xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision a05633e105cc2df01f0a5017b1269b6f32e01416)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/OperandTraits.h"
27 using namespace llvm;
28 
29 void BitcodeReader::FreeState() {
30   delete Buffer;
31   Buffer = 0;
32   std::vector<PATypeHolder>().swap(TypeList);
33   ValueList.clear();
34 
35   std::vector<AttrListPtr>().swap(MAttributes);
36   std::vector<BasicBlock*>().swap(FunctionBBs);
37   std::vector<Function*>().swap(FunctionsWithBodies);
38   DeferredFunctionInfo.clear();
39 }
40 
41 //===----------------------------------------------------------------------===//
42 //  Helper functions to implement forward reference resolution, etc.
43 //===----------------------------------------------------------------------===//
44 
45 /// ConvertToString - Convert a string from a record into an std::string, return
46 /// true on failure.
47 template<typename StrTy>
48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                             StrTy &Result) {
50   if (Idx > Record.size())
51     return true;
52 
53   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54     Result += (char)Record[i];
55   return false;
56 }
57 
58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59   switch (Val) {
60   default: // Map unknown/new linkages to external
61   case 0: return GlobalValue::ExternalLinkage;
62   case 1: return GlobalValue::WeakLinkage;
63   case 2: return GlobalValue::AppendingLinkage;
64   case 3: return GlobalValue::InternalLinkage;
65   case 4: return GlobalValue::LinkOnceLinkage;
66   case 5: return GlobalValue::DLLImportLinkage;
67   case 6: return GlobalValue::DLLExportLinkage;
68   case 7: return GlobalValue::ExternalWeakLinkage;
69   case 8: return GlobalValue::CommonLinkage;
70   }
71 }
72 
73 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
74   switch (Val) {
75   default: // Map unknown visibilities to default.
76   case 0: return GlobalValue::DefaultVisibility;
77   case 1: return GlobalValue::HiddenVisibility;
78   case 2: return GlobalValue::ProtectedVisibility;
79   }
80 }
81 
82 static int GetDecodedCastOpcode(unsigned Val) {
83   switch (Val) {
84   default: return -1;
85   case bitc::CAST_TRUNC   : return Instruction::Trunc;
86   case bitc::CAST_ZEXT    : return Instruction::ZExt;
87   case bitc::CAST_SEXT    : return Instruction::SExt;
88   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
89   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
90   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
91   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
92   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
93   case bitc::CAST_FPEXT   : return Instruction::FPExt;
94   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
95   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
96   case bitc::CAST_BITCAST : return Instruction::BitCast;
97   }
98 }
99 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
100   switch (Val) {
101   default: return -1;
102   case bitc::BINOP_ADD:  return Instruction::Add;
103   case bitc::BINOP_SUB:  return Instruction::Sub;
104   case bitc::BINOP_MUL:  return Instruction::Mul;
105   case bitc::BINOP_UDIV: return Instruction::UDiv;
106   case bitc::BINOP_SDIV:
107     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
108   case bitc::BINOP_UREM: return Instruction::URem;
109   case bitc::BINOP_SREM:
110     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
111   case bitc::BINOP_SHL:  return Instruction::Shl;
112   case bitc::BINOP_LSHR: return Instruction::LShr;
113   case bitc::BINOP_ASHR: return Instruction::AShr;
114   case bitc::BINOP_AND:  return Instruction::And;
115   case bitc::BINOP_OR:   return Instruction::Or;
116   case bitc::BINOP_XOR:  return Instruction::Xor;
117   }
118 }
119 
120 namespace llvm {
121 namespace {
122   /// @brief A class for maintaining the slot number definition
123   /// as a placeholder for the actual definition for forward constants defs.
124   class ConstantPlaceHolder : public ConstantExpr {
125     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
126     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
127   public:
128     // allocate space for exactly one operand
129     void *operator new(size_t s) {
130       return User::operator new(s, 1);
131     }
132     explicit ConstantPlaceHolder(const Type *Ty)
133       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
134       Op<0>() = UndefValue::get(Type::Int32Ty);
135     }
136 
137     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
138     static inline bool classof(const ConstantPlaceHolder *) { return true; }
139     static bool classof(const Value *V) {
140       return isa<ConstantExpr>(V) &&
141              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
142     }
143 
144 
145     /// Provide fast operand accessors
146     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
147   };
148 }
149 
150 
151   // FIXME: can we inherit this from ConstantExpr?
152 template <>
153 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
154 };
155 
156 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
157 }
158 
159 void BitcodeReaderValueList::resize(unsigned Desired) {
160   if (Desired > Capacity) {
161     // Since we expect many values to come from the bitcode file we better
162     // allocate the double amount, so that the array size grows exponentially
163     // at each reallocation.  Also, add a small amount of 100 extra elements
164     // each time, to reallocate less frequently when the array is still small.
165     //
166     Capacity = Desired * 2 + 100;
167     Use *New = allocHungoffUses(Capacity);
168     Use *Old = OperandList;
169     unsigned Ops = getNumOperands();
170     for (int i(Ops - 1); i >= 0; --i)
171       New[i] = Old[i].get();
172     OperandList = New;
173     if (Old) Use::zap(Old, Old + Ops, true);
174   }
175 }
176 
177 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
178                                                     const Type *Ty) {
179   if (Idx >= size()) {
180     // Insert a bunch of null values.
181     resize(Idx + 1);
182     NumOperands = Idx+1;
183   }
184 
185   if (Value *V = OperandList[Idx]) {
186     assert(Ty == V->getType() && "Type mismatch in constant table!");
187     return cast<Constant>(V);
188   }
189 
190   // Create and return a placeholder, which will later be RAUW'd.
191   Constant *C = new ConstantPlaceHolder(Ty);
192   OperandList[Idx] = C;
193   return C;
194 }
195 
196 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
197   if (Idx >= size()) {
198     // Insert a bunch of null values.
199     resize(Idx + 1);
200     NumOperands = Idx+1;
201   }
202 
203   if (Value *V = OperandList[Idx]) {
204     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
205     return V;
206   }
207 
208   // No type specified, must be invalid reference.
209   if (Ty == 0) return 0;
210 
211   // Create and return a placeholder, which will later be RAUW'd.
212   Value *V = new Argument(Ty);
213   OperandList[Idx] = V;
214   return V;
215 }
216 
217 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
218 /// resolves any forward references.  The idea behind this is that we sometimes
219 /// get constants (such as large arrays) which reference *many* forward ref
220 /// constants.  Replacing each of these causes a lot of thrashing when
221 /// building/reuniquing the constant.  Instead of doing this, we look at all the
222 /// uses and rewrite all the place holders at once for any constant that uses
223 /// a placeholder.
224 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
225   // Sort the values by-pointer so that they are efficient to look up with a
226   // binary search.
227   std::sort(ResolveConstants.begin(), ResolveConstants.end());
228 
229   SmallVector<Constant*, 64> NewOps;
230 
231   while (!ResolveConstants.empty()) {
232     Value *RealVal = getOperand(ResolveConstants.back().second);
233     Constant *Placeholder = ResolveConstants.back().first;
234     ResolveConstants.pop_back();
235 
236     // Loop over all users of the placeholder, updating them to reference the
237     // new value.  If they reference more than one placeholder, update them all
238     // at once.
239     while (!Placeholder->use_empty()) {
240       Value::use_iterator UI = Placeholder->use_begin();
241 
242       // If the using object isn't uniqued, just update the operands.  This
243       // handles instructions and initializers for global variables.
244       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
245         UI.getUse().set(RealVal);
246         continue;
247       }
248 
249       // Otherwise, we have a constant that uses the placeholder.  Replace that
250       // constant with a new constant that has *all* placeholder uses updated.
251       Constant *UserC = cast<Constant>(*UI);
252       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
253            I != E; ++I) {
254         Value *NewOp;
255         if (!isa<ConstantPlaceHolder>(*I)) {
256           // Not a placeholder reference.
257           NewOp = *I;
258         } else if (*I == Placeholder) {
259           // Common case is that it just references this one placeholder.
260           NewOp = RealVal;
261         } else {
262           // Otherwise, look up the placeholder in ResolveConstants.
263           ResolveConstantsTy::iterator It =
264             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
265                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
266                                                             0));
267           assert(It != ResolveConstants.end() && It->first == *I);
268           NewOp = this->getOperand(It->second);
269         }
270 
271         NewOps.push_back(cast<Constant>(NewOp));
272       }
273 
274       // Make the new constant.
275       Constant *NewC;
276       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
277         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
278       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
279         NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
280                                    UserCS->getType()->isPacked());
281       } else if (isa<ConstantVector>(UserC)) {
282         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
283       } else {
284         // Must be a constant expression.
285         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
286                                                           NewOps.size());
287       }
288 
289       UserC->replaceAllUsesWith(NewC);
290       UserC->destroyConstant();
291       NewOps.clear();
292     }
293 
294     delete Placeholder;
295   }
296 }
297 
298 
299 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
300   // If the TypeID is in range, return it.
301   if (ID < TypeList.size())
302     return TypeList[ID].get();
303   if (!isTypeTable) return 0;
304 
305   // The type table allows forward references.  Push as many Opaque types as
306   // needed to get up to ID.
307   while (TypeList.size() <= ID)
308     TypeList.push_back(OpaqueType::get());
309   return TypeList.back().get();
310 }
311 
312 //===----------------------------------------------------------------------===//
313 //  Functions for parsing blocks from the bitcode file
314 //===----------------------------------------------------------------------===//
315 
316 bool BitcodeReader::ParseAttributeBlock() {
317   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
318     return Error("Malformed block record");
319 
320   if (!MAttributes.empty())
321     return Error("Multiple PARAMATTR blocks found!");
322 
323   SmallVector<uint64_t, 64> Record;
324 
325   SmallVector<AttributeWithIndex, 8> Attrs;
326 
327   // Read all the records.
328   while (1) {
329     unsigned Code = Stream.ReadCode();
330     if (Code == bitc::END_BLOCK) {
331       if (Stream.ReadBlockEnd())
332         return Error("Error at end of PARAMATTR block");
333       return false;
334     }
335 
336     if (Code == bitc::ENTER_SUBBLOCK) {
337       // No known subblocks, always skip them.
338       Stream.ReadSubBlockID();
339       if (Stream.SkipBlock())
340         return Error("Malformed block record");
341       continue;
342     }
343 
344     if (Code == bitc::DEFINE_ABBREV) {
345       Stream.ReadAbbrevRecord();
346       continue;
347     }
348 
349     // Read a record.
350     Record.clear();
351     switch (Stream.ReadRecord(Code, Record)) {
352     default:  // Default behavior: ignore.
353       break;
354     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
355       if (Record.size() & 1)
356         return Error("Invalid ENTRY record");
357 
358       // FIXME : Remove this backword compatibility one day.
359       // If Function attributes are using index 0 then transfer them
360       // to index ~0. Index 0 is strictly used for return value
361       // attributes.
362       Attributes RetAttribute = Attribute::None;
363       Attributes FnAttribute = Attribute::None;
364       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
365         if (Record[i] == 0)
366           RetAttribute = Record[i+1];
367         else if (Record[i] == ~0U)
368           FnAttribute = Record[i+1];
369       }
370       bool useUpdatedAttrs = false;
371       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None) {
372         if (RetAttribute & Attribute::NoUnwind) {
373           FnAttribute = FnAttribute | Attribute::NoUnwind;
374           RetAttribute = RetAttribute ^ Attribute::NoUnwind;
375           useUpdatedAttrs = true;
376         }
377         if (RetAttribute & Attribute::NoReturn) {
378           FnAttribute = FnAttribute | Attribute::NoReturn;
379           RetAttribute = RetAttribute ^ Attribute::NoReturn;
380           useUpdatedAttrs = true;
381         }
382         if (RetAttribute & Attribute::ReadOnly) {
383           FnAttribute = FnAttribute | Attribute::ReadOnly;
384           RetAttribute = RetAttribute ^ Attribute::ReadOnly;
385           useUpdatedAttrs = true;
386         }
387         if (RetAttribute & Attribute::ReadNone) {
388           FnAttribute = FnAttribute | Attribute::ReadNone;
389           RetAttribute = RetAttribute ^ Attribute::ReadNone;
390           useUpdatedAttrs = true;
391         }
392       }
393 
394       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
395         if (useUpdatedAttrs && Record[i] == 0
396             && RetAttribute != Attribute::None)
397           Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
398         else if (Record[i+1] != Attribute::None)
399           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
400       }
401       if (useUpdatedAttrs && FnAttribute != Attribute::None)
402         Attrs.push_back(AttributeWithIndex::get(~0, FnAttribute));
403 
404       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
405       Attrs.clear();
406       break;
407     }
408     }
409   }
410 }
411 
412 
413 bool BitcodeReader::ParseTypeTable() {
414   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
415     return Error("Malformed block record");
416 
417   if (!TypeList.empty())
418     return Error("Multiple TYPE_BLOCKs found!");
419 
420   SmallVector<uint64_t, 64> Record;
421   unsigned NumRecords = 0;
422 
423   // Read all the records for this type table.
424   while (1) {
425     unsigned Code = Stream.ReadCode();
426     if (Code == bitc::END_BLOCK) {
427       if (NumRecords != TypeList.size())
428         return Error("Invalid type forward reference in TYPE_BLOCK");
429       if (Stream.ReadBlockEnd())
430         return Error("Error at end of type table block");
431       return false;
432     }
433 
434     if (Code == bitc::ENTER_SUBBLOCK) {
435       // No known subblocks, always skip them.
436       Stream.ReadSubBlockID();
437       if (Stream.SkipBlock())
438         return Error("Malformed block record");
439       continue;
440     }
441 
442     if (Code == bitc::DEFINE_ABBREV) {
443       Stream.ReadAbbrevRecord();
444       continue;
445     }
446 
447     // Read a record.
448     Record.clear();
449     const Type *ResultTy = 0;
450     switch (Stream.ReadRecord(Code, Record)) {
451     default:  // Default behavior: unknown type.
452       ResultTy = 0;
453       break;
454     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
455       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
456       // type list.  This allows us to reserve space.
457       if (Record.size() < 1)
458         return Error("Invalid TYPE_CODE_NUMENTRY record");
459       TypeList.reserve(Record[0]);
460       continue;
461     case bitc::TYPE_CODE_VOID:      // VOID
462       ResultTy = Type::VoidTy;
463       break;
464     case bitc::TYPE_CODE_FLOAT:     // FLOAT
465       ResultTy = Type::FloatTy;
466       break;
467     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
468       ResultTy = Type::DoubleTy;
469       break;
470     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
471       ResultTy = Type::X86_FP80Ty;
472       break;
473     case bitc::TYPE_CODE_FP128:     // FP128
474       ResultTy = Type::FP128Ty;
475       break;
476     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
477       ResultTy = Type::PPC_FP128Ty;
478       break;
479     case bitc::TYPE_CODE_LABEL:     // LABEL
480       ResultTy = Type::LabelTy;
481       break;
482     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
483       ResultTy = 0;
484       break;
485     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
486       if (Record.size() < 1)
487         return Error("Invalid Integer type record");
488 
489       ResultTy = IntegerType::get(Record[0]);
490       break;
491     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
492                                     //          [pointee type, address space]
493       if (Record.size() < 1)
494         return Error("Invalid POINTER type record");
495       unsigned AddressSpace = 0;
496       if (Record.size() == 2)
497         AddressSpace = Record[1];
498       ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
499       break;
500     }
501     case bitc::TYPE_CODE_FUNCTION: {
502       // FIXME: attrid is dead, remove it in LLVM 3.0
503       // FUNCTION: [vararg, attrid, retty, paramty x N]
504       if (Record.size() < 3)
505         return Error("Invalid FUNCTION type record");
506       std::vector<const Type*> ArgTys;
507       for (unsigned i = 3, e = Record.size(); i != e; ++i)
508         ArgTys.push_back(getTypeByID(Record[i], true));
509 
510       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
511                                    Record[0]);
512       break;
513     }
514     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
515       if (Record.size() < 1)
516         return Error("Invalid STRUCT type record");
517       std::vector<const Type*> EltTys;
518       for (unsigned i = 1, e = Record.size(); i != e; ++i)
519         EltTys.push_back(getTypeByID(Record[i], true));
520       ResultTy = StructType::get(EltTys, Record[0]);
521       break;
522     }
523     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
524       if (Record.size() < 2)
525         return Error("Invalid ARRAY type record");
526       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
527       break;
528     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
529       if (Record.size() < 2)
530         return Error("Invalid VECTOR type record");
531       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
532       break;
533     }
534 
535     if (NumRecords == TypeList.size()) {
536       // If this is a new type slot, just append it.
537       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
538       ++NumRecords;
539     } else if (ResultTy == 0) {
540       // Otherwise, this was forward referenced, so an opaque type was created,
541       // but the result type is actually just an opaque.  Leave the one we
542       // created previously.
543       ++NumRecords;
544     } else {
545       // Otherwise, this was forward referenced, so an opaque type was created.
546       // Resolve the opaque type to the real type now.
547       assert(NumRecords < TypeList.size() && "Typelist imbalance");
548       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
549 
550       // Don't directly push the new type on the Tab. Instead we want to replace
551       // the opaque type we previously inserted with the new concrete value. The
552       // refinement from the abstract (opaque) type to the new type causes all
553       // uses of the abstract type to use the concrete type (NewTy). This will
554       // also cause the opaque type to be deleted.
555       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
556 
557       // This should have replaced the old opaque type with the new type in the
558       // value table... or with a preexisting type that was already in the
559       // system.  Let's just make sure it did.
560       assert(TypeList[NumRecords-1].get() != OldTy &&
561              "refineAbstractType didn't work!");
562     }
563   }
564 }
565 
566 
567 bool BitcodeReader::ParseTypeSymbolTable() {
568   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
569     return Error("Malformed block record");
570 
571   SmallVector<uint64_t, 64> Record;
572 
573   // Read all the records for this type table.
574   std::string TypeName;
575   while (1) {
576     unsigned Code = Stream.ReadCode();
577     if (Code == bitc::END_BLOCK) {
578       if (Stream.ReadBlockEnd())
579         return Error("Error at end of type symbol table block");
580       return false;
581     }
582 
583     if (Code == bitc::ENTER_SUBBLOCK) {
584       // No known subblocks, always skip them.
585       Stream.ReadSubBlockID();
586       if (Stream.SkipBlock())
587         return Error("Malformed block record");
588       continue;
589     }
590 
591     if (Code == bitc::DEFINE_ABBREV) {
592       Stream.ReadAbbrevRecord();
593       continue;
594     }
595 
596     // Read a record.
597     Record.clear();
598     switch (Stream.ReadRecord(Code, Record)) {
599     default:  // Default behavior: unknown type.
600       break;
601     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
602       if (ConvertToString(Record, 1, TypeName))
603         return Error("Invalid TST_ENTRY record");
604       unsigned TypeID = Record[0];
605       if (TypeID >= TypeList.size())
606         return Error("Invalid Type ID in TST_ENTRY record");
607 
608       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
609       TypeName.clear();
610       break;
611     }
612   }
613 }
614 
615 bool BitcodeReader::ParseValueSymbolTable() {
616   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
617     return Error("Malformed block record");
618 
619   SmallVector<uint64_t, 64> Record;
620 
621   // Read all the records for this value table.
622   SmallString<128> ValueName;
623   while (1) {
624     unsigned Code = Stream.ReadCode();
625     if (Code == bitc::END_BLOCK) {
626       if (Stream.ReadBlockEnd())
627         return Error("Error at end of value symbol table block");
628       return false;
629     }
630     if (Code == bitc::ENTER_SUBBLOCK) {
631       // No known subblocks, always skip them.
632       Stream.ReadSubBlockID();
633       if (Stream.SkipBlock())
634         return Error("Malformed block record");
635       continue;
636     }
637 
638     if (Code == bitc::DEFINE_ABBREV) {
639       Stream.ReadAbbrevRecord();
640       continue;
641     }
642 
643     // Read a record.
644     Record.clear();
645     switch (Stream.ReadRecord(Code, Record)) {
646     default:  // Default behavior: unknown type.
647       break;
648     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
649       if (ConvertToString(Record, 1, ValueName))
650         return Error("Invalid TST_ENTRY record");
651       unsigned ValueID = Record[0];
652       if (ValueID >= ValueList.size())
653         return Error("Invalid Value ID in VST_ENTRY record");
654       Value *V = ValueList[ValueID];
655 
656       V->setName(&ValueName[0], ValueName.size());
657       ValueName.clear();
658       break;
659     }
660     case bitc::VST_CODE_BBENTRY: {
661       if (ConvertToString(Record, 1, ValueName))
662         return Error("Invalid VST_BBENTRY record");
663       BasicBlock *BB = getBasicBlock(Record[0]);
664       if (BB == 0)
665         return Error("Invalid BB ID in VST_BBENTRY record");
666 
667       BB->setName(&ValueName[0], ValueName.size());
668       ValueName.clear();
669       break;
670     }
671     }
672   }
673 }
674 
675 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
676 /// the LSB for dense VBR encoding.
677 static uint64_t DecodeSignRotatedValue(uint64_t V) {
678   if ((V & 1) == 0)
679     return V >> 1;
680   if (V != 1)
681     return -(V >> 1);
682   // There is no such thing as -0 with integers.  "-0" really means MININT.
683   return 1ULL << 63;
684 }
685 
686 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
687 /// values and aliases that we can.
688 bool BitcodeReader::ResolveGlobalAndAliasInits() {
689   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
690   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
691 
692   GlobalInitWorklist.swap(GlobalInits);
693   AliasInitWorklist.swap(AliasInits);
694 
695   while (!GlobalInitWorklist.empty()) {
696     unsigned ValID = GlobalInitWorklist.back().second;
697     if (ValID >= ValueList.size()) {
698       // Not ready to resolve this yet, it requires something later in the file.
699       GlobalInits.push_back(GlobalInitWorklist.back());
700     } else {
701       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
702         GlobalInitWorklist.back().first->setInitializer(C);
703       else
704         return Error("Global variable initializer is not a constant!");
705     }
706     GlobalInitWorklist.pop_back();
707   }
708 
709   while (!AliasInitWorklist.empty()) {
710     unsigned ValID = AliasInitWorklist.back().second;
711     if (ValID >= ValueList.size()) {
712       AliasInits.push_back(AliasInitWorklist.back());
713     } else {
714       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
715         AliasInitWorklist.back().first->setAliasee(C);
716       else
717         return Error("Alias initializer is not a constant!");
718     }
719     AliasInitWorklist.pop_back();
720   }
721   return false;
722 }
723 
724 
725 bool BitcodeReader::ParseConstants() {
726   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
727     return Error("Malformed block record");
728 
729   SmallVector<uint64_t, 64> Record;
730 
731   // Read all the records for this value table.
732   const Type *CurTy = Type::Int32Ty;
733   unsigned NextCstNo = ValueList.size();
734   while (1) {
735     unsigned Code = Stream.ReadCode();
736     if (Code == bitc::END_BLOCK)
737       break;
738 
739     if (Code == bitc::ENTER_SUBBLOCK) {
740       // No known subblocks, always skip them.
741       Stream.ReadSubBlockID();
742       if (Stream.SkipBlock())
743         return Error("Malformed block record");
744       continue;
745     }
746 
747     if (Code == bitc::DEFINE_ABBREV) {
748       Stream.ReadAbbrevRecord();
749       continue;
750     }
751 
752     // Read a record.
753     Record.clear();
754     Value *V = 0;
755     switch (Stream.ReadRecord(Code, Record)) {
756     default:  // Default behavior: unknown constant
757     case bitc::CST_CODE_UNDEF:     // UNDEF
758       V = UndefValue::get(CurTy);
759       break;
760     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
761       if (Record.empty())
762         return Error("Malformed CST_SETTYPE record");
763       if (Record[0] >= TypeList.size())
764         return Error("Invalid Type ID in CST_SETTYPE record");
765       CurTy = TypeList[Record[0]];
766       continue;  // Skip the ValueList manipulation.
767     case bitc::CST_CODE_NULL:      // NULL
768       V = Constant::getNullValue(CurTy);
769       break;
770     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
771       if (!isa<IntegerType>(CurTy) || Record.empty())
772         return Error("Invalid CST_INTEGER record");
773       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
774       break;
775     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
776       if (!isa<IntegerType>(CurTy) || Record.empty())
777         return Error("Invalid WIDE_INTEGER record");
778 
779       unsigned NumWords = Record.size();
780       SmallVector<uint64_t, 8> Words;
781       Words.resize(NumWords);
782       for (unsigned i = 0; i != NumWords; ++i)
783         Words[i] = DecodeSignRotatedValue(Record[i]);
784       V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
785                                  NumWords, &Words[0]));
786       break;
787     }
788     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
789       if (Record.empty())
790         return Error("Invalid FLOAT record");
791       if (CurTy == Type::FloatTy)
792         V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
793       else if (CurTy == Type::DoubleTy)
794         V = ConstantFP::get(APFloat(APInt(64, Record[0])));
795       else if (CurTy == Type::X86_FP80Ty)
796         V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
797       else if (CurTy == Type::FP128Ty)
798         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
799       else if (CurTy == Type::PPC_FP128Ty)
800         V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
801       else
802         V = UndefValue::get(CurTy);
803       break;
804     }
805 
806     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
807       if (Record.empty())
808         return Error("Invalid CST_AGGREGATE record");
809 
810       unsigned Size = Record.size();
811       std::vector<Constant*> Elts;
812 
813       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
814         for (unsigned i = 0; i != Size; ++i)
815           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
816                                                      STy->getElementType(i)));
817         V = ConstantStruct::get(STy, Elts);
818       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
819         const Type *EltTy = ATy->getElementType();
820         for (unsigned i = 0; i != Size; ++i)
821           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
822         V = ConstantArray::get(ATy, Elts);
823       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
824         const Type *EltTy = VTy->getElementType();
825         for (unsigned i = 0; i != Size; ++i)
826           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
827         V = ConstantVector::get(Elts);
828       } else {
829         V = UndefValue::get(CurTy);
830       }
831       break;
832     }
833     case bitc::CST_CODE_STRING: { // STRING: [values]
834       if (Record.empty())
835         return Error("Invalid CST_AGGREGATE record");
836 
837       const ArrayType *ATy = cast<ArrayType>(CurTy);
838       const Type *EltTy = ATy->getElementType();
839 
840       unsigned Size = Record.size();
841       std::vector<Constant*> Elts;
842       for (unsigned i = 0; i != Size; ++i)
843         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
844       V = ConstantArray::get(ATy, Elts);
845       break;
846     }
847     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
848       if (Record.empty())
849         return Error("Invalid CST_AGGREGATE record");
850 
851       const ArrayType *ATy = cast<ArrayType>(CurTy);
852       const Type *EltTy = ATy->getElementType();
853 
854       unsigned Size = Record.size();
855       std::vector<Constant*> Elts;
856       for (unsigned i = 0; i != Size; ++i)
857         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
858       Elts.push_back(Constant::getNullValue(EltTy));
859       V = ConstantArray::get(ATy, Elts);
860       break;
861     }
862     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
863       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
864       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
865       if (Opc < 0) {
866         V = UndefValue::get(CurTy);  // Unknown binop.
867       } else {
868         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
869         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
870         V = ConstantExpr::get(Opc, LHS, RHS);
871       }
872       break;
873     }
874     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
875       if (Record.size() < 3) return Error("Invalid CE_CAST record");
876       int Opc = GetDecodedCastOpcode(Record[0]);
877       if (Opc < 0) {
878         V = UndefValue::get(CurTy);  // Unknown cast.
879       } else {
880         const Type *OpTy = getTypeByID(Record[1]);
881         if (!OpTy) return Error("Invalid CE_CAST record");
882         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
883         V = ConstantExpr::getCast(Opc, Op, CurTy);
884       }
885       break;
886     }
887     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
888       if (Record.size() & 1) return Error("Invalid CE_GEP record");
889       SmallVector<Constant*, 16> Elts;
890       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
891         const Type *ElTy = getTypeByID(Record[i]);
892         if (!ElTy) return Error("Invalid CE_GEP record");
893         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
894       }
895       V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
896       break;
897     }
898     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
899       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
900       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
901                                                               Type::Int1Ty),
902                                   ValueList.getConstantFwdRef(Record[1],CurTy),
903                                   ValueList.getConstantFwdRef(Record[2],CurTy));
904       break;
905     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
906       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
907       const VectorType *OpTy =
908         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
909       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
910       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
911       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
912                                                   OpTy->getElementType());
913       V = ConstantExpr::getExtractElement(Op0, Op1);
914       break;
915     }
916     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
917       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
918       if (Record.size() < 3 || OpTy == 0)
919         return Error("Invalid CE_INSERTELT record");
920       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
921       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
922                                                   OpTy->getElementType());
923       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
924       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
925       break;
926     }
927     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
928       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
929       if (Record.size() < 3 || OpTy == 0)
930         return Error("Invalid CE_INSERTELT record");
931       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
932       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
933       const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
934       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
935       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
936       break;
937     }
938     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
939       if (Record.size() < 4) return Error("Invalid CE_CMP record");
940       const Type *OpTy = getTypeByID(Record[0]);
941       if (OpTy == 0) return Error("Invalid CE_CMP record");
942       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
943       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
944 
945       if (OpTy->isFloatingPoint())
946         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
947       else if (!isa<VectorType>(OpTy))
948         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
949       else if (OpTy->isFPOrFPVector())
950         V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
951       else
952         V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
953       break;
954     }
955     case bitc::CST_CODE_INLINEASM: {
956       if (Record.size() < 2) return Error("Invalid INLINEASM record");
957       std::string AsmStr, ConstrStr;
958       bool HasSideEffects = Record[0];
959       unsigned AsmStrSize = Record[1];
960       if (2+AsmStrSize >= Record.size())
961         return Error("Invalid INLINEASM record");
962       unsigned ConstStrSize = Record[2+AsmStrSize];
963       if (3+AsmStrSize+ConstStrSize > Record.size())
964         return Error("Invalid INLINEASM record");
965 
966       for (unsigned i = 0; i != AsmStrSize; ++i)
967         AsmStr += (char)Record[2+i];
968       for (unsigned i = 0; i != ConstStrSize; ++i)
969         ConstrStr += (char)Record[3+AsmStrSize+i];
970       const PointerType *PTy = cast<PointerType>(CurTy);
971       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
972                          AsmStr, ConstrStr, HasSideEffects);
973       break;
974     }
975     }
976 
977     ValueList.AssignValue(V, NextCstNo);
978     ++NextCstNo;
979   }
980 
981   if (NextCstNo != ValueList.size())
982     return Error("Invalid constant reference!");
983 
984   if (Stream.ReadBlockEnd())
985     return Error("Error at end of constants block");
986 
987   // Once all the constants have been read, go through and resolve forward
988   // references.
989   ValueList.ResolveConstantForwardRefs();
990   return false;
991 }
992 
993 /// RememberAndSkipFunctionBody - When we see the block for a function body,
994 /// remember where it is and then skip it.  This lets us lazily deserialize the
995 /// functions.
996 bool BitcodeReader::RememberAndSkipFunctionBody() {
997   // Get the function we are talking about.
998   if (FunctionsWithBodies.empty())
999     return Error("Insufficient function protos");
1000 
1001   Function *Fn = FunctionsWithBodies.back();
1002   FunctionsWithBodies.pop_back();
1003 
1004   // Save the current stream state.
1005   uint64_t CurBit = Stream.GetCurrentBitNo();
1006   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1007 
1008   // Set the functions linkage to GhostLinkage so we know it is lazily
1009   // deserialized.
1010   Fn->setLinkage(GlobalValue::GhostLinkage);
1011 
1012   // Skip over the function block for now.
1013   if (Stream.SkipBlock())
1014     return Error("Malformed block record");
1015   return false;
1016 }
1017 
1018 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1019   // Reject multiple MODULE_BLOCK's in a single bitstream.
1020   if (TheModule)
1021     return Error("Multiple MODULE_BLOCKs in same stream");
1022 
1023   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1024     return Error("Malformed block record");
1025 
1026   // Otherwise, create the module.
1027   TheModule = new Module(ModuleID);
1028 
1029   SmallVector<uint64_t, 64> Record;
1030   std::vector<std::string> SectionTable;
1031   std::vector<std::string> GCTable;
1032 
1033   // Read all the records for this module.
1034   while (!Stream.AtEndOfStream()) {
1035     unsigned Code = Stream.ReadCode();
1036     if (Code == bitc::END_BLOCK) {
1037       if (Stream.ReadBlockEnd())
1038         return Error("Error at end of module block");
1039 
1040       // Patch the initializers for globals and aliases up.
1041       ResolveGlobalAndAliasInits();
1042       if (!GlobalInits.empty() || !AliasInits.empty())
1043         return Error("Malformed global initializer set");
1044       if (!FunctionsWithBodies.empty())
1045         return Error("Too few function bodies found");
1046 
1047       // Look for intrinsic functions which need to be upgraded at some point
1048       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1049            FI != FE; ++FI) {
1050         Function* NewFn;
1051         if (UpgradeIntrinsicFunction(FI, NewFn))
1052           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1053       }
1054 
1055       // Force deallocation of memory for these vectors to favor the client that
1056       // want lazy deserialization.
1057       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1058       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1059       std::vector<Function*>().swap(FunctionsWithBodies);
1060       return false;
1061     }
1062 
1063     if (Code == bitc::ENTER_SUBBLOCK) {
1064       switch (Stream.ReadSubBlockID()) {
1065       default:  // Skip unknown content.
1066         if (Stream.SkipBlock())
1067           return Error("Malformed block record");
1068         break;
1069       case bitc::BLOCKINFO_BLOCK_ID:
1070         if (Stream.ReadBlockInfoBlock())
1071           return Error("Malformed BlockInfoBlock");
1072         break;
1073       case bitc::PARAMATTR_BLOCK_ID:
1074         if (ParseAttributeBlock())
1075           return true;
1076         break;
1077       case bitc::TYPE_BLOCK_ID:
1078         if (ParseTypeTable())
1079           return true;
1080         break;
1081       case bitc::TYPE_SYMTAB_BLOCK_ID:
1082         if (ParseTypeSymbolTable())
1083           return true;
1084         break;
1085       case bitc::VALUE_SYMTAB_BLOCK_ID:
1086         if (ParseValueSymbolTable())
1087           return true;
1088         break;
1089       case bitc::CONSTANTS_BLOCK_ID:
1090         if (ParseConstants() || ResolveGlobalAndAliasInits())
1091           return true;
1092         break;
1093       case bitc::FUNCTION_BLOCK_ID:
1094         // If this is the first function body we've seen, reverse the
1095         // FunctionsWithBodies list.
1096         if (!HasReversedFunctionsWithBodies) {
1097           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1098           HasReversedFunctionsWithBodies = true;
1099         }
1100 
1101         if (RememberAndSkipFunctionBody())
1102           return true;
1103         break;
1104       }
1105       continue;
1106     }
1107 
1108     if (Code == bitc::DEFINE_ABBREV) {
1109       Stream.ReadAbbrevRecord();
1110       continue;
1111     }
1112 
1113     // Read a record.
1114     switch (Stream.ReadRecord(Code, Record)) {
1115     default: break;  // Default behavior, ignore unknown content.
1116     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1117       if (Record.size() < 1)
1118         return Error("Malformed MODULE_CODE_VERSION");
1119       // Only version #0 is supported so far.
1120       if (Record[0] != 0)
1121         return Error("Unknown bitstream version!");
1122       break;
1123     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1124       std::string S;
1125       if (ConvertToString(Record, 0, S))
1126         return Error("Invalid MODULE_CODE_TRIPLE record");
1127       TheModule->setTargetTriple(S);
1128       break;
1129     }
1130     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1131       std::string S;
1132       if (ConvertToString(Record, 0, S))
1133         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1134       TheModule->setDataLayout(S);
1135       break;
1136     }
1137     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1138       std::string S;
1139       if (ConvertToString(Record, 0, S))
1140         return Error("Invalid MODULE_CODE_ASM record");
1141       TheModule->setModuleInlineAsm(S);
1142       break;
1143     }
1144     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1145       std::string S;
1146       if (ConvertToString(Record, 0, S))
1147         return Error("Invalid MODULE_CODE_DEPLIB record");
1148       TheModule->addLibrary(S);
1149       break;
1150     }
1151     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1152       std::string S;
1153       if (ConvertToString(Record, 0, S))
1154         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1155       SectionTable.push_back(S);
1156       break;
1157     }
1158     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1159       std::string S;
1160       if (ConvertToString(Record, 0, S))
1161         return Error("Invalid MODULE_CODE_GCNAME record");
1162       GCTable.push_back(S);
1163       break;
1164     }
1165     // GLOBALVAR: [pointer type, isconst, initid,
1166     //             linkage, alignment, section, visibility, threadlocal]
1167     case bitc::MODULE_CODE_GLOBALVAR: {
1168       if (Record.size() < 6)
1169         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1170       const Type *Ty = getTypeByID(Record[0]);
1171       if (!isa<PointerType>(Ty))
1172         return Error("Global not a pointer type!");
1173       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1174       Ty = cast<PointerType>(Ty)->getElementType();
1175 
1176       bool isConstant = Record[1];
1177       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1178       unsigned Alignment = (1 << Record[4]) >> 1;
1179       std::string Section;
1180       if (Record[5]) {
1181         if (Record[5]-1 >= SectionTable.size())
1182           return Error("Invalid section ID");
1183         Section = SectionTable[Record[5]-1];
1184       }
1185       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1186       if (Record.size() > 6)
1187         Visibility = GetDecodedVisibility(Record[6]);
1188       bool isThreadLocal = false;
1189       if (Record.size() > 7)
1190         isThreadLocal = Record[7];
1191 
1192       GlobalVariable *NewGV =
1193         new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1194                            isThreadLocal, AddressSpace);
1195       NewGV->setAlignment(Alignment);
1196       if (!Section.empty())
1197         NewGV->setSection(Section);
1198       NewGV->setVisibility(Visibility);
1199       NewGV->setThreadLocal(isThreadLocal);
1200 
1201       ValueList.push_back(NewGV);
1202 
1203       // Remember which value to use for the global initializer.
1204       if (unsigned InitID = Record[2])
1205         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1206       break;
1207     }
1208     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1209     //             alignment, section, visibility, gc]
1210     case bitc::MODULE_CODE_FUNCTION: {
1211       if (Record.size() < 8)
1212         return Error("Invalid MODULE_CODE_FUNCTION record");
1213       const Type *Ty = getTypeByID(Record[0]);
1214       if (!isa<PointerType>(Ty))
1215         return Error("Function not a pointer type!");
1216       const FunctionType *FTy =
1217         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1218       if (!FTy)
1219         return Error("Function not a pointer to function type!");
1220 
1221       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1222                                         "", TheModule);
1223 
1224       Func->setCallingConv(Record[1]);
1225       bool isProto = Record[2];
1226       Func->setLinkage(GetDecodedLinkage(Record[3]));
1227       Func->setAttributes(getAttributes(Record[4]));
1228 
1229       Func->setAlignment((1 << Record[5]) >> 1);
1230       if (Record[6]) {
1231         if (Record[6]-1 >= SectionTable.size())
1232           return Error("Invalid section ID");
1233         Func->setSection(SectionTable[Record[6]-1]);
1234       }
1235       Func->setVisibility(GetDecodedVisibility(Record[7]));
1236       if (Record.size() > 8 && Record[8]) {
1237         if (Record[8]-1 > GCTable.size())
1238           return Error("Invalid GC ID");
1239         Func->setGC(GCTable[Record[8]-1].c_str());
1240       }
1241       ValueList.push_back(Func);
1242 
1243       // If this is a function with a body, remember the prototype we are
1244       // creating now, so that we can match up the body with them later.
1245       if (!isProto)
1246         FunctionsWithBodies.push_back(Func);
1247       break;
1248     }
1249     // ALIAS: [alias type, aliasee val#, linkage]
1250     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1251     case bitc::MODULE_CODE_ALIAS: {
1252       if (Record.size() < 3)
1253         return Error("Invalid MODULE_ALIAS record");
1254       const Type *Ty = getTypeByID(Record[0]);
1255       if (!isa<PointerType>(Ty))
1256         return Error("Function not a pointer type!");
1257 
1258       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1259                                            "", 0, TheModule);
1260       // Old bitcode files didn't have visibility field.
1261       if (Record.size() > 3)
1262         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1263       ValueList.push_back(NewGA);
1264       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1265       break;
1266     }
1267     /// MODULE_CODE_PURGEVALS: [numvals]
1268     case bitc::MODULE_CODE_PURGEVALS:
1269       // Trim down the value list to the specified size.
1270       if (Record.size() < 1 || Record[0] > ValueList.size())
1271         return Error("Invalid MODULE_PURGEVALS record");
1272       ValueList.shrinkTo(Record[0]);
1273       break;
1274     }
1275     Record.clear();
1276   }
1277 
1278   return Error("Premature end of bitstream");
1279 }
1280 
1281 /// SkipWrapperHeader - Some systems wrap bc files with a special header for
1282 /// padding or other reasons.  The format of this header is:
1283 ///
1284 /// struct bc_header {
1285 ///   uint32_t Magic;         // 0x0B17C0DE
1286 ///   uint32_t Version;       // Version, currently always 0.
1287 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1288 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1289 ///   ... potentially other gunk ...
1290 /// };
1291 ///
1292 /// This function is called when we find a file with a matching magic number.
1293 /// In this case, skip down to the subsection of the file that is actually a BC
1294 /// file.
1295 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1296   enum {
1297     KnownHeaderSize = 4*4,  // Size of header we read.
1298     OffsetField = 2*4,      // Offset in bytes to Offset field.
1299     SizeField = 3*4         // Offset in bytes to Size field.
1300   };
1301 
1302 
1303   // Must contain the header!
1304   if (BufEnd-BufPtr < KnownHeaderSize) return true;
1305 
1306   unsigned Offset = ( BufPtr[OffsetField  ]        |
1307                      (BufPtr[OffsetField+1] << 8)  |
1308                      (BufPtr[OffsetField+2] << 16) |
1309                      (BufPtr[OffsetField+3] << 24));
1310   unsigned Size   = ( BufPtr[SizeField    ]        |
1311                      (BufPtr[SizeField  +1] << 8)  |
1312                      (BufPtr[SizeField  +2] << 16) |
1313                      (BufPtr[SizeField  +3] << 24));
1314 
1315   // Verify that Offset+Size fits in the file.
1316   if (Offset+Size > unsigned(BufEnd-BufPtr))
1317     return true;
1318   BufPtr += Offset;
1319   BufEnd = BufPtr+Size;
1320   return false;
1321 }
1322 
1323 bool BitcodeReader::ParseBitcode() {
1324   TheModule = 0;
1325 
1326   if (Buffer->getBufferSize() & 3)
1327     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1328 
1329   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1330   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1331 
1332   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1333   // The magic number is 0x0B17C0DE stored in little endian.
1334   if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1335       BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1336     if (SkipWrapperHeader(BufPtr, BufEnd))
1337       return Error("Invalid bitcode wrapper header");
1338 
1339   Stream.init(BufPtr, BufEnd);
1340 
1341   // Sniff for the signature.
1342   if (Stream.Read(8) != 'B' ||
1343       Stream.Read(8) != 'C' ||
1344       Stream.Read(4) != 0x0 ||
1345       Stream.Read(4) != 0xC ||
1346       Stream.Read(4) != 0xE ||
1347       Stream.Read(4) != 0xD)
1348     return Error("Invalid bitcode signature");
1349 
1350   // We expect a number of well-defined blocks, though we don't necessarily
1351   // need to understand them all.
1352   while (!Stream.AtEndOfStream()) {
1353     unsigned Code = Stream.ReadCode();
1354 
1355     if (Code != bitc::ENTER_SUBBLOCK)
1356       return Error("Invalid record at top-level");
1357 
1358     unsigned BlockID = Stream.ReadSubBlockID();
1359 
1360     // We only know the MODULE subblock ID.
1361     switch (BlockID) {
1362     case bitc::BLOCKINFO_BLOCK_ID:
1363       if (Stream.ReadBlockInfoBlock())
1364         return Error("Malformed BlockInfoBlock");
1365       break;
1366     case bitc::MODULE_BLOCK_ID:
1367       if (ParseModule(Buffer->getBufferIdentifier()))
1368         return true;
1369       break;
1370     default:
1371       if (Stream.SkipBlock())
1372         return Error("Malformed block record");
1373       break;
1374     }
1375   }
1376 
1377   return false;
1378 }
1379 
1380 
1381 /// ParseFunctionBody - Lazily parse the specified function body block.
1382 bool BitcodeReader::ParseFunctionBody(Function *F) {
1383   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1384     return Error("Malformed block record");
1385 
1386   unsigned ModuleValueListSize = ValueList.size();
1387 
1388   // Add all the function arguments to the value table.
1389   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1390     ValueList.push_back(I);
1391 
1392   unsigned NextValueNo = ValueList.size();
1393   BasicBlock *CurBB = 0;
1394   unsigned CurBBNo = 0;
1395 
1396   // Read all the records.
1397   SmallVector<uint64_t, 64> Record;
1398   while (1) {
1399     unsigned Code = Stream.ReadCode();
1400     if (Code == bitc::END_BLOCK) {
1401       if (Stream.ReadBlockEnd())
1402         return Error("Error at end of function block");
1403       break;
1404     }
1405 
1406     if (Code == bitc::ENTER_SUBBLOCK) {
1407       switch (Stream.ReadSubBlockID()) {
1408       default:  // Skip unknown content.
1409         if (Stream.SkipBlock())
1410           return Error("Malformed block record");
1411         break;
1412       case bitc::CONSTANTS_BLOCK_ID:
1413         if (ParseConstants()) return true;
1414         NextValueNo = ValueList.size();
1415         break;
1416       case bitc::VALUE_SYMTAB_BLOCK_ID:
1417         if (ParseValueSymbolTable()) return true;
1418         break;
1419       }
1420       continue;
1421     }
1422 
1423     if (Code == bitc::DEFINE_ABBREV) {
1424       Stream.ReadAbbrevRecord();
1425       continue;
1426     }
1427 
1428     // Read a record.
1429     Record.clear();
1430     Instruction *I = 0;
1431     switch (Stream.ReadRecord(Code, Record)) {
1432     default: // Default behavior: reject
1433       return Error("Unknown instruction");
1434     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1435       if (Record.size() < 1 || Record[0] == 0)
1436         return Error("Invalid DECLAREBLOCKS record");
1437       // Create all the basic blocks for the function.
1438       FunctionBBs.resize(Record[0]);
1439       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1440         FunctionBBs[i] = BasicBlock::Create("", F);
1441       CurBB = FunctionBBs[0];
1442       continue;
1443 
1444     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1445       unsigned OpNum = 0;
1446       Value *LHS, *RHS;
1447       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1448           getValue(Record, OpNum, LHS->getType(), RHS) ||
1449           OpNum+1 != Record.size())
1450         return Error("Invalid BINOP record");
1451 
1452       int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1453       if (Opc == -1) return Error("Invalid BINOP record");
1454       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1455       break;
1456     }
1457     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1458       unsigned OpNum = 0;
1459       Value *Op;
1460       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1461           OpNum+2 != Record.size())
1462         return Error("Invalid CAST record");
1463 
1464       const Type *ResTy = getTypeByID(Record[OpNum]);
1465       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1466       if (Opc == -1 || ResTy == 0)
1467         return Error("Invalid CAST record");
1468       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1469       break;
1470     }
1471     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1472       unsigned OpNum = 0;
1473       Value *BasePtr;
1474       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1475         return Error("Invalid GEP record");
1476 
1477       SmallVector<Value*, 16> GEPIdx;
1478       while (OpNum != Record.size()) {
1479         Value *Op;
1480         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1481           return Error("Invalid GEP record");
1482         GEPIdx.push_back(Op);
1483       }
1484 
1485       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1486       break;
1487     }
1488 
1489     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1490                                        // EXTRACTVAL: [opty, opval, n x indices]
1491       unsigned OpNum = 0;
1492       Value *Agg;
1493       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1494         return Error("Invalid EXTRACTVAL record");
1495 
1496       SmallVector<unsigned, 4> EXTRACTVALIdx;
1497       for (unsigned RecSize = Record.size();
1498            OpNum != RecSize; ++OpNum) {
1499         uint64_t Index = Record[OpNum];
1500         if ((unsigned)Index != Index)
1501           return Error("Invalid EXTRACTVAL index");
1502         EXTRACTVALIdx.push_back((unsigned)Index);
1503       }
1504 
1505       I = ExtractValueInst::Create(Agg,
1506                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1507       break;
1508     }
1509 
1510     case bitc::FUNC_CODE_INST_INSERTVAL: {
1511                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1512       unsigned OpNum = 0;
1513       Value *Agg;
1514       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1515         return Error("Invalid INSERTVAL record");
1516       Value *Val;
1517       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1518         return Error("Invalid INSERTVAL record");
1519 
1520       SmallVector<unsigned, 4> INSERTVALIdx;
1521       for (unsigned RecSize = Record.size();
1522            OpNum != RecSize; ++OpNum) {
1523         uint64_t Index = Record[OpNum];
1524         if ((unsigned)Index != Index)
1525           return Error("Invalid INSERTVAL index");
1526         INSERTVALIdx.push_back((unsigned)Index);
1527       }
1528 
1529       I = InsertValueInst::Create(Agg, Val,
1530                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1531       break;
1532     }
1533 
1534     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1535       // obsolete form of select
1536       // handles select i1 ... in old bitcode
1537       unsigned OpNum = 0;
1538       Value *TrueVal, *FalseVal, *Cond;
1539       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1540           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1541           getValue(Record, OpNum, Type::Int1Ty, Cond))
1542         return Error("Invalid SELECT record");
1543 
1544       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1545       break;
1546     }
1547 
1548     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1549       // new form of select
1550       // handles select i1 or select [N x i1]
1551       unsigned OpNum = 0;
1552       Value *TrueVal, *FalseVal, *Cond;
1553       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1554           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1555           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1556         return Error("Invalid SELECT record");
1557 
1558       // select condition can be either i1 or [N x i1]
1559       if (const VectorType* vector_type =
1560           dyn_cast<const VectorType>(Cond->getType())) {
1561         // expect <n x i1>
1562         if (vector_type->getElementType() != Type::Int1Ty)
1563           return Error("Invalid SELECT condition type");
1564       } else {
1565         // expect i1
1566         if (Cond->getType() != Type::Int1Ty)
1567           return Error("Invalid SELECT condition type");
1568       }
1569 
1570       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1571       break;
1572     }
1573 
1574     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1575       unsigned OpNum = 0;
1576       Value *Vec, *Idx;
1577       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1578           getValue(Record, OpNum, Type::Int32Ty, Idx))
1579         return Error("Invalid EXTRACTELT record");
1580       I = new ExtractElementInst(Vec, Idx);
1581       break;
1582     }
1583 
1584     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1585       unsigned OpNum = 0;
1586       Value *Vec, *Elt, *Idx;
1587       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1588           getValue(Record, OpNum,
1589                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1590           getValue(Record, OpNum, Type::Int32Ty, Idx))
1591         return Error("Invalid INSERTELT record");
1592       I = InsertElementInst::Create(Vec, Elt, Idx);
1593       break;
1594     }
1595 
1596     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1597       unsigned OpNum = 0;
1598       Value *Vec1, *Vec2, *Mask;
1599       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1600           getValue(Record, OpNum, Vec1->getType(), Vec2))
1601         return Error("Invalid SHUFFLEVEC record");
1602 
1603       const Type *MaskTy =
1604         VectorType::get(Type::Int32Ty,
1605                         cast<VectorType>(Vec1->getType())->getNumElements());
1606 
1607       if (getValue(Record, OpNum, MaskTy, Mask))
1608         return Error("Invalid SHUFFLEVEC record");
1609       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1610       break;
1611     }
1612 
1613     case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1614       // VFCmp/VICmp
1615       // or old form of ICmp/FCmp returning bool
1616       unsigned OpNum = 0;
1617       Value *LHS, *RHS;
1618       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1619           getValue(Record, OpNum, LHS->getType(), RHS) ||
1620           OpNum+1 != Record.size())
1621         return Error("Invalid CMP record");
1622 
1623       if (LHS->getType()->isFloatingPoint())
1624         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1625       else if (!isa<VectorType>(LHS->getType()))
1626         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1627       else if (LHS->getType()->isFPOrFPVector())
1628         I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1629       else
1630         I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1631       break;
1632     }
1633     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1634       // Fcmp/ICmp returning bool or vector of bool
1635       unsigned OpNum = 0;
1636       Value *LHS, *RHS;
1637       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1638           getValue(Record, OpNum, LHS->getType(), RHS) ||
1639           OpNum+1 != Record.size())
1640         return Error("Invalid CMP2 record");
1641 
1642       if (LHS->getType()->isFPOrFPVector())
1643         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1644       else
1645         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1646       break;
1647     }
1648     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1649       if (Record.size() != 2)
1650         return Error("Invalid GETRESULT record");
1651       unsigned OpNum = 0;
1652       Value *Op;
1653       getValueTypePair(Record, OpNum, NextValueNo, Op);
1654       unsigned Index = Record[1];
1655       I = ExtractValueInst::Create(Op, Index);
1656       break;
1657     }
1658 
1659     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1660       {
1661         unsigned Size = Record.size();
1662         if (Size == 0) {
1663           I = ReturnInst::Create();
1664           break;
1665         }
1666 
1667         unsigned OpNum = 0;
1668         SmallVector<Value *,4> Vs;
1669         do {
1670           Value *Op = NULL;
1671           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1672             return Error("Invalid RET record");
1673           Vs.push_back(Op);
1674         } while(OpNum != Record.size());
1675 
1676         const Type *ReturnType = F->getReturnType();
1677         if (Vs.size() > 1 ||
1678             (isa<StructType>(ReturnType) &&
1679              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1680           Value *RV = UndefValue::get(ReturnType);
1681           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1682             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1683             CurBB->getInstList().push_back(I);
1684             ValueList.AssignValue(I, NextValueNo++);
1685             RV = I;
1686           }
1687           I = ReturnInst::Create(RV);
1688           break;
1689         }
1690 
1691         I = ReturnInst::Create(Vs[0]);
1692         break;
1693       }
1694     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1695       if (Record.size() != 1 && Record.size() != 3)
1696         return Error("Invalid BR record");
1697       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1698       if (TrueDest == 0)
1699         return Error("Invalid BR record");
1700 
1701       if (Record.size() == 1)
1702         I = BranchInst::Create(TrueDest);
1703       else {
1704         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1705         Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1706         if (FalseDest == 0 || Cond == 0)
1707           return Error("Invalid BR record");
1708         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1709       }
1710       break;
1711     }
1712     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1713       if (Record.size() < 3 || (Record.size() & 1) == 0)
1714         return Error("Invalid SWITCH record");
1715       const Type *OpTy = getTypeByID(Record[0]);
1716       Value *Cond = getFnValueByID(Record[1], OpTy);
1717       BasicBlock *Default = getBasicBlock(Record[2]);
1718       if (OpTy == 0 || Cond == 0 || Default == 0)
1719         return Error("Invalid SWITCH record");
1720       unsigned NumCases = (Record.size()-3)/2;
1721       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1722       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1723         ConstantInt *CaseVal =
1724           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1725         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1726         if (CaseVal == 0 || DestBB == 0) {
1727           delete SI;
1728           return Error("Invalid SWITCH record!");
1729         }
1730         SI->addCase(CaseVal, DestBB);
1731       }
1732       I = SI;
1733       break;
1734     }
1735 
1736     case bitc::FUNC_CODE_INST_INVOKE: {
1737       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1738       if (Record.size() < 4) return Error("Invalid INVOKE record");
1739       AttrListPtr PAL = getAttributes(Record[0]);
1740       unsigned CCInfo = Record[1];
1741       BasicBlock *NormalBB = getBasicBlock(Record[2]);
1742       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1743 
1744       unsigned OpNum = 4;
1745       Value *Callee;
1746       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1747         return Error("Invalid INVOKE record");
1748 
1749       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1750       const FunctionType *FTy = !CalleeTy ? 0 :
1751         dyn_cast<FunctionType>(CalleeTy->getElementType());
1752 
1753       // Check that the right number of fixed parameters are here.
1754       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1755           Record.size() < OpNum+FTy->getNumParams())
1756         return Error("Invalid INVOKE record");
1757 
1758       SmallVector<Value*, 16> Ops;
1759       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1760         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1761         if (Ops.back() == 0) return Error("Invalid INVOKE record");
1762       }
1763 
1764       if (!FTy->isVarArg()) {
1765         if (Record.size() != OpNum)
1766           return Error("Invalid INVOKE record");
1767       } else {
1768         // Read type/value pairs for varargs params.
1769         while (OpNum != Record.size()) {
1770           Value *Op;
1771           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1772             return Error("Invalid INVOKE record");
1773           Ops.push_back(Op);
1774         }
1775       }
1776 
1777       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1778                              Ops.begin(), Ops.end());
1779       cast<InvokeInst>(I)->setCallingConv(CCInfo);
1780       cast<InvokeInst>(I)->setAttributes(PAL);
1781       break;
1782     }
1783     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1784       I = new UnwindInst();
1785       break;
1786     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1787       I = new UnreachableInst();
1788       break;
1789     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1790       if (Record.size() < 1 || ((Record.size()-1)&1))
1791         return Error("Invalid PHI record");
1792       const Type *Ty = getTypeByID(Record[0]);
1793       if (!Ty) return Error("Invalid PHI record");
1794 
1795       PHINode *PN = PHINode::Create(Ty);
1796       PN->reserveOperandSpace((Record.size()-1)/2);
1797 
1798       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1799         Value *V = getFnValueByID(Record[1+i], Ty);
1800         BasicBlock *BB = getBasicBlock(Record[2+i]);
1801         if (!V || !BB) return Error("Invalid PHI record");
1802         PN->addIncoming(V, BB);
1803       }
1804       I = PN;
1805       break;
1806     }
1807 
1808     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1809       if (Record.size() < 3)
1810         return Error("Invalid MALLOC record");
1811       const PointerType *Ty =
1812         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1813       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1814       unsigned Align = Record[2];
1815       if (!Ty || !Size) return Error("Invalid MALLOC record");
1816       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1817       break;
1818     }
1819     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1820       unsigned OpNum = 0;
1821       Value *Op;
1822       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1823           OpNum != Record.size())
1824         return Error("Invalid FREE record");
1825       I = new FreeInst(Op);
1826       break;
1827     }
1828     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1829       if (Record.size() < 3)
1830         return Error("Invalid ALLOCA record");
1831       const PointerType *Ty =
1832         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1833       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1834       unsigned Align = Record[2];
1835       if (!Ty || !Size) return Error("Invalid ALLOCA record");
1836       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1837       break;
1838     }
1839     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1840       unsigned OpNum = 0;
1841       Value *Op;
1842       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1843           OpNum+2 != Record.size())
1844         return Error("Invalid LOAD record");
1845 
1846       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1847       break;
1848     }
1849     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1850       unsigned OpNum = 0;
1851       Value *Val, *Ptr;
1852       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1853           getValue(Record, OpNum,
1854                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1855           OpNum+2 != Record.size())
1856         return Error("Invalid STORE record");
1857 
1858       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1859       break;
1860     }
1861     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1862       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1863       unsigned OpNum = 0;
1864       Value *Val, *Ptr;
1865       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1866           getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1867           OpNum+2 != Record.size())
1868         return Error("Invalid STORE record");
1869 
1870       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1871       break;
1872     }
1873     case bitc::FUNC_CODE_INST_CALL: {
1874       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1875       if (Record.size() < 3)
1876         return Error("Invalid CALL record");
1877 
1878       AttrListPtr PAL = getAttributes(Record[0]);
1879       unsigned CCInfo = Record[1];
1880 
1881       unsigned OpNum = 2;
1882       Value *Callee;
1883       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1884         return Error("Invalid CALL record");
1885 
1886       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1887       const FunctionType *FTy = 0;
1888       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1889       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1890         return Error("Invalid CALL record");
1891 
1892       SmallVector<Value*, 16> Args;
1893       // Read the fixed params.
1894       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1895         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1896           Args.push_back(getBasicBlock(Record[OpNum]));
1897         else
1898           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1899         if (Args.back() == 0) return Error("Invalid CALL record");
1900       }
1901 
1902       // Read type/value pairs for varargs params.
1903       if (!FTy->isVarArg()) {
1904         if (OpNum != Record.size())
1905           return Error("Invalid CALL record");
1906       } else {
1907         while (OpNum != Record.size()) {
1908           Value *Op;
1909           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1910             return Error("Invalid CALL record");
1911           Args.push_back(Op);
1912         }
1913       }
1914 
1915       I = CallInst::Create(Callee, Args.begin(), Args.end());
1916       cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1917       cast<CallInst>(I)->setTailCall(CCInfo & 1);
1918       cast<CallInst>(I)->setAttributes(PAL);
1919       break;
1920     }
1921     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1922       if (Record.size() < 3)
1923         return Error("Invalid VAARG record");
1924       const Type *OpTy = getTypeByID(Record[0]);
1925       Value *Op = getFnValueByID(Record[1], OpTy);
1926       const Type *ResTy = getTypeByID(Record[2]);
1927       if (!OpTy || !Op || !ResTy)
1928         return Error("Invalid VAARG record");
1929       I = new VAArgInst(Op, ResTy);
1930       break;
1931     }
1932     }
1933 
1934     // Add instruction to end of current BB.  If there is no current BB, reject
1935     // this file.
1936     if (CurBB == 0) {
1937       delete I;
1938       return Error("Invalid instruction with no BB");
1939     }
1940     CurBB->getInstList().push_back(I);
1941 
1942     // If this was a terminator instruction, move to the next block.
1943     if (isa<TerminatorInst>(I)) {
1944       ++CurBBNo;
1945       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1946     }
1947 
1948     // Non-void values get registered in the value table for future use.
1949     if (I && I->getType() != Type::VoidTy)
1950       ValueList.AssignValue(I, NextValueNo++);
1951   }
1952 
1953   // Check the function list for unresolved values.
1954   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1955     if (A->getParent() == 0) {
1956       // We found at least one unresolved value.  Nuke them all to avoid leaks.
1957       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1958         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1959           A->replaceAllUsesWith(UndefValue::get(A->getType()));
1960           delete A;
1961         }
1962       }
1963       return Error("Never resolved value found in function!");
1964     }
1965   }
1966 
1967   // Trim the value list down to the size it was before we parsed this function.
1968   ValueList.shrinkTo(ModuleValueListSize);
1969   std::vector<BasicBlock*>().swap(FunctionBBs);
1970 
1971   return false;
1972 }
1973 
1974 //===----------------------------------------------------------------------===//
1975 // ModuleProvider implementation
1976 //===----------------------------------------------------------------------===//
1977 
1978 
1979 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1980   // If it already is material, ignore the request.
1981   if (!F->hasNotBeenReadFromBitcode()) return false;
1982 
1983   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1984     DeferredFunctionInfo.find(F);
1985   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1986 
1987   // Move the bit stream to the saved position of the deferred function body and
1988   // restore the real linkage type for the function.
1989   Stream.JumpToBit(DFII->second.first);
1990   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1991 
1992   if (ParseFunctionBody(F)) {
1993     if (ErrInfo) *ErrInfo = ErrorString;
1994     return true;
1995   }
1996 
1997   // Upgrade any old intrinsic calls in the function.
1998   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
1999        E = UpgradedIntrinsics.end(); I != E; ++I) {
2000     if (I->first != I->second) {
2001       for (Value::use_iterator UI = I->first->use_begin(),
2002            UE = I->first->use_end(); UI != UE; ) {
2003         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2004           UpgradeIntrinsicCall(CI, I->second);
2005       }
2006     }
2007   }
2008 
2009   return false;
2010 }
2011 
2012 void BitcodeReader::dematerializeFunction(Function *F) {
2013   // If this function isn't materialized, or if it is a proto, this is a noop.
2014   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2015     return;
2016 
2017   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2018 
2019   // Just forget the function body, we can remat it later.
2020   F->deleteBody();
2021   F->setLinkage(GlobalValue::GhostLinkage);
2022 }
2023 
2024 
2025 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2026   for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2027        DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2028        ++I) {
2029     Function *F = I->first;
2030     if (F->hasNotBeenReadFromBitcode() &&
2031         materializeFunction(F, ErrInfo))
2032       return 0;
2033   }
2034 
2035   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2036   // delete the old functions to clean up. We can't do this unless the entire
2037   // module is materialized because there could always be another function body
2038   // with calls to the old function.
2039   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2040        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2041     if (I->first != I->second) {
2042       for (Value::use_iterator UI = I->first->use_begin(),
2043            UE = I->first->use_end(); UI != UE; ) {
2044         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2045           UpgradeIntrinsicCall(CI, I->second);
2046       }
2047       ValueList.replaceUsesOfWith(I->first, I->second);
2048       I->first->eraseFromParent();
2049     }
2050   }
2051   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2052 
2053   return TheModule;
2054 }
2055 
2056 
2057 /// This method is provided by the parent ModuleProvde class and overriden
2058 /// here. It simply releases the module from its provided and frees up our
2059 /// state.
2060 /// @brief Release our hold on the generated module
2061 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2062   // Since we're losing control of this Module, we must hand it back complete
2063   Module *M = ModuleProvider::releaseModule(ErrInfo);
2064   FreeState();
2065   return M;
2066 }
2067 
2068 
2069 //===----------------------------------------------------------------------===//
2070 // External interface
2071 //===----------------------------------------------------------------------===//
2072 
2073 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2074 ///
2075 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2076                                                std::string *ErrMsg) {
2077   BitcodeReader *R = new BitcodeReader(Buffer);
2078   if (R->ParseBitcode()) {
2079     if (ErrMsg)
2080       *ErrMsg = R->getErrorString();
2081 
2082     // Don't let the BitcodeReader dtor delete 'Buffer'.
2083     R->releaseMemoryBuffer();
2084     delete R;
2085     return 0;
2086   }
2087   return R;
2088 }
2089 
2090 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2091 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2092 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2093   BitcodeReader *R;
2094   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2095   if (!R) return 0;
2096 
2097   // Read in the entire module.
2098   Module *M = R->materializeModule(ErrMsg);
2099 
2100   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2101   // there was an error.
2102   R->releaseMemoryBuffer();
2103 
2104   // If there was no error, tell ModuleProvider not to delete it when its dtor
2105   // is run.
2106   if (M)
2107     M = R->releaseModule(ErrMsg);
2108 
2109   delete R;
2110   return M;
2111 }
2112