xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a907d36cfe8069ce191ffada3b84e37ca50e05b6)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 namespace {
98 
99 enum {
100   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
101 };
102 
103 } // end anonymous namespace
104 
105 static Error error(const Twine &Message) {
106   return make_error<StringError>(
107       Message, make_error_code(BitcodeError::CorruptedBitcode));
108 }
109 
110 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
111   if (!Stream.canSkipToPos(4))
112     return createStringError(std::errc::illegal_byte_sequence,
113                              "file too small to contain bitcode header");
114   for (unsigned C : {'B', 'C'})
115     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
116       if (Res.get() != C)
117         return createStringError(std::errc::illegal_byte_sequence,
118                                  "file doesn't start with bitcode header");
119     } else
120       return Res.takeError();
121   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
122     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
123       if (Res.get() != C)
124         return createStringError(std::errc::illegal_byte_sequence,
125                                  "file doesn't start with bitcode header");
126     } else
127       return Res.takeError();
128   return Error::success();
129 }
130 
131 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
132   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
133   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
134 
135   if (Buffer.getBufferSize() & 3)
136     return error("Invalid bitcode signature");
137 
138   // If we have a wrapper header, parse it and ignore the non-bc file contents.
139   // The magic number is 0x0B17C0DE stored in little endian.
140   if (isBitcodeWrapper(BufPtr, BufEnd))
141     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
142       return error("Invalid bitcode wrapper header");
143 
144   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
145   if (Error Err = hasInvalidBitcodeHeader(Stream))
146     return std::move(Err);
147 
148   return std::move(Stream);
149 }
150 
151 /// Convert a string from a record into an std::string, return true on failure.
152 template <typename StrTy>
153 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
154                             StrTy &Result) {
155   if (Idx > Record.size())
156     return true;
157 
158   Result.append(Record.begin() + Idx, Record.end());
159   return false;
160 }
161 
162 // Strip all the TBAA attachment for the module.
163 static void stripTBAA(Module *M) {
164   for (auto &F : *M) {
165     if (F.isMaterializable())
166       continue;
167     for (auto &I : instructions(F))
168       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
169   }
170 }
171 
172 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
173 /// "epoch" encoded in the bitcode, and return the producer name if any.
174 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
175   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
176     return std::move(Err);
177 
178   // Read all the records.
179   SmallVector<uint64_t, 64> Record;
180 
181   std::string ProducerIdentification;
182 
183   while (true) {
184     BitstreamEntry Entry;
185     if (Error E = Stream.advance().moveInto(Entry))
186       return std::move(E);
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Error E = Stream.advance().moveInto(Entry))
231       return std::move(E);
232 
233     switch (Entry.Kind) {
234     case BitstreamEntry::EndBlock:
235     case BitstreamEntry::Error:
236       return error("Malformed block");
237 
238     case BitstreamEntry::SubBlock:
239       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
240         return readIdentificationBlock(Stream);
241 
242       // Ignore other sub-blocks.
243       if (Error Err = Stream.SkipBlock())
244         return std::move(Err);
245       continue;
246     case BitstreamEntry::Record:
247       if (Error E = Stream.skipRecord(Entry.ID).takeError())
248         return std::move(E);
249       continue;
250     }
251   }
252 }
253 
254 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
255   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
256     return std::move(Err);
257 
258   SmallVector<uint64_t, 64> Record;
259   // Read all the records for this module.
260 
261   while (true) {
262     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
263     if (!MaybeEntry)
264       return MaybeEntry.takeError();
265     BitstreamEntry Entry = MaybeEntry.get();
266 
267     switch (Entry.Kind) {
268     case BitstreamEntry::SubBlock: // Handled for us already.
269     case BitstreamEntry::Error:
270       return error("Malformed block");
271     case BitstreamEntry::EndBlock:
272       return false;
273     case BitstreamEntry::Record:
274       // The interesting case.
275       break;
276     }
277 
278     // Read a record.
279     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
280     if (!MaybeRecord)
281       return MaybeRecord.takeError();
282     switch (MaybeRecord.get()) {
283     default:
284       break; // Default behavior, ignore unknown content.
285     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
286       std::string S;
287       if (convertToString(Record, 0, S))
288         return error("Invalid section name record");
289       // Check for the i386 and other (x86_64, ARM) conventions
290       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
291           S.find("__OBJC,__category") != std::string::npos)
292         return true;
293       break;
294     }
295     }
296     Record.clear();
297   }
298   llvm_unreachable("Exit infinite loop");
299 }
300 
301 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
302   // We expect a number of well-defined blocks, though we don't necessarily
303   // need to understand them all.
304   while (true) {
305     BitstreamEntry Entry;
306     if (Error E = Stream.advance().moveInto(Entry))
307       return std::move(E);
308 
309     switch (Entry.Kind) {
310     case BitstreamEntry::Error:
311       return error("Malformed block");
312     case BitstreamEntry::EndBlock:
313       return false;
314 
315     case BitstreamEntry::SubBlock:
316       if (Entry.ID == bitc::MODULE_BLOCK_ID)
317         return hasObjCCategoryInModule(Stream);
318 
319       // Ignore other sub-blocks.
320       if (Error Err = Stream.SkipBlock())
321         return std::move(Err);
322       continue;
323 
324     case BitstreamEntry::Record:
325       if (Error E = Stream.skipRecord(Entry.ID).takeError())
326         return std::move(E);
327       continue;
328     }
329   }
330 }
331 
332 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
333   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
334     return std::move(Err);
335 
336   SmallVector<uint64_t, 64> Record;
337 
338   std::string Triple;
339 
340   // Read all the records for this module.
341   while (true) {
342     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
343     if (!MaybeEntry)
344       return MaybeEntry.takeError();
345     BitstreamEntry Entry = MaybeEntry.get();
346 
347     switch (Entry.Kind) {
348     case BitstreamEntry::SubBlock: // Handled for us already.
349     case BitstreamEntry::Error:
350       return error("Malformed block");
351     case BitstreamEntry::EndBlock:
352       return Triple;
353     case BitstreamEntry::Record:
354       // The interesting case.
355       break;
356     }
357 
358     // Read a record.
359     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
360     if (!MaybeRecord)
361       return MaybeRecord.takeError();
362     switch (MaybeRecord.get()) {
363     default: break;  // Default behavior, ignore unknown content.
364     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
365       std::string S;
366       if (convertToString(Record, 0, S))
367         return error("Invalid triple record");
368       Triple = S;
369       break;
370     }
371     }
372     Record.clear();
373   }
374   llvm_unreachable("Exit infinite loop");
375 }
376 
377 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
378   // We expect a number of well-defined blocks, though we don't necessarily
379   // need to understand them all.
380   while (true) {
381     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
382     if (!MaybeEntry)
383       return MaybeEntry.takeError();
384     BitstreamEntry Entry = MaybeEntry.get();
385 
386     switch (Entry.Kind) {
387     case BitstreamEntry::Error:
388       return error("Malformed block");
389     case BitstreamEntry::EndBlock:
390       return "";
391 
392     case BitstreamEntry::SubBlock:
393       if (Entry.ID == bitc::MODULE_BLOCK_ID)
394         return readModuleTriple(Stream);
395 
396       // Ignore other sub-blocks.
397       if (Error Err = Stream.SkipBlock())
398         return std::move(Err);
399       continue;
400 
401     case BitstreamEntry::Record:
402       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
403         continue;
404       else
405         return Skipped.takeError();
406     }
407   }
408 }
409 
410 namespace {
411 
412 class BitcodeReaderBase {
413 protected:
414   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
415       : Stream(std::move(Stream)), Strtab(Strtab) {
416     this->Stream.setBlockInfo(&BlockInfo);
417   }
418 
419   BitstreamBlockInfo BlockInfo;
420   BitstreamCursor Stream;
421   StringRef Strtab;
422 
423   /// In version 2 of the bitcode we store names of global values and comdats in
424   /// a string table rather than in the VST.
425   bool UseStrtab = false;
426 
427   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
428 
429   /// If this module uses a string table, pop the reference to the string table
430   /// and return the referenced string and the rest of the record. Otherwise
431   /// just return the record itself.
432   std::pair<StringRef, ArrayRef<uint64_t>>
433   readNameFromStrtab(ArrayRef<uint64_t> Record);
434 
435   Error readBlockInfo();
436 
437   // Contains an arbitrary and optional string identifying the bitcode producer
438   std::string ProducerIdentification;
439 
440   Error error(const Twine &Message);
441 };
442 
443 } // end anonymous namespace
444 
445 Error BitcodeReaderBase::error(const Twine &Message) {
446   std::string FullMsg = Message.str();
447   if (!ProducerIdentification.empty())
448     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
449                LLVM_VERSION_STRING "')";
450   return ::error(FullMsg);
451 }
452 
453 Expected<unsigned>
454 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
455   if (Record.empty())
456     return error("Invalid version record");
457   unsigned ModuleVersion = Record[0];
458   if (ModuleVersion > 2)
459     return error("Invalid value");
460   UseStrtab = ModuleVersion >= 2;
461   return ModuleVersion;
462 }
463 
464 std::pair<StringRef, ArrayRef<uint64_t>>
465 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
466   if (!UseStrtab)
467     return {"", Record};
468   // Invalid reference. Let the caller complain about the record being empty.
469   if (Record[0] + Record[1] > Strtab.size())
470     return {"", {}};
471   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
472 }
473 
474 namespace {
475 
476 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
477   LLVMContext &Context;
478   Module *TheModule = nullptr;
479   // Next offset to start scanning for lazy parsing of function bodies.
480   uint64_t NextUnreadBit = 0;
481   // Last function offset found in the VST.
482   uint64_t LastFunctionBlockBit = 0;
483   bool SeenValueSymbolTable = false;
484   uint64_t VSTOffset = 0;
485 
486   std::vector<std::string> SectionTable;
487   std::vector<std::string> GCTable;
488 
489   std::vector<Type *> TypeList;
490   /// Track type IDs of contained types. Order is the same as the contained
491   /// types of a Type*. This is used during upgrades of typed pointer IR in
492   /// opaque pointer mode.
493   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
494   /// In some cases, we need to create a type ID for a type that was not
495   /// explicitly encoded in the bitcode, or we don't know about at the current
496   /// point. For example, a global may explicitly encode the value type ID, but
497   /// not have a type ID for the pointer to value type, for which we create a
498   /// virtual type ID instead. This map stores the new type ID that was created
499   /// for the given pair of Type and contained type ID.
500   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
501   DenseMap<Function *, unsigned> FunctionTypeIDs;
502   BitcodeReaderValueList ValueList;
503   Optional<MetadataLoader> MDLoader;
504   std::vector<Comdat *> ComdatList;
505   DenseSet<GlobalObject *> ImplicitComdatObjects;
506   SmallVector<Instruction *, 64> InstructionList;
507 
508   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
509   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
510 
511   struct FunctionOperandInfo {
512     Function *F;
513     unsigned PersonalityFn;
514     unsigned Prefix;
515     unsigned Prologue;
516   };
517   std::vector<FunctionOperandInfo> FunctionOperands;
518 
519   /// The set of attributes by index.  Index zero in the file is for null, and
520   /// is thus not represented here.  As such all indices are off by one.
521   std::vector<AttributeList> MAttributes;
522 
523   /// The set of attribute groups.
524   std::map<unsigned, AttributeList> MAttributeGroups;
525 
526   /// While parsing a function body, this is a list of the basic blocks for the
527   /// function.
528   std::vector<BasicBlock*> FunctionBBs;
529 
530   // When reading the module header, this list is populated with functions that
531   // have bodies later in the file.
532   std::vector<Function*> FunctionsWithBodies;
533 
534   // When intrinsic functions are encountered which require upgrading they are
535   // stored here with their replacement function.
536   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
537   UpdatedIntrinsicMap UpgradedIntrinsics;
538   // Intrinsics which were remangled because of types rename
539   UpdatedIntrinsicMap RemangledIntrinsics;
540 
541   // Several operations happen after the module header has been read, but
542   // before function bodies are processed. This keeps track of whether
543   // we've done this yet.
544   bool SeenFirstFunctionBody = false;
545 
546   /// When function bodies are initially scanned, this map contains info about
547   /// where to find deferred function body in the stream.
548   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
549 
550   /// When Metadata block is initially scanned when parsing the module, we may
551   /// choose to defer parsing of the metadata. This vector contains info about
552   /// which Metadata blocks are deferred.
553   std::vector<uint64_t> DeferredMetadataInfo;
554 
555   /// These are basic blocks forward-referenced by block addresses.  They are
556   /// inserted lazily into functions when they're loaded.  The basic block ID is
557   /// its index into the vector.
558   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
559   std::deque<Function *> BasicBlockFwdRefQueue;
560 
561   /// These are Functions that contain BlockAddresses which refer a different
562   /// Function. When parsing the different Function, queue Functions that refer
563   /// to the different Function. Those Functions must be materialized in order
564   /// to resolve their BlockAddress constants before the different Function
565   /// gets moved into another Module.
566   std::vector<Function *> BackwardRefFunctions;
567 
568   /// Indicates that we are using a new encoding for instruction operands where
569   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
570   /// instruction number, for a more compact encoding.  Some instruction
571   /// operands are not relative to the instruction ID: basic block numbers, and
572   /// types. Once the old style function blocks have been phased out, we would
573   /// not need this flag.
574   bool UseRelativeIDs = false;
575 
576   /// True if all functions will be materialized, negating the need to process
577   /// (e.g.) blockaddress forward references.
578   bool WillMaterializeAllForwardRefs = false;
579 
580   bool StripDebugInfo = false;
581   TBAAVerifier TBAAVerifyHelper;
582 
583   std::vector<std::string> BundleTags;
584   SmallVector<SyncScope::ID, 8> SSIDs;
585 
586 public:
587   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
588                 StringRef ProducerIdentification, LLVMContext &Context);
589 
590   Error materializeForwardReferencedFunctions();
591 
592   Error materialize(GlobalValue *GV) override;
593   Error materializeModule() override;
594   std::vector<StructType *> getIdentifiedStructTypes() const override;
595 
596   /// Main interface to parsing a bitcode buffer.
597   /// \returns true if an error occurred.
598   Error parseBitcodeInto(
599       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
600       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
601 
602   static uint64_t decodeSignRotatedValue(uint64_t V);
603 
604   /// Materialize any deferred Metadata block.
605   Error materializeMetadata() override;
606 
607   void setStripDebugInfo() override;
608 
609 private:
610   std::vector<StructType *> IdentifiedStructTypes;
611   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
612   StructType *createIdentifiedStructType(LLVMContext &Context);
613 
614   static constexpr unsigned InvalidTypeID = ~0u;
615 
616   Type *getTypeByID(unsigned ID);
617   Type *getPtrElementTypeByID(unsigned ID);
618   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
619   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
620 
621   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) {
622     if (Ty && Ty->isMetadataTy())
623       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
624     return ValueList.getValueFwdRef(ID, Ty, TyID);
625   }
626 
627   Metadata *getFnMetadataByID(unsigned ID) {
628     return MDLoader->getMetadataFwdRefOrLoad(ID);
629   }
630 
631   BasicBlock *getBasicBlock(unsigned ID) const {
632     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
633     return FunctionBBs[ID];
634   }
635 
636   AttributeList getAttributes(unsigned i) const {
637     if (i-1 < MAttributes.size())
638       return MAttributes[i-1];
639     return AttributeList();
640   }
641 
642   /// Read a value/type pair out of the specified record from slot 'Slot'.
643   /// Increment Slot past the number of slots used in the record. Return true on
644   /// failure.
645   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
646                         unsigned InstNum, Value *&ResVal, unsigned &TypeID) {
647     if (Slot == Record.size()) return true;
648     unsigned ValNo = (unsigned)Record[Slot++];
649     // Adjust the ValNo, if it was encoded relative to the InstNum.
650     if (UseRelativeIDs)
651       ValNo = InstNum - ValNo;
652     if (ValNo < InstNum) {
653       // If this is not a forward reference, just return the value we already
654       // have.
655       TypeID = ValueList.getTypeID(ValNo);
656       ResVal = getFnValueByID(ValNo, nullptr, TypeID);
657       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
658              "Incorrect type ID stored for value");
659       return ResVal == nullptr;
660     }
661     if (Slot == Record.size())
662       return true;
663 
664     TypeID = (unsigned)Record[Slot++];
665     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID);
666     return ResVal == nullptr;
667   }
668 
669   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
670   /// past the number of slots used by the value in the record. Return true if
671   /// there is an error.
672   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
673                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) {
674     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal))
675       return true;
676     // All values currently take a single record slot.
677     ++Slot;
678     return false;
679   }
680 
681   /// Like popValue, but does not increment the Slot number.
682   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
683                 unsigned InstNum, Type *Ty, unsigned TyID,  Value *&ResVal) {
684     ResVal = getValue(Record, Slot, InstNum, Ty, TyID);
685     return ResVal == nullptr;
686   }
687 
688   /// Version of getValue that returns ResVal directly, or 0 if there is an
689   /// error.
690   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
691                   unsigned InstNum, Type *Ty, unsigned TyID) {
692     if (Slot == Record.size()) return nullptr;
693     unsigned ValNo = (unsigned)Record[Slot];
694     // Adjust the ValNo, if it was encoded relative to the InstNum.
695     if (UseRelativeIDs)
696       ValNo = InstNum - ValNo;
697     return getFnValueByID(ValNo, Ty, TyID);
698   }
699 
700   /// Like getValue, but decodes signed VBRs.
701   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
702                         unsigned InstNum, Type *Ty, unsigned TyID) {
703     if (Slot == Record.size()) return nullptr;
704     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
705     // Adjust the ValNo, if it was encoded relative to the InstNum.
706     if (UseRelativeIDs)
707       ValNo = InstNum - ValNo;
708     return getFnValueByID(ValNo, Ty, TyID);
709   }
710 
711   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
712   /// corresponding argument's pointee type. Also upgrades intrinsics that now
713   /// require an elementtype attribute.
714   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
715 
716   /// Converts alignment exponent (i.e. power of two (or zero)) to the
717   /// corresponding alignment to use. If alignment is too large, returns
718   /// a corresponding error code.
719   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
720   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
721   Error parseModule(
722       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
723       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
724 
725   Error parseComdatRecord(ArrayRef<uint64_t> Record);
726   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
727   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
728   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
729                                         ArrayRef<uint64_t> Record);
730 
731   Error parseAttributeBlock();
732   Error parseAttributeGroupBlock();
733   Error parseTypeTable();
734   Error parseTypeTableBody();
735   Error parseOperandBundleTags();
736   Error parseSyncScopeNames();
737 
738   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
739                                 unsigned NameIndex, Triple &TT);
740   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
741                                ArrayRef<uint64_t> Record);
742   Error parseValueSymbolTable(uint64_t Offset = 0);
743   Error parseGlobalValueSymbolTable();
744   Error parseConstants();
745   Error rememberAndSkipFunctionBodies();
746   Error rememberAndSkipFunctionBody();
747   /// Save the positions of the Metadata blocks and skip parsing the blocks.
748   Error rememberAndSkipMetadata();
749   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
750   Error parseFunctionBody(Function *F);
751   Error globalCleanup();
752   Error resolveGlobalAndIndirectSymbolInits();
753   Error parseUseLists();
754   Error findFunctionInStream(
755       Function *F,
756       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
757 
758   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
759 };
760 
761 /// Class to manage reading and parsing function summary index bitcode
762 /// files/sections.
763 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
764   /// The module index built during parsing.
765   ModuleSummaryIndex &TheIndex;
766 
767   /// Indicates whether we have encountered a global value summary section
768   /// yet during parsing.
769   bool SeenGlobalValSummary = false;
770 
771   /// Indicates whether we have already parsed the VST, used for error checking.
772   bool SeenValueSymbolTable = false;
773 
774   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
775   /// Used to enable on-demand parsing of the VST.
776   uint64_t VSTOffset = 0;
777 
778   // Map to save ValueId to ValueInfo association that was recorded in the
779   // ValueSymbolTable. It is used after the VST is parsed to convert
780   // call graph edges read from the function summary from referencing
781   // callees by their ValueId to using the ValueInfo instead, which is how
782   // they are recorded in the summary index being built.
783   // We save a GUID which refers to the same global as the ValueInfo, but
784   // ignoring the linkage, i.e. for values other than local linkage they are
785   // identical.
786   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
787       ValueIdToValueInfoMap;
788 
789   /// Map populated during module path string table parsing, from the
790   /// module ID to a string reference owned by the index's module
791   /// path string table, used to correlate with combined index
792   /// summary records.
793   DenseMap<uint64_t, StringRef> ModuleIdMap;
794 
795   /// Original source file name recorded in a bitcode record.
796   std::string SourceFileName;
797 
798   /// The string identifier given to this module by the client, normally the
799   /// path to the bitcode file.
800   StringRef ModulePath;
801 
802   /// For per-module summary indexes, the unique numerical identifier given to
803   /// this module by the client.
804   unsigned ModuleId;
805 
806 public:
807   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
808                                   ModuleSummaryIndex &TheIndex,
809                                   StringRef ModulePath, unsigned ModuleId);
810 
811   Error parseModule();
812 
813 private:
814   void setValueGUID(uint64_t ValueID, StringRef ValueName,
815                     GlobalValue::LinkageTypes Linkage,
816                     StringRef SourceFileName);
817   Error parseValueSymbolTable(
818       uint64_t Offset,
819       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
820   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
821   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
822                                                     bool IsOldProfileFormat,
823                                                     bool HasProfile,
824                                                     bool HasRelBF);
825   Error parseEntireSummary(unsigned ID);
826   Error parseModuleStringTable();
827   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
828   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
829                                        TypeIdCompatibleVtableInfo &TypeId);
830   std::vector<FunctionSummary::ParamAccess>
831   parseParamAccesses(ArrayRef<uint64_t> Record);
832 
833   std::pair<ValueInfo, GlobalValue::GUID>
834   getValueInfoFromValueId(unsigned ValueId);
835 
836   void addThisModule();
837   ModuleSummaryIndex::ModuleInfo *getThisModule();
838 };
839 
840 } // end anonymous namespace
841 
842 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
843                                                     Error Err) {
844   if (Err) {
845     std::error_code EC;
846     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
847       EC = EIB.convertToErrorCode();
848       Ctx.emitError(EIB.message());
849     });
850     return EC;
851   }
852   return std::error_code();
853 }
854 
855 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
856                              StringRef ProducerIdentification,
857                              LLVMContext &Context)
858     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
859       ValueList(Context, this->Stream.SizeInBytes()) {
860   this->ProducerIdentification = std::string(ProducerIdentification);
861 }
862 
863 Error BitcodeReader::materializeForwardReferencedFunctions() {
864   if (WillMaterializeAllForwardRefs)
865     return Error::success();
866 
867   // Prevent recursion.
868   WillMaterializeAllForwardRefs = true;
869 
870   while (!BasicBlockFwdRefQueue.empty()) {
871     Function *F = BasicBlockFwdRefQueue.front();
872     BasicBlockFwdRefQueue.pop_front();
873     assert(F && "Expected valid function");
874     if (!BasicBlockFwdRefs.count(F))
875       // Already materialized.
876       continue;
877 
878     // Check for a function that isn't materializable to prevent an infinite
879     // loop.  When parsing a blockaddress stored in a global variable, there
880     // isn't a trivial way to check if a function will have a body without a
881     // linear search through FunctionsWithBodies, so just check it here.
882     if (!F->isMaterializable())
883       return error("Never resolved function from blockaddress");
884 
885     // Try to materialize F.
886     if (Error Err = materialize(F))
887       return Err;
888   }
889   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
890 
891   for (Function *F : BackwardRefFunctions)
892     if (Error Err = materialize(F))
893       return Err;
894   BackwardRefFunctions.clear();
895 
896   // Reset state.
897   WillMaterializeAllForwardRefs = false;
898   return Error::success();
899 }
900 
901 //===----------------------------------------------------------------------===//
902 //  Helper functions to implement forward reference resolution, etc.
903 //===----------------------------------------------------------------------===//
904 
905 static bool hasImplicitComdat(size_t Val) {
906   switch (Val) {
907   default:
908     return false;
909   case 1:  // Old WeakAnyLinkage
910   case 4:  // Old LinkOnceAnyLinkage
911   case 10: // Old WeakODRLinkage
912   case 11: // Old LinkOnceODRLinkage
913     return true;
914   }
915 }
916 
917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
918   switch (Val) {
919   default: // Map unknown/new linkages to external
920   case 0:
921     return GlobalValue::ExternalLinkage;
922   case 2:
923     return GlobalValue::AppendingLinkage;
924   case 3:
925     return GlobalValue::InternalLinkage;
926   case 5:
927     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
928   case 6:
929     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
930   case 7:
931     return GlobalValue::ExternalWeakLinkage;
932   case 8:
933     return GlobalValue::CommonLinkage;
934   case 9:
935     return GlobalValue::PrivateLinkage;
936   case 12:
937     return GlobalValue::AvailableExternallyLinkage;
938   case 13:
939     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
940   case 14:
941     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
942   case 15:
943     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
944   case 1: // Old value with implicit comdat.
945   case 16:
946     return GlobalValue::WeakAnyLinkage;
947   case 10: // Old value with implicit comdat.
948   case 17:
949     return GlobalValue::WeakODRLinkage;
950   case 4: // Old value with implicit comdat.
951   case 18:
952     return GlobalValue::LinkOnceAnyLinkage;
953   case 11: // Old value with implicit comdat.
954   case 19:
955     return GlobalValue::LinkOnceODRLinkage;
956   }
957 }
958 
959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
960   FunctionSummary::FFlags Flags;
961   Flags.ReadNone = RawFlags & 0x1;
962   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
963   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
964   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
965   Flags.NoInline = (RawFlags >> 4) & 0x1;
966   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
967   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
968   Flags.MayThrow = (RawFlags >> 7) & 0x1;
969   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
970   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
971   return Flags;
972 }
973 
974 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
975 //
976 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
977 // visibility: [8, 10).
978 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
979                                                             uint64_t Version) {
980   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
981   // like getDecodedLinkage() above. Any future change to the linkage enum and
982   // to getDecodedLinkage() will need to be taken into account here as above.
983   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
984   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
985   RawFlags = RawFlags >> 4;
986   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
987   // The Live flag wasn't introduced until version 3. For dead stripping
988   // to work correctly on earlier versions, we must conservatively treat all
989   // values as live.
990   bool Live = (RawFlags & 0x2) || Version < 3;
991   bool Local = (RawFlags & 0x4);
992   bool AutoHide = (RawFlags & 0x8);
993 
994   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
995                                      Live, Local, AutoHide);
996 }
997 
998 // Decode the flags for GlobalVariable in the summary
999 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1000   return GlobalVarSummary::GVarFlags(
1001       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1002       (RawFlags & 0x4) ? true : false,
1003       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1004 }
1005 
1006 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1007   switch (Val) {
1008   default: // Map unknown visibilities to default.
1009   case 0: return GlobalValue::DefaultVisibility;
1010   case 1: return GlobalValue::HiddenVisibility;
1011   case 2: return GlobalValue::ProtectedVisibility;
1012   }
1013 }
1014 
1015 static GlobalValue::DLLStorageClassTypes
1016 getDecodedDLLStorageClass(unsigned Val) {
1017   switch (Val) {
1018   default: // Map unknown values to default.
1019   case 0: return GlobalValue::DefaultStorageClass;
1020   case 1: return GlobalValue::DLLImportStorageClass;
1021   case 2: return GlobalValue::DLLExportStorageClass;
1022   }
1023 }
1024 
1025 static bool getDecodedDSOLocal(unsigned Val) {
1026   switch(Val) {
1027   default: // Map unknown values to preemptable.
1028   case 0:  return false;
1029   case 1:  return true;
1030   }
1031 }
1032 
1033 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1034   switch (Val) {
1035     case 0: return GlobalVariable::NotThreadLocal;
1036     default: // Map unknown non-zero value to general dynamic.
1037     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1038     case 2: return GlobalVariable::LocalDynamicTLSModel;
1039     case 3: return GlobalVariable::InitialExecTLSModel;
1040     case 4: return GlobalVariable::LocalExecTLSModel;
1041   }
1042 }
1043 
1044 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1045   switch (Val) {
1046     default: // Map unknown to UnnamedAddr::None.
1047     case 0: return GlobalVariable::UnnamedAddr::None;
1048     case 1: return GlobalVariable::UnnamedAddr::Global;
1049     case 2: return GlobalVariable::UnnamedAddr::Local;
1050   }
1051 }
1052 
1053 static int getDecodedCastOpcode(unsigned Val) {
1054   switch (Val) {
1055   default: return -1;
1056   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1057   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1058   case bitc::CAST_SEXT    : return Instruction::SExt;
1059   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1060   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1061   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1062   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1063   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1064   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1065   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1066   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1067   case bitc::CAST_BITCAST : return Instruction::BitCast;
1068   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1069   }
1070 }
1071 
1072 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1073   bool IsFP = Ty->isFPOrFPVectorTy();
1074   // UnOps are only valid for int/fp or vector of int/fp types
1075   if (!IsFP && !Ty->isIntOrIntVectorTy())
1076     return -1;
1077 
1078   switch (Val) {
1079   default:
1080     return -1;
1081   case bitc::UNOP_FNEG:
1082     return IsFP ? Instruction::FNeg : -1;
1083   }
1084 }
1085 
1086 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1087   bool IsFP = Ty->isFPOrFPVectorTy();
1088   // BinOps are only valid for int/fp or vector of int/fp types
1089   if (!IsFP && !Ty->isIntOrIntVectorTy())
1090     return -1;
1091 
1092   switch (Val) {
1093   default:
1094     return -1;
1095   case bitc::BINOP_ADD:
1096     return IsFP ? Instruction::FAdd : Instruction::Add;
1097   case bitc::BINOP_SUB:
1098     return IsFP ? Instruction::FSub : Instruction::Sub;
1099   case bitc::BINOP_MUL:
1100     return IsFP ? Instruction::FMul : Instruction::Mul;
1101   case bitc::BINOP_UDIV:
1102     return IsFP ? -1 : Instruction::UDiv;
1103   case bitc::BINOP_SDIV:
1104     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1105   case bitc::BINOP_UREM:
1106     return IsFP ? -1 : Instruction::URem;
1107   case bitc::BINOP_SREM:
1108     return IsFP ? Instruction::FRem : Instruction::SRem;
1109   case bitc::BINOP_SHL:
1110     return IsFP ? -1 : Instruction::Shl;
1111   case bitc::BINOP_LSHR:
1112     return IsFP ? -1 : Instruction::LShr;
1113   case bitc::BINOP_ASHR:
1114     return IsFP ? -1 : Instruction::AShr;
1115   case bitc::BINOP_AND:
1116     return IsFP ? -1 : Instruction::And;
1117   case bitc::BINOP_OR:
1118     return IsFP ? -1 : Instruction::Or;
1119   case bitc::BINOP_XOR:
1120     return IsFP ? -1 : Instruction::Xor;
1121   }
1122 }
1123 
1124 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1125   switch (Val) {
1126   default: return AtomicRMWInst::BAD_BINOP;
1127   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1128   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1129   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1130   case bitc::RMW_AND: return AtomicRMWInst::And;
1131   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1132   case bitc::RMW_OR: return AtomicRMWInst::Or;
1133   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1134   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1135   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1136   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1137   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1138   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1139   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1140   }
1141 }
1142 
1143 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1144   switch (Val) {
1145   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1146   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1147   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1148   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1149   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1150   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1151   default: // Map unknown orderings to sequentially-consistent.
1152   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1153   }
1154 }
1155 
1156 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1157   switch (Val) {
1158   default: // Map unknown selection kinds to any.
1159   case bitc::COMDAT_SELECTION_KIND_ANY:
1160     return Comdat::Any;
1161   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1162     return Comdat::ExactMatch;
1163   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1164     return Comdat::Largest;
1165   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1166     return Comdat::NoDeduplicate;
1167   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1168     return Comdat::SameSize;
1169   }
1170 }
1171 
1172 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1173   FastMathFlags FMF;
1174   if (0 != (Val & bitc::UnsafeAlgebra))
1175     FMF.setFast();
1176   if (0 != (Val & bitc::AllowReassoc))
1177     FMF.setAllowReassoc();
1178   if (0 != (Val & bitc::NoNaNs))
1179     FMF.setNoNaNs();
1180   if (0 != (Val & bitc::NoInfs))
1181     FMF.setNoInfs();
1182   if (0 != (Val & bitc::NoSignedZeros))
1183     FMF.setNoSignedZeros();
1184   if (0 != (Val & bitc::AllowReciprocal))
1185     FMF.setAllowReciprocal();
1186   if (0 != (Val & bitc::AllowContract))
1187     FMF.setAllowContract(true);
1188   if (0 != (Val & bitc::ApproxFunc))
1189     FMF.setApproxFunc();
1190   return FMF;
1191 }
1192 
1193 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1194   switch (Val) {
1195   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1196   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1197   }
1198 }
1199 
1200 Type *BitcodeReader::getTypeByID(unsigned ID) {
1201   // The type table size is always specified correctly.
1202   if (ID >= TypeList.size())
1203     return nullptr;
1204 
1205   if (Type *Ty = TypeList[ID])
1206     return Ty;
1207 
1208   // If we have a forward reference, the only possible case is when it is to a
1209   // named struct.  Just create a placeholder for now.
1210   return TypeList[ID] = createIdentifiedStructType(Context);
1211 }
1212 
1213 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1214   auto It = ContainedTypeIDs.find(ID);
1215   if (It == ContainedTypeIDs.end())
1216     return InvalidTypeID;
1217 
1218   if (Idx >= It->second.size())
1219     return InvalidTypeID;
1220 
1221   return It->second[Idx];
1222 }
1223 
1224 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1225   if (ID >= TypeList.size())
1226     return nullptr;
1227 
1228   Type *Ty = TypeList[ID];
1229   if (!Ty->isPointerTy())
1230     return nullptr;
1231 
1232   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1233   if (!ElemTy)
1234     return nullptr;
1235 
1236   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1237          "Incorrect element type");
1238   return ElemTy;
1239 }
1240 
1241 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1242                                          ArrayRef<unsigned> ChildTypeIDs) {
1243   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1244   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1245   auto It = VirtualTypeIDs.find(CacheKey);
1246   if (It != VirtualTypeIDs.end()) {
1247     // The cmpxchg return value is the only place we need more than one
1248     // contained type ID, however the second one will always be the same (i1),
1249     // so we don't need to include it in the cache key. This asserts that the
1250     // contained types are indeed as expected and there are no collisions.
1251     assert((ChildTypeIDs.empty() ||
1252             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1253            "Incorrect cached contained type IDs");
1254     return It->second;
1255   }
1256 
1257 #ifndef NDEBUG
1258   if (!Ty->isOpaquePointerTy()) {
1259     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1260            "Wrong number of contained types");
1261     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1262       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1263              "Incorrect contained type ID");
1264     }
1265   }
1266 #endif
1267 
1268   unsigned TypeID = TypeList.size();
1269   TypeList.push_back(Ty);
1270   if (!ChildTypeIDs.empty())
1271     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1272   VirtualTypeIDs.insert({CacheKey, TypeID});
1273   return TypeID;
1274 }
1275 
1276 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1277                                                       StringRef Name) {
1278   auto *Ret = StructType::create(Context, Name);
1279   IdentifiedStructTypes.push_back(Ret);
1280   return Ret;
1281 }
1282 
1283 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1284   auto *Ret = StructType::create(Context);
1285   IdentifiedStructTypes.push_back(Ret);
1286   return Ret;
1287 }
1288 
1289 //===----------------------------------------------------------------------===//
1290 //  Functions for parsing blocks from the bitcode file
1291 //===----------------------------------------------------------------------===//
1292 
1293 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1294   switch (Val) {
1295   case Attribute::EndAttrKinds:
1296   case Attribute::EmptyKey:
1297   case Attribute::TombstoneKey:
1298     llvm_unreachable("Synthetic enumerators which should never get here");
1299 
1300   case Attribute::None:            return 0;
1301   case Attribute::ZExt:            return 1 << 0;
1302   case Attribute::SExt:            return 1 << 1;
1303   case Attribute::NoReturn:        return 1 << 2;
1304   case Attribute::InReg:           return 1 << 3;
1305   case Attribute::StructRet:       return 1 << 4;
1306   case Attribute::NoUnwind:        return 1 << 5;
1307   case Attribute::NoAlias:         return 1 << 6;
1308   case Attribute::ByVal:           return 1 << 7;
1309   case Attribute::Nest:            return 1 << 8;
1310   case Attribute::ReadNone:        return 1 << 9;
1311   case Attribute::ReadOnly:        return 1 << 10;
1312   case Attribute::NoInline:        return 1 << 11;
1313   case Attribute::AlwaysInline:    return 1 << 12;
1314   case Attribute::OptimizeForSize: return 1 << 13;
1315   case Attribute::StackProtect:    return 1 << 14;
1316   case Attribute::StackProtectReq: return 1 << 15;
1317   case Attribute::Alignment:       return 31 << 16;
1318   case Attribute::NoCapture:       return 1 << 21;
1319   case Attribute::NoRedZone:       return 1 << 22;
1320   case Attribute::NoImplicitFloat: return 1 << 23;
1321   case Attribute::Naked:           return 1 << 24;
1322   case Attribute::InlineHint:      return 1 << 25;
1323   case Attribute::StackAlignment:  return 7 << 26;
1324   case Attribute::ReturnsTwice:    return 1 << 29;
1325   case Attribute::UWTable:         return 1 << 30;
1326   case Attribute::NonLazyBind:     return 1U << 31;
1327   case Attribute::SanitizeAddress: return 1ULL << 32;
1328   case Attribute::MinSize:         return 1ULL << 33;
1329   case Attribute::NoDuplicate:     return 1ULL << 34;
1330   case Attribute::StackProtectStrong: return 1ULL << 35;
1331   case Attribute::SanitizeThread:  return 1ULL << 36;
1332   case Attribute::SanitizeMemory:  return 1ULL << 37;
1333   case Attribute::NoBuiltin:       return 1ULL << 38;
1334   case Attribute::Returned:        return 1ULL << 39;
1335   case Attribute::Cold:            return 1ULL << 40;
1336   case Attribute::Builtin:         return 1ULL << 41;
1337   case Attribute::OptimizeNone:    return 1ULL << 42;
1338   case Attribute::InAlloca:        return 1ULL << 43;
1339   case Attribute::NonNull:         return 1ULL << 44;
1340   case Attribute::JumpTable:       return 1ULL << 45;
1341   case Attribute::Convergent:      return 1ULL << 46;
1342   case Attribute::SafeStack:       return 1ULL << 47;
1343   case Attribute::NoRecurse:       return 1ULL << 48;
1344   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1345   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1346   case Attribute::SwiftSelf:       return 1ULL << 51;
1347   case Attribute::SwiftError:      return 1ULL << 52;
1348   case Attribute::WriteOnly:       return 1ULL << 53;
1349   case Attribute::Speculatable:    return 1ULL << 54;
1350   case Attribute::StrictFP:        return 1ULL << 55;
1351   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1352   case Attribute::NoCfCheck:       return 1ULL << 57;
1353   case Attribute::OptForFuzzing:   return 1ULL << 58;
1354   case Attribute::ShadowCallStack: return 1ULL << 59;
1355   case Attribute::SpeculativeLoadHardening:
1356     return 1ULL << 60;
1357   case Attribute::ImmArg:
1358     return 1ULL << 61;
1359   case Attribute::WillReturn:
1360     return 1ULL << 62;
1361   case Attribute::NoFree:
1362     return 1ULL << 63;
1363   default:
1364     // Other attributes are not supported in the raw format,
1365     // as we ran out of space.
1366     return 0;
1367   }
1368   llvm_unreachable("Unsupported attribute type");
1369 }
1370 
1371 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1372   if (!Val) return;
1373 
1374   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1375        I = Attribute::AttrKind(I + 1)) {
1376     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1377       if (I == Attribute::Alignment)
1378         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1379       else if (I == Attribute::StackAlignment)
1380         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1381       else if (Attribute::isTypeAttrKind(I))
1382         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1383       else
1384         B.addAttribute(I);
1385     }
1386   }
1387 }
1388 
1389 /// This fills an AttrBuilder object with the LLVM attributes that have
1390 /// been decoded from the given integer. This function must stay in sync with
1391 /// 'encodeLLVMAttributesForBitcode'.
1392 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1393                                            uint64_t EncodedAttrs) {
1394   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1395   // the bits above 31 down by 11 bits.
1396   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1397   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1398          "Alignment must be a power of two.");
1399 
1400   if (Alignment)
1401     B.addAlignmentAttr(Alignment);
1402   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1403                           (EncodedAttrs & 0xffff));
1404 }
1405 
1406 Error BitcodeReader::parseAttributeBlock() {
1407   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1408     return Err;
1409 
1410   if (!MAttributes.empty())
1411     return error("Invalid multiple blocks");
1412 
1413   SmallVector<uint64_t, 64> Record;
1414 
1415   SmallVector<AttributeList, 8> Attrs;
1416 
1417   // Read all the records.
1418   while (true) {
1419     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1420     if (!MaybeEntry)
1421       return MaybeEntry.takeError();
1422     BitstreamEntry Entry = MaybeEntry.get();
1423 
1424     switch (Entry.Kind) {
1425     case BitstreamEntry::SubBlock: // Handled for us already.
1426     case BitstreamEntry::Error:
1427       return error("Malformed block");
1428     case BitstreamEntry::EndBlock:
1429       return Error::success();
1430     case BitstreamEntry::Record:
1431       // The interesting case.
1432       break;
1433     }
1434 
1435     // Read a record.
1436     Record.clear();
1437     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1438     if (!MaybeRecord)
1439       return MaybeRecord.takeError();
1440     switch (MaybeRecord.get()) {
1441     default:  // Default behavior: ignore.
1442       break;
1443     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1444       // Deprecated, but still needed to read old bitcode files.
1445       if (Record.size() & 1)
1446         return error("Invalid parameter attribute record");
1447 
1448       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1449         AttrBuilder B(Context);
1450         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1451         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1452       }
1453 
1454       MAttributes.push_back(AttributeList::get(Context, Attrs));
1455       Attrs.clear();
1456       break;
1457     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1458       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1459         Attrs.push_back(MAttributeGroups[Record[i]]);
1460 
1461       MAttributes.push_back(AttributeList::get(Context, Attrs));
1462       Attrs.clear();
1463       break;
1464     }
1465   }
1466 }
1467 
1468 // Returns Attribute::None on unrecognized codes.
1469 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1470   switch (Code) {
1471   default:
1472     return Attribute::None;
1473   case bitc::ATTR_KIND_ALIGNMENT:
1474     return Attribute::Alignment;
1475   case bitc::ATTR_KIND_ALWAYS_INLINE:
1476     return Attribute::AlwaysInline;
1477   case bitc::ATTR_KIND_ARGMEMONLY:
1478     return Attribute::ArgMemOnly;
1479   case bitc::ATTR_KIND_BUILTIN:
1480     return Attribute::Builtin;
1481   case bitc::ATTR_KIND_BY_VAL:
1482     return Attribute::ByVal;
1483   case bitc::ATTR_KIND_IN_ALLOCA:
1484     return Attribute::InAlloca;
1485   case bitc::ATTR_KIND_COLD:
1486     return Attribute::Cold;
1487   case bitc::ATTR_KIND_CONVERGENT:
1488     return Attribute::Convergent;
1489   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1490     return Attribute::DisableSanitizerInstrumentation;
1491   case bitc::ATTR_KIND_ELEMENTTYPE:
1492     return Attribute::ElementType;
1493   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1494     return Attribute::InaccessibleMemOnly;
1495   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1496     return Attribute::InaccessibleMemOrArgMemOnly;
1497   case bitc::ATTR_KIND_INLINE_HINT:
1498     return Attribute::InlineHint;
1499   case bitc::ATTR_KIND_IN_REG:
1500     return Attribute::InReg;
1501   case bitc::ATTR_KIND_JUMP_TABLE:
1502     return Attribute::JumpTable;
1503   case bitc::ATTR_KIND_MIN_SIZE:
1504     return Attribute::MinSize;
1505   case bitc::ATTR_KIND_NAKED:
1506     return Attribute::Naked;
1507   case bitc::ATTR_KIND_NEST:
1508     return Attribute::Nest;
1509   case bitc::ATTR_KIND_NO_ALIAS:
1510     return Attribute::NoAlias;
1511   case bitc::ATTR_KIND_NO_BUILTIN:
1512     return Attribute::NoBuiltin;
1513   case bitc::ATTR_KIND_NO_CALLBACK:
1514     return Attribute::NoCallback;
1515   case bitc::ATTR_KIND_NO_CAPTURE:
1516     return Attribute::NoCapture;
1517   case bitc::ATTR_KIND_NO_DUPLICATE:
1518     return Attribute::NoDuplicate;
1519   case bitc::ATTR_KIND_NOFREE:
1520     return Attribute::NoFree;
1521   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1522     return Attribute::NoImplicitFloat;
1523   case bitc::ATTR_KIND_NO_INLINE:
1524     return Attribute::NoInline;
1525   case bitc::ATTR_KIND_NO_RECURSE:
1526     return Attribute::NoRecurse;
1527   case bitc::ATTR_KIND_NO_MERGE:
1528     return Attribute::NoMerge;
1529   case bitc::ATTR_KIND_NON_LAZY_BIND:
1530     return Attribute::NonLazyBind;
1531   case bitc::ATTR_KIND_NON_NULL:
1532     return Attribute::NonNull;
1533   case bitc::ATTR_KIND_DEREFERENCEABLE:
1534     return Attribute::Dereferenceable;
1535   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1536     return Attribute::DereferenceableOrNull;
1537   case bitc::ATTR_KIND_ALLOC_ALIGN:
1538     return Attribute::AllocAlign;
1539   case bitc::ATTR_KIND_ALLOC_SIZE:
1540     return Attribute::AllocSize;
1541   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1542     return Attribute::AllocatedPointer;
1543   case bitc::ATTR_KIND_NO_RED_ZONE:
1544     return Attribute::NoRedZone;
1545   case bitc::ATTR_KIND_NO_RETURN:
1546     return Attribute::NoReturn;
1547   case bitc::ATTR_KIND_NOSYNC:
1548     return Attribute::NoSync;
1549   case bitc::ATTR_KIND_NOCF_CHECK:
1550     return Attribute::NoCfCheck;
1551   case bitc::ATTR_KIND_NO_PROFILE:
1552     return Attribute::NoProfile;
1553   case bitc::ATTR_KIND_NO_UNWIND:
1554     return Attribute::NoUnwind;
1555   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1556     return Attribute::NoSanitizeBounds;
1557   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1558     return Attribute::NoSanitizeCoverage;
1559   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1560     return Attribute::NullPointerIsValid;
1561   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1562     return Attribute::OptForFuzzing;
1563   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1564     return Attribute::OptimizeForSize;
1565   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1566     return Attribute::OptimizeNone;
1567   case bitc::ATTR_KIND_READ_NONE:
1568     return Attribute::ReadNone;
1569   case bitc::ATTR_KIND_READ_ONLY:
1570     return Attribute::ReadOnly;
1571   case bitc::ATTR_KIND_RETURNED:
1572     return Attribute::Returned;
1573   case bitc::ATTR_KIND_RETURNS_TWICE:
1574     return Attribute::ReturnsTwice;
1575   case bitc::ATTR_KIND_S_EXT:
1576     return Attribute::SExt;
1577   case bitc::ATTR_KIND_SPECULATABLE:
1578     return Attribute::Speculatable;
1579   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1580     return Attribute::StackAlignment;
1581   case bitc::ATTR_KIND_STACK_PROTECT:
1582     return Attribute::StackProtect;
1583   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1584     return Attribute::StackProtectReq;
1585   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1586     return Attribute::StackProtectStrong;
1587   case bitc::ATTR_KIND_SAFESTACK:
1588     return Attribute::SafeStack;
1589   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1590     return Attribute::ShadowCallStack;
1591   case bitc::ATTR_KIND_STRICT_FP:
1592     return Attribute::StrictFP;
1593   case bitc::ATTR_KIND_STRUCT_RET:
1594     return Attribute::StructRet;
1595   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1596     return Attribute::SanitizeAddress;
1597   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1598     return Attribute::SanitizeHWAddress;
1599   case bitc::ATTR_KIND_SANITIZE_THREAD:
1600     return Attribute::SanitizeThread;
1601   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1602     return Attribute::SanitizeMemory;
1603   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1604     return Attribute::SpeculativeLoadHardening;
1605   case bitc::ATTR_KIND_SWIFT_ERROR:
1606     return Attribute::SwiftError;
1607   case bitc::ATTR_KIND_SWIFT_SELF:
1608     return Attribute::SwiftSelf;
1609   case bitc::ATTR_KIND_SWIFT_ASYNC:
1610     return Attribute::SwiftAsync;
1611   case bitc::ATTR_KIND_UW_TABLE:
1612     return Attribute::UWTable;
1613   case bitc::ATTR_KIND_VSCALE_RANGE:
1614     return Attribute::VScaleRange;
1615   case bitc::ATTR_KIND_WILLRETURN:
1616     return Attribute::WillReturn;
1617   case bitc::ATTR_KIND_WRITEONLY:
1618     return Attribute::WriteOnly;
1619   case bitc::ATTR_KIND_Z_EXT:
1620     return Attribute::ZExt;
1621   case bitc::ATTR_KIND_IMMARG:
1622     return Attribute::ImmArg;
1623   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1624     return Attribute::SanitizeMemTag;
1625   case bitc::ATTR_KIND_PREALLOCATED:
1626     return Attribute::Preallocated;
1627   case bitc::ATTR_KIND_NOUNDEF:
1628     return Attribute::NoUndef;
1629   case bitc::ATTR_KIND_BYREF:
1630     return Attribute::ByRef;
1631   case bitc::ATTR_KIND_MUSTPROGRESS:
1632     return Attribute::MustProgress;
1633   case bitc::ATTR_KIND_HOT:
1634     return Attribute::Hot;
1635   }
1636 }
1637 
1638 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1639                                          MaybeAlign &Alignment) {
1640   // Note: Alignment in bitcode files is incremented by 1, so that zero
1641   // can be used for default alignment.
1642   if (Exponent > Value::MaxAlignmentExponent + 1)
1643     return error("Invalid alignment value");
1644   Alignment = decodeMaybeAlign(Exponent);
1645   return Error::success();
1646 }
1647 
1648 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1649   *Kind = getAttrFromCode(Code);
1650   if (*Kind == Attribute::None)
1651     return error("Unknown attribute kind (" + Twine(Code) + ")");
1652   return Error::success();
1653 }
1654 
1655 Error BitcodeReader::parseAttributeGroupBlock() {
1656   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1657     return Err;
1658 
1659   if (!MAttributeGroups.empty())
1660     return error("Invalid multiple blocks");
1661 
1662   SmallVector<uint64_t, 64> Record;
1663 
1664   // Read all the records.
1665   while (true) {
1666     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1667     if (!MaybeEntry)
1668       return MaybeEntry.takeError();
1669     BitstreamEntry Entry = MaybeEntry.get();
1670 
1671     switch (Entry.Kind) {
1672     case BitstreamEntry::SubBlock: // Handled for us already.
1673     case BitstreamEntry::Error:
1674       return error("Malformed block");
1675     case BitstreamEntry::EndBlock:
1676       return Error::success();
1677     case BitstreamEntry::Record:
1678       // The interesting case.
1679       break;
1680     }
1681 
1682     // Read a record.
1683     Record.clear();
1684     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1685     if (!MaybeRecord)
1686       return MaybeRecord.takeError();
1687     switch (MaybeRecord.get()) {
1688     default:  // Default behavior: ignore.
1689       break;
1690     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1691       if (Record.size() < 3)
1692         return error("Invalid grp record");
1693 
1694       uint64_t GrpID = Record[0];
1695       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1696 
1697       AttrBuilder B(Context);
1698       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1699         if (Record[i] == 0) {        // Enum attribute
1700           Attribute::AttrKind Kind;
1701           if (Error Err = parseAttrKind(Record[++i], &Kind))
1702             return Err;
1703 
1704           // Upgrade old-style byval attribute to one with a type, even if it's
1705           // nullptr. We will have to insert the real type when we associate
1706           // this AttributeList with a function.
1707           if (Kind == Attribute::ByVal)
1708             B.addByValAttr(nullptr);
1709           else if (Kind == Attribute::StructRet)
1710             B.addStructRetAttr(nullptr);
1711           else if (Kind == Attribute::InAlloca)
1712             B.addInAllocaAttr(nullptr);
1713           else if (Kind == Attribute::UWTable)
1714             B.addUWTableAttr(UWTableKind::Default);
1715           else if (Attribute::isEnumAttrKind(Kind))
1716             B.addAttribute(Kind);
1717           else
1718             return error("Not an enum attribute");
1719         } else if (Record[i] == 1) { // Integer attribute
1720           Attribute::AttrKind Kind;
1721           if (Error Err = parseAttrKind(Record[++i], &Kind))
1722             return Err;
1723           if (!Attribute::isIntAttrKind(Kind))
1724             return error("Not an int attribute");
1725           if (Kind == Attribute::Alignment)
1726             B.addAlignmentAttr(Record[++i]);
1727           else if (Kind == Attribute::StackAlignment)
1728             B.addStackAlignmentAttr(Record[++i]);
1729           else if (Kind == Attribute::Dereferenceable)
1730             B.addDereferenceableAttr(Record[++i]);
1731           else if (Kind == Attribute::DereferenceableOrNull)
1732             B.addDereferenceableOrNullAttr(Record[++i]);
1733           else if (Kind == Attribute::AllocSize)
1734             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1735           else if (Kind == Attribute::VScaleRange)
1736             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1737           else if (Kind == Attribute::UWTable)
1738             B.addUWTableAttr(UWTableKind(Record[++i]));
1739         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1740           bool HasValue = (Record[i++] == 4);
1741           SmallString<64> KindStr;
1742           SmallString<64> ValStr;
1743 
1744           while (Record[i] != 0 && i != e)
1745             KindStr += Record[i++];
1746           assert(Record[i] == 0 && "Kind string not null terminated");
1747 
1748           if (HasValue) {
1749             // Has a value associated with it.
1750             ++i; // Skip the '0' that terminates the "kind" string.
1751             while (Record[i] != 0 && i != e)
1752               ValStr += Record[i++];
1753             assert(Record[i] == 0 && "Value string not null terminated");
1754           }
1755 
1756           B.addAttribute(KindStr.str(), ValStr.str());
1757         } else if (Record[i] == 5 || Record[i] == 6) {
1758           bool HasType = Record[i] == 6;
1759           Attribute::AttrKind Kind;
1760           if (Error Err = parseAttrKind(Record[++i], &Kind))
1761             return Err;
1762           if (!Attribute::isTypeAttrKind(Kind))
1763             return error("Not a type attribute");
1764 
1765           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1766         } else {
1767           return error("Invalid attribute group entry");
1768         }
1769       }
1770 
1771       UpgradeAttributes(B);
1772       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1773       break;
1774     }
1775     }
1776   }
1777 }
1778 
1779 Error BitcodeReader::parseTypeTable() {
1780   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1781     return Err;
1782 
1783   return parseTypeTableBody();
1784 }
1785 
1786 Error BitcodeReader::parseTypeTableBody() {
1787   if (!TypeList.empty())
1788     return error("Invalid multiple blocks");
1789 
1790   SmallVector<uint64_t, 64> Record;
1791   unsigned NumRecords = 0;
1792 
1793   SmallString<64> TypeName;
1794 
1795   // Read all the records for this type table.
1796   while (true) {
1797     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1798     if (!MaybeEntry)
1799       return MaybeEntry.takeError();
1800     BitstreamEntry Entry = MaybeEntry.get();
1801 
1802     switch (Entry.Kind) {
1803     case BitstreamEntry::SubBlock: // Handled for us already.
1804     case BitstreamEntry::Error:
1805       return error("Malformed block");
1806     case BitstreamEntry::EndBlock:
1807       if (NumRecords != TypeList.size())
1808         return error("Malformed block");
1809       return Error::success();
1810     case BitstreamEntry::Record:
1811       // The interesting case.
1812       break;
1813     }
1814 
1815     // Read a record.
1816     Record.clear();
1817     Type *ResultTy = nullptr;
1818     SmallVector<unsigned> ContainedIDs;
1819     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1820     if (!MaybeRecord)
1821       return MaybeRecord.takeError();
1822     switch (MaybeRecord.get()) {
1823     default:
1824       return error("Invalid value");
1825     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1826       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1827       // type list.  This allows us to reserve space.
1828       if (Record.empty())
1829         return error("Invalid numentry record");
1830       TypeList.resize(Record[0]);
1831       continue;
1832     case bitc::TYPE_CODE_VOID:      // VOID
1833       ResultTy = Type::getVoidTy(Context);
1834       break;
1835     case bitc::TYPE_CODE_HALF:     // HALF
1836       ResultTy = Type::getHalfTy(Context);
1837       break;
1838     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1839       ResultTy = Type::getBFloatTy(Context);
1840       break;
1841     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1842       ResultTy = Type::getFloatTy(Context);
1843       break;
1844     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1845       ResultTy = Type::getDoubleTy(Context);
1846       break;
1847     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1848       ResultTy = Type::getX86_FP80Ty(Context);
1849       break;
1850     case bitc::TYPE_CODE_FP128:     // FP128
1851       ResultTy = Type::getFP128Ty(Context);
1852       break;
1853     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1854       ResultTy = Type::getPPC_FP128Ty(Context);
1855       break;
1856     case bitc::TYPE_CODE_LABEL:     // LABEL
1857       ResultTy = Type::getLabelTy(Context);
1858       break;
1859     case bitc::TYPE_CODE_METADATA:  // METADATA
1860       ResultTy = Type::getMetadataTy(Context);
1861       break;
1862     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1863       ResultTy = Type::getX86_MMXTy(Context);
1864       break;
1865     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1866       ResultTy = Type::getX86_AMXTy(Context);
1867       break;
1868     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1869       ResultTy = Type::getTokenTy(Context);
1870       break;
1871     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1872       if (Record.empty())
1873         return error("Invalid integer record");
1874 
1875       uint64_t NumBits = Record[0];
1876       if (NumBits < IntegerType::MIN_INT_BITS ||
1877           NumBits > IntegerType::MAX_INT_BITS)
1878         return error("Bitwidth for integer type out of range");
1879       ResultTy = IntegerType::get(Context, NumBits);
1880       break;
1881     }
1882     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1883                                     //          [pointee type, address space]
1884       if (Record.empty())
1885         return error("Invalid pointer record");
1886       unsigned AddressSpace = 0;
1887       if (Record.size() == 2)
1888         AddressSpace = Record[1];
1889       ResultTy = getTypeByID(Record[0]);
1890       if (!ResultTy ||
1891           !PointerType::isValidElementType(ResultTy))
1892         return error("Invalid type");
1893       ContainedIDs.push_back(Record[0]);
1894       ResultTy = PointerType::get(ResultTy, AddressSpace);
1895       break;
1896     }
1897     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1898       if (Record.size() != 1)
1899         return error("Invalid opaque pointer record");
1900       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) {
1901         Context.setOpaquePointers(true);
1902       } else if (Context.supportsTypedPointers())
1903         return error(
1904             "Opaque pointers are only supported in -opaque-pointers mode");
1905       unsigned AddressSpace = Record[0];
1906       ResultTy = PointerType::get(Context, AddressSpace);
1907       break;
1908     }
1909     case bitc::TYPE_CODE_FUNCTION_OLD: {
1910       // Deprecated, but still needed to read old bitcode files.
1911       // FUNCTION: [vararg, attrid, retty, paramty x N]
1912       if (Record.size() < 3)
1913         return error("Invalid function record");
1914       SmallVector<Type*, 8> ArgTys;
1915       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1916         if (Type *T = getTypeByID(Record[i]))
1917           ArgTys.push_back(T);
1918         else
1919           break;
1920       }
1921 
1922       ResultTy = getTypeByID(Record[2]);
1923       if (!ResultTy || ArgTys.size() < Record.size()-3)
1924         return error("Invalid type");
1925 
1926       ContainedIDs.append(Record.begin() + 2, Record.end());
1927       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1928       break;
1929     }
1930     case bitc::TYPE_CODE_FUNCTION: {
1931       // FUNCTION: [vararg, retty, paramty x N]
1932       if (Record.size() < 2)
1933         return error("Invalid function record");
1934       SmallVector<Type*, 8> ArgTys;
1935       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1936         if (Type *T = getTypeByID(Record[i])) {
1937           if (!FunctionType::isValidArgumentType(T))
1938             return error("Invalid function argument type");
1939           ArgTys.push_back(T);
1940         }
1941         else
1942           break;
1943       }
1944 
1945       ResultTy = getTypeByID(Record[1]);
1946       if (!ResultTy || ArgTys.size() < Record.size()-2)
1947         return error("Invalid type");
1948 
1949       ContainedIDs.append(Record.begin() + 1, Record.end());
1950       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1951       break;
1952     }
1953     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1954       if (Record.empty())
1955         return error("Invalid anon struct record");
1956       SmallVector<Type*, 8> EltTys;
1957       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1958         if (Type *T = getTypeByID(Record[i]))
1959           EltTys.push_back(T);
1960         else
1961           break;
1962       }
1963       if (EltTys.size() != Record.size()-1)
1964         return error("Invalid type");
1965       ContainedIDs.append(Record.begin() + 1, Record.end());
1966       ResultTy = StructType::get(Context, EltTys, Record[0]);
1967       break;
1968     }
1969     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1970       if (convertToString(Record, 0, TypeName))
1971         return error("Invalid struct name record");
1972       continue;
1973 
1974     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1975       if (Record.empty())
1976         return error("Invalid named struct record");
1977 
1978       if (NumRecords >= TypeList.size())
1979         return error("Invalid TYPE table");
1980 
1981       // Check to see if this was forward referenced, if so fill in the temp.
1982       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1983       if (Res) {
1984         Res->setName(TypeName);
1985         TypeList[NumRecords] = nullptr;
1986       } else  // Otherwise, create a new struct.
1987         Res = createIdentifiedStructType(Context, TypeName);
1988       TypeName.clear();
1989 
1990       SmallVector<Type*, 8> EltTys;
1991       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1992         if (Type *T = getTypeByID(Record[i]))
1993           EltTys.push_back(T);
1994         else
1995           break;
1996       }
1997       if (EltTys.size() != Record.size()-1)
1998         return error("Invalid named struct record");
1999       Res->setBody(EltTys, Record[0]);
2000       ContainedIDs.append(Record.begin() + 1, Record.end());
2001       ResultTy = Res;
2002       break;
2003     }
2004     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2005       if (Record.size() != 1)
2006         return error("Invalid opaque type record");
2007 
2008       if (NumRecords >= TypeList.size())
2009         return error("Invalid TYPE table");
2010 
2011       // Check to see if this was forward referenced, if so fill in the temp.
2012       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2013       if (Res) {
2014         Res->setName(TypeName);
2015         TypeList[NumRecords] = nullptr;
2016       } else  // Otherwise, create a new struct with no body.
2017         Res = createIdentifiedStructType(Context, TypeName);
2018       TypeName.clear();
2019       ResultTy = Res;
2020       break;
2021     }
2022     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2023       if (Record.size() < 2)
2024         return error("Invalid array type record");
2025       ResultTy = getTypeByID(Record[1]);
2026       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2027         return error("Invalid type");
2028       ContainedIDs.push_back(Record[1]);
2029       ResultTy = ArrayType::get(ResultTy, Record[0]);
2030       break;
2031     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2032                                     //         [numelts, eltty, scalable]
2033       if (Record.size() < 2)
2034         return error("Invalid vector type record");
2035       if (Record[0] == 0)
2036         return error("Invalid vector length");
2037       ResultTy = getTypeByID(Record[1]);
2038       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2039         return error("Invalid type");
2040       bool Scalable = Record.size() > 2 ? Record[2] : false;
2041       ContainedIDs.push_back(Record[1]);
2042       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2043       break;
2044     }
2045 
2046     if (NumRecords >= TypeList.size())
2047       return error("Invalid TYPE table");
2048     if (TypeList[NumRecords])
2049       return error(
2050           "Invalid TYPE table: Only named structs can be forward referenced");
2051     assert(ResultTy && "Didn't read a type?");
2052     TypeList[NumRecords] = ResultTy;
2053     if (!ContainedIDs.empty())
2054       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2055     ++NumRecords;
2056   }
2057 }
2058 
2059 Error BitcodeReader::parseOperandBundleTags() {
2060   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2061     return Err;
2062 
2063   if (!BundleTags.empty())
2064     return error("Invalid multiple blocks");
2065 
2066   SmallVector<uint64_t, 64> Record;
2067 
2068   while (true) {
2069     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2070     if (!MaybeEntry)
2071       return MaybeEntry.takeError();
2072     BitstreamEntry Entry = MaybeEntry.get();
2073 
2074     switch (Entry.Kind) {
2075     case BitstreamEntry::SubBlock: // Handled for us already.
2076     case BitstreamEntry::Error:
2077       return error("Malformed block");
2078     case BitstreamEntry::EndBlock:
2079       return Error::success();
2080     case BitstreamEntry::Record:
2081       // The interesting case.
2082       break;
2083     }
2084 
2085     // Tags are implicitly mapped to integers by their order.
2086 
2087     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2088     if (!MaybeRecord)
2089       return MaybeRecord.takeError();
2090     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2091       return error("Invalid operand bundle record");
2092 
2093     // OPERAND_BUNDLE_TAG: [strchr x N]
2094     BundleTags.emplace_back();
2095     if (convertToString(Record, 0, BundleTags.back()))
2096       return error("Invalid operand bundle record");
2097     Record.clear();
2098   }
2099 }
2100 
2101 Error BitcodeReader::parseSyncScopeNames() {
2102   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2103     return Err;
2104 
2105   if (!SSIDs.empty())
2106     return error("Invalid multiple synchronization scope names blocks");
2107 
2108   SmallVector<uint64_t, 64> Record;
2109   while (true) {
2110     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2111     if (!MaybeEntry)
2112       return MaybeEntry.takeError();
2113     BitstreamEntry Entry = MaybeEntry.get();
2114 
2115     switch (Entry.Kind) {
2116     case BitstreamEntry::SubBlock: // Handled for us already.
2117     case BitstreamEntry::Error:
2118       return error("Malformed block");
2119     case BitstreamEntry::EndBlock:
2120       if (SSIDs.empty())
2121         return error("Invalid empty synchronization scope names block");
2122       return Error::success();
2123     case BitstreamEntry::Record:
2124       // The interesting case.
2125       break;
2126     }
2127 
2128     // Synchronization scope names are implicitly mapped to synchronization
2129     // scope IDs by their order.
2130 
2131     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2132     if (!MaybeRecord)
2133       return MaybeRecord.takeError();
2134     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2135       return error("Invalid sync scope record");
2136 
2137     SmallString<16> SSN;
2138     if (convertToString(Record, 0, SSN))
2139       return error("Invalid sync scope record");
2140 
2141     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2142     Record.clear();
2143   }
2144 }
2145 
2146 /// Associate a value with its name from the given index in the provided record.
2147 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2148                                              unsigned NameIndex, Triple &TT) {
2149   SmallString<128> ValueName;
2150   if (convertToString(Record, NameIndex, ValueName))
2151     return error("Invalid record");
2152   unsigned ValueID = Record[0];
2153   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2154     return error("Invalid record");
2155   Value *V = ValueList[ValueID];
2156 
2157   StringRef NameStr(ValueName.data(), ValueName.size());
2158   if (NameStr.find_first_of(0) != StringRef::npos)
2159     return error("Invalid value name");
2160   V->setName(NameStr);
2161   auto *GO = dyn_cast<GlobalObject>(V);
2162   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2163     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2164   return V;
2165 }
2166 
2167 /// Helper to note and return the current location, and jump to the given
2168 /// offset.
2169 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2170                                                  BitstreamCursor &Stream) {
2171   // Save the current parsing location so we can jump back at the end
2172   // of the VST read.
2173   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2174   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2175     return std::move(JumpFailed);
2176   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2177   if (!MaybeEntry)
2178     return MaybeEntry.takeError();
2179   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2180       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2181     return error("Expected value symbol table subblock");
2182   return CurrentBit;
2183 }
2184 
2185 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2186                                             Function *F,
2187                                             ArrayRef<uint64_t> Record) {
2188   // Note that we subtract 1 here because the offset is relative to one word
2189   // before the start of the identification or module block, which was
2190   // historically always the start of the regular bitcode header.
2191   uint64_t FuncWordOffset = Record[1] - 1;
2192   uint64_t FuncBitOffset = FuncWordOffset * 32;
2193   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2194   // Set the LastFunctionBlockBit to point to the last function block.
2195   // Later when parsing is resumed after function materialization,
2196   // we can simply skip that last function block.
2197   if (FuncBitOffset > LastFunctionBlockBit)
2198     LastFunctionBlockBit = FuncBitOffset;
2199 }
2200 
2201 /// Read a new-style GlobalValue symbol table.
2202 Error BitcodeReader::parseGlobalValueSymbolTable() {
2203   unsigned FuncBitcodeOffsetDelta =
2204       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2205 
2206   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2207     return Err;
2208 
2209   SmallVector<uint64_t, 64> Record;
2210   while (true) {
2211     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2212     if (!MaybeEntry)
2213       return MaybeEntry.takeError();
2214     BitstreamEntry Entry = MaybeEntry.get();
2215 
2216     switch (Entry.Kind) {
2217     case BitstreamEntry::SubBlock:
2218     case BitstreamEntry::Error:
2219       return error("Malformed block");
2220     case BitstreamEntry::EndBlock:
2221       return Error::success();
2222     case BitstreamEntry::Record:
2223       break;
2224     }
2225 
2226     Record.clear();
2227     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2228     if (!MaybeRecord)
2229       return MaybeRecord.takeError();
2230     switch (MaybeRecord.get()) {
2231     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2232       unsigned ValueID = Record[0];
2233       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2234         return error("Invalid value reference in symbol table");
2235       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2236                               cast<Function>(ValueList[ValueID]), Record);
2237       break;
2238     }
2239     }
2240   }
2241 }
2242 
2243 /// Parse the value symbol table at either the current parsing location or
2244 /// at the given bit offset if provided.
2245 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2246   uint64_t CurrentBit;
2247   // Pass in the Offset to distinguish between calling for the module-level
2248   // VST (where we want to jump to the VST offset) and the function-level
2249   // VST (where we don't).
2250   if (Offset > 0) {
2251     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2252     if (!MaybeCurrentBit)
2253       return MaybeCurrentBit.takeError();
2254     CurrentBit = MaybeCurrentBit.get();
2255     // If this module uses a string table, read this as a module-level VST.
2256     if (UseStrtab) {
2257       if (Error Err = parseGlobalValueSymbolTable())
2258         return Err;
2259       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2260         return JumpFailed;
2261       return Error::success();
2262     }
2263     // Otherwise, the VST will be in a similar format to a function-level VST,
2264     // and will contain symbol names.
2265   }
2266 
2267   // Compute the delta between the bitcode indices in the VST (the word offset
2268   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2269   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2270   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2271   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2272   // just before entering the VST subblock because: 1) the EnterSubBlock
2273   // changes the AbbrevID width; 2) the VST block is nested within the same
2274   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2275   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2276   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2277   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2278   unsigned FuncBitcodeOffsetDelta =
2279       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2280 
2281   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2282     return Err;
2283 
2284   SmallVector<uint64_t, 64> Record;
2285 
2286   Triple TT(TheModule->getTargetTriple());
2287 
2288   // Read all the records for this value table.
2289   SmallString<128> ValueName;
2290 
2291   while (true) {
2292     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2293     if (!MaybeEntry)
2294       return MaybeEntry.takeError();
2295     BitstreamEntry Entry = MaybeEntry.get();
2296 
2297     switch (Entry.Kind) {
2298     case BitstreamEntry::SubBlock: // Handled for us already.
2299     case BitstreamEntry::Error:
2300       return error("Malformed block");
2301     case BitstreamEntry::EndBlock:
2302       if (Offset > 0)
2303         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2304           return JumpFailed;
2305       return Error::success();
2306     case BitstreamEntry::Record:
2307       // The interesting case.
2308       break;
2309     }
2310 
2311     // Read a record.
2312     Record.clear();
2313     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2314     if (!MaybeRecord)
2315       return MaybeRecord.takeError();
2316     switch (MaybeRecord.get()) {
2317     default:  // Default behavior: unknown type.
2318       break;
2319     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2320       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2321       if (Error Err = ValOrErr.takeError())
2322         return Err;
2323       ValOrErr.get();
2324       break;
2325     }
2326     case bitc::VST_CODE_FNENTRY: {
2327       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2328       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2329       if (Error Err = ValOrErr.takeError())
2330         return Err;
2331       Value *V = ValOrErr.get();
2332 
2333       // Ignore function offsets emitted for aliases of functions in older
2334       // versions of LLVM.
2335       if (auto *F = dyn_cast<Function>(V))
2336         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2337       break;
2338     }
2339     case bitc::VST_CODE_BBENTRY: {
2340       if (convertToString(Record, 1, ValueName))
2341         return error("Invalid bbentry record");
2342       BasicBlock *BB = getBasicBlock(Record[0]);
2343       if (!BB)
2344         return error("Invalid bbentry record");
2345 
2346       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2347       ValueName.clear();
2348       break;
2349     }
2350     }
2351   }
2352 }
2353 
2354 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2355 /// encoding.
2356 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2357   if ((V & 1) == 0)
2358     return V >> 1;
2359   if (V != 1)
2360     return -(V >> 1);
2361   // There is no such thing as -0 with integers.  "-0" really means MININT.
2362   return 1ULL << 63;
2363 }
2364 
2365 /// Resolve all of the initializers for global values and aliases that we can.
2366 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2367   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2368   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2369   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2370 
2371   GlobalInitWorklist.swap(GlobalInits);
2372   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2373   FunctionOperandWorklist.swap(FunctionOperands);
2374 
2375   while (!GlobalInitWorklist.empty()) {
2376     unsigned ValID = GlobalInitWorklist.back().second;
2377     if (ValID >= ValueList.size()) {
2378       // Not ready to resolve this yet, it requires something later in the file.
2379       GlobalInits.push_back(GlobalInitWorklist.back());
2380     } else {
2381       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2382         GlobalInitWorklist.back().first->setInitializer(C);
2383       else
2384         return error("Expected a constant");
2385     }
2386     GlobalInitWorklist.pop_back();
2387   }
2388 
2389   while (!IndirectSymbolInitWorklist.empty()) {
2390     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2391     if (ValID >= ValueList.size()) {
2392       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2393     } else {
2394       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2395       if (!C)
2396         return error("Expected a constant");
2397       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2398       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2399         if (C->getType() != GV->getType())
2400           return error("Alias and aliasee types don't match");
2401         GA->setAliasee(C);
2402       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2403         Type *ResolverFTy =
2404             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2405         // Transparently fix up the type for compatiblity with older bitcode
2406         GI->setResolver(
2407             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2408       } else {
2409         return error("Expected an alias or an ifunc");
2410       }
2411     }
2412     IndirectSymbolInitWorklist.pop_back();
2413   }
2414 
2415   while (!FunctionOperandWorklist.empty()) {
2416     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2417     if (Info.PersonalityFn) {
2418       unsigned ValID = Info.PersonalityFn - 1;
2419       if (ValID < ValueList.size()) {
2420         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2421           Info.F->setPersonalityFn(C);
2422         else
2423           return error("Expected a constant");
2424         Info.PersonalityFn = 0;
2425       }
2426     }
2427     if (Info.Prefix) {
2428       unsigned ValID = Info.Prefix - 1;
2429       if (ValID < ValueList.size()) {
2430         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2431           Info.F->setPrefixData(C);
2432         else
2433           return error("Expected a constant");
2434         Info.Prefix = 0;
2435       }
2436     }
2437     if (Info.Prologue) {
2438       unsigned ValID = Info.Prologue - 1;
2439       if (ValID < ValueList.size()) {
2440         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2441           Info.F->setPrologueData(C);
2442         else
2443           return error("Expected a constant");
2444         Info.Prologue = 0;
2445       }
2446     }
2447     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2448       FunctionOperands.push_back(Info);
2449     FunctionOperandWorklist.pop_back();
2450   }
2451 
2452   return Error::success();
2453 }
2454 
2455 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2456   SmallVector<uint64_t, 8> Words(Vals.size());
2457   transform(Vals, Words.begin(),
2458                  BitcodeReader::decodeSignRotatedValue);
2459 
2460   return APInt(TypeBits, Words);
2461 }
2462 
2463 Error BitcodeReader::parseConstants() {
2464   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2465     return Err;
2466 
2467   SmallVector<uint64_t, 64> Record;
2468 
2469   // Read all the records for this value table.
2470   Type *CurTy = Type::getInt32Ty(Context);
2471   unsigned Int32TyID = getVirtualTypeID(CurTy);
2472   unsigned CurTyID = Int32TyID;
2473   Type *CurElemTy = nullptr;
2474   unsigned NextCstNo = ValueList.size();
2475 
2476   struct DelayedShufTy {
2477     VectorType *OpTy;
2478     unsigned OpTyID;
2479     VectorType *RTy;
2480     uint64_t Op0Idx;
2481     uint64_t Op1Idx;
2482     uint64_t Op2Idx;
2483     unsigned CstNo;
2484   };
2485   std::vector<DelayedShufTy> DelayedShuffles;
2486   struct DelayedSelTy {
2487     Type *OpTy;
2488     unsigned OpTyID;
2489     uint64_t Op0Idx;
2490     uint64_t Op1Idx;
2491     uint64_t Op2Idx;
2492     unsigned CstNo;
2493   };
2494   std::vector<DelayedSelTy> DelayedSelectors;
2495 
2496   while (true) {
2497     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2498     if (!MaybeEntry)
2499       return MaybeEntry.takeError();
2500     BitstreamEntry Entry = MaybeEntry.get();
2501 
2502     switch (Entry.Kind) {
2503     case BitstreamEntry::SubBlock: // Handled for us already.
2504     case BitstreamEntry::Error:
2505       return error("Malformed block");
2506     case BitstreamEntry::EndBlock:
2507       // Once all the constants have been read, go through and resolve forward
2508       // references.
2509       //
2510       // We have to treat shuffles specially because they don't have three
2511       // operands anymore.  We need to convert the shuffle mask into an array,
2512       // and we can't convert a forward reference.
2513       for (auto &DelayedShuffle : DelayedShuffles) {
2514         VectorType *OpTy = DelayedShuffle.OpTy;
2515         unsigned OpTyID = DelayedShuffle.OpTyID;
2516         VectorType *RTy = DelayedShuffle.RTy;
2517         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2518         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2519         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2520         uint64_t CstNo = DelayedShuffle.CstNo;
2521         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID);
2522         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2523         Type *ShufTy =
2524             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2525         Constant *Op2 = ValueList.getConstantFwdRef(
2526             Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID));
2527         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2528           return error("Invalid shufflevector operands");
2529         SmallVector<int, 16> Mask;
2530         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2531         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2532         if (Error Err = ValueList.assignValue(
2533                 CstNo, V,
2534                 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID))))
2535           return Err;
2536       }
2537       for (auto &DelayedSelector : DelayedSelectors) {
2538         Type *OpTy = DelayedSelector.OpTy;
2539         unsigned OpTyID = DelayedSelector.OpTyID;
2540         Type *SelectorTy = Type::getInt1Ty(Context);
2541         unsigned SelectorTyID = getVirtualTypeID(SelectorTy);
2542         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2543         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2544         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2545         uint64_t CstNo = DelayedSelector.CstNo;
2546         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2547         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID);
2548         // The selector might be an i1 or an <n x i1>
2549         // Get the type from the ValueList before getting a forward ref.
2550         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2551           Value *V = ValueList[Op0Idx];
2552           assert(V);
2553           if (SelectorTy != V->getType()) {
2554             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2555             SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID);
2556           }
2557         }
2558         Constant *Op0 =
2559             ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID);
2560         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2561         if (Error Err = ValueList.assignValue(CstNo, V, OpTyID))
2562           return Err;
2563       }
2564 
2565       if (NextCstNo != ValueList.size())
2566         return error("Invalid constant reference");
2567 
2568       ValueList.resolveConstantForwardRefs();
2569       return Error::success();
2570     case BitstreamEntry::Record:
2571       // The interesting case.
2572       break;
2573     }
2574 
2575     // Read a record.
2576     Record.clear();
2577     Type *VoidType = Type::getVoidTy(Context);
2578     Value *V = nullptr;
2579     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2580     if (!MaybeBitCode)
2581       return MaybeBitCode.takeError();
2582     switch (unsigned BitCode = MaybeBitCode.get()) {
2583     default:  // Default behavior: unknown constant
2584     case bitc::CST_CODE_UNDEF:     // UNDEF
2585       V = UndefValue::get(CurTy);
2586       break;
2587     case bitc::CST_CODE_POISON:    // POISON
2588       V = PoisonValue::get(CurTy);
2589       break;
2590     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2591       if (Record.empty())
2592         return error("Invalid settype record");
2593       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2594         return error("Invalid settype record");
2595       if (TypeList[Record[0]] == VoidType)
2596         return error("Invalid constant type");
2597       CurTyID = Record[0];
2598       CurTy = TypeList[CurTyID];
2599       CurElemTy = getPtrElementTypeByID(CurTyID);
2600       continue;  // Skip the ValueList manipulation.
2601     case bitc::CST_CODE_NULL:      // NULL
2602       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2603         return error("Invalid type for a constant null value");
2604       V = Constant::getNullValue(CurTy);
2605       break;
2606     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2607       if (!CurTy->isIntegerTy() || Record.empty())
2608         return error("Invalid integer const record");
2609       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2610       break;
2611     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2612       if (!CurTy->isIntegerTy() || Record.empty())
2613         return error("Invalid wide integer const record");
2614 
2615       APInt VInt =
2616           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2617       V = ConstantInt::get(Context, VInt);
2618 
2619       break;
2620     }
2621     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2622       if (Record.empty())
2623         return error("Invalid float const record");
2624       if (CurTy->isHalfTy())
2625         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2626                                              APInt(16, (uint16_t)Record[0])));
2627       else if (CurTy->isBFloatTy())
2628         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2629                                              APInt(16, (uint32_t)Record[0])));
2630       else if (CurTy->isFloatTy())
2631         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2632                                              APInt(32, (uint32_t)Record[0])));
2633       else if (CurTy->isDoubleTy())
2634         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2635                                              APInt(64, Record[0])));
2636       else if (CurTy->isX86_FP80Ty()) {
2637         // Bits are not stored the same way as a normal i80 APInt, compensate.
2638         uint64_t Rearrange[2];
2639         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2640         Rearrange[1] = Record[0] >> 48;
2641         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2642                                              APInt(80, Rearrange)));
2643       } else if (CurTy->isFP128Ty())
2644         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2645                                              APInt(128, Record)));
2646       else if (CurTy->isPPC_FP128Ty())
2647         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2648                                              APInt(128, Record)));
2649       else
2650         V = UndefValue::get(CurTy);
2651       break;
2652     }
2653 
2654     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2655       if (Record.empty())
2656         return error("Invalid aggregate record");
2657 
2658       unsigned Size = Record.size();
2659       SmallVector<Constant*, 16> Elts;
2660 
2661       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2662         for (unsigned i = 0; i != Size; ++i)
2663           Elts.push_back(ValueList.getConstantFwdRef(
2664               Record[i], STy->getElementType(i),
2665               getContainedTypeID(CurTyID, i)));
2666         V = ConstantStruct::get(STy, Elts);
2667       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2668         Type *EltTy = ATy->getElementType();
2669         unsigned EltTyID = getContainedTypeID(CurTyID);
2670         for (unsigned i = 0; i != Size; ++i)
2671           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2672                                                      EltTyID));
2673         V = ConstantArray::get(ATy, Elts);
2674       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2675         Type *EltTy = VTy->getElementType();
2676         unsigned EltTyID = getContainedTypeID(CurTyID);
2677         for (unsigned i = 0; i != Size; ++i)
2678           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2679                                                      EltTyID));
2680         V = ConstantVector::get(Elts);
2681       } else {
2682         V = UndefValue::get(CurTy);
2683       }
2684       break;
2685     }
2686     case bitc::CST_CODE_STRING:    // STRING: [values]
2687     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2688       if (Record.empty())
2689         return error("Invalid string record");
2690 
2691       SmallString<16> Elts(Record.begin(), Record.end());
2692       V = ConstantDataArray::getString(Context, Elts,
2693                                        BitCode == bitc::CST_CODE_CSTRING);
2694       break;
2695     }
2696     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2697       if (Record.empty())
2698         return error("Invalid data record");
2699 
2700       Type *EltTy;
2701       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2702         EltTy = Array->getElementType();
2703       else
2704         EltTy = cast<VectorType>(CurTy)->getElementType();
2705       if (EltTy->isIntegerTy(8)) {
2706         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2707         if (isa<VectorType>(CurTy))
2708           V = ConstantDataVector::get(Context, Elts);
2709         else
2710           V = ConstantDataArray::get(Context, Elts);
2711       } else if (EltTy->isIntegerTy(16)) {
2712         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2713         if (isa<VectorType>(CurTy))
2714           V = ConstantDataVector::get(Context, Elts);
2715         else
2716           V = ConstantDataArray::get(Context, Elts);
2717       } else if (EltTy->isIntegerTy(32)) {
2718         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2719         if (isa<VectorType>(CurTy))
2720           V = ConstantDataVector::get(Context, Elts);
2721         else
2722           V = ConstantDataArray::get(Context, Elts);
2723       } else if (EltTy->isIntegerTy(64)) {
2724         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2725         if (isa<VectorType>(CurTy))
2726           V = ConstantDataVector::get(Context, Elts);
2727         else
2728           V = ConstantDataArray::get(Context, Elts);
2729       } else if (EltTy->isHalfTy()) {
2730         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2731         if (isa<VectorType>(CurTy))
2732           V = ConstantDataVector::getFP(EltTy, Elts);
2733         else
2734           V = ConstantDataArray::getFP(EltTy, Elts);
2735       } else if (EltTy->isBFloatTy()) {
2736         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2737         if (isa<VectorType>(CurTy))
2738           V = ConstantDataVector::getFP(EltTy, Elts);
2739         else
2740           V = ConstantDataArray::getFP(EltTy, Elts);
2741       } else if (EltTy->isFloatTy()) {
2742         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2743         if (isa<VectorType>(CurTy))
2744           V = ConstantDataVector::getFP(EltTy, Elts);
2745         else
2746           V = ConstantDataArray::getFP(EltTy, Elts);
2747       } else if (EltTy->isDoubleTy()) {
2748         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2749         if (isa<VectorType>(CurTy))
2750           V = ConstantDataVector::getFP(EltTy, Elts);
2751         else
2752           V = ConstantDataArray::getFP(EltTy, Elts);
2753       } else {
2754         return error("Invalid type for value");
2755       }
2756       break;
2757     }
2758     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2759       if (Record.size() < 2)
2760         return error("Invalid unary op constexpr record");
2761       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2762       if (Opc < 0) {
2763         V = UndefValue::get(CurTy);  // Unknown unop.
2764       } else {
2765         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2766         unsigned Flags = 0;
2767         V = ConstantExpr::get(Opc, LHS, Flags);
2768       }
2769       break;
2770     }
2771     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2772       if (Record.size() < 3)
2773         return error("Invalid binary op constexpr record");
2774       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2775       if (Opc < 0) {
2776         V = UndefValue::get(CurTy);  // Unknown binop.
2777       } else {
2778         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2779         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID);
2780         unsigned Flags = 0;
2781         if (Record.size() >= 4) {
2782           if (Opc == Instruction::Add ||
2783               Opc == Instruction::Sub ||
2784               Opc == Instruction::Mul ||
2785               Opc == Instruction::Shl) {
2786             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2787               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2788             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2789               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2790           } else if (Opc == Instruction::SDiv ||
2791                      Opc == Instruction::UDiv ||
2792                      Opc == Instruction::LShr ||
2793                      Opc == Instruction::AShr) {
2794             if (Record[3] & (1 << bitc::PEO_EXACT))
2795               Flags |= SDivOperator::IsExact;
2796           }
2797         }
2798         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2799       }
2800       break;
2801     }
2802     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2803       if (Record.size() < 3)
2804         return error("Invalid cast constexpr record");
2805       int Opc = getDecodedCastOpcode(Record[0]);
2806       if (Opc < 0) {
2807         V = UndefValue::get(CurTy);  // Unknown cast.
2808       } else {
2809         unsigned OpTyID = Record[1];
2810         Type *OpTy = getTypeByID(OpTyID);
2811         if (!OpTy)
2812           return error("Invalid cast constexpr record");
2813         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2814         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2815         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2816       }
2817       break;
2818     }
2819     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2820     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2821     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2822                                                      // operands]
2823       if (Record.size() < 2)
2824         return error("Constant GEP record must have at least two elements");
2825       unsigned OpNum = 0;
2826       Type *PointeeType = nullptr;
2827       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2828           Record.size() % 2)
2829         PointeeType = getTypeByID(Record[OpNum++]);
2830 
2831       bool InBounds = false;
2832       Optional<unsigned> InRangeIndex;
2833       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2834         uint64_t Op = Record[OpNum++];
2835         InBounds = Op & 1;
2836         InRangeIndex = Op >> 1;
2837       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2838         InBounds = true;
2839 
2840       SmallVector<Constant*, 16> Elts;
2841       unsigned BaseTypeID = Record[OpNum];
2842       while (OpNum != Record.size()) {
2843         unsigned ElTyID = Record[OpNum++];
2844         Type *ElTy = getTypeByID(ElTyID);
2845         if (!ElTy)
2846           return error("Invalid getelementptr constexpr record");
2847         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy,
2848                                                    ElTyID));
2849       }
2850 
2851       if (Elts.size() < 1)
2852         return error("Invalid gep with no operands");
2853 
2854       Type *BaseType = getTypeByID(BaseTypeID);
2855       if (isa<VectorType>(BaseType)) {
2856         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
2857         BaseType = getTypeByID(BaseTypeID);
2858       }
2859 
2860       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
2861       if (!OrigPtrTy)
2862         return error("GEP base operand must be pointer or vector of pointer");
2863 
2864       if (!PointeeType) {
2865         PointeeType = getPtrElementTypeByID(BaseTypeID);
2866         if (!PointeeType)
2867           return error("Missing element type for old-style constant GEP");
2868       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2869         return error("Explicit gep operator type does not match pointee type "
2870                      "of pointer operand");
2871 
2872       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2873       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2874                                          InBounds, InRangeIndex);
2875       break;
2876     }
2877     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2878       if (Record.size() < 3)
2879         return error("Invalid select constexpr record");
2880 
2881       DelayedSelectors.push_back(
2882           {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo});
2883       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID);
2884       ++NextCstNo;
2885       continue;
2886     }
2887     case bitc::CST_CODE_CE_EXTRACTELT
2888         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2889       if (Record.size() < 3)
2890         return error("Invalid extractelement constexpr record");
2891       unsigned OpTyID = Record[0];
2892       VectorType *OpTy =
2893         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
2894       if (!OpTy)
2895         return error("Invalid extractelement constexpr record");
2896       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2897       Constant *Op1 = nullptr;
2898       if (Record.size() == 4) {
2899         unsigned IdxTyID = Record[2];
2900         Type *IdxTy = getTypeByID(IdxTyID);
2901         if (!IdxTy)
2902           return error("Invalid extractelement constexpr record");
2903         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2904       } else {
2905         // Deprecated, but still needed to read old bitcode files.
2906         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2907                                           Int32TyID);
2908       }
2909       if (!Op1)
2910         return error("Invalid extractelement constexpr record");
2911       V = ConstantExpr::getExtractElement(Op0, Op1);
2912       break;
2913     }
2914     case bitc::CST_CODE_CE_INSERTELT
2915         : { // CE_INSERTELT: [opval, opval, opty, opval]
2916       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2917       if (Record.size() < 3 || !OpTy)
2918         return error("Invalid insertelement constexpr record");
2919       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID);
2920       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2921                                                   OpTy->getElementType(),
2922                                                   getContainedTypeID(CurTyID));
2923       Constant *Op2 = nullptr;
2924       if (Record.size() == 4) {
2925         unsigned IdxTyID = Record[2];
2926         Type *IdxTy = getTypeByID(IdxTyID);
2927         if (!IdxTy)
2928           return error("Invalid insertelement constexpr record");
2929         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2930       } else {
2931         // Deprecated, but still needed to read old bitcode files.
2932         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2933                                           Int32TyID);
2934       }
2935       if (!Op2)
2936         return error("Invalid insertelement constexpr record");
2937       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2938       break;
2939     }
2940     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2941       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2942       if (Record.size() < 3 || !OpTy)
2943         return error("Invalid shufflevector constexpr record");
2944       DelayedShuffles.push_back(
2945           {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2946       ++NextCstNo;
2947       continue;
2948     }
2949     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2950       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2951       VectorType *OpTy =
2952         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2953       if (Record.size() < 4 || !RTy || !OpTy)
2954         return error("Invalid shufflevector constexpr record");
2955       DelayedShuffles.push_back(
2956           {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo});
2957       ++NextCstNo;
2958       continue;
2959     }
2960     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2961       if (Record.size() < 4)
2962         return error("Invalid cmp constexpt record");
2963       unsigned OpTyID = Record[0];
2964       Type *OpTy = getTypeByID(OpTyID);
2965       if (!OpTy)
2966         return error("Invalid cmp constexpr record");
2967       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2968       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2969 
2970       if (OpTy->isFPOrFPVectorTy())
2971         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2972       else
2973         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2974       break;
2975     }
2976     // This maintains backward compatibility, pre-asm dialect keywords.
2977     // Deprecated, but still needed to read old bitcode files.
2978     case bitc::CST_CODE_INLINEASM_OLD: {
2979       if (Record.size() < 2)
2980         return error("Invalid inlineasm record");
2981       std::string AsmStr, ConstrStr;
2982       bool HasSideEffects = Record[0] & 1;
2983       bool IsAlignStack = Record[0] >> 1;
2984       unsigned AsmStrSize = Record[1];
2985       if (2+AsmStrSize >= Record.size())
2986         return error("Invalid inlineasm record");
2987       unsigned ConstStrSize = Record[2+AsmStrSize];
2988       if (3+AsmStrSize+ConstStrSize > Record.size())
2989         return error("Invalid inlineasm record");
2990 
2991       for (unsigned i = 0; i != AsmStrSize; ++i)
2992         AsmStr += (char)Record[2+i];
2993       for (unsigned i = 0; i != ConstStrSize; ++i)
2994         ConstrStr += (char)Record[3+AsmStrSize+i];
2995       UpgradeInlineAsmString(&AsmStr);
2996       if (!CurElemTy)
2997         return error("Missing element type for old-style inlineasm");
2998       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
2999                          HasSideEffects, IsAlignStack);
3000       break;
3001     }
3002     // This version adds support for the asm dialect keywords (e.g.,
3003     // inteldialect).
3004     case bitc::CST_CODE_INLINEASM_OLD2: {
3005       if (Record.size() < 2)
3006         return error("Invalid inlineasm record");
3007       std::string AsmStr, ConstrStr;
3008       bool HasSideEffects = Record[0] & 1;
3009       bool IsAlignStack = (Record[0] >> 1) & 1;
3010       unsigned AsmDialect = Record[0] >> 2;
3011       unsigned AsmStrSize = Record[1];
3012       if (2+AsmStrSize >= Record.size())
3013         return error("Invalid inlineasm record");
3014       unsigned ConstStrSize = Record[2+AsmStrSize];
3015       if (3+AsmStrSize+ConstStrSize > Record.size())
3016         return error("Invalid inlineasm record");
3017 
3018       for (unsigned i = 0; i != AsmStrSize; ++i)
3019         AsmStr += (char)Record[2+i];
3020       for (unsigned i = 0; i != ConstStrSize; ++i)
3021         ConstrStr += (char)Record[3+AsmStrSize+i];
3022       UpgradeInlineAsmString(&AsmStr);
3023       if (!CurElemTy)
3024         return error("Missing element type for old-style inlineasm");
3025       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3026                          HasSideEffects, IsAlignStack,
3027                          InlineAsm::AsmDialect(AsmDialect));
3028       break;
3029     }
3030     // This version adds support for the unwind keyword.
3031     case bitc::CST_CODE_INLINEASM_OLD3: {
3032       if (Record.size() < 2)
3033         return error("Invalid inlineasm record");
3034       unsigned OpNum = 0;
3035       std::string AsmStr, ConstrStr;
3036       bool HasSideEffects = Record[OpNum] & 1;
3037       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3038       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3039       bool CanThrow = (Record[OpNum] >> 3) & 1;
3040       ++OpNum;
3041       unsigned AsmStrSize = Record[OpNum];
3042       ++OpNum;
3043       if (OpNum + AsmStrSize >= Record.size())
3044         return error("Invalid inlineasm record");
3045       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3046       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3047         return error("Invalid inlineasm record");
3048 
3049       for (unsigned i = 0; i != AsmStrSize; ++i)
3050         AsmStr += (char)Record[OpNum + i];
3051       ++OpNum;
3052       for (unsigned i = 0; i != ConstStrSize; ++i)
3053         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3054       UpgradeInlineAsmString(&AsmStr);
3055       if (!CurElemTy)
3056         return error("Missing element type for old-style inlineasm");
3057       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3058                          HasSideEffects, IsAlignStack,
3059                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3060       break;
3061     }
3062     // This version adds explicit function type.
3063     case bitc::CST_CODE_INLINEASM: {
3064       if (Record.size() < 3)
3065         return error("Invalid inlineasm record");
3066       unsigned OpNum = 0;
3067       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3068       ++OpNum;
3069       if (!FnTy)
3070         return error("Invalid inlineasm record");
3071       std::string AsmStr, ConstrStr;
3072       bool HasSideEffects = Record[OpNum] & 1;
3073       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3074       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3075       bool CanThrow = (Record[OpNum] >> 3) & 1;
3076       ++OpNum;
3077       unsigned AsmStrSize = Record[OpNum];
3078       ++OpNum;
3079       if (OpNum + AsmStrSize >= Record.size())
3080         return error("Invalid inlineasm record");
3081       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3082       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3083         return error("Invalid inlineasm record");
3084 
3085       for (unsigned i = 0; i != AsmStrSize; ++i)
3086         AsmStr += (char)Record[OpNum + i];
3087       ++OpNum;
3088       for (unsigned i = 0; i != ConstStrSize; ++i)
3089         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3090       UpgradeInlineAsmString(&AsmStr);
3091       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3092                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3093       break;
3094     }
3095     case bitc::CST_CODE_BLOCKADDRESS:{
3096       if (Record.size() < 3)
3097         return error("Invalid blockaddress record");
3098       unsigned FnTyID = Record[0];
3099       Type *FnTy = getTypeByID(FnTyID);
3100       if (!FnTy)
3101         return error("Invalid blockaddress record");
3102       Function *Fn = dyn_cast_or_null<Function>(
3103           ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID));
3104       if (!Fn)
3105         return error("Invalid blockaddress record");
3106 
3107       // If the function is already parsed we can insert the block address right
3108       // away.
3109       BasicBlock *BB;
3110       unsigned BBID = Record[2];
3111       if (!BBID)
3112         // Invalid reference to entry block.
3113         return error("Invalid ID");
3114       if (!Fn->empty()) {
3115         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3116         for (size_t I = 0, E = BBID; I != E; ++I) {
3117           if (BBI == BBE)
3118             return error("Invalid ID");
3119           ++BBI;
3120         }
3121         BB = &*BBI;
3122       } else {
3123         // Otherwise insert a placeholder and remember it so it can be inserted
3124         // when the function is parsed.
3125         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3126         if (FwdBBs.empty())
3127           BasicBlockFwdRefQueue.push_back(Fn);
3128         if (FwdBBs.size() < BBID + 1)
3129           FwdBBs.resize(BBID + 1);
3130         if (!FwdBBs[BBID])
3131           FwdBBs[BBID] = BasicBlock::Create(Context);
3132         BB = FwdBBs[BBID];
3133       }
3134       V = BlockAddress::get(Fn, BB);
3135       break;
3136     }
3137     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3138       if (Record.size() < 2)
3139         return error("Invalid dso_local record");
3140       unsigned GVTyID = Record[0];
3141       Type *GVTy = getTypeByID(GVTyID);
3142       if (!GVTy)
3143         return error("Invalid dso_local record");
3144       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3145           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3146       if (!GV)
3147         return error("Invalid dso_local record");
3148 
3149       V = DSOLocalEquivalent::get(GV);
3150       break;
3151     }
3152     case bitc::CST_CODE_NO_CFI_VALUE: {
3153       if (Record.size() < 2)
3154         return error("Invalid no_cfi record");
3155       unsigned GVTyID = Record[0];
3156       Type *GVTy = getTypeByID(GVTyID);
3157       if (!GVTy)
3158         return error("Invalid no_cfi record");
3159       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3160           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3161       if (!GV)
3162         return error("Invalid no_cfi record");
3163       V = NoCFIValue::get(GV);
3164       break;
3165     }
3166     }
3167 
3168     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3169     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3170       return Err;
3171     ++NextCstNo;
3172   }
3173 }
3174 
3175 Error BitcodeReader::parseUseLists() {
3176   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3177     return Err;
3178 
3179   // Read all the records.
3180   SmallVector<uint64_t, 64> Record;
3181 
3182   while (true) {
3183     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3184     if (!MaybeEntry)
3185       return MaybeEntry.takeError();
3186     BitstreamEntry Entry = MaybeEntry.get();
3187 
3188     switch (Entry.Kind) {
3189     case BitstreamEntry::SubBlock: // Handled for us already.
3190     case BitstreamEntry::Error:
3191       return error("Malformed block");
3192     case BitstreamEntry::EndBlock:
3193       return Error::success();
3194     case BitstreamEntry::Record:
3195       // The interesting case.
3196       break;
3197     }
3198 
3199     // Read a use list record.
3200     Record.clear();
3201     bool IsBB = false;
3202     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3203     if (!MaybeRecord)
3204       return MaybeRecord.takeError();
3205     switch (MaybeRecord.get()) {
3206     default:  // Default behavior: unknown type.
3207       break;
3208     case bitc::USELIST_CODE_BB:
3209       IsBB = true;
3210       LLVM_FALLTHROUGH;
3211     case bitc::USELIST_CODE_DEFAULT: {
3212       unsigned RecordLength = Record.size();
3213       if (RecordLength < 3)
3214         // Records should have at least an ID and two indexes.
3215         return error("Invalid record");
3216       unsigned ID = Record.pop_back_val();
3217 
3218       Value *V;
3219       if (IsBB) {
3220         assert(ID < FunctionBBs.size() && "Basic block not found");
3221         V = FunctionBBs[ID];
3222       } else
3223         V = ValueList[ID];
3224       unsigned NumUses = 0;
3225       SmallDenseMap<const Use *, unsigned, 16> Order;
3226       for (const Use &U : V->materialized_uses()) {
3227         if (++NumUses > Record.size())
3228           break;
3229         Order[&U] = Record[NumUses - 1];
3230       }
3231       if (Order.size() != Record.size() || NumUses > Record.size())
3232         // Mismatches can happen if the functions are being materialized lazily
3233         // (out-of-order), or a value has been upgraded.
3234         break;
3235 
3236       V->sortUseList([&](const Use &L, const Use &R) {
3237         return Order.lookup(&L) < Order.lookup(&R);
3238       });
3239       break;
3240     }
3241     }
3242   }
3243 }
3244 
3245 /// When we see the block for metadata, remember where it is and then skip it.
3246 /// This lets us lazily deserialize the metadata.
3247 Error BitcodeReader::rememberAndSkipMetadata() {
3248   // Save the current stream state.
3249   uint64_t CurBit = Stream.GetCurrentBitNo();
3250   DeferredMetadataInfo.push_back(CurBit);
3251 
3252   // Skip over the block for now.
3253   if (Error Err = Stream.SkipBlock())
3254     return Err;
3255   return Error::success();
3256 }
3257 
3258 Error BitcodeReader::materializeMetadata() {
3259   for (uint64_t BitPos : DeferredMetadataInfo) {
3260     // Move the bit stream to the saved position.
3261     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3262       return JumpFailed;
3263     if (Error Err = MDLoader->parseModuleMetadata())
3264       return Err;
3265   }
3266 
3267   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3268   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3269   // multiple times.
3270   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3271     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3272       NamedMDNode *LinkerOpts =
3273           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3274       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3275         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3276     }
3277   }
3278 
3279   DeferredMetadataInfo.clear();
3280   return Error::success();
3281 }
3282 
3283 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3284 
3285 /// When we see the block for a function body, remember where it is and then
3286 /// skip it.  This lets us lazily deserialize the functions.
3287 Error BitcodeReader::rememberAndSkipFunctionBody() {
3288   // Get the function we are talking about.
3289   if (FunctionsWithBodies.empty())
3290     return error("Insufficient function protos");
3291 
3292   Function *Fn = FunctionsWithBodies.back();
3293   FunctionsWithBodies.pop_back();
3294 
3295   // Save the current stream state.
3296   uint64_t CurBit = Stream.GetCurrentBitNo();
3297   assert(
3298       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3299       "Mismatch between VST and scanned function offsets");
3300   DeferredFunctionInfo[Fn] = CurBit;
3301 
3302   // Skip over the function block for now.
3303   if (Error Err = Stream.SkipBlock())
3304     return Err;
3305   return Error::success();
3306 }
3307 
3308 Error BitcodeReader::globalCleanup() {
3309   // Patch the initializers for globals and aliases up.
3310   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3311     return Err;
3312   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3313     return error("Malformed global initializer set");
3314 
3315   // Look for intrinsic functions which need to be upgraded at some point
3316   // and functions that need to have their function attributes upgraded.
3317   for (Function &F : *TheModule) {
3318     MDLoader->upgradeDebugIntrinsics(F);
3319     Function *NewFn;
3320     if (UpgradeIntrinsicFunction(&F, NewFn))
3321       UpgradedIntrinsics[&F] = NewFn;
3322     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3323       // Some types could be renamed during loading if several modules are
3324       // loaded in the same LLVMContext (LTO scenario). In this case we should
3325       // remangle intrinsics names as well.
3326       RemangledIntrinsics[&F] = Remangled.getValue();
3327     // Look for functions that rely on old function attribute behavior.
3328     UpgradeFunctionAttributes(F);
3329   }
3330 
3331   // Look for global variables which need to be renamed.
3332   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3333   for (GlobalVariable &GV : TheModule->globals())
3334     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3335       UpgradedVariables.emplace_back(&GV, Upgraded);
3336   for (auto &Pair : UpgradedVariables) {
3337     Pair.first->eraseFromParent();
3338     TheModule->getGlobalList().push_back(Pair.second);
3339   }
3340 
3341   // Force deallocation of memory for these vectors to favor the client that
3342   // want lazy deserialization.
3343   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3344   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3345   return Error::success();
3346 }
3347 
3348 /// Support for lazy parsing of function bodies. This is required if we
3349 /// either have an old bitcode file without a VST forward declaration record,
3350 /// or if we have an anonymous function being materialized, since anonymous
3351 /// functions do not have a name and are therefore not in the VST.
3352 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3353   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3354     return JumpFailed;
3355 
3356   if (Stream.AtEndOfStream())
3357     return error("Could not find function in stream");
3358 
3359   if (!SeenFirstFunctionBody)
3360     return error("Trying to materialize functions before seeing function blocks");
3361 
3362   // An old bitcode file with the symbol table at the end would have
3363   // finished the parse greedily.
3364   assert(SeenValueSymbolTable);
3365 
3366   SmallVector<uint64_t, 64> Record;
3367 
3368   while (true) {
3369     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3370     if (!MaybeEntry)
3371       return MaybeEntry.takeError();
3372     llvm::BitstreamEntry Entry = MaybeEntry.get();
3373 
3374     switch (Entry.Kind) {
3375     default:
3376       return error("Expect SubBlock");
3377     case BitstreamEntry::SubBlock:
3378       switch (Entry.ID) {
3379       default:
3380         return error("Expect function block");
3381       case bitc::FUNCTION_BLOCK_ID:
3382         if (Error Err = rememberAndSkipFunctionBody())
3383           return Err;
3384         NextUnreadBit = Stream.GetCurrentBitNo();
3385         return Error::success();
3386       }
3387     }
3388   }
3389 }
3390 
3391 Error BitcodeReaderBase::readBlockInfo() {
3392   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3393       Stream.ReadBlockInfoBlock();
3394   if (!MaybeNewBlockInfo)
3395     return MaybeNewBlockInfo.takeError();
3396   Optional<BitstreamBlockInfo> NewBlockInfo =
3397       std::move(MaybeNewBlockInfo.get());
3398   if (!NewBlockInfo)
3399     return error("Malformed block");
3400   BlockInfo = std::move(*NewBlockInfo);
3401   return Error::success();
3402 }
3403 
3404 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3405   // v1: [selection_kind, name]
3406   // v2: [strtab_offset, strtab_size, selection_kind]
3407   StringRef Name;
3408   std::tie(Name, Record) = readNameFromStrtab(Record);
3409 
3410   if (Record.empty())
3411     return error("Invalid record");
3412   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3413   std::string OldFormatName;
3414   if (!UseStrtab) {
3415     if (Record.size() < 2)
3416       return error("Invalid record");
3417     unsigned ComdatNameSize = Record[1];
3418     if (ComdatNameSize > Record.size() - 2)
3419       return error("Comdat name size too large");
3420     OldFormatName.reserve(ComdatNameSize);
3421     for (unsigned i = 0; i != ComdatNameSize; ++i)
3422       OldFormatName += (char)Record[2 + i];
3423     Name = OldFormatName;
3424   }
3425   Comdat *C = TheModule->getOrInsertComdat(Name);
3426   C->setSelectionKind(SK);
3427   ComdatList.push_back(C);
3428   return Error::success();
3429 }
3430 
3431 static void inferDSOLocal(GlobalValue *GV) {
3432   // infer dso_local from linkage and visibility if it is not encoded.
3433   if (GV->hasLocalLinkage() ||
3434       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3435     GV->setDSOLocal(true);
3436 }
3437 
3438 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3439   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3440   // visibility, threadlocal, unnamed_addr, externally_initialized,
3441   // dllstorageclass, comdat, attributes, preemption specifier,
3442   // partition strtab offset, partition strtab size] (name in VST)
3443   // v2: [strtab_offset, strtab_size, v1]
3444   StringRef Name;
3445   std::tie(Name, Record) = readNameFromStrtab(Record);
3446 
3447   if (Record.size() < 6)
3448     return error("Invalid record");
3449   unsigned TyID = Record[0];
3450   Type *Ty = getTypeByID(TyID);
3451   if (!Ty)
3452     return error("Invalid record");
3453   bool isConstant = Record[1] & 1;
3454   bool explicitType = Record[1] & 2;
3455   unsigned AddressSpace;
3456   if (explicitType) {
3457     AddressSpace = Record[1] >> 2;
3458   } else {
3459     if (!Ty->isPointerTy())
3460       return error("Invalid type for value");
3461     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3462     TyID = getContainedTypeID(TyID);
3463     Ty = getTypeByID(TyID);
3464     if (!Ty)
3465       return error("Missing element type for old-style global");
3466   }
3467 
3468   uint64_t RawLinkage = Record[3];
3469   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3470   MaybeAlign Alignment;
3471   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3472     return Err;
3473   std::string Section;
3474   if (Record[5]) {
3475     if (Record[5] - 1 >= SectionTable.size())
3476       return error("Invalid ID");
3477     Section = SectionTable[Record[5] - 1];
3478   }
3479   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3480   // Local linkage must have default visibility.
3481   // auto-upgrade `hidden` and `protected` for old bitcode.
3482   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3483     Visibility = getDecodedVisibility(Record[6]);
3484 
3485   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3486   if (Record.size() > 7)
3487     TLM = getDecodedThreadLocalMode(Record[7]);
3488 
3489   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3490   if (Record.size() > 8)
3491     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3492 
3493   bool ExternallyInitialized = false;
3494   if (Record.size() > 9)
3495     ExternallyInitialized = Record[9];
3496 
3497   GlobalVariable *NewGV =
3498       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3499                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3500   NewGV->setAlignment(Alignment);
3501   if (!Section.empty())
3502     NewGV->setSection(Section);
3503   NewGV->setVisibility(Visibility);
3504   NewGV->setUnnamedAddr(UnnamedAddr);
3505 
3506   if (Record.size() > 10)
3507     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3508   else
3509     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3510 
3511   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3512 
3513   // Remember which value to use for the global initializer.
3514   if (unsigned InitID = Record[2])
3515     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3516 
3517   if (Record.size() > 11) {
3518     if (unsigned ComdatID = Record[11]) {
3519       if (ComdatID > ComdatList.size())
3520         return error("Invalid global variable comdat ID");
3521       NewGV->setComdat(ComdatList[ComdatID - 1]);
3522     }
3523   } else if (hasImplicitComdat(RawLinkage)) {
3524     ImplicitComdatObjects.insert(NewGV);
3525   }
3526 
3527   if (Record.size() > 12) {
3528     auto AS = getAttributes(Record[12]).getFnAttrs();
3529     NewGV->setAttributes(AS);
3530   }
3531 
3532   if (Record.size() > 13) {
3533     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3534   }
3535   inferDSOLocal(NewGV);
3536 
3537   // Check whether we have enough values to read a partition name.
3538   if (Record.size() > 15)
3539     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3540 
3541   return Error::success();
3542 }
3543 
3544 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3545   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3546   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3547   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3548   // v2: [strtab_offset, strtab_size, v1]
3549   StringRef Name;
3550   std::tie(Name, Record) = readNameFromStrtab(Record);
3551 
3552   if (Record.size() < 8)
3553     return error("Invalid record");
3554   unsigned FTyID = Record[0];
3555   Type *FTy = getTypeByID(FTyID);
3556   if (!FTy)
3557     return error("Invalid record");
3558   if (isa<PointerType>(FTy)) {
3559     FTyID = getContainedTypeID(FTyID, 0);
3560     FTy = getTypeByID(FTyID);
3561     if (!FTy)
3562       return error("Missing element type for old-style function");
3563   }
3564 
3565   if (!isa<FunctionType>(FTy))
3566     return error("Invalid type for value");
3567   auto CC = static_cast<CallingConv::ID>(Record[1]);
3568   if (CC & ~CallingConv::MaxID)
3569     return error("Invalid calling convention ID");
3570 
3571   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3572   if (Record.size() > 16)
3573     AddrSpace = Record[16];
3574 
3575   Function *Func =
3576       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3577                        AddrSpace, Name, TheModule);
3578 
3579   assert(Func->getFunctionType() == FTy &&
3580          "Incorrect fully specified type provided for function");
3581   FunctionTypeIDs[Func] = FTyID;
3582 
3583   Func->setCallingConv(CC);
3584   bool isProto = Record[2];
3585   uint64_t RawLinkage = Record[3];
3586   Func->setLinkage(getDecodedLinkage(RawLinkage));
3587   Func->setAttributes(getAttributes(Record[4]));
3588 
3589   // Upgrade any old-style byval or sret without a type by propagating the
3590   // argument's pointee type. There should be no opaque pointers where the byval
3591   // type is implicit.
3592   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3593     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3594                                      Attribute::InAlloca}) {
3595       if (!Func->hasParamAttribute(i, Kind))
3596         continue;
3597 
3598       if (Func->getParamAttribute(i, Kind).getValueAsType())
3599         continue;
3600 
3601       Func->removeParamAttr(i, Kind);
3602 
3603       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3604       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3605       if (!PtrEltTy)
3606         return error("Missing param element type for attribute upgrade");
3607 
3608       Attribute NewAttr;
3609       switch (Kind) {
3610       case Attribute::ByVal:
3611         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3612         break;
3613       case Attribute::StructRet:
3614         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3615         break;
3616       case Attribute::InAlloca:
3617         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3618         break;
3619       default:
3620         llvm_unreachable("not an upgraded type attribute");
3621       }
3622 
3623       Func->addParamAttr(i, NewAttr);
3624     }
3625   }
3626 
3627   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3628       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3629     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3630     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3631     if (!ByValTy)
3632       return error("Missing param element type for x86_intrcc upgrade");
3633     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3634     Func->addParamAttr(0, NewAttr);
3635   }
3636 
3637   MaybeAlign Alignment;
3638   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3639     return Err;
3640   Func->setAlignment(Alignment);
3641   if (Record[6]) {
3642     if (Record[6] - 1 >= SectionTable.size())
3643       return error("Invalid ID");
3644     Func->setSection(SectionTable[Record[6] - 1]);
3645   }
3646   // Local linkage must have default visibility.
3647   // auto-upgrade `hidden` and `protected` for old bitcode.
3648   if (!Func->hasLocalLinkage())
3649     Func->setVisibility(getDecodedVisibility(Record[7]));
3650   if (Record.size() > 8 && Record[8]) {
3651     if (Record[8] - 1 >= GCTable.size())
3652       return error("Invalid ID");
3653     Func->setGC(GCTable[Record[8] - 1]);
3654   }
3655   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3656   if (Record.size() > 9)
3657     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3658   Func->setUnnamedAddr(UnnamedAddr);
3659 
3660   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3661   if (Record.size() > 10)
3662     OperandInfo.Prologue = Record[10];
3663 
3664   if (Record.size() > 11)
3665     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3666   else
3667     upgradeDLLImportExportLinkage(Func, RawLinkage);
3668 
3669   if (Record.size() > 12) {
3670     if (unsigned ComdatID = Record[12]) {
3671       if (ComdatID > ComdatList.size())
3672         return error("Invalid function comdat ID");
3673       Func->setComdat(ComdatList[ComdatID - 1]);
3674     }
3675   } else if (hasImplicitComdat(RawLinkage)) {
3676     ImplicitComdatObjects.insert(Func);
3677   }
3678 
3679   if (Record.size() > 13)
3680     OperandInfo.Prefix = Record[13];
3681 
3682   if (Record.size() > 14)
3683     OperandInfo.PersonalityFn = Record[14];
3684 
3685   if (Record.size() > 15) {
3686     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3687   }
3688   inferDSOLocal(Func);
3689 
3690   // Record[16] is the address space number.
3691 
3692   // Check whether we have enough values to read a partition name. Also make
3693   // sure Strtab has enough values.
3694   if (Record.size() > 18 && Strtab.data() &&
3695       Record[17] + Record[18] <= Strtab.size()) {
3696     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3697   }
3698 
3699   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3700 
3701   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3702     FunctionOperands.push_back(OperandInfo);
3703 
3704   // If this is a function with a body, remember the prototype we are
3705   // creating now, so that we can match up the body with them later.
3706   if (!isProto) {
3707     Func->setIsMaterializable(true);
3708     FunctionsWithBodies.push_back(Func);
3709     DeferredFunctionInfo[Func] = 0;
3710   }
3711   return Error::success();
3712 }
3713 
3714 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3715     unsigned BitCode, ArrayRef<uint64_t> Record) {
3716   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3717   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3718   // dllstorageclass, threadlocal, unnamed_addr,
3719   // preemption specifier] (name in VST)
3720   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3721   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3722   // preemption specifier] (name in VST)
3723   // v2: [strtab_offset, strtab_size, v1]
3724   StringRef Name;
3725   std::tie(Name, Record) = readNameFromStrtab(Record);
3726 
3727   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3728   if (Record.size() < (3 + (unsigned)NewRecord))
3729     return error("Invalid record");
3730   unsigned OpNum = 0;
3731   unsigned TypeID = Record[OpNum++];
3732   Type *Ty = getTypeByID(TypeID);
3733   if (!Ty)
3734     return error("Invalid record");
3735 
3736   unsigned AddrSpace;
3737   if (!NewRecord) {
3738     auto *PTy = dyn_cast<PointerType>(Ty);
3739     if (!PTy)
3740       return error("Invalid type for value");
3741     AddrSpace = PTy->getAddressSpace();
3742     TypeID = getContainedTypeID(TypeID);
3743     Ty = getTypeByID(TypeID);
3744     if (!Ty)
3745       return error("Missing element type for old-style indirect symbol");
3746   } else {
3747     AddrSpace = Record[OpNum++];
3748   }
3749 
3750   auto Val = Record[OpNum++];
3751   auto Linkage = Record[OpNum++];
3752   GlobalValue *NewGA;
3753   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3754       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3755     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3756                                 TheModule);
3757   else
3758     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3759                                 nullptr, TheModule);
3760 
3761   // Local linkage must have default visibility.
3762   // auto-upgrade `hidden` and `protected` for old bitcode.
3763   if (OpNum != Record.size()) {
3764     auto VisInd = OpNum++;
3765     if (!NewGA->hasLocalLinkage())
3766       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3767   }
3768   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3769       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3770     if (OpNum != Record.size())
3771       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3772     else
3773       upgradeDLLImportExportLinkage(NewGA, Linkage);
3774     if (OpNum != Record.size())
3775       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3776     if (OpNum != Record.size())
3777       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3778   }
3779   if (OpNum != Record.size())
3780     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3781   inferDSOLocal(NewGA);
3782 
3783   // Check whether we have enough values to read a partition name.
3784   if (OpNum + 1 < Record.size()) {
3785     NewGA->setPartition(
3786         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3787     OpNum += 2;
3788   }
3789 
3790   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
3791   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3792   return Error::success();
3793 }
3794 
3795 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3796                                  bool ShouldLazyLoadMetadata,
3797                                  DataLayoutCallbackTy DataLayoutCallback) {
3798   if (ResumeBit) {
3799     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3800       return JumpFailed;
3801   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3802     return Err;
3803 
3804   SmallVector<uint64_t, 64> Record;
3805 
3806   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3807   // finalize the datalayout before we run any of that code.
3808   bool ResolvedDataLayout = false;
3809   auto ResolveDataLayout = [&] {
3810     if (ResolvedDataLayout)
3811       return;
3812 
3813     // datalayout and triple can't be parsed after this point.
3814     ResolvedDataLayout = true;
3815 
3816     // Upgrade data layout string.
3817     std::string DL = llvm::UpgradeDataLayoutString(
3818         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3819     TheModule->setDataLayout(DL);
3820 
3821     if (auto LayoutOverride =
3822             DataLayoutCallback(TheModule->getTargetTriple()))
3823       TheModule->setDataLayout(*LayoutOverride);
3824   };
3825 
3826   // Read all the records for this module.
3827   while (true) {
3828     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3829     if (!MaybeEntry)
3830       return MaybeEntry.takeError();
3831     llvm::BitstreamEntry Entry = MaybeEntry.get();
3832 
3833     switch (Entry.Kind) {
3834     case BitstreamEntry::Error:
3835       return error("Malformed block");
3836     case BitstreamEntry::EndBlock:
3837       ResolveDataLayout();
3838       return globalCleanup();
3839 
3840     case BitstreamEntry::SubBlock:
3841       switch (Entry.ID) {
3842       default:  // Skip unknown content.
3843         if (Error Err = Stream.SkipBlock())
3844           return Err;
3845         break;
3846       case bitc::BLOCKINFO_BLOCK_ID:
3847         if (Error Err = readBlockInfo())
3848           return Err;
3849         break;
3850       case bitc::PARAMATTR_BLOCK_ID:
3851         if (Error Err = parseAttributeBlock())
3852           return Err;
3853         break;
3854       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3855         if (Error Err = parseAttributeGroupBlock())
3856           return Err;
3857         break;
3858       case bitc::TYPE_BLOCK_ID_NEW:
3859         if (Error Err = parseTypeTable())
3860           return Err;
3861         break;
3862       case bitc::VALUE_SYMTAB_BLOCK_ID:
3863         if (!SeenValueSymbolTable) {
3864           // Either this is an old form VST without function index and an
3865           // associated VST forward declaration record (which would have caused
3866           // the VST to be jumped to and parsed before it was encountered
3867           // normally in the stream), or there were no function blocks to
3868           // trigger an earlier parsing of the VST.
3869           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3870           if (Error Err = parseValueSymbolTable())
3871             return Err;
3872           SeenValueSymbolTable = true;
3873         } else {
3874           // We must have had a VST forward declaration record, which caused
3875           // the parser to jump to and parse the VST earlier.
3876           assert(VSTOffset > 0);
3877           if (Error Err = Stream.SkipBlock())
3878             return Err;
3879         }
3880         break;
3881       case bitc::CONSTANTS_BLOCK_ID:
3882         if (Error Err = parseConstants())
3883           return Err;
3884         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3885           return Err;
3886         break;
3887       case bitc::METADATA_BLOCK_ID:
3888         if (ShouldLazyLoadMetadata) {
3889           if (Error Err = rememberAndSkipMetadata())
3890             return Err;
3891           break;
3892         }
3893         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3894         if (Error Err = MDLoader->parseModuleMetadata())
3895           return Err;
3896         break;
3897       case bitc::METADATA_KIND_BLOCK_ID:
3898         if (Error Err = MDLoader->parseMetadataKinds())
3899           return Err;
3900         break;
3901       case bitc::FUNCTION_BLOCK_ID:
3902         ResolveDataLayout();
3903 
3904         // If this is the first function body we've seen, reverse the
3905         // FunctionsWithBodies list.
3906         if (!SeenFirstFunctionBody) {
3907           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3908           if (Error Err = globalCleanup())
3909             return Err;
3910           SeenFirstFunctionBody = true;
3911         }
3912 
3913         if (VSTOffset > 0) {
3914           // If we have a VST forward declaration record, make sure we
3915           // parse the VST now if we haven't already. It is needed to
3916           // set up the DeferredFunctionInfo vector for lazy reading.
3917           if (!SeenValueSymbolTable) {
3918             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3919               return Err;
3920             SeenValueSymbolTable = true;
3921             // Fall through so that we record the NextUnreadBit below.
3922             // This is necessary in case we have an anonymous function that
3923             // is later materialized. Since it will not have a VST entry we
3924             // need to fall back to the lazy parse to find its offset.
3925           } else {
3926             // If we have a VST forward declaration record, but have already
3927             // parsed the VST (just above, when the first function body was
3928             // encountered here), then we are resuming the parse after
3929             // materializing functions. The ResumeBit points to the
3930             // start of the last function block recorded in the
3931             // DeferredFunctionInfo map. Skip it.
3932             if (Error Err = Stream.SkipBlock())
3933               return Err;
3934             continue;
3935           }
3936         }
3937 
3938         // Support older bitcode files that did not have the function
3939         // index in the VST, nor a VST forward declaration record, as
3940         // well as anonymous functions that do not have VST entries.
3941         // Build the DeferredFunctionInfo vector on the fly.
3942         if (Error Err = rememberAndSkipFunctionBody())
3943           return Err;
3944 
3945         // Suspend parsing when we reach the function bodies. Subsequent
3946         // materialization calls will resume it when necessary. If the bitcode
3947         // file is old, the symbol table will be at the end instead and will not
3948         // have been seen yet. In this case, just finish the parse now.
3949         if (SeenValueSymbolTable) {
3950           NextUnreadBit = Stream.GetCurrentBitNo();
3951           // After the VST has been parsed, we need to make sure intrinsic name
3952           // are auto-upgraded.
3953           return globalCleanup();
3954         }
3955         break;
3956       case bitc::USELIST_BLOCK_ID:
3957         if (Error Err = parseUseLists())
3958           return Err;
3959         break;
3960       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3961         if (Error Err = parseOperandBundleTags())
3962           return Err;
3963         break;
3964       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3965         if (Error Err = parseSyncScopeNames())
3966           return Err;
3967         break;
3968       }
3969       continue;
3970 
3971     case BitstreamEntry::Record:
3972       // The interesting case.
3973       break;
3974     }
3975 
3976     // Read a record.
3977     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3978     if (!MaybeBitCode)
3979       return MaybeBitCode.takeError();
3980     switch (unsigned BitCode = MaybeBitCode.get()) {
3981     default: break;  // Default behavior, ignore unknown content.
3982     case bitc::MODULE_CODE_VERSION: {
3983       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3984       if (!VersionOrErr)
3985         return VersionOrErr.takeError();
3986       UseRelativeIDs = *VersionOrErr >= 1;
3987       break;
3988     }
3989     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3990       if (ResolvedDataLayout)
3991         return error("target triple too late in module");
3992       std::string S;
3993       if (convertToString(Record, 0, S))
3994         return error("Invalid record");
3995       TheModule->setTargetTriple(S);
3996       break;
3997     }
3998     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3999       if (ResolvedDataLayout)
4000         return error("datalayout too late in module");
4001       std::string S;
4002       if (convertToString(Record, 0, S))
4003         return error("Invalid record");
4004       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4005       if (!MaybeDL)
4006         return MaybeDL.takeError();
4007       TheModule->setDataLayout(MaybeDL.get());
4008       break;
4009     }
4010     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4011       std::string S;
4012       if (convertToString(Record, 0, S))
4013         return error("Invalid record");
4014       TheModule->setModuleInlineAsm(S);
4015       break;
4016     }
4017     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4018       // Deprecated, but still needed to read old bitcode files.
4019       std::string S;
4020       if (convertToString(Record, 0, S))
4021         return error("Invalid record");
4022       // Ignore value.
4023       break;
4024     }
4025     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4026       std::string S;
4027       if (convertToString(Record, 0, S))
4028         return error("Invalid record");
4029       SectionTable.push_back(S);
4030       break;
4031     }
4032     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4033       std::string S;
4034       if (convertToString(Record, 0, S))
4035         return error("Invalid record");
4036       GCTable.push_back(S);
4037       break;
4038     }
4039     case bitc::MODULE_CODE_COMDAT:
4040       if (Error Err = parseComdatRecord(Record))
4041         return Err;
4042       break;
4043     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4044     // written by ThinLinkBitcodeWriter. See
4045     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4046     // record
4047     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4048     case bitc::MODULE_CODE_GLOBALVAR:
4049       if (Error Err = parseGlobalVarRecord(Record))
4050         return Err;
4051       break;
4052     case bitc::MODULE_CODE_FUNCTION:
4053       ResolveDataLayout();
4054       if (Error Err = parseFunctionRecord(Record))
4055         return Err;
4056       break;
4057     case bitc::MODULE_CODE_IFUNC:
4058     case bitc::MODULE_CODE_ALIAS:
4059     case bitc::MODULE_CODE_ALIAS_OLD:
4060       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4061         return Err;
4062       break;
4063     /// MODULE_CODE_VSTOFFSET: [offset]
4064     case bitc::MODULE_CODE_VSTOFFSET:
4065       if (Record.empty())
4066         return error("Invalid record");
4067       // Note that we subtract 1 here because the offset is relative to one word
4068       // before the start of the identification or module block, which was
4069       // historically always the start of the regular bitcode header.
4070       VSTOffset = Record[0] - 1;
4071       break;
4072     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4073     case bitc::MODULE_CODE_SOURCE_FILENAME:
4074       SmallString<128> ValueName;
4075       if (convertToString(Record, 0, ValueName))
4076         return error("Invalid record");
4077       TheModule->setSourceFileName(ValueName);
4078       break;
4079     }
4080     Record.clear();
4081   }
4082 }
4083 
4084 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4085                                       bool IsImporting,
4086                                       DataLayoutCallbackTy DataLayoutCallback) {
4087   TheModule = M;
4088   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4089                             [&](unsigned ID) { return getTypeByID(ID); });
4090   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4091 }
4092 
4093 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4094   if (!isa<PointerType>(PtrType))
4095     return error("Load/Store operand is not a pointer type");
4096 
4097   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4098     return error("Explicit load/store type does not match pointee "
4099                  "type of pointer operand");
4100   if (!PointerType::isLoadableOrStorableType(ValType))
4101     return error("Cannot load/store from pointer");
4102   return Error::success();
4103 }
4104 
4105 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4106                                              ArrayRef<unsigned> ArgTyIDs) {
4107   AttributeList Attrs = CB->getAttributes();
4108   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4109     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4110                                      Attribute::InAlloca}) {
4111       if (!Attrs.hasParamAttr(i, Kind) ||
4112           Attrs.getParamAttr(i, Kind).getValueAsType())
4113         continue;
4114 
4115       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4116       if (!PtrEltTy)
4117         return error("Missing element type for typed attribute upgrade");
4118 
4119       Attribute NewAttr;
4120       switch (Kind) {
4121       case Attribute::ByVal:
4122         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4123         break;
4124       case Attribute::StructRet:
4125         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4126         break;
4127       case Attribute::InAlloca:
4128         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4129         break;
4130       default:
4131         llvm_unreachable("not an upgraded type attribute");
4132       }
4133 
4134       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4135     }
4136   }
4137 
4138   if (CB->isInlineAsm()) {
4139     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4140     unsigned ArgNo = 0;
4141     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4142       if (!CI.hasArg())
4143         continue;
4144 
4145       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4146         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4147         if (!ElemTy)
4148           return error("Missing element type for inline asm upgrade");
4149         Attrs = Attrs.addParamAttribute(
4150             Context, ArgNo,
4151             Attribute::get(Context, Attribute::ElementType, ElemTy));
4152       }
4153 
4154       ArgNo++;
4155     }
4156   }
4157 
4158   switch (CB->getIntrinsicID()) {
4159   case Intrinsic::preserve_array_access_index:
4160   case Intrinsic::preserve_struct_access_index:
4161   case Intrinsic::aarch64_ldaxr:
4162   case Intrinsic::aarch64_ldxr:
4163   case Intrinsic::aarch64_stlxr:
4164   case Intrinsic::aarch64_stxr:
4165   case Intrinsic::arm_ldaex:
4166   case Intrinsic::arm_ldrex:
4167   case Intrinsic::arm_stlex:
4168   case Intrinsic::arm_strex: {
4169     unsigned ArgNo;
4170     switch (CB->getIntrinsicID()) {
4171     case Intrinsic::aarch64_stlxr:
4172     case Intrinsic::aarch64_stxr:
4173     case Intrinsic::arm_stlex:
4174     case Intrinsic::arm_strex:
4175       ArgNo = 1;
4176       break;
4177     default:
4178       ArgNo = 0;
4179       break;
4180     }
4181     if (!Attrs.getParamElementType(ArgNo)) {
4182       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4183       if (!ElTy)
4184         return error("Missing element type for elementtype upgrade");
4185       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4186       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4187     }
4188     break;
4189   }
4190   default:
4191     break;
4192   }
4193 
4194   CB->setAttributes(Attrs);
4195   return Error::success();
4196 }
4197 
4198 /// Lazily parse the specified function body block.
4199 Error BitcodeReader::parseFunctionBody(Function *F) {
4200   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4201     return Err;
4202 
4203   // Unexpected unresolved metadata when parsing function.
4204   if (MDLoader->hasFwdRefs())
4205     return error("Invalid function metadata: incoming forward references");
4206 
4207   InstructionList.clear();
4208   unsigned ModuleValueListSize = ValueList.size();
4209   unsigned ModuleMDLoaderSize = MDLoader->size();
4210 
4211   // Add all the function arguments to the value table.
4212   unsigned ArgNo = 0;
4213   unsigned FTyID = FunctionTypeIDs[F];
4214   for (Argument &I : F->args()) {
4215     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4216     assert(I.getType() == getTypeByID(ArgTyID) &&
4217            "Incorrect fully specified type for Function Argument");
4218     ValueList.push_back(&I, ArgTyID);
4219     ++ArgNo;
4220   }
4221   unsigned NextValueNo = ValueList.size();
4222   BasicBlock *CurBB = nullptr;
4223   unsigned CurBBNo = 0;
4224 
4225   DebugLoc LastLoc;
4226   auto getLastInstruction = [&]() -> Instruction * {
4227     if (CurBB && !CurBB->empty())
4228       return &CurBB->back();
4229     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4230              !FunctionBBs[CurBBNo - 1]->empty())
4231       return &FunctionBBs[CurBBNo - 1]->back();
4232     return nullptr;
4233   };
4234 
4235   std::vector<OperandBundleDef> OperandBundles;
4236 
4237   // Read all the records.
4238   SmallVector<uint64_t, 64> Record;
4239 
4240   while (true) {
4241     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4242     if (!MaybeEntry)
4243       return MaybeEntry.takeError();
4244     llvm::BitstreamEntry Entry = MaybeEntry.get();
4245 
4246     switch (Entry.Kind) {
4247     case BitstreamEntry::Error:
4248       return error("Malformed block");
4249     case BitstreamEntry::EndBlock:
4250       goto OutOfRecordLoop;
4251 
4252     case BitstreamEntry::SubBlock:
4253       switch (Entry.ID) {
4254       default:  // Skip unknown content.
4255         if (Error Err = Stream.SkipBlock())
4256           return Err;
4257         break;
4258       case bitc::CONSTANTS_BLOCK_ID:
4259         if (Error Err = parseConstants())
4260           return Err;
4261         NextValueNo = ValueList.size();
4262         break;
4263       case bitc::VALUE_SYMTAB_BLOCK_ID:
4264         if (Error Err = parseValueSymbolTable())
4265           return Err;
4266         break;
4267       case bitc::METADATA_ATTACHMENT_ID:
4268         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4269           return Err;
4270         break;
4271       case bitc::METADATA_BLOCK_ID:
4272         assert(DeferredMetadataInfo.empty() &&
4273                "Must read all module-level metadata before function-level");
4274         if (Error Err = MDLoader->parseFunctionMetadata())
4275           return Err;
4276         break;
4277       case bitc::USELIST_BLOCK_ID:
4278         if (Error Err = parseUseLists())
4279           return Err;
4280         break;
4281       }
4282       continue;
4283 
4284     case BitstreamEntry::Record:
4285       // The interesting case.
4286       break;
4287     }
4288 
4289     // Read a record.
4290     Record.clear();
4291     Instruction *I = nullptr;
4292     unsigned ResTypeID = InvalidTypeID;
4293     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4294     if (!MaybeBitCode)
4295       return MaybeBitCode.takeError();
4296     switch (unsigned BitCode = MaybeBitCode.get()) {
4297     default: // Default behavior: reject
4298       return error("Invalid value");
4299     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4300       if (Record.empty() || Record[0] == 0)
4301         return error("Invalid record");
4302       // Create all the basic blocks for the function.
4303       FunctionBBs.resize(Record[0]);
4304 
4305       // See if anything took the address of blocks in this function.
4306       auto BBFRI = BasicBlockFwdRefs.find(F);
4307       if (BBFRI == BasicBlockFwdRefs.end()) {
4308         for (BasicBlock *&BB : FunctionBBs)
4309           BB = BasicBlock::Create(Context, "", F);
4310       } else {
4311         auto &BBRefs = BBFRI->second;
4312         // Check for invalid basic block references.
4313         if (BBRefs.size() > FunctionBBs.size())
4314           return error("Invalid ID");
4315         assert(!BBRefs.empty() && "Unexpected empty array");
4316         assert(!BBRefs.front() && "Invalid reference to entry block");
4317         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4318              ++I)
4319           if (I < RE && BBRefs[I]) {
4320             BBRefs[I]->insertInto(F);
4321             FunctionBBs[I] = BBRefs[I];
4322           } else {
4323             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4324           }
4325 
4326         // Erase from the table.
4327         BasicBlockFwdRefs.erase(BBFRI);
4328       }
4329 
4330       CurBB = FunctionBBs[0];
4331       continue;
4332     }
4333 
4334     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4335       // The record should not be emitted if it's an empty list.
4336       if (Record.empty())
4337         return error("Invalid record");
4338       // When we have the RARE case of a BlockAddress Constant that is not
4339       // scoped to the Function it refers to, we need to conservatively
4340       // materialize the referred to Function, regardless of whether or not
4341       // that Function will ultimately be linked, otherwise users of
4342       // BitcodeReader might start splicing out Function bodies such that we
4343       // might no longer be able to materialize the BlockAddress since the
4344       // BasicBlock (and entire body of the Function) the BlockAddress refers
4345       // to may have been moved. In the case that the user of BitcodeReader
4346       // decides ultimately not to link the Function body, materializing here
4347       // could be considered wasteful, but it's better than a deserialization
4348       // failure as described. This keeps BitcodeReader unaware of complex
4349       // linkage policy decisions such as those use by LTO, leaving those
4350       // decisions "one layer up."
4351       for (uint64_t ValID : Record)
4352         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4353           BackwardRefFunctions.push_back(F);
4354         else
4355           return error("Invalid record");
4356 
4357       continue;
4358 
4359     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4360       // This record indicates that the last instruction is at the same
4361       // location as the previous instruction with a location.
4362       I = getLastInstruction();
4363 
4364       if (!I)
4365         return error("Invalid record");
4366       I->setDebugLoc(LastLoc);
4367       I = nullptr;
4368       continue;
4369 
4370     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4371       I = getLastInstruction();
4372       if (!I || Record.size() < 4)
4373         return error("Invalid record");
4374 
4375       unsigned Line = Record[0], Col = Record[1];
4376       unsigned ScopeID = Record[2], IAID = Record[3];
4377       bool isImplicitCode = Record.size() == 5 && Record[4];
4378 
4379       MDNode *Scope = nullptr, *IA = nullptr;
4380       if (ScopeID) {
4381         Scope = dyn_cast_or_null<MDNode>(
4382             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4383         if (!Scope)
4384           return error("Invalid record");
4385       }
4386       if (IAID) {
4387         IA = dyn_cast_or_null<MDNode>(
4388             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4389         if (!IA)
4390           return error("Invalid record");
4391       }
4392       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4393                                 isImplicitCode);
4394       I->setDebugLoc(LastLoc);
4395       I = nullptr;
4396       continue;
4397     }
4398     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4399       unsigned OpNum = 0;
4400       Value *LHS;
4401       unsigned TypeID;
4402       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4403           OpNum+1 > Record.size())
4404         return error("Invalid record");
4405 
4406       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4407       if (Opc == -1)
4408         return error("Invalid record");
4409       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4410       ResTypeID = TypeID;
4411       InstructionList.push_back(I);
4412       if (OpNum < Record.size()) {
4413         if (isa<FPMathOperator>(I)) {
4414           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4415           if (FMF.any())
4416             I->setFastMathFlags(FMF);
4417         }
4418       }
4419       break;
4420     }
4421     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4422       unsigned OpNum = 0;
4423       Value *LHS, *RHS;
4424       unsigned TypeID;
4425       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4426           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) ||
4427           OpNum+1 > Record.size())
4428         return error("Invalid record");
4429 
4430       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4431       if (Opc == -1)
4432         return error("Invalid record");
4433       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4434       ResTypeID = TypeID;
4435       InstructionList.push_back(I);
4436       if (OpNum < Record.size()) {
4437         if (Opc == Instruction::Add ||
4438             Opc == Instruction::Sub ||
4439             Opc == Instruction::Mul ||
4440             Opc == Instruction::Shl) {
4441           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4442             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4443           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4444             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4445         } else if (Opc == Instruction::SDiv ||
4446                    Opc == Instruction::UDiv ||
4447                    Opc == Instruction::LShr ||
4448                    Opc == Instruction::AShr) {
4449           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4450             cast<BinaryOperator>(I)->setIsExact(true);
4451         } else if (isa<FPMathOperator>(I)) {
4452           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4453           if (FMF.any())
4454             I->setFastMathFlags(FMF);
4455         }
4456 
4457       }
4458       break;
4459     }
4460     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4461       unsigned OpNum = 0;
4462       Value *Op;
4463       unsigned OpTypeID;
4464       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
4465           OpNum+2 != Record.size())
4466         return error("Invalid record");
4467 
4468       ResTypeID = Record[OpNum];
4469       Type *ResTy = getTypeByID(ResTypeID);
4470       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4471       if (Opc == -1 || !ResTy)
4472         return error("Invalid record");
4473       Instruction *Temp = nullptr;
4474       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4475         if (Temp) {
4476           InstructionList.push_back(Temp);
4477           assert(CurBB && "No current BB?");
4478           CurBB->getInstList().push_back(Temp);
4479         }
4480       } else {
4481         auto CastOp = (Instruction::CastOps)Opc;
4482         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4483           return error("Invalid cast");
4484         I = CastInst::Create(CastOp, Op, ResTy);
4485       }
4486       InstructionList.push_back(I);
4487       break;
4488     }
4489     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4490     case bitc::FUNC_CODE_INST_GEP_OLD:
4491     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4492       unsigned OpNum = 0;
4493 
4494       unsigned TyID;
4495       Type *Ty;
4496       bool InBounds;
4497 
4498       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4499         InBounds = Record[OpNum++];
4500         TyID = Record[OpNum++];
4501         Ty = getTypeByID(TyID);
4502       } else {
4503         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4504         TyID = InvalidTypeID;
4505         Ty = nullptr;
4506       }
4507 
4508       Value *BasePtr;
4509       unsigned BasePtrTypeID;
4510       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID))
4511         return error("Invalid record");
4512 
4513       if (!Ty) {
4514         TyID = getContainedTypeID(BasePtrTypeID);
4515         if (BasePtr->getType()->isVectorTy())
4516           TyID = getContainedTypeID(TyID);
4517         Ty = getTypeByID(TyID);
4518       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4519                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4520         return error(
4521             "Explicit gep type does not match pointee type of pointer operand");
4522       }
4523 
4524       SmallVector<Value*, 16> GEPIdx;
4525       while (OpNum != Record.size()) {
4526         Value *Op;
4527         unsigned OpTypeID;
4528         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4529           return error("Invalid record");
4530         GEPIdx.push_back(Op);
4531       }
4532 
4533       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4534 
4535       ResTypeID = TyID;
4536       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4537         auto GTI = std::next(gep_type_begin(I));
4538         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4539           unsigned SubType = 0;
4540           if (GTI.isStruct()) {
4541             ConstantInt *IdxC =
4542                 Idx->getType()->isVectorTy()
4543                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4544                     : cast<ConstantInt>(Idx);
4545             SubType = IdxC->getZExtValue();
4546           }
4547           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4548           ++GTI;
4549         }
4550       }
4551 
4552       // At this point ResTypeID is the result element type. We need a pointer
4553       // or vector of pointer to it.
4554       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4555       if (I->getType()->isVectorTy())
4556         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4557 
4558       InstructionList.push_back(I);
4559       if (InBounds)
4560         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4561       break;
4562     }
4563 
4564     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4565                                        // EXTRACTVAL: [opty, opval, n x indices]
4566       unsigned OpNum = 0;
4567       Value *Agg;
4568       unsigned AggTypeID;
4569       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4570         return error("Invalid record");
4571       Type *Ty = Agg->getType();
4572 
4573       unsigned RecSize = Record.size();
4574       if (OpNum == RecSize)
4575         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4576 
4577       SmallVector<unsigned, 4> EXTRACTVALIdx;
4578       ResTypeID = AggTypeID;
4579       for (; OpNum != RecSize; ++OpNum) {
4580         bool IsArray = Ty->isArrayTy();
4581         bool IsStruct = Ty->isStructTy();
4582         uint64_t Index = Record[OpNum];
4583 
4584         if (!IsStruct && !IsArray)
4585           return error("EXTRACTVAL: Invalid type");
4586         if ((unsigned)Index != Index)
4587           return error("Invalid value");
4588         if (IsStruct && Index >= Ty->getStructNumElements())
4589           return error("EXTRACTVAL: Invalid struct index");
4590         if (IsArray && Index >= Ty->getArrayNumElements())
4591           return error("EXTRACTVAL: Invalid array index");
4592         EXTRACTVALIdx.push_back((unsigned)Index);
4593 
4594         if (IsStruct) {
4595           Ty = Ty->getStructElementType(Index);
4596           ResTypeID = getContainedTypeID(ResTypeID, Index);
4597         } else {
4598           Ty = Ty->getArrayElementType();
4599           ResTypeID = getContainedTypeID(ResTypeID);
4600         }
4601       }
4602 
4603       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4604       InstructionList.push_back(I);
4605       break;
4606     }
4607 
4608     case bitc::FUNC_CODE_INST_INSERTVAL: {
4609                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4610       unsigned OpNum = 0;
4611       Value *Agg;
4612       unsigned AggTypeID;
4613       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4614         return error("Invalid record");
4615       Value *Val;
4616       unsigned ValTypeID;
4617       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
4618         return error("Invalid record");
4619 
4620       unsigned RecSize = Record.size();
4621       if (OpNum == RecSize)
4622         return error("INSERTVAL: Invalid instruction with 0 indices");
4623 
4624       SmallVector<unsigned, 4> INSERTVALIdx;
4625       Type *CurTy = Agg->getType();
4626       for (; OpNum != RecSize; ++OpNum) {
4627         bool IsArray = CurTy->isArrayTy();
4628         bool IsStruct = CurTy->isStructTy();
4629         uint64_t Index = Record[OpNum];
4630 
4631         if (!IsStruct && !IsArray)
4632           return error("INSERTVAL: Invalid type");
4633         if ((unsigned)Index != Index)
4634           return error("Invalid value");
4635         if (IsStruct && Index >= CurTy->getStructNumElements())
4636           return error("INSERTVAL: Invalid struct index");
4637         if (IsArray && Index >= CurTy->getArrayNumElements())
4638           return error("INSERTVAL: Invalid array index");
4639 
4640         INSERTVALIdx.push_back((unsigned)Index);
4641         if (IsStruct)
4642           CurTy = CurTy->getStructElementType(Index);
4643         else
4644           CurTy = CurTy->getArrayElementType();
4645       }
4646 
4647       if (CurTy != Val->getType())
4648         return error("Inserted value type doesn't match aggregate type");
4649 
4650       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4651       ResTypeID = AggTypeID;
4652       InstructionList.push_back(I);
4653       break;
4654     }
4655 
4656     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4657       // obsolete form of select
4658       // handles select i1 ... in old bitcode
4659       unsigned OpNum = 0;
4660       Value *TrueVal, *FalseVal, *Cond;
4661       unsigned TypeID;
4662       Type *CondType = Type::getInt1Ty(Context);
4663       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) ||
4664           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4665                    FalseVal) ||
4666           popValue(Record, OpNum, NextValueNo, CondType,
4667                    getVirtualTypeID(CondType), Cond))
4668         return error("Invalid record");
4669 
4670       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4671       ResTypeID = TypeID;
4672       InstructionList.push_back(I);
4673       break;
4674     }
4675 
4676     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4677       // new form of select
4678       // handles select i1 or select [N x i1]
4679       unsigned OpNum = 0;
4680       Value *TrueVal, *FalseVal, *Cond;
4681       unsigned ValTypeID, CondTypeID;
4682       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) ||
4683           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4684                    FalseVal) ||
4685           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID))
4686         return error("Invalid record");
4687 
4688       // select condition can be either i1 or [N x i1]
4689       if (VectorType* vector_type =
4690           dyn_cast<VectorType>(Cond->getType())) {
4691         // expect <n x i1>
4692         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4693           return error("Invalid type for value");
4694       } else {
4695         // expect i1
4696         if (Cond->getType() != Type::getInt1Ty(Context))
4697           return error("Invalid type for value");
4698       }
4699 
4700       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4701       ResTypeID = ValTypeID;
4702       InstructionList.push_back(I);
4703       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4704         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4705         if (FMF.any())
4706           I->setFastMathFlags(FMF);
4707       }
4708       break;
4709     }
4710 
4711     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4712       unsigned OpNum = 0;
4713       Value *Vec, *Idx;
4714       unsigned VecTypeID, IdxTypeID;
4715       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) ||
4716           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4717         return error("Invalid record");
4718       if (!Vec->getType()->isVectorTy())
4719         return error("Invalid type for value");
4720       I = ExtractElementInst::Create(Vec, Idx);
4721       ResTypeID = getContainedTypeID(VecTypeID);
4722       InstructionList.push_back(I);
4723       break;
4724     }
4725 
4726     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4727       unsigned OpNum = 0;
4728       Value *Vec, *Elt, *Idx;
4729       unsigned VecTypeID, IdxTypeID;
4730       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID))
4731         return error("Invalid record");
4732       if (!Vec->getType()->isVectorTy())
4733         return error("Invalid type for value");
4734       if (popValue(Record, OpNum, NextValueNo,
4735                    cast<VectorType>(Vec->getType())->getElementType(),
4736                    getContainedTypeID(VecTypeID), Elt) ||
4737           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4738         return error("Invalid record");
4739       I = InsertElementInst::Create(Vec, Elt, Idx);
4740       ResTypeID = VecTypeID;
4741       InstructionList.push_back(I);
4742       break;
4743     }
4744 
4745     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4746       unsigned OpNum = 0;
4747       Value *Vec1, *Vec2, *Mask;
4748       unsigned Vec1TypeID;
4749       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) ||
4750           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
4751                    Vec2))
4752         return error("Invalid record");
4753 
4754       unsigned MaskTypeID;
4755       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID))
4756         return error("Invalid record");
4757       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4758         return error("Invalid type for value");
4759 
4760       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4761       ResTypeID =
4762           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
4763       InstructionList.push_back(I);
4764       break;
4765     }
4766 
4767     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4768       // Old form of ICmp/FCmp returning bool
4769       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4770       // both legal on vectors but had different behaviour.
4771     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4772       // FCmp/ICmp returning bool or vector of bool
4773 
4774       unsigned OpNum = 0;
4775       Value *LHS, *RHS;
4776       unsigned LHSTypeID;
4777       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) ||
4778           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS))
4779         return error("Invalid record");
4780 
4781       if (OpNum >= Record.size())
4782         return error(
4783             "Invalid record: operand number exceeded available operands");
4784 
4785       unsigned PredVal = Record[OpNum];
4786       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4787       FastMathFlags FMF;
4788       if (IsFP && Record.size() > OpNum+1)
4789         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4790 
4791       if (OpNum+1 != Record.size())
4792         return error("Invalid record");
4793 
4794       if (LHS->getType()->isFPOrFPVectorTy())
4795         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4796       else
4797         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4798 
4799       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
4800       if (LHS->getType()->isVectorTy())
4801         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4802 
4803       if (FMF.any())
4804         I->setFastMathFlags(FMF);
4805       InstructionList.push_back(I);
4806       break;
4807     }
4808 
4809     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4810       {
4811         unsigned Size = Record.size();
4812         if (Size == 0) {
4813           I = ReturnInst::Create(Context);
4814           InstructionList.push_back(I);
4815           break;
4816         }
4817 
4818         unsigned OpNum = 0;
4819         Value *Op = nullptr;
4820         unsigned OpTypeID;
4821         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4822           return error("Invalid record");
4823         if (OpNum != Record.size())
4824           return error("Invalid record");
4825 
4826         I = ReturnInst::Create(Context, Op);
4827         InstructionList.push_back(I);
4828         break;
4829       }
4830     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4831       if (Record.size() != 1 && Record.size() != 3)
4832         return error("Invalid record");
4833       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4834       if (!TrueDest)
4835         return error("Invalid record");
4836 
4837       if (Record.size() == 1) {
4838         I = BranchInst::Create(TrueDest);
4839         InstructionList.push_back(I);
4840       }
4841       else {
4842         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4843         Type *CondType = Type::getInt1Ty(Context);
4844         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
4845                                getVirtualTypeID(CondType));
4846         if (!FalseDest || !Cond)
4847           return error("Invalid record");
4848         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4849         InstructionList.push_back(I);
4850       }
4851       break;
4852     }
4853     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4854       if (Record.size() != 1 && Record.size() != 2)
4855         return error("Invalid record");
4856       unsigned Idx = 0;
4857       Type *TokenTy = Type::getTokenTy(Context);
4858       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4859                                    getVirtualTypeID(TokenTy));
4860       if (!CleanupPad)
4861         return error("Invalid record");
4862       BasicBlock *UnwindDest = nullptr;
4863       if (Record.size() == 2) {
4864         UnwindDest = getBasicBlock(Record[Idx++]);
4865         if (!UnwindDest)
4866           return error("Invalid record");
4867       }
4868 
4869       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4870       InstructionList.push_back(I);
4871       break;
4872     }
4873     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4874       if (Record.size() != 2)
4875         return error("Invalid record");
4876       unsigned Idx = 0;
4877       Type *TokenTy = Type::getTokenTy(Context);
4878       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4879                                  getVirtualTypeID(TokenTy));
4880       if (!CatchPad)
4881         return error("Invalid record");
4882       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4883       if (!BB)
4884         return error("Invalid record");
4885 
4886       I = CatchReturnInst::Create(CatchPad, BB);
4887       InstructionList.push_back(I);
4888       break;
4889     }
4890     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4891       // We must have, at minimum, the outer scope and the number of arguments.
4892       if (Record.size() < 2)
4893         return error("Invalid record");
4894 
4895       unsigned Idx = 0;
4896 
4897       Type *TokenTy = Type::getTokenTy(Context);
4898       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4899                                   getVirtualTypeID(TokenTy));
4900 
4901       unsigned NumHandlers = Record[Idx++];
4902 
4903       SmallVector<BasicBlock *, 2> Handlers;
4904       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4905         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4906         if (!BB)
4907           return error("Invalid record");
4908         Handlers.push_back(BB);
4909       }
4910 
4911       BasicBlock *UnwindDest = nullptr;
4912       if (Idx + 1 == Record.size()) {
4913         UnwindDest = getBasicBlock(Record[Idx++]);
4914         if (!UnwindDest)
4915           return error("Invalid record");
4916       }
4917 
4918       if (Record.size() != Idx)
4919         return error("Invalid record");
4920 
4921       auto *CatchSwitch =
4922           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4923       for (BasicBlock *Handler : Handlers)
4924         CatchSwitch->addHandler(Handler);
4925       I = CatchSwitch;
4926       ResTypeID = getVirtualTypeID(I->getType());
4927       InstructionList.push_back(I);
4928       break;
4929     }
4930     case bitc::FUNC_CODE_INST_CATCHPAD:
4931     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4932       // We must have, at minimum, the outer scope and the number of arguments.
4933       if (Record.size() < 2)
4934         return error("Invalid record");
4935 
4936       unsigned Idx = 0;
4937 
4938       Type *TokenTy = Type::getTokenTy(Context);
4939       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4940                                   getVirtualTypeID(TokenTy));
4941 
4942       unsigned NumArgOperands = Record[Idx++];
4943 
4944       SmallVector<Value *, 2> Args;
4945       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4946         Value *Val;
4947         unsigned ValTypeID;
4948         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
4949           return error("Invalid record");
4950         Args.push_back(Val);
4951       }
4952 
4953       if (Record.size() != Idx)
4954         return error("Invalid record");
4955 
4956       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4957         I = CleanupPadInst::Create(ParentPad, Args);
4958       else
4959         I = CatchPadInst::Create(ParentPad, Args);
4960       ResTypeID = getVirtualTypeID(I->getType());
4961       InstructionList.push_back(I);
4962       break;
4963     }
4964     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4965       // Check magic
4966       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4967         // "New" SwitchInst format with case ranges. The changes to write this
4968         // format were reverted but we still recognize bitcode that uses it.
4969         // Hopefully someday we will have support for case ranges and can use
4970         // this format again.
4971 
4972         unsigned OpTyID = Record[1];
4973         Type *OpTy = getTypeByID(OpTyID);
4974         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4975 
4976         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID);
4977         BasicBlock *Default = getBasicBlock(Record[3]);
4978         if (!OpTy || !Cond || !Default)
4979           return error("Invalid record");
4980 
4981         unsigned NumCases = Record[4];
4982 
4983         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4984         InstructionList.push_back(SI);
4985 
4986         unsigned CurIdx = 5;
4987         for (unsigned i = 0; i != NumCases; ++i) {
4988           SmallVector<ConstantInt*, 1> CaseVals;
4989           unsigned NumItems = Record[CurIdx++];
4990           for (unsigned ci = 0; ci != NumItems; ++ci) {
4991             bool isSingleNumber = Record[CurIdx++];
4992 
4993             APInt Low;
4994             unsigned ActiveWords = 1;
4995             if (ValueBitWidth > 64)
4996               ActiveWords = Record[CurIdx++];
4997             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4998                                 ValueBitWidth);
4999             CurIdx += ActiveWords;
5000 
5001             if (!isSingleNumber) {
5002               ActiveWords = 1;
5003               if (ValueBitWidth > 64)
5004                 ActiveWords = Record[CurIdx++];
5005               APInt High = readWideAPInt(
5006                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5007               CurIdx += ActiveWords;
5008 
5009               // FIXME: It is not clear whether values in the range should be
5010               // compared as signed or unsigned values. The partially
5011               // implemented changes that used this format in the past used
5012               // unsigned comparisons.
5013               for ( ; Low.ule(High); ++Low)
5014                 CaseVals.push_back(ConstantInt::get(Context, Low));
5015             } else
5016               CaseVals.push_back(ConstantInt::get(Context, Low));
5017           }
5018           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5019           for (ConstantInt *Cst : CaseVals)
5020             SI->addCase(Cst, DestBB);
5021         }
5022         I = SI;
5023         break;
5024       }
5025 
5026       // Old SwitchInst format without case ranges.
5027 
5028       if (Record.size() < 3 || (Record.size() & 1) == 0)
5029         return error("Invalid record");
5030       unsigned OpTyID = Record[0];
5031       Type *OpTy = getTypeByID(OpTyID);
5032       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5033       BasicBlock *Default = getBasicBlock(Record[2]);
5034       if (!OpTy || !Cond || !Default)
5035         return error("Invalid record");
5036       unsigned NumCases = (Record.size()-3)/2;
5037       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5038       InstructionList.push_back(SI);
5039       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5040         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5041             getFnValueByID(Record[3+i*2], OpTy, OpTyID));
5042         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5043         if (!CaseVal || !DestBB) {
5044           delete SI;
5045           return error("Invalid record");
5046         }
5047         SI->addCase(CaseVal, DestBB);
5048       }
5049       I = SI;
5050       break;
5051     }
5052     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5053       if (Record.size() < 2)
5054         return error("Invalid record");
5055       unsigned OpTyID = Record[0];
5056       Type *OpTy = getTypeByID(OpTyID);
5057       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5058       if (!OpTy || !Address)
5059         return error("Invalid record");
5060       unsigned NumDests = Record.size()-2;
5061       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5062       InstructionList.push_back(IBI);
5063       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5064         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5065           IBI->addDestination(DestBB);
5066         } else {
5067           delete IBI;
5068           return error("Invalid record");
5069         }
5070       }
5071       I = IBI;
5072       break;
5073     }
5074 
5075     case bitc::FUNC_CODE_INST_INVOKE: {
5076       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5077       if (Record.size() < 4)
5078         return error("Invalid record");
5079       unsigned OpNum = 0;
5080       AttributeList PAL = getAttributes(Record[OpNum++]);
5081       unsigned CCInfo = Record[OpNum++];
5082       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5083       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5084 
5085       unsigned FTyID = InvalidTypeID;
5086       FunctionType *FTy = nullptr;
5087       if ((CCInfo >> 13) & 1) {
5088         FTyID = Record[OpNum++];
5089         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5090         if (!FTy)
5091           return error("Explicit invoke type is not a function type");
5092       }
5093 
5094       Value *Callee;
5095       unsigned CalleeTypeID;
5096       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5097         return error("Invalid record");
5098 
5099       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5100       if (!CalleeTy)
5101         return error("Callee is not a pointer");
5102       if (!FTy) {
5103         FTyID = getContainedTypeID(CalleeTypeID);
5104         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5105         if (!FTy)
5106           return error("Callee is not of pointer to function type");
5107       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5108         return error("Explicit invoke type does not match pointee type of "
5109                      "callee operand");
5110       if (Record.size() < FTy->getNumParams() + OpNum)
5111         return error("Insufficient operands to call");
5112 
5113       SmallVector<Value*, 16> Ops;
5114       SmallVector<unsigned, 16> ArgTyIDs;
5115       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5116         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5117         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5118                                ArgTyID));
5119         ArgTyIDs.push_back(ArgTyID);
5120         if (!Ops.back())
5121           return error("Invalid record");
5122       }
5123 
5124       if (!FTy->isVarArg()) {
5125         if (Record.size() != OpNum)
5126           return error("Invalid record");
5127       } else {
5128         // Read type/value pairs for varargs params.
5129         while (OpNum != Record.size()) {
5130           Value *Op;
5131           unsigned OpTypeID;
5132           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5133             return error("Invalid record");
5134           Ops.push_back(Op);
5135           ArgTyIDs.push_back(OpTypeID);
5136         }
5137       }
5138 
5139       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5140                              OperandBundles);
5141       ResTypeID = getContainedTypeID(FTyID);
5142       OperandBundles.clear();
5143       InstructionList.push_back(I);
5144       cast<InvokeInst>(I)->setCallingConv(
5145           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5146       cast<InvokeInst>(I)->setAttributes(PAL);
5147       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5148         I->deleteValue();
5149         return Err;
5150       }
5151 
5152       break;
5153     }
5154     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5155       unsigned Idx = 0;
5156       Value *Val = nullptr;
5157       unsigned ValTypeID;
5158       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
5159         return error("Invalid record");
5160       I = ResumeInst::Create(Val);
5161       InstructionList.push_back(I);
5162       break;
5163     }
5164     case bitc::FUNC_CODE_INST_CALLBR: {
5165       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5166       unsigned OpNum = 0;
5167       AttributeList PAL = getAttributes(Record[OpNum++]);
5168       unsigned CCInfo = Record[OpNum++];
5169 
5170       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5171       unsigned NumIndirectDests = Record[OpNum++];
5172       SmallVector<BasicBlock *, 16> IndirectDests;
5173       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5174         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5175 
5176       unsigned FTyID = InvalidTypeID;
5177       FunctionType *FTy = nullptr;
5178       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5179         FTyID = Record[OpNum++];
5180         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5181         if (!FTy)
5182           return error("Explicit call type is not a function type");
5183       }
5184 
5185       Value *Callee;
5186       unsigned CalleeTypeID;
5187       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5188         return error("Invalid record");
5189 
5190       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5191       if (!OpTy)
5192         return error("Callee is not a pointer type");
5193       if (!FTy) {
5194         FTyID = getContainedTypeID(CalleeTypeID);
5195         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5196         if (!FTy)
5197           return error("Callee is not of pointer to function type");
5198       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5199         return error("Explicit call type does not match pointee type of "
5200                      "callee operand");
5201       if (Record.size() < FTy->getNumParams() + OpNum)
5202         return error("Insufficient operands to call");
5203 
5204       SmallVector<Value*, 16> Args;
5205       SmallVector<unsigned, 16> ArgTyIDs;
5206       // Read the fixed params.
5207       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5208         Value *Arg;
5209         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5210         if (FTy->getParamType(i)->isLabelTy())
5211           Arg = getBasicBlock(Record[OpNum]);
5212         else
5213           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5214                          ArgTyID);
5215         if (!Arg)
5216           return error("Invalid record");
5217         Args.push_back(Arg);
5218         ArgTyIDs.push_back(ArgTyID);
5219       }
5220 
5221       // Read type/value pairs for varargs params.
5222       if (!FTy->isVarArg()) {
5223         if (OpNum != Record.size())
5224           return error("Invalid record");
5225       } else {
5226         while (OpNum != Record.size()) {
5227           Value *Op;
5228           unsigned OpTypeID;
5229           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5230             return error("Invalid record");
5231           Args.push_back(Op);
5232           ArgTyIDs.push_back(OpTypeID);
5233         }
5234       }
5235 
5236       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5237                              OperandBundles);
5238       ResTypeID = getContainedTypeID(FTyID);
5239       OperandBundles.clear();
5240       InstructionList.push_back(I);
5241       cast<CallBrInst>(I)->setCallingConv(
5242           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5243       cast<CallBrInst>(I)->setAttributes(PAL);
5244       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5245         I->deleteValue();
5246         return Err;
5247       }
5248       break;
5249     }
5250     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5251       I = new UnreachableInst(Context);
5252       InstructionList.push_back(I);
5253       break;
5254     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5255       if (Record.empty())
5256         return error("Invalid phi record");
5257       // The first record specifies the type.
5258       unsigned TyID = Record[0];
5259       Type *Ty = getTypeByID(TyID);
5260       if (!Ty)
5261         return error("Invalid phi record");
5262 
5263       // Phi arguments are pairs of records of [value, basic block].
5264       // There is an optional final record for fast-math-flags if this phi has a
5265       // floating-point type.
5266       size_t NumArgs = (Record.size() - 1) / 2;
5267       PHINode *PN = PHINode::Create(Ty, NumArgs);
5268       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5269         PN->deleteValue();
5270         return error("Invalid phi record");
5271       }
5272       InstructionList.push_back(PN);
5273 
5274       for (unsigned i = 0; i != NumArgs; i++) {
5275         Value *V;
5276         // With the new function encoding, it is possible that operands have
5277         // negative IDs (for forward references).  Use a signed VBR
5278         // representation to keep the encoding small.
5279         if (UseRelativeIDs)
5280           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5281         else
5282           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5283         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5284         if (!V || !BB) {
5285           PN->deleteValue();
5286           return error("Invalid phi record");
5287         }
5288         PN->addIncoming(V, BB);
5289       }
5290       I = PN;
5291       ResTypeID = TyID;
5292 
5293       // If there are an even number of records, the final record must be FMF.
5294       if (Record.size() % 2 == 0) {
5295         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5296         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5297         if (FMF.any())
5298           I->setFastMathFlags(FMF);
5299       }
5300 
5301       break;
5302     }
5303 
5304     case bitc::FUNC_CODE_INST_LANDINGPAD:
5305     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5306       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5307       unsigned Idx = 0;
5308       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5309         if (Record.size() < 3)
5310           return error("Invalid record");
5311       } else {
5312         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5313         if (Record.size() < 4)
5314           return error("Invalid record");
5315       }
5316       ResTypeID = Record[Idx++];
5317       Type *Ty = getTypeByID(ResTypeID);
5318       if (!Ty)
5319         return error("Invalid record");
5320       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5321         Value *PersFn = nullptr;
5322         unsigned PersFnTypeID;
5323         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID))
5324           return error("Invalid record");
5325 
5326         if (!F->hasPersonalityFn())
5327           F->setPersonalityFn(cast<Constant>(PersFn));
5328         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5329           return error("Personality function mismatch");
5330       }
5331 
5332       bool IsCleanup = !!Record[Idx++];
5333       unsigned NumClauses = Record[Idx++];
5334       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5335       LP->setCleanup(IsCleanup);
5336       for (unsigned J = 0; J != NumClauses; ++J) {
5337         LandingPadInst::ClauseType CT =
5338           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5339         Value *Val;
5340         unsigned ValTypeID;
5341 
5342         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) {
5343           delete LP;
5344           return error("Invalid record");
5345         }
5346 
5347         assert((CT != LandingPadInst::Catch ||
5348                 !isa<ArrayType>(Val->getType())) &&
5349                "Catch clause has a invalid type!");
5350         assert((CT != LandingPadInst::Filter ||
5351                 isa<ArrayType>(Val->getType())) &&
5352                "Filter clause has invalid type!");
5353         LP->addClause(cast<Constant>(Val));
5354       }
5355 
5356       I = LP;
5357       InstructionList.push_back(I);
5358       break;
5359     }
5360 
5361     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5362       if (Record.size() != 4 && Record.size() != 5)
5363         return error("Invalid record");
5364       using APV = AllocaPackedValues;
5365       const uint64_t Rec = Record[3];
5366       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5367       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5368       unsigned TyID = Record[0];
5369       Type *Ty = getTypeByID(TyID);
5370       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5371         TyID = getContainedTypeID(TyID);
5372         Ty = getTypeByID(TyID);
5373         if (!Ty)
5374           return error("Missing element type for old-style alloca");
5375       }
5376       unsigned OpTyID = Record[1];
5377       Type *OpTy = getTypeByID(OpTyID);
5378       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID);
5379       MaybeAlign Align;
5380       uint64_t AlignExp =
5381           Bitfield::get<APV::AlignLower>(Rec) |
5382           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5383       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5384         return Err;
5385       }
5386       if (!Ty || !Size)
5387         return error("Invalid record");
5388 
5389       const DataLayout &DL = TheModule->getDataLayout();
5390       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5391 
5392       SmallPtrSet<Type *, 4> Visited;
5393       if (!Align && !Ty->isSized(&Visited))
5394         return error("alloca of unsized type");
5395       if (!Align)
5396         Align = DL.getPrefTypeAlign(Ty);
5397 
5398       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5399       AI->setUsedWithInAlloca(InAlloca);
5400       AI->setSwiftError(SwiftError);
5401       I = AI;
5402       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5403       InstructionList.push_back(I);
5404       break;
5405     }
5406     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5407       unsigned OpNum = 0;
5408       Value *Op;
5409       unsigned OpTypeID;
5410       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5411           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5412         return error("Invalid record");
5413 
5414       if (!isa<PointerType>(Op->getType()))
5415         return error("Load operand is not a pointer type");
5416 
5417       Type *Ty = nullptr;
5418       if (OpNum + 3 == Record.size()) {
5419         ResTypeID = Record[OpNum++];
5420         Ty = getTypeByID(ResTypeID);
5421       } else {
5422         ResTypeID = getContainedTypeID(OpTypeID);
5423         Ty = getTypeByID(ResTypeID);
5424         if (!Ty)
5425           return error("Missing element type for old-style load");
5426       }
5427 
5428       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5429         return Err;
5430 
5431       MaybeAlign Align;
5432       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5433         return Err;
5434       SmallPtrSet<Type *, 4> Visited;
5435       if (!Align && !Ty->isSized(&Visited))
5436         return error("load of unsized type");
5437       if (!Align)
5438         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5439       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5440       InstructionList.push_back(I);
5441       break;
5442     }
5443     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5444        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5445       unsigned OpNum = 0;
5446       Value *Op;
5447       unsigned OpTypeID;
5448       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5449           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5450         return error("Invalid record");
5451 
5452       if (!isa<PointerType>(Op->getType()))
5453         return error("Load operand is not a pointer type");
5454 
5455       Type *Ty = nullptr;
5456       if (OpNum + 5 == Record.size()) {
5457         ResTypeID = Record[OpNum++];
5458         Ty = getTypeByID(ResTypeID);
5459       } else {
5460         ResTypeID = getContainedTypeID(OpTypeID);
5461         Ty = getTypeByID(ResTypeID);
5462         if (!Ty)
5463           return error("Missing element type for old style atomic load");
5464       }
5465 
5466       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5467         return Err;
5468 
5469       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5470       if (Ordering == AtomicOrdering::NotAtomic ||
5471           Ordering == AtomicOrdering::Release ||
5472           Ordering == AtomicOrdering::AcquireRelease)
5473         return error("Invalid record");
5474       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5475         return error("Invalid record");
5476       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5477 
5478       MaybeAlign Align;
5479       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5480         return Err;
5481       if (!Align)
5482         return error("Alignment missing from atomic load");
5483       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5484       InstructionList.push_back(I);
5485       break;
5486     }
5487     case bitc::FUNC_CODE_INST_STORE:
5488     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5489       unsigned OpNum = 0;
5490       Value *Val, *Ptr;
5491       unsigned PtrTypeID, ValTypeID;
5492       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5493         return error("Invalid record");
5494 
5495       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5496         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5497           return error("Invalid record");
5498       } else {
5499         ValTypeID = getContainedTypeID(PtrTypeID);
5500         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5501                      ValTypeID, Val))
5502           return error("Invalid record");
5503       }
5504 
5505       if (OpNum + 2 != Record.size())
5506         return error("Invalid record");
5507 
5508       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5509         return Err;
5510       MaybeAlign Align;
5511       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5512         return Err;
5513       SmallPtrSet<Type *, 4> Visited;
5514       if (!Align && !Val->getType()->isSized(&Visited))
5515         return error("store of unsized type");
5516       if (!Align)
5517         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5518       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5519       InstructionList.push_back(I);
5520       break;
5521     }
5522     case bitc::FUNC_CODE_INST_STOREATOMIC:
5523     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5524       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5525       unsigned OpNum = 0;
5526       Value *Val, *Ptr;
5527       unsigned PtrTypeID, ValTypeID;
5528       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) ||
5529           !isa<PointerType>(Ptr->getType()))
5530         return error("Invalid record");
5531       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5532         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5533           return error("Invalid record");
5534       } else {
5535         ValTypeID = getContainedTypeID(PtrTypeID);
5536         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5537                      ValTypeID, Val))
5538           return error("Invalid record");
5539       }
5540 
5541       if (OpNum + 4 != Record.size())
5542         return error("Invalid record");
5543 
5544       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5545         return Err;
5546       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5547       if (Ordering == AtomicOrdering::NotAtomic ||
5548           Ordering == AtomicOrdering::Acquire ||
5549           Ordering == AtomicOrdering::AcquireRelease)
5550         return error("Invalid record");
5551       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5552       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5553         return error("Invalid record");
5554 
5555       MaybeAlign Align;
5556       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5557         return Err;
5558       if (!Align)
5559         return error("Alignment missing from atomic store");
5560       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5561       InstructionList.push_back(I);
5562       break;
5563     }
5564     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5565       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5566       // failure_ordering?, weak?]
5567       const size_t NumRecords = Record.size();
5568       unsigned OpNum = 0;
5569       Value *Ptr = nullptr;
5570       unsigned PtrTypeID;
5571       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5572         return error("Invalid record");
5573 
5574       if (!isa<PointerType>(Ptr->getType()))
5575         return error("Cmpxchg operand is not a pointer type");
5576 
5577       Value *Cmp = nullptr;
5578       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5579       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5580                    CmpTypeID, Cmp))
5581         return error("Invalid record");
5582 
5583       Value *New = nullptr;
5584       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5585                    New) ||
5586           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5587         return error("Invalid record");
5588 
5589       const AtomicOrdering SuccessOrdering =
5590           getDecodedOrdering(Record[OpNum + 1]);
5591       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5592           SuccessOrdering == AtomicOrdering::Unordered)
5593         return error("Invalid record");
5594 
5595       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5596 
5597       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5598         return Err;
5599 
5600       const AtomicOrdering FailureOrdering =
5601           NumRecords < 7
5602               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5603               : getDecodedOrdering(Record[OpNum + 3]);
5604 
5605       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5606           FailureOrdering == AtomicOrdering::Unordered)
5607         return error("Invalid record");
5608 
5609       const Align Alignment(
5610           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5611 
5612       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5613                                 FailureOrdering, SSID);
5614       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5615 
5616       if (NumRecords < 8) {
5617         // Before weak cmpxchgs existed, the instruction simply returned the
5618         // value loaded from memory, so bitcode files from that era will be
5619         // expecting the first component of a modern cmpxchg.
5620         CurBB->getInstList().push_back(I);
5621         I = ExtractValueInst::Create(I, 0);
5622         ResTypeID = CmpTypeID;
5623       } else {
5624         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5625         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5626         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5627       }
5628 
5629       InstructionList.push_back(I);
5630       break;
5631     }
5632     case bitc::FUNC_CODE_INST_CMPXCHG: {
5633       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5634       // failure_ordering, weak, align?]
5635       const size_t NumRecords = Record.size();
5636       unsigned OpNum = 0;
5637       Value *Ptr = nullptr;
5638       unsigned PtrTypeID;
5639       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5640         return error("Invalid record");
5641 
5642       if (!isa<PointerType>(Ptr->getType()))
5643         return error("Cmpxchg operand is not a pointer type");
5644 
5645       Value *Cmp = nullptr;
5646       unsigned CmpTypeID;
5647       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID))
5648         return error("Invalid record");
5649 
5650       Value *Val = nullptr;
5651       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val))
5652         return error("Invalid record");
5653 
5654       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5655         return error("Invalid record");
5656 
5657       const bool IsVol = Record[OpNum];
5658 
5659       const AtomicOrdering SuccessOrdering =
5660           getDecodedOrdering(Record[OpNum + 1]);
5661       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5662         return error("Invalid cmpxchg success ordering");
5663 
5664       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5665 
5666       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5667         return Err;
5668 
5669       const AtomicOrdering FailureOrdering =
5670           getDecodedOrdering(Record[OpNum + 3]);
5671       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5672         return error("Invalid cmpxchg failure ordering");
5673 
5674       const bool IsWeak = Record[OpNum + 4];
5675 
5676       MaybeAlign Alignment;
5677 
5678       if (NumRecords == (OpNum + 6)) {
5679         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5680           return Err;
5681       }
5682       if (!Alignment)
5683         Alignment =
5684             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5685 
5686       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5687                                 FailureOrdering, SSID);
5688       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5689       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5690 
5691       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5692       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5693 
5694       InstructionList.push_back(I);
5695       break;
5696     }
5697     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5698     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5699       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5700       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5701       const size_t NumRecords = Record.size();
5702       unsigned OpNum = 0;
5703 
5704       Value *Ptr = nullptr;
5705       unsigned PtrTypeID;
5706       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5707         return error("Invalid record");
5708 
5709       if (!isa<PointerType>(Ptr->getType()))
5710         return error("Invalid record");
5711 
5712       Value *Val = nullptr;
5713       unsigned ValTypeID = InvalidTypeID;
5714       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5715         ValTypeID = getContainedTypeID(PtrTypeID);
5716         if (popValue(Record, OpNum, NextValueNo,
5717                      getTypeByID(ValTypeID), ValTypeID, Val))
5718           return error("Invalid record");
5719       } else {
5720         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5721           return error("Invalid record");
5722       }
5723 
5724       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5725         return error("Invalid record");
5726 
5727       const AtomicRMWInst::BinOp Operation =
5728           getDecodedRMWOperation(Record[OpNum]);
5729       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5730           Operation > AtomicRMWInst::LAST_BINOP)
5731         return error("Invalid record");
5732 
5733       const bool IsVol = Record[OpNum + 1];
5734 
5735       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5736       if (Ordering == AtomicOrdering::NotAtomic ||
5737           Ordering == AtomicOrdering::Unordered)
5738         return error("Invalid record");
5739 
5740       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5741 
5742       MaybeAlign Alignment;
5743 
5744       if (NumRecords == (OpNum + 5)) {
5745         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5746           return Err;
5747       }
5748 
5749       if (!Alignment)
5750         Alignment =
5751             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5752 
5753       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5754       ResTypeID = ValTypeID;
5755       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5756 
5757       InstructionList.push_back(I);
5758       break;
5759     }
5760     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5761       if (2 != Record.size())
5762         return error("Invalid record");
5763       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5764       if (Ordering == AtomicOrdering::NotAtomic ||
5765           Ordering == AtomicOrdering::Unordered ||
5766           Ordering == AtomicOrdering::Monotonic)
5767         return error("Invalid record");
5768       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5769       I = new FenceInst(Context, Ordering, SSID);
5770       InstructionList.push_back(I);
5771       break;
5772     }
5773     case bitc::FUNC_CODE_INST_CALL: {
5774       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5775       if (Record.size() < 3)
5776         return error("Invalid record");
5777 
5778       unsigned OpNum = 0;
5779       AttributeList PAL = getAttributes(Record[OpNum++]);
5780       unsigned CCInfo = Record[OpNum++];
5781 
5782       FastMathFlags FMF;
5783       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5784         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5785         if (!FMF.any())
5786           return error("Fast math flags indicator set for call with no FMF");
5787       }
5788 
5789       unsigned FTyID = InvalidTypeID;
5790       FunctionType *FTy = nullptr;
5791       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5792         FTyID = Record[OpNum++];
5793         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5794         if (!FTy)
5795           return error("Explicit call type is not a function type");
5796       }
5797 
5798       Value *Callee;
5799       unsigned CalleeTypeID;
5800       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5801         return error("Invalid record");
5802 
5803       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5804       if (!OpTy)
5805         return error("Callee is not a pointer type");
5806       if (!FTy) {
5807         FTyID = getContainedTypeID(CalleeTypeID);
5808         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5809         if (!FTy)
5810           return error("Callee is not of pointer to function type");
5811       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5812         return error("Explicit call type does not match pointee type of "
5813                      "callee operand");
5814       if (Record.size() < FTy->getNumParams() + OpNum)
5815         return error("Insufficient operands to call");
5816 
5817       SmallVector<Value*, 16> Args;
5818       SmallVector<unsigned, 16> ArgTyIDs;
5819       // Read the fixed params.
5820       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5821         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5822         if (FTy->getParamType(i)->isLabelTy())
5823           Args.push_back(getBasicBlock(Record[OpNum]));
5824         else
5825           Args.push_back(getValue(Record, OpNum, NextValueNo,
5826                                   FTy->getParamType(i), ArgTyID));
5827         ArgTyIDs.push_back(ArgTyID);
5828         if (!Args.back())
5829           return error("Invalid record");
5830       }
5831 
5832       // Read type/value pairs for varargs params.
5833       if (!FTy->isVarArg()) {
5834         if (OpNum != Record.size())
5835           return error("Invalid record");
5836       } else {
5837         while (OpNum != Record.size()) {
5838           Value *Op;
5839           unsigned OpTypeID;
5840           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5841             return error("Invalid record");
5842           Args.push_back(Op);
5843           ArgTyIDs.push_back(OpTypeID);
5844         }
5845       }
5846 
5847       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5848       ResTypeID = getContainedTypeID(FTyID);
5849       OperandBundles.clear();
5850       InstructionList.push_back(I);
5851       cast<CallInst>(I)->setCallingConv(
5852           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5853       CallInst::TailCallKind TCK = CallInst::TCK_None;
5854       if (CCInfo & 1 << bitc::CALL_TAIL)
5855         TCK = CallInst::TCK_Tail;
5856       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5857         TCK = CallInst::TCK_MustTail;
5858       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5859         TCK = CallInst::TCK_NoTail;
5860       cast<CallInst>(I)->setTailCallKind(TCK);
5861       cast<CallInst>(I)->setAttributes(PAL);
5862       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5863         I->deleteValue();
5864         return Err;
5865       }
5866       if (FMF.any()) {
5867         if (!isa<FPMathOperator>(I))
5868           return error("Fast-math-flags specified for call without "
5869                        "floating-point scalar or vector return type");
5870         I->setFastMathFlags(FMF);
5871       }
5872       break;
5873     }
5874     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5875       if (Record.size() < 3)
5876         return error("Invalid record");
5877       unsigned OpTyID = Record[0];
5878       Type *OpTy = getTypeByID(OpTyID);
5879       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5880       ResTypeID = Record[2];
5881       Type *ResTy = getTypeByID(ResTypeID);
5882       if (!OpTy || !Op || !ResTy)
5883         return error("Invalid record");
5884       I = new VAArgInst(Op, ResTy);
5885       InstructionList.push_back(I);
5886       break;
5887     }
5888 
5889     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5890       // A call or an invoke can be optionally prefixed with some variable
5891       // number of operand bundle blocks.  These blocks are read into
5892       // OperandBundles and consumed at the next call or invoke instruction.
5893 
5894       if (Record.empty() || Record[0] >= BundleTags.size())
5895         return error("Invalid record");
5896 
5897       std::vector<Value *> Inputs;
5898 
5899       unsigned OpNum = 1;
5900       while (OpNum != Record.size()) {
5901         Value *Op;
5902         unsigned OpTypeID;
5903         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5904           return error("Invalid record");
5905         Inputs.push_back(Op);
5906       }
5907 
5908       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5909       continue;
5910     }
5911 
5912     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5913       unsigned OpNum = 0;
5914       Value *Op = nullptr;
5915       unsigned OpTypeID;
5916       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5917         return error("Invalid record");
5918       if (OpNum != Record.size())
5919         return error("Invalid record");
5920 
5921       I = new FreezeInst(Op);
5922       ResTypeID = OpTypeID;
5923       InstructionList.push_back(I);
5924       break;
5925     }
5926     }
5927 
5928     // Add instruction to end of current BB.  If there is no current BB, reject
5929     // this file.
5930     if (!CurBB) {
5931       I->deleteValue();
5932       return error("Invalid instruction with no BB");
5933     }
5934     if (!OperandBundles.empty()) {
5935       I->deleteValue();
5936       return error("Operand bundles found with no consumer");
5937     }
5938     CurBB->getInstList().push_back(I);
5939 
5940     // If this was a terminator instruction, move to the next block.
5941     if (I->isTerminator()) {
5942       ++CurBBNo;
5943       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5944     }
5945 
5946     // Non-void values get registered in the value table for future use.
5947     if (!I->getType()->isVoidTy()) {
5948       assert(I->getType() == getTypeByID(ResTypeID) &&
5949              "Incorrect result type ID");
5950       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
5951         return Err;
5952     }
5953   }
5954 
5955 OutOfRecordLoop:
5956 
5957   if (!OperandBundles.empty())
5958     return error("Operand bundles found with no consumer");
5959 
5960   // Check the function list for unresolved values.
5961   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5962     if (!A->getParent()) {
5963       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5964       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5965         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5966           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5967           delete A;
5968         }
5969       }
5970       return error("Never resolved value found in function");
5971     }
5972   }
5973 
5974   // Unexpected unresolved metadata about to be dropped.
5975   if (MDLoader->hasFwdRefs())
5976     return error("Invalid function metadata: outgoing forward refs");
5977 
5978   // Trim the value list down to the size it was before we parsed this function.
5979   ValueList.shrinkTo(ModuleValueListSize);
5980   MDLoader->shrinkTo(ModuleMDLoaderSize);
5981   std::vector<BasicBlock*>().swap(FunctionBBs);
5982   return Error::success();
5983 }
5984 
5985 /// Find the function body in the bitcode stream
5986 Error BitcodeReader::findFunctionInStream(
5987     Function *F,
5988     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5989   while (DeferredFunctionInfoIterator->second == 0) {
5990     // This is the fallback handling for the old format bitcode that
5991     // didn't contain the function index in the VST, or when we have
5992     // an anonymous function which would not have a VST entry.
5993     // Assert that we have one of those two cases.
5994     assert(VSTOffset == 0 || !F->hasName());
5995     // Parse the next body in the stream and set its position in the
5996     // DeferredFunctionInfo map.
5997     if (Error Err = rememberAndSkipFunctionBodies())
5998       return Err;
5999   }
6000   return Error::success();
6001 }
6002 
6003 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6004   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6005     return SyncScope::ID(Val);
6006   if (Val >= SSIDs.size())
6007     return SyncScope::System; // Map unknown synchronization scopes to system.
6008   return SSIDs[Val];
6009 }
6010 
6011 //===----------------------------------------------------------------------===//
6012 // GVMaterializer implementation
6013 //===----------------------------------------------------------------------===//
6014 
6015 Error BitcodeReader::materialize(GlobalValue *GV) {
6016   Function *F = dyn_cast<Function>(GV);
6017   // If it's not a function or is already material, ignore the request.
6018   if (!F || !F->isMaterializable())
6019     return Error::success();
6020 
6021   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6022   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6023   // If its position is recorded as 0, its body is somewhere in the stream
6024   // but we haven't seen it yet.
6025   if (DFII->second == 0)
6026     if (Error Err = findFunctionInStream(F, DFII))
6027       return Err;
6028 
6029   // Materialize metadata before parsing any function bodies.
6030   if (Error Err = materializeMetadata())
6031     return Err;
6032 
6033   // Move the bit stream to the saved position of the deferred function body.
6034   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6035     return JumpFailed;
6036   if (Error Err = parseFunctionBody(F))
6037     return Err;
6038   F->setIsMaterializable(false);
6039 
6040   if (StripDebugInfo)
6041     stripDebugInfo(*F);
6042 
6043   // Upgrade any old intrinsic calls in the function.
6044   for (auto &I : UpgradedIntrinsics) {
6045     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6046       if (CallInst *CI = dyn_cast<CallInst>(U))
6047         UpgradeIntrinsicCall(CI, I.second);
6048   }
6049 
6050   // Update calls to the remangled intrinsics
6051   for (auto &I : RemangledIntrinsics)
6052     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6053       // Don't expect any other users than call sites
6054       cast<CallBase>(U)->setCalledFunction(I.second);
6055 
6056   // Finish fn->subprogram upgrade for materialized functions.
6057   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6058     F->setSubprogram(SP);
6059 
6060   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6061   if (!MDLoader->isStrippingTBAA()) {
6062     for (auto &I : instructions(F)) {
6063       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6064       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6065         continue;
6066       MDLoader->setStripTBAA(true);
6067       stripTBAA(F->getParent());
6068     }
6069   }
6070 
6071   for (auto &I : instructions(F)) {
6072     // "Upgrade" older incorrect branch weights by dropping them.
6073     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6074       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6075         MDString *MDS = cast<MDString>(MD->getOperand(0));
6076         StringRef ProfName = MDS->getString();
6077         // Check consistency of !prof branch_weights metadata.
6078         if (!ProfName.equals("branch_weights"))
6079           continue;
6080         unsigned ExpectedNumOperands = 0;
6081         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6082           ExpectedNumOperands = BI->getNumSuccessors();
6083         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6084           ExpectedNumOperands = SI->getNumSuccessors();
6085         else if (isa<CallInst>(&I))
6086           ExpectedNumOperands = 1;
6087         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6088           ExpectedNumOperands = IBI->getNumDestinations();
6089         else if (isa<SelectInst>(&I))
6090           ExpectedNumOperands = 2;
6091         else
6092           continue; // ignore and continue.
6093 
6094         // If branch weight doesn't match, just strip branch weight.
6095         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6096           I.setMetadata(LLVMContext::MD_prof, nullptr);
6097       }
6098     }
6099 
6100     // Remove incompatible attributes on function calls.
6101     if (auto *CI = dyn_cast<CallBase>(&I)) {
6102       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6103           CI->getFunctionType()->getReturnType()));
6104 
6105       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6106         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6107                                         CI->getArgOperand(ArgNo)->getType()));
6108     }
6109   }
6110 
6111   // Look for functions that rely on old function attribute behavior.
6112   UpgradeFunctionAttributes(*F);
6113 
6114   // Bring in any functions that this function forward-referenced via
6115   // blockaddresses.
6116   return materializeForwardReferencedFunctions();
6117 }
6118 
6119 Error BitcodeReader::materializeModule() {
6120   if (Error Err = materializeMetadata())
6121     return Err;
6122 
6123   // Promise to materialize all forward references.
6124   WillMaterializeAllForwardRefs = true;
6125 
6126   // Iterate over the module, deserializing any functions that are still on
6127   // disk.
6128   for (Function &F : *TheModule) {
6129     if (Error Err = materialize(&F))
6130       return Err;
6131   }
6132   // At this point, if there are any function bodies, parse the rest of
6133   // the bits in the module past the last function block we have recorded
6134   // through either lazy scanning or the VST.
6135   if (LastFunctionBlockBit || NextUnreadBit)
6136     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6137                                     ? LastFunctionBlockBit
6138                                     : NextUnreadBit))
6139       return Err;
6140 
6141   // Check that all block address forward references got resolved (as we
6142   // promised above).
6143   if (!BasicBlockFwdRefs.empty())
6144     return error("Never resolved function from blockaddress");
6145 
6146   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6147   // delete the old functions to clean up. We can't do this unless the entire
6148   // module is materialized because there could always be another function body
6149   // with calls to the old function.
6150   for (auto &I : UpgradedIntrinsics) {
6151     for (auto *U : I.first->users()) {
6152       if (CallInst *CI = dyn_cast<CallInst>(U))
6153         UpgradeIntrinsicCall(CI, I.second);
6154     }
6155     if (!I.first->use_empty())
6156       I.first->replaceAllUsesWith(I.second);
6157     I.first->eraseFromParent();
6158   }
6159   UpgradedIntrinsics.clear();
6160   // Do the same for remangled intrinsics
6161   for (auto &I : RemangledIntrinsics) {
6162     I.first->replaceAllUsesWith(I.second);
6163     I.first->eraseFromParent();
6164   }
6165   RemangledIntrinsics.clear();
6166 
6167   UpgradeDebugInfo(*TheModule);
6168 
6169   UpgradeModuleFlags(*TheModule);
6170 
6171   UpgradeARCRuntime(*TheModule);
6172 
6173   return Error::success();
6174 }
6175 
6176 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6177   return IdentifiedStructTypes;
6178 }
6179 
6180 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6181     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6182     StringRef ModulePath, unsigned ModuleId)
6183     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6184       ModulePath(ModulePath), ModuleId(ModuleId) {}
6185 
6186 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6187   TheIndex.addModule(ModulePath, ModuleId);
6188 }
6189 
6190 ModuleSummaryIndex::ModuleInfo *
6191 ModuleSummaryIndexBitcodeReader::getThisModule() {
6192   return TheIndex.getModule(ModulePath);
6193 }
6194 
6195 std::pair<ValueInfo, GlobalValue::GUID>
6196 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6197   auto VGI = ValueIdToValueInfoMap[ValueId];
6198   assert(VGI.first);
6199   return VGI;
6200 }
6201 
6202 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6203     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6204     StringRef SourceFileName) {
6205   std::string GlobalId =
6206       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6207   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6208   auto OriginalNameID = ValueGUID;
6209   if (GlobalValue::isLocalLinkage(Linkage))
6210     OriginalNameID = GlobalValue::getGUID(ValueName);
6211   if (PrintSummaryGUIDs)
6212     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6213            << ValueName << "\n";
6214 
6215   // UseStrtab is false for legacy summary formats and value names are
6216   // created on stack. In that case we save the name in a string saver in
6217   // the index so that the value name can be recorded.
6218   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6219       TheIndex.getOrInsertValueInfo(
6220           ValueGUID,
6221           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6222       OriginalNameID);
6223 }
6224 
6225 // Specialized value symbol table parser used when reading module index
6226 // blocks where we don't actually create global values. The parsed information
6227 // is saved in the bitcode reader for use when later parsing summaries.
6228 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6229     uint64_t Offset,
6230     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6231   // With a strtab the VST is not required to parse the summary.
6232   if (UseStrtab)
6233     return Error::success();
6234 
6235   assert(Offset > 0 && "Expected non-zero VST offset");
6236   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6237   if (!MaybeCurrentBit)
6238     return MaybeCurrentBit.takeError();
6239   uint64_t CurrentBit = MaybeCurrentBit.get();
6240 
6241   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6242     return Err;
6243 
6244   SmallVector<uint64_t, 64> Record;
6245 
6246   // Read all the records for this value table.
6247   SmallString<128> ValueName;
6248 
6249   while (true) {
6250     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6251     if (!MaybeEntry)
6252       return MaybeEntry.takeError();
6253     BitstreamEntry Entry = MaybeEntry.get();
6254 
6255     switch (Entry.Kind) {
6256     case BitstreamEntry::SubBlock: // Handled for us already.
6257     case BitstreamEntry::Error:
6258       return error("Malformed block");
6259     case BitstreamEntry::EndBlock:
6260       // Done parsing VST, jump back to wherever we came from.
6261       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6262         return JumpFailed;
6263       return Error::success();
6264     case BitstreamEntry::Record:
6265       // The interesting case.
6266       break;
6267     }
6268 
6269     // Read a record.
6270     Record.clear();
6271     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6272     if (!MaybeRecord)
6273       return MaybeRecord.takeError();
6274     switch (MaybeRecord.get()) {
6275     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6276       break;
6277     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6278       if (convertToString(Record, 1, ValueName))
6279         return error("Invalid record");
6280       unsigned ValueID = Record[0];
6281       assert(!SourceFileName.empty());
6282       auto VLI = ValueIdToLinkageMap.find(ValueID);
6283       assert(VLI != ValueIdToLinkageMap.end() &&
6284              "No linkage found for VST entry?");
6285       auto Linkage = VLI->second;
6286       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6287       ValueName.clear();
6288       break;
6289     }
6290     case bitc::VST_CODE_FNENTRY: {
6291       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6292       if (convertToString(Record, 2, ValueName))
6293         return error("Invalid record");
6294       unsigned ValueID = Record[0];
6295       assert(!SourceFileName.empty());
6296       auto VLI = ValueIdToLinkageMap.find(ValueID);
6297       assert(VLI != ValueIdToLinkageMap.end() &&
6298              "No linkage found for VST entry?");
6299       auto Linkage = VLI->second;
6300       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6301       ValueName.clear();
6302       break;
6303     }
6304     case bitc::VST_CODE_COMBINED_ENTRY: {
6305       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6306       unsigned ValueID = Record[0];
6307       GlobalValue::GUID RefGUID = Record[1];
6308       // The "original name", which is the second value of the pair will be
6309       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6310       ValueIdToValueInfoMap[ValueID] =
6311           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6312       break;
6313     }
6314     }
6315   }
6316 }
6317 
6318 // Parse just the blocks needed for building the index out of the module.
6319 // At the end of this routine the module Index is populated with a map
6320 // from global value id to GlobalValueSummary objects.
6321 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6322   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6323     return Err;
6324 
6325   SmallVector<uint64_t, 64> Record;
6326   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6327   unsigned ValueId = 0;
6328 
6329   // Read the index for this module.
6330   while (true) {
6331     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6332     if (!MaybeEntry)
6333       return MaybeEntry.takeError();
6334     llvm::BitstreamEntry Entry = MaybeEntry.get();
6335 
6336     switch (Entry.Kind) {
6337     case BitstreamEntry::Error:
6338       return error("Malformed block");
6339     case BitstreamEntry::EndBlock:
6340       return Error::success();
6341 
6342     case BitstreamEntry::SubBlock:
6343       switch (Entry.ID) {
6344       default: // Skip unknown content.
6345         if (Error Err = Stream.SkipBlock())
6346           return Err;
6347         break;
6348       case bitc::BLOCKINFO_BLOCK_ID:
6349         // Need to parse these to get abbrev ids (e.g. for VST)
6350         if (Error Err = readBlockInfo())
6351           return Err;
6352         break;
6353       case bitc::VALUE_SYMTAB_BLOCK_ID:
6354         // Should have been parsed earlier via VSTOffset, unless there
6355         // is no summary section.
6356         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6357                 !SeenGlobalValSummary) &&
6358                "Expected early VST parse via VSTOffset record");
6359         if (Error Err = Stream.SkipBlock())
6360           return Err;
6361         break;
6362       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6363       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6364         // Add the module if it is a per-module index (has a source file name).
6365         if (!SourceFileName.empty())
6366           addThisModule();
6367         assert(!SeenValueSymbolTable &&
6368                "Already read VST when parsing summary block?");
6369         // We might not have a VST if there were no values in the
6370         // summary. An empty summary block generated when we are
6371         // performing ThinLTO compiles so we don't later invoke
6372         // the regular LTO process on them.
6373         if (VSTOffset > 0) {
6374           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6375             return Err;
6376           SeenValueSymbolTable = true;
6377         }
6378         SeenGlobalValSummary = true;
6379         if (Error Err = parseEntireSummary(Entry.ID))
6380           return Err;
6381         break;
6382       case bitc::MODULE_STRTAB_BLOCK_ID:
6383         if (Error Err = parseModuleStringTable())
6384           return Err;
6385         break;
6386       }
6387       continue;
6388 
6389     case BitstreamEntry::Record: {
6390         Record.clear();
6391         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6392         if (!MaybeBitCode)
6393           return MaybeBitCode.takeError();
6394         switch (MaybeBitCode.get()) {
6395         default:
6396           break; // Default behavior, ignore unknown content.
6397         case bitc::MODULE_CODE_VERSION: {
6398           if (Error Err = parseVersionRecord(Record).takeError())
6399             return Err;
6400           break;
6401         }
6402         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6403         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6404           SmallString<128> ValueName;
6405           if (convertToString(Record, 0, ValueName))
6406             return error("Invalid record");
6407           SourceFileName = ValueName.c_str();
6408           break;
6409         }
6410         /// MODULE_CODE_HASH: [5*i32]
6411         case bitc::MODULE_CODE_HASH: {
6412           if (Record.size() != 5)
6413             return error("Invalid hash length " + Twine(Record.size()).str());
6414           auto &Hash = getThisModule()->second.second;
6415           int Pos = 0;
6416           for (auto &Val : Record) {
6417             assert(!(Val >> 32) && "Unexpected high bits set");
6418             Hash[Pos++] = Val;
6419           }
6420           break;
6421         }
6422         /// MODULE_CODE_VSTOFFSET: [offset]
6423         case bitc::MODULE_CODE_VSTOFFSET:
6424           if (Record.empty())
6425             return error("Invalid record");
6426           // Note that we subtract 1 here because the offset is relative to one
6427           // word before the start of the identification or module block, which
6428           // was historically always the start of the regular bitcode header.
6429           VSTOffset = Record[0] - 1;
6430           break;
6431         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6432         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6433         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6434         // v2: [strtab offset, strtab size, v1]
6435         case bitc::MODULE_CODE_GLOBALVAR:
6436         case bitc::MODULE_CODE_FUNCTION:
6437         case bitc::MODULE_CODE_ALIAS: {
6438           StringRef Name;
6439           ArrayRef<uint64_t> GVRecord;
6440           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6441           if (GVRecord.size() <= 3)
6442             return error("Invalid record");
6443           uint64_t RawLinkage = GVRecord[3];
6444           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6445           if (!UseStrtab) {
6446             ValueIdToLinkageMap[ValueId++] = Linkage;
6447             break;
6448           }
6449 
6450           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6451           break;
6452         }
6453         }
6454       }
6455       continue;
6456     }
6457   }
6458 }
6459 
6460 std::vector<ValueInfo>
6461 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6462   std::vector<ValueInfo> Ret;
6463   Ret.reserve(Record.size());
6464   for (uint64_t RefValueId : Record)
6465     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6466   return Ret;
6467 }
6468 
6469 std::vector<FunctionSummary::EdgeTy>
6470 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6471                                               bool IsOldProfileFormat,
6472                                               bool HasProfile, bool HasRelBF) {
6473   std::vector<FunctionSummary::EdgeTy> Ret;
6474   Ret.reserve(Record.size());
6475   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6476     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6477     uint64_t RelBF = 0;
6478     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6479     if (IsOldProfileFormat) {
6480       I += 1; // Skip old callsitecount field
6481       if (HasProfile)
6482         I += 1; // Skip old profilecount field
6483     } else if (HasProfile)
6484       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6485     else if (HasRelBF)
6486       RelBF = Record[++I];
6487     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6488   }
6489   return Ret;
6490 }
6491 
6492 static void
6493 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6494                                        WholeProgramDevirtResolution &Wpd) {
6495   uint64_t ArgNum = Record[Slot++];
6496   WholeProgramDevirtResolution::ByArg &B =
6497       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6498   Slot += ArgNum;
6499 
6500   B.TheKind =
6501       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6502   B.Info = Record[Slot++];
6503   B.Byte = Record[Slot++];
6504   B.Bit = Record[Slot++];
6505 }
6506 
6507 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6508                                               StringRef Strtab, size_t &Slot,
6509                                               TypeIdSummary &TypeId) {
6510   uint64_t Id = Record[Slot++];
6511   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6512 
6513   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6514   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6515                         static_cast<size_t>(Record[Slot + 1])};
6516   Slot += 2;
6517 
6518   uint64_t ResByArgNum = Record[Slot++];
6519   for (uint64_t I = 0; I != ResByArgNum; ++I)
6520     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6521 }
6522 
6523 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6524                                      StringRef Strtab,
6525                                      ModuleSummaryIndex &TheIndex) {
6526   size_t Slot = 0;
6527   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6528       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6529   Slot += 2;
6530 
6531   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6532   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6533   TypeId.TTRes.AlignLog2 = Record[Slot++];
6534   TypeId.TTRes.SizeM1 = Record[Slot++];
6535   TypeId.TTRes.BitMask = Record[Slot++];
6536   TypeId.TTRes.InlineBits = Record[Slot++];
6537 
6538   while (Slot < Record.size())
6539     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6540 }
6541 
6542 std::vector<FunctionSummary::ParamAccess>
6543 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6544   auto ReadRange = [&]() {
6545     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6546                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6547     Record = Record.drop_front();
6548     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6549                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6550     Record = Record.drop_front();
6551     ConstantRange Range{Lower, Upper};
6552     assert(!Range.isFullSet());
6553     assert(!Range.isUpperSignWrapped());
6554     return Range;
6555   };
6556 
6557   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6558   while (!Record.empty()) {
6559     PendingParamAccesses.emplace_back();
6560     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6561     ParamAccess.ParamNo = Record.front();
6562     Record = Record.drop_front();
6563     ParamAccess.Use = ReadRange();
6564     ParamAccess.Calls.resize(Record.front());
6565     Record = Record.drop_front();
6566     for (auto &Call : ParamAccess.Calls) {
6567       Call.ParamNo = Record.front();
6568       Record = Record.drop_front();
6569       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6570       Record = Record.drop_front();
6571       Call.Offsets = ReadRange();
6572     }
6573   }
6574   return PendingParamAccesses;
6575 }
6576 
6577 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6578     ArrayRef<uint64_t> Record, size_t &Slot,
6579     TypeIdCompatibleVtableInfo &TypeId) {
6580   uint64_t Offset = Record[Slot++];
6581   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6582   TypeId.push_back({Offset, Callee});
6583 }
6584 
6585 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6586     ArrayRef<uint64_t> Record) {
6587   size_t Slot = 0;
6588   TypeIdCompatibleVtableInfo &TypeId =
6589       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6590           {Strtab.data() + Record[Slot],
6591            static_cast<size_t>(Record[Slot + 1])});
6592   Slot += 2;
6593 
6594   while (Slot < Record.size())
6595     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6596 }
6597 
6598 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6599                            unsigned WOCnt) {
6600   // Readonly and writeonly refs are in the end of the refs list.
6601   assert(ROCnt + WOCnt <= Refs.size());
6602   unsigned FirstWORef = Refs.size() - WOCnt;
6603   unsigned RefNo = FirstWORef - ROCnt;
6604   for (; RefNo < FirstWORef; ++RefNo)
6605     Refs[RefNo].setReadOnly();
6606   for (; RefNo < Refs.size(); ++RefNo)
6607     Refs[RefNo].setWriteOnly();
6608 }
6609 
6610 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6611 // objects in the index.
6612 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6613   if (Error Err = Stream.EnterSubBlock(ID))
6614     return Err;
6615   SmallVector<uint64_t, 64> Record;
6616 
6617   // Parse version
6618   {
6619     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6620     if (!MaybeEntry)
6621       return MaybeEntry.takeError();
6622     BitstreamEntry Entry = MaybeEntry.get();
6623 
6624     if (Entry.Kind != BitstreamEntry::Record)
6625       return error("Invalid Summary Block: record for version expected");
6626     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6627     if (!MaybeRecord)
6628       return MaybeRecord.takeError();
6629     if (MaybeRecord.get() != bitc::FS_VERSION)
6630       return error("Invalid Summary Block: version expected");
6631   }
6632   const uint64_t Version = Record[0];
6633   const bool IsOldProfileFormat = Version == 1;
6634   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6635     return error("Invalid summary version " + Twine(Version) +
6636                  ". Version should be in the range [1-" +
6637                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6638                  "].");
6639   Record.clear();
6640 
6641   // Keep around the last seen summary to be used when we see an optional
6642   // "OriginalName" attachement.
6643   GlobalValueSummary *LastSeenSummary = nullptr;
6644   GlobalValue::GUID LastSeenGUID = 0;
6645 
6646   // We can expect to see any number of type ID information records before
6647   // each function summary records; these variables store the information
6648   // collected so far so that it can be used to create the summary object.
6649   std::vector<GlobalValue::GUID> PendingTypeTests;
6650   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6651       PendingTypeCheckedLoadVCalls;
6652   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6653       PendingTypeCheckedLoadConstVCalls;
6654   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6655 
6656   while (true) {
6657     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6658     if (!MaybeEntry)
6659       return MaybeEntry.takeError();
6660     BitstreamEntry Entry = MaybeEntry.get();
6661 
6662     switch (Entry.Kind) {
6663     case BitstreamEntry::SubBlock: // Handled for us already.
6664     case BitstreamEntry::Error:
6665       return error("Malformed block");
6666     case BitstreamEntry::EndBlock:
6667       return Error::success();
6668     case BitstreamEntry::Record:
6669       // The interesting case.
6670       break;
6671     }
6672 
6673     // Read a record. The record format depends on whether this
6674     // is a per-module index or a combined index file. In the per-module
6675     // case the records contain the associated value's ID for correlation
6676     // with VST entries. In the combined index the correlation is done
6677     // via the bitcode offset of the summary records (which were saved
6678     // in the combined index VST entries). The records also contain
6679     // information used for ThinLTO renaming and importing.
6680     Record.clear();
6681     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6682     if (!MaybeBitCode)
6683       return MaybeBitCode.takeError();
6684     switch (unsigned BitCode = MaybeBitCode.get()) {
6685     default: // Default behavior: ignore.
6686       break;
6687     case bitc::FS_FLAGS: {  // [flags]
6688       TheIndex.setFlags(Record[0]);
6689       break;
6690     }
6691     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6692       uint64_t ValueID = Record[0];
6693       GlobalValue::GUID RefGUID = Record[1];
6694       ValueIdToValueInfoMap[ValueID] =
6695           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6696       break;
6697     }
6698     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6699     //                numrefs x valueid, n x (valueid)]
6700     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6701     //                        numrefs x valueid,
6702     //                        n x (valueid, hotness)]
6703     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6704     //                      numrefs x valueid,
6705     //                      n x (valueid, relblockfreq)]
6706     case bitc::FS_PERMODULE:
6707     case bitc::FS_PERMODULE_RELBF:
6708     case bitc::FS_PERMODULE_PROFILE: {
6709       unsigned ValueID = Record[0];
6710       uint64_t RawFlags = Record[1];
6711       unsigned InstCount = Record[2];
6712       uint64_t RawFunFlags = 0;
6713       unsigned NumRefs = Record[3];
6714       unsigned NumRORefs = 0, NumWORefs = 0;
6715       int RefListStartIndex = 4;
6716       if (Version >= 4) {
6717         RawFunFlags = Record[3];
6718         NumRefs = Record[4];
6719         RefListStartIndex = 5;
6720         if (Version >= 5) {
6721           NumRORefs = Record[5];
6722           RefListStartIndex = 6;
6723           if (Version >= 7) {
6724             NumWORefs = Record[6];
6725             RefListStartIndex = 7;
6726           }
6727         }
6728       }
6729 
6730       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6731       // The module path string ref set in the summary must be owned by the
6732       // index's module string table. Since we don't have a module path
6733       // string table section in the per-module index, we create a single
6734       // module path string table entry with an empty (0) ID to take
6735       // ownership.
6736       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6737       assert(Record.size() >= RefListStartIndex + NumRefs &&
6738              "Record size inconsistent with number of references");
6739       std::vector<ValueInfo> Refs = makeRefList(
6740           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6741       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6742       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6743       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6744           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6745           IsOldProfileFormat, HasProfile, HasRelBF);
6746       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6747       auto FS = std::make_unique<FunctionSummary>(
6748           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6749           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6750           std::move(PendingTypeTestAssumeVCalls),
6751           std::move(PendingTypeCheckedLoadVCalls),
6752           std::move(PendingTypeTestAssumeConstVCalls),
6753           std::move(PendingTypeCheckedLoadConstVCalls),
6754           std::move(PendingParamAccesses));
6755       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6756       FS->setModulePath(getThisModule()->first());
6757       FS->setOriginalName(VIAndOriginalGUID.second);
6758       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6759       break;
6760     }
6761     // FS_ALIAS: [valueid, flags, valueid]
6762     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6763     // they expect all aliasee summaries to be available.
6764     case bitc::FS_ALIAS: {
6765       unsigned ValueID = Record[0];
6766       uint64_t RawFlags = Record[1];
6767       unsigned AliaseeID = Record[2];
6768       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6769       auto AS = std::make_unique<AliasSummary>(Flags);
6770       // The module path string ref set in the summary must be owned by the
6771       // index's module string table. Since we don't have a module path
6772       // string table section in the per-module index, we create a single
6773       // module path string table entry with an empty (0) ID to take
6774       // ownership.
6775       AS->setModulePath(getThisModule()->first());
6776 
6777       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6778       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6779       if (!AliaseeInModule)
6780         return error("Alias expects aliasee summary to be parsed");
6781       AS->setAliasee(AliaseeVI, AliaseeInModule);
6782 
6783       auto GUID = getValueInfoFromValueId(ValueID);
6784       AS->setOriginalName(GUID.second);
6785       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6786       break;
6787     }
6788     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6789     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6790       unsigned ValueID = Record[0];
6791       uint64_t RawFlags = Record[1];
6792       unsigned RefArrayStart = 2;
6793       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6794                                       /* WriteOnly */ false,
6795                                       /* Constant */ false,
6796                                       GlobalObject::VCallVisibilityPublic);
6797       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6798       if (Version >= 5) {
6799         GVF = getDecodedGVarFlags(Record[2]);
6800         RefArrayStart = 3;
6801       }
6802       std::vector<ValueInfo> Refs =
6803           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6804       auto FS =
6805           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6806       FS->setModulePath(getThisModule()->first());
6807       auto GUID = getValueInfoFromValueId(ValueID);
6808       FS->setOriginalName(GUID.second);
6809       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6810       break;
6811     }
6812     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6813     //                        numrefs, numrefs x valueid,
6814     //                        n x (valueid, offset)]
6815     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6816       unsigned ValueID = Record[0];
6817       uint64_t RawFlags = Record[1];
6818       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6819       unsigned NumRefs = Record[3];
6820       unsigned RefListStartIndex = 4;
6821       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6822       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6823       std::vector<ValueInfo> Refs = makeRefList(
6824           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6825       VTableFuncList VTableFuncs;
6826       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6827         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6828         uint64_t Offset = Record[++I];
6829         VTableFuncs.push_back({Callee, Offset});
6830       }
6831       auto VS =
6832           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6833       VS->setModulePath(getThisModule()->first());
6834       VS->setVTableFuncs(VTableFuncs);
6835       auto GUID = getValueInfoFromValueId(ValueID);
6836       VS->setOriginalName(GUID.second);
6837       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6838       break;
6839     }
6840     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6841     //               numrefs x valueid, n x (valueid)]
6842     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6843     //                       numrefs x valueid, n x (valueid, hotness)]
6844     case bitc::FS_COMBINED:
6845     case bitc::FS_COMBINED_PROFILE: {
6846       unsigned ValueID = Record[0];
6847       uint64_t ModuleId = Record[1];
6848       uint64_t RawFlags = Record[2];
6849       unsigned InstCount = Record[3];
6850       uint64_t RawFunFlags = 0;
6851       uint64_t EntryCount = 0;
6852       unsigned NumRefs = Record[4];
6853       unsigned NumRORefs = 0, NumWORefs = 0;
6854       int RefListStartIndex = 5;
6855 
6856       if (Version >= 4) {
6857         RawFunFlags = Record[4];
6858         RefListStartIndex = 6;
6859         size_t NumRefsIndex = 5;
6860         if (Version >= 5) {
6861           unsigned NumRORefsOffset = 1;
6862           RefListStartIndex = 7;
6863           if (Version >= 6) {
6864             NumRefsIndex = 6;
6865             EntryCount = Record[5];
6866             RefListStartIndex = 8;
6867             if (Version >= 7) {
6868               RefListStartIndex = 9;
6869               NumWORefs = Record[8];
6870               NumRORefsOffset = 2;
6871             }
6872           }
6873           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6874         }
6875         NumRefs = Record[NumRefsIndex];
6876       }
6877 
6878       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6879       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6880       assert(Record.size() >= RefListStartIndex + NumRefs &&
6881              "Record size inconsistent with number of references");
6882       std::vector<ValueInfo> Refs = makeRefList(
6883           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6884       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6885       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6886           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6887           IsOldProfileFormat, HasProfile, false);
6888       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6889       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6890       auto FS = std::make_unique<FunctionSummary>(
6891           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6892           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6893           std::move(PendingTypeTestAssumeVCalls),
6894           std::move(PendingTypeCheckedLoadVCalls),
6895           std::move(PendingTypeTestAssumeConstVCalls),
6896           std::move(PendingTypeCheckedLoadConstVCalls),
6897           std::move(PendingParamAccesses));
6898       LastSeenSummary = FS.get();
6899       LastSeenGUID = VI.getGUID();
6900       FS->setModulePath(ModuleIdMap[ModuleId]);
6901       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6902       break;
6903     }
6904     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6905     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6906     // they expect all aliasee summaries to be available.
6907     case bitc::FS_COMBINED_ALIAS: {
6908       unsigned ValueID = Record[0];
6909       uint64_t ModuleId = Record[1];
6910       uint64_t RawFlags = Record[2];
6911       unsigned AliaseeValueId = Record[3];
6912       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6913       auto AS = std::make_unique<AliasSummary>(Flags);
6914       LastSeenSummary = AS.get();
6915       AS->setModulePath(ModuleIdMap[ModuleId]);
6916 
6917       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6918       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6919       AS->setAliasee(AliaseeVI, AliaseeInModule);
6920 
6921       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6922       LastSeenGUID = VI.getGUID();
6923       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6924       break;
6925     }
6926     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6927     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6928       unsigned ValueID = Record[0];
6929       uint64_t ModuleId = Record[1];
6930       uint64_t RawFlags = Record[2];
6931       unsigned RefArrayStart = 3;
6932       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6933                                       /* WriteOnly */ false,
6934                                       /* Constant */ false,
6935                                       GlobalObject::VCallVisibilityPublic);
6936       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6937       if (Version >= 5) {
6938         GVF = getDecodedGVarFlags(Record[3]);
6939         RefArrayStart = 4;
6940       }
6941       std::vector<ValueInfo> Refs =
6942           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6943       auto FS =
6944           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6945       LastSeenSummary = FS.get();
6946       FS->setModulePath(ModuleIdMap[ModuleId]);
6947       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6948       LastSeenGUID = VI.getGUID();
6949       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6950       break;
6951     }
6952     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6953     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6954       uint64_t OriginalName = Record[0];
6955       if (!LastSeenSummary)
6956         return error("Name attachment that does not follow a combined record");
6957       LastSeenSummary->setOriginalName(OriginalName);
6958       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6959       // Reset the LastSeenSummary
6960       LastSeenSummary = nullptr;
6961       LastSeenGUID = 0;
6962       break;
6963     }
6964     case bitc::FS_TYPE_TESTS:
6965       assert(PendingTypeTests.empty());
6966       llvm::append_range(PendingTypeTests, Record);
6967       break;
6968 
6969     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6970       assert(PendingTypeTestAssumeVCalls.empty());
6971       for (unsigned I = 0; I != Record.size(); I += 2)
6972         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6973       break;
6974 
6975     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6976       assert(PendingTypeCheckedLoadVCalls.empty());
6977       for (unsigned I = 0; I != Record.size(); I += 2)
6978         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6979       break;
6980 
6981     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6982       PendingTypeTestAssumeConstVCalls.push_back(
6983           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6984       break;
6985 
6986     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6987       PendingTypeCheckedLoadConstVCalls.push_back(
6988           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6989       break;
6990 
6991     case bitc::FS_CFI_FUNCTION_DEFS: {
6992       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6993       for (unsigned I = 0; I != Record.size(); I += 2)
6994         CfiFunctionDefs.insert(
6995             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6996       break;
6997     }
6998 
6999     case bitc::FS_CFI_FUNCTION_DECLS: {
7000       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7001       for (unsigned I = 0; I != Record.size(); I += 2)
7002         CfiFunctionDecls.insert(
7003             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7004       break;
7005     }
7006 
7007     case bitc::FS_TYPE_ID:
7008       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7009       break;
7010 
7011     case bitc::FS_TYPE_ID_METADATA:
7012       parseTypeIdCompatibleVtableSummaryRecord(Record);
7013       break;
7014 
7015     case bitc::FS_BLOCK_COUNT:
7016       TheIndex.addBlockCount(Record[0]);
7017       break;
7018 
7019     case bitc::FS_PARAM_ACCESS: {
7020       PendingParamAccesses = parseParamAccesses(Record);
7021       break;
7022     }
7023     }
7024   }
7025   llvm_unreachable("Exit infinite loop");
7026 }
7027 
7028 // Parse the  module string table block into the Index.
7029 // This populates the ModulePathStringTable map in the index.
7030 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7031   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7032     return Err;
7033 
7034   SmallVector<uint64_t, 64> Record;
7035 
7036   SmallString<128> ModulePath;
7037   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7038 
7039   while (true) {
7040     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7041     if (!MaybeEntry)
7042       return MaybeEntry.takeError();
7043     BitstreamEntry Entry = MaybeEntry.get();
7044 
7045     switch (Entry.Kind) {
7046     case BitstreamEntry::SubBlock: // Handled for us already.
7047     case BitstreamEntry::Error:
7048       return error("Malformed block");
7049     case BitstreamEntry::EndBlock:
7050       return Error::success();
7051     case BitstreamEntry::Record:
7052       // The interesting case.
7053       break;
7054     }
7055 
7056     Record.clear();
7057     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7058     if (!MaybeRecord)
7059       return MaybeRecord.takeError();
7060     switch (MaybeRecord.get()) {
7061     default: // Default behavior: ignore.
7062       break;
7063     case bitc::MST_CODE_ENTRY: {
7064       // MST_ENTRY: [modid, namechar x N]
7065       uint64_t ModuleId = Record[0];
7066 
7067       if (convertToString(Record, 1, ModulePath))
7068         return error("Invalid record");
7069 
7070       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7071       ModuleIdMap[ModuleId] = LastSeenModule->first();
7072 
7073       ModulePath.clear();
7074       break;
7075     }
7076     /// MST_CODE_HASH: [5*i32]
7077     case bitc::MST_CODE_HASH: {
7078       if (Record.size() != 5)
7079         return error("Invalid hash length " + Twine(Record.size()).str());
7080       if (!LastSeenModule)
7081         return error("Invalid hash that does not follow a module path");
7082       int Pos = 0;
7083       for (auto &Val : Record) {
7084         assert(!(Val >> 32) && "Unexpected high bits set");
7085         LastSeenModule->second.second[Pos++] = Val;
7086       }
7087       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7088       LastSeenModule = nullptr;
7089       break;
7090     }
7091     }
7092   }
7093   llvm_unreachable("Exit infinite loop");
7094 }
7095 
7096 namespace {
7097 
7098 // FIXME: This class is only here to support the transition to llvm::Error. It
7099 // will be removed once this transition is complete. Clients should prefer to
7100 // deal with the Error value directly, rather than converting to error_code.
7101 class BitcodeErrorCategoryType : public std::error_category {
7102   const char *name() const noexcept override {
7103     return "llvm.bitcode";
7104   }
7105 
7106   std::string message(int IE) const override {
7107     BitcodeError E = static_cast<BitcodeError>(IE);
7108     switch (E) {
7109     case BitcodeError::CorruptedBitcode:
7110       return "Corrupted bitcode";
7111     }
7112     llvm_unreachable("Unknown error type!");
7113   }
7114 };
7115 
7116 } // end anonymous namespace
7117 
7118 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7119 
7120 const std::error_category &llvm::BitcodeErrorCategory() {
7121   return *ErrorCategory;
7122 }
7123 
7124 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7125                                             unsigned Block, unsigned RecordID) {
7126   if (Error Err = Stream.EnterSubBlock(Block))
7127     return std::move(Err);
7128 
7129   StringRef Strtab;
7130   while (true) {
7131     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7132     if (!MaybeEntry)
7133       return MaybeEntry.takeError();
7134     llvm::BitstreamEntry Entry = MaybeEntry.get();
7135 
7136     switch (Entry.Kind) {
7137     case BitstreamEntry::EndBlock:
7138       return Strtab;
7139 
7140     case BitstreamEntry::Error:
7141       return error("Malformed block");
7142 
7143     case BitstreamEntry::SubBlock:
7144       if (Error Err = Stream.SkipBlock())
7145         return std::move(Err);
7146       break;
7147 
7148     case BitstreamEntry::Record:
7149       StringRef Blob;
7150       SmallVector<uint64_t, 1> Record;
7151       Expected<unsigned> MaybeRecord =
7152           Stream.readRecord(Entry.ID, Record, &Blob);
7153       if (!MaybeRecord)
7154         return MaybeRecord.takeError();
7155       if (MaybeRecord.get() == RecordID)
7156         Strtab = Blob;
7157       break;
7158     }
7159   }
7160 }
7161 
7162 //===----------------------------------------------------------------------===//
7163 // External interface
7164 //===----------------------------------------------------------------------===//
7165 
7166 Expected<std::vector<BitcodeModule>>
7167 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7168   auto FOrErr = getBitcodeFileContents(Buffer);
7169   if (!FOrErr)
7170     return FOrErr.takeError();
7171   return std::move(FOrErr->Mods);
7172 }
7173 
7174 Expected<BitcodeFileContents>
7175 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7176   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7177   if (!StreamOrErr)
7178     return StreamOrErr.takeError();
7179   BitstreamCursor &Stream = *StreamOrErr;
7180 
7181   BitcodeFileContents F;
7182   while (true) {
7183     uint64_t BCBegin = Stream.getCurrentByteNo();
7184 
7185     // We may be consuming bitcode from a client that leaves garbage at the end
7186     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7187     // the end that there cannot possibly be another module, stop looking.
7188     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7189       return F;
7190 
7191     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7192     if (!MaybeEntry)
7193       return MaybeEntry.takeError();
7194     llvm::BitstreamEntry Entry = MaybeEntry.get();
7195 
7196     switch (Entry.Kind) {
7197     case BitstreamEntry::EndBlock:
7198     case BitstreamEntry::Error:
7199       return error("Malformed block");
7200 
7201     case BitstreamEntry::SubBlock: {
7202       uint64_t IdentificationBit = -1ull;
7203       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7204         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7205         if (Error Err = Stream.SkipBlock())
7206           return std::move(Err);
7207 
7208         {
7209           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7210           if (!MaybeEntry)
7211             return MaybeEntry.takeError();
7212           Entry = MaybeEntry.get();
7213         }
7214 
7215         if (Entry.Kind != BitstreamEntry::SubBlock ||
7216             Entry.ID != bitc::MODULE_BLOCK_ID)
7217           return error("Malformed block");
7218       }
7219 
7220       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7221         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7222         if (Error Err = Stream.SkipBlock())
7223           return std::move(Err);
7224 
7225         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7226                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7227                           Buffer.getBufferIdentifier(), IdentificationBit,
7228                           ModuleBit});
7229         continue;
7230       }
7231 
7232       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7233         Expected<StringRef> Strtab =
7234             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7235         if (!Strtab)
7236           return Strtab.takeError();
7237         // This string table is used by every preceding bitcode module that does
7238         // not have its own string table. A bitcode file may have multiple
7239         // string tables if it was created by binary concatenation, for example
7240         // with "llvm-cat -b".
7241         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7242           if (!I.Strtab.empty())
7243             break;
7244           I.Strtab = *Strtab;
7245         }
7246         // Similarly, the string table is used by every preceding symbol table;
7247         // normally there will be just one unless the bitcode file was created
7248         // by binary concatenation.
7249         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7250           F.StrtabForSymtab = *Strtab;
7251         continue;
7252       }
7253 
7254       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7255         Expected<StringRef> SymtabOrErr =
7256             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7257         if (!SymtabOrErr)
7258           return SymtabOrErr.takeError();
7259 
7260         // We can expect the bitcode file to have multiple symbol tables if it
7261         // was created by binary concatenation. In that case we silently
7262         // ignore any subsequent symbol tables, which is fine because this is a
7263         // low level function. The client is expected to notice that the number
7264         // of modules in the symbol table does not match the number of modules
7265         // in the input file and regenerate the symbol table.
7266         if (F.Symtab.empty())
7267           F.Symtab = *SymtabOrErr;
7268         continue;
7269       }
7270 
7271       if (Error Err = Stream.SkipBlock())
7272         return std::move(Err);
7273       continue;
7274     }
7275     case BitstreamEntry::Record:
7276       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7277         return std::move(E);
7278       continue;
7279     }
7280   }
7281 }
7282 
7283 /// Get a lazy one-at-time loading module from bitcode.
7284 ///
7285 /// This isn't always used in a lazy context.  In particular, it's also used by
7286 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7287 /// in forward-referenced functions from block address references.
7288 ///
7289 /// \param[in] MaterializeAll Set to \c true if we should materialize
7290 /// everything.
7291 Expected<std::unique_ptr<Module>>
7292 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7293                              bool ShouldLazyLoadMetadata, bool IsImporting,
7294                              DataLayoutCallbackTy DataLayoutCallback) {
7295   BitstreamCursor Stream(Buffer);
7296 
7297   std::string ProducerIdentification;
7298   if (IdentificationBit != -1ull) {
7299     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7300       return std::move(JumpFailed);
7301     if (Error E =
7302             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7303       return std::move(E);
7304   }
7305 
7306   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7307     return std::move(JumpFailed);
7308   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7309                               Context);
7310 
7311   std::unique_ptr<Module> M =
7312       std::make_unique<Module>(ModuleIdentifier, Context);
7313   M->setMaterializer(R);
7314 
7315   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7316   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7317                                       IsImporting, DataLayoutCallback))
7318     return std::move(Err);
7319 
7320   if (MaterializeAll) {
7321     // Read in the entire module, and destroy the BitcodeReader.
7322     if (Error Err = M->materializeAll())
7323       return std::move(Err);
7324   } else {
7325     // Resolve forward references from blockaddresses.
7326     if (Error Err = R->materializeForwardReferencedFunctions())
7327       return std::move(Err);
7328   }
7329   return std::move(M);
7330 }
7331 
7332 Expected<std::unique_ptr<Module>>
7333 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7334                              bool IsImporting) {
7335   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7336                        [](StringRef) { return None; });
7337 }
7338 
7339 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7340 // We don't use ModuleIdentifier here because the client may need to control the
7341 // module path used in the combined summary (e.g. when reading summaries for
7342 // regular LTO modules).
7343 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7344                                  StringRef ModulePath, uint64_t ModuleId) {
7345   BitstreamCursor Stream(Buffer);
7346   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7347     return JumpFailed;
7348 
7349   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7350                                     ModulePath, ModuleId);
7351   return R.parseModule();
7352 }
7353 
7354 // Parse the specified bitcode buffer, returning the function info index.
7355 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7356   BitstreamCursor Stream(Buffer);
7357   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7358     return std::move(JumpFailed);
7359 
7360   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7361   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7362                                     ModuleIdentifier, 0);
7363 
7364   if (Error Err = R.parseModule())
7365     return std::move(Err);
7366 
7367   return std::move(Index);
7368 }
7369 
7370 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7371                                                 unsigned ID) {
7372   if (Error Err = Stream.EnterSubBlock(ID))
7373     return std::move(Err);
7374   SmallVector<uint64_t, 64> Record;
7375 
7376   while (true) {
7377     BitstreamEntry Entry;
7378     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7379       return std::move(E);
7380 
7381     switch (Entry.Kind) {
7382     case BitstreamEntry::SubBlock: // Handled for us already.
7383     case BitstreamEntry::Error:
7384       return error("Malformed block");
7385     case BitstreamEntry::EndBlock:
7386       // If no flags record found, conservatively return true to mimic
7387       // behavior before this flag was added.
7388       return true;
7389     case BitstreamEntry::Record:
7390       // The interesting case.
7391       break;
7392     }
7393 
7394     // Look for the FS_FLAGS record.
7395     Record.clear();
7396     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7397     if (!MaybeBitCode)
7398       return MaybeBitCode.takeError();
7399     switch (MaybeBitCode.get()) {
7400     default: // Default behavior: ignore.
7401       break;
7402     case bitc::FS_FLAGS: { // [flags]
7403       uint64_t Flags = Record[0];
7404       // Scan flags.
7405       assert(Flags <= 0x7f && "Unexpected bits in flag");
7406 
7407       return Flags & 0x8;
7408     }
7409     }
7410   }
7411   llvm_unreachable("Exit infinite loop");
7412 }
7413 
7414 // Check if the given bitcode buffer contains a global value summary block.
7415 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7416   BitstreamCursor Stream(Buffer);
7417   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7418     return std::move(JumpFailed);
7419 
7420   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7421     return std::move(Err);
7422 
7423   while (true) {
7424     llvm::BitstreamEntry Entry;
7425     if (Error E = Stream.advance().moveInto(Entry))
7426       return std::move(E);
7427 
7428     switch (Entry.Kind) {
7429     case BitstreamEntry::Error:
7430       return error("Malformed block");
7431     case BitstreamEntry::EndBlock:
7432       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7433                             /*EnableSplitLTOUnit=*/false};
7434 
7435     case BitstreamEntry::SubBlock:
7436       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7437         Expected<bool> EnableSplitLTOUnit =
7438             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7439         if (!EnableSplitLTOUnit)
7440           return EnableSplitLTOUnit.takeError();
7441         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7442                               *EnableSplitLTOUnit};
7443       }
7444 
7445       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7446         Expected<bool> EnableSplitLTOUnit =
7447             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7448         if (!EnableSplitLTOUnit)
7449           return EnableSplitLTOUnit.takeError();
7450         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7451                               *EnableSplitLTOUnit};
7452       }
7453 
7454       // Ignore other sub-blocks.
7455       if (Error Err = Stream.SkipBlock())
7456         return std::move(Err);
7457       continue;
7458 
7459     case BitstreamEntry::Record:
7460       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7461         continue;
7462       else
7463         return StreamFailed.takeError();
7464     }
7465   }
7466 }
7467 
7468 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7469   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7470   if (!MsOrErr)
7471     return MsOrErr.takeError();
7472 
7473   if (MsOrErr->size() != 1)
7474     return error("Expected a single module");
7475 
7476   return (*MsOrErr)[0];
7477 }
7478 
7479 Expected<std::unique_ptr<Module>>
7480 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7481                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7482   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7483   if (!BM)
7484     return BM.takeError();
7485 
7486   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7487 }
7488 
7489 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7490     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7491     bool ShouldLazyLoadMetadata, bool IsImporting) {
7492   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7493                                      IsImporting);
7494   if (MOrErr)
7495     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7496   return MOrErr;
7497 }
7498 
7499 Expected<std::unique_ptr<Module>>
7500 BitcodeModule::parseModule(LLVMContext &Context,
7501                            DataLayoutCallbackTy DataLayoutCallback) {
7502   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7503   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7504   // written.  We must defer until the Module has been fully materialized.
7505 }
7506 
7507 Expected<std::unique_ptr<Module>>
7508 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7509                        DataLayoutCallbackTy DataLayoutCallback) {
7510   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7511   if (!BM)
7512     return BM.takeError();
7513 
7514   return BM->parseModule(Context, DataLayoutCallback);
7515 }
7516 
7517 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7518   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7519   if (!StreamOrErr)
7520     return StreamOrErr.takeError();
7521 
7522   return readTriple(*StreamOrErr);
7523 }
7524 
7525 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7526   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7527   if (!StreamOrErr)
7528     return StreamOrErr.takeError();
7529 
7530   return hasObjCCategory(*StreamOrErr);
7531 }
7532 
7533 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7534   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7535   if (!StreamOrErr)
7536     return StreamOrErr.takeError();
7537 
7538   return readIdentificationCode(*StreamOrErr);
7539 }
7540 
7541 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7542                                    ModuleSummaryIndex &CombinedIndex,
7543                                    uint64_t ModuleId) {
7544   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7545   if (!BM)
7546     return BM.takeError();
7547 
7548   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7549 }
7550 
7551 Expected<std::unique_ptr<ModuleSummaryIndex>>
7552 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7553   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7554   if (!BM)
7555     return BM.takeError();
7556 
7557   return BM->getSummary();
7558 }
7559 
7560 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7561   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7562   if (!BM)
7563     return BM.takeError();
7564 
7565   return BM->getLTOInfo();
7566 }
7567 
7568 Expected<std::unique_ptr<ModuleSummaryIndex>>
7569 llvm::getModuleSummaryIndexForFile(StringRef Path,
7570                                    bool IgnoreEmptyThinLTOIndexFile) {
7571   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7572       MemoryBuffer::getFileOrSTDIN(Path);
7573   if (!FileOrErr)
7574     return errorCodeToError(FileOrErr.getError());
7575   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7576     return nullptr;
7577   return getModuleSummaryIndex(**FileOrErr);
7578 }
7579