry = MaybeEntry.get(); 3014 3015 switch (Entry.Kind) { 3016 case BitstreamEntry::SubBlock: // Handled for us already. 3017 case BitstreamEntry::Error: 3018 return error("Malformed block"); 3019 case BitstreamEntry::EndBlock: 3020 if (NextCstNo != ValueList.size()) 3021 return error("Invalid constant reference"); 3022 return Error::success(); 3023 case BitstreamEntry::Record: 3024 // The interesting case. 3025 break; 3026 } 3027 3028 // Read a record. 3029 Record.clear(); 3030 Type *VoidType = Type::getVoidTy(Context); 3031 Value *V = nullptr; 3032 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3033 if (!MaybeBitCode) 3034 return MaybeBitCode.takeError(); 3035 switch (unsigned BitCode = MaybeBitCode.get()) { 3036 default: // Default behavior: unknown constant 3037 case bitc::CST_CODE_UNDEF: // UNDEF 3038 V = UndefValue::get(CurTy); 3039 break; 3040 case bitc::CST_CODE_POISON: // POISON 3041 V = PoisonValue::get(CurTy); 3042 break; 3043 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3044 if (Record.empty()) 3045 return error("Invalid settype record"); 3046 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3047 return error("Invalid settype record"); 3048 if (TypeList[Record[0]] == VoidType) 3049 return error("Invalid constant type"); 3050 CurTyID = Record[0]; 3051 CurTy = TypeList[CurTyID]; 3052 CurElemTy = getPtrElementTypeByID(CurTyID); 3053 continue; // Skip the ValueList manipulation. 3054 case bitc::CST_CODE_NULL: // NULL 3055 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3056 return error("Invalid type for a constant null value"); 3057 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3058 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3059 return error("Invalid type for a constant null value"); 3060 V = Constant::getNullValue(CurTy); 3061 break; 3062 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3063 if (!CurTy->isIntegerTy() || Record.empty()) 3064 return error("Invalid integer const record"); 3065 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3066 break; 3067 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3068 if (!CurTy->isIntegerTy() || Record.empty()) 3069 return error("Invalid wide integer const record"); 3070 3071 APInt VInt = 3072 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3073 V = ConstantInt::get(Context, VInt); 3074 3075 break; 3076 } 3077 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3078 if (Record.empty()) 3079 return error("Invalid float const record"); 3080 if (CurTy->isHalfTy()) 3081 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3082 APInt(16, (uint16_t)Record[0]))); 3083 else if (CurTy->isBFloatTy()) 3084 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3085 APInt(16, (uint32_t)Record[0]))); 3086 else if (CurTy->isFloatTy()) 3087 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3088 APInt(32, (uint32_t)Record[0]))); 3089 else if (CurTy->isDoubleTy()) 3090 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3091 APInt(64, Record[0]))); 3092 else if (CurTy->isX86_FP80Ty()) { 3093 // Bits are not stored the same way as a normal i80 APInt, compensate. 3094 uint64_t Rearrange[2]; 3095 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3096 Rearrange[1] = Record[0] >> 48; 3097 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3098 APInt(80, Rearrange))); 3099 } else if (CurTy->isFP128Ty()) 3100 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3101 APInt(128, Record))); 3102 else if (CurTy->isPPC_FP128Ty()) 3103 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3104 APInt(128, Record))); 3105 else 3106 V = UndefValue::get(CurTy); 3107 break; 3108 } 3109 3110 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3111 if (Record.empty()) 3112 return error("Invalid aggregate record"); 3113 3114 unsigned Size = Record.size(); 3115 SmallVector<unsigned, 16> Elts; 3116 for (unsigned i = 0; i != Size; ++i) 3117 Elts.push_back(Record[i]); 3118 3119 if (isa<StructType>(CurTy)) { 3120 V = BitcodeConstant::create( 3121 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3122 } else if (isa<ArrayType>(CurTy)) { 3123 V = BitcodeConstant::create(Alloc, CurTy, 3124 BitcodeConstant::ConstantArrayOpcode, Elts); 3125 } else if (isa<VectorType>(CurTy)) { 3126 V = BitcodeConstant::create( 3127 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3128 } else { 3129 V = UndefValue::get(CurTy); 3130 } 3131 break; 3132 } 3133 case bitc::CST_CODE_STRING: // STRING: [values] 3134 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3135 if (Record.empty()) 3136 return error("Invalid string record"); 3137 3138 SmallString<16> Elts(Record.begin(), Record.end()); 3139 V = ConstantDataArray::getString(Context, Elts, 3140 BitCode == bitc::CST_CODE_CSTRING); 3141 break; 3142 } 3143 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3144 if (Record.empty()) 3145 return error("Invalid data record"); 3146 3147 Type *EltTy; 3148 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3149 EltTy = Array->getElementType(); 3150 else 3151 EltTy = cast<VectorType>(CurTy)->getElementType(); 3152 if (EltTy->isIntegerTy(8)) { 3153 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3154 if (isa<VectorType>(CurTy)) 3155 V = ConstantDataVector::get(Context, Elts); 3156 else 3157 V = ConstantDataArray::get(Context, Elts); 3158 } else if (EltTy->isIntegerTy(16)) { 3159 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3160 if (isa<VectorType>(CurTy)) 3161 V = ConstantDataVector::get(Context, Elts); 3162 else 3163 V = ConstantDataArray::get(Context, Elts); 3164 } else if (EltTy->isIntegerTy(32)) { 3165 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3166 if (isa<VectorType>(CurTy)) 3167 V = ConstantDataVector::get(Context, Elts); 3168 else 3169 V = ConstantDataArray::get(Context, Elts); 3170 } else if (EltTy->isIntegerTy(64)) { 3171 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3172 if (isa<VectorType>(CurTy)) 3173 V = ConstantDataVector::get(Context, Elts); 3174 else 3175 V = ConstantDataArray::get(Context, Elts); 3176 } else if (EltTy->isHalfTy()) { 3177 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3178 if (isa<VectorType>(CurTy)) 3179 V = ConstantDataVector::getFP(EltTy, Elts); 3180 else 3181 V = ConstantDataArray::getFP(EltTy, Elts); 3182 } else if (EltTy->isBFloatTy()) { 3183 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3184 if (isa<VectorType>(CurTy)) 3185 V = ConstantDataVector::getFP(EltTy, Elts); 3186 else 3187 V = ConstantDataArray::getFP(EltTy, Elts); 3188 } else if (EltTy->isFloatTy()) { 3189 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3190 if (isa<VectorType>(CurTy)) 3191 V = ConstantDataVector::getFP(EltTy, Elts); 3192 else 3193 V = ConstantDataArray::getFP(EltTy, Elts); 3194 } else if (EltTy->isDoubleTy()) { 3195 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3196 if (isa<VectorType>(CurTy)) 3197 V = ConstantDataVector::getFP(EltTy, Elts); 3198 else 3199 V = ConstantDataArray::getFP(EltTy, Elts); 3200 } else { 3201 return error("Invalid type for value"); 3202 } 3203 break; 3204 } 3205 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3206 if (Record.size() < 2) 3207 return error("Invalid unary op constexpr record"); 3208 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3209 if (Opc < 0) { 3210 V = UndefValue::get(CurTy); // Unknown unop. 3211 } else { 3212 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3213 } 3214 break; 3215 } 3216 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3217 if (Record.size() < 3) 3218 return error("Invalid binary op constexpr record"); 3219 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3220 if (Opc < 0) { 3221 V = UndefValue::get(CurTy); // Unknown binop. 3222 } else { 3223 uint8_t Flags = 0; 3224 if (Record.size() >= 4) { 3225 if (Opc == Instruction::Add || 3226 Opc == Instruction::Sub || 3227 Opc == Instruction::Mul || 3228 Opc == Instruction::Shl) { 3229 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3230 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3231 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3232 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3233 } else if (Opc == Instruction::SDiv || 3234 Opc == Instruction::UDiv || 3235 Opc == Instruction::LShr || 3236 Opc == Instruction::AShr) { 3237 if (Record[3] & (1 << bitc::PEO_EXACT)) 3238 Flags |= PossiblyExactOperator::IsExact; 3239 } 3240 } 3241 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3242 {(unsigned)Record[1], (unsigned)Record[2]}); 3243 } 3244 break; 3245 } 3246 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3247 if (Record.size() < 3) 3248 return error("Invalid cast constexpr record"); 3249 int Opc = getDecodedCastOpcode(Record[0]); 3250 if (Opc < 0) { 3251 V = UndefValue::get(CurTy); // Unknown cast. 3252 } else { 3253 unsigned OpTyID = Record[1]; 3254 Type *OpTy = getTypeByID(OpTyID); 3255 if (!OpTy) 3256 return error("Invalid cast constexpr record"); 3257 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3258 } 3259 break; 3260 } 3261 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3262 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3263 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3264 // operands] 3265 if (Record.size() < 2) 3266 return error("Constant GEP record must have at least two elements"); 3267 unsigned OpNum = 0; 3268 Type *PointeeType = nullptr; 3269 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3270 Record.size() % 2) 3271 PointeeType = getTypeByID(Record[OpNum++]); 3272 3273 bool InBounds = false; 3274 std::optional<unsigned> InRangeIndex; 3275 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3276 uint64_t Op = Record[OpNum++]; 3277 InBounds = Op & 1; 3278 InRangeIndex = Op >> 1; 3279 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3280 InBounds = true; 3281 3282 SmallVector<unsigned, 16> Elts; 3283 unsigned BaseTypeID = Record[OpNum]; 3284 while (OpNum != Record.size()) { 3285 unsigned ElTyID = Record[OpNum++]; 3286 Type *ElTy = getTypeByID(ElTyID); 3287 if (!ElTy) 3288 return error("Invalid getelementptr constexpr record"); 3289 Elts.push_back(Record[OpNum++]); 3290 } 3291 3292 if (Elts.size() < 1) 3293 return error("Invalid gep with no operands"); 3294 3295 Type *BaseType = getTypeByID(BaseTypeID); 3296 if (isa<VectorType>(BaseType)) { 3297 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3298 BaseType = getTypeByID(BaseTypeID); 3299 } 3300 3301 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3302 if (!OrigPtrTy) 3303 return error("GEP base operand must be pointer or vector of pointer"); 3304 3305 if (!PointeeType) { 3306 PointeeType = getPtrElementTypeByID(BaseTypeID); 3307 if (!PointeeType) 3308 return error("Missing element type for old-style constant GEP"); 3309 } 3310 3311 V = BitcodeConstant::create(Alloc, CurTy, 3312 {Instruction::GetElementPtr, InBounds, 3313 InRangeIndex.value_or(-1), PointeeType}, 3314 Elts); 3315 break; 3316 } 3317 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3318 if (Record.size() < 3) 3319 return error("Invalid select constexpr record"); 3320 3321 V = BitcodeConstant::create( 3322 Alloc, CurTy, Instruction::Select, 3323 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3324 break; 3325 } 3326 case bitc::CST_CODE_CE_EXTRACTELT 3327 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3328 if (Record.size() < 3) 3329 return error("Invalid extractelement constexpr record"); 3330 unsigned OpTyID = Record[0]; 3331 VectorType *OpTy = 3332 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3333 if (!OpTy) 3334 return error("Invalid extractelement constexpr record"); 3335 unsigned IdxRecord; 3336 if (Record.size() == 4) { 3337 unsigned IdxTyID = Record[2]; 3338 Type *IdxTy = getTypeByID(IdxTyID); 3339 if (!IdxTy) 3340 return error("Invalid extractelement constexpr record"); 3341 IdxRecord = Record[3]; 3342 } else { 3343 // Deprecated, but still needed to read old bitcode files. 3344 IdxRecord = Record[2]; 3345 } 3346 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3347 {(unsigned)Record[1], IdxRecord}); 3348 break; 3349 } 3350 case bitc::CST_CODE_CE_INSERTELT 3351 : { // CE_INSERTELT: [opval, opval, opty, opval] 3352 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3353 if (Record.size() < 3 || !OpTy) 3354 return error("Invalid insertelement constexpr record"); 3355 unsigned IdxRecord; 3356 if (Record.size() == 4) { 3357 unsigned IdxTyID = Record[2]; 3358 Type *IdxTy = getTypeByID(IdxTyID); 3359 if (!IdxTy) 3360 return error("Invalid insertelement constexpr record"); 3361 IdxRecord = Record[3]; 3362 } else { 3363 // Deprecated, but still needed to read old bitcode files. 3364 IdxRecord = Record[2]; 3365 } 3366 V = BitcodeConstant::create( 3367 Alloc, CurTy, Instruction::InsertElement, 3368 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3369 break; 3370 } 3371 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3372 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3373 if (Record.size() < 3 || !OpTy) 3374 return error("Invalid shufflevector constexpr record"); 3375 V = BitcodeConstant::create( 3376 Alloc, CurTy, Instruction::ShuffleVector, 3377 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3378 break; 3379 } 3380 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3381 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3382 VectorType *OpTy = 3383 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3384 if (Record.size() < 4 || !RTy || !OpTy) 3385 return error("Invalid shufflevector constexpr record"); 3386 V = BitcodeConstant::create( 3387 Alloc, CurTy, Instruction::ShuffleVector, 3388 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3389 break; 3390 } 3391 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3392 if (Record.size() < 4) 3393 return error("Invalid cmp constexpt record"); 3394 unsigned OpTyID = Record[0]; 3395 Type *OpTy = getTypeByID(OpTyID); 3396 if (!OpTy) 3397 return error("Invalid cmp constexpr record"); 3398 V = BitcodeConstant::create( 3399 Alloc, CurTy, 3400 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3401 : Instruction::ICmp), 3402 (uint8_t)Record[3]}, 3403 {(unsigned)Record[1], (unsigned)Record[2]}); 3404 break; 3405 } 3406 // This maintains backward compatibility, pre-asm dialect keywords. 3407 // Deprecated, but still needed to read old bitcode files. 3408 case bitc::CST_CODE_INLINEASM_OLD: { 3409 if (Record.size() < 2) 3410 return error("Invalid inlineasm record"); 3411 std::string AsmStr, ConstrStr; 3412 bool HasSideEffects = Record[0] & 1; 3413 bool IsAlignStack = Record[0] >> 1; 3414 unsigned AsmStrSize = Record[1]; 3415 if (2+AsmStrSize >= Record.size()) 3416 return error("Invalid inlineasm record"); 3417 unsigned ConstStrSize = Record[2+AsmStrSize]; 3418 if (3+AsmStrSize+ConstStrSize > Record.size()) 3419 return error("Invalid inlineasm record"); 3420 3421 for (unsigned i = 0; i != AsmStrSize; ++i) 3422 AsmStr += (char)Record[2+i]; 3423 for (unsigned i = 0; i != ConstStrSize; ++i) 3424 ConstrStr += (char)Record[3+AsmStrSize+i]; 3425 UpgradeInlineAsmString(&AsmStr); 3426 if (!CurElemTy) 3427 return error("Missing element type for old-style inlineasm"); 3428 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3429 HasSideEffects, IsAlignStack); 3430 break; 3431 } 3432 // This version adds support for the asm dialect keywords (e.g., 3433 // inteldialect). 3434 case bitc::CST_CODE_INLINEASM_OLD2: { 3435 if (Record.size() < 2) 3436 return error("Invalid inlineasm record"); 3437 std::string AsmStr, ConstrStr; 3438 bool HasSideEffects = Record[0] & 1; 3439 bool IsAlignStack = (Record[0] >> 1) & 1; 3440 unsigned AsmDialect = Record[0] >> 2; 3441 unsigned AsmStrSize = Record[1]; 3442 if (2+AsmStrSize >= Record.size()) 3443 return error("Invalid inlineasm record"); 3444 unsigned ConstStrSize = Record[2+AsmStrSize]; 3445 if (3+AsmStrSize+ConstStrSize > Record.size()) 3446 return error("Invalid inlineasm record"); 3447 3448 for (unsigned i = 0; i != AsmStrSize; ++i) 3449 AsmStr += (char)Record[2+i]; 3450 for (unsigned i = 0; i != ConstStrSize; ++i) 3451 ConstrStr += (char)Record[3+AsmStrSize+i]; 3452 UpgradeInlineAsmString(&AsmStr); 3453 if (!CurElemTy) 3454 return error("Missing element type for old-style inlineasm"); 3455 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3456 HasSideEffects, IsAlignStack, 3457 InlineAsm::AsmDialect(AsmDialect)); 3458 break; 3459 } 3460 // This version adds support for the unwind keyword. 3461 case bitc::CST_CODE_INLINEASM_OLD3: { 3462 if (Record.size() < 2) 3463 return error("Invalid inlineasm record"); 3464 unsigned OpNum = 0; 3465 std::string AsmStr, ConstrStr; 3466 bool HasSideEffects = Record[OpNum] & 1; 3467 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3468 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3469 bool CanThrow = (Record[OpNum] >> 3) & 1; 3470 ++OpNum; 3471 unsigned AsmStrSize = Record[OpNum]; 3472 ++OpNum; 3473 if (OpNum + AsmStrSize >= Record.size()) 3474 return error("Invalid inlineasm record"); 3475 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3476 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3477 return error("Invalid inlineasm record"); 3478 3479 for (unsigned i = 0; i != AsmStrSize; ++i) 3480 AsmStr += (char)Record[OpNum + i]; 3481 ++OpNum; 3482 for (unsigned i = 0; i != ConstStrSize; ++i) 3483 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3484 UpgradeInlineAsmString(&AsmStr); 3485 if (!CurElemTy) 3486 return error("Missing element type for old-style inlineasm"); 3487 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3488 HasSideEffects, IsAlignStack, 3489 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3490 break; 3491 } 3492 // This version adds explicit function type. 3493 case bitc::CST_CODE_INLINEASM: { 3494 if (Record.size() < 3) 3495 return error("Invalid inlineasm record"); 3496 unsigned OpNum = 0; 3497 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3498 ++OpNum; 3499 if (!FnTy) 3500 return error("Invalid inlineasm record"); 3501 std::string AsmStr, ConstrStr; 3502 bool HasSideEffects = Record[OpNum] & 1; 3503 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3504 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3505 bool CanThrow = (Record[OpNum] >> 3) & 1; 3506 ++OpNum; 3507 unsigned AsmStrSize = Record[OpNum]; 3508 ++OpNum; 3509 if (OpNum + AsmStrSize >= Record.size()) 3510 return error("Invalid inlineasm record"); 3511 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3512 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3513 return error("Invalid inlineasm record"); 3514 3515 for (unsigned i = 0; i != AsmStrSize; ++i) 3516 AsmStr += (char)Record[OpNum + i]; 3517 ++OpNum; 3518 for (unsigned i = 0; i != ConstStrSize; ++i) 3519 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3520 UpgradeInlineAsmString(&AsmStr); 3521 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3522 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3523 break; 3524 } 3525 case bitc::CST_CODE_BLOCKADDRESS:{ 3526 if (Record.size() < 3) 3527 return error("Invalid blockaddress record"); 3528 unsigned FnTyID = Record[0]; 3529 Type *FnTy = getTypeByID(FnTyID); 3530 if (!FnTy) 3531 return error("Invalid blockaddress record"); 3532 V = BitcodeConstant::create( 3533 Alloc, CurTy, 3534 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3535 Record[1]); 3536 break; 3537 } 3538 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3539 if (Record.size() < 2) 3540 return error("Invalid dso_local record"); 3541 unsigned GVTyID = Record[0]; 3542 Type *GVTy = getTypeByID(GVTyID); 3543 if (!GVTy) 3544 return error("Invalid dso_local record"); 3545 V = BitcodeConstant::create( 3546 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3547 break; 3548 } 3549 case bitc::CST_CODE_NO_CFI_VALUE: { 3550 if (Record.size() < 2) 3551 return error("Invalid no_cfi record"); 3552 unsigned GVTyID = Record[0]; 3553 Type *GVTy = getTypeByID(GVTyID); 3554 if (!GVTy) 3555 return error("Invalid no_cfi record"); 3556 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3557 Record[1]); 3558 break; 3559 } 3560 } 3561 3562 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3563 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3564 return Err; 3565 ++NextCstNo; 3566 } 3567 } 3568 3569 Error BitcodeReader::parseUseLists() { 3570 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3571 return Err; 3572 3573 // Read all the records. 3574 SmallVector<uint64_t, 64> Record; 3575 3576 while (true) { 3577 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3578 if (!MaybeEntry) 3579 return MaybeEntry.takeError(); 3580 BitstreamEntry Entry = MaybeEntry.get(); 3581 3582 switch (Entry.Kind) { 3583 case BitstreamEntry::SubBlock: // Handled for us already. 3584 case BitstreamEntry::Error: 3585 return error("Malformed block"); 3586 case BitstreamEntry::EndBlock: 3587 return Error::success(); 3588 case BitstreamEntry::Record: 3589 // The interesting case. 3590 break; 3591 } 3592 3593 // Read a use list record. 3594 Record.clear(); 3595 bool IsBB = false; 3596 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3597 if (!MaybeRecord) 3598 return MaybeRecord.takeError(); 3599 switch (MaybeRecord.get()) { 3600 default: // Default behavior: unknown type. 3601 break; 3602 case bitc::USELIST_CODE_BB: 3603 IsBB = true; 3604 [[fallthrough]]; 3605 case bitc::USELIST_CODE_DEFAULT: { 3606 unsigned RecordLength = Record.size(); 3607 if (RecordLength < 3) 3608 // Records should have at least an ID and two indexes. 3609 return error("Invalid record"); 3610 unsigned ID = Record.pop_back_val(); 3611 3612 Value *V; 3613 if (IsBB) { 3614 assert(ID < FunctionBBs.size() && "Basic block not found"); 3615 V = FunctionBBs[ID]; 3616 } else 3617 V = ValueList[ID]; 3618 unsigned NumUses = 0; 3619 SmallDenseMap<const Use *, unsigned, 16> Order; 3620 for (const Use &U : V->materialized_uses()) { 3621 if (++NumUses > Record.size()) 3622 break; 3623 Order[&U] = Record[NumUses - 1]; 3624 } 3625 if (Order.size() != Record.size() || NumUses > Record.size()) 3626 // Mismatches can happen if the functions are being materialized lazily 3627 // (out-of-order), or a value has been upgraded. 3628 break; 3629 3630 V->sortUseList([&](const Use &L, const Use &R) { 3631 return Order.lookup(&L) < Order.lookup(&R); 3632 }); 3633 break; 3634 } 3635 } 3636 } 3637 } 3638 3639 /// When we see the block for metadata, remember where it is and then skip it. 3640 /// This lets us lazily deserialize the metadata. 3641 Error BitcodeReader::rememberAndSkipMetadata() { 3642 // Save the current stream state. 3643 uint64_t CurBit = Stream.GetCurrentBitNo(); 3644 DeferredMetadataInfo.push_back(CurBit); 3645 3646 // Skip over the block for now. 3647 if (Error Err = Stream.SkipBlock()) 3648 return Err; 3649 return Error::success(); 3650 } 3651 3652 Error BitcodeReader::materializeMetadata() { 3653 for (uint64_t BitPos : DeferredMetadataInfo) { 3654 // Move the bit stream to the saved position. 3655 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3656 return JumpFailed; 3657 if (Error Err = MDLoader->parseModuleMetadata()) 3658 return Err; 3659 } 3660 3661 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3662 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3663 // multiple times. 3664 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3665 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3666 NamedMDNode *LinkerOpts = 3667 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3668 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3669 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3670 } 3671 } 3672 3673 DeferredMetadataInfo.clear(); 3674 return Error::success(); 3675 } 3676 3677 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3678 3679 /// When we see the block for a function body, remember where it is and then 3680 /// skip it. This lets us lazily deserialize the functions. 3681 Error BitcodeReader::rememberAndSkipFunctionBody() { 3682 // Get the function we are talking about. 3683 if (FunctionsWithBodies.empty()) 3684 return error("Insufficient function protos"); 3685 3686 Function *Fn = FunctionsWithBodies.back(); 3687 FunctionsWithBodies.pop_back(); 3688 3689 // Save the current stream state. 3690 uint64_t CurBit = Stream.GetCurrentBitNo(); 3691 assert( 3692 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3693 "Mismatch between VST and scanned function offsets"); 3694 DeferredFunctionInfo[Fn] = CurBit; 3695 3696 // Skip over the function block for now. 3697 if (Error Err = Stream.SkipBlock()) 3698 return Err; 3699 return Error::success(); 3700 } 3701 3702 Error BitcodeReader::globalCleanup() { 3703 // Patch the initializers for globals and aliases up. 3704 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3705 return Err; 3706 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3707 return error("Malformed global initializer set"); 3708 3709 // Look for intrinsic functions which need to be upgraded at some point 3710 // and functions that need to have their function attributes upgraded. 3711 for (Function &F : *TheModule) { 3712 MDLoader->upgradeDebugIntrinsics(F); 3713 Function *NewFn; 3714 if (UpgradeIntrinsicFunction(&F, NewFn)) 3715 UpgradedIntrinsics[&F] = NewFn; 3716 // Look for functions that rely on old function attribute behavior. 3717 UpgradeFunctionAttributes(F); 3718 } 3719 3720 // Look for global variables which need to be renamed. 3721 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3722 for (GlobalVariable &GV : TheModule->globals()) 3723 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3724 UpgradedVariables.emplace_back(&GV, Upgraded); 3725 for (auto &Pair : UpgradedVariables) { 3726 Pair.first->eraseFromParent(); 3727 TheModule->insertGlobalVariable(Pair.second); 3728 } 3729 3730 // Force deallocation of memory for these vectors to favor the client that 3731 // want lazy deserialization. 3732 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3733 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3734 return Error::success(); 3735 } 3736 3737 /// Support for lazy parsing of function bodies. This is required if we 3738 /// either have an old bitcode file without a VST forward declaration record, 3739 /// or if we have an anonymous function being materialized, since anonymous 3740 /// functions do not have a name and are therefore not in the VST. 3741 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3742 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3743 return JumpFailed; 3744 3745 if (Stream.AtEndOfStream()) 3746 return error("Could not find function in stream"); 3747 3748 if (!SeenFirstFunctionBody) 3749 return error("Trying to materialize functions before seeing function blocks"); 3750 3751 // An old bitcode file with the symbol table at the end would have 3752 // finished the parse greedily. 3753 assert(SeenValueSymbolTable); 3754 3755 SmallVector<uint64_t, 64> Record; 3756 3757 while (true) { 3758 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3759 if (!MaybeEntry) 3760 return MaybeEntry.takeError(); 3761 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3762 3763 switch (Entry.Kind) { 3764 default: 3765 return error("Expect SubBlock"); 3766 case BitstreamEntry::SubBlock: 3767 switch (Entry.ID) { 3768 default: 3769 return error("Expect function block"); 3770 case bitc::FUNCTION_BLOCK_ID: 3771 if (Error Err = rememberAndSkipFunctionBody()) 3772 return Err; 3773 NextUnreadBit = Stream.GetCurrentBitNo(); 3774 return Error::success(); 3775 } 3776 } 3777 } 3778 } 3779 3780 Error BitcodeReaderBase::readBlockInfo() { 3781 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3782 Stream.ReadBlockInfoBlock(); 3783 if (!MaybeNewBlockInfo) 3784 return MaybeNewBlockInfo.takeError(); 3785 std::optional<BitstreamBlockInfo> NewBlockInfo = 3786 std::move(MaybeNewBlockInfo.get()); 3787 if (!NewBlockInfo) 3788 return error("Malformed block"); 3789 BlockInfo = std::move(*NewBlockInfo); 3790 return Error::success(); 3791 } 3792 3793 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3794 // v1: [selection_kind, name] 3795 // v2: [strtab_offset, strtab_size, selection_kind] 3796 StringRef Name; 3797 std::tie(Name, Record) = readNameFromStrtab(Record); 3798 3799 if (Record.empty()) 3800 return error("Invalid record"); 3801 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3802 std::string OldFormatName; 3803 if (!UseStrtab) { 3804 if (Record.size() < 2) 3805 return error("Invalid record"); 3806 unsigned ComdatNameSize = Record[1]; 3807 if (ComdatNameSize > Record.size() - 2) 3808 return error("Comdat name size too large"); 3809 OldFormatName.reserve(ComdatNameSize); 3810 for (unsigned i = 0; i != ComdatNameSize; ++i) 3811 OldFormatName += (char)Record[2 + i]; 3812 Name = OldFormatName; 3813 } 3814 Comdat *C = TheModule->getOrInsertComdat(Name); 3815 C->setSelectionKind(SK); 3816 ComdatList.push_back(C); 3817 return Error::success(); 3818 } 3819 3820 static void inferDSOLocal(GlobalValue *GV) { 3821 // infer dso_local from linkage and visibility if it is not encoded. 3822 if (GV->hasLocalLinkage() || 3823 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3824 GV->setDSOLocal(true); 3825 } 3826 3827 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3828 GlobalValue::SanitizerMetadata Meta; 3829 if (V & (1 << 0)) 3830 Meta.NoAddress = true; 3831 if (V & (1 << 1)) 3832 Meta.NoHWAddress = true; 3833 if (V & (1 << 2)) 3834 Meta.Memtag = true; 3835 if (V & (1 << 3)) 3836 Meta.IsDynInit = true; 3837 return Meta; 3838 } 3839 3840 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3841 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3842 // visibility, threadlocal, unnamed_addr, externally_initialized, 3843 // dllstorageclass, comdat, attributes, preemption specifier, 3844 // partition strtab offset, partition strtab size] (name in VST) 3845 // v2: [strtab_offset, strtab_size, v1] 3846 // v3: [v2, code_model] 3847 StringRef Name; 3848 std::tie(Name, Record) = readNameFromStrtab(Record); 3849 3850 if (Record.size() < 6) 3851 return error("Invalid record"); 3852 unsigned TyID = Record[0]; 3853 Type *Ty = getTypeByID(TyID); 3854 if (!Ty) 3855 return error("Invalid record"); 3856 bool isConstant = Record[1] & 1; 3857 bool explicitType = Record[1] & 2; 3858 unsigned AddressSpace; 3859 if (explicitType) { 3860 AddressSpace = Record[1] >> 2; 3861 } else { 3862 if (!Ty->isPointerTy()) 3863 return error("Invalid type for value"); 3864 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3865 TyID = getContainedTypeID(TyID); 3866 Ty = getTypeByID(TyID); 3867 if (!Ty) 3868 return error("Missing element type for old-style global"); 3869 } 3870 3871 uint64_t RawLinkage = Record[3]; 3872 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3873 MaybeAlign Alignment; 3874 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3875 return Err; 3876 std::string Section; 3877 if (Record[5]) { 3878 if (Record[5] - 1 >= SectionTable.size()) 3879 return error("Invalid ID"); 3880 Section = SectionTable[Record[5] - 1]; 3881 } 3882 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3883 // Local linkage must have default visibility. 3884 // auto-upgrade `hidden` and `protected` for old bitcode. 3885 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3886 Visibility = getDecodedVisibility(Record[6]); 3887 3888 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3889 if (Record.size() > 7) 3890 TLM = getDecodedThreadLocalMode(Record[7]); 3891 3892 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3893 if (Record.size() > 8) 3894 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3895 3896 bool ExternallyInitialized = false; 3897 if (Record.size() > 9) 3898 ExternallyInitialized = Record[9]; 3899 3900 GlobalVariable *NewGV = 3901 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3902 nullptr, TLM, AddressSpace, ExternallyInitialized); 3903 if (Alignment) 3904 NewGV->setAlignment(*Alignment); 3905 if (!Section.empty()) 3906 NewGV->setSection(Section); 3907 NewGV->setVisibility(Visibility); 3908 NewGV->setUnnamedAddr(UnnamedAddr); 3909 3910 if (Record.size() > 10) { 3911 // A GlobalValue with local linkage cannot have a DLL storage class. 3912 if (!NewGV->hasLocalLinkage()) { 3913 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3914 } 3915 } else { 3916 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3917 } 3918 3919 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3920 3921 // Remember which value to use for the global initializer. 3922 if (unsigned InitID = Record[2]) 3923 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3924 3925 if (Record.size() > 11) { 3926 if (unsigned ComdatID = Record[11]) { 3927 if (ComdatID > ComdatList.size()) 3928 return error("Invalid global variable comdat ID"); 3929 NewGV->setComdat(ComdatList[ComdatID - 1]); 3930 } 3931 } else if (hasImplicitComdat(RawLinkage)) { 3932 ImplicitComdatObjects.insert(NewGV); 3933 } 3934 3935 if (Record.size() > 12) { 3936 auto AS = getAttributes(Record[12]).getFnAttrs(); 3937 NewGV->setAttributes(AS); 3938 } 3939 3940 if (Record.size() > 13) { 3941 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3942 } 3943 inferDSOLocal(NewGV); 3944 3945 // Check whether we have enough values to read a partition name. 3946 if (Record.size() > 15) 3947 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3948 3949 if (Record.size() > 16 && Record[16]) { 3950 llvm::GlobalValue::SanitizerMetadata Meta = 3951 deserializeSanitizerMetadata(Record[16]); 3952 NewGV->setSanitizerMetadata(Meta); 3953 } 3954 3955 if (Record.size() > 17 && Record[17]) { 3956 if (auto CM = getDecodedCodeModel(Record[17])) 3957 NewGV->setCodeModel(*CM); 3958 else 3959 return error("Invalid global variable code model"); 3960 } 3961 3962 return Error::success(); 3963 } 3964 3965 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3966 if (ValueTypeCallback) { 3967 (*ValueTypeCallback)( 3968 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3969 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3970 } 3971 } 3972 3973 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3974 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3975 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3976 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3977 // v2: [strtab_offset, strtab_size, v1] 3978 StringRef Name; 3979 std::tie(Name, Record) = readNameFromStrtab(Record); 3980 3981 if (Record.size() < 8) 3982 return error("Invalid record"); 3983 unsigned FTyID = Record[0]; 3984 Type *FTy = getTypeByID(FTyID); 3985 if (!FTy) 3986 return error("Invalid record"); 3987 if (isa<PointerType>(FTy)) { 3988 FTyID = getContainedTypeID(FTyID, 0); 3989 FTy = getTypeByID(FTyID); 3990 if (!FTy) 3991 return error("Missing element type for old-style function"); 3992 } 3993 3994 if (!isa<FunctionType>(FTy)) 3995 return error("Invalid type for value"); 3996 auto CC = static_cast<CallingConv::ID>(Record[1]); 3997 if (CC & ~CallingConv::MaxID) 3998 return error("Invalid calling convention ID"); 3999 4000 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4001 if (Record.size() > 16) 4002 AddrSpace = Record[16]; 4003 4004 Function *Func = 4005 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4006 AddrSpace, Name, TheModule); 4007 4008 assert(Func->getFunctionType() == FTy && 4009 "Incorrect fully specified type provided for function"); 4010 FunctionTypeIDs[Func] = FTyID; 4011 4012 Func->setCallingConv(CC); 4013 bool isProto = Record[2]; 4014 uint64_t RawLinkage = Record[3]; 4015 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4016 Func->setAttributes(getAttributes(Record[4])); 4017 callValueTypeCallback(Func, FTyID); 4018 4019 // Upgrade any old-style byval or sret without a type by propagating the 4020 // argument's pointee type. There should be no opaque pointers where the byval 4021 // type is implicit. 4022 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4023 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4024 Attribute::InAlloca}) { 4025 if (!Func->hasParamAttribute(i, Kind)) 4026 continue; 4027 4028 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4029 continue; 4030 4031 Func->removeParamAttr(i, Kind); 4032 4033 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4034 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4035 if (!PtrEltTy) 4036 return error("Missing param element type for attribute upgrade"); 4037 4038 Attribute NewAttr; 4039 switch (Kind) { 4040 case Attribute::ByVal: 4041 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4042 break; 4043 case Attribute::StructRet: 4044 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4045 break; 4046 case Attribute::InAlloca: 4047 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4048 break; 4049 default: 4050 llvm_unreachable("not an upgraded type attribute"); 4051 } 4052 4053 Func->addParamAttr(i, NewAttr); 4054 } 4055 } 4056 4057 if (Func->getCallingConv() == CallingConv::X86_INTR && 4058 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4059 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4060 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4061 if (!ByValTy) 4062 return error("Missing param element type for x86_intrcc upgrade"); 4063 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4064 Func->addParamAttr(0, NewAttr); 4065 } 4066 4067 MaybeAlign Alignment; 4068 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4069 return Err; 4070 if (Alignment) 4071 Func->setAlignment(*Alignment); 4072 if (Record[6]) { 4073 if (Record[6] - 1 >= SectionTable.size()) 4074 return error("Invalid ID"); 4075 Func->setSection(SectionTable[Record[6] - 1]); 4076 } 4077 // Local linkage must have default visibility. 4078 // auto-upgrade `hidden` and `protected` for old bitcode. 4079 if (!Func->hasLocalLinkage()) 4080 Func->setVisibility(getDecodedVisibility(Record[7])); 4081 if (Record.size() > 8 && Record[8]) { 4082 if (Record[8] - 1 >= GCTable.size()) 4083 return error("Invalid ID"); 4084 Func->setGC(GCTable[Record[8] - 1]); 4085 } 4086 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4087 if (Record.size() > 9) 4088 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4089 Func->setUnnamedAddr(UnnamedAddr); 4090 4091 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4092 if (Record.size() > 10) 4093 OperandInfo.Prologue = Record[10]; 4094 4095 if (Record.size() > 11) { 4096 // A GlobalValue with local linkage cannot have a DLL storage class. 4097 if (!Func->hasLocalLinkage()) { 4098 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4099 } 4100 } else { 4101 upgradeDLLImportExportLinkage(Func, RawLinkage); 4102 } 4103 4104 if (Record.size() > 12) { 4105 if (unsigned ComdatID = Record[12]) { 4106 if (ComdatID > ComdatList.size()) 4107 return error("Invalid function comdat ID"); 4108 Func->setComdat(ComdatList[ComdatID - 1]); 4109 } 4110 } else if (hasImplicitComdat(RawLinkage)) { 4111 ImplicitComdatObjects.insert(Func); 4112 } 4113 4114 if (Record.size() > 13) 4115 OperandInfo.Prefix = Record[13]; 4116 4117 if (Record.size() > 14) 4118 OperandInfo.PersonalityFn = Record[14]; 4119 4120 if (Record.size() > 15) { 4121 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4122 } 4123 inferDSOLocal(Func); 4124 4125 // Record[16] is the address space number. 4126 4127 // Check whether we have enough values to read a partition name. Also make 4128 // sure Strtab has enough values. 4129 if (Record.size() > 18 && Strtab.data() && 4130 Record[17] + Record[18] <= Strtab.size()) { 4131 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4132 } 4133 4134 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4135 4136 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4137 FunctionOperands.push_back(OperandInfo); 4138 4139 // If this is a function with a body, remember the prototype we are 4140 // creating now, so that we can match up the body with them later. 4141 if (!isProto) { 4142 Func->setIsMaterializable(true); 4143 FunctionsWithBodies.push_back(Func); 4144 DeferredFunctionInfo[Func] = 0; 4145 } 4146 return Error::success(); 4147 } 4148 4149 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4150 unsigned BitCode, ArrayRef<uint64_t> Record) { 4151 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4152 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4153 // dllstorageclass, threadlocal, unnamed_addr, 4154 // preemption specifier] (name in VST) 4155 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4156 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4157 // preemption specifier] (name in VST) 4158 // v2: [strtab_offset, strtab_size, v1] 4159 StringRef Name; 4160 std::tie(Name, Record) = readNameFromStrtab(Record); 4161 4162 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4163 if (Record.size() < (3 + (unsigned)NewRecord)) 4164 return error("Invalid record"); 4165 unsigned OpNum = 0; 4166 unsigned TypeID = Record[OpNum++]; 4167 Type *Ty = getTypeByID(TypeID); 4168 if (!Ty) 4169 return error("Invalid record"); 4170 4171 unsigned AddrSpace; 4172 if (!NewRecord) { 4173 auto *PTy = dyn_cast<PointerType>(Ty); 4174 if (!PTy) 4175 return error("Invalid type for value"); 4176 AddrSpace = PTy->getAddressSpace(); 4177 TypeID = getContainedTypeID(TypeID); 4178 Ty = getTypeByID(TypeID); 4179 if (!Ty) 4180 return error("Missing element type for old-style indirect symbol"); 4181 } else { 4182 AddrSpace = Record[OpNum++]; 4183 } 4184 4185 auto Val = Record[OpNum++]; 4186 auto Linkage = Record[OpNum++]; 4187 GlobalValue *NewGA; 4188 if (BitCode == bitc::MODULE_CODE_ALIAS || 4189 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4190 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4191 TheModule); 4192 else 4193 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4194 nullptr, TheModule); 4195 4196 // Local linkage must have default visibility. 4197 // auto-upgrade `hidden` and `protected` for old bitcode. 4198 if (OpNum != Record.size()) { 4199 auto VisInd = OpNum++; 4200 if (!NewGA->hasLocalLinkage()) 4201 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4202 } 4203 if (BitCode == bitc::MODULE_CODE_ALIAS || 4204 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4205 if (OpNum != Record.size()) { 4206 auto S = Record[OpNum++]; 4207 // A GlobalValue with local linkage cannot have a DLL storage class. 4208 if (!NewGA->hasLocalLinkage()) 4209 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4210 } 4211 else 4212 upgradeDLLImportExportLinkage(NewGA, Linkage); 4213 if (OpNum != Record.size()) 4214 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4215 if (OpNum != Record.size()) 4216 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4217 } 4218 if (OpNum != Record.size()) 4219 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4220 inferDSOLocal(NewGA); 4221 4222 // Check whether we have enough values to read a partition name. 4223 if (OpNum + 1 < Record.size()) { 4224 // Check Strtab has enough values for the partition. 4225 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4226 return error("Malformed partition, too large."); 4227 NewGA->setPartition( 4228 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4229 OpNum += 2; 4230 } 4231 4232 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4233 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4234 return Error::success(); 4235 } 4236 4237 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4238 bool ShouldLazyLoadMetadata, 4239 ParserCallbacks Callbacks) { 4240 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4241 if (ResumeBit) { 4242 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4243 return JumpFailed; 4244 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4245 return Err; 4246 4247 SmallVector<uint64_t, 64> Record; 4248 4249 // Parts of bitcode parsing depend on the datalayout. Make sure we 4250 // finalize the datalayout before we run any of that code. 4251 bool ResolvedDataLayout = false; 4252 // In order to support importing modules with illegal data layout strings, 4253 // delay parsing the data layout string until after upgrades and overrides 4254 // have been applied, allowing to fix illegal data layout strings. 4255 // Initialize to the current module's layout string in case none is specified. 4256 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4257 4258 auto ResolveDataLayout = [&]() -> Error { 4259 if (ResolvedDataLayout) 4260 return Error::success(); 4261 4262 // Datalayout and triple can't be parsed after this point. 4263 ResolvedDataLayout = true; 4264 4265 // Auto-upgrade the layout string 4266 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4267 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4268 4269 // Apply override 4270 if (Callbacks.DataLayout) { 4271 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4272 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4273 TentativeDataLayoutStr = *LayoutOverride; 4274 } 4275 4276 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4277 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4278 if (!MaybeDL) 4279 return MaybeDL.takeError(); 4280 4281 TheModule->setDataLayout(MaybeDL.get()); 4282 return Error::success(); 4283 }; 4284 4285 // Read all the records for this module. 4286 while (true) { 4287 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4288 if (!MaybeEntry) 4289 return MaybeEntry.takeError(); 4290 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4291 4292 switch (Entry.Kind) { 4293 case BitstreamEntry::Error: 4294 return error("Malformed block"); 4295 case BitstreamEntry::EndBlock: 4296 if (Error Err = ResolveDataLayout()) 4297 return Err; 4298 return globalCleanup(); 4299 4300 case BitstreamEntry::SubBlock: 4301 switch (Entry.ID) { 4302 default: // Skip unknown content. 4303 if (Error Err = Stream.SkipBlock()) 4304 return Err; 4305 break; 4306 case bitc::BLOCKINFO_BLOCK_ID: 4307 if (Error Err = readBlockInfo()) 4308 return Err; 4309 break; 4310 case bitc::PARAMATTR_BLOCK_ID: 4311 if (Error Err = parseAttributeBlock()) 4312 return Err; 4313 break; 4314 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4315 if (Error Err = parseAttributeGroupBlock()) 4316 return Err; 4317 break; 4318 case bitc::TYPE_BLOCK_ID_NEW: 4319 if (Error Err = parseTypeTable()) 4320 return Err; 4321 break; 4322 case bitc::VALUE_SYMTAB_BLOCK_ID: 4323 if (!SeenValueSymbolTable) { 4324 // Either this is an old form VST without function index and an 4325 // associated VST forward declaration record (which would have caused 4326 // the VST to be jumped to and parsed before it was encountered 4327 // normally in the stream), or there were no function blocks to 4328 // trigger an earlier parsing of the VST. 4329 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4330 if (Error Err = parseValueSymbolTable()) 4331 return Err; 4332 SeenValueSymbolTable = true; 4333 } else { 4334 // We must have had a VST forward declaration record, which caused 4335 // the parser to jump to and parse the VST earlier. 4336 assert(VSTOffset > 0); 4337 if (Error Err = Stream.SkipBlock()) 4338 return Err; 4339 } 4340 break; 4341 case bitc::CONSTANTS_BLOCK_ID: 4342 if (Error Err = parseConstants()) 4343 return Err; 4344 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4345 return Err; 4346 break; 4347 case bitc::METADATA_BLOCK_ID: 4348 if (ShouldLazyLoadMetadata) { 4349 if (Error Err = rememberAndSkipMetadata()) 4350 return Err; 4351 break; 4352 } 4353 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4354 if (Error Err = MDLoader->parseModuleMetadata()) 4355 return Err; 4356 break; 4357 case bitc::METADATA_KIND_BLOCK_ID: 4358 if (Error Err = MDLoader->parseMetadataKinds()) 4359 return Err; 4360 break; 4361 case bitc::FUNCTION_BLOCK_ID: 4362 if (Error Err = ResolveDataLayout()) 4363 return Err; 4364 4365 // If this is the first function body we've seen, reverse the 4366 // FunctionsWithBodies list. 4367 if (!SeenFirstFunctionBody) { 4368 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4369 if (Error Err = globalCleanup()) 4370 return Err; 4371 SeenFirstFunctionBody = true; 4372 } 4373 4374 if (VSTOffset > 0) { 4375 // If we have a VST forward declaration record, make sure we 4376 // parse the VST now if we haven't already. It is needed to 4377 // set up the DeferredFunctionInfo vector for lazy reading. 4378 if (!SeenValueSymbolTable) { 4379 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4380 return Err; 4381 SeenValueSymbolTable = true; 4382 // Fall through so that we record the NextUnreadBit below. 4383 // This is necessary in case we have an anonymous function that 4384 // is later materialized. Since it will not have a VST entry we 4385 // need to fall back to the lazy parse to find its offset. 4386 } else { 4387 // If we have a VST forward declaration record, but have already 4388 // parsed the VST (just above, when the first function body was 4389 // encountered here), then we are resuming the parse after 4390 // materializing functions. The ResumeBit points to the 4391 // start of the last function block recorded in the 4392 // DeferredFunctionInfo map. Skip it. 4393 if (Error Err = Stream.SkipBlock()) 4394 return Err; 4395 continue; 4396 } 4397 } 4398 4399 // Support older bitcode files that did not have the function 4400 // index in the VST, nor a VST forward declaration record, as 4401 // well as anonymous functions that do not have VST entries. 4402 // Build the DeferredFunctionInfo vector on the fly. 4403 if (Error Err = rememberAndSkipFunctionBody()) 4404 return Err; 4405 4406 // Suspend parsing when we reach the function bodies. Subsequent 4407 // materialization calls will resume it when necessary. If the bitcode 4408 // file is old, the symbol table will be at the end instead and will not 4409 // have been seen yet. In this case, just finish the parse now. 4410 if (SeenValueSymbolTable) { 4411 NextUnreadBit = Stream.GetCurrentBitNo(); 4412 // After the VST has been parsed, we need to make sure intrinsic name 4413 // are auto-upgraded. 4414 return globalCleanup(); 4415 } 4416 break; 4417 case bitc::USELIST_BLOCK_ID: 4418 if (Error Err = parseUseLists()) 4419 return Err; 4420 break; 4421 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4422 if (Error Err = parseOperandBundleTags()) 4423 return Err; 4424 break; 4425 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4426 if (Error Err = parseSyncScopeNames()) 4427 return Err; 4428 break; 4429 } 4430 continue; 4431 4432 case BitstreamEntry::Record: 4433 // The interesting case. 4434 break; 4435 } 4436 4437 // Read a record. 4438 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4439 if (!MaybeBitCode) 4440 return MaybeBitCode.takeError(); 4441 switch (unsigned BitCode = MaybeBitCode.get()) { 4442 default: break; // Default behavior, ignore unknown content. 4443 case bitc::MODULE_CODE_VERSION: { 4444 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4445 if (!VersionOrErr) 4446 return VersionOrErr.takeError(); 4447 UseRelativeIDs = *VersionOrErr >= 1; 4448 break; 4449 } 4450 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4451 if (ResolvedDataLayout) 4452 return error("target triple too late in module"); 4453 std::string S; 4454 if (convertToString(Record, 0, S)) 4455 return error("Invalid record"); 4456 TheModule->setTargetTriple(S); 4457 break; 4458 } 4459 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4460 if (ResolvedDataLayout) 4461 return error("datalayout too late in module"); 4462 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4463 return error("Invalid record"); 4464 break; 4465 } 4466 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4467 std::string S; 4468 if (convertToString(Record, 0, S)) 4469 return error("Invalid record"); 4470 TheModule->setModuleInlineAsm(S); 4471 break; 4472 } 4473 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4474 // Deprecated, but still needed to read old bitcode files. 4475 std::string S; 4476 if (convertToString(Record, 0, S)) 4477 return error("Invalid record"); 4478 // Ignore value. 4479 break; 4480 } 4481 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4482 std::string S; 4483 if (convertToString(Record, 0, S)) 4484 return error("Invalid record"); 4485 SectionTable.push_back(S); 4486 break; 4487 } 4488 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4489 std::string S; 4490 if (convertToString(Record, 0, S)) 4491 return error("Invalid record"); 4492 GCTable.push_back(S); 4493 break; 4494 } 4495 case bitc::MODULE_CODE_COMDAT: 4496 if (Error Err = parseComdatRecord(Record)) 4497 return Err; 4498 break; 4499 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4500 // written by ThinLinkBitcodeWriter. See 4501 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4502 // record 4503 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4504 case bitc::MODULE_CODE_GLOBALVAR: 4505 if (Error Err = parseGlobalVarRecord(Record)) 4506 return Err; 4507 break; 4508 case bitc::MODULE_CODE_FUNCTION: 4509 if (Error Err = ResolveDataLayout()) 4510 return Err; 4511 if (Error Err = parseFunctionRecord(Record)) 4512 return Err; 4513 break; 4514 case bitc::MODULE_CODE_IFUNC: 4515 case bitc::MODULE_CODE_ALIAS: 4516 case bitc::MODULE_CODE_ALIAS_OLD: 4517 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4518 return Err; 4519 break; 4520 /// MODULE_CODE_VSTOFFSET: [offset] 4521 case bitc::MODULE_CODE_VSTOFFSET: 4522 if (Record.empty()) 4523 return error("Invalid record"); 4524 // Note that we subtract 1 here because the offset is relative to one word 4525 // before the start of the identification or module block, which was 4526 // historically always the start of the regular bitcode header. 4527 VSTOffset = Record[0] - 1; 4528 break; 4529 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4530 case bitc::MODULE_CODE_SOURCE_FILENAME: 4531 SmallString<128> ValueName; 4532 if (convertToString(Record, 0, ValueName)) 4533 return error("Invalid record"); 4534 TheModule->setSourceFileName(ValueName); 4535 break; 4536 } 4537 Record.clear(); 4538 } 4539 this->ValueTypeCallback = std::nullopt; 4540 return Error::success(); 4541 } 4542 4543 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4544 bool IsImporting, 4545 ParserCallbacks Callbacks) { 4546 TheModule = M; 4547 MetadataLoaderCallbacks MDCallbacks; 4548 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4549 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4550 return getContainedTypeID(I, J); 4551 }; 4552 MDCallbacks.MDType = Callbacks.MDType; 4553 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4554 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4555 } 4556 4557 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4558 if (!isa<PointerType>(PtrType)) 4559 return error("Load/Store operand is not a pointer type"); 4560 if (!PointerType::isLoadableOrStorableType(ValType)) 4561 return error("Cannot load/store from pointer"); 4562 return Error::success(); 4563 } 4564 4565 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4566 ArrayRef<unsigned> ArgTyIDs) { 4567 AttributeList Attrs = CB->getAttributes(); 4568 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4569 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4570 Attribute::InAlloca}) { 4571 if (!Attrs.hasParamAttr(i, Kind) || 4572 Attrs.getParamAttr(i, Kind).getValueAsType()) 4573 continue; 4574 4575 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4576 if (!PtrEltTy) 4577 return error("Missing element type for typed attribute upgrade"); 4578 4579 Attribute NewAttr; 4580 switch (Kind) { 4581 case Attribute::ByVal: 4582 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4583 break; 4584 case Attribute::StructRet: 4585 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4586 break; 4587 case Attribute::InAlloca: 4588 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4589 break; 4590 default: 4591 llvm_unreachable("not an upgraded type attribute"); 4592 } 4593 4594 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4595 } 4596 } 4597 4598 if (CB->isInlineAsm()) { 4599 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4600 unsigned ArgNo = 0; 4601 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4602 if (!CI.hasArg()) 4603 continue; 4604 4605 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4606 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4607 if (!ElemTy) 4608 return error("Missing element type for inline asm upgrade"); 4609 Attrs = Attrs.addParamAttribute( 4610 Context, ArgNo, 4611 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4612 } 4613 4614 ArgNo++; 4615 } 4616 } 4617 4618 switch (CB->getIntrinsicID()) { 4619 case Intrinsic::preserve_array_access_index: 4620 case Intrinsic::preserve_struct_access_index: 4621 case Intrinsic::aarch64_ldaxr: 4622 case Intrinsic::aarch64_ldxr: 4623 case Intrinsic::aarch64_stlxr: 4624 case Intrinsic::aarch64_stxr: 4625 case Intrinsic::arm_ldaex: 4626 case Intrinsic::arm_ldrex: 4627 case Intrinsic::arm_stlex: 4628 case Intrinsic::arm_strex: { 4629 unsigned ArgNo; 4630 switch (CB->getIntrinsicID()) { 4631 case Intrinsic::aarch64_stlxr: 4632 case Intrinsic::aarch64_stxr: 4633 case Intrinsic::arm_stlex: 4634 case Intrinsic::arm_strex: 4635 ArgNo = 1; 4636 break; 4637 default: 4638 ArgNo = 0; 4639 break; 4640 } 4641 if (!Attrs.getParamElementType(ArgNo)) { 4642 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4643 if (!ElTy) 4644 return error("Missing element type for elementtype upgrade"); 4645 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4646 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4647 } 4648 break; 4649 } 4650 default: 4651 break; 4652 } 4653 4654 CB->setAttributes(Attrs); 4655 return Error::success(); 4656 } 4657 4658 /// Lazily parse the specified function body block. 4659 Error BitcodeReader::parseFunctionBody(Function *F) { 4660 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4661 return Err; 4662 4663 // Unexpected unresolved metadata when parsing function. 4664 if (MDLoader->hasFwdRefs()) 4665 return error("Invalid function metadata: incoming forward references"); 4666 4667 InstructionList.clear(); 4668 unsigned ModuleValueListSize = ValueList.size(); 4669 unsigned ModuleMDLoaderSize = MDLoader->size(); 4670 4671 // Add all the function arguments to the value table. 4672 unsigned ArgNo = 0; 4673 unsigned FTyID = FunctionTypeIDs[F]; 4674 for (Argument &I : F->args()) { 4675 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4676 assert(I.getType() == getTypeByID(ArgTyID) && 4677 "Incorrect fully specified type for Function Argument"); 4678 ValueList.push_back(&I, ArgTyID); 4679 ++ArgNo; 4680 } 4681 unsigned NextValueNo = ValueList.size(); 4682 BasicBlock *CurBB = nullptr; 4683 unsigned CurBBNo = 0; 4684 // Block into which constant expressions from phi nodes are materialized. 4685 BasicBlock *PhiConstExprBB = nullptr; 4686 // Edge blocks for phi nodes into which constant expressions have been 4687 // expanded. 4688 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4689 ConstExprEdgeBBs; 4690 4691 DebugLoc LastLoc; 4692 auto getLastInstruction = [&]() -> Instruction * { 4693 if (CurBB && !CurBB->empty()) 4694 return &CurBB->back(); 4695 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4696 !FunctionBBs[CurBBNo - 1]->empty()) 4697 return &FunctionBBs[CurBBNo - 1]->back(); 4698 return nullptr; 4699 }; 4700 4701 std::vector<OperandBundleDef> OperandBundles; 4702 4703 // Read all the records. 4704 SmallVector<uint64_t, 64> Record; 4705 4706 while (true) { 4707 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4708 if (!MaybeEntry) 4709 return MaybeEntry.takeError(); 4710 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4711 4712 switch (Entry.Kind) { 4713 case BitstreamEntry::Error: 4714 return error("Malformed block"); 4715 case BitstreamEntry::EndBlock: 4716 goto OutOfRecordLoop; 4717 4718 case BitstreamEntry::SubBlock: 4719 switch (Entry.ID) { 4720 default: // Skip unknown content. 4721 if (Error Err = Stream.SkipBlock()) 4722 return Err; 4723 break; 4724 case bitc::CONSTANTS_BLOCK_ID: 4725 if (Error Err = parseConstants()) 4726 return Err; 4727 NextValueNo = ValueList.size(); 4728 break; 4729 case bitc::VALUE_SYMTAB_BLOCK_ID: 4730 if (Error Err = parseValueSymbolTable()) 4731 return Err; 4732 break; 4733 case bitc::METADATA_ATTACHMENT_ID: 4734 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4735 return Err; 4736 break; 4737 case bitc::METADATA_BLOCK_ID: 4738 assert(DeferredMetadataInfo.empty() && 4739 "Must read all module-level metadata before function-level"); 4740 if (Error Err = MDLoader->parseFunctionMetadata()) 4741 return Err; 4742 break; 4743 case bitc::USELIST_BLOCK_ID: 4744 if (Error Err = parseUseLists()) 4745 return Err; 4746 break; 4747 } 4748 continue; 4749 4750 case BitstreamEntry::Record: 4751 // The interesting case. 4752 break; 4753 } 4754 4755 // Read a record. 4756 Record.clear(); 4757 Instruction *I = nullptr; 4758 unsigned ResTypeID = InvalidTypeID; 4759 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4760 if (!MaybeBitCode) 4761 return MaybeBitCode.takeError(); 4762 switch (unsigned BitCode = MaybeBitCode.get()) { 4763 default: // Default behavior: reject 4764 return error("Invalid value"); 4765 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4766 if (Record.empty() || Record[0] == 0) 4767 return error("Invalid record"); 4768 // Create all the basic blocks for the function. 4769 FunctionBBs.resize(Record[0]); 4770 4771 // See if anything took the address of blocks in this function. 4772 auto BBFRI = BasicBlockFwdRefs.find(F); 4773 if (BBFRI == BasicBlockFwdRefs.end()) { 4774 for (BasicBlock *&BB : FunctionBBs) 4775 BB = BasicBlock::Create(Context, "", F); 4776 } else { 4777 auto &BBRefs = BBFRI->second; 4778 // Check for invalid basic block references. 4779 if (BBRefs.size() > FunctionBBs.size()) 4780 return error("Invalid ID"); 4781 assert(!BBRefs.empty() && "Unexpected empty array"); 4782 assert(!BBRefs.front() && "Invalid reference to entry block"); 4783 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4784 ++I) 4785 if (I < RE && BBRefs[I]) { 4786 BBRefs[I]->insertInto(F); 4787 FunctionBBs[I] = BBRefs[I]; 4788 } else { 4789 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4790 } 4791 4792 // Erase from the table. 4793 BasicBlockFwdRefs.erase(BBFRI); 4794 } 4795 4796 CurBB = FunctionBBs[0]; 4797 continue; 4798 } 4799 4800 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4801 // The record should not be emitted if it's an empty list. 4802 if (Record.empty()) 4803 return error("Invalid record"); 4804 // When we have the RARE case of a BlockAddress Constant that is not 4805 // scoped to the Function it refers to, we need to conservatively 4806 // materialize the referred to Function, regardless of whether or not 4807 // that Function will ultimately be linked, otherwise users of 4808 // BitcodeReader might start splicing out Function bodies such that we 4809 // might no longer be able to materialize the BlockAddress since the 4810 // BasicBlock (and entire body of the Function) the BlockAddress refers 4811 // to may have been moved. In the case that the user of BitcodeReader 4812 // decides ultimately not to link the Function body, materializing here 4813 // could be considered wasteful, but it's better than a deserialization 4814 // failure as described. This keeps BitcodeReader unaware of complex 4815 // linkage policy decisions such as those use by LTO, leaving those 4816 // decisions "one layer up." 4817 for (uint64_t ValID : Record) 4818 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4819 BackwardRefFunctions.push_back(F); 4820 else 4821 return error("Invalid record"); 4822 4823 continue; 4824 4825 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4826 // This record indicates that the last instruction is at the same 4827 // location as the previous instruction with a location. 4828 I = getLastInstruction(); 4829 4830 if (!I) 4831 return error("Invalid record"); 4832 I->setDebugLoc(LastLoc); 4833 I = nullptr; 4834 continue; 4835 4836 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4837 I = getLastInstruction(); 4838 if (!I || Record.size() < 4) 4839 return error("Invalid record"); 4840 4841 unsigned Line = Record[0], Col = Record[1]; 4842 unsigned ScopeID = Record[2], IAID = Record[3]; 4843 bool isImplicitCode = Record.size() == 5 && Record[4]; 4844 4845 MDNode *Scope = nullptr, *IA = nullptr; 4846 if (ScopeID) { 4847 Scope = dyn_cast_or_null<MDNode>( 4848 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4849 if (!Scope) 4850 return error("Invalid record"); 4851 } 4852 if (IAID) { 4853 IA = dyn_cast_or_null<MDNode>( 4854 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4855 if (!IA) 4856 return error("Invalid record"); 4857 } 4858 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4859 isImplicitCode); 4860 I->setDebugLoc(LastLoc); 4861 I = nullptr; 4862 continue; 4863 } 4864 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4865 unsigned OpNum = 0; 4866 Value *LHS; 4867 unsigned TypeID; 4868 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4869 OpNum+1 > Record.size()) 4870 return error("Invalid record"); 4871 4872 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4873 if (Opc == -1) 4874 return error("Invalid record"); 4875 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4876 ResTypeID = TypeID; 4877 InstructionList.push_back(I); 4878 if (OpNum < Record.size()) { 4879 if (isa<FPMathOperator>(I)) { 4880 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4881 if (FMF.any()) 4882 I->setFastMathFlags(FMF); 4883 } 4884 } 4885 break; 4886 } 4887 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4888 unsigned OpNum = 0; 4889 Value *LHS, *RHS; 4890 unsigned TypeID; 4891 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4892 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4893 CurBB) || 4894 OpNum+1 > Record.size()) 4895 return error("Invalid record"); 4896 4897 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4898 if (Opc == -1) 4899 return error("Invalid record"); 4900 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4901 ResTypeID = TypeID; 4902 InstructionList.push_back(I); 4903 if (OpNum < Record.size()) { 4904 if (Opc == Instruction::Add || 4905 Opc == Instruction::Sub || 4906 Opc == Instruction::Mul || 4907 Opc == Instruction::Shl) { 4908 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4909 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4910 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4911 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4912 } else if (Opc == Instruction::SDiv || 4913 Opc == Instruction::UDiv || 4914 Opc == Instruction::LShr || 4915 Opc == Instruction::AShr) { 4916 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4917 cast<BinaryOperator>(I)->setIsExact(true); 4918 } else if (Opc == Instruction::Or) { 4919 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4920 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4921 } else if (isa<FPMathOperator>(I)) { 4922 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4923 if (FMF.any()) 4924 I->setFastMathFlags(FMF); 4925 } 4926 } 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4930 unsigned OpNum = 0; 4931 Value *Op; 4932 unsigned OpTypeID; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4934 OpNum + 1 > Record.size()) 4935 return error("Invalid record"); 4936 4937 ResTypeID = Record[OpNum++]; 4938 Type *ResTy = getTypeByID(ResTypeID); 4939 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4940 4941 if (Opc == -1 || !ResTy) 4942 return error("Invalid record"); 4943 Instruction *Temp = nullptr; 4944 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4945 if (Temp) { 4946 InstructionList.push_back(Temp); 4947 assert(CurBB && "No current BB?"); 4948 Temp->insertInto(CurBB, CurBB->end()); 4949 } 4950 } else { 4951 auto CastOp = (Instruction::CastOps)Opc; 4952 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4953 return error("Invalid cast"); 4954 I = CastInst::Create(CastOp, Op, ResTy); 4955 } 4956 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4957 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4958 I->setNonNeg(true); 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4963 case bitc::FUNC_CODE_INST_GEP_OLD: 4964 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4965 unsigned OpNum = 0; 4966 4967 unsigned TyID; 4968 Type *Ty; 4969 bool InBounds; 4970 4971 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4972 InBounds = Record[OpNum++]; 4973 TyID = Record[OpNum++]; 4974 Ty = getTypeByID(TyID); 4975 } else { 4976 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4977 TyID = InvalidTypeID; 4978 Ty = nullptr; 4979 } 4980 4981 Value *BasePtr; 4982 unsigned BasePtrTypeID; 4983 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4984 CurBB)) 4985 return error("Invalid record"); 4986 4987 if (!Ty) { 4988 TyID = getContainedTypeID(BasePtrTypeID); 4989 if (BasePtr->getType()->isVectorTy()) 4990 TyID = getContainedTypeID(TyID); 4991 Ty = getTypeByID(TyID); 4992 } 4993 4994 SmallVector<Value*, 16> GEPIdx; 4995 while (OpNum != Record.size()) { 4996 Value *Op; 4997 unsigned OpTypeID; 4998 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4999 return error("Invalid record"); 5000 GEPIdx.push_back(Op); 5001 } 5002 5003 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5004 5005 ResTypeID = TyID; 5006 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5007 auto GTI = std::next(gep_type_begin(I)); 5008 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5009 unsigned SubType = 0; 5010 if (GTI.isStruct()) { 5011 ConstantInt *IdxC = 5012 Idx->getType()->isVectorTy() 5013 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5014 : cast<ConstantInt>(Idx); 5015 SubType = IdxC->getZExtValue(); 5016 } 5017 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5018 ++GTI; 5019 } 5020 } 5021 5022 // At this point ResTypeID is the result element type. We need a pointer 5023 // or vector of pointer to it. 5024 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5025 if (I->getType()->isVectorTy()) 5026 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5027 5028 InstructionList.push_back(I); 5029 if (InBounds) 5030 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5031 break; 5032 } 5033 5034 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5035 // EXTRACTVAL: [opty, opval, n x indices] 5036 unsigned OpNum = 0; 5037 Value *Agg; 5038 unsigned AggTypeID; 5039 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5040 return error("Invalid record"); 5041 Type *Ty = Agg->getType(); 5042 5043 unsigned RecSize = Record.size(); 5044 if (OpNum == RecSize) 5045 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5046 5047 SmallVector<unsigned, 4> EXTRACTVALIdx; 5048 ResTypeID = AggTypeID; 5049 for (; OpNum != RecSize; ++OpNum) { 5050 bool IsArray = Ty->isArrayTy(); 5051 bool IsStruct = Ty->isStructTy(); 5052 uint64_t Index = Record[OpNum]; 5053 5054 if (!IsStruct && !IsArray) 5055 return error("EXTRACTVAL: Invalid type"); 5056 if ((unsigned)Index != Index) 5057 return error("Invalid value"); 5058 if (IsStruct && Index >= Ty->getStructNumElements()) 5059 return error("EXTRACTVAL: Invalid struct index"); 5060 if (IsArray && Index >= Ty->getArrayNumElements()) 5061 return error("EXTRACTVAL: Invalid array index"); 5062 EXTRACTVALIdx.push_back((unsigned)Index); 5063 5064 if (IsStruct) { 5065 Ty = Ty->getStructElementType(Index); 5066 ResTypeID = getContainedTypeID(ResTypeID, Index); 5067 } else { 5068 Ty = Ty->getArrayElementType(); 5069 ResTypeID = getContainedTypeID(ResTypeID); 5070 } 5071 } 5072 5073 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5074 InstructionList.push_back(I); 5075 break; 5076 } 5077 5078 case bitc::FUNC_CODE_INST_INSERTVAL: { 5079 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5080 unsigned OpNum = 0; 5081 Value *Agg; 5082 unsigned AggTypeID; 5083 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5084 return error("Invalid record"); 5085 Value *Val; 5086 unsigned ValTypeID; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5088 return error("Invalid record"); 5089 5090 unsigned RecSize = Record.size(); 5091 if (OpNum == RecSize) 5092 return error("INSERTVAL: Invalid instruction with 0 indices"); 5093 5094 SmallVector<unsigned, 4> INSERTVALIdx; 5095 Type *CurTy = Agg->getType(); 5096 for (; OpNum != RecSize; ++OpNum) { 5097 bool IsArray = CurTy->isArrayTy(); 5098 bool IsStruct = CurTy->isStructTy(); 5099 uint64_t Index = Record[OpNum]; 5100 5101 if (!IsStruct && !IsArray) 5102 return error("INSERTVAL: Invalid type"); 5103 if ((unsigned)Index != Index) 5104 return error("Invalid value"); 5105 if (IsStruct && Index >= CurTy->getStructNumElements()) 5106 return error("INSERTVAL: Invalid struct index"); 5107 if (IsArray && Index >= CurTy->getArrayNumElements()) 5108 return error("INSERTVAL: Invalid array index"); 5109 5110 INSERTVALIdx.push_back((unsigned)Index); 5111 if (IsStruct) 5112 CurTy = CurTy->getStructElementType(Index); 5113 else 5114 CurTy = CurTy->getArrayElementType(); 5115 } 5116 5117 if (CurTy != Val->getType()) 5118 return error("Inserted value type doesn't match aggregate type"); 5119 5120 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5121 ResTypeID = AggTypeID; 5122 InstructionList.push_back(I); 5123 break; 5124 } 5125 5126 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5127 // obsolete form of select 5128 // handles select i1 ... in old bitcode 5129 unsigned OpNum = 0; 5130 Value *TrueVal, *FalseVal, *Cond; 5131 unsigned TypeID; 5132 Type *CondType = Type::getInt1Ty(Context); 5133 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5134 CurBB) || 5135 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5136 FalseVal, CurBB) || 5137 popValue(Record, OpNum, NextValueNo, CondType, 5138 getVirtualTypeID(CondType), Cond, CurBB)) 5139 return error("Invalid record"); 5140 5141 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5142 ResTypeID = TypeID; 5143 InstructionList.push_back(I); 5144 break; 5145 } 5146 5147 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5148 // new form of select 5149 // handles select i1 or select [N x i1] 5150 unsigned OpNum = 0; 5151 Value *TrueVal, *FalseVal, *Cond; 5152 unsigned ValTypeID, CondTypeID; 5153 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5154 CurBB) || 5155 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5156 FalseVal, CurBB) || 5157 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5158 return error("Invalid record"); 5159 5160 // select condition can be either i1 or [N x i1] 5161 if (VectorType* vector_type = 5162 dyn_cast<VectorType>(Cond->getType())) { 5163 // expect <n x i1> 5164 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5165 return error("Invalid type for value"); 5166 } else { 5167 // expect i1 5168 if (Cond->getType() != Type::getInt1Ty(Context)) 5169 return error("Invalid type for value"); 5170 } 5171 5172 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5173 ResTypeID = ValTypeID; 5174 InstructionList.push_back(I); 5175 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5176 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5177 if (FMF.any()) 5178 I->setFastMathFlags(FMF); 5179 } 5180 break; 5181 } 5182 5183 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5184 unsigned OpNum = 0; 5185 Value *Vec, *Idx; 5186 unsigned VecTypeID, IdxTypeID; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5188 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5189 return error("Invalid record"); 5190 if (!Vec->getType()->isVectorTy()) 5191 return error("Invalid type for value"); 5192 I = ExtractElementInst::Create(Vec, Idx); 5193 ResTypeID = getContainedTypeID(VecTypeID); 5194 InstructionList.push_back(I); 5195 break; 5196 } 5197 5198 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5199 unsigned OpNum = 0; 5200 Value *Vec, *Elt, *Idx; 5201 unsigned VecTypeID, IdxTypeID; 5202 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5203 return error("Invalid record"); 5204 if (!Vec->getType()->isVectorTy()) 5205 return error("Invalid type for value"); 5206 if (popValue(Record, OpNum, NextValueNo, 5207 cast<VectorType>(Vec->getType())->getElementType(), 5208 getContainedTypeID(VecTypeID), Elt, CurBB) || 5209 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5210 return error("Invalid record"); 5211 I = InsertElementInst::Create(Vec, Elt, Idx); 5212 ResTypeID = VecTypeID; 5213 InstructionList.push_back(I); 5214 break; 5215 } 5216 5217 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5218 unsigned OpNum = 0; 5219 Value *Vec1, *Vec2, *Mask; 5220 unsigned Vec1TypeID; 5221 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5222 CurBB) || 5223 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5224 Vec2, CurBB)) 5225 return error("Invalid record"); 5226 5227 unsigned MaskTypeID; 5228 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5229 return error("Invalid record"); 5230 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5231 return error("Invalid type for value"); 5232 5233 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5234 ResTypeID = 5235 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5236 InstructionList.push_back(I); 5237 break; 5238 } 5239 5240 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5241 // Old form of ICmp/FCmp returning bool 5242 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5243 // both legal on vectors but had different behaviour. 5244 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5245 // FCmp/ICmp returning bool or vector of bool 5246 5247 unsigned OpNum = 0; 5248 Value *LHS, *RHS; 5249 unsigned LHSTypeID; 5250 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5251 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5252 CurBB)) 5253 return error("Invalid record"); 5254 5255 if (OpNum >= Record.size()) 5256 return error( 5257 "Invalid record: operand number exceeded available operands"); 5258 5259 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5260 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5261 FastMathFlags FMF; 5262 if (IsFP && Record.size() > OpNum+1) 5263 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5264 5265 if (OpNum+1 != Record.size()) 5266 return error("Invalid record"); 5267 5268 if (IsFP) { 5269 if (!CmpInst::isFPPredicate(PredVal)) 5270 return error("Invalid fcmp predicate"); 5271 I = new FCmpInst(PredVal, LHS, RHS); 5272 } else { 5273 if (!CmpInst::isIntPredicate(PredVal)) 5274 return error("Invalid icmp predicate"); 5275 I = new ICmpInst(PredVal, LHS, RHS); 5276 } 5277 5278 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5279 if (LHS->getType()->isVectorTy()) 5280 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5281 5282 if (FMF.any()) 5283 I->setFastMathFlags(FMF); 5284 InstructionList.push_back(I); 5285 break; 5286 } 5287 5288 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5289 { 5290 unsigned Size = Record.size(); 5291 if (Size == 0) { 5292 I = ReturnInst::Create(Context); 5293 InstructionList.push_back(I); 5294 break; 5295 } 5296 5297 unsigned OpNum = 0; 5298 Value *Op = nullptr; 5299 unsigned OpTypeID; 5300 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5301 return error("Invalid record"); 5302 if (OpNum != Record.size()) 5303 return error("Invalid record"); 5304 5305 I = ReturnInst::Create(Context, Op); 5306 InstructionList.push_back(I); 5307 break; 5308 } 5309 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5310 if (Record.size() != 1 && Record.size() != 3) 5311 return error("Invalid record"); 5312 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5313 if (!TrueDest) 5314 return error("Invalid record"); 5315 5316 if (Record.size() == 1) { 5317 I = BranchInst::Create(TrueDest); 5318 InstructionList.push_back(I); 5319 } 5320 else { 5321 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5322 Type *CondType = Type::getInt1Ty(Context); 5323 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5324 getVirtualTypeID(CondType), CurBB); 5325 if (!FalseDest || !Cond) 5326 return error("Invalid record"); 5327 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5328 InstructionList.push_back(I); 5329 } 5330 break; 5331 } 5332 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5333 if (Record.size() != 1 && Record.size() != 2) 5334 return error("Invalid record"); 5335 unsigned Idx = 0; 5336 Type *TokenTy = Type::getTokenTy(Context); 5337 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5338 getVirtualTypeID(TokenTy), CurBB); 5339 if (!CleanupPad) 5340 return error("Invalid record"); 5341 BasicBlock *UnwindDest = nullptr; 5342 if (Record.size() == 2) { 5343 UnwindDest = getBasicBlock(Record[Idx++]); 5344 if (!UnwindDest) 5345 return error("Invalid record"); 5346 } 5347 5348 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5349 InstructionList.push_back(I); 5350 break; 5351 } 5352 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5353 if (Record.size() != 2) 5354 return error("Invalid record"); 5355 unsigned Idx = 0; 5356 Type *TokenTy = Type::getTokenTy(Context); 5357 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5358 getVirtualTypeID(TokenTy), CurBB); 5359 if (!CatchPad) 5360 return error("Invalid record"); 5361 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5362 if (!BB) 5363 return error("Invalid record"); 5364 5365 I = CatchReturnInst::Create(CatchPad, BB); 5366 InstructionList.push_back(I); 5367 break; 5368 } 5369 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5370 // We must have, at minimum, the outer scope and the number of arguments. 5371 if (Record.size() < 2) 5372 return error("Invalid record"); 5373 5374 unsigned Idx = 0; 5375 5376 Type *TokenTy = Type::getTokenTy(Context); 5377 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5378 getVirtualTypeID(TokenTy), CurBB); 5379 if (!ParentPad) 5380 return error("Invalid record"); 5381 5382 unsigned NumHandlers = Record[Idx++]; 5383 5384 SmallVector<BasicBlock *, 2> Handlers; 5385 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5386 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5387 if (!BB) 5388 return error("Invalid record"); 5389 Handlers.push_back(BB); 5390 } 5391 5392 BasicBlock *UnwindDest = nullptr; 5393 if (Idx + 1 == Record.size()) { 5394 UnwindDest = getBasicBlock(Record[Idx++]); 5395 if (!UnwindDest) 5396 return error("Invalid record"); 5397 } 5398 5399 if (Record.size() != Idx) 5400 return error("Invalid record"); 5401 5402 auto *CatchSwitch = 5403 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5404 for (BasicBlock *Handler : Handlers) 5405 CatchSwitch->addHandler(Handler); 5406 I = CatchSwitch; 5407 ResTypeID = getVirtualTypeID(I->getType()); 5408 InstructionList.push_back(I); 5409 break; 5410 } 5411 case bitc::FUNC_CODE_INST_CATCHPAD: 5412 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5413 // We must have, at minimum, the outer scope and the number of arguments. 5414 if (Record.size() < 2) 5415 return error("Invalid record"); 5416 5417 unsigned Idx = 0; 5418 5419 Type *TokenTy = Type::getTokenTy(Context); 5420 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5421 getVirtualTypeID(TokenTy), CurBB); 5422 if (!ParentPad) 5423 return error("Invald record"); 5424 5425 unsigned NumArgOperands = Record[Idx++]; 5426 5427 SmallVector<Value *, 2> Args; 5428 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5429 Value *Val; 5430 unsigned ValTypeID; 5431 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5432 return error("Invalid record"); 5433 Args.push_back(Val); 5434 } 5435 5436 if (Record.size() != Idx) 5437 return error("Invalid record"); 5438 5439 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5440 I = CleanupPadInst::Create(ParentPad, Args); 5441 else 5442 I = CatchPadInst::Create(ParentPad, Args); 5443 ResTypeID = getVirtualTypeID(I->getType()); 5444 InstructionList.push_back(I); 5445 break; 5446 } 5447 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5448 // Check magic 5449 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5450 // "New" SwitchInst format with case ranges. The changes to write this 5451 // format were reverted but we still recognize bitcode that uses it. 5452 // Hopefully someday we will have support for case ranges and can use 5453 // this format again. 5454 5455 unsigned OpTyID = Record[1]; 5456 Type *OpTy = getTypeByID(OpTyID); 5457 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5458 5459 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5460 BasicBlock *Default = getBasicBlock(Record[3]); 5461 if (!OpTy || !Cond || !Default) 5462 return error("Invalid record"); 5463 5464 unsigned NumCases = Record[4]; 5465 5466 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5467 InstructionList.push_back(SI); 5468 5469 unsigned CurIdx = 5; 5470 for (unsigned i = 0; i != NumCases; ++i) { 5471 SmallVector<ConstantInt*, 1> CaseVals; 5472 unsigned NumItems = Record[CurIdx++]; 5473 for (unsigned ci = 0; ci != NumItems; ++ci) { 5474 bool isSingleNumber = Record[CurIdx++]; 5475 5476 APInt Low; 5477 unsigned ActiveWords = 1; 5478 if (ValueBitWidth > 64) 5479 ActiveWords = Record[CurIdx++]; 5480 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5481 ValueBitWidth); 5482 CurIdx += ActiveWords; 5483 5484 if (!isSingleNumber) { 5485 ActiveWords = 1; 5486 if (ValueBitWidth > 64) 5487 ActiveWords = Record[CurIdx++]; 5488 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5489 ValueBitWidth); 5490 CurIdx += ActiveWords; 5491 5492 // FIXME: It is not clear whether values in the range should be 5493 // compared as signed or unsigned values. The partially 5494 // implemented changes that used this format in the past used 5495 // unsigned comparisons. 5496 for ( ; Low.ule(High); ++Low) 5497 CaseVals.push_back(ConstantInt::get(Context, Low)); 5498 } else 5499 CaseVals.push_back(ConstantInt::get(Context, Low)); 5500 } 5501 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5502 for (ConstantInt *Cst : CaseVals) 5503 SI->addCase(Cst, DestBB); 5504 } 5505 I = SI; 5506 break; 5507 } 5508 5509 // Old SwitchInst format without case ranges. 5510 5511 if (Record.size() < 3 || (Record.size() & 1) == 0) 5512 return error("Invalid record"); 5513 unsigned OpTyID = Record[0]; 5514 Type *OpTy = getTypeByID(OpTyID); 5515 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5516 BasicBlock *Default = getBasicBlock(Record[2]); 5517 if (!OpTy || !Cond || !Default) 5518 return error("Invalid record"); 5519 unsigned NumCases = (Record.size()-3)/2; 5520 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5521 InstructionList.push_back(SI); 5522 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5523 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5524 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5525 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5526 if (!CaseVal || !DestBB) { 5527 delete SI; 5528 return error("Invalid record"); 5529 } 5530 SI->addCase(CaseVal, DestBB); 5531 } 5532 I = SI; 5533 break; 5534 } 5535 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5536 if (Record.size() < 2) 5537 return error("Invalid record"); 5538 unsigned OpTyID = Record[0]; 5539 Type *OpTy = getTypeByID(OpTyID); 5540 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5541 if (!OpTy || !Address) 5542 return error("Invalid record"); 5543 unsigned NumDests = Record.size()-2; 5544 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5545 InstructionList.push_back(IBI); 5546 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5547 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5548 IBI->addDestination(DestBB); 5549 } else { 5550 delete IBI; 5551 return error("Invalid record"); 5552 } 5553 } 5554 I = IBI; 5555 break; 5556 } 5557 5558 case bitc::FUNC_CODE_INST_INVOKE: { 5559 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5560 if (Record.size() < 4) 5561 return error("Invalid record"); 5562 unsigned OpNum = 0; 5563 AttributeList PAL = getAttributes(Record[OpNum++]); 5564 unsigned CCInfo = Record[OpNum++]; 5565 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5566 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5567 5568 unsigned FTyID = InvalidTypeID; 5569 FunctionType *FTy = nullptr; 5570 if ((CCInfo >> 13) & 1) { 5571 FTyID = Record[OpNum++]; 5572 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5573 if (!FTy) 5574 return error("Explicit invoke type is not a function type"); 5575 } 5576 5577 Value *Callee; 5578 unsigned CalleeTypeID; 5579 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5580 CurBB)) 5581 return error("Invalid record"); 5582 5583 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5584 if (!CalleeTy) 5585 return error("Callee is not a pointer"); 5586 if (!FTy) { 5587 FTyID = getContainedTypeID(CalleeTypeID); 5588 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5589 if (!FTy) 5590 return error("Callee is not of pointer to function type"); 5591 } 5592 if (Record.size() < FTy->getNumParams() + OpNum) 5593 return error("Insufficient operands to call"); 5594 5595 SmallVector<Value*, 16> Ops; 5596 SmallVector<unsigned, 16> ArgTyIDs; 5597 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5598 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5599 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5600 ArgTyID, CurBB)); 5601 ArgTyIDs.push_back(ArgTyID); 5602 if (!Ops.back()) 5603 return error("Invalid record"); 5604 } 5605 5606 if (!FTy->isVarArg()) { 5607 if (Record.size() != OpNum) 5608 return error("Invalid record"); 5609 } else { 5610 // Read type/value pairs for varargs params. 5611 while (OpNum != Record.size()) { 5612 Value *Op; 5613 unsigned OpTypeID; 5614 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5615 return error("Invalid record"); 5616 Ops.push_back(Op); 5617 ArgTyIDs.push_back(OpTypeID); 5618 } 5619 } 5620 5621 // Upgrade the bundles if needed. 5622 if (!OperandBundles.empty()) 5623 UpgradeOperandBundles(OperandBundles); 5624 5625 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5626 OperandBundles); 5627 ResTypeID = getContainedTypeID(FTyID); 5628 OperandBundles.clear(); 5629 InstructionList.push_back(I); 5630 cast<InvokeInst>(I)->setCallingConv( 5631 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5632 cast<InvokeInst>(I)->setAttributes(PAL); 5633 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5634 I->deleteValue(); 5635 return Err; 5636 } 5637 5638 break; 5639 } 5640 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5641 unsigned Idx = 0; 5642 Value *Val = nullptr; 5643 unsigned ValTypeID; 5644 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5645 return error("Invalid record"); 5646 I = ResumeInst::Create(Val); 5647 InstructionList.push_back(I); 5648 break; 5649 } 5650 case bitc::FUNC_CODE_INST_CALLBR: { 5651 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5652 unsigned OpNum = 0; 5653 AttributeList PAL = getAttributes(Record[OpNum++]); 5654 unsigned CCInfo = Record[OpNum++]; 5655 5656 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5657 unsigned NumIndirectDests = Record[OpNum++]; 5658 SmallVector<BasicBlock *, 16> IndirectDests; 5659 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5660 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5661 5662 unsigned FTyID = InvalidTypeID; 5663 FunctionType *FTy = nullptr; 5664 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5665 FTyID = Record[OpNum++]; 5666 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5667 if (!FTy) 5668 return error("Explicit call type is not a function type"); 5669 } 5670 5671 Value *Callee; 5672 unsigned CalleeTypeID; 5673 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5674 CurBB)) 5675 return error("Invalid record"); 5676 5677 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5678 if (!OpTy) 5679 return error("Callee is not a pointer type"); 5680 if (!FTy) { 5681 FTyID = getContainedTypeID(CalleeTypeID); 5682 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5683 if (!FTy) 5684 return error("Callee is not of pointer to function type"); 5685 } 5686 if (Record.size() < FTy->getNumParams() + OpNum) 5687 return error("Insufficient operands to call"); 5688 5689 SmallVector<Value*, 16> Args; 5690 SmallVector<unsigned, 16> ArgTyIDs; 5691 // Read the fixed params. 5692 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5693 Value *Arg; 5694 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5695 if (FTy->getParamType(i)->isLabelTy()) 5696 Arg = getBasicBlock(Record[OpNum]); 5697 else 5698 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5699 ArgTyID, CurBB); 5700 if (!Arg) 5701 return error("Invalid record"); 5702 Args.push_back(Arg); 5703 ArgTyIDs.push_back(ArgTyID); 5704 } 5705 5706 // Read type/value pairs for varargs params. 5707 if (!FTy->isVarArg()) { 5708 if (OpNum != Record.size()) 5709 return error("Invalid record"); 5710 } else { 5711 while (OpNum != Record.size()) { 5712 Value *Op; 5713 unsigned OpTypeID; 5714 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5715 return error("Invalid record"); 5716 Args.push_back(Op); 5717 ArgTyIDs.push_back(OpTypeID); 5718 } 5719 } 5720 5721 // Upgrade the bundles if needed. 5722 if (!OperandBundles.empty()) 5723 UpgradeOperandBundles(OperandBundles); 5724 5725 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5726 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5727 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5728 return CI.Type == InlineAsm::isLabel; 5729 }; 5730 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5731 // Upgrade explicit blockaddress arguments to label constraints. 5732 // Verify that the last arguments are blockaddress arguments that 5733 // match the indirect destinations. Clang always generates callbr 5734 // in this form. We could support reordering with more effort. 5735 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5736 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5737 unsigned LabelNo = ArgNo - FirstBlockArg; 5738 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5739 if (!BA || BA->getFunction() != F || 5740 LabelNo > IndirectDests.size() || 5741 BA->getBasicBlock() != IndirectDests[LabelNo]) 5742 return error("callbr argument does not match indirect dest"); 5743 } 5744 5745 // Remove blockaddress arguments. 5746 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5747 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5748 5749 // Recreate the function type with less arguments. 5750 SmallVector<Type *> ArgTys; 5751 for (Value *Arg : Args) 5752 ArgTys.push_back(Arg->getType()); 5753 FTy = 5754 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5755 5756 // Update constraint string to use label constraints. 5757 std::string Constraints = IA->getConstraintString(); 5758 unsigned ArgNo = 0; 5759 size_t Pos = 0; 5760 for (const auto &CI : ConstraintInfo) { 5761 if (CI.hasArg()) { 5762 if (ArgNo >= FirstBlockArg) 5763 Constraints.insert(Pos, "!"); 5764 ++ArgNo; 5765 } 5766 5767 // Go to next constraint in string. 5768 Pos = Constraints.find(',', Pos); 5769 if (Pos == std::string::npos) 5770 break; 5771 ++Pos; 5772 } 5773 5774 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5775 IA->hasSideEffects(), IA->isAlignStack(), 5776 IA->getDialect(), IA->canThrow()); 5777 } 5778 } 5779 5780 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5781 OperandBundles); 5782 ResTypeID = getContainedTypeID(FTyID); 5783 OperandBundles.clear(); 5784 InstructionList.push_back(I); 5785 cast<CallBrInst>(I)->setCallingConv( 5786 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5787 cast<CallBrInst>(I)->setAttributes(PAL); 5788 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5789 I->deleteValue(); 5790 return Err; 5791 } 5792 break; 5793 } 5794 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5795 I = new UnreachableInst(Context); 5796 InstructionList.push_back(I); 5797 break; 5798 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5799 if (Record.empty()) 5800 return error("Invalid phi record"); 5801 // The first record specifies the type. 5802 unsigned TyID = Record[0]; 5803 Type *Ty = getTypeByID(TyID); 5804 if (!Ty) 5805 return error("Invalid phi record"); 5806 5807 // Phi arguments are pairs of records of [value, basic block]. 5808 // There is an optional final record for fast-math-flags if this phi has a 5809 // floating-point type. 5810 size_t NumArgs = (Record.size() - 1) / 2; 5811 PHINode *PN = PHINode::Create(Ty, NumArgs); 5812 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5813 PN->deleteValue(); 5814 return error("Invalid phi record"); 5815 } 5816 InstructionList.push_back(PN); 5817 5818 SmallDenseMap<BasicBlock *, Value *> Args; 5819 for (unsigned i = 0; i != NumArgs; i++) { 5820 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5821 if (!BB) { 5822 PN->deleteValue(); 5823 return error("Invalid phi BB"); 5824 } 5825 5826 // Phi nodes may contain the same predecessor multiple times, in which 5827 // case the incoming value must be identical. Directly reuse the already 5828 // seen value here, to avoid expanding a constant expression multiple 5829 // times. 5830 auto It = Args.find(BB); 5831 if (It != Args.end()) { 5832 PN->addIncoming(It->second, BB); 5833 continue; 5834 } 5835 5836 // If there already is a block for this edge (from a different phi), 5837 // use it. 5838 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5839 if (!EdgeBB) { 5840 // Otherwise, use a temporary block (that we will discard if it 5841 // turns out to be unnecessary). 5842 if (!PhiConstExprBB) 5843 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5844 EdgeBB = PhiConstExprBB; 5845 } 5846 5847 // With the new function encoding, it is possible that operands have 5848 // negative IDs (for forward references). Use a signed VBR 5849 // representation to keep the encoding small. 5850 Value *V; 5851 if (UseRelativeIDs) 5852 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5853 else 5854 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5855 if (!V) { 5856 PN->deleteValue(); 5857 PhiConstExprBB->eraseFromParent(); 5858 return error("Invalid phi record"); 5859 } 5860 5861 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5862 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5863 PhiConstExprBB = nullptr; 5864 } 5865 PN->addIncoming(V, BB); 5866 Args.insert({BB, V}); 5867 } 5868 I = PN; 5869 ResTypeID = TyID; 5870 5871 // If there are an even number of records, the final record must be FMF. 5872 if (Record.size() % 2 == 0) { 5873 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5874 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5875 if (FMF.any()) 5876 I->setFastMathFlags(FMF); 5877 } 5878 5879 break; 5880 } 5881 5882 case bitc::FUNC_CODE_INST_LANDINGPAD: 5883 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5884 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5885 unsigned Idx = 0; 5886 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5887 if (Record.size() < 3) 5888 return error("Invalid record"); 5889 } else { 5890 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5891 if (Record.size() < 4) 5892 return error("Invalid record"); 5893 } 5894 ResTypeID = Record[Idx++]; 5895 Type *Ty = getTypeByID(ResTypeID); 5896 if (!Ty) 5897 return error("Invalid record"); 5898 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5899 Value *PersFn = nullptr; 5900 unsigned PersFnTypeID; 5901 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5902 nullptr)) 5903 return error("Invalid record"); 5904 5905 if (!F->hasPersonalityFn()) 5906 F->setPersonalityFn(cast<Constant>(PersFn)); 5907 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5908 return error("Personality function mismatch"); 5909 } 5910 5911 bool IsCleanup = !!Record[Idx++]; 5912 unsigned NumClauses = Record[Idx++]; 5913 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5914 LP->setCleanup(IsCleanup); 5915 for (unsigned J = 0; J != NumClauses; ++J) { 5916 LandingPadInst::ClauseType CT = 5917 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5918 Value *Val; 5919 unsigned ValTypeID; 5920 5921 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5922 nullptr)) { 5923 delete LP; 5924 return error("Invalid record"); 5925 } 5926 5927 assert((CT != LandingPadInst::Catch || 5928 !isa<ArrayType>(Val->getType())) && 5929 "Catch clause has a invalid type!"); 5930 assert((CT != LandingPadInst::Filter || 5931 isa<ArrayType>(Val->getType())) && 5932 "Filter clause has invalid type!"); 5933 LP->addClause(cast<Constant>(Val)); 5934 } 5935 5936 I = LP; 5937 InstructionList.push_back(I); 5938 break; 5939 } 5940 5941 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5942 if (Record.size() != 4 && Record.size() != 5) 5943 return error("Invalid record"); 5944 using APV = AllocaPackedValues; 5945 const uint64_t Rec = Record[3]; 5946 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5947 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5948 unsigned TyID = Record[0]; 5949 Type *Ty = getTypeByID(TyID); 5950 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5951 TyID = getContainedTypeID(TyID); 5952 Ty = getTypeByID(TyID); 5953 if (!Ty) 5954 return error("Missing element type for old-style alloca"); 5955 } 5956 unsigned OpTyID = Record[1]; 5957 Type *OpTy = getTypeByID(OpTyID); 5958 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5959 MaybeAlign Align; 5960 uint64_t AlignExp = 5961 Bitfield::get<APV::AlignLower>(Rec) | 5962 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5963 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5964 return Err; 5965 } 5966 if (!Ty || !Size) 5967 return error("Invalid record"); 5968 5969 const DataLayout &DL = TheModule->getDataLayout(); 5970 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5971 5972 SmallPtrSet<Type *, 4> Visited; 5973 if (!Align && !Ty->isSized(&Visited)) 5974 return error("alloca of unsized type"); 5975 if (!Align) 5976 Align = DL.getPrefTypeAlign(Ty); 5977 5978 if (!Size->getType()->isIntegerTy()) 5979 return error("alloca element count must have integer type"); 5980 5981 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5982 AI->setUsedWithInAlloca(InAlloca); 5983 AI->setSwiftError(SwiftError); 5984 I = AI; 5985 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5986 InstructionList.push_back(I); 5987 break; 5988 } 5989 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5990 unsigned OpNum = 0; 5991 Value *Op; 5992 unsigned OpTypeID; 5993 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5994 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5995 return error("Invalid record"); 5996 5997 if (!isa<PointerType>(Op->getType())) 5998 return error("Load operand is not a pointer type"); 5999 6000 Type *Ty = nullptr; 6001 if (OpNum + 3 == Record.size()) { 6002 ResTypeID = Record[OpNum++]; 6003 Ty = getTypeByID(ResTypeID); 6004 } else { 6005 ResTypeID = getContainedTypeID(OpTypeID); 6006 Ty = getTypeByID(ResTypeID); 6007 } 6008 6009 if (!Ty) 6010 return error("Missing load type"); 6011 6012 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6013 return Err; 6014 6015 MaybeAlign Align; 6016 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6017 return Err; 6018 SmallPtrSet<Type *, 4> Visited; 6019 if (!Align && !Ty->isSized(&Visited)) 6020 return error("load of unsized type"); 6021 if (!Align) 6022 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6023 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6024 InstructionList.push_back(I); 6025 break; 6026 } 6027 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6028 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6029 unsigned OpNum = 0; 6030 Value *Op; 6031 unsigned OpTypeID; 6032 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6033 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6034 return error("Invalid record"); 6035 6036 if (!isa<PointerType>(Op->getType())) 6037 return error("Load operand is not a pointer type"); 6038 6039 Type *Ty = nullptr; 6040 if (OpNum + 5 == Record.size()) { 6041 ResTypeID = Record[OpNum++]; 6042 Ty = getTypeByID(ResTypeID); 6043 } else { 6044 ResTypeID = getContainedTypeID(OpTypeID); 6045 Ty = getTypeByID(ResTypeID); 6046 } 6047 6048 if (!Ty) 6049 return error("Missing atomic load type"); 6050 6051 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6052 return Err; 6053 6054 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6055 if (Ordering == AtomicOrdering::NotAtomic || 6056 Ordering == AtomicOrdering::Release || 6057 Ordering == AtomicOrdering::AcquireRelease) 6058 return error("Invalid record"); 6059 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6060 return error("Invalid record"); 6061 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6062 6063 MaybeAlign Align; 6064 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6065 return Err; 6066 if (!Align) 6067 return error("Alignment missing from atomic load"); 6068 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6069 InstructionList.push_back(I); 6070 break; 6071 } 6072 case bitc::FUNC_CODE_INST_STORE: 6073 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6074 unsigned OpNum = 0; 6075 Value *Val, *Ptr; 6076 unsigned PtrTypeID, ValTypeID; 6077 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6078 return error("Invalid record"); 6079 6080 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6081 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6082 return error("Invalid record"); 6083 } else { 6084 ValTypeID = getContainedTypeID(PtrTypeID); 6085 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6086 ValTypeID, Val, CurBB)) 6087 return error("Invalid record"); 6088 } 6089 6090 if (OpNum + 2 != Record.size()) 6091 return error("Invalid record"); 6092 6093 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6094 return Err; 6095 MaybeAlign Align; 6096 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6097 return Err; 6098 SmallPtrSet<Type *, 4> Visited; 6099 if (!Align && !Val->getType()->isSized(&Visited)) 6100 return error("store of unsized type"); 6101 if (!Align) 6102 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6103 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6104 InstructionList.push_back(I); 6105 break; 6106 } 6107 case bitc::FUNC_CODE_INST_STOREATOMIC: 6108 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6109 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6110 unsigned OpNum = 0; 6111 Value *Val, *Ptr; 6112 unsigned PtrTypeID, ValTypeID; 6113 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6114 !isa<PointerType>(Ptr->getType())) 6115 return error("Invalid record"); 6116 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6117 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6118 return error("Invalid record"); 6119 } else { 6120 ValTypeID = getContainedTypeID(PtrTypeID); 6121 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6122 ValTypeID, Val, CurBB)) 6123 return error("Invalid record"); 6124 } 6125 6126 if (OpNum + 4 != Record.size()) 6127 return error("Invalid record"); 6128 6129 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6130 return Err; 6131 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6132 if (Ordering == AtomicOrdering::NotAtomic || 6133 Ordering == AtomicOrdering::Acquire || 6134 Ordering == AtomicOrdering::AcquireRelease) 6135 return error("Invalid record"); 6136 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6137 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6138 return error("Invalid record"); 6139 6140 MaybeAlign Align; 6141 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6142 return Err; 6143 if (!Align) 6144 return error("Alignment missing from atomic store"); 6145 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6146 InstructionList.push_back(I); 6147 break; 6148 } 6149 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6150 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6151 // failure_ordering?, weak?] 6152 const size_t NumRecords = Record.size(); 6153 unsigned OpNum = 0; 6154 Value *Ptr = nullptr; 6155 unsigned PtrTypeID; 6156 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6157 return error("Invalid record"); 6158 6159 if (!isa<PointerType>(Ptr->getType())) 6160 return error("Cmpxchg operand is not a pointer type"); 6161 6162 Value *Cmp = nullptr; 6163 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6164 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6165 CmpTypeID, Cmp, CurBB)) 6166 return error("Invalid record"); 6167 6168 Value *New = nullptr; 6169 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6170 New, CurBB) || 6171 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6172 return error("Invalid record"); 6173 6174 const AtomicOrdering SuccessOrdering = 6175 getDecodedOrdering(Record[OpNum + 1]); 6176 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6177 SuccessOrdering == AtomicOrdering::Unordered) 6178 return error("Invalid record"); 6179 6180 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6181 6182 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6183 return Err; 6184 6185 const AtomicOrdering FailureOrdering = 6186 NumRecords < 7 6187 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6188 : getDecodedOrdering(Record[OpNum + 3]); 6189 6190 if (FailureOrdering == AtomicOrdering::NotAtomic || 6191 FailureOrdering == AtomicOrdering::Unordered) 6192 return error("Invalid record"); 6193 6194 const Align Alignment( 6195 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6196 6197 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6198 FailureOrdering, SSID); 6199 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6200 6201 if (NumRecords < 8) { 6202 // Before weak cmpxchgs existed, the instruction simply returned the 6203 // value loaded from memory, so bitcode files from that era will be 6204 // expecting the first component of a modern cmpxchg. 6205 I->insertInto(CurBB, CurBB->end()); 6206 I = ExtractValueInst::Create(I, 0); 6207 ResTypeID = CmpTypeID; 6208 } else { 6209 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6210 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6211 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6212 } 6213 6214 InstructionList.push_back(I); 6215 break; 6216 } 6217 case bitc::FUNC_CODE_INST_CMPXCHG: { 6218 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6219 // failure_ordering, weak, align?] 6220 const size_t NumRecords = Record.size(); 6221 unsigned OpNum = 0; 6222 Value *Ptr = nullptr; 6223 unsigned PtrTypeID; 6224 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6225 return error("Invalid record"); 6226 6227 if (!isa<PointerType>(Ptr->getType())) 6228 return error("Cmpxchg operand is not a pointer type"); 6229 6230 Value *Cmp = nullptr; 6231 unsigned CmpTypeID; 6232 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6233 return error("Invalid record"); 6234 6235 Value *Val = nullptr; 6236 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6237 CurBB)) 6238 return error("Invalid record"); 6239 6240 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6241 return error("Invalid record"); 6242 6243 const bool IsVol = Record[OpNum]; 6244 6245 const AtomicOrdering SuccessOrdering = 6246 getDecodedOrdering(Record[OpNum + 1]); 6247 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6248 return error("Invalid cmpxchg success ordering"); 6249 6250 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6251 6252 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6253 return Err; 6254 6255 const AtomicOrdering FailureOrdering = 6256 getDecodedOrdering(Record[OpNum + 3]); 6257 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6258 return error("Invalid cmpxchg failure ordering"); 6259 6260 const bool IsWeak = Record[OpNum + 4]; 6261 6262 MaybeAlign Alignment; 6263 6264 if (NumRecords == (OpNum + 6)) { 6265 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6266 return Err; 6267 } 6268 if (!Alignment) 6269 Alignment = 6270 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6271 6272 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6273 FailureOrdering, SSID); 6274 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6275 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6276 6277 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6278 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6279 6280 InstructionList.push_back(I); 6281 break; 6282 } 6283 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6284 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6285 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6286 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6287 const size_t NumRecords = Record.size(); 6288 unsigned OpNum = 0; 6289 6290 Value *Ptr = nullptr; 6291 unsigned PtrTypeID; 6292 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6293 return error("Invalid record"); 6294 6295 if (!isa<PointerType>(Ptr->getType())) 6296 return error("Invalid record"); 6297 6298 Value *Val = nullptr; 6299 unsigned ValTypeID = InvalidTypeID; 6300 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6301 ValTypeID = getContainedTypeID(PtrTypeID); 6302 if (popValue(Record, OpNum, NextValueNo, 6303 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6304 return error("Invalid record"); 6305 } else { 6306 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6307 return error("Invalid record"); 6308 } 6309 6310 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6311 return error("Invalid record"); 6312 6313 const AtomicRMWInst::BinOp Operation = 6314 getDecodedRMWOperation(Record[OpNum]); 6315 if (Operation < AtomicRMWInst::FIRST_BINOP || 6316 Operation > AtomicRMWInst::LAST_BINOP) 6317 return error("Invalid record"); 6318 6319 const bool IsVol = Record[OpNum + 1]; 6320 6321 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6322 if (Ordering == AtomicOrdering::NotAtomic || 6323 Ordering == AtomicOrdering::Unordered) 6324 return error("Invalid record"); 6325 6326 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6327 6328 MaybeAlign Alignment; 6329 6330 if (NumRecords == (OpNum + 5)) { 6331 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6332 return Err; 6333 } 6334 6335 if (!Alignment) 6336 Alignment = 6337 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6338 6339 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6340 ResTypeID = ValTypeID; 6341 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6342 6343 InstructionList.push_back(I); 6344 break; 6345 } 6346 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6347 if (2 != Record.size()) 6348 return error("Invalid record"); 6349 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6350 if (Ordering == AtomicOrdering::NotAtomic || 6351 Ordering == AtomicOrdering::Unordered || 6352 Ordering == AtomicOrdering::Monotonic) 6353 return error("Invalid record"); 6354 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6355 I = new FenceInst(Context, Ordering, SSID); 6356 InstructionList.push_back(I); 6357 break; 6358 } 6359 case bitc::FUNC_CODE_INST_CALL: { 6360 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6361 if (Record.size() < 3) 6362 return error("Invalid record"); 6363 6364 unsigned OpNum = 0; 6365 AttributeList PAL = getAttributes(Record[OpNum++]); 6366 unsigned CCInfo = Record[OpNum++]; 6367 6368 FastMathFlags FMF; 6369 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6370 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6371 if (!FMF.any()) 6372 return error("Fast math flags indicator set for call with no FMF"); 6373 } 6374 6375 unsigned FTyID = InvalidTypeID; 6376 FunctionType *FTy = nullptr; 6377 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6378 FTyID = Record[OpNum++]; 6379 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6380 if (!FTy) 6381 return error("Explicit call type is not a function type"); 6382 } 6383 6384 Value *Callee; 6385 unsigned CalleeTypeID; 6386 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6387 CurBB)) 6388 return error("Invalid record"); 6389 6390 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6391 if (!OpTy) 6392 return error("Callee is not a pointer type"); 6393 if (!FTy) { 6394 FTyID = getContainedTypeID(CalleeTypeID); 6395 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6396 if (!FTy) 6397 return error("Callee is not of pointer to function type"); 6398 } 6399 if (Record.size() < FTy->getNumParams() + OpNum) 6400 return error("Insufficient operands to call"); 6401 6402 SmallVector<Value*, 16> Args; 6403 SmallVector<unsigned, 16> ArgTyIDs; 6404 // Read the fixed params. 6405 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6406 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6407 if (FTy->getParamType(i)->isLabelTy()) 6408 Args.push_back(getBasicBlock(Record[OpNum])); 6409 else 6410 Args.push_back(getValue(Record, OpNum, NextValueNo, 6411 FTy->getParamType(i), ArgTyID, CurBB)); 6412 ArgTyIDs.push_back(ArgTyID); 6413 if (!Args.back()) 6414 return error("Invalid record"); 6415 } 6416 6417 // Read type/value pairs for varargs params. 6418 if (!FTy->isVarArg()) { 6419 if (OpNum != Record.size()) 6420 return error("Invalid record"); 6421 } else { 6422 while (OpNum != Record.size()) { 6423 Value *Op; 6424 unsigned OpTypeID; 6425 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6426 return error("Invalid record"); 6427 Args.push_back(Op); 6428 ArgTyIDs.push_back(OpTypeID); 6429 } 6430 } 6431 6432 // Upgrade the bundles if needed. 6433 if (!OperandBundles.empty()) 6434 UpgradeOperandBundles(OperandBundles); 6435 6436 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6437 ResTypeID = getContainedTypeID(FTyID); 6438 OperandBundles.clear(); 6439 InstructionList.push_back(I); 6440 cast<CallInst>(I)->setCallingConv( 6441 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6442 CallInst::TailCallKind TCK = CallInst::TCK_None; 6443 if (CCInfo & (1 << bitc::CALL_TAIL)) 6444 TCK = CallInst::TCK_Tail; 6445 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6446 TCK = CallInst::TCK_MustTail; 6447 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6448 TCK = CallInst::TCK_NoTail; 6449 cast<CallInst>(I)->setTailCallKind(TCK); 6450 cast<CallInst>(I)->setAttributes(PAL); 6451 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6452 I->deleteValue(); 6453 return Err; 6454 } 6455 if (FMF.any()) { 6456 if (!isa<FPMathOperator>(I)) 6457 return error("Fast-math-flags specified for call without " 6458 "floating-point scalar or vector return type"); 6459 I->setFastMathFlags(FMF); 6460 } 6461 break; 6462 } 6463 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6464 if (Record.size() < 3) 6465 return error("Invalid record"); 6466 unsigned OpTyID = Record[0]; 6467 Type *OpTy = getTypeByID(OpTyID); 6468 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6469 ResTypeID = Record[2]; 6470 Type *ResTy = getTypeByID(ResTypeID); 6471 if (!OpTy || !Op || !ResTy) 6472 return error("Invalid record"); 6473 I = new VAArgInst(Op, ResTy); 6474 InstructionList.push_back(I); 6475 break; 6476 } 6477 6478 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6479 // A call or an invoke can be optionally prefixed with some variable 6480 // number of operand bundle blocks. These blocks are read into 6481 // OperandBundles and consumed at the next call or invoke instruction. 6482 6483 if (Record.empty() || Record[0] >= BundleTags.size()) 6484 return error("Invalid record"); 6485 6486 std::vector<Value *> Inputs; 6487 6488 unsigned OpNum = 1; 6489 while (OpNum != Record.size()) { 6490 Value *Op; 6491 unsigned OpTypeID; 6492 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6493 return error("Invalid record"); 6494 Inputs.push_back(Op); 6495 } 6496 6497 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6498 continue; 6499 } 6500 6501 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6502 unsigned OpNum = 0; 6503 Value *Op = nullptr; 6504 unsigned OpTypeID; 6505 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6506 return error("Invalid record"); 6507 if (OpNum != Record.size()) 6508 return error("Invalid record"); 6509 6510 I = new FreezeInst(Op); 6511 ResTypeID = OpTypeID; 6512 InstructionList.push_back(I); 6513 break; 6514 } 6515 } 6516 6517 // Add instruction to end of current BB. If there is no current BB, reject 6518 // this file. 6519 if (!CurBB) { 6520 I->deleteValue(); 6521 return error("Invalid instruction with no BB"); 6522 } 6523 if (!OperandBundles.empty()) { 6524 I->deleteValue(); 6525 return error("Operand bundles found with no consumer"); 6526 } 6527 I->insertInto(CurBB, CurBB->end()); 6528 6529 // If this was a terminator instruction, move to the next block. 6530 if (I->isTerminator()) { 6531 ++CurBBNo; 6532 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6533 } 6534 6535 // Non-void values get registered in the value table for future use. 6536 if (!I->getType()->isVoidTy()) { 6537 assert(I->getType() == getTypeByID(ResTypeID) && 6538 "Incorrect result type ID"); 6539 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6540 return Err; 6541 } 6542 } 6543 6544 OutOfRecordLoop: 6545 6546 if (!OperandBundles.empty()) 6547 return error("Operand bundles found with no consumer"); 6548 6549 // Check the function list for unresolved values. 6550 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6551 if (!A->getParent()) { 6552 // We found at least one unresolved value. Nuke them all to avoid leaks. 6553 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6554 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6555 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6556 delete A; 6557 } 6558 } 6559 return error("Never resolved value found in function"); 6560 } 6561 } 6562 6563 // Unexpected unresolved metadata about to be dropped. 6564 if (MDLoader->hasFwdRefs()) 6565 return error("Invalid function metadata: outgoing forward refs"); 6566 6567 if (PhiConstExprBB) 6568 PhiConstExprBB->eraseFromParent(); 6569 6570 for (const auto &Pair : ConstExprEdgeBBs) { 6571 BasicBlock *From = Pair.first.first; 6572 BasicBlock *To = Pair.first.second; 6573 BasicBlock *EdgeBB = Pair.second; 6574 BranchInst::Create(To, EdgeBB); 6575 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6576 To->replacePhiUsesWith(From, EdgeBB); 6577 EdgeBB->moveBefore(To); 6578 } 6579 6580 // Trim the value list down to the size it was before we parsed this function. 6581 ValueList.shrinkTo(ModuleValueListSize); 6582 MDLoader->shrinkTo(ModuleMDLoaderSize); 6583 std::vector<BasicBlock*>().swap(FunctionBBs); 6584 return Error::success(); 6585 } 6586 6587 /// Find the function body in the bitcode stream 6588 Error BitcodeReader::findFunctionInStream( 6589 Function *F, 6590 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6591 while (DeferredFunctionInfoIterator->second == 0) { 6592 // This is the fallback handling for the old format bitcode that 6593 // didn't contain the function index in the VST, or when we have 6594 // an anonymous function which would not have a VST entry. 6595 // Assert that we have one of those two cases. 6596 assert(VSTOffset == 0 || !F->hasName()); 6597 // Parse the next body in the stream and set its position in the 6598 // DeferredFunctionInfo map. 6599 if (Error Err = rememberAndSkipFunctionBodies()) 6600 return Err; 6601 } 6602 return Error::success(); 6603 } 6604 6605 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6606 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6607 return SyncScope::ID(Val); 6608 if (Val >= SSIDs.size()) 6609 return SyncScope::System; // Map unknown synchronization scopes to system. 6610 return SSIDs[Val]; 6611 } 6612 6613 //===----------------------------------------------------------------------===// 6614 // GVMaterializer implementation 6615 //===----------------------------------------------------------------------===// 6616 6617 Error BitcodeReader::materialize(GlobalValue *GV) { 6618 Function *F = dyn_cast<Function>(GV); 6619 // If it's not a function or is already material, ignore the request. 6620 if (!F || !F->isMaterializable()) 6621 return Error::success(); 6622 6623 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6624 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6625 // If its position is recorded as 0, its body is somewhere in the stream 6626 // but we haven't seen it yet. 6627 if (DFII->second == 0) 6628 if (Error Err = findFunctionInStream(F, DFII)) 6629 return Err; 6630 6631 // Materialize metadata before parsing any function bodies. 6632 if (Error Err = materializeMetadata()) 6633 return Err; 6634 6635 // Move the bit stream to the saved position of the deferred function body. 6636 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6637 return JumpFailed; 6638 if (Error Err = parseFunctionBody(F)) 6639 return Err; 6640 F->setIsMaterializable(false); 6641 6642 if (StripDebugInfo) 6643 stripDebugInfo(*F); 6644 6645 // Upgrade any old intrinsic calls in the function. 6646 for (auto &I : UpgradedIntrinsics) { 6647 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6648 if (CallInst *CI = dyn_cast<CallInst>(U)) 6649 UpgradeIntrinsicCall(CI, I.second); 6650 } 6651 6652 // Finish fn->subprogram upgrade for materialized functions. 6653 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6654 F->setSubprogram(SP); 6655 6656 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6657 if (!MDLoader->isStrippingTBAA()) { 6658 for (auto &I : instructions(F)) { 6659 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6660 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6661 continue; 6662 MDLoader->setStripTBAA(true); 6663 stripTBAA(F->getParent()); 6664 } 6665 } 6666 6667 for (auto &I : instructions(F)) { 6668 // "Upgrade" older incorrect branch weights by dropping them. 6669 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6670 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6671 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6672 StringRef ProfName = MDS->getString(); 6673 // Check consistency of !prof branch_weights metadata. 6674 if (!ProfName.equals("branch_weights")) 6675 continue; 6676 unsigned ExpectedNumOperands = 0; 6677 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6678 ExpectedNumOperands = BI->getNumSuccessors(); 6679 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6680 ExpectedNumOperands = SI->getNumSuccessors(); 6681 else if (isa<CallInst>(&I)) 6682 ExpectedNumOperands = 1; 6683 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6684 ExpectedNumOperands = IBI->getNumDestinations(); 6685 else if (isa<SelectInst>(&I)) 6686 ExpectedNumOperands = 2; 6687 else 6688 continue; // ignore and continue. 6689 6690 // If branch weight doesn't match, just strip branch weight. 6691 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6692 I.setMetadata(LLVMContext::MD_prof, nullptr); 6693 } 6694 } 6695 6696 // Remove incompatible attributes on function calls. 6697 if (auto *CI = dyn_cast<CallBase>(&I)) { 6698 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6699 CI->getFunctionType()->getReturnType())); 6700 6701 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6702 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6703 CI->getArgOperand(ArgNo)->getType())); 6704 } 6705 } 6706 6707 // Look for functions that rely on old function attribute behavior. 6708 UpgradeFunctionAttributes(*F); 6709 6710 // Bring in any functions that this function forward-referenced via 6711 // blockaddresses. 6712 return materializeForwardReferencedFunctions(); 6713 } 6714 6715 Error BitcodeReader::materializeModule() { 6716 if (Error Err = materializeMetadata()) 6717 return Err; 6718 6719 // Promise to materialize all forward references. 6720 WillMaterializeAllForwardRefs = true; 6721 6722 // Iterate over the module, deserializing any functions that are still on 6723 // disk. 6724 for (Function &F : *TheModule) { 6725 if (Error Err = materialize(&F)) 6726 return Err; 6727 } 6728 // At this point, if there are any function bodies, parse the rest of 6729 // the bits in the module past the last function block we have recorded 6730 // through either lazy scanning or the VST. 6731 if (LastFunctionBlockBit || NextUnreadBit) 6732 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6733 ? LastFunctionBlockBit 6734 : NextUnreadBit)) 6735 return Err; 6736 6737 // Check that all block address forward references got resolved (as we 6738 // promised above). 6739 if (!BasicBlockFwdRefs.empty()) 6740 return error("Never resolved function from blockaddress"); 6741 6742 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6743 // delete the old functions to clean up. We can't do this unless the entire 6744 // module is materialized because there could always be another function body 6745 // with calls to the old function. 6746 for (auto &I : UpgradedIntrinsics) { 6747 for (auto *U : I.first->users()) { 6748 if (CallInst *CI = dyn_cast<CallInst>(U)) 6749 UpgradeIntrinsicCall(CI, I.second); 6750 } 6751 if (!I.first->use_empty()) 6752 I.first->replaceAllUsesWith(I.second); 6753 I.first->eraseFromParent(); 6754 } 6755 UpgradedIntrinsics.clear(); 6756 6757 UpgradeDebugInfo(*TheModule); 6758 6759 UpgradeModuleFlags(*TheModule); 6760 6761 UpgradeARCRuntime(*TheModule); 6762 6763 return Error::success(); 6764 } 6765 6766 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6767 return IdentifiedStructTypes; 6768 } 6769 6770 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6771 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6772 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6773 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6774 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6775 6776 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6777 TheIndex.addModule(ModulePath); 6778 } 6779 6780 ModuleSummaryIndex::ModuleInfo * 6781 ModuleSummaryIndexBitcodeReader::getThisModule() { 6782 return TheIndex.getModule(ModulePath); 6783 } 6784 6785 template <bool AllowNullValueInfo> 6786 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6787 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6788 auto VGI = ValueIdToValueInfoMap[ValueId]; 6789 // We can have a null value info for memprof callsite info records in 6790 // distributed ThinLTO index files when the callee function summary is not 6791 // included in the index. The bitcode writer records 0 in that case, 6792 // and the caller of this helper will set AllowNullValueInfo to true. 6793 assert(AllowNullValueInfo || std::get<0>(VGI)); 6794 return VGI; 6795 } 6796 6797 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6798 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6799 StringRef SourceFileName) { 6800 std::string GlobalId = 6801 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6802 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6803 auto OriginalNameID = ValueGUID; 6804 if (GlobalValue::isLocalLinkage(Linkage)) 6805 OriginalNameID = GlobalValue::getGUID(ValueName); 6806 if (PrintSummaryGUIDs) 6807 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6808 << ValueName << "\n"; 6809 6810 // UseStrtab is false for legacy summary formats and value names are 6811 // created on stack. In that case we save the name in a string saver in 6812 // the index so that the value name can be recorded. 6813 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6814 TheIndex.getOrInsertValueInfo( 6815 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6816 OriginalNameID, ValueGUID); 6817 } 6818 6819 // Specialized value symbol table parser used when reading module index 6820 // blocks where we don't actually create global values. The parsed information 6821 // is saved in the bitcode reader for use when later parsing summaries. 6822 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6823 uint64_t Offset, 6824 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6825 // With a strtab the VST is not required to parse the summary. 6826 if (UseStrtab) 6827 return Error::success(); 6828 6829 assert(Offset > 0 && "Expected non-zero VST offset"); 6830 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6831 if (!MaybeCurrentBit) 6832 return MaybeCurrentBit.takeError(); 6833 uint64_t CurrentBit = MaybeCurrentBit.get(); 6834 6835 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6836 return Err; 6837 6838 SmallVector<uint64_t, 64> Record; 6839 6840 // Read all the records for this value table. 6841 SmallString<128> ValueName; 6842 6843 while (true) { 6844 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6845 if (!MaybeEntry) 6846 return MaybeEntry.takeError(); 6847 BitstreamEntry Entry = MaybeEntry.get(); 6848 6849 switch (Entry.Kind) { 6850 case BitstreamEntry::SubBlock: // Handled for us already. 6851 case BitstreamEntry::Error: 6852 return error("Malformed block"); 6853 case BitstreamEntry::EndBlock: 6854 // Done parsing VST, jump back to wherever we came from. 6855 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6856 return JumpFailed; 6857 return Error::success(); 6858 case BitstreamEntry::Record: 6859 // The interesting case. 6860 break; 6861 } 6862 6863 // Read a record. 6864 Record.clear(); 6865 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6866 if (!MaybeRecord) 6867 return MaybeRecord.takeError(); 6868 switch (MaybeRecord.get()) { 6869 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6870 break; 6871 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6872 if (convertToString(Record, 1, ValueName)) 6873 return error("Invalid record"); 6874 unsigned ValueID = Record[0]; 6875 assert(!SourceFileName.empty()); 6876 auto VLI = ValueIdToLinkageMap.find(ValueID); 6877 assert(VLI != ValueIdToLinkageMap.end() && 6878 "No linkage found for VST entry?"); 6879 auto Linkage = VLI->second; 6880 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6881 ValueName.clear(); 6882 break; 6883 } 6884 case bitc::VST_CODE_FNENTRY: { 6885 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6886 if (convertToString(Record, 2, ValueName)) 6887 return error("Invalid record"); 6888 unsigned ValueID = Record[0]; 6889 assert(!SourceFileName.empty()); 6890 auto VLI = ValueIdToLinkageMap.find(ValueID); 6891 assert(VLI != ValueIdToLinkageMap.end() && 6892 "No linkage found for VST entry?"); 6893 auto Linkage = VLI->second; 6894 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6895 ValueName.clear(); 6896 break; 6897 } 6898 case bitc::VST_CODE_COMBINED_ENTRY: { 6899 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6900 unsigned ValueID = Record[0]; 6901 GlobalValue::GUID RefGUID = Record[1]; 6902 // The "original name", which is the second value of the pair will be 6903 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6904 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6905 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6906 break; 6907 } 6908 } 6909 } 6910 } 6911 6912 // Parse just the blocks needed for building the index out of the module. 6913 // At the end of this routine the module Index is populated with a map 6914 // from global value id to GlobalValueSummary objects. 6915 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6916 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6917 return Err; 6918 6919 SmallVector<uint64_t, 64> Record; 6920 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6921 unsigned ValueId = 0; 6922 6923 // Read the index for this module. 6924 while (true) { 6925 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6926 if (!MaybeEntry) 6927 return MaybeEntry.takeError(); 6928 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6929 6930 switch (Entry.Kind) { 6931 case BitstreamEntry::Error: 6932 return error("Malformed block"); 6933 case BitstreamEntry::EndBlock: 6934 return Error::success(); 6935 6936 case BitstreamEntry::SubBlock: 6937 switch (Entry.ID) { 6938 default: // Skip unknown content. 6939 if (Error Err = Stream.SkipBlock()) 6940 return Err; 6941 break; 6942 case bitc::BLOCKINFO_BLOCK_ID: 6943 // Need to parse these to get abbrev ids (e.g. for VST) 6944 if (Error Err = readBlockInfo()) 6945 return Err; 6946 break; 6947 case bitc::VALUE_SYMTAB_BLOCK_ID: 6948 // Should have been parsed earlier via VSTOffset, unless there 6949 // is no summary section. 6950 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6951 !SeenGlobalValSummary) && 6952 "Expected early VST parse via VSTOffset record"); 6953 if (Error Err = Stream.SkipBlock()) 6954 return Err; 6955 break; 6956 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6957 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6958 // Add the module if it is a per-module index (has a source file name). 6959 if (!SourceFileName.empty()) 6960 addThisModule(); 6961 assert(!SeenValueSymbolTable && 6962 "Already read VST when parsing summary block?"); 6963 // We might not have a VST if there were no values in the 6964 // summary. An empty summary block generated when we are 6965 // performing ThinLTO compiles so we don't later invoke 6966 // the regular LTO process on them. 6967 if (VSTOffset > 0) { 6968 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6969 return Err; 6970 SeenValueSymbolTable = true; 6971 } 6972 SeenGlobalValSummary = true; 6973 if (Error Err = parseEntireSummary(Entry.ID)) 6974 return Err; 6975 break; 6976 case bitc::MODULE_STRTAB_BLOCK_ID: 6977 if (Error Err = parseModuleStringTable()) 6978 return Err; 6979 break; 6980 } 6981 continue; 6982 6983 case BitstreamEntry::Record: { 6984 Record.clear(); 6985 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6986 if (!MaybeBitCode) 6987 return MaybeBitCode.takeError(); 6988 switch (MaybeBitCode.get()) { 6989 default: 6990 break; // Default behavior, ignore unknown content. 6991 case bitc::MODULE_CODE_VERSION: { 6992 if (Error Err = parseVersionRecord(Record).takeError()) 6993 return Err; 6994 break; 6995 } 6996 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6997 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6998 SmallString<128> ValueName; 6999 if (convertToString(Record, 0, ValueName)) 7000 return error("Invalid record"); 7001 SourceFileName = ValueName.c_str(); 7002 break; 7003 } 7004 /// MODULE_CODE_HASH: [5*i32] 7005 case bitc::MODULE_CODE_HASH: { 7006 if (Record.size() != 5) 7007 return error("Invalid hash length " + Twine(Record.size()).str()); 7008 auto &Hash = getThisModule()->second; 7009 int Pos = 0; 7010 for (auto &Val : Record) { 7011 assert(!(Val >> 32) && "Unexpected high bits set"); 7012 Hash[Pos++] = Val; 7013 } 7014 break; 7015 } 7016 /// MODULE_CODE_VSTOFFSET: [offset] 7017 case bitc::MODULE_CODE_VSTOFFSET: 7018 if (Record.empty()) 7019 return error("Invalid record"); 7020 // Note that we subtract 1 here because the offset is relative to one 7021 // word before the start of the identification or module block, which 7022 // was historically always the start of the regular bitcode header. 7023 VSTOffset = Record[0] - 1; 7024 break; 7025 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7026 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7027 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7028 // v2: [strtab offset, strtab size, v1] 7029 case bitc::MODULE_CODE_GLOBALVAR: 7030 case bitc::MODULE_CODE_FUNCTION: 7031 case bitc::MODULE_CODE_ALIAS: { 7032 StringRef Name; 7033 ArrayRef<uint64_t> GVRecord; 7034 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7035 if (GVRecord.size() <= 3) 7036 return error("Invalid record"); 7037 uint64_t RawLinkage = GVRecord[3]; 7038 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7039 if (!UseStrtab) { 7040 ValueIdToLinkageMap[ValueId++] = Linkage; 7041 break; 7042 } 7043 7044 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7045 break; 7046 } 7047 } 7048 } 7049 continue; 7050 } 7051 } 7052 } 7053 7054 std::vector<ValueInfo> 7055 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7056 std::vector<ValueInfo> Ret; 7057 Ret.reserve(Record.size()); 7058 for (uint64_t RefValueId : Record) 7059 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7060 return Ret; 7061 } 7062 7063 std::vector<FunctionSummary::EdgeTy> 7064 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7065 bool IsOldProfileFormat, 7066 bool HasProfile, bool HasRelBF) { 7067 std::vector<FunctionSummary::EdgeTy> Ret; 7068 Ret.reserve(Record.size()); 7069 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7070 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7071 bool HasTailCall = false; 7072 uint64_t RelBF = 0; 7073 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7074 if (IsOldProfileFormat) { 7075 I += 1; // Skip old callsitecount field 7076 if (HasProfile) 7077 I += 1; // Skip old profilecount field 7078 } else if (HasProfile) 7079 std::tie(Hotness, HasTailCall) = 7080 getDecodedHotnessCallEdgeInfo(Record[++I]); 7081 else if (HasRelBF) 7082 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7083 Ret.push_back(FunctionSummary::EdgeTy{ 7084 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7085 } 7086 return Ret; 7087 } 7088 7089 static void 7090 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7091 WholeProgramDevirtResolution &Wpd) { 7092 uint64_t ArgNum = Record[Slot++]; 7093 WholeProgramDevirtResolution::ByArg &B = 7094 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7095 Slot += ArgNum; 7096 7097 B.TheKind = 7098 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7099 B.Info = Record[Slot++]; 7100 B.Byte = Record[Slot++]; 7101 B.Bit = Record[Slot++]; 7102 } 7103 7104 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7105 StringRef Strtab, size_t &Slot, 7106 TypeIdSummary &TypeId) { 7107 uint64_t Id = Record[Slot++]; 7108 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7109 7110 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7111 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7112 static_cast<size_t>(Record[Slot + 1])}; 7113 Slot += 2; 7114 7115 uint64_t ResByArgNum = Record[Slot++]; 7116 for (uint64_t I = 0; I != ResByArgNum; ++I) 7117 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7118 } 7119 7120 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7121 StringRef Strtab, 7122 ModuleSummaryIndex &TheIndex) { 7123 size_t Slot = 0; 7124 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7125 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7126 Slot += 2; 7127 7128 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7129 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7130 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7131 TypeId.TTRes.SizeM1 = Record[Slot++]; 7132 TypeId.TTRes.BitMask = Record[Slot++]; 7133 TypeId.TTRes.InlineBits = Record[Slot++]; 7134 7135 while (Slot < Record.size()) 7136 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7137 } 7138 7139 std::vector<FunctionSummary::ParamAccess> 7140 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7141 auto ReadRange = [&]() { 7142 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7143 BitcodeReader::decodeSignRotatedValue(Record.front())); 7144 Record = Record.drop_front(); 7145 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7146 BitcodeReader::decodeSignRotatedValue(Record.front())); 7147 Record = Record.drop_front(); 7148 ConstantRange Range{Lower, Upper}; 7149 assert(!Range.isFullSet()); 7150 assert(!Range.isUpperSignWrapped()); 7151 return Range; 7152 }; 7153 7154 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7155 while (!Record.empty()) { 7156 PendingParamAccesses.emplace_back(); 7157 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7158 ParamAccess.ParamNo = Record.front(); 7159 Record = Record.drop_front(); 7160 ParamAccess.Use = ReadRange(); 7161 ParamAccess.Calls.resize(Record.front()); 7162 Record = Record.drop_front(); 7163 for (auto &Call : ParamAccess.Calls) { 7164 Call.ParamNo = Record.front(); 7165 Record = Record.drop_front(); 7166 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7167 Record = Record.drop_front(); 7168 Call.Offsets = ReadRange(); 7169 } 7170 } 7171 return PendingParamAccesses; 7172 } 7173 7174 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7175 ArrayRef<uint64_t> Record, size_t &Slot, 7176 TypeIdCompatibleVtableInfo &TypeId) { 7177 uint64_t Offset = Record[Slot++]; 7178 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7179 TypeId.push_back({Offset, Callee}); 7180 } 7181 7182 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7183 ArrayRef<uint64_t> Record) { 7184 size_t Slot = 0; 7185 TypeIdCompatibleVtableInfo &TypeId = 7186 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7187 {Strtab.data() + Record[Slot], 7188 static_cast<size_t>(Record[Slot + 1])}); 7189 Slot += 2; 7190 7191 while (Slot < Record.size()) 7192 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7193 } 7194 7195 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7196 unsigned WOCnt) { 7197 // Readonly and writeonly refs are in the end of the refs list. 7198 assert(ROCnt + WOCnt <= Refs.size()); 7199 unsigned FirstWORef = Refs.size() - WOCnt; 7200 unsigned RefNo = FirstWORef - ROCnt; 7201 for (; RefNo < FirstWORef; ++RefNo) 7202 Refs[RefNo].setReadOnly(); 7203 for (; RefNo < Refs.size(); ++RefNo) 7204 Refs[RefNo].setWriteOnly(); 7205 } 7206 7207 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7208 // objects in the index. 7209 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7210 if (Error Err = Stream.EnterSubBlock(ID)) 7211 return Err; 7212 SmallVector<uint64_t, 64> Record; 7213 7214 // Parse version 7215 { 7216 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7217 if (!MaybeEntry) 7218 return MaybeEntry.takeError(); 7219 BitstreamEntry Entry = MaybeEntry.get(); 7220 7221 if (Entry.Kind != BitstreamEntry::Record) 7222 return error("Invalid Summary Block: record for version expected"); 7223 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7224 if (!MaybeRecord) 7225 return MaybeRecord.takeError(); 7226 if (MaybeRecord.get() != bitc::FS_VERSION) 7227 return error("Invalid Summary Block: version expected"); 7228 } 7229 const uint64_t Version = Record[0]; 7230 const bool IsOldProfileFormat = Version == 1; 7231 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7232 return error("Invalid summary version " + Twine(Version) + 7233 ". Version should be in the range [1-" + 7234 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7235 "]."); 7236 Record.clear(); 7237 7238 // Keep around the last seen summary to be used when we see an optional 7239 // "OriginalName" attachement. 7240 GlobalValueSummary *LastSeenSummary = nullptr; 7241 GlobalValue::GUID LastSeenGUID = 0; 7242 7243 // We can expect to see any number of type ID information records before 7244 // each function summary records; these variables store the information 7245 // collected so far so that it can be used to create the summary object. 7246 std::vector<GlobalValue::GUID> PendingTypeTests; 7247 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7248 PendingTypeCheckedLoadVCalls; 7249 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7250 PendingTypeCheckedLoadConstVCalls; 7251 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7252 7253 std::vector<CallsiteInfo> PendingCallsites; 7254 std::vector<AllocInfo> PendingAllocs; 7255 7256 while (true) { 7257 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7258 if (!MaybeEntry) 7259 return MaybeEntry.takeError(); 7260 BitstreamEntry Entry = MaybeEntry.get(); 7261 7262 switch (Entry.Kind) { 7263 case BitstreamEntry::SubBlock: // Handled for us already. 7264 case BitstreamEntry::Error: 7265 return error("Malformed block"); 7266 case BitstreamEntry::EndBlock: 7267 return Error::success(); 7268 case BitstreamEntry::Record: 7269 // The interesting case. 7270 break; 7271 } 7272 7273 // Read a record. The record format depends on whether this 7274 // is a per-module index or a combined index file. In the per-module 7275 // case the records contain the associated value's ID for correlation 7276 // with VST entries. In the combined index the correlation is done 7277 // via the bitcode offset of the summary records (which were saved 7278 // in the combined index VST entries). The records also contain 7279 // information used for ThinLTO renaming and importing. 7280 Record.clear(); 7281 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7282 if (!MaybeBitCode) 7283 return MaybeBitCode.takeError(); 7284 switch (unsigned BitCode = MaybeBitCode.get()) { 7285 default: // Default behavior: ignore. 7286 break; 7287 case bitc::FS_FLAGS: { // [flags] 7288 TheIndex.setFlags(Record[0]); 7289 break; 7290 } 7291 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7292 uint64_t ValueID = Record[0]; 7293 GlobalValue::GUID RefGUID = Record[1]; 7294 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7295 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7296 break; 7297 } 7298 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7299 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7300 // numrefs x valueid, n x (valueid)] 7301 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7302 // numrefs x valueid, 7303 // n x (valueid, hotness+tailcall flags)] 7304 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7305 // numrefs x valueid, 7306 // n x (valueid, relblockfreq+tailcall)] 7307 case bitc::FS_PERMODULE: 7308 case bitc::FS_PERMODULE_RELBF: 7309 case bitc::FS_PERMODULE_PROFILE: { 7310 unsigned ValueID = Record[0]; 7311 uint64_t RawFlags = Record[1]; 7312 unsigned InstCount = Record[2]; 7313 uint64_t RawFunFlags = 0; 7314 unsigned NumRefs = Record[3]; 7315 unsigned NumRORefs = 0, NumWORefs = 0; 7316 int RefListStartIndex = 4; 7317 if (Version >= 4) { 7318 RawFunFlags = Record[3]; 7319 NumRefs = Record[4]; 7320 RefListStartIndex = 5; 7321 if (Version >= 5) { 7322 NumRORefs = Record[5]; 7323 RefListStartIndex = 6; 7324 if (Version >= 7) { 7325 NumWORefs = Record[6]; 7326 RefListStartIndex = 7; 7327 } 7328 } 7329 } 7330 7331 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7332 // The module path string ref set in the summary must be owned by the 7333 // index's module string table. Since we don't have a module path 7334 // string table section in the per-module index, we create a single 7335 // module path string table entry with an empty (0) ID to take 7336 // ownership. 7337 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7338 assert(Record.size() >= RefListStartIndex + NumRefs && 7339 "Record size inconsistent with number of references"); 7340 std::vector<ValueInfo> Refs = makeRefList( 7341 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7342 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7343 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7344 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7345 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7346 IsOldProfileFormat, HasProfile, HasRelBF); 7347 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7348 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7349 // In order to save memory, only record the memprof summaries if this is 7350 // the prevailing copy of a symbol. The linker doesn't resolve local 7351 // linkage values so don't check whether those are prevailing. 7352 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7353 if (IsPrevailing && 7354 !GlobalValue::isLocalLinkage(LT) && 7355 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7356 PendingCallsites.clear(); 7357 PendingAllocs.clear(); 7358 } 7359 auto FS = std::make_unique<FunctionSummary>( 7360 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7361 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7362 std::move(PendingTypeTestAssumeVCalls), 7363 std::move(PendingTypeCheckedLoadVCalls), 7364 std::move(PendingTypeTestAssumeConstVCalls), 7365 std::move(PendingTypeCheckedLoadConstVCalls), 7366 std::move(PendingParamAccesses), std::move(PendingCallsites), 7367 std::move(PendingAllocs)); 7368 FS->setModulePath(getThisModule()->first()); 7369 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7370 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7371 std::move(FS)); 7372 break; 7373 } 7374 // FS_ALIAS: [valueid, flags, valueid] 7375 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7376 // they expect all aliasee summaries to be available. 7377 case bitc::FS_ALIAS: { 7378 unsigned ValueID = Record[0]; 7379 uint64_t RawFlags = Record[1]; 7380 unsigned AliaseeID = Record[2]; 7381 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7382 auto AS = std::make_unique<AliasSummary>(Flags); 7383 // The module path string ref set in the summary must be owned by the 7384 // index's module string table. Since we don't have a module path 7385 // string table section in the per-module index, we create a single 7386 // module path string table entry with an empty (0) ID to take 7387 // ownership. 7388 AS->setModulePath(getThisModule()->first()); 7389 7390 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7391 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7392 if (!AliaseeInModule) 7393 return error("Alias expects aliasee summary to be parsed"); 7394 AS->setAliasee(AliaseeVI, AliaseeInModule); 7395 7396 auto GUID = getValueInfoFromValueId(ValueID); 7397 AS->setOriginalName(std::get<1>(GUID)); 7398 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7399 break; 7400 } 7401 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7402 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7403 unsigned ValueID = Record[0]; 7404 uint64_t RawFlags = Record[1]; 7405 unsigned RefArrayStart = 2; 7406 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7407 /* WriteOnly */ false, 7408 /* Constant */ false, 7409 GlobalObject::VCallVisibilityPublic); 7410 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7411 if (Version >= 5) { 7412 GVF = getDecodedGVarFlags(Record[2]); 7413 RefArrayStart = 3; 7414 } 7415 std::vector<ValueInfo> Refs = 7416 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7417 auto FS = 7418 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7419 FS->setModulePath(getThisModule()->first()); 7420 auto GUID = getValueInfoFromValueId(ValueID); 7421 FS->setOriginalName(std::get<1>(GUID)); 7422 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7423 break; 7424 } 7425 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7426 // numrefs, numrefs x valueid, 7427 // n x (valueid, offset)] 7428 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7429 unsigned ValueID = Record[0]; 7430 uint64_t RawFlags = Record[1]; 7431 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7432 unsigned NumRefs = Record[3]; 7433 unsigned RefListStartIndex = 4; 7434 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7435 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7436 std::vector<ValueInfo> Refs = makeRefList( 7437 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7438 VTableFuncList VTableFuncs; 7439 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7440 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7441 uint64_t Offset = Record[++I]; 7442 VTableFuncs.push_back({Callee, Offset}); 7443 } 7444 auto VS = 7445 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7446 VS->setModulePath(getThisModule()->first()); 7447 VS->setVTableFuncs(VTableFuncs); 7448 auto GUID = getValueInfoFromValueId(ValueID); 7449 VS->setOriginalName(std::get<1>(GUID)); 7450 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7451 break; 7452 } 7453 // FS_COMBINED is legacy and does not have support for the tail call flag. 7454 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7455 // numrefs x valueid, n x (valueid)] 7456 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7457 // numrefs x valueid, 7458 // n x (valueid, hotness+tailcall flags)] 7459 case bitc::FS_COMBINED: 7460 case bitc::FS_COMBINED_PROFILE: { 7461 unsigned ValueID = Record[0]; 7462 uint64_t ModuleId = Record[1]; 7463 uint64_t RawFlags = Record[2]; 7464 unsigned InstCount = Record[3]; 7465 uint64_t RawFunFlags = 0; 7466 uint64_t EntryCount = 0; 7467 unsigned NumRefs = Record[4]; 7468 unsigned NumRORefs = 0, NumWORefs = 0; 7469 int RefListStartIndex = 5; 7470 7471 if (Version >= 4) { 7472 RawFunFlags = Record[4]; 7473 RefListStartIndex = 6; 7474 size_t NumRefsIndex = 5; 7475 if (Version >= 5) { 7476 unsigned NumRORefsOffset = 1; 7477 RefListStartIndex = 7; 7478 if (Version >= 6) { 7479 NumRefsIndex = 6; 7480 EntryCount = Record[5]; 7481 RefListStartIndex = 8; 7482 if (Version >= 7) { 7483 RefListStartIndex = 9; 7484 NumWORefs = Record[8]; 7485 NumRORefsOffset = 2; 7486 } 7487 } 7488 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7489 } 7490 NumRefs = Record[NumRefsIndex]; 7491 } 7492 7493 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7494 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7495 assert(Record.size() >= RefListStartIndex + NumRefs && 7496 "Record size inconsistent with number of references"); 7497 std::vector<ValueInfo> Refs = makeRefList( 7498 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7499 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7500 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7501 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7502 IsOldProfileFormat, HasProfile, false); 7503 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7504 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7505 auto FS = std::make_unique<FunctionSummary>( 7506 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7507 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7508 std::move(PendingTypeTestAssumeVCalls), 7509 std::move(PendingTypeCheckedLoadVCalls), 7510 std::move(PendingTypeTestAssumeConstVCalls), 7511 std::move(PendingTypeCheckedLoadConstVCalls), 7512 std::move(PendingParamAccesses), std::move(PendingCallsites), 7513 std::move(PendingAllocs)); 7514 LastSeenSummary = FS.get(); 7515 LastSeenGUID = VI.getGUID(); 7516 FS->setModulePath(ModuleIdMap[ModuleId]); 7517 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7518 break; 7519 } 7520 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7521 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7522 // they expect all aliasee summaries to be available. 7523 case bitc::FS_COMBINED_ALIAS: { 7524 unsigned ValueID = Record[0]; 7525 uint64_t ModuleId = Record[1]; 7526 uint64_t RawFlags = Record[2]; 7527 unsigned AliaseeValueId = Record[3]; 7528 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7529 auto AS = std::make_unique<AliasSummary>(Flags); 7530 LastSeenSummary = AS.get(); 7531 AS->setModulePath(ModuleIdMap[ModuleId]); 7532 7533 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7534 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7535 AS->setAliasee(AliaseeVI, AliaseeInModule); 7536 7537 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7538 LastSeenGUID = VI.getGUID(); 7539 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7540 break; 7541 } 7542 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7543 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7544 unsigned ValueID = Record[0]; 7545 uint64_t ModuleId = Record[1]; 7546 uint64_t RawFlags = Record[2]; 7547 unsigned RefArrayStart = 3; 7548 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7549 /* WriteOnly */ false, 7550 /* Constant */ false, 7551 GlobalObject::VCallVisibilityPublic); 7552 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7553 if (Version >= 5) { 7554 GVF = getDecodedGVarFlags(Record[3]); 7555 RefArrayStart = 4; 7556 } 7557 std::vector<ValueInfo> Refs = 7558 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7559 auto FS = 7560 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7561 LastSeenSummary = FS.get(); 7562 FS->setModulePath(ModuleIdMap[ModuleId]); 7563 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7564 LastSeenGUID = VI.getGUID(); 7565 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7566 break; 7567 } 7568 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7569 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7570 uint64_t OriginalName = Record[0]; 7571 if (!LastSeenSummary) 7572 return error("Name attachment that does not follow a combined record"); 7573 LastSeenSummary->setOriginalName(OriginalName); 7574 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7575 // Reset the LastSeenSummary 7576 LastSeenSummary = nullptr; 7577 LastSeenGUID = 0; 7578 break; 7579 } 7580 case bitc::FS_TYPE_TESTS: 7581 assert(PendingTypeTests.empty()); 7582 llvm::append_range(PendingTypeTests, Record); 7583 break; 7584 7585 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7586 assert(PendingTypeTestAssumeVCalls.empty()); 7587 for (unsigned I = 0; I != Record.size(); I += 2) 7588 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7589 break; 7590 7591 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7592 assert(PendingTypeCheckedLoadVCalls.empty()); 7593 for (unsigned I = 0; I != Record.size(); I += 2) 7594 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7595 break; 7596 7597 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7598 PendingTypeTestAssumeConstVCalls.push_back( 7599 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7600 break; 7601 7602 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7603 PendingTypeCheckedLoadConstVCalls.push_back( 7604 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7605 break; 7606 7607 case bitc::FS_CFI_FUNCTION_DEFS: { 7608 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7609 for (unsigned I = 0; I != Record.size(); I += 2) 7610 CfiFunctionDefs.insert( 7611 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7612 break; 7613 } 7614 7615 case bitc::FS_CFI_FUNCTION_DECLS: { 7616 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7617 for (unsigned I = 0; I != Record.size(); I += 2) 7618 CfiFunctionDecls.insert( 7619 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7620 break; 7621 } 7622 7623 case bitc::FS_TYPE_ID: 7624 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7625 break; 7626 7627 case bitc::FS_TYPE_ID_METADATA: 7628 parseTypeIdCompatibleVtableSummaryRecord(Record); 7629 break; 7630 7631 case bitc::FS_BLOCK_COUNT: 7632 TheIndex.addBlockCount(Record[0]); 7633 break; 7634 7635 case bitc::FS_PARAM_ACCESS: { 7636 PendingParamAccesses = parseParamAccesses(Record); 7637 break; 7638 } 7639 7640 case bitc::FS_STACK_IDS: { // [n x stackid] 7641 // Save stack ids in the reader to consult when adding stack ids from the 7642 // lists in the stack node and alloc node entries. 7643 StackIds = ArrayRef<uint64_t>(Record); 7644 break; 7645 } 7646 7647 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7648 unsigned ValueID = Record[0]; 7649 SmallVector<unsigned> StackIdList; 7650 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7651 assert(*R < StackIds.size()); 7652 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7653 } 7654 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7655 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7656 break; 7657 } 7658 7659 case bitc::FS_COMBINED_CALLSITE_INFO: { 7660 auto RecordIter = Record.begin(); 7661 unsigned ValueID = *RecordIter++; 7662 unsigned NumStackIds = *RecordIter++; 7663 unsigned NumVersions = *RecordIter++; 7664 assert(Record.size() == 3 + NumStackIds + NumVersions); 7665 SmallVector<unsigned> StackIdList; 7666 for (unsigned J = 0; J < NumStackIds; J++) { 7667 assert(*RecordIter < StackIds.size()); 7668 StackIdList.push_back( 7669 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7670 } 7671 SmallVector<unsigned> Versions; 7672 for (unsigned J = 0; J < NumVersions; J++) 7673 Versions.push_back(*RecordIter++); 7674 ValueInfo VI = std::get<0>( 7675 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7676 PendingCallsites.push_back( 7677 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7678 break; 7679 } 7680 7681 case bitc::FS_PERMODULE_ALLOC_INFO: { 7682 unsigned I = 0; 7683 std::vector<MIBInfo> MIBs; 7684 while (I < Record.size()) { 7685 assert(Record.size() - I >= 2); 7686 AllocationType AllocType = (AllocationType)Record[I++]; 7687 unsigned NumStackEntries = Record[I++]; 7688 assert(Record.size() - I >= NumStackEntries); 7689 SmallVector<unsigned> StackIdList; 7690 for (unsigned J = 0; J < NumStackEntries; J++) { 7691 assert(Record[I] < StackIds.size()); 7692 StackIdList.push_back( 7693 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7694 } 7695 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7696 } 7697 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7698 break; 7699 } 7700 7701 case bitc::FS_COMBINED_ALLOC_INFO: { 7702 unsigned I = 0; 7703 std::vector<MIBInfo> MIBs; 7704 unsigned NumMIBs = Record[I++]; 7705 unsigned NumVersions = Record[I++]; 7706 unsigned MIBsRead = 0; 7707 while (MIBsRead++ < NumMIBs) { 7708 assert(Record.size() - I >= 2); 7709 AllocationType AllocType = (AllocationType)Record[I++]; 7710 unsigned NumStackEntries = Record[I++]; 7711 assert(Record.size() - I >= NumStackEntries); 7712 SmallVector<unsigned> StackIdList; 7713 for (unsigned J = 0; J < NumStackEntries; J++) { 7714 assert(Record[I] < StackIds.size()); 7715 StackIdList.push_back( 7716 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7717 } 7718 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7719 } 7720 assert(Record.size() - I >= NumVersions); 7721 SmallVector<uint8_t> Versions; 7722 for (unsigned J = 0; J < NumVersions; J++) 7723 Versions.push_back(Record[I++]); 7724 PendingAllocs.push_back( 7725 AllocInfo(std::move(Versions), std::move(MIBs))); 7726 break; 7727 } 7728 } 7729 } 7730 llvm_unreachable("Exit infinite loop"); 7731 } 7732 7733 // Parse the module string table block into the Index. 7734 // This populates the ModulePathStringTable map in the index. 7735 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7736 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7737 return Err; 7738 7739 SmallVector<uint64_t, 64> Record; 7740 7741 SmallString<128> ModulePath; 7742 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7743 7744 while (true) { 7745 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7746 if (!MaybeEntry) 7747 return MaybeEntry.takeError(); 7748 BitstreamEntry Entry = MaybeEntry.get(); 7749 7750 switch (Entry.Kind) { 7751 case BitstreamEntry::SubBlock: // Handled for us already. 7752 case BitstreamEntry::Error: 7753 return error("Malformed block"); 7754 case BitstreamEntry::EndBlock: 7755 return Error::success(); 7756 case BitstreamEntry::Record: 7757 // The interesting case. 7758 break; 7759 } 7760 7761 Record.clear(); 7762 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7763 if (!MaybeRecord) 7764 return MaybeRecord.takeError(); 7765 switch (MaybeRecord.get()) { 7766 default: // Default behavior: ignore. 7767 break; 7768 case bitc::MST_CODE_ENTRY: { 7769 // MST_ENTRY: [modid, namechar x N] 7770 uint64_t ModuleId = Record[0]; 7771 7772 if (convertToString(Record, 1, ModulePath)) 7773 return error("Invalid record"); 7774 7775 LastSeenModule = TheIndex.addModule(ModulePath); 7776 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7777 7778 ModulePath.clear(); 7779 break; 7780 } 7781 /// MST_CODE_HASH: [5*i32] 7782 case bitc::MST_CODE_HASH: { 7783 if (Record.size() != 5) 7784 return error("Invalid hash length " + Twine(Record.size()).str()); 7785 if (!LastSeenModule) 7786 return error("Invalid hash that does not follow a module path"); 7787 int Pos = 0; 7788 for (auto &Val : Record) { 7789 assert(!(Val >> 32) && "Unexpected high bits set"); 7790 LastSeenModule->second[Pos++] = Val; 7791 } 7792 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7793 LastSeenModule = nullptr; 7794 break; 7795 } 7796 } 7797 } 7798 llvm_unreachable("Exit infinite loop"); 7799 } 7800 7801 namespace { 7802 7803 // FIXME: This class is only here to support the transition to llvm::Error. It 7804 // will be removed once this transition is complete. Clients should prefer to 7805 // deal with the Error value directly, rather than converting to error_code. 7806 class BitcodeErrorCategoryType : public std::error_category { 7807 const char *name() const noexcept override { 7808 return "llvm.bitcode"; 7809 } 7810 7811 std::string message(int IE) const override { 7812 BitcodeError E = static_cast<BitcodeError>(IE); 7813 switch (E) { 7814 case BitcodeError::CorruptedBitcode: 7815 return "Corrupted bitcode"; 7816 } 7817 llvm_unreachable("Unknown error type!"); 7818 } 7819 }; 7820 7821 } // end anonymous namespace 7822 7823 const std::error_category &llvm::BitcodeErrorCategory() { 7824 static BitcodeErrorCategoryType ErrorCategory; 7825 return ErrorCategory; 7826 } 7827 7828 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7829 unsigned Block, unsigned RecordID) { 7830 if (Error Err = Stream.EnterSubBlock(Block)) 7831 return std::move(Err); 7832 7833 StringRef Strtab; 7834 while (true) { 7835 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7836 if (!MaybeEntry) 7837 return MaybeEntry.takeError(); 7838 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7839 7840 switch (Entry.Kind) { 7841 case BitstreamEntry::EndBlock: 7842 return Strtab; 7843 7844 case BitstreamEntry::Error: 7845 return error("Malformed block"); 7846 7847 case BitstreamEntry::SubBlock: 7848 if (Error Err = Stream.SkipBlock()) 7849 return std::move(Err); 7850 break; 7851 7852 case BitstreamEntry::Record: 7853 StringRef Blob; 7854 SmallVector<uint64_t, 1> Record; 7855 Expected<unsigned> MaybeRecord = 7856 Stream.readRecord(Entry.ID, Record, &Blob); 7857 if (!MaybeRecord) 7858 return MaybeRecord.takeError(); 7859 if (MaybeRecord.get() == RecordID) 7860 Strtab = Blob; 7861 break; 7862 } 7863 } 7864 } 7865 7866 //===----------------------------------------------------------------------===// 7867 // External interface 7868 //===----------------------------------------------------------------------===// 7869 7870 Expected<std::vector<BitcodeModule>> 7871 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7872 auto FOrErr = getBitcodeFileContents(Buffer); 7873 if (!FOrErr) 7874 return FOrErr.takeError(); 7875 return std::move(FOrErr->Mods); 7876 } 7877 7878 Expected<BitcodeFileContents> 7879 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7880 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7881 if (!StreamOrErr) 7882 return StreamOrErr.takeError(); 7883 BitstreamCursor &Stream = *StreamOrErr; 7884 7885 BitcodeFileContents F; 7886 while (true) { 7887 uint64_t BCBegin = Stream.getCurrentByteNo(); 7888 7889 // We may be consuming bitcode from a client that leaves garbage at the end 7890 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7891 // the end that there cannot possibly be another module, stop looking. 7892 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7893 return F; 7894 7895 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7896 if (!MaybeEntry) 7897 return MaybeEntry.takeError(); 7898 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7899 7900 switch (Entry.Kind) { 7901 case BitstreamEntry::EndBlock: 7902 case BitstreamEntry::Error: 7903 return error("Malformed block"); 7904 7905 case BitstreamEntry::SubBlock: { 7906 uint64_t IdentificationBit = -1ull; 7907 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7908 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7909 if (Error Err = Stream.SkipBlock()) 7910 return std::move(Err); 7911 7912 { 7913 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7914 if (!MaybeEntry) 7915 return MaybeEntry.takeError(); 7916 Entry = MaybeEntry.get(); 7917 } 7918 7919 if (Entry.Kind != BitstreamEntry::SubBlock || 7920 Entry.ID != bitc::MODULE_BLOCK_ID) 7921 return error("Malformed block"); 7922 } 7923 7924 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7925 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7926 if (Error Err = Stream.SkipBlock()) 7927 return std::move(Err); 7928 7929 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7930 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7931 Buffer.getBufferIdentifier(), IdentificationBit, 7932 ModuleBit}); 7933 continue; 7934 } 7935 7936 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7937 Expected<StringRef> Strtab = 7938 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7939 if (!Strtab) 7940 return Strtab.takeError(); 7941 // This string table is used by every preceding bitcode module that does 7942 // not have its own string table. A bitcode file may have multiple 7943 // string tables if it was created by binary concatenation, for example 7944 // with "llvm-cat -b". 7945 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7946 if (!I.Strtab.empty()) 7947 break; 7948 I.Strtab = *Strtab; 7949 } 7950 // Similarly, the string table is used by every preceding symbol table; 7951 // normally there will be just one unless the bitcode file was created 7952 // by binary concatenation. 7953 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7954 F.StrtabForSymtab = *Strtab; 7955 continue; 7956 } 7957 7958 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7959 Expected<StringRef> SymtabOrErr = 7960 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7961 if (!SymtabOrErr) 7962 return SymtabOrErr.takeError(); 7963 7964 // We can expect the bitcode file to have multiple symbol tables if it 7965 // was created by binary concatenation. In that case we silently 7966 // ignore any subsequent symbol tables, which is fine because this is a 7967 // low level function. The client is expected to notice that the number 7968 // of modules in the symbol table does not match the number of modules 7969 // in the input file and regenerate the symbol table. 7970 if (F.Symtab.empty()) 7971 F.Symtab = *SymtabOrErr; 7972 continue; 7973 } 7974 7975 if (Error Err = Stream.SkipBlock()) 7976 return std::move(Err); 7977 continue; 7978 } 7979 case BitstreamEntry::Record: 7980 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7981 return std::move(E); 7982 continue; 7983 } 7984 } 7985 } 7986 7987 /// Get a lazy one-at-time loading module from bitcode. 7988 /// 7989 /// This isn't always used in a lazy context. In particular, it's also used by 7990 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7991 /// in forward-referenced functions from block address references. 7992 /// 7993 /// \param[in] MaterializeAll Set to \c true if we should materialize 7994 /// everything. 7995 Expected<std::unique_ptr<Module>> 7996 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7997 bool ShouldLazyLoadMetadata, bool IsImporting, 7998 ParserCallbacks Callbacks) { 7999 BitstreamCursor Stream(Buffer); 8000 8001 std::string ProducerIdentification; 8002 if (IdentificationBit != -1ull) { 8003 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8004 return std::move(JumpFailed); 8005 if (Error E = 8006 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8007 return std::move(E); 8008 } 8009 8010 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8011 return std::move(JumpFailed); 8012 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8013 Context); 8014 8015 std::unique_ptr<Module> M = 8016 std::make_unique<Module>(ModuleIdentifier, Context); 8017 M->setMaterializer(R); 8018 8019 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8020 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8021 IsImporting, Callbacks)) 8022 return std::move(Err); 8023 8024 if (MaterializeAll) { 8025 // Read in the entire module, and destroy the BitcodeReader. 8026 if (Error Err = M->materializeAll()) 8027 return std::move(Err); 8028 } else { 8029 // Resolve forward references from blockaddresses. 8030 if (Error Err = R->materializeForwardReferencedFunctions()) 8031 return std::move(Err); 8032 } 8033 8034 return std::move(M); 8035 } 8036 8037 Expected<std::unique_ptr<Module>> 8038 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8039 bool IsImporting, ParserCallbacks Callbacks) { 8040 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8041 Callbacks); 8042 } 8043 8044 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8045 // We don't use ModuleIdentifier here because the client may need to control the 8046 // module path used in the combined summary (e.g. when reading summaries for 8047 // regular LTO modules). 8048 Error BitcodeModule::readSummary( 8049 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8050 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8051 BitstreamCursor Stream(Buffer); 8052 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8053 return JumpFailed; 8054 8055 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8056 ModulePath, IsPrevailing); 8057 return R.parseModule(); 8058 } 8059 8060 // Parse the specified bitcode buffer, returning the function info index. 8061 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8062 BitstreamCursor Stream(Buffer); 8063 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8064 return std::move(JumpFailed); 8065 8066 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8067 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8068 ModuleIdentifier, 0); 8069 8070 if (Error Err = R.parseModule()) 8071 return std::move(Err); 8072 8073 return std::move(Index); 8074 } 8075 8076 static Expected<std::pair<bool, bool>> 8077 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8078 unsigned ID, 8079 BitcodeLTOInfo <OInfo) { 8080 if (Error Err = Stream.EnterSubBlock(ID)) 8081 return std::move(Err); 8082 SmallVector<uint64_t, 64> Record; 8083 8084 while (true) { 8085 BitstreamEntry Entry; 8086 std::pair<bool, bool> Result = {false,false}; 8087 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8088 return std::move(E); 8089 8090 switch (Entry.Kind) { 8091 case BitstreamEntry::SubBlock: // Handled for us already. 8092 case BitstreamEntry::Error: 8093 return error("Malformed block"); 8094 case BitstreamEntry::EndBlock: { 8095 // If no flags record found, set both flags to false. 8096 return Result; 8097 } 8098 case BitstreamEntry::Record: 8099 // The interesting case. 8100 break; 8101 } 8102 8103 // Look for the FS_FLAGS record. 8104 Record.clear(); 8105 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8106 if (!MaybeBitCode) 8107 return MaybeBitCode.takeError(); 8108 switch (MaybeBitCode.get()) { 8109 default: // Default behavior: ignore. 8110 break; 8111 case bitc::FS_FLAGS: { // [flags] 8112 uint64_t Flags = Record[0]; 8113 // Scan flags. 8114 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8115 8116 bool EnableSplitLTOUnit = Flags & 0x8; 8117 bool UnifiedLTO = Flags & 0x200; 8118 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8119 8120 return Result; 8121 } 8122 } 8123 } 8124 llvm_unreachable("Exit infinite loop"); 8125 } 8126 8127 // Check if the given bitcode buffer contains a global value summary block. 8128 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8129 BitstreamCursor Stream(Buffer); 8130 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8131 return std::move(JumpFailed); 8132 8133 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8134 return std::move(Err); 8135 8136 while (true) { 8137 llvm::BitstreamEntry Entry; 8138 if (Error E = Stream.advance().moveInto(Entry)) 8139 return std::move(E); 8140 8141 switch (Entry.Kind) { 8142 case BitstreamEntry::Error: 8143 return error("Malformed block"); 8144 case BitstreamEntry::EndBlock: 8145 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8146 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8147 8148 case BitstreamEntry::SubBlock: 8149 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8150 BitcodeLTOInfo LTOInfo; 8151 Expected<std::pair<bool, bool>> Flags = 8152 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8153 if (!Flags) 8154 return Flags.takeError(); 8155 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8156 LTOInfo.IsThinLTO = true; 8157 LTOInfo.HasSummary = true; 8158 return LTOInfo; 8159 } 8160 8161 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8162 BitcodeLTOInfo LTOInfo; 8163 Expected<std::pair<bool, bool>> Flags = 8164 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8165 if (!Flags) 8166 return Flags.takeError(); 8167 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8168 LTOInfo.IsThinLTO = false; 8169 LTOInfo.HasSummary = true; 8170 return LTOInfo; 8171 } 8172 8173 // Ignore other sub-blocks. 8174 if (Error Err = Stream.SkipBlock()) 8175 return std::move(Err); 8176 continue; 8177 8178 case BitstreamEntry::Record: 8179 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8180 continue; 8181 else 8182 return StreamFailed.takeError(); 8183 } 8184 } 8185 } 8186 8187 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8188 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8189 if (!MsOrErr) 8190 return MsOrErr.takeError(); 8191 8192 if (MsOrErr->size() != 1) 8193 return error("Expected a single module"); 8194 8195 return (*MsOrErr)[0]; 8196 } 8197 8198 Expected<std::unique_ptr<Module>> 8199 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8200 bool ShouldLazyLoadMetadata, bool IsImporting, 8201 ParserCallbacks Callbacks) { 8202 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8203 if (!BM) 8204 return BM.takeError(); 8205 8206 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8207 Callbacks); 8208 } 8209 8210 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8211 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8212 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8213 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8214 IsImporting, Callbacks); 8215 if (MOrErr) 8216 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8217 return MOrErr; 8218 } 8219 8220 Expected<std::unique_ptr<Module>> 8221 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8222 return getModuleImpl(Context, true, false, false, Callbacks); 8223 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8224 // written. We must defer until the Module has been fully materialized. 8225 } 8226 8227 Expected<std::unique_ptr<Module>> 8228 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8229 ParserCallbacks Callbacks) { 8230 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8231 if (!BM) 8232 return BM.takeError(); 8233 8234 return BM->parseModule(Context, Callbacks); 8235 } 8236 8237 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8238 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8239 if (!StreamOrErr) 8240 return StreamOrErr.takeError(); 8241 8242 return readTriple(*StreamOrErr); 8243 } 8244 8245 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8246 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8247 if (!StreamOrErr) 8248 return StreamOrErr.takeError(); 8249 8250 return hasObjCCategory(*StreamOrErr); 8251 } 8252 8253 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8254 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8255 if (!StreamOrErr) 8256 return StreamOrErr.takeError(); 8257 8258 return readIdentificationCode(*StreamOrErr); 8259 } 8260 8261 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8262 ModuleSummaryIndex &CombinedIndex) { 8263 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8264 if (!BM) 8265 return BM.takeError(); 8266 8267 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8268 } 8269 8270 Expected<std::unique_ptr<ModuleSummaryIndex>> 8271 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8272 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8273 if (!BM) 8274 return BM.takeError(); 8275 8276 return BM->getSummary(); 8277 } 8278 8279 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8280 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8281 if (!BM) 8282 return BM.takeError(); 8283 8284 return BM->getLTOInfo(); 8285 } 8286 8287 Expected<std::unique_ptr<ModuleSummaryIndex>> 8288 llvm::getModuleSummaryIndexForFile(StringRef Path, 8289 bool IgnoreEmptyThinLTOIndexFile) { 8290 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8291 MemoryBuffer::getFileOrSTDIN(Path); 8292 if (!FileOrErr) 8293 return errorCodeToError(FileOrErr.getError()); 8294 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8295 return nullptr; 8296 return getModuleSummaryIndex(**FileOrErr); 8297 } 8298