xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a8874cf50bb676facb4429234dff7774e579faef)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// Callback to ask whether a symbol is the prevailing copy when invoked
908   /// during combined index building.
909   std::function<bool(GlobalValue::GUID)> IsPrevailing;
910 
911   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912   /// ids from the lists in the callsite and alloc entries to the index.
913   std::vector<uint64_t> StackIds;
914 
915 public:
916   ModuleSummaryIndexBitcodeReader(
917       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918       StringRef ModulePath,
919       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
920 
921   Error parseModule();
922 
923 private:
924   void setValueGUID(uint64_t ValueID, StringRef ValueName,
925                     GlobalValue::LinkageTypes Linkage,
926                     StringRef SourceFileName);
927   Error parseValueSymbolTable(
928       uint64_t Offset,
929       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932                                                     bool IsOldProfileFormat,
933                                                     bool HasProfile,
934                                                     bool HasRelBF);
935   Error parseEntireSummary(unsigned ID);
936   Error parseModuleStringTable();
937   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939                                        TypeIdCompatibleVtableInfo &TypeId);
940   std::vector<FunctionSummary::ParamAccess>
941   parseParamAccesses(ArrayRef<uint64_t> Record);
942 
943   template <bool AllowNullValueInfo = false>
944   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945   getValueInfoFromValueId(unsigned ValueId);
946 
947   void addThisModule();
948   ModuleSummaryIndex::ModuleInfo *getThisModule();
949 };
950 
951 } // end anonymous namespace
952 
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954                                                     Error Err) {
955   if (Err) {
956     std::error_code EC;
957     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958       EC = EIB.convertToErrorCode();
959       Ctx.emitError(EIB.message());
960     });
961     return EC;
962   }
963   return std::error_code();
964 }
965 
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967                              StringRef ProducerIdentification,
968                              LLVMContext &Context)
969     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970       ValueList(this->Stream.SizeInBytes(),
971                 [this](unsigned ValID, BasicBlock *InsertBB) {
972                   return materializeValue(ValID, InsertBB);
973                 }) {
974   this->ProducerIdentification = std::string(ProducerIdentification);
975 }
976 
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978   if (WillMaterializeAllForwardRefs)
979     return Error::success();
980 
981   // Prevent recursion.
982   WillMaterializeAllForwardRefs = true;
983 
984   while (!BasicBlockFwdRefQueue.empty()) {
985     Function *F = BasicBlockFwdRefQueue.front();
986     BasicBlockFwdRefQueue.pop_front();
987     assert(F && "Expected valid function");
988     if (!BasicBlockFwdRefs.count(F))
989       // Already materialized.
990       continue;
991 
992     // Check for a function that isn't materializable to prevent an infinite
993     // loop.  When parsing a blockaddress stored in a global variable, there
994     // isn't a trivial way to check if a function will have a body without a
995     // linear search through FunctionsWithBodies, so just check it here.
996     if (!F->isMaterializable())
997       return error("Never resolved function from blockaddress");
998 
999     // Try to materialize F.
1000     if (Error Err = materialize(F))
1001       return Err;
1002   }
1003   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1004 
1005   for (Function *F : BackwardRefFunctions)
1006     if (Error Err = materialize(F))
1007       return Err;
1008   BackwardRefFunctions.clear();
1009 
1010   // Reset state.
1011   WillMaterializeAllForwardRefs = false;
1012   return Error::success();
1013 }
1014 
1015 //===----------------------------------------------------------------------===//
1016 //  Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1018 
1019 static bool hasImplicitComdat(size_t Val) {
1020   switch (Val) {
1021   default:
1022     return false;
1023   case 1:  // Old WeakAnyLinkage
1024   case 4:  // Old LinkOnceAnyLinkage
1025   case 10: // Old WeakODRLinkage
1026   case 11: // Old LinkOnceODRLinkage
1027     return true;
1028   }
1029 }
1030 
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown/new linkages to external
1034   case 0:
1035     return GlobalValue::ExternalLinkage;
1036   case 2:
1037     return GlobalValue::AppendingLinkage;
1038   case 3:
1039     return GlobalValue::InternalLinkage;
1040   case 5:
1041     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042   case 6:
1043     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044   case 7:
1045     return GlobalValue::ExternalWeakLinkage;
1046   case 8:
1047     return GlobalValue::CommonLinkage;
1048   case 9:
1049     return GlobalValue::PrivateLinkage;
1050   case 12:
1051     return GlobalValue::AvailableExternallyLinkage;
1052   case 13:
1053     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054   case 14:
1055     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056   case 15:
1057     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058   case 1: // Old value with implicit comdat.
1059   case 16:
1060     return GlobalValue::WeakAnyLinkage;
1061   case 10: // Old value with implicit comdat.
1062   case 17:
1063     return GlobalValue::WeakODRLinkage;
1064   case 4: // Old value with implicit comdat.
1065   case 18:
1066     return GlobalValue::LinkOnceAnyLinkage;
1067   case 11: // Old value with implicit comdat.
1068   case 19:
1069     return GlobalValue::LinkOnceODRLinkage;
1070   }
1071 }
1072 
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074   FunctionSummary::FFlags Flags;
1075   Flags.ReadNone = RawFlags & 0x1;
1076   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079   Flags.NoInline = (RawFlags >> 4) & 0x1;
1080   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085   return Flags;
1086 }
1087 
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1089 //
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093                                                             uint64_t Version) {
1094   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095   // like getDecodedLinkage() above. Any future change to the linkage enum and
1096   // to getDecodedLinkage() will need to be taken into account here as above.
1097   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099   RawFlags = RawFlags >> 4;
1100   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101   // The Live flag wasn't introduced until version 3. For dead stripping
1102   // to work correctly on earlier versions, we must conservatively treat all
1103   // values as live.
1104   bool Live = (RawFlags & 0x2) || Version < 3;
1105   bool Local = (RawFlags & 0x4);
1106   bool AutoHide = (RawFlags & 0x8);
1107 
1108   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109                                      Live, Local, AutoHide);
1110 }
1111 
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114   return GlobalVarSummary::GVarFlags(
1115       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116       (RawFlags & 0x4) ? true : false,
1117       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1118 }
1119 
1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown visibilities to default.
1123   case 0: return GlobalValue::DefaultVisibility;
1124   case 1: return GlobalValue::HiddenVisibility;
1125   case 2: return GlobalValue::ProtectedVisibility;
1126   }
1127 }
1128 
1129 static GlobalValue::DLLStorageClassTypes
1130 getDecodedDLLStorageClass(unsigned Val) {
1131   switch (Val) {
1132   default: // Map unknown values to default.
1133   case 0: return GlobalValue::DefaultStorageClass;
1134   case 1: return GlobalValue::DLLImportStorageClass;
1135   case 2: return GlobalValue::DLLExportStorageClass;
1136   }
1137 }
1138 
1139 static bool getDecodedDSOLocal(unsigned Val) {
1140   switch(Val) {
1141   default: // Map unknown values to preemptable.
1142   case 0:  return false;
1143   case 1:  return true;
1144   }
1145 }
1146 
1147 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1148   switch (Val) {
1149   case 1:
1150     return CodeModel::Tiny;
1151   case 2:
1152     return CodeModel::Small;
1153   case 3:
1154     return CodeModel::Kernel;
1155   case 4:
1156     return CodeModel::Medium;
1157   case 5:
1158     return CodeModel::Large;
1159   }
1160 
1161   return {};
1162 }
1163 
1164 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1165   switch (Val) {
1166     case 0: return GlobalVariable::NotThreadLocal;
1167     default: // Map unknown non-zero value to general dynamic.
1168     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1169     case 2: return GlobalVariable::LocalDynamicTLSModel;
1170     case 3: return GlobalVariable::InitialExecTLSModel;
1171     case 4: return GlobalVariable::LocalExecTLSModel;
1172   }
1173 }
1174 
1175 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1176   switch (Val) {
1177     default: // Map unknown to UnnamedAddr::None.
1178     case 0: return GlobalVariable::UnnamedAddr::None;
1179     case 1: return GlobalVariable::UnnamedAddr::Global;
1180     case 2: return GlobalVariable::UnnamedAddr::Local;
1181   }
1182 }
1183 
1184 static int getDecodedCastOpcode(unsigned Val) {
1185   switch (Val) {
1186   default: return -1;
1187   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1188   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1189   case bitc::CAST_SEXT    : return Instruction::SExt;
1190   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1191   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1192   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1193   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1194   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1195   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1196   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1197   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1198   case bitc::CAST_BITCAST : return Instruction::BitCast;
1199   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1200   }
1201 }
1202 
1203 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1204   bool IsFP = Ty->isFPOrFPVectorTy();
1205   // UnOps are only valid for int/fp or vector of int/fp types
1206   if (!IsFP && !Ty->isIntOrIntVectorTy())
1207     return -1;
1208 
1209   switch (Val) {
1210   default:
1211     return -1;
1212   case bitc::UNOP_FNEG:
1213     return IsFP ? Instruction::FNeg : -1;
1214   }
1215 }
1216 
1217 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1218   bool IsFP = Ty->isFPOrFPVectorTy();
1219   // BinOps are only valid for int/fp or vector of int/fp types
1220   if (!IsFP && !Ty->isIntOrIntVectorTy())
1221     return -1;
1222 
1223   switch (Val) {
1224   default:
1225     return -1;
1226   case bitc::BINOP_ADD:
1227     return IsFP ? Instruction::FAdd : Instruction::Add;
1228   case bitc::BINOP_SUB:
1229     return IsFP ? Instruction::FSub : Instruction::Sub;
1230   case bitc::BINOP_MUL:
1231     return IsFP ? Instruction::FMul : Instruction::Mul;
1232   case bitc::BINOP_UDIV:
1233     return IsFP ? -1 : Instruction::UDiv;
1234   case bitc::BINOP_SDIV:
1235     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1236   case bitc::BINOP_UREM:
1237     return IsFP ? -1 : Instruction::URem;
1238   case bitc::BINOP_SREM:
1239     return IsFP ? Instruction::FRem : Instruction::SRem;
1240   case bitc::BINOP_SHL:
1241     return IsFP ? -1 : Instruction::Shl;
1242   case bitc::BINOP_LSHR:
1243     return IsFP ? -1 : Instruction::LShr;
1244   case bitc::BINOP_ASHR:
1245     return IsFP ? -1 : Instruction::AShr;
1246   case bitc::BINOP_AND:
1247     return IsFP ? -1 : Instruction::And;
1248   case bitc::BINOP_OR:
1249     return IsFP ? -1 : Instruction::Or;
1250   case bitc::BINOP_XOR:
1251     return IsFP ? -1 : Instruction::Xor;
1252   }
1253 }
1254 
1255 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1256   switch (Val) {
1257   default: return AtomicRMWInst::BAD_BINOP;
1258   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1259   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1260   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1261   case bitc::RMW_AND: return AtomicRMWInst::And;
1262   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1263   case bitc::RMW_OR: return AtomicRMWInst::Or;
1264   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1265   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1266   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1267   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1268   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1269   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1270   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1271   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1272   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1273   case bitc::RMW_UINC_WRAP:
1274     return AtomicRMWInst::UIncWrap;
1275   case bitc::RMW_UDEC_WRAP:
1276     return AtomicRMWInst::UDecWrap;
1277   }
1278 }
1279 
1280 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1281   switch (Val) {
1282   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1283   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1284   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1285   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1286   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1287   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1288   default: // Map unknown orderings to sequentially-consistent.
1289   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1290   }
1291 }
1292 
1293 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1294   switch (Val) {
1295   default: // Map unknown selection kinds to any.
1296   case bitc::COMDAT_SELECTION_KIND_ANY:
1297     return Comdat::Any;
1298   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1299     return Comdat::ExactMatch;
1300   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1301     return Comdat::Largest;
1302   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1303     return Comdat::NoDeduplicate;
1304   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1305     return Comdat::SameSize;
1306   }
1307 }
1308 
1309 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1310   FastMathFlags FMF;
1311   if (0 != (Val & bitc::UnsafeAlgebra))
1312     FMF.setFast();
1313   if (0 != (Val & bitc::AllowReassoc))
1314     FMF.setAllowReassoc();
1315   if (0 != (Val & bitc::NoNaNs))
1316     FMF.setNoNaNs();
1317   if (0 != (Val & bitc::NoInfs))
1318     FMF.setNoInfs();
1319   if (0 != (Val & bitc::NoSignedZeros))
1320     FMF.setNoSignedZeros();
1321   if (0 != (Val & bitc::AllowReciprocal))
1322     FMF.setAllowReciprocal();
1323   if (0 != (Val & bitc::AllowContract))
1324     FMF.setAllowContract(true);
1325   if (0 != (Val & bitc::ApproxFunc))
1326     FMF.setApproxFunc();
1327   return FMF;
1328 }
1329 
1330 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1331   // A GlobalValue with local linkage cannot have a DLL storage class.
1332   if (GV->hasLocalLinkage())
1333     return;
1334   switch (Val) {
1335   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1336   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1337   }
1338 }
1339 
1340 Type *BitcodeReader::getTypeByID(unsigned ID) {
1341   // The type table size is always specified correctly.
1342   if (ID >= TypeList.size())
1343     return nullptr;
1344 
1345   if (Type *Ty = TypeList[ID])
1346     return Ty;
1347 
1348   // If we have a forward reference, the only possible case is when it is to a
1349   // named struct.  Just create a placeholder for now.
1350   return TypeList[ID] = createIdentifiedStructType(Context);
1351 }
1352 
1353 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1354   auto It = ContainedTypeIDs.find(ID);
1355   if (It == ContainedTypeIDs.end())
1356     return InvalidTypeID;
1357 
1358   if (Idx >= It->second.size())
1359     return InvalidTypeID;
1360 
1361   return It->second[Idx];
1362 }
1363 
1364 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1365   if (ID >= TypeList.size())
1366     return nullptr;
1367 
1368   Type *Ty = TypeList[ID];
1369   if (!Ty->isPointerTy())
1370     return nullptr;
1371 
1372   return getTypeByID(getContainedTypeID(ID, 0));
1373 }
1374 
1375 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1376                                          ArrayRef<unsigned> ChildTypeIDs) {
1377   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1378   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1379   auto It = VirtualTypeIDs.find(CacheKey);
1380   if (It != VirtualTypeIDs.end()) {
1381     // The cmpxchg return value is the only place we need more than one
1382     // contained type ID, however the second one will always be the same (i1),
1383     // so we don't need to include it in the cache key. This asserts that the
1384     // contained types are indeed as expected and there are no collisions.
1385     assert((ChildTypeIDs.empty() ||
1386             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1387            "Incorrect cached contained type IDs");
1388     return It->second;
1389   }
1390 
1391   unsigned TypeID = TypeList.size();
1392   TypeList.push_back(Ty);
1393   if (!ChildTypeIDs.empty())
1394     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1395   VirtualTypeIDs.insert({CacheKey, TypeID});
1396   return TypeID;
1397 }
1398 
1399 static bool isConstExprSupported(const BitcodeConstant *BC) {
1400   uint8_t Opcode = BC->Opcode;
1401 
1402   // These are not real constant expressions, always consider them supported.
1403   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1404     return true;
1405 
1406   // If -expand-constant-exprs is set, we want to consider all expressions
1407   // as unsupported.
1408   if (ExpandConstantExprs)
1409     return false;
1410 
1411   if (Instruction::isBinaryOp(Opcode))
1412     return ConstantExpr::isSupportedBinOp(Opcode);
1413 
1414   if (Instruction::isCast(Opcode))
1415     return ConstantExpr::isSupportedCastOp(Opcode);
1416 
1417   if (Opcode == Instruction::GetElementPtr)
1418     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1419 
1420   switch (Opcode) {
1421   case Instruction::FNeg:
1422   case Instruction::Select:
1423     return false;
1424   default:
1425     return true;
1426   }
1427 }
1428 
1429 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1430                                                   BasicBlock *InsertBB) {
1431   // Quickly handle the case where there is no BitcodeConstant to resolve.
1432   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1433       !isa<BitcodeConstant>(ValueList[StartValID]))
1434     return ValueList[StartValID];
1435 
1436   SmallDenseMap<unsigned, Value *> MaterializedValues;
1437   SmallVector<unsigned> Worklist;
1438   Worklist.push_back(StartValID);
1439   while (!Worklist.empty()) {
1440     unsigned ValID = Worklist.back();
1441     if (MaterializedValues.count(ValID)) {
1442       // Duplicate expression that was already handled.
1443       Worklist.pop_back();
1444       continue;
1445     }
1446 
1447     if (ValID >= ValueList.size() || !ValueList[ValID])
1448       return error("Invalid value ID");
1449 
1450     Value *V = ValueList[ValID];
1451     auto *BC = dyn_cast<BitcodeConstant>(V);
1452     if (!BC) {
1453       MaterializedValues.insert({ValID, V});
1454       Worklist.pop_back();
1455       continue;
1456     }
1457 
1458     // Iterate in reverse, so values will get popped from the worklist in
1459     // expected order.
1460     SmallVector<Value *> Ops;
1461     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1462       auto It = MaterializedValues.find(OpID);
1463       if (It != MaterializedValues.end())
1464         Ops.push_back(It->second);
1465       else
1466         Worklist.push_back(OpID);
1467     }
1468 
1469     // Some expressions have not been resolved yet, handle them first and then
1470     // revisit this one.
1471     if (Ops.size() != BC->getOperandIDs().size())
1472       continue;
1473     std::reverse(Ops.begin(), Ops.end());
1474 
1475     SmallVector<Constant *> ConstOps;
1476     for (Value *Op : Ops)
1477       if (auto *C = dyn_cast<Constant>(Op))
1478         ConstOps.push_back(C);
1479 
1480     // Materialize as constant expression if possible.
1481     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1482       Constant *C;
1483       if (Instruction::isCast(BC->Opcode)) {
1484         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1485         if (!C)
1486           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1487       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1488         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1489       } else {
1490         switch (BC->Opcode) {
1491         case BitcodeConstant::NoCFIOpcode: {
1492           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1493           if (!GV)
1494             return error("no_cfi operand must be GlobalValue");
1495           C = NoCFIValue::get(GV);
1496           break;
1497         }
1498         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1499           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1500           if (!GV)
1501             return error("dso_local operand must be GlobalValue");
1502           C = DSOLocalEquivalent::get(GV);
1503           break;
1504         }
1505         case BitcodeConstant::BlockAddressOpcode: {
1506           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1507           if (!Fn)
1508             return error("blockaddress operand must be a function");
1509 
1510           // If the function is already parsed we can insert the block address
1511           // right away.
1512           BasicBlock *BB;
1513           unsigned BBID = BC->Extra;
1514           if (!BBID)
1515             // Invalid reference to entry block.
1516             return error("Invalid ID");
1517           if (!Fn->empty()) {
1518             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1519             for (size_t I = 0, E = BBID; I != E; ++I) {
1520               if (BBI == BBE)
1521                 return error("Invalid ID");
1522               ++BBI;
1523             }
1524             BB = &*BBI;
1525           } else {
1526             // Otherwise insert a placeholder and remember it so it can be
1527             // inserted when the function is parsed.
1528             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1529             if (FwdBBs.empty())
1530               BasicBlockFwdRefQueue.push_back(Fn);
1531             if (FwdBBs.size() < BBID + 1)
1532               FwdBBs.resize(BBID + 1);
1533             if (!FwdBBs[BBID])
1534               FwdBBs[BBID] = BasicBlock::Create(Context);
1535             BB = FwdBBs[BBID];
1536           }
1537           C = BlockAddress::get(Fn, BB);
1538           break;
1539         }
1540         case BitcodeConstant::ConstantStructOpcode:
1541           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1542           break;
1543         case BitcodeConstant::ConstantArrayOpcode:
1544           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1545           break;
1546         case BitcodeConstant::ConstantVectorOpcode:
1547           C = ConstantVector::get(ConstOps);
1548           break;
1549         case Instruction::ICmp:
1550         case Instruction::FCmp:
1551           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1552           break;
1553         case Instruction::GetElementPtr:
1554           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1555                                              ArrayRef(ConstOps).drop_front(),
1556                                              BC->Flags, BC->getInRangeIndex());
1557           break;
1558         case Instruction::ExtractElement:
1559           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1560           break;
1561         case Instruction::InsertElement:
1562           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1563                                              ConstOps[2]);
1564           break;
1565         case Instruction::ShuffleVector: {
1566           SmallVector<int, 16> Mask;
1567           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1568           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1569           break;
1570         }
1571         default:
1572           llvm_unreachable("Unhandled bitcode constant");
1573         }
1574       }
1575 
1576       // Cache resolved constant.
1577       ValueList.replaceValueWithoutRAUW(ValID, C);
1578       MaterializedValues.insert({ValID, C});
1579       Worklist.pop_back();
1580       continue;
1581     }
1582 
1583     if (!InsertBB)
1584       return error(Twine("Value referenced by initializer is an unsupported "
1585                          "constant expression of type ") +
1586                    BC->getOpcodeName());
1587 
1588     // Materialize as instructions if necessary.
1589     Instruction *I;
1590     if (Instruction::isCast(BC->Opcode)) {
1591       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1592                            BC->getType(), "constexpr", InsertBB);
1593     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1594       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1595                                 "constexpr", InsertBB);
1596     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1597       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1598                                  Ops[1], "constexpr", InsertBB);
1599       if (isa<OverflowingBinaryOperator>(I)) {
1600         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1601           I->setHasNoSignedWrap();
1602         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1603           I->setHasNoUnsignedWrap();
1604       }
1605       if (isa<PossiblyExactOperator>(I) &&
1606           (BC->Flags & PossiblyExactOperator::IsExact))
1607         I->setIsExact();
1608     } else {
1609       switch (BC->Opcode) {
1610       case BitcodeConstant::ConstantVectorOpcode: {
1611         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1612         Value *V = PoisonValue::get(BC->getType());
1613         for (auto Pair : enumerate(Ops)) {
1614           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1615           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1616                                         InsertBB);
1617         }
1618         I = cast<Instruction>(V);
1619         break;
1620       }
1621       case BitcodeConstant::ConstantStructOpcode:
1622       case BitcodeConstant::ConstantArrayOpcode: {
1623         Value *V = PoisonValue::get(BC->getType());
1624         for (auto Pair : enumerate(Ops))
1625           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1626                                       "constexpr.ins", InsertBB);
1627         I = cast<Instruction>(V);
1628         break;
1629       }
1630       case Instruction::ICmp:
1631       case Instruction::FCmp:
1632         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1633                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1634                             "constexpr", InsertBB);
1635         break;
1636       case Instruction::GetElementPtr:
1637         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1638                                       ArrayRef(Ops).drop_front(), "constexpr",
1639                                       InsertBB);
1640         if (BC->Flags)
1641           cast<GetElementPtrInst>(I)->setIsInBounds();
1642         break;
1643       case Instruction::Select:
1644         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1645         break;
1646       case Instruction::ExtractElement:
1647         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1648         break;
1649       case Instruction::InsertElement:
1650         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1651                                       InsertBB);
1652         break;
1653       case Instruction::ShuffleVector:
1654         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1655                                   InsertBB);
1656         break;
1657       default:
1658         llvm_unreachable("Unhandled bitcode constant");
1659       }
1660     }
1661 
1662     MaterializedValues.insert({ValID, I});
1663     Worklist.pop_back();
1664   }
1665 
1666   return MaterializedValues[StartValID];
1667 }
1668 
1669 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1670   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1671   if (!MaybeV)
1672     return MaybeV.takeError();
1673 
1674   // Result must be Constant if InsertBB is nullptr.
1675   return cast<Constant>(MaybeV.get());
1676 }
1677 
1678 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1679                                                       StringRef Name) {
1680   auto *Ret = StructType::create(Context, Name);
1681   IdentifiedStructTypes.push_back(Ret);
1682   return Ret;
1683 }
1684 
1685 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1686   auto *Ret = StructType::create(Context);
1687   IdentifiedStructTypes.push_back(Ret);
1688   return Ret;
1689 }
1690 
1691 //===----------------------------------------------------------------------===//
1692 //  Functions for parsing blocks from the bitcode file
1693 //===----------------------------------------------------------------------===//
1694 
1695 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1696   switch (Val) {
1697   case Attribute::EndAttrKinds:
1698   case Attribute::EmptyKey:
1699   case Attribute::TombstoneKey:
1700     llvm_unreachable("Synthetic enumerators which should never get here");
1701 
1702   case Attribute::None:            return 0;
1703   case Attribute::ZExt:            return 1 << 0;
1704   case Attribute::SExt:            return 1 << 1;
1705   case Attribute::NoReturn:        return 1 << 2;
1706   case Attribute::InReg:           return 1 << 3;
1707   case Attribute::StructRet:       return 1 << 4;
1708   case Attribute::NoUnwind:        return 1 << 5;
1709   case Attribute::NoAlias:         return 1 << 6;
1710   case Attribute::ByVal:           return 1 << 7;
1711   case Attribute::Nest:            return 1 << 8;
1712   case Attribute::ReadNone:        return 1 << 9;
1713   case Attribute::ReadOnly:        return 1 << 10;
1714   case Attribute::NoInline:        return 1 << 11;
1715   case Attribute::AlwaysInline:    return 1 << 12;
1716   case Attribute::OptimizeForSize: return 1 << 13;
1717   case Attribute::StackProtect:    return 1 << 14;
1718   case Attribute::StackProtectReq: return 1 << 15;
1719   case Attribute::Alignment:       return 31 << 16;
1720   case Attribute::NoCapture:       return 1 << 21;
1721   case Attribute::NoRedZone:       return 1 << 22;
1722   case Attribute::NoImplicitFloat: return 1 << 23;
1723   case Attribute::Naked:           return 1 << 24;
1724   case Attribute::InlineHint:      return 1 << 25;
1725   case Attribute::StackAlignment:  return 7 << 26;
1726   case Attribute::ReturnsTwice:    return 1 << 29;
1727   case Attribute::UWTable:         return 1 << 30;
1728   case Attribute::NonLazyBind:     return 1U << 31;
1729   case Attribute::SanitizeAddress: return 1ULL << 32;
1730   case Attribute::MinSize:         return 1ULL << 33;
1731   case Attribute::NoDuplicate:     return 1ULL << 34;
1732   case Attribute::StackProtectStrong: return 1ULL << 35;
1733   case Attribute::SanitizeThread:  return 1ULL << 36;
1734   case Attribute::SanitizeMemory:  return 1ULL << 37;
1735   case Attribute::NoBuiltin:       return 1ULL << 38;
1736   case Attribute::Returned:        return 1ULL << 39;
1737   case Attribute::Cold:            return 1ULL << 40;
1738   case Attribute::Builtin:         return 1ULL << 41;
1739   case Attribute::OptimizeNone:    return 1ULL << 42;
1740   case Attribute::InAlloca:        return 1ULL << 43;
1741   case Attribute::NonNull:         return 1ULL << 44;
1742   case Attribute::JumpTable:       return 1ULL << 45;
1743   case Attribute::Convergent:      return 1ULL << 46;
1744   case Attribute::SafeStack:       return 1ULL << 47;
1745   case Attribute::NoRecurse:       return 1ULL << 48;
1746   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1747   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1748   case Attribute::SwiftSelf:       return 1ULL << 51;
1749   case Attribute::SwiftError:      return 1ULL << 52;
1750   case Attribute::WriteOnly:       return 1ULL << 53;
1751   case Attribute::Speculatable:    return 1ULL << 54;
1752   case Attribute::StrictFP:        return 1ULL << 55;
1753   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1754   case Attribute::NoCfCheck:       return 1ULL << 57;
1755   case Attribute::OptForFuzzing:   return 1ULL << 58;
1756   case Attribute::ShadowCallStack: return 1ULL << 59;
1757   case Attribute::SpeculativeLoadHardening:
1758     return 1ULL << 60;
1759   case Attribute::ImmArg:
1760     return 1ULL << 61;
1761   case Attribute::WillReturn:
1762     return 1ULL << 62;
1763   case Attribute::NoFree:
1764     return 1ULL << 63;
1765   default:
1766     // Other attributes are not supported in the raw format,
1767     // as we ran out of space.
1768     return 0;
1769   }
1770   llvm_unreachable("Unsupported attribute type");
1771 }
1772 
1773 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1774   if (!Val) return;
1775 
1776   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1777        I = Attribute::AttrKind(I + 1)) {
1778     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1779       if (I == Attribute::Alignment)
1780         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1781       else if (I == Attribute::StackAlignment)
1782         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1783       else if (Attribute::isTypeAttrKind(I))
1784         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1785       else
1786         B.addAttribute(I);
1787     }
1788   }
1789 }
1790 
1791 /// This fills an AttrBuilder object with the LLVM attributes that have
1792 /// been decoded from the given integer. This function must stay in sync with
1793 /// 'encodeLLVMAttributesForBitcode'.
1794 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1795                                            uint64_t EncodedAttrs,
1796                                            uint64_t AttrIdx) {
1797   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1798   // the bits above 31 down by 11 bits.
1799   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1800   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1801          "Alignment must be a power of two.");
1802 
1803   if (Alignment)
1804     B.addAlignmentAttr(Alignment);
1805 
1806   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1807                    (EncodedAttrs & 0xffff);
1808 
1809   if (AttrIdx == AttributeList::FunctionIndex) {
1810     // Upgrade old memory attributes.
1811     MemoryEffects ME = MemoryEffects::unknown();
1812     if (Attrs & (1ULL << 9)) {
1813       // ReadNone
1814       Attrs &= ~(1ULL << 9);
1815       ME &= MemoryEffects::none();
1816     }
1817     if (Attrs & (1ULL << 10)) {
1818       // ReadOnly
1819       Attrs &= ~(1ULL << 10);
1820       ME &= MemoryEffects::readOnly();
1821     }
1822     if (Attrs & (1ULL << 49)) {
1823       // InaccessibleMemOnly
1824       Attrs &= ~(1ULL << 49);
1825       ME &= MemoryEffects::inaccessibleMemOnly();
1826     }
1827     if (Attrs & (1ULL << 50)) {
1828       // InaccessibleMemOrArgMemOnly
1829       Attrs &= ~(1ULL << 50);
1830       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1831     }
1832     if (Attrs & (1ULL << 53)) {
1833       // WriteOnly
1834       Attrs &= ~(1ULL << 53);
1835       ME &= MemoryEffects::writeOnly();
1836     }
1837     if (ME != MemoryEffects::unknown())
1838       B.addMemoryAttr(ME);
1839   }
1840 
1841   addRawAttributeValue(B, Attrs);
1842 }
1843 
1844 Error BitcodeReader::parseAttributeBlock() {
1845   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1846     return Err;
1847 
1848   if (!MAttributes.empty())
1849     return error("Invalid multiple blocks");
1850 
1851   SmallVector<uint64_t, 64> Record;
1852 
1853   SmallVector<AttributeList, 8> Attrs;
1854 
1855   // Read all the records.
1856   while (true) {
1857     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1858     if (!MaybeEntry)
1859       return MaybeEntry.takeError();
1860     BitstreamEntry Entry = MaybeEntry.get();
1861 
1862     switch (Entry.Kind) {
1863     case BitstreamEntry::SubBlock: // Handled for us already.
1864     case BitstreamEntry::Error:
1865       return error("Malformed block");
1866     case BitstreamEntry::EndBlock:
1867       return Error::success();
1868     case BitstreamEntry::Record:
1869       // The interesting case.
1870       break;
1871     }
1872 
1873     // Read a record.
1874     Record.clear();
1875     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1876     if (!MaybeRecord)
1877       return MaybeRecord.takeError();
1878     switch (MaybeRecord.get()) {
1879     default:  // Default behavior: ignore.
1880       break;
1881     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1882       // Deprecated, but still needed to read old bitcode files.
1883       if (Record.size() & 1)
1884         return error("Invalid parameter attribute record");
1885 
1886       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1887         AttrBuilder B(Context);
1888         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1889         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1890       }
1891 
1892       MAttributes.push_back(AttributeList::get(Context, Attrs));
1893       Attrs.clear();
1894       break;
1895     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1896       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1897         Attrs.push_back(MAttributeGroups[Record[i]]);
1898 
1899       MAttributes.push_back(AttributeList::get(Context, Attrs));
1900       Attrs.clear();
1901       break;
1902     }
1903   }
1904 }
1905 
1906 // Returns Attribute::None on unrecognized codes.
1907 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1908   switch (Code) {
1909   default:
1910     return Attribute::None;
1911   case bitc::ATTR_KIND_ALIGNMENT:
1912     return Attribute::Alignment;
1913   case bitc::ATTR_KIND_ALWAYS_INLINE:
1914     return Attribute::AlwaysInline;
1915   case bitc::ATTR_KIND_BUILTIN:
1916     return Attribute::Builtin;
1917   case bitc::ATTR_KIND_BY_VAL:
1918     return Attribute::ByVal;
1919   case bitc::ATTR_KIND_IN_ALLOCA:
1920     return Attribute::InAlloca;
1921   case bitc::ATTR_KIND_COLD:
1922     return Attribute::Cold;
1923   case bitc::ATTR_KIND_CONVERGENT:
1924     return Attribute::Convergent;
1925   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1926     return Attribute::DisableSanitizerInstrumentation;
1927   case bitc::ATTR_KIND_ELEMENTTYPE:
1928     return Attribute::ElementType;
1929   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1930     return Attribute::FnRetThunkExtern;
1931   case bitc::ATTR_KIND_INLINE_HINT:
1932     return Attribute::InlineHint;
1933   case bitc::ATTR_KIND_IN_REG:
1934     return Attribute::InReg;
1935   case bitc::ATTR_KIND_JUMP_TABLE:
1936     return Attribute::JumpTable;
1937   case bitc::ATTR_KIND_MEMORY:
1938     return Attribute::Memory;
1939   case bitc::ATTR_KIND_NOFPCLASS:
1940     return Attribute::NoFPClass;
1941   case bitc::ATTR_KIND_MIN_SIZE:
1942     return Attribute::MinSize;
1943   case bitc::ATTR_KIND_NAKED:
1944     return Attribute::Naked;
1945   case bitc::ATTR_KIND_NEST:
1946     return Attribute::Nest;
1947   case bitc::ATTR_KIND_NO_ALIAS:
1948     return Attribute::NoAlias;
1949   case bitc::ATTR_KIND_NO_BUILTIN:
1950     return Attribute::NoBuiltin;
1951   case bitc::ATTR_KIND_NO_CALLBACK:
1952     return Attribute::NoCallback;
1953   case bitc::ATTR_KIND_NO_CAPTURE:
1954     return Attribute::NoCapture;
1955   case bitc::ATTR_KIND_NO_DUPLICATE:
1956     return Attribute::NoDuplicate;
1957   case bitc::ATTR_KIND_NOFREE:
1958     return Attribute::NoFree;
1959   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1960     return Attribute::NoImplicitFloat;
1961   case bitc::ATTR_KIND_NO_INLINE:
1962     return Attribute::NoInline;
1963   case bitc::ATTR_KIND_NO_RECURSE:
1964     return Attribute::NoRecurse;
1965   case bitc::ATTR_KIND_NO_MERGE:
1966     return Attribute::NoMerge;
1967   case bitc::ATTR_KIND_NON_LAZY_BIND:
1968     return Attribute::NonLazyBind;
1969   case bitc::ATTR_KIND_NON_NULL:
1970     return Attribute::NonNull;
1971   case bitc::ATTR_KIND_DEREFERENCEABLE:
1972     return Attribute::Dereferenceable;
1973   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1974     return Attribute::DereferenceableOrNull;
1975   case bitc::ATTR_KIND_ALLOC_ALIGN:
1976     return Attribute::AllocAlign;
1977   case bitc::ATTR_KIND_ALLOC_KIND:
1978     return Attribute::AllocKind;
1979   case bitc::ATTR_KIND_ALLOC_SIZE:
1980     return Attribute::AllocSize;
1981   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1982     return Attribute::AllocatedPointer;
1983   case bitc::ATTR_KIND_NO_RED_ZONE:
1984     return Attribute::NoRedZone;
1985   case bitc::ATTR_KIND_NO_RETURN:
1986     return Attribute::NoReturn;
1987   case bitc::ATTR_KIND_NOSYNC:
1988     return Attribute::NoSync;
1989   case bitc::ATTR_KIND_NOCF_CHECK:
1990     return Attribute::NoCfCheck;
1991   case bitc::ATTR_KIND_NO_PROFILE:
1992     return Attribute::NoProfile;
1993   case bitc::ATTR_KIND_SKIP_PROFILE:
1994     return Attribute::SkipProfile;
1995   case bitc::ATTR_KIND_NO_UNWIND:
1996     return Attribute::NoUnwind;
1997   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1998     return Attribute::NoSanitizeBounds;
1999   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2000     return Attribute::NoSanitizeCoverage;
2001   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2002     return Attribute::NullPointerIsValid;
2003   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2004     return Attribute::OptimizeForDebugging;
2005   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2006     return Attribute::OptForFuzzing;
2007   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2008     return Attribute::OptimizeForSize;
2009   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2010     return Attribute::OptimizeNone;
2011   case bitc::ATTR_KIND_READ_NONE:
2012     return Attribute::ReadNone;
2013   case bitc::ATTR_KIND_READ_ONLY:
2014     return Attribute::ReadOnly;
2015   case bitc::ATTR_KIND_RETURNED:
2016     return Attribute::Returned;
2017   case bitc::ATTR_KIND_RETURNS_TWICE:
2018     return Attribute::ReturnsTwice;
2019   case bitc::ATTR_KIND_S_EXT:
2020     return Attribute::SExt;
2021   case bitc::ATTR_KIND_SPECULATABLE:
2022     return Attribute::Speculatable;
2023   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2024     return Attribute::StackAlignment;
2025   case bitc::ATTR_KIND_STACK_PROTECT:
2026     return Attribute::StackProtect;
2027   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2028     return Attribute::StackProtectReq;
2029   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2030     return Attribute::StackProtectStrong;
2031   case bitc::ATTR_KIND_SAFESTACK:
2032     return Attribute::SafeStack;
2033   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2034     return Attribute::ShadowCallStack;
2035   case bitc::ATTR_KIND_STRICT_FP:
2036     return Attribute::StrictFP;
2037   case bitc::ATTR_KIND_STRUCT_RET:
2038     return Attribute::StructRet;
2039   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2040     return Attribute::SanitizeAddress;
2041   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2042     return Attribute::SanitizeHWAddress;
2043   case bitc::ATTR_KIND_SANITIZE_THREAD:
2044     return Attribute::SanitizeThread;
2045   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2046     return Attribute::SanitizeMemory;
2047   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2048     return Attribute::SpeculativeLoadHardening;
2049   case bitc::ATTR_KIND_SWIFT_ERROR:
2050     return Attribute::SwiftError;
2051   case bitc::ATTR_KIND_SWIFT_SELF:
2052     return Attribute::SwiftSelf;
2053   case bitc::ATTR_KIND_SWIFT_ASYNC:
2054     return Attribute::SwiftAsync;
2055   case bitc::ATTR_KIND_UW_TABLE:
2056     return Attribute::UWTable;
2057   case bitc::ATTR_KIND_VSCALE_RANGE:
2058     return Attribute::VScaleRange;
2059   case bitc::ATTR_KIND_WILLRETURN:
2060     return Attribute::WillReturn;
2061   case bitc::ATTR_KIND_WRITEONLY:
2062     return Attribute::WriteOnly;
2063   case bitc::ATTR_KIND_Z_EXT:
2064     return Attribute::ZExt;
2065   case bitc::ATTR_KIND_IMMARG:
2066     return Attribute::ImmArg;
2067   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2068     return Attribute::SanitizeMemTag;
2069   case bitc::ATTR_KIND_PREALLOCATED:
2070     return Attribute::Preallocated;
2071   case bitc::ATTR_KIND_NOUNDEF:
2072     return Attribute::NoUndef;
2073   case bitc::ATTR_KIND_BYREF:
2074     return Attribute::ByRef;
2075   case bitc::ATTR_KIND_MUSTPROGRESS:
2076     return Attribute::MustProgress;
2077   case bitc::ATTR_KIND_HOT:
2078     return Attribute::Hot;
2079   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2080     return Attribute::PresplitCoroutine;
2081   case bitc::ATTR_KIND_WRITABLE:
2082     return Attribute::Writable;
2083   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2084     return Attribute::CoroDestroyOnlyWhenComplete;
2085   }
2086 }
2087 
2088 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2089                                          MaybeAlign &Alignment) {
2090   // Note: Alignment in bitcode files is incremented by 1, so that zero
2091   // can be used for default alignment.
2092   if (Exponent > Value::MaxAlignmentExponent + 1)
2093     return error("Invalid alignment value");
2094   Alignment = decodeMaybeAlign(Exponent);
2095   return Error::success();
2096 }
2097 
2098 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2099   *Kind = getAttrFromCode(Code);
2100   if (*Kind == Attribute::None)
2101     return error("Unknown attribute kind (" + Twine(Code) + ")");
2102   return Error::success();
2103 }
2104 
2105 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2106   switch (EncodedKind) {
2107   case bitc::ATTR_KIND_READ_NONE:
2108     ME &= MemoryEffects::none();
2109     return true;
2110   case bitc::ATTR_KIND_READ_ONLY:
2111     ME &= MemoryEffects::readOnly();
2112     return true;
2113   case bitc::ATTR_KIND_WRITEONLY:
2114     ME &= MemoryEffects::writeOnly();
2115     return true;
2116   case bitc::ATTR_KIND_ARGMEMONLY:
2117     ME &= MemoryEffects::argMemOnly();
2118     return true;
2119   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2120     ME &= MemoryEffects::inaccessibleMemOnly();
2121     return true;
2122   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2123     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2124     return true;
2125   default:
2126     return false;
2127   }
2128 }
2129 
2130 Error BitcodeReader::parseAttributeGroupBlock() {
2131   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2132     return Err;
2133 
2134   if (!MAttributeGroups.empty())
2135     return error("Invalid multiple blocks");
2136 
2137   SmallVector<uint64_t, 64> Record;
2138 
2139   // Read all the records.
2140   while (true) {
2141     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2142     if (!MaybeEntry)
2143       return MaybeEntry.takeError();
2144     BitstreamEntry Entry = MaybeEntry.get();
2145 
2146     switch (Entry.Kind) {
2147     case BitstreamEntry::SubBlock: // Handled for us already.
2148     case BitstreamEntry::Error:
2149       return error("Malformed block");
2150     case BitstreamEntry::EndBlock:
2151       return Error::success();
2152     case BitstreamEntry::Record:
2153       // The interesting case.
2154       break;
2155     }
2156 
2157     // Read a record.
2158     Record.clear();
2159     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2160     if (!MaybeRecord)
2161       return MaybeRecord.takeError();
2162     switch (MaybeRecord.get()) {
2163     default:  // Default behavior: ignore.
2164       break;
2165     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2166       if (Record.size() < 3)
2167         return error("Invalid grp record");
2168 
2169       uint64_t GrpID = Record[0];
2170       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2171 
2172       AttrBuilder B(Context);
2173       MemoryEffects ME = MemoryEffects::unknown();
2174       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2175         if (Record[i] == 0) {        // Enum attribute
2176           Attribute::AttrKind Kind;
2177           uint64_t EncodedKind = Record[++i];
2178           if (Idx == AttributeList::FunctionIndex &&
2179               upgradeOldMemoryAttribute(ME, EncodedKind))
2180             continue;
2181 
2182           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2183             return Err;
2184 
2185           // Upgrade old-style byval attribute to one with a type, even if it's
2186           // nullptr. We will have to insert the real type when we associate
2187           // this AttributeList with a function.
2188           if (Kind == Attribute::ByVal)
2189             B.addByValAttr(nullptr);
2190           else if (Kind == Attribute::StructRet)
2191             B.addStructRetAttr(nullptr);
2192           else if (Kind == Attribute::InAlloca)
2193             B.addInAllocaAttr(nullptr);
2194           else if (Kind == Attribute::UWTable)
2195             B.addUWTableAttr(UWTableKind::Default);
2196           else if (Attribute::isEnumAttrKind(Kind))
2197             B.addAttribute(Kind);
2198           else
2199             return error("Not an enum attribute");
2200         } else if (Record[i] == 1) { // Integer attribute
2201           Attribute::AttrKind Kind;
2202           if (Error Err = parseAttrKind(Record[++i], &Kind))
2203             return Err;
2204           if (!Attribute::isIntAttrKind(Kind))
2205             return error("Not an int attribute");
2206           if (Kind == Attribute::Alignment)
2207             B.addAlignmentAttr(Record[++i]);
2208           else if (Kind == Attribute::StackAlignment)
2209             B.addStackAlignmentAttr(Record[++i]);
2210           else if (Kind == Attribute::Dereferenceable)
2211             B.addDereferenceableAttr(Record[++i]);
2212           else if (Kind == Attribute::DereferenceableOrNull)
2213             B.addDereferenceableOrNullAttr(Record[++i]);
2214           else if (Kind == Attribute::AllocSize)
2215             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2216           else if (Kind == Attribute::VScaleRange)
2217             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2218           else if (Kind == Attribute::UWTable)
2219             B.addUWTableAttr(UWTableKind(Record[++i]));
2220           else if (Kind == Attribute::AllocKind)
2221             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2222           else if (Kind == Attribute::Memory)
2223             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2224           else if (Kind == Attribute::NoFPClass)
2225             B.addNoFPClassAttr(
2226                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2227         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2228           bool HasValue = (Record[i++] == 4);
2229           SmallString<64> KindStr;
2230           SmallString<64> ValStr;
2231 
2232           while (Record[i] != 0 && i != e)
2233             KindStr += Record[i++];
2234           assert(Record[i] == 0 && "Kind string not null terminated");
2235 
2236           if (HasValue) {
2237             // Has a value associated with it.
2238             ++i; // Skip the '0' that terminates the "kind" string.
2239             while (Record[i] != 0 && i != e)
2240               ValStr += Record[i++];
2241             assert(Record[i] == 0 && "Value string not null terminated");
2242           }
2243 
2244           B.addAttribute(KindStr.str(), ValStr.str());
2245         } else if (Record[i] == 5 || Record[i] == 6) {
2246           bool HasType = Record[i] == 6;
2247           Attribute::AttrKind Kind;
2248           if (Error Err = parseAttrKind(Record[++i], &Kind))
2249             return Err;
2250           if (!Attribute::isTypeAttrKind(Kind))
2251             return error("Not a type attribute");
2252 
2253           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2254         } else {
2255           return error("Invalid attribute group entry");
2256         }
2257       }
2258 
2259       if (ME != MemoryEffects::unknown())
2260         B.addMemoryAttr(ME);
2261 
2262       UpgradeAttributes(B);
2263       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2264       break;
2265     }
2266     }
2267   }
2268 }
2269 
2270 Error BitcodeReader::parseTypeTable() {
2271   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2272     return Err;
2273 
2274   return parseTypeTableBody();
2275 }
2276 
2277 Error BitcodeReader::parseTypeTableBody() {
2278   if (!TypeList.empty())
2279     return error("Invalid multiple blocks");
2280 
2281   SmallVector<uint64_t, 64> Record;
2282   unsigned NumRecords = 0;
2283 
2284   SmallString<64> TypeName;
2285 
2286   // Read all the records for this type table.
2287   while (true) {
2288     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2289     if (!MaybeEntry)
2290       return MaybeEntry.takeError();
2291     BitstreamEntry Entry = MaybeEntry.get();
2292 
2293     switch (Entry.Kind) {
2294     case BitstreamEntry::SubBlock: // Handled for us already.
2295     case BitstreamEntry::Error:
2296       return error("Malformed block");
2297     case BitstreamEntry::EndBlock:
2298       if (NumRecords != TypeList.size())
2299         return error("Malformed block");
2300       return Error::success();
2301     case BitstreamEntry::Record:
2302       // The interesting case.
2303       break;
2304     }
2305 
2306     // Read a record.
2307     Record.clear();
2308     Type *ResultTy = nullptr;
2309     SmallVector<unsigned> ContainedIDs;
2310     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2311     if (!MaybeRecord)
2312       return MaybeRecord.takeError();
2313     switch (MaybeRecord.get()) {
2314     default:
2315       return error("Invalid value");
2316     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2317       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2318       // type list.  This allows us to reserve space.
2319       if (Record.empty())
2320         return error("Invalid numentry record");
2321       TypeList.resize(Record[0]);
2322       continue;
2323     case bitc::TYPE_CODE_VOID:      // VOID
2324       ResultTy = Type::getVoidTy(Context);
2325       break;
2326     case bitc::TYPE_CODE_HALF:     // HALF
2327       ResultTy = Type::getHalfTy(Context);
2328       break;
2329     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2330       ResultTy = Type::getBFloatTy(Context);
2331       break;
2332     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2333       ResultTy = Type::getFloatTy(Context);
2334       break;
2335     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2336       ResultTy = Type::getDoubleTy(Context);
2337       break;
2338     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2339       ResultTy = Type::getX86_FP80Ty(Context);
2340       break;
2341     case bitc::TYPE_CODE_FP128:     // FP128
2342       ResultTy = Type::getFP128Ty(Context);
2343       break;
2344     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2345       ResultTy = Type::getPPC_FP128Ty(Context);
2346       break;
2347     case bitc::TYPE_CODE_LABEL:     // LABEL
2348       ResultTy = Type::getLabelTy(Context);
2349       break;
2350     case bitc::TYPE_CODE_METADATA:  // METADATA
2351       ResultTy = Type::getMetadataTy(Context);
2352       break;
2353     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2354       ResultTy = Type::getX86_MMXTy(Context);
2355       break;
2356     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2357       ResultTy = Type::getX86_AMXTy(Context);
2358       break;
2359     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2360       ResultTy = Type::getTokenTy(Context);
2361       break;
2362     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2363       if (Record.empty())
2364         return error("Invalid integer record");
2365 
2366       uint64_t NumBits = Record[0];
2367       if (NumBits < IntegerType::MIN_INT_BITS ||
2368           NumBits > IntegerType::MAX_INT_BITS)
2369         return error("Bitwidth for integer type out of range");
2370       ResultTy = IntegerType::get(Context, NumBits);
2371       break;
2372     }
2373     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2374                                     //          [pointee type, address space]
2375       if (Record.empty())
2376         return error("Invalid pointer record");
2377       unsigned AddressSpace = 0;
2378       if (Record.size() == 2)
2379         AddressSpace = Record[1];
2380       ResultTy = getTypeByID(Record[0]);
2381       if (!ResultTy ||
2382           !PointerType::isValidElementType(ResultTy))
2383         return error("Invalid type");
2384       ContainedIDs.push_back(Record[0]);
2385       ResultTy = PointerType::get(ResultTy, AddressSpace);
2386       break;
2387     }
2388     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2389       if (Record.size() != 1)
2390         return error("Invalid opaque pointer record");
2391       unsigned AddressSpace = Record[0];
2392       ResultTy = PointerType::get(Context, AddressSpace);
2393       break;
2394     }
2395     case bitc::TYPE_CODE_FUNCTION_OLD: {
2396       // Deprecated, but still needed to read old bitcode files.
2397       // FUNCTION: [vararg, attrid, retty, paramty x N]
2398       if (Record.size() < 3)
2399         return error("Invalid function record");
2400       SmallVector<Type*, 8> ArgTys;
2401       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2402         if (Type *T = getTypeByID(Record[i]))
2403           ArgTys.push_back(T);
2404         else
2405           break;
2406       }
2407 
2408       ResultTy = getTypeByID(Record[2]);
2409       if (!ResultTy || ArgTys.size() < Record.size()-3)
2410         return error("Invalid type");
2411 
2412       ContainedIDs.append(Record.begin() + 2, Record.end());
2413       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2414       break;
2415     }
2416     case bitc::TYPE_CODE_FUNCTION: {
2417       // FUNCTION: [vararg, retty, paramty x N]
2418       if (Record.size() < 2)
2419         return error("Invalid function record");
2420       SmallVector<Type*, 8> ArgTys;
2421       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2422         if (Type *T = getTypeByID(Record[i])) {
2423           if (!FunctionType::isValidArgumentType(T))
2424             return error("Invalid function argument type");
2425           ArgTys.push_back(T);
2426         }
2427         else
2428           break;
2429       }
2430 
2431       ResultTy = getTypeByID(Record[1]);
2432       if (!ResultTy || ArgTys.size() < Record.size()-2)
2433         return error("Invalid type");
2434 
2435       ContainedIDs.append(Record.begin() + 1, Record.end());
2436       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2437       break;
2438     }
2439     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2440       if (Record.empty())
2441         return error("Invalid anon struct record");
2442       SmallVector<Type*, 8> EltTys;
2443       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2444         if (Type *T = getTypeByID(Record[i]))
2445           EltTys.push_back(T);
2446         else
2447           break;
2448       }
2449       if (EltTys.size() != Record.size()-1)
2450         return error("Invalid type");
2451       ContainedIDs.append(Record.begin() + 1, Record.end());
2452       ResultTy = StructType::get(Context, EltTys, Record[0]);
2453       break;
2454     }
2455     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2456       if (convertToString(Record, 0, TypeName))
2457         return error("Invalid struct name record");
2458       continue;
2459 
2460     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2461       if (Record.empty())
2462         return error("Invalid named struct record");
2463 
2464       if (NumRecords >= TypeList.size())
2465         return error("Invalid TYPE table");
2466 
2467       // Check to see if this was forward referenced, if so fill in the temp.
2468       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2469       if (Res) {
2470         Res->setName(TypeName);
2471         TypeList[NumRecords] = nullptr;
2472       } else  // Otherwise, create a new struct.
2473         Res = createIdentifiedStructType(Context, TypeName);
2474       TypeName.clear();
2475 
2476       SmallVector<Type*, 8> EltTys;
2477       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2478         if (Type *T = getTypeByID(Record[i]))
2479           EltTys.push_back(T);
2480         else
2481           break;
2482       }
2483       if (EltTys.size() != Record.size()-1)
2484         return error("Invalid named struct record");
2485       Res->setBody(EltTys, Record[0]);
2486       ContainedIDs.append(Record.begin() + 1, Record.end());
2487       ResultTy = Res;
2488       break;
2489     }
2490     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2491       if (Record.size() != 1)
2492         return error("Invalid opaque type record");
2493 
2494       if (NumRecords >= TypeList.size())
2495         return error("Invalid TYPE table");
2496 
2497       // Check to see if this was forward referenced, if so fill in the temp.
2498       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2499       if (Res) {
2500         Res->setName(TypeName);
2501         TypeList[NumRecords] = nullptr;
2502       } else  // Otherwise, create a new struct with no body.
2503         Res = createIdentifiedStructType(Context, TypeName);
2504       TypeName.clear();
2505       ResultTy = Res;
2506       break;
2507     }
2508     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2509       if (Record.size() < 1)
2510         return error("Invalid target extension type record");
2511 
2512       if (NumRecords >= TypeList.size())
2513         return error("Invalid TYPE table");
2514 
2515       if (Record[0] >= Record.size())
2516         return error("Too many type parameters");
2517 
2518       unsigned NumTys = Record[0];
2519       SmallVector<Type *, 4> TypeParams;
2520       SmallVector<unsigned, 8> IntParams;
2521       for (unsigned i = 0; i < NumTys; i++) {
2522         if (Type *T = getTypeByID(Record[i + 1]))
2523           TypeParams.push_back(T);
2524         else
2525           return error("Invalid type");
2526       }
2527 
2528       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2529         if (Record[i] > UINT_MAX)
2530           return error("Integer parameter too large");
2531         IntParams.push_back(Record[i]);
2532       }
2533       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2534       TypeName.clear();
2535       break;
2536     }
2537     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2538       if (Record.size() < 2)
2539         return error("Invalid array type record");
2540       ResultTy = getTypeByID(Record[1]);
2541       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2542         return error("Invalid type");
2543       ContainedIDs.push_back(Record[1]);
2544       ResultTy = ArrayType::get(ResultTy, Record[0]);
2545       break;
2546     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2547                                     //         [numelts, eltty, scalable]
2548       if (Record.size() < 2)
2549         return error("Invalid vector type record");
2550       if (Record[0] == 0)
2551         return error("Invalid vector length");
2552       ResultTy = getTypeByID(Record[1]);
2553       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2554         return error("Invalid type");
2555       bool Scalable = Record.size() > 2 ? Record[2] : false;
2556       ContainedIDs.push_back(Record[1]);
2557       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2558       break;
2559     }
2560 
2561     if (NumRecords >= TypeList.size())
2562       return error("Invalid TYPE table");
2563     if (TypeList[NumRecords])
2564       return error(
2565           "Invalid TYPE table: Only named structs can be forward referenced");
2566     assert(ResultTy && "Didn't read a type?");
2567     TypeList[NumRecords] = ResultTy;
2568     if (!ContainedIDs.empty())
2569       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2570     ++NumRecords;
2571   }
2572 }
2573 
2574 Error BitcodeReader::parseOperandBundleTags() {
2575   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2576     return Err;
2577 
2578   if (!BundleTags.empty())
2579     return error("Invalid multiple blocks");
2580 
2581   SmallVector<uint64_t, 64> Record;
2582 
2583   while (true) {
2584     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2585     if (!MaybeEntry)
2586       return MaybeEntry.takeError();
2587     BitstreamEntry Entry = MaybeEntry.get();
2588 
2589     switch (Entry.Kind) {
2590     case BitstreamEntry::SubBlock: // Handled for us already.
2591     case BitstreamEntry::Error:
2592       return error("Malformed block");
2593     case BitstreamEntry::EndBlock:
2594       return Error::success();
2595     case BitstreamEntry::Record:
2596       // The interesting case.
2597       break;
2598     }
2599 
2600     // Tags are implicitly mapped to integers by their order.
2601 
2602     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2603     if (!MaybeRecord)
2604       return MaybeRecord.takeError();
2605     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2606       return error("Invalid operand bundle record");
2607 
2608     // OPERAND_BUNDLE_TAG: [strchr x N]
2609     BundleTags.emplace_back();
2610     if (convertToString(Record, 0, BundleTags.back()))
2611       return error("Invalid operand bundle record");
2612     Record.clear();
2613   }
2614 }
2615 
2616 Error BitcodeReader::parseSyncScopeNames() {
2617   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2618     return Err;
2619 
2620   if (!SSIDs.empty())
2621     return error("Invalid multiple synchronization scope names blocks");
2622 
2623   SmallVector<uint64_t, 64> Record;
2624   while (true) {
2625     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2626     if (!MaybeEntry)
2627       return MaybeEntry.takeError();
2628     BitstreamEntry Entry = MaybeEntry.get();
2629 
2630     switch (Entry.Kind) {
2631     case BitstreamEntry::SubBlock: // Handled for us already.
2632     case BitstreamEntry::Error:
2633       return error("Malformed block");
2634     case BitstreamEntry::EndBlock:
2635       if (SSIDs.empty())
2636         return error("Invalid empty synchronization scope names block");
2637       return Error::success();
2638     case BitstreamEntry::Record:
2639       // The interesting case.
2640       break;
2641     }
2642 
2643     // Synchronization scope names are implicitly mapped to synchronization
2644     // scope IDs by their order.
2645 
2646     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2647     if (!MaybeRecord)
2648       return MaybeRecord.takeError();
2649     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2650       return error("Invalid sync scope record");
2651 
2652     SmallString<16> SSN;
2653     if (convertToString(Record, 0, SSN))
2654       return error("Invalid sync scope record");
2655 
2656     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2657     Record.clear();
2658   }
2659 }
2660 
2661 /// Associate a value with its name from the given index in the provided record.
2662 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2663                                              unsigned NameIndex, Triple &TT) {
2664   SmallString<128> ValueName;
2665   if (convertToString(Record, NameIndex, ValueName))
2666     return error("Invalid record");
2667   unsigned ValueID = Record[0];
2668   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2669     return error("Invalid record");
2670   Value *V = ValueList[ValueID];
2671 
2672   StringRef NameStr(ValueName.data(), ValueName.size());
2673   if (NameStr.contains(0))
2674     return error("Invalid value name");
2675   V->setName(NameStr);
2676   auto *GO = dyn_cast<GlobalObject>(V);
2677   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2678     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2679   return V;
2680 }
2681 
2682 /// Helper to note and return the current location, and jump to the given
2683 /// offset.
2684 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2685                                                  BitstreamCursor &Stream) {
2686   // Save the current parsing location so we can jump back at the end
2687   // of the VST read.
2688   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2689   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2690     return std::move(JumpFailed);
2691   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2692   if (!MaybeEntry)
2693     return MaybeEntry.takeError();
2694   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2695       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2696     return error("Expected value symbol table subblock");
2697   return CurrentBit;
2698 }
2699 
2700 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2701                                             Function *F,
2702                                             ArrayRef<uint64_t> Record) {
2703   // Note that we subtract 1 here because the offset is relative to one word
2704   // before the start of the identification or module block, which was
2705   // historically always the start of the regular bitcode header.
2706   uint64_t FuncWordOffset = Record[1] - 1;
2707   uint64_t FuncBitOffset = FuncWordOffset * 32;
2708   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2709   // Set the LastFunctionBlockBit to point to the last function block.
2710   // Later when parsing is resumed after function materialization,
2711   // we can simply skip that last function block.
2712   if (FuncBitOffset > LastFunctionBlockBit)
2713     LastFunctionBlockBit = FuncBitOffset;
2714 }
2715 
2716 /// Read a new-style GlobalValue symbol table.
2717 Error BitcodeReader::parseGlobalValueSymbolTable() {
2718   unsigned FuncBitcodeOffsetDelta =
2719       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2720 
2721   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2722     return Err;
2723 
2724   SmallVector<uint64_t, 64> Record;
2725   while (true) {
2726     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2727     if (!MaybeEntry)
2728       return MaybeEntry.takeError();
2729     BitstreamEntry Entry = MaybeEntry.get();
2730 
2731     switch (Entry.Kind) {
2732     case BitstreamEntry::SubBlock:
2733     case BitstreamEntry::Error:
2734       return error("Malformed block");
2735     case BitstreamEntry::EndBlock:
2736       return Error::success();
2737     case BitstreamEntry::Record:
2738       break;
2739     }
2740 
2741     Record.clear();
2742     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2743     if (!MaybeRecord)
2744       return MaybeRecord.takeError();
2745     switch (MaybeRecord.get()) {
2746     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2747       unsigned ValueID = Record[0];
2748       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2749         return error("Invalid value reference in symbol table");
2750       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2751                               cast<Function>(ValueList[ValueID]), Record);
2752       break;
2753     }
2754     }
2755   }
2756 }
2757 
2758 /// Parse the value symbol table at either the current parsing location or
2759 /// at the given bit offset if provided.
2760 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2761   uint64_t CurrentBit;
2762   // Pass in the Offset to distinguish between calling for the module-level
2763   // VST (where we want to jump to the VST offset) and the function-level
2764   // VST (where we don't).
2765   if (Offset > 0) {
2766     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2767     if (!MaybeCurrentBit)
2768       return MaybeCurrentBit.takeError();
2769     CurrentBit = MaybeCurrentBit.get();
2770     // If this module uses a string table, read this as a module-level VST.
2771     if (UseStrtab) {
2772       if (Error Err = parseGlobalValueSymbolTable())
2773         return Err;
2774       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2775         return JumpFailed;
2776       return Error::success();
2777     }
2778     // Otherwise, the VST will be in a similar format to a function-level VST,
2779     // and will contain symbol names.
2780   }
2781 
2782   // Compute the delta between the bitcode indices in the VST (the word offset
2783   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2784   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2785   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2786   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2787   // just before entering the VST subblock because: 1) the EnterSubBlock
2788   // changes the AbbrevID width; 2) the VST block is nested within the same
2789   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2790   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2791   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2792   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2793   unsigned FuncBitcodeOffsetDelta =
2794       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2795 
2796   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2797     return Err;
2798 
2799   SmallVector<uint64_t, 64> Record;
2800 
2801   Triple TT(TheModule->getTargetTriple());
2802 
2803   // Read all the records for this value table.
2804   SmallString<128> ValueName;
2805 
2806   while (true) {
2807     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2808     if (!MaybeEntry)
2809       return MaybeEntry.takeError();
2810     BitstreamEntry Entry = MaybeEntry.get();
2811 
2812     switch (Entry.Kind) {
2813     case BitstreamEntry::SubBlock: // Handled for us already.
2814     case BitstreamEntry::Error:
2815       return error("Malformed block");
2816     case BitstreamEntry::EndBlock:
2817       if (Offset > 0)
2818         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2819           return JumpFailed;
2820       return Error::success();
2821     case BitstreamEntry::Record:
2822       // The interesting case.
2823       break;
2824     }
2825 
2826     // Read a record.
2827     Record.clear();
2828     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2829     if (!MaybeRecord)
2830       return MaybeRecord.takeError();
2831     switch (MaybeRecord.get()) {
2832     default:  // Default behavior: unknown type.
2833       break;
2834     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2835       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2836       if (Error Err = ValOrErr.takeError())
2837         return Err;
2838       ValOrErr.get();
2839       break;
2840     }
2841     case bitc::VST_CODE_FNENTRY: {
2842       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2843       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2844       if (Error Err = ValOrErr.takeError())
2845         return Err;
2846       Value *V = ValOrErr.get();
2847 
2848       // Ignore function offsets emitted for aliases of functions in older
2849       // versions of LLVM.
2850       if (auto *F = dyn_cast<Function>(V))
2851         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2852       break;
2853     }
2854     case bitc::VST_CODE_BBENTRY: {
2855       if (convertToString(Record, 1, ValueName))
2856         return error("Invalid bbentry record");
2857       BasicBlock *BB = getBasicBlock(Record[0]);
2858       if (!BB)
2859         return error("Invalid bbentry record");
2860 
2861       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2862       ValueName.clear();
2863       break;
2864     }
2865     }
2866   }
2867 }
2868 
2869 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2870 /// encoding.
2871 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2872   if ((V & 1) == 0)
2873     return V >> 1;
2874   if (V != 1)
2875     return -(V >> 1);
2876   // There is no such thing as -0 with integers.  "-0" really means MININT.
2877   return 1ULL << 63;
2878 }
2879 
2880 /// Resolve all of the initializers for global values and aliases that we can.
2881 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2882   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2883   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2884   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2885 
2886   GlobalInitWorklist.swap(GlobalInits);
2887   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2888   FunctionOperandWorklist.swap(FunctionOperands);
2889 
2890   while (!GlobalInitWorklist.empty()) {
2891     unsigned ValID = GlobalInitWorklist.back().second;
2892     if (ValID >= ValueList.size()) {
2893       // Not ready to resolve this yet, it requires something later in the file.
2894       GlobalInits.push_back(GlobalInitWorklist.back());
2895     } else {
2896       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2897       if (!MaybeC)
2898         return MaybeC.takeError();
2899       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2900     }
2901     GlobalInitWorklist.pop_back();
2902   }
2903 
2904   while (!IndirectSymbolInitWorklist.empty()) {
2905     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2906     if (ValID >= ValueList.size()) {
2907       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2908     } else {
2909       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2910       if (!MaybeC)
2911         return MaybeC.takeError();
2912       Constant *C = MaybeC.get();
2913       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2914       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2915         if (C->getType() != GV->getType())
2916           return error("Alias and aliasee types don't match");
2917         GA->setAliasee(C);
2918       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2919         GI->setResolver(C);
2920       } else {
2921         return error("Expected an alias or an ifunc");
2922       }
2923     }
2924     IndirectSymbolInitWorklist.pop_back();
2925   }
2926 
2927   while (!FunctionOperandWorklist.empty()) {
2928     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2929     if (Info.PersonalityFn) {
2930       unsigned ValID = Info.PersonalityFn - 1;
2931       if (ValID < ValueList.size()) {
2932         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2933         if (!MaybeC)
2934           return MaybeC.takeError();
2935         Info.F->setPersonalityFn(MaybeC.get());
2936         Info.PersonalityFn = 0;
2937       }
2938     }
2939     if (Info.Prefix) {
2940       unsigned ValID = Info.Prefix - 1;
2941       if (ValID < ValueList.size()) {
2942         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2943         if (!MaybeC)
2944           return MaybeC.takeError();
2945         Info.F->setPrefixData(MaybeC.get());
2946         Info.Prefix = 0;
2947       }
2948     }
2949     if (Info.Prologue) {
2950       unsigned ValID = Info.Prologue - 1;
2951       if (ValID < ValueList.size()) {
2952         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2953         if (!MaybeC)
2954           return MaybeC.takeError();
2955         Info.F->setPrologueData(MaybeC.get());
2956         Info.Prologue = 0;
2957       }
2958     }
2959     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2960       FunctionOperands.push_back(Info);
2961     FunctionOperandWorklist.pop_back();
2962   }
2963 
2964   return Error::success();
2965 }
2966 
2967 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2968   SmallVector<uint64_t, 8> Words(Vals.size());
2969   transform(Vals, Words.begin(),
2970                  BitcodeReader::decodeSignRotatedValue);
2971 
2972   return APInt(TypeBits, Words);
2973 }
2974 
2975 Error BitcodeReader::parseConstants() {
2976   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2977     return Err;
2978 
2979   SmallVector<uint64_t, 64> Record;
2980 
2981   // Read all the records for this value table.
2982   Type *CurTy = Type::getInt32Ty(Context);
2983   unsigned Int32TyID = getVirtualTypeID(CurTy);
2984   unsigned CurTyID = Int32TyID;
2985   Type *CurElemTy = nullptr;
2986   unsigned NextCstNo = ValueList.size();
2987 
2988   while (true) {
2989     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2990     if (!MaybeEntry)
2991       return MaybeEntry.takeError();
2992     BitstreamEntry Entry = MaybeEntry.get();
2993 
2994     switch (Entry.Kind) {
2995     case BitstreamEntry::SubBlock: // Handled for us already.
2996     case BitstreamEntry::Error:
2997       return error("Malformed block");
2998     case BitstreamEntry::EndBlock:
2999       if (NextCstNo != ValueList.size())
3000         return error("Invalid constant reference");
3001       return Error::success();
3002     case BitstreamEntry::Record:
3003       // The interesting case.
3004       break;
3005     }
3006 
3007     // Read a record.
3008     Record.clear();
3009     Type *VoidType = Type::getVoidTy(Context);
3010     Value *V = nullptr;
3011     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3012     if (!MaybeBitCode)
3013       return MaybeBitCode.takeError();
3014     switch (unsigned BitCode = MaybeBitCode.get()) {
3015     default:  // Default behavior: unknown constant
3016     case bitc::CST_CODE_UNDEF:     // UNDEF
3017       V = UndefValue::get(CurTy);
3018       break;
3019     case bitc::CST_CODE_POISON:    // POISON
3020       V = PoisonValue::get(CurTy);
3021       break;
3022     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3023       if (Record.empty())
3024         return error("Invalid settype record");
3025       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3026         return error("Invalid settype record");
3027       if (TypeList[Record[0]] == VoidType)
3028         return error("Invalid constant type");
3029       CurTyID = Record[0];
3030       CurTy = TypeList[CurTyID];
3031       CurElemTy = getPtrElementTypeByID(CurTyID);
3032       continue;  // Skip the ValueList manipulation.
3033     case bitc::CST_CODE_NULL:      // NULL
3034       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3035         return error("Invalid type for a constant null value");
3036       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3037         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3038           return error("Invalid type for a constant null value");
3039       V = Constant::getNullValue(CurTy);
3040       break;
3041     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3042       if (!CurTy->isIntegerTy() || Record.empty())
3043         return error("Invalid integer const record");
3044       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3045       break;
3046     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3047       if (!CurTy->isIntegerTy() || Record.empty())
3048         return error("Invalid wide integer const record");
3049 
3050       APInt VInt =
3051           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3052       V = ConstantInt::get(Context, VInt);
3053 
3054       break;
3055     }
3056     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3057       if (Record.empty())
3058         return error("Invalid float const record");
3059       if (CurTy->isHalfTy())
3060         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3061                                              APInt(16, (uint16_t)Record[0])));
3062       else if (CurTy->isBFloatTy())
3063         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3064                                              APInt(16, (uint32_t)Record[0])));
3065       else if (CurTy->isFloatTy())
3066         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3067                                              APInt(32, (uint32_t)Record[0])));
3068       else if (CurTy->isDoubleTy())
3069         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3070                                              APInt(64, Record[0])));
3071       else if (CurTy->isX86_FP80Ty()) {
3072         // Bits are not stored the same way as a normal i80 APInt, compensate.
3073         uint64_t Rearrange[2];
3074         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3075         Rearrange[1] = Record[0] >> 48;
3076         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3077                                              APInt(80, Rearrange)));
3078       } else if (CurTy->isFP128Ty())
3079         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3080                                              APInt(128, Record)));
3081       else if (CurTy->isPPC_FP128Ty())
3082         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3083                                              APInt(128, Record)));
3084       else
3085         V = UndefValue::get(CurTy);
3086       break;
3087     }
3088 
3089     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3090       if (Record.empty())
3091         return error("Invalid aggregate record");
3092 
3093       unsigned Size = Record.size();
3094       SmallVector<unsigned, 16> Elts;
3095       for (unsigned i = 0; i != Size; ++i)
3096         Elts.push_back(Record[i]);
3097 
3098       if (isa<StructType>(CurTy)) {
3099         V = BitcodeConstant::create(
3100             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3101       } else if (isa<ArrayType>(CurTy)) {
3102         V = BitcodeConstant::create(Alloc, CurTy,
3103                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3104       } else if (isa<VectorType>(CurTy)) {
3105         V = BitcodeConstant::create(
3106             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3107       } else {
3108         V = UndefValue::get(CurTy);
3109       }
3110       break;
3111     }
3112     case bitc::CST_CODE_STRING:    // STRING: [values]
3113     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3114       if (Record.empty())
3115         return error("Invalid string record");
3116 
3117       SmallString<16> Elts(Record.begin(), Record.end());
3118       V = ConstantDataArray::getString(Context, Elts,
3119                                        BitCode == bitc::CST_CODE_CSTRING);
3120       break;
3121     }
3122     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3123       if (Record.empty())
3124         return error("Invalid data record");
3125 
3126       Type *EltTy;
3127       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3128         EltTy = Array->getElementType();
3129       else
3130         EltTy = cast<VectorType>(CurTy)->getElementType();
3131       if (EltTy->isIntegerTy(8)) {
3132         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3133         if (isa<VectorType>(CurTy))
3134           V = ConstantDataVector::get(Context, Elts);
3135         else
3136           V = ConstantDataArray::get(Context, Elts);
3137       } else if (EltTy->isIntegerTy(16)) {
3138         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3139         if (isa<VectorType>(CurTy))
3140           V = ConstantDataVector::get(Context, Elts);
3141         else
3142           V = ConstantDataArray::get(Context, Elts);
3143       } else if (EltTy->isIntegerTy(32)) {
3144         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3145         if (isa<VectorType>(CurTy))
3146           V = ConstantDataVector::get(Context, Elts);
3147         else
3148           V = ConstantDataArray::get(Context, Elts);
3149       } else if (EltTy->isIntegerTy(64)) {
3150         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3151         if (isa<VectorType>(CurTy))
3152           V = ConstantDataVector::get(Context, Elts);
3153         else
3154           V = ConstantDataArray::get(Context, Elts);
3155       } else if (EltTy->isHalfTy()) {
3156         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3157         if (isa<VectorType>(CurTy))
3158           V = ConstantDataVector::getFP(EltTy, Elts);
3159         else
3160           V = ConstantDataArray::getFP(EltTy, Elts);
3161       } else if (EltTy->isBFloatTy()) {
3162         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3163         if (isa<VectorType>(CurTy))
3164           V = ConstantDataVector::getFP(EltTy, Elts);
3165         else
3166           V = ConstantDataArray::getFP(EltTy, Elts);
3167       } else if (EltTy->isFloatTy()) {
3168         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3169         if (isa<VectorType>(CurTy))
3170           V = ConstantDataVector::getFP(EltTy, Elts);
3171         else
3172           V = ConstantDataArray::getFP(EltTy, Elts);
3173       } else if (EltTy->isDoubleTy()) {
3174         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3175         if (isa<VectorType>(CurTy))
3176           V = ConstantDataVector::getFP(EltTy, Elts);
3177         else
3178           V = ConstantDataArray::getFP(EltTy, Elts);
3179       } else {
3180         return error("Invalid type for value");
3181       }
3182       break;
3183     }
3184     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3185       if (Record.size() < 2)
3186         return error("Invalid unary op constexpr record");
3187       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3188       if (Opc < 0) {
3189         V = UndefValue::get(CurTy);  // Unknown unop.
3190       } else {
3191         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3192       }
3193       break;
3194     }
3195     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3196       if (Record.size() < 3)
3197         return error("Invalid binary op constexpr record");
3198       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3199       if (Opc < 0) {
3200         V = UndefValue::get(CurTy);  // Unknown binop.
3201       } else {
3202         uint8_t Flags = 0;
3203         if (Record.size() >= 4) {
3204           if (Opc == Instruction::Add ||
3205               Opc == Instruction::Sub ||
3206               Opc == Instruction::Mul ||
3207               Opc == Instruction::Shl) {
3208             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3209               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3210             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3211               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3212           } else if (Opc == Instruction::SDiv ||
3213                      Opc == Instruction::UDiv ||
3214                      Opc == Instruction::LShr ||
3215                      Opc == Instruction::AShr) {
3216             if (Record[3] & (1 << bitc::PEO_EXACT))
3217               Flags |= PossiblyExactOperator::IsExact;
3218           }
3219         }
3220         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3221                                     {(unsigned)Record[1], (unsigned)Record[2]});
3222       }
3223       break;
3224     }
3225     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3226       if (Record.size() < 3)
3227         return error("Invalid cast constexpr record");
3228       int Opc = getDecodedCastOpcode(Record[0]);
3229       if (Opc < 0) {
3230         V = UndefValue::get(CurTy);  // Unknown cast.
3231       } else {
3232         unsigned OpTyID = Record[1];
3233         Type *OpTy = getTypeByID(OpTyID);
3234         if (!OpTy)
3235           return error("Invalid cast constexpr record");
3236         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3237       }
3238       break;
3239     }
3240     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3241     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3242     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3243                                                      // operands]
3244       if (Record.size() < 2)
3245         return error("Constant GEP record must have at least two elements");
3246       unsigned OpNum = 0;
3247       Type *PointeeType = nullptr;
3248       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3249           Record.size() % 2)
3250         PointeeType = getTypeByID(Record[OpNum++]);
3251 
3252       bool InBounds = false;
3253       std::optional<unsigned> InRangeIndex;
3254       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3255         uint64_t Op = Record[OpNum++];
3256         InBounds = Op & 1;
3257         InRangeIndex = Op >> 1;
3258       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3259         InBounds = true;
3260 
3261       SmallVector<unsigned, 16> Elts;
3262       unsigned BaseTypeID = Record[OpNum];
3263       while (OpNum != Record.size()) {
3264         unsigned ElTyID = Record[OpNum++];
3265         Type *ElTy = getTypeByID(ElTyID);
3266         if (!ElTy)
3267           return error("Invalid getelementptr constexpr record");
3268         Elts.push_back(Record[OpNum++]);
3269       }
3270 
3271       if (Elts.size() < 1)
3272         return error("Invalid gep with no operands");
3273 
3274       Type *BaseType = getTypeByID(BaseTypeID);
3275       if (isa<VectorType>(BaseType)) {
3276         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3277         BaseType = getTypeByID(BaseTypeID);
3278       }
3279 
3280       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3281       if (!OrigPtrTy)
3282         return error("GEP base operand must be pointer or vector of pointer");
3283 
3284       if (!PointeeType) {
3285         PointeeType = getPtrElementTypeByID(BaseTypeID);
3286         if (!PointeeType)
3287           return error("Missing element type for old-style constant GEP");
3288       }
3289 
3290       V = BitcodeConstant::create(Alloc, CurTy,
3291                                   {Instruction::GetElementPtr, InBounds,
3292                                    InRangeIndex.value_or(-1), PointeeType},
3293                                   Elts);
3294       break;
3295     }
3296     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3297       if (Record.size() < 3)
3298         return error("Invalid select constexpr record");
3299 
3300       V = BitcodeConstant::create(
3301           Alloc, CurTy, Instruction::Select,
3302           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3303       break;
3304     }
3305     case bitc::CST_CODE_CE_EXTRACTELT
3306         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3307       if (Record.size() < 3)
3308         return error("Invalid extractelement constexpr record");
3309       unsigned OpTyID = Record[0];
3310       VectorType *OpTy =
3311         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3312       if (!OpTy)
3313         return error("Invalid extractelement constexpr record");
3314       unsigned IdxRecord;
3315       if (Record.size() == 4) {
3316         unsigned IdxTyID = Record[2];
3317         Type *IdxTy = getTypeByID(IdxTyID);
3318         if (!IdxTy)
3319           return error("Invalid extractelement constexpr record");
3320         IdxRecord = Record[3];
3321       } else {
3322         // Deprecated, but still needed to read old bitcode files.
3323         IdxRecord = Record[2];
3324       }
3325       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3326                                   {(unsigned)Record[1], IdxRecord});
3327       break;
3328     }
3329     case bitc::CST_CODE_CE_INSERTELT
3330         : { // CE_INSERTELT: [opval, opval, opty, opval]
3331       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3332       if (Record.size() < 3 || !OpTy)
3333         return error("Invalid insertelement constexpr record");
3334       unsigned IdxRecord;
3335       if (Record.size() == 4) {
3336         unsigned IdxTyID = Record[2];
3337         Type *IdxTy = getTypeByID(IdxTyID);
3338         if (!IdxTy)
3339           return error("Invalid insertelement constexpr record");
3340         IdxRecord = Record[3];
3341       } else {
3342         // Deprecated, but still needed to read old bitcode files.
3343         IdxRecord = Record[2];
3344       }
3345       V = BitcodeConstant::create(
3346           Alloc, CurTy, Instruction::InsertElement,
3347           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3348       break;
3349     }
3350     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3351       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3352       if (Record.size() < 3 || !OpTy)
3353         return error("Invalid shufflevector constexpr record");
3354       V = BitcodeConstant::create(
3355           Alloc, CurTy, Instruction::ShuffleVector,
3356           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3357       break;
3358     }
3359     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3360       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3361       VectorType *OpTy =
3362         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3363       if (Record.size() < 4 || !RTy || !OpTy)
3364         return error("Invalid shufflevector constexpr record");
3365       V = BitcodeConstant::create(
3366           Alloc, CurTy, Instruction::ShuffleVector,
3367           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3368       break;
3369     }
3370     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3371       if (Record.size() < 4)
3372         return error("Invalid cmp constexpt record");
3373       unsigned OpTyID = Record[0];
3374       Type *OpTy = getTypeByID(OpTyID);
3375       if (!OpTy)
3376         return error("Invalid cmp constexpr record");
3377       V = BitcodeConstant::create(
3378           Alloc, CurTy,
3379           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3380                                               : Instruction::ICmp),
3381            (uint8_t)Record[3]},
3382           {(unsigned)Record[1], (unsigned)Record[2]});
3383       break;
3384     }
3385     // This maintains backward compatibility, pre-asm dialect keywords.
3386     // Deprecated, but still needed to read old bitcode files.
3387     case bitc::CST_CODE_INLINEASM_OLD: {
3388       if (Record.size() < 2)
3389         return error("Invalid inlineasm record");
3390       std::string AsmStr, ConstrStr;
3391       bool HasSideEffects = Record[0] & 1;
3392       bool IsAlignStack = Record[0] >> 1;
3393       unsigned AsmStrSize = Record[1];
3394       if (2+AsmStrSize >= Record.size())
3395         return error("Invalid inlineasm record");
3396       unsigned ConstStrSize = Record[2+AsmStrSize];
3397       if (3+AsmStrSize+ConstStrSize > Record.size())
3398         return error("Invalid inlineasm record");
3399 
3400       for (unsigned i = 0; i != AsmStrSize; ++i)
3401         AsmStr += (char)Record[2+i];
3402       for (unsigned i = 0; i != ConstStrSize; ++i)
3403         ConstrStr += (char)Record[3+AsmStrSize+i];
3404       UpgradeInlineAsmString(&AsmStr);
3405       if (!CurElemTy)
3406         return error("Missing element type for old-style inlineasm");
3407       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3408                          HasSideEffects, IsAlignStack);
3409       break;
3410     }
3411     // This version adds support for the asm dialect keywords (e.g.,
3412     // inteldialect).
3413     case bitc::CST_CODE_INLINEASM_OLD2: {
3414       if (Record.size() < 2)
3415         return error("Invalid inlineasm record");
3416       std::string AsmStr, ConstrStr;
3417       bool HasSideEffects = Record[0] & 1;
3418       bool IsAlignStack = (Record[0] >> 1) & 1;
3419       unsigned AsmDialect = Record[0] >> 2;
3420       unsigned AsmStrSize = Record[1];
3421       if (2+AsmStrSize >= Record.size())
3422         return error("Invalid inlineasm record");
3423       unsigned ConstStrSize = Record[2+AsmStrSize];
3424       if (3+AsmStrSize+ConstStrSize > Record.size())
3425         return error("Invalid inlineasm record");
3426 
3427       for (unsigned i = 0; i != AsmStrSize; ++i)
3428         AsmStr += (char)Record[2+i];
3429       for (unsigned i = 0; i != ConstStrSize; ++i)
3430         ConstrStr += (char)Record[3+AsmStrSize+i];
3431       UpgradeInlineAsmString(&AsmStr);
3432       if (!CurElemTy)
3433         return error("Missing element type for old-style inlineasm");
3434       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3435                          HasSideEffects, IsAlignStack,
3436                          InlineAsm::AsmDialect(AsmDialect));
3437       break;
3438     }
3439     // This version adds support for the unwind keyword.
3440     case bitc::CST_CODE_INLINEASM_OLD3: {
3441       if (Record.size() < 2)
3442         return error("Invalid inlineasm record");
3443       unsigned OpNum = 0;
3444       std::string AsmStr, ConstrStr;
3445       bool HasSideEffects = Record[OpNum] & 1;
3446       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3447       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3448       bool CanThrow = (Record[OpNum] >> 3) & 1;
3449       ++OpNum;
3450       unsigned AsmStrSize = Record[OpNum];
3451       ++OpNum;
3452       if (OpNum + AsmStrSize >= Record.size())
3453         return error("Invalid inlineasm record");
3454       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3455       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3456         return error("Invalid inlineasm record");
3457 
3458       for (unsigned i = 0; i != AsmStrSize; ++i)
3459         AsmStr += (char)Record[OpNum + i];
3460       ++OpNum;
3461       for (unsigned i = 0; i != ConstStrSize; ++i)
3462         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3463       UpgradeInlineAsmString(&AsmStr);
3464       if (!CurElemTy)
3465         return error("Missing element type for old-style inlineasm");
3466       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3467                          HasSideEffects, IsAlignStack,
3468                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3469       break;
3470     }
3471     // This version adds explicit function type.
3472     case bitc::CST_CODE_INLINEASM: {
3473       if (Record.size() < 3)
3474         return error("Invalid inlineasm record");
3475       unsigned OpNum = 0;
3476       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3477       ++OpNum;
3478       if (!FnTy)
3479         return error("Invalid inlineasm record");
3480       std::string AsmStr, ConstrStr;
3481       bool HasSideEffects = Record[OpNum] & 1;
3482       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3483       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3484       bool CanThrow = (Record[OpNum] >> 3) & 1;
3485       ++OpNum;
3486       unsigned AsmStrSize = Record[OpNum];
3487       ++OpNum;
3488       if (OpNum + AsmStrSize >= Record.size())
3489         return error("Invalid inlineasm record");
3490       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3491       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3492         return error("Invalid inlineasm record");
3493 
3494       for (unsigned i = 0; i != AsmStrSize; ++i)
3495         AsmStr += (char)Record[OpNum + i];
3496       ++OpNum;
3497       for (unsigned i = 0; i != ConstStrSize; ++i)
3498         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3499       UpgradeInlineAsmString(&AsmStr);
3500       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3501                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3502       break;
3503     }
3504     case bitc::CST_CODE_BLOCKADDRESS:{
3505       if (Record.size() < 3)
3506         return error("Invalid blockaddress record");
3507       unsigned FnTyID = Record[0];
3508       Type *FnTy = getTypeByID(FnTyID);
3509       if (!FnTy)
3510         return error("Invalid blockaddress record");
3511       V = BitcodeConstant::create(
3512           Alloc, CurTy,
3513           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3514           Record[1]);
3515       break;
3516     }
3517     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3518       if (Record.size() < 2)
3519         return error("Invalid dso_local record");
3520       unsigned GVTyID = Record[0];
3521       Type *GVTy = getTypeByID(GVTyID);
3522       if (!GVTy)
3523         return error("Invalid dso_local record");
3524       V = BitcodeConstant::create(
3525           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3526       break;
3527     }
3528     case bitc::CST_CODE_NO_CFI_VALUE: {
3529       if (Record.size() < 2)
3530         return error("Invalid no_cfi record");
3531       unsigned GVTyID = Record[0];
3532       Type *GVTy = getTypeByID(GVTyID);
3533       if (!GVTy)
3534         return error("Invalid no_cfi record");
3535       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3536                                   Record[1]);
3537       break;
3538     }
3539     }
3540 
3541     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3542     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3543       return Err;
3544     ++NextCstNo;
3545   }
3546 }
3547 
3548 Error BitcodeReader::parseUseLists() {
3549   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3550     return Err;
3551 
3552   // Read all the records.
3553   SmallVector<uint64_t, 64> Record;
3554 
3555   while (true) {
3556     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3557     if (!MaybeEntry)
3558       return MaybeEntry.takeError();
3559     BitstreamEntry Entry = MaybeEntry.get();
3560 
3561     switch (Entry.Kind) {
3562     case BitstreamEntry::SubBlock: // Handled for us already.
3563     case BitstreamEntry::Error:
3564       return error("Malformed block");
3565     case BitstreamEntry::EndBlock:
3566       return Error::success();
3567     case BitstreamEntry::Record:
3568       // The interesting case.
3569       break;
3570     }
3571 
3572     // Read a use list record.
3573     Record.clear();
3574     bool IsBB = false;
3575     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3576     if (!MaybeRecord)
3577       return MaybeRecord.takeError();
3578     switch (MaybeRecord.get()) {
3579     default:  // Default behavior: unknown type.
3580       break;
3581     case bitc::USELIST_CODE_BB:
3582       IsBB = true;
3583       [[fallthrough]];
3584     case bitc::USELIST_CODE_DEFAULT: {
3585       unsigned RecordLength = Record.size();
3586       if (RecordLength < 3)
3587         // Records should have at least an ID and two indexes.
3588         return error("Invalid record");
3589       unsigned ID = Record.pop_back_val();
3590 
3591       Value *V;
3592       if (IsBB) {
3593         assert(ID < FunctionBBs.size() && "Basic block not found");
3594         V = FunctionBBs[ID];
3595       } else
3596         V = ValueList[ID];
3597       unsigned NumUses = 0;
3598       SmallDenseMap<const Use *, unsigned, 16> Order;
3599       for (const Use &U : V->materialized_uses()) {
3600         if (++NumUses > Record.size())
3601           break;
3602         Order[&U] = Record[NumUses - 1];
3603       }
3604       if (Order.size() != Record.size() || NumUses > Record.size())
3605         // Mismatches can happen if the functions are being materialized lazily
3606         // (out-of-order), or a value has been upgraded.
3607         break;
3608 
3609       V->sortUseList([&](const Use &L, const Use &R) {
3610         return Order.lookup(&L) < Order.lookup(&R);
3611       });
3612       break;
3613     }
3614     }
3615   }
3616 }
3617 
3618 /// When we see the block for metadata, remember where it is and then skip it.
3619 /// This lets us lazily deserialize the metadata.
3620 Error BitcodeReader::rememberAndSkipMetadata() {
3621   // Save the current stream state.
3622   uint64_t CurBit = Stream.GetCurrentBitNo();
3623   DeferredMetadataInfo.push_back(CurBit);
3624 
3625   // Skip over the block for now.
3626   if (Error Err = Stream.SkipBlock())
3627     return Err;
3628   return Error::success();
3629 }
3630 
3631 Error BitcodeReader::materializeMetadata() {
3632   for (uint64_t BitPos : DeferredMetadataInfo) {
3633     // Move the bit stream to the saved position.
3634     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3635       return JumpFailed;
3636     if (Error Err = MDLoader->parseModuleMetadata())
3637       return Err;
3638   }
3639 
3640   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3641   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3642   // multiple times.
3643   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3644     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3645       NamedMDNode *LinkerOpts =
3646           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3647       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3648         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3649     }
3650   }
3651 
3652   DeferredMetadataInfo.clear();
3653   return Error::success();
3654 }
3655 
3656 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3657 
3658 /// When we see the block for a function body, remember where it is and then
3659 /// skip it.  This lets us lazily deserialize the functions.
3660 Error BitcodeReader::rememberAndSkipFunctionBody() {
3661   // Get the function we are talking about.
3662   if (FunctionsWithBodies.empty())
3663     return error("Insufficient function protos");
3664 
3665   Function *Fn = FunctionsWithBodies.back();
3666   FunctionsWithBodies.pop_back();
3667 
3668   // Save the current stream state.
3669   uint64_t CurBit = Stream.GetCurrentBitNo();
3670   assert(
3671       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3672       "Mismatch between VST and scanned function offsets");
3673   DeferredFunctionInfo[Fn] = CurBit;
3674 
3675   // Skip over the function block for now.
3676   if (Error Err = Stream.SkipBlock())
3677     return Err;
3678   return Error::success();
3679 }
3680 
3681 Error BitcodeReader::globalCleanup() {
3682   // Patch the initializers for globals and aliases up.
3683   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3684     return Err;
3685   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3686     return error("Malformed global initializer set");
3687 
3688   // Look for intrinsic functions which need to be upgraded at some point
3689   // and functions that need to have their function attributes upgraded.
3690   for (Function &F : *TheModule) {
3691     MDLoader->upgradeDebugIntrinsics(F);
3692     Function *NewFn;
3693     if (UpgradeIntrinsicFunction(&F, NewFn))
3694       UpgradedIntrinsics[&F] = NewFn;
3695     // Look for functions that rely on old function attribute behavior.
3696     UpgradeFunctionAttributes(F);
3697   }
3698 
3699   // Look for global variables which need to be renamed.
3700   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3701   for (GlobalVariable &GV : TheModule->globals())
3702     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3703       UpgradedVariables.emplace_back(&GV, Upgraded);
3704   for (auto &Pair : UpgradedVariables) {
3705     Pair.first->eraseFromParent();
3706     TheModule->insertGlobalVariable(Pair.second);
3707   }
3708 
3709   // Force deallocation of memory for these vectors to favor the client that
3710   // want lazy deserialization.
3711   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3712   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3713   return Error::success();
3714 }
3715 
3716 /// Support for lazy parsing of function bodies. This is required if we
3717 /// either have an old bitcode file without a VST forward declaration record,
3718 /// or if we have an anonymous function being materialized, since anonymous
3719 /// functions do not have a name and are therefore not in the VST.
3720 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3721   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3722     return JumpFailed;
3723 
3724   if (Stream.AtEndOfStream())
3725     return error("Could not find function in stream");
3726 
3727   if (!SeenFirstFunctionBody)
3728     return error("Trying to materialize functions before seeing function blocks");
3729 
3730   // An old bitcode file with the symbol table at the end would have
3731   // finished the parse greedily.
3732   assert(SeenValueSymbolTable);
3733 
3734   SmallVector<uint64_t, 64> Record;
3735 
3736   while (true) {
3737     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3738     if (!MaybeEntry)
3739       return MaybeEntry.takeError();
3740     llvm::BitstreamEntry Entry = MaybeEntry.get();
3741 
3742     switch (Entry.Kind) {
3743     default:
3744       return error("Expect SubBlock");
3745     case BitstreamEntry::SubBlock:
3746       switch (Entry.ID) {
3747       default:
3748         return error("Expect function block");
3749       case bitc::FUNCTION_BLOCK_ID:
3750         if (Error Err = rememberAndSkipFunctionBody())
3751           return Err;
3752         NextUnreadBit = Stream.GetCurrentBitNo();
3753         return Error::success();
3754       }
3755     }
3756   }
3757 }
3758 
3759 Error BitcodeReaderBase::readBlockInfo() {
3760   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3761       Stream.ReadBlockInfoBlock();
3762   if (!MaybeNewBlockInfo)
3763     return MaybeNewBlockInfo.takeError();
3764   std::optional<BitstreamBlockInfo> NewBlockInfo =
3765       std::move(MaybeNewBlockInfo.get());
3766   if (!NewBlockInfo)
3767     return error("Malformed block");
3768   BlockInfo = std::move(*NewBlockInfo);
3769   return Error::success();
3770 }
3771 
3772 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3773   // v1: [selection_kind, name]
3774   // v2: [strtab_offset, strtab_size, selection_kind]
3775   StringRef Name;
3776   std::tie(Name, Record) = readNameFromStrtab(Record);
3777 
3778   if (Record.empty())
3779     return error("Invalid record");
3780   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3781   std::string OldFormatName;
3782   if (!UseStrtab) {
3783     if (Record.size() < 2)
3784       return error("Invalid record");
3785     unsigned ComdatNameSize = Record[1];
3786     if (ComdatNameSize > Record.size() - 2)
3787       return error("Comdat name size too large");
3788     OldFormatName.reserve(ComdatNameSize);
3789     for (unsigned i = 0; i != ComdatNameSize; ++i)
3790       OldFormatName += (char)Record[2 + i];
3791     Name = OldFormatName;
3792   }
3793   Comdat *C = TheModule->getOrInsertComdat(Name);
3794   C->setSelectionKind(SK);
3795   ComdatList.push_back(C);
3796   return Error::success();
3797 }
3798 
3799 static void inferDSOLocal(GlobalValue *GV) {
3800   // infer dso_local from linkage and visibility if it is not encoded.
3801   if (GV->hasLocalLinkage() ||
3802       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3803     GV->setDSOLocal(true);
3804 }
3805 
3806 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3807   GlobalValue::SanitizerMetadata Meta;
3808   if (V & (1 << 0))
3809     Meta.NoAddress = true;
3810   if (V & (1 << 1))
3811     Meta.NoHWAddress = true;
3812   if (V & (1 << 2))
3813     Meta.Memtag = true;
3814   if (V & (1 << 3))
3815     Meta.IsDynInit = true;
3816   return Meta;
3817 }
3818 
3819 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3820   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3821   // visibility, threadlocal, unnamed_addr, externally_initialized,
3822   // dllstorageclass, comdat, attributes, preemption specifier,
3823   // partition strtab offset, partition strtab size] (name in VST)
3824   // v2: [strtab_offset, strtab_size, v1]
3825   // v3: [v2, code_model]
3826   StringRef Name;
3827   std::tie(Name, Record) = readNameFromStrtab(Record);
3828 
3829   if (Record.size() < 6)
3830     return error("Invalid record");
3831   unsigned TyID = Record[0];
3832   Type *Ty = getTypeByID(TyID);
3833   if (!Ty)
3834     return error("Invalid record");
3835   bool isConstant = Record[1] & 1;
3836   bool explicitType = Record[1] & 2;
3837   unsigned AddressSpace;
3838   if (explicitType) {
3839     AddressSpace = Record[1] >> 2;
3840   } else {
3841     if (!Ty->isPointerTy())
3842       return error("Invalid type for value");
3843     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3844     TyID = getContainedTypeID(TyID);
3845     Ty = getTypeByID(TyID);
3846     if (!Ty)
3847       return error("Missing element type for old-style global");
3848   }
3849 
3850   uint64_t RawLinkage = Record[3];
3851   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3852   MaybeAlign Alignment;
3853   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3854     return Err;
3855   std::string Section;
3856   if (Record[5]) {
3857     if (Record[5] - 1 >= SectionTable.size())
3858       return error("Invalid ID");
3859     Section = SectionTable[Record[5] - 1];
3860   }
3861   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3862   // Local linkage must have default visibility.
3863   // auto-upgrade `hidden` and `protected` for old bitcode.
3864   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3865     Visibility = getDecodedVisibility(Record[6]);
3866 
3867   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3868   if (Record.size() > 7)
3869     TLM = getDecodedThreadLocalMode(Record[7]);
3870 
3871   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3872   if (Record.size() > 8)
3873     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3874 
3875   bool ExternallyInitialized = false;
3876   if (Record.size() > 9)
3877     ExternallyInitialized = Record[9];
3878 
3879   GlobalVariable *NewGV =
3880       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3881                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3882   if (Alignment)
3883     NewGV->setAlignment(*Alignment);
3884   if (!Section.empty())
3885     NewGV->setSection(Section);
3886   NewGV->setVisibility(Visibility);
3887   NewGV->setUnnamedAddr(UnnamedAddr);
3888 
3889   if (Record.size() > 10) {
3890     // A GlobalValue with local linkage cannot have a DLL storage class.
3891     if (!NewGV->hasLocalLinkage()) {
3892       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3893     }
3894   } else {
3895     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3896   }
3897 
3898   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3899 
3900   // Remember which value to use for the global initializer.
3901   if (unsigned InitID = Record[2])
3902     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3903 
3904   if (Record.size() > 11) {
3905     if (unsigned ComdatID = Record[11]) {
3906       if (ComdatID > ComdatList.size())
3907         return error("Invalid global variable comdat ID");
3908       NewGV->setComdat(ComdatList[ComdatID - 1]);
3909     }
3910   } else if (hasImplicitComdat(RawLinkage)) {
3911     ImplicitComdatObjects.insert(NewGV);
3912   }
3913 
3914   if (Record.size() > 12) {
3915     auto AS = getAttributes(Record[12]).getFnAttrs();
3916     NewGV->setAttributes(AS);
3917   }
3918 
3919   if (Record.size() > 13) {
3920     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3921   }
3922   inferDSOLocal(NewGV);
3923 
3924   // Check whether we have enough values to read a partition name.
3925   if (Record.size() > 15)
3926     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3927 
3928   if (Record.size() > 16 && Record[16]) {
3929     llvm::GlobalValue::SanitizerMetadata Meta =
3930         deserializeSanitizerMetadata(Record[16]);
3931     NewGV->setSanitizerMetadata(Meta);
3932   }
3933 
3934   if (Record.size() > 17 && Record[17]) {
3935     if (auto CM = getDecodedCodeModel(Record[17]))
3936       NewGV->setCodeModel(*CM);
3937     else
3938       return error("Invalid global variable code model");
3939   }
3940 
3941   return Error::success();
3942 }
3943 
3944 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3945   if (ValueTypeCallback) {
3946     (*ValueTypeCallback)(
3947         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3948         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3949   }
3950 }
3951 
3952 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3953   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3954   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3955   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3956   // v2: [strtab_offset, strtab_size, v1]
3957   StringRef Name;
3958   std::tie(Name, Record) = readNameFromStrtab(Record);
3959 
3960   if (Record.size() < 8)
3961     return error("Invalid record");
3962   unsigned FTyID = Record[0];
3963   Type *FTy = getTypeByID(FTyID);
3964   if (!FTy)
3965     return error("Invalid record");
3966   if (isa<PointerType>(FTy)) {
3967     FTyID = getContainedTypeID(FTyID, 0);
3968     FTy = getTypeByID(FTyID);
3969     if (!FTy)
3970       return error("Missing element type for old-style function");
3971   }
3972 
3973   if (!isa<FunctionType>(FTy))
3974     return error("Invalid type for value");
3975   auto CC = static_cast<CallingConv::ID>(Record[1]);
3976   if (CC & ~CallingConv::MaxID)
3977     return error("Invalid calling convention ID");
3978 
3979   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3980   if (Record.size() > 16)
3981     AddrSpace = Record[16];
3982 
3983   Function *Func =
3984       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3985                        AddrSpace, Name, TheModule);
3986 
3987   assert(Func->getFunctionType() == FTy &&
3988          "Incorrect fully specified type provided for function");
3989   FunctionTypeIDs[Func] = FTyID;
3990 
3991   Func->setCallingConv(CC);
3992   bool isProto = Record[2];
3993   uint64_t RawLinkage = Record[3];
3994   Func->setLinkage(getDecodedLinkage(RawLinkage));
3995   Func->setAttributes(getAttributes(Record[4]));
3996   callValueTypeCallback(Func, FTyID);
3997 
3998   // Upgrade any old-style byval or sret without a type by propagating the
3999   // argument's pointee type. There should be no opaque pointers where the byval
4000   // type is implicit.
4001   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4002     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4003                                      Attribute::InAlloca}) {
4004       if (!Func->hasParamAttribute(i, Kind))
4005         continue;
4006 
4007       if (Func->getParamAttribute(i, Kind).getValueAsType())
4008         continue;
4009 
4010       Func->removeParamAttr(i, Kind);
4011 
4012       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4013       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4014       if (!PtrEltTy)
4015         return error("Missing param element type for attribute upgrade");
4016 
4017       Attribute NewAttr;
4018       switch (Kind) {
4019       case Attribute::ByVal:
4020         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4021         break;
4022       case Attribute::StructRet:
4023         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4024         break;
4025       case Attribute::InAlloca:
4026         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4027         break;
4028       default:
4029         llvm_unreachable("not an upgraded type attribute");
4030       }
4031 
4032       Func->addParamAttr(i, NewAttr);
4033     }
4034   }
4035 
4036   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4037       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4038     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4039     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4040     if (!ByValTy)
4041       return error("Missing param element type for x86_intrcc upgrade");
4042     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4043     Func->addParamAttr(0, NewAttr);
4044   }
4045 
4046   MaybeAlign Alignment;
4047   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4048     return Err;
4049   if (Alignment)
4050     Func->setAlignment(*Alignment);
4051   if (Record[6]) {
4052     if (Record[6] - 1 >= SectionTable.size())
4053       return error("Invalid ID");
4054     Func->setSection(SectionTable[Record[6] - 1]);
4055   }
4056   // Local linkage must have default visibility.
4057   // auto-upgrade `hidden` and `protected` for old bitcode.
4058   if (!Func->hasLocalLinkage())
4059     Func->setVisibility(getDecodedVisibility(Record[7]));
4060   if (Record.size() > 8 && Record[8]) {
4061     if (Record[8] - 1 >= GCTable.size())
4062       return error("Invalid ID");
4063     Func->setGC(GCTable[Record[8] - 1]);
4064   }
4065   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4066   if (Record.size() > 9)
4067     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4068   Func->setUnnamedAddr(UnnamedAddr);
4069 
4070   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4071   if (Record.size() > 10)
4072     OperandInfo.Prologue = Record[10];
4073 
4074   if (Record.size() > 11) {
4075     // A GlobalValue with local linkage cannot have a DLL storage class.
4076     if (!Func->hasLocalLinkage()) {
4077       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4078     }
4079   } else {
4080     upgradeDLLImportExportLinkage(Func, RawLinkage);
4081   }
4082 
4083   if (Record.size() > 12) {
4084     if (unsigned ComdatID = Record[12]) {
4085       if (ComdatID > ComdatList.size())
4086         return error("Invalid function comdat ID");
4087       Func->setComdat(ComdatList[ComdatID - 1]);
4088     }
4089   } else if (hasImplicitComdat(RawLinkage)) {
4090     ImplicitComdatObjects.insert(Func);
4091   }
4092 
4093   if (Record.size() > 13)
4094     OperandInfo.Prefix = Record[13];
4095 
4096   if (Record.size() > 14)
4097     OperandInfo.PersonalityFn = Record[14];
4098 
4099   if (Record.size() > 15) {
4100     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4101   }
4102   inferDSOLocal(Func);
4103 
4104   // Record[16] is the address space number.
4105 
4106   // Check whether we have enough values to read a partition name. Also make
4107   // sure Strtab has enough values.
4108   if (Record.size() > 18 && Strtab.data() &&
4109       Record[17] + Record[18] <= Strtab.size()) {
4110     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4111   }
4112 
4113   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4114 
4115   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4116     FunctionOperands.push_back(OperandInfo);
4117 
4118   // If this is a function with a body, remember the prototype we are
4119   // creating now, so that we can match up the body with them later.
4120   if (!isProto) {
4121     Func->setIsMaterializable(true);
4122     FunctionsWithBodies.push_back(Func);
4123     DeferredFunctionInfo[Func] = 0;
4124   }
4125   return Error::success();
4126 }
4127 
4128 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4129     unsigned BitCode, ArrayRef<uint64_t> Record) {
4130   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4131   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4132   // dllstorageclass, threadlocal, unnamed_addr,
4133   // preemption specifier] (name in VST)
4134   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4135   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4136   // preemption specifier] (name in VST)
4137   // v2: [strtab_offset, strtab_size, v1]
4138   StringRef Name;
4139   std::tie(Name, Record) = readNameFromStrtab(Record);
4140 
4141   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4142   if (Record.size() < (3 + (unsigned)NewRecord))
4143     return error("Invalid record");
4144   unsigned OpNum = 0;
4145   unsigned TypeID = Record[OpNum++];
4146   Type *Ty = getTypeByID(TypeID);
4147   if (!Ty)
4148     return error("Invalid record");
4149 
4150   unsigned AddrSpace;
4151   if (!NewRecord) {
4152     auto *PTy = dyn_cast<PointerType>(Ty);
4153     if (!PTy)
4154       return error("Invalid type for value");
4155     AddrSpace = PTy->getAddressSpace();
4156     TypeID = getContainedTypeID(TypeID);
4157     Ty = getTypeByID(TypeID);
4158     if (!Ty)
4159       return error("Missing element type for old-style indirect symbol");
4160   } else {
4161     AddrSpace = Record[OpNum++];
4162   }
4163 
4164   auto Val = Record[OpNum++];
4165   auto Linkage = Record[OpNum++];
4166   GlobalValue *NewGA;
4167   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4168       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4169     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4170                                 TheModule);
4171   else
4172     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4173                                 nullptr, TheModule);
4174 
4175   // Local linkage must have default visibility.
4176   // auto-upgrade `hidden` and `protected` for old bitcode.
4177   if (OpNum != Record.size()) {
4178     auto VisInd = OpNum++;
4179     if (!NewGA->hasLocalLinkage())
4180       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4181   }
4182   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4183       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4184     if (OpNum != Record.size()) {
4185       auto S = Record[OpNum++];
4186       // A GlobalValue with local linkage cannot have a DLL storage class.
4187       if (!NewGA->hasLocalLinkage())
4188         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4189     }
4190     else
4191       upgradeDLLImportExportLinkage(NewGA, Linkage);
4192     if (OpNum != Record.size())
4193       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4194     if (OpNum != Record.size())
4195       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4196   }
4197   if (OpNum != Record.size())
4198     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4199   inferDSOLocal(NewGA);
4200 
4201   // Check whether we have enough values to read a partition name.
4202   if (OpNum + 1 < Record.size()) {
4203     NewGA->setPartition(
4204         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4205     OpNum += 2;
4206   }
4207 
4208   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4209   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4210   return Error::success();
4211 }
4212 
4213 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4214                                  bool ShouldLazyLoadMetadata,
4215                                  ParserCallbacks Callbacks) {
4216   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4217   if (ResumeBit) {
4218     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4219       return JumpFailed;
4220   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4221     return Err;
4222 
4223   SmallVector<uint64_t, 64> Record;
4224 
4225   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4226   // finalize the datalayout before we run any of that code.
4227   bool ResolvedDataLayout = false;
4228   // In order to support importing modules with illegal data layout strings,
4229   // delay parsing the data layout string until after upgrades and overrides
4230   // have been applied, allowing to fix illegal data layout strings.
4231   // Initialize to the current module's layout string in case none is specified.
4232   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4233 
4234   auto ResolveDataLayout = [&]() -> Error {
4235     if (ResolvedDataLayout)
4236       return Error::success();
4237 
4238     // Datalayout and triple can't be parsed after this point.
4239     ResolvedDataLayout = true;
4240 
4241     // Auto-upgrade the layout string
4242     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4243         TentativeDataLayoutStr, TheModule->getTargetTriple());
4244 
4245     // Apply override
4246     if (Callbacks.DataLayout) {
4247       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4248               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4249         TentativeDataLayoutStr = *LayoutOverride;
4250     }
4251 
4252     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4253     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4254     if (!MaybeDL)
4255       return MaybeDL.takeError();
4256 
4257     TheModule->setDataLayout(MaybeDL.get());
4258     return Error::success();
4259   };
4260 
4261   // Read all the records for this module.
4262   while (true) {
4263     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4264     if (!MaybeEntry)
4265       return MaybeEntry.takeError();
4266     llvm::BitstreamEntry Entry = MaybeEntry.get();
4267 
4268     switch (Entry.Kind) {
4269     case BitstreamEntry::Error:
4270       return error("Malformed block");
4271     case BitstreamEntry::EndBlock:
4272       if (Error Err = ResolveDataLayout())
4273         return Err;
4274       return globalCleanup();
4275 
4276     case BitstreamEntry::SubBlock:
4277       switch (Entry.ID) {
4278       default:  // Skip unknown content.
4279         if (Error Err = Stream.SkipBlock())
4280           return Err;
4281         break;
4282       case bitc::BLOCKINFO_BLOCK_ID:
4283         if (Error Err = readBlockInfo())
4284           return Err;
4285         break;
4286       case bitc::PARAMATTR_BLOCK_ID:
4287         if (Error Err = parseAttributeBlock())
4288           return Err;
4289         break;
4290       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4291         if (Error Err = parseAttributeGroupBlock())
4292           return Err;
4293         break;
4294       case bitc::TYPE_BLOCK_ID_NEW:
4295         if (Error Err = parseTypeTable())
4296           return Err;
4297         break;
4298       case bitc::VALUE_SYMTAB_BLOCK_ID:
4299         if (!SeenValueSymbolTable) {
4300           // Either this is an old form VST without function index and an
4301           // associated VST forward declaration record (which would have caused
4302           // the VST to be jumped to and parsed before it was encountered
4303           // normally in the stream), or there were no function blocks to
4304           // trigger an earlier parsing of the VST.
4305           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4306           if (Error Err = parseValueSymbolTable())
4307             return Err;
4308           SeenValueSymbolTable = true;
4309         } else {
4310           // We must have had a VST forward declaration record, which caused
4311           // the parser to jump to and parse the VST earlier.
4312           assert(VSTOffset > 0);
4313           if (Error Err = Stream.SkipBlock())
4314             return Err;
4315         }
4316         break;
4317       case bitc::CONSTANTS_BLOCK_ID:
4318         if (Error Err = parseConstants())
4319           return Err;
4320         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4321           return Err;
4322         break;
4323       case bitc::METADATA_BLOCK_ID:
4324         if (ShouldLazyLoadMetadata) {
4325           if (Error Err = rememberAndSkipMetadata())
4326             return Err;
4327           break;
4328         }
4329         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4330         if (Error Err = MDLoader->parseModuleMetadata())
4331           return Err;
4332         break;
4333       case bitc::METADATA_KIND_BLOCK_ID:
4334         if (Error Err = MDLoader->parseMetadataKinds())
4335           return Err;
4336         break;
4337       case bitc::FUNCTION_BLOCK_ID:
4338         if (Error Err = ResolveDataLayout())
4339           return Err;
4340 
4341         // If this is the first function body we've seen, reverse the
4342         // FunctionsWithBodies list.
4343         if (!SeenFirstFunctionBody) {
4344           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4345           if (Error Err = globalCleanup())
4346             return Err;
4347           SeenFirstFunctionBody = true;
4348         }
4349 
4350         if (VSTOffset > 0) {
4351           // If we have a VST forward declaration record, make sure we
4352           // parse the VST now if we haven't already. It is needed to
4353           // set up the DeferredFunctionInfo vector for lazy reading.
4354           if (!SeenValueSymbolTable) {
4355             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4356               return Err;
4357             SeenValueSymbolTable = true;
4358             // Fall through so that we record the NextUnreadBit below.
4359             // This is necessary in case we have an anonymous function that
4360             // is later materialized. Since it will not have a VST entry we
4361             // need to fall back to the lazy parse to find its offset.
4362           } else {
4363             // If we have a VST forward declaration record, but have already
4364             // parsed the VST (just above, when the first function body was
4365             // encountered here), then we are resuming the parse after
4366             // materializing functions. The ResumeBit points to the
4367             // start of the last function block recorded in the
4368             // DeferredFunctionInfo map. Skip it.
4369             if (Error Err = Stream.SkipBlock())
4370               return Err;
4371             continue;
4372           }
4373         }
4374 
4375         // Support older bitcode files that did not have the function
4376         // index in the VST, nor a VST forward declaration record, as
4377         // well as anonymous functions that do not have VST entries.
4378         // Build the DeferredFunctionInfo vector on the fly.
4379         if (Error Err = rememberAndSkipFunctionBody())
4380           return Err;
4381 
4382         // Suspend parsing when we reach the function bodies. Subsequent
4383         // materialization calls will resume it when necessary. If the bitcode
4384         // file is old, the symbol table will be at the end instead and will not
4385         // have been seen yet. In this case, just finish the parse now.
4386         if (SeenValueSymbolTable) {
4387           NextUnreadBit = Stream.GetCurrentBitNo();
4388           // After the VST has been parsed, we need to make sure intrinsic name
4389           // are auto-upgraded.
4390           return globalCleanup();
4391         }
4392         break;
4393       case bitc::USELIST_BLOCK_ID:
4394         if (Error Err = parseUseLists())
4395           return Err;
4396         break;
4397       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4398         if (Error Err = parseOperandBundleTags())
4399           return Err;
4400         break;
4401       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4402         if (Error Err = parseSyncScopeNames())
4403           return Err;
4404         break;
4405       }
4406       continue;
4407 
4408     case BitstreamEntry::Record:
4409       // The interesting case.
4410       break;
4411     }
4412 
4413     // Read a record.
4414     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4415     if (!MaybeBitCode)
4416       return MaybeBitCode.takeError();
4417     switch (unsigned BitCode = MaybeBitCode.get()) {
4418     default: break;  // Default behavior, ignore unknown content.
4419     case bitc::MODULE_CODE_VERSION: {
4420       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4421       if (!VersionOrErr)
4422         return VersionOrErr.takeError();
4423       UseRelativeIDs = *VersionOrErr >= 1;
4424       break;
4425     }
4426     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4427       if (ResolvedDataLayout)
4428         return error("target triple too late in module");
4429       std::string S;
4430       if (convertToString(Record, 0, S))
4431         return error("Invalid record");
4432       TheModule->setTargetTriple(S);
4433       break;
4434     }
4435     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4436       if (ResolvedDataLayout)
4437         return error("datalayout too late in module");
4438       if (convertToString(Record, 0, TentativeDataLayoutStr))
4439         return error("Invalid record");
4440       break;
4441     }
4442     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4443       std::string S;
4444       if (convertToString(Record, 0, S))
4445         return error("Invalid record");
4446       TheModule->setModuleInlineAsm(S);
4447       break;
4448     }
4449     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4450       // Deprecated, but still needed to read old bitcode files.
4451       std::string S;
4452       if (convertToString(Record, 0, S))
4453         return error("Invalid record");
4454       // Ignore value.
4455       break;
4456     }
4457     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4458       std::string S;
4459       if (convertToString(Record, 0, S))
4460         return error("Invalid record");
4461       SectionTable.push_back(S);
4462       break;
4463     }
4464     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4465       std::string S;
4466       if (convertToString(Record, 0, S))
4467         return error("Invalid record");
4468       GCTable.push_back(S);
4469       break;
4470     }
4471     case bitc::MODULE_CODE_COMDAT:
4472       if (Error Err = parseComdatRecord(Record))
4473         return Err;
4474       break;
4475     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4476     // written by ThinLinkBitcodeWriter. See
4477     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4478     // record
4479     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4480     case bitc::MODULE_CODE_GLOBALVAR:
4481       if (Error Err = parseGlobalVarRecord(Record))
4482         return Err;
4483       break;
4484     case bitc::MODULE_CODE_FUNCTION:
4485       if (Error Err = ResolveDataLayout())
4486         return Err;
4487       if (Error Err = parseFunctionRecord(Record))
4488         return Err;
4489       break;
4490     case bitc::MODULE_CODE_IFUNC:
4491     case bitc::MODULE_CODE_ALIAS:
4492     case bitc::MODULE_CODE_ALIAS_OLD:
4493       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4494         return Err;
4495       break;
4496     /// MODULE_CODE_VSTOFFSET: [offset]
4497     case bitc::MODULE_CODE_VSTOFFSET:
4498       if (Record.empty())
4499         return error("Invalid record");
4500       // Note that we subtract 1 here because the offset is relative to one word
4501       // before the start of the identification or module block, which was
4502       // historically always the start of the regular bitcode header.
4503       VSTOffset = Record[0] - 1;
4504       break;
4505     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4506     case bitc::MODULE_CODE_SOURCE_FILENAME:
4507       SmallString<128> ValueName;
4508       if (convertToString(Record, 0, ValueName))
4509         return error("Invalid record");
4510       TheModule->setSourceFileName(ValueName);
4511       break;
4512     }
4513     Record.clear();
4514   }
4515   this->ValueTypeCallback = std::nullopt;
4516   return Error::success();
4517 }
4518 
4519 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4520                                       bool IsImporting,
4521                                       ParserCallbacks Callbacks) {
4522   TheModule = M;
4523   MetadataLoaderCallbacks MDCallbacks;
4524   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4525   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4526     return getContainedTypeID(I, J);
4527   };
4528   MDCallbacks.MDType = Callbacks.MDType;
4529   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4530   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4531 }
4532 
4533 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4534   if (!isa<PointerType>(PtrType))
4535     return error("Load/Store operand is not a pointer type");
4536   if (!PointerType::isLoadableOrStorableType(ValType))
4537     return error("Cannot load/store from pointer");
4538   return Error::success();
4539 }
4540 
4541 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4542                                              ArrayRef<unsigned> ArgTyIDs) {
4543   AttributeList Attrs = CB->getAttributes();
4544   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4545     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4546                                      Attribute::InAlloca}) {
4547       if (!Attrs.hasParamAttr(i, Kind) ||
4548           Attrs.getParamAttr(i, Kind).getValueAsType())
4549         continue;
4550 
4551       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4552       if (!PtrEltTy)
4553         return error("Missing element type for typed attribute upgrade");
4554 
4555       Attribute NewAttr;
4556       switch (Kind) {
4557       case Attribute::ByVal:
4558         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4559         break;
4560       case Attribute::StructRet:
4561         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4562         break;
4563       case Attribute::InAlloca:
4564         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4565         break;
4566       default:
4567         llvm_unreachable("not an upgraded type attribute");
4568       }
4569 
4570       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4571     }
4572   }
4573 
4574   if (CB->isInlineAsm()) {
4575     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4576     unsigned ArgNo = 0;
4577     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4578       if (!CI.hasArg())
4579         continue;
4580 
4581       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4582         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4583         if (!ElemTy)
4584           return error("Missing element type for inline asm upgrade");
4585         Attrs = Attrs.addParamAttribute(
4586             Context, ArgNo,
4587             Attribute::get(Context, Attribute::ElementType, ElemTy));
4588       }
4589 
4590       ArgNo++;
4591     }
4592   }
4593 
4594   switch (CB->getIntrinsicID()) {
4595   case Intrinsic::preserve_array_access_index:
4596   case Intrinsic::preserve_struct_access_index:
4597   case Intrinsic::aarch64_ldaxr:
4598   case Intrinsic::aarch64_ldxr:
4599   case Intrinsic::aarch64_stlxr:
4600   case Intrinsic::aarch64_stxr:
4601   case Intrinsic::arm_ldaex:
4602   case Intrinsic::arm_ldrex:
4603   case Intrinsic::arm_stlex:
4604   case Intrinsic::arm_strex: {
4605     unsigned ArgNo;
4606     switch (CB->getIntrinsicID()) {
4607     case Intrinsic::aarch64_stlxr:
4608     case Intrinsic::aarch64_stxr:
4609     case Intrinsic::arm_stlex:
4610     case Intrinsic::arm_strex:
4611       ArgNo = 1;
4612       break;
4613     default:
4614       ArgNo = 0;
4615       break;
4616     }
4617     if (!Attrs.getParamElementType(ArgNo)) {
4618       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4619       if (!ElTy)
4620         return error("Missing element type for elementtype upgrade");
4621       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4622       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4623     }
4624     break;
4625   }
4626   default:
4627     break;
4628   }
4629 
4630   CB->setAttributes(Attrs);
4631   return Error::success();
4632 }
4633 
4634 /// Lazily parse the specified function body block.
4635 Error BitcodeReader::parseFunctionBody(Function *F) {
4636   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4637     return Err;
4638 
4639   // Unexpected unresolved metadata when parsing function.
4640   if (MDLoader->hasFwdRefs())
4641     return error("Invalid function metadata: incoming forward references");
4642 
4643   InstructionList.clear();
4644   unsigned ModuleValueListSize = ValueList.size();
4645   unsigned ModuleMDLoaderSize = MDLoader->size();
4646 
4647   // Add all the function arguments to the value table.
4648   unsigned ArgNo = 0;
4649   unsigned FTyID = FunctionTypeIDs[F];
4650   for (Argument &I : F->args()) {
4651     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4652     assert(I.getType() == getTypeByID(ArgTyID) &&
4653            "Incorrect fully specified type for Function Argument");
4654     ValueList.push_back(&I, ArgTyID);
4655     ++ArgNo;
4656   }
4657   unsigned NextValueNo = ValueList.size();
4658   BasicBlock *CurBB = nullptr;
4659   unsigned CurBBNo = 0;
4660   // Block into which constant expressions from phi nodes are materialized.
4661   BasicBlock *PhiConstExprBB = nullptr;
4662   // Edge blocks for phi nodes into which constant expressions have been
4663   // expanded.
4664   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4665     ConstExprEdgeBBs;
4666 
4667   DebugLoc LastLoc;
4668   auto getLastInstruction = [&]() -> Instruction * {
4669     if (CurBB && !CurBB->empty())
4670       return &CurBB->back();
4671     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4672              !FunctionBBs[CurBBNo - 1]->empty())
4673       return &FunctionBBs[CurBBNo - 1]->back();
4674     return nullptr;
4675   };
4676 
4677   std::vector<OperandBundleDef> OperandBundles;
4678 
4679   // Read all the records.
4680   SmallVector<uint64_t, 64> Record;
4681 
4682   while (true) {
4683     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4684     if (!MaybeEntry)
4685       return MaybeEntry.takeError();
4686     llvm::BitstreamEntry Entry = MaybeEntry.get();
4687 
4688     switch (Entry.Kind) {
4689     case BitstreamEntry::Error:
4690       return error("Malformed block");
4691     case BitstreamEntry::EndBlock:
4692       goto OutOfRecordLoop;
4693 
4694     case BitstreamEntry::SubBlock:
4695       switch (Entry.ID) {
4696       default:  // Skip unknown content.
4697         if (Error Err = Stream.SkipBlock())
4698           return Err;
4699         break;
4700       case bitc::CONSTANTS_BLOCK_ID:
4701         if (Error Err = parseConstants())
4702           return Err;
4703         NextValueNo = ValueList.size();
4704         break;
4705       case bitc::VALUE_SYMTAB_BLOCK_ID:
4706         if (Error Err = parseValueSymbolTable())
4707           return Err;
4708         break;
4709       case bitc::METADATA_ATTACHMENT_ID:
4710         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4711           return Err;
4712         break;
4713       case bitc::METADATA_BLOCK_ID:
4714         assert(DeferredMetadataInfo.empty() &&
4715                "Must read all module-level metadata before function-level");
4716         if (Error Err = MDLoader->parseFunctionMetadata())
4717           return Err;
4718         break;
4719       case bitc::USELIST_BLOCK_ID:
4720         if (Error Err = parseUseLists())
4721           return Err;
4722         break;
4723       }
4724       continue;
4725 
4726     case BitstreamEntry::Record:
4727       // The interesting case.
4728       break;
4729     }
4730 
4731     // Read a record.
4732     Record.clear();
4733     Instruction *I = nullptr;
4734     unsigned ResTypeID = InvalidTypeID;
4735     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4736     if (!MaybeBitCode)
4737       return MaybeBitCode.takeError();
4738     switch (unsigned BitCode = MaybeBitCode.get()) {
4739     default: // Default behavior: reject
4740       return error("Invalid value");
4741     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4742       if (Record.empty() || Record[0] == 0)
4743         return error("Invalid record");
4744       // Create all the basic blocks for the function.
4745       FunctionBBs.resize(Record[0]);
4746 
4747       // See if anything took the address of blocks in this function.
4748       auto BBFRI = BasicBlockFwdRefs.find(F);
4749       if (BBFRI == BasicBlockFwdRefs.end()) {
4750         for (BasicBlock *&BB : FunctionBBs)
4751           BB = BasicBlock::Create(Context, "", F);
4752       } else {
4753         auto &BBRefs = BBFRI->second;
4754         // Check for invalid basic block references.
4755         if (BBRefs.size() > FunctionBBs.size())
4756           return error("Invalid ID");
4757         assert(!BBRefs.empty() && "Unexpected empty array");
4758         assert(!BBRefs.front() && "Invalid reference to entry block");
4759         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4760              ++I)
4761           if (I < RE && BBRefs[I]) {
4762             BBRefs[I]->insertInto(F);
4763             FunctionBBs[I] = BBRefs[I];
4764           } else {
4765             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4766           }
4767 
4768         // Erase from the table.
4769         BasicBlockFwdRefs.erase(BBFRI);
4770       }
4771 
4772       CurBB = FunctionBBs[0];
4773       continue;
4774     }
4775 
4776     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4777       // The record should not be emitted if it's an empty list.
4778       if (Record.empty())
4779         return error("Invalid record");
4780       // When we have the RARE case of a BlockAddress Constant that is not
4781       // scoped to the Function it refers to, we need to conservatively
4782       // materialize the referred to Function, regardless of whether or not
4783       // that Function will ultimately be linked, otherwise users of
4784       // BitcodeReader might start splicing out Function bodies such that we
4785       // might no longer be able to materialize the BlockAddress since the
4786       // BasicBlock (and entire body of the Function) the BlockAddress refers
4787       // to may have been moved. In the case that the user of BitcodeReader
4788       // decides ultimately not to link the Function body, materializing here
4789       // could be considered wasteful, but it's better than a deserialization
4790       // failure as described. This keeps BitcodeReader unaware of complex
4791       // linkage policy decisions such as those use by LTO, leaving those
4792       // decisions "one layer up."
4793       for (uint64_t ValID : Record)
4794         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4795           BackwardRefFunctions.push_back(F);
4796         else
4797           return error("Invalid record");
4798 
4799       continue;
4800 
4801     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4802       // This record indicates that the last instruction is at the same
4803       // location as the previous instruction with a location.
4804       I = getLastInstruction();
4805 
4806       if (!I)
4807         return error("Invalid record");
4808       I->setDebugLoc(LastLoc);
4809       I = nullptr;
4810       continue;
4811 
4812     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4813       I = getLastInstruction();
4814       if (!I || Record.size() < 4)
4815         return error("Invalid record");
4816 
4817       unsigned Line = Record[0], Col = Record[1];
4818       unsigned ScopeID = Record[2], IAID = Record[3];
4819       bool isImplicitCode = Record.size() == 5 && Record[4];
4820 
4821       MDNode *Scope = nullptr, *IA = nullptr;
4822       if (ScopeID) {
4823         Scope = dyn_cast_or_null<MDNode>(
4824             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4825         if (!Scope)
4826           return error("Invalid record");
4827       }
4828       if (IAID) {
4829         IA = dyn_cast_or_null<MDNode>(
4830             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4831         if (!IA)
4832           return error("Invalid record");
4833       }
4834       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4835                                 isImplicitCode);
4836       I->setDebugLoc(LastLoc);
4837       I = nullptr;
4838       continue;
4839     }
4840     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4841       unsigned OpNum = 0;
4842       Value *LHS;
4843       unsigned TypeID;
4844       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4845           OpNum+1 > Record.size())
4846         return error("Invalid record");
4847 
4848       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4849       if (Opc == -1)
4850         return error("Invalid record");
4851       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4852       ResTypeID = TypeID;
4853       InstructionList.push_back(I);
4854       if (OpNum < Record.size()) {
4855         if (isa<FPMathOperator>(I)) {
4856           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4857           if (FMF.any())
4858             I->setFastMathFlags(FMF);
4859         }
4860       }
4861       break;
4862     }
4863     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4864       unsigned OpNum = 0;
4865       Value *LHS, *RHS;
4866       unsigned TypeID;
4867       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4868           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4869                    CurBB) ||
4870           OpNum+1 > Record.size())
4871         return error("Invalid record");
4872 
4873       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4874       if (Opc == -1)
4875         return error("Invalid record");
4876       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4877       ResTypeID = TypeID;
4878       InstructionList.push_back(I);
4879       if (OpNum < Record.size()) {
4880         if (Opc == Instruction::Add ||
4881             Opc == Instruction::Sub ||
4882             Opc == Instruction::Mul ||
4883             Opc == Instruction::Shl) {
4884           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4885             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4886           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4887             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4888         } else if (Opc == Instruction::SDiv ||
4889                    Opc == Instruction::UDiv ||
4890                    Opc == Instruction::LShr ||
4891                    Opc == Instruction::AShr) {
4892           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4893             cast<BinaryOperator>(I)->setIsExact(true);
4894         } else if (Opc == Instruction::Or) {
4895           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
4896             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
4897         } else if (isa<FPMathOperator>(I)) {
4898           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4899           if (FMF.any())
4900             I->setFastMathFlags(FMF);
4901         }
4902       }
4903       break;
4904     }
4905     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4906       unsigned OpNum = 0;
4907       Value *Op;
4908       unsigned OpTypeID;
4909       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4910           OpNum + 1 > Record.size())
4911         return error("Invalid record");
4912 
4913       ResTypeID = Record[OpNum++];
4914       Type *ResTy = getTypeByID(ResTypeID);
4915       int Opc = getDecodedCastOpcode(Record[OpNum++]);
4916 
4917       if (Opc == -1 || !ResTy)
4918         return error("Invalid record");
4919       Instruction *Temp = nullptr;
4920       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4921         if (Temp) {
4922           InstructionList.push_back(Temp);
4923           assert(CurBB && "No current BB?");
4924           Temp->insertInto(CurBB, CurBB->end());
4925         }
4926       } else {
4927         auto CastOp = (Instruction::CastOps)Opc;
4928         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4929           return error("Invalid cast");
4930         I = CastInst::Create(CastOp, Op, ResTy);
4931       }
4932       if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) &&
4933           (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)))
4934         I->setNonNeg(true);
4935       InstructionList.push_back(I);
4936       break;
4937     }
4938     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4939     case bitc::FUNC_CODE_INST_GEP_OLD:
4940     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4941       unsigned OpNum = 0;
4942 
4943       unsigned TyID;
4944       Type *Ty;
4945       bool InBounds;
4946 
4947       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4948         InBounds = Record[OpNum++];
4949         TyID = Record[OpNum++];
4950         Ty = getTypeByID(TyID);
4951       } else {
4952         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4953         TyID = InvalidTypeID;
4954         Ty = nullptr;
4955       }
4956 
4957       Value *BasePtr;
4958       unsigned BasePtrTypeID;
4959       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4960                            CurBB))
4961         return error("Invalid record");
4962 
4963       if (!Ty) {
4964         TyID = getContainedTypeID(BasePtrTypeID);
4965         if (BasePtr->getType()->isVectorTy())
4966           TyID = getContainedTypeID(TyID);
4967         Ty = getTypeByID(TyID);
4968       }
4969 
4970       SmallVector<Value*, 16> GEPIdx;
4971       while (OpNum != Record.size()) {
4972         Value *Op;
4973         unsigned OpTypeID;
4974         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4975           return error("Invalid record");
4976         GEPIdx.push_back(Op);
4977       }
4978 
4979       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4980 
4981       ResTypeID = TyID;
4982       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4983         auto GTI = std::next(gep_type_begin(I));
4984         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4985           unsigned SubType = 0;
4986           if (GTI.isStruct()) {
4987             ConstantInt *IdxC =
4988                 Idx->getType()->isVectorTy()
4989                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4990                     : cast<ConstantInt>(Idx);
4991             SubType = IdxC->getZExtValue();
4992           }
4993           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4994           ++GTI;
4995         }
4996       }
4997 
4998       // At this point ResTypeID is the result element type. We need a pointer
4999       // or vector of pointer to it.
5000       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5001       if (I->getType()->isVectorTy())
5002         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5003 
5004       InstructionList.push_back(I);
5005       if (InBounds)
5006         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5007       break;
5008     }
5009 
5010     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5011                                        // EXTRACTVAL: [opty, opval, n x indices]
5012       unsigned OpNum = 0;
5013       Value *Agg;
5014       unsigned AggTypeID;
5015       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5016         return error("Invalid record");
5017       Type *Ty = Agg->getType();
5018 
5019       unsigned RecSize = Record.size();
5020       if (OpNum == RecSize)
5021         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5022 
5023       SmallVector<unsigned, 4> EXTRACTVALIdx;
5024       ResTypeID = AggTypeID;
5025       for (; OpNum != RecSize; ++OpNum) {
5026         bool IsArray = Ty->isArrayTy();
5027         bool IsStruct = Ty->isStructTy();
5028         uint64_t Index = Record[OpNum];
5029 
5030         if (!IsStruct && !IsArray)
5031           return error("EXTRACTVAL: Invalid type");
5032         if ((unsigned)Index != Index)
5033           return error("Invalid value");
5034         if (IsStruct && Index >= Ty->getStructNumElements())
5035           return error("EXTRACTVAL: Invalid struct index");
5036         if (IsArray && Index >= Ty->getArrayNumElements())
5037           return error("EXTRACTVAL: Invalid array index");
5038         EXTRACTVALIdx.push_back((unsigned)Index);
5039 
5040         if (IsStruct) {
5041           Ty = Ty->getStructElementType(Index);
5042           ResTypeID = getContainedTypeID(ResTypeID, Index);
5043         } else {
5044           Ty = Ty->getArrayElementType();
5045           ResTypeID = getContainedTypeID(ResTypeID);
5046         }
5047       }
5048 
5049       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5050       InstructionList.push_back(I);
5051       break;
5052     }
5053 
5054     case bitc::FUNC_CODE_INST_INSERTVAL: {
5055                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5056       unsigned OpNum = 0;
5057       Value *Agg;
5058       unsigned AggTypeID;
5059       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5060         return error("Invalid record");
5061       Value *Val;
5062       unsigned ValTypeID;
5063       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5064         return error("Invalid record");
5065 
5066       unsigned RecSize = Record.size();
5067       if (OpNum == RecSize)
5068         return error("INSERTVAL: Invalid instruction with 0 indices");
5069 
5070       SmallVector<unsigned, 4> INSERTVALIdx;
5071       Type *CurTy = Agg->getType();
5072       for (; OpNum != RecSize; ++OpNum) {
5073         bool IsArray = CurTy->isArrayTy();
5074         bool IsStruct = CurTy->isStructTy();
5075         uint64_t Index = Record[OpNum];
5076 
5077         if (!IsStruct && !IsArray)
5078           return error("INSERTVAL: Invalid type");
5079         if ((unsigned)Index != Index)
5080           return error("Invalid value");
5081         if (IsStruct && Index >= CurTy->getStructNumElements())
5082           return error("INSERTVAL: Invalid struct index");
5083         if (IsArray && Index >= CurTy->getArrayNumElements())
5084           return error("INSERTVAL: Invalid array index");
5085 
5086         INSERTVALIdx.push_back((unsigned)Index);
5087         if (IsStruct)
5088           CurTy = CurTy->getStructElementType(Index);
5089         else
5090           CurTy = CurTy->getArrayElementType();
5091       }
5092 
5093       if (CurTy != Val->getType())
5094         return error("Inserted value type doesn't match aggregate type");
5095 
5096       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5097       ResTypeID = AggTypeID;
5098       InstructionList.push_back(I);
5099       break;
5100     }
5101 
5102     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5103       // obsolete form of select
5104       // handles select i1 ... in old bitcode
5105       unsigned OpNum = 0;
5106       Value *TrueVal, *FalseVal, *Cond;
5107       unsigned TypeID;
5108       Type *CondType = Type::getInt1Ty(Context);
5109       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5110                            CurBB) ||
5111           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5112                    FalseVal, CurBB) ||
5113           popValue(Record, OpNum, NextValueNo, CondType,
5114                    getVirtualTypeID(CondType), Cond, CurBB))
5115         return error("Invalid record");
5116 
5117       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5118       ResTypeID = TypeID;
5119       InstructionList.push_back(I);
5120       break;
5121     }
5122 
5123     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5124       // new form of select
5125       // handles select i1 or select [N x i1]
5126       unsigned OpNum = 0;
5127       Value *TrueVal, *FalseVal, *Cond;
5128       unsigned ValTypeID, CondTypeID;
5129       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5130                            CurBB) ||
5131           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5132                    FalseVal, CurBB) ||
5133           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5134         return error("Invalid record");
5135 
5136       // select condition can be either i1 or [N x i1]
5137       if (VectorType* vector_type =
5138           dyn_cast<VectorType>(Cond->getType())) {
5139         // expect <n x i1>
5140         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5141           return error("Invalid type for value");
5142       } else {
5143         // expect i1
5144         if (Cond->getType() != Type::getInt1Ty(Context))
5145           return error("Invalid type for value");
5146       }
5147 
5148       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5149       ResTypeID = ValTypeID;
5150       InstructionList.push_back(I);
5151       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5152         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5153         if (FMF.any())
5154           I->setFastMathFlags(FMF);
5155       }
5156       break;
5157     }
5158 
5159     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5160       unsigned OpNum = 0;
5161       Value *Vec, *Idx;
5162       unsigned VecTypeID, IdxTypeID;
5163       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5164           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5165         return error("Invalid record");
5166       if (!Vec->getType()->isVectorTy())
5167         return error("Invalid type for value");
5168       I = ExtractElementInst::Create(Vec, Idx);
5169       ResTypeID = getContainedTypeID(VecTypeID);
5170       InstructionList.push_back(I);
5171       break;
5172     }
5173 
5174     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5175       unsigned OpNum = 0;
5176       Value *Vec, *Elt, *Idx;
5177       unsigned VecTypeID, IdxTypeID;
5178       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5179         return error("Invalid record");
5180       if (!Vec->getType()->isVectorTy())
5181         return error("Invalid type for value");
5182       if (popValue(Record, OpNum, NextValueNo,
5183                    cast<VectorType>(Vec->getType())->getElementType(),
5184                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5185           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5186         return error("Invalid record");
5187       I = InsertElementInst::Create(Vec, Elt, Idx);
5188       ResTypeID = VecTypeID;
5189       InstructionList.push_back(I);
5190       break;
5191     }
5192 
5193     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5194       unsigned OpNum = 0;
5195       Value *Vec1, *Vec2, *Mask;
5196       unsigned Vec1TypeID;
5197       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5198                            CurBB) ||
5199           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5200                    Vec2, CurBB))
5201         return error("Invalid record");
5202 
5203       unsigned MaskTypeID;
5204       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5205         return error("Invalid record");
5206       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5207         return error("Invalid type for value");
5208 
5209       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5210       ResTypeID =
5211           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5212       InstructionList.push_back(I);
5213       break;
5214     }
5215 
5216     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5217       // Old form of ICmp/FCmp returning bool
5218       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5219       // both legal on vectors but had different behaviour.
5220     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5221       // FCmp/ICmp returning bool or vector of bool
5222 
5223       unsigned OpNum = 0;
5224       Value *LHS, *RHS;
5225       unsigned LHSTypeID;
5226       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5227           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5228                    CurBB))
5229         return error("Invalid record");
5230 
5231       if (OpNum >= Record.size())
5232         return error(
5233             "Invalid record: operand number exceeded available operands");
5234 
5235       unsigned PredVal = Record[OpNum];
5236       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5237       FastMathFlags FMF;
5238       if (IsFP && Record.size() > OpNum+1)
5239         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5240 
5241       if (OpNum+1 != Record.size())
5242         return error("Invalid record");
5243 
5244       if (LHS->getType()->isFPOrFPVectorTy())
5245         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5246       else
5247         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5248 
5249       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5250       if (LHS->getType()->isVectorTy())
5251         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5252 
5253       if (FMF.any())
5254         I->setFastMathFlags(FMF);
5255       InstructionList.push_back(I);
5256       break;
5257     }
5258 
5259     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5260       {
5261         unsigned Size = Record.size();
5262         if (Size == 0) {
5263           I = ReturnInst::Create(Context);
5264           InstructionList.push_back(I);
5265           break;
5266         }
5267 
5268         unsigned OpNum = 0;
5269         Value *Op = nullptr;
5270         unsigned OpTypeID;
5271         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5272           return error("Invalid record");
5273         if (OpNum != Record.size())
5274           return error("Invalid record");
5275 
5276         I = ReturnInst::Create(Context, Op);
5277         InstructionList.push_back(I);
5278         break;
5279       }
5280     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5281       if (Record.size() != 1 && Record.size() != 3)
5282         return error("Invalid record");
5283       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5284       if (!TrueDest)
5285         return error("Invalid record");
5286 
5287       if (Record.size() == 1) {
5288         I = BranchInst::Create(TrueDest);
5289         InstructionList.push_back(I);
5290       }
5291       else {
5292         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5293         Type *CondType = Type::getInt1Ty(Context);
5294         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5295                                getVirtualTypeID(CondType), CurBB);
5296         if (!FalseDest || !Cond)
5297           return error("Invalid record");
5298         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5299         InstructionList.push_back(I);
5300       }
5301       break;
5302     }
5303     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5304       if (Record.size() != 1 && Record.size() != 2)
5305         return error("Invalid record");
5306       unsigned Idx = 0;
5307       Type *TokenTy = Type::getTokenTy(Context);
5308       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5309                                    getVirtualTypeID(TokenTy), CurBB);
5310       if (!CleanupPad)
5311         return error("Invalid record");
5312       BasicBlock *UnwindDest = nullptr;
5313       if (Record.size() == 2) {
5314         UnwindDest = getBasicBlock(Record[Idx++]);
5315         if (!UnwindDest)
5316           return error("Invalid record");
5317       }
5318 
5319       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5320       InstructionList.push_back(I);
5321       break;
5322     }
5323     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5324       if (Record.size() != 2)
5325         return error("Invalid record");
5326       unsigned Idx = 0;
5327       Type *TokenTy = Type::getTokenTy(Context);
5328       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5329                                  getVirtualTypeID(TokenTy), CurBB);
5330       if (!CatchPad)
5331         return error("Invalid record");
5332       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5333       if (!BB)
5334         return error("Invalid record");
5335 
5336       I = CatchReturnInst::Create(CatchPad, BB);
5337       InstructionList.push_back(I);
5338       break;
5339     }
5340     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5341       // We must have, at minimum, the outer scope and the number of arguments.
5342       if (Record.size() < 2)
5343         return error("Invalid record");
5344 
5345       unsigned Idx = 0;
5346 
5347       Type *TokenTy = Type::getTokenTy(Context);
5348       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5349                                   getVirtualTypeID(TokenTy), CurBB);
5350 
5351       unsigned NumHandlers = Record[Idx++];
5352 
5353       SmallVector<BasicBlock *, 2> Handlers;
5354       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5355         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5356         if (!BB)
5357           return error("Invalid record");
5358         Handlers.push_back(BB);
5359       }
5360 
5361       BasicBlock *UnwindDest = nullptr;
5362       if (Idx + 1 == Record.size()) {
5363         UnwindDest = getBasicBlock(Record[Idx++]);
5364         if (!UnwindDest)
5365           return error("Invalid record");
5366       }
5367 
5368       if (Record.size() != Idx)
5369         return error("Invalid record");
5370 
5371       auto *CatchSwitch =
5372           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5373       for (BasicBlock *Handler : Handlers)
5374         CatchSwitch->addHandler(Handler);
5375       I = CatchSwitch;
5376       ResTypeID = getVirtualTypeID(I->getType());
5377       InstructionList.push_back(I);
5378       break;
5379     }
5380     case bitc::FUNC_CODE_INST_CATCHPAD:
5381     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5382       // We must have, at minimum, the outer scope and the number of arguments.
5383       if (Record.size() < 2)
5384         return error("Invalid record");
5385 
5386       unsigned Idx = 0;
5387 
5388       Type *TokenTy = Type::getTokenTy(Context);
5389       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5390                                   getVirtualTypeID(TokenTy), CurBB);
5391 
5392       unsigned NumArgOperands = Record[Idx++];
5393 
5394       SmallVector<Value *, 2> Args;
5395       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5396         Value *Val;
5397         unsigned ValTypeID;
5398         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5399           return error("Invalid record");
5400         Args.push_back(Val);
5401       }
5402 
5403       if (Record.size() != Idx)
5404         return error("Invalid record");
5405 
5406       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5407         I = CleanupPadInst::Create(ParentPad, Args);
5408       else
5409         I = CatchPadInst::Create(ParentPad, Args);
5410       ResTypeID = getVirtualTypeID(I->getType());
5411       InstructionList.push_back(I);
5412       break;
5413     }
5414     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5415       // Check magic
5416       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5417         // "New" SwitchInst format with case ranges. The changes to write this
5418         // format were reverted but we still recognize bitcode that uses it.
5419         // Hopefully someday we will have support for case ranges and can use
5420         // this format again.
5421 
5422         unsigned OpTyID = Record[1];
5423         Type *OpTy = getTypeByID(OpTyID);
5424         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5425 
5426         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5427         BasicBlock *Default = getBasicBlock(Record[3]);
5428         if (!OpTy || !Cond || !Default)
5429           return error("Invalid record");
5430 
5431         unsigned NumCases = Record[4];
5432 
5433         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5434         InstructionList.push_back(SI);
5435 
5436         unsigned CurIdx = 5;
5437         for (unsigned i = 0; i != NumCases; ++i) {
5438           SmallVector<ConstantInt*, 1> CaseVals;
5439           unsigned NumItems = Record[CurIdx++];
5440           for (unsigned ci = 0; ci != NumItems; ++ci) {
5441             bool isSingleNumber = Record[CurIdx++];
5442 
5443             APInt Low;
5444             unsigned ActiveWords = 1;
5445             if (ValueBitWidth > 64)
5446               ActiveWords = Record[CurIdx++];
5447             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5448                                 ValueBitWidth);
5449             CurIdx += ActiveWords;
5450 
5451             if (!isSingleNumber) {
5452               ActiveWords = 1;
5453               if (ValueBitWidth > 64)
5454                 ActiveWords = Record[CurIdx++];
5455               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5456                                          ValueBitWidth);
5457               CurIdx += ActiveWords;
5458 
5459               // FIXME: It is not clear whether values in the range should be
5460               // compared as signed or unsigned values. The partially
5461               // implemented changes that used this format in the past used
5462               // unsigned comparisons.
5463               for ( ; Low.ule(High); ++Low)
5464                 CaseVals.push_back(ConstantInt::get(Context, Low));
5465             } else
5466               CaseVals.push_back(ConstantInt::get(Context, Low));
5467           }
5468           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5469           for (ConstantInt *Cst : CaseVals)
5470             SI->addCase(Cst, DestBB);
5471         }
5472         I = SI;
5473         break;
5474       }
5475 
5476       // Old SwitchInst format without case ranges.
5477 
5478       if (Record.size() < 3 || (Record.size() & 1) == 0)
5479         return error("Invalid record");
5480       unsigned OpTyID = Record[0];
5481       Type *OpTy = getTypeByID(OpTyID);
5482       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5483       BasicBlock *Default = getBasicBlock(Record[2]);
5484       if (!OpTy || !Cond || !Default)
5485         return error("Invalid record");
5486       unsigned NumCases = (Record.size()-3)/2;
5487       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5488       InstructionList.push_back(SI);
5489       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5490         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5491             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5492         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5493         if (!CaseVal || !DestBB) {
5494           delete SI;
5495           return error("Invalid record");
5496         }
5497         SI->addCase(CaseVal, DestBB);
5498       }
5499       I = SI;
5500       break;
5501     }
5502     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5503       if (Record.size() < 2)
5504         return error("Invalid record");
5505       unsigned OpTyID = Record[0];
5506       Type *OpTy = getTypeByID(OpTyID);
5507       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5508       if (!OpTy || !Address)
5509         return error("Invalid record");
5510       unsigned NumDests = Record.size()-2;
5511       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5512       InstructionList.push_back(IBI);
5513       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5514         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5515           IBI->addDestination(DestBB);
5516         } else {
5517           delete IBI;
5518           return error("Invalid record");
5519         }
5520       }
5521       I = IBI;
5522       break;
5523     }
5524 
5525     case bitc::FUNC_CODE_INST_INVOKE: {
5526       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5527       if (Record.size() < 4)
5528         return error("Invalid record");
5529       unsigned OpNum = 0;
5530       AttributeList PAL = getAttributes(Record[OpNum++]);
5531       unsigned CCInfo = Record[OpNum++];
5532       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5533       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5534 
5535       unsigned FTyID = InvalidTypeID;
5536       FunctionType *FTy = nullptr;
5537       if ((CCInfo >> 13) & 1) {
5538         FTyID = Record[OpNum++];
5539         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5540         if (!FTy)
5541           return error("Explicit invoke type is not a function type");
5542       }
5543 
5544       Value *Callee;
5545       unsigned CalleeTypeID;
5546       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5547                            CurBB))
5548         return error("Invalid record");
5549 
5550       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5551       if (!CalleeTy)
5552         return error("Callee is not a pointer");
5553       if (!FTy) {
5554         FTyID = getContainedTypeID(CalleeTypeID);
5555         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5556         if (!FTy)
5557           return error("Callee is not of pointer to function type");
5558       }
5559       if (Record.size() < FTy->getNumParams() + OpNum)
5560         return error("Insufficient operands to call");
5561 
5562       SmallVector<Value*, 16> Ops;
5563       SmallVector<unsigned, 16> ArgTyIDs;
5564       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5565         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5566         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5567                                ArgTyID, CurBB));
5568         ArgTyIDs.push_back(ArgTyID);
5569         if (!Ops.back())
5570           return error("Invalid record");
5571       }
5572 
5573       if (!FTy->isVarArg()) {
5574         if (Record.size() != OpNum)
5575           return error("Invalid record");
5576       } else {
5577         // Read type/value pairs for varargs params.
5578         while (OpNum != Record.size()) {
5579           Value *Op;
5580           unsigned OpTypeID;
5581           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5582             return error("Invalid record");
5583           Ops.push_back(Op);
5584           ArgTyIDs.push_back(OpTypeID);
5585         }
5586       }
5587 
5588       // Upgrade the bundles if needed.
5589       if (!OperandBundles.empty())
5590         UpgradeOperandBundles(OperandBundles);
5591 
5592       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5593                              OperandBundles);
5594       ResTypeID = getContainedTypeID(FTyID);
5595       OperandBundles.clear();
5596       InstructionList.push_back(I);
5597       cast<InvokeInst>(I)->setCallingConv(
5598           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5599       cast<InvokeInst>(I)->setAttributes(PAL);
5600       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5601         I->deleteValue();
5602         return Err;
5603       }
5604 
5605       break;
5606     }
5607     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5608       unsigned Idx = 0;
5609       Value *Val = nullptr;
5610       unsigned ValTypeID;
5611       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5612         return error("Invalid record");
5613       I = ResumeInst::Create(Val);
5614       InstructionList.push_back(I);
5615       break;
5616     }
5617     case bitc::FUNC_CODE_INST_CALLBR: {
5618       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5619       unsigned OpNum = 0;
5620       AttributeList PAL = getAttributes(Record[OpNum++]);
5621       unsigned CCInfo = Record[OpNum++];
5622 
5623       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5624       unsigned NumIndirectDests = Record[OpNum++];
5625       SmallVector<BasicBlock *, 16> IndirectDests;
5626       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5627         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5628 
5629       unsigned FTyID = InvalidTypeID;
5630       FunctionType *FTy = nullptr;
5631       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5632         FTyID = Record[OpNum++];
5633         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5634         if (!FTy)
5635           return error("Explicit call type is not a function type");
5636       }
5637 
5638       Value *Callee;
5639       unsigned CalleeTypeID;
5640       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5641                            CurBB))
5642         return error("Invalid record");
5643 
5644       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5645       if (!OpTy)
5646         return error("Callee is not a pointer type");
5647       if (!FTy) {
5648         FTyID = getContainedTypeID(CalleeTypeID);
5649         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5650         if (!FTy)
5651           return error("Callee is not of pointer to function type");
5652       }
5653       if (Record.size() < FTy->getNumParams() + OpNum)
5654         return error("Insufficient operands to call");
5655 
5656       SmallVector<Value*, 16> Args;
5657       SmallVector<unsigned, 16> ArgTyIDs;
5658       // Read the fixed params.
5659       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5660         Value *Arg;
5661         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5662         if (FTy->getParamType(i)->isLabelTy())
5663           Arg = getBasicBlock(Record[OpNum]);
5664         else
5665           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5666                          ArgTyID, CurBB);
5667         if (!Arg)
5668           return error("Invalid record");
5669         Args.push_back(Arg);
5670         ArgTyIDs.push_back(ArgTyID);
5671       }
5672 
5673       // Read type/value pairs for varargs params.
5674       if (!FTy->isVarArg()) {
5675         if (OpNum != Record.size())
5676           return error("Invalid record");
5677       } else {
5678         while (OpNum != Record.size()) {
5679           Value *Op;
5680           unsigned OpTypeID;
5681           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5682             return error("Invalid record");
5683           Args.push_back(Op);
5684           ArgTyIDs.push_back(OpTypeID);
5685         }
5686       }
5687 
5688       // Upgrade the bundles if needed.
5689       if (!OperandBundles.empty())
5690         UpgradeOperandBundles(OperandBundles);
5691 
5692       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5693         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5694         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5695           return CI.Type == InlineAsm::isLabel;
5696         };
5697         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5698           // Upgrade explicit blockaddress arguments to label constraints.
5699           // Verify that the last arguments are blockaddress arguments that
5700           // match the indirect destinations. Clang always generates callbr
5701           // in this form. We could support reordering with more effort.
5702           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5703           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5704             unsigned LabelNo = ArgNo - FirstBlockArg;
5705             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5706             if (!BA || BA->getFunction() != F ||
5707                 LabelNo > IndirectDests.size() ||
5708                 BA->getBasicBlock() != IndirectDests[LabelNo])
5709               return error("callbr argument does not match indirect dest");
5710           }
5711 
5712           // Remove blockaddress arguments.
5713           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5714           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5715 
5716           // Recreate the function type with less arguments.
5717           SmallVector<Type *> ArgTys;
5718           for (Value *Arg : Args)
5719             ArgTys.push_back(Arg->getType());
5720           FTy =
5721               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5722 
5723           // Update constraint string to use label constraints.
5724           std::string Constraints = IA->getConstraintString();
5725           unsigned ArgNo = 0;
5726           size_t Pos = 0;
5727           for (const auto &CI : ConstraintInfo) {
5728             if (CI.hasArg()) {
5729               if (ArgNo >= FirstBlockArg)
5730                 Constraints.insert(Pos, "!");
5731               ++ArgNo;
5732             }
5733 
5734             // Go to next constraint in string.
5735             Pos = Constraints.find(',', Pos);
5736             if (Pos == std::string::npos)
5737               break;
5738             ++Pos;
5739           }
5740 
5741           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5742                                   IA->hasSideEffects(), IA->isAlignStack(),
5743                                   IA->getDialect(), IA->canThrow());
5744         }
5745       }
5746 
5747       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5748                              OperandBundles);
5749       ResTypeID = getContainedTypeID(FTyID);
5750       OperandBundles.clear();
5751       InstructionList.push_back(I);
5752       cast<CallBrInst>(I)->setCallingConv(
5753           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5754       cast<CallBrInst>(I)->setAttributes(PAL);
5755       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5756         I->deleteValue();
5757         return Err;
5758       }
5759       break;
5760     }
5761     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5762       I = new UnreachableInst(Context);
5763       InstructionList.push_back(I);
5764       break;
5765     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5766       if (Record.empty())
5767         return error("Invalid phi record");
5768       // The first record specifies the type.
5769       unsigned TyID = Record[0];
5770       Type *Ty = getTypeByID(TyID);
5771       if (!Ty)
5772         return error("Invalid phi record");
5773 
5774       // Phi arguments are pairs of records of [value, basic block].
5775       // There is an optional final record for fast-math-flags if this phi has a
5776       // floating-point type.
5777       size_t NumArgs = (Record.size() - 1) / 2;
5778       PHINode *PN = PHINode::Create(Ty, NumArgs);
5779       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5780         PN->deleteValue();
5781         return error("Invalid phi record");
5782       }
5783       InstructionList.push_back(PN);
5784 
5785       SmallDenseMap<BasicBlock *, Value *> Args;
5786       for (unsigned i = 0; i != NumArgs; i++) {
5787         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5788         if (!BB) {
5789           PN->deleteValue();
5790           return error("Invalid phi BB");
5791         }
5792 
5793         // Phi nodes may contain the same predecessor multiple times, in which
5794         // case the incoming value must be identical. Directly reuse the already
5795         // seen value here, to avoid expanding a constant expression multiple
5796         // times.
5797         auto It = Args.find(BB);
5798         if (It != Args.end()) {
5799           PN->addIncoming(It->second, BB);
5800           continue;
5801         }
5802 
5803         // If there already is a block for this edge (from a different phi),
5804         // use it.
5805         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5806         if (!EdgeBB) {
5807           // Otherwise, use a temporary block (that we will discard if it
5808           // turns out to be unnecessary).
5809           if (!PhiConstExprBB)
5810             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5811           EdgeBB = PhiConstExprBB;
5812         }
5813 
5814         // With the new function encoding, it is possible that operands have
5815         // negative IDs (for forward references).  Use a signed VBR
5816         // representation to keep the encoding small.
5817         Value *V;
5818         if (UseRelativeIDs)
5819           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5820         else
5821           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5822         if (!V) {
5823           PN->deleteValue();
5824           PhiConstExprBB->eraseFromParent();
5825           return error("Invalid phi record");
5826         }
5827 
5828         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5829           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5830           PhiConstExprBB = nullptr;
5831         }
5832         PN->addIncoming(V, BB);
5833         Args.insert({BB, V});
5834       }
5835       I = PN;
5836       ResTypeID = TyID;
5837 
5838       // If there are an even number of records, the final record must be FMF.
5839       if (Record.size() % 2 == 0) {
5840         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5841         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5842         if (FMF.any())
5843           I->setFastMathFlags(FMF);
5844       }
5845 
5846       break;
5847     }
5848 
5849     case bitc::FUNC_CODE_INST_LANDINGPAD:
5850     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5851       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5852       unsigned Idx = 0;
5853       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5854         if (Record.size() < 3)
5855           return error("Invalid record");
5856       } else {
5857         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5858         if (Record.size() < 4)
5859           return error("Invalid record");
5860       }
5861       ResTypeID = Record[Idx++];
5862       Type *Ty = getTypeByID(ResTypeID);
5863       if (!Ty)
5864         return error("Invalid record");
5865       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5866         Value *PersFn = nullptr;
5867         unsigned PersFnTypeID;
5868         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5869                              nullptr))
5870           return error("Invalid record");
5871 
5872         if (!F->hasPersonalityFn())
5873           F->setPersonalityFn(cast<Constant>(PersFn));
5874         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5875           return error("Personality function mismatch");
5876       }
5877 
5878       bool IsCleanup = !!Record[Idx++];
5879       unsigned NumClauses = Record[Idx++];
5880       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5881       LP->setCleanup(IsCleanup);
5882       for (unsigned J = 0; J != NumClauses; ++J) {
5883         LandingPadInst::ClauseType CT =
5884           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5885         Value *Val;
5886         unsigned ValTypeID;
5887 
5888         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5889                              nullptr)) {
5890           delete LP;
5891           return error("Invalid record");
5892         }
5893 
5894         assert((CT != LandingPadInst::Catch ||
5895                 !isa<ArrayType>(Val->getType())) &&
5896                "Catch clause has a invalid type!");
5897         assert((CT != LandingPadInst::Filter ||
5898                 isa<ArrayType>(Val->getType())) &&
5899                "Filter clause has invalid type!");
5900         LP->addClause(cast<Constant>(Val));
5901       }
5902 
5903       I = LP;
5904       InstructionList.push_back(I);
5905       break;
5906     }
5907 
5908     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5909       if (Record.size() != 4 && Record.size() != 5)
5910         return error("Invalid record");
5911       using APV = AllocaPackedValues;
5912       const uint64_t Rec = Record[3];
5913       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5914       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5915       unsigned TyID = Record[0];
5916       Type *Ty = getTypeByID(TyID);
5917       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5918         TyID = getContainedTypeID(TyID);
5919         Ty = getTypeByID(TyID);
5920         if (!Ty)
5921           return error("Missing element type for old-style alloca");
5922       }
5923       unsigned OpTyID = Record[1];
5924       Type *OpTy = getTypeByID(OpTyID);
5925       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5926       MaybeAlign Align;
5927       uint64_t AlignExp =
5928           Bitfield::get<APV::AlignLower>(Rec) |
5929           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5930       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5931         return Err;
5932       }
5933       if (!Ty || !Size)
5934         return error("Invalid record");
5935 
5936       const DataLayout &DL = TheModule->getDataLayout();
5937       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5938 
5939       SmallPtrSet<Type *, 4> Visited;
5940       if (!Align && !Ty->isSized(&Visited))
5941         return error("alloca of unsized type");
5942       if (!Align)
5943         Align = DL.getPrefTypeAlign(Ty);
5944 
5945       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5946       AI->setUsedWithInAlloca(InAlloca);
5947       AI->setSwiftError(SwiftError);
5948       I = AI;
5949       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5950       InstructionList.push_back(I);
5951       break;
5952     }
5953     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5954       unsigned OpNum = 0;
5955       Value *Op;
5956       unsigned OpTypeID;
5957       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5958           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5959         return error("Invalid record");
5960 
5961       if (!isa<PointerType>(Op->getType()))
5962         return error("Load operand is not a pointer type");
5963 
5964       Type *Ty = nullptr;
5965       if (OpNum + 3 == Record.size()) {
5966         ResTypeID = Record[OpNum++];
5967         Ty = getTypeByID(ResTypeID);
5968       } else {
5969         ResTypeID = getContainedTypeID(OpTypeID);
5970         Ty = getTypeByID(ResTypeID);
5971         if (!Ty)
5972           return error("Missing element type for old-style load");
5973       }
5974 
5975       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5976         return Err;
5977 
5978       MaybeAlign Align;
5979       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5980         return Err;
5981       SmallPtrSet<Type *, 4> Visited;
5982       if (!Align && !Ty->isSized(&Visited))
5983         return error("load of unsized type");
5984       if (!Align)
5985         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5986       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5987       InstructionList.push_back(I);
5988       break;
5989     }
5990     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5991        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5992       unsigned OpNum = 0;
5993       Value *Op;
5994       unsigned OpTypeID;
5995       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5996           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5997         return error("Invalid record");
5998 
5999       if (!isa<PointerType>(Op->getType()))
6000         return error("Load operand is not a pointer type");
6001 
6002       Type *Ty = nullptr;
6003       if (OpNum + 5 == Record.size()) {
6004         ResTypeID = Record[OpNum++];
6005         Ty = getTypeByID(ResTypeID);
6006       } else {
6007         ResTypeID = getContainedTypeID(OpTypeID);
6008         Ty = getTypeByID(ResTypeID);
6009         if (!Ty)
6010           return error("Missing element type for old style atomic load");
6011       }
6012 
6013       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6014         return Err;
6015 
6016       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6017       if (Ordering == AtomicOrdering::NotAtomic ||
6018           Ordering == AtomicOrdering::Release ||
6019           Ordering == AtomicOrdering::AcquireRelease)
6020         return error("Invalid record");
6021       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6022         return error("Invalid record");
6023       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6024 
6025       MaybeAlign Align;
6026       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6027         return Err;
6028       if (!Align)
6029         return error("Alignment missing from atomic load");
6030       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6031       InstructionList.push_back(I);
6032       break;
6033     }
6034     case bitc::FUNC_CODE_INST_STORE:
6035     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6036       unsigned OpNum = 0;
6037       Value *Val, *Ptr;
6038       unsigned PtrTypeID, ValTypeID;
6039       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6040         return error("Invalid record");
6041 
6042       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6043         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6044           return error("Invalid record");
6045       } else {
6046         ValTypeID = getContainedTypeID(PtrTypeID);
6047         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6048                      ValTypeID, Val, CurBB))
6049           return error("Invalid record");
6050       }
6051 
6052       if (OpNum + 2 != Record.size())
6053         return error("Invalid record");
6054 
6055       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6056         return Err;
6057       MaybeAlign Align;
6058       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6059         return Err;
6060       SmallPtrSet<Type *, 4> Visited;
6061       if (!Align && !Val->getType()->isSized(&Visited))
6062         return error("store of unsized type");
6063       if (!Align)
6064         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6065       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6066       InstructionList.push_back(I);
6067       break;
6068     }
6069     case bitc::FUNC_CODE_INST_STOREATOMIC:
6070     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6071       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6072       unsigned OpNum = 0;
6073       Value *Val, *Ptr;
6074       unsigned PtrTypeID, ValTypeID;
6075       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6076           !isa<PointerType>(Ptr->getType()))
6077         return error("Invalid record");
6078       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6079         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6080           return error("Invalid record");
6081       } else {
6082         ValTypeID = getContainedTypeID(PtrTypeID);
6083         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6084                      ValTypeID, Val, CurBB))
6085           return error("Invalid record");
6086       }
6087 
6088       if (OpNum + 4 != Record.size())
6089         return error("Invalid record");
6090 
6091       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6092         return Err;
6093       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6094       if (Ordering == AtomicOrdering::NotAtomic ||
6095           Ordering == AtomicOrdering::Acquire ||
6096           Ordering == AtomicOrdering::AcquireRelease)
6097         return error("Invalid record");
6098       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6099       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6100         return error("Invalid record");
6101 
6102       MaybeAlign Align;
6103       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6104         return Err;
6105       if (!Align)
6106         return error("Alignment missing from atomic store");
6107       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6108       InstructionList.push_back(I);
6109       break;
6110     }
6111     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6112       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6113       // failure_ordering?, weak?]
6114       const size_t NumRecords = Record.size();
6115       unsigned OpNum = 0;
6116       Value *Ptr = nullptr;
6117       unsigned PtrTypeID;
6118       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6119         return error("Invalid record");
6120 
6121       if (!isa<PointerType>(Ptr->getType()))
6122         return error("Cmpxchg operand is not a pointer type");
6123 
6124       Value *Cmp = nullptr;
6125       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6126       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6127                    CmpTypeID, Cmp, CurBB))
6128         return error("Invalid record");
6129 
6130       Value *New = nullptr;
6131       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6132                    New, CurBB) ||
6133           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6134         return error("Invalid record");
6135 
6136       const AtomicOrdering SuccessOrdering =
6137           getDecodedOrdering(Record[OpNum + 1]);
6138       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6139           SuccessOrdering == AtomicOrdering::Unordered)
6140         return error("Invalid record");
6141 
6142       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6143 
6144       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6145         return Err;
6146 
6147       const AtomicOrdering FailureOrdering =
6148           NumRecords < 7
6149               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6150               : getDecodedOrdering(Record[OpNum + 3]);
6151 
6152       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6153           FailureOrdering == AtomicOrdering::Unordered)
6154         return error("Invalid record");
6155 
6156       const Align Alignment(
6157           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6158 
6159       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6160                                 FailureOrdering, SSID);
6161       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6162 
6163       if (NumRecords < 8) {
6164         // Before weak cmpxchgs existed, the instruction simply returned the
6165         // value loaded from memory, so bitcode files from that era will be
6166         // expecting the first component of a modern cmpxchg.
6167         I->insertInto(CurBB, CurBB->end());
6168         I = ExtractValueInst::Create(I, 0);
6169         ResTypeID = CmpTypeID;
6170       } else {
6171         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6172         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6173         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6174       }
6175 
6176       InstructionList.push_back(I);
6177       break;
6178     }
6179     case bitc::FUNC_CODE_INST_CMPXCHG: {
6180       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6181       // failure_ordering, weak, align?]
6182       const size_t NumRecords = Record.size();
6183       unsigned OpNum = 0;
6184       Value *Ptr = nullptr;
6185       unsigned PtrTypeID;
6186       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6187         return error("Invalid record");
6188 
6189       if (!isa<PointerType>(Ptr->getType()))
6190         return error("Cmpxchg operand is not a pointer type");
6191 
6192       Value *Cmp = nullptr;
6193       unsigned CmpTypeID;
6194       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6195         return error("Invalid record");
6196 
6197       Value *Val = nullptr;
6198       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6199                    CurBB))
6200         return error("Invalid record");
6201 
6202       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6203         return error("Invalid record");
6204 
6205       const bool IsVol = Record[OpNum];
6206 
6207       const AtomicOrdering SuccessOrdering =
6208           getDecodedOrdering(Record[OpNum + 1]);
6209       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6210         return error("Invalid cmpxchg success ordering");
6211 
6212       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6213 
6214       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6215         return Err;
6216 
6217       const AtomicOrdering FailureOrdering =
6218           getDecodedOrdering(Record[OpNum + 3]);
6219       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6220         return error("Invalid cmpxchg failure ordering");
6221 
6222       const bool IsWeak = Record[OpNum + 4];
6223 
6224       MaybeAlign Alignment;
6225 
6226       if (NumRecords == (OpNum + 6)) {
6227         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6228           return Err;
6229       }
6230       if (!Alignment)
6231         Alignment =
6232             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6233 
6234       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6235                                 FailureOrdering, SSID);
6236       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6237       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6238 
6239       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6240       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6241 
6242       InstructionList.push_back(I);
6243       break;
6244     }
6245     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6246     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6247       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6248       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6249       const size_t NumRecords = Record.size();
6250       unsigned OpNum = 0;
6251 
6252       Value *Ptr = nullptr;
6253       unsigned PtrTypeID;
6254       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6255         return error("Invalid record");
6256 
6257       if (!isa<PointerType>(Ptr->getType()))
6258         return error("Invalid record");
6259 
6260       Value *Val = nullptr;
6261       unsigned ValTypeID = InvalidTypeID;
6262       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6263         ValTypeID = getContainedTypeID(PtrTypeID);
6264         if (popValue(Record, OpNum, NextValueNo,
6265                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6266           return error("Invalid record");
6267       } else {
6268         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6269           return error("Invalid record");
6270       }
6271 
6272       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6273         return error("Invalid record");
6274 
6275       const AtomicRMWInst::BinOp Operation =
6276           getDecodedRMWOperation(Record[OpNum]);
6277       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6278           Operation > AtomicRMWInst::LAST_BINOP)
6279         return error("Invalid record");
6280 
6281       const bool IsVol = Record[OpNum + 1];
6282 
6283       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6284       if (Ordering == AtomicOrdering::NotAtomic ||
6285           Ordering == AtomicOrdering::Unordered)
6286         return error("Invalid record");
6287 
6288       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6289 
6290       MaybeAlign Alignment;
6291 
6292       if (NumRecords == (OpNum + 5)) {
6293         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6294           return Err;
6295       }
6296 
6297       if (!Alignment)
6298         Alignment =
6299             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6300 
6301       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6302       ResTypeID = ValTypeID;
6303       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6304 
6305       InstructionList.push_back(I);
6306       break;
6307     }
6308     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6309       if (2 != Record.size())
6310         return error("Invalid record");
6311       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6312       if (Ordering == AtomicOrdering::NotAtomic ||
6313           Ordering == AtomicOrdering::Unordered ||
6314           Ordering == AtomicOrdering::Monotonic)
6315         return error("Invalid record");
6316       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6317       I = new FenceInst(Context, Ordering, SSID);
6318       InstructionList.push_back(I);
6319       break;
6320     }
6321     case bitc::FUNC_CODE_INST_CALL: {
6322       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6323       if (Record.size() < 3)
6324         return error("Invalid record");
6325 
6326       unsigned OpNum = 0;
6327       AttributeList PAL = getAttributes(Record[OpNum++]);
6328       unsigned CCInfo = Record[OpNum++];
6329 
6330       FastMathFlags FMF;
6331       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6332         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6333         if (!FMF.any())
6334           return error("Fast math flags indicator set for call with no FMF");
6335       }
6336 
6337       unsigned FTyID = InvalidTypeID;
6338       FunctionType *FTy = nullptr;
6339       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6340         FTyID = Record[OpNum++];
6341         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6342         if (!FTy)
6343           return error("Explicit call type is not a function type");
6344       }
6345 
6346       Value *Callee;
6347       unsigned CalleeTypeID;
6348       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6349                            CurBB))
6350         return error("Invalid record");
6351 
6352       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6353       if (!OpTy)
6354         return error("Callee is not a pointer type");
6355       if (!FTy) {
6356         FTyID = getContainedTypeID(CalleeTypeID);
6357         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6358         if (!FTy)
6359           return error("Callee is not of pointer to function type");
6360       }
6361       if (Record.size() < FTy->getNumParams() + OpNum)
6362         return error("Insufficient operands to call");
6363 
6364       SmallVector<Value*, 16> Args;
6365       SmallVector<unsigned, 16> ArgTyIDs;
6366       // Read the fixed params.
6367       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6368         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6369         if (FTy->getParamType(i)->isLabelTy())
6370           Args.push_back(getBasicBlock(Record[OpNum]));
6371         else
6372           Args.push_back(getValue(Record, OpNum, NextValueNo,
6373                                   FTy->getParamType(i), ArgTyID, CurBB));
6374         ArgTyIDs.push_back(ArgTyID);
6375         if (!Args.back())
6376           return error("Invalid record");
6377       }
6378 
6379       // Read type/value pairs for varargs params.
6380       if (!FTy->isVarArg()) {
6381         if (OpNum != Record.size())
6382           return error("Invalid record");
6383       } else {
6384         while (OpNum != Record.size()) {
6385           Value *Op;
6386           unsigned OpTypeID;
6387           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6388             return error("Invalid record");
6389           Args.push_back(Op);
6390           ArgTyIDs.push_back(OpTypeID);
6391         }
6392       }
6393 
6394       // Upgrade the bundles if needed.
6395       if (!OperandBundles.empty())
6396         UpgradeOperandBundles(OperandBundles);
6397 
6398       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6399       ResTypeID = getContainedTypeID(FTyID);
6400       OperandBundles.clear();
6401       InstructionList.push_back(I);
6402       cast<CallInst>(I)->setCallingConv(
6403           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6404       CallInst::TailCallKind TCK = CallInst::TCK_None;
6405       if (CCInfo & (1 << bitc::CALL_TAIL))
6406         TCK = CallInst::TCK_Tail;
6407       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6408         TCK = CallInst::TCK_MustTail;
6409       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6410         TCK = CallInst::TCK_NoTail;
6411       cast<CallInst>(I)->setTailCallKind(TCK);
6412       cast<CallInst>(I)->setAttributes(PAL);
6413       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6414         I->deleteValue();
6415         return Err;
6416       }
6417       if (FMF.any()) {
6418         if (!isa<FPMathOperator>(I))
6419           return error("Fast-math-flags specified for call without "
6420                        "floating-point scalar or vector return type");
6421         I->setFastMathFlags(FMF);
6422       }
6423       break;
6424     }
6425     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6426       if (Record.size() < 3)
6427         return error("Invalid record");
6428       unsigned OpTyID = Record[0];
6429       Type *OpTy = getTypeByID(OpTyID);
6430       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6431       ResTypeID = Record[2];
6432       Type *ResTy = getTypeByID(ResTypeID);
6433       if (!OpTy || !Op || !ResTy)
6434         return error("Invalid record");
6435       I = new VAArgInst(Op, ResTy);
6436       InstructionList.push_back(I);
6437       break;
6438     }
6439 
6440     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6441       // A call or an invoke can be optionally prefixed with some variable
6442       // number of operand bundle blocks.  These blocks are read into
6443       // OperandBundles and consumed at the next call or invoke instruction.
6444 
6445       if (Record.empty() || Record[0] >= BundleTags.size())
6446         return error("Invalid record");
6447 
6448       std::vector<Value *> Inputs;
6449 
6450       unsigned OpNum = 1;
6451       while (OpNum != Record.size()) {
6452         Value *Op;
6453         unsigned OpTypeID;
6454         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6455           return error("Invalid record");
6456         Inputs.push_back(Op);
6457       }
6458 
6459       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6460       continue;
6461     }
6462 
6463     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6464       unsigned OpNum = 0;
6465       Value *Op = nullptr;
6466       unsigned OpTypeID;
6467       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6468         return error("Invalid record");
6469       if (OpNum != Record.size())
6470         return error("Invalid record");
6471 
6472       I = new FreezeInst(Op);
6473       ResTypeID = OpTypeID;
6474       InstructionList.push_back(I);
6475       break;
6476     }
6477     }
6478 
6479     // Add instruction to end of current BB.  If there is no current BB, reject
6480     // this file.
6481     if (!CurBB) {
6482       I->deleteValue();
6483       return error("Invalid instruction with no BB");
6484     }
6485     if (!OperandBundles.empty()) {
6486       I->deleteValue();
6487       return error("Operand bundles found with no consumer");
6488     }
6489     I->insertInto(CurBB, CurBB->end());
6490 
6491     // If this was a terminator instruction, move to the next block.
6492     if (I->isTerminator()) {
6493       ++CurBBNo;
6494       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6495     }
6496 
6497     // Non-void values get registered in the value table for future use.
6498     if (!I->getType()->isVoidTy()) {
6499       assert(I->getType() == getTypeByID(ResTypeID) &&
6500              "Incorrect result type ID");
6501       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6502         return Err;
6503     }
6504   }
6505 
6506 OutOfRecordLoop:
6507 
6508   if (!OperandBundles.empty())
6509     return error("Operand bundles found with no consumer");
6510 
6511   // Check the function list for unresolved values.
6512   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6513     if (!A->getParent()) {
6514       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6515       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6516         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6517           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6518           delete A;
6519         }
6520       }
6521       return error("Never resolved value found in function");
6522     }
6523   }
6524 
6525   // Unexpected unresolved metadata about to be dropped.
6526   if (MDLoader->hasFwdRefs())
6527     return error("Invalid function metadata: outgoing forward refs");
6528 
6529   if (PhiConstExprBB)
6530     PhiConstExprBB->eraseFromParent();
6531 
6532   for (const auto &Pair : ConstExprEdgeBBs) {
6533     BasicBlock *From = Pair.first.first;
6534     BasicBlock *To = Pair.first.second;
6535     BasicBlock *EdgeBB = Pair.second;
6536     BranchInst::Create(To, EdgeBB);
6537     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6538     To->replacePhiUsesWith(From, EdgeBB);
6539     EdgeBB->moveBefore(To);
6540   }
6541 
6542   // Trim the value list down to the size it was before we parsed this function.
6543   ValueList.shrinkTo(ModuleValueListSize);
6544   MDLoader->shrinkTo(ModuleMDLoaderSize);
6545   std::vector<BasicBlock*>().swap(FunctionBBs);
6546   return Error::success();
6547 }
6548 
6549 /// Find the function body in the bitcode stream
6550 Error BitcodeReader::findFunctionInStream(
6551     Function *F,
6552     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6553   while (DeferredFunctionInfoIterator->second == 0) {
6554     // This is the fallback handling for the old format bitcode that
6555     // didn't contain the function index in the VST, or when we have
6556     // an anonymous function which would not have a VST entry.
6557     // Assert that we have one of those two cases.
6558     assert(VSTOffset == 0 || !F->hasName());
6559     // Parse the next body in the stream and set its position in the
6560     // DeferredFunctionInfo map.
6561     if (Error Err = rememberAndSkipFunctionBodies())
6562       return Err;
6563   }
6564   return Error::success();
6565 }
6566 
6567 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6568   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6569     return SyncScope::ID(Val);
6570   if (Val >= SSIDs.size())
6571     return SyncScope::System; // Map unknown synchronization scopes to system.
6572   return SSIDs[Val];
6573 }
6574 
6575 //===----------------------------------------------------------------------===//
6576 // GVMaterializer implementation
6577 //===----------------------------------------------------------------------===//
6578 
6579 Error BitcodeReader::materialize(GlobalValue *GV) {
6580   Function *F = dyn_cast<Function>(GV);
6581   // If it's not a function or is already material, ignore the request.
6582   if (!F || !F->isMaterializable())
6583     return Error::success();
6584 
6585   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6586   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6587   // If its position is recorded as 0, its body is somewhere in the stream
6588   // but we haven't seen it yet.
6589   if (DFII->second == 0)
6590     if (Error Err = findFunctionInStream(F, DFII))
6591       return Err;
6592 
6593   // Materialize metadata before parsing any function bodies.
6594   if (Error Err = materializeMetadata())
6595     return Err;
6596 
6597   // Move the bit stream to the saved position of the deferred function body.
6598   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6599     return JumpFailed;
6600   if (Error Err = parseFunctionBody(F))
6601     return Err;
6602   F->setIsMaterializable(false);
6603 
6604   if (StripDebugInfo)
6605     stripDebugInfo(*F);
6606 
6607   // Upgrade any old intrinsic calls in the function.
6608   for (auto &I : UpgradedIntrinsics) {
6609     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6610       if (CallInst *CI = dyn_cast<CallInst>(U))
6611         UpgradeIntrinsicCall(CI, I.second);
6612   }
6613 
6614   // Finish fn->subprogram upgrade for materialized functions.
6615   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6616     F->setSubprogram(SP);
6617 
6618   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6619   if (!MDLoader->isStrippingTBAA()) {
6620     for (auto &I : instructions(F)) {
6621       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6622       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6623         continue;
6624       MDLoader->setStripTBAA(true);
6625       stripTBAA(F->getParent());
6626     }
6627   }
6628 
6629   for (auto &I : instructions(F)) {
6630     // "Upgrade" older incorrect branch weights by dropping them.
6631     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6632       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6633         MDString *MDS = cast<MDString>(MD->getOperand(0));
6634         StringRef ProfName = MDS->getString();
6635         // Check consistency of !prof branch_weights metadata.
6636         if (!ProfName.equals("branch_weights"))
6637           continue;
6638         unsigned ExpectedNumOperands = 0;
6639         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6640           ExpectedNumOperands = BI->getNumSuccessors();
6641         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6642           ExpectedNumOperands = SI->getNumSuccessors();
6643         else if (isa<CallInst>(&I))
6644           ExpectedNumOperands = 1;
6645         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6646           ExpectedNumOperands = IBI->getNumDestinations();
6647         else if (isa<SelectInst>(&I))
6648           ExpectedNumOperands = 2;
6649         else
6650           continue; // ignore and continue.
6651 
6652         // If branch weight doesn't match, just strip branch weight.
6653         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6654           I.setMetadata(LLVMContext::MD_prof, nullptr);
6655       }
6656     }
6657 
6658     // Remove incompatible attributes on function calls.
6659     if (auto *CI = dyn_cast<CallBase>(&I)) {
6660       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6661           CI->getFunctionType()->getReturnType()));
6662 
6663       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6664         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6665                                         CI->getArgOperand(ArgNo)->getType()));
6666     }
6667   }
6668 
6669   // Look for functions that rely on old function attribute behavior.
6670   UpgradeFunctionAttributes(*F);
6671 
6672   // Bring in any functions that this function forward-referenced via
6673   // blockaddresses.
6674   return materializeForwardReferencedFunctions();
6675 }
6676 
6677 Error BitcodeReader::materializeModule() {
6678   if (Error Err = materializeMetadata())
6679     return Err;
6680 
6681   // Promise to materialize all forward references.
6682   WillMaterializeAllForwardRefs = true;
6683 
6684   // Iterate over the module, deserializing any functions that are still on
6685   // disk.
6686   for (Function &F : *TheModule) {
6687     if (Error Err = materialize(&F))
6688       return Err;
6689   }
6690   // At this point, if there are any function bodies, parse the rest of
6691   // the bits in the module past the last function block we have recorded
6692   // through either lazy scanning or the VST.
6693   if (LastFunctionBlockBit || NextUnreadBit)
6694     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6695                                     ? LastFunctionBlockBit
6696                                     : NextUnreadBit))
6697       return Err;
6698 
6699   // Check that all block address forward references got resolved (as we
6700   // promised above).
6701   if (!BasicBlockFwdRefs.empty())
6702     return error("Never resolved function from blockaddress");
6703 
6704   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6705   // delete the old functions to clean up. We can't do this unless the entire
6706   // module is materialized because there could always be another function body
6707   // with calls to the old function.
6708   for (auto &I : UpgradedIntrinsics) {
6709     for (auto *U : I.first->users()) {
6710       if (CallInst *CI = dyn_cast<CallInst>(U))
6711         UpgradeIntrinsicCall(CI, I.second);
6712     }
6713     if (!I.first->use_empty())
6714       I.first->replaceAllUsesWith(I.second);
6715     I.first->eraseFromParent();
6716   }
6717   UpgradedIntrinsics.clear();
6718 
6719   UpgradeDebugInfo(*TheModule);
6720 
6721   UpgradeModuleFlags(*TheModule);
6722 
6723   UpgradeARCRuntime(*TheModule);
6724 
6725   return Error::success();
6726 }
6727 
6728 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6729   return IdentifiedStructTypes;
6730 }
6731 
6732 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6733     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6734     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6735     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6736       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6737 
6738 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6739   TheIndex.addModule(ModulePath);
6740 }
6741 
6742 ModuleSummaryIndex::ModuleInfo *
6743 ModuleSummaryIndexBitcodeReader::getThisModule() {
6744   return TheIndex.getModule(ModulePath);
6745 }
6746 
6747 template <bool AllowNullValueInfo>
6748 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6749 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6750   auto VGI = ValueIdToValueInfoMap[ValueId];
6751   // We can have a null value info for memprof callsite info records in
6752   // distributed ThinLTO index files when the callee function summary is not
6753   // included in the index. The bitcode writer records 0 in that case,
6754   // and the caller of this helper will set AllowNullValueInfo to true.
6755   assert(AllowNullValueInfo || std::get<0>(VGI));
6756   return VGI;
6757 }
6758 
6759 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6760     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6761     StringRef SourceFileName) {
6762   std::string GlobalId =
6763       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6764   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6765   auto OriginalNameID = ValueGUID;
6766   if (GlobalValue::isLocalLinkage(Linkage))
6767     OriginalNameID = GlobalValue::getGUID(ValueName);
6768   if (PrintSummaryGUIDs)
6769     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6770            << ValueName << "\n";
6771 
6772   // UseStrtab is false for legacy summary formats and value names are
6773   // created on stack. In that case we save the name in a string saver in
6774   // the index so that the value name can be recorded.
6775   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6776       TheIndex.getOrInsertValueInfo(
6777           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6778       OriginalNameID, ValueGUID);
6779 }
6780 
6781 // Specialized value symbol table parser used when reading module index
6782 // blocks where we don't actually create global values. The parsed information
6783 // is saved in the bitcode reader for use when later parsing summaries.
6784 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6785     uint64_t Offset,
6786     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6787   // With a strtab the VST is not required to parse the summary.
6788   if (UseStrtab)
6789     return Error::success();
6790 
6791   assert(Offset > 0 && "Expected non-zero VST offset");
6792   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6793   if (!MaybeCurrentBit)
6794     return MaybeCurrentBit.takeError();
6795   uint64_t CurrentBit = MaybeCurrentBit.get();
6796 
6797   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6798     return Err;
6799 
6800   SmallVector<uint64_t, 64> Record;
6801 
6802   // Read all the records for this value table.
6803   SmallString<128> ValueName;
6804 
6805   while (true) {
6806     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6807     if (!MaybeEntry)
6808       return MaybeEntry.takeError();
6809     BitstreamEntry Entry = MaybeEntry.get();
6810 
6811     switch (Entry.Kind) {
6812     case BitstreamEntry::SubBlock: // Handled for us already.
6813     case BitstreamEntry::Error:
6814       return error("Malformed block");
6815     case BitstreamEntry::EndBlock:
6816       // Done parsing VST, jump back to wherever we came from.
6817       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6818         return JumpFailed;
6819       return Error::success();
6820     case BitstreamEntry::Record:
6821       // The interesting case.
6822       break;
6823     }
6824 
6825     // Read a record.
6826     Record.clear();
6827     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6828     if (!MaybeRecord)
6829       return MaybeRecord.takeError();
6830     switch (MaybeRecord.get()) {
6831     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6832       break;
6833     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6834       if (convertToString(Record, 1, ValueName))
6835         return error("Invalid record");
6836       unsigned ValueID = Record[0];
6837       assert(!SourceFileName.empty());
6838       auto VLI = ValueIdToLinkageMap.find(ValueID);
6839       assert(VLI != ValueIdToLinkageMap.end() &&
6840              "No linkage found for VST entry?");
6841       auto Linkage = VLI->second;
6842       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6843       ValueName.clear();
6844       break;
6845     }
6846     case bitc::VST_CODE_FNENTRY: {
6847       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6848       if (convertToString(Record, 2, ValueName))
6849         return error("Invalid record");
6850       unsigned ValueID = Record[0];
6851       assert(!SourceFileName.empty());
6852       auto VLI = ValueIdToLinkageMap.find(ValueID);
6853       assert(VLI != ValueIdToLinkageMap.end() &&
6854              "No linkage found for VST entry?");
6855       auto Linkage = VLI->second;
6856       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6857       ValueName.clear();
6858       break;
6859     }
6860     case bitc::VST_CODE_COMBINED_ENTRY: {
6861       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6862       unsigned ValueID = Record[0];
6863       GlobalValue::GUID RefGUID = Record[1];
6864       // The "original name", which is the second value of the pair will be
6865       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6866       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6867           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6868       break;
6869     }
6870     }
6871   }
6872 }
6873 
6874 // Parse just the blocks needed for building the index out of the module.
6875 // At the end of this routine the module Index is populated with a map
6876 // from global value id to GlobalValueSummary objects.
6877 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6878   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6879     return Err;
6880 
6881   SmallVector<uint64_t, 64> Record;
6882   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6883   unsigned ValueId = 0;
6884 
6885   // Read the index for this module.
6886   while (true) {
6887     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6888     if (!MaybeEntry)
6889       return MaybeEntry.takeError();
6890     llvm::BitstreamEntry Entry = MaybeEntry.get();
6891 
6892     switch (Entry.Kind) {
6893     case BitstreamEntry::Error:
6894       return error("Malformed block");
6895     case BitstreamEntry::EndBlock:
6896       return Error::success();
6897 
6898     case BitstreamEntry::SubBlock:
6899       switch (Entry.ID) {
6900       default: // Skip unknown content.
6901         if (Error Err = Stream.SkipBlock())
6902           return Err;
6903         break;
6904       case bitc::BLOCKINFO_BLOCK_ID:
6905         // Need to parse these to get abbrev ids (e.g. for VST)
6906         if (Error Err = readBlockInfo())
6907           return Err;
6908         break;
6909       case bitc::VALUE_SYMTAB_BLOCK_ID:
6910         // Should have been parsed earlier via VSTOffset, unless there
6911         // is no summary section.
6912         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6913                 !SeenGlobalValSummary) &&
6914                "Expected early VST parse via VSTOffset record");
6915         if (Error Err = Stream.SkipBlock())
6916           return Err;
6917         break;
6918       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6919       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6920         // Add the module if it is a per-module index (has a source file name).
6921         if (!SourceFileName.empty())
6922           addThisModule();
6923         assert(!SeenValueSymbolTable &&
6924                "Already read VST when parsing summary block?");
6925         // We might not have a VST if there were no values in the
6926         // summary. An empty summary block generated when we are
6927         // performing ThinLTO compiles so we don't later invoke
6928         // the regular LTO process on them.
6929         if (VSTOffset > 0) {
6930           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6931             return Err;
6932           SeenValueSymbolTable = true;
6933         }
6934         SeenGlobalValSummary = true;
6935         if (Error Err = parseEntireSummary(Entry.ID))
6936           return Err;
6937         break;
6938       case bitc::MODULE_STRTAB_BLOCK_ID:
6939         if (Error Err = parseModuleStringTable())
6940           return Err;
6941         break;
6942       }
6943       continue;
6944 
6945     case BitstreamEntry::Record: {
6946         Record.clear();
6947         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6948         if (!MaybeBitCode)
6949           return MaybeBitCode.takeError();
6950         switch (MaybeBitCode.get()) {
6951         default:
6952           break; // Default behavior, ignore unknown content.
6953         case bitc::MODULE_CODE_VERSION: {
6954           if (Error Err = parseVersionRecord(Record).takeError())
6955             return Err;
6956           break;
6957         }
6958         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6959         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6960           SmallString<128> ValueName;
6961           if (convertToString(Record, 0, ValueName))
6962             return error("Invalid record");
6963           SourceFileName = ValueName.c_str();
6964           break;
6965         }
6966         /// MODULE_CODE_HASH: [5*i32]
6967         case bitc::MODULE_CODE_HASH: {
6968           if (Record.size() != 5)
6969             return error("Invalid hash length " + Twine(Record.size()).str());
6970           auto &Hash = getThisModule()->second;
6971           int Pos = 0;
6972           for (auto &Val : Record) {
6973             assert(!(Val >> 32) && "Unexpected high bits set");
6974             Hash[Pos++] = Val;
6975           }
6976           break;
6977         }
6978         /// MODULE_CODE_VSTOFFSET: [offset]
6979         case bitc::MODULE_CODE_VSTOFFSET:
6980           if (Record.empty())
6981             return error("Invalid record");
6982           // Note that we subtract 1 here because the offset is relative to one
6983           // word before the start of the identification or module block, which
6984           // was historically always the start of the regular bitcode header.
6985           VSTOffset = Record[0] - 1;
6986           break;
6987         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6988         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6989         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6990         // v2: [strtab offset, strtab size, v1]
6991         case bitc::MODULE_CODE_GLOBALVAR:
6992         case bitc::MODULE_CODE_FUNCTION:
6993         case bitc::MODULE_CODE_ALIAS: {
6994           StringRef Name;
6995           ArrayRef<uint64_t> GVRecord;
6996           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6997           if (GVRecord.size() <= 3)
6998             return error("Invalid record");
6999           uint64_t RawLinkage = GVRecord[3];
7000           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7001           if (!UseStrtab) {
7002             ValueIdToLinkageMap[ValueId++] = Linkage;
7003             break;
7004           }
7005 
7006           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7007           break;
7008         }
7009         }
7010       }
7011       continue;
7012     }
7013   }
7014 }
7015 
7016 std::vector<ValueInfo>
7017 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7018   std::vector<ValueInfo> Ret;
7019   Ret.reserve(Record.size());
7020   for (uint64_t RefValueId : Record)
7021     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7022   return Ret;
7023 }
7024 
7025 std::vector<FunctionSummary::EdgeTy>
7026 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7027                                               bool IsOldProfileFormat,
7028                                               bool HasProfile, bool HasRelBF) {
7029   std::vector<FunctionSummary::EdgeTy> Ret;
7030   Ret.reserve(Record.size());
7031   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7032     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7033     uint64_t RelBF = 0;
7034     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7035     if (IsOldProfileFormat) {
7036       I += 1; // Skip old callsitecount field
7037       if (HasProfile)
7038         I += 1; // Skip old profilecount field
7039     } else if (HasProfile)
7040       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7041     else if (HasRelBF)
7042       RelBF = Record[++I];
7043     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7044   }
7045   return Ret;
7046 }
7047 
7048 static void
7049 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7050                                        WholeProgramDevirtResolution &Wpd) {
7051   uint64_t ArgNum = Record[Slot++];
7052   WholeProgramDevirtResolution::ByArg &B =
7053       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7054   Slot += ArgNum;
7055 
7056   B.TheKind =
7057       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7058   B.Info = Record[Slot++];
7059   B.Byte = Record[Slot++];
7060   B.Bit = Record[Slot++];
7061 }
7062 
7063 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7064                                               StringRef Strtab, size_t &Slot,
7065                                               TypeIdSummary &TypeId) {
7066   uint64_t Id = Record[Slot++];
7067   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7068 
7069   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7070   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7071                         static_cast<size_t>(Record[Slot + 1])};
7072   Slot += 2;
7073 
7074   uint64_t ResByArgNum = Record[Slot++];
7075   for (uint64_t I = 0; I != ResByArgNum; ++I)
7076     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7077 }
7078 
7079 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7080                                      StringRef Strtab,
7081                                      ModuleSummaryIndex &TheIndex) {
7082   size_t Slot = 0;
7083   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7084       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7085   Slot += 2;
7086 
7087   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7088   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7089   TypeId.TTRes.AlignLog2 = Record[Slot++];
7090   TypeId.TTRes.SizeM1 = Record[Slot++];
7091   TypeId.TTRes.BitMask = Record[Slot++];
7092   TypeId.TTRes.InlineBits = Record[Slot++];
7093 
7094   while (Slot < Record.size())
7095     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7096 }
7097 
7098 std::vector<FunctionSummary::ParamAccess>
7099 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7100   auto ReadRange = [&]() {
7101     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7102                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7103     Record = Record.drop_front();
7104     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7105                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7106     Record = Record.drop_front();
7107     ConstantRange Range{Lower, Upper};
7108     assert(!Range.isFullSet());
7109     assert(!Range.isUpperSignWrapped());
7110     return Range;
7111   };
7112 
7113   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7114   while (!Record.empty()) {
7115     PendingParamAccesses.emplace_back();
7116     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7117     ParamAccess.ParamNo = Record.front();
7118     Record = Record.drop_front();
7119     ParamAccess.Use = ReadRange();
7120     ParamAccess.Calls.resize(Record.front());
7121     Record = Record.drop_front();
7122     for (auto &Call : ParamAccess.Calls) {
7123       Call.ParamNo = Record.front();
7124       Record = Record.drop_front();
7125       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7126       Record = Record.drop_front();
7127       Call.Offsets = ReadRange();
7128     }
7129   }
7130   return PendingParamAccesses;
7131 }
7132 
7133 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7134     ArrayRef<uint64_t> Record, size_t &Slot,
7135     TypeIdCompatibleVtableInfo &TypeId) {
7136   uint64_t Offset = Record[Slot++];
7137   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7138   TypeId.push_back({Offset, Callee});
7139 }
7140 
7141 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7142     ArrayRef<uint64_t> Record) {
7143   size_t Slot = 0;
7144   TypeIdCompatibleVtableInfo &TypeId =
7145       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7146           {Strtab.data() + Record[Slot],
7147            static_cast<size_t>(Record[Slot + 1])});
7148   Slot += 2;
7149 
7150   while (Slot < Record.size())
7151     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7152 }
7153 
7154 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7155                            unsigned WOCnt) {
7156   // Readonly and writeonly refs are in the end of the refs list.
7157   assert(ROCnt + WOCnt <= Refs.size());
7158   unsigned FirstWORef = Refs.size() - WOCnt;
7159   unsigned RefNo = FirstWORef - ROCnt;
7160   for (; RefNo < FirstWORef; ++RefNo)
7161     Refs[RefNo].setReadOnly();
7162   for (; RefNo < Refs.size(); ++RefNo)
7163     Refs[RefNo].setWriteOnly();
7164 }
7165 
7166 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7167 // objects in the index.
7168 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7169   if (Error Err = Stream.EnterSubBlock(ID))
7170     return Err;
7171   SmallVector<uint64_t, 64> Record;
7172 
7173   // Parse version
7174   {
7175     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7176     if (!MaybeEntry)
7177       return MaybeEntry.takeError();
7178     BitstreamEntry Entry = MaybeEntry.get();
7179 
7180     if (Entry.Kind != BitstreamEntry::Record)
7181       return error("Invalid Summary Block: record for version expected");
7182     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7183     if (!MaybeRecord)
7184       return MaybeRecord.takeError();
7185     if (MaybeRecord.get() != bitc::FS_VERSION)
7186       return error("Invalid Summary Block: version expected");
7187   }
7188   const uint64_t Version = Record[0];
7189   const bool IsOldProfileFormat = Version == 1;
7190   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7191     return error("Invalid summary version " + Twine(Version) +
7192                  ". Version should be in the range [1-" +
7193                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7194                  "].");
7195   Record.clear();
7196 
7197   // Keep around the last seen summary to be used when we see an optional
7198   // "OriginalName" attachement.
7199   GlobalValueSummary *LastSeenSummary = nullptr;
7200   GlobalValue::GUID LastSeenGUID = 0;
7201 
7202   // We can expect to see any number of type ID information records before
7203   // each function summary records; these variables store the information
7204   // collected so far so that it can be used to create the summary object.
7205   std::vector<GlobalValue::GUID> PendingTypeTests;
7206   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7207       PendingTypeCheckedLoadVCalls;
7208   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7209       PendingTypeCheckedLoadConstVCalls;
7210   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7211 
7212   std::vector<CallsiteInfo> PendingCallsites;
7213   std::vector<AllocInfo> PendingAllocs;
7214 
7215   while (true) {
7216     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7217     if (!MaybeEntry)
7218       return MaybeEntry.takeError();
7219     BitstreamEntry Entry = MaybeEntry.get();
7220 
7221     switch (Entry.Kind) {
7222     case BitstreamEntry::SubBlock: // Handled for us already.
7223     case BitstreamEntry::Error:
7224       return error("Malformed block");
7225     case BitstreamEntry::EndBlock:
7226       return Error::success();
7227     case BitstreamEntry::Record:
7228       // The interesting case.
7229       break;
7230     }
7231 
7232     // Read a record. The record format depends on whether this
7233     // is a per-module index or a combined index file. In the per-module
7234     // case the records contain the associated value's ID for correlation
7235     // with VST entries. In the combined index the correlation is done
7236     // via the bitcode offset of the summary records (which were saved
7237     // in the combined index VST entries). The records also contain
7238     // information used for ThinLTO renaming and importing.
7239     Record.clear();
7240     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7241     if (!MaybeBitCode)
7242       return MaybeBitCode.takeError();
7243     switch (unsigned BitCode = MaybeBitCode.get()) {
7244     default: // Default behavior: ignore.
7245       break;
7246     case bitc::FS_FLAGS: {  // [flags]
7247       TheIndex.setFlags(Record[0]);
7248       break;
7249     }
7250     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7251       uint64_t ValueID = Record[0];
7252       GlobalValue::GUID RefGUID = Record[1];
7253       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7254           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7255       break;
7256     }
7257     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7258     //                numrefs x valueid, n x (valueid)]
7259     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7260     //                        numrefs x valueid,
7261     //                        n x (valueid, hotness)]
7262     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7263     //                      numrefs x valueid,
7264     //                      n x (valueid, relblockfreq)]
7265     case bitc::FS_PERMODULE:
7266     case bitc::FS_PERMODULE_RELBF:
7267     case bitc::FS_PERMODULE_PROFILE: {
7268       unsigned ValueID = Record[0];
7269       uint64_t RawFlags = Record[1];
7270       unsigned InstCount = Record[2];
7271       uint64_t RawFunFlags = 0;
7272       unsigned NumRefs = Record[3];
7273       unsigned NumRORefs = 0, NumWORefs = 0;
7274       int RefListStartIndex = 4;
7275       if (Version >= 4) {
7276         RawFunFlags = Record[3];
7277         NumRefs = Record[4];
7278         RefListStartIndex = 5;
7279         if (Version >= 5) {
7280           NumRORefs = Record[5];
7281           RefListStartIndex = 6;
7282           if (Version >= 7) {
7283             NumWORefs = Record[6];
7284             RefListStartIndex = 7;
7285           }
7286         }
7287       }
7288 
7289       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7290       // The module path string ref set in the summary must be owned by the
7291       // index's module string table. Since we don't have a module path
7292       // string table section in the per-module index, we create a single
7293       // module path string table entry with an empty (0) ID to take
7294       // ownership.
7295       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7296       assert(Record.size() >= RefListStartIndex + NumRefs &&
7297              "Record size inconsistent with number of references");
7298       std::vector<ValueInfo> Refs = makeRefList(
7299           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7300       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7301       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7302       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7303           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7304           IsOldProfileFormat, HasProfile, HasRelBF);
7305       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7306       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7307       // In order to save memory, only record the memprof summaries if this is
7308       // the prevailing copy of a symbol. The linker doesn't resolve local
7309       // linkage values so don't check whether those are prevailing.
7310       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7311       if (IsPrevailing &&
7312           !GlobalValue::isLocalLinkage(LT) &&
7313           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7314         PendingCallsites.clear();
7315         PendingAllocs.clear();
7316       }
7317       auto FS = std::make_unique<FunctionSummary>(
7318           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7319           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7320           std::move(PendingTypeTestAssumeVCalls),
7321           std::move(PendingTypeCheckedLoadVCalls),
7322           std::move(PendingTypeTestAssumeConstVCalls),
7323           std::move(PendingTypeCheckedLoadConstVCalls),
7324           std::move(PendingParamAccesses), std::move(PendingCallsites),
7325           std::move(PendingAllocs));
7326       FS->setModulePath(getThisModule()->first());
7327       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7328       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7329                                      std::move(FS));
7330       break;
7331     }
7332     // FS_ALIAS: [valueid, flags, valueid]
7333     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7334     // they expect all aliasee summaries to be available.
7335     case bitc::FS_ALIAS: {
7336       unsigned ValueID = Record[0];
7337       uint64_t RawFlags = Record[1];
7338       unsigned AliaseeID = Record[2];
7339       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7340       auto AS = std::make_unique<AliasSummary>(Flags);
7341       // The module path string ref set in the summary must be owned by the
7342       // index's module string table. Since we don't have a module path
7343       // string table section in the per-module index, we create a single
7344       // module path string table entry with an empty (0) ID to take
7345       // ownership.
7346       AS->setModulePath(getThisModule()->first());
7347 
7348       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7349       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7350       if (!AliaseeInModule)
7351         return error("Alias expects aliasee summary to be parsed");
7352       AS->setAliasee(AliaseeVI, AliaseeInModule);
7353 
7354       auto GUID = getValueInfoFromValueId(ValueID);
7355       AS->setOriginalName(std::get<1>(GUID));
7356       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7357       break;
7358     }
7359     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7360     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7361       unsigned ValueID = Record[0];
7362       uint64_t RawFlags = Record[1];
7363       unsigned RefArrayStart = 2;
7364       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7365                                       /* WriteOnly */ false,
7366                                       /* Constant */ false,
7367                                       GlobalObject::VCallVisibilityPublic);
7368       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7369       if (Version >= 5) {
7370         GVF = getDecodedGVarFlags(Record[2]);
7371         RefArrayStart = 3;
7372       }
7373       std::vector<ValueInfo> Refs =
7374           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7375       auto FS =
7376           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7377       FS->setModulePath(getThisModule()->first());
7378       auto GUID = getValueInfoFromValueId(ValueID);
7379       FS->setOriginalName(std::get<1>(GUID));
7380       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7381       break;
7382     }
7383     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7384     //                        numrefs, numrefs x valueid,
7385     //                        n x (valueid, offset)]
7386     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7387       unsigned ValueID = Record[0];
7388       uint64_t RawFlags = Record[1];
7389       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7390       unsigned NumRefs = Record[3];
7391       unsigned RefListStartIndex = 4;
7392       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7393       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7394       std::vector<ValueInfo> Refs = makeRefList(
7395           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7396       VTableFuncList VTableFuncs;
7397       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7398         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7399         uint64_t Offset = Record[++I];
7400         VTableFuncs.push_back({Callee, Offset});
7401       }
7402       auto VS =
7403           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7404       VS->setModulePath(getThisModule()->first());
7405       VS->setVTableFuncs(VTableFuncs);
7406       auto GUID = getValueInfoFromValueId(ValueID);
7407       VS->setOriginalName(std::get<1>(GUID));
7408       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7409       break;
7410     }
7411     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7412     //               numrefs x valueid, n x (valueid)]
7413     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7414     //                       numrefs x valueid, n x (valueid, hotness)]
7415     case bitc::FS_COMBINED:
7416     case bitc::FS_COMBINED_PROFILE: {
7417       unsigned ValueID = Record[0];
7418       uint64_t ModuleId = Record[1];
7419       uint64_t RawFlags = Record[2];
7420       unsigned InstCount = Record[3];
7421       uint64_t RawFunFlags = 0;
7422       uint64_t EntryCount = 0;
7423       unsigned NumRefs = Record[4];
7424       unsigned NumRORefs = 0, NumWORefs = 0;
7425       int RefListStartIndex = 5;
7426 
7427       if (Version >= 4) {
7428         RawFunFlags = Record[4];
7429         RefListStartIndex = 6;
7430         size_t NumRefsIndex = 5;
7431         if (Version >= 5) {
7432           unsigned NumRORefsOffset = 1;
7433           RefListStartIndex = 7;
7434           if (Version >= 6) {
7435             NumRefsIndex = 6;
7436             EntryCount = Record[5];
7437             RefListStartIndex = 8;
7438             if (Version >= 7) {
7439               RefListStartIndex = 9;
7440               NumWORefs = Record[8];
7441               NumRORefsOffset = 2;
7442             }
7443           }
7444           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7445         }
7446         NumRefs = Record[NumRefsIndex];
7447       }
7448 
7449       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7450       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7451       assert(Record.size() >= RefListStartIndex + NumRefs &&
7452              "Record size inconsistent with number of references");
7453       std::vector<ValueInfo> Refs = makeRefList(
7454           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7455       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7456       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7457           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7458           IsOldProfileFormat, HasProfile, false);
7459       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7460       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7461       auto FS = std::make_unique<FunctionSummary>(
7462           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7463           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7464           std::move(PendingTypeTestAssumeVCalls),
7465           std::move(PendingTypeCheckedLoadVCalls),
7466           std::move(PendingTypeTestAssumeConstVCalls),
7467           std::move(PendingTypeCheckedLoadConstVCalls),
7468           std::move(PendingParamAccesses), std::move(PendingCallsites),
7469           std::move(PendingAllocs));
7470       LastSeenSummary = FS.get();
7471       LastSeenGUID = VI.getGUID();
7472       FS->setModulePath(ModuleIdMap[ModuleId]);
7473       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7474       break;
7475     }
7476     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7477     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7478     // they expect all aliasee summaries to be available.
7479     case bitc::FS_COMBINED_ALIAS: {
7480       unsigned ValueID = Record[0];
7481       uint64_t ModuleId = Record[1];
7482       uint64_t RawFlags = Record[2];
7483       unsigned AliaseeValueId = Record[3];
7484       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7485       auto AS = std::make_unique<AliasSummary>(Flags);
7486       LastSeenSummary = AS.get();
7487       AS->setModulePath(ModuleIdMap[ModuleId]);
7488 
7489       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7490       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7491       AS->setAliasee(AliaseeVI, AliaseeInModule);
7492 
7493       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7494       LastSeenGUID = VI.getGUID();
7495       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7496       break;
7497     }
7498     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7499     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7500       unsigned ValueID = Record[0];
7501       uint64_t ModuleId = Record[1];
7502       uint64_t RawFlags = Record[2];
7503       unsigned RefArrayStart = 3;
7504       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7505                                       /* WriteOnly */ false,
7506                                       /* Constant */ false,
7507                                       GlobalObject::VCallVisibilityPublic);
7508       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7509       if (Version >= 5) {
7510         GVF = getDecodedGVarFlags(Record[3]);
7511         RefArrayStart = 4;
7512       }
7513       std::vector<ValueInfo> Refs =
7514           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7515       auto FS =
7516           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7517       LastSeenSummary = FS.get();
7518       FS->setModulePath(ModuleIdMap[ModuleId]);
7519       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7520       LastSeenGUID = VI.getGUID();
7521       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7522       break;
7523     }
7524     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7525     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7526       uint64_t OriginalName = Record[0];
7527       if (!LastSeenSummary)
7528         return error("Name attachment that does not follow a combined record");
7529       LastSeenSummary->setOriginalName(OriginalName);
7530       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7531       // Reset the LastSeenSummary
7532       LastSeenSummary = nullptr;
7533       LastSeenGUID = 0;
7534       break;
7535     }
7536     case bitc::FS_TYPE_TESTS:
7537       assert(PendingTypeTests.empty());
7538       llvm::append_range(PendingTypeTests, Record);
7539       break;
7540 
7541     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7542       assert(PendingTypeTestAssumeVCalls.empty());
7543       for (unsigned I = 0; I != Record.size(); I += 2)
7544         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7545       break;
7546 
7547     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7548       assert(PendingTypeCheckedLoadVCalls.empty());
7549       for (unsigned I = 0; I != Record.size(); I += 2)
7550         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7551       break;
7552 
7553     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7554       PendingTypeTestAssumeConstVCalls.push_back(
7555           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7556       break;
7557 
7558     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7559       PendingTypeCheckedLoadConstVCalls.push_back(
7560           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7561       break;
7562 
7563     case bitc::FS_CFI_FUNCTION_DEFS: {
7564       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7565       for (unsigned I = 0; I != Record.size(); I += 2)
7566         CfiFunctionDefs.insert(
7567             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7568       break;
7569     }
7570 
7571     case bitc::FS_CFI_FUNCTION_DECLS: {
7572       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7573       for (unsigned I = 0; I != Record.size(); I += 2)
7574         CfiFunctionDecls.insert(
7575             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7576       break;
7577     }
7578 
7579     case bitc::FS_TYPE_ID:
7580       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7581       break;
7582 
7583     case bitc::FS_TYPE_ID_METADATA:
7584       parseTypeIdCompatibleVtableSummaryRecord(Record);
7585       break;
7586 
7587     case bitc::FS_BLOCK_COUNT:
7588       TheIndex.addBlockCount(Record[0]);
7589       break;
7590 
7591     case bitc::FS_PARAM_ACCESS: {
7592       PendingParamAccesses = parseParamAccesses(Record);
7593       break;
7594     }
7595 
7596     case bitc::FS_STACK_IDS: { // [n x stackid]
7597       // Save stack ids in the reader to consult when adding stack ids from the
7598       // lists in the stack node and alloc node entries.
7599       StackIds = ArrayRef<uint64_t>(Record);
7600       break;
7601     }
7602 
7603     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7604       unsigned ValueID = Record[0];
7605       SmallVector<unsigned> StackIdList;
7606       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7607         assert(*R < StackIds.size());
7608         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7609       }
7610       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7611       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7612       break;
7613     }
7614 
7615     case bitc::FS_COMBINED_CALLSITE_INFO: {
7616       auto RecordIter = Record.begin();
7617       unsigned ValueID = *RecordIter++;
7618       unsigned NumStackIds = *RecordIter++;
7619       unsigned NumVersions = *RecordIter++;
7620       assert(Record.size() == 3 + NumStackIds + NumVersions);
7621       SmallVector<unsigned> StackIdList;
7622       for (unsigned J = 0; J < NumStackIds; J++) {
7623         assert(*RecordIter < StackIds.size());
7624         StackIdList.push_back(
7625             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7626       }
7627       SmallVector<unsigned> Versions;
7628       for (unsigned J = 0; J < NumVersions; J++)
7629         Versions.push_back(*RecordIter++);
7630       ValueInfo VI = std::get<0>(
7631           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7632       PendingCallsites.push_back(
7633           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7634       break;
7635     }
7636 
7637     case bitc::FS_PERMODULE_ALLOC_INFO: {
7638       unsigned I = 0;
7639       std::vector<MIBInfo> MIBs;
7640       while (I < Record.size()) {
7641         assert(Record.size() - I >= 2);
7642         AllocationType AllocType = (AllocationType)Record[I++];
7643         unsigned NumStackEntries = Record[I++];
7644         assert(Record.size() - I >= NumStackEntries);
7645         SmallVector<unsigned> StackIdList;
7646         for (unsigned J = 0; J < NumStackEntries; J++) {
7647           assert(Record[I] < StackIds.size());
7648           StackIdList.push_back(
7649               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7650         }
7651         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7652       }
7653       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7654       break;
7655     }
7656 
7657     case bitc::FS_COMBINED_ALLOC_INFO: {
7658       unsigned I = 0;
7659       std::vector<MIBInfo> MIBs;
7660       unsigned NumMIBs = Record[I++];
7661       unsigned NumVersions = Record[I++];
7662       unsigned MIBsRead = 0;
7663       while (MIBsRead++ < NumMIBs) {
7664         assert(Record.size() - I >= 2);
7665         AllocationType AllocType = (AllocationType)Record[I++];
7666         unsigned NumStackEntries = Record[I++];
7667         assert(Record.size() - I >= NumStackEntries);
7668         SmallVector<unsigned> StackIdList;
7669         for (unsigned J = 0; J < NumStackEntries; J++) {
7670           assert(Record[I] < StackIds.size());
7671           StackIdList.push_back(
7672               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7673         }
7674         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7675       }
7676       assert(Record.size() - I >= NumVersions);
7677       SmallVector<uint8_t> Versions;
7678       for (unsigned J = 0; J < NumVersions; J++)
7679         Versions.push_back(Record[I++]);
7680       PendingAllocs.push_back(
7681           AllocInfo(std::move(Versions), std::move(MIBs)));
7682       break;
7683     }
7684     }
7685   }
7686   llvm_unreachable("Exit infinite loop");
7687 }
7688 
7689 // Parse the  module string table block into the Index.
7690 // This populates the ModulePathStringTable map in the index.
7691 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7692   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7693     return Err;
7694 
7695   SmallVector<uint64_t, 64> Record;
7696 
7697   SmallString<128> ModulePath;
7698   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7699 
7700   while (true) {
7701     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7702     if (!MaybeEntry)
7703       return MaybeEntry.takeError();
7704     BitstreamEntry Entry = MaybeEntry.get();
7705 
7706     switch (Entry.Kind) {
7707     case BitstreamEntry::SubBlock: // Handled for us already.
7708     case BitstreamEntry::Error:
7709       return error("Malformed block");
7710     case BitstreamEntry::EndBlock:
7711       return Error::success();
7712     case BitstreamEntry::Record:
7713       // The interesting case.
7714       break;
7715     }
7716 
7717     Record.clear();
7718     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7719     if (!MaybeRecord)
7720       return MaybeRecord.takeError();
7721     switch (MaybeRecord.get()) {
7722     default: // Default behavior: ignore.
7723       break;
7724     case bitc::MST_CODE_ENTRY: {
7725       // MST_ENTRY: [modid, namechar x N]
7726       uint64_t ModuleId = Record[0];
7727 
7728       if (convertToString(Record, 1, ModulePath))
7729         return error("Invalid record");
7730 
7731       LastSeenModule = TheIndex.addModule(ModulePath);
7732       ModuleIdMap[ModuleId] = LastSeenModule->first();
7733 
7734       ModulePath.clear();
7735       break;
7736     }
7737     /// MST_CODE_HASH: [5*i32]
7738     case bitc::MST_CODE_HASH: {
7739       if (Record.size() != 5)
7740         return error("Invalid hash length " + Twine(Record.size()).str());
7741       if (!LastSeenModule)
7742         return error("Invalid hash that does not follow a module path");
7743       int Pos = 0;
7744       for (auto &Val : Record) {
7745         assert(!(Val >> 32) && "Unexpected high bits set");
7746         LastSeenModule->second[Pos++] = Val;
7747       }
7748       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7749       LastSeenModule = nullptr;
7750       break;
7751     }
7752     }
7753   }
7754   llvm_unreachable("Exit infinite loop");
7755 }
7756 
7757 namespace {
7758 
7759 // FIXME: This class is only here to support the transition to llvm::Error. It
7760 // will be removed once this transition is complete. Clients should prefer to
7761 // deal with the Error value directly, rather than converting to error_code.
7762 class BitcodeErrorCategoryType : public std::error_category {
7763   const char *name() const noexcept override {
7764     return "llvm.bitcode";
7765   }
7766 
7767   std::string message(int IE) const override {
7768     BitcodeError E = static_cast<BitcodeError>(IE);
7769     switch (E) {
7770     case BitcodeError::CorruptedBitcode:
7771       return "Corrupted bitcode";
7772     }
7773     llvm_unreachable("Unknown error type!");
7774   }
7775 };
7776 
7777 } // end anonymous namespace
7778 
7779 const std::error_category &llvm::BitcodeErrorCategory() {
7780   static BitcodeErrorCategoryType ErrorCategory;
7781   return ErrorCategory;
7782 }
7783 
7784 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7785                                             unsigned Block, unsigned RecordID) {
7786   if (Error Err = Stream.EnterSubBlock(Block))
7787     return std::move(Err);
7788 
7789   StringRef Strtab;
7790   while (true) {
7791     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7792     if (!MaybeEntry)
7793       return MaybeEntry.takeError();
7794     llvm::BitstreamEntry Entry = MaybeEntry.get();
7795 
7796     switch (Entry.Kind) {
7797     case BitstreamEntry::EndBlock:
7798       return Strtab;
7799 
7800     case BitstreamEntry::Error:
7801       return error("Malformed block");
7802 
7803     case BitstreamEntry::SubBlock:
7804       if (Error Err = Stream.SkipBlock())
7805         return std::move(Err);
7806       break;
7807 
7808     case BitstreamEntry::Record:
7809       StringRef Blob;
7810       SmallVector<uint64_t, 1> Record;
7811       Expected<unsigned> MaybeRecord =
7812           Stream.readRecord(Entry.ID, Record, &Blob);
7813       if (!MaybeRecord)
7814         return MaybeRecord.takeError();
7815       if (MaybeRecord.get() == RecordID)
7816         Strtab = Blob;
7817       break;
7818     }
7819   }
7820 }
7821 
7822 //===----------------------------------------------------------------------===//
7823 // External interface
7824 //===----------------------------------------------------------------------===//
7825 
7826 Expected<std::vector<BitcodeModule>>
7827 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7828   auto FOrErr = getBitcodeFileContents(Buffer);
7829   if (!FOrErr)
7830     return FOrErr.takeError();
7831   return std::move(FOrErr->Mods);
7832 }
7833 
7834 Expected<BitcodeFileContents>
7835 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7836   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7837   if (!StreamOrErr)
7838     return StreamOrErr.takeError();
7839   BitstreamCursor &Stream = *StreamOrErr;
7840 
7841   BitcodeFileContents F;
7842   while (true) {
7843     uint64_t BCBegin = Stream.getCurrentByteNo();
7844 
7845     // We may be consuming bitcode from a client that leaves garbage at the end
7846     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7847     // the end that there cannot possibly be another module, stop looking.
7848     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7849       return F;
7850 
7851     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7852     if (!MaybeEntry)
7853       return MaybeEntry.takeError();
7854     llvm::BitstreamEntry Entry = MaybeEntry.get();
7855 
7856     switch (Entry.Kind) {
7857     case BitstreamEntry::EndBlock:
7858     case BitstreamEntry::Error:
7859       return error("Malformed block");
7860 
7861     case BitstreamEntry::SubBlock: {
7862       uint64_t IdentificationBit = -1ull;
7863       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7864         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7865         if (Error Err = Stream.SkipBlock())
7866           return std::move(Err);
7867 
7868         {
7869           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7870           if (!MaybeEntry)
7871             return MaybeEntry.takeError();
7872           Entry = MaybeEntry.get();
7873         }
7874 
7875         if (Entry.Kind != BitstreamEntry::SubBlock ||
7876             Entry.ID != bitc::MODULE_BLOCK_ID)
7877           return error("Malformed block");
7878       }
7879 
7880       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7881         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7882         if (Error Err = Stream.SkipBlock())
7883           return std::move(Err);
7884 
7885         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7886                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7887                           Buffer.getBufferIdentifier(), IdentificationBit,
7888                           ModuleBit});
7889         continue;
7890       }
7891 
7892       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7893         Expected<StringRef> Strtab =
7894             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7895         if (!Strtab)
7896           return Strtab.takeError();
7897         // This string table is used by every preceding bitcode module that does
7898         // not have its own string table. A bitcode file may have multiple
7899         // string tables if it was created by binary concatenation, for example
7900         // with "llvm-cat -b".
7901         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7902           if (!I.Strtab.empty())
7903             break;
7904           I.Strtab = *Strtab;
7905         }
7906         // Similarly, the string table is used by every preceding symbol table;
7907         // normally there will be just one unless the bitcode file was created
7908         // by binary concatenation.
7909         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7910           F.StrtabForSymtab = *Strtab;
7911         continue;
7912       }
7913 
7914       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7915         Expected<StringRef> SymtabOrErr =
7916             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7917         if (!SymtabOrErr)
7918           return SymtabOrErr.takeError();
7919 
7920         // We can expect the bitcode file to have multiple symbol tables if it
7921         // was created by binary concatenation. In that case we silently
7922         // ignore any subsequent symbol tables, which is fine because this is a
7923         // low level function. The client is expected to notice that the number
7924         // of modules in the symbol table does not match the number of modules
7925         // in the input file and regenerate the symbol table.
7926         if (F.Symtab.empty())
7927           F.Symtab = *SymtabOrErr;
7928         continue;
7929       }
7930 
7931       if (Error Err = Stream.SkipBlock())
7932         return std::move(Err);
7933       continue;
7934     }
7935     case BitstreamEntry::Record:
7936       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7937         return std::move(E);
7938       continue;
7939     }
7940   }
7941 }
7942 
7943 /// Get a lazy one-at-time loading module from bitcode.
7944 ///
7945 /// This isn't always used in a lazy context.  In particular, it's also used by
7946 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7947 /// in forward-referenced functions from block address references.
7948 ///
7949 /// \param[in] MaterializeAll Set to \c true if we should materialize
7950 /// everything.
7951 Expected<std::unique_ptr<Module>>
7952 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7953                              bool ShouldLazyLoadMetadata, bool IsImporting,
7954                              ParserCallbacks Callbacks) {
7955   BitstreamCursor Stream(Buffer);
7956 
7957   std::string ProducerIdentification;
7958   if (IdentificationBit != -1ull) {
7959     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7960       return std::move(JumpFailed);
7961     if (Error E =
7962             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7963       return std::move(E);
7964   }
7965 
7966   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7967     return std::move(JumpFailed);
7968   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7969                               Context);
7970 
7971   std::unique_ptr<Module> M =
7972       std::make_unique<Module>(ModuleIdentifier, Context);
7973   M->setMaterializer(R);
7974 
7975   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7976   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7977                                       IsImporting, Callbacks))
7978     return std::move(Err);
7979 
7980   if (MaterializeAll) {
7981     // Read in the entire module, and destroy the BitcodeReader.
7982     if (Error Err = M->materializeAll())
7983       return std::move(Err);
7984   } else {
7985     // Resolve forward references from blockaddresses.
7986     if (Error Err = R->materializeForwardReferencedFunctions())
7987       return std::move(Err);
7988   }
7989   return std::move(M);
7990 }
7991 
7992 Expected<std::unique_ptr<Module>>
7993 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7994                              bool IsImporting, ParserCallbacks Callbacks) {
7995   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7996                        Callbacks);
7997 }
7998 
7999 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8000 // We don't use ModuleIdentifier here because the client may need to control the
8001 // module path used in the combined summary (e.g. when reading summaries for
8002 // regular LTO modules).
8003 Error BitcodeModule::readSummary(
8004     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8005     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8006   BitstreamCursor Stream(Buffer);
8007   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8008     return JumpFailed;
8009 
8010   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8011                                     ModulePath, IsPrevailing);
8012   return R.parseModule();
8013 }
8014 
8015 // Parse the specified bitcode buffer, returning the function info index.
8016 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8017   BitstreamCursor Stream(Buffer);
8018   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8019     return std::move(JumpFailed);
8020 
8021   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8022   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8023                                     ModuleIdentifier, 0);
8024 
8025   if (Error Err = R.parseModule())
8026     return std::move(Err);
8027 
8028   return std::move(Index);
8029 }
8030 
8031 static Expected<std::pair<bool, bool>>
8032 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8033                                                  unsigned ID,
8034                                                  BitcodeLTOInfo &LTOInfo) {
8035   if (Error Err = Stream.EnterSubBlock(ID))
8036     return std::move(Err);
8037   SmallVector<uint64_t, 64> Record;
8038 
8039   while (true) {
8040     BitstreamEntry Entry;
8041     std::pair<bool, bool> Result = {false,false};
8042     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8043       return std::move(E);
8044 
8045     switch (Entry.Kind) {
8046     case BitstreamEntry::SubBlock: // Handled for us already.
8047     case BitstreamEntry::Error:
8048       return error("Malformed block");
8049     case BitstreamEntry::EndBlock: {
8050       // If no flags record found, set both flags to false.
8051       return Result;
8052     }
8053     case BitstreamEntry::Record:
8054       // The interesting case.
8055       break;
8056     }
8057 
8058     // Look for the FS_FLAGS record.
8059     Record.clear();
8060     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8061     if (!MaybeBitCode)
8062       return MaybeBitCode.takeError();
8063     switch (MaybeBitCode.get()) {
8064     default: // Default behavior: ignore.
8065       break;
8066     case bitc::FS_FLAGS: { // [flags]
8067       uint64_t Flags = Record[0];
8068       // Scan flags.
8069       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8070 
8071       bool EnableSplitLTOUnit = Flags & 0x8;
8072       bool UnifiedLTO = Flags & 0x200;
8073       Result = {EnableSplitLTOUnit, UnifiedLTO};
8074 
8075       return Result;
8076     }
8077     }
8078   }
8079   llvm_unreachable("Exit infinite loop");
8080 }
8081 
8082 // Check if the given bitcode buffer contains a global value summary block.
8083 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8084   BitstreamCursor Stream(Buffer);
8085   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8086     return std::move(JumpFailed);
8087 
8088   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8089     return std::move(Err);
8090 
8091   while (true) {
8092     llvm::BitstreamEntry Entry;
8093     if (Error E = Stream.advance().moveInto(Entry))
8094       return std::move(E);
8095 
8096     switch (Entry.Kind) {
8097     case BitstreamEntry::Error:
8098       return error("Malformed block");
8099     case BitstreamEntry::EndBlock:
8100       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8101                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8102 
8103     case BitstreamEntry::SubBlock:
8104       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8105         BitcodeLTOInfo LTOInfo;
8106         Expected<std::pair<bool, bool>> Flags =
8107             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8108         if (!Flags)
8109           return Flags.takeError();
8110         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8111         LTOInfo.IsThinLTO = true;
8112         LTOInfo.HasSummary = true;
8113         return LTOInfo;
8114       }
8115 
8116       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8117         BitcodeLTOInfo LTOInfo;
8118         Expected<std::pair<bool, bool>> Flags =
8119             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8120         if (!Flags)
8121           return Flags.takeError();
8122         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8123         LTOInfo.IsThinLTO = false;
8124         LTOInfo.HasSummary = true;
8125         return LTOInfo;
8126       }
8127 
8128       // Ignore other sub-blocks.
8129       if (Error Err = Stream.SkipBlock())
8130         return std::move(Err);
8131       continue;
8132 
8133     case BitstreamEntry::Record:
8134       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8135         continue;
8136       else
8137         return StreamFailed.takeError();
8138     }
8139   }
8140 }
8141 
8142 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8143   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8144   if (!MsOrErr)
8145     return MsOrErr.takeError();
8146 
8147   if (MsOrErr->size() != 1)
8148     return error("Expected a single module");
8149 
8150   return (*MsOrErr)[0];
8151 }
8152 
8153 Expected<std::unique_ptr<Module>>
8154 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8155                            bool ShouldLazyLoadMetadata, bool IsImporting,
8156                            ParserCallbacks Callbacks) {
8157   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8158   if (!BM)
8159     return BM.takeError();
8160 
8161   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8162                            Callbacks);
8163 }
8164 
8165 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8166     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8167     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8168   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8169                                      IsImporting, Callbacks);
8170   if (MOrErr)
8171     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8172   return MOrErr;
8173 }
8174 
8175 Expected<std::unique_ptr<Module>>
8176 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8177   return getModuleImpl(Context, true, false, false, Callbacks);
8178   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8179   // written.  We must defer until the Module has been fully materialized.
8180 }
8181 
8182 Expected<std::unique_ptr<Module>>
8183 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8184                        ParserCallbacks Callbacks) {
8185   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8186   if (!BM)
8187     return BM.takeError();
8188 
8189   return BM->parseModule(Context, Callbacks);
8190 }
8191 
8192 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8193   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8194   if (!StreamOrErr)
8195     return StreamOrErr.takeError();
8196 
8197   return readTriple(*StreamOrErr);
8198 }
8199 
8200 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8201   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8202   if (!StreamOrErr)
8203     return StreamOrErr.takeError();
8204 
8205   return hasObjCCategory(*StreamOrErr);
8206 }
8207 
8208 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8209   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8210   if (!StreamOrErr)
8211     return StreamOrErr.takeError();
8212 
8213   return readIdentificationCode(*StreamOrErr);
8214 }
8215 
8216 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8217                                    ModuleSummaryIndex &CombinedIndex) {
8218   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8219   if (!BM)
8220     return BM.takeError();
8221 
8222   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8223 }
8224 
8225 Expected<std::unique_ptr<ModuleSummaryIndex>>
8226 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8227   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8228   if (!BM)
8229     return BM.takeError();
8230 
8231   return BM->getSummary();
8232 }
8233 
8234 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8235   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8236   if (!BM)
8237     return BM.takeError();
8238 
8239   return BM->getLTOInfo();
8240 }
8241 
8242 Expected<std::unique_ptr<ModuleSummaryIndex>>
8243 llvm::getModuleSummaryIndexForFile(StringRef Path,
8244                                    bool IgnoreEmptyThinLTOIndexFile) {
8245   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8246       MemoryBuffer::getFileOrSTDIN(Path);
8247   if (!FileOrErr)
8248     return errorCodeToError(FileOrErr.getError());
8249   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8250     return nullptr;
8251   return getModuleSummaryIndex(**FileOrErr);
8252 }
8253