1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/ParamAttrsList.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 std::vector<const ParamAttrsList*>().swap(ParamAttrs); 35 std::vector<BasicBlock*>().swap(FunctionBBs); 36 std::vector<Function*>().swap(FunctionsWithBodies); 37 DeferredFunctionInfo.clear(); 38 } 39 40 //===----------------------------------------------------------------------===// 41 // Helper functions to implement forward reference resolution, etc. 42 //===----------------------------------------------------------------------===// 43 44 /// ConvertToString - Convert a string from a record into an std::string, return 45 /// true on failure. 46 template<typename StrTy> 47 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 48 StrTy &Result) { 49 if (Idx > Record.size()) 50 return true; 51 52 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 53 Result += (char)Record[i]; 54 return false; 55 } 56 57 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 58 switch (Val) { 59 default: // Map unknown/new linkages to external 60 case 0: return GlobalValue::ExternalLinkage; 61 case 1: return GlobalValue::WeakLinkage; 62 case 2: return GlobalValue::AppendingLinkage; 63 case 3: return GlobalValue::InternalLinkage; 64 case 4: return GlobalValue::LinkOnceLinkage; 65 case 5: return GlobalValue::DLLImportLinkage; 66 case 6: return GlobalValue::DLLExportLinkage; 67 case 7: return GlobalValue::ExternalWeakLinkage; 68 } 69 } 70 71 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 72 switch (Val) { 73 default: // Map unknown visibilities to default. 74 case 0: return GlobalValue::DefaultVisibility; 75 case 1: return GlobalValue::HiddenVisibility; 76 case 2: return GlobalValue::ProtectedVisibility; 77 } 78 } 79 80 static int GetDecodedCastOpcode(unsigned Val) { 81 switch (Val) { 82 default: return -1; 83 case bitc::CAST_TRUNC : return Instruction::Trunc; 84 case bitc::CAST_ZEXT : return Instruction::ZExt; 85 case bitc::CAST_SEXT : return Instruction::SExt; 86 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 87 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 88 case bitc::CAST_UITOFP : return Instruction::UIToFP; 89 case bitc::CAST_SITOFP : return Instruction::SIToFP; 90 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 91 case bitc::CAST_FPEXT : return Instruction::FPExt; 92 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 93 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 94 case bitc::CAST_BITCAST : return Instruction::BitCast; 95 } 96 } 97 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 98 switch (Val) { 99 default: return -1; 100 case bitc::BINOP_ADD: return Instruction::Add; 101 case bitc::BINOP_SUB: return Instruction::Sub; 102 case bitc::BINOP_MUL: return Instruction::Mul; 103 case bitc::BINOP_UDIV: return Instruction::UDiv; 104 case bitc::BINOP_SDIV: 105 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 106 case bitc::BINOP_UREM: return Instruction::URem; 107 case bitc::BINOP_SREM: 108 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 109 case bitc::BINOP_SHL: return Instruction::Shl; 110 case bitc::BINOP_LSHR: return Instruction::LShr; 111 case bitc::BINOP_ASHR: return Instruction::AShr; 112 case bitc::BINOP_AND: return Instruction::And; 113 case bitc::BINOP_OR: return Instruction::Or; 114 case bitc::BINOP_XOR: return Instruction::Xor; 115 } 116 } 117 118 119 namespace { 120 /// @brief A class for maintaining the slot number definition 121 /// as a placeholder for the actual definition for forward constants defs. 122 class ConstantPlaceHolder : public ConstantExpr { 123 ConstantPlaceHolder(); // DO NOT IMPLEMENT 124 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 125 public: 126 Use Op; 127 explicit ConstantPlaceHolder(const Type *Ty) 128 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1), 129 Op(UndefValue::get(Type::Int32Ty), this) { 130 } 131 }; 132 } 133 134 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 135 const Type *Ty) { 136 if (Idx >= size()) { 137 // Insert a bunch of null values. 138 Uses.resize(Idx+1); 139 OperandList = &Uses[0]; 140 NumOperands = Idx+1; 141 } 142 143 if (Value *V = Uses[Idx]) { 144 assert(Ty == V->getType() && "Type mismatch in constant table!"); 145 return cast<Constant>(V); 146 } 147 148 // Create and return a placeholder, which will later be RAUW'd. 149 Constant *C = new ConstantPlaceHolder(Ty); 150 Uses[Idx].init(C, this); 151 return C; 152 } 153 154 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 155 if (Idx >= size()) { 156 // Insert a bunch of null values. 157 Uses.resize(Idx+1); 158 OperandList = &Uses[0]; 159 NumOperands = Idx+1; 160 } 161 162 if (Value *V = Uses[Idx]) { 163 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 164 return V; 165 } 166 167 // No type specified, must be invalid reference. 168 if (Ty == 0) return 0; 169 170 // Create and return a placeholder, which will later be RAUW'd. 171 Value *V = new Argument(Ty); 172 Uses[Idx].init(V, this); 173 return V; 174 } 175 176 177 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 178 // If the TypeID is in range, return it. 179 if (ID < TypeList.size()) 180 return TypeList[ID].get(); 181 if (!isTypeTable) return 0; 182 183 // The type table allows forward references. Push as many Opaque types as 184 // needed to get up to ID. 185 while (TypeList.size() <= ID) 186 TypeList.push_back(OpaqueType::get()); 187 return TypeList.back().get(); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Functions for parsing blocks from the bitcode file 192 //===----------------------------------------------------------------------===// 193 194 bool BitcodeReader::ParseParamAttrBlock() { 195 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 196 return Error("Malformed block record"); 197 198 if (!ParamAttrs.empty()) 199 return Error("Multiple PARAMATTR blocks found!"); 200 201 SmallVector<uint64_t, 64> Record; 202 203 ParamAttrsVector Attrs; 204 205 // Read all the records. 206 while (1) { 207 unsigned Code = Stream.ReadCode(); 208 if (Code == bitc::END_BLOCK) { 209 if (Stream.ReadBlockEnd()) 210 return Error("Error at end of PARAMATTR block"); 211 return false; 212 } 213 214 if (Code == bitc::ENTER_SUBBLOCK) { 215 // No known subblocks, always skip them. 216 Stream.ReadSubBlockID(); 217 if (Stream.SkipBlock()) 218 return Error("Malformed block record"); 219 continue; 220 } 221 222 if (Code == bitc::DEFINE_ABBREV) { 223 Stream.ReadAbbrevRecord(); 224 continue; 225 } 226 227 // Read a record. 228 Record.clear(); 229 switch (Stream.ReadRecord(Code, Record)) { 230 default: // Default behavior: ignore. 231 break; 232 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 233 if (Record.size() & 1) 234 return Error("Invalid ENTRY record"); 235 236 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 237 if (Record[i+1] != ParamAttr::None) 238 Attrs.push_back(ParamAttrsWithIndex::get(Record[i], Record[i+1])); 239 } 240 ParamAttrs.push_back(Attrs.empty() ? NULL : ParamAttrsList::get(Attrs)); 241 Attrs.clear(); 242 break; 243 } 244 } 245 } 246 } 247 248 249 bool BitcodeReader::ParseTypeTable() { 250 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 251 return Error("Malformed block record"); 252 253 if (!TypeList.empty()) 254 return Error("Multiple TYPE_BLOCKs found!"); 255 256 SmallVector<uint64_t, 64> Record; 257 unsigned NumRecords = 0; 258 259 // Read all the records for this type table. 260 while (1) { 261 unsigned Code = Stream.ReadCode(); 262 if (Code == bitc::END_BLOCK) { 263 if (NumRecords != TypeList.size()) 264 return Error("Invalid type forward reference in TYPE_BLOCK"); 265 if (Stream.ReadBlockEnd()) 266 return Error("Error at end of type table block"); 267 return false; 268 } 269 270 if (Code == bitc::ENTER_SUBBLOCK) { 271 // No known subblocks, always skip them. 272 Stream.ReadSubBlockID(); 273 if (Stream.SkipBlock()) 274 return Error("Malformed block record"); 275 continue; 276 } 277 278 if (Code == bitc::DEFINE_ABBREV) { 279 Stream.ReadAbbrevRecord(); 280 continue; 281 } 282 283 // Read a record. 284 Record.clear(); 285 const Type *ResultTy = 0; 286 switch (Stream.ReadRecord(Code, Record)) { 287 default: // Default behavior: unknown type. 288 ResultTy = 0; 289 break; 290 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 291 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 292 // type list. This allows us to reserve space. 293 if (Record.size() < 1) 294 return Error("Invalid TYPE_CODE_NUMENTRY record"); 295 TypeList.reserve(Record[0]); 296 continue; 297 case bitc::TYPE_CODE_VOID: // VOID 298 ResultTy = Type::VoidTy; 299 break; 300 case bitc::TYPE_CODE_FLOAT: // FLOAT 301 ResultTy = Type::FloatTy; 302 break; 303 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 304 ResultTy = Type::DoubleTy; 305 break; 306 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 307 ResultTy = Type::X86_FP80Ty; 308 break; 309 case bitc::TYPE_CODE_FP128: // FP128 310 ResultTy = Type::FP128Ty; 311 break; 312 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 313 ResultTy = Type::PPC_FP128Ty; 314 break; 315 case bitc::TYPE_CODE_LABEL: // LABEL 316 ResultTy = Type::LabelTy; 317 break; 318 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 319 ResultTy = 0; 320 break; 321 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 322 if (Record.size() < 1) 323 return Error("Invalid Integer type record"); 324 325 ResultTy = IntegerType::get(Record[0]); 326 break; 327 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 328 // [pointee type, address space] 329 if (Record.size() < 1) 330 return Error("Invalid POINTER type record"); 331 unsigned AddressSpace = 0; 332 if (Record.size() == 2) 333 AddressSpace = Record[1]; 334 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 335 break; 336 } 337 case bitc::TYPE_CODE_FUNCTION: { 338 // FIXME: attrid is dead, remove it in LLVM 3.0 339 // FUNCTION: [vararg, attrid, retty, paramty x N] 340 if (Record.size() < 3) 341 return Error("Invalid FUNCTION type record"); 342 std::vector<const Type*> ArgTys; 343 for (unsigned i = 3, e = Record.size(); i != e; ++i) 344 ArgTys.push_back(getTypeByID(Record[i], true)); 345 346 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 347 Record[0]); 348 break; 349 } 350 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 351 if (Record.size() < 1) 352 return Error("Invalid STRUCT type record"); 353 std::vector<const Type*> EltTys; 354 for (unsigned i = 1, e = Record.size(); i != e; ++i) 355 EltTys.push_back(getTypeByID(Record[i], true)); 356 ResultTy = StructType::get(EltTys, Record[0]); 357 break; 358 } 359 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 360 if (Record.size() < 2) 361 return Error("Invalid ARRAY type record"); 362 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 363 break; 364 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 365 if (Record.size() < 2) 366 return Error("Invalid VECTOR type record"); 367 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 368 break; 369 } 370 371 if (NumRecords == TypeList.size()) { 372 // If this is a new type slot, just append it. 373 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 374 ++NumRecords; 375 } else if (ResultTy == 0) { 376 // Otherwise, this was forward referenced, so an opaque type was created, 377 // but the result type is actually just an opaque. Leave the one we 378 // created previously. 379 ++NumRecords; 380 } else { 381 // Otherwise, this was forward referenced, so an opaque type was created. 382 // Resolve the opaque type to the real type now. 383 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 384 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 385 386 // Don't directly push the new type on the Tab. Instead we want to replace 387 // the opaque type we previously inserted with the new concrete value. The 388 // refinement from the abstract (opaque) type to the new type causes all 389 // uses of the abstract type to use the concrete type (NewTy). This will 390 // also cause the opaque type to be deleted. 391 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 392 393 // This should have replaced the old opaque type with the new type in the 394 // value table... or with a preexisting type that was already in the 395 // system. Let's just make sure it did. 396 assert(TypeList[NumRecords-1].get() != OldTy && 397 "refineAbstractType didn't work!"); 398 } 399 } 400 } 401 402 403 bool BitcodeReader::ParseTypeSymbolTable() { 404 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 405 return Error("Malformed block record"); 406 407 SmallVector<uint64_t, 64> Record; 408 409 // Read all the records for this type table. 410 std::string TypeName; 411 while (1) { 412 unsigned Code = Stream.ReadCode(); 413 if (Code == bitc::END_BLOCK) { 414 if (Stream.ReadBlockEnd()) 415 return Error("Error at end of type symbol table block"); 416 return false; 417 } 418 419 if (Code == bitc::ENTER_SUBBLOCK) { 420 // No known subblocks, always skip them. 421 Stream.ReadSubBlockID(); 422 if (Stream.SkipBlock()) 423 return Error("Malformed block record"); 424 continue; 425 } 426 427 if (Code == bitc::DEFINE_ABBREV) { 428 Stream.ReadAbbrevRecord(); 429 continue; 430 } 431 432 // Read a record. 433 Record.clear(); 434 switch (Stream.ReadRecord(Code, Record)) { 435 default: // Default behavior: unknown type. 436 break; 437 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 438 if (ConvertToString(Record, 1, TypeName)) 439 return Error("Invalid TST_ENTRY record"); 440 unsigned TypeID = Record[0]; 441 if (TypeID >= TypeList.size()) 442 return Error("Invalid Type ID in TST_ENTRY record"); 443 444 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 445 TypeName.clear(); 446 break; 447 } 448 } 449 } 450 451 bool BitcodeReader::ParseValueSymbolTable() { 452 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 453 return Error("Malformed block record"); 454 455 SmallVector<uint64_t, 64> Record; 456 457 // Read all the records for this value table. 458 SmallString<128> ValueName; 459 while (1) { 460 unsigned Code = Stream.ReadCode(); 461 if (Code == bitc::END_BLOCK) { 462 if (Stream.ReadBlockEnd()) 463 return Error("Error at end of value symbol table block"); 464 return false; 465 } 466 if (Code == bitc::ENTER_SUBBLOCK) { 467 // No known subblocks, always skip them. 468 Stream.ReadSubBlockID(); 469 if (Stream.SkipBlock()) 470 return Error("Malformed block record"); 471 continue; 472 } 473 474 if (Code == bitc::DEFINE_ABBREV) { 475 Stream.ReadAbbrevRecord(); 476 continue; 477 } 478 479 // Read a record. 480 Record.clear(); 481 switch (Stream.ReadRecord(Code, Record)) { 482 default: // Default behavior: unknown type. 483 break; 484 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 485 if (ConvertToString(Record, 1, ValueName)) 486 return Error("Invalid TST_ENTRY record"); 487 unsigned ValueID = Record[0]; 488 if (ValueID >= ValueList.size()) 489 return Error("Invalid Value ID in VST_ENTRY record"); 490 Value *V = ValueList[ValueID]; 491 492 V->setName(&ValueName[0], ValueName.size()); 493 ValueName.clear(); 494 break; 495 } 496 case bitc::VST_CODE_BBENTRY: { 497 if (ConvertToString(Record, 1, ValueName)) 498 return Error("Invalid VST_BBENTRY record"); 499 BasicBlock *BB = getBasicBlock(Record[0]); 500 if (BB == 0) 501 return Error("Invalid BB ID in VST_BBENTRY record"); 502 503 BB->setName(&ValueName[0], ValueName.size()); 504 ValueName.clear(); 505 break; 506 } 507 } 508 } 509 } 510 511 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 512 /// the LSB for dense VBR encoding. 513 static uint64_t DecodeSignRotatedValue(uint64_t V) { 514 if ((V & 1) == 0) 515 return V >> 1; 516 if (V != 1) 517 return -(V >> 1); 518 // There is no such thing as -0 with integers. "-0" really means MININT. 519 return 1ULL << 63; 520 } 521 522 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 523 /// values and aliases that we can. 524 bool BitcodeReader::ResolveGlobalAndAliasInits() { 525 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 526 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 527 528 GlobalInitWorklist.swap(GlobalInits); 529 AliasInitWorklist.swap(AliasInits); 530 531 while (!GlobalInitWorklist.empty()) { 532 unsigned ValID = GlobalInitWorklist.back().second; 533 if (ValID >= ValueList.size()) { 534 // Not ready to resolve this yet, it requires something later in the file. 535 GlobalInits.push_back(GlobalInitWorklist.back()); 536 } else { 537 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 538 GlobalInitWorklist.back().first->setInitializer(C); 539 else 540 return Error("Global variable initializer is not a constant!"); 541 } 542 GlobalInitWorklist.pop_back(); 543 } 544 545 while (!AliasInitWorklist.empty()) { 546 unsigned ValID = AliasInitWorklist.back().second; 547 if (ValID >= ValueList.size()) { 548 AliasInits.push_back(AliasInitWorklist.back()); 549 } else { 550 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 551 AliasInitWorklist.back().first->setAliasee(C); 552 else 553 return Error("Alias initializer is not a constant!"); 554 } 555 AliasInitWorklist.pop_back(); 556 } 557 return false; 558 } 559 560 561 bool BitcodeReader::ParseConstants() { 562 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 563 return Error("Malformed block record"); 564 565 SmallVector<uint64_t, 64> Record; 566 567 // Read all the records for this value table. 568 const Type *CurTy = Type::Int32Ty; 569 unsigned NextCstNo = ValueList.size(); 570 while (1) { 571 unsigned Code = Stream.ReadCode(); 572 if (Code == bitc::END_BLOCK) { 573 if (NextCstNo != ValueList.size()) 574 return Error("Invalid constant reference!"); 575 576 if (Stream.ReadBlockEnd()) 577 return Error("Error at end of constants block"); 578 return false; 579 } 580 581 if (Code == bitc::ENTER_SUBBLOCK) { 582 // No known subblocks, always skip them. 583 Stream.ReadSubBlockID(); 584 if (Stream.SkipBlock()) 585 return Error("Malformed block record"); 586 continue; 587 } 588 589 if (Code == bitc::DEFINE_ABBREV) { 590 Stream.ReadAbbrevRecord(); 591 continue; 592 } 593 594 // Read a record. 595 Record.clear(); 596 Value *V = 0; 597 switch (Stream.ReadRecord(Code, Record)) { 598 default: // Default behavior: unknown constant 599 case bitc::CST_CODE_UNDEF: // UNDEF 600 V = UndefValue::get(CurTy); 601 break; 602 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 603 if (Record.empty()) 604 return Error("Malformed CST_SETTYPE record"); 605 if (Record[0] >= TypeList.size()) 606 return Error("Invalid Type ID in CST_SETTYPE record"); 607 CurTy = TypeList[Record[0]]; 608 continue; // Skip the ValueList manipulation. 609 case bitc::CST_CODE_NULL: // NULL 610 V = Constant::getNullValue(CurTy); 611 break; 612 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 613 if (!isa<IntegerType>(CurTy) || Record.empty()) 614 return Error("Invalid CST_INTEGER record"); 615 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 616 break; 617 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 618 if (!isa<IntegerType>(CurTy) || Record.empty()) 619 return Error("Invalid WIDE_INTEGER record"); 620 621 unsigned NumWords = Record.size(); 622 SmallVector<uint64_t, 8> Words; 623 Words.resize(NumWords); 624 for (unsigned i = 0; i != NumWords; ++i) 625 Words[i] = DecodeSignRotatedValue(Record[i]); 626 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 627 NumWords, &Words[0])); 628 break; 629 } 630 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 631 if (Record.empty()) 632 return Error("Invalid FLOAT record"); 633 if (CurTy == Type::FloatTy) 634 V = ConstantFP::get(CurTy, APFloat(APInt(32, (uint32_t)Record[0]))); 635 else if (CurTy == Type::DoubleTy) 636 V = ConstantFP::get(CurTy, APFloat(APInt(64, Record[0]))); 637 else if (CurTy == Type::X86_FP80Ty) 638 V = ConstantFP::get(CurTy, APFloat(APInt(80, 2, &Record[0]))); 639 else if (CurTy == Type::FP128Ty) 640 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]), true)); 641 else if (CurTy == Type::PPC_FP128Ty) 642 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]))); 643 else 644 V = UndefValue::get(CurTy); 645 break; 646 } 647 648 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 649 if (Record.empty()) 650 return Error("Invalid CST_AGGREGATE record"); 651 652 unsigned Size = Record.size(); 653 std::vector<Constant*> Elts; 654 655 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 656 for (unsigned i = 0; i != Size; ++i) 657 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 658 STy->getElementType(i))); 659 V = ConstantStruct::get(STy, Elts); 660 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 661 const Type *EltTy = ATy->getElementType(); 662 for (unsigned i = 0; i != Size; ++i) 663 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 664 V = ConstantArray::get(ATy, Elts); 665 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 666 const Type *EltTy = VTy->getElementType(); 667 for (unsigned i = 0; i != Size; ++i) 668 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 669 V = ConstantVector::get(Elts); 670 } else { 671 V = UndefValue::get(CurTy); 672 } 673 break; 674 } 675 case bitc::CST_CODE_STRING: { // STRING: [values] 676 if (Record.empty()) 677 return Error("Invalid CST_AGGREGATE record"); 678 679 const ArrayType *ATy = cast<ArrayType>(CurTy); 680 const Type *EltTy = ATy->getElementType(); 681 682 unsigned Size = Record.size(); 683 std::vector<Constant*> Elts; 684 for (unsigned i = 0; i != Size; ++i) 685 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 686 V = ConstantArray::get(ATy, Elts); 687 break; 688 } 689 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 690 if (Record.empty()) 691 return Error("Invalid CST_AGGREGATE record"); 692 693 const ArrayType *ATy = cast<ArrayType>(CurTy); 694 const Type *EltTy = ATy->getElementType(); 695 696 unsigned Size = Record.size(); 697 std::vector<Constant*> Elts; 698 for (unsigned i = 0; i != Size; ++i) 699 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 700 Elts.push_back(Constant::getNullValue(EltTy)); 701 V = ConstantArray::get(ATy, Elts); 702 break; 703 } 704 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 705 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 706 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 707 if (Opc < 0) { 708 V = UndefValue::get(CurTy); // Unknown binop. 709 } else { 710 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 711 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 712 V = ConstantExpr::get(Opc, LHS, RHS); 713 } 714 break; 715 } 716 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 717 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 718 int Opc = GetDecodedCastOpcode(Record[0]); 719 if (Opc < 0) { 720 V = UndefValue::get(CurTy); // Unknown cast. 721 } else { 722 const Type *OpTy = getTypeByID(Record[1]); 723 if (!OpTy) return Error("Invalid CE_CAST record"); 724 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 725 V = ConstantExpr::getCast(Opc, Op, CurTy); 726 } 727 break; 728 } 729 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 730 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 731 SmallVector<Constant*, 16> Elts; 732 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 733 const Type *ElTy = getTypeByID(Record[i]); 734 if (!ElTy) return Error("Invalid CE_GEP record"); 735 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 736 } 737 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 738 break; 739 } 740 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 741 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 742 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 743 Type::Int1Ty), 744 ValueList.getConstantFwdRef(Record[1],CurTy), 745 ValueList.getConstantFwdRef(Record[2],CurTy)); 746 break; 747 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 748 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 749 const VectorType *OpTy = 750 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 751 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 752 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 753 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 754 OpTy->getElementType()); 755 V = ConstantExpr::getExtractElement(Op0, Op1); 756 break; 757 } 758 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 759 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 760 if (Record.size() < 3 || OpTy == 0) 761 return Error("Invalid CE_INSERTELT record"); 762 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 763 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 764 OpTy->getElementType()); 765 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 766 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 767 break; 768 } 769 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 770 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 771 if (Record.size() < 3 || OpTy == 0) 772 return Error("Invalid CE_INSERTELT record"); 773 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 774 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 775 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 776 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 777 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 778 break; 779 } 780 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 781 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 782 const Type *OpTy = getTypeByID(Record[0]); 783 if (OpTy == 0) return Error("Invalid CE_CMP record"); 784 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 785 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 786 787 if (OpTy->isFloatingPoint()) 788 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 789 else 790 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 791 break; 792 } 793 case bitc::CST_CODE_INLINEASM: { 794 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 795 std::string AsmStr, ConstrStr; 796 bool HasSideEffects = Record[0]; 797 unsigned AsmStrSize = Record[1]; 798 if (2+AsmStrSize >= Record.size()) 799 return Error("Invalid INLINEASM record"); 800 unsigned ConstStrSize = Record[2+AsmStrSize]; 801 if (3+AsmStrSize+ConstStrSize > Record.size()) 802 return Error("Invalid INLINEASM record"); 803 804 for (unsigned i = 0; i != AsmStrSize; ++i) 805 AsmStr += (char)Record[2+i]; 806 for (unsigned i = 0; i != ConstStrSize; ++i) 807 ConstrStr += (char)Record[3+AsmStrSize+i]; 808 const PointerType *PTy = cast<PointerType>(CurTy); 809 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 810 AsmStr, ConstrStr, HasSideEffects); 811 break; 812 } 813 } 814 815 ValueList.AssignValue(V, NextCstNo); 816 ++NextCstNo; 817 } 818 } 819 820 /// RememberAndSkipFunctionBody - When we see the block for a function body, 821 /// remember where it is and then skip it. This lets us lazily deserialize the 822 /// functions. 823 bool BitcodeReader::RememberAndSkipFunctionBody() { 824 // Get the function we are talking about. 825 if (FunctionsWithBodies.empty()) 826 return Error("Insufficient function protos"); 827 828 Function *Fn = FunctionsWithBodies.back(); 829 FunctionsWithBodies.pop_back(); 830 831 // Save the current stream state. 832 uint64_t CurBit = Stream.GetCurrentBitNo(); 833 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 834 835 // Set the functions linkage to GhostLinkage so we know it is lazily 836 // deserialized. 837 Fn->setLinkage(GlobalValue::GhostLinkage); 838 839 // Skip over the function block for now. 840 if (Stream.SkipBlock()) 841 return Error("Malformed block record"); 842 return false; 843 } 844 845 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 846 // Reject multiple MODULE_BLOCK's in a single bitstream. 847 if (TheModule) 848 return Error("Multiple MODULE_BLOCKs in same stream"); 849 850 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 851 return Error("Malformed block record"); 852 853 // Otherwise, create the module. 854 TheModule = new Module(ModuleID); 855 856 SmallVector<uint64_t, 64> Record; 857 std::vector<std::string> SectionTable; 858 std::vector<std::string> CollectorTable; 859 860 // Read all the records for this module. 861 while (!Stream.AtEndOfStream()) { 862 unsigned Code = Stream.ReadCode(); 863 if (Code == bitc::END_BLOCK) { 864 if (Stream.ReadBlockEnd()) 865 return Error("Error at end of module block"); 866 867 // Patch the initializers for globals and aliases up. 868 ResolveGlobalAndAliasInits(); 869 if (!GlobalInits.empty() || !AliasInits.empty()) 870 return Error("Malformed global initializer set"); 871 if (!FunctionsWithBodies.empty()) 872 return Error("Too few function bodies found"); 873 874 // Look for intrinsic functions which need to be upgraded at some point 875 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 876 FI != FE; ++FI) { 877 Function* NewFn; 878 if (UpgradeIntrinsicFunction(FI, NewFn)) 879 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 880 } 881 882 // Force deallocation of memory for these vectors to favor the client that 883 // want lazy deserialization. 884 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 885 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 886 std::vector<Function*>().swap(FunctionsWithBodies); 887 return false; 888 } 889 890 if (Code == bitc::ENTER_SUBBLOCK) { 891 switch (Stream.ReadSubBlockID()) { 892 default: // Skip unknown content. 893 if (Stream.SkipBlock()) 894 return Error("Malformed block record"); 895 break; 896 case bitc::BLOCKINFO_BLOCK_ID: 897 if (Stream.ReadBlockInfoBlock()) 898 return Error("Malformed BlockInfoBlock"); 899 break; 900 case bitc::PARAMATTR_BLOCK_ID: 901 if (ParseParamAttrBlock()) 902 return true; 903 break; 904 case bitc::TYPE_BLOCK_ID: 905 if (ParseTypeTable()) 906 return true; 907 break; 908 case bitc::TYPE_SYMTAB_BLOCK_ID: 909 if (ParseTypeSymbolTable()) 910 return true; 911 break; 912 case bitc::VALUE_SYMTAB_BLOCK_ID: 913 if (ParseValueSymbolTable()) 914 return true; 915 break; 916 case bitc::CONSTANTS_BLOCK_ID: 917 if (ParseConstants() || ResolveGlobalAndAliasInits()) 918 return true; 919 break; 920 case bitc::FUNCTION_BLOCK_ID: 921 // If this is the first function body we've seen, reverse the 922 // FunctionsWithBodies list. 923 if (!HasReversedFunctionsWithBodies) { 924 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 925 HasReversedFunctionsWithBodies = true; 926 } 927 928 if (RememberAndSkipFunctionBody()) 929 return true; 930 break; 931 } 932 continue; 933 } 934 935 if (Code == bitc::DEFINE_ABBREV) { 936 Stream.ReadAbbrevRecord(); 937 continue; 938 } 939 940 // Read a record. 941 switch (Stream.ReadRecord(Code, Record)) { 942 default: break; // Default behavior, ignore unknown content. 943 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 944 if (Record.size() < 1) 945 return Error("Malformed MODULE_CODE_VERSION"); 946 // Only version #0 is supported so far. 947 if (Record[0] != 0) 948 return Error("Unknown bitstream version!"); 949 break; 950 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 951 std::string S; 952 if (ConvertToString(Record, 0, S)) 953 return Error("Invalid MODULE_CODE_TRIPLE record"); 954 TheModule->setTargetTriple(S); 955 break; 956 } 957 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 958 std::string S; 959 if (ConvertToString(Record, 0, S)) 960 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 961 TheModule->setDataLayout(S); 962 break; 963 } 964 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 965 std::string S; 966 if (ConvertToString(Record, 0, S)) 967 return Error("Invalid MODULE_CODE_ASM record"); 968 TheModule->setModuleInlineAsm(S); 969 break; 970 } 971 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 972 std::string S; 973 if (ConvertToString(Record, 0, S)) 974 return Error("Invalid MODULE_CODE_DEPLIB record"); 975 TheModule->addLibrary(S); 976 break; 977 } 978 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 979 std::string S; 980 if (ConvertToString(Record, 0, S)) 981 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 982 SectionTable.push_back(S); 983 break; 984 } 985 case bitc::MODULE_CODE_COLLECTORNAME: { // SECTIONNAME: [strchr x N] 986 std::string S; 987 if (ConvertToString(Record, 0, S)) 988 return Error("Invalid MODULE_CODE_COLLECTORNAME record"); 989 CollectorTable.push_back(S); 990 break; 991 } 992 // GLOBALVAR: [pointer type, isconst, initid, 993 // linkage, alignment, section, visibility, threadlocal] 994 case bitc::MODULE_CODE_GLOBALVAR: { 995 if (Record.size() < 6) 996 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 997 const Type *Ty = getTypeByID(Record[0]); 998 if (!isa<PointerType>(Ty)) 999 return Error("Global not a pointer type!"); 1000 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1001 Ty = cast<PointerType>(Ty)->getElementType(); 1002 1003 bool isConstant = Record[1]; 1004 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1005 unsigned Alignment = (1 << Record[4]) >> 1; 1006 std::string Section; 1007 if (Record[5]) { 1008 if (Record[5]-1 >= SectionTable.size()) 1009 return Error("Invalid section ID"); 1010 Section = SectionTable[Record[5]-1]; 1011 } 1012 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1013 if (Record.size() > 6) 1014 Visibility = GetDecodedVisibility(Record[6]); 1015 bool isThreadLocal = false; 1016 if (Record.size() > 7) 1017 isThreadLocal = Record[7]; 1018 1019 GlobalVariable *NewGV = 1020 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1021 isThreadLocal, AddressSpace); 1022 NewGV->setAlignment(Alignment); 1023 if (!Section.empty()) 1024 NewGV->setSection(Section); 1025 NewGV->setVisibility(Visibility); 1026 NewGV->setThreadLocal(isThreadLocal); 1027 1028 ValueList.push_back(NewGV); 1029 1030 // Remember which value to use for the global initializer. 1031 if (unsigned InitID = Record[2]) 1032 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1033 break; 1034 } 1035 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1036 // alignment, section, visibility, collector] 1037 case bitc::MODULE_CODE_FUNCTION: { 1038 if (Record.size() < 8) 1039 return Error("Invalid MODULE_CODE_FUNCTION record"); 1040 const Type *Ty = getTypeByID(Record[0]); 1041 if (!isa<PointerType>(Ty)) 1042 return Error("Function not a pointer type!"); 1043 const FunctionType *FTy = 1044 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1045 if (!FTy) 1046 return Error("Function not a pointer to function type!"); 1047 1048 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage, 1049 "", TheModule); 1050 1051 Func->setCallingConv(Record[1]); 1052 bool isProto = Record[2]; 1053 Func->setLinkage(GetDecodedLinkage(Record[3])); 1054 const ParamAttrsList *PAL = getParamAttrs(Record[4]); 1055 Func->setParamAttrs(PAL); 1056 1057 Func->setAlignment((1 << Record[5]) >> 1); 1058 if (Record[6]) { 1059 if (Record[6]-1 >= SectionTable.size()) 1060 return Error("Invalid section ID"); 1061 Func->setSection(SectionTable[Record[6]-1]); 1062 } 1063 Func->setVisibility(GetDecodedVisibility(Record[7])); 1064 if (Record.size() > 8 && Record[8]) { 1065 if (Record[8]-1 > CollectorTable.size()) 1066 return Error("Invalid collector ID"); 1067 Func->setCollector(CollectorTable[Record[8]-1].c_str()); 1068 } 1069 1070 ValueList.push_back(Func); 1071 1072 // If this is a function with a body, remember the prototype we are 1073 // creating now, so that we can match up the body with them later. 1074 if (!isProto) 1075 FunctionsWithBodies.push_back(Func); 1076 break; 1077 } 1078 // ALIAS: [alias type, aliasee val#, linkage] 1079 case bitc::MODULE_CODE_ALIAS: { 1080 if (Record.size() < 3) 1081 return Error("Invalid MODULE_ALIAS record"); 1082 const Type *Ty = getTypeByID(Record[0]); 1083 if (!isa<PointerType>(Ty)) 1084 return Error("Function not a pointer type!"); 1085 1086 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1087 "", 0, TheModule); 1088 ValueList.push_back(NewGA); 1089 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1090 break; 1091 } 1092 /// MODULE_CODE_PURGEVALS: [numvals] 1093 case bitc::MODULE_CODE_PURGEVALS: 1094 // Trim down the value list to the specified size. 1095 if (Record.size() < 1 || Record[0] > ValueList.size()) 1096 return Error("Invalid MODULE_PURGEVALS record"); 1097 ValueList.shrinkTo(Record[0]); 1098 break; 1099 } 1100 Record.clear(); 1101 } 1102 1103 return Error("Premature end of bitstream"); 1104 } 1105 1106 1107 bool BitcodeReader::ParseBitcode() { 1108 TheModule = 0; 1109 1110 if (Buffer->getBufferSize() & 3) 1111 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1112 1113 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1114 Stream.init(BufPtr, BufPtr+Buffer->getBufferSize()); 1115 1116 // Sniff for the signature. 1117 if (Stream.Read(8) != 'B' || 1118 Stream.Read(8) != 'C' || 1119 Stream.Read(4) != 0x0 || 1120 Stream.Read(4) != 0xC || 1121 Stream.Read(4) != 0xE || 1122 Stream.Read(4) != 0xD) 1123 return Error("Invalid bitcode signature"); 1124 1125 // We expect a number of well-defined blocks, though we don't necessarily 1126 // need to understand them all. 1127 while (!Stream.AtEndOfStream()) { 1128 unsigned Code = Stream.ReadCode(); 1129 1130 if (Code != bitc::ENTER_SUBBLOCK) 1131 return Error("Invalid record at top-level"); 1132 1133 unsigned BlockID = Stream.ReadSubBlockID(); 1134 1135 // We only know the MODULE subblock ID. 1136 switch (BlockID) { 1137 case bitc::BLOCKINFO_BLOCK_ID: 1138 if (Stream.ReadBlockInfoBlock()) 1139 return Error("Malformed BlockInfoBlock"); 1140 break; 1141 case bitc::MODULE_BLOCK_ID: 1142 if (ParseModule(Buffer->getBufferIdentifier())) 1143 return true; 1144 break; 1145 default: 1146 if (Stream.SkipBlock()) 1147 return Error("Malformed block record"); 1148 break; 1149 } 1150 } 1151 1152 return false; 1153 } 1154 1155 1156 /// ParseFunctionBody - Lazily parse the specified function body block. 1157 bool BitcodeReader::ParseFunctionBody(Function *F) { 1158 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1159 return Error("Malformed block record"); 1160 1161 unsigned ModuleValueListSize = ValueList.size(); 1162 1163 // Add all the function arguments to the value table. 1164 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1165 ValueList.push_back(I); 1166 1167 unsigned NextValueNo = ValueList.size(); 1168 BasicBlock *CurBB = 0; 1169 unsigned CurBBNo = 0; 1170 1171 // Read all the records. 1172 SmallVector<uint64_t, 64> Record; 1173 while (1) { 1174 unsigned Code = Stream.ReadCode(); 1175 if (Code == bitc::END_BLOCK) { 1176 if (Stream.ReadBlockEnd()) 1177 return Error("Error at end of function block"); 1178 break; 1179 } 1180 1181 if (Code == bitc::ENTER_SUBBLOCK) { 1182 switch (Stream.ReadSubBlockID()) { 1183 default: // Skip unknown content. 1184 if (Stream.SkipBlock()) 1185 return Error("Malformed block record"); 1186 break; 1187 case bitc::CONSTANTS_BLOCK_ID: 1188 if (ParseConstants()) return true; 1189 NextValueNo = ValueList.size(); 1190 break; 1191 case bitc::VALUE_SYMTAB_BLOCK_ID: 1192 if (ParseValueSymbolTable()) return true; 1193 break; 1194 } 1195 continue; 1196 } 1197 1198 if (Code == bitc::DEFINE_ABBREV) { 1199 Stream.ReadAbbrevRecord(); 1200 continue; 1201 } 1202 1203 // Read a record. 1204 Record.clear(); 1205 Instruction *I = 0; 1206 switch (Stream.ReadRecord(Code, Record)) { 1207 default: // Default behavior: reject 1208 return Error("Unknown instruction"); 1209 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1210 if (Record.size() < 1 || Record[0] == 0) 1211 return Error("Invalid DECLAREBLOCKS record"); 1212 // Create all the basic blocks for the function. 1213 FunctionBBs.resize(Record[0]); 1214 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1215 FunctionBBs[i] = new BasicBlock("", F); 1216 CurBB = FunctionBBs[0]; 1217 continue; 1218 1219 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1220 unsigned OpNum = 0; 1221 Value *LHS, *RHS; 1222 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1223 getValue(Record, OpNum, LHS->getType(), RHS) || 1224 OpNum+1 != Record.size()) 1225 return Error("Invalid BINOP record"); 1226 1227 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1228 if (Opc == -1) return Error("Invalid BINOP record"); 1229 I = BinaryOperator::create((Instruction::BinaryOps)Opc, LHS, RHS); 1230 break; 1231 } 1232 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1233 unsigned OpNum = 0; 1234 Value *Op; 1235 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1236 OpNum+2 != Record.size()) 1237 return Error("Invalid CAST record"); 1238 1239 const Type *ResTy = getTypeByID(Record[OpNum]); 1240 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1241 if (Opc == -1 || ResTy == 0) 1242 return Error("Invalid CAST record"); 1243 I = CastInst::create((Instruction::CastOps)Opc, Op, ResTy); 1244 break; 1245 } 1246 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1247 unsigned OpNum = 0; 1248 Value *BasePtr; 1249 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1250 return Error("Invalid GEP record"); 1251 1252 SmallVector<Value*, 16> GEPIdx; 1253 while (OpNum != Record.size()) { 1254 Value *Op; 1255 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1256 return Error("Invalid GEP record"); 1257 GEPIdx.push_back(Op); 1258 } 1259 1260 I = new GetElementPtrInst(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1261 break; 1262 } 1263 1264 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1265 unsigned OpNum = 0; 1266 Value *TrueVal, *FalseVal, *Cond; 1267 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1268 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1269 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1270 return Error("Invalid SELECT record"); 1271 1272 I = new SelectInst(Cond, TrueVal, FalseVal); 1273 break; 1274 } 1275 1276 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1277 unsigned OpNum = 0; 1278 Value *Vec, *Idx; 1279 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1280 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1281 return Error("Invalid EXTRACTELT record"); 1282 I = new ExtractElementInst(Vec, Idx); 1283 break; 1284 } 1285 1286 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1287 unsigned OpNum = 0; 1288 Value *Vec, *Elt, *Idx; 1289 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1290 getValue(Record, OpNum, 1291 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1292 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1293 return Error("Invalid INSERTELT record"); 1294 I = new InsertElementInst(Vec, Elt, Idx); 1295 break; 1296 } 1297 1298 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1299 unsigned OpNum = 0; 1300 Value *Vec1, *Vec2, *Mask; 1301 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1302 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1303 return Error("Invalid SHUFFLEVEC record"); 1304 1305 const Type *MaskTy = 1306 VectorType::get(Type::Int32Ty, 1307 cast<VectorType>(Vec1->getType())->getNumElements()); 1308 1309 if (getValue(Record, OpNum, MaskTy, Mask)) 1310 return Error("Invalid SHUFFLEVEC record"); 1311 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1312 break; 1313 } 1314 1315 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1316 unsigned OpNum = 0; 1317 Value *LHS, *RHS; 1318 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1319 getValue(Record, OpNum, LHS->getType(), RHS) || 1320 OpNum+1 != Record.size()) 1321 return Error("Invalid CMP record"); 1322 1323 if (LHS->getType()->isFPOrFPVector()) 1324 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1325 else 1326 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1327 break; 1328 } 1329 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1330 if (Record.size() != 2) 1331 return Error("Invalid GETRESULT record"); 1332 unsigned OpNum = 0; 1333 Value *Op; 1334 getValueTypePair(Record, OpNum, NextValueNo, Op); 1335 unsigned Index = Record[1]; 1336 I = new GetResultInst(Op, Index); 1337 break; 1338 } 1339 1340 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1341 { 1342 unsigned Size = Record.size(); 1343 if (Size == 0) { 1344 I = new ReturnInst(); 1345 break; 1346 } else { 1347 unsigned OpNum = 0; 1348 SmallVector<Value *,4> Vs; 1349 do { 1350 Value *Op = NULL; 1351 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1352 return Error("Invalid RET record"); 1353 Vs.push_back(Op); 1354 } while(OpNum != Record.size()); 1355 1356 // SmallVector Vs has at least one element. 1357 I = new ReturnInst(&Vs[0], Vs.size()); 1358 break; 1359 } 1360 } 1361 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1362 if (Record.size() != 1 && Record.size() != 3) 1363 return Error("Invalid BR record"); 1364 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1365 if (TrueDest == 0) 1366 return Error("Invalid BR record"); 1367 1368 if (Record.size() == 1) 1369 I = new BranchInst(TrueDest); 1370 else { 1371 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1372 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1373 if (FalseDest == 0 || Cond == 0) 1374 return Error("Invalid BR record"); 1375 I = new BranchInst(TrueDest, FalseDest, Cond); 1376 } 1377 break; 1378 } 1379 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1380 if (Record.size() < 3 || (Record.size() & 1) == 0) 1381 return Error("Invalid SWITCH record"); 1382 const Type *OpTy = getTypeByID(Record[0]); 1383 Value *Cond = getFnValueByID(Record[1], OpTy); 1384 BasicBlock *Default = getBasicBlock(Record[2]); 1385 if (OpTy == 0 || Cond == 0 || Default == 0) 1386 return Error("Invalid SWITCH record"); 1387 unsigned NumCases = (Record.size()-3)/2; 1388 SwitchInst *SI = new SwitchInst(Cond, Default, NumCases); 1389 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1390 ConstantInt *CaseVal = 1391 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1392 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1393 if (CaseVal == 0 || DestBB == 0) { 1394 delete SI; 1395 return Error("Invalid SWITCH record!"); 1396 } 1397 SI->addCase(CaseVal, DestBB); 1398 } 1399 I = SI; 1400 break; 1401 } 1402 1403 case bitc::FUNC_CODE_INST_INVOKE: { 1404 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1405 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1406 const ParamAttrsList *PAL = getParamAttrs(Record[0]); 1407 unsigned CCInfo = Record[1]; 1408 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1409 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1410 1411 unsigned OpNum = 4; 1412 Value *Callee; 1413 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1414 return Error("Invalid INVOKE record"); 1415 1416 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1417 const FunctionType *FTy = !CalleeTy ? 0 : 1418 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1419 1420 // Check that the right number of fixed parameters are here. 1421 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1422 Record.size() < OpNum+FTy->getNumParams()) 1423 return Error("Invalid INVOKE record"); 1424 1425 SmallVector<Value*, 16> Ops; 1426 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1427 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1428 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1429 } 1430 1431 if (!FTy->isVarArg()) { 1432 if (Record.size() != OpNum) 1433 return Error("Invalid INVOKE record"); 1434 } else { 1435 // Read type/value pairs for varargs params. 1436 while (OpNum != Record.size()) { 1437 Value *Op; 1438 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1439 return Error("Invalid INVOKE record"); 1440 Ops.push_back(Op); 1441 } 1442 } 1443 1444 I = new InvokeInst(Callee, NormalBB, UnwindBB, Ops.begin(), Ops.end()); 1445 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1446 cast<InvokeInst>(I)->setParamAttrs(PAL); 1447 break; 1448 } 1449 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1450 I = new UnwindInst(); 1451 break; 1452 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1453 I = new UnreachableInst(); 1454 break; 1455 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1456 if (Record.size() < 1 || ((Record.size()-1)&1)) 1457 return Error("Invalid PHI record"); 1458 const Type *Ty = getTypeByID(Record[0]); 1459 if (!Ty) return Error("Invalid PHI record"); 1460 1461 PHINode *PN = new PHINode(Ty); 1462 PN->reserveOperandSpace(Record.size()-1); 1463 1464 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1465 Value *V = getFnValueByID(Record[1+i], Ty); 1466 BasicBlock *BB = getBasicBlock(Record[2+i]); 1467 if (!V || !BB) return Error("Invalid PHI record"); 1468 PN->addIncoming(V, BB); 1469 } 1470 I = PN; 1471 break; 1472 } 1473 1474 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1475 if (Record.size() < 3) 1476 return Error("Invalid MALLOC record"); 1477 const PointerType *Ty = 1478 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1479 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1480 unsigned Align = Record[2]; 1481 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1482 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1483 break; 1484 } 1485 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1486 unsigned OpNum = 0; 1487 Value *Op; 1488 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1489 OpNum != Record.size()) 1490 return Error("Invalid FREE record"); 1491 I = new FreeInst(Op); 1492 break; 1493 } 1494 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1495 if (Record.size() < 3) 1496 return Error("Invalid ALLOCA record"); 1497 const PointerType *Ty = 1498 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1499 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1500 unsigned Align = Record[2]; 1501 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1502 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1503 break; 1504 } 1505 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1506 unsigned OpNum = 0; 1507 Value *Op; 1508 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1509 OpNum+2 != Record.size()) 1510 return Error("Invalid LOAD record"); 1511 1512 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1513 break; 1514 } 1515 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1516 unsigned OpNum = 0; 1517 Value *Val, *Ptr; 1518 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1519 getValue(Record, OpNum, 1520 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1521 OpNum+2 != Record.size()) 1522 return Error("Invalid STORE record"); 1523 1524 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1525 break; 1526 } 1527 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1528 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1529 unsigned OpNum = 0; 1530 Value *Val, *Ptr; 1531 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1532 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1533 OpNum+2 != Record.size()) 1534 return Error("Invalid STORE record"); 1535 1536 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1537 break; 1538 } 1539 case bitc::FUNC_CODE_INST_CALL: { 1540 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1541 if (Record.size() < 3) 1542 return Error("Invalid CALL record"); 1543 1544 const ParamAttrsList *PAL = getParamAttrs(Record[0]); 1545 unsigned CCInfo = Record[1]; 1546 1547 unsigned OpNum = 2; 1548 Value *Callee; 1549 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1550 return Error("Invalid CALL record"); 1551 1552 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1553 const FunctionType *FTy = 0; 1554 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1555 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1556 return Error("Invalid CALL record"); 1557 1558 SmallVector<Value*, 16> Args; 1559 // Read the fixed params. 1560 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1561 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1562 Args.push_back(getBasicBlock(Record[OpNum])); 1563 else 1564 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1565 if (Args.back() == 0) return Error("Invalid CALL record"); 1566 } 1567 1568 // Read type/value pairs for varargs params. 1569 if (!FTy->isVarArg()) { 1570 if (OpNum != Record.size()) 1571 return Error("Invalid CALL record"); 1572 } else { 1573 while (OpNum != Record.size()) { 1574 Value *Op; 1575 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1576 return Error("Invalid CALL record"); 1577 Args.push_back(Op); 1578 } 1579 } 1580 1581 I = new CallInst(Callee, Args.begin(), Args.end()); 1582 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1583 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1584 cast<CallInst>(I)->setParamAttrs(PAL); 1585 break; 1586 } 1587 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1588 if (Record.size() < 3) 1589 return Error("Invalid VAARG record"); 1590 const Type *OpTy = getTypeByID(Record[0]); 1591 Value *Op = getFnValueByID(Record[1], OpTy); 1592 const Type *ResTy = getTypeByID(Record[2]); 1593 if (!OpTy || !Op || !ResTy) 1594 return Error("Invalid VAARG record"); 1595 I = new VAArgInst(Op, ResTy); 1596 break; 1597 } 1598 } 1599 1600 // Add instruction to end of current BB. If there is no current BB, reject 1601 // this file. 1602 if (CurBB == 0) { 1603 delete I; 1604 return Error("Invalid instruction with no BB"); 1605 } 1606 CurBB->getInstList().push_back(I); 1607 1608 // If this was a terminator instruction, move to the next block. 1609 if (isa<TerminatorInst>(I)) { 1610 ++CurBBNo; 1611 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1612 } 1613 1614 // Non-void values get registered in the value table for future use. 1615 if (I && I->getType() != Type::VoidTy) 1616 ValueList.AssignValue(I, NextValueNo++); 1617 } 1618 1619 // Check the function list for unresolved values. 1620 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1621 if (A->getParent() == 0) { 1622 // We found at least one unresolved value. Nuke them all to avoid leaks. 1623 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1624 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1625 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1626 delete A; 1627 } 1628 } 1629 return Error("Never resolved value found in function!"); 1630 } 1631 } 1632 1633 // Trim the value list down to the size it was before we parsed this function. 1634 ValueList.shrinkTo(ModuleValueListSize); 1635 std::vector<BasicBlock*>().swap(FunctionBBs); 1636 1637 return false; 1638 } 1639 1640 //===----------------------------------------------------------------------===// 1641 // ModuleProvider implementation 1642 //===----------------------------------------------------------------------===// 1643 1644 1645 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1646 // If it already is material, ignore the request. 1647 if (!F->hasNotBeenReadFromBitcode()) return false; 1648 1649 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1650 DeferredFunctionInfo.find(F); 1651 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 1652 1653 // Move the bit stream to the saved position of the deferred function body and 1654 // restore the real linkage type for the function. 1655 Stream.JumpToBit(DFII->second.first); 1656 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 1657 1658 if (ParseFunctionBody(F)) { 1659 if (ErrInfo) *ErrInfo = ErrorString; 1660 return true; 1661 } 1662 1663 // Upgrade any old intrinsic calls in the function. 1664 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 1665 E = UpgradedIntrinsics.end(); I != E; ++I) { 1666 if (I->first != I->second) { 1667 for (Value::use_iterator UI = I->first->use_begin(), 1668 UE = I->first->use_end(); UI != UE; ) { 1669 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1670 UpgradeIntrinsicCall(CI, I->second); 1671 } 1672 } 1673 } 1674 1675 return false; 1676 } 1677 1678 void BitcodeReader::dematerializeFunction(Function *F) { 1679 // If this function isn't materialized, or if it is a proto, this is a noop. 1680 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 1681 return; 1682 1683 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 1684 1685 // Just forget the function body, we can remat it later. 1686 F->deleteBody(); 1687 F->setLinkage(GlobalValue::GhostLinkage); 1688 } 1689 1690 1691 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 1692 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 1693 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 1694 ++I) { 1695 Function *F = I->first; 1696 if (F->hasNotBeenReadFromBitcode() && 1697 materializeFunction(F, ErrInfo)) 1698 return 0; 1699 } 1700 1701 // Upgrade any intrinsic calls that slipped through (should not happen!) and 1702 // delete the old functions to clean up. We can't do this unless the entire 1703 // module is materialized because there could always be another function body 1704 // with calls to the old function. 1705 for (std::vector<std::pair<Function*, Function*> >::iterator I = 1706 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 1707 if (I->first != I->second) { 1708 for (Value::use_iterator UI = I->first->use_begin(), 1709 UE = I->first->use_end(); UI != UE; ) { 1710 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1711 UpgradeIntrinsicCall(CI, I->second); 1712 } 1713 ValueList.replaceUsesOfWith(I->first, I->second); 1714 I->first->eraseFromParent(); 1715 } 1716 } 1717 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 1718 1719 return TheModule; 1720 } 1721 1722 1723 /// This method is provided by the parent ModuleProvde class and overriden 1724 /// here. It simply releases the module from its provided and frees up our 1725 /// state. 1726 /// @brief Release our hold on the generated module 1727 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 1728 // Since we're losing control of this Module, we must hand it back complete 1729 Module *M = ModuleProvider::releaseModule(ErrInfo); 1730 FreeState(); 1731 return M; 1732 } 1733 1734 1735 //===----------------------------------------------------------------------===// 1736 // External interface 1737 //===----------------------------------------------------------------------===// 1738 1739 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 1740 /// 1741 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 1742 std::string *ErrMsg) { 1743 BitcodeReader *R = new BitcodeReader(Buffer); 1744 if (R->ParseBitcode()) { 1745 if (ErrMsg) 1746 *ErrMsg = R->getErrorString(); 1747 1748 // Don't let the BitcodeReader dtor delete 'Buffer'. 1749 R->releaseMemoryBuffer(); 1750 delete R; 1751 return 0; 1752 } 1753 return R; 1754 } 1755 1756 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 1757 /// If an error occurs, return null and fill in *ErrMsg if non-null. 1758 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 1759 BitcodeReader *R; 1760 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 1761 if (!R) return 0; 1762 1763 // Read in the entire module. 1764 Module *M = R->materializeModule(ErrMsg); 1765 1766 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 1767 // there was an error. 1768 R->releaseMemoryBuffer(); 1769 1770 // If there was no error, tell ModuleProvider not to delete it when its dtor 1771 // is run. 1772 if (M) 1773 M = R->releaseModule(ErrMsg); 1774 1775 delete R; 1776 return M; 1777 } 1778