1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start, true), 880 APInt(BitWidth, End, true)); 881 } 882 } 883 884 Expected<ConstantRange> 885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 886 if (Record.size() - OpNum < 1) 887 return error("Too few records for range"); 888 unsigned BitWidth = Record[OpNum++]; 889 return readConstantRange(Record, OpNum, BitWidth); 890 } 891 892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 893 /// corresponding argument's pointee type. Also upgrades intrinsics that now 894 /// require an elementtype attribute. 895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 896 897 /// Converts alignment exponent (i.e. power of two (or zero)) to the 898 /// corresponding alignment to use. If alignment is too large, returns 899 /// a corresponding error code. 900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 903 ParserCallbacks Callbacks = {}); 904 905 Error parseComdatRecord(ArrayRef<uint64_t> Record); 906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 907 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 909 ArrayRef<uint64_t> Record); 910 911 Error parseAttributeBlock(); 912 Error parseAttributeGroupBlock(); 913 Error parseTypeTable(); 914 Error parseTypeTableBody(); 915 Error parseOperandBundleTags(); 916 Error parseSyncScopeNames(); 917 918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 919 unsigned NameIndex, Triple &TT); 920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 921 ArrayRef<uint64_t> Record); 922 Error parseValueSymbolTable(uint64_t Offset = 0); 923 Error parseGlobalValueSymbolTable(); 924 Error parseConstants(); 925 Error rememberAndSkipFunctionBodies(); 926 Error rememberAndSkipFunctionBody(); 927 /// Save the positions of the Metadata blocks and skip parsing the blocks. 928 Error rememberAndSkipMetadata(); 929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 930 Error parseFunctionBody(Function *F); 931 Error globalCleanup(); 932 Error resolveGlobalAndIndirectSymbolInits(); 933 Error parseUseLists(); 934 Error findFunctionInStream( 935 Function *F, 936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 937 938 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 939 }; 940 941 /// Class to manage reading and parsing function summary index bitcode 942 /// files/sections. 943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 944 /// The module index built during parsing. 945 ModuleSummaryIndex &TheIndex; 946 947 /// Indicates whether we have encountered a global value summary section 948 /// yet during parsing. 949 bool SeenGlobalValSummary = false; 950 951 /// Indicates whether we have already parsed the VST, used for error checking. 952 bool SeenValueSymbolTable = false; 953 954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 955 /// Used to enable on-demand parsing of the VST. 956 uint64_t VSTOffset = 0; 957 958 // Map to save ValueId to ValueInfo association that was recorded in the 959 // ValueSymbolTable. It is used after the VST is parsed to convert 960 // call graph edges read from the function summary from referencing 961 // callees by their ValueId to using the ValueInfo instead, which is how 962 // they are recorded in the summary index being built. 963 // We save a GUID which refers to the same global as the ValueInfo, but 964 // ignoring the linkage, i.e. for values other than local linkage they are 965 // identical (this is the second member). ValueInfo has the real GUID. 966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 967 ValueIdToValueInfoMap; 968 969 /// Map populated during module path string table parsing, from the 970 /// module ID to a string reference owned by the index's module 971 /// path string table, used to correlate with combined index 972 /// summary records. 973 DenseMap<uint64_t, StringRef> ModuleIdMap; 974 975 /// Original source file name recorded in a bitcode record. 976 std::string SourceFileName; 977 978 /// The string identifier given to this module by the client, normally the 979 /// path to the bitcode file. 980 StringRef ModulePath; 981 982 /// Callback to ask whether a symbol is the prevailing copy when invoked 983 /// during combined index building. 984 std::function<bool(GlobalValue::GUID)> IsPrevailing; 985 986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 987 /// ids from the lists in the callsite and alloc entries to the index. 988 std::vector<uint64_t> StackIds; 989 990 /// Linearized radix tree of allocation contexts. See the description above 991 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format. 992 std::vector<uint64_t> RadixArray; 993 994 public: 995 ModuleSummaryIndexBitcodeReader( 996 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 997 StringRef ModulePath, 998 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 999 1000 Error parseModule(); 1001 1002 private: 1003 void setValueGUID(uint64_t ValueID, StringRef ValueName, 1004 GlobalValue::LinkageTypes Linkage, 1005 StringRef SourceFileName); 1006 Error parseValueSymbolTable( 1007 uint64_t Offset, 1008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1009 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1010 SmallVector<FunctionSummary::EdgeTy, 0> 1011 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1012 bool HasProfile, bool HasRelBF); 1013 Error parseEntireSummary(unsigned ID); 1014 Error parseModuleStringTable(); 1015 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1016 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1017 TypeIdCompatibleVtableInfo &TypeId); 1018 std::vector<FunctionSummary::ParamAccess> 1019 parseParamAccesses(ArrayRef<uint64_t> Record); 1020 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record, 1021 unsigned &I); 1022 1023 template <bool AllowNullValueInfo = false> 1024 std::pair<ValueInfo, GlobalValue::GUID> 1025 getValueInfoFromValueId(unsigned ValueId); 1026 1027 void addThisModule(); 1028 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1029 }; 1030 1031 } // end anonymous namespace 1032 1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1034 Error Err) { 1035 if (Err) { 1036 std::error_code EC; 1037 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1038 EC = EIB.convertToErrorCode(); 1039 Ctx.emitError(EIB.message()); 1040 }); 1041 return EC; 1042 } 1043 return std::error_code(); 1044 } 1045 1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1047 StringRef ProducerIdentification, 1048 LLVMContext &Context) 1049 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1050 ValueList(this->Stream.SizeInBytes(), 1051 [this](unsigned ValID, BasicBlock *InsertBB) { 1052 return materializeValue(ValID, InsertBB); 1053 }) { 1054 this->ProducerIdentification = std::string(ProducerIdentification); 1055 } 1056 1057 Error BitcodeReader::materializeForwardReferencedFunctions() { 1058 if (WillMaterializeAllForwardRefs) 1059 return Error::success(); 1060 1061 // Prevent recursion. 1062 WillMaterializeAllForwardRefs = true; 1063 1064 while (!BasicBlockFwdRefQueue.empty()) { 1065 Function *F = BasicBlockFwdRefQueue.front(); 1066 BasicBlockFwdRefQueue.pop_front(); 1067 assert(F && "Expected valid function"); 1068 if (!BasicBlockFwdRefs.count(F)) 1069 // Already materialized. 1070 continue; 1071 1072 // Check for a function that isn't materializable to prevent an infinite 1073 // loop. When parsing a blockaddress stored in a global variable, there 1074 // isn't a trivial way to check if a function will have a body without a 1075 // linear search through FunctionsWithBodies, so just check it here. 1076 if (!F->isMaterializable()) 1077 return error("Never resolved function from blockaddress"); 1078 1079 // Try to materialize F. 1080 if (Error Err = materialize(F)) 1081 return Err; 1082 } 1083 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1084 1085 for (Function *F : BackwardRefFunctions) 1086 if (Error Err = materialize(F)) 1087 return Err; 1088 BackwardRefFunctions.clear(); 1089 1090 // Reset state. 1091 WillMaterializeAllForwardRefs = false; 1092 return Error::success(); 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // Helper functions to implement forward reference resolution, etc. 1097 //===----------------------------------------------------------------------===// 1098 1099 static bool hasImplicitComdat(size_t Val) { 1100 switch (Val) { 1101 default: 1102 return false; 1103 case 1: // Old WeakAnyLinkage 1104 case 4: // Old LinkOnceAnyLinkage 1105 case 10: // Old WeakODRLinkage 1106 case 11: // Old LinkOnceODRLinkage 1107 return true; 1108 } 1109 } 1110 1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1112 switch (Val) { 1113 default: // Map unknown/new linkages to external 1114 case 0: 1115 return GlobalValue::ExternalLinkage; 1116 case 2: 1117 return GlobalValue::AppendingLinkage; 1118 case 3: 1119 return GlobalValue::InternalLinkage; 1120 case 5: 1121 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1122 case 6: 1123 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1124 case 7: 1125 return GlobalValue::ExternalWeakLinkage; 1126 case 8: 1127 return GlobalValue::CommonLinkage; 1128 case 9: 1129 return GlobalValue::PrivateLinkage; 1130 case 12: 1131 return GlobalValue::AvailableExternallyLinkage; 1132 case 13: 1133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1134 case 14: 1135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1136 case 15: 1137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1138 case 1: // Old value with implicit comdat. 1139 case 16: 1140 return GlobalValue::WeakAnyLinkage; 1141 case 10: // Old value with implicit comdat. 1142 case 17: 1143 return GlobalValue::WeakODRLinkage; 1144 case 4: // Old value with implicit comdat. 1145 case 18: 1146 return GlobalValue::LinkOnceAnyLinkage; 1147 case 11: // Old value with implicit comdat. 1148 case 19: 1149 return GlobalValue::LinkOnceODRLinkage; 1150 } 1151 } 1152 1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1154 FunctionSummary::FFlags Flags; 1155 Flags.ReadNone = RawFlags & 0x1; 1156 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1157 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1158 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1159 Flags.NoInline = (RawFlags >> 4) & 0x1; 1160 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1161 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1162 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1163 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1164 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1165 return Flags; 1166 } 1167 1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1169 // 1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1171 // visibility: [8, 10). 1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1173 uint64_t Version) { 1174 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1175 // like getDecodedLinkage() above. Any future change to the linkage enum and 1176 // to getDecodedLinkage() will need to be taken into account here as above. 1177 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1178 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1179 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1180 RawFlags = RawFlags >> 4; 1181 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1182 // The Live flag wasn't introduced until version 3. For dead stripping 1183 // to work correctly on earlier versions, we must conservatively treat all 1184 // values as live. 1185 bool Live = (RawFlags & 0x2) || Version < 3; 1186 bool Local = (RawFlags & 0x4); 1187 bool AutoHide = (RawFlags & 0x8); 1188 1189 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1190 Live, Local, AutoHide, IK); 1191 } 1192 1193 // Decode the flags for GlobalVariable in the summary 1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1195 return GlobalVarSummary::GVarFlags( 1196 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1197 (RawFlags & 0x4) ? true : false, 1198 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1199 } 1200 1201 static std::pair<CalleeInfo::HotnessType, bool> 1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1203 CalleeInfo::HotnessType Hotness = 1204 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1205 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1206 return {Hotness, HasTailCall}; 1207 } 1208 1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1210 bool &HasTailCall) { 1211 static constexpr uint64_t RelBlockFreqMask = 1212 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1213 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1214 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1215 } 1216 1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1218 switch (Val) { 1219 default: // Map unknown visibilities to default. 1220 case 0: return GlobalValue::DefaultVisibility; 1221 case 1: return GlobalValue::HiddenVisibility; 1222 case 2: return GlobalValue::ProtectedVisibility; 1223 } 1224 } 1225 1226 static GlobalValue::DLLStorageClassTypes 1227 getDecodedDLLStorageClass(unsigned Val) { 1228 switch (Val) { 1229 default: // Map unknown values to default. 1230 case 0: return GlobalValue::DefaultStorageClass; 1231 case 1: return GlobalValue::DLLImportStorageClass; 1232 case 2: return GlobalValue::DLLExportStorageClass; 1233 } 1234 } 1235 1236 static bool getDecodedDSOLocal(unsigned Val) { 1237 switch(Val) { 1238 default: // Map unknown values to preemptable. 1239 case 0: return false; 1240 case 1: return true; 1241 } 1242 } 1243 1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1245 switch (Val) { 1246 case 1: 1247 return CodeModel::Tiny; 1248 case 2: 1249 return CodeModel::Small; 1250 case 3: 1251 return CodeModel::Kernel; 1252 case 4: 1253 return CodeModel::Medium; 1254 case 5: 1255 return CodeModel::Large; 1256 } 1257 1258 return {}; 1259 } 1260 1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1262 switch (Val) { 1263 case 0: return GlobalVariable::NotThreadLocal; 1264 default: // Map unknown non-zero value to general dynamic. 1265 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1266 case 2: return GlobalVariable::LocalDynamicTLSModel; 1267 case 3: return GlobalVariable::InitialExecTLSModel; 1268 case 4: return GlobalVariable::LocalExecTLSModel; 1269 } 1270 } 1271 1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1273 switch (Val) { 1274 default: // Map unknown to UnnamedAddr::None. 1275 case 0: return GlobalVariable::UnnamedAddr::None; 1276 case 1: return GlobalVariable::UnnamedAddr::Global; 1277 case 2: return GlobalVariable::UnnamedAddr::Local; 1278 } 1279 } 1280 1281 static int getDecodedCastOpcode(unsigned Val) { 1282 switch (Val) { 1283 default: return -1; 1284 case bitc::CAST_TRUNC : return Instruction::Trunc; 1285 case bitc::CAST_ZEXT : return Instruction::ZExt; 1286 case bitc::CAST_SEXT : return Instruction::SExt; 1287 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1288 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1289 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1290 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1291 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1292 case bitc::CAST_FPEXT : return Instruction::FPExt; 1293 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1294 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1295 case bitc::CAST_BITCAST : return Instruction::BitCast; 1296 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1297 } 1298 } 1299 1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1301 bool IsFP = Ty->isFPOrFPVectorTy(); 1302 // UnOps are only valid for int/fp or vector of int/fp types 1303 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1304 return -1; 1305 1306 switch (Val) { 1307 default: 1308 return -1; 1309 case bitc::UNOP_FNEG: 1310 return IsFP ? Instruction::FNeg : -1; 1311 } 1312 } 1313 1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1315 bool IsFP = Ty->isFPOrFPVectorTy(); 1316 // BinOps are only valid for int/fp or vector of int/fp types 1317 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1318 return -1; 1319 1320 switch (Val) { 1321 default: 1322 return -1; 1323 case bitc::BINOP_ADD: 1324 return IsFP ? Instruction::FAdd : Instruction::Add; 1325 case bitc::BINOP_SUB: 1326 return IsFP ? Instruction::FSub : Instruction::Sub; 1327 case bitc::BINOP_MUL: 1328 return IsFP ? Instruction::FMul : Instruction::Mul; 1329 case bitc::BINOP_UDIV: 1330 return IsFP ? -1 : Instruction::UDiv; 1331 case bitc::BINOP_SDIV: 1332 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1333 case bitc::BINOP_UREM: 1334 return IsFP ? -1 : Instruction::URem; 1335 case bitc::BINOP_SREM: 1336 return IsFP ? Instruction::FRem : Instruction::SRem; 1337 case bitc::BINOP_SHL: 1338 return IsFP ? -1 : Instruction::Shl; 1339 case bitc::BINOP_LSHR: 1340 return IsFP ? -1 : Instruction::LShr; 1341 case bitc::BINOP_ASHR: 1342 return IsFP ? -1 : Instruction::AShr; 1343 case bitc::BINOP_AND: 1344 return IsFP ? -1 : Instruction::And; 1345 case bitc::BINOP_OR: 1346 return IsFP ? -1 : Instruction::Or; 1347 case bitc::BINOP_XOR: 1348 return IsFP ? -1 : Instruction::Xor; 1349 } 1350 } 1351 1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1353 switch (Val) { 1354 default: return AtomicRMWInst::BAD_BINOP; 1355 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1356 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1357 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1358 case bitc::RMW_AND: return AtomicRMWInst::And; 1359 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1360 case bitc::RMW_OR: return AtomicRMWInst::Or; 1361 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1362 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1363 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1364 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1365 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1366 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1367 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1368 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1369 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1370 case bitc::RMW_UINC_WRAP: 1371 return AtomicRMWInst::UIncWrap; 1372 case bitc::RMW_UDEC_WRAP: 1373 return AtomicRMWInst::UDecWrap; 1374 case bitc::RMW_USUB_COND: 1375 return AtomicRMWInst::USubCond; 1376 case bitc::RMW_USUB_SAT: 1377 return AtomicRMWInst::USubSat; 1378 } 1379 } 1380 1381 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1382 switch (Val) { 1383 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1384 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1385 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1386 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1387 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1388 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1389 default: // Map unknown orderings to sequentially-consistent. 1390 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1391 } 1392 } 1393 1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1395 switch (Val) { 1396 default: // Map unknown selection kinds to any. 1397 case bitc::COMDAT_SELECTION_KIND_ANY: 1398 return Comdat::Any; 1399 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1400 return Comdat::ExactMatch; 1401 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1402 return Comdat::Largest; 1403 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1404 return Comdat::NoDeduplicate; 1405 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1406 return Comdat::SameSize; 1407 } 1408 } 1409 1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1411 FastMathFlags FMF; 1412 if (0 != (Val & bitc::UnsafeAlgebra)) 1413 FMF.setFast(); 1414 if (0 != (Val & bitc::AllowReassoc)) 1415 FMF.setAllowReassoc(); 1416 if (0 != (Val & bitc::NoNaNs)) 1417 FMF.setNoNaNs(); 1418 if (0 != (Val & bitc::NoInfs)) 1419 FMF.setNoInfs(); 1420 if (0 != (Val & bitc::NoSignedZeros)) 1421 FMF.setNoSignedZeros(); 1422 if (0 != (Val & bitc::AllowReciprocal)) 1423 FMF.setAllowReciprocal(); 1424 if (0 != (Val & bitc::AllowContract)) 1425 FMF.setAllowContract(true); 1426 if (0 != (Val & bitc::ApproxFunc)) 1427 FMF.setApproxFunc(); 1428 return FMF; 1429 } 1430 1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1432 // A GlobalValue with local linkage cannot have a DLL storage class. 1433 if (GV->hasLocalLinkage()) 1434 return; 1435 switch (Val) { 1436 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1437 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1438 } 1439 } 1440 1441 Type *BitcodeReader::getTypeByID(unsigned ID) { 1442 // The type table size is always specified correctly. 1443 if (ID >= TypeList.size()) 1444 return nullptr; 1445 1446 if (Type *Ty = TypeList[ID]) 1447 return Ty; 1448 1449 // If we have a forward reference, the only possible case is when it is to a 1450 // named struct. Just create a placeholder for now. 1451 return TypeList[ID] = createIdentifiedStructType(Context); 1452 } 1453 1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1455 auto It = ContainedTypeIDs.find(ID); 1456 if (It == ContainedTypeIDs.end()) 1457 return InvalidTypeID; 1458 1459 if (Idx >= It->second.size()) 1460 return InvalidTypeID; 1461 1462 return It->second[Idx]; 1463 } 1464 1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1466 if (ID >= TypeList.size()) 1467 return nullptr; 1468 1469 Type *Ty = TypeList[ID]; 1470 if (!Ty->isPointerTy()) 1471 return nullptr; 1472 1473 return getTypeByID(getContainedTypeID(ID, 0)); 1474 } 1475 1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1477 ArrayRef<unsigned> ChildTypeIDs) { 1478 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1479 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1480 auto It = VirtualTypeIDs.find(CacheKey); 1481 if (It != VirtualTypeIDs.end()) { 1482 // The cmpxchg return value is the only place we need more than one 1483 // contained type ID, however the second one will always be the same (i1), 1484 // so we don't need to include it in the cache key. This asserts that the 1485 // contained types are indeed as expected and there are no collisions. 1486 assert((ChildTypeIDs.empty() || 1487 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1488 "Incorrect cached contained type IDs"); 1489 return It->second; 1490 } 1491 1492 unsigned TypeID = TypeList.size(); 1493 TypeList.push_back(Ty); 1494 if (!ChildTypeIDs.empty()) 1495 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1496 VirtualTypeIDs.insert({CacheKey, TypeID}); 1497 return TypeID; 1498 } 1499 1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1501 GEPNoWrapFlags NW; 1502 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1503 NW |= GEPNoWrapFlags::inBounds(); 1504 if (Flags & (1 << bitc::GEP_NUSW)) 1505 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1506 if (Flags & (1 << bitc::GEP_NUW)) 1507 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1508 return NW; 1509 } 1510 1511 static bool isConstExprSupported(const BitcodeConstant *BC) { 1512 uint8_t Opcode = BC->Opcode; 1513 1514 // These are not real constant expressions, always consider them supported. 1515 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1516 return true; 1517 1518 // If -expand-constant-exprs is set, we want to consider all expressions 1519 // as unsupported. 1520 if (ExpandConstantExprs) 1521 return false; 1522 1523 if (Instruction::isBinaryOp(Opcode)) 1524 return ConstantExpr::isSupportedBinOp(Opcode); 1525 1526 if (Instruction::isCast(Opcode)) 1527 return ConstantExpr::isSupportedCastOp(Opcode); 1528 1529 if (Opcode == Instruction::GetElementPtr) 1530 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1531 1532 switch (Opcode) { 1533 case Instruction::FNeg: 1534 case Instruction::Select: 1535 case Instruction::ICmp: 1536 case Instruction::FCmp: 1537 return false; 1538 default: 1539 return true; 1540 } 1541 } 1542 1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1544 BasicBlock *InsertBB) { 1545 // Quickly handle the case where there is no BitcodeConstant to resolve. 1546 if (StartValID < ValueList.size() && ValueList[StartValID] && 1547 !isa<BitcodeConstant>(ValueList[StartValID])) 1548 return ValueList[StartValID]; 1549 1550 SmallDenseMap<unsigned, Value *> MaterializedValues; 1551 SmallVector<unsigned> Worklist; 1552 Worklist.push_back(StartValID); 1553 while (!Worklist.empty()) { 1554 unsigned ValID = Worklist.back(); 1555 if (MaterializedValues.count(ValID)) { 1556 // Duplicate expression that was already handled. 1557 Worklist.pop_back(); 1558 continue; 1559 } 1560 1561 if (ValID >= ValueList.size() || !ValueList[ValID]) 1562 return error("Invalid value ID"); 1563 1564 Value *V = ValueList[ValID]; 1565 auto *BC = dyn_cast<BitcodeConstant>(V); 1566 if (!BC) { 1567 MaterializedValues.insert({ValID, V}); 1568 Worklist.pop_back(); 1569 continue; 1570 } 1571 1572 // Iterate in reverse, so values will get popped from the worklist in 1573 // expected order. 1574 SmallVector<Value *> Ops; 1575 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1576 auto It = MaterializedValues.find(OpID); 1577 if (It != MaterializedValues.end()) 1578 Ops.push_back(It->second); 1579 else 1580 Worklist.push_back(OpID); 1581 } 1582 1583 // Some expressions have not been resolved yet, handle them first and then 1584 // revisit this one. 1585 if (Ops.size() != BC->getOperandIDs().size()) 1586 continue; 1587 std::reverse(Ops.begin(), Ops.end()); 1588 1589 SmallVector<Constant *> ConstOps; 1590 for (Value *Op : Ops) 1591 if (auto *C = dyn_cast<Constant>(Op)) 1592 ConstOps.push_back(C); 1593 1594 // Materialize as constant expression if possible. 1595 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1596 Constant *C; 1597 if (Instruction::isCast(BC->Opcode)) { 1598 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1599 if (!C) 1600 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1601 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1602 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1603 } else { 1604 switch (BC->Opcode) { 1605 case BitcodeConstant::ConstantPtrAuthOpcode: { 1606 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1607 if (!Key) 1608 return error("ptrauth key operand must be ConstantInt"); 1609 1610 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1611 if (!Disc) 1612 return error("ptrauth disc operand must be ConstantInt"); 1613 1614 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1615 break; 1616 } 1617 case BitcodeConstant::NoCFIOpcode: { 1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1619 if (!GV) 1620 return error("no_cfi operand must be GlobalValue"); 1621 C = NoCFIValue::get(GV); 1622 break; 1623 } 1624 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1625 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1626 if (!GV) 1627 return error("dso_local operand must be GlobalValue"); 1628 C = DSOLocalEquivalent::get(GV); 1629 break; 1630 } 1631 case BitcodeConstant::BlockAddressOpcode: { 1632 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1633 if (!Fn) 1634 return error("blockaddress operand must be a function"); 1635 1636 // If the function is already parsed we can insert the block address 1637 // right away. 1638 BasicBlock *BB; 1639 unsigned BBID = BC->BlockAddressBB; 1640 if (!BBID) 1641 // Invalid reference to entry block. 1642 return error("Invalid ID"); 1643 if (!Fn->empty()) { 1644 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1645 for (size_t I = 0, E = BBID; I != E; ++I) { 1646 if (BBI == BBE) 1647 return error("Invalid ID"); 1648 ++BBI; 1649 } 1650 BB = &*BBI; 1651 } else { 1652 // Otherwise insert a placeholder and remember it so it can be 1653 // inserted when the function is parsed. 1654 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1655 if (FwdBBs.empty()) 1656 BasicBlockFwdRefQueue.push_back(Fn); 1657 if (FwdBBs.size() < BBID + 1) 1658 FwdBBs.resize(BBID + 1); 1659 if (!FwdBBs[BBID]) 1660 FwdBBs[BBID] = BasicBlock::Create(Context); 1661 BB = FwdBBs[BBID]; 1662 } 1663 C = BlockAddress::get(Fn, BB); 1664 break; 1665 } 1666 case BitcodeConstant::ConstantStructOpcode: { 1667 auto *ST = cast<StructType>(BC->getType()); 1668 if (ST->getNumElements() != ConstOps.size()) 1669 return error("Invalid number of elements in struct initializer"); 1670 1671 for (const auto [Ty, Op] : zip(ST->elements(), ConstOps)) 1672 if (Op->getType() != Ty) 1673 return error("Incorrect type in struct initializer"); 1674 1675 C = ConstantStruct::get(ST, ConstOps); 1676 break; 1677 } 1678 case BitcodeConstant::ConstantArrayOpcode: { 1679 auto *AT = cast<ArrayType>(BC->getType()); 1680 if (AT->getNumElements() != ConstOps.size()) 1681 return error("Invalid number of elements in array initializer"); 1682 1683 for (Constant *Op : ConstOps) 1684 if (Op->getType() != AT->getElementType()) 1685 return error("Incorrect type in array initializer"); 1686 1687 C = ConstantArray::get(AT, ConstOps); 1688 break; 1689 } 1690 case BitcodeConstant::ConstantVectorOpcode: { 1691 auto *VT = cast<FixedVectorType>(BC->getType()); 1692 if (VT->getNumElements() != ConstOps.size()) 1693 return error("Invalid number of elements in vector initializer"); 1694 1695 for (Constant *Op : ConstOps) 1696 if (Op->getType() != VT->getElementType()) 1697 return error("Incorrect type in vector initializer"); 1698 1699 C = ConstantVector::get(ConstOps); 1700 break; 1701 } 1702 case Instruction::GetElementPtr: 1703 C = ConstantExpr::getGetElementPtr( 1704 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1705 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1706 break; 1707 case Instruction::ExtractElement: 1708 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1709 break; 1710 case Instruction::InsertElement: 1711 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1712 ConstOps[2]); 1713 break; 1714 case Instruction::ShuffleVector: { 1715 SmallVector<int, 16> Mask; 1716 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1717 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1718 break; 1719 } 1720 default: 1721 llvm_unreachable("Unhandled bitcode constant"); 1722 } 1723 } 1724 1725 // Cache resolved constant. 1726 ValueList.replaceValueWithoutRAUW(ValID, C); 1727 MaterializedValues.insert({ValID, C}); 1728 Worklist.pop_back(); 1729 continue; 1730 } 1731 1732 if (!InsertBB) 1733 return error(Twine("Value referenced by initializer is an unsupported " 1734 "constant expression of type ") + 1735 BC->getOpcodeName()); 1736 1737 // Materialize as instructions if necessary. 1738 Instruction *I; 1739 if (Instruction::isCast(BC->Opcode)) { 1740 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1741 BC->getType(), "constexpr", InsertBB); 1742 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1743 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1744 "constexpr", InsertBB); 1745 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1746 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1747 Ops[1], "constexpr", InsertBB); 1748 if (isa<OverflowingBinaryOperator>(I)) { 1749 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1750 I->setHasNoSignedWrap(); 1751 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1752 I->setHasNoUnsignedWrap(); 1753 } 1754 if (isa<PossiblyExactOperator>(I) && 1755 (BC->Flags & PossiblyExactOperator::IsExact)) 1756 I->setIsExact(); 1757 } else { 1758 switch (BC->Opcode) { 1759 case BitcodeConstant::ConstantVectorOpcode: { 1760 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1761 Value *V = PoisonValue::get(BC->getType()); 1762 for (auto Pair : enumerate(Ops)) { 1763 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1764 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1765 InsertBB); 1766 } 1767 I = cast<Instruction>(V); 1768 break; 1769 } 1770 case BitcodeConstant::ConstantStructOpcode: 1771 case BitcodeConstant::ConstantArrayOpcode: { 1772 Value *V = PoisonValue::get(BC->getType()); 1773 for (auto Pair : enumerate(Ops)) 1774 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1775 "constexpr.ins", InsertBB); 1776 I = cast<Instruction>(V); 1777 break; 1778 } 1779 case Instruction::ICmp: 1780 case Instruction::FCmp: 1781 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1782 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1783 "constexpr", InsertBB); 1784 break; 1785 case Instruction::GetElementPtr: 1786 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1787 ArrayRef(Ops).drop_front(), "constexpr", 1788 InsertBB); 1789 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1790 break; 1791 case Instruction::Select: 1792 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1793 break; 1794 case Instruction::ExtractElement: 1795 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1796 break; 1797 case Instruction::InsertElement: 1798 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1799 InsertBB); 1800 break; 1801 case Instruction::ShuffleVector: 1802 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1803 InsertBB); 1804 break; 1805 default: 1806 llvm_unreachable("Unhandled bitcode constant"); 1807 } 1808 } 1809 1810 MaterializedValues.insert({ValID, I}); 1811 Worklist.pop_back(); 1812 } 1813 1814 return MaterializedValues[StartValID]; 1815 } 1816 1817 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1818 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1819 if (!MaybeV) 1820 return MaybeV.takeError(); 1821 1822 // Result must be Constant if InsertBB is nullptr. 1823 return cast<Constant>(MaybeV.get()); 1824 } 1825 1826 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1827 StringRef Name) { 1828 auto *Ret = StructType::create(Context, Name); 1829 IdentifiedStructTypes.push_back(Ret); 1830 return Ret; 1831 } 1832 1833 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1834 auto *Ret = StructType::create(Context); 1835 IdentifiedStructTypes.push_back(Ret); 1836 return Ret; 1837 } 1838 1839 //===----------------------------------------------------------------------===// 1840 // Functions for parsing blocks from the bitcode file 1841 //===----------------------------------------------------------------------===// 1842 1843 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1844 switch (Val) { 1845 case Attribute::EndAttrKinds: 1846 case Attribute::EmptyKey: 1847 case Attribute::TombstoneKey: 1848 llvm_unreachable("Synthetic enumerators which should never get here"); 1849 1850 case Attribute::None: return 0; 1851 case Attribute::ZExt: return 1 << 0; 1852 case Attribute::SExt: return 1 << 1; 1853 case Attribute::NoReturn: return 1 << 2; 1854 case Attribute::InReg: return 1 << 3; 1855 case Attribute::StructRet: return 1 << 4; 1856 case Attribute::NoUnwind: return 1 << 5; 1857 case Attribute::NoAlias: return 1 << 6; 1858 case Attribute::ByVal: return 1 << 7; 1859 case Attribute::Nest: return 1 << 8; 1860 case Attribute::ReadNone: return 1 << 9; 1861 case Attribute::ReadOnly: return 1 << 10; 1862 case Attribute::NoInline: return 1 << 11; 1863 case Attribute::AlwaysInline: return 1 << 12; 1864 case Attribute::OptimizeForSize: return 1 << 13; 1865 case Attribute::StackProtect: return 1 << 14; 1866 case Attribute::StackProtectReq: return 1 << 15; 1867 case Attribute::Alignment: return 31 << 16; 1868 case Attribute::NoCapture: return 1 << 21; 1869 case Attribute::NoRedZone: return 1 << 22; 1870 case Attribute::NoImplicitFloat: return 1 << 23; 1871 case Attribute::Naked: return 1 << 24; 1872 case Attribute::InlineHint: return 1 << 25; 1873 case Attribute::StackAlignment: return 7 << 26; 1874 case Attribute::ReturnsTwice: return 1 << 29; 1875 case Attribute::UWTable: return 1 << 30; 1876 case Attribute::NonLazyBind: return 1U << 31; 1877 case Attribute::SanitizeAddress: return 1ULL << 32; 1878 case Attribute::MinSize: return 1ULL << 33; 1879 case Attribute::NoDuplicate: return 1ULL << 34; 1880 case Attribute::StackProtectStrong: return 1ULL << 35; 1881 case Attribute::SanitizeThread: return 1ULL << 36; 1882 case Attribute::SanitizeMemory: return 1ULL << 37; 1883 case Attribute::NoBuiltin: return 1ULL << 38; 1884 case Attribute::Returned: return 1ULL << 39; 1885 case Attribute::Cold: return 1ULL << 40; 1886 case Attribute::Builtin: return 1ULL << 41; 1887 case Attribute::OptimizeNone: return 1ULL << 42; 1888 case Attribute::InAlloca: return 1ULL << 43; 1889 case Attribute::NonNull: return 1ULL << 44; 1890 case Attribute::JumpTable: return 1ULL << 45; 1891 case Attribute::Convergent: return 1ULL << 46; 1892 case Attribute::SafeStack: return 1ULL << 47; 1893 case Attribute::NoRecurse: return 1ULL << 48; 1894 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1895 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1896 case Attribute::SwiftSelf: return 1ULL << 51; 1897 case Attribute::SwiftError: return 1ULL << 52; 1898 case Attribute::WriteOnly: return 1ULL << 53; 1899 case Attribute::Speculatable: return 1ULL << 54; 1900 case Attribute::StrictFP: return 1ULL << 55; 1901 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1902 case Attribute::NoCfCheck: return 1ULL << 57; 1903 case Attribute::OptForFuzzing: return 1ULL << 58; 1904 case Attribute::ShadowCallStack: return 1ULL << 59; 1905 case Attribute::SpeculativeLoadHardening: 1906 return 1ULL << 60; 1907 case Attribute::ImmArg: 1908 return 1ULL << 61; 1909 case Attribute::WillReturn: 1910 return 1ULL << 62; 1911 case Attribute::NoFree: 1912 return 1ULL << 63; 1913 default: 1914 // Other attributes are not supported in the raw format, 1915 // as we ran out of space. 1916 return 0; 1917 } 1918 llvm_unreachable("Unsupported attribute type"); 1919 } 1920 1921 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1922 if (!Val) return; 1923 1924 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1925 I = Attribute::AttrKind(I + 1)) { 1926 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1927 if (I == Attribute::Alignment) 1928 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1929 else if (I == Attribute::StackAlignment) 1930 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1931 else if (Attribute::isTypeAttrKind(I)) 1932 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1933 else 1934 B.addAttribute(I); 1935 } 1936 } 1937 } 1938 1939 /// This fills an AttrBuilder object with the LLVM attributes that have 1940 /// been decoded from the given integer. This function must stay in sync with 1941 /// 'encodeLLVMAttributesForBitcode'. 1942 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1943 uint64_t EncodedAttrs, 1944 uint64_t AttrIdx) { 1945 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1946 // the bits above 31 down by 11 bits. 1947 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1948 assert((!Alignment || isPowerOf2_32(Alignment)) && 1949 "Alignment must be a power of two."); 1950 1951 if (Alignment) 1952 B.addAlignmentAttr(Alignment); 1953 1954 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1955 (EncodedAttrs & 0xffff); 1956 1957 if (AttrIdx == AttributeList::FunctionIndex) { 1958 // Upgrade old memory attributes. 1959 MemoryEffects ME = MemoryEffects::unknown(); 1960 if (Attrs & (1ULL << 9)) { 1961 // ReadNone 1962 Attrs &= ~(1ULL << 9); 1963 ME &= MemoryEffects::none(); 1964 } 1965 if (Attrs & (1ULL << 10)) { 1966 // ReadOnly 1967 Attrs &= ~(1ULL << 10); 1968 ME &= MemoryEffects::readOnly(); 1969 } 1970 if (Attrs & (1ULL << 49)) { 1971 // InaccessibleMemOnly 1972 Attrs &= ~(1ULL << 49); 1973 ME &= MemoryEffects::inaccessibleMemOnly(); 1974 } 1975 if (Attrs & (1ULL << 50)) { 1976 // InaccessibleMemOrArgMemOnly 1977 Attrs &= ~(1ULL << 50); 1978 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1979 } 1980 if (Attrs & (1ULL << 53)) { 1981 // WriteOnly 1982 Attrs &= ~(1ULL << 53); 1983 ME &= MemoryEffects::writeOnly(); 1984 } 1985 if (ME != MemoryEffects::unknown()) 1986 B.addMemoryAttr(ME); 1987 } 1988 1989 addRawAttributeValue(B, Attrs); 1990 } 1991 1992 Error BitcodeReader::parseAttributeBlock() { 1993 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1994 return Err; 1995 1996 if (!MAttributes.empty()) 1997 return error("Invalid multiple blocks"); 1998 1999 SmallVector<uint64_t, 64> Record; 2000 2001 SmallVector<AttributeList, 8> Attrs; 2002 2003 // Read all the records. 2004 while (true) { 2005 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2006 if (!MaybeEntry) 2007 return MaybeEntry.takeError(); 2008 BitstreamEntry Entry = MaybeEntry.get(); 2009 2010 switch (Entry.Kind) { 2011 case BitstreamEntry::SubBlock: // Handled for us already. 2012 case BitstreamEntry::Error: 2013 return error("Malformed block"); 2014 case BitstreamEntry::EndBlock: 2015 return Error::success(); 2016 case BitstreamEntry::Record: 2017 // The interesting case. 2018 break; 2019 } 2020 2021 // Read a record. 2022 Record.clear(); 2023 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2024 if (!MaybeRecord) 2025 return MaybeRecord.takeError(); 2026 switch (MaybeRecord.get()) { 2027 default: // Default behavior: ignore. 2028 break; 2029 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 2030 // Deprecated, but still needed to read old bitcode files. 2031 if (Record.size() & 1) 2032 return error("Invalid parameter attribute record"); 2033 2034 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2035 AttrBuilder B(Context); 2036 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2037 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2038 } 2039 2040 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2041 Attrs.clear(); 2042 break; 2043 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2044 for (uint64_t Val : Record) 2045 Attrs.push_back(MAttributeGroups[Val]); 2046 2047 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2048 Attrs.clear(); 2049 break; 2050 } 2051 } 2052 } 2053 2054 // Returns Attribute::None on unrecognized codes. 2055 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2056 switch (Code) { 2057 default: 2058 return Attribute::None; 2059 case bitc::ATTR_KIND_ALIGNMENT: 2060 return Attribute::Alignment; 2061 case bitc::ATTR_KIND_ALWAYS_INLINE: 2062 return Attribute::AlwaysInline; 2063 case bitc::ATTR_KIND_BUILTIN: 2064 return Attribute::Builtin; 2065 case bitc::ATTR_KIND_BY_VAL: 2066 return Attribute::ByVal; 2067 case bitc::ATTR_KIND_IN_ALLOCA: 2068 return Attribute::InAlloca; 2069 case bitc::ATTR_KIND_COLD: 2070 return Attribute::Cold; 2071 case bitc::ATTR_KIND_CONVERGENT: 2072 return Attribute::Convergent; 2073 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2074 return Attribute::DisableSanitizerInstrumentation; 2075 case bitc::ATTR_KIND_ELEMENTTYPE: 2076 return Attribute::ElementType; 2077 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2078 return Attribute::FnRetThunkExtern; 2079 case bitc::ATTR_KIND_INLINE_HINT: 2080 return Attribute::InlineHint; 2081 case bitc::ATTR_KIND_IN_REG: 2082 return Attribute::InReg; 2083 case bitc::ATTR_KIND_JUMP_TABLE: 2084 return Attribute::JumpTable; 2085 case bitc::ATTR_KIND_MEMORY: 2086 return Attribute::Memory; 2087 case bitc::ATTR_KIND_NOFPCLASS: 2088 return Attribute::NoFPClass; 2089 case bitc::ATTR_KIND_MIN_SIZE: 2090 return Attribute::MinSize; 2091 case bitc::ATTR_KIND_NAKED: 2092 return Attribute::Naked; 2093 case bitc::ATTR_KIND_NEST: 2094 return Attribute::Nest; 2095 case bitc::ATTR_KIND_NO_ALIAS: 2096 return Attribute::NoAlias; 2097 case bitc::ATTR_KIND_NO_BUILTIN: 2098 return Attribute::NoBuiltin; 2099 case bitc::ATTR_KIND_NO_CALLBACK: 2100 return Attribute::NoCallback; 2101 case bitc::ATTR_KIND_NO_CAPTURE: 2102 return Attribute::NoCapture; 2103 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE: 2104 return Attribute::NoDivergenceSource; 2105 case bitc::ATTR_KIND_NO_DUPLICATE: 2106 return Attribute::NoDuplicate; 2107 case bitc::ATTR_KIND_NOFREE: 2108 return Attribute::NoFree; 2109 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2110 return Attribute::NoImplicitFloat; 2111 case bitc::ATTR_KIND_NO_INLINE: 2112 return Attribute::NoInline; 2113 case bitc::ATTR_KIND_NO_RECURSE: 2114 return Attribute::NoRecurse; 2115 case bitc::ATTR_KIND_NO_MERGE: 2116 return Attribute::NoMerge; 2117 case bitc::ATTR_KIND_NON_LAZY_BIND: 2118 return Attribute::NonLazyBind; 2119 case bitc::ATTR_KIND_NON_NULL: 2120 return Attribute::NonNull; 2121 case bitc::ATTR_KIND_DEREFERENCEABLE: 2122 return Attribute::Dereferenceable; 2123 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2124 return Attribute::DereferenceableOrNull; 2125 case bitc::ATTR_KIND_ALLOC_ALIGN: 2126 return Attribute::AllocAlign; 2127 case bitc::ATTR_KIND_ALLOC_KIND: 2128 return Attribute::AllocKind; 2129 case bitc::ATTR_KIND_ALLOC_SIZE: 2130 return Attribute::AllocSize; 2131 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2132 return Attribute::AllocatedPointer; 2133 case bitc::ATTR_KIND_NO_RED_ZONE: 2134 return Attribute::NoRedZone; 2135 case bitc::ATTR_KIND_NO_RETURN: 2136 return Attribute::NoReturn; 2137 case bitc::ATTR_KIND_NOSYNC: 2138 return Attribute::NoSync; 2139 case bitc::ATTR_KIND_NOCF_CHECK: 2140 return Attribute::NoCfCheck; 2141 case bitc::ATTR_KIND_NO_PROFILE: 2142 return Attribute::NoProfile; 2143 case bitc::ATTR_KIND_SKIP_PROFILE: 2144 return Attribute::SkipProfile; 2145 case bitc::ATTR_KIND_NO_UNWIND: 2146 return Attribute::NoUnwind; 2147 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2148 return Attribute::NoSanitizeBounds; 2149 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2150 return Attribute::NoSanitizeCoverage; 2151 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2152 return Attribute::NullPointerIsValid; 2153 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2154 return Attribute::OptimizeForDebugging; 2155 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2156 return Attribute::OptForFuzzing; 2157 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2158 return Attribute::OptimizeForSize; 2159 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2160 return Attribute::OptimizeNone; 2161 case bitc::ATTR_KIND_READ_NONE: 2162 return Attribute::ReadNone; 2163 case bitc::ATTR_KIND_READ_ONLY: 2164 return Attribute::ReadOnly; 2165 case bitc::ATTR_KIND_RETURNED: 2166 return Attribute::Returned; 2167 case bitc::ATTR_KIND_RETURNS_TWICE: 2168 return Attribute::ReturnsTwice; 2169 case bitc::ATTR_KIND_S_EXT: 2170 return Attribute::SExt; 2171 case bitc::ATTR_KIND_SPECULATABLE: 2172 return Attribute::Speculatable; 2173 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2174 return Attribute::StackAlignment; 2175 case bitc::ATTR_KIND_STACK_PROTECT: 2176 return Attribute::StackProtect; 2177 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2178 return Attribute::StackProtectReq; 2179 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2180 return Attribute::StackProtectStrong; 2181 case bitc::ATTR_KIND_SAFESTACK: 2182 return Attribute::SafeStack; 2183 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2184 return Attribute::ShadowCallStack; 2185 case bitc::ATTR_KIND_STRICT_FP: 2186 return Attribute::StrictFP; 2187 case bitc::ATTR_KIND_STRUCT_RET: 2188 return Attribute::StructRet; 2189 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2190 return Attribute::SanitizeAddress; 2191 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2192 return Attribute::SanitizeHWAddress; 2193 case bitc::ATTR_KIND_SANITIZE_THREAD: 2194 return Attribute::SanitizeThread; 2195 case bitc::ATTR_KIND_SANITIZE_TYPE: 2196 return Attribute::SanitizeType; 2197 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2198 return Attribute::SanitizeMemory; 2199 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2200 return Attribute::SanitizeNumericalStability; 2201 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2202 return Attribute::SanitizeRealtime; 2203 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING: 2204 return Attribute::SanitizeRealtimeBlocking; 2205 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2206 return Attribute::SpeculativeLoadHardening; 2207 case bitc::ATTR_KIND_SWIFT_ERROR: 2208 return Attribute::SwiftError; 2209 case bitc::ATTR_KIND_SWIFT_SELF: 2210 return Attribute::SwiftSelf; 2211 case bitc::ATTR_KIND_SWIFT_ASYNC: 2212 return Attribute::SwiftAsync; 2213 case bitc::ATTR_KIND_UW_TABLE: 2214 return Attribute::UWTable; 2215 case bitc::ATTR_KIND_VSCALE_RANGE: 2216 return Attribute::VScaleRange; 2217 case bitc::ATTR_KIND_WILLRETURN: 2218 return Attribute::WillReturn; 2219 case bitc::ATTR_KIND_WRITEONLY: 2220 return Attribute::WriteOnly; 2221 case bitc::ATTR_KIND_Z_EXT: 2222 return Attribute::ZExt; 2223 case bitc::ATTR_KIND_IMMARG: 2224 return Attribute::ImmArg; 2225 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2226 return Attribute::SanitizeMemTag; 2227 case bitc::ATTR_KIND_PREALLOCATED: 2228 return Attribute::Preallocated; 2229 case bitc::ATTR_KIND_NOUNDEF: 2230 return Attribute::NoUndef; 2231 case bitc::ATTR_KIND_BYREF: 2232 return Attribute::ByRef; 2233 case bitc::ATTR_KIND_MUSTPROGRESS: 2234 return Attribute::MustProgress; 2235 case bitc::ATTR_KIND_HOT: 2236 return Attribute::Hot; 2237 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2238 return Attribute::PresplitCoroutine; 2239 case bitc::ATTR_KIND_WRITABLE: 2240 return Attribute::Writable; 2241 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2242 return Attribute::CoroDestroyOnlyWhenComplete; 2243 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2244 return Attribute::DeadOnUnwind; 2245 case bitc::ATTR_KIND_RANGE: 2246 return Attribute::Range; 2247 case bitc::ATTR_KIND_INITIALIZES: 2248 return Attribute::Initializes; 2249 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2250 return Attribute::CoroElideSafe; 2251 case bitc::ATTR_KIND_NO_EXT: 2252 return Attribute::NoExt; 2253 } 2254 } 2255 2256 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2257 MaybeAlign &Alignment) { 2258 // Note: Alignment in bitcode files is incremented by 1, so that zero 2259 // can be used for default alignment. 2260 if (Exponent > Value::MaxAlignmentExponent + 1) 2261 return error("Invalid alignment value"); 2262 Alignment = decodeMaybeAlign(Exponent); 2263 return Error::success(); 2264 } 2265 2266 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2267 *Kind = getAttrFromCode(Code); 2268 if (*Kind == Attribute::None) 2269 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2270 return Error::success(); 2271 } 2272 2273 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2274 switch (EncodedKind) { 2275 case bitc::ATTR_KIND_READ_NONE: 2276 ME &= MemoryEffects::none(); 2277 return true; 2278 case bitc::ATTR_KIND_READ_ONLY: 2279 ME &= MemoryEffects::readOnly(); 2280 return true; 2281 case bitc::ATTR_KIND_WRITEONLY: 2282 ME &= MemoryEffects::writeOnly(); 2283 return true; 2284 case bitc::ATTR_KIND_ARGMEMONLY: 2285 ME &= MemoryEffects::argMemOnly(); 2286 return true; 2287 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2288 ME &= MemoryEffects::inaccessibleMemOnly(); 2289 return true; 2290 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2291 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2292 return true; 2293 default: 2294 return false; 2295 } 2296 } 2297 2298 Error BitcodeReader::parseAttributeGroupBlock() { 2299 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2300 return Err; 2301 2302 if (!MAttributeGroups.empty()) 2303 return error("Invalid multiple blocks"); 2304 2305 SmallVector<uint64_t, 64> Record; 2306 2307 // Read all the records. 2308 while (true) { 2309 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2310 if (!MaybeEntry) 2311 return MaybeEntry.takeError(); 2312 BitstreamEntry Entry = MaybeEntry.get(); 2313 2314 switch (Entry.Kind) { 2315 case BitstreamEntry::SubBlock: // Handled for us already. 2316 case BitstreamEntry::Error: 2317 return error("Malformed block"); 2318 case BitstreamEntry::EndBlock: 2319 return Error::success(); 2320 case BitstreamEntry::Record: 2321 // The interesting case. 2322 break; 2323 } 2324 2325 // Read a record. 2326 Record.clear(); 2327 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2328 if (!MaybeRecord) 2329 return MaybeRecord.takeError(); 2330 switch (MaybeRecord.get()) { 2331 default: // Default behavior: ignore. 2332 break; 2333 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2334 if (Record.size() < 3) 2335 return error("Invalid grp record"); 2336 2337 uint64_t GrpID = Record[0]; 2338 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2339 2340 AttrBuilder B(Context); 2341 MemoryEffects ME = MemoryEffects::unknown(); 2342 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2343 if (Record[i] == 0) { // Enum attribute 2344 Attribute::AttrKind Kind; 2345 uint64_t EncodedKind = Record[++i]; 2346 if (Idx == AttributeList::FunctionIndex && 2347 upgradeOldMemoryAttribute(ME, EncodedKind)) 2348 continue; 2349 2350 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2351 return Err; 2352 2353 // Upgrade old-style byval attribute to one with a type, even if it's 2354 // nullptr. We will have to insert the real type when we associate 2355 // this AttributeList with a function. 2356 if (Kind == Attribute::ByVal) 2357 B.addByValAttr(nullptr); 2358 else if (Kind == Attribute::StructRet) 2359 B.addStructRetAttr(nullptr); 2360 else if (Kind == Attribute::InAlloca) 2361 B.addInAllocaAttr(nullptr); 2362 else if (Kind == Attribute::UWTable) 2363 B.addUWTableAttr(UWTableKind::Default); 2364 else if (Attribute::isEnumAttrKind(Kind)) 2365 B.addAttribute(Kind); 2366 else 2367 return error("Not an enum attribute"); 2368 } else if (Record[i] == 1) { // Integer attribute 2369 Attribute::AttrKind Kind; 2370 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2371 return Err; 2372 if (!Attribute::isIntAttrKind(Kind)) 2373 return error("Not an int attribute"); 2374 if (Kind == Attribute::Alignment) 2375 B.addAlignmentAttr(Record[++i]); 2376 else if (Kind == Attribute::StackAlignment) 2377 B.addStackAlignmentAttr(Record[++i]); 2378 else if (Kind == Attribute::Dereferenceable) 2379 B.addDereferenceableAttr(Record[++i]); 2380 else if (Kind == Attribute::DereferenceableOrNull) 2381 B.addDereferenceableOrNullAttr(Record[++i]); 2382 else if (Kind == Attribute::AllocSize) 2383 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2384 else if (Kind == Attribute::VScaleRange) 2385 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2386 else if (Kind == Attribute::UWTable) 2387 B.addUWTableAttr(UWTableKind(Record[++i])); 2388 else if (Kind == Attribute::AllocKind) 2389 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2390 else if (Kind == Attribute::Memory) 2391 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2392 else if (Kind == Attribute::NoFPClass) 2393 B.addNoFPClassAttr( 2394 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2395 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2396 bool HasValue = (Record[i++] == 4); 2397 SmallString<64> KindStr; 2398 SmallString<64> ValStr; 2399 2400 while (Record[i] != 0 && i != e) 2401 KindStr += Record[i++]; 2402 assert(Record[i] == 0 && "Kind string not null terminated"); 2403 2404 if (HasValue) { 2405 // Has a value associated with it. 2406 ++i; // Skip the '0' that terminates the "kind" string. 2407 while (Record[i] != 0 && i != e) 2408 ValStr += Record[i++]; 2409 assert(Record[i] == 0 && "Value string not null terminated"); 2410 } 2411 2412 B.addAttribute(KindStr.str(), ValStr.str()); 2413 } else if (Record[i] == 5 || Record[i] == 6) { 2414 bool HasType = Record[i] == 6; 2415 Attribute::AttrKind Kind; 2416 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2417 return Err; 2418 if (!Attribute::isTypeAttrKind(Kind)) 2419 return error("Not a type attribute"); 2420 2421 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2422 } else if (Record[i] == 7) { 2423 Attribute::AttrKind Kind; 2424 2425 i++; 2426 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2427 return Err; 2428 if (!Attribute::isConstantRangeAttrKind(Kind)) 2429 return error("Not a ConstantRange attribute"); 2430 2431 Expected<ConstantRange> MaybeCR = 2432 readBitWidthAndConstantRange(Record, i); 2433 if (!MaybeCR) 2434 return MaybeCR.takeError(); 2435 i--; 2436 2437 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2438 } else if (Record[i] == 8) { 2439 Attribute::AttrKind Kind; 2440 2441 i++; 2442 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2443 return Err; 2444 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2445 return error("Not a constant range list attribute"); 2446 2447 SmallVector<ConstantRange, 2> Val; 2448 if (i + 2 > e) 2449 return error("Too few records for constant range list"); 2450 unsigned RangeSize = Record[i++]; 2451 unsigned BitWidth = Record[i++]; 2452 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2453 Expected<ConstantRange> MaybeCR = 2454 readConstantRange(Record, i, BitWidth); 2455 if (!MaybeCR) 2456 return MaybeCR.takeError(); 2457 Val.push_back(MaybeCR.get()); 2458 } 2459 i--; 2460 2461 if (!ConstantRangeList::isOrderedRanges(Val)) 2462 return error("Invalid (unordered or overlapping) range list"); 2463 B.addConstantRangeListAttr(Kind, Val); 2464 } else { 2465 return error("Invalid attribute group entry"); 2466 } 2467 } 2468 2469 if (ME != MemoryEffects::unknown()) 2470 B.addMemoryAttr(ME); 2471 2472 UpgradeAttributes(B); 2473 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2474 break; 2475 } 2476 } 2477 } 2478 } 2479 2480 Error BitcodeReader::parseTypeTable() { 2481 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2482 return Err; 2483 2484 return parseTypeTableBody(); 2485 } 2486 2487 Error BitcodeReader::parseTypeTableBody() { 2488 if (!TypeList.empty()) 2489 return error("Invalid multiple blocks"); 2490 2491 SmallVector<uint64_t, 64> Record; 2492 unsigned NumRecords = 0; 2493 2494 SmallString<64> TypeName; 2495 2496 // Read all the records for this type table. 2497 while (true) { 2498 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2499 if (!MaybeEntry) 2500 return MaybeEntry.takeError(); 2501 BitstreamEntry Entry = MaybeEntry.get(); 2502 2503 switch (Entry.Kind) { 2504 case BitstreamEntry::SubBlock: // Handled for us already. 2505 case BitstreamEntry::Error: 2506 return error("Malformed block"); 2507 case BitstreamEntry::EndBlock: 2508 if (NumRecords != TypeList.size()) 2509 return error("Malformed block"); 2510 return Error::success(); 2511 case BitstreamEntry::Record: 2512 // The interesting case. 2513 break; 2514 } 2515 2516 // Read a record. 2517 Record.clear(); 2518 Type *ResultTy = nullptr; 2519 SmallVector<unsigned> ContainedIDs; 2520 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2521 if (!MaybeRecord) 2522 return MaybeRecord.takeError(); 2523 switch (MaybeRecord.get()) { 2524 default: 2525 return error("Invalid value"); 2526 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2527 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2528 // type list. This allows us to reserve space. 2529 if (Record.empty()) 2530 return error("Invalid numentry record"); 2531 TypeList.resize(Record[0]); 2532 continue; 2533 case bitc::TYPE_CODE_VOID: // VOID 2534 ResultTy = Type::getVoidTy(Context); 2535 break; 2536 case bitc::TYPE_CODE_HALF: // HALF 2537 ResultTy = Type::getHalfTy(Context); 2538 break; 2539 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2540 ResultTy = Type::getBFloatTy(Context); 2541 break; 2542 case bitc::TYPE_CODE_FLOAT: // FLOAT 2543 ResultTy = Type::getFloatTy(Context); 2544 break; 2545 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2546 ResultTy = Type::getDoubleTy(Context); 2547 break; 2548 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2549 ResultTy = Type::getX86_FP80Ty(Context); 2550 break; 2551 case bitc::TYPE_CODE_FP128: // FP128 2552 ResultTy = Type::getFP128Ty(Context); 2553 break; 2554 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2555 ResultTy = Type::getPPC_FP128Ty(Context); 2556 break; 2557 case bitc::TYPE_CODE_LABEL: // LABEL 2558 ResultTy = Type::getLabelTy(Context); 2559 break; 2560 case bitc::TYPE_CODE_METADATA: // METADATA 2561 ResultTy = Type::getMetadataTy(Context); 2562 break; 2563 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2564 // Deprecated: decodes as <1 x i64> 2565 ResultTy = 2566 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2567 break; 2568 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2569 ResultTy = Type::getX86_AMXTy(Context); 2570 break; 2571 case bitc::TYPE_CODE_TOKEN: // TOKEN 2572 ResultTy = Type::getTokenTy(Context); 2573 break; 2574 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2575 if (Record.empty()) 2576 return error("Invalid integer record"); 2577 2578 uint64_t NumBits = Record[0]; 2579 if (NumBits < IntegerType::MIN_INT_BITS || 2580 NumBits > IntegerType::MAX_INT_BITS) 2581 return error("Bitwidth for integer type out of range"); 2582 ResultTy = IntegerType::get(Context, NumBits); 2583 break; 2584 } 2585 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2586 // [pointee type, address space] 2587 if (Record.empty()) 2588 return error("Invalid pointer record"); 2589 unsigned AddressSpace = 0; 2590 if (Record.size() == 2) 2591 AddressSpace = Record[1]; 2592 ResultTy = getTypeByID(Record[0]); 2593 if (!ResultTy || 2594 !PointerType::isValidElementType(ResultTy)) 2595 return error("Invalid type"); 2596 ContainedIDs.push_back(Record[0]); 2597 ResultTy = PointerType::get(ResultTy, AddressSpace); 2598 break; 2599 } 2600 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2601 if (Record.size() != 1) 2602 return error("Invalid opaque pointer record"); 2603 unsigned AddressSpace = Record[0]; 2604 ResultTy = PointerType::get(Context, AddressSpace); 2605 break; 2606 } 2607 case bitc::TYPE_CODE_FUNCTION_OLD: { 2608 // Deprecated, but still needed to read old bitcode files. 2609 // FUNCTION: [vararg, attrid, retty, paramty x N] 2610 if (Record.size() < 3) 2611 return error("Invalid function record"); 2612 SmallVector<Type*, 8> ArgTys; 2613 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2614 if (Type *T = getTypeByID(Record[i])) 2615 ArgTys.push_back(T); 2616 else 2617 break; 2618 } 2619 2620 ResultTy = getTypeByID(Record[2]); 2621 if (!ResultTy || ArgTys.size() < Record.size()-3) 2622 return error("Invalid type"); 2623 2624 ContainedIDs.append(Record.begin() + 2, Record.end()); 2625 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2626 break; 2627 } 2628 case bitc::TYPE_CODE_FUNCTION: { 2629 // FUNCTION: [vararg, retty, paramty x N] 2630 if (Record.size() < 2) 2631 return error("Invalid function record"); 2632 SmallVector<Type*, 8> ArgTys; 2633 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2634 if (Type *T = getTypeByID(Record[i])) { 2635 if (!FunctionType::isValidArgumentType(T)) 2636 return error("Invalid function argument type"); 2637 ArgTys.push_back(T); 2638 } 2639 else 2640 break; 2641 } 2642 2643 ResultTy = getTypeByID(Record[1]); 2644 if (!ResultTy || ArgTys.size() < Record.size()-2) 2645 return error("Invalid type"); 2646 2647 ContainedIDs.append(Record.begin() + 1, Record.end()); 2648 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2649 break; 2650 } 2651 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2652 if (Record.empty()) 2653 return error("Invalid anon struct record"); 2654 SmallVector<Type*, 8> EltTys; 2655 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2656 if (Type *T = getTypeByID(Record[i])) 2657 EltTys.push_back(T); 2658 else 2659 break; 2660 } 2661 if (EltTys.size() != Record.size()-1) 2662 return error("Invalid type"); 2663 ContainedIDs.append(Record.begin() + 1, Record.end()); 2664 ResultTy = StructType::get(Context, EltTys, Record[0]); 2665 break; 2666 } 2667 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2668 if (convertToString(Record, 0, TypeName)) 2669 return error("Invalid struct name record"); 2670 continue; 2671 2672 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2673 if (Record.empty()) 2674 return error("Invalid named struct record"); 2675 2676 if (NumRecords >= TypeList.size()) 2677 return error("Invalid TYPE table"); 2678 2679 // Check to see if this was forward referenced, if so fill in the temp. 2680 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2681 if (Res) { 2682 Res->setName(TypeName); 2683 TypeList[NumRecords] = nullptr; 2684 } else // Otherwise, create a new struct. 2685 Res = createIdentifiedStructType(Context, TypeName); 2686 TypeName.clear(); 2687 2688 SmallVector<Type*, 8> EltTys; 2689 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2690 if (Type *T = getTypeByID(Record[i])) 2691 EltTys.push_back(T); 2692 else 2693 break; 2694 } 2695 if (EltTys.size() != Record.size()-1) 2696 return error("Invalid named struct record"); 2697 if (auto E = Res->setBodyOrError(EltTys, Record[0])) 2698 return E; 2699 ContainedIDs.append(Record.begin() + 1, Record.end()); 2700 ResultTy = Res; 2701 break; 2702 } 2703 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2704 if (Record.size() != 1) 2705 return error("Invalid opaque type record"); 2706 2707 if (NumRecords >= TypeList.size()) 2708 return error("Invalid TYPE table"); 2709 2710 // Check to see if this was forward referenced, if so fill in the temp. 2711 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2712 if (Res) { 2713 Res->setName(TypeName); 2714 TypeList[NumRecords] = nullptr; 2715 } else // Otherwise, create a new struct with no body. 2716 Res = createIdentifiedStructType(Context, TypeName); 2717 TypeName.clear(); 2718 ResultTy = Res; 2719 break; 2720 } 2721 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2722 if (Record.size() < 1) 2723 return error("Invalid target extension type record"); 2724 2725 if (NumRecords >= TypeList.size()) 2726 return error("Invalid TYPE table"); 2727 2728 if (Record[0] >= Record.size()) 2729 return error("Too many type parameters"); 2730 2731 unsigned NumTys = Record[0]; 2732 SmallVector<Type *, 4> TypeParams; 2733 SmallVector<unsigned, 8> IntParams; 2734 for (unsigned i = 0; i < NumTys; i++) { 2735 if (Type *T = getTypeByID(Record[i + 1])) 2736 TypeParams.push_back(T); 2737 else 2738 return error("Invalid type"); 2739 } 2740 2741 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2742 if (Record[i] > UINT_MAX) 2743 return error("Integer parameter too large"); 2744 IntParams.push_back(Record[i]); 2745 } 2746 auto TTy = 2747 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2748 if (auto E = TTy.takeError()) 2749 return E; 2750 ResultTy = *TTy; 2751 TypeName.clear(); 2752 break; 2753 } 2754 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2755 if (Record.size() < 2) 2756 return error("Invalid array type record"); 2757 ResultTy = getTypeByID(Record[1]); 2758 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2759 return error("Invalid type"); 2760 ContainedIDs.push_back(Record[1]); 2761 ResultTy = ArrayType::get(ResultTy, Record[0]); 2762 break; 2763 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2764 // [numelts, eltty, scalable] 2765 if (Record.size() < 2) 2766 return error("Invalid vector type record"); 2767 if (Record[0] == 0) 2768 return error("Invalid vector length"); 2769 ResultTy = getTypeByID(Record[1]); 2770 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2771 return error("Invalid type"); 2772 bool Scalable = Record.size() > 2 ? Record[2] : false; 2773 ContainedIDs.push_back(Record[1]); 2774 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2775 break; 2776 } 2777 2778 if (NumRecords >= TypeList.size()) 2779 return error("Invalid TYPE table"); 2780 if (TypeList[NumRecords]) 2781 return error( 2782 "Invalid TYPE table: Only named structs can be forward referenced"); 2783 assert(ResultTy && "Didn't read a type?"); 2784 TypeList[NumRecords] = ResultTy; 2785 if (!ContainedIDs.empty()) 2786 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2787 ++NumRecords; 2788 } 2789 } 2790 2791 Error BitcodeReader::parseOperandBundleTags() { 2792 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2793 return Err; 2794 2795 if (!BundleTags.empty()) 2796 return error("Invalid multiple blocks"); 2797 2798 SmallVector<uint64_t, 64> Record; 2799 2800 while (true) { 2801 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2802 if (!MaybeEntry) 2803 return MaybeEntry.takeError(); 2804 BitstreamEntry Entry = MaybeEntry.get(); 2805 2806 switch (Entry.Kind) { 2807 case BitstreamEntry::SubBlock: // Handled for us already. 2808 case BitstreamEntry::Error: 2809 return error("Malformed block"); 2810 case BitstreamEntry::EndBlock: 2811 return Error::success(); 2812 case BitstreamEntry::Record: 2813 // The interesting case. 2814 break; 2815 } 2816 2817 // Tags are implicitly mapped to integers by their order. 2818 2819 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2820 if (!MaybeRecord) 2821 return MaybeRecord.takeError(); 2822 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2823 return error("Invalid operand bundle record"); 2824 2825 // OPERAND_BUNDLE_TAG: [strchr x N] 2826 BundleTags.emplace_back(); 2827 if (convertToString(Record, 0, BundleTags.back())) 2828 return error("Invalid operand bundle record"); 2829 Record.clear(); 2830 } 2831 } 2832 2833 Error BitcodeReader::parseSyncScopeNames() { 2834 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2835 return Err; 2836 2837 if (!SSIDs.empty()) 2838 return error("Invalid multiple synchronization scope names blocks"); 2839 2840 SmallVector<uint64_t, 64> Record; 2841 while (true) { 2842 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2843 if (!MaybeEntry) 2844 return MaybeEntry.takeError(); 2845 BitstreamEntry Entry = MaybeEntry.get(); 2846 2847 switch (Entry.Kind) { 2848 case BitstreamEntry::SubBlock: // Handled for us already. 2849 case BitstreamEntry::Error: 2850 return error("Malformed block"); 2851 case BitstreamEntry::EndBlock: 2852 if (SSIDs.empty()) 2853 return error("Invalid empty synchronization scope names block"); 2854 return Error::success(); 2855 case BitstreamEntry::Record: 2856 // The interesting case. 2857 break; 2858 } 2859 2860 // Synchronization scope names are implicitly mapped to synchronization 2861 // scope IDs by their order. 2862 2863 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2864 if (!MaybeRecord) 2865 return MaybeRecord.takeError(); 2866 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2867 return error("Invalid sync scope record"); 2868 2869 SmallString<16> SSN; 2870 if (convertToString(Record, 0, SSN)) 2871 return error("Invalid sync scope record"); 2872 2873 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2874 Record.clear(); 2875 } 2876 } 2877 2878 /// Associate a value with its name from the given index in the provided record. 2879 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2880 unsigned NameIndex, Triple &TT) { 2881 SmallString<128> ValueName; 2882 if (convertToString(Record, NameIndex, ValueName)) 2883 return error("Invalid record"); 2884 unsigned ValueID = Record[0]; 2885 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2886 return error("Invalid record"); 2887 Value *V = ValueList[ValueID]; 2888 2889 StringRef NameStr(ValueName.data(), ValueName.size()); 2890 if (NameStr.contains(0)) 2891 return error("Invalid value name"); 2892 V->setName(NameStr); 2893 auto *GO = dyn_cast<GlobalObject>(V); 2894 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2895 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2896 return V; 2897 } 2898 2899 /// Helper to note and return the current location, and jump to the given 2900 /// offset. 2901 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2902 BitstreamCursor &Stream) { 2903 // Save the current parsing location so we can jump back at the end 2904 // of the VST read. 2905 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2906 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2907 return std::move(JumpFailed); 2908 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2909 if (!MaybeEntry) 2910 return MaybeEntry.takeError(); 2911 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2912 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2913 return error("Expected value symbol table subblock"); 2914 return CurrentBit; 2915 } 2916 2917 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2918 Function *F, 2919 ArrayRef<uint64_t> Record) { 2920 // Note that we subtract 1 here because the offset is relative to one word 2921 // before the start of the identification or module block, which was 2922 // historically always the start of the regular bitcode header. 2923 uint64_t FuncWordOffset = Record[1] - 1; 2924 uint64_t FuncBitOffset = FuncWordOffset * 32; 2925 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2926 // Set the LastFunctionBlockBit to point to the last function block. 2927 // Later when parsing is resumed after function materialization, 2928 // we can simply skip that last function block. 2929 if (FuncBitOffset > LastFunctionBlockBit) 2930 LastFunctionBlockBit = FuncBitOffset; 2931 } 2932 2933 /// Read a new-style GlobalValue symbol table. 2934 Error BitcodeReader::parseGlobalValueSymbolTable() { 2935 unsigned FuncBitcodeOffsetDelta = 2936 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2937 2938 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2939 return Err; 2940 2941 SmallVector<uint64_t, 64> Record; 2942 while (true) { 2943 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2944 if (!MaybeEntry) 2945 return MaybeEntry.takeError(); 2946 BitstreamEntry Entry = MaybeEntry.get(); 2947 2948 switch (Entry.Kind) { 2949 case BitstreamEntry::SubBlock: 2950 case BitstreamEntry::Error: 2951 return error("Malformed block"); 2952 case BitstreamEntry::EndBlock: 2953 return Error::success(); 2954 case BitstreamEntry::Record: 2955 break; 2956 } 2957 2958 Record.clear(); 2959 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2960 if (!MaybeRecord) 2961 return MaybeRecord.takeError(); 2962 switch (MaybeRecord.get()) { 2963 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2964 unsigned ValueID = Record[0]; 2965 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2966 return error("Invalid value reference in symbol table"); 2967 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2968 cast<Function>(ValueList[ValueID]), Record); 2969 break; 2970 } 2971 } 2972 } 2973 } 2974 2975 /// Parse the value symbol table at either the current parsing location or 2976 /// at the given bit offset if provided. 2977 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2978 uint64_t CurrentBit; 2979 // Pass in the Offset to distinguish between calling for the module-level 2980 // VST (where we want to jump to the VST offset) and the function-level 2981 // VST (where we don't). 2982 if (Offset > 0) { 2983 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2984 if (!MaybeCurrentBit) 2985 return MaybeCurrentBit.takeError(); 2986 CurrentBit = MaybeCurrentBit.get(); 2987 // If this module uses a string table, read this as a module-level VST. 2988 if (UseStrtab) { 2989 if (Error Err = parseGlobalValueSymbolTable()) 2990 return Err; 2991 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2992 return JumpFailed; 2993 return Error::success(); 2994 } 2995 // Otherwise, the VST will be in a similar format to a function-level VST, 2996 // and will contain symbol names. 2997 } 2998 2999 // Compute the delta between the bitcode indices in the VST (the word offset 3000 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 3001 // expected by the lazy reader. The reader's EnterSubBlock expects to have 3002 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 3003 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 3004 // just before entering the VST subblock because: 1) the EnterSubBlock 3005 // changes the AbbrevID width; 2) the VST block is nested within the same 3006 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 3007 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 3008 // jump to the FUNCTION_BLOCK using this offset later, we don't want 3009 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 3010 unsigned FuncBitcodeOffsetDelta = 3011 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 3012 3013 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 3014 return Err; 3015 3016 SmallVector<uint64_t, 64> Record; 3017 3018 Triple TT(TheModule->getTargetTriple()); 3019 3020 // Read all the records for this value table. 3021 SmallString<128> ValueName; 3022 3023 while (true) { 3024 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3025 if (!MaybeEntry) 3026 return MaybeEntry.takeError(); 3027 BitstreamEntry Entry = MaybeEntry.get(); 3028 3029 switch (Entry.Kind) { 3030 case BitstreamEntry::SubBlock: // Handled for us already. 3031 case BitstreamEntry::Error: 3032 return error("Malformed block"); 3033 case BitstreamEntry::EndBlock: 3034 if (Offset > 0) 3035 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3036 return JumpFailed; 3037 return Error::success(); 3038 case BitstreamEntry::Record: 3039 // The interesting case. 3040 break; 3041 } 3042 3043 // Read a record. 3044 Record.clear(); 3045 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3046 if (!MaybeRecord) 3047 return MaybeRecord.takeError(); 3048 switch (MaybeRecord.get()) { 3049 default: // Default behavior: unknown type. 3050 break; 3051 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3052 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3053 if (Error Err = ValOrErr.takeError()) 3054 return Err; 3055 ValOrErr.get(); 3056 break; 3057 } 3058 case bitc::VST_CODE_FNENTRY: { 3059 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3060 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3061 if (Error Err = ValOrErr.takeError()) 3062 return Err; 3063 Value *V = ValOrErr.get(); 3064 3065 // Ignore function offsets emitted for aliases of functions in older 3066 // versions of LLVM. 3067 if (auto *F = dyn_cast<Function>(V)) 3068 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3069 break; 3070 } 3071 case bitc::VST_CODE_BBENTRY: { 3072 if (convertToString(Record, 1, ValueName)) 3073 return error("Invalid bbentry record"); 3074 BasicBlock *BB = getBasicBlock(Record[0]); 3075 if (!BB) 3076 return error("Invalid bbentry record"); 3077 3078 BB->setName(ValueName.str()); 3079 ValueName.clear(); 3080 break; 3081 } 3082 } 3083 } 3084 } 3085 3086 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3087 /// encoding. 3088 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3089 if ((V & 1) == 0) 3090 return V >> 1; 3091 if (V != 1) 3092 return -(V >> 1); 3093 // There is no such thing as -0 with integers. "-0" really means MININT. 3094 return 1ULL << 63; 3095 } 3096 3097 /// Resolve all of the initializers for global values and aliases that we can. 3098 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3099 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3100 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3101 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3102 3103 GlobalInitWorklist.swap(GlobalInits); 3104 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3105 FunctionOperandWorklist.swap(FunctionOperands); 3106 3107 while (!GlobalInitWorklist.empty()) { 3108 unsigned ValID = GlobalInitWorklist.back().second; 3109 if (ValID >= ValueList.size()) { 3110 // Not ready to resolve this yet, it requires something later in the file. 3111 GlobalInits.push_back(GlobalInitWorklist.back()); 3112 } else { 3113 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3114 if (!MaybeC) 3115 return MaybeC.takeError(); 3116 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3117 } 3118 GlobalInitWorklist.pop_back(); 3119 } 3120 3121 while (!IndirectSymbolInitWorklist.empty()) { 3122 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3123 if (ValID >= ValueList.size()) { 3124 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3125 } else { 3126 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3127 if (!MaybeC) 3128 return MaybeC.takeError(); 3129 Constant *C = MaybeC.get(); 3130 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3131 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3132 if (C->getType() != GV->getType()) 3133 return error("Alias and aliasee types don't match"); 3134 GA->setAliasee(C); 3135 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3136 GI->setResolver(C); 3137 } else { 3138 return error("Expected an alias or an ifunc"); 3139 } 3140 } 3141 IndirectSymbolInitWorklist.pop_back(); 3142 } 3143 3144 while (!FunctionOperandWorklist.empty()) { 3145 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3146 if (Info.PersonalityFn) { 3147 unsigned ValID = Info.PersonalityFn - 1; 3148 if (ValID < ValueList.size()) { 3149 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3150 if (!MaybeC) 3151 return MaybeC.takeError(); 3152 Info.F->setPersonalityFn(MaybeC.get()); 3153 Info.PersonalityFn = 0; 3154 } 3155 } 3156 if (Info.Prefix) { 3157 unsigned ValID = Info.Prefix - 1; 3158 if (ValID < ValueList.size()) { 3159 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3160 if (!MaybeC) 3161 return MaybeC.takeError(); 3162 Info.F->setPrefixData(MaybeC.get()); 3163 Info.Prefix = 0; 3164 } 3165 } 3166 if (Info.Prologue) { 3167 unsigned ValID = Info.Prologue - 1; 3168 if (ValID < ValueList.size()) { 3169 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3170 if (!MaybeC) 3171 return MaybeC.takeError(); 3172 Info.F->setPrologueData(MaybeC.get()); 3173 Info.Prologue = 0; 3174 } 3175 } 3176 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3177 FunctionOperands.push_back(Info); 3178 FunctionOperandWorklist.pop_back(); 3179 } 3180 3181 return Error::success(); 3182 } 3183 3184 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3185 SmallVector<uint64_t, 8> Words(Vals.size()); 3186 transform(Vals, Words.begin(), 3187 BitcodeReader::decodeSignRotatedValue); 3188 3189 return APInt(TypeBits, Words); 3190 } 3191 3192 Error BitcodeReader::parseConstants() { 3193 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3194 return Err; 3195 3196 SmallVector<uint64_t, 64> Record; 3197 3198 // Read all the records for this value table. 3199 Type *CurTy = Type::getInt32Ty(Context); 3200 unsigned Int32TyID = getVirtualTypeID(CurTy); 3201 unsigned CurTyID = Int32TyID; 3202 Type *CurElemTy = nullptr; 3203 unsigned NextCstNo = ValueList.size(); 3204 3205 while (true) { 3206 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3207 if (!MaybeEntry) 3208 return MaybeEntry.takeError(); 3209 BitstreamEntry Entry = MaybeEntry.get(); 3210 3211 switch (Entry.Kind) { 3212 case BitstreamEntry::SubBlock: // Handled for us already. 3213 case BitstreamEntry::Error: 3214 return error("Malformed block"); 3215 case BitstreamEntry::EndBlock: 3216 if (NextCstNo != ValueList.size()) 3217 return error("Invalid constant reference"); 3218 return Error::success(); 3219 case BitstreamEntry::Record: 3220 // The interesting case. 3221 break; 3222 } 3223 3224 // Read a record. 3225 Record.clear(); 3226 Type *VoidType = Type::getVoidTy(Context); 3227 Value *V = nullptr; 3228 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3229 if (!MaybeBitCode) 3230 return MaybeBitCode.takeError(); 3231 switch (unsigned BitCode = MaybeBitCode.get()) { 3232 default: // Default behavior: unknown constant 3233 case bitc::CST_CODE_UNDEF: // UNDEF 3234 V = UndefValue::get(CurTy); 3235 break; 3236 case bitc::CST_CODE_POISON: // POISON 3237 V = PoisonValue::get(CurTy); 3238 break; 3239 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3240 if (Record.empty()) 3241 return error("Invalid settype record"); 3242 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3243 return error("Invalid settype record"); 3244 if (TypeList[Record[0]] == VoidType) 3245 return error("Invalid constant type"); 3246 CurTyID = Record[0]; 3247 CurTy = TypeList[CurTyID]; 3248 CurElemTy = getPtrElementTypeByID(CurTyID); 3249 continue; // Skip the ValueList manipulation. 3250 case bitc::CST_CODE_NULL: // NULL 3251 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3252 return error("Invalid type for a constant null value"); 3253 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3254 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3255 return error("Invalid type for a constant null value"); 3256 V = Constant::getNullValue(CurTy); 3257 break; 3258 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3259 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3260 return error("Invalid integer const record"); 3261 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3262 break; 3263 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3264 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3265 return error("Invalid wide integer const record"); 3266 3267 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3268 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3269 V = ConstantInt::get(CurTy, VInt); 3270 break; 3271 } 3272 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3273 if (Record.empty()) 3274 return error("Invalid float const record"); 3275 3276 auto *ScalarTy = CurTy->getScalarType(); 3277 if (ScalarTy->isHalfTy()) 3278 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3279 APInt(16, (uint16_t)Record[0]))); 3280 else if (ScalarTy->isBFloatTy()) 3281 V = ConstantFP::get( 3282 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3283 else if (ScalarTy->isFloatTy()) 3284 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3285 APInt(32, (uint32_t)Record[0]))); 3286 else if (ScalarTy->isDoubleTy()) 3287 V = ConstantFP::get( 3288 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3289 else if (ScalarTy->isX86_FP80Ty()) { 3290 // Bits are not stored the same way as a normal i80 APInt, compensate. 3291 uint64_t Rearrange[2]; 3292 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3293 Rearrange[1] = Record[0] >> 48; 3294 V = ConstantFP::get( 3295 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3296 } else if (ScalarTy->isFP128Ty()) 3297 V = ConstantFP::get(CurTy, 3298 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3299 else if (ScalarTy->isPPC_FP128Ty()) 3300 V = ConstantFP::get( 3301 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3302 else 3303 V = PoisonValue::get(CurTy); 3304 break; 3305 } 3306 3307 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3308 if (Record.empty()) 3309 return error("Invalid aggregate record"); 3310 3311 unsigned Size = Record.size(); 3312 SmallVector<unsigned, 16> Elts; 3313 for (unsigned i = 0; i != Size; ++i) 3314 Elts.push_back(Record[i]); 3315 3316 if (isa<StructType>(CurTy)) { 3317 V = BitcodeConstant::create( 3318 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3319 } else if (isa<ArrayType>(CurTy)) { 3320 V = BitcodeConstant::create(Alloc, CurTy, 3321 BitcodeConstant::ConstantArrayOpcode, Elts); 3322 } else if (isa<VectorType>(CurTy)) { 3323 V = BitcodeConstant::create( 3324 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3325 } else { 3326 V = PoisonValue::get(CurTy); 3327 } 3328 break; 3329 } 3330 case bitc::CST_CODE_STRING: // STRING: [values] 3331 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3332 if (Record.empty()) 3333 return error("Invalid string record"); 3334 3335 SmallString<16> Elts(Record.begin(), Record.end()); 3336 V = ConstantDataArray::getString(Context, Elts, 3337 BitCode == bitc::CST_CODE_CSTRING); 3338 break; 3339 } 3340 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3341 if (Record.empty()) 3342 return error("Invalid data record"); 3343 3344 Type *EltTy; 3345 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3346 EltTy = Array->getElementType(); 3347 else 3348 EltTy = cast<VectorType>(CurTy)->getElementType(); 3349 if (EltTy->isIntegerTy(8)) { 3350 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3351 if (isa<VectorType>(CurTy)) 3352 V = ConstantDataVector::get(Context, Elts); 3353 else 3354 V = ConstantDataArray::get(Context, Elts); 3355 } else if (EltTy->isIntegerTy(16)) { 3356 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3357 if (isa<VectorType>(CurTy)) 3358 V = ConstantDataVector::get(Context, Elts); 3359 else 3360 V = ConstantDataArray::get(Context, Elts); 3361 } else if (EltTy->isIntegerTy(32)) { 3362 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3363 if (isa<VectorType>(CurTy)) 3364 V = ConstantDataVector::get(Context, Elts); 3365 else 3366 V = ConstantDataArray::get(Context, Elts); 3367 } else if (EltTy->isIntegerTy(64)) { 3368 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3369 if (isa<VectorType>(CurTy)) 3370 V = ConstantDataVector::get(Context, Elts); 3371 else 3372 V = ConstantDataArray::get(Context, Elts); 3373 } else if (EltTy->isHalfTy()) { 3374 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3375 if (isa<VectorType>(CurTy)) 3376 V = ConstantDataVector::getFP(EltTy, Elts); 3377 else 3378 V = ConstantDataArray::getFP(EltTy, Elts); 3379 } else if (EltTy->isBFloatTy()) { 3380 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3381 if (isa<VectorType>(CurTy)) 3382 V = ConstantDataVector::getFP(EltTy, Elts); 3383 else 3384 V = ConstantDataArray::getFP(EltTy, Elts); 3385 } else if (EltTy->isFloatTy()) { 3386 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3387 if (isa<VectorType>(CurTy)) 3388 V = ConstantDataVector::getFP(EltTy, Elts); 3389 else 3390 V = ConstantDataArray::getFP(EltTy, Elts); 3391 } else if (EltTy->isDoubleTy()) { 3392 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3393 if (isa<VectorType>(CurTy)) 3394 V = ConstantDataVector::getFP(EltTy, Elts); 3395 else 3396 V = ConstantDataArray::getFP(EltTy, Elts); 3397 } else { 3398 return error("Invalid type for value"); 3399 } 3400 break; 3401 } 3402 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3403 if (Record.size() < 2) 3404 return error("Invalid unary op constexpr record"); 3405 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3406 if (Opc < 0) { 3407 V = PoisonValue::get(CurTy); // Unknown unop. 3408 } else { 3409 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3410 } 3411 break; 3412 } 3413 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3414 if (Record.size() < 3) 3415 return error("Invalid binary op constexpr record"); 3416 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3417 if (Opc < 0) { 3418 V = PoisonValue::get(CurTy); // Unknown binop. 3419 } else { 3420 uint8_t Flags = 0; 3421 if (Record.size() >= 4) { 3422 if (Opc == Instruction::Add || 3423 Opc == Instruction::Sub || 3424 Opc == Instruction::Mul || 3425 Opc == Instruction::Shl) { 3426 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3427 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3428 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3429 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3430 } else if (Opc == Instruction::SDiv || 3431 Opc == Instruction::UDiv || 3432 Opc == Instruction::LShr || 3433 Opc == Instruction::AShr) { 3434 if (Record[3] & (1 << bitc::PEO_EXACT)) 3435 Flags |= PossiblyExactOperator::IsExact; 3436 } 3437 } 3438 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3439 {(unsigned)Record[1], (unsigned)Record[2]}); 3440 } 3441 break; 3442 } 3443 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3444 if (Record.size() < 3) 3445 return error("Invalid cast constexpr record"); 3446 int Opc = getDecodedCastOpcode(Record[0]); 3447 if (Opc < 0) { 3448 V = PoisonValue::get(CurTy); // Unknown cast. 3449 } else { 3450 unsigned OpTyID = Record[1]; 3451 Type *OpTy = getTypeByID(OpTyID); 3452 if (!OpTy) 3453 return error("Invalid cast constexpr record"); 3454 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3455 } 3456 break; 3457 } 3458 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3459 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3460 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3461 // operands] 3462 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3463 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3464 // operands] 3465 if (Record.size() < 2) 3466 return error("Constant GEP record must have at least two elements"); 3467 unsigned OpNum = 0; 3468 Type *PointeeType = nullptr; 3469 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3470 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3471 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3472 PointeeType = getTypeByID(Record[OpNum++]); 3473 3474 uint64_t Flags = 0; 3475 std::optional<ConstantRange> InRange; 3476 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3477 uint64_t Op = Record[OpNum++]; 3478 Flags = Op & 1; // inbounds 3479 unsigned InRangeIndex = Op >> 1; 3480 // "Upgrade" inrange by dropping it. The feature is too niche to 3481 // bother. 3482 (void)InRangeIndex; 3483 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3484 Flags = Record[OpNum++]; 3485 Expected<ConstantRange> MaybeInRange = 3486 readBitWidthAndConstantRange(Record, OpNum); 3487 if (!MaybeInRange) 3488 return MaybeInRange.takeError(); 3489 InRange = MaybeInRange.get(); 3490 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3491 Flags = Record[OpNum++]; 3492 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3493 Flags = (1 << bitc::GEP_INBOUNDS); 3494 3495 SmallVector<unsigned, 16> Elts; 3496 unsigned BaseTypeID = Record[OpNum]; 3497 while (OpNum != Record.size()) { 3498 unsigned ElTyID = Record[OpNum++]; 3499 Type *ElTy = getTypeByID(ElTyID); 3500 if (!ElTy) 3501 return error("Invalid getelementptr constexpr record"); 3502 Elts.push_back(Record[OpNum++]); 3503 } 3504 3505 if (Elts.size() < 1) 3506 return error("Invalid gep with no operands"); 3507 3508 Type *BaseType = getTypeByID(BaseTypeID); 3509 if (isa<VectorType>(BaseType)) { 3510 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3511 BaseType = getTypeByID(BaseTypeID); 3512 } 3513 3514 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3515 if (!OrigPtrTy) 3516 return error("GEP base operand must be pointer or vector of pointer"); 3517 3518 if (!PointeeType) { 3519 PointeeType = getPtrElementTypeByID(BaseTypeID); 3520 if (!PointeeType) 3521 return error("Missing element type for old-style constant GEP"); 3522 } 3523 3524 V = BitcodeConstant::create( 3525 Alloc, CurTy, 3526 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3527 Elts); 3528 break; 3529 } 3530 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3531 if (Record.size() < 3) 3532 return error("Invalid select constexpr record"); 3533 3534 V = BitcodeConstant::create( 3535 Alloc, CurTy, Instruction::Select, 3536 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3537 break; 3538 } 3539 case bitc::CST_CODE_CE_EXTRACTELT 3540 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3541 if (Record.size() < 3) 3542 return error("Invalid extractelement constexpr record"); 3543 unsigned OpTyID = Record[0]; 3544 VectorType *OpTy = 3545 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3546 if (!OpTy) 3547 return error("Invalid extractelement constexpr record"); 3548 unsigned IdxRecord; 3549 if (Record.size() == 4) { 3550 unsigned IdxTyID = Record[2]; 3551 Type *IdxTy = getTypeByID(IdxTyID); 3552 if (!IdxTy) 3553 return error("Invalid extractelement constexpr record"); 3554 IdxRecord = Record[3]; 3555 } else { 3556 // Deprecated, but still needed to read old bitcode files. 3557 IdxRecord = Record[2]; 3558 } 3559 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3560 {(unsigned)Record[1], IdxRecord}); 3561 break; 3562 } 3563 case bitc::CST_CODE_CE_INSERTELT 3564 : { // CE_INSERTELT: [opval, opval, opty, opval] 3565 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3566 if (Record.size() < 3 || !OpTy) 3567 return error("Invalid insertelement constexpr record"); 3568 unsigned IdxRecord; 3569 if (Record.size() == 4) { 3570 unsigned IdxTyID = Record[2]; 3571 Type *IdxTy = getTypeByID(IdxTyID); 3572 if (!IdxTy) 3573 return error("Invalid insertelement constexpr record"); 3574 IdxRecord = Record[3]; 3575 } else { 3576 // Deprecated, but still needed to read old bitcode files. 3577 IdxRecord = Record[2]; 3578 } 3579 V = BitcodeConstant::create( 3580 Alloc, CurTy, Instruction::InsertElement, 3581 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3582 break; 3583 } 3584 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3585 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3586 if (Record.size() < 3 || !OpTy) 3587 return error("Invalid shufflevector constexpr record"); 3588 V = BitcodeConstant::create( 3589 Alloc, CurTy, Instruction::ShuffleVector, 3590 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3591 break; 3592 } 3593 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3594 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3595 VectorType *OpTy = 3596 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3597 if (Record.size() < 4 || !RTy || !OpTy) 3598 return error("Invalid shufflevector constexpr record"); 3599 V = BitcodeConstant::create( 3600 Alloc, CurTy, Instruction::ShuffleVector, 3601 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3602 break; 3603 } 3604 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3605 if (Record.size() < 4) 3606 return error("Invalid cmp constexpt record"); 3607 unsigned OpTyID = Record[0]; 3608 Type *OpTy = getTypeByID(OpTyID); 3609 if (!OpTy) 3610 return error("Invalid cmp constexpr record"); 3611 V = BitcodeConstant::create( 3612 Alloc, CurTy, 3613 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3614 : Instruction::ICmp), 3615 (uint8_t)Record[3]}, 3616 {(unsigned)Record[1], (unsigned)Record[2]}); 3617 break; 3618 } 3619 // This maintains backward compatibility, pre-asm dialect keywords. 3620 // Deprecated, but still needed to read old bitcode files. 3621 case bitc::CST_CODE_INLINEASM_OLD: { 3622 if (Record.size() < 2) 3623 return error("Invalid inlineasm record"); 3624 std::string AsmStr, ConstrStr; 3625 bool HasSideEffects = Record[0] & 1; 3626 bool IsAlignStack = Record[0] >> 1; 3627 unsigned AsmStrSize = Record[1]; 3628 if (2+AsmStrSize >= Record.size()) 3629 return error("Invalid inlineasm record"); 3630 unsigned ConstStrSize = Record[2+AsmStrSize]; 3631 if (3+AsmStrSize+ConstStrSize > Record.size()) 3632 return error("Invalid inlineasm record"); 3633 3634 for (unsigned i = 0; i != AsmStrSize; ++i) 3635 AsmStr += (char)Record[2+i]; 3636 for (unsigned i = 0; i != ConstStrSize; ++i) 3637 ConstrStr += (char)Record[3+AsmStrSize+i]; 3638 UpgradeInlineAsmString(&AsmStr); 3639 if (!CurElemTy) 3640 return error("Missing element type for old-style inlineasm"); 3641 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3642 HasSideEffects, IsAlignStack); 3643 break; 3644 } 3645 // This version adds support for the asm dialect keywords (e.g., 3646 // inteldialect). 3647 case bitc::CST_CODE_INLINEASM_OLD2: { 3648 if (Record.size() < 2) 3649 return error("Invalid inlineasm record"); 3650 std::string AsmStr, ConstrStr; 3651 bool HasSideEffects = Record[0] & 1; 3652 bool IsAlignStack = (Record[0] >> 1) & 1; 3653 unsigned AsmDialect = Record[0] >> 2; 3654 unsigned AsmStrSize = Record[1]; 3655 if (2+AsmStrSize >= Record.size()) 3656 return error("Invalid inlineasm record"); 3657 unsigned ConstStrSize = Record[2+AsmStrSize]; 3658 if (3+AsmStrSize+ConstStrSize > Record.size()) 3659 return error("Invalid inlineasm record"); 3660 3661 for (unsigned i = 0; i != AsmStrSize; ++i) 3662 AsmStr += (char)Record[2+i]; 3663 for (unsigned i = 0; i != ConstStrSize; ++i) 3664 ConstrStr += (char)Record[3+AsmStrSize+i]; 3665 UpgradeInlineAsmString(&AsmStr); 3666 if (!CurElemTy) 3667 return error("Missing element type for old-style inlineasm"); 3668 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3669 HasSideEffects, IsAlignStack, 3670 InlineAsm::AsmDialect(AsmDialect)); 3671 break; 3672 } 3673 // This version adds support for the unwind keyword. 3674 case bitc::CST_CODE_INLINEASM_OLD3: { 3675 if (Record.size() < 2) 3676 return error("Invalid inlineasm record"); 3677 unsigned OpNum = 0; 3678 std::string AsmStr, ConstrStr; 3679 bool HasSideEffects = Record[OpNum] & 1; 3680 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3681 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3682 bool CanThrow = (Record[OpNum] >> 3) & 1; 3683 ++OpNum; 3684 unsigned AsmStrSize = Record[OpNum]; 3685 ++OpNum; 3686 if (OpNum + AsmStrSize >= Record.size()) 3687 return error("Invalid inlineasm record"); 3688 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3689 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3690 return error("Invalid inlineasm record"); 3691 3692 for (unsigned i = 0; i != AsmStrSize; ++i) 3693 AsmStr += (char)Record[OpNum + i]; 3694 ++OpNum; 3695 for (unsigned i = 0; i != ConstStrSize; ++i) 3696 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3697 UpgradeInlineAsmString(&AsmStr); 3698 if (!CurElemTy) 3699 return error("Missing element type for old-style inlineasm"); 3700 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3701 HasSideEffects, IsAlignStack, 3702 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3703 break; 3704 } 3705 // This version adds explicit function type. 3706 case bitc::CST_CODE_INLINEASM: { 3707 if (Record.size() < 3) 3708 return error("Invalid inlineasm record"); 3709 unsigned OpNum = 0; 3710 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3711 ++OpNum; 3712 if (!FnTy) 3713 return error("Invalid inlineasm record"); 3714 std::string AsmStr, ConstrStr; 3715 bool HasSideEffects = Record[OpNum] & 1; 3716 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3717 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3718 bool CanThrow = (Record[OpNum] >> 3) & 1; 3719 ++OpNum; 3720 unsigned AsmStrSize = Record[OpNum]; 3721 ++OpNum; 3722 if (OpNum + AsmStrSize >= Record.size()) 3723 return error("Invalid inlineasm record"); 3724 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3725 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3726 return error("Invalid inlineasm record"); 3727 3728 for (unsigned i = 0; i != AsmStrSize; ++i) 3729 AsmStr += (char)Record[OpNum + i]; 3730 ++OpNum; 3731 for (unsigned i = 0; i != ConstStrSize; ++i) 3732 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3733 UpgradeInlineAsmString(&AsmStr); 3734 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3735 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3736 break; 3737 } 3738 case bitc::CST_CODE_BLOCKADDRESS:{ 3739 if (Record.size() < 3) 3740 return error("Invalid blockaddress record"); 3741 unsigned FnTyID = Record[0]; 3742 Type *FnTy = getTypeByID(FnTyID); 3743 if (!FnTy) 3744 return error("Invalid blockaddress record"); 3745 V = BitcodeConstant::create( 3746 Alloc, CurTy, 3747 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3748 Record[1]); 3749 break; 3750 } 3751 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3752 if (Record.size() < 2) 3753 return error("Invalid dso_local record"); 3754 unsigned GVTyID = Record[0]; 3755 Type *GVTy = getTypeByID(GVTyID); 3756 if (!GVTy) 3757 return error("Invalid dso_local record"); 3758 V = BitcodeConstant::create( 3759 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3760 break; 3761 } 3762 case bitc::CST_CODE_NO_CFI_VALUE: { 3763 if (Record.size() < 2) 3764 return error("Invalid no_cfi record"); 3765 unsigned GVTyID = Record[0]; 3766 Type *GVTy = getTypeByID(GVTyID); 3767 if (!GVTy) 3768 return error("Invalid no_cfi record"); 3769 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3770 Record[1]); 3771 break; 3772 } 3773 case bitc::CST_CODE_PTRAUTH: { 3774 if (Record.size() < 4) 3775 return error("Invalid ptrauth record"); 3776 // Ptr, Key, Disc, AddrDisc 3777 V = BitcodeConstant::create(Alloc, CurTy, 3778 BitcodeConstant::ConstantPtrAuthOpcode, 3779 {(unsigned)Record[0], (unsigned)Record[1], 3780 (unsigned)Record[2], (unsigned)Record[3]}); 3781 break; 3782 } 3783 } 3784 3785 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3786 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3787 return Err; 3788 ++NextCstNo; 3789 } 3790 } 3791 3792 Error BitcodeReader::parseUseLists() { 3793 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3794 return Err; 3795 3796 // Read all the records. 3797 SmallVector<uint64_t, 64> Record; 3798 3799 while (true) { 3800 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3801 if (!MaybeEntry) 3802 return MaybeEntry.takeError(); 3803 BitstreamEntry Entry = MaybeEntry.get(); 3804 3805 switch (Entry.Kind) { 3806 case BitstreamEntry::SubBlock: // Handled for us already. 3807 case BitstreamEntry::Error: 3808 return error("Malformed block"); 3809 case BitstreamEntry::EndBlock: 3810 return Error::success(); 3811 case BitstreamEntry::Record: 3812 // The interesting case. 3813 break; 3814 } 3815 3816 // Read a use list record. 3817 Record.clear(); 3818 bool IsBB = false; 3819 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3820 if (!MaybeRecord) 3821 return MaybeRecord.takeError(); 3822 switch (MaybeRecord.get()) { 3823 default: // Default behavior: unknown type. 3824 break; 3825 case bitc::USELIST_CODE_BB: 3826 IsBB = true; 3827 [[fallthrough]]; 3828 case bitc::USELIST_CODE_DEFAULT: { 3829 unsigned RecordLength = Record.size(); 3830 if (RecordLength < 3) 3831 // Records should have at least an ID and two indexes. 3832 return error("Invalid record"); 3833 unsigned ID = Record.pop_back_val(); 3834 3835 Value *V; 3836 if (IsBB) { 3837 assert(ID < FunctionBBs.size() && "Basic block not found"); 3838 V = FunctionBBs[ID]; 3839 } else 3840 V = ValueList[ID]; 3841 unsigned NumUses = 0; 3842 SmallDenseMap<const Use *, unsigned, 16> Order; 3843 for (const Use &U : V->materialized_uses()) { 3844 if (++NumUses > Record.size()) 3845 break; 3846 Order[&U] = Record[NumUses - 1]; 3847 } 3848 if (Order.size() != Record.size() || NumUses > Record.size()) 3849 // Mismatches can happen if the functions are being materialized lazily 3850 // (out-of-order), or a value has been upgraded. 3851 break; 3852 3853 V->sortUseList([&](const Use &L, const Use &R) { 3854 return Order.lookup(&L) < Order.lookup(&R); 3855 }); 3856 break; 3857 } 3858 } 3859 } 3860 } 3861 3862 /// When we see the block for metadata, remember where it is and then skip it. 3863 /// This lets us lazily deserialize the metadata. 3864 Error BitcodeReader::rememberAndSkipMetadata() { 3865 // Save the current stream state. 3866 uint64_t CurBit = Stream.GetCurrentBitNo(); 3867 DeferredMetadataInfo.push_back(CurBit); 3868 3869 // Skip over the block for now. 3870 if (Error Err = Stream.SkipBlock()) 3871 return Err; 3872 return Error::success(); 3873 } 3874 3875 Error BitcodeReader::materializeMetadata() { 3876 for (uint64_t BitPos : DeferredMetadataInfo) { 3877 // Move the bit stream to the saved position. 3878 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3879 return JumpFailed; 3880 if (Error Err = MDLoader->parseModuleMetadata()) 3881 return Err; 3882 } 3883 3884 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3885 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3886 // multiple times. 3887 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3888 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3889 NamedMDNode *LinkerOpts = 3890 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3891 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3892 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3893 } 3894 } 3895 3896 DeferredMetadataInfo.clear(); 3897 return Error::success(); 3898 } 3899 3900 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3901 3902 /// When we see the block for a function body, remember where it is and then 3903 /// skip it. This lets us lazily deserialize the functions. 3904 Error BitcodeReader::rememberAndSkipFunctionBody() { 3905 // Get the function we are talking about. 3906 if (FunctionsWithBodies.empty()) 3907 return error("Insufficient function protos"); 3908 3909 Function *Fn = FunctionsWithBodies.back(); 3910 FunctionsWithBodies.pop_back(); 3911 3912 // Save the current stream state. 3913 uint64_t CurBit = Stream.GetCurrentBitNo(); 3914 assert( 3915 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3916 "Mismatch between VST and scanned function offsets"); 3917 DeferredFunctionInfo[Fn] = CurBit; 3918 3919 // Skip over the function block for now. 3920 if (Error Err = Stream.SkipBlock()) 3921 return Err; 3922 return Error::success(); 3923 } 3924 3925 Error BitcodeReader::globalCleanup() { 3926 // Patch the initializers for globals and aliases up. 3927 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3928 return Err; 3929 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3930 return error("Malformed global initializer set"); 3931 3932 // Look for intrinsic functions which need to be upgraded at some point 3933 // and functions that need to have their function attributes upgraded. 3934 for (Function &F : *TheModule) { 3935 MDLoader->upgradeDebugIntrinsics(F); 3936 Function *NewFn; 3937 // If PreserveInputDbgFormat=true, then we don't know whether we want 3938 // intrinsics or records, and we won't perform any conversions in either 3939 // case, so don't upgrade intrinsics to records. 3940 if (UpgradeIntrinsicFunction( 3941 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3942 UpgradedIntrinsics[&F] = NewFn; 3943 // Look for functions that rely on old function attribute behavior. 3944 UpgradeFunctionAttributes(F); 3945 } 3946 3947 // Look for global variables which need to be renamed. 3948 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3949 for (GlobalVariable &GV : TheModule->globals()) 3950 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3951 UpgradedVariables.emplace_back(&GV, Upgraded); 3952 for (auto &Pair : UpgradedVariables) { 3953 Pair.first->eraseFromParent(); 3954 TheModule->insertGlobalVariable(Pair.second); 3955 } 3956 3957 // Force deallocation of memory for these vectors to favor the client that 3958 // want lazy deserialization. 3959 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3960 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3961 return Error::success(); 3962 } 3963 3964 /// Support for lazy parsing of function bodies. This is required if we 3965 /// either have an old bitcode file without a VST forward declaration record, 3966 /// or if we have an anonymous function being materialized, since anonymous 3967 /// functions do not have a name and are therefore not in the VST. 3968 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3969 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3970 return JumpFailed; 3971 3972 if (Stream.AtEndOfStream()) 3973 return error("Could not find function in stream"); 3974 3975 if (!SeenFirstFunctionBody) 3976 return error("Trying to materialize functions before seeing function blocks"); 3977 3978 // An old bitcode file with the symbol table at the end would have 3979 // finished the parse greedily. 3980 assert(SeenValueSymbolTable); 3981 3982 SmallVector<uint64_t, 64> Record; 3983 3984 while (true) { 3985 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3986 if (!MaybeEntry) 3987 return MaybeEntry.takeError(); 3988 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3989 3990 switch (Entry.Kind) { 3991 default: 3992 return error("Expect SubBlock"); 3993 case BitstreamEntry::SubBlock: 3994 switch (Entry.ID) { 3995 default: 3996 return error("Expect function block"); 3997 case bitc::FUNCTION_BLOCK_ID: 3998 if (Error Err = rememberAndSkipFunctionBody()) 3999 return Err; 4000 NextUnreadBit = Stream.GetCurrentBitNo(); 4001 return Error::success(); 4002 } 4003 } 4004 } 4005 } 4006 4007 Error BitcodeReaderBase::readBlockInfo() { 4008 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 4009 Stream.ReadBlockInfoBlock(); 4010 if (!MaybeNewBlockInfo) 4011 return MaybeNewBlockInfo.takeError(); 4012 std::optional<BitstreamBlockInfo> NewBlockInfo = 4013 std::move(MaybeNewBlockInfo.get()); 4014 if (!NewBlockInfo) 4015 return error("Malformed block"); 4016 BlockInfo = std::move(*NewBlockInfo); 4017 return Error::success(); 4018 } 4019 4020 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 4021 // v1: [selection_kind, name] 4022 // v2: [strtab_offset, strtab_size, selection_kind] 4023 StringRef Name; 4024 std::tie(Name, Record) = readNameFromStrtab(Record); 4025 4026 if (Record.empty()) 4027 return error("Invalid record"); 4028 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4029 std::string OldFormatName; 4030 if (!UseStrtab) { 4031 if (Record.size() < 2) 4032 return error("Invalid record"); 4033 unsigned ComdatNameSize = Record[1]; 4034 if (ComdatNameSize > Record.size() - 2) 4035 return error("Comdat name size too large"); 4036 OldFormatName.reserve(ComdatNameSize); 4037 for (unsigned i = 0; i != ComdatNameSize; ++i) 4038 OldFormatName += (char)Record[2 + i]; 4039 Name = OldFormatName; 4040 } 4041 Comdat *C = TheModule->getOrInsertComdat(Name); 4042 C->setSelectionKind(SK); 4043 ComdatList.push_back(C); 4044 return Error::success(); 4045 } 4046 4047 static void inferDSOLocal(GlobalValue *GV) { 4048 // infer dso_local from linkage and visibility if it is not encoded. 4049 if (GV->hasLocalLinkage() || 4050 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4051 GV->setDSOLocal(true); 4052 } 4053 4054 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4055 GlobalValue::SanitizerMetadata Meta; 4056 if (V & (1 << 0)) 4057 Meta.NoAddress = true; 4058 if (V & (1 << 1)) 4059 Meta.NoHWAddress = true; 4060 if (V & (1 << 2)) 4061 Meta.Memtag = true; 4062 if (V & (1 << 3)) 4063 Meta.IsDynInit = true; 4064 return Meta; 4065 } 4066 4067 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4068 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4069 // visibility, threadlocal, unnamed_addr, externally_initialized, 4070 // dllstorageclass, comdat, attributes, preemption specifier, 4071 // partition strtab offset, partition strtab size] (name in VST) 4072 // v2: [strtab_offset, strtab_size, v1] 4073 // v3: [v2, code_model] 4074 StringRef Name; 4075 std::tie(Name, Record) = readNameFromStrtab(Record); 4076 4077 if (Record.size() < 6) 4078 return error("Invalid record"); 4079 unsigned TyID = Record[0]; 4080 Type *Ty = getTypeByID(TyID); 4081 if (!Ty) 4082 return error("Invalid record"); 4083 bool isConstant = Record[1] & 1; 4084 bool explicitType = Record[1] & 2; 4085 unsigned AddressSpace; 4086 if (explicitType) { 4087 AddressSpace = Record[1] >> 2; 4088 } else { 4089 if (!Ty->isPointerTy()) 4090 return error("Invalid type for value"); 4091 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4092 TyID = getContainedTypeID(TyID); 4093 Ty = getTypeByID(TyID); 4094 if (!Ty) 4095 return error("Missing element type for old-style global"); 4096 } 4097 4098 uint64_t RawLinkage = Record[3]; 4099 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4100 MaybeAlign Alignment; 4101 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4102 return Err; 4103 std::string Section; 4104 if (Record[5]) { 4105 if (Record[5] - 1 >= SectionTable.size()) 4106 return error("Invalid ID"); 4107 Section = SectionTable[Record[5] - 1]; 4108 } 4109 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4110 // Local linkage must have default visibility. 4111 // auto-upgrade `hidden` and `protected` for old bitcode. 4112 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4113 Visibility = getDecodedVisibility(Record[6]); 4114 4115 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4116 if (Record.size() > 7) 4117 TLM = getDecodedThreadLocalMode(Record[7]); 4118 4119 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4120 if (Record.size() > 8) 4121 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4122 4123 bool ExternallyInitialized = false; 4124 if (Record.size() > 9) 4125 ExternallyInitialized = Record[9]; 4126 4127 GlobalVariable *NewGV = 4128 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4129 nullptr, TLM, AddressSpace, ExternallyInitialized); 4130 if (Alignment) 4131 NewGV->setAlignment(*Alignment); 4132 if (!Section.empty()) 4133 NewGV->setSection(Section); 4134 NewGV->setVisibility(Visibility); 4135 NewGV->setUnnamedAddr(UnnamedAddr); 4136 4137 if (Record.size() > 10) { 4138 // A GlobalValue with local linkage cannot have a DLL storage class. 4139 if (!NewGV->hasLocalLinkage()) { 4140 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4141 } 4142 } else { 4143 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4144 } 4145 4146 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4147 4148 // Remember which value to use for the global initializer. 4149 if (unsigned InitID = Record[2]) 4150 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4151 4152 if (Record.size() > 11) { 4153 if (unsigned ComdatID = Record[11]) { 4154 if (ComdatID > ComdatList.size()) 4155 return error("Invalid global variable comdat ID"); 4156 NewGV->setComdat(ComdatList[ComdatID - 1]); 4157 } 4158 } else if (hasImplicitComdat(RawLinkage)) { 4159 ImplicitComdatObjects.insert(NewGV); 4160 } 4161 4162 if (Record.size() > 12) { 4163 auto AS = getAttributes(Record[12]).getFnAttrs(); 4164 NewGV->setAttributes(AS); 4165 } 4166 4167 if (Record.size() > 13) { 4168 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4169 } 4170 inferDSOLocal(NewGV); 4171 4172 // Check whether we have enough values to read a partition name. 4173 if (Record.size() > 15) 4174 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4175 4176 if (Record.size() > 16 && Record[16]) { 4177 llvm::GlobalValue::SanitizerMetadata Meta = 4178 deserializeSanitizerMetadata(Record[16]); 4179 NewGV->setSanitizerMetadata(Meta); 4180 } 4181 4182 if (Record.size() > 17 && Record[17]) { 4183 if (auto CM = getDecodedCodeModel(Record[17])) 4184 NewGV->setCodeModel(*CM); 4185 else 4186 return error("Invalid global variable code model"); 4187 } 4188 4189 return Error::success(); 4190 } 4191 4192 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4193 if (ValueTypeCallback) { 4194 (*ValueTypeCallback)( 4195 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4196 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4197 } 4198 } 4199 4200 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4201 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4202 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4203 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4204 // v2: [strtab_offset, strtab_size, v1] 4205 StringRef Name; 4206 std::tie(Name, Record) = readNameFromStrtab(Record); 4207 4208 if (Record.size() < 8) 4209 return error("Invalid record"); 4210 unsigned FTyID = Record[0]; 4211 Type *FTy = getTypeByID(FTyID); 4212 if (!FTy) 4213 return error("Invalid record"); 4214 if (isa<PointerType>(FTy)) { 4215 FTyID = getContainedTypeID(FTyID, 0); 4216 FTy = getTypeByID(FTyID); 4217 if (!FTy) 4218 return error("Missing element type for old-style function"); 4219 } 4220 4221 if (!isa<FunctionType>(FTy)) 4222 return error("Invalid type for value"); 4223 auto CC = static_cast<CallingConv::ID>(Record[1]); 4224 if (CC & ~CallingConv::MaxID) 4225 return error("Invalid calling convention ID"); 4226 4227 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4228 if (Record.size() > 16) 4229 AddrSpace = Record[16]; 4230 4231 Function *Func = 4232 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4233 AddrSpace, Name, TheModule); 4234 4235 assert(Func->getFunctionType() == FTy && 4236 "Incorrect fully specified type provided for function"); 4237 FunctionTypeIDs[Func] = FTyID; 4238 4239 Func->setCallingConv(CC); 4240 bool isProto = Record[2]; 4241 uint64_t RawLinkage = Record[3]; 4242 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4243 Func->setAttributes(getAttributes(Record[4])); 4244 callValueTypeCallback(Func, FTyID); 4245 4246 // Upgrade any old-style byval or sret without a type by propagating the 4247 // argument's pointee type. There should be no opaque pointers where the byval 4248 // type is implicit. 4249 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4250 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4251 Attribute::InAlloca}) { 4252 if (!Func->hasParamAttribute(i, Kind)) 4253 continue; 4254 4255 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4256 continue; 4257 4258 Func->removeParamAttr(i, Kind); 4259 4260 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4261 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4262 if (!PtrEltTy) 4263 return error("Missing param element type for attribute upgrade"); 4264 4265 Attribute NewAttr; 4266 switch (Kind) { 4267 case Attribute::ByVal: 4268 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4269 break; 4270 case Attribute::StructRet: 4271 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4272 break; 4273 case Attribute::InAlloca: 4274 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4275 break; 4276 default: 4277 llvm_unreachable("not an upgraded type attribute"); 4278 } 4279 4280 Func->addParamAttr(i, NewAttr); 4281 } 4282 } 4283 4284 if (Func->getCallingConv() == CallingConv::X86_INTR && 4285 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4286 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4287 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4288 if (!ByValTy) 4289 return error("Missing param element type for x86_intrcc upgrade"); 4290 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4291 Func->addParamAttr(0, NewAttr); 4292 } 4293 4294 MaybeAlign Alignment; 4295 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4296 return Err; 4297 if (Alignment) 4298 Func->setAlignment(*Alignment); 4299 if (Record[6]) { 4300 if (Record[6] - 1 >= SectionTable.size()) 4301 return error("Invalid ID"); 4302 Func->setSection(SectionTable[Record[6] - 1]); 4303 } 4304 // Local linkage must have default visibility. 4305 // auto-upgrade `hidden` and `protected` for old bitcode. 4306 if (!Func->hasLocalLinkage()) 4307 Func->setVisibility(getDecodedVisibility(Record[7])); 4308 if (Record.size() > 8 && Record[8]) { 4309 if (Record[8] - 1 >= GCTable.size()) 4310 return error("Invalid ID"); 4311 Func->setGC(GCTable[Record[8] - 1]); 4312 } 4313 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4314 if (Record.size() > 9) 4315 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4316 Func->setUnnamedAddr(UnnamedAddr); 4317 4318 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4319 if (Record.size() > 10) 4320 OperandInfo.Prologue = Record[10]; 4321 4322 if (Record.size() > 11) { 4323 // A GlobalValue with local linkage cannot have a DLL storage class. 4324 if (!Func->hasLocalLinkage()) { 4325 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4326 } 4327 } else { 4328 upgradeDLLImportExportLinkage(Func, RawLinkage); 4329 } 4330 4331 if (Record.size() > 12) { 4332 if (unsigned ComdatID = Record[12]) { 4333 if (ComdatID > ComdatList.size()) 4334 return error("Invalid function comdat ID"); 4335 Func->setComdat(ComdatList[ComdatID - 1]); 4336 } 4337 } else if (hasImplicitComdat(RawLinkage)) { 4338 ImplicitComdatObjects.insert(Func); 4339 } 4340 4341 if (Record.size() > 13) 4342 OperandInfo.Prefix = Record[13]; 4343 4344 if (Record.size() > 14) 4345 OperandInfo.PersonalityFn = Record[14]; 4346 4347 if (Record.size() > 15) { 4348 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4349 } 4350 inferDSOLocal(Func); 4351 4352 // Record[16] is the address space number. 4353 4354 // Check whether we have enough values to read a partition name. Also make 4355 // sure Strtab has enough values. 4356 if (Record.size() > 18 && Strtab.data() && 4357 Record[17] + Record[18] <= Strtab.size()) { 4358 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4359 } 4360 4361 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4362 4363 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4364 FunctionOperands.push_back(OperandInfo); 4365 4366 // If this is a function with a body, remember the prototype we are 4367 // creating now, so that we can match up the body with them later. 4368 if (!isProto) { 4369 Func->setIsMaterializable(true); 4370 FunctionsWithBodies.push_back(Func); 4371 DeferredFunctionInfo[Func] = 0; 4372 } 4373 return Error::success(); 4374 } 4375 4376 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4377 unsigned BitCode, ArrayRef<uint64_t> Record) { 4378 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4379 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4380 // dllstorageclass, threadlocal, unnamed_addr, 4381 // preemption specifier] (name in VST) 4382 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4383 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4384 // preemption specifier] (name in VST) 4385 // v2: [strtab_offset, strtab_size, v1] 4386 StringRef Name; 4387 std::tie(Name, Record) = readNameFromStrtab(Record); 4388 4389 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4390 if (Record.size() < (3 + (unsigned)NewRecord)) 4391 return error("Invalid record"); 4392 unsigned OpNum = 0; 4393 unsigned TypeID = Record[OpNum++]; 4394 Type *Ty = getTypeByID(TypeID); 4395 if (!Ty) 4396 return error("Invalid record"); 4397 4398 unsigned AddrSpace; 4399 if (!NewRecord) { 4400 auto *PTy = dyn_cast<PointerType>(Ty); 4401 if (!PTy) 4402 return error("Invalid type for value"); 4403 AddrSpace = PTy->getAddressSpace(); 4404 TypeID = getContainedTypeID(TypeID); 4405 Ty = getTypeByID(TypeID); 4406 if (!Ty) 4407 return error("Missing element type for old-style indirect symbol"); 4408 } else { 4409 AddrSpace = Record[OpNum++]; 4410 } 4411 4412 auto Val = Record[OpNum++]; 4413 auto Linkage = Record[OpNum++]; 4414 GlobalValue *NewGA; 4415 if (BitCode == bitc::MODULE_CODE_ALIAS || 4416 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4417 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4418 TheModule); 4419 else 4420 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4421 nullptr, TheModule); 4422 4423 // Local linkage must have default visibility. 4424 // auto-upgrade `hidden` and `protected` for old bitcode. 4425 if (OpNum != Record.size()) { 4426 auto VisInd = OpNum++; 4427 if (!NewGA->hasLocalLinkage()) 4428 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4429 } 4430 if (BitCode == bitc::MODULE_CODE_ALIAS || 4431 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4432 if (OpNum != Record.size()) { 4433 auto S = Record[OpNum++]; 4434 // A GlobalValue with local linkage cannot have a DLL storage class. 4435 if (!NewGA->hasLocalLinkage()) 4436 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4437 } 4438 else 4439 upgradeDLLImportExportLinkage(NewGA, Linkage); 4440 if (OpNum != Record.size()) 4441 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4442 if (OpNum != Record.size()) 4443 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4444 } 4445 if (OpNum != Record.size()) 4446 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4447 inferDSOLocal(NewGA); 4448 4449 // Check whether we have enough values to read a partition name. 4450 if (OpNum + 1 < Record.size()) { 4451 // Check Strtab has enough values for the partition. 4452 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4453 return error("Malformed partition, too large."); 4454 NewGA->setPartition( 4455 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4456 } 4457 4458 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4459 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4460 return Error::success(); 4461 } 4462 4463 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4464 bool ShouldLazyLoadMetadata, 4465 ParserCallbacks Callbacks) { 4466 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4467 // has been set to true and we aren't attempting to preserve the existing 4468 // format in the bitcode (default action: load into the old debug format). 4469 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4470 TheModule->IsNewDbgInfoFormat = 4471 UseNewDbgInfoFormat && 4472 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4473 } 4474 4475 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4476 if (ResumeBit) { 4477 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4478 return JumpFailed; 4479 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4480 return Err; 4481 4482 SmallVector<uint64_t, 64> Record; 4483 4484 // Parts of bitcode parsing depend on the datalayout. Make sure we 4485 // finalize the datalayout before we run any of that code. 4486 bool ResolvedDataLayout = false; 4487 // In order to support importing modules with illegal data layout strings, 4488 // delay parsing the data layout string until after upgrades and overrides 4489 // have been applied, allowing to fix illegal data layout strings. 4490 // Initialize to the current module's layout string in case none is specified. 4491 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4492 4493 auto ResolveDataLayout = [&]() -> Error { 4494 if (ResolvedDataLayout) 4495 return Error::success(); 4496 4497 // Datalayout and triple can't be parsed after this point. 4498 ResolvedDataLayout = true; 4499 4500 // Auto-upgrade the layout string 4501 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4502 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4503 4504 // Apply override 4505 if (Callbacks.DataLayout) { 4506 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4507 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4508 TentativeDataLayoutStr = *LayoutOverride; 4509 } 4510 4511 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4512 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4513 if (!MaybeDL) 4514 return MaybeDL.takeError(); 4515 4516 TheModule->setDataLayout(MaybeDL.get()); 4517 return Error::success(); 4518 }; 4519 4520 // Read all the records for this module. 4521 while (true) { 4522 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4523 if (!MaybeEntry) 4524 return MaybeEntry.takeError(); 4525 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4526 4527 switch (Entry.Kind) { 4528 case BitstreamEntry::Error: 4529 return error("Malformed block"); 4530 case BitstreamEntry::EndBlock: 4531 if (Error Err = ResolveDataLayout()) 4532 return Err; 4533 return globalCleanup(); 4534 4535 case BitstreamEntry::SubBlock: 4536 switch (Entry.ID) { 4537 default: // Skip unknown content. 4538 if (Error Err = Stream.SkipBlock()) 4539 return Err; 4540 break; 4541 case bitc::BLOCKINFO_BLOCK_ID: 4542 if (Error Err = readBlockInfo()) 4543 return Err; 4544 break; 4545 case bitc::PARAMATTR_BLOCK_ID: 4546 if (Error Err = parseAttributeBlock()) 4547 return Err; 4548 break; 4549 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4550 if (Error Err = parseAttributeGroupBlock()) 4551 return Err; 4552 break; 4553 case bitc::TYPE_BLOCK_ID_NEW: 4554 if (Error Err = parseTypeTable()) 4555 return Err; 4556 break; 4557 case bitc::VALUE_SYMTAB_BLOCK_ID: 4558 if (!SeenValueSymbolTable) { 4559 // Either this is an old form VST without function index and an 4560 // associated VST forward declaration record (which would have caused 4561 // the VST to be jumped to and parsed before it was encountered 4562 // normally in the stream), or there were no function blocks to 4563 // trigger an earlier parsing of the VST. 4564 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4565 if (Error Err = parseValueSymbolTable()) 4566 return Err; 4567 SeenValueSymbolTable = true; 4568 } else { 4569 // We must have had a VST forward declaration record, which caused 4570 // the parser to jump to and parse the VST earlier. 4571 assert(VSTOffset > 0); 4572 if (Error Err = Stream.SkipBlock()) 4573 return Err; 4574 } 4575 break; 4576 case bitc::CONSTANTS_BLOCK_ID: 4577 if (Error Err = parseConstants()) 4578 return Err; 4579 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4580 return Err; 4581 break; 4582 case bitc::METADATA_BLOCK_ID: 4583 if (ShouldLazyLoadMetadata) { 4584 if (Error Err = rememberAndSkipMetadata()) 4585 return Err; 4586 break; 4587 } 4588 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4589 if (Error Err = MDLoader->parseModuleMetadata()) 4590 return Err; 4591 break; 4592 case bitc::METADATA_KIND_BLOCK_ID: 4593 if (Error Err = MDLoader->parseMetadataKinds()) 4594 return Err; 4595 break; 4596 case bitc::FUNCTION_BLOCK_ID: 4597 if (Error Err = ResolveDataLayout()) 4598 return Err; 4599 4600 // If this is the first function body we've seen, reverse the 4601 // FunctionsWithBodies list. 4602 if (!SeenFirstFunctionBody) { 4603 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4604 if (Error Err = globalCleanup()) 4605 return Err; 4606 SeenFirstFunctionBody = true; 4607 } 4608 4609 if (VSTOffset > 0) { 4610 // If we have a VST forward declaration record, make sure we 4611 // parse the VST now if we haven't already. It is needed to 4612 // set up the DeferredFunctionInfo vector for lazy reading. 4613 if (!SeenValueSymbolTable) { 4614 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4615 return Err; 4616 SeenValueSymbolTable = true; 4617 // Fall through so that we record the NextUnreadBit below. 4618 // This is necessary in case we have an anonymous function that 4619 // is later materialized. Since it will not have a VST entry we 4620 // need to fall back to the lazy parse to find its offset. 4621 } else { 4622 // If we have a VST forward declaration record, but have already 4623 // parsed the VST (just above, when the first function body was 4624 // encountered here), then we are resuming the parse after 4625 // materializing functions. The ResumeBit points to the 4626 // start of the last function block recorded in the 4627 // DeferredFunctionInfo map. Skip it. 4628 if (Error Err = Stream.SkipBlock()) 4629 return Err; 4630 continue; 4631 } 4632 } 4633 4634 // Support older bitcode files that did not have the function 4635 // index in the VST, nor a VST forward declaration record, as 4636 // well as anonymous functions that do not have VST entries. 4637 // Build the DeferredFunctionInfo vector on the fly. 4638 if (Error Err = rememberAndSkipFunctionBody()) 4639 return Err; 4640 4641 // Suspend parsing when we reach the function bodies. Subsequent 4642 // materialization calls will resume it when necessary. If the bitcode 4643 // file is old, the symbol table will be at the end instead and will not 4644 // have been seen yet. In this case, just finish the parse now. 4645 if (SeenValueSymbolTable) { 4646 NextUnreadBit = Stream.GetCurrentBitNo(); 4647 // After the VST has been parsed, we need to make sure intrinsic name 4648 // are auto-upgraded. 4649 return globalCleanup(); 4650 } 4651 break; 4652 case bitc::USELIST_BLOCK_ID: 4653 if (Error Err = parseUseLists()) 4654 return Err; 4655 break; 4656 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4657 if (Error Err = parseOperandBundleTags()) 4658 return Err; 4659 break; 4660 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4661 if (Error Err = parseSyncScopeNames()) 4662 return Err; 4663 break; 4664 } 4665 continue; 4666 4667 case BitstreamEntry::Record: 4668 // The interesting case. 4669 break; 4670 } 4671 4672 // Read a record. 4673 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4674 if (!MaybeBitCode) 4675 return MaybeBitCode.takeError(); 4676 switch (unsigned BitCode = MaybeBitCode.get()) { 4677 default: break; // Default behavior, ignore unknown content. 4678 case bitc::MODULE_CODE_VERSION: { 4679 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4680 if (!VersionOrErr) 4681 return VersionOrErr.takeError(); 4682 UseRelativeIDs = *VersionOrErr >= 1; 4683 break; 4684 } 4685 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4686 if (ResolvedDataLayout) 4687 return error("target triple too late in module"); 4688 std::string S; 4689 if (convertToString(Record, 0, S)) 4690 return error("Invalid record"); 4691 TheModule->setTargetTriple(S); 4692 break; 4693 } 4694 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4695 if (ResolvedDataLayout) 4696 return error("datalayout too late in module"); 4697 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4698 return error("Invalid record"); 4699 break; 4700 } 4701 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4702 std::string S; 4703 if (convertToString(Record, 0, S)) 4704 return error("Invalid record"); 4705 TheModule->setModuleInlineAsm(S); 4706 break; 4707 } 4708 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4709 // Deprecated, but still needed to read old bitcode files. 4710 std::string S; 4711 if (convertToString(Record, 0, S)) 4712 return error("Invalid record"); 4713 // Ignore value. 4714 break; 4715 } 4716 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4717 std::string S; 4718 if (convertToString(Record, 0, S)) 4719 return error("Invalid record"); 4720 SectionTable.push_back(S); 4721 break; 4722 } 4723 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4724 std::string S; 4725 if (convertToString(Record, 0, S)) 4726 return error("Invalid record"); 4727 GCTable.push_back(S); 4728 break; 4729 } 4730 case bitc::MODULE_CODE_COMDAT: 4731 if (Error Err = parseComdatRecord(Record)) 4732 return Err; 4733 break; 4734 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4735 // written by ThinLinkBitcodeWriter. See 4736 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4737 // record 4738 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4739 case bitc::MODULE_CODE_GLOBALVAR: 4740 if (Error Err = parseGlobalVarRecord(Record)) 4741 return Err; 4742 break; 4743 case bitc::MODULE_CODE_FUNCTION: 4744 if (Error Err = ResolveDataLayout()) 4745 return Err; 4746 if (Error Err = parseFunctionRecord(Record)) 4747 return Err; 4748 break; 4749 case bitc::MODULE_CODE_IFUNC: 4750 case bitc::MODULE_CODE_ALIAS: 4751 case bitc::MODULE_CODE_ALIAS_OLD: 4752 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4753 return Err; 4754 break; 4755 /// MODULE_CODE_VSTOFFSET: [offset] 4756 case bitc::MODULE_CODE_VSTOFFSET: 4757 if (Record.empty()) 4758 return error("Invalid record"); 4759 // Note that we subtract 1 here because the offset is relative to one word 4760 // before the start of the identification or module block, which was 4761 // historically always the start of the regular bitcode header. 4762 VSTOffset = Record[0] - 1; 4763 break; 4764 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4765 case bitc::MODULE_CODE_SOURCE_FILENAME: 4766 SmallString<128> ValueName; 4767 if (convertToString(Record, 0, ValueName)) 4768 return error("Invalid record"); 4769 TheModule->setSourceFileName(ValueName); 4770 break; 4771 } 4772 Record.clear(); 4773 } 4774 this->ValueTypeCallback = std::nullopt; 4775 return Error::success(); 4776 } 4777 4778 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4779 bool IsImporting, 4780 ParserCallbacks Callbacks) { 4781 TheModule = M; 4782 MetadataLoaderCallbacks MDCallbacks; 4783 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4784 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4785 return getContainedTypeID(I, J); 4786 }; 4787 MDCallbacks.MDType = Callbacks.MDType; 4788 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4789 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4790 } 4791 4792 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4793 if (!isa<PointerType>(PtrType)) 4794 return error("Load/Store operand is not a pointer type"); 4795 if (!PointerType::isLoadableOrStorableType(ValType)) 4796 return error("Cannot load/store from pointer"); 4797 return Error::success(); 4798 } 4799 4800 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4801 ArrayRef<unsigned> ArgTyIDs) { 4802 AttributeList Attrs = CB->getAttributes(); 4803 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4804 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4805 Attribute::InAlloca}) { 4806 if (!Attrs.hasParamAttr(i, Kind) || 4807 Attrs.getParamAttr(i, Kind).getValueAsType()) 4808 continue; 4809 4810 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4811 if (!PtrEltTy) 4812 return error("Missing element type for typed attribute upgrade"); 4813 4814 Attribute NewAttr; 4815 switch (Kind) { 4816 case Attribute::ByVal: 4817 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4818 break; 4819 case Attribute::StructRet: 4820 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4821 break; 4822 case Attribute::InAlloca: 4823 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4824 break; 4825 default: 4826 llvm_unreachable("not an upgraded type attribute"); 4827 } 4828 4829 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4830 } 4831 } 4832 4833 if (CB->isInlineAsm()) { 4834 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4835 unsigned ArgNo = 0; 4836 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4837 if (!CI.hasArg()) 4838 continue; 4839 4840 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4841 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4842 if (!ElemTy) 4843 return error("Missing element type for inline asm upgrade"); 4844 Attrs = Attrs.addParamAttribute( 4845 Context, ArgNo, 4846 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4847 } 4848 4849 ArgNo++; 4850 } 4851 } 4852 4853 switch (CB->getIntrinsicID()) { 4854 case Intrinsic::preserve_array_access_index: 4855 case Intrinsic::preserve_struct_access_index: 4856 case Intrinsic::aarch64_ldaxr: 4857 case Intrinsic::aarch64_ldxr: 4858 case Intrinsic::aarch64_stlxr: 4859 case Intrinsic::aarch64_stxr: 4860 case Intrinsic::arm_ldaex: 4861 case Intrinsic::arm_ldrex: 4862 case Intrinsic::arm_stlex: 4863 case Intrinsic::arm_strex: { 4864 unsigned ArgNo; 4865 switch (CB->getIntrinsicID()) { 4866 case Intrinsic::aarch64_stlxr: 4867 case Intrinsic::aarch64_stxr: 4868 case Intrinsic::arm_stlex: 4869 case Intrinsic::arm_strex: 4870 ArgNo = 1; 4871 break; 4872 default: 4873 ArgNo = 0; 4874 break; 4875 } 4876 if (!Attrs.getParamElementType(ArgNo)) { 4877 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4878 if (!ElTy) 4879 return error("Missing element type for elementtype upgrade"); 4880 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4881 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4882 } 4883 break; 4884 } 4885 default: 4886 break; 4887 } 4888 4889 CB->setAttributes(Attrs); 4890 return Error::success(); 4891 } 4892 4893 /// Lazily parse the specified function body block. 4894 Error BitcodeReader::parseFunctionBody(Function *F) { 4895 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4896 return Err; 4897 4898 // Unexpected unresolved metadata when parsing function. 4899 if (MDLoader->hasFwdRefs()) 4900 return error("Invalid function metadata: incoming forward references"); 4901 4902 InstructionList.clear(); 4903 unsigned ModuleValueListSize = ValueList.size(); 4904 unsigned ModuleMDLoaderSize = MDLoader->size(); 4905 4906 // Add all the function arguments to the value table. 4907 unsigned ArgNo = 0; 4908 unsigned FTyID = FunctionTypeIDs[F]; 4909 for (Argument &I : F->args()) { 4910 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4911 assert(I.getType() == getTypeByID(ArgTyID) && 4912 "Incorrect fully specified type for Function Argument"); 4913 ValueList.push_back(&I, ArgTyID); 4914 ++ArgNo; 4915 } 4916 unsigned NextValueNo = ValueList.size(); 4917 BasicBlock *CurBB = nullptr; 4918 unsigned CurBBNo = 0; 4919 // Block into which constant expressions from phi nodes are materialized. 4920 BasicBlock *PhiConstExprBB = nullptr; 4921 // Edge blocks for phi nodes into which constant expressions have been 4922 // expanded. 4923 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4924 ConstExprEdgeBBs; 4925 4926 DebugLoc LastLoc; 4927 auto getLastInstruction = [&]() -> Instruction * { 4928 if (CurBB && !CurBB->empty()) 4929 return &CurBB->back(); 4930 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4931 !FunctionBBs[CurBBNo - 1]->empty()) 4932 return &FunctionBBs[CurBBNo - 1]->back(); 4933 return nullptr; 4934 }; 4935 4936 std::vector<OperandBundleDef> OperandBundles; 4937 4938 // Read all the records. 4939 SmallVector<uint64_t, 64> Record; 4940 4941 while (true) { 4942 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4943 if (!MaybeEntry) 4944 return MaybeEntry.takeError(); 4945 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4946 4947 switch (Entry.Kind) { 4948 case BitstreamEntry::Error: 4949 return error("Malformed block"); 4950 case BitstreamEntry::EndBlock: 4951 goto OutOfRecordLoop; 4952 4953 case BitstreamEntry::SubBlock: 4954 switch (Entry.ID) { 4955 default: // Skip unknown content. 4956 if (Error Err = Stream.SkipBlock()) 4957 return Err; 4958 break; 4959 case bitc::CONSTANTS_BLOCK_ID: 4960 if (Error Err = parseConstants()) 4961 return Err; 4962 NextValueNo = ValueList.size(); 4963 break; 4964 case bitc::VALUE_SYMTAB_BLOCK_ID: 4965 if (Error Err = parseValueSymbolTable()) 4966 return Err; 4967 break; 4968 case bitc::METADATA_ATTACHMENT_ID: 4969 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4970 return Err; 4971 break; 4972 case bitc::METADATA_BLOCK_ID: 4973 assert(DeferredMetadataInfo.empty() && 4974 "Must read all module-level metadata before function-level"); 4975 if (Error Err = MDLoader->parseFunctionMetadata()) 4976 return Err; 4977 break; 4978 case bitc::USELIST_BLOCK_ID: 4979 if (Error Err = parseUseLists()) 4980 return Err; 4981 break; 4982 } 4983 continue; 4984 4985 case BitstreamEntry::Record: 4986 // The interesting case. 4987 break; 4988 } 4989 4990 // Read a record. 4991 Record.clear(); 4992 Instruction *I = nullptr; 4993 unsigned ResTypeID = InvalidTypeID; 4994 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4995 if (!MaybeBitCode) 4996 return MaybeBitCode.takeError(); 4997 switch (unsigned BitCode = MaybeBitCode.get()) { 4998 default: // Default behavior: reject 4999 return error("Invalid value"); 5000 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 5001 if (Record.empty() || Record[0] == 0) 5002 return error("Invalid record"); 5003 // Create all the basic blocks for the function. 5004 FunctionBBs.resize(Record[0]); 5005 5006 // See if anything took the address of blocks in this function. 5007 auto BBFRI = BasicBlockFwdRefs.find(F); 5008 if (BBFRI == BasicBlockFwdRefs.end()) { 5009 for (BasicBlock *&BB : FunctionBBs) 5010 BB = BasicBlock::Create(Context, "", F); 5011 } else { 5012 auto &BBRefs = BBFRI->second; 5013 // Check for invalid basic block references. 5014 if (BBRefs.size() > FunctionBBs.size()) 5015 return error("Invalid ID"); 5016 assert(!BBRefs.empty() && "Unexpected empty array"); 5017 assert(!BBRefs.front() && "Invalid reference to entry block"); 5018 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 5019 ++I) 5020 if (I < RE && BBRefs[I]) { 5021 BBRefs[I]->insertInto(F); 5022 FunctionBBs[I] = BBRefs[I]; 5023 } else { 5024 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 5025 } 5026 5027 // Erase from the table. 5028 BasicBlockFwdRefs.erase(BBFRI); 5029 } 5030 5031 CurBB = FunctionBBs[0]; 5032 continue; 5033 } 5034 5035 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 5036 // The record should not be emitted if it's an empty list. 5037 if (Record.empty()) 5038 return error("Invalid record"); 5039 // When we have the RARE case of a BlockAddress Constant that is not 5040 // scoped to the Function it refers to, we need to conservatively 5041 // materialize the referred to Function, regardless of whether or not 5042 // that Function will ultimately be linked, otherwise users of 5043 // BitcodeReader might start splicing out Function bodies such that we 5044 // might no longer be able to materialize the BlockAddress since the 5045 // BasicBlock (and entire body of the Function) the BlockAddress refers 5046 // to may have been moved. In the case that the user of BitcodeReader 5047 // decides ultimately not to link the Function body, materializing here 5048 // could be considered wasteful, but it's better than a deserialization 5049 // failure as described. This keeps BitcodeReader unaware of complex 5050 // linkage policy decisions such as those use by LTO, leaving those 5051 // decisions "one layer up." 5052 for (uint64_t ValID : Record) 5053 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5054 BackwardRefFunctions.push_back(F); 5055 else 5056 return error("Invalid record"); 5057 5058 continue; 5059 5060 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5061 // This record indicates that the last instruction is at the same 5062 // location as the previous instruction with a location. 5063 I = getLastInstruction(); 5064 5065 if (!I) 5066 return error("Invalid record"); 5067 I->setDebugLoc(LastLoc); 5068 I = nullptr; 5069 continue; 5070 5071 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5072 I = getLastInstruction(); 5073 if (!I || Record.size() < 4) 5074 return error("Invalid record"); 5075 5076 unsigned Line = Record[0], Col = Record[1]; 5077 unsigned ScopeID = Record[2], IAID = Record[3]; 5078 bool isImplicitCode = Record.size() == 5 && Record[4]; 5079 5080 MDNode *Scope = nullptr, *IA = nullptr; 5081 if (ScopeID) { 5082 Scope = dyn_cast_or_null<MDNode>( 5083 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5084 if (!Scope) 5085 return error("Invalid record"); 5086 } 5087 if (IAID) { 5088 IA = dyn_cast_or_null<MDNode>( 5089 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5090 if (!IA) 5091 return error("Invalid record"); 5092 } 5093 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5094 isImplicitCode); 5095 I->setDebugLoc(LastLoc); 5096 I = nullptr; 5097 continue; 5098 } 5099 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5100 unsigned OpNum = 0; 5101 Value *LHS; 5102 unsigned TypeID; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5104 OpNum+1 > Record.size()) 5105 return error("Invalid record"); 5106 5107 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5108 if (Opc == -1) 5109 return error("Invalid record"); 5110 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5111 ResTypeID = TypeID; 5112 InstructionList.push_back(I); 5113 if (OpNum < Record.size()) { 5114 if (isa<FPMathOperator>(I)) { 5115 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5116 if (FMF.any()) 5117 I->setFastMathFlags(FMF); 5118 } 5119 } 5120 break; 5121 } 5122 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5123 unsigned OpNum = 0; 5124 Value *LHS, *RHS; 5125 unsigned TypeID; 5126 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5127 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5128 CurBB) || 5129 OpNum+1 > Record.size()) 5130 return error("Invalid record"); 5131 5132 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5133 if (Opc == -1) 5134 return error("Invalid record"); 5135 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5136 ResTypeID = TypeID; 5137 InstructionList.push_back(I); 5138 if (OpNum < Record.size()) { 5139 if (Opc == Instruction::Add || 5140 Opc == Instruction::Sub || 5141 Opc == Instruction::Mul || 5142 Opc == Instruction::Shl) { 5143 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5144 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5145 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5146 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5147 } else if (Opc == Instruction::SDiv || 5148 Opc == Instruction::UDiv || 5149 Opc == Instruction::LShr || 5150 Opc == Instruction::AShr) { 5151 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5152 cast<BinaryOperator>(I)->setIsExact(true); 5153 } else if (Opc == Instruction::Or) { 5154 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5155 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5156 } else if (isa<FPMathOperator>(I)) { 5157 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5158 if (FMF.any()) 5159 I->setFastMathFlags(FMF); 5160 } 5161 } 5162 break; 5163 } 5164 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5165 unsigned OpNum = 0; 5166 Value *Op; 5167 unsigned OpTypeID; 5168 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5169 OpNum + 1 > Record.size()) 5170 return error("Invalid record"); 5171 5172 ResTypeID = Record[OpNum++]; 5173 Type *ResTy = getTypeByID(ResTypeID); 5174 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5175 5176 if (Opc == -1 || !ResTy) 5177 return error("Invalid record"); 5178 Instruction *Temp = nullptr; 5179 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5180 if (Temp) { 5181 InstructionList.push_back(Temp); 5182 assert(CurBB && "No current BB?"); 5183 Temp->insertInto(CurBB, CurBB->end()); 5184 } 5185 } else { 5186 auto CastOp = (Instruction::CastOps)Opc; 5187 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5188 return error("Invalid cast"); 5189 I = CastInst::Create(CastOp, Op, ResTy); 5190 } 5191 5192 if (OpNum < Record.size()) { 5193 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5194 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5195 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5196 } else if (Opc == Instruction::Trunc) { 5197 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5198 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5199 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5200 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5201 } 5202 if (isa<FPMathOperator>(I)) { 5203 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5204 if (FMF.any()) 5205 I->setFastMathFlags(FMF); 5206 } 5207 } 5208 5209 InstructionList.push_back(I); 5210 break; 5211 } 5212 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5213 case bitc::FUNC_CODE_INST_GEP_OLD: 5214 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5215 unsigned OpNum = 0; 5216 5217 unsigned TyID; 5218 Type *Ty; 5219 GEPNoWrapFlags NW; 5220 5221 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5222 NW = toGEPNoWrapFlags(Record[OpNum++]); 5223 TyID = Record[OpNum++]; 5224 Ty = getTypeByID(TyID); 5225 } else { 5226 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5227 NW = GEPNoWrapFlags::inBounds(); 5228 TyID = InvalidTypeID; 5229 Ty = nullptr; 5230 } 5231 5232 Value *BasePtr; 5233 unsigned BasePtrTypeID; 5234 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5235 CurBB)) 5236 return error("Invalid record"); 5237 5238 if (!Ty) { 5239 TyID = getContainedTypeID(BasePtrTypeID); 5240 if (BasePtr->getType()->isVectorTy()) 5241 TyID = getContainedTypeID(TyID); 5242 Ty = getTypeByID(TyID); 5243 } 5244 5245 SmallVector<Value*, 16> GEPIdx; 5246 while (OpNum != Record.size()) { 5247 Value *Op; 5248 unsigned OpTypeID; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5250 return error("Invalid record"); 5251 GEPIdx.push_back(Op); 5252 } 5253 5254 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5255 I = GEP; 5256 5257 ResTypeID = TyID; 5258 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5259 auto GTI = std::next(gep_type_begin(I)); 5260 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5261 unsigned SubType = 0; 5262 if (GTI.isStruct()) { 5263 ConstantInt *IdxC = 5264 Idx->getType()->isVectorTy() 5265 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5266 : cast<ConstantInt>(Idx); 5267 SubType = IdxC->getZExtValue(); 5268 } 5269 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5270 ++GTI; 5271 } 5272 } 5273 5274 // At this point ResTypeID is the result element type. We need a pointer 5275 // or vector of pointer to it. 5276 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5277 if (I->getType()->isVectorTy()) 5278 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5279 5280 InstructionList.push_back(I); 5281 GEP->setNoWrapFlags(NW); 5282 break; 5283 } 5284 5285 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5286 // EXTRACTVAL: [opty, opval, n x indices] 5287 unsigned OpNum = 0; 5288 Value *Agg; 5289 unsigned AggTypeID; 5290 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5291 return error("Invalid record"); 5292 Type *Ty = Agg->getType(); 5293 5294 unsigned RecSize = Record.size(); 5295 if (OpNum == RecSize) 5296 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5297 5298 SmallVector<unsigned, 4> EXTRACTVALIdx; 5299 ResTypeID = AggTypeID; 5300 for (; OpNum != RecSize; ++OpNum) { 5301 bool IsArray = Ty->isArrayTy(); 5302 bool IsStruct = Ty->isStructTy(); 5303 uint64_t Index = Record[OpNum]; 5304 5305 if (!IsStruct && !IsArray) 5306 return error("EXTRACTVAL: Invalid type"); 5307 if ((unsigned)Index != Index) 5308 return error("Invalid value"); 5309 if (IsStruct && Index >= Ty->getStructNumElements()) 5310 return error("EXTRACTVAL: Invalid struct index"); 5311 if (IsArray && Index >= Ty->getArrayNumElements()) 5312 return error("EXTRACTVAL: Invalid array index"); 5313 EXTRACTVALIdx.push_back((unsigned)Index); 5314 5315 if (IsStruct) { 5316 Ty = Ty->getStructElementType(Index); 5317 ResTypeID = getContainedTypeID(ResTypeID, Index); 5318 } else { 5319 Ty = Ty->getArrayElementType(); 5320 ResTypeID = getContainedTypeID(ResTypeID); 5321 } 5322 } 5323 5324 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5325 InstructionList.push_back(I); 5326 break; 5327 } 5328 5329 case bitc::FUNC_CODE_INST_INSERTVAL: { 5330 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5331 unsigned OpNum = 0; 5332 Value *Agg; 5333 unsigned AggTypeID; 5334 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5335 return error("Invalid record"); 5336 Value *Val; 5337 unsigned ValTypeID; 5338 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5339 return error("Invalid record"); 5340 5341 unsigned RecSize = Record.size(); 5342 if (OpNum == RecSize) 5343 return error("INSERTVAL: Invalid instruction with 0 indices"); 5344 5345 SmallVector<unsigned, 4> INSERTVALIdx; 5346 Type *CurTy = Agg->getType(); 5347 for (; OpNum != RecSize; ++OpNum) { 5348 bool IsArray = CurTy->isArrayTy(); 5349 bool IsStruct = CurTy->isStructTy(); 5350 uint64_t Index = Record[OpNum]; 5351 5352 if (!IsStruct && !IsArray) 5353 return error("INSERTVAL: Invalid type"); 5354 if ((unsigned)Index != Index) 5355 return error("Invalid value"); 5356 if (IsStruct && Index >= CurTy->getStructNumElements()) 5357 return error("INSERTVAL: Invalid struct index"); 5358 if (IsArray && Index >= CurTy->getArrayNumElements()) 5359 return error("INSERTVAL: Invalid array index"); 5360 5361 INSERTVALIdx.push_back((unsigned)Index); 5362 if (IsStruct) 5363 CurTy = CurTy->getStructElementType(Index); 5364 else 5365 CurTy = CurTy->getArrayElementType(); 5366 } 5367 5368 if (CurTy != Val->getType()) 5369 return error("Inserted value type doesn't match aggregate type"); 5370 5371 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5372 ResTypeID = AggTypeID; 5373 InstructionList.push_back(I); 5374 break; 5375 } 5376 5377 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5378 // obsolete form of select 5379 // handles select i1 ... in old bitcode 5380 unsigned OpNum = 0; 5381 Value *TrueVal, *FalseVal, *Cond; 5382 unsigned TypeID; 5383 Type *CondType = Type::getInt1Ty(Context); 5384 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5385 CurBB) || 5386 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5387 FalseVal, CurBB) || 5388 popValue(Record, OpNum, NextValueNo, CondType, 5389 getVirtualTypeID(CondType), Cond, CurBB)) 5390 return error("Invalid record"); 5391 5392 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5393 ResTypeID = TypeID; 5394 InstructionList.push_back(I); 5395 break; 5396 } 5397 5398 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5399 // new form of select 5400 // handles select i1 or select [N x i1] 5401 unsigned OpNum = 0; 5402 Value *TrueVal, *FalseVal, *Cond; 5403 unsigned ValTypeID, CondTypeID; 5404 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5405 CurBB) || 5406 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5407 FalseVal, CurBB) || 5408 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5409 return error("Invalid record"); 5410 5411 // select condition can be either i1 or [N x i1] 5412 if (VectorType* vector_type = 5413 dyn_cast<VectorType>(Cond->getType())) { 5414 // expect <n x i1> 5415 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5416 return error("Invalid type for value"); 5417 } else { 5418 // expect i1 5419 if (Cond->getType() != Type::getInt1Ty(Context)) 5420 return error("Invalid type for value"); 5421 } 5422 5423 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5424 ResTypeID = ValTypeID; 5425 InstructionList.push_back(I); 5426 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5427 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5428 if (FMF.any()) 5429 I->setFastMathFlags(FMF); 5430 } 5431 break; 5432 } 5433 5434 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5435 unsigned OpNum = 0; 5436 Value *Vec, *Idx; 5437 unsigned VecTypeID, IdxTypeID; 5438 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5439 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5440 return error("Invalid record"); 5441 if (!Vec->getType()->isVectorTy()) 5442 return error("Invalid type for value"); 5443 I = ExtractElementInst::Create(Vec, Idx); 5444 ResTypeID = getContainedTypeID(VecTypeID); 5445 InstructionList.push_back(I); 5446 break; 5447 } 5448 5449 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5450 unsigned OpNum = 0; 5451 Value *Vec, *Elt, *Idx; 5452 unsigned VecTypeID, IdxTypeID; 5453 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5454 return error("Invalid record"); 5455 if (!Vec->getType()->isVectorTy()) 5456 return error("Invalid type for value"); 5457 if (popValue(Record, OpNum, NextValueNo, 5458 cast<VectorType>(Vec->getType())->getElementType(), 5459 getContainedTypeID(VecTypeID), Elt, CurBB) || 5460 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5461 return error("Invalid record"); 5462 I = InsertElementInst::Create(Vec, Elt, Idx); 5463 ResTypeID = VecTypeID; 5464 InstructionList.push_back(I); 5465 break; 5466 } 5467 5468 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5469 unsigned OpNum = 0; 5470 Value *Vec1, *Vec2, *Mask; 5471 unsigned Vec1TypeID; 5472 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5473 CurBB) || 5474 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5475 Vec2, CurBB)) 5476 return error("Invalid record"); 5477 5478 unsigned MaskTypeID; 5479 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5480 return error("Invalid record"); 5481 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5482 return error("Invalid type for value"); 5483 5484 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5485 ResTypeID = 5486 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5487 InstructionList.push_back(I); 5488 break; 5489 } 5490 5491 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5492 // Old form of ICmp/FCmp returning bool 5493 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5494 // both legal on vectors but had different behaviour. 5495 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5496 // FCmp/ICmp returning bool or vector of bool 5497 5498 unsigned OpNum = 0; 5499 Value *LHS, *RHS; 5500 unsigned LHSTypeID; 5501 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5502 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5503 CurBB)) 5504 return error("Invalid record"); 5505 5506 if (OpNum >= Record.size()) 5507 return error( 5508 "Invalid record: operand number exceeded available operands"); 5509 5510 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5511 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5512 FastMathFlags FMF; 5513 if (IsFP && Record.size() > OpNum+1) 5514 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5515 5516 if (IsFP) { 5517 if (!CmpInst::isFPPredicate(PredVal)) 5518 return error("Invalid fcmp predicate"); 5519 I = new FCmpInst(PredVal, LHS, RHS); 5520 } else { 5521 if (!CmpInst::isIntPredicate(PredVal)) 5522 return error("Invalid icmp predicate"); 5523 I = new ICmpInst(PredVal, LHS, RHS); 5524 if (Record.size() > OpNum + 1 && 5525 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN))) 5526 cast<ICmpInst>(I)->setSameSign(); 5527 } 5528 5529 if (OpNum + 1 != Record.size()) 5530 return error("Invalid record"); 5531 5532 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5533 if (LHS->getType()->isVectorTy()) 5534 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5535 5536 if (FMF.any()) 5537 I->setFastMathFlags(FMF); 5538 InstructionList.push_back(I); 5539 break; 5540 } 5541 5542 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5543 { 5544 unsigned Size = Record.size(); 5545 if (Size == 0) { 5546 I = ReturnInst::Create(Context); 5547 InstructionList.push_back(I); 5548 break; 5549 } 5550 5551 unsigned OpNum = 0; 5552 Value *Op = nullptr; 5553 unsigned OpTypeID; 5554 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5555 return error("Invalid record"); 5556 if (OpNum != Record.size()) 5557 return error("Invalid record"); 5558 5559 I = ReturnInst::Create(Context, Op); 5560 InstructionList.push_back(I); 5561 break; 5562 } 5563 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5564 if (Record.size() != 1 && Record.size() != 3) 5565 return error("Invalid record"); 5566 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5567 if (!TrueDest) 5568 return error("Invalid record"); 5569 5570 if (Record.size() == 1) { 5571 I = BranchInst::Create(TrueDest); 5572 InstructionList.push_back(I); 5573 } 5574 else { 5575 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5576 Type *CondType = Type::getInt1Ty(Context); 5577 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5578 getVirtualTypeID(CondType), CurBB); 5579 if (!FalseDest || !Cond) 5580 return error("Invalid record"); 5581 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5582 InstructionList.push_back(I); 5583 } 5584 break; 5585 } 5586 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5587 if (Record.size() != 1 && Record.size() != 2) 5588 return error("Invalid record"); 5589 unsigned Idx = 0; 5590 Type *TokenTy = Type::getTokenTy(Context); 5591 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5592 getVirtualTypeID(TokenTy), CurBB); 5593 if (!CleanupPad) 5594 return error("Invalid record"); 5595 BasicBlock *UnwindDest = nullptr; 5596 if (Record.size() == 2) { 5597 UnwindDest = getBasicBlock(Record[Idx++]); 5598 if (!UnwindDest) 5599 return error("Invalid record"); 5600 } 5601 5602 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5603 InstructionList.push_back(I); 5604 break; 5605 } 5606 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5607 if (Record.size() != 2) 5608 return error("Invalid record"); 5609 unsigned Idx = 0; 5610 Type *TokenTy = Type::getTokenTy(Context); 5611 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5612 getVirtualTypeID(TokenTy), CurBB); 5613 if (!CatchPad) 5614 return error("Invalid record"); 5615 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5616 if (!BB) 5617 return error("Invalid record"); 5618 5619 I = CatchReturnInst::Create(CatchPad, BB); 5620 InstructionList.push_back(I); 5621 break; 5622 } 5623 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5624 // We must have, at minimum, the outer scope and the number of arguments. 5625 if (Record.size() < 2) 5626 return error("Invalid record"); 5627 5628 unsigned Idx = 0; 5629 5630 Type *TokenTy = Type::getTokenTy(Context); 5631 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5632 getVirtualTypeID(TokenTy), CurBB); 5633 if (!ParentPad) 5634 return error("Invalid record"); 5635 5636 unsigned NumHandlers = Record[Idx++]; 5637 5638 SmallVector<BasicBlock *, 2> Handlers; 5639 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5640 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5641 if (!BB) 5642 return error("Invalid record"); 5643 Handlers.push_back(BB); 5644 } 5645 5646 BasicBlock *UnwindDest = nullptr; 5647 if (Idx + 1 == Record.size()) { 5648 UnwindDest = getBasicBlock(Record[Idx++]); 5649 if (!UnwindDest) 5650 return error("Invalid record"); 5651 } 5652 5653 if (Record.size() != Idx) 5654 return error("Invalid record"); 5655 5656 auto *CatchSwitch = 5657 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5658 for (BasicBlock *Handler : Handlers) 5659 CatchSwitch->addHandler(Handler); 5660 I = CatchSwitch; 5661 ResTypeID = getVirtualTypeID(I->getType()); 5662 InstructionList.push_back(I); 5663 break; 5664 } 5665 case bitc::FUNC_CODE_INST_CATCHPAD: 5666 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5667 // We must have, at minimum, the outer scope and the number of arguments. 5668 if (Record.size() < 2) 5669 return error("Invalid record"); 5670 5671 unsigned Idx = 0; 5672 5673 Type *TokenTy = Type::getTokenTy(Context); 5674 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5675 getVirtualTypeID(TokenTy), CurBB); 5676 if (!ParentPad) 5677 return error("Invald record"); 5678 5679 unsigned NumArgOperands = Record[Idx++]; 5680 5681 SmallVector<Value *, 2> Args; 5682 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5683 Value *Val; 5684 unsigned ValTypeID; 5685 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5686 return error("Invalid record"); 5687 Args.push_back(Val); 5688 } 5689 5690 if (Record.size() != Idx) 5691 return error("Invalid record"); 5692 5693 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5694 I = CleanupPadInst::Create(ParentPad, Args); 5695 else 5696 I = CatchPadInst::Create(ParentPad, Args); 5697 ResTypeID = getVirtualTypeID(I->getType()); 5698 InstructionList.push_back(I); 5699 break; 5700 } 5701 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5702 // Check magic 5703 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5704 // "New" SwitchInst format with case ranges. The changes to write this 5705 // format were reverted but we still recognize bitcode that uses it. 5706 // Hopefully someday we will have support for case ranges and can use 5707 // this format again. 5708 5709 unsigned OpTyID = Record[1]; 5710 Type *OpTy = getTypeByID(OpTyID); 5711 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5712 5713 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5714 BasicBlock *Default = getBasicBlock(Record[3]); 5715 if (!OpTy || !Cond || !Default) 5716 return error("Invalid record"); 5717 5718 unsigned NumCases = Record[4]; 5719 5720 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5721 InstructionList.push_back(SI); 5722 5723 unsigned CurIdx = 5; 5724 for (unsigned i = 0; i != NumCases; ++i) { 5725 SmallVector<ConstantInt*, 1> CaseVals; 5726 unsigned NumItems = Record[CurIdx++]; 5727 for (unsigned ci = 0; ci != NumItems; ++ci) { 5728 bool isSingleNumber = Record[CurIdx++]; 5729 5730 APInt Low; 5731 unsigned ActiveWords = 1; 5732 if (ValueBitWidth > 64) 5733 ActiveWords = Record[CurIdx++]; 5734 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5735 ValueBitWidth); 5736 CurIdx += ActiveWords; 5737 5738 if (!isSingleNumber) { 5739 ActiveWords = 1; 5740 if (ValueBitWidth > 64) 5741 ActiveWords = Record[CurIdx++]; 5742 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5743 ValueBitWidth); 5744 CurIdx += ActiveWords; 5745 5746 // FIXME: It is not clear whether values in the range should be 5747 // compared as signed or unsigned values. The partially 5748 // implemented changes that used this format in the past used 5749 // unsigned comparisons. 5750 for ( ; Low.ule(High); ++Low) 5751 CaseVals.push_back(ConstantInt::get(Context, Low)); 5752 } else 5753 CaseVals.push_back(ConstantInt::get(Context, Low)); 5754 } 5755 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5756 for (ConstantInt *Cst : CaseVals) 5757 SI->addCase(Cst, DestBB); 5758 } 5759 I = SI; 5760 break; 5761 } 5762 5763 // Old SwitchInst format without case ranges. 5764 5765 if (Record.size() < 3 || (Record.size() & 1) == 0) 5766 return error("Invalid record"); 5767 unsigned OpTyID = Record[0]; 5768 Type *OpTy = getTypeByID(OpTyID); 5769 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5770 BasicBlock *Default = getBasicBlock(Record[2]); 5771 if (!OpTy || !Cond || !Default) 5772 return error("Invalid record"); 5773 unsigned NumCases = (Record.size()-3)/2; 5774 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5775 InstructionList.push_back(SI); 5776 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5777 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5778 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5779 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5780 if (!CaseVal || !DestBB) { 5781 delete SI; 5782 return error("Invalid record"); 5783 } 5784 SI->addCase(CaseVal, DestBB); 5785 } 5786 I = SI; 5787 break; 5788 } 5789 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5790 if (Record.size() < 2) 5791 return error("Invalid record"); 5792 unsigned OpTyID = Record[0]; 5793 Type *OpTy = getTypeByID(OpTyID); 5794 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5795 if (!OpTy || !Address) 5796 return error("Invalid record"); 5797 unsigned NumDests = Record.size()-2; 5798 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5799 InstructionList.push_back(IBI); 5800 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5801 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5802 IBI->addDestination(DestBB); 5803 } else { 5804 delete IBI; 5805 return error("Invalid record"); 5806 } 5807 } 5808 I = IBI; 5809 break; 5810 } 5811 5812 case bitc::FUNC_CODE_INST_INVOKE: { 5813 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5814 if (Record.size() < 4) 5815 return error("Invalid record"); 5816 unsigned OpNum = 0; 5817 AttributeList PAL = getAttributes(Record[OpNum++]); 5818 unsigned CCInfo = Record[OpNum++]; 5819 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5820 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5821 5822 unsigned FTyID = InvalidTypeID; 5823 FunctionType *FTy = nullptr; 5824 if ((CCInfo >> 13) & 1) { 5825 FTyID = Record[OpNum++]; 5826 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5827 if (!FTy) 5828 return error("Explicit invoke type is not a function type"); 5829 } 5830 5831 Value *Callee; 5832 unsigned CalleeTypeID; 5833 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5834 CurBB)) 5835 return error("Invalid record"); 5836 5837 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5838 if (!CalleeTy) 5839 return error("Callee is not a pointer"); 5840 if (!FTy) { 5841 FTyID = getContainedTypeID(CalleeTypeID); 5842 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5843 if (!FTy) 5844 return error("Callee is not of pointer to function type"); 5845 } 5846 if (Record.size() < FTy->getNumParams() + OpNum) 5847 return error("Insufficient operands to call"); 5848 5849 SmallVector<Value*, 16> Ops; 5850 SmallVector<unsigned, 16> ArgTyIDs; 5851 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5852 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5853 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5854 ArgTyID, CurBB)); 5855 ArgTyIDs.push_back(ArgTyID); 5856 if (!Ops.back()) 5857 return error("Invalid record"); 5858 } 5859 5860 if (!FTy->isVarArg()) { 5861 if (Record.size() != OpNum) 5862 return error("Invalid record"); 5863 } else { 5864 // Read type/value pairs for varargs params. 5865 while (OpNum != Record.size()) { 5866 Value *Op; 5867 unsigned OpTypeID; 5868 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5869 return error("Invalid record"); 5870 Ops.push_back(Op); 5871 ArgTyIDs.push_back(OpTypeID); 5872 } 5873 } 5874 5875 // Upgrade the bundles if needed. 5876 if (!OperandBundles.empty()) 5877 UpgradeOperandBundles(OperandBundles); 5878 5879 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5880 OperandBundles); 5881 ResTypeID = getContainedTypeID(FTyID); 5882 OperandBundles.clear(); 5883 InstructionList.push_back(I); 5884 cast<InvokeInst>(I)->setCallingConv( 5885 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5886 cast<InvokeInst>(I)->setAttributes(PAL); 5887 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5888 I->deleteValue(); 5889 return Err; 5890 } 5891 5892 break; 5893 } 5894 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5895 unsigned Idx = 0; 5896 Value *Val = nullptr; 5897 unsigned ValTypeID; 5898 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5899 return error("Invalid record"); 5900 I = ResumeInst::Create(Val); 5901 InstructionList.push_back(I); 5902 break; 5903 } 5904 case bitc::FUNC_CODE_INST_CALLBR: { 5905 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5906 unsigned OpNum = 0; 5907 AttributeList PAL = getAttributes(Record[OpNum++]); 5908 unsigned CCInfo = Record[OpNum++]; 5909 5910 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5911 unsigned NumIndirectDests = Record[OpNum++]; 5912 SmallVector<BasicBlock *, 16> IndirectDests; 5913 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5914 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5915 5916 unsigned FTyID = InvalidTypeID; 5917 FunctionType *FTy = nullptr; 5918 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5919 FTyID = Record[OpNum++]; 5920 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5921 if (!FTy) 5922 return error("Explicit call type is not a function type"); 5923 } 5924 5925 Value *Callee; 5926 unsigned CalleeTypeID; 5927 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5928 CurBB)) 5929 return error("Invalid record"); 5930 5931 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5932 if (!OpTy) 5933 return error("Callee is not a pointer type"); 5934 if (!FTy) { 5935 FTyID = getContainedTypeID(CalleeTypeID); 5936 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5937 if (!FTy) 5938 return error("Callee is not of pointer to function type"); 5939 } 5940 if (Record.size() < FTy->getNumParams() + OpNum) 5941 return error("Insufficient operands to call"); 5942 5943 SmallVector<Value*, 16> Args; 5944 SmallVector<unsigned, 16> ArgTyIDs; 5945 // Read the fixed params. 5946 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5947 Value *Arg; 5948 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5949 if (FTy->getParamType(i)->isLabelTy()) 5950 Arg = getBasicBlock(Record[OpNum]); 5951 else 5952 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5953 ArgTyID, CurBB); 5954 if (!Arg) 5955 return error("Invalid record"); 5956 Args.push_back(Arg); 5957 ArgTyIDs.push_back(ArgTyID); 5958 } 5959 5960 // Read type/value pairs for varargs params. 5961 if (!FTy->isVarArg()) { 5962 if (OpNum != Record.size()) 5963 return error("Invalid record"); 5964 } else { 5965 while (OpNum != Record.size()) { 5966 Value *Op; 5967 unsigned OpTypeID; 5968 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5969 return error("Invalid record"); 5970 Args.push_back(Op); 5971 ArgTyIDs.push_back(OpTypeID); 5972 } 5973 } 5974 5975 // Upgrade the bundles if needed. 5976 if (!OperandBundles.empty()) 5977 UpgradeOperandBundles(OperandBundles); 5978 5979 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5980 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5981 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5982 return CI.Type == InlineAsm::isLabel; 5983 }; 5984 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5985 // Upgrade explicit blockaddress arguments to label constraints. 5986 // Verify that the last arguments are blockaddress arguments that 5987 // match the indirect destinations. Clang always generates callbr 5988 // in this form. We could support reordering with more effort. 5989 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5990 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5991 unsigned LabelNo = ArgNo - FirstBlockArg; 5992 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5993 if (!BA || BA->getFunction() != F || 5994 LabelNo > IndirectDests.size() || 5995 BA->getBasicBlock() != IndirectDests[LabelNo]) 5996 return error("callbr argument does not match indirect dest"); 5997 } 5998 5999 // Remove blockaddress arguments. 6000 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 6001 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 6002 6003 // Recreate the function type with less arguments. 6004 SmallVector<Type *> ArgTys; 6005 for (Value *Arg : Args) 6006 ArgTys.push_back(Arg->getType()); 6007 FTy = 6008 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 6009 6010 // Update constraint string to use label constraints. 6011 std::string Constraints = IA->getConstraintString(); 6012 unsigned ArgNo = 0; 6013 size_t Pos = 0; 6014 for (const auto &CI : ConstraintInfo) { 6015 if (CI.hasArg()) { 6016 if (ArgNo >= FirstBlockArg) 6017 Constraints.insert(Pos, "!"); 6018 ++ArgNo; 6019 } 6020 6021 // Go to next constraint in string. 6022 Pos = Constraints.find(',', Pos); 6023 if (Pos == std::string::npos) 6024 break; 6025 ++Pos; 6026 } 6027 6028 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 6029 IA->hasSideEffects(), IA->isAlignStack(), 6030 IA->getDialect(), IA->canThrow()); 6031 } 6032 } 6033 6034 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 6035 OperandBundles); 6036 ResTypeID = getContainedTypeID(FTyID); 6037 OperandBundles.clear(); 6038 InstructionList.push_back(I); 6039 cast<CallBrInst>(I)->setCallingConv( 6040 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6041 cast<CallBrInst>(I)->setAttributes(PAL); 6042 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6043 I->deleteValue(); 6044 return Err; 6045 } 6046 break; 6047 } 6048 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6049 I = new UnreachableInst(Context); 6050 InstructionList.push_back(I); 6051 break; 6052 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6053 if (Record.empty()) 6054 return error("Invalid phi record"); 6055 // The first record specifies the type. 6056 unsigned TyID = Record[0]; 6057 Type *Ty = getTypeByID(TyID); 6058 if (!Ty) 6059 return error("Invalid phi record"); 6060 6061 // Phi arguments are pairs of records of [value, basic block]. 6062 // There is an optional final record for fast-math-flags if this phi has a 6063 // floating-point type. 6064 size_t NumArgs = (Record.size() - 1) / 2; 6065 PHINode *PN = PHINode::Create(Ty, NumArgs); 6066 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6067 PN->deleteValue(); 6068 return error("Invalid phi record"); 6069 } 6070 InstructionList.push_back(PN); 6071 6072 SmallDenseMap<BasicBlock *, Value *> Args; 6073 for (unsigned i = 0; i != NumArgs; i++) { 6074 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6075 if (!BB) { 6076 PN->deleteValue(); 6077 return error("Invalid phi BB"); 6078 } 6079 6080 // Phi nodes may contain the same predecessor multiple times, in which 6081 // case the incoming value must be identical. Directly reuse the already 6082 // seen value here, to avoid expanding a constant expression multiple 6083 // times. 6084 auto It = Args.find(BB); 6085 if (It != Args.end()) { 6086 PN->addIncoming(It->second, BB); 6087 continue; 6088 } 6089 6090 // If there already is a block for this edge (from a different phi), 6091 // use it. 6092 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6093 if (!EdgeBB) { 6094 // Otherwise, use a temporary block (that we will discard if it 6095 // turns out to be unnecessary). 6096 if (!PhiConstExprBB) 6097 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6098 EdgeBB = PhiConstExprBB; 6099 } 6100 6101 // With the new function encoding, it is possible that operands have 6102 // negative IDs (for forward references). Use a signed VBR 6103 // representation to keep the encoding small. 6104 Value *V; 6105 if (UseRelativeIDs) 6106 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6107 else 6108 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6109 if (!V) { 6110 PN->deleteValue(); 6111 PhiConstExprBB->eraseFromParent(); 6112 return error("Invalid phi record"); 6113 } 6114 6115 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6116 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6117 PhiConstExprBB = nullptr; 6118 } 6119 PN->addIncoming(V, BB); 6120 Args.insert({BB, V}); 6121 } 6122 I = PN; 6123 ResTypeID = TyID; 6124 6125 // If there are an even number of records, the final record must be FMF. 6126 if (Record.size() % 2 == 0) { 6127 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6128 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6129 if (FMF.any()) 6130 I->setFastMathFlags(FMF); 6131 } 6132 6133 break; 6134 } 6135 6136 case bitc::FUNC_CODE_INST_LANDINGPAD: 6137 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6138 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6139 unsigned Idx = 0; 6140 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6141 if (Record.size() < 3) 6142 return error("Invalid record"); 6143 } else { 6144 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6145 if (Record.size() < 4) 6146 return error("Invalid record"); 6147 } 6148 ResTypeID = Record[Idx++]; 6149 Type *Ty = getTypeByID(ResTypeID); 6150 if (!Ty) 6151 return error("Invalid record"); 6152 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6153 Value *PersFn = nullptr; 6154 unsigned PersFnTypeID; 6155 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6156 nullptr)) 6157 return error("Invalid record"); 6158 6159 if (!F->hasPersonalityFn()) 6160 F->setPersonalityFn(cast<Constant>(PersFn)); 6161 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6162 return error("Personality function mismatch"); 6163 } 6164 6165 bool IsCleanup = !!Record[Idx++]; 6166 unsigned NumClauses = Record[Idx++]; 6167 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6168 LP->setCleanup(IsCleanup); 6169 for (unsigned J = 0; J != NumClauses; ++J) { 6170 LandingPadInst::ClauseType CT = 6171 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6172 Value *Val; 6173 unsigned ValTypeID; 6174 6175 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6176 nullptr)) { 6177 delete LP; 6178 return error("Invalid record"); 6179 } 6180 6181 assert((CT != LandingPadInst::Catch || 6182 !isa<ArrayType>(Val->getType())) && 6183 "Catch clause has a invalid type!"); 6184 assert((CT != LandingPadInst::Filter || 6185 isa<ArrayType>(Val->getType())) && 6186 "Filter clause has invalid type!"); 6187 LP->addClause(cast<Constant>(Val)); 6188 } 6189 6190 I = LP; 6191 InstructionList.push_back(I); 6192 break; 6193 } 6194 6195 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6196 if (Record.size() != 4 && Record.size() != 5) 6197 return error("Invalid record"); 6198 using APV = AllocaPackedValues; 6199 const uint64_t Rec = Record[3]; 6200 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6201 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6202 unsigned TyID = Record[0]; 6203 Type *Ty = getTypeByID(TyID); 6204 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6205 TyID = getContainedTypeID(TyID); 6206 Ty = getTypeByID(TyID); 6207 if (!Ty) 6208 return error("Missing element type for old-style alloca"); 6209 } 6210 unsigned OpTyID = Record[1]; 6211 Type *OpTy = getTypeByID(OpTyID); 6212 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6213 MaybeAlign Align; 6214 uint64_t AlignExp = 6215 Bitfield::get<APV::AlignLower>(Rec) | 6216 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6217 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6218 return Err; 6219 } 6220 if (!Ty || !Size) 6221 return error("Invalid record"); 6222 6223 const DataLayout &DL = TheModule->getDataLayout(); 6224 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6225 6226 SmallPtrSet<Type *, 4> Visited; 6227 if (!Align && !Ty->isSized(&Visited)) 6228 return error("alloca of unsized type"); 6229 if (!Align) 6230 Align = DL.getPrefTypeAlign(Ty); 6231 6232 if (!Size->getType()->isIntegerTy()) 6233 return error("alloca element count must have integer type"); 6234 6235 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6236 AI->setUsedWithInAlloca(InAlloca); 6237 AI->setSwiftError(SwiftError); 6238 I = AI; 6239 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6240 InstructionList.push_back(I); 6241 break; 6242 } 6243 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6244 unsigned OpNum = 0; 6245 Value *Op; 6246 unsigned OpTypeID; 6247 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6248 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6249 return error("Invalid record"); 6250 6251 if (!isa<PointerType>(Op->getType())) 6252 return error("Load operand is not a pointer type"); 6253 6254 Type *Ty = nullptr; 6255 if (OpNum + 3 == Record.size()) { 6256 ResTypeID = Record[OpNum++]; 6257 Ty = getTypeByID(ResTypeID); 6258 } else { 6259 ResTypeID = getContainedTypeID(OpTypeID); 6260 Ty = getTypeByID(ResTypeID); 6261 } 6262 6263 if (!Ty) 6264 return error("Missing load type"); 6265 6266 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6267 return Err; 6268 6269 MaybeAlign Align; 6270 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6271 return Err; 6272 SmallPtrSet<Type *, 4> Visited; 6273 if (!Align && !Ty->isSized(&Visited)) 6274 return error("load of unsized type"); 6275 if (!Align) 6276 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6277 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6278 InstructionList.push_back(I); 6279 break; 6280 } 6281 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6282 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6283 unsigned OpNum = 0; 6284 Value *Op; 6285 unsigned OpTypeID; 6286 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6287 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6288 return error("Invalid record"); 6289 6290 if (!isa<PointerType>(Op->getType())) 6291 return error("Load operand is not a pointer type"); 6292 6293 Type *Ty = nullptr; 6294 if (OpNum + 5 == Record.size()) { 6295 ResTypeID = Record[OpNum++]; 6296 Ty = getTypeByID(ResTypeID); 6297 } else { 6298 ResTypeID = getContainedTypeID(OpTypeID); 6299 Ty = getTypeByID(ResTypeID); 6300 } 6301 6302 if (!Ty) 6303 return error("Missing atomic load type"); 6304 6305 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6306 return Err; 6307 6308 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6309 if (Ordering == AtomicOrdering::NotAtomic || 6310 Ordering == AtomicOrdering::Release || 6311 Ordering == AtomicOrdering::AcquireRelease) 6312 return error("Invalid record"); 6313 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6314 return error("Invalid record"); 6315 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6316 6317 MaybeAlign Align; 6318 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6319 return Err; 6320 if (!Align) 6321 return error("Alignment missing from atomic load"); 6322 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6323 InstructionList.push_back(I); 6324 break; 6325 } 6326 case bitc::FUNC_CODE_INST_STORE: 6327 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6328 unsigned OpNum = 0; 6329 Value *Val, *Ptr; 6330 unsigned PtrTypeID, ValTypeID; 6331 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6332 return error("Invalid record"); 6333 6334 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6335 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6336 return error("Invalid record"); 6337 } else { 6338 ValTypeID = getContainedTypeID(PtrTypeID); 6339 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6340 ValTypeID, Val, CurBB)) 6341 return error("Invalid record"); 6342 } 6343 6344 if (OpNum + 2 != Record.size()) 6345 return error("Invalid record"); 6346 6347 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6348 return Err; 6349 MaybeAlign Align; 6350 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6351 return Err; 6352 SmallPtrSet<Type *, 4> Visited; 6353 if (!Align && !Val->getType()->isSized(&Visited)) 6354 return error("store of unsized type"); 6355 if (!Align) 6356 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6357 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6358 InstructionList.push_back(I); 6359 break; 6360 } 6361 case bitc::FUNC_CODE_INST_STOREATOMIC: 6362 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6363 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6364 unsigned OpNum = 0; 6365 Value *Val, *Ptr; 6366 unsigned PtrTypeID, ValTypeID; 6367 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6368 !isa<PointerType>(Ptr->getType())) 6369 return error("Invalid record"); 6370 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6371 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6372 return error("Invalid record"); 6373 } else { 6374 ValTypeID = getContainedTypeID(PtrTypeID); 6375 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6376 ValTypeID, Val, CurBB)) 6377 return error("Invalid record"); 6378 } 6379 6380 if (OpNum + 4 != Record.size()) 6381 return error("Invalid record"); 6382 6383 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6384 return Err; 6385 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6386 if (Ordering == AtomicOrdering::NotAtomic || 6387 Ordering == AtomicOrdering::Acquire || 6388 Ordering == AtomicOrdering::AcquireRelease) 6389 return error("Invalid record"); 6390 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6391 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6392 return error("Invalid record"); 6393 6394 MaybeAlign Align; 6395 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6396 return Err; 6397 if (!Align) 6398 return error("Alignment missing from atomic store"); 6399 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6400 InstructionList.push_back(I); 6401 break; 6402 } 6403 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6404 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6405 // failure_ordering?, weak?] 6406 const size_t NumRecords = Record.size(); 6407 unsigned OpNum = 0; 6408 Value *Ptr = nullptr; 6409 unsigned PtrTypeID; 6410 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6411 return error("Invalid record"); 6412 6413 if (!isa<PointerType>(Ptr->getType())) 6414 return error("Cmpxchg operand is not a pointer type"); 6415 6416 Value *Cmp = nullptr; 6417 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6418 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6419 CmpTypeID, Cmp, CurBB)) 6420 return error("Invalid record"); 6421 6422 Value *New = nullptr; 6423 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6424 New, CurBB) || 6425 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6426 return error("Invalid record"); 6427 6428 const AtomicOrdering SuccessOrdering = 6429 getDecodedOrdering(Record[OpNum + 1]); 6430 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6431 SuccessOrdering == AtomicOrdering::Unordered) 6432 return error("Invalid record"); 6433 6434 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6435 6436 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6437 return Err; 6438 6439 const AtomicOrdering FailureOrdering = 6440 NumRecords < 7 6441 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6442 : getDecodedOrdering(Record[OpNum + 3]); 6443 6444 if (FailureOrdering == AtomicOrdering::NotAtomic || 6445 FailureOrdering == AtomicOrdering::Unordered) 6446 return error("Invalid record"); 6447 6448 const Align Alignment( 6449 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6450 6451 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6452 FailureOrdering, SSID); 6453 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6454 6455 if (NumRecords < 8) { 6456 // Before weak cmpxchgs existed, the instruction simply returned the 6457 // value loaded from memory, so bitcode files from that era will be 6458 // expecting the first component of a modern cmpxchg. 6459 I->insertInto(CurBB, CurBB->end()); 6460 I = ExtractValueInst::Create(I, 0); 6461 ResTypeID = CmpTypeID; 6462 } else { 6463 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6464 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6465 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6466 } 6467 6468 InstructionList.push_back(I); 6469 break; 6470 } 6471 case bitc::FUNC_CODE_INST_CMPXCHG: { 6472 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6473 // failure_ordering, weak, align?] 6474 const size_t NumRecords = Record.size(); 6475 unsigned OpNum = 0; 6476 Value *Ptr = nullptr; 6477 unsigned PtrTypeID; 6478 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6479 return error("Invalid record"); 6480 6481 if (!isa<PointerType>(Ptr->getType())) 6482 return error("Cmpxchg operand is not a pointer type"); 6483 6484 Value *Cmp = nullptr; 6485 unsigned CmpTypeID; 6486 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6487 return error("Invalid record"); 6488 6489 Value *Val = nullptr; 6490 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6491 CurBB)) 6492 return error("Invalid record"); 6493 6494 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6495 return error("Invalid record"); 6496 6497 const bool IsVol = Record[OpNum]; 6498 6499 const AtomicOrdering SuccessOrdering = 6500 getDecodedOrdering(Record[OpNum + 1]); 6501 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6502 return error("Invalid cmpxchg success ordering"); 6503 6504 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6505 6506 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6507 return Err; 6508 6509 const AtomicOrdering FailureOrdering = 6510 getDecodedOrdering(Record[OpNum + 3]); 6511 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6512 return error("Invalid cmpxchg failure ordering"); 6513 6514 const bool IsWeak = Record[OpNum + 4]; 6515 6516 MaybeAlign Alignment; 6517 6518 if (NumRecords == (OpNum + 6)) { 6519 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6520 return Err; 6521 } 6522 if (!Alignment) 6523 Alignment = 6524 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6525 6526 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6527 FailureOrdering, SSID); 6528 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6529 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6530 6531 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6532 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6533 6534 InstructionList.push_back(I); 6535 break; 6536 } 6537 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6538 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6539 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6540 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6541 const size_t NumRecords = Record.size(); 6542 unsigned OpNum = 0; 6543 6544 Value *Ptr = nullptr; 6545 unsigned PtrTypeID; 6546 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6547 return error("Invalid record"); 6548 6549 if (!isa<PointerType>(Ptr->getType())) 6550 return error("Invalid record"); 6551 6552 Value *Val = nullptr; 6553 unsigned ValTypeID = InvalidTypeID; 6554 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6555 ValTypeID = getContainedTypeID(PtrTypeID); 6556 if (popValue(Record, OpNum, NextValueNo, 6557 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6558 return error("Invalid record"); 6559 } else { 6560 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6561 return error("Invalid record"); 6562 } 6563 6564 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6565 return error("Invalid record"); 6566 6567 const AtomicRMWInst::BinOp Operation = 6568 getDecodedRMWOperation(Record[OpNum]); 6569 if (Operation < AtomicRMWInst::FIRST_BINOP || 6570 Operation > AtomicRMWInst::LAST_BINOP) 6571 return error("Invalid record"); 6572 6573 const bool IsVol = Record[OpNum + 1]; 6574 6575 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6576 if (Ordering == AtomicOrdering::NotAtomic || 6577 Ordering == AtomicOrdering::Unordered) 6578 return error("Invalid record"); 6579 6580 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6581 6582 MaybeAlign Alignment; 6583 6584 if (NumRecords == (OpNum + 5)) { 6585 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6586 return Err; 6587 } 6588 6589 if (!Alignment) 6590 Alignment = 6591 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6592 6593 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6594 ResTypeID = ValTypeID; 6595 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6596 6597 InstructionList.push_back(I); 6598 break; 6599 } 6600 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6601 if (2 != Record.size()) 6602 return error("Invalid record"); 6603 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6604 if (Ordering == AtomicOrdering::NotAtomic || 6605 Ordering == AtomicOrdering::Unordered || 6606 Ordering == AtomicOrdering::Monotonic) 6607 return error("Invalid record"); 6608 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6609 I = new FenceInst(Context, Ordering, SSID); 6610 InstructionList.push_back(I); 6611 break; 6612 } 6613 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6614 // DbgLabelRecords are placed after the Instructions that they are 6615 // attached to. 6616 SeenDebugRecord = true; 6617 Instruction *Inst = getLastInstruction(); 6618 if (!Inst) 6619 return error("Invalid dbg record: missing instruction"); 6620 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6621 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6622 Inst->getParent()->insertDbgRecordBefore( 6623 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6624 continue; // This isn't an instruction. 6625 } 6626 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6627 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6628 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6629 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6630 // DbgVariableRecords are placed after the Instructions that they are 6631 // attached to. 6632 SeenDebugRecord = true; 6633 Instruction *Inst = getLastInstruction(); 6634 if (!Inst) 6635 return error("Invalid dbg record: missing instruction"); 6636 6637 // First 3 fields are common to all kinds: 6638 // DILocation, DILocalVariable, DIExpression 6639 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6640 // ..., LocationMetadata 6641 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6642 // ..., Value 6643 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6644 // ..., LocationMetadata 6645 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6646 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6647 unsigned Slot = 0; 6648 // Common fields (0-2). 6649 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6650 DILocalVariable *Var = 6651 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6652 DIExpression *Expr = 6653 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6654 6655 // Union field (3: LocationMetadata | Value). 6656 Metadata *RawLocation = nullptr; 6657 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6658 Value *V = nullptr; 6659 unsigned TyID = 0; 6660 // We never expect to see a fwd reference value here because 6661 // use-before-defs are encoded with the standard non-abbrev record 6662 // type (they'd require encoding the type too, and they're rare). As a 6663 // result, getValueTypePair only ever increments Slot by one here (once 6664 // for the value, never twice for value and type). 6665 unsigned SlotBefore = Slot; 6666 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6667 return error("Invalid dbg record: invalid value"); 6668 (void)SlotBefore; 6669 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6670 RawLocation = ValueAsMetadata::get(V); 6671 } else { 6672 RawLocation = getFnMetadataByID(Record[Slot++]); 6673 } 6674 6675 DbgVariableRecord *DVR = nullptr; 6676 switch (BitCode) { 6677 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6678 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6679 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6680 DbgVariableRecord::LocationType::Value); 6681 break; 6682 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6683 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6684 DbgVariableRecord::LocationType::Declare); 6685 break; 6686 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6687 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6688 DIExpression *AddrExpr = 6689 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6690 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6691 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6692 DIL); 6693 break; 6694 } 6695 default: 6696 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6697 } 6698 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6699 continue; // This isn't an instruction. 6700 } 6701 case bitc::FUNC_CODE_INST_CALL: { 6702 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6703 if (Record.size() < 3) 6704 return error("Invalid record"); 6705 6706 unsigned OpNum = 0; 6707 AttributeList PAL = getAttributes(Record[OpNum++]); 6708 unsigned CCInfo = Record[OpNum++]; 6709 6710 FastMathFlags FMF; 6711 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6712 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6713 if (!FMF.any()) 6714 return error("Fast math flags indicator set for call with no FMF"); 6715 } 6716 6717 unsigned FTyID = InvalidTypeID; 6718 FunctionType *FTy = nullptr; 6719 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6720 FTyID = Record[OpNum++]; 6721 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6722 if (!FTy) 6723 return error("Explicit call type is not a function type"); 6724 } 6725 6726 Value *Callee; 6727 unsigned CalleeTypeID; 6728 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6729 CurBB)) 6730 return error("Invalid record"); 6731 6732 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6733 if (!OpTy) 6734 return error("Callee is not a pointer type"); 6735 if (!FTy) { 6736 FTyID = getContainedTypeID(CalleeTypeID); 6737 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6738 if (!FTy) 6739 return error("Callee is not of pointer to function type"); 6740 } 6741 if (Record.size() < FTy->getNumParams() + OpNum) 6742 return error("Insufficient operands to call"); 6743 6744 SmallVector<Value*, 16> Args; 6745 SmallVector<unsigned, 16> ArgTyIDs; 6746 // Read the fixed params. 6747 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6748 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6749 if (FTy->getParamType(i)->isLabelTy()) 6750 Args.push_back(getBasicBlock(Record[OpNum])); 6751 else 6752 Args.push_back(getValue(Record, OpNum, NextValueNo, 6753 FTy->getParamType(i), ArgTyID, CurBB)); 6754 ArgTyIDs.push_back(ArgTyID); 6755 if (!Args.back()) 6756 return error("Invalid record"); 6757 } 6758 6759 // Read type/value pairs for varargs params. 6760 if (!FTy->isVarArg()) { 6761 if (OpNum != Record.size()) 6762 return error("Invalid record"); 6763 } else { 6764 while (OpNum != Record.size()) { 6765 Value *Op; 6766 unsigned OpTypeID; 6767 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6768 return error("Invalid record"); 6769 Args.push_back(Op); 6770 ArgTyIDs.push_back(OpTypeID); 6771 } 6772 } 6773 6774 // Upgrade the bundles if needed. 6775 if (!OperandBundles.empty()) 6776 UpgradeOperandBundles(OperandBundles); 6777 6778 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6779 ResTypeID = getContainedTypeID(FTyID); 6780 OperandBundles.clear(); 6781 InstructionList.push_back(I); 6782 cast<CallInst>(I)->setCallingConv( 6783 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6784 CallInst::TailCallKind TCK = CallInst::TCK_None; 6785 if (CCInfo & (1 << bitc::CALL_TAIL)) 6786 TCK = CallInst::TCK_Tail; 6787 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6788 TCK = CallInst::TCK_MustTail; 6789 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6790 TCK = CallInst::TCK_NoTail; 6791 cast<CallInst>(I)->setTailCallKind(TCK); 6792 cast<CallInst>(I)->setAttributes(PAL); 6793 if (isa<DbgInfoIntrinsic>(I)) 6794 SeenDebugIntrinsic = true; 6795 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6796 I->deleteValue(); 6797 return Err; 6798 } 6799 if (FMF.any()) { 6800 if (!isa<FPMathOperator>(I)) 6801 return error("Fast-math-flags specified for call without " 6802 "floating-point scalar or vector return type"); 6803 I->setFastMathFlags(FMF); 6804 } 6805 break; 6806 } 6807 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6808 if (Record.size() < 3) 6809 return error("Invalid record"); 6810 unsigned OpTyID = Record[0]; 6811 Type *OpTy = getTypeByID(OpTyID); 6812 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6813 ResTypeID = Record[2]; 6814 Type *ResTy = getTypeByID(ResTypeID); 6815 if (!OpTy || !Op || !ResTy) 6816 return error("Invalid record"); 6817 I = new VAArgInst(Op, ResTy); 6818 InstructionList.push_back(I); 6819 break; 6820 } 6821 6822 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6823 // A call or an invoke can be optionally prefixed with some variable 6824 // number of operand bundle blocks. These blocks are read into 6825 // OperandBundles and consumed at the next call or invoke instruction. 6826 6827 if (Record.empty() || Record[0] >= BundleTags.size()) 6828 return error("Invalid record"); 6829 6830 std::vector<Value *> Inputs; 6831 6832 unsigned OpNum = 1; 6833 while (OpNum != Record.size()) { 6834 Value *Op; 6835 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6836 return error("Invalid record"); 6837 Inputs.push_back(Op); 6838 } 6839 6840 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6841 continue; 6842 } 6843 6844 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6845 unsigned OpNum = 0; 6846 Value *Op = nullptr; 6847 unsigned OpTypeID; 6848 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6849 return error("Invalid record"); 6850 if (OpNum != Record.size()) 6851 return error("Invalid record"); 6852 6853 I = new FreezeInst(Op); 6854 ResTypeID = OpTypeID; 6855 InstructionList.push_back(I); 6856 break; 6857 } 6858 } 6859 6860 // Add instruction to end of current BB. If there is no current BB, reject 6861 // this file. 6862 if (!CurBB) { 6863 I->deleteValue(); 6864 return error("Invalid instruction with no BB"); 6865 } 6866 if (!OperandBundles.empty()) { 6867 I->deleteValue(); 6868 return error("Operand bundles found with no consumer"); 6869 } 6870 I->insertInto(CurBB, CurBB->end()); 6871 6872 // If this was a terminator instruction, move to the next block. 6873 if (I->isTerminator()) { 6874 ++CurBBNo; 6875 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6876 } 6877 6878 // Non-void values get registered in the value table for future use. 6879 if (!I->getType()->isVoidTy()) { 6880 assert(I->getType() == getTypeByID(ResTypeID) && 6881 "Incorrect result type ID"); 6882 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6883 return Err; 6884 } 6885 } 6886 6887 OutOfRecordLoop: 6888 6889 if (!OperandBundles.empty()) 6890 return error("Operand bundles found with no consumer"); 6891 6892 // Check the function list for unresolved values. 6893 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6894 if (!A->getParent()) { 6895 // We found at least one unresolved value. Nuke them all to avoid leaks. 6896 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6897 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6898 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6899 delete A; 6900 } 6901 } 6902 return error("Never resolved value found in function"); 6903 } 6904 } 6905 6906 // Unexpected unresolved metadata about to be dropped. 6907 if (MDLoader->hasFwdRefs()) 6908 return error("Invalid function metadata: outgoing forward refs"); 6909 6910 if (PhiConstExprBB) 6911 PhiConstExprBB->eraseFromParent(); 6912 6913 for (const auto &Pair : ConstExprEdgeBBs) { 6914 BasicBlock *From = Pair.first.first; 6915 BasicBlock *To = Pair.first.second; 6916 BasicBlock *EdgeBB = Pair.second; 6917 BranchInst::Create(To, EdgeBB); 6918 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6919 To->replacePhiUsesWith(From, EdgeBB); 6920 EdgeBB->moveBefore(To); 6921 } 6922 6923 // Trim the value list down to the size it was before we parsed this function. 6924 ValueList.shrinkTo(ModuleValueListSize); 6925 MDLoader->shrinkTo(ModuleMDLoaderSize); 6926 std::vector<BasicBlock*>().swap(FunctionBBs); 6927 return Error::success(); 6928 } 6929 6930 /// Find the function body in the bitcode stream 6931 Error BitcodeReader::findFunctionInStream( 6932 Function *F, 6933 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6934 while (DeferredFunctionInfoIterator->second == 0) { 6935 // This is the fallback handling for the old format bitcode that 6936 // didn't contain the function index in the VST, or when we have 6937 // an anonymous function which would not have a VST entry. 6938 // Assert that we have one of those two cases. 6939 assert(VSTOffset == 0 || !F->hasName()); 6940 // Parse the next body in the stream and set its position in the 6941 // DeferredFunctionInfo map. 6942 if (Error Err = rememberAndSkipFunctionBodies()) 6943 return Err; 6944 } 6945 return Error::success(); 6946 } 6947 6948 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6949 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6950 return SyncScope::ID(Val); 6951 if (Val >= SSIDs.size()) 6952 return SyncScope::System; // Map unknown synchronization scopes to system. 6953 return SSIDs[Val]; 6954 } 6955 6956 //===----------------------------------------------------------------------===// 6957 // GVMaterializer implementation 6958 //===----------------------------------------------------------------------===// 6959 6960 Error BitcodeReader::materialize(GlobalValue *GV) { 6961 Function *F = dyn_cast<Function>(GV); 6962 // If it's not a function or is already material, ignore the request. 6963 if (!F || !F->isMaterializable()) 6964 return Error::success(); 6965 6966 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6967 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6968 // If its position is recorded as 0, its body is somewhere in the stream 6969 // but we haven't seen it yet. 6970 if (DFII->second == 0) 6971 if (Error Err = findFunctionInStream(F, DFII)) 6972 return Err; 6973 6974 // Materialize metadata before parsing any function bodies. 6975 if (Error Err = materializeMetadata()) 6976 return Err; 6977 6978 // Move the bit stream to the saved position of the deferred function body. 6979 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6980 return JumpFailed; 6981 6982 // Regardless of the debug info format we want to end up in, we need 6983 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6984 F->IsNewDbgInfoFormat = true; 6985 6986 if (Error Err = parseFunctionBody(F)) 6987 return Err; 6988 F->setIsMaterializable(false); 6989 6990 // All parsed Functions should load into the debug info format dictated by the 6991 // Module, unless we're attempting to preserve the input debug info format. 6992 if (SeenDebugIntrinsic && SeenDebugRecord) 6993 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6994 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6995 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6996 bool NewDbgInfoFormatDesired = 6997 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6998 if (SeenAnyDebugInfo) { 6999 UseNewDbgInfoFormat = SeenDebugRecord; 7000 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 7001 WriteNewDbgInfoFormat = SeenDebugRecord; 7002 } 7003 // If the module's debug info format doesn't match the observed input 7004 // format, then set its format now; we don't need to call the conversion 7005 // function because there must be no existing intrinsics to convert. 7006 // Otherwise, just set the format on this function now. 7007 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 7008 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7009 else 7010 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7011 } else { 7012 // If we aren't preserving formats, we use the Module flag to get our 7013 // desired format instead of reading flags, in case we are lazy-loading and 7014 // the format of the module has been changed since it was set by the flags. 7015 // We only need to convert debug info here if we have debug records but 7016 // desire the intrinsic format; everything else is a no-op or handled by the 7017 // autoupgrader. 7018 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 7019 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 7020 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 7021 else 7022 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 7023 } 7024 7025 if (StripDebugInfo) 7026 stripDebugInfo(*F); 7027 7028 // Upgrade any old intrinsic calls in the function. 7029 for (auto &I : UpgradedIntrinsics) { 7030 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 7031 if (CallInst *CI = dyn_cast<CallInst>(U)) 7032 UpgradeIntrinsicCall(CI, I.second); 7033 } 7034 7035 // Finish fn->subprogram upgrade for materialized functions. 7036 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 7037 F->setSubprogram(SP); 7038 7039 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 7040 if (!MDLoader->isStrippingTBAA()) { 7041 for (auto &I : instructions(F)) { 7042 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 7043 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 7044 continue; 7045 MDLoader->setStripTBAA(true); 7046 stripTBAA(F->getParent()); 7047 } 7048 } 7049 7050 for (auto &I : instructions(F)) { 7051 // "Upgrade" older incorrect branch weights by dropping them. 7052 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7053 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7054 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7055 StringRef ProfName = MDS->getString(); 7056 // Check consistency of !prof branch_weights metadata. 7057 if (ProfName != "branch_weights") 7058 continue; 7059 unsigned ExpectedNumOperands = 0; 7060 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7061 ExpectedNumOperands = BI->getNumSuccessors(); 7062 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7063 ExpectedNumOperands = SI->getNumSuccessors(); 7064 else if (isa<CallInst>(&I)) 7065 ExpectedNumOperands = 1; 7066 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7067 ExpectedNumOperands = IBI->getNumDestinations(); 7068 else if (isa<SelectInst>(&I)) 7069 ExpectedNumOperands = 2; 7070 else 7071 continue; // ignore and continue. 7072 7073 unsigned Offset = getBranchWeightOffset(MD); 7074 7075 // If branch weight doesn't match, just strip branch weight. 7076 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7077 I.setMetadata(LLVMContext::MD_prof, nullptr); 7078 } 7079 } 7080 7081 // Remove incompatible attributes on function calls. 7082 if (auto *CI = dyn_cast<CallBase>(&I)) { 7083 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7084 CI->getFunctionType()->getReturnType(), CI->getRetAttributes())); 7085 7086 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7087 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7088 CI->getArgOperand(ArgNo)->getType(), 7089 CI->getParamAttributes(ArgNo))); 7090 } 7091 } 7092 7093 // Look for functions that rely on old function attribute behavior. 7094 UpgradeFunctionAttributes(*F); 7095 7096 // Bring in any functions that this function forward-referenced via 7097 // blockaddresses. 7098 return materializeForwardReferencedFunctions(); 7099 } 7100 7101 Error BitcodeReader::materializeModule() { 7102 if (Error Err = materializeMetadata()) 7103 return Err; 7104 7105 // Promise to materialize all forward references. 7106 WillMaterializeAllForwardRefs = true; 7107 7108 // Iterate over the module, deserializing any functions that are still on 7109 // disk. 7110 for (Function &F : *TheModule) { 7111 if (Error Err = materialize(&F)) 7112 return Err; 7113 } 7114 // At this point, if there are any function bodies, parse the rest of 7115 // the bits in the module past the last function block we have recorded 7116 // through either lazy scanning or the VST. 7117 if (LastFunctionBlockBit || NextUnreadBit) 7118 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7119 ? LastFunctionBlockBit 7120 : NextUnreadBit)) 7121 return Err; 7122 7123 // Check that all block address forward references got resolved (as we 7124 // promised above). 7125 if (!BasicBlockFwdRefs.empty()) 7126 return error("Never resolved function from blockaddress"); 7127 7128 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7129 // delete the old functions to clean up. We can't do this unless the entire 7130 // module is materialized because there could always be another function body 7131 // with calls to the old function. 7132 for (auto &I : UpgradedIntrinsics) { 7133 for (auto *U : I.first->users()) { 7134 if (CallInst *CI = dyn_cast<CallInst>(U)) 7135 UpgradeIntrinsicCall(CI, I.second); 7136 } 7137 if (!I.first->use_empty()) 7138 I.first->replaceAllUsesWith(I.second); 7139 I.first->eraseFromParent(); 7140 } 7141 UpgradedIntrinsics.clear(); 7142 7143 UpgradeDebugInfo(*TheModule); 7144 7145 UpgradeModuleFlags(*TheModule); 7146 7147 UpgradeARCRuntime(*TheModule); 7148 7149 return Error::success(); 7150 } 7151 7152 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7153 return IdentifiedStructTypes; 7154 } 7155 7156 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7157 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7158 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7159 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7160 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7161 7162 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7163 TheIndex.addModule(ModulePath); 7164 } 7165 7166 ModuleSummaryIndex::ModuleInfo * 7167 ModuleSummaryIndexBitcodeReader::getThisModule() { 7168 return TheIndex.getModule(ModulePath); 7169 } 7170 7171 template <bool AllowNullValueInfo> 7172 std::pair<ValueInfo, GlobalValue::GUID> 7173 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7174 auto VGI = ValueIdToValueInfoMap[ValueId]; 7175 // We can have a null value info for memprof callsite info records in 7176 // distributed ThinLTO index files when the callee function summary is not 7177 // included in the index. The bitcode writer records 0 in that case, 7178 // and the caller of this helper will set AllowNullValueInfo to true. 7179 assert(AllowNullValueInfo || std::get<0>(VGI)); 7180 return VGI; 7181 } 7182 7183 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7184 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7185 StringRef SourceFileName) { 7186 std::string GlobalId = 7187 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7188 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7189 auto OriginalNameID = ValueGUID; 7190 if (GlobalValue::isLocalLinkage(Linkage)) 7191 OriginalNameID = GlobalValue::getGUID(ValueName); 7192 if (PrintSummaryGUIDs) 7193 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7194 << ValueName << "\n"; 7195 7196 // UseStrtab is false for legacy summary formats and value names are 7197 // created on stack. In that case we save the name in a string saver in 7198 // the index so that the value name can be recorded. 7199 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7200 TheIndex.getOrInsertValueInfo( 7201 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7202 OriginalNameID); 7203 } 7204 7205 // Specialized value symbol table parser used when reading module index 7206 // blocks where we don't actually create global values. The parsed information 7207 // is saved in the bitcode reader for use when later parsing summaries. 7208 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7209 uint64_t Offset, 7210 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7211 // With a strtab the VST is not required to parse the summary. 7212 if (UseStrtab) 7213 return Error::success(); 7214 7215 assert(Offset > 0 && "Expected non-zero VST offset"); 7216 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7217 if (!MaybeCurrentBit) 7218 return MaybeCurrentBit.takeError(); 7219 uint64_t CurrentBit = MaybeCurrentBit.get(); 7220 7221 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7222 return Err; 7223 7224 SmallVector<uint64_t, 64> Record; 7225 7226 // Read all the records for this value table. 7227 SmallString<128> ValueName; 7228 7229 while (true) { 7230 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7231 if (!MaybeEntry) 7232 return MaybeEntry.takeError(); 7233 BitstreamEntry Entry = MaybeEntry.get(); 7234 7235 switch (Entry.Kind) { 7236 case BitstreamEntry::SubBlock: // Handled for us already. 7237 case BitstreamEntry::Error: 7238 return error("Malformed block"); 7239 case BitstreamEntry::EndBlock: 7240 // Done parsing VST, jump back to wherever we came from. 7241 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7242 return JumpFailed; 7243 return Error::success(); 7244 case BitstreamEntry::Record: 7245 // The interesting case. 7246 break; 7247 } 7248 7249 // Read a record. 7250 Record.clear(); 7251 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7252 if (!MaybeRecord) 7253 return MaybeRecord.takeError(); 7254 switch (MaybeRecord.get()) { 7255 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7256 break; 7257 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7258 if (convertToString(Record, 1, ValueName)) 7259 return error("Invalid record"); 7260 unsigned ValueID = Record[0]; 7261 assert(!SourceFileName.empty()); 7262 auto VLI = ValueIdToLinkageMap.find(ValueID); 7263 assert(VLI != ValueIdToLinkageMap.end() && 7264 "No linkage found for VST entry?"); 7265 auto Linkage = VLI->second; 7266 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7267 ValueName.clear(); 7268 break; 7269 } 7270 case bitc::VST_CODE_FNENTRY: { 7271 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7272 if (convertToString(Record, 2, ValueName)) 7273 return error("Invalid record"); 7274 unsigned ValueID = Record[0]; 7275 assert(!SourceFileName.empty()); 7276 auto VLI = ValueIdToLinkageMap.find(ValueID); 7277 assert(VLI != ValueIdToLinkageMap.end() && 7278 "No linkage found for VST entry?"); 7279 auto Linkage = VLI->second; 7280 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7281 ValueName.clear(); 7282 break; 7283 } 7284 case bitc::VST_CODE_COMBINED_ENTRY: { 7285 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7286 unsigned ValueID = Record[0]; 7287 GlobalValue::GUID RefGUID = Record[1]; 7288 // The "original name", which is the second value of the pair will be 7289 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7290 ValueIdToValueInfoMap[ValueID] = 7291 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7292 break; 7293 } 7294 } 7295 } 7296 } 7297 7298 // Parse just the blocks needed for building the index out of the module. 7299 // At the end of this routine the module Index is populated with a map 7300 // from global value id to GlobalValueSummary objects. 7301 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7302 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7303 return Err; 7304 7305 SmallVector<uint64_t, 64> Record; 7306 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7307 unsigned ValueId = 0; 7308 7309 // Read the index for this module. 7310 while (true) { 7311 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7312 if (!MaybeEntry) 7313 return MaybeEntry.takeError(); 7314 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7315 7316 switch (Entry.Kind) { 7317 case BitstreamEntry::Error: 7318 return error("Malformed block"); 7319 case BitstreamEntry::EndBlock: 7320 return Error::success(); 7321 7322 case BitstreamEntry::SubBlock: 7323 switch (Entry.ID) { 7324 default: // Skip unknown content. 7325 if (Error Err = Stream.SkipBlock()) 7326 return Err; 7327 break; 7328 case bitc::BLOCKINFO_BLOCK_ID: 7329 // Need to parse these to get abbrev ids (e.g. for VST) 7330 if (Error Err = readBlockInfo()) 7331 return Err; 7332 break; 7333 case bitc::VALUE_SYMTAB_BLOCK_ID: 7334 // Should have been parsed earlier via VSTOffset, unless there 7335 // is no summary section. 7336 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7337 !SeenGlobalValSummary) && 7338 "Expected early VST parse via VSTOffset record"); 7339 if (Error Err = Stream.SkipBlock()) 7340 return Err; 7341 break; 7342 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7343 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7344 // Add the module if it is a per-module index (has a source file name). 7345 if (!SourceFileName.empty()) 7346 addThisModule(); 7347 assert(!SeenValueSymbolTable && 7348 "Already read VST when parsing summary block?"); 7349 // We might not have a VST if there were no values in the 7350 // summary. An empty summary block generated when we are 7351 // performing ThinLTO compiles so we don't later invoke 7352 // the regular LTO process on them. 7353 if (VSTOffset > 0) { 7354 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7355 return Err; 7356 SeenValueSymbolTable = true; 7357 } 7358 SeenGlobalValSummary = true; 7359 if (Error Err = parseEntireSummary(Entry.ID)) 7360 return Err; 7361 break; 7362 case bitc::MODULE_STRTAB_BLOCK_ID: 7363 if (Error Err = parseModuleStringTable()) 7364 return Err; 7365 break; 7366 } 7367 continue; 7368 7369 case BitstreamEntry::Record: { 7370 Record.clear(); 7371 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7372 if (!MaybeBitCode) 7373 return MaybeBitCode.takeError(); 7374 switch (MaybeBitCode.get()) { 7375 default: 7376 break; // Default behavior, ignore unknown content. 7377 case bitc::MODULE_CODE_VERSION: { 7378 if (Error Err = parseVersionRecord(Record).takeError()) 7379 return Err; 7380 break; 7381 } 7382 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7383 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7384 SmallString<128> ValueName; 7385 if (convertToString(Record, 0, ValueName)) 7386 return error("Invalid record"); 7387 SourceFileName = ValueName.c_str(); 7388 break; 7389 } 7390 /// MODULE_CODE_HASH: [5*i32] 7391 case bitc::MODULE_CODE_HASH: { 7392 if (Record.size() != 5) 7393 return error("Invalid hash length " + Twine(Record.size()).str()); 7394 auto &Hash = getThisModule()->second; 7395 int Pos = 0; 7396 for (auto &Val : Record) { 7397 assert(!(Val >> 32) && "Unexpected high bits set"); 7398 Hash[Pos++] = Val; 7399 } 7400 break; 7401 } 7402 /// MODULE_CODE_VSTOFFSET: [offset] 7403 case bitc::MODULE_CODE_VSTOFFSET: 7404 if (Record.empty()) 7405 return error("Invalid record"); 7406 // Note that we subtract 1 here because the offset is relative to one 7407 // word before the start of the identification or module block, which 7408 // was historically always the start of the regular bitcode header. 7409 VSTOffset = Record[0] - 1; 7410 break; 7411 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7412 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7413 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7414 // v2: [strtab offset, strtab size, v1] 7415 case bitc::MODULE_CODE_GLOBALVAR: 7416 case bitc::MODULE_CODE_FUNCTION: 7417 case bitc::MODULE_CODE_ALIAS: { 7418 StringRef Name; 7419 ArrayRef<uint64_t> GVRecord; 7420 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7421 if (GVRecord.size() <= 3) 7422 return error("Invalid record"); 7423 uint64_t RawLinkage = GVRecord[3]; 7424 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7425 if (!UseStrtab) { 7426 ValueIdToLinkageMap[ValueId++] = Linkage; 7427 break; 7428 } 7429 7430 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7431 break; 7432 } 7433 } 7434 } 7435 continue; 7436 } 7437 } 7438 } 7439 7440 SmallVector<ValueInfo, 0> 7441 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7442 SmallVector<ValueInfo, 0> Ret; 7443 Ret.reserve(Record.size()); 7444 for (uint64_t RefValueId : Record) 7445 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7446 return Ret; 7447 } 7448 7449 SmallVector<FunctionSummary::EdgeTy, 0> 7450 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7451 bool IsOldProfileFormat, 7452 bool HasProfile, bool HasRelBF) { 7453 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7454 // In the case of new profile formats, there are two Record entries per 7455 // Edge. Otherwise, conservatively reserve up to Record.size. 7456 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7457 Ret.reserve(Record.size() / 2); 7458 else 7459 Ret.reserve(Record.size()); 7460 7461 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7462 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7463 bool HasTailCall = false; 7464 uint64_t RelBF = 0; 7465 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7466 if (IsOldProfileFormat) { 7467 I += 1; // Skip old callsitecount field 7468 if (HasProfile) 7469 I += 1; // Skip old profilecount field 7470 } else if (HasProfile) 7471 std::tie(Hotness, HasTailCall) = 7472 getDecodedHotnessCallEdgeInfo(Record[++I]); 7473 else if (HasRelBF) 7474 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7475 Ret.push_back(FunctionSummary::EdgeTy{ 7476 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7477 } 7478 return Ret; 7479 } 7480 7481 static void 7482 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7483 WholeProgramDevirtResolution &Wpd) { 7484 uint64_t ArgNum = Record[Slot++]; 7485 WholeProgramDevirtResolution::ByArg &B = 7486 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7487 Slot += ArgNum; 7488 7489 B.TheKind = 7490 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7491 B.Info = Record[Slot++]; 7492 B.Byte = Record[Slot++]; 7493 B.Bit = Record[Slot++]; 7494 } 7495 7496 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7497 StringRef Strtab, size_t &Slot, 7498 TypeIdSummary &TypeId) { 7499 uint64_t Id = Record[Slot++]; 7500 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7501 7502 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7503 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7504 static_cast<size_t>(Record[Slot + 1])}; 7505 Slot += 2; 7506 7507 uint64_t ResByArgNum = Record[Slot++]; 7508 for (uint64_t I = 0; I != ResByArgNum; ++I) 7509 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7510 } 7511 7512 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7513 StringRef Strtab, 7514 ModuleSummaryIndex &TheIndex) { 7515 size_t Slot = 0; 7516 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7517 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7518 Slot += 2; 7519 7520 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7521 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7522 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7523 TypeId.TTRes.SizeM1 = Record[Slot++]; 7524 TypeId.TTRes.BitMask = Record[Slot++]; 7525 TypeId.TTRes.InlineBits = Record[Slot++]; 7526 7527 while (Slot < Record.size()) 7528 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7529 } 7530 7531 std::vector<FunctionSummary::ParamAccess> 7532 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7533 auto ReadRange = [&]() { 7534 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7535 BitcodeReader::decodeSignRotatedValue(Record.front())); 7536 Record = Record.drop_front(); 7537 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7538 BitcodeReader::decodeSignRotatedValue(Record.front())); 7539 Record = Record.drop_front(); 7540 ConstantRange Range{Lower, Upper}; 7541 assert(!Range.isFullSet()); 7542 assert(!Range.isUpperSignWrapped()); 7543 return Range; 7544 }; 7545 7546 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7547 while (!Record.empty()) { 7548 PendingParamAccesses.emplace_back(); 7549 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7550 ParamAccess.ParamNo = Record.front(); 7551 Record = Record.drop_front(); 7552 ParamAccess.Use = ReadRange(); 7553 ParamAccess.Calls.resize(Record.front()); 7554 Record = Record.drop_front(); 7555 for (auto &Call : ParamAccess.Calls) { 7556 Call.ParamNo = Record.front(); 7557 Record = Record.drop_front(); 7558 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7559 Record = Record.drop_front(); 7560 Call.Offsets = ReadRange(); 7561 } 7562 } 7563 return PendingParamAccesses; 7564 } 7565 7566 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7567 ArrayRef<uint64_t> Record, size_t &Slot, 7568 TypeIdCompatibleVtableInfo &TypeId) { 7569 uint64_t Offset = Record[Slot++]; 7570 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7571 TypeId.push_back({Offset, Callee}); 7572 } 7573 7574 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7575 ArrayRef<uint64_t> Record) { 7576 size_t Slot = 0; 7577 TypeIdCompatibleVtableInfo &TypeId = 7578 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7579 {Strtab.data() + Record[Slot], 7580 static_cast<size_t>(Record[Slot + 1])}); 7581 Slot += 2; 7582 7583 while (Slot < Record.size()) 7584 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7585 } 7586 7587 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext( 7588 ArrayRef<uint64_t> Record, unsigned &I) { 7589 SmallVector<unsigned> StackIdList; 7590 // For backwards compatibility with old format before radix tree was 7591 // used, simply see if we found a radix tree array record (and thus if 7592 // the RadixArray is non-empty). 7593 if (RadixArray.empty()) { 7594 unsigned NumStackEntries = Record[I++]; 7595 assert(Record.size() - I >= NumStackEntries); 7596 StackIdList.reserve(NumStackEntries); 7597 for (unsigned J = 0; J < NumStackEntries; J++) { 7598 assert(Record[I] < StackIds.size()); 7599 StackIdList.push_back( 7600 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7601 } 7602 } else { 7603 unsigned RadixIndex = Record[I++]; 7604 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h 7605 // for a detailed description of the radix tree array format. Briefly, the 7606 // first entry will be the number of frames, any negative values are the 7607 // negative of the offset of the next frame, and otherwise the frames are in 7608 // increasing linear order. 7609 assert(RadixIndex < RadixArray.size()); 7610 unsigned NumStackIds = RadixArray[RadixIndex++]; 7611 StackIdList.reserve(NumStackIds); 7612 while (NumStackIds--) { 7613 assert(RadixIndex < RadixArray.size()); 7614 unsigned Elem = RadixArray[RadixIndex]; 7615 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) { 7616 RadixIndex = RadixIndex - Elem; 7617 assert(RadixIndex < RadixArray.size()); 7618 Elem = RadixArray[RadixIndex]; 7619 // We shouldn't encounter a second offset in a row. 7620 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0); 7621 } 7622 RadixIndex++; 7623 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem])); 7624 } 7625 } 7626 return StackIdList; 7627 } 7628 7629 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7630 unsigned WOCnt) { 7631 // Readonly and writeonly refs are in the end of the refs list. 7632 assert(ROCnt + WOCnt <= Refs.size()); 7633 unsigned FirstWORef = Refs.size() - WOCnt; 7634 unsigned RefNo = FirstWORef - ROCnt; 7635 for (; RefNo < FirstWORef; ++RefNo) 7636 Refs[RefNo].setReadOnly(); 7637 for (; RefNo < Refs.size(); ++RefNo) 7638 Refs[RefNo].setWriteOnly(); 7639 } 7640 7641 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7642 // objects in the index. 7643 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7644 if (Error Err = Stream.EnterSubBlock(ID)) 7645 return Err; 7646 SmallVector<uint64_t, 64> Record; 7647 7648 // Parse version 7649 { 7650 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7651 if (!MaybeEntry) 7652 return MaybeEntry.takeError(); 7653 BitstreamEntry Entry = MaybeEntry.get(); 7654 7655 if (Entry.Kind != BitstreamEntry::Record) 7656 return error("Invalid Summary Block: record for version expected"); 7657 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7658 if (!MaybeRecord) 7659 return MaybeRecord.takeError(); 7660 if (MaybeRecord.get() != bitc::FS_VERSION) 7661 return error("Invalid Summary Block: version expected"); 7662 } 7663 const uint64_t Version = Record[0]; 7664 const bool IsOldProfileFormat = Version == 1; 7665 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7666 return error("Invalid summary version " + Twine(Version) + 7667 ". Version should be in the range [1-" + 7668 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7669 "]."); 7670 Record.clear(); 7671 7672 // Keep around the last seen summary to be used when we see an optional 7673 // "OriginalName" attachement. 7674 GlobalValueSummary *LastSeenSummary = nullptr; 7675 GlobalValue::GUID LastSeenGUID = 0; 7676 7677 // We can expect to see any number of type ID information records before 7678 // each function summary records; these variables store the information 7679 // collected so far so that it can be used to create the summary object. 7680 std::vector<GlobalValue::GUID> PendingTypeTests; 7681 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7682 PendingTypeCheckedLoadVCalls; 7683 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7684 PendingTypeCheckedLoadConstVCalls; 7685 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7686 7687 std::vector<CallsiteInfo> PendingCallsites; 7688 std::vector<AllocInfo> PendingAllocs; 7689 std::vector<uint64_t> PendingContextIds; 7690 7691 while (true) { 7692 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7693 if (!MaybeEntry) 7694 return MaybeEntry.takeError(); 7695 BitstreamEntry Entry = MaybeEntry.get(); 7696 7697 switch (Entry.Kind) { 7698 case BitstreamEntry::SubBlock: // Handled for us already. 7699 case BitstreamEntry::Error: 7700 return error("Malformed block"); 7701 case BitstreamEntry::EndBlock: 7702 return Error::success(); 7703 case BitstreamEntry::Record: 7704 // The interesting case. 7705 break; 7706 } 7707 7708 // Read a record. The record format depends on whether this 7709 // is a per-module index or a combined index file. In the per-module 7710 // case the records contain the associated value's ID for correlation 7711 // with VST entries. In the combined index the correlation is done 7712 // via the bitcode offset of the summary records (which were saved 7713 // in the combined index VST entries). The records also contain 7714 // information used for ThinLTO renaming and importing. 7715 Record.clear(); 7716 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7717 if (!MaybeBitCode) 7718 return MaybeBitCode.takeError(); 7719 switch (unsigned BitCode = MaybeBitCode.get()) { 7720 default: // Default behavior: ignore. 7721 break; 7722 case bitc::FS_FLAGS: { // [flags] 7723 TheIndex.setFlags(Record[0]); 7724 break; 7725 } 7726 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7727 uint64_t ValueID = Record[0]; 7728 GlobalValue::GUID RefGUID; 7729 if (Version >= 11) { 7730 RefGUID = Record[1] << 32 | Record[2]; 7731 } else { 7732 RefGUID = Record[1]; 7733 } 7734 ValueIdToValueInfoMap[ValueID] = 7735 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7736 break; 7737 } 7738 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7739 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7740 // numrefs x valueid, n x (valueid)] 7741 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7742 // numrefs x valueid, 7743 // n x (valueid, hotness+tailcall flags)] 7744 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7745 // numrefs x valueid, 7746 // n x (valueid, relblockfreq+tailcall)] 7747 case bitc::FS_PERMODULE: 7748 case bitc::FS_PERMODULE_RELBF: 7749 case bitc::FS_PERMODULE_PROFILE: { 7750 unsigned ValueID = Record[0]; 7751 uint64_t RawFlags = Record[1]; 7752 unsigned InstCount = Record[2]; 7753 uint64_t RawFunFlags = 0; 7754 unsigned NumRefs = Record[3]; 7755 unsigned NumRORefs = 0, NumWORefs = 0; 7756 int RefListStartIndex = 4; 7757 if (Version >= 4) { 7758 RawFunFlags = Record[3]; 7759 NumRefs = Record[4]; 7760 RefListStartIndex = 5; 7761 if (Version >= 5) { 7762 NumRORefs = Record[5]; 7763 RefListStartIndex = 6; 7764 if (Version >= 7) { 7765 NumWORefs = Record[6]; 7766 RefListStartIndex = 7; 7767 } 7768 } 7769 } 7770 7771 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7772 // The module path string ref set in the summary must be owned by the 7773 // index's module string table. Since we don't have a module path 7774 // string table section in the per-module index, we create a single 7775 // module path string table entry with an empty (0) ID to take 7776 // ownership. 7777 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7778 assert(Record.size() >= RefListStartIndex + NumRefs && 7779 "Record size inconsistent with number of references"); 7780 SmallVector<ValueInfo, 0> Refs = makeRefList( 7781 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7782 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7783 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7784 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7785 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7786 IsOldProfileFormat, HasProfile, HasRelBF); 7787 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7788 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7789 // In order to save memory, only record the memprof summaries if this is 7790 // the prevailing copy of a symbol. The linker doesn't resolve local 7791 // linkage values so don't check whether those are prevailing. 7792 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7793 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7794 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7795 PendingCallsites.clear(); 7796 PendingAllocs.clear(); 7797 } 7798 auto FS = std::make_unique<FunctionSummary>( 7799 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7800 std::move(Calls), std::move(PendingTypeTests), 7801 std::move(PendingTypeTestAssumeVCalls), 7802 std::move(PendingTypeCheckedLoadVCalls), 7803 std::move(PendingTypeTestAssumeConstVCalls), 7804 std::move(PendingTypeCheckedLoadConstVCalls), 7805 std::move(PendingParamAccesses), std::move(PendingCallsites), 7806 std::move(PendingAllocs)); 7807 FS->setModulePath(getThisModule()->first()); 7808 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7809 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7810 std::move(FS)); 7811 break; 7812 } 7813 // FS_ALIAS: [valueid, flags, valueid] 7814 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7815 // they expect all aliasee summaries to be available. 7816 case bitc::FS_ALIAS: { 7817 unsigned ValueID = Record[0]; 7818 uint64_t RawFlags = Record[1]; 7819 unsigned AliaseeID = Record[2]; 7820 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7821 auto AS = std::make_unique<AliasSummary>(Flags); 7822 // The module path string ref set in the summary must be owned by the 7823 // index's module string table. Since we don't have a module path 7824 // string table section in the per-module index, we create a single 7825 // module path string table entry with an empty (0) ID to take 7826 // ownership. 7827 AS->setModulePath(getThisModule()->first()); 7828 7829 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7830 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7831 if (!AliaseeInModule) 7832 return error("Alias expects aliasee summary to be parsed"); 7833 AS->setAliasee(AliaseeVI, AliaseeInModule); 7834 7835 auto GUID = getValueInfoFromValueId(ValueID); 7836 AS->setOriginalName(std::get<1>(GUID)); 7837 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7838 break; 7839 } 7840 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7841 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7842 unsigned ValueID = Record[0]; 7843 uint64_t RawFlags = Record[1]; 7844 unsigned RefArrayStart = 2; 7845 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7846 /* WriteOnly */ false, 7847 /* Constant */ false, 7848 GlobalObject::VCallVisibilityPublic); 7849 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7850 if (Version >= 5) { 7851 GVF = getDecodedGVarFlags(Record[2]); 7852 RefArrayStart = 3; 7853 } 7854 SmallVector<ValueInfo, 0> Refs = 7855 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7856 auto FS = 7857 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7858 FS->setModulePath(getThisModule()->first()); 7859 auto GUID = getValueInfoFromValueId(ValueID); 7860 FS->setOriginalName(std::get<1>(GUID)); 7861 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7862 break; 7863 } 7864 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7865 // numrefs, numrefs x valueid, 7866 // n x (valueid, offset)] 7867 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7868 unsigned ValueID = Record[0]; 7869 uint64_t RawFlags = Record[1]; 7870 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7871 unsigned NumRefs = Record[3]; 7872 unsigned RefListStartIndex = 4; 7873 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7874 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7875 SmallVector<ValueInfo, 0> Refs = makeRefList( 7876 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7877 VTableFuncList VTableFuncs; 7878 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7879 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7880 uint64_t Offset = Record[++I]; 7881 VTableFuncs.push_back({Callee, Offset}); 7882 } 7883 auto VS = 7884 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7885 VS->setModulePath(getThisModule()->first()); 7886 VS->setVTableFuncs(VTableFuncs); 7887 auto GUID = getValueInfoFromValueId(ValueID); 7888 VS->setOriginalName(std::get<1>(GUID)); 7889 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7890 break; 7891 } 7892 // FS_COMBINED is legacy and does not have support for the tail call flag. 7893 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7894 // numrefs x valueid, n x (valueid)] 7895 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7896 // numrefs x valueid, 7897 // n x (valueid, hotness+tailcall flags)] 7898 case bitc::FS_COMBINED: 7899 case bitc::FS_COMBINED_PROFILE: { 7900 unsigned ValueID = Record[0]; 7901 uint64_t ModuleId = Record[1]; 7902 uint64_t RawFlags = Record[2]; 7903 unsigned InstCount = Record[3]; 7904 uint64_t RawFunFlags = 0; 7905 unsigned NumRefs = Record[4]; 7906 unsigned NumRORefs = 0, NumWORefs = 0; 7907 int RefListStartIndex = 5; 7908 7909 if (Version >= 4) { 7910 RawFunFlags = Record[4]; 7911 RefListStartIndex = 6; 7912 size_t NumRefsIndex = 5; 7913 if (Version >= 5) { 7914 unsigned NumRORefsOffset = 1; 7915 RefListStartIndex = 7; 7916 if (Version >= 6) { 7917 NumRefsIndex = 6; 7918 RefListStartIndex = 8; 7919 if (Version >= 7) { 7920 RefListStartIndex = 9; 7921 NumWORefs = Record[8]; 7922 NumRORefsOffset = 2; 7923 } 7924 } 7925 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7926 } 7927 NumRefs = Record[NumRefsIndex]; 7928 } 7929 7930 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7931 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7932 assert(Record.size() >= RefListStartIndex + NumRefs && 7933 "Record size inconsistent with number of references"); 7934 SmallVector<ValueInfo, 0> Refs = makeRefList( 7935 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7936 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7937 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7938 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7939 IsOldProfileFormat, HasProfile, false); 7940 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7941 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7942 auto FS = std::make_unique<FunctionSummary>( 7943 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7944 std::move(Edges), std::move(PendingTypeTests), 7945 std::move(PendingTypeTestAssumeVCalls), 7946 std::move(PendingTypeCheckedLoadVCalls), 7947 std::move(PendingTypeTestAssumeConstVCalls), 7948 std::move(PendingTypeCheckedLoadConstVCalls), 7949 std::move(PendingParamAccesses), std::move(PendingCallsites), 7950 std::move(PendingAllocs)); 7951 LastSeenSummary = FS.get(); 7952 LastSeenGUID = VI.getGUID(); 7953 FS->setModulePath(ModuleIdMap[ModuleId]); 7954 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7955 break; 7956 } 7957 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7958 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7959 // they expect all aliasee summaries to be available. 7960 case bitc::FS_COMBINED_ALIAS: { 7961 unsigned ValueID = Record[0]; 7962 uint64_t ModuleId = Record[1]; 7963 uint64_t RawFlags = Record[2]; 7964 unsigned AliaseeValueId = Record[3]; 7965 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7966 auto AS = std::make_unique<AliasSummary>(Flags); 7967 LastSeenSummary = AS.get(); 7968 AS->setModulePath(ModuleIdMap[ModuleId]); 7969 7970 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7971 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7972 AS->setAliasee(AliaseeVI, AliaseeInModule); 7973 7974 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7975 LastSeenGUID = VI.getGUID(); 7976 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7977 break; 7978 } 7979 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7980 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7981 unsigned ValueID = Record[0]; 7982 uint64_t ModuleId = Record[1]; 7983 uint64_t RawFlags = Record[2]; 7984 unsigned RefArrayStart = 3; 7985 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7986 /* WriteOnly */ false, 7987 /* Constant */ false, 7988 GlobalObject::VCallVisibilityPublic); 7989 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7990 if (Version >= 5) { 7991 GVF = getDecodedGVarFlags(Record[3]); 7992 RefArrayStart = 4; 7993 } 7994 SmallVector<ValueInfo, 0> Refs = 7995 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7996 auto FS = 7997 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7998 LastSeenSummary = FS.get(); 7999 FS->setModulePath(ModuleIdMap[ModuleId]); 8000 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8001 LastSeenGUID = VI.getGUID(); 8002 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 8003 break; 8004 } 8005 // FS_COMBINED_ORIGINAL_NAME: [original_name] 8006 case bitc::FS_COMBINED_ORIGINAL_NAME: { 8007 uint64_t OriginalName = Record[0]; 8008 if (!LastSeenSummary) 8009 return error("Name attachment that does not follow a combined record"); 8010 LastSeenSummary->setOriginalName(OriginalName); 8011 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 8012 // Reset the LastSeenSummary 8013 LastSeenSummary = nullptr; 8014 LastSeenGUID = 0; 8015 break; 8016 } 8017 case bitc::FS_TYPE_TESTS: 8018 assert(PendingTypeTests.empty()); 8019 llvm::append_range(PendingTypeTests, Record); 8020 break; 8021 8022 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 8023 assert(PendingTypeTestAssumeVCalls.empty()); 8024 for (unsigned I = 0; I != Record.size(); I += 2) 8025 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 8026 break; 8027 8028 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 8029 assert(PendingTypeCheckedLoadVCalls.empty()); 8030 for (unsigned I = 0; I != Record.size(); I += 2) 8031 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 8032 break; 8033 8034 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 8035 PendingTypeTestAssumeConstVCalls.push_back( 8036 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8037 break; 8038 8039 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 8040 PendingTypeCheckedLoadConstVCalls.push_back( 8041 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8042 break; 8043 8044 case bitc::FS_CFI_FUNCTION_DEFS: { 8045 std::set<std::string, std::less<>> &CfiFunctionDefs = 8046 TheIndex.cfiFunctionDefs(); 8047 for (unsigned I = 0; I != Record.size(); I += 2) 8048 CfiFunctionDefs.insert( 8049 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8050 break; 8051 } 8052 8053 case bitc::FS_CFI_FUNCTION_DECLS: { 8054 std::set<std::string, std::less<>> &CfiFunctionDecls = 8055 TheIndex.cfiFunctionDecls(); 8056 for (unsigned I = 0; I != Record.size(); I += 2) 8057 CfiFunctionDecls.insert( 8058 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8059 break; 8060 } 8061 8062 case bitc::FS_TYPE_ID: 8063 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 8064 break; 8065 8066 case bitc::FS_TYPE_ID_METADATA: 8067 parseTypeIdCompatibleVtableSummaryRecord(Record); 8068 break; 8069 8070 case bitc::FS_BLOCK_COUNT: 8071 TheIndex.addBlockCount(Record[0]); 8072 break; 8073 8074 case bitc::FS_PARAM_ACCESS: { 8075 PendingParamAccesses = parseParamAccesses(Record); 8076 break; 8077 } 8078 8079 case bitc::FS_STACK_IDS: { // [n x stackid] 8080 // Save stack ids in the reader to consult when adding stack ids from the 8081 // lists in the stack node and alloc node entries. 8082 if (Version <= 11) { 8083 StackIds = ArrayRef<uint64_t>(Record); 8084 break; 8085 } 8086 // This is an array of 32-bit fixed-width values, holding each 64-bit 8087 // context id as a pair of adjacent (most significant first) 32-bit words. 8088 assert(Record.size() % 2 == 0); 8089 StackIds.reserve(Record.size() / 2); 8090 for (auto R = Record.begin(); R != Record.end(); R += 2) 8091 StackIds.push_back(*R << 32 | *(R + 1)); 8092 break; 8093 } 8094 8095 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry] 8096 RadixArray = ArrayRef<uint64_t>(Record); 8097 break; 8098 } 8099 8100 case bitc::FS_PERMODULE_CALLSITE_INFO: { 8101 unsigned ValueID = Record[0]; 8102 SmallVector<unsigned> StackIdList; 8103 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 8104 assert(*R < StackIds.size()); 8105 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 8106 } 8107 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8108 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8109 break; 8110 } 8111 8112 case bitc::FS_COMBINED_CALLSITE_INFO: { 8113 auto RecordIter = Record.begin(); 8114 unsigned ValueID = *RecordIter++; 8115 unsigned NumStackIds = *RecordIter++; 8116 unsigned NumVersions = *RecordIter++; 8117 assert(Record.size() == 3 + NumStackIds + NumVersions); 8118 SmallVector<unsigned> StackIdList; 8119 for (unsigned J = 0; J < NumStackIds; J++) { 8120 assert(*RecordIter < StackIds.size()); 8121 StackIdList.push_back( 8122 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8123 } 8124 SmallVector<unsigned> Versions; 8125 for (unsigned J = 0; J < NumVersions; J++) 8126 Versions.push_back(*RecordIter++); 8127 ValueInfo VI = std::get<0>( 8128 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8129 PendingCallsites.push_back( 8130 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8131 break; 8132 } 8133 8134 case bitc::FS_ALLOC_CONTEXT_IDS: { 8135 // This is an array of 32-bit fixed-width values, holding each 64-bit 8136 // context id as a pair of adjacent (most significant first) 32-bit words. 8137 assert(Record.size() % 2 == 0); 8138 PendingContextIds.reserve(Record.size() / 2); 8139 for (auto R = Record.begin(); R != Record.end(); R += 2) 8140 PendingContextIds.push_back(*R << 32 | *(R + 1)); 8141 break; 8142 } 8143 8144 case bitc::FS_PERMODULE_ALLOC_INFO: { 8145 unsigned I = 0; 8146 std::vector<MIBInfo> MIBs; 8147 unsigned NumMIBs = 0; 8148 if (Version >= 10) 8149 NumMIBs = Record[I++]; 8150 unsigned MIBsRead = 0; 8151 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8152 (Version < 10 && I < Record.size())) { 8153 assert(Record.size() - I >= 2); 8154 AllocationType AllocType = (AllocationType)Record[I++]; 8155 auto StackIdList = parseAllocInfoContext(Record, I); 8156 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8157 } 8158 // We either have nothing left or at least NumMIBs context size info 8159 // indices left (for the total sizes included when reporting of hinted 8160 // bytes is enabled). 8161 assert(I == Record.size() || Record.size() - I >= NumMIBs); 8162 std::vector<std::vector<ContextTotalSize>> AllContextSizes; 8163 if (I < Record.size()) { 8164 assert(!PendingContextIds.empty() && 8165 "Missing context ids for alloc sizes"); 8166 unsigned ContextIdIndex = 0; 8167 MIBsRead = 0; 8168 // The sizes are a linearized array of sizes, where for each MIB there 8169 // is 1 or more sizes (due to context trimming, each MIB in the metadata 8170 // and summarized here can correspond to more than one original context 8171 // from the profile). 8172 while (MIBsRead++ < NumMIBs) { 8173 // First read the number of contexts recorded for this MIB. 8174 unsigned NumContextSizeInfoEntries = Record[I++]; 8175 assert(Record.size() - I >= NumContextSizeInfoEntries); 8176 std::vector<ContextTotalSize> ContextSizes; 8177 ContextSizes.reserve(NumContextSizeInfoEntries); 8178 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) { 8179 assert(ContextIdIndex < PendingContextIds.size()); 8180 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS 8181 // should be in the same order as the total sizes. 8182 ContextSizes.push_back( 8183 {PendingContextIds[ContextIdIndex++], Record[I++]}); 8184 } 8185 AllContextSizes.push_back(std::move(ContextSizes)); 8186 } 8187 PendingContextIds.clear(); 8188 } 8189 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8190 if (!AllContextSizes.empty()) { 8191 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size()); 8192 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes); 8193 } 8194 break; 8195 } 8196 8197 case bitc::FS_COMBINED_ALLOC_INFO: { 8198 unsigned I = 0; 8199 std::vector<MIBInfo> MIBs; 8200 unsigned NumMIBs = Record[I++]; 8201 unsigned NumVersions = Record[I++]; 8202 unsigned MIBsRead = 0; 8203 while (MIBsRead++ < NumMIBs) { 8204 assert(Record.size() - I >= 2); 8205 AllocationType AllocType = (AllocationType)Record[I++]; 8206 auto StackIdList = parseAllocInfoContext(Record, I); 8207 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8208 } 8209 assert(Record.size() - I >= NumVersions); 8210 SmallVector<uint8_t> Versions; 8211 for (unsigned J = 0; J < NumVersions; J++) 8212 Versions.push_back(Record[I++]); 8213 assert(I == Record.size()); 8214 PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs))); 8215 break; 8216 } 8217 } 8218 } 8219 llvm_unreachable("Exit infinite loop"); 8220 } 8221 8222 // Parse the module string table block into the Index. 8223 // This populates the ModulePathStringTable map in the index. 8224 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8225 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8226 return Err; 8227 8228 SmallVector<uint64_t, 64> Record; 8229 8230 SmallString<128> ModulePath; 8231 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8232 8233 while (true) { 8234 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8235 if (!MaybeEntry) 8236 return MaybeEntry.takeError(); 8237 BitstreamEntry Entry = MaybeEntry.get(); 8238 8239 switch (Entry.Kind) { 8240 case BitstreamEntry::SubBlock: // Handled for us already. 8241 case BitstreamEntry::Error: 8242 return error("Malformed block"); 8243 case BitstreamEntry::EndBlock: 8244 return Error::success(); 8245 case BitstreamEntry::Record: 8246 // The interesting case. 8247 break; 8248 } 8249 8250 Record.clear(); 8251 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8252 if (!MaybeRecord) 8253 return MaybeRecord.takeError(); 8254 switch (MaybeRecord.get()) { 8255 default: // Default behavior: ignore. 8256 break; 8257 case bitc::MST_CODE_ENTRY: { 8258 // MST_ENTRY: [modid, namechar x N] 8259 uint64_t ModuleId = Record[0]; 8260 8261 if (convertToString(Record, 1, ModulePath)) 8262 return error("Invalid record"); 8263 8264 LastSeenModule = TheIndex.addModule(ModulePath); 8265 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8266 8267 ModulePath.clear(); 8268 break; 8269 } 8270 /// MST_CODE_HASH: [5*i32] 8271 case bitc::MST_CODE_HASH: { 8272 if (Record.size() != 5) 8273 return error("Invalid hash length " + Twine(Record.size()).str()); 8274 if (!LastSeenModule) 8275 return error("Invalid hash that does not follow a module path"); 8276 int Pos = 0; 8277 for (auto &Val : Record) { 8278 assert(!(Val >> 32) && "Unexpected high bits set"); 8279 LastSeenModule->second[Pos++] = Val; 8280 } 8281 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8282 LastSeenModule = nullptr; 8283 break; 8284 } 8285 } 8286 } 8287 llvm_unreachable("Exit infinite loop"); 8288 } 8289 8290 namespace { 8291 8292 // FIXME: This class is only here to support the transition to llvm::Error. It 8293 // will be removed once this transition is complete. Clients should prefer to 8294 // deal with the Error value directly, rather than converting to error_code. 8295 class BitcodeErrorCategoryType : public std::error_category { 8296 const char *name() const noexcept override { 8297 return "llvm.bitcode"; 8298 } 8299 8300 std::string message(int IE) const override { 8301 BitcodeError E = static_cast<BitcodeError>(IE); 8302 switch (E) { 8303 case BitcodeError::CorruptedBitcode: 8304 return "Corrupted bitcode"; 8305 } 8306 llvm_unreachable("Unknown error type!"); 8307 } 8308 }; 8309 8310 } // end anonymous namespace 8311 8312 const std::error_category &llvm::BitcodeErrorCategory() { 8313 static BitcodeErrorCategoryType ErrorCategory; 8314 return ErrorCategory; 8315 } 8316 8317 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8318 unsigned Block, unsigned RecordID) { 8319 if (Error Err = Stream.EnterSubBlock(Block)) 8320 return std::move(Err); 8321 8322 StringRef Strtab; 8323 while (true) { 8324 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8325 if (!MaybeEntry) 8326 return MaybeEntry.takeError(); 8327 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8328 8329 switch (Entry.Kind) { 8330 case BitstreamEntry::EndBlock: 8331 return Strtab; 8332 8333 case BitstreamEntry::Error: 8334 return error("Malformed block"); 8335 8336 case BitstreamEntry::SubBlock: 8337 if (Error Err = Stream.SkipBlock()) 8338 return std::move(Err); 8339 break; 8340 8341 case BitstreamEntry::Record: 8342 StringRef Blob; 8343 SmallVector<uint64_t, 1> Record; 8344 Expected<unsigned> MaybeRecord = 8345 Stream.readRecord(Entry.ID, Record, &Blob); 8346 if (!MaybeRecord) 8347 return MaybeRecord.takeError(); 8348 if (MaybeRecord.get() == RecordID) 8349 Strtab = Blob; 8350 break; 8351 } 8352 } 8353 } 8354 8355 //===----------------------------------------------------------------------===// 8356 // External interface 8357 //===----------------------------------------------------------------------===// 8358 8359 Expected<std::vector<BitcodeModule>> 8360 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8361 auto FOrErr = getBitcodeFileContents(Buffer); 8362 if (!FOrErr) 8363 return FOrErr.takeError(); 8364 return std::move(FOrErr->Mods); 8365 } 8366 8367 Expected<BitcodeFileContents> 8368 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8369 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8370 if (!StreamOrErr) 8371 return StreamOrErr.takeError(); 8372 BitstreamCursor &Stream = *StreamOrErr; 8373 8374 BitcodeFileContents F; 8375 while (true) { 8376 uint64_t BCBegin = Stream.getCurrentByteNo(); 8377 8378 // We may be consuming bitcode from a client that leaves garbage at the end 8379 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8380 // the end that there cannot possibly be another module, stop looking. 8381 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8382 return F; 8383 8384 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8385 if (!MaybeEntry) 8386 return MaybeEntry.takeError(); 8387 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8388 8389 switch (Entry.Kind) { 8390 case BitstreamEntry::EndBlock: 8391 case BitstreamEntry::Error: 8392 return error("Malformed block"); 8393 8394 case BitstreamEntry::SubBlock: { 8395 uint64_t IdentificationBit = -1ull; 8396 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8397 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8398 if (Error Err = Stream.SkipBlock()) 8399 return std::move(Err); 8400 8401 { 8402 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8403 if (!MaybeEntry) 8404 return MaybeEntry.takeError(); 8405 Entry = MaybeEntry.get(); 8406 } 8407 8408 if (Entry.Kind != BitstreamEntry::SubBlock || 8409 Entry.ID != bitc::MODULE_BLOCK_ID) 8410 return error("Malformed block"); 8411 } 8412 8413 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8414 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8415 if (Error Err = Stream.SkipBlock()) 8416 return std::move(Err); 8417 8418 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8419 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8420 Buffer.getBufferIdentifier(), IdentificationBit, 8421 ModuleBit}); 8422 continue; 8423 } 8424 8425 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8426 Expected<StringRef> Strtab = 8427 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8428 if (!Strtab) 8429 return Strtab.takeError(); 8430 // This string table is used by every preceding bitcode module that does 8431 // not have its own string table. A bitcode file may have multiple 8432 // string tables if it was created by binary concatenation, for example 8433 // with "llvm-cat -b". 8434 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8435 if (!I.Strtab.empty()) 8436 break; 8437 I.Strtab = *Strtab; 8438 } 8439 // Similarly, the string table is used by every preceding symbol table; 8440 // normally there will be just one unless the bitcode file was created 8441 // by binary concatenation. 8442 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8443 F.StrtabForSymtab = *Strtab; 8444 continue; 8445 } 8446 8447 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8448 Expected<StringRef> SymtabOrErr = 8449 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8450 if (!SymtabOrErr) 8451 return SymtabOrErr.takeError(); 8452 8453 // We can expect the bitcode file to have multiple symbol tables if it 8454 // was created by binary concatenation. In that case we silently 8455 // ignore any subsequent symbol tables, which is fine because this is a 8456 // low level function. The client is expected to notice that the number 8457 // of modules in the symbol table does not match the number of modules 8458 // in the input file and regenerate the symbol table. 8459 if (F.Symtab.empty()) 8460 F.Symtab = *SymtabOrErr; 8461 continue; 8462 } 8463 8464 if (Error Err = Stream.SkipBlock()) 8465 return std::move(Err); 8466 continue; 8467 } 8468 case BitstreamEntry::Record: 8469 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8470 return std::move(E); 8471 continue; 8472 } 8473 } 8474 } 8475 8476 /// Get a lazy one-at-time loading module from bitcode. 8477 /// 8478 /// This isn't always used in a lazy context. In particular, it's also used by 8479 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8480 /// in forward-referenced functions from block address references. 8481 /// 8482 /// \param[in] MaterializeAll Set to \c true if we should materialize 8483 /// everything. 8484 Expected<std::unique_ptr<Module>> 8485 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8486 bool ShouldLazyLoadMetadata, bool IsImporting, 8487 ParserCallbacks Callbacks) { 8488 BitstreamCursor Stream(Buffer); 8489 8490 std::string ProducerIdentification; 8491 if (IdentificationBit != -1ull) { 8492 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8493 return std::move(JumpFailed); 8494 if (Error E = 8495 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8496 return std::move(E); 8497 } 8498 8499 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8500 return std::move(JumpFailed); 8501 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8502 Context); 8503 8504 std::unique_ptr<Module> M = 8505 std::make_unique<Module>(ModuleIdentifier, Context); 8506 M->setMaterializer(R); 8507 8508 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8509 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8510 IsImporting, Callbacks)) 8511 return std::move(Err); 8512 8513 if (MaterializeAll) { 8514 // Read in the entire module, and destroy the BitcodeReader. 8515 if (Error Err = M->materializeAll()) 8516 return std::move(Err); 8517 } else { 8518 // Resolve forward references from blockaddresses. 8519 if (Error Err = R->materializeForwardReferencedFunctions()) 8520 return std::move(Err); 8521 } 8522 8523 return std::move(M); 8524 } 8525 8526 Expected<std::unique_ptr<Module>> 8527 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8528 bool IsImporting, ParserCallbacks Callbacks) { 8529 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8530 Callbacks); 8531 } 8532 8533 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8534 // We don't use ModuleIdentifier here because the client may need to control the 8535 // module path used in the combined summary (e.g. when reading summaries for 8536 // regular LTO modules). 8537 Error BitcodeModule::readSummary( 8538 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8539 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8540 BitstreamCursor Stream(Buffer); 8541 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8542 return JumpFailed; 8543 8544 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8545 ModulePath, IsPrevailing); 8546 return R.parseModule(); 8547 } 8548 8549 // Parse the specified bitcode buffer, returning the function info index. 8550 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8551 BitstreamCursor Stream(Buffer); 8552 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8553 return std::move(JumpFailed); 8554 8555 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8556 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8557 ModuleIdentifier, 0); 8558 8559 if (Error Err = R.parseModule()) 8560 return std::move(Err); 8561 8562 return std::move(Index); 8563 } 8564 8565 static Expected<std::pair<bool, bool>> 8566 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8567 unsigned ID, 8568 BitcodeLTOInfo <OInfo) { 8569 if (Error Err = Stream.EnterSubBlock(ID)) 8570 return std::move(Err); 8571 SmallVector<uint64_t, 64> Record; 8572 8573 while (true) { 8574 BitstreamEntry Entry; 8575 std::pair<bool, bool> Result = {false,false}; 8576 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8577 return std::move(E); 8578 8579 switch (Entry.Kind) { 8580 case BitstreamEntry::SubBlock: // Handled for us already. 8581 case BitstreamEntry::Error: 8582 return error("Malformed block"); 8583 case BitstreamEntry::EndBlock: { 8584 // If no flags record found, set both flags to false. 8585 return Result; 8586 } 8587 case BitstreamEntry::Record: 8588 // The interesting case. 8589 break; 8590 } 8591 8592 // Look for the FS_FLAGS record. 8593 Record.clear(); 8594 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8595 if (!MaybeBitCode) 8596 return MaybeBitCode.takeError(); 8597 switch (MaybeBitCode.get()) { 8598 default: // Default behavior: ignore. 8599 break; 8600 case bitc::FS_FLAGS: { // [flags] 8601 uint64_t Flags = Record[0]; 8602 // Scan flags. 8603 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8604 8605 bool EnableSplitLTOUnit = Flags & 0x8; 8606 bool UnifiedLTO = Flags & 0x200; 8607 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8608 8609 return Result; 8610 } 8611 } 8612 } 8613 llvm_unreachable("Exit infinite loop"); 8614 } 8615 8616 // Check if the given bitcode buffer contains a global value summary block. 8617 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8618 BitstreamCursor Stream(Buffer); 8619 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8620 return std::move(JumpFailed); 8621 8622 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8623 return std::move(Err); 8624 8625 while (true) { 8626 llvm::BitstreamEntry Entry; 8627 if (Error E = Stream.advance().moveInto(Entry)) 8628 return std::move(E); 8629 8630 switch (Entry.Kind) { 8631 case BitstreamEntry::Error: 8632 return error("Malformed block"); 8633 case BitstreamEntry::EndBlock: 8634 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8635 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8636 8637 case BitstreamEntry::SubBlock: 8638 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8639 BitcodeLTOInfo LTOInfo; 8640 Expected<std::pair<bool, bool>> Flags = 8641 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8642 if (!Flags) 8643 return Flags.takeError(); 8644 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8645 LTOInfo.IsThinLTO = true; 8646 LTOInfo.HasSummary = true; 8647 return LTOInfo; 8648 } 8649 8650 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8651 BitcodeLTOInfo LTOInfo; 8652 Expected<std::pair<bool, bool>> Flags = 8653 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8654 if (!Flags) 8655 return Flags.takeError(); 8656 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8657 LTOInfo.IsThinLTO = false; 8658 LTOInfo.HasSummary = true; 8659 return LTOInfo; 8660 } 8661 8662 // Ignore other sub-blocks. 8663 if (Error Err = Stream.SkipBlock()) 8664 return std::move(Err); 8665 continue; 8666 8667 case BitstreamEntry::Record: 8668 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8669 continue; 8670 else 8671 return StreamFailed.takeError(); 8672 } 8673 } 8674 } 8675 8676 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8677 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8678 if (!MsOrErr) 8679 return MsOrErr.takeError(); 8680 8681 if (MsOrErr->size() != 1) 8682 return error("Expected a single module"); 8683 8684 return (*MsOrErr)[0]; 8685 } 8686 8687 Expected<std::unique_ptr<Module>> 8688 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8689 bool ShouldLazyLoadMetadata, bool IsImporting, 8690 ParserCallbacks Callbacks) { 8691 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8692 if (!BM) 8693 return BM.takeError(); 8694 8695 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8696 Callbacks); 8697 } 8698 8699 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8700 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8701 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8702 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8703 IsImporting, Callbacks); 8704 if (MOrErr) 8705 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8706 return MOrErr; 8707 } 8708 8709 Expected<std::unique_ptr<Module>> 8710 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8711 return getModuleImpl(Context, true, false, false, Callbacks); 8712 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8713 // written. We must defer until the Module has been fully materialized. 8714 } 8715 8716 Expected<std::unique_ptr<Module>> 8717 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8718 ParserCallbacks Callbacks) { 8719 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8720 if (!BM) 8721 return BM.takeError(); 8722 8723 return BM->parseModule(Context, Callbacks); 8724 } 8725 8726 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8727 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8728 if (!StreamOrErr) 8729 return StreamOrErr.takeError(); 8730 8731 return readTriple(*StreamOrErr); 8732 } 8733 8734 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8735 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8736 if (!StreamOrErr) 8737 return StreamOrErr.takeError(); 8738 8739 return hasObjCCategory(*StreamOrErr); 8740 } 8741 8742 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8743 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8744 if (!StreamOrErr) 8745 return StreamOrErr.takeError(); 8746 8747 return readIdentificationCode(*StreamOrErr); 8748 } 8749 8750 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8751 ModuleSummaryIndex &CombinedIndex) { 8752 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8753 if (!BM) 8754 return BM.takeError(); 8755 8756 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8757 } 8758 8759 Expected<std::unique_ptr<ModuleSummaryIndex>> 8760 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8761 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8762 if (!BM) 8763 return BM.takeError(); 8764 8765 return BM->getSummary(); 8766 } 8767 8768 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8769 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8770 if (!BM) 8771 return BM.takeError(); 8772 8773 return BM->getLTOInfo(); 8774 } 8775 8776 Expected<std::unique_ptr<ModuleSummaryIndex>> 8777 llvm::getModuleSummaryIndexForFile(StringRef Path, 8778 bool IgnoreEmptyThinLTOIndexFile) { 8779 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8780 MemoryBuffer::getFileOrSTDIN(Path); 8781 if (!FileOrErr) 8782 return errorCodeToError(FileOrErr.getError()); 8783 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8784 return nullptr; 8785 return getModuleSummaryIndex(**FileOrErr); 8786 } 8787