xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a1ca3af31eeec61cfb9d619f55b655b0eb0b9494)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// For per-module summary indexes, the unique numerical identifier given to
908   /// this module by the client.
909   unsigned ModuleId;
910 
911   /// Callback to ask whether a symbol is the prevailing copy when invoked
912   /// during combined index building.
913   std::function<bool(GlobalValue::GUID)> IsPrevailing;
914 
915   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
916   /// ids from the lists in the callsite and alloc entries to the index.
917   std::vector<uint64_t> StackIds;
918 
919 public:
920   ModuleSummaryIndexBitcodeReader(
921       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
922       StringRef ModulePath, unsigned ModuleId,
923       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
924 
925   Error parseModule();
926 
927 private:
928   void setValueGUID(uint64_t ValueID, StringRef ValueName,
929                     GlobalValue::LinkageTypes Linkage,
930                     StringRef SourceFileName);
931   Error parseValueSymbolTable(
932       uint64_t Offset,
933       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
934   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
935   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
936                                                     bool IsOldProfileFormat,
937                                                     bool HasProfile,
938                                                     bool HasRelBF);
939   Error parseEntireSummary(unsigned ID);
940   Error parseModuleStringTable();
941   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
942   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
943                                        TypeIdCompatibleVtableInfo &TypeId);
944   std::vector<FunctionSummary::ParamAccess>
945   parseParamAccesses(ArrayRef<uint64_t> Record);
946 
947   template <bool AllowNullValueInfo = false>
948   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
949   getValueInfoFromValueId(unsigned ValueId);
950 
951   void addThisModule();
952   ModuleSummaryIndex::ModuleInfo *getThisModule();
953 };
954 
955 } // end anonymous namespace
956 
957 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
958                                                     Error Err) {
959   if (Err) {
960     std::error_code EC;
961     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
962       EC = EIB.convertToErrorCode();
963       Ctx.emitError(EIB.message());
964     });
965     return EC;
966   }
967   return std::error_code();
968 }
969 
970 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
971                              StringRef ProducerIdentification,
972                              LLVMContext &Context)
973     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
974       ValueList(this->Stream.SizeInBytes(),
975                 [this](unsigned ValID, BasicBlock *InsertBB) {
976                   return materializeValue(ValID, InsertBB);
977                 }) {
978   this->ProducerIdentification = std::string(ProducerIdentification);
979 }
980 
981 Error BitcodeReader::materializeForwardReferencedFunctions() {
982   if (WillMaterializeAllForwardRefs)
983     return Error::success();
984 
985   // Prevent recursion.
986   WillMaterializeAllForwardRefs = true;
987 
988   while (!BasicBlockFwdRefQueue.empty()) {
989     Function *F = BasicBlockFwdRefQueue.front();
990     BasicBlockFwdRefQueue.pop_front();
991     assert(F && "Expected valid function");
992     if (!BasicBlockFwdRefs.count(F))
993       // Already materialized.
994       continue;
995 
996     // Check for a function that isn't materializable to prevent an infinite
997     // loop.  When parsing a blockaddress stored in a global variable, there
998     // isn't a trivial way to check if a function will have a body without a
999     // linear search through FunctionsWithBodies, so just check it here.
1000     if (!F->isMaterializable())
1001       return error("Never resolved function from blockaddress");
1002 
1003     // Try to materialize F.
1004     if (Error Err = materialize(F))
1005       return Err;
1006   }
1007   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1008 
1009   for (Function *F : BackwardRefFunctions)
1010     if (Error Err = materialize(F))
1011       return Err;
1012   BackwardRefFunctions.clear();
1013 
1014   // Reset state.
1015   WillMaterializeAllForwardRefs = false;
1016   return Error::success();
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 //  Helper functions to implement forward reference resolution, etc.
1021 //===----------------------------------------------------------------------===//
1022 
1023 static bool hasImplicitComdat(size_t Val) {
1024   switch (Val) {
1025   default:
1026     return false;
1027   case 1:  // Old WeakAnyLinkage
1028   case 4:  // Old LinkOnceAnyLinkage
1029   case 10: // Old WeakODRLinkage
1030   case 11: // Old LinkOnceODRLinkage
1031     return true;
1032   }
1033 }
1034 
1035 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1036   switch (Val) {
1037   default: // Map unknown/new linkages to external
1038   case 0:
1039     return GlobalValue::ExternalLinkage;
1040   case 2:
1041     return GlobalValue::AppendingLinkage;
1042   case 3:
1043     return GlobalValue::InternalLinkage;
1044   case 5:
1045     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1046   case 6:
1047     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1048   case 7:
1049     return GlobalValue::ExternalWeakLinkage;
1050   case 8:
1051     return GlobalValue::CommonLinkage;
1052   case 9:
1053     return GlobalValue::PrivateLinkage;
1054   case 12:
1055     return GlobalValue::AvailableExternallyLinkage;
1056   case 13:
1057     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1058   case 14:
1059     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1060   case 15:
1061     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1062   case 1: // Old value with implicit comdat.
1063   case 16:
1064     return GlobalValue::WeakAnyLinkage;
1065   case 10: // Old value with implicit comdat.
1066   case 17:
1067     return GlobalValue::WeakODRLinkage;
1068   case 4: // Old value with implicit comdat.
1069   case 18:
1070     return GlobalValue::LinkOnceAnyLinkage;
1071   case 11: // Old value with implicit comdat.
1072   case 19:
1073     return GlobalValue::LinkOnceODRLinkage;
1074   }
1075 }
1076 
1077 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1078   FunctionSummary::FFlags Flags;
1079   Flags.ReadNone = RawFlags & 0x1;
1080   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1081   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1082   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1083   Flags.NoInline = (RawFlags >> 4) & 0x1;
1084   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1085   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1086   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1087   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1088   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1089   return Flags;
1090 }
1091 
1092 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1093 //
1094 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1095 // visibility: [8, 10).
1096 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1097                                                             uint64_t Version) {
1098   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1099   // like getDecodedLinkage() above. Any future change to the linkage enum and
1100   // to getDecodedLinkage() will need to be taken into account here as above.
1101   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1102   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1103   RawFlags = RawFlags >> 4;
1104   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1105   // The Live flag wasn't introduced until version 3. For dead stripping
1106   // to work correctly on earlier versions, we must conservatively treat all
1107   // values as live.
1108   bool Live = (RawFlags & 0x2) || Version < 3;
1109   bool Local = (RawFlags & 0x4);
1110   bool AutoHide = (RawFlags & 0x8);
1111 
1112   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1113                                      Live, Local, AutoHide);
1114 }
1115 
1116 // Decode the flags for GlobalVariable in the summary
1117 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1118   return GlobalVarSummary::GVarFlags(
1119       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1120       (RawFlags & 0x4) ? true : false,
1121       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1122 }
1123 
1124 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1125   switch (Val) {
1126   default: // Map unknown visibilities to default.
1127   case 0: return GlobalValue::DefaultVisibility;
1128   case 1: return GlobalValue::HiddenVisibility;
1129   case 2: return GlobalValue::ProtectedVisibility;
1130   }
1131 }
1132 
1133 static GlobalValue::DLLStorageClassTypes
1134 getDecodedDLLStorageClass(unsigned Val) {
1135   switch (Val) {
1136   default: // Map unknown values to default.
1137   case 0: return GlobalValue::DefaultStorageClass;
1138   case 1: return GlobalValue::DLLImportStorageClass;
1139   case 2: return GlobalValue::DLLExportStorageClass;
1140   }
1141 }
1142 
1143 static bool getDecodedDSOLocal(unsigned Val) {
1144   switch(Val) {
1145   default: // Map unknown values to preemptable.
1146   case 0:  return false;
1147   case 1:  return true;
1148   }
1149 }
1150 
1151 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1152   switch (Val) {
1153     case 0: return GlobalVariable::NotThreadLocal;
1154     default: // Map unknown non-zero value to general dynamic.
1155     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1156     case 2: return GlobalVariable::LocalDynamicTLSModel;
1157     case 3: return GlobalVariable::InitialExecTLSModel;
1158     case 4: return GlobalVariable::LocalExecTLSModel;
1159   }
1160 }
1161 
1162 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1163   switch (Val) {
1164     default: // Map unknown to UnnamedAddr::None.
1165     case 0: return GlobalVariable::UnnamedAddr::None;
1166     case 1: return GlobalVariable::UnnamedAddr::Global;
1167     case 2: return GlobalVariable::UnnamedAddr::Local;
1168   }
1169 }
1170 
1171 static int getDecodedCastOpcode(unsigned Val) {
1172   switch (Val) {
1173   default: return -1;
1174   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1175   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1176   case bitc::CAST_SEXT    : return Instruction::SExt;
1177   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1178   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1179   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1180   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1181   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1182   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1183   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1184   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1185   case bitc::CAST_BITCAST : return Instruction::BitCast;
1186   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1187   }
1188 }
1189 
1190 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1191   bool IsFP = Ty->isFPOrFPVectorTy();
1192   // UnOps are only valid for int/fp or vector of int/fp types
1193   if (!IsFP && !Ty->isIntOrIntVectorTy())
1194     return -1;
1195 
1196   switch (Val) {
1197   default:
1198     return -1;
1199   case bitc::UNOP_FNEG:
1200     return IsFP ? Instruction::FNeg : -1;
1201   }
1202 }
1203 
1204 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1205   bool IsFP = Ty->isFPOrFPVectorTy();
1206   // BinOps are only valid for int/fp or vector of int/fp types
1207   if (!IsFP && !Ty->isIntOrIntVectorTy())
1208     return -1;
1209 
1210   switch (Val) {
1211   default:
1212     return -1;
1213   case bitc::BINOP_ADD:
1214     return IsFP ? Instruction::FAdd : Instruction::Add;
1215   case bitc::BINOP_SUB:
1216     return IsFP ? Instruction::FSub : Instruction::Sub;
1217   case bitc::BINOP_MUL:
1218     return IsFP ? Instruction::FMul : Instruction::Mul;
1219   case bitc::BINOP_UDIV:
1220     return IsFP ? -1 : Instruction::UDiv;
1221   case bitc::BINOP_SDIV:
1222     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1223   case bitc::BINOP_UREM:
1224     return IsFP ? -1 : Instruction::URem;
1225   case bitc::BINOP_SREM:
1226     return IsFP ? Instruction::FRem : Instruction::SRem;
1227   case bitc::BINOP_SHL:
1228     return IsFP ? -1 : Instruction::Shl;
1229   case bitc::BINOP_LSHR:
1230     return IsFP ? -1 : Instruction::LShr;
1231   case bitc::BINOP_ASHR:
1232     return IsFP ? -1 : Instruction::AShr;
1233   case bitc::BINOP_AND:
1234     return IsFP ? -1 : Instruction::And;
1235   case bitc::BINOP_OR:
1236     return IsFP ? -1 : Instruction::Or;
1237   case bitc::BINOP_XOR:
1238     return IsFP ? -1 : Instruction::Xor;
1239   }
1240 }
1241 
1242 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1243   switch (Val) {
1244   default: return AtomicRMWInst::BAD_BINOP;
1245   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1246   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1247   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1248   case bitc::RMW_AND: return AtomicRMWInst::And;
1249   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1250   case bitc::RMW_OR: return AtomicRMWInst::Or;
1251   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1252   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1253   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1254   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1255   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1256   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1257   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1258   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1259   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1260   case bitc::RMW_UINC_WRAP:
1261     return AtomicRMWInst::UIncWrap;
1262   case bitc::RMW_UDEC_WRAP:
1263     return AtomicRMWInst::UDecWrap;
1264   }
1265 }
1266 
1267 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1268   switch (Val) {
1269   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1270   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1271   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1272   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1273   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1274   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1275   default: // Map unknown orderings to sequentially-consistent.
1276   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1277   }
1278 }
1279 
1280 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1281   switch (Val) {
1282   default: // Map unknown selection kinds to any.
1283   case bitc::COMDAT_SELECTION_KIND_ANY:
1284     return Comdat::Any;
1285   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1286     return Comdat::ExactMatch;
1287   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1288     return Comdat::Largest;
1289   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1290     return Comdat::NoDeduplicate;
1291   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1292     return Comdat::SameSize;
1293   }
1294 }
1295 
1296 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1297   FastMathFlags FMF;
1298   if (0 != (Val & bitc::UnsafeAlgebra))
1299     FMF.setFast();
1300   if (0 != (Val & bitc::AllowReassoc))
1301     FMF.setAllowReassoc();
1302   if (0 != (Val & bitc::NoNaNs))
1303     FMF.setNoNaNs();
1304   if (0 != (Val & bitc::NoInfs))
1305     FMF.setNoInfs();
1306   if (0 != (Val & bitc::NoSignedZeros))
1307     FMF.setNoSignedZeros();
1308   if (0 != (Val & bitc::AllowReciprocal))
1309     FMF.setAllowReciprocal();
1310   if (0 != (Val & bitc::AllowContract))
1311     FMF.setAllowContract(true);
1312   if (0 != (Val & bitc::ApproxFunc))
1313     FMF.setApproxFunc();
1314   return FMF;
1315 }
1316 
1317 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1318   // A GlobalValue with local linkage cannot have a DLL storage class.
1319   if (GV->hasLocalLinkage())
1320     return;
1321   switch (Val) {
1322   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1323   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1324   }
1325 }
1326 
1327 Type *BitcodeReader::getTypeByID(unsigned ID) {
1328   // The type table size is always specified correctly.
1329   if (ID >= TypeList.size())
1330     return nullptr;
1331 
1332   if (Type *Ty = TypeList[ID])
1333     return Ty;
1334 
1335   // If we have a forward reference, the only possible case is when it is to a
1336   // named struct.  Just create a placeholder for now.
1337   return TypeList[ID] = createIdentifiedStructType(Context);
1338 }
1339 
1340 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1341   auto It = ContainedTypeIDs.find(ID);
1342   if (It == ContainedTypeIDs.end())
1343     return InvalidTypeID;
1344 
1345   if (Idx >= It->second.size())
1346     return InvalidTypeID;
1347 
1348   return It->second[Idx];
1349 }
1350 
1351 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1352   if (ID >= TypeList.size())
1353     return nullptr;
1354 
1355   Type *Ty = TypeList[ID];
1356   if (!Ty->isPointerTy())
1357     return nullptr;
1358 
1359   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1360   if (!ElemTy)
1361     return nullptr;
1362 
1363   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1364          "Incorrect element type");
1365   return ElemTy;
1366 }
1367 
1368 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1369                                          ArrayRef<unsigned> ChildTypeIDs) {
1370   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1371   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1372   auto It = VirtualTypeIDs.find(CacheKey);
1373   if (It != VirtualTypeIDs.end()) {
1374     // The cmpxchg return value is the only place we need more than one
1375     // contained type ID, however the second one will always be the same (i1),
1376     // so we don't need to include it in the cache key. This asserts that the
1377     // contained types are indeed as expected and there are no collisions.
1378     assert((ChildTypeIDs.empty() ||
1379             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1380            "Incorrect cached contained type IDs");
1381     return It->second;
1382   }
1383 
1384 #ifndef NDEBUG
1385   if (!Ty->isOpaquePointerTy()) {
1386     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1387            "Wrong number of contained types");
1388     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1389       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1390              "Incorrect contained type ID");
1391     }
1392   }
1393 #endif
1394 
1395   unsigned TypeID = TypeList.size();
1396   TypeList.push_back(Ty);
1397   if (!ChildTypeIDs.empty())
1398     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1399   VirtualTypeIDs.insert({CacheKey, TypeID});
1400   return TypeID;
1401 }
1402 
1403 static bool isConstExprSupported(const BitcodeConstant *BC) {
1404   uint8_t Opcode = BC->Opcode;
1405 
1406   // These are not real constant expressions, always consider them supported.
1407   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1408     return true;
1409 
1410   // If -expand-constant-exprs is set, we want to consider all expressions
1411   // as unsupported.
1412   if (ExpandConstantExprs)
1413     return false;
1414 
1415   if (Instruction::isBinaryOp(Opcode))
1416     return ConstantExpr::isSupportedBinOp(Opcode);
1417 
1418   if (Opcode == Instruction::GetElementPtr)
1419     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1420 
1421   switch (Opcode) {
1422   case Instruction::FNeg:
1423   case Instruction::Select:
1424     return false;
1425   default:
1426     return true;
1427   }
1428 }
1429 
1430 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1431                                                   BasicBlock *InsertBB) {
1432   // Quickly handle the case where there is no BitcodeConstant to resolve.
1433   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1434       !isa<BitcodeConstant>(ValueList[StartValID]))
1435     return ValueList[StartValID];
1436 
1437   SmallDenseMap<unsigned, Value *> MaterializedValues;
1438   SmallVector<unsigned> Worklist;
1439   Worklist.push_back(StartValID);
1440   while (!Worklist.empty()) {
1441     unsigned ValID = Worklist.back();
1442     if (MaterializedValues.count(ValID)) {
1443       // Duplicate expression that was already handled.
1444       Worklist.pop_back();
1445       continue;
1446     }
1447 
1448     if (ValID >= ValueList.size() || !ValueList[ValID])
1449       return error("Invalid value ID");
1450 
1451     Value *V = ValueList[ValID];
1452     auto *BC = dyn_cast<BitcodeConstant>(V);
1453     if (!BC) {
1454       MaterializedValues.insert({ValID, V});
1455       Worklist.pop_back();
1456       continue;
1457     }
1458 
1459     // Iterate in reverse, so values will get popped from the worklist in
1460     // expected order.
1461     SmallVector<Value *> Ops;
1462     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1463       auto It = MaterializedValues.find(OpID);
1464       if (It != MaterializedValues.end())
1465         Ops.push_back(It->second);
1466       else
1467         Worklist.push_back(OpID);
1468     }
1469 
1470     // Some expressions have not been resolved yet, handle them first and then
1471     // revisit this one.
1472     if (Ops.size() != BC->getOperandIDs().size())
1473       continue;
1474     std::reverse(Ops.begin(), Ops.end());
1475 
1476     SmallVector<Constant *> ConstOps;
1477     for (Value *Op : Ops)
1478       if (auto *C = dyn_cast<Constant>(Op))
1479         ConstOps.push_back(C);
1480 
1481     // Materialize as constant expression if possible.
1482     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1483       Constant *C;
1484       if (Instruction::isCast(BC->Opcode)) {
1485         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1486         if (!C)
1487           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1488       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1489         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1490       } else {
1491         switch (BC->Opcode) {
1492         case BitcodeConstant::NoCFIOpcode: {
1493           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1494           if (!GV)
1495             return error("no_cfi operand must be GlobalValue");
1496           C = NoCFIValue::get(GV);
1497           break;
1498         }
1499         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1500           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1501           if (!GV)
1502             return error("dso_local operand must be GlobalValue");
1503           C = DSOLocalEquivalent::get(GV);
1504           break;
1505         }
1506         case BitcodeConstant::BlockAddressOpcode: {
1507           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1508           if (!Fn)
1509             return error("blockaddress operand must be a function");
1510 
1511           // If the function is already parsed we can insert the block address
1512           // right away.
1513           BasicBlock *BB;
1514           unsigned BBID = BC->Extra;
1515           if (!BBID)
1516             // Invalid reference to entry block.
1517             return error("Invalid ID");
1518           if (!Fn->empty()) {
1519             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1520             for (size_t I = 0, E = BBID; I != E; ++I) {
1521               if (BBI == BBE)
1522                 return error("Invalid ID");
1523               ++BBI;
1524             }
1525             BB = &*BBI;
1526           } else {
1527             // Otherwise insert a placeholder and remember it so it can be
1528             // inserted when the function is parsed.
1529             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1530             if (FwdBBs.empty())
1531               BasicBlockFwdRefQueue.push_back(Fn);
1532             if (FwdBBs.size() < BBID + 1)
1533               FwdBBs.resize(BBID + 1);
1534             if (!FwdBBs[BBID])
1535               FwdBBs[BBID] = BasicBlock::Create(Context);
1536             BB = FwdBBs[BBID];
1537           }
1538           C = BlockAddress::get(Fn, BB);
1539           break;
1540         }
1541         case BitcodeConstant::ConstantStructOpcode:
1542           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1543           break;
1544         case BitcodeConstant::ConstantArrayOpcode:
1545           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1546           break;
1547         case BitcodeConstant::ConstantVectorOpcode:
1548           C = ConstantVector::get(ConstOps);
1549           break;
1550         case Instruction::ICmp:
1551         case Instruction::FCmp:
1552           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1553           break;
1554         case Instruction::GetElementPtr:
1555           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1556                                              ArrayRef(ConstOps).drop_front(),
1557                                              BC->Flags, BC->getInRangeIndex());
1558           break;
1559         case Instruction::ExtractElement:
1560           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1561           break;
1562         case Instruction::InsertElement:
1563           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1564                                              ConstOps[2]);
1565           break;
1566         case Instruction::ShuffleVector: {
1567           SmallVector<int, 16> Mask;
1568           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1569           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1570           break;
1571         }
1572         default:
1573           llvm_unreachable("Unhandled bitcode constant");
1574         }
1575       }
1576 
1577       // Cache resolved constant.
1578       ValueList.replaceValueWithoutRAUW(ValID, C);
1579       MaterializedValues.insert({ValID, C});
1580       Worklist.pop_back();
1581       continue;
1582     }
1583 
1584     if (!InsertBB)
1585       return error(Twine("Value referenced by initializer is an unsupported "
1586                          "constant expression of type ") +
1587                    BC->getOpcodeName());
1588 
1589     // Materialize as instructions if necessary.
1590     Instruction *I;
1591     if (Instruction::isCast(BC->Opcode)) {
1592       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1593                            BC->getType(), "constexpr", InsertBB);
1594     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1595       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1596                                 "constexpr", InsertBB);
1597     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1598       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1599                                  Ops[1], "constexpr", InsertBB);
1600       if (isa<OverflowingBinaryOperator>(I)) {
1601         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1602           I->setHasNoSignedWrap();
1603         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1604           I->setHasNoUnsignedWrap();
1605       }
1606       if (isa<PossiblyExactOperator>(I) &&
1607           (BC->Flags & PossiblyExactOperator::IsExact))
1608         I->setIsExact();
1609     } else {
1610       switch (BC->Opcode) {
1611       case BitcodeConstant::ConstantVectorOpcode: {
1612         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1613         Value *V = PoisonValue::get(BC->getType());
1614         for (auto Pair : enumerate(Ops)) {
1615           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1616           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1617                                         InsertBB);
1618         }
1619         I = cast<Instruction>(V);
1620         break;
1621       }
1622       case BitcodeConstant::ConstantStructOpcode:
1623       case BitcodeConstant::ConstantArrayOpcode: {
1624         Value *V = PoisonValue::get(BC->getType());
1625         for (auto Pair : enumerate(Ops))
1626           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1627                                       "constexpr.ins", InsertBB);
1628         I = cast<Instruction>(V);
1629         break;
1630       }
1631       case Instruction::ICmp:
1632       case Instruction::FCmp:
1633         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1634                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1635                             "constexpr", InsertBB);
1636         break;
1637       case Instruction::GetElementPtr:
1638         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1639                                       ArrayRef(Ops).drop_front(), "constexpr",
1640                                       InsertBB);
1641         if (BC->Flags)
1642           cast<GetElementPtrInst>(I)->setIsInBounds();
1643         break;
1644       case Instruction::Select:
1645         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1646         break;
1647       case Instruction::ExtractElement:
1648         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1649         break;
1650       case Instruction::InsertElement:
1651         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1652                                       InsertBB);
1653         break;
1654       case Instruction::ShuffleVector:
1655         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1656                                   InsertBB);
1657         break;
1658       default:
1659         llvm_unreachable("Unhandled bitcode constant");
1660       }
1661     }
1662 
1663     MaterializedValues.insert({ValID, I});
1664     Worklist.pop_back();
1665   }
1666 
1667   return MaterializedValues[StartValID];
1668 }
1669 
1670 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1671   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1672   if (!MaybeV)
1673     return MaybeV.takeError();
1674 
1675   // Result must be Constant if InsertBB is nullptr.
1676   return cast<Constant>(MaybeV.get());
1677 }
1678 
1679 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1680                                                       StringRef Name) {
1681   auto *Ret = StructType::create(Context, Name);
1682   IdentifiedStructTypes.push_back(Ret);
1683   return Ret;
1684 }
1685 
1686 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1687   auto *Ret = StructType::create(Context);
1688   IdentifiedStructTypes.push_back(Ret);
1689   return Ret;
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 //  Functions for parsing blocks from the bitcode file
1694 //===----------------------------------------------------------------------===//
1695 
1696 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1697   switch (Val) {
1698   case Attribute::EndAttrKinds:
1699   case Attribute::EmptyKey:
1700   case Attribute::TombstoneKey:
1701     llvm_unreachable("Synthetic enumerators which should never get here");
1702 
1703   case Attribute::None:            return 0;
1704   case Attribute::ZExt:            return 1 << 0;
1705   case Attribute::SExt:            return 1 << 1;
1706   case Attribute::NoReturn:        return 1 << 2;
1707   case Attribute::InReg:           return 1 << 3;
1708   case Attribute::StructRet:       return 1 << 4;
1709   case Attribute::NoUnwind:        return 1 << 5;
1710   case Attribute::NoAlias:         return 1 << 6;
1711   case Attribute::ByVal:           return 1 << 7;
1712   case Attribute::Nest:            return 1 << 8;
1713   case Attribute::ReadNone:        return 1 << 9;
1714   case Attribute::ReadOnly:        return 1 << 10;
1715   case Attribute::NoInline:        return 1 << 11;
1716   case Attribute::AlwaysInline:    return 1 << 12;
1717   case Attribute::OptimizeForSize: return 1 << 13;
1718   case Attribute::StackProtect:    return 1 << 14;
1719   case Attribute::StackProtectReq: return 1 << 15;
1720   case Attribute::Alignment:       return 31 << 16;
1721   case Attribute::NoCapture:       return 1 << 21;
1722   case Attribute::NoRedZone:       return 1 << 22;
1723   case Attribute::NoImplicitFloat: return 1 << 23;
1724   case Attribute::Naked:           return 1 << 24;
1725   case Attribute::InlineHint:      return 1 << 25;
1726   case Attribute::StackAlignment:  return 7 << 26;
1727   case Attribute::ReturnsTwice:    return 1 << 29;
1728   case Attribute::UWTable:         return 1 << 30;
1729   case Attribute::NonLazyBind:     return 1U << 31;
1730   case Attribute::SanitizeAddress: return 1ULL << 32;
1731   case Attribute::MinSize:         return 1ULL << 33;
1732   case Attribute::NoDuplicate:     return 1ULL << 34;
1733   case Attribute::StackProtectStrong: return 1ULL << 35;
1734   case Attribute::SanitizeThread:  return 1ULL << 36;
1735   case Attribute::SanitizeMemory:  return 1ULL << 37;
1736   case Attribute::NoBuiltin:       return 1ULL << 38;
1737   case Attribute::Returned:        return 1ULL << 39;
1738   case Attribute::Cold:            return 1ULL << 40;
1739   case Attribute::Builtin:         return 1ULL << 41;
1740   case Attribute::OptimizeNone:    return 1ULL << 42;
1741   case Attribute::InAlloca:        return 1ULL << 43;
1742   case Attribute::NonNull:         return 1ULL << 44;
1743   case Attribute::JumpTable:       return 1ULL << 45;
1744   case Attribute::Convergent:      return 1ULL << 46;
1745   case Attribute::SafeStack:       return 1ULL << 47;
1746   case Attribute::NoRecurse:       return 1ULL << 48;
1747   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1748   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1749   case Attribute::SwiftSelf:       return 1ULL << 51;
1750   case Attribute::SwiftError:      return 1ULL << 52;
1751   case Attribute::WriteOnly:       return 1ULL << 53;
1752   case Attribute::Speculatable:    return 1ULL << 54;
1753   case Attribute::StrictFP:        return 1ULL << 55;
1754   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1755   case Attribute::NoCfCheck:       return 1ULL << 57;
1756   case Attribute::OptForFuzzing:   return 1ULL << 58;
1757   case Attribute::ShadowCallStack: return 1ULL << 59;
1758   case Attribute::SpeculativeLoadHardening:
1759     return 1ULL << 60;
1760   case Attribute::ImmArg:
1761     return 1ULL << 61;
1762   case Attribute::WillReturn:
1763     return 1ULL << 62;
1764   case Attribute::NoFree:
1765     return 1ULL << 63;
1766   default:
1767     // Other attributes are not supported in the raw format,
1768     // as we ran out of space.
1769     return 0;
1770   }
1771   llvm_unreachable("Unsupported attribute type");
1772 }
1773 
1774 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1775   if (!Val) return;
1776 
1777   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1778        I = Attribute::AttrKind(I + 1)) {
1779     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1780       if (I == Attribute::Alignment)
1781         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1782       else if (I == Attribute::StackAlignment)
1783         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1784       else if (Attribute::isTypeAttrKind(I))
1785         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1786       else
1787         B.addAttribute(I);
1788     }
1789   }
1790 }
1791 
1792 /// This fills an AttrBuilder object with the LLVM attributes that have
1793 /// been decoded from the given integer. This function must stay in sync with
1794 /// 'encodeLLVMAttributesForBitcode'.
1795 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1796                                            uint64_t EncodedAttrs,
1797                                            uint64_t AttrIdx) {
1798   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1799   // the bits above 31 down by 11 bits.
1800   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1801   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1802          "Alignment must be a power of two.");
1803 
1804   if (Alignment)
1805     B.addAlignmentAttr(Alignment);
1806 
1807   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1808                    (EncodedAttrs & 0xffff);
1809 
1810   if (AttrIdx == AttributeList::FunctionIndex) {
1811     // Upgrade old memory attributes.
1812     MemoryEffects ME = MemoryEffects::unknown();
1813     if (Attrs & (1ULL << 9)) {
1814       // ReadNone
1815       Attrs &= ~(1ULL << 9);
1816       ME &= MemoryEffects::none();
1817     }
1818     if (Attrs & (1ULL << 10)) {
1819       // ReadOnly
1820       Attrs &= ~(1ULL << 10);
1821       ME &= MemoryEffects::readOnly();
1822     }
1823     if (Attrs & (1ULL << 49)) {
1824       // InaccessibleMemOnly
1825       Attrs &= ~(1ULL << 49);
1826       ME &= MemoryEffects::inaccessibleMemOnly();
1827     }
1828     if (Attrs & (1ULL << 50)) {
1829       // InaccessibleMemOrArgMemOnly
1830       Attrs &= ~(1ULL << 50);
1831       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1832     }
1833     if (Attrs & (1ULL << 53)) {
1834       // WriteOnly
1835       Attrs &= ~(1ULL << 53);
1836       ME &= MemoryEffects::writeOnly();
1837     }
1838     if (ME != MemoryEffects::unknown())
1839       B.addMemoryAttr(ME);
1840   }
1841 
1842   addRawAttributeValue(B, Attrs);
1843 }
1844 
1845 Error BitcodeReader::parseAttributeBlock() {
1846   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1847     return Err;
1848 
1849   if (!MAttributes.empty())
1850     return error("Invalid multiple blocks");
1851 
1852   SmallVector<uint64_t, 64> Record;
1853 
1854   SmallVector<AttributeList, 8> Attrs;
1855 
1856   // Read all the records.
1857   while (true) {
1858     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1859     if (!MaybeEntry)
1860       return MaybeEntry.takeError();
1861     BitstreamEntry Entry = MaybeEntry.get();
1862 
1863     switch (Entry.Kind) {
1864     case BitstreamEntry::SubBlock: // Handled for us already.
1865     case BitstreamEntry::Error:
1866       return error("Malformed block");
1867     case BitstreamEntry::EndBlock:
1868       return Error::success();
1869     case BitstreamEntry::Record:
1870       // The interesting case.
1871       break;
1872     }
1873 
1874     // Read a record.
1875     Record.clear();
1876     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1877     if (!MaybeRecord)
1878       return MaybeRecord.takeError();
1879     switch (MaybeRecord.get()) {
1880     default:  // Default behavior: ignore.
1881       break;
1882     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1883       // Deprecated, but still needed to read old bitcode files.
1884       if (Record.size() & 1)
1885         return error("Invalid parameter attribute record");
1886 
1887       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1888         AttrBuilder B(Context);
1889         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1890         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1891       }
1892 
1893       MAttributes.push_back(AttributeList::get(Context, Attrs));
1894       Attrs.clear();
1895       break;
1896     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1897       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1898         Attrs.push_back(MAttributeGroups[Record[i]]);
1899 
1900       MAttributes.push_back(AttributeList::get(Context, Attrs));
1901       Attrs.clear();
1902       break;
1903     }
1904   }
1905 }
1906 
1907 // Returns Attribute::None on unrecognized codes.
1908 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1909   switch (Code) {
1910   default:
1911     return Attribute::None;
1912   case bitc::ATTR_KIND_ALIGNMENT:
1913     return Attribute::Alignment;
1914   case bitc::ATTR_KIND_ALWAYS_INLINE:
1915     return Attribute::AlwaysInline;
1916   case bitc::ATTR_KIND_BUILTIN:
1917     return Attribute::Builtin;
1918   case bitc::ATTR_KIND_BY_VAL:
1919     return Attribute::ByVal;
1920   case bitc::ATTR_KIND_IN_ALLOCA:
1921     return Attribute::InAlloca;
1922   case bitc::ATTR_KIND_COLD:
1923     return Attribute::Cold;
1924   case bitc::ATTR_KIND_CONVERGENT:
1925     return Attribute::Convergent;
1926   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1927     return Attribute::DisableSanitizerInstrumentation;
1928   case bitc::ATTR_KIND_ELEMENTTYPE:
1929     return Attribute::ElementType;
1930   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1931     return Attribute::FnRetThunkExtern;
1932   case bitc::ATTR_KIND_INLINE_HINT:
1933     return Attribute::InlineHint;
1934   case bitc::ATTR_KIND_IN_REG:
1935     return Attribute::InReg;
1936   case bitc::ATTR_KIND_JUMP_TABLE:
1937     return Attribute::JumpTable;
1938   case bitc::ATTR_KIND_MEMORY:
1939     return Attribute::Memory;
1940   case bitc::ATTR_KIND_NOFPCLASS:
1941     return Attribute::NoFPClass;
1942   case bitc::ATTR_KIND_MIN_SIZE:
1943     return Attribute::MinSize;
1944   case bitc::ATTR_KIND_NAKED:
1945     return Attribute::Naked;
1946   case bitc::ATTR_KIND_NEST:
1947     return Attribute::Nest;
1948   case bitc::ATTR_KIND_NO_ALIAS:
1949     return Attribute::NoAlias;
1950   case bitc::ATTR_KIND_NO_BUILTIN:
1951     return Attribute::NoBuiltin;
1952   case bitc::ATTR_KIND_NO_CALLBACK:
1953     return Attribute::NoCallback;
1954   case bitc::ATTR_KIND_NO_CAPTURE:
1955     return Attribute::NoCapture;
1956   case bitc::ATTR_KIND_NO_DUPLICATE:
1957     return Attribute::NoDuplicate;
1958   case bitc::ATTR_KIND_NOFREE:
1959     return Attribute::NoFree;
1960   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1961     return Attribute::NoImplicitFloat;
1962   case bitc::ATTR_KIND_NO_INLINE:
1963     return Attribute::NoInline;
1964   case bitc::ATTR_KIND_NO_RECURSE:
1965     return Attribute::NoRecurse;
1966   case bitc::ATTR_KIND_NO_MERGE:
1967     return Attribute::NoMerge;
1968   case bitc::ATTR_KIND_NON_LAZY_BIND:
1969     return Attribute::NonLazyBind;
1970   case bitc::ATTR_KIND_NON_NULL:
1971     return Attribute::NonNull;
1972   case bitc::ATTR_KIND_DEREFERENCEABLE:
1973     return Attribute::Dereferenceable;
1974   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1975     return Attribute::DereferenceableOrNull;
1976   case bitc::ATTR_KIND_ALLOC_ALIGN:
1977     return Attribute::AllocAlign;
1978   case bitc::ATTR_KIND_ALLOC_KIND:
1979     return Attribute::AllocKind;
1980   case bitc::ATTR_KIND_ALLOC_SIZE:
1981     return Attribute::AllocSize;
1982   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1983     return Attribute::AllocatedPointer;
1984   case bitc::ATTR_KIND_NO_RED_ZONE:
1985     return Attribute::NoRedZone;
1986   case bitc::ATTR_KIND_NO_RETURN:
1987     return Attribute::NoReturn;
1988   case bitc::ATTR_KIND_NOSYNC:
1989     return Attribute::NoSync;
1990   case bitc::ATTR_KIND_NOCF_CHECK:
1991     return Attribute::NoCfCheck;
1992   case bitc::ATTR_KIND_NO_PROFILE:
1993     return Attribute::NoProfile;
1994   case bitc::ATTR_KIND_SKIP_PROFILE:
1995     return Attribute::SkipProfile;
1996   case bitc::ATTR_KIND_NO_UNWIND:
1997     return Attribute::NoUnwind;
1998   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1999     return Attribute::NoSanitizeBounds;
2000   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2001     return Attribute::NoSanitizeCoverage;
2002   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2003     return Attribute::NullPointerIsValid;
2004   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2005     return Attribute::OptForFuzzing;
2006   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2007     return Attribute::OptimizeForSize;
2008   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2009     return Attribute::OptimizeNone;
2010   case bitc::ATTR_KIND_READ_NONE:
2011     return Attribute::ReadNone;
2012   case bitc::ATTR_KIND_READ_ONLY:
2013     return Attribute::ReadOnly;
2014   case bitc::ATTR_KIND_RETURNED:
2015     return Attribute::Returned;
2016   case bitc::ATTR_KIND_RETURNS_TWICE:
2017     return Attribute::ReturnsTwice;
2018   case bitc::ATTR_KIND_S_EXT:
2019     return Attribute::SExt;
2020   case bitc::ATTR_KIND_SPECULATABLE:
2021     return Attribute::Speculatable;
2022   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2023     return Attribute::StackAlignment;
2024   case bitc::ATTR_KIND_STACK_PROTECT:
2025     return Attribute::StackProtect;
2026   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2027     return Attribute::StackProtectReq;
2028   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2029     return Attribute::StackProtectStrong;
2030   case bitc::ATTR_KIND_SAFESTACK:
2031     return Attribute::SafeStack;
2032   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2033     return Attribute::ShadowCallStack;
2034   case bitc::ATTR_KIND_STRICT_FP:
2035     return Attribute::StrictFP;
2036   case bitc::ATTR_KIND_STRUCT_RET:
2037     return Attribute::StructRet;
2038   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2039     return Attribute::SanitizeAddress;
2040   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2041     return Attribute::SanitizeHWAddress;
2042   case bitc::ATTR_KIND_SANITIZE_THREAD:
2043     return Attribute::SanitizeThread;
2044   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2045     return Attribute::SanitizeMemory;
2046   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2047     return Attribute::SpeculativeLoadHardening;
2048   case bitc::ATTR_KIND_SWIFT_ERROR:
2049     return Attribute::SwiftError;
2050   case bitc::ATTR_KIND_SWIFT_SELF:
2051     return Attribute::SwiftSelf;
2052   case bitc::ATTR_KIND_SWIFT_ASYNC:
2053     return Attribute::SwiftAsync;
2054   case bitc::ATTR_KIND_UW_TABLE:
2055     return Attribute::UWTable;
2056   case bitc::ATTR_KIND_VSCALE_RANGE:
2057     return Attribute::VScaleRange;
2058   case bitc::ATTR_KIND_WILLRETURN:
2059     return Attribute::WillReturn;
2060   case bitc::ATTR_KIND_WRITEONLY:
2061     return Attribute::WriteOnly;
2062   case bitc::ATTR_KIND_Z_EXT:
2063     return Attribute::ZExt;
2064   case bitc::ATTR_KIND_IMMARG:
2065     return Attribute::ImmArg;
2066   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2067     return Attribute::SanitizeMemTag;
2068   case bitc::ATTR_KIND_PREALLOCATED:
2069     return Attribute::Preallocated;
2070   case bitc::ATTR_KIND_NOUNDEF:
2071     return Attribute::NoUndef;
2072   case bitc::ATTR_KIND_BYREF:
2073     return Attribute::ByRef;
2074   case bitc::ATTR_KIND_MUSTPROGRESS:
2075     return Attribute::MustProgress;
2076   case bitc::ATTR_KIND_HOT:
2077     return Attribute::Hot;
2078   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2079     return Attribute::PresplitCoroutine;
2080   }
2081 }
2082 
2083 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2084                                          MaybeAlign &Alignment) {
2085   // Note: Alignment in bitcode files is incremented by 1, so that zero
2086   // can be used for default alignment.
2087   if (Exponent > Value::MaxAlignmentExponent + 1)
2088     return error("Invalid alignment value");
2089   Alignment = decodeMaybeAlign(Exponent);
2090   return Error::success();
2091 }
2092 
2093 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2094   *Kind = getAttrFromCode(Code);
2095   if (*Kind == Attribute::None)
2096     return error("Unknown attribute kind (" + Twine(Code) + ")");
2097   return Error::success();
2098 }
2099 
2100 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2101   switch (EncodedKind) {
2102   case bitc::ATTR_KIND_READ_NONE:
2103     ME &= MemoryEffects::none();
2104     return true;
2105   case bitc::ATTR_KIND_READ_ONLY:
2106     ME &= MemoryEffects::readOnly();
2107     return true;
2108   case bitc::ATTR_KIND_WRITEONLY:
2109     ME &= MemoryEffects::writeOnly();
2110     return true;
2111   case bitc::ATTR_KIND_ARGMEMONLY:
2112     ME &= MemoryEffects::argMemOnly();
2113     return true;
2114   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2115     ME &= MemoryEffects::inaccessibleMemOnly();
2116     return true;
2117   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2118     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2119     return true;
2120   default:
2121     return false;
2122   }
2123 }
2124 
2125 Error BitcodeReader::parseAttributeGroupBlock() {
2126   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2127     return Err;
2128 
2129   if (!MAttributeGroups.empty())
2130     return error("Invalid multiple blocks");
2131 
2132   SmallVector<uint64_t, 64> Record;
2133 
2134   // Read all the records.
2135   while (true) {
2136     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2137     if (!MaybeEntry)
2138       return MaybeEntry.takeError();
2139     BitstreamEntry Entry = MaybeEntry.get();
2140 
2141     switch (Entry.Kind) {
2142     case BitstreamEntry::SubBlock: // Handled for us already.
2143     case BitstreamEntry::Error:
2144       return error("Malformed block");
2145     case BitstreamEntry::EndBlock:
2146       return Error::success();
2147     case BitstreamEntry::Record:
2148       // The interesting case.
2149       break;
2150     }
2151 
2152     // Read a record.
2153     Record.clear();
2154     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2155     if (!MaybeRecord)
2156       return MaybeRecord.takeError();
2157     switch (MaybeRecord.get()) {
2158     default:  // Default behavior: ignore.
2159       break;
2160     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2161       if (Record.size() < 3)
2162         return error("Invalid grp record");
2163 
2164       uint64_t GrpID = Record[0];
2165       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2166 
2167       AttrBuilder B(Context);
2168       MemoryEffects ME = MemoryEffects::unknown();
2169       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2170         if (Record[i] == 0) {        // Enum attribute
2171           Attribute::AttrKind Kind;
2172           uint64_t EncodedKind = Record[++i];
2173           if (Idx == AttributeList::FunctionIndex &&
2174               upgradeOldMemoryAttribute(ME, EncodedKind))
2175             continue;
2176 
2177           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2178             return Err;
2179 
2180           // Upgrade old-style byval attribute to one with a type, even if it's
2181           // nullptr. We will have to insert the real type when we associate
2182           // this AttributeList with a function.
2183           if (Kind == Attribute::ByVal)
2184             B.addByValAttr(nullptr);
2185           else if (Kind == Attribute::StructRet)
2186             B.addStructRetAttr(nullptr);
2187           else if (Kind == Attribute::InAlloca)
2188             B.addInAllocaAttr(nullptr);
2189           else if (Kind == Attribute::UWTable)
2190             B.addUWTableAttr(UWTableKind::Default);
2191           else if (Attribute::isEnumAttrKind(Kind))
2192             B.addAttribute(Kind);
2193           else
2194             return error("Not an enum attribute");
2195         } else if (Record[i] == 1) { // Integer attribute
2196           Attribute::AttrKind Kind;
2197           if (Error Err = parseAttrKind(Record[++i], &Kind))
2198             return Err;
2199           if (!Attribute::isIntAttrKind(Kind))
2200             return error("Not an int attribute");
2201           if (Kind == Attribute::Alignment)
2202             B.addAlignmentAttr(Record[++i]);
2203           else if (Kind == Attribute::StackAlignment)
2204             B.addStackAlignmentAttr(Record[++i]);
2205           else if (Kind == Attribute::Dereferenceable)
2206             B.addDereferenceableAttr(Record[++i]);
2207           else if (Kind == Attribute::DereferenceableOrNull)
2208             B.addDereferenceableOrNullAttr(Record[++i]);
2209           else if (Kind == Attribute::AllocSize)
2210             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2211           else if (Kind == Attribute::VScaleRange)
2212             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2213           else if (Kind == Attribute::UWTable)
2214             B.addUWTableAttr(UWTableKind(Record[++i]));
2215           else if (Kind == Attribute::AllocKind)
2216             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2217           else if (Kind == Attribute::Memory)
2218             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2219           else if (Kind == Attribute::NoFPClass)
2220             B.addNoFPClassAttr(
2221                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2222         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2223           bool HasValue = (Record[i++] == 4);
2224           SmallString<64> KindStr;
2225           SmallString<64> ValStr;
2226 
2227           while (Record[i] != 0 && i != e)
2228             KindStr += Record[i++];
2229           assert(Record[i] == 0 && "Kind string not null terminated");
2230 
2231           if (HasValue) {
2232             // Has a value associated with it.
2233             ++i; // Skip the '0' that terminates the "kind" string.
2234             while (Record[i] != 0 && i != e)
2235               ValStr += Record[i++];
2236             assert(Record[i] == 0 && "Value string not null terminated");
2237           }
2238 
2239           B.addAttribute(KindStr.str(), ValStr.str());
2240         } else if (Record[i] == 5 || Record[i] == 6) {
2241           bool HasType = Record[i] == 6;
2242           Attribute::AttrKind Kind;
2243           if (Error Err = parseAttrKind(Record[++i], &Kind))
2244             return Err;
2245           if (!Attribute::isTypeAttrKind(Kind))
2246             return error("Not a type attribute");
2247 
2248           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2249         } else {
2250           return error("Invalid attribute group entry");
2251         }
2252       }
2253 
2254       if (ME != MemoryEffects::unknown())
2255         B.addMemoryAttr(ME);
2256 
2257       UpgradeAttributes(B);
2258       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2259       break;
2260     }
2261     }
2262   }
2263 }
2264 
2265 Error BitcodeReader::parseTypeTable() {
2266   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2267     return Err;
2268 
2269   return parseTypeTableBody();
2270 }
2271 
2272 Error BitcodeReader::parseTypeTableBody() {
2273   if (!TypeList.empty())
2274     return error("Invalid multiple blocks");
2275 
2276   SmallVector<uint64_t, 64> Record;
2277   unsigned NumRecords = 0;
2278 
2279   SmallString<64> TypeName;
2280 
2281   // Read all the records for this type table.
2282   while (true) {
2283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2284     if (!MaybeEntry)
2285       return MaybeEntry.takeError();
2286     BitstreamEntry Entry = MaybeEntry.get();
2287 
2288     switch (Entry.Kind) {
2289     case BitstreamEntry::SubBlock: // Handled for us already.
2290     case BitstreamEntry::Error:
2291       return error("Malformed block");
2292     case BitstreamEntry::EndBlock:
2293       if (NumRecords != TypeList.size())
2294         return error("Malformed block");
2295       return Error::success();
2296     case BitstreamEntry::Record:
2297       // The interesting case.
2298       break;
2299     }
2300 
2301     // Read a record.
2302     Record.clear();
2303     Type *ResultTy = nullptr;
2304     SmallVector<unsigned> ContainedIDs;
2305     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2306     if (!MaybeRecord)
2307       return MaybeRecord.takeError();
2308     switch (MaybeRecord.get()) {
2309     default:
2310       return error("Invalid value");
2311     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2312       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2313       // type list.  This allows us to reserve space.
2314       if (Record.empty())
2315         return error("Invalid numentry record");
2316       TypeList.resize(Record[0]);
2317       continue;
2318     case bitc::TYPE_CODE_VOID:      // VOID
2319       ResultTy = Type::getVoidTy(Context);
2320       break;
2321     case bitc::TYPE_CODE_HALF:     // HALF
2322       ResultTy = Type::getHalfTy(Context);
2323       break;
2324     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2325       ResultTy = Type::getBFloatTy(Context);
2326       break;
2327     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2328       ResultTy = Type::getFloatTy(Context);
2329       break;
2330     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2331       ResultTy = Type::getDoubleTy(Context);
2332       break;
2333     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2334       ResultTy = Type::getX86_FP80Ty(Context);
2335       break;
2336     case bitc::TYPE_CODE_FP128:     // FP128
2337       ResultTy = Type::getFP128Ty(Context);
2338       break;
2339     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2340       ResultTy = Type::getPPC_FP128Ty(Context);
2341       break;
2342     case bitc::TYPE_CODE_LABEL:     // LABEL
2343       ResultTy = Type::getLabelTy(Context);
2344       break;
2345     case bitc::TYPE_CODE_METADATA:  // METADATA
2346       ResultTy = Type::getMetadataTy(Context);
2347       break;
2348     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2349       ResultTy = Type::getX86_MMXTy(Context);
2350       break;
2351     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2352       ResultTy = Type::getX86_AMXTy(Context);
2353       break;
2354     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2355       ResultTy = Type::getTokenTy(Context);
2356       break;
2357     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2358       if (Record.empty())
2359         return error("Invalid integer record");
2360 
2361       uint64_t NumBits = Record[0];
2362       if (NumBits < IntegerType::MIN_INT_BITS ||
2363           NumBits > IntegerType::MAX_INT_BITS)
2364         return error("Bitwidth for integer type out of range");
2365       ResultTy = IntegerType::get(Context, NumBits);
2366       break;
2367     }
2368     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2369                                     //          [pointee type, address space]
2370       if (Record.empty())
2371         return error("Invalid pointer record");
2372       unsigned AddressSpace = 0;
2373       if (Record.size() == 2)
2374         AddressSpace = Record[1];
2375       ResultTy = getTypeByID(Record[0]);
2376       if (!ResultTy ||
2377           !PointerType::isValidElementType(ResultTy))
2378         return error("Invalid type");
2379       ContainedIDs.push_back(Record[0]);
2380       ResultTy = PointerType::get(ResultTy, AddressSpace);
2381       break;
2382     }
2383     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2384       if (Record.size() != 1)
2385         return error("Invalid opaque pointer record");
2386       if (Context.supportsTypedPointers())
2387         return error(
2388             "Opaque pointers are only supported in -opaque-pointers mode");
2389       unsigned AddressSpace = Record[0];
2390       ResultTy = PointerType::get(Context, AddressSpace);
2391       break;
2392     }
2393     case bitc::TYPE_CODE_FUNCTION_OLD: {
2394       // Deprecated, but still needed to read old bitcode files.
2395       // FUNCTION: [vararg, attrid, retty, paramty x N]
2396       if (Record.size() < 3)
2397         return error("Invalid function record");
2398       SmallVector<Type*, 8> ArgTys;
2399       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2400         if (Type *T = getTypeByID(Record[i]))
2401           ArgTys.push_back(T);
2402         else
2403           break;
2404       }
2405 
2406       ResultTy = getTypeByID(Record[2]);
2407       if (!ResultTy || ArgTys.size() < Record.size()-3)
2408         return error("Invalid type");
2409 
2410       ContainedIDs.append(Record.begin() + 2, Record.end());
2411       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2412       break;
2413     }
2414     case bitc::TYPE_CODE_FUNCTION: {
2415       // FUNCTION: [vararg, retty, paramty x N]
2416       if (Record.size() < 2)
2417         return error("Invalid function record");
2418       SmallVector<Type*, 8> ArgTys;
2419       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2420         if (Type *T = getTypeByID(Record[i])) {
2421           if (!FunctionType::isValidArgumentType(T))
2422             return error("Invalid function argument type");
2423           ArgTys.push_back(T);
2424         }
2425         else
2426           break;
2427       }
2428 
2429       ResultTy = getTypeByID(Record[1]);
2430       if (!ResultTy || ArgTys.size() < Record.size()-2)
2431         return error("Invalid type");
2432 
2433       ContainedIDs.append(Record.begin() + 1, Record.end());
2434       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2435       break;
2436     }
2437     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2438       if (Record.empty())
2439         return error("Invalid anon struct record");
2440       SmallVector<Type*, 8> EltTys;
2441       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2442         if (Type *T = getTypeByID(Record[i]))
2443           EltTys.push_back(T);
2444         else
2445           break;
2446       }
2447       if (EltTys.size() != Record.size()-1)
2448         return error("Invalid type");
2449       ContainedIDs.append(Record.begin() + 1, Record.end());
2450       ResultTy = StructType::get(Context, EltTys, Record[0]);
2451       break;
2452     }
2453     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2454       if (convertToString(Record, 0, TypeName))
2455         return error("Invalid struct name record");
2456       continue;
2457 
2458     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2459       if (Record.empty())
2460         return error("Invalid named struct record");
2461 
2462       if (NumRecords >= TypeList.size())
2463         return error("Invalid TYPE table");
2464 
2465       // Check to see if this was forward referenced, if so fill in the temp.
2466       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2467       if (Res) {
2468         Res->setName(TypeName);
2469         TypeList[NumRecords] = nullptr;
2470       } else  // Otherwise, create a new struct.
2471         Res = createIdentifiedStructType(Context, TypeName);
2472       TypeName.clear();
2473 
2474       SmallVector<Type*, 8> EltTys;
2475       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2476         if (Type *T = getTypeByID(Record[i]))
2477           EltTys.push_back(T);
2478         else
2479           break;
2480       }
2481       if (EltTys.size() != Record.size()-1)
2482         return error("Invalid named struct record");
2483       Res->setBody(EltTys, Record[0]);
2484       ContainedIDs.append(Record.begin() + 1, Record.end());
2485       ResultTy = Res;
2486       break;
2487     }
2488     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2489       if (Record.size() != 1)
2490         return error("Invalid opaque type record");
2491 
2492       if (NumRecords >= TypeList.size())
2493         return error("Invalid TYPE table");
2494 
2495       // Check to see if this was forward referenced, if so fill in the temp.
2496       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2497       if (Res) {
2498         Res->setName(TypeName);
2499         TypeList[NumRecords] = nullptr;
2500       } else  // Otherwise, create a new struct with no body.
2501         Res = createIdentifiedStructType(Context, TypeName);
2502       TypeName.clear();
2503       ResultTy = Res;
2504       break;
2505     }
2506     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2507       if (Record.size() < 1)
2508         return error("Invalid target extension type record");
2509 
2510       if (NumRecords >= TypeList.size())
2511         return error("Invalid TYPE table");
2512 
2513       if (Record[0] >= Record.size())
2514         return error("Too many type parameters");
2515 
2516       unsigned NumTys = Record[0];
2517       SmallVector<Type *, 4> TypeParams;
2518       SmallVector<unsigned, 8> IntParams;
2519       for (unsigned i = 0; i < NumTys; i++) {
2520         if (Type *T = getTypeByID(Record[i + 1]))
2521           TypeParams.push_back(T);
2522         else
2523           return error("Invalid type");
2524       }
2525 
2526       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2527         if (Record[i] > UINT_MAX)
2528           return error("Integer parameter too large");
2529         IntParams.push_back(Record[i]);
2530       }
2531       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2532       TypeName.clear();
2533       break;
2534     }
2535     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2536       if (Record.size() < 2)
2537         return error("Invalid array type record");
2538       ResultTy = getTypeByID(Record[1]);
2539       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2540         return error("Invalid type");
2541       ContainedIDs.push_back(Record[1]);
2542       ResultTy = ArrayType::get(ResultTy, Record[0]);
2543       break;
2544     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2545                                     //         [numelts, eltty, scalable]
2546       if (Record.size() < 2)
2547         return error("Invalid vector type record");
2548       if (Record[0] == 0)
2549         return error("Invalid vector length");
2550       ResultTy = getTypeByID(Record[1]);
2551       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2552         return error("Invalid type");
2553       bool Scalable = Record.size() > 2 ? Record[2] : false;
2554       ContainedIDs.push_back(Record[1]);
2555       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2556       break;
2557     }
2558 
2559     if (NumRecords >= TypeList.size())
2560       return error("Invalid TYPE table");
2561     if (TypeList[NumRecords])
2562       return error(
2563           "Invalid TYPE table: Only named structs can be forward referenced");
2564     assert(ResultTy && "Didn't read a type?");
2565     TypeList[NumRecords] = ResultTy;
2566     if (!ContainedIDs.empty())
2567       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2568     ++NumRecords;
2569   }
2570 }
2571 
2572 Error BitcodeReader::parseOperandBundleTags() {
2573   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2574     return Err;
2575 
2576   if (!BundleTags.empty())
2577     return error("Invalid multiple blocks");
2578 
2579   SmallVector<uint64_t, 64> Record;
2580 
2581   while (true) {
2582     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2583     if (!MaybeEntry)
2584       return MaybeEntry.takeError();
2585     BitstreamEntry Entry = MaybeEntry.get();
2586 
2587     switch (Entry.Kind) {
2588     case BitstreamEntry::SubBlock: // Handled for us already.
2589     case BitstreamEntry::Error:
2590       return error("Malformed block");
2591     case BitstreamEntry::EndBlock:
2592       return Error::success();
2593     case BitstreamEntry::Record:
2594       // The interesting case.
2595       break;
2596     }
2597 
2598     // Tags are implicitly mapped to integers by their order.
2599 
2600     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2601     if (!MaybeRecord)
2602       return MaybeRecord.takeError();
2603     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2604       return error("Invalid operand bundle record");
2605 
2606     // OPERAND_BUNDLE_TAG: [strchr x N]
2607     BundleTags.emplace_back();
2608     if (convertToString(Record, 0, BundleTags.back()))
2609       return error("Invalid operand bundle record");
2610     Record.clear();
2611   }
2612 }
2613 
2614 Error BitcodeReader::parseSyncScopeNames() {
2615   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2616     return Err;
2617 
2618   if (!SSIDs.empty())
2619     return error("Invalid multiple synchronization scope names blocks");
2620 
2621   SmallVector<uint64_t, 64> Record;
2622   while (true) {
2623     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2624     if (!MaybeEntry)
2625       return MaybeEntry.takeError();
2626     BitstreamEntry Entry = MaybeEntry.get();
2627 
2628     switch (Entry.Kind) {
2629     case BitstreamEntry::SubBlock: // Handled for us already.
2630     case BitstreamEntry::Error:
2631       return error("Malformed block");
2632     case BitstreamEntry::EndBlock:
2633       if (SSIDs.empty())
2634         return error("Invalid empty synchronization scope names block");
2635       return Error::success();
2636     case BitstreamEntry::Record:
2637       // The interesting case.
2638       break;
2639     }
2640 
2641     // Synchronization scope names are implicitly mapped to synchronization
2642     // scope IDs by their order.
2643 
2644     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2645     if (!MaybeRecord)
2646       return MaybeRecord.takeError();
2647     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2648       return error("Invalid sync scope record");
2649 
2650     SmallString<16> SSN;
2651     if (convertToString(Record, 0, SSN))
2652       return error("Invalid sync scope record");
2653 
2654     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2655     Record.clear();
2656   }
2657 }
2658 
2659 /// Associate a value with its name from the given index in the provided record.
2660 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2661                                              unsigned NameIndex, Triple &TT) {
2662   SmallString<128> ValueName;
2663   if (convertToString(Record, NameIndex, ValueName))
2664     return error("Invalid record");
2665   unsigned ValueID = Record[0];
2666   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2667     return error("Invalid record");
2668   Value *V = ValueList[ValueID];
2669 
2670   StringRef NameStr(ValueName.data(), ValueName.size());
2671   if (NameStr.find_first_of(0) != StringRef::npos)
2672     return error("Invalid value name");
2673   V->setName(NameStr);
2674   auto *GO = dyn_cast<GlobalObject>(V);
2675   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2676     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2677   return V;
2678 }
2679 
2680 /// Helper to note and return the current location, and jump to the given
2681 /// offset.
2682 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2683                                                  BitstreamCursor &Stream) {
2684   // Save the current parsing location so we can jump back at the end
2685   // of the VST read.
2686   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2687   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2688     return std::move(JumpFailed);
2689   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2690   if (!MaybeEntry)
2691     return MaybeEntry.takeError();
2692   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2693       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2694     return error("Expected value symbol table subblock");
2695   return CurrentBit;
2696 }
2697 
2698 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2699                                             Function *F,
2700                                             ArrayRef<uint64_t> Record) {
2701   // Note that we subtract 1 here because the offset is relative to one word
2702   // before the start of the identification or module block, which was
2703   // historically always the start of the regular bitcode header.
2704   uint64_t FuncWordOffset = Record[1] - 1;
2705   uint64_t FuncBitOffset = FuncWordOffset * 32;
2706   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2707   // Set the LastFunctionBlockBit to point to the last function block.
2708   // Later when parsing is resumed after function materialization,
2709   // we can simply skip that last function block.
2710   if (FuncBitOffset > LastFunctionBlockBit)
2711     LastFunctionBlockBit = FuncBitOffset;
2712 }
2713 
2714 /// Read a new-style GlobalValue symbol table.
2715 Error BitcodeReader::parseGlobalValueSymbolTable() {
2716   unsigned FuncBitcodeOffsetDelta =
2717       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2718 
2719   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2720     return Err;
2721 
2722   SmallVector<uint64_t, 64> Record;
2723   while (true) {
2724     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2725     if (!MaybeEntry)
2726       return MaybeEntry.takeError();
2727     BitstreamEntry Entry = MaybeEntry.get();
2728 
2729     switch (Entry.Kind) {
2730     case BitstreamEntry::SubBlock:
2731     case BitstreamEntry::Error:
2732       return error("Malformed block");
2733     case BitstreamEntry::EndBlock:
2734       return Error::success();
2735     case BitstreamEntry::Record:
2736       break;
2737     }
2738 
2739     Record.clear();
2740     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2741     if (!MaybeRecord)
2742       return MaybeRecord.takeError();
2743     switch (MaybeRecord.get()) {
2744     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2745       unsigned ValueID = Record[0];
2746       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2747         return error("Invalid value reference in symbol table");
2748       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2749                               cast<Function>(ValueList[ValueID]), Record);
2750       break;
2751     }
2752     }
2753   }
2754 }
2755 
2756 /// Parse the value symbol table at either the current parsing location or
2757 /// at the given bit offset if provided.
2758 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2759   uint64_t CurrentBit;
2760   // Pass in the Offset to distinguish between calling for the module-level
2761   // VST (where we want to jump to the VST offset) and the function-level
2762   // VST (where we don't).
2763   if (Offset > 0) {
2764     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2765     if (!MaybeCurrentBit)
2766       return MaybeCurrentBit.takeError();
2767     CurrentBit = MaybeCurrentBit.get();
2768     // If this module uses a string table, read this as a module-level VST.
2769     if (UseStrtab) {
2770       if (Error Err = parseGlobalValueSymbolTable())
2771         return Err;
2772       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2773         return JumpFailed;
2774       return Error::success();
2775     }
2776     // Otherwise, the VST will be in a similar format to a function-level VST,
2777     // and will contain symbol names.
2778   }
2779 
2780   // Compute the delta between the bitcode indices in the VST (the word offset
2781   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2782   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2783   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2784   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2785   // just before entering the VST subblock because: 1) the EnterSubBlock
2786   // changes the AbbrevID width; 2) the VST block is nested within the same
2787   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2788   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2789   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2790   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2791   unsigned FuncBitcodeOffsetDelta =
2792       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2793 
2794   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2795     return Err;
2796 
2797   SmallVector<uint64_t, 64> Record;
2798 
2799   Triple TT(TheModule->getTargetTriple());
2800 
2801   // Read all the records for this value table.
2802   SmallString<128> ValueName;
2803 
2804   while (true) {
2805     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2806     if (!MaybeEntry)
2807       return MaybeEntry.takeError();
2808     BitstreamEntry Entry = MaybeEntry.get();
2809 
2810     switch (Entry.Kind) {
2811     case BitstreamEntry::SubBlock: // Handled for us already.
2812     case BitstreamEntry::Error:
2813       return error("Malformed block");
2814     case BitstreamEntry::EndBlock:
2815       if (Offset > 0)
2816         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2817           return JumpFailed;
2818       return Error::success();
2819     case BitstreamEntry::Record:
2820       // The interesting case.
2821       break;
2822     }
2823 
2824     // Read a record.
2825     Record.clear();
2826     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2827     if (!MaybeRecord)
2828       return MaybeRecord.takeError();
2829     switch (MaybeRecord.get()) {
2830     default:  // Default behavior: unknown type.
2831       break;
2832     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2833       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2834       if (Error Err = ValOrErr.takeError())
2835         return Err;
2836       ValOrErr.get();
2837       break;
2838     }
2839     case bitc::VST_CODE_FNENTRY: {
2840       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2841       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2842       if (Error Err = ValOrErr.takeError())
2843         return Err;
2844       Value *V = ValOrErr.get();
2845 
2846       // Ignore function offsets emitted for aliases of functions in older
2847       // versions of LLVM.
2848       if (auto *F = dyn_cast<Function>(V))
2849         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2850       break;
2851     }
2852     case bitc::VST_CODE_BBENTRY: {
2853       if (convertToString(Record, 1, ValueName))
2854         return error("Invalid bbentry record");
2855       BasicBlock *BB = getBasicBlock(Record[0]);
2856       if (!BB)
2857         return error("Invalid bbentry record");
2858 
2859       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2860       ValueName.clear();
2861       break;
2862     }
2863     }
2864   }
2865 }
2866 
2867 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2868 /// encoding.
2869 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2870   if ((V & 1) == 0)
2871     return V >> 1;
2872   if (V != 1)
2873     return -(V >> 1);
2874   // There is no such thing as -0 with integers.  "-0" really means MININT.
2875   return 1ULL << 63;
2876 }
2877 
2878 /// Resolve all of the initializers for global values and aliases that we can.
2879 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2880   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2881   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2882   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2883 
2884   GlobalInitWorklist.swap(GlobalInits);
2885   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2886   FunctionOperandWorklist.swap(FunctionOperands);
2887 
2888   while (!GlobalInitWorklist.empty()) {
2889     unsigned ValID = GlobalInitWorklist.back().second;
2890     if (ValID >= ValueList.size()) {
2891       // Not ready to resolve this yet, it requires something later in the file.
2892       GlobalInits.push_back(GlobalInitWorklist.back());
2893     } else {
2894       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2895       if (!MaybeC)
2896         return MaybeC.takeError();
2897       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2898     }
2899     GlobalInitWorklist.pop_back();
2900   }
2901 
2902   while (!IndirectSymbolInitWorklist.empty()) {
2903     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2904     if (ValID >= ValueList.size()) {
2905       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2906     } else {
2907       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2908       if (!MaybeC)
2909         return MaybeC.takeError();
2910       Constant *C = MaybeC.get();
2911       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2912       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2913         if (C->getType() != GV->getType())
2914           return error("Alias and aliasee types don't match");
2915         GA->setAliasee(C);
2916       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2917         Type *ResolverFTy =
2918             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2919         // Transparently fix up the type for compatibility with older bitcode
2920         GI->setResolver(ConstantExpr::getBitCast(
2921             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2922       } else {
2923         return error("Expected an alias or an ifunc");
2924       }
2925     }
2926     IndirectSymbolInitWorklist.pop_back();
2927   }
2928 
2929   while (!FunctionOperandWorklist.empty()) {
2930     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2931     if (Info.PersonalityFn) {
2932       unsigned ValID = Info.PersonalityFn - 1;
2933       if (ValID < ValueList.size()) {
2934         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2935         if (!MaybeC)
2936           return MaybeC.takeError();
2937         Info.F->setPersonalityFn(MaybeC.get());
2938         Info.PersonalityFn = 0;
2939       }
2940     }
2941     if (Info.Prefix) {
2942       unsigned ValID = Info.Prefix - 1;
2943       if (ValID < ValueList.size()) {
2944         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2945         if (!MaybeC)
2946           return MaybeC.takeError();
2947         Info.F->setPrefixData(MaybeC.get());
2948         Info.Prefix = 0;
2949       }
2950     }
2951     if (Info.Prologue) {
2952       unsigned ValID = Info.Prologue - 1;
2953       if (ValID < ValueList.size()) {
2954         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2955         if (!MaybeC)
2956           return MaybeC.takeError();
2957         Info.F->setPrologueData(MaybeC.get());
2958         Info.Prologue = 0;
2959       }
2960     }
2961     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2962       FunctionOperands.push_back(Info);
2963     FunctionOperandWorklist.pop_back();
2964   }
2965 
2966   return Error::success();
2967 }
2968 
2969 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2970   SmallVector<uint64_t, 8> Words(Vals.size());
2971   transform(Vals, Words.begin(),
2972                  BitcodeReader::decodeSignRotatedValue);
2973 
2974   return APInt(TypeBits, Words);
2975 }
2976 
2977 Error BitcodeReader::parseConstants() {
2978   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2979     return Err;
2980 
2981   SmallVector<uint64_t, 64> Record;
2982 
2983   // Read all the records for this value table.
2984   Type *CurTy = Type::getInt32Ty(Context);
2985   unsigned Int32TyID = getVirtualTypeID(CurTy);
2986   unsigned CurTyID = Int32TyID;
2987   Type *CurElemTy = nullptr;
2988   unsigned NextCstNo = ValueList.size();
2989 
2990   while (true) {
2991     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2992     if (!MaybeEntry)
2993       return MaybeEntry.takeError();
2994     BitstreamEntry Entry = MaybeEntry.get();
2995 
2996     switch (Entry.Kind) {
2997     case BitstreamEntry::SubBlock: // Handled for us already.
2998     case BitstreamEntry::Error:
2999       return error("Malformed block");
3000     case BitstreamEntry::EndBlock:
3001       if (NextCstNo != ValueList.size())
3002         return error("Invalid constant reference");
3003       return Error::success();
3004     case BitstreamEntry::Record:
3005       // The interesting case.
3006       break;
3007     }
3008 
3009     // Read a record.
3010     Record.clear();
3011     Type *VoidType = Type::getVoidTy(Context);
3012     Value *V = nullptr;
3013     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3014     if (!MaybeBitCode)
3015       return MaybeBitCode.takeError();
3016     switch (unsigned BitCode = MaybeBitCode.get()) {
3017     default:  // Default behavior: unknown constant
3018     case bitc::CST_CODE_UNDEF:     // UNDEF
3019       V = UndefValue::get(CurTy);
3020       break;
3021     case bitc::CST_CODE_POISON:    // POISON
3022       V = PoisonValue::get(CurTy);
3023       break;
3024     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3025       if (Record.empty())
3026         return error("Invalid settype record");
3027       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3028         return error("Invalid settype record");
3029       if (TypeList[Record[0]] == VoidType)
3030         return error("Invalid constant type");
3031       CurTyID = Record[0];
3032       CurTy = TypeList[CurTyID];
3033       CurElemTy = getPtrElementTypeByID(CurTyID);
3034       continue;  // Skip the ValueList manipulation.
3035     case bitc::CST_CODE_NULL:      // NULL
3036       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3037         return error("Invalid type for a constant null value");
3038       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3039         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3040           return error("Invalid type for a constant null value");
3041       V = Constant::getNullValue(CurTy);
3042       break;
3043     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3044       if (!CurTy->isIntegerTy() || Record.empty())
3045         return error("Invalid integer const record");
3046       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3047       break;
3048     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3049       if (!CurTy->isIntegerTy() || Record.empty())
3050         return error("Invalid wide integer const record");
3051 
3052       APInt VInt =
3053           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3054       V = ConstantInt::get(Context, VInt);
3055 
3056       break;
3057     }
3058     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3059       if (Record.empty())
3060         return error("Invalid float const record");
3061       if (CurTy->isHalfTy())
3062         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3063                                              APInt(16, (uint16_t)Record[0])));
3064       else if (CurTy->isBFloatTy())
3065         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3066                                              APInt(16, (uint32_t)Record[0])));
3067       else if (CurTy->isFloatTy())
3068         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3069                                              APInt(32, (uint32_t)Record[0])));
3070       else if (CurTy->isDoubleTy())
3071         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3072                                              APInt(64, Record[0])));
3073       else if (CurTy->isX86_FP80Ty()) {
3074         // Bits are not stored the same way as a normal i80 APInt, compensate.
3075         uint64_t Rearrange[2];
3076         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3077         Rearrange[1] = Record[0] >> 48;
3078         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3079                                              APInt(80, Rearrange)));
3080       } else if (CurTy->isFP128Ty())
3081         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3082                                              APInt(128, Record)));
3083       else if (CurTy->isPPC_FP128Ty())
3084         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3085                                              APInt(128, Record)));
3086       else
3087         V = UndefValue::get(CurTy);
3088       break;
3089     }
3090 
3091     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3092       if (Record.empty())
3093         return error("Invalid aggregate record");
3094 
3095       unsigned Size = Record.size();
3096       SmallVector<unsigned, 16> Elts;
3097       for (unsigned i = 0; i != Size; ++i)
3098         Elts.push_back(Record[i]);
3099 
3100       if (isa<StructType>(CurTy)) {
3101         V = BitcodeConstant::create(
3102             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3103       } else if (isa<ArrayType>(CurTy)) {
3104         V = BitcodeConstant::create(Alloc, CurTy,
3105                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3106       } else if (isa<VectorType>(CurTy)) {
3107         V = BitcodeConstant::create(
3108             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3109       } else {
3110         V = UndefValue::get(CurTy);
3111       }
3112       break;
3113     }
3114     case bitc::CST_CODE_STRING:    // STRING: [values]
3115     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3116       if (Record.empty())
3117         return error("Invalid string record");
3118 
3119       SmallString<16> Elts(Record.begin(), Record.end());
3120       V = ConstantDataArray::getString(Context, Elts,
3121                                        BitCode == bitc::CST_CODE_CSTRING);
3122       break;
3123     }
3124     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3125       if (Record.empty())
3126         return error("Invalid data record");
3127 
3128       Type *EltTy;
3129       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3130         EltTy = Array->getElementType();
3131       else
3132         EltTy = cast<VectorType>(CurTy)->getElementType();
3133       if (EltTy->isIntegerTy(8)) {
3134         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3135         if (isa<VectorType>(CurTy))
3136           V = ConstantDataVector::get(Context, Elts);
3137         else
3138           V = ConstantDataArray::get(Context, Elts);
3139       } else if (EltTy->isIntegerTy(16)) {
3140         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3141         if (isa<VectorType>(CurTy))
3142           V = ConstantDataVector::get(Context, Elts);
3143         else
3144           V = ConstantDataArray::get(Context, Elts);
3145       } else if (EltTy->isIntegerTy(32)) {
3146         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3147         if (isa<VectorType>(CurTy))
3148           V = ConstantDataVector::get(Context, Elts);
3149         else
3150           V = ConstantDataArray::get(Context, Elts);
3151       } else if (EltTy->isIntegerTy(64)) {
3152         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3153         if (isa<VectorType>(CurTy))
3154           V = ConstantDataVector::get(Context, Elts);
3155         else
3156           V = ConstantDataArray::get(Context, Elts);
3157       } else if (EltTy->isHalfTy()) {
3158         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3159         if (isa<VectorType>(CurTy))
3160           V = ConstantDataVector::getFP(EltTy, Elts);
3161         else
3162           V = ConstantDataArray::getFP(EltTy, Elts);
3163       } else if (EltTy->isBFloatTy()) {
3164         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3165         if (isa<VectorType>(CurTy))
3166           V = ConstantDataVector::getFP(EltTy, Elts);
3167         else
3168           V = ConstantDataArray::getFP(EltTy, Elts);
3169       } else if (EltTy->isFloatTy()) {
3170         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3171         if (isa<VectorType>(CurTy))
3172           V = ConstantDataVector::getFP(EltTy, Elts);
3173         else
3174           V = ConstantDataArray::getFP(EltTy, Elts);
3175       } else if (EltTy->isDoubleTy()) {
3176         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3177         if (isa<VectorType>(CurTy))
3178           V = ConstantDataVector::getFP(EltTy, Elts);
3179         else
3180           V = ConstantDataArray::getFP(EltTy, Elts);
3181       } else {
3182         return error("Invalid type for value");
3183       }
3184       break;
3185     }
3186     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3187       if (Record.size() < 2)
3188         return error("Invalid unary op constexpr record");
3189       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3190       if (Opc < 0) {
3191         V = UndefValue::get(CurTy);  // Unknown unop.
3192       } else {
3193         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3194       }
3195       break;
3196     }
3197     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3198       if (Record.size() < 3)
3199         return error("Invalid binary op constexpr record");
3200       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3201       if (Opc < 0) {
3202         V = UndefValue::get(CurTy);  // Unknown binop.
3203       } else {
3204         uint8_t Flags = 0;
3205         if (Record.size() >= 4) {
3206           if (Opc == Instruction::Add ||
3207               Opc == Instruction::Sub ||
3208               Opc == Instruction::Mul ||
3209               Opc == Instruction::Shl) {
3210             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3211               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3212             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3213               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3214           } else if (Opc == Instruction::SDiv ||
3215                      Opc == Instruction::UDiv ||
3216                      Opc == Instruction::LShr ||
3217                      Opc == Instruction::AShr) {
3218             if (Record[3] & (1 << bitc::PEO_EXACT))
3219               Flags |= SDivOperator::IsExact;
3220           }
3221         }
3222         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3223                                     {(unsigned)Record[1], (unsigned)Record[2]});
3224       }
3225       break;
3226     }
3227     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3228       if (Record.size() < 3)
3229         return error("Invalid cast constexpr record");
3230       int Opc = getDecodedCastOpcode(Record[0]);
3231       if (Opc < 0) {
3232         V = UndefValue::get(CurTy);  // Unknown cast.
3233       } else {
3234         unsigned OpTyID = Record[1];
3235         Type *OpTy = getTypeByID(OpTyID);
3236         if (!OpTy)
3237           return error("Invalid cast constexpr record");
3238         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3239       }
3240       break;
3241     }
3242     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3243     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3244     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3245                                                      // operands]
3246       if (Record.size() < 2)
3247         return error("Constant GEP record must have at least two elements");
3248       unsigned OpNum = 0;
3249       Type *PointeeType = nullptr;
3250       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3251           Record.size() % 2)
3252         PointeeType = getTypeByID(Record[OpNum++]);
3253 
3254       bool InBounds = false;
3255       std::optional<unsigned> InRangeIndex;
3256       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3257         uint64_t Op = Record[OpNum++];
3258         InBounds = Op & 1;
3259         InRangeIndex = Op >> 1;
3260       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3261         InBounds = true;
3262 
3263       SmallVector<unsigned, 16> Elts;
3264       unsigned BaseTypeID = Record[OpNum];
3265       while (OpNum != Record.size()) {
3266         unsigned ElTyID = Record[OpNum++];
3267         Type *ElTy = getTypeByID(ElTyID);
3268         if (!ElTy)
3269           return error("Invalid getelementptr constexpr record");
3270         Elts.push_back(Record[OpNum++]);
3271       }
3272 
3273       if (Elts.size() < 1)
3274         return error("Invalid gep with no operands");
3275 
3276       Type *BaseType = getTypeByID(BaseTypeID);
3277       if (isa<VectorType>(BaseType)) {
3278         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3279         BaseType = getTypeByID(BaseTypeID);
3280       }
3281 
3282       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3283       if (!OrigPtrTy)
3284         return error("GEP base operand must be pointer or vector of pointer");
3285 
3286       if (!PointeeType) {
3287         PointeeType = getPtrElementTypeByID(BaseTypeID);
3288         if (!PointeeType)
3289           return error("Missing element type for old-style constant GEP");
3290       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3291         return error("Explicit gep operator type does not match pointee type "
3292                      "of pointer operand");
3293 
3294       V = BitcodeConstant::create(Alloc, CurTy,
3295                                   {Instruction::GetElementPtr, InBounds,
3296                                    InRangeIndex.value_or(-1), PointeeType},
3297                                   Elts);
3298       break;
3299     }
3300     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3301       if (Record.size() < 3)
3302         return error("Invalid select constexpr record");
3303 
3304       V = BitcodeConstant::create(
3305           Alloc, CurTy, Instruction::Select,
3306           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3307       break;
3308     }
3309     case bitc::CST_CODE_CE_EXTRACTELT
3310         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3311       if (Record.size() < 3)
3312         return error("Invalid extractelement constexpr record");
3313       unsigned OpTyID = Record[0];
3314       VectorType *OpTy =
3315         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3316       if (!OpTy)
3317         return error("Invalid extractelement constexpr record");
3318       unsigned IdxRecord;
3319       if (Record.size() == 4) {
3320         unsigned IdxTyID = Record[2];
3321         Type *IdxTy = getTypeByID(IdxTyID);
3322         if (!IdxTy)
3323           return error("Invalid extractelement constexpr record");
3324         IdxRecord = Record[3];
3325       } else {
3326         // Deprecated, but still needed to read old bitcode files.
3327         IdxRecord = Record[2];
3328       }
3329       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3330                                   {(unsigned)Record[1], IdxRecord});
3331       break;
3332     }
3333     case bitc::CST_CODE_CE_INSERTELT
3334         : { // CE_INSERTELT: [opval, opval, opty, opval]
3335       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3336       if (Record.size() < 3 || !OpTy)
3337         return error("Invalid insertelement constexpr record");
3338       unsigned IdxRecord;
3339       if (Record.size() == 4) {
3340         unsigned IdxTyID = Record[2];
3341         Type *IdxTy = getTypeByID(IdxTyID);
3342         if (!IdxTy)
3343           return error("Invalid insertelement constexpr record");
3344         IdxRecord = Record[3];
3345       } else {
3346         // Deprecated, but still needed to read old bitcode files.
3347         IdxRecord = Record[2];
3348       }
3349       V = BitcodeConstant::create(
3350           Alloc, CurTy, Instruction::InsertElement,
3351           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3352       break;
3353     }
3354     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3355       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3356       if (Record.size() < 3 || !OpTy)
3357         return error("Invalid shufflevector constexpr record");
3358       V = BitcodeConstant::create(
3359           Alloc, CurTy, Instruction::ShuffleVector,
3360           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3361       break;
3362     }
3363     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3364       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3365       VectorType *OpTy =
3366         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3367       if (Record.size() < 4 || !RTy || !OpTy)
3368         return error("Invalid shufflevector constexpr record");
3369       V = BitcodeConstant::create(
3370           Alloc, CurTy, Instruction::ShuffleVector,
3371           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3372       break;
3373     }
3374     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3375       if (Record.size() < 4)
3376         return error("Invalid cmp constexpt record");
3377       unsigned OpTyID = Record[0];
3378       Type *OpTy = getTypeByID(OpTyID);
3379       if (!OpTy)
3380         return error("Invalid cmp constexpr record");
3381       V = BitcodeConstant::create(
3382           Alloc, CurTy,
3383           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3384                                               : Instruction::ICmp),
3385            (uint8_t)Record[3]},
3386           {(unsigned)Record[1], (unsigned)Record[2]});
3387       break;
3388     }
3389     // This maintains backward compatibility, pre-asm dialect keywords.
3390     // Deprecated, but still needed to read old bitcode files.
3391     case bitc::CST_CODE_INLINEASM_OLD: {
3392       if (Record.size() < 2)
3393         return error("Invalid inlineasm record");
3394       std::string AsmStr, ConstrStr;
3395       bool HasSideEffects = Record[0] & 1;
3396       bool IsAlignStack = Record[0] >> 1;
3397       unsigned AsmStrSize = Record[1];
3398       if (2+AsmStrSize >= Record.size())
3399         return error("Invalid inlineasm record");
3400       unsigned ConstStrSize = Record[2+AsmStrSize];
3401       if (3+AsmStrSize+ConstStrSize > Record.size())
3402         return error("Invalid inlineasm record");
3403 
3404       for (unsigned i = 0; i != AsmStrSize; ++i)
3405         AsmStr += (char)Record[2+i];
3406       for (unsigned i = 0; i != ConstStrSize; ++i)
3407         ConstrStr += (char)Record[3+AsmStrSize+i];
3408       UpgradeInlineAsmString(&AsmStr);
3409       if (!CurElemTy)
3410         return error("Missing element type for old-style inlineasm");
3411       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3412                          HasSideEffects, IsAlignStack);
3413       break;
3414     }
3415     // This version adds support for the asm dialect keywords (e.g.,
3416     // inteldialect).
3417     case bitc::CST_CODE_INLINEASM_OLD2: {
3418       if (Record.size() < 2)
3419         return error("Invalid inlineasm record");
3420       std::string AsmStr, ConstrStr;
3421       bool HasSideEffects = Record[0] & 1;
3422       bool IsAlignStack = (Record[0] >> 1) & 1;
3423       unsigned AsmDialect = Record[0] >> 2;
3424       unsigned AsmStrSize = Record[1];
3425       if (2+AsmStrSize >= Record.size())
3426         return error("Invalid inlineasm record");
3427       unsigned ConstStrSize = Record[2+AsmStrSize];
3428       if (3+AsmStrSize+ConstStrSize > Record.size())
3429         return error("Invalid inlineasm record");
3430 
3431       for (unsigned i = 0; i != AsmStrSize; ++i)
3432         AsmStr += (char)Record[2+i];
3433       for (unsigned i = 0; i != ConstStrSize; ++i)
3434         ConstrStr += (char)Record[3+AsmStrSize+i];
3435       UpgradeInlineAsmString(&AsmStr);
3436       if (!CurElemTy)
3437         return error("Missing element type for old-style inlineasm");
3438       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3439                          HasSideEffects, IsAlignStack,
3440                          InlineAsm::AsmDialect(AsmDialect));
3441       break;
3442     }
3443     // This version adds support for the unwind keyword.
3444     case bitc::CST_CODE_INLINEASM_OLD3: {
3445       if (Record.size() < 2)
3446         return error("Invalid inlineasm record");
3447       unsigned OpNum = 0;
3448       std::string AsmStr, ConstrStr;
3449       bool HasSideEffects = Record[OpNum] & 1;
3450       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3451       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3452       bool CanThrow = (Record[OpNum] >> 3) & 1;
3453       ++OpNum;
3454       unsigned AsmStrSize = Record[OpNum];
3455       ++OpNum;
3456       if (OpNum + AsmStrSize >= Record.size())
3457         return error("Invalid inlineasm record");
3458       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3459       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3460         return error("Invalid inlineasm record");
3461 
3462       for (unsigned i = 0; i != AsmStrSize; ++i)
3463         AsmStr += (char)Record[OpNum + i];
3464       ++OpNum;
3465       for (unsigned i = 0; i != ConstStrSize; ++i)
3466         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3467       UpgradeInlineAsmString(&AsmStr);
3468       if (!CurElemTy)
3469         return error("Missing element type for old-style inlineasm");
3470       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3471                          HasSideEffects, IsAlignStack,
3472                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3473       break;
3474     }
3475     // This version adds explicit function type.
3476     case bitc::CST_CODE_INLINEASM: {
3477       if (Record.size() < 3)
3478         return error("Invalid inlineasm record");
3479       unsigned OpNum = 0;
3480       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3481       ++OpNum;
3482       if (!FnTy)
3483         return error("Invalid inlineasm record");
3484       std::string AsmStr, ConstrStr;
3485       bool HasSideEffects = Record[OpNum] & 1;
3486       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3487       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3488       bool CanThrow = (Record[OpNum] >> 3) & 1;
3489       ++OpNum;
3490       unsigned AsmStrSize = Record[OpNum];
3491       ++OpNum;
3492       if (OpNum + AsmStrSize >= Record.size())
3493         return error("Invalid inlineasm record");
3494       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3495       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3496         return error("Invalid inlineasm record");
3497 
3498       for (unsigned i = 0; i != AsmStrSize; ++i)
3499         AsmStr += (char)Record[OpNum + i];
3500       ++OpNum;
3501       for (unsigned i = 0; i != ConstStrSize; ++i)
3502         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3503       UpgradeInlineAsmString(&AsmStr);
3504       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3505                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3506       break;
3507     }
3508     case bitc::CST_CODE_BLOCKADDRESS:{
3509       if (Record.size() < 3)
3510         return error("Invalid blockaddress record");
3511       unsigned FnTyID = Record[0];
3512       Type *FnTy = getTypeByID(FnTyID);
3513       if (!FnTy)
3514         return error("Invalid blockaddress record");
3515       V = BitcodeConstant::create(
3516           Alloc, CurTy,
3517           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3518           Record[1]);
3519       break;
3520     }
3521     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3522       if (Record.size() < 2)
3523         return error("Invalid dso_local record");
3524       unsigned GVTyID = Record[0];
3525       Type *GVTy = getTypeByID(GVTyID);
3526       if (!GVTy)
3527         return error("Invalid dso_local record");
3528       V = BitcodeConstant::create(
3529           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3530       break;
3531     }
3532     case bitc::CST_CODE_NO_CFI_VALUE: {
3533       if (Record.size() < 2)
3534         return error("Invalid no_cfi record");
3535       unsigned GVTyID = Record[0];
3536       Type *GVTy = getTypeByID(GVTyID);
3537       if (!GVTy)
3538         return error("Invalid no_cfi record");
3539       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3540                                   Record[1]);
3541       break;
3542     }
3543     }
3544 
3545     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3546     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3547       return Err;
3548     ++NextCstNo;
3549   }
3550 }
3551 
3552 Error BitcodeReader::parseUseLists() {
3553   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3554     return Err;
3555 
3556   // Read all the records.
3557   SmallVector<uint64_t, 64> Record;
3558 
3559   while (true) {
3560     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3561     if (!MaybeEntry)
3562       return MaybeEntry.takeError();
3563     BitstreamEntry Entry = MaybeEntry.get();
3564 
3565     switch (Entry.Kind) {
3566     case BitstreamEntry::SubBlock: // Handled for us already.
3567     case BitstreamEntry::Error:
3568       return error("Malformed block");
3569     case BitstreamEntry::EndBlock:
3570       return Error::success();
3571     case BitstreamEntry::Record:
3572       // The interesting case.
3573       break;
3574     }
3575 
3576     // Read a use list record.
3577     Record.clear();
3578     bool IsBB = false;
3579     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3580     if (!MaybeRecord)
3581       return MaybeRecord.takeError();
3582     switch (MaybeRecord.get()) {
3583     default:  // Default behavior: unknown type.
3584       break;
3585     case bitc::USELIST_CODE_BB:
3586       IsBB = true;
3587       [[fallthrough]];
3588     case bitc::USELIST_CODE_DEFAULT: {
3589       unsigned RecordLength = Record.size();
3590       if (RecordLength < 3)
3591         // Records should have at least an ID and two indexes.
3592         return error("Invalid record");
3593       unsigned ID = Record.pop_back_val();
3594 
3595       Value *V;
3596       if (IsBB) {
3597         assert(ID < FunctionBBs.size() && "Basic block not found");
3598         V = FunctionBBs[ID];
3599       } else
3600         V = ValueList[ID];
3601       unsigned NumUses = 0;
3602       SmallDenseMap<const Use *, unsigned, 16> Order;
3603       for (const Use &U : V->materialized_uses()) {
3604         if (++NumUses > Record.size())
3605           break;
3606         Order[&U] = Record[NumUses - 1];
3607       }
3608       if (Order.size() != Record.size() || NumUses > Record.size())
3609         // Mismatches can happen if the functions are being materialized lazily
3610         // (out-of-order), or a value has been upgraded.
3611         break;
3612 
3613       V->sortUseList([&](const Use &L, const Use &R) {
3614         return Order.lookup(&L) < Order.lookup(&R);
3615       });
3616       break;
3617     }
3618     }
3619   }
3620 }
3621 
3622 /// When we see the block for metadata, remember where it is and then skip it.
3623 /// This lets us lazily deserialize the metadata.
3624 Error BitcodeReader::rememberAndSkipMetadata() {
3625   // Save the current stream state.
3626   uint64_t CurBit = Stream.GetCurrentBitNo();
3627   DeferredMetadataInfo.push_back(CurBit);
3628 
3629   // Skip over the block for now.
3630   if (Error Err = Stream.SkipBlock())
3631     return Err;
3632   return Error::success();
3633 }
3634 
3635 Error BitcodeReader::materializeMetadata() {
3636   for (uint64_t BitPos : DeferredMetadataInfo) {
3637     // Move the bit stream to the saved position.
3638     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3639       return JumpFailed;
3640     if (Error Err = MDLoader->parseModuleMetadata())
3641       return Err;
3642   }
3643 
3644   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3645   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3646   // multiple times.
3647   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3648     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3649       NamedMDNode *LinkerOpts =
3650           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3651       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3652         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3653     }
3654   }
3655 
3656   DeferredMetadataInfo.clear();
3657   return Error::success();
3658 }
3659 
3660 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3661 
3662 /// When we see the block for a function body, remember where it is and then
3663 /// skip it.  This lets us lazily deserialize the functions.
3664 Error BitcodeReader::rememberAndSkipFunctionBody() {
3665   // Get the function we are talking about.
3666   if (FunctionsWithBodies.empty())
3667     return error("Insufficient function protos");
3668 
3669   Function *Fn = FunctionsWithBodies.back();
3670   FunctionsWithBodies.pop_back();
3671 
3672   // Save the current stream state.
3673   uint64_t CurBit = Stream.GetCurrentBitNo();
3674   assert(
3675       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3676       "Mismatch between VST and scanned function offsets");
3677   DeferredFunctionInfo[Fn] = CurBit;
3678 
3679   // Skip over the function block for now.
3680   if (Error Err = Stream.SkipBlock())
3681     return Err;
3682   return Error::success();
3683 }
3684 
3685 Error BitcodeReader::globalCleanup() {
3686   // Patch the initializers for globals and aliases up.
3687   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3688     return Err;
3689   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3690     return error("Malformed global initializer set");
3691 
3692   // Look for intrinsic functions which need to be upgraded at some point
3693   // and functions that need to have their function attributes upgraded.
3694   for (Function &F : *TheModule) {
3695     MDLoader->upgradeDebugIntrinsics(F);
3696     Function *NewFn;
3697     if (UpgradeIntrinsicFunction(&F, NewFn))
3698       UpgradedIntrinsics[&F] = NewFn;
3699     // Look for functions that rely on old function attribute behavior.
3700     UpgradeFunctionAttributes(F);
3701   }
3702 
3703   // Look for global variables which need to be renamed.
3704   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3705   for (GlobalVariable &GV : TheModule->globals())
3706     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3707       UpgradedVariables.emplace_back(&GV, Upgraded);
3708   for (auto &Pair : UpgradedVariables) {
3709     Pair.first->eraseFromParent();
3710     TheModule->insertGlobalVariable(Pair.second);
3711   }
3712 
3713   // Force deallocation of memory for these vectors to favor the client that
3714   // want lazy deserialization.
3715   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3716   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3717   return Error::success();
3718 }
3719 
3720 /// Support for lazy parsing of function bodies. This is required if we
3721 /// either have an old bitcode file without a VST forward declaration record,
3722 /// or if we have an anonymous function being materialized, since anonymous
3723 /// functions do not have a name and are therefore not in the VST.
3724 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3725   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3726     return JumpFailed;
3727 
3728   if (Stream.AtEndOfStream())
3729     return error("Could not find function in stream");
3730 
3731   if (!SeenFirstFunctionBody)
3732     return error("Trying to materialize functions before seeing function blocks");
3733 
3734   // An old bitcode file with the symbol table at the end would have
3735   // finished the parse greedily.
3736   assert(SeenValueSymbolTable);
3737 
3738   SmallVector<uint64_t, 64> Record;
3739 
3740   while (true) {
3741     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3742     if (!MaybeEntry)
3743       return MaybeEntry.takeError();
3744     llvm::BitstreamEntry Entry = MaybeEntry.get();
3745 
3746     switch (Entry.Kind) {
3747     default:
3748       return error("Expect SubBlock");
3749     case BitstreamEntry::SubBlock:
3750       switch (Entry.ID) {
3751       default:
3752         return error("Expect function block");
3753       case bitc::FUNCTION_BLOCK_ID:
3754         if (Error Err = rememberAndSkipFunctionBody())
3755           return Err;
3756         NextUnreadBit = Stream.GetCurrentBitNo();
3757         return Error::success();
3758       }
3759     }
3760   }
3761 }
3762 
3763 Error BitcodeReaderBase::readBlockInfo() {
3764   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3765       Stream.ReadBlockInfoBlock();
3766   if (!MaybeNewBlockInfo)
3767     return MaybeNewBlockInfo.takeError();
3768   std::optional<BitstreamBlockInfo> NewBlockInfo =
3769       std::move(MaybeNewBlockInfo.get());
3770   if (!NewBlockInfo)
3771     return error("Malformed block");
3772   BlockInfo = std::move(*NewBlockInfo);
3773   return Error::success();
3774 }
3775 
3776 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3777   // v1: [selection_kind, name]
3778   // v2: [strtab_offset, strtab_size, selection_kind]
3779   StringRef Name;
3780   std::tie(Name, Record) = readNameFromStrtab(Record);
3781 
3782   if (Record.empty())
3783     return error("Invalid record");
3784   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3785   std::string OldFormatName;
3786   if (!UseStrtab) {
3787     if (Record.size() < 2)
3788       return error("Invalid record");
3789     unsigned ComdatNameSize = Record[1];
3790     if (ComdatNameSize > Record.size() - 2)
3791       return error("Comdat name size too large");
3792     OldFormatName.reserve(ComdatNameSize);
3793     for (unsigned i = 0; i != ComdatNameSize; ++i)
3794       OldFormatName += (char)Record[2 + i];
3795     Name = OldFormatName;
3796   }
3797   Comdat *C = TheModule->getOrInsertComdat(Name);
3798   C->setSelectionKind(SK);
3799   ComdatList.push_back(C);
3800   return Error::success();
3801 }
3802 
3803 static void inferDSOLocal(GlobalValue *GV) {
3804   // infer dso_local from linkage and visibility if it is not encoded.
3805   if (GV->hasLocalLinkage() ||
3806       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3807     GV->setDSOLocal(true);
3808 }
3809 
3810 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3811   GlobalValue::SanitizerMetadata Meta;
3812   if (V & (1 << 0))
3813     Meta.NoAddress = true;
3814   if (V & (1 << 1))
3815     Meta.NoHWAddress = true;
3816   if (V & (1 << 2))
3817     Meta.Memtag = true;
3818   if (V & (1 << 3))
3819     Meta.IsDynInit = true;
3820   return Meta;
3821 }
3822 
3823 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3824   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3825   // visibility, threadlocal, unnamed_addr, externally_initialized,
3826   // dllstorageclass, comdat, attributes, preemption specifier,
3827   // partition strtab offset, partition strtab size] (name in VST)
3828   // v2: [strtab_offset, strtab_size, v1]
3829   StringRef Name;
3830   std::tie(Name, Record) = readNameFromStrtab(Record);
3831 
3832   if (Record.size() < 6)
3833     return error("Invalid record");
3834   unsigned TyID = Record[0];
3835   Type *Ty = getTypeByID(TyID);
3836   if (!Ty)
3837     return error("Invalid record");
3838   bool isConstant = Record[1] & 1;
3839   bool explicitType = Record[1] & 2;
3840   unsigned AddressSpace;
3841   if (explicitType) {
3842     AddressSpace = Record[1] >> 2;
3843   } else {
3844     if (!Ty->isPointerTy())
3845       return error("Invalid type for value");
3846     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3847     TyID = getContainedTypeID(TyID);
3848     Ty = getTypeByID(TyID);
3849     if (!Ty)
3850       return error("Missing element type for old-style global");
3851   }
3852 
3853   uint64_t RawLinkage = Record[3];
3854   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3855   MaybeAlign Alignment;
3856   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3857     return Err;
3858   std::string Section;
3859   if (Record[5]) {
3860     if (Record[5] - 1 >= SectionTable.size())
3861       return error("Invalid ID");
3862     Section = SectionTable[Record[5] - 1];
3863   }
3864   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3865   // Local linkage must have default visibility.
3866   // auto-upgrade `hidden` and `protected` for old bitcode.
3867   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3868     Visibility = getDecodedVisibility(Record[6]);
3869 
3870   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3871   if (Record.size() > 7)
3872     TLM = getDecodedThreadLocalMode(Record[7]);
3873 
3874   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3875   if (Record.size() > 8)
3876     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3877 
3878   bool ExternallyInitialized = false;
3879   if (Record.size() > 9)
3880     ExternallyInitialized = Record[9];
3881 
3882   GlobalVariable *NewGV =
3883       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3884                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3885   if (Alignment)
3886     NewGV->setAlignment(*Alignment);
3887   if (!Section.empty())
3888     NewGV->setSection(Section);
3889   NewGV->setVisibility(Visibility);
3890   NewGV->setUnnamedAddr(UnnamedAddr);
3891 
3892   if (Record.size() > 10) {
3893     // A GlobalValue with local linkage cannot have a DLL storage class.
3894     if (!NewGV->hasLocalLinkage()) {
3895       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3896     }
3897   } else {
3898     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3899   }
3900 
3901   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3902 
3903   // Remember which value to use for the global initializer.
3904   if (unsigned InitID = Record[2])
3905     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3906 
3907   if (Record.size() > 11) {
3908     if (unsigned ComdatID = Record[11]) {
3909       if (ComdatID > ComdatList.size())
3910         return error("Invalid global variable comdat ID");
3911       NewGV->setComdat(ComdatList[ComdatID - 1]);
3912     }
3913   } else if (hasImplicitComdat(RawLinkage)) {
3914     ImplicitComdatObjects.insert(NewGV);
3915   }
3916 
3917   if (Record.size() > 12) {
3918     auto AS = getAttributes(Record[12]).getFnAttrs();
3919     NewGV->setAttributes(AS);
3920   }
3921 
3922   if (Record.size() > 13) {
3923     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3924   }
3925   inferDSOLocal(NewGV);
3926 
3927   // Check whether we have enough values to read a partition name.
3928   if (Record.size() > 15)
3929     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3930 
3931   if (Record.size() > 16 && Record[16]) {
3932     llvm::GlobalValue::SanitizerMetadata Meta =
3933         deserializeSanitizerMetadata(Record[16]);
3934     NewGV->setSanitizerMetadata(Meta);
3935   }
3936 
3937   return Error::success();
3938 }
3939 
3940 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3941   if (ValueTypeCallback) {
3942     (*ValueTypeCallback)(
3943         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3944         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3945   }
3946 }
3947 
3948 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3949   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3950   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3951   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3952   // v2: [strtab_offset, strtab_size, v1]
3953   StringRef Name;
3954   std::tie(Name, Record) = readNameFromStrtab(Record);
3955 
3956   if (Record.size() < 8)
3957     return error("Invalid record");
3958   unsigned FTyID = Record[0];
3959   Type *FTy = getTypeByID(FTyID);
3960   if (!FTy)
3961     return error("Invalid record");
3962   if (isa<PointerType>(FTy)) {
3963     FTyID = getContainedTypeID(FTyID, 0);
3964     FTy = getTypeByID(FTyID);
3965     if (!FTy)
3966       return error("Missing element type for old-style function");
3967   }
3968 
3969   if (!isa<FunctionType>(FTy))
3970     return error("Invalid type for value");
3971   auto CC = static_cast<CallingConv::ID>(Record[1]);
3972   if (CC & ~CallingConv::MaxID)
3973     return error("Invalid calling convention ID");
3974 
3975   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3976   if (Record.size() > 16)
3977     AddrSpace = Record[16];
3978 
3979   Function *Func =
3980       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3981                        AddrSpace, Name, TheModule);
3982 
3983   assert(Func->getFunctionType() == FTy &&
3984          "Incorrect fully specified type provided for function");
3985   FunctionTypeIDs[Func] = FTyID;
3986 
3987   Func->setCallingConv(CC);
3988   bool isProto = Record[2];
3989   uint64_t RawLinkage = Record[3];
3990   Func->setLinkage(getDecodedLinkage(RawLinkage));
3991   Func->setAttributes(getAttributes(Record[4]));
3992   callValueTypeCallback(Func, FTyID);
3993 
3994   // Upgrade any old-style byval or sret without a type by propagating the
3995   // argument's pointee type. There should be no opaque pointers where the byval
3996   // type is implicit.
3997   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3998     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3999                                      Attribute::InAlloca}) {
4000       if (!Func->hasParamAttribute(i, Kind))
4001         continue;
4002 
4003       if (Func->getParamAttribute(i, Kind).getValueAsType())
4004         continue;
4005 
4006       Func->removeParamAttr(i, Kind);
4007 
4008       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4009       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4010       if (!PtrEltTy)
4011         return error("Missing param element type for attribute upgrade");
4012 
4013       Attribute NewAttr;
4014       switch (Kind) {
4015       case Attribute::ByVal:
4016         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4017         break;
4018       case Attribute::StructRet:
4019         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4020         break;
4021       case Attribute::InAlloca:
4022         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4023         break;
4024       default:
4025         llvm_unreachable("not an upgraded type attribute");
4026       }
4027 
4028       Func->addParamAttr(i, NewAttr);
4029     }
4030   }
4031 
4032   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4033       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4034     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4035     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4036     if (!ByValTy)
4037       return error("Missing param element type for x86_intrcc upgrade");
4038     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4039     Func->addParamAttr(0, NewAttr);
4040   }
4041 
4042   MaybeAlign Alignment;
4043   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4044     return Err;
4045   if (Alignment)
4046     Func->setAlignment(*Alignment);
4047   if (Record[6]) {
4048     if (Record[6] - 1 >= SectionTable.size())
4049       return error("Invalid ID");
4050     Func->setSection(SectionTable[Record[6] - 1]);
4051   }
4052   // Local linkage must have default visibility.
4053   // auto-upgrade `hidden` and `protected` for old bitcode.
4054   if (!Func->hasLocalLinkage())
4055     Func->setVisibility(getDecodedVisibility(Record[7]));
4056   if (Record.size() > 8 && Record[8]) {
4057     if (Record[8] - 1 >= GCTable.size())
4058       return error("Invalid ID");
4059     Func->setGC(GCTable[Record[8] - 1]);
4060   }
4061   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4062   if (Record.size() > 9)
4063     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4064   Func->setUnnamedAddr(UnnamedAddr);
4065 
4066   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4067   if (Record.size() > 10)
4068     OperandInfo.Prologue = Record[10];
4069 
4070   if (Record.size() > 11) {
4071     // A GlobalValue with local linkage cannot have a DLL storage class.
4072     if (!Func->hasLocalLinkage()) {
4073       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4074     }
4075   } else {
4076     upgradeDLLImportExportLinkage(Func, RawLinkage);
4077   }
4078 
4079   if (Record.size() > 12) {
4080     if (unsigned ComdatID = Record[12]) {
4081       if (ComdatID > ComdatList.size())
4082         return error("Invalid function comdat ID");
4083       Func->setComdat(ComdatList[ComdatID - 1]);
4084     }
4085   } else if (hasImplicitComdat(RawLinkage)) {
4086     ImplicitComdatObjects.insert(Func);
4087   }
4088 
4089   if (Record.size() > 13)
4090     OperandInfo.Prefix = Record[13];
4091 
4092   if (Record.size() > 14)
4093     OperandInfo.PersonalityFn = Record[14];
4094 
4095   if (Record.size() > 15) {
4096     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4097   }
4098   inferDSOLocal(Func);
4099 
4100   // Record[16] is the address space number.
4101 
4102   // Check whether we have enough values to read a partition name. Also make
4103   // sure Strtab has enough values.
4104   if (Record.size() > 18 && Strtab.data() &&
4105       Record[17] + Record[18] <= Strtab.size()) {
4106     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4107   }
4108 
4109   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4110 
4111   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4112     FunctionOperands.push_back(OperandInfo);
4113 
4114   // If this is a function with a body, remember the prototype we are
4115   // creating now, so that we can match up the body with them later.
4116   if (!isProto) {
4117     Func->setIsMaterializable(true);
4118     FunctionsWithBodies.push_back(Func);
4119     DeferredFunctionInfo[Func] = 0;
4120   }
4121   return Error::success();
4122 }
4123 
4124 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4125     unsigned BitCode, ArrayRef<uint64_t> Record) {
4126   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4127   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4128   // dllstorageclass, threadlocal, unnamed_addr,
4129   // preemption specifier] (name in VST)
4130   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4131   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4132   // preemption specifier] (name in VST)
4133   // v2: [strtab_offset, strtab_size, v1]
4134   StringRef Name;
4135   std::tie(Name, Record) = readNameFromStrtab(Record);
4136 
4137   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4138   if (Record.size() < (3 + (unsigned)NewRecord))
4139     return error("Invalid record");
4140   unsigned OpNum = 0;
4141   unsigned TypeID = Record[OpNum++];
4142   Type *Ty = getTypeByID(TypeID);
4143   if (!Ty)
4144     return error("Invalid record");
4145 
4146   unsigned AddrSpace;
4147   if (!NewRecord) {
4148     auto *PTy = dyn_cast<PointerType>(Ty);
4149     if (!PTy)
4150       return error("Invalid type for value");
4151     AddrSpace = PTy->getAddressSpace();
4152     TypeID = getContainedTypeID(TypeID);
4153     Ty = getTypeByID(TypeID);
4154     if (!Ty)
4155       return error("Missing element type for old-style indirect symbol");
4156   } else {
4157     AddrSpace = Record[OpNum++];
4158   }
4159 
4160   auto Val = Record[OpNum++];
4161   auto Linkage = Record[OpNum++];
4162   GlobalValue *NewGA;
4163   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4164       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4165     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4166                                 TheModule);
4167   else
4168     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4169                                 nullptr, TheModule);
4170 
4171   // Local linkage must have default visibility.
4172   // auto-upgrade `hidden` and `protected` for old bitcode.
4173   if (OpNum != Record.size()) {
4174     auto VisInd = OpNum++;
4175     if (!NewGA->hasLocalLinkage())
4176       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4177   }
4178   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4179       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4180     if (OpNum != Record.size()) {
4181       auto S = Record[OpNum++];
4182       // A GlobalValue with local linkage cannot have a DLL storage class.
4183       if (!NewGA->hasLocalLinkage())
4184         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4185     }
4186     else
4187       upgradeDLLImportExportLinkage(NewGA, Linkage);
4188     if (OpNum != Record.size())
4189       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4190     if (OpNum != Record.size())
4191       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4192   }
4193   if (OpNum != Record.size())
4194     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4195   inferDSOLocal(NewGA);
4196 
4197   // Check whether we have enough values to read a partition name.
4198   if (OpNum + 1 < Record.size()) {
4199     NewGA->setPartition(
4200         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4201     OpNum += 2;
4202   }
4203 
4204   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4205   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4206   return Error::success();
4207 }
4208 
4209 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4210                                  bool ShouldLazyLoadMetadata,
4211                                  ParserCallbacks Callbacks) {
4212   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4213   if (ResumeBit) {
4214     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4215       return JumpFailed;
4216   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4217     return Err;
4218 
4219   SmallVector<uint64_t, 64> Record;
4220 
4221   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4222   // finalize the datalayout before we run any of that code.
4223   bool ResolvedDataLayout = false;
4224   // In order to support importing modules with illegal data layout strings,
4225   // delay parsing the data layout string until after upgrades and overrides
4226   // have been applied, allowing to fix illegal data layout strings.
4227   // Initialize to the current module's layout string in case none is specified.
4228   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4229 
4230   auto ResolveDataLayout = [&]() -> Error {
4231     if (ResolvedDataLayout)
4232       return Error::success();
4233 
4234     // Datalayout and triple can't be parsed after this point.
4235     ResolvedDataLayout = true;
4236 
4237     // Auto-upgrade the layout string
4238     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4239         TentativeDataLayoutStr, TheModule->getTargetTriple());
4240 
4241     // Apply override
4242     if (Callbacks.DataLayout) {
4243       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4244               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4245         TentativeDataLayoutStr = *LayoutOverride;
4246     }
4247 
4248     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4249     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4250     if (!MaybeDL)
4251       return MaybeDL.takeError();
4252 
4253     TheModule->setDataLayout(MaybeDL.get());
4254     return Error::success();
4255   };
4256 
4257   // Read all the records for this module.
4258   while (true) {
4259     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4260     if (!MaybeEntry)
4261       return MaybeEntry.takeError();
4262     llvm::BitstreamEntry Entry = MaybeEntry.get();
4263 
4264     switch (Entry.Kind) {
4265     case BitstreamEntry::Error:
4266       return error("Malformed block");
4267     case BitstreamEntry::EndBlock:
4268       if (Error Err = ResolveDataLayout())
4269         return Err;
4270       return globalCleanup();
4271 
4272     case BitstreamEntry::SubBlock:
4273       switch (Entry.ID) {
4274       default:  // Skip unknown content.
4275         if (Error Err = Stream.SkipBlock())
4276           return Err;
4277         break;
4278       case bitc::BLOCKINFO_BLOCK_ID:
4279         if (Error Err = readBlockInfo())
4280           return Err;
4281         break;
4282       case bitc::PARAMATTR_BLOCK_ID:
4283         if (Error Err = parseAttributeBlock())
4284           return Err;
4285         break;
4286       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4287         if (Error Err = parseAttributeGroupBlock())
4288           return Err;
4289         break;
4290       case bitc::TYPE_BLOCK_ID_NEW:
4291         if (Error Err = parseTypeTable())
4292           return Err;
4293         break;
4294       case bitc::VALUE_SYMTAB_BLOCK_ID:
4295         if (!SeenValueSymbolTable) {
4296           // Either this is an old form VST without function index and an
4297           // associated VST forward declaration record (which would have caused
4298           // the VST to be jumped to and parsed before it was encountered
4299           // normally in the stream), or there were no function blocks to
4300           // trigger an earlier parsing of the VST.
4301           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4302           if (Error Err = parseValueSymbolTable())
4303             return Err;
4304           SeenValueSymbolTable = true;
4305         } else {
4306           // We must have had a VST forward declaration record, which caused
4307           // the parser to jump to and parse the VST earlier.
4308           assert(VSTOffset > 0);
4309           if (Error Err = Stream.SkipBlock())
4310             return Err;
4311         }
4312         break;
4313       case bitc::CONSTANTS_BLOCK_ID:
4314         if (Error Err = parseConstants())
4315           return Err;
4316         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4317           return Err;
4318         break;
4319       case bitc::METADATA_BLOCK_ID:
4320         if (ShouldLazyLoadMetadata) {
4321           if (Error Err = rememberAndSkipMetadata())
4322             return Err;
4323           break;
4324         }
4325         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4326         if (Error Err = MDLoader->parseModuleMetadata())
4327           return Err;
4328         break;
4329       case bitc::METADATA_KIND_BLOCK_ID:
4330         if (Error Err = MDLoader->parseMetadataKinds())
4331           return Err;
4332         break;
4333       case bitc::FUNCTION_BLOCK_ID:
4334         if (Error Err = ResolveDataLayout())
4335           return Err;
4336 
4337         // If this is the first function body we've seen, reverse the
4338         // FunctionsWithBodies list.
4339         if (!SeenFirstFunctionBody) {
4340           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4341           if (Error Err = globalCleanup())
4342             return Err;
4343           SeenFirstFunctionBody = true;
4344         }
4345 
4346         if (VSTOffset > 0) {
4347           // If we have a VST forward declaration record, make sure we
4348           // parse the VST now if we haven't already. It is needed to
4349           // set up the DeferredFunctionInfo vector for lazy reading.
4350           if (!SeenValueSymbolTable) {
4351             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4352               return Err;
4353             SeenValueSymbolTable = true;
4354             // Fall through so that we record the NextUnreadBit below.
4355             // This is necessary in case we have an anonymous function that
4356             // is later materialized. Since it will not have a VST entry we
4357             // need to fall back to the lazy parse to find its offset.
4358           } else {
4359             // If we have a VST forward declaration record, but have already
4360             // parsed the VST (just above, when the first function body was
4361             // encountered here), then we are resuming the parse after
4362             // materializing functions. The ResumeBit points to the
4363             // start of the last function block recorded in the
4364             // DeferredFunctionInfo map. Skip it.
4365             if (Error Err = Stream.SkipBlock())
4366               return Err;
4367             continue;
4368           }
4369         }
4370 
4371         // Support older bitcode files that did not have the function
4372         // index in the VST, nor a VST forward declaration record, as
4373         // well as anonymous functions that do not have VST entries.
4374         // Build the DeferredFunctionInfo vector on the fly.
4375         if (Error Err = rememberAndSkipFunctionBody())
4376           return Err;
4377 
4378         // Suspend parsing when we reach the function bodies. Subsequent
4379         // materialization calls will resume it when necessary. If the bitcode
4380         // file is old, the symbol table will be at the end instead and will not
4381         // have been seen yet. In this case, just finish the parse now.
4382         if (SeenValueSymbolTable) {
4383           NextUnreadBit = Stream.GetCurrentBitNo();
4384           // After the VST has been parsed, we need to make sure intrinsic name
4385           // are auto-upgraded.
4386           return globalCleanup();
4387         }
4388         break;
4389       case bitc::USELIST_BLOCK_ID:
4390         if (Error Err = parseUseLists())
4391           return Err;
4392         break;
4393       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4394         if (Error Err = parseOperandBundleTags())
4395           return Err;
4396         break;
4397       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4398         if (Error Err = parseSyncScopeNames())
4399           return Err;
4400         break;
4401       }
4402       continue;
4403 
4404     case BitstreamEntry::Record:
4405       // The interesting case.
4406       break;
4407     }
4408 
4409     // Read a record.
4410     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4411     if (!MaybeBitCode)
4412       return MaybeBitCode.takeError();
4413     switch (unsigned BitCode = MaybeBitCode.get()) {
4414     default: break;  // Default behavior, ignore unknown content.
4415     case bitc::MODULE_CODE_VERSION: {
4416       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4417       if (!VersionOrErr)
4418         return VersionOrErr.takeError();
4419       UseRelativeIDs = *VersionOrErr >= 1;
4420       break;
4421     }
4422     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4423       if (ResolvedDataLayout)
4424         return error("target triple too late in module");
4425       std::string S;
4426       if (convertToString(Record, 0, S))
4427         return error("Invalid record");
4428       TheModule->setTargetTriple(S);
4429       break;
4430     }
4431     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4432       if (ResolvedDataLayout)
4433         return error("datalayout too late in module");
4434       if (convertToString(Record, 0, TentativeDataLayoutStr))
4435         return error("Invalid record");
4436       break;
4437     }
4438     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4439       std::string S;
4440       if (convertToString(Record, 0, S))
4441         return error("Invalid record");
4442       TheModule->setModuleInlineAsm(S);
4443       break;
4444     }
4445     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4446       // Deprecated, but still needed to read old bitcode files.
4447       std::string S;
4448       if (convertToString(Record, 0, S))
4449         return error("Invalid record");
4450       // Ignore value.
4451       break;
4452     }
4453     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4454       std::string S;
4455       if (convertToString(Record, 0, S))
4456         return error("Invalid record");
4457       SectionTable.push_back(S);
4458       break;
4459     }
4460     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4461       std::string S;
4462       if (convertToString(Record, 0, S))
4463         return error("Invalid record");
4464       GCTable.push_back(S);
4465       break;
4466     }
4467     case bitc::MODULE_CODE_COMDAT:
4468       if (Error Err = parseComdatRecord(Record))
4469         return Err;
4470       break;
4471     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4472     // written by ThinLinkBitcodeWriter. See
4473     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4474     // record
4475     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4476     case bitc::MODULE_CODE_GLOBALVAR:
4477       if (Error Err = parseGlobalVarRecord(Record))
4478         return Err;
4479       break;
4480     case bitc::MODULE_CODE_FUNCTION:
4481       if (Error Err = ResolveDataLayout())
4482         return Err;
4483       if (Error Err = parseFunctionRecord(Record))
4484         return Err;
4485       break;
4486     case bitc::MODULE_CODE_IFUNC:
4487     case bitc::MODULE_CODE_ALIAS:
4488     case bitc::MODULE_CODE_ALIAS_OLD:
4489       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4490         return Err;
4491       break;
4492     /// MODULE_CODE_VSTOFFSET: [offset]
4493     case bitc::MODULE_CODE_VSTOFFSET:
4494       if (Record.empty())
4495         return error("Invalid record");
4496       // Note that we subtract 1 here because the offset is relative to one word
4497       // before the start of the identification or module block, which was
4498       // historically always the start of the regular bitcode header.
4499       VSTOffset = Record[0] - 1;
4500       break;
4501     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4502     case bitc::MODULE_CODE_SOURCE_FILENAME:
4503       SmallString<128> ValueName;
4504       if (convertToString(Record, 0, ValueName))
4505         return error("Invalid record");
4506       TheModule->setSourceFileName(ValueName);
4507       break;
4508     }
4509     Record.clear();
4510   }
4511   this->ValueTypeCallback = std::nullopt;
4512   return Error::success();
4513 }
4514 
4515 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4516                                       bool IsImporting,
4517                                       ParserCallbacks Callbacks) {
4518   TheModule = M;
4519   MetadataLoaderCallbacks MDCallbacks;
4520   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4521   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4522     return getContainedTypeID(I, J);
4523   };
4524   MDCallbacks.MDType = Callbacks.MDType;
4525   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4526   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4527 }
4528 
4529 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4530   if (!isa<PointerType>(PtrType))
4531     return error("Load/Store operand is not a pointer type");
4532 
4533   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4534     return error("Explicit load/store type does not match pointee "
4535                  "type of pointer operand");
4536   if (!PointerType::isLoadableOrStorableType(ValType))
4537     return error("Cannot load/store from pointer");
4538   return Error::success();
4539 }
4540 
4541 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4542                                              ArrayRef<unsigned> ArgTyIDs) {
4543   AttributeList Attrs = CB->getAttributes();
4544   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4545     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4546                                      Attribute::InAlloca}) {
4547       if (!Attrs.hasParamAttr(i, Kind) ||
4548           Attrs.getParamAttr(i, Kind).getValueAsType())
4549         continue;
4550 
4551       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4552       if (!PtrEltTy)
4553         return error("Missing element type for typed attribute upgrade");
4554 
4555       Attribute NewAttr;
4556       switch (Kind) {
4557       case Attribute::ByVal:
4558         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4559         break;
4560       case Attribute::StructRet:
4561         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4562         break;
4563       case Attribute::InAlloca:
4564         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4565         break;
4566       default:
4567         llvm_unreachable("not an upgraded type attribute");
4568       }
4569 
4570       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4571     }
4572   }
4573 
4574   if (CB->isInlineAsm()) {
4575     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4576     unsigned ArgNo = 0;
4577     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4578       if (!CI.hasArg())
4579         continue;
4580 
4581       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4582         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4583         if (!ElemTy)
4584           return error("Missing element type for inline asm upgrade");
4585         Attrs = Attrs.addParamAttribute(
4586             Context, ArgNo,
4587             Attribute::get(Context, Attribute::ElementType, ElemTy));
4588       }
4589 
4590       ArgNo++;
4591     }
4592   }
4593 
4594   switch (CB->getIntrinsicID()) {
4595   case Intrinsic::preserve_array_access_index:
4596   case Intrinsic::preserve_struct_access_index:
4597   case Intrinsic::aarch64_ldaxr:
4598   case Intrinsic::aarch64_ldxr:
4599   case Intrinsic::aarch64_stlxr:
4600   case Intrinsic::aarch64_stxr:
4601   case Intrinsic::arm_ldaex:
4602   case Intrinsic::arm_ldrex:
4603   case Intrinsic::arm_stlex:
4604   case Intrinsic::arm_strex: {
4605     unsigned ArgNo;
4606     switch (CB->getIntrinsicID()) {
4607     case Intrinsic::aarch64_stlxr:
4608     case Intrinsic::aarch64_stxr:
4609     case Intrinsic::arm_stlex:
4610     case Intrinsic::arm_strex:
4611       ArgNo = 1;
4612       break;
4613     default:
4614       ArgNo = 0;
4615       break;
4616     }
4617     if (!Attrs.getParamElementType(ArgNo)) {
4618       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4619       if (!ElTy)
4620         return error("Missing element type for elementtype upgrade");
4621       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4622       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4623     }
4624     break;
4625   }
4626   default:
4627     break;
4628   }
4629 
4630   CB->setAttributes(Attrs);
4631   return Error::success();
4632 }
4633 
4634 /// Lazily parse the specified function body block.
4635 Error BitcodeReader::parseFunctionBody(Function *F) {
4636   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4637     return Err;
4638 
4639   // Unexpected unresolved metadata when parsing function.
4640   if (MDLoader->hasFwdRefs())
4641     return error("Invalid function metadata: incoming forward references");
4642 
4643   InstructionList.clear();
4644   unsigned ModuleValueListSize = ValueList.size();
4645   unsigned ModuleMDLoaderSize = MDLoader->size();
4646 
4647   // Add all the function arguments to the value table.
4648   unsigned ArgNo = 0;
4649   unsigned FTyID = FunctionTypeIDs[F];
4650   for (Argument &I : F->args()) {
4651     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4652     assert(I.getType() == getTypeByID(ArgTyID) &&
4653            "Incorrect fully specified type for Function Argument");
4654     ValueList.push_back(&I, ArgTyID);
4655     ++ArgNo;
4656   }
4657   unsigned NextValueNo = ValueList.size();
4658   BasicBlock *CurBB = nullptr;
4659   unsigned CurBBNo = 0;
4660   // Block into which constant expressions from phi nodes are materialized.
4661   BasicBlock *PhiConstExprBB = nullptr;
4662   // Edge blocks for phi nodes into which constant expressions have been
4663   // expanded.
4664   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4665     ConstExprEdgeBBs;
4666 
4667   DebugLoc LastLoc;
4668   auto getLastInstruction = [&]() -> Instruction * {
4669     if (CurBB && !CurBB->empty())
4670       return &CurBB->back();
4671     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4672              !FunctionBBs[CurBBNo - 1]->empty())
4673       return &FunctionBBs[CurBBNo - 1]->back();
4674     return nullptr;
4675   };
4676 
4677   std::vector<OperandBundleDef> OperandBundles;
4678 
4679   // Read all the records.
4680   SmallVector<uint64_t, 64> Record;
4681 
4682   while (true) {
4683     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4684     if (!MaybeEntry)
4685       return MaybeEntry.takeError();
4686     llvm::BitstreamEntry Entry = MaybeEntry.get();
4687 
4688     switch (Entry.Kind) {
4689     case BitstreamEntry::Error:
4690       return error("Malformed block");
4691     case BitstreamEntry::EndBlock:
4692       goto OutOfRecordLoop;
4693 
4694     case BitstreamEntry::SubBlock:
4695       switch (Entry.ID) {
4696       default:  // Skip unknown content.
4697         if (Error Err = Stream.SkipBlock())
4698           return Err;
4699         break;
4700       case bitc::CONSTANTS_BLOCK_ID:
4701         if (Error Err = parseConstants())
4702           return Err;
4703         NextValueNo = ValueList.size();
4704         break;
4705       case bitc::VALUE_SYMTAB_BLOCK_ID:
4706         if (Error Err = parseValueSymbolTable())
4707           return Err;
4708         break;
4709       case bitc::METADATA_ATTACHMENT_ID:
4710         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4711           return Err;
4712         break;
4713       case bitc::METADATA_BLOCK_ID:
4714         assert(DeferredMetadataInfo.empty() &&
4715                "Must read all module-level metadata before function-level");
4716         if (Error Err = MDLoader->parseFunctionMetadata())
4717           return Err;
4718         break;
4719       case bitc::USELIST_BLOCK_ID:
4720         if (Error Err = parseUseLists())
4721           return Err;
4722         break;
4723       }
4724       continue;
4725 
4726     case BitstreamEntry::Record:
4727       // The interesting case.
4728       break;
4729     }
4730 
4731     // Read a record.
4732     Record.clear();
4733     Instruction *I = nullptr;
4734     unsigned ResTypeID = InvalidTypeID;
4735     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4736     if (!MaybeBitCode)
4737       return MaybeBitCode.takeError();
4738     switch (unsigned BitCode = MaybeBitCode.get()) {
4739     default: // Default behavior: reject
4740       return error("Invalid value");
4741     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4742       if (Record.empty() || Record[0] == 0)
4743         return error("Invalid record");
4744       // Create all the basic blocks for the function.
4745       FunctionBBs.resize(Record[0]);
4746 
4747       // See if anything took the address of blocks in this function.
4748       auto BBFRI = BasicBlockFwdRefs.find(F);
4749       if (BBFRI == BasicBlockFwdRefs.end()) {
4750         for (BasicBlock *&BB : FunctionBBs)
4751           BB = BasicBlock::Create(Context, "", F);
4752       } else {
4753         auto &BBRefs = BBFRI->second;
4754         // Check for invalid basic block references.
4755         if (BBRefs.size() > FunctionBBs.size())
4756           return error("Invalid ID");
4757         assert(!BBRefs.empty() && "Unexpected empty array");
4758         assert(!BBRefs.front() && "Invalid reference to entry block");
4759         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4760              ++I)
4761           if (I < RE && BBRefs[I]) {
4762             BBRefs[I]->insertInto(F);
4763             FunctionBBs[I] = BBRefs[I];
4764           } else {
4765             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4766           }
4767 
4768         // Erase from the table.
4769         BasicBlockFwdRefs.erase(BBFRI);
4770       }
4771 
4772       CurBB = FunctionBBs[0];
4773       continue;
4774     }
4775 
4776     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4777       // The record should not be emitted if it's an empty list.
4778       if (Record.empty())
4779         return error("Invalid record");
4780       // When we have the RARE case of a BlockAddress Constant that is not
4781       // scoped to the Function it refers to, we need to conservatively
4782       // materialize the referred to Function, regardless of whether or not
4783       // that Function will ultimately be linked, otherwise users of
4784       // BitcodeReader might start splicing out Function bodies such that we
4785       // might no longer be able to materialize the BlockAddress since the
4786       // BasicBlock (and entire body of the Function) the BlockAddress refers
4787       // to may have been moved. In the case that the user of BitcodeReader
4788       // decides ultimately not to link the Function body, materializing here
4789       // could be considered wasteful, but it's better than a deserialization
4790       // failure as described. This keeps BitcodeReader unaware of complex
4791       // linkage policy decisions such as those use by LTO, leaving those
4792       // decisions "one layer up."
4793       for (uint64_t ValID : Record)
4794         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4795           BackwardRefFunctions.push_back(F);
4796         else
4797           return error("Invalid record");
4798 
4799       continue;
4800 
4801     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4802       // This record indicates that the last instruction is at the same
4803       // location as the previous instruction with a location.
4804       I = getLastInstruction();
4805 
4806       if (!I)
4807         return error("Invalid record");
4808       I->setDebugLoc(LastLoc);
4809       I = nullptr;
4810       continue;
4811 
4812     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4813       I = getLastInstruction();
4814       if (!I || Record.size() < 4)
4815         return error("Invalid record");
4816 
4817       unsigned Line = Record[0], Col = Record[1];
4818       unsigned ScopeID = Record[2], IAID = Record[3];
4819       bool isImplicitCode = Record.size() == 5 && Record[4];
4820 
4821       MDNode *Scope = nullptr, *IA = nullptr;
4822       if (ScopeID) {
4823         Scope = dyn_cast_or_null<MDNode>(
4824             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4825         if (!Scope)
4826           return error("Invalid record");
4827       }
4828       if (IAID) {
4829         IA = dyn_cast_or_null<MDNode>(
4830             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4831         if (!IA)
4832           return error("Invalid record");
4833       }
4834       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4835                                 isImplicitCode);
4836       I->setDebugLoc(LastLoc);
4837       I = nullptr;
4838       continue;
4839     }
4840     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4841       unsigned OpNum = 0;
4842       Value *LHS;
4843       unsigned TypeID;
4844       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4845           OpNum+1 > Record.size())
4846         return error("Invalid record");
4847 
4848       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4849       if (Opc == -1)
4850         return error("Invalid record");
4851       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4852       ResTypeID = TypeID;
4853       InstructionList.push_back(I);
4854       if (OpNum < Record.size()) {
4855         if (isa<FPMathOperator>(I)) {
4856           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4857           if (FMF.any())
4858             I->setFastMathFlags(FMF);
4859         }
4860       }
4861       break;
4862     }
4863     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4864       unsigned OpNum = 0;
4865       Value *LHS, *RHS;
4866       unsigned TypeID;
4867       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4868           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4869                    CurBB) ||
4870           OpNum+1 > Record.size())
4871         return error("Invalid record");
4872 
4873       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4874       if (Opc == -1)
4875         return error("Invalid record");
4876       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4877       ResTypeID = TypeID;
4878       InstructionList.push_back(I);
4879       if (OpNum < Record.size()) {
4880         if (Opc == Instruction::Add ||
4881             Opc == Instruction::Sub ||
4882             Opc == Instruction::Mul ||
4883             Opc == Instruction::Shl) {
4884           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4885             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4886           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4887             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4888         } else if (Opc == Instruction::SDiv ||
4889                    Opc == Instruction::UDiv ||
4890                    Opc == Instruction::LShr ||
4891                    Opc == Instruction::AShr) {
4892           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4893             cast<BinaryOperator>(I)->setIsExact(true);
4894         } else if (isa<FPMathOperator>(I)) {
4895           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4896           if (FMF.any())
4897             I->setFastMathFlags(FMF);
4898         }
4899 
4900       }
4901       break;
4902     }
4903     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4904       unsigned OpNum = 0;
4905       Value *Op;
4906       unsigned OpTypeID;
4907       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4908           OpNum+2 != Record.size())
4909         return error("Invalid record");
4910 
4911       ResTypeID = Record[OpNum];
4912       Type *ResTy = getTypeByID(ResTypeID);
4913       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4914       if (Opc == -1 || !ResTy)
4915         return error("Invalid record");
4916       Instruction *Temp = nullptr;
4917       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4918         if (Temp) {
4919           InstructionList.push_back(Temp);
4920           assert(CurBB && "No current BB?");
4921           Temp->insertInto(CurBB, CurBB->end());
4922         }
4923       } else {
4924         auto CastOp = (Instruction::CastOps)Opc;
4925         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4926           return error("Invalid cast");
4927         I = CastInst::Create(CastOp, Op, ResTy);
4928       }
4929       InstructionList.push_back(I);
4930       break;
4931     }
4932     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4933     case bitc::FUNC_CODE_INST_GEP_OLD:
4934     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4935       unsigned OpNum = 0;
4936 
4937       unsigned TyID;
4938       Type *Ty;
4939       bool InBounds;
4940 
4941       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4942         InBounds = Record[OpNum++];
4943         TyID = Record[OpNum++];
4944         Ty = getTypeByID(TyID);
4945       } else {
4946         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4947         TyID = InvalidTypeID;
4948         Ty = nullptr;
4949       }
4950 
4951       Value *BasePtr;
4952       unsigned BasePtrTypeID;
4953       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4954                            CurBB))
4955         return error("Invalid record");
4956 
4957       if (!Ty) {
4958         TyID = getContainedTypeID(BasePtrTypeID);
4959         if (BasePtr->getType()->isVectorTy())
4960           TyID = getContainedTypeID(TyID);
4961         Ty = getTypeByID(TyID);
4962       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4963                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4964         return error(
4965             "Explicit gep type does not match pointee type of pointer operand");
4966       }
4967 
4968       SmallVector<Value*, 16> GEPIdx;
4969       while (OpNum != Record.size()) {
4970         Value *Op;
4971         unsigned OpTypeID;
4972         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4973           return error("Invalid record");
4974         GEPIdx.push_back(Op);
4975       }
4976 
4977       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4978 
4979       ResTypeID = TyID;
4980       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4981         auto GTI = std::next(gep_type_begin(I));
4982         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4983           unsigned SubType = 0;
4984           if (GTI.isStruct()) {
4985             ConstantInt *IdxC =
4986                 Idx->getType()->isVectorTy()
4987                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4988                     : cast<ConstantInt>(Idx);
4989             SubType = IdxC->getZExtValue();
4990           }
4991           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4992           ++GTI;
4993         }
4994       }
4995 
4996       // At this point ResTypeID is the result element type. We need a pointer
4997       // or vector of pointer to it.
4998       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4999       if (I->getType()->isVectorTy())
5000         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5001 
5002       InstructionList.push_back(I);
5003       if (InBounds)
5004         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5005       break;
5006     }
5007 
5008     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5009                                        // EXTRACTVAL: [opty, opval, n x indices]
5010       unsigned OpNum = 0;
5011       Value *Agg;
5012       unsigned AggTypeID;
5013       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5014         return error("Invalid record");
5015       Type *Ty = Agg->getType();
5016 
5017       unsigned RecSize = Record.size();
5018       if (OpNum == RecSize)
5019         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5020 
5021       SmallVector<unsigned, 4> EXTRACTVALIdx;
5022       ResTypeID = AggTypeID;
5023       for (; OpNum != RecSize; ++OpNum) {
5024         bool IsArray = Ty->isArrayTy();
5025         bool IsStruct = Ty->isStructTy();
5026         uint64_t Index = Record[OpNum];
5027 
5028         if (!IsStruct && !IsArray)
5029           return error("EXTRACTVAL: Invalid type");
5030         if ((unsigned)Index != Index)
5031           return error("Invalid value");
5032         if (IsStruct && Index >= Ty->getStructNumElements())
5033           return error("EXTRACTVAL: Invalid struct index");
5034         if (IsArray && Index >= Ty->getArrayNumElements())
5035           return error("EXTRACTVAL: Invalid array index");
5036         EXTRACTVALIdx.push_back((unsigned)Index);
5037 
5038         if (IsStruct) {
5039           Ty = Ty->getStructElementType(Index);
5040           ResTypeID = getContainedTypeID(ResTypeID, Index);
5041         } else {
5042           Ty = Ty->getArrayElementType();
5043           ResTypeID = getContainedTypeID(ResTypeID);
5044         }
5045       }
5046 
5047       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5048       InstructionList.push_back(I);
5049       break;
5050     }
5051 
5052     case bitc::FUNC_CODE_INST_INSERTVAL: {
5053                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5054       unsigned OpNum = 0;
5055       Value *Agg;
5056       unsigned AggTypeID;
5057       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5058         return error("Invalid record");
5059       Value *Val;
5060       unsigned ValTypeID;
5061       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5062         return error("Invalid record");
5063 
5064       unsigned RecSize = Record.size();
5065       if (OpNum == RecSize)
5066         return error("INSERTVAL: Invalid instruction with 0 indices");
5067 
5068       SmallVector<unsigned, 4> INSERTVALIdx;
5069       Type *CurTy = Agg->getType();
5070       for (; OpNum != RecSize; ++OpNum) {
5071         bool IsArray = CurTy->isArrayTy();
5072         bool IsStruct = CurTy->isStructTy();
5073         uint64_t Index = Record[OpNum];
5074 
5075         if (!IsStruct && !IsArray)
5076           return error("INSERTVAL: Invalid type");
5077         if ((unsigned)Index != Index)
5078           return error("Invalid value");
5079         if (IsStruct && Index >= CurTy->getStructNumElements())
5080           return error("INSERTVAL: Invalid struct index");
5081         if (IsArray && Index >= CurTy->getArrayNumElements())
5082           return error("INSERTVAL: Invalid array index");
5083 
5084         INSERTVALIdx.push_back((unsigned)Index);
5085         if (IsStruct)
5086           CurTy = CurTy->getStructElementType(Index);
5087         else
5088           CurTy = CurTy->getArrayElementType();
5089       }
5090 
5091       if (CurTy != Val->getType())
5092         return error("Inserted value type doesn't match aggregate type");
5093 
5094       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5095       ResTypeID = AggTypeID;
5096       InstructionList.push_back(I);
5097       break;
5098     }
5099 
5100     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5101       // obsolete form of select
5102       // handles select i1 ... in old bitcode
5103       unsigned OpNum = 0;
5104       Value *TrueVal, *FalseVal, *Cond;
5105       unsigned TypeID;
5106       Type *CondType = Type::getInt1Ty(Context);
5107       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5108                            CurBB) ||
5109           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5110                    FalseVal, CurBB) ||
5111           popValue(Record, OpNum, NextValueNo, CondType,
5112                    getVirtualTypeID(CondType), Cond, CurBB))
5113         return error("Invalid record");
5114 
5115       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5116       ResTypeID = TypeID;
5117       InstructionList.push_back(I);
5118       break;
5119     }
5120 
5121     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5122       // new form of select
5123       // handles select i1 or select [N x i1]
5124       unsigned OpNum = 0;
5125       Value *TrueVal, *FalseVal, *Cond;
5126       unsigned ValTypeID, CondTypeID;
5127       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5128                            CurBB) ||
5129           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5130                    FalseVal, CurBB) ||
5131           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5132         return error("Invalid record");
5133 
5134       // select condition can be either i1 or [N x i1]
5135       if (VectorType* vector_type =
5136           dyn_cast<VectorType>(Cond->getType())) {
5137         // expect <n x i1>
5138         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5139           return error("Invalid type for value");
5140       } else {
5141         // expect i1
5142         if (Cond->getType() != Type::getInt1Ty(Context))
5143           return error("Invalid type for value");
5144       }
5145 
5146       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5147       ResTypeID = ValTypeID;
5148       InstructionList.push_back(I);
5149       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5150         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5151         if (FMF.any())
5152           I->setFastMathFlags(FMF);
5153       }
5154       break;
5155     }
5156 
5157     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5158       unsigned OpNum = 0;
5159       Value *Vec, *Idx;
5160       unsigned VecTypeID, IdxTypeID;
5161       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5162           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5163         return error("Invalid record");
5164       if (!Vec->getType()->isVectorTy())
5165         return error("Invalid type for value");
5166       I = ExtractElementInst::Create(Vec, Idx);
5167       ResTypeID = getContainedTypeID(VecTypeID);
5168       InstructionList.push_back(I);
5169       break;
5170     }
5171 
5172     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5173       unsigned OpNum = 0;
5174       Value *Vec, *Elt, *Idx;
5175       unsigned VecTypeID, IdxTypeID;
5176       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5177         return error("Invalid record");
5178       if (!Vec->getType()->isVectorTy())
5179         return error("Invalid type for value");
5180       if (popValue(Record, OpNum, NextValueNo,
5181                    cast<VectorType>(Vec->getType())->getElementType(),
5182                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5183           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5184         return error("Invalid record");
5185       I = InsertElementInst::Create(Vec, Elt, Idx);
5186       ResTypeID = VecTypeID;
5187       InstructionList.push_back(I);
5188       break;
5189     }
5190 
5191     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5192       unsigned OpNum = 0;
5193       Value *Vec1, *Vec2, *Mask;
5194       unsigned Vec1TypeID;
5195       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5196                            CurBB) ||
5197           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5198                    Vec2, CurBB))
5199         return error("Invalid record");
5200 
5201       unsigned MaskTypeID;
5202       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5203         return error("Invalid record");
5204       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5205         return error("Invalid type for value");
5206 
5207       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5208       ResTypeID =
5209           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5210       InstructionList.push_back(I);
5211       break;
5212     }
5213 
5214     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5215       // Old form of ICmp/FCmp returning bool
5216       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5217       // both legal on vectors but had different behaviour.
5218     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5219       // FCmp/ICmp returning bool or vector of bool
5220 
5221       unsigned OpNum = 0;
5222       Value *LHS, *RHS;
5223       unsigned LHSTypeID;
5224       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5225           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5226                    CurBB))
5227         return error("Invalid record");
5228 
5229       if (OpNum >= Record.size())
5230         return error(
5231             "Invalid record: operand number exceeded available operands");
5232 
5233       unsigned PredVal = Record[OpNum];
5234       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5235       FastMathFlags FMF;
5236       if (IsFP && Record.size() > OpNum+1)
5237         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5238 
5239       if (OpNum+1 != Record.size())
5240         return error("Invalid record");
5241 
5242       if (LHS->getType()->isFPOrFPVectorTy())
5243         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5244       else
5245         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5246 
5247       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5248       if (LHS->getType()->isVectorTy())
5249         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5250 
5251       if (FMF.any())
5252         I->setFastMathFlags(FMF);
5253       InstructionList.push_back(I);
5254       break;
5255     }
5256 
5257     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5258       {
5259         unsigned Size = Record.size();
5260         if (Size == 0) {
5261           I = ReturnInst::Create(Context);
5262           InstructionList.push_back(I);
5263           break;
5264         }
5265 
5266         unsigned OpNum = 0;
5267         Value *Op = nullptr;
5268         unsigned OpTypeID;
5269         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5270           return error("Invalid record");
5271         if (OpNum != Record.size())
5272           return error("Invalid record");
5273 
5274         I = ReturnInst::Create(Context, Op);
5275         InstructionList.push_back(I);
5276         break;
5277       }
5278     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5279       if (Record.size() != 1 && Record.size() != 3)
5280         return error("Invalid record");
5281       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5282       if (!TrueDest)
5283         return error("Invalid record");
5284 
5285       if (Record.size() == 1) {
5286         I = BranchInst::Create(TrueDest);
5287         InstructionList.push_back(I);
5288       }
5289       else {
5290         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5291         Type *CondType = Type::getInt1Ty(Context);
5292         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5293                                getVirtualTypeID(CondType), CurBB);
5294         if (!FalseDest || !Cond)
5295           return error("Invalid record");
5296         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5297         InstructionList.push_back(I);
5298       }
5299       break;
5300     }
5301     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5302       if (Record.size() != 1 && Record.size() != 2)
5303         return error("Invalid record");
5304       unsigned Idx = 0;
5305       Type *TokenTy = Type::getTokenTy(Context);
5306       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5307                                    getVirtualTypeID(TokenTy), CurBB);
5308       if (!CleanupPad)
5309         return error("Invalid record");
5310       BasicBlock *UnwindDest = nullptr;
5311       if (Record.size() == 2) {
5312         UnwindDest = getBasicBlock(Record[Idx++]);
5313         if (!UnwindDest)
5314           return error("Invalid record");
5315       }
5316 
5317       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5318       InstructionList.push_back(I);
5319       break;
5320     }
5321     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5322       if (Record.size() != 2)
5323         return error("Invalid record");
5324       unsigned Idx = 0;
5325       Type *TokenTy = Type::getTokenTy(Context);
5326       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5327                                  getVirtualTypeID(TokenTy), CurBB);
5328       if (!CatchPad)
5329         return error("Invalid record");
5330       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5331       if (!BB)
5332         return error("Invalid record");
5333 
5334       I = CatchReturnInst::Create(CatchPad, BB);
5335       InstructionList.push_back(I);
5336       break;
5337     }
5338     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5339       // We must have, at minimum, the outer scope and the number of arguments.
5340       if (Record.size() < 2)
5341         return error("Invalid record");
5342 
5343       unsigned Idx = 0;
5344 
5345       Type *TokenTy = Type::getTokenTy(Context);
5346       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5347                                   getVirtualTypeID(TokenTy), CurBB);
5348 
5349       unsigned NumHandlers = Record[Idx++];
5350 
5351       SmallVector<BasicBlock *, 2> Handlers;
5352       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5353         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5354         if (!BB)
5355           return error("Invalid record");
5356         Handlers.push_back(BB);
5357       }
5358 
5359       BasicBlock *UnwindDest = nullptr;
5360       if (Idx + 1 == Record.size()) {
5361         UnwindDest = getBasicBlock(Record[Idx++]);
5362         if (!UnwindDest)
5363           return error("Invalid record");
5364       }
5365 
5366       if (Record.size() != Idx)
5367         return error("Invalid record");
5368 
5369       auto *CatchSwitch =
5370           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5371       for (BasicBlock *Handler : Handlers)
5372         CatchSwitch->addHandler(Handler);
5373       I = CatchSwitch;
5374       ResTypeID = getVirtualTypeID(I->getType());
5375       InstructionList.push_back(I);
5376       break;
5377     }
5378     case bitc::FUNC_CODE_INST_CATCHPAD:
5379     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5380       // We must have, at minimum, the outer scope and the number of arguments.
5381       if (Record.size() < 2)
5382         return error("Invalid record");
5383 
5384       unsigned Idx = 0;
5385 
5386       Type *TokenTy = Type::getTokenTy(Context);
5387       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5388                                   getVirtualTypeID(TokenTy), CurBB);
5389 
5390       unsigned NumArgOperands = Record[Idx++];
5391 
5392       SmallVector<Value *, 2> Args;
5393       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5394         Value *Val;
5395         unsigned ValTypeID;
5396         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5397           return error("Invalid record");
5398         Args.push_back(Val);
5399       }
5400 
5401       if (Record.size() != Idx)
5402         return error("Invalid record");
5403 
5404       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5405         I = CleanupPadInst::Create(ParentPad, Args);
5406       else
5407         I = CatchPadInst::Create(ParentPad, Args);
5408       ResTypeID = getVirtualTypeID(I->getType());
5409       InstructionList.push_back(I);
5410       break;
5411     }
5412     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5413       // Check magic
5414       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5415         // "New" SwitchInst format with case ranges. The changes to write this
5416         // format were reverted but we still recognize bitcode that uses it.
5417         // Hopefully someday we will have support for case ranges and can use
5418         // this format again.
5419 
5420         unsigned OpTyID = Record[1];
5421         Type *OpTy = getTypeByID(OpTyID);
5422         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5423 
5424         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5425         BasicBlock *Default = getBasicBlock(Record[3]);
5426         if (!OpTy || !Cond || !Default)
5427           return error("Invalid record");
5428 
5429         unsigned NumCases = Record[4];
5430 
5431         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5432         InstructionList.push_back(SI);
5433 
5434         unsigned CurIdx = 5;
5435         for (unsigned i = 0; i != NumCases; ++i) {
5436           SmallVector<ConstantInt*, 1> CaseVals;
5437           unsigned NumItems = Record[CurIdx++];
5438           for (unsigned ci = 0; ci != NumItems; ++ci) {
5439             bool isSingleNumber = Record[CurIdx++];
5440 
5441             APInt Low;
5442             unsigned ActiveWords = 1;
5443             if (ValueBitWidth > 64)
5444               ActiveWords = Record[CurIdx++];
5445             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5446                                 ValueBitWidth);
5447             CurIdx += ActiveWords;
5448 
5449             if (!isSingleNumber) {
5450               ActiveWords = 1;
5451               if (ValueBitWidth > 64)
5452                 ActiveWords = Record[CurIdx++];
5453               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5454                                          ValueBitWidth);
5455               CurIdx += ActiveWords;
5456 
5457               // FIXME: It is not clear whether values in the range should be
5458               // compared as signed or unsigned values. The partially
5459               // implemented changes that used this format in the past used
5460               // unsigned comparisons.
5461               for ( ; Low.ule(High); ++Low)
5462                 CaseVals.push_back(ConstantInt::get(Context, Low));
5463             } else
5464               CaseVals.push_back(ConstantInt::get(Context, Low));
5465           }
5466           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5467           for (ConstantInt *Cst : CaseVals)
5468             SI->addCase(Cst, DestBB);
5469         }
5470         I = SI;
5471         break;
5472       }
5473 
5474       // Old SwitchInst format without case ranges.
5475 
5476       if (Record.size() < 3 || (Record.size() & 1) == 0)
5477         return error("Invalid record");
5478       unsigned OpTyID = Record[0];
5479       Type *OpTy = getTypeByID(OpTyID);
5480       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5481       BasicBlock *Default = getBasicBlock(Record[2]);
5482       if (!OpTy || !Cond || !Default)
5483         return error("Invalid record");
5484       unsigned NumCases = (Record.size()-3)/2;
5485       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5486       InstructionList.push_back(SI);
5487       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5488         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5489             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5490         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5491         if (!CaseVal || !DestBB) {
5492           delete SI;
5493           return error("Invalid record");
5494         }
5495         SI->addCase(CaseVal, DestBB);
5496       }
5497       I = SI;
5498       break;
5499     }
5500     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5501       if (Record.size() < 2)
5502         return error("Invalid record");
5503       unsigned OpTyID = Record[0];
5504       Type *OpTy = getTypeByID(OpTyID);
5505       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5506       if (!OpTy || !Address)
5507         return error("Invalid record");
5508       unsigned NumDests = Record.size()-2;
5509       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5510       InstructionList.push_back(IBI);
5511       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5512         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5513           IBI->addDestination(DestBB);
5514         } else {
5515           delete IBI;
5516           return error("Invalid record");
5517         }
5518       }
5519       I = IBI;
5520       break;
5521     }
5522 
5523     case bitc::FUNC_CODE_INST_INVOKE: {
5524       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5525       if (Record.size() < 4)
5526         return error("Invalid record");
5527       unsigned OpNum = 0;
5528       AttributeList PAL = getAttributes(Record[OpNum++]);
5529       unsigned CCInfo = Record[OpNum++];
5530       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5531       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5532 
5533       unsigned FTyID = InvalidTypeID;
5534       FunctionType *FTy = nullptr;
5535       if ((CCInfo >> 13) & 1) {
5536         FTyID = Record[OpNum++];
5537         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5538         if (!FTy)
5539           return error("Explicit invoke type is not a function type");
5540       }
5541 
5542       Value *Callee;
5543       unsigned CalleeTypeID;
5544       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5545                            CurBB))
5546         return error("Invalid record");
5547 
5548       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5549       if (!CalleeTy)
5550         return error("Callee is not a pointer");
5551       if (!FTy) {
5552         FTyID = getContainedTypeID(CalleeTypeID);
5553         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5554         if (!FTy)
5555           return error("Callee is not of pointer to function type");
5556       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5557         return error("Explicit invoke type does not match pointee type of "
5558                      "callee operand");
5559       if (Record.size() < FTy->getNumParams() + OpNum)
5560         return error("Insufficient operands to call");
5561 
5562       SmallVector<Value*, 16> Ops;
5563       SmallVector<unsigned, 16> ArgTyIDs;
5564       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5565         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5566         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5567                                ArgTyID, CurBB));
5568         ArgTyIDs.push_back(ArgTyID);
5569         if (!Ops.back())
5570           return error("Invalid record");
5571       }
5572 
5573       if (!FTy->isVarArg()) {
5574         if (Record.size() != OpNum)
5575           return error("Invalid record");
5576       } else {
5577         // Read type/value pairs for varargs params.
5578         while (OpNum != Record.size()) {
5579           Value *Op;
5580           unsigned OpTypeID;
5581           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5582             return error("Invalid record");
5583           Ops.push_back(Op);
5584           ArgTyIDs.push_back(OpTypeID);
5585         }
5586       }
5587 
5588       // Upgrade the bundles if needed.
5589       if (!OperandBundles.empty())
5590         UpgradeOperandBundles(OperandBundles);
5591 
5592       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5593                              OperandBundles);
5594       ResTypeID = getContainedTypeID(FTyID);
5595       OperandBundles.clear();
5596       InstructionList.push_back(I);
5597       cast<InvokeInst>(I)->setCallingConv(
5598           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5599       cast<InvokeInst>(I)->setAttributes(PAL);
5600       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5601         I->deleteValue();
5602         return Err;
5603       }
5604 
5605       break;
5606     }
5607     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5608       unsigned Idx = 0;
5609       Value *Val = nullptr;
5610       unsigned ValTypeID;
5611       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5612         return error("Invalid record");
5613       I = ResumeInst::Create(Val);
5614       InstructionList.push_back(I);
5615       break;
5616     }
5617     case bitc::FUNC_CODE_INST_CALLBR: {
5618       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5619       unsigned OpNum = 0;
5620       AttributeList PAL = getAttributes(Record[OpNum++]);
5621       unsigned CCInfo = Record[OpNum++];
5622 
5623       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5624       unsigned NumIndirectDests = Record[OpNum++];
5625       SmallVector<BasicBlock *, 16> IndirectDests;
5626       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5627         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5628 
5629       unsigned FTyID = InvalidTypeID;
5630       FunctionType *FTy = nullptr;
5631       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5632         FTyID = Record[OpNum++];
5633         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5634         if (!FTy)
5635           return error("Explicit call type is not a function type");
5636       }
5637 
5638       Value *Callee;
5639       unsigned CalleeTypeID;
5640       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5641                            CurBB))
5642         return error("Invalid record");
5643 
5644       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5645       if (!OpTy)
5646         return error("Callee is not a pointer type");
5647       if (!FTy) {
5648         FTyID = getContainedTypeID(CalleeTypeID);
5649         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5650         if (!FTy)
5651           return error("Callee is not of pointer to function type");
5652       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5653         return error("Explicit call type does not match pointee type of "
5654                      "callee operand");
5655       if (Record.size() < FTy->getNumParams() + OpNum)
5656         return error("Insufficient operands to call");
5657 
5658       SmallVector<Value*, 16> Args;
5659       SmallVector<unsigned, 16> ArgTyIDs;
5660       // Read the fixed params.
5661       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5662         Value *Arg;
5663         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5664         if (FTy->getParamType(i)->isLabelTy())
5665           Arg = getBasicBlock(Record[OpNum]);
5666         else
5667           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5668                          ArgTyID, CurBB);
5669         if (!Arg)
5670           return error("Invalid record");
5671         Args.push_back(Arg);
5672         ArgTyIDs.push_back(ArgTyID);
5673       }
5674 
5675       // Read type/value pairs for varargs params.
5676       if (!FTy->isVarArg()) {
5677         if (OpNum != Record.size())
5678           return error("Invalid record");
5679       } else {
5680         while (OpNum != Record.size()) {
5681           Value *Op;
5682           unsigned OpTypeID;
5683           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5684             return error("Invalid record");
5685           Args.push_back(Op);
5686           ArgTyIDs.push_back(OpTypeID);
5687         }
5688       }
5689 
5690       // Upgrade the bundles if needed.
5691       if (!OperandBundles.empty())
5692         UpgradeOperandBundles(OperandBundles);
5693 
5694       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5695         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5696         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5697           return CI.Type == InlineAsm::isLabel;
5698         };
5699         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5700           // Upgrade explicit blockaddress arguments to label constraints.
5701           // Verify that the last arguments are blockaddress arguments that
5702           // match the indirect destinations. Clang always generates callbr
5703           // in this form. We could support reordering with more effort.
5704           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5705           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5706             unsigned LabelNo = ArgNo - FirstBlockArg;
5707             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5708             if (!BA || BA->getFunction() != F ||
5709                 LabelNo > IndirectDests.size() ||
5710                 BA->getBasicBlock() != IndirectDests[LabelNo])
5711               return error("callbr argument does not match indirect dest");
5712           }
5713 
5714           // Remove blockaddress arguments.
5715           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5716           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5717 
5718           // Recreate the function type with less arguments.
5719           SmallVector<Type *> ArgTys;
5720           for (Value *Arg : Args)
5721             ArgTys.push_back(Arg->getType());
5722           FTy =
5723               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5724 
5725           // Update constraint string to use label constraints.
5726           std::string Constraints = IA->getConstraintString();
5727           unsigned ArgNo = 0;
5728           size_t Pos = 0;
5729           for (const auto &CI : ConstraintInfo) {
5730             if (CI.hasArg()) {
5731               if (ArgNo >= FirstBlockArg)
5732                 Constraints.insert(Pos, "!");
5733               ++ArgNo;
5734             }
5735 
5736             // Go to next constraint in string.
5737             Pos = Constraints.find(',', Pos);
5738             if (Pos == std::string::npos)
5739               break;
5740             ++Pos;
5741           }
5742 
5743           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5744                                   IA->hasSideEffects(), IA->isAlignStack(),
5745                                   IA->getDialect(), IA->canThrow());
5746         }
5747       }
5748 
5749       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5750                              OperandBundles);
5751       ResTypeID = getContainedTypeID(FTyID);
5752       OperandBundles.clear();
5753       InstructionList.push_back(I);
5754       cast<CallBrInst>(I)->setCallingConv(
5755           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5756       cast<CallBrInst>(I)->setAttributes(PAL);
5757       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5758         I->deleteValue();
5759         return Err;
5760       }
5761       break;
5762     }
5763     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5764       I = new UnreachableInst(Context);
5765       InstructionList.push_back(I);
5766       break;
5767     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5768       if (Record.empty())
5769         return error("Invalid phi record");
5770       // The first record specifies the type.
5771       unsigned TyID = Record[0];
5772       Type *Ty = getTypeByID(TyID);
5773       if (!Ty)
5774         return error("Invalid phi record");
5775 
5776       // Phi arguments are pairs of records of [value, basic block].
5777       // There is an optional final record for fast-math-flags if this phi has a
5778       // floating-point type.
5779       size_t NumArgs = (Record.size() - 1) / 2;
5780       PHINode *PN = PHINode::Create(Ty, NumArgs);
5781       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5782         PN->deleteValue();
5783         return error("Invalid phi record");
5784       }
5785       InstructionList.push_back(PN);
5786 
5787       SmallDenseMap<BasicBlock *, Value *> Args;
5788       for (unsigned i = 0; i != NumArgs; i++) {
5789         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5790         if (!BB) {
5791           PN->deleteValue();
5792           return error("Invalid phi BB");
5793         }
5794 
5795         // Phi nodes may contain the same predecessor multiple times, in which
5796         // case the incoming value must be identical. Directly reuse the already
5797         // seen value here, to avoid expanding a constant expression multiple
5798         // times.
5799         auto It = Args.find(BB);
5800         if (It != Args.end()) {
5801           PN->addIncoming(It->second, BB);
5802           continue;
5803         }
5804 
5805         // If there already is a block for this edge (from a different phi),
5806         // use it.
5807         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5808         if (!EdgeBB) {
5809           // Otherwise, use a temporary block (that we will discard if it
5810           // turns out to be unnecessary).
5811           if (!PhiConstExprBB)
5812             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5813           EdgeBB = PhiConstExprBB;
5814         }
5815 
5816         // With the new function encoding, it is possible that operands have
5817         // negative IDs (for forward references).  Use a signed VBR
5818         // representation to keep the encoding small.
5819         Value *V;
5820         if (UseRelativeIDs)
5821           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5822         else
5823           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5824         if (!V) {
5825           PN->deleteValue();
5826           PhiConstExprBB->eraseFromParent();
5827           return error("Invalid phi record");
5828         }
5829 
5830         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5831           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5832           PhiConstExprBB = nullptr;
5833         }
5834         PN->addIncoming(V, BB);
5835         Args.insert({BB, V});
5836       }
5837       I = PN;
5838       ResTypeID = TyID;
5839 
5840       // If there are an even number of records, the final record must be FMF.
5841       if (Record.size() % 2 == 0) {
5842         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5843         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5844         if (FMF.any())
5845           I->setFastMathFlags(FMF);
5846       }
5847 
5848       break;
5849     }
5850 
5851     case bitc::FUNC_CODE_INST_LANDINGPAD:
5852     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5853       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5854       unsigned Idx = 0;
5855       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5856         if (Record.size() < 3)
5857           return error("Invalid record");
5858       } else {
5859         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5860         if (Record.size() < 4)
5861           return error("Invalid record");
5862       }
5863       ResTypeID = Record[Idx++];
5864       Type *Ty = getTypeByID(ResTypeID);
5865       if (!Ty)
5866         return error("Invalid record");
5867       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5868         Value *PersFn = nullptr;
5869         unsigned PersFnTypeID;
5870         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5871                              nullptr))
5872           return error("Invalid record");
5873 
5874         if (!F->hasPersonalityFn())
5875           F->setPersonalityFn(cast<Constant>(PersFn));
5876         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5877           return error("Personality function mismatch");
5878       }
5879 
5880       bool IsCleanup = !!Record[Idx++];
5881       unsigned NumClauses = Record[Idx++];
5882       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5883       LP->setCleanup(IsCleanup);
5884       for (unsigned J = 0; J != NumClauses; ++J) {
5885         LandingPadInst::ClauseType CT =
5886           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5887         Value *Val;
5888         unsigned ValTypeID;
5889 
5890         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5891                              nullptr)) {
5892           delete LP;
5893           return error("Invalid record");
5894         }
5895 
5896         assert((CT != LandingPadInst::Catch ||
5897                 !isa<ArrayType>(Val->getType())) &&
5898                "Catch clause has a invalid type!");
5899         assert((CT != LandingPadInst::Filter ||
5900                 isa<ArrayType>(Val->getType())) &&
5901                "Filter clause has invalid type!");
5902         LP->addClause(cast<Constant>(Val));
5903       }
5904 
5905       I = LP;
5906       InstructionList.push_back(I);
5907       break;
5908     }
5909 
5910     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5911       if (Record.size() != 4 && Record.size() != 5)
5912         return error("Invalid record");
5913       using APV = AllocaPackedValues;
5914       const uint64_t Rec = Record[3];
5915       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5916       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5917       unsigned TyID = Record[0];
5918       Type *Ty = getTypeByID(TyID);
5919       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5920         TyID = getContainedTypeID(TyID);
5921         Ty = getTypeByID(TyID);
5922         if (!Ty)
5923           return error("Missing element type for old-style alloca");
5924       }
5925       unsigned OpTyID = Record[1];
5926       Type *OpTy = getTypeByID(OpTyID);
5927       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5928       MaybeAlign Align;
5929       uint64_t AlignExp =
5930           Bitfield::get<APV::AlignLower>(Rec) |
5931           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5932       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5933         return Err;
5934       }
5935       if (!Ty || !Size)
5936         return error("Invalid record");
5937 
5938       const DataLayout &DL = TheModule->getDataLayout();
5939       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5940 
5941       SmallPtrSet<Type *, 4> Visited;
5942       if (!Align && !Ty->isSized(&Visited))
5943         return error("alloca of unsized type");
5944       if (!Align)
5945         Align = DL.getPrefTypeAlign(Ty);
5946 
5947       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5948       AI->setUsedWithInAlloca(InAlloca);
5949       AI->setSwiftError(SwiftError);
5950       I = AI;
5951       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5952       InstructionList.push_back(I);
5953       break;
5954     }
5955     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5956       unsigned OpNum = 0;
5957       Value *Op;
5958       unsigned OpTypeID;
5959       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5960           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5961         return error("Invalid record");
5962 
5963       if (!isa<PointerType>(Op->getType()))
5964         return error("Load operand is not a pointer type");
5965 
5966       Type *Ty = nullptr;
5967       if (OpNum + 3 == Record.size()) {
5968         ResTypeID = Record[OpNum++];
5969         Ty = getTypeByID(ResTypeID);
5970       } else {
5971         ResTypeID = getContainedTypeID(OpTypeID);
5972         Ty = getTypeByID(ResTypeID);
5973         if (!Ty)
5974           return error("Missing element type for old-style load");
5975       }
5976 
5977       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5978         return Err;
5979 
5980       MaybeAlign Align;
5981       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5982         return Err;
5983       SmallPtrSet<Type *, 4> Visited;
5984       if (!Align && !Ty->isSized(&Visited))
5985         return error("load of unsized type");
5986       if (!Align)
5987         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5988       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5989       InstructionList.push_back(I);
5990       break;
5991     }
5992     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5993        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5994       unsigned OpNum = 0;
5995       Value *Op;
5996       unsigned OpTypeID;
5997       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5998           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5999         return error("Invalid record");
6000 
6001       if (!isa<PointerType>(Op->getType()))
6002         return error("Load operand is not a pointer type");
6003 
6004       Type *Ty = nullptr;
6005       if (OpNum + 5 == Record.size()) {
6006         ResTypeID = Record[OpNum++];
6007         Ty = getTypeByID(ResTypeID);
6008       } else {
6009         ResTypeID = getContainedTypeID(OpTypeID);
6010         Ty = getTypeByID(ResTypeID);
6011         if (!Ty)
6012           return error("Missing element type for old style atomic load");
6013       }
6014 
6015       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6016         return Err;
6017 
6018       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6019       if (Ordering == AtomicOrdering::NotAtomic ||
6020           Ordering == AtomicOrdering::Release ||
6021           Ordering == AtomicOrdering::AcquireRelease)
6022         return error("Invalid record");
6023       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6024         return error("Invalid record");
6025       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6026 
6027       MaybeAlign Align;
6028       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6029         return Err;
6030       if (!Align)
6031         return error("Alignment missing from atomic load");
6032       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6033       InstructionList.push_back(I);
6034       break;
6035     }
6036     case bitc::FUNC_CODE_INST_STORE:
6037     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6038       unsigned OpNum = 0;
6039       Value *Val, *Ptr;
6040       unsigned PtrTypeID, ValTypeID;
6041       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6042         return error("Invalid record");
6043 
6044       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6045         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6046           return error("Invalid record");
6047       } else {
6048         ValTypeID = getContainedTypeID(PtrTypeID);
6049         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6050                      ValTypeID, Val, CurBB))
6051           return error("Invalid record");
6052       }
6053 
6054       if (OpNum + 2 != Record.size())
6055         return error("Invalid record");
6056 
6057       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6058         return Err;
6059       MaybeAlign Align;
6060       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6061         return Err;
6062       SmallPtrSet<Type *, 4> Visited;
6063       if (!Align && !Val->getType()->isSized(&Visited))
6064         return error("store of unsized type");
6065       if (!Align)
6066         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6067       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6068       InstructionList.push_back(I);
6069       break;
6070     }
6071     case bitc::FUNC_CODE_INST_STOREATOMIC:
6072     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6073       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6074       unsigned OpNum = 0;
6075       Value *Val, *Ptr;
6076       unsigned PtrTypeID, ValTypeID;
6077       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6078           !isa<PointerType>(Ptr->getType()))
6079         return error("Invalid record");
6080       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6081         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6082           return error("Invalid record");
6083       } else {
6084         ValTypeID = getContainedTypeID(PtrTypeID);
6085         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6086                      ValTypeID, Val, CurBB))
6087           return error("Invalid record");
6088       }
6089 
6090       if (OpNum + 4 != Record.size())
6091         return error("Invalid record");
6092 
6093       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6094         return Err;
6095       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6096       if (Ordering == AtomicOrdering::NotAtomic ||
6097           Ordering == AtomicOrdering::Acquire ||
6098           Ordering == AtomicOrdering::AcquireRelease)
6099         return error("Invalid record");
6100       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6101       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6102         return error("Invalid record");
6103 
6104       MaybeAlign Align;
6105       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6106         return Err;
6107       if (!Align)
6108         return error("Alignment missing from atomic store");
6109       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6110       InstructionList.push_back(I);
6111       break;
6112     }
6113     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6114       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6115       // failure_ordering?, weak?]
6116       const size_t NumRecords = Record.size();
6117       unsigned OpNum = 0;
6118       Value *Ptr = nullptr;
6119       unsigned PtrTypeID;
6120       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6121         return error("Invalid record");
6122 
6123       if (!isa<PointerType>(Ptr->getType()))
6124         return error("Cmpxchg operand is not a pointer type");
6125 
6126       Value *Cmp = nullptr;
6127       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6128       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6129                    CmpTypeID, Cmp, CurBB))
6130         return error("Invalid record");
6131 
6132       Value *New = nullptr;
6133       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6134                    New, CurBB) ||
6135           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6136         return error("Invalid record");
6137 
6138       const AtomicOrdering SuccessOrdering =
6139           getDecodedOrdering(Record[OpNum + 1]);
6140       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6141           SuccessOrdering == AtomicOrdering::Unordered)
6142         return error("Invalid record");
6143 
6144       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6145 
6146       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6147         return Err;
6148 
6149       const AtomicOrdering FailureOrdering =
6150           NumRecords < 7
6151               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6152               : getDecodedOrdering(Record[OpNum + 3]);
6153 
6154       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6155           FailureOrdering == AtomicOrdering::Unordered)
6156         return error("Invalid record");
6157 
6158       const Align Alignment(
6159           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6160 
6161       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6162                                 FailureOrdering, SSID);
6163       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6164 
6165       if (NumRecords < 8) {
6166         // Before weak cmpxchgs existed, the instruction simply returned the
6167         // value loaded from memory, so bitcode files from that era will be
6168         // expecting the first component of a modern cmpxchg.
6169         I->insertInto(CurBB, CurBB->end());
6170         I = ExtractValueInst::Create(I, 0);
6171         ResTypeID = CmpTypeID;
6172       } else {
6173         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6174         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6175         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6176       }
6177 
6178       InstructionList.push_back(I);
6179       break;
6180     }
6181     case bitc::FUNC_CODE_INST_CMPXCHG: {
6182       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6183       // failure_ordering, weak, align?]
6184       const size_t NumRecords = Record.size();
6185       unsigned OpNum = 0;
6186       Value *Ptr = nullptr;
6187       unsigned PtrTypeID;
6188       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6189         return error("Invalid record");
6190 
6191       if (!isa<PointerType>(Ptr->getType()))
6192         return error("Cmpxchg operand is not a pointer type");
6193 
6194       Value *Cmp = nullptr;
6195       unsigned CmpTypeID;
6196       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6197         return error("Invalid record");
6198 
6199       Value *Val = nullptr;
6200       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6201                    CurBB))
6202         return error("Invalid record");
6203 
6204       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6205         return error("Invalid record");
6206 
6207       const bool IsVol = Record[OpNum];
6208 
6209       const AtomicOrdering SuccessOrdering =
6210           getDecodedOrdering(Record[OpNum + 1]);
6211       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6212         return error("Invalid cmpxchg success ordering");
6213 
6214       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6215 
6216       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6217         return Err;
6218 
6219       const AtomicOrdering FailureOrdering =
6220           getDecodedOrdering(Record[OpNum + 3]);
6221       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6222         return error("Invalid cmpxchg failure ordering");
6223 
6224       const bool IsWeak = Record[OpNum + 4];
6225 
6226       MaybeAlign Alignment;
6227 
6228       if (NumRecords == (OpNum + 6)) {
6229         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6230           return Err;
6231       }
6232       if (!Alignment)
6233         Alignment =
6234             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6235 
6236       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6237                                 FailureOrdering, SSID);
6238       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6239       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6240 
6241       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6242       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6243 
6244       InstructionList.push_back(I);
6245       break;
6246     }
6247     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6248     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6249       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6250       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6251       const size_t NumRecords = Record.size();
6252       unsigned OpNum = 0;
6253 
6254       Value *Ptr = nullptr;
6255       unsigned PtrTypeID;
6256       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6257         return error("Invalid record");
6258 
6259       if (!isa<PointerType>(Ptr->getType()))
6260         return error("Invalid record");
6261 
6262       Value *Val = nullptr;
6263       unsigned ValTypeID = InvalidTypeID;
6264       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6265         ValTypeID = getContainedTypeID(PtrTypeID);
6266         if (popValue(Record, OpNum, NextValueNo,
6267                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6268           return error("Invalid record");
6269       } else {
6270         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6271           return error("Invalid record");
6272       }
6273 
6274       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6275         return error("Invalid record");
6276 
6277       const AtomicRMWInst::BinOp Operation =
6278           getDecodedRMWOperation(Record[OpNum]);
6279       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6280           Operation > AtomicRMWInst::LAST_BINOP)
6281         return error("Invalid record");
6282 
6283       const bool IsVol = Record[OpNum + 1];
6284 
6285       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6286       if (Ordering == AtomicOrdering::NotAtomic ||
6287           Ordering == AtomicOrdering::Unordered)
6288         return error("Invalid record");
6289 
6290       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6291 
6292       MaybeAlign Alignment;
6293 
6294       if (NumRecords == (OpNum + 5)) {
6295         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6296           return Err;
6297       }
6298 
6299       if (!Alignment)
6300         Alignment =
6301             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6302 
6303       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6304       ResTypeID = ValTypeID;
6305       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6306 
6307       InstructionList.push_back(I);
6308       break;
6309     }
6310     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6311       if (2 != Record.size())
6312         return error("Invalid record");
6313       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6314       if (Ordering == AtomicOrdering::NotAtomic ||
6315           Ordering == AtomicOrdering::Unordered ||
6316           Ordering == AtomicOrdering::Monotonic)
6317         return error("Invalid record");
6318       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6319       I = new FenceInst(Context, Ordering, SSID);
6320       InstructionList.push_back(I);
6321       break;
6322     }
6323     case bitc::FUNC_CODE_INST_CALL: {
6324       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6325       if (Record.size() < 3)
6326         return error("Invalid record");
6327 
6328       unsigned OpNum = 0;
6329       AttributeList PAL = getAttributes(Record[OpNum++]);
6330       unsigned CCInfo = Record[OpNum++];
6331 
6332       FastMathFlags FMF;
6333       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6334         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6335         if (!FMF.any())
6336           return error("Fast math flags indicator set for call with no FMF");
6337       }
6338 
6339       unsigned FTyID = InvalidTypeID;
6340       FunctionType *FTy = nullptr;
6341       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6342         FTyID = Record[OpNum++];
6343         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6344         if (!FTy)
6345           return error("Explicit call type is not a function type");
6346       }
6347 
6348       Value *Callee;
6349       unsigned CalleeTypeID;
6350       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6351                            CurBB))
6352         return error("Invalid record");
6353 
6354       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6355       if (!OpTy)
6356         return error("Callee is not a pointer type");
6357       if (!FTy) {
6358         FTyID = getContainedTypeID(CalleeTypeID);
6359         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6360         if (!FTy)
6361           return error("Callee is not of pointer to function type");
6362       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6363         return error("Explicit call type does not match pointee type of "
6364                      "callee operand");
6365       if (Record.size() < FTy->getNumParams() + OpNum)
6366         return error("Insufficient operands to call");
6367 
6368       SmallVector<Value*, 16> Args;
6369       SmallVector<unsigned, 16> ArgTyIDs;
6370       // Read the fixed params.
6371       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6372         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6373         if (FTy->getParamType(i)->isLabelTy())
6374           Args.push_back(getBasicBlock(Record[OpNum]));
6375         else
6376           Args.push_back(getValue(Record, OpNum, NextValueNo,
6377                                   FTy->getParamType(i), ArgTyID, CurBB));
6378         ArgTyIDs.push_back(ArgTyID);
6379         if (!Args.back())
6380           return error("Invalid record");
6381       }
6382 
6383       // Read type/value pairs for varargs params.
6384       if (!FTy->isVarArg()) {
6385         if (OpNum != Record.size())
6386           return error("Invalid record");
6387       } else {
6388         while (OpNum != Record.size()) {
6389           Value *Op;
6390           unsigned OpTypeID;
6391           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6392             return error("Invalid record");
6393           Args.push_back(Op);
6394           ArgTyIDs.push_back(OpTypeID);
6395         }
6396       }
6397 
6398       // Upgrade the bundles if needed.
6399       if (!OperandBundles.empty())
6400         UpgradeOperandBundles(OperandBundles);
6401 
6402       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6403       ResTypeID = getContainedTypeID(FTyID);
6404       OperandBundles.clear();
6405       InstructionList.push_back(I);
6406       cast<CallInst>(I)->setCallingConv(
6407           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6408       CallInst::TailCallKind TCK = CallInst::TCK_None;
6409       if (CCInfo & 1 << bitc::CALL_TAIL)
6410         TCK = CallInst::TCK_Tail;
6411       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6412         TCK = CallInst::TCK_MustTail;
6413       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6414         TCK = CallInst::TCK_NoTail;
6415       cast<CallInst>(I)->setTailCallKind(TCK);
6416       cast<CallInst>(I)->setAttributes(PAL);
6417       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6418         I->deleteValue();
6419         return Err;
6420       }
6421       if (FMF.any()) {
6422         if (!isa<FPMathOperator>(I))
6423           return error("Fast-math-flags specified for call without "
6424                        "floating-point scalar or vector return type");
6425         I->setFastMathFlags(FMF);
6426       }
6427       break;
6428     }
6429     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6430       if (Record.size() < 3)
6431         return error("Invalid record");
6432       unsigned OpTyID = Record[0];
6433       Type *OpTy = getTypeByID(OpTyID);
6434       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6435       ResTypeID = Record[2];
6436       Type *ResTy = getTypeByID(ResTypeID);
6437       if (!OpTy || !Op || !ResTy)
6438         return error("Invalid record");
6439       I = new VAArgInst(Op, ResTy);
6440       InstructionList.push_back(I);
6441       break;
6442     }
6443 
6444     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6445       // A call or an invoke can be optionally prefixed with some variable
6446       // number of operand bundle blocks.  These blocks are read into
6447       // OperandBundles and consumed at the next call or invoke instruction.
6448 
6449       if (Record.empty() || Record[0] >= BundleTags.size())
6450         return error("Invalid record");
6451 
6452       std::vector<Value *> Inputs;
6453 
6454       unsigned OpNum = 1;
6455       while (OpNum != Record.size()) {
6456         Value *Op;
6457         unsigned OpTypeID;
6458         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6459           return error("Invalid record");
6460         Inputs.push_back(Op);
6461       }
6462 
6463       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6464       continue;
6465     }
6466 
6467     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6468       unsigned OpNum = 0;
6469       Value *Op = nullptr;
6470       unsigned OpTypeID;
6471       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6472         return error("Invalid record");
6473       if (OpNum != Record.size())
6474         return error("Invalid record");
6475 
6476       I = new FreezeInst(Op);
6477       ResTypeID = OpTypeID;
6478       InstructionList.push_back(I);
6479       break;
6480     }
6481     }
6482 
6483     // Add instruction to end of current BB.  If there is no current BB, reject
6484     // this file.
6485     if (!CurBB) {
6486       I->deleteValue();
6487       return error("Invalid instruction with no BB");
6488     }
6489     if (!OperandBundles.empty()) {
6490       I->deleteValue();
6491       return error("Operand bundles found with no consumer");
6492     }
6493     I->insertInto(CurBB, CurBB->end());
6494 
6495     // If this was a terminator instruction, move to the next block.
6496     if (I->isTerminator()) {
6497       ++CurBBNo;
6498       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6499     }
6500 
6501     // Non-void values get registered in the value table for future use.
6502     if (!I->getType()->isVoidTy()) {
6503       assert(I->getType() == getTypeByID(ResTypeID) &&
6504              "Incorrect result type ID");
6505       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6506         return Err;
6507     }
6508   }
6509 
6510 OutOfRecordLoop:
6511 
6512   if (!OperandBundles.empty())
6513     return error("Operand bundles found with no consumer");
6514 
6515   // Check the function list for unresolved values.
6516   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6517     if (!A->getParent()) {
6518       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6519       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6520         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6521           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6522           delete A;
6523         }
6524       }
6525       return error("Never resolved value found in function");
6526     }
6527   }
6528 
6529   // Unexpected unresolved metadata about to be dropped.
6530   if (MDLoader->hasFwdRefs())
6531     return error("Invalid function metadata: outgoing forward refs");
6532 
6533   if (PhiConstExprBB)
6534     PhiConstExprBB->eraseFromParent();
6535 
6536   for (const auto &Pair : ConstExprEdgeBBs) {
6537     BasicBlock *From = Pair.first.first;
6538     BasicBlock *To = Pair.first.second;
6539     BasicBlock *EdgeBB = Pair.second;
6540     BranchInst::Create(To, EdgeBB);
6541     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6542     To->replacePhiUsesWith(From, EdgeBB);
6543     EdgeBB->moveBefore(To);
6544   }
6545 
6546   // Trim the value list down to the size it was before we parsed this function.
6547   ValueList.shrinkTo(ModuleValueListSize);
6548   MDLoader->shrinkTo(ModuleMDLoaderSize);
6549   std::vector<BasicBlock*>().swap(FunctionBBs);
6550   return Error::success();
6551 }
6552 
6553 /// Find the function body in the bitcode stream
6554 Error BitcodeReader::findFunctionInStream(
6555     Function *F,
6556     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6557   while (DeferredFunctionInfoIterator->second == 0) {
6558     // This is the fallback handling for the old format bitcode that
6559     // didn't contain the function index in the VST, or when we have
6560     // an anonymous function which would not have a VST entry.
6561     // Assert that we have one of those two cases.
6562     assert(VSTOffset == 0 || !F->hasName());
6563     // Parse the next body in the stream and set its position in the
6564     // DeferredFunctionInfo map.
6565     if (Error Err = rememberAndSkipFunctionBodies())
6566       return Err;
6567   }
6568   return Error::success();
6569 }
6570 
6571 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6572   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6573     return SyncScope::ID(Val);
6574   if (Val >= SSIDs.size())
6575     return SyncScope::System; // Map unknown synchronization scopes to system.
6576   return SSIDs[Val];
6577 }
6578 
6579 //===----------------------------------------------------------------------===//
6580 // GVMaterializer implementation
6581 //===----------------------------------------------------------------------===//
6582 
6583 Error BitcodeReader::materialize(GlobalValue *GV) {
6584   Function *F = dyn_cast<Function>(GV);
6585   // If it's not a function or is already material, ignore the request.
6586   if (!F || !F->isMaterializable())
6587     return Error::success();
6588 
6589   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6590   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6591   // If its position is recorded as 0, its body is somewhere in the stream
6592   // but we haven't seen it yet.
6593   if (DFII->second == 0)
6594     if (Error Err = findFunctionInStream(F, DFII))
6595       return Err;
6596 
6597   // Materialize metadata before parsing any function bodies.
6598   if (Error Err = materializeMetadata())
6599     return Err;
6600 
6601   // Move the bit stream to the saved position of the deferred function body.
6602   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6603     return JumpFailed;
6604   if (Error Err = parseFunctionBody(F))
6605     return Err;
6606   F->setIsMaterializable(false);
6607 
6608   if (StripDebugInfo)
6609     stripDebugInfo(*F);
6610 
6611   // Upgrade any old intrinsic calls in the function.
6612   for (auto &I : UpgradedIntrinsics) {
6613     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6614       if (CallInst *CI = dyn_cast<CallInst>(U))
6615         UpgradeIntrinsicCall(CI, I.second);
6616   }
6617 
6618   // Finish fn->subprogram upgrade for materialized functions.
6619   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6620     F->setSubprogram(SP);
6621 
6622   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6623   if (!MDLoader->isStrippingTBAA()) {
6624     for (auto &I : instructions(F)) {
6625       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6626       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6627         continue;
6628       MDLoader->setStripTBAA(true);
6629       stripTBAA(F->getParent());
6630     }
6631   }
6632 
6633   for (auto &I : instructions(F)) {
6634     // "Upgrade" older incorrect branch weights by dropping them.
6635     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6636       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6637         MDString *MDS = cast<MDString>(MD->getOperand(0));
6638         StringRef ProfName = MDS->getString();
6639         // Check consistency of !prof branch_weights metadata.
6640         if (!ProfName.equals("branch_weights"))
6641           continue;
6642         unsigned ExpectedNumOperands = 0;
6643         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6644           ExpectedNumOperands = BI->getNumSuccessors();
6645         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6646           ExpectedNumOperands = SI->getNumSuccessors();
6647         else if (isa<CallInst>(&I))
6648           ExpectedNumOperands = 1;
6649         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6650           ExpectedNumOperands = IBI->getNumDestinations();
6651         else if (isa<SelectInst>(&I))
6652           ExpectedNumOperands = 2;
6653         else
6654           continue; // ignore and continue.
6655 
6656         // If branch weight doesn't match, just strip branch weight.
6657         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6658           I.setMetadata(LLVMContext::MD_prof, nullptr);
6659       }
6660     }
6661 
6662     // Remove incompatible attributes on function calls.
6663     if (auto *CI = dyn_cast<CallBase>(&I)) {
6664       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6665           CI->getFunctionType()->getReturnType()));
6666 
6667       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6668         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6669                                         CI->getArgOperand(ArgNo)->getType()));
6670     }
6671   }
6672 
6673   // Look for functions that rely on old function attribute behavior.
6674   UpgradeFunctionAttributes(*F);
6675 
6676   // Bring in any functions that this function forward-referenced via
6677   // blockaddresses.
6678   return materializeForwardReferencedFunctions();
6679 }
6680 
6681 Error BitcodeReader::materializeModule() {
6682   if (Error Err = materializeMetadata())
6683     return Err;
6684 
6685   // Promise to materialize all forward references.
6686   WillMaterializeAllForwardRefs = true;
6687 
6688   // Iterate over the module, deserializing any functions that are still on
6689   // disk.
6690   for (Function &F : *TheModule) {
6691     if (Error Err = materialize(&F))
6692       return Err;
6693   }
6694   // At this point, if there are any function bodies, parse the rest of
6695   // the bits in the module past the last function block we have recorded
6696   // through either lazy scanning or the VST.
6697   if (LastFunctionBlockBit || NextUnreadBit)
6698     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6699                                     ? LastFunctionBlockBit
6700                                     : NextUnreadBit))
6701       return Err;
6702 
6703   // Check that all block address forward references got resolved (as we
6704   // promised above).
6705   if (!BasicBlockFwdRefs.empty())
6706     return error("Never resolved function from blockaddress");
6707 
6708   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6709   // delete the old functions to clean up. We can't do this unless the entire
6710   // module is materialized because there could always be another function body
6711   // with calls to the old function.
6712   for (auto &I : UpgradedIntrinsics) {
6713     for (auto *U : I.first->users()) {
6714       if (CallInst *CI = dyn_cast<CallInst>(U))
6715         UpgradeIntrinsicCall(CI, I.second);
6716     }
6717     if (!I.first->use_empty())
6718       I.first->replaceAllUsesWith(I.second);
6719     I.first->eraseFromParent();
6720   }
6721   UpgradedIntrinsics.clear();
6722 
6723   UpgradeDebugInfo(*TheModule);
6724 
6725   UpgradeModuleFlags(*TheModule);
6726 
6727   UpgradeARCRuntime(*TheModule);
6728 
6729   return Error::success();
6730 }
6731 
6732 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6733   return IdentifiedStructTypes;
6734 }
6735 
6736 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6737     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6738     StringRef ModulePath, unsigned ModuleId,
6739     std::function<bool(GlobalValue::GUID)> IsPrevailing)
6740     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6741       ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {}
6742 
6743 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6744   TheIndex.addModule(ModulePath, ModuleId);
6745 }
6746 
6747 ModuleSummaryIndex::ModuleInfo *
6748 ModuleSummaryIndexBitcodeReader::getThisModule() {
6749   return TheIndex.getModule(ModulePath);
6750 }
6751 
6752 template <bool AllowNullValueInfo>
6753 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6754 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6755   auto VGI = ValueIdToValueInfoMap[ValueId];
6756   // We can have a null value info for memprof callsite info records in
6757   // distributed ThinLTO index files when the callee function summary is not
6758   // included in the index. The bitcode writer records 0 in that case,
6759   // and the caller of this helper will set AllowNullValueInfo to true.
6760   assert(AllowNullValueInfo || std::get<0>(VGI));
6761   return VGI;
6762 }
6763 
6764 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6765     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6766     StringRef SourceFileName) {
6767   std::string GlobalId =
6768       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6769   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6770   auto OriginalNameID = ValueGUID;
6771   if (GlobalValue::isLocalLinkage(Linkage))
6772     OriginalNameID = GlobalValue::getGUID(ValueName);
6773   if (PrintSummaryGUIDs)
6774     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6775            << ValueName << "\n";
6776 
6777   // UseStrtab is false for legacy summary formats and value names are
6778   // created on stack. In that case we save the name in a string saver in
6779   // the index so that the value name can be recorded.
6780   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6781       TheIndex.getOrInsertValueInfo(
6782           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6783       OriginalNameID, ValueGUID);
6784 }
6785 
6786 // Specialized value symbol table parser used when reading module index
6787 // blocks where we don't actually create global values. The parsed information
6788 // is saved in the bitcode reader for use when later parsing summaries.
6789 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6790     uint64_t Offset,
6791     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6792   // With a strtab the VST is not required to parse the summary.
6793   if (UseStrtab)
6794     return Error::success();
6795 
6796   assert(Offset > 0 && "Expected non-zero VST offset");
6797   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6798   if (!MaybeCurrentBit)
6799     return MaybeCurrentBit.takeError();
6800   uint64_t CurrentBit = MaybeCurrentBit.get();
6801 
6802   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6803     return Err;
6804 
6805   SmallVector<uint64_t, 64> Record;
6806 
6807   // Read all the records for this value table.
6808   SmallString<128> ValueName;
6809 
6810   while (true) {
6811     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6812     if (!MaybeEntry)
6813       return MaybeEntry.takeError();
6814     BitstreamEntry Entry = MaybeEntry.get();
6815 
6816     switch (Entry.Kind) {
6817     case BitstreamEntry::SubBlock: // Handled for us already.
6818     case BitstreamEntry::Error:
6819       return error("Malformed block");
6820     case BitstreamEntry::EndBlock:
6821       // Done parsing VST, jump back to wherever we came from.
6822       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6823         return JumpFailed;
6824       return Error::success();
6825     case BitstreamEntry::Record:
6826       // The interesting case.
6827       break;
6828     }
6829 
6830     // Read a record.
6831     Record.clear();
6832     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6833     if (!MaybeRecord)
6834       return MaybeRecord.takeError();
6835     switch (MaybeRecord.get()) {
6836     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6837       break;
6838     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6839       if (convertToString(Record, 1, ValueName))
6840         return error("Invalid record");
6841       unsigned ValueID = Record[0];
6842       assert(!SourceFileName.empty());
6843       auto VLI = ValueIdToLinkageMap.find(ValueID);
6844       assert(VLI != ValueIdToLinkageMap.end() &&
6845              "No linkage found for VST entry?");
6846       auto Linkage = VLI->second;
6847       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6848       ValueName.clear();
6849       break;
6850     }
6851     case bitc::VST_CODE_FNENTRY: {
6852       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6853       if (convertToString(Record, 2, ValueName))
6854         return error("Invalid record");
6855       unsigned ValueID = Record[0];
6856       assert(!SourceFileName.empty());
6857       auto VLI = ValueIdToLinkageMap.find(ValueID);
6858       assert(VLI != ValueIdToLinkageMap.end() &&
6859              "No linkage found for VST entry?");
6860       auto Linkage = VLI->second;
6861       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6862       ValueName.clear();
6863       break;
6864     }
6865     case bitc::VST_CODE_COMBINED_ENTRY: {
6866       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6867       unsigned ValueID = Record[0];
6868       GlobalValue::GUID RefGUID = Record[1];
6869       // The "original name", which is the second value of the pair will be
6870       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6871       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6872           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6873       break;
6874     }
6875     }
6876   }
6877 }
6878 
6879 // Parse just the blocks needed for building the index out of the module.
6880 // At the end of this routine the module Index is populated with a map
6881 // from global value id to GlobalValueSummary objects.
6882 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6883   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6884     return Err;
6885 
6886   SmallVector<uint64_t, 64> Record;
6887   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6888   unsigned ValueId = 0;
6889 
6890   // Read the index for this module.
6891   while (true) {
6892     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6893     if (!MaybeEntry)
6894       return MaybeEntry.takeError();
6895     llvm::BitstreamEntry Entry = MaybeEntry.get();
6896 
6897     switch (Entry.Kind) {
6898     case BitstreamEntry::Error:
6899       return error("Malformed block");
6900     case BitstreamEntry::EndBlock:
6901       return Error::success();
6902 
6903     case BitstreamEntry::SubBlock:
6904       switch (Entry.ID) {
6905       default: // Skip unknown content.
6906         if (Error Err = Stream.SkipBlock())
6907           return Err;
6908         break;
6909       case bitc::BLOCKINFO_BLOCK_ID:
6910         // Need to parse these to get abbrev ids (e.g. for VST)
6911         if (Error Err = readBlockInfo())
6912           return Err;
6913         break;
6914       case bitc::VALUE_SYMTAB_BLOCK_ID:
6915         // Should have been parsed earlier via VSTOffset, unless there
6916         // is no summary section.
6917         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6918                 !SeenGlobalValSummary) &&
6919                "Expected early VST parse via VSTOffset record");
6920         if (Error Err = Stream.SkipBlock())
6921           return Err;
6922         break;
6923       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6924       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6925         // Add the module if it is a per-module index (has a source file name).
6926         if (!SourceFileName.empty())
6927           addThisModule();
6928         assert(!SeenValueSymbolTable &&
6929                "Already read VST when parsing summary block?");
6930         // We might not have a VST if there were no values in the
6931         // summary. An empty summary block generated when we are
6932         // performing ThinLTO compiles so we don't later invoke
6933         // the regular LTO process on them.
6934         if (VSTOffset > 0) {
6935           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6936             return Err;
6937           SeenValueSymbolTable = true;
6938         }
6939         SeenGlobalValSummary = true;
6940         if (Error Err = parseEntireSummary(Entry.ID))
6941           return Err;
6942         break;
6943       case bitc::MODULE_STRTAB_BLOCK_ID:
6944         if (Error Err = parseModuleStringTable())
6945           return Err;
6946         break;
6947       }
6948       continue;
6949 
6950     case BitstreamEntry::Record: {
6951         Record.clear();
6952         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6953         if (!MaybeBitCode)
6954           return MaybeBitCode.takeError();
6955         switch (MaybeBitCode.get()) {
6956         default:
6957           break; // Default behavior, ignore unknown content.
6958         case bitc::MODULE_CODE_VERSION: {
6959           if (Error Err = parseVersionRecord(Record).takeError())
6960             return Err;
6961           break;
6962         }
6963         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6964         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6965           SmallString<128> ValueName;
6966           if (convertToString(Record, 0, ValueName))
6967             return error("Invalid record");
6968           SourceFileName = ValueName.c_str();
6969           break;
6970         }
6971         /// MODULE_CODE_HASH: [5*i32]
6972         case bitc::MODULE_CODE_HASH: {
6973           if (Record.size() != 5)
6974             return error("Invalid hash length " + Twine(Record.size()).str());
6975           auto &Hash = getThisModule()->second.second;
6976           int Pos = 0;
6977           for (auto &Val : Record) {
6978             assert(!(Val >> 32) && "Unexpected high bits set");
6979             Hash[Pos++] = Val;
6980           }
6981           break;
6982         }
6983         /// MODULE_CODE_VSTOFFSET: [offset]
6984         case bitc::MODULE_CODE_VSTOFFSET:
6985           if (Record.empty())
6986             return error("Invalid record");
6987           // Note that we subtract 1 here because the offset is relative to one
6988           // word before the start of the identification or module block, which
6989           // was historically always the start of the regular bitcode header.
6990           VSTOffset = Record[0] - 1;
6991           break;
6992         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6993         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6994         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6995         // v2: [strtab offset, strtab size, v1]
6996         case bitc::MODULE_CODE_GLOBALVAR:
6997         case bitc::MODULE_CODE_FUNCTION:
6998         case bitc::MODULE_CODE_ALIAS: {
6999           StringRef Name;
7000           ArrayRef<uint64_t> GVRecord;
7001           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7002           if (GVRecord.size() <= 3)
7003             return error("Invalid record");
7004           uint64_t RawLinkage = GVRecord[3];
7005           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7006           if (!UseStrtab) {
7007             ValueIdToLinkageMap[ValueId++] = Linkage;
7008             break;
7009           }
7010 
7011           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7012           break;
7013         }
7014         }
7015       }
7016       continue;
7017     }
7018   }
7019 }
7020 
7021 std::vector<ValueInfo>
7022 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7023   std::vector<ValueInfo> Ret;
7024   Ret.reserve(Record.size());
7025   for (uint64_t RefValueId : Record)
7026     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7027   return Ret;
7028 }
7029 
7030 std::vector<FunctionSummary::EdgeTy>
7031 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7032                                               bool IsOldProfileFormat,
7033                                               bool HasProfile, bool HasRelBF) {
7034   std::vector<FunctionSummary::EdgeTy> Ret;
7035   Ret.reserve(Record.size());
7036   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7037     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7038     uint64_t RelBF = 0;
7039     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7040     if (IsOldProfileFormat) {
7041       I += 1; // Skip old callsitecount field
7042       if (HasProfile)
7043         I += 1; // Skip old profilecount field
7044     } else if (HasProfile)
7045       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7046     else if (HasRelBF)
7047       RelBF = Record[++I];
7048     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7049   }
7050   return Ret;
7051 }
7052 
7053 static void
7054 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7055                                        WholeProgramDevirtResolution &Wpd) {
7056   uint64_t ArgNum = Record[Slot++];
7057   WholeProgramDevirtResolution::ByArg &B =
7058       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7059   Slot += ArgNum;
7060 
7061   B.TheKind =
7062       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7063   B.Info = Record[Slot++];
7064   B.Byte = Record[Slot++];
7065   B.Bit = Record[Slot++];
7066 }
7067 
7068 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7069                                               StringRef Strtab, size_t &Slot,
7070                                               TypeIdSummary &TypeId) {
7071   uint64_t Id = Record[Slot++];
7072   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7073 
7074   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7075   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7076                         static_cast<size_t>(Record[Slot + 1])};
7077   Slot += 2;
7078 
7079   uint64_t ResByArgNum = Record[Slot++];
7080   for (uint64_t I = 0; I != ResByArgNum; ++I)
7081     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7082 }
7083 
7084 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7085                                      StringRef Strtab,
7086                                      ModuleSummaryIndex &TheIndex) {
7087   size_t Slot = 0;
7088   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7089       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7090   Slot += 2;
7091 
7092   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7093   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7094   TypeId.TTRes.AlignLog2 = Record[Slot++];
7095   TypeId.TTRes.SizeM1 = Record[Slot++];
7096   TypeId.TTRes.BitMask = Record[Slot++];
7097   TypeId.TTRes.InlineBits = Record[Slot++];
7098 
7099   while (Slot < Record.size())
7100     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7101 }
7102 
7103 std::vector<FunctionSummary::ParamAccess>
7104 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7105   auto ReadRange = [&]() {
7106     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7107                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7108     Record = Record.drop_front();
7109     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7110                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7111     Record = Record.drop_front();
7112     ConstantRange Range{Lower, Upper};
7113     assert(!Range.isFullSet());
7114     assert(!Range.isUpperSignWrapped());
7115     return Range;
7116   };
7117 
7118   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7119   while (!Record.empty()) {
7120     PendingParamAccesses.emplace_back();
7121     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7122     ParamAccess.ParamNo = Record.front();
7123     Record = Record.drop_front();
7124     ParamAccess.Use = ReadRange();
7125     ParamAccess.Calls.resize(Record.front());
7126     Record = Record.drop_front();
7127     for (auto &Call : ParamAccess.Calls) {
7128       Call.ParamNo = Record.front();
7129       Record = Record.drop_front();
7130       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7131       Record = Record.drop_front();
7132       Call.Offsets = ReadRange();
7133     }
7134   }
7135   return PendingParamAccesses;
7136 }
7137 
7138 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7139     ArrayRef<uint64_t> Record, size_t &Slot,
7140     TypeIdCompatibleVtableInfo &TypeId) {
7141   uint64_t Offset = Record[Slot++];
7142   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7143   TypeId.push_back({Offset, Callee});
7144 }
7145 
7146 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7147     ArrayRef<uint64_t> Record) {
7148   size_t Slot = 0;
7149   TypeIdCompatibleVtableInfo &TypeId =
7150       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7151           {Strtab.data() + Record[Slot],
7152            static_cast<size_t>(Record[Slot + 1])});
7153   Slot += 2;
7154 
7155   while (Slot < Record.size())
7156     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7157 }
7158 
7159 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7160                            unsigned WOCnt) {
7161   // Readonly and writeonly refs are in the end of the refs list.
7162   assert(ROCnt + WOCnt <= Refs.size());
7163   unsigned FirstWORef = Refs.size() - WOCnt;
7164   unsigned RefNo = FirstWORef - ROCnt;
7165   for (; RefNo < FirstWORef; ++RefNo)
7166     Refs[RefNo].setReadOnly();
7167   for (; RefNo < Refs.size(); ++RefNo)
7168     Refs[RefNo].setWriteOnly();
7169 }
7170 
7171 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7172 // objects in the index.
7173 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7174   if (Error Err = Stream.EnterSubBlock(ID))
7175     return Err;
7176   SmallVector<uint64_t, 64> Record;
7177 
7178   // Parse version
7179   {
7180     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7181     if (!MaybeEntry)
7182       return MaybeEntry.takeError();
7183     BitstreamEntry Entry = MaybeEntry.get();
7184 
7185     if (Entry.Kind != BitstreamEntry::Record)
7186       return error("Invalid Summary Block: record for version expected");
7187     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7188     if (!MaybeRecord)
7189       return MaybeRecord.takeError();
7190     if (MaybeRecord.get() != bitc::FS_VERSION)
7191       return error("Invalid Summary Block: version expected");
7192   }
7193   const uint64_t Version = Record[0];
7194   const bool IsOldProfileFormat = Version == 1;
7195   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7196     return error("Invalid summary version " + Twine(Version) +
7197                  ". Version should be in the range [1-" +
7198                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7199                  "].");
7200   Record.clear();
7201 
7202   // Keep around the last seen summary to be used when we see an optional
7203   // "OriginalName" attachement.
7204   GlobalValueSummary *LastSeenSummary = nullptr;
7205   GlobalValue::GUID LastSeenGUID = 0;
7206 
7207   // We can expect to see any number of type ID information records before
7208   // each function summary records; these variables store the information
7209   // collected so far so that it can be used to create the summary object.
7210   std::vector<GlobalValue::GUID> PendingTypeTests;
7211   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7212       PendingTypeCheckedLoadVCalls;
7213   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7214       PendingTypeCheckedLoadConstVCalls;
7215   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7216 
7217   std::vector<CallsiteInfo> PendingCallsites;
7218   std::vector<AllocInfo> PendingAllocs;
7219 
7220   while (true) {
7221     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7222     if (!MaybeEntry)
7223       return MaybeEntry.takeError();
7224     BitstreamEntry Entry = MaybeEntry.get();
7225 
7226     switch (Entry.Kind) {
7227     case BitstreamEntry::SubBlock: // Handled for us already.
7228     case BitstreamEntry::Error:
7229       return error("Malformed block");
7230     case BitstreamEntry::EndBlock:
7231       return Error::success();
7232     case BitstreamEntry::Record:
7233       // The interesting case.
7234       break;
7235     }
7236 
7237     // Read a record. The record format depends on whether this
7238     // is a per-module index or a combined index file. In the per-module
7239     // case the records contain the associated value's ID for correlation
7240     // with VST entries. In the combined index the correlation is done
7241     // via the bitcode offset of the summary records (which were saved
7242     // in the combined index VST entries). The records also contain
7243     // information used for ThinLTO renaming and importing.
7244     Record.clear();
7245     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7246     if (!MaybeBitCode)
7247       return MaybeBitCode.takeError();
7248     switch (unsigned BitCode = MaybeBitCode.get()) {
7249     default: // Default behavior: ignore.
7250       break;
7251     case bitc::FS_FLAGS: {  // [flags]
7252       TheIndex.setFlags(Record[0]);
7253       break;
7254     }
7255     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7256       uint64_t ValueID = Record[0];
7257       GlobalValue::GUID RefGUID = Record[1];
7258       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7259           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7260       break;
7261     }
7262     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7263     //                numrefs x valueid, n x (valueid)]
7264     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7265     //                        numrefs x valueid,
7266     //                        n x (valueid, hotness)]
7267     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7268     //                      numrefs x valueid,
7269     //                      n x (valueid, relblockfreq)]
7270     case bitc::FS_PERMODULE:
7271     case bitc::FS_PERMODULE_RELBF:
7272     case bitc::FS_PERMODULE_PROFILE: {
7273       unsigned ValueID = Record[0];
7274       uint64_t RawFlags = Record[1];
7275       unsigned InstCount = Record[2];
7276       uint64_t RawFunFlags = 0;
7277       unsigned NumRefs = Record[3];
7278       unsigned NumRORefs = 0, NumWORefs = 0;
7279       int RefListStartIndex = 4;
7280       if (Version >= 4) {
7281         RawFunFlags = Record[3];
7282         NumRefs = Record[4];
7283         RefListStartIndex = 5;
7284         if (Version >= 5) {
7285           NumRORefs = Record[5];
7286           RefListStartIndex = 6;
7287           if (Version >= 7) {
7288             NumWORefs = Record[6];
7289             RefListStartIndex = 7;
7290           }
7291         }
7292       }
7293 
7294       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7295       // The module path string ref set in the summary must be owned by the
7296       // index's module string table. Since we don't have a module path
7297       // string table section in the per-module index, we create a single
7298       // module path string table entry with an empty (0) ID to take
7299       // ownership.
7300       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7301       assert(Record.size() >= RefListStartIndex + NumRefs &&
7302              "Record size inconsistent with number of references");
7303       std::vector<ValueInfo> Refs = makeRefList(
7304           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7305       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7306       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7307       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7308           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7309           IsOldProfileFormat, HasProfile, HasRelBF);
7310       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7311       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7312       // In order to save memory, only record the memprof summaries if this is
7313       // the prevailing copy of a symbol. The linker doesn't resolve local
7314       // linkage values so don't check whether those are prevailing.
7315       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7316       if (IsPrevailing &&
7317           !GlobalValue::isLocalLinkage(LT) &&
7318           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7319         PendingCallsites.clear();
7320         PendingAllocs.clear();
7321       }
7322       auto FS = std::make_unique<FunctionSummary>(
7323           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7324           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7325           std::move(PendingTypeTestAssumeVCalls),
7326           std::move(PendingTypeCheckedLoadVCalls),
7327           std::move(PendingTypeTestAssumeConstVCalls),
7328           std::move(PendingTypeCheckedLoadConstVCalls),
7329           std::move(PendingParamAccesses), std::move(PendingCallsites),
7330           std::move(PendingAllocs));
7331       FS->setModulePath(getThisModule()->first());
7332       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7333       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7334                                      std::move(FS));
7335       break;
7336     }
7337     // FS_ALIAS: [valueid, flags, valueid]
7338     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7339     // they expect all aliasee summaries to be available.
7340     case bitc::FS_ALIAS: {
7341       unsigned ValueID = Record[0];
7342       uint64_t RawFlags = Record[1];
7343       unsigned AliaseeID = Record[2];
7344       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7345       auto AS = std::make_unique<AliasSummary>(Flags);
7346       // The module path string ref set in the summary must be owned by the
7347       // index's module string table. Since we don't have a module path
7348       // string table section in the per-module index, we create a single
7349       // module path string table entry with an empty (0) ID to take
7350       // ownership.
7351       AS->setModulePath(getThisModule()->first());
7352 
7353       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7354       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7355       if (!AliaseeInModule)
7356         return error("Alias expects aliasee summary to be parsed");
7357       AS->setAliasee(AliaseeVI, AliaseeInModule);
7358 
7359       auto GUID = getValueInfoFromValueId(ValueID);
7360       AS->setOriginalName(std::get<1>(GUID));
7361       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7362       break;
7363     }
7364     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7365     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7366       unsigned ValueID = Record[0];
7367       uint64_t RawFlags = Record[1];
7368       unsigned RefArrayStart = 2;
7369       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7370                                       /* WriteOnly */ false,
7371                                       /* Constant */ false,
7372                                       GlobalObject::VCallVisibilityPublic);
7373       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7374       if (Version >= 5) {
7375         GVF = getDecodedGVarFlags(Record[2]);
7376         RefArrayStart = 3;
7377       }
7378       std::vector<ValueInfo> Refs =
7379           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7380       auto FS =
7381           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7382       FS->setModulePath(getThisModule()->first());
7383       auto GUID = getValueInfoFromValueId(ValueID);
7384       FS->setOriginalName(std::get<1>(GUID));
7385       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7386       break;
7387     }
7388     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7389     //                        numrefs, numrefs x valueid,
7390     //                        n x (valueid, offset)]
7391     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7392       unsigned ValueID = Record[0];
7393       uint64_t RawFlags = Record[1];
7394       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7395       unsigned NumRefs = Record[3];
7396       unsigned RefListStartIndex = 4;
7397       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7398       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7399       std::vector<ValueInfo> Refs = makeRefList(
7400           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7401       VTableFuncList VTableFuncs;
7402       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7403         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7404         uint64_t Offset = Record[++I];
7405         VTableFuncs.push_back({Callee, Offset});
7406       }
7407       auto VS =
7408           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7409       VS->setModulePath(getThisModule()->first());
7410       VS->setVTableFuncs(VTableFuncs);
7411       auto GUID = getValueInfoFromValueId(ValueID);
7412       VS->setOriginalName(std::get<1>(GUID));
7413       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7414       break;
7415     }
7416     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7417     //               numrefs x valueid, n x (valueid)]
7418     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7419     //                       numrefs x valueid, n x (valueid, hotness)]
7420     case bitc::FS_COMBINED:
7421     case bitc::FS_COMBINED_PROFILE: {
7422       unsigned ValueID = Record[0];
7423       uint64_t ModuleId = Record[1];
7424       uint64_t RawFlags = Record[2];
7425       unsigned InstCount = Record[3];
7426       uint64_t RawFunFlags = 0;
7427       uint64_t EntryCount = 0;
7428       unsigned NumRefs = Record[4];
7429       unsigned NumRORefs = 0, NumWORefs = 0;
7430       int RefListStartIndex = 5;
7431 
7432       if (Version >= 4) {
7433         RawFunFlags = Record[4];
7434         RefListStartIndex = 6;
7435         size_t NumRefsIndex = 5;
7436         if (Version >= 5) {
7437           unsigned NumRORefsOffset = 1;
7438           RefListStartIndex = 7;
7439           if (Version >= 6) {
7440             NumRefsIndex = 6;
7441             EntryCount = Record[5];
7442             RefListStartIndex = 8;
7443             if (Version >= 7) {
7444               RefListStartIndex = 9;
7445               NumWORefs = Record[8];
7446               NumRORefsOffset = 2;
7447             }
7448           }
7449           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7450         }
7451         NumRefs = Record[NumRefsIndex];
7452       }
7453 
7454       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7455       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7456       assert(Record.size() >= RefListStartIndex + NumRefs &&
7457              "Record size inconsistent with number of references");
7458       std::vector<ValueInfo> Refs = makeRefList(
7459           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7460       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7461       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7462           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7463           IsOldProfileFormat, HasProfile, false);
7464       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7465       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7466       auto FS = std::make_unique<FunctionSummary>(
7467           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7468           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7469           std::move(PendingTypeTestAssumeVCalls),
7470           std::move(PendingTypeCheckedLoadVCalls),
7471           std::move(PendingTypeTestAssumeConstVCalls),
7472           std::move(PendingTypeCheckedLoadConstVCalls),
7473           std::move(PendingParamAccesses), std::move(PendingCallsites),
7474           std::move(PendingAllocs));
7475       LastSeenSummary = FS.get();
7476       LastSeenGUID = VI.getGUID();
7477       FS->setModulePath(ModuleIdMap[ModuleId]);
7478       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7479       break;
7480     }
7481     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7482     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7483     // they expect all aliasee summaries to be available.
7484     case bitc::FS_COMBINED_ALIAS: {
7485       unsigned ValueID = Record[0];
7486       uint64_t ModuleId = Record[1];
7487       uint64_t RawFlags = Record[2];
7488       unsigned AliaseeValueId = Record[3];
7489       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7490       auto AS = std::make_unique<AliasSummary>(Flags);
7491       LastSeenSummary = AS.get();
7492       AS->setModulePath(ModuleIdMap[ModuleId]);
7493 
7494       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7495       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7496       AS->setAliasee(AliaseeVI, AliaseeInModule);
7497 
7498       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7499       LastSeenGUID = VI.getGUID();
7500       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7501       break;
7502     }
7503     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7504     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7505       unsigned ValueID = Record[0];
7506       uint64_t ModuleId = Record[1];
7507       uint64_t RawFlags = Record[2];
7508       unsigned RefArrayStart = 3;
7509       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7510                                       /* WriteOnly */ false,
7511                                       /* Constant */ false,
7512                                       GlobalObject::VCallVisibilityPublic);
7513       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7514       if (Version >= 5) {
7515         GVF = getDecodedGVarFlags(Record[3]);
7516         RefArrayStart = 4;
7517       }
7518       std::vector<ValueInfo> Refs =
7519           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7520       auto FS =
7521           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7522       LastSeenSummary = FS.get();
7523       FS->setModulePath(ModuleIdMap[ModuleId]);
7524       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7525       LastSeenGUID = VI.getGUID();
7526       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7527       break;
7528     }
7529     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7530     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7531       uint64_t OriginalName = Record[0];
7532       if (!LastSeenSummary)
7533         return error("Name attachment that does not follow a combined record");
7534       LastSeenSummary->setOriginalName(OriginalName);
7535       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7536       // Reset the LastSeenSummary
7537       LastSeenSummary = nullptr;
7538       LastSeenGUID = 0;
7539       break;
7540     }
7541     case bitc::FS_TYPE_TESTS:
7542       assert(PendingTypeTests.empty());
7543       llvm::append_range(PendingTypeTests, Record);
7544       break;
7545 
7546     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7547       assert(PendingTypeTestAssumeVCalls.empty());
7548       for (unsigned I = 0; I != Record.size(); I += 2)
7549         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7550       break;
7551 
7552     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7553       assert(PendingTypeCheckedLoadVCalls.empty());
7554       for (unsigned I = 0; I != Record.size(); I += 2)
7555         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7556       break;
7557 
7558     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7559       PendingTypeTestAssumeConstVCalls.push_back(
7560           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7561       break;
7562 
7563     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7564       PendingTypeCheckedLoadConstVCalls.push_back(
7565           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7566       break;
7567 
7568     case bitc::FS_CFI_FUNCTION_DEFS: {
7569       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7570       for (unsigned I = 0; I != Record.size(); I += 2)
7571         CfiFunctionDefs.insert(
7572             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7573       break;
7574     }
7575 
7576     case bitc::FS_CFI_FUNCTION_DECLS: {
7577       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7578       for (unsigned I = 0; I != Record.size(); I += 2)
7579         CfiFunctionDecls.insert(
7580             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7581       break;
7582     }
7583 
7584     case bitc::FS_TYPE_ID:
7585       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7586       break;
7587 
7588     case bitc::FS_TYPE_ID_METADATA:
7589       parseTypeIdCompatibleVtableSummaryRecord(Record);
7590       break;
7591 
7592     case bitc::FS_BLOCK_COUNT:
7593       TheIndex.addBlockCount(Record[0]);
7594       break;
7595 
7596     case bitc::FS_PARAM_ACCESS: {
7597       PendingParamAccesses = parseParamAccesses(Record);
7598       break;
7599     }
7600 
7601     case bitc::FS_STACK_IDS: { // [n x stackid]
7602       // Save stack ids in the reader to consult when adding stack ids from the
7603       // lists in the stack node and alloc node entries.
7604       StackIds = ArrayRef<uint64_t>(Record);
7605       break;
7606     }
7607 
7608     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7609       unsigned ValueID = Record[0];
7610       SmallVector<unsigned> StackIdList;
7611       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7612         assert(*R < StackIds.size());
7613         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7614       }
7615       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7616       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7617       break;
7618     }
7619 
7620     case bitc::FS_COMBINED_CALLSITE_INFO: {
7621       auto RecordIter = Record.begin();
7622       unsigned ValueID = *RecordIter++;
7623       unsigned NumStackIds = *RecordIter++;
7624       unsigned NumVersions = *RecordIter++;
7625       assert(Record.size() == 3 + NumStackIds + NumVersions);
7626       SmallVector<unsigned> StackIdList;
7627       for (unsigned J = 0; J < NumStackIds; J++) {
7628         assert(*RecordIter < StackIds.size());
7629         StackIdList.push_back(
7630             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7631       }
7632       SmallVector<unsigned> Versions;
7633       for (unsigned J = 0; J < NumVersions; J++)
7634         Versions.push_back(*RecordIter++);
7635       ValueInfo VI = std::get<0>(
7636           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7637       PendingCallsites.push_back(
7638           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7639       break;
7640     }
7641 
7642     case bitc::FS_PERMODULE_ALLOC_INFO: {
7643       unsigned I = 0;
7644       std::vector<MIBInfo> MIBs;
7645       while (I < Record.size()) {
7646         assert(Record.size() - I >= 2);
7647         AllocationType AllocType = (AllocationType)Record[I++];
7648         unsigned NumStackEntries = Record[I++];
7649         assert(Record.size() - I >= NumStackEntries);
7650         SmallVector<unsigned> StackIdList;
7651         for (unsigned J = 0; J < NumStackEntries; J++) {
7652           assert(Record[I] < StackIds.size());
7653           StackIdList.push_back(
7654               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7655         }
7656         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7657       }
7658       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7659       break;
7660     }
7661 
7662     case bitc::FS_COMBINED_ALLOC_INFO: {
7663       unsigned I = 0;
7664       std::vector<MIBInfo> MIBs;
7665       unsigned NumMIBs = Record[I++];
7666       unsigned NumVersions = Record[I++];
7667       unsigned MIBsRead = 0;
7668       while (MIBsRead++ < NumMIBs) {
7669         assert(Record.size() - I >= 2);
7670         AllocationType AllocType = (AllocationType)Record[I++];
7671         unsigned NumStackEntries = Record[I++];
7672         assert(Record.size() - I >= NumStackEntries);
7673         SmallVector<unsigned> StackIdList;
7674         for (unsigned J = 0; J < NumStackEntries; J++) {
7675           assert(Record[I] < StackIds.size());
7676           StackIdList.push_back(
7677               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7678         }
7679         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7680       }
7681       assert(Record.size() - I >= NumVersions);
7682       SmallVector<uint8_t> Versions;
7683       for (unsigned J = 0; J < NumVersions; J++)
7684         Versions.push_back(Record[I++]);
7685       PendingAllocs.push_back(
7686           AllocInfo(std::move(Versions), std::move(MIBs)));
7687       break;
7688     }
7689     }
7690   }
7691   llvm_unreachable("Exit infinite loop");
7692 }
7693 
7694 // Parse the  module string table block into the Index.
7695 // This populates the ModulePathStringTable map in the index.
7696 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7697   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7698     return Err;
7699 
7700   SmallVector<uint64_t, 64> Record;
7701 
7702   SmallString<128> ModulePath;
7703   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7704 
7705   while (true) {
7706     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7707     if (!MaybeEntry)
7708       return MaybeEntry.takeError();
7709     BitstreamEntry Entry = MaybeEntry.get();
7710 
7711     switch (Entry.Kind) {
7712     case BitstreamEntry::SubBlock: // Handled for us already.
7713     case BitstreamEntry::Error:
7714       return error("Malformed block");
7715     case BitstreamEntry::EndBlock:
7716       return Error::success();
7717     case BitstreamEntry::Record:
7718       // The interesting case.
7719       break;
7720     }
7721 
7722     Record.clear();
7723     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7724     if (!MaybeRecord)
7725       return MaybeRecord.takeError();
7726     switch (MaybeRecord.get()) {
7727     default: // Default behavior: ignore.
7728       break;
7729     case bitc::MST_CODE_ENTRY: {
7730       // MST_ENTRY: [modid, namechar x N]
7731       uint64_t ModuleId = Record[0];
7732 
7733       if (convertToString(Record, 1, ModulePath))
7734         return error("Invalid record");
7735 
7736       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7737       ModuleIdMap[ModuleId] = LastSeenModule->first();
7738 
7739       ModulePath.clear();
7740       break;
7741     }
7742     /// MST_CODE_HASH: [5*i32]
7743     case bitc::MST_CODE_HASH: {
7744       if (Record.size() != 5)
7745         return error("Invalid hash length " + Twine(Record.size()).str());
7746       if (!LastSeenModule)
7747         return error("Invalid hash that does not follow a module path");
7748       int Pos = 0;
7749       for (auto &Val : Record) {
7750         assert(!(Val >> 32) && "Unexpected high bits set");
7751         LastSeenModule->second.second[Pos++] = Val;
7752       }
7753       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7754       LastSeenModule = nullptr;
7755       break;
7756     }
7757     }
7758   }
7759   llvm_unreachable("Exit infinite loop");
7760 }
7761 
7762 namespace {
7763 
7764 // FIXME: This class is only here to support the transition to llvm::Error. It
7765 // will be removed once this transition is complete. Clients should prefer to
7766 // deal with the Error value directly, rather than converting to error_code.
7767 class BitcodeErrorCategoryType : public std::error_category {
7768   const char *name() const noexcept override {
7769     return "llvm.bitcode";
7770   }
7771 
7772   std::string message(int IE) const override {
7773     BitcodeError E = static_cast<BitcodeError>(IE);
7774     switch (E) {
7775     case BitcodeError::CorruptedBitcode:
7776       return "Corrupted bitcode";
7777     }
7778     llvm_unreachable("Unknown error type!");
7779   }
7780 };
7781 
7782 } // end anonymous namespace
7783 
7784 const std::error_category &llvm::BitcodeErrorCategory() {
7785   static BitcodeErrorCategoryType ErrorCategory;
7786   return ErrorCategory;
7787 }
7788 
7789 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7790                                             unsigned Block, unsigned RecordID) {
7791   if (Error Err = Stream.EnterSubBlock(Block))
7792     return std::move(Err);
7793 
7794   StringRef Strtab;
7795   while (true) {
7796     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7797     if (!MaybeEntry)
7798       return MaybeEntry.takeError();
7799     llvm::BitstreamEntry Entry = MaybeEntry.get();
7800 
7801     switch (Entry.Kind) {
7802     case BitstreamEntry::EndBlock:
7803       return Strtab;
7804 
7805     case BitstreamEntry::Error:
7806       return error("Malformed block");
7807 
7808     case BitstreamEntry::SubBlock:
7809       if (Error Err = Stream.SkipBlock())
7810         return std::move(Err);
7811       break;
7812 
7813     case BitstreamEntry::Record:
7814       StringRef Blob;
7815       SmallVector<uint64_t, 1> Record;
7816       Expected<unsigned> MaybeRecord =
7817           Stream.readRecord(Entry.ID, Record, &Blob);
7818       if (!MaybeRecord)
7819         return MaybeRecord.takeError();
7820       if (MaybeRecord.get() == RecordID)
7821         Strtab = Blob;
7822       break;
7823     }
7824   }
7825 }
7826 
7827 //===----------------------------------------------------------------------===//
7828 // External interface
7829 //===----------------------------------------------------------------------===//
7830 
7831 Expected<std::vector<BitcodeModule>>
7832 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7833   auto FOrErr = getBitcodeFileContents(Buffer);
7834   if (!FOrErr)
7835     return FOrErr.takeError();
7836   return std::move(FOrErr->Mods);
7837 }
7838 
7839 Expected<BitcodeFileContents>
7840 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7841   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7842   if (!StreamOrErr)
7843     return StreamOrErr.takeError();
7844   BitstreamCursor &Stream = *StreamOrErr;
7845 
7846   BitcodeFileContents F;
7847   while (true) {
7848     uint64_t BCBegin = Stream.getCurrentByteNo();
7849 
7850     // We may be consuming bitcode from a client that leaves garbage at the end
7851     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7852     // the end that there cannot possibly be another module, stop looking.
7853     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7854       return F;
7855 
7856     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7857     if (!MaybeEntry)
7858       return MaybeEntry.takeError();
7859     llvm::BitstreamEntry Entry = MaybeEntry.get();
7860 
7861     switch (Entry.Kind) {
7862     case BitstreamEntry::EndBlock:
7863     case BitstreamEntry::Error:
7864       return error("Malformed block");
7865 
7866     case BitstreamEntry::SubBlock: {
7867       uint64_t IdentificationBit = -1ull;
7868       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7869         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7870         if (Error Err = Stream.SkipBlock())
7871           return std::move(Err);
7872 
7873         {
7874           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7875           if (!MaybeEntry)
7876             return MaybeEntry.takeError();
7877           Entry = MaybeEntry.get();
7878         }
7879 
7880         if (Entry.Kind != BitstreamEntry::SubBlock ||
7881             Entry.ID != bitc::MODULE_BLOCK_ID)
7882           return error("Malformed block");
7883       }
7884 
7885       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7886         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7887         if (Error Err = Stream.SkipBlock())
7888           return std::move(Err);
7889 
7890         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7891                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7892                           Buffer.getBufferIdentifier(), IdentificationBit,
7893                           ModuleBit});
7894         continue;
7895       }
7896 
7897       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7898         Expected<StringRef> Strtab =
7899             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7900         if (!Strtab)
7901           return Strtab.takeError();
7902         // This string table is used by every preceding bitcode module that does
7903         // not have its own string table. A bitcode file may have multiple
7904         // string tables if it was created by binary concatenation, for example
7905         // with "llvm-cat -b".
7906         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7907           if (!I.Strtab.empty())
7908             break;
7909           I.Strtab = *Strtab;
7910         }
7911         // Similarly, the string table is used by every preceding symbol table;
7912         // normally there will be just one unless the bitcode file was created
7913         // by binary concatenation.
7914         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7915           F.StrtabForSymtab = *Strtab;
7916         continue;
7917       }
7918 
7919       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7920         Expected<StringRef> SymtabOrErr =
7921             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7922         if (!SymtabOrErr)
7923           return SymtabOrErr.takeError();
7924 
7925         // We can expect the bitcode file to have multiple symbol tables if it
7926         // was created by binary concatenation. In that case we silently
7927         // ignore any subsequent symbol tables, which is fine because this is a
7928         // low level function. The client is expected to notice that the number
7929         // of modules in the symbol table does not match the number of modules
7930         // in the input file and regenerate the symbol table.
7931         if (F.Symtab.empty())
7932           F.Symtab = *SymtabOrErr;
7933         continue;
7934       }
7935 
7936       if (Error Err = Stream.SkipBlock())
7937         return std::move(Err);
7938       continue;
7939     }
7940     case BitstreamEntry::Record:
7941       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7942         return std::move(E);
7943       continue;
7944     }
7945   }
7946 }
7947 
7948 /// Get a lazy one-at-time loading module from bitcode.
7949 ///
7950 /// This isn't always used in a lazy context.  In particular, it's also used by
7951 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7952 /// in forward-referenced functions from block address references.
7953 ///
7954 /// \param[in] MaterializeAll Set to \c true if we should materialize
7955 /// everything.
7956 Expected<std::unique_ptr<Module>>
7957 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7958                              bool ShouldLazyLoadMetadata, bool IsImporting,
7959                              ParserCallbacks Callbacks) {
7960   BitstreamCursor Stream(Buffer);
7961 
7962   std::string ProducerIdentification;
7963   if (IdentificationBit != -1ull) {
7964     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7965       return std::move(JumpFailed);
7966     if (Error E =
7967             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7968       return std::move(E);
7969   }
7970 
7971   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7972     return std::move(JumpFailed);
7973   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7974                               Context);
7975 
7976   std::unique_ptr<Module> M =
7977       std::make_unique<Module>(ModuleIdentifier, Context);
7978   M->setMaterializer(R);
7979 
7980   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7981   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7982                                       IsImporting, Callbacks))
7983     return std::move(Err);
7984 
7985   if (MaterializeAll) {
7986     // Read in the entire module, and destroy the BitcodeReader.
7987     if (Error Err = M->materializeAll())
7988       return std::move(Err);
7989   } else {
7990     // Resolve forward references from blockaddresses.
7991     if (Error Err = R->materializeForwardReferencedFunctions())
7992       return std::move(Err);
7993   }
7994   return std::move(M);
7995 }
7996 
7997 Expected<std::unique_ptr<Module>>
7998 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7999                              bool IsImporting, ParserCallbacks Callbacks) {
8000   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8001                        Callbacks);
8002 }
8003 
8004 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8005 // We don't use ModuleIdentifier here because the client may need to control the
8006 // module path used in the combined summary (e.g. when reading summaries for
8007 // regular LTO modules).
8008 Error BitcodeModule::readSummary(
8009     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId,
8010     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8011   BitstreamCursor Stream(Buffer);
8012   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8013     return JumpFailed;
8014 
8015   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8016                                     ModulePath, ModuleId, IsPrevailing);
8017   return R.parseModule();
8018 }
8019 
8020 // Parse the specified bitcode buffer, returning the function info index.
8021 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8022   BitstreamCursor Stream(Buffer);
8023   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8024     return std::move(JumpFailed);
8025 
8026   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8027   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8028                                     ModuleIdentifier, 0);
8029 
8030   if (Error Err = R.parseModule())
8031     return std::move(Err);
8032 
8033   return std::move(Index);
8034 }
8035 
8036 static Expected<std::pair<bool, bool>>
8037 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8038                                                  unsigned ID,
8039                                                  BitcodeLTOInfo &LTOInfo) {
8040   if (Error Err = Stream.EnterSubBlock(ID))
8041     return std::move(Err);
8042   SmallVector<uint64_t, 64> Record;
8043 
8044   while (true) {
8045     BitstreamEntry Entry;
8046     std::pair<bool, bool> Result = {false,false};
8047     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8048       return std::move(E);
8049 
8050     switch (Entry.Kind) {
8051     case BitstreamEntry::SubBlock: // Handled for us already.
8052     case BitstreamEntry::Error:
8053       return error("Malformed block");
8054     case BitstreamEntry::EndBlock: {
8055       // If no flags record found, set both flags to false.
8056       return Result;
8057     }
8058     case BitstreamEntry::Record:
8059       // The interesting case.
8060       break;
8061     }
8062 
8063     // Look for the FS_FLAGS record.
8064     Record.clear();
8065     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8066     if (!MaybeBitCode)
8067       return MaybeBitCode.takeError();
8068     switch (MaybeBitCode.get()) {
8069     default: // Default behavior: ignore.
8070       break;
8071     case bitc::FS_FLAGS: { // [flags]
8072       uint64_t Flags = Record[0];
8073       // Scan flags.
8074       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8075 
8076       bool EnableSplitLTOUnit = Flags & 0x8;
8077       bool UnifiedLTO = Flags & 0x200;
8078       Result = {EnableSplitLTOUnit, UnifiedLTO};
8079 
8080       return Result;
8081     }
8082     }
8083   }
8084   llvm_unreachable("Exit infinite loop");
8085 }
8086 
8087 // Check if the given bitcode buffer contains a global value summary block.
8088 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8089   BitstreamCursor Stream(Buffer);
8090   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8091     return std::move(JumpFailed);
8092 
8093   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8094     return std::move(Err);
8095 
8096   while (true) {
8097     llvm::BitstreamEntry Entry;
8098     if (Error E = Stream.advance().moveInto(Entry))
8099       return std::move(E);
8100 
8101     switch (Entry.Kind) {
8102     case BitstreamEntry::Error:
8103       return error("Malformed block");
8104     case BitstreamEntry::EndBlock:
8105       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8106                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8107 
8108     case BitstreamEntry::SubBlock:
8109       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8110         BitcodeLTOInfo LTOInfo;
8111         Expected<std::pair<bool, bool>> Flags =
8112             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8113         if (!Flags)
8114           return Flags.takeError();
8115         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8116         LTOInfo.IsThinLTO = true;
8117         LTOInfo.HasSummary = true;
8118         return LTOInfo;
8119       }
8120 
8121       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8122         BitcodeLTOInfo LTOInfo;
8123         Expected<std::pair<bool, bool>> Flags =
8124             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8125         if (!Flags)
8126           return Flags.takeError();
8127         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8128         LTOInfo.IsThinLTO = false;
8129         LTOInfo.HasSummary = true;
8130         return LTOInfo;
8131       }
8132 
8133       // Ignore other sub-blocks.
8134       if (Error Err = Stream.SkipBlock())
8135         return std::move(Err);
8136       continue;
8137 
8138     case BitstreamEntry::Record:
8139       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8140         continue;
8141       else
8142         return StreamFailed.takeError();
8143     }
8144   }
8145 }
8146 
8147 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8148   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8149   if (!MsOrErr)
8150     return MsOrErr.takeError();
8151 
8152   if (MsOrErr->size() != 1)
8153     return error("Expected a single module");
8154 
8155   return (*MsOrErr)[0];
8156 }
8157 
8158 Expected<std::unique_ptr<Module>>
8159 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8160                            bool ShouldLazyLoadMetadata, bool IsImporting,
8161                            ParserCallbacks Callbacks) {
8162   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8163   if (!BM)
8164     return BM.takeError();
8165 
8166   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8167                            Callbacks);
8168 }
8169 
8170 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8171     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8172     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8173   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8174                                      IsImporting, Callbacks);
8175   if (MOrErr)
8176     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8177   return MOrErr;
8178 }
8179 
8180 Expected<std::unique_ptr<Module>>
8181 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8182   return getModuleImpl(Context, true, false, false, Callbacks);
8183   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8184   // written.  We must defer until the Module has been fully materialized.
8185 }
8186 
8187 Expected<std::unique_ptr<Module>>
8188 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8189                        ParserCallbacks Callbacks) {
8190   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8191   if (!BM)
8192     return BM.takeError();
8193 
8194   return BM->parseModule(Context, Callbacks);
8195 }
8196 
8197 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8198   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8199   if (!StreamOrErr)
8200     return StreamOrErr.takeError();
8201 
8202   return readTriple(*StreamOrErr);
8203 }
8204 
8205 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8206   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8207   if (!StreamOrErr)
8208     return StreamOrErr.takeError();
8209 
8210   return hasObjCCategory(*StreamOrErr);
8211 }
8212 
8213 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8214   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8215   if (!StreamOrErr)
8216     return StreamOrErr.takeError();
8217 
8218   return readIdentificationCode(*StreamOrErr);
8219 }
8220 
8221 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8222                                    ModuleSummaryIndex &CombinedIndex,
8223                                    uint64_t ModuleId) {
8224   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8225   if (!BM)
8226     return BM.takeError();
8227 
8228   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
8229 }
8230 
8231 Expected<std::unique_ptr<ModuleSummaryIndex>>
8232 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8233   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8234   if (!BM)
8235     return BM.takeError();
8236 
8237   return BM->getSummary();
8238 }
8239 
8240 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8241   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8242   if (!BM)
8243     return BM.takeError();
8244 
8245   return BM->getLTOInfo();
8246 }
8247 
8248 Expected<std::unique_ptr<ModuleSummaryIndex>>
8249 llvm::getModuleSummaryIndexForFile(StringRef Path,
8250                                    bool IgnoreEmptyThinLTOIndexFile) {
8251   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8252       MemoryBuffer::getFileOrSTDIN(Path);
8253   if (!FileOrErr)
8254     return errorCodeToError(FileOrErr.getError());
8255   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8256     return nullptr;
8257   return getModuleSummaryIndex(**FileOrErr);
8258 }
8259