1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start, true), 880 APInt(BitWidth, End, true)); 881 } 882 } 883 884 Expected<ConstantRange> 885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 886 if (Record.size() - OpNum < 1) 887 return error("Too few records for range"); 888 unsigned BitWidth = Record[OpNum++]; 889 return readConstantRange(Record, OpNum, BitWidth); 890 } 891 892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 893 /// corresponding argument's pointee type. Also upgrades intrinsics that now 894 /// require an elementtype attribute. 895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 896 897 /// Converts alignment exponent (i.e. power of two (or zero)) to the 898 /// corresponding alignment to use. If alignment is too large, returns 899 /// a corresponding error code. 900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 903 ParserCallbacks Callbacks = {}); 904 905 Error parseComdatRecord(ArrayRef<uint64_t> Record); 906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 907 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 909 ArrayRef<uint64_t> Record); 910 911 Error parseAttributeBlock(); 912 Error parseAttributeGroupBlock(); 913 Error parseTypeTable(); 914 Error parseTypeTableBody(); 915 Error parseOperandBundleTags(); 916 Error parseSyncScopeNames(); 917 918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 919 unsigned NameIndex, Triple &TT); 920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 921 ArrayRef<uint64_t> Record); 922 Error parseValueSymbolTable(uint64_t Offset = 0); 923 Error parseGlobalValueSymbolTable(); 924 Error parseConstants(); 925 Error rememberAndSkipFunctionBodies(); 926 Error rememberAndSkipFunctionBody(); 927 /// Save the positions of the Metadata blocks and skip parsing the blocks. 928 Error rememberAndSkipMetadata(); 929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 930 Error parseFunctionBody(Function *F); 931 Error globalCleanup(); 932 Error resolveGlobalAndIndirectSymbolInits(); 933 Error parseUseLists(); 934 Error findFunctionInStream( 935 Function *F, 936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 937 938 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 939 }; 940 941 /// Class to manage reading and parsing function summary index bitcode 942 /// files/sections. 943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 944 /// The module index built during parsing. 945 ModuleSummaryIndex &TheIndex; 946 947 /// Indicates whether we have encountered a global value summary section 948 /// yet during parsing. 949 bool SeenGlobalValSummary = false; 950 951 /// Indicates whether we have already parsed the VST, used for error checking. 952 bool SeenValueSymbolTable = false; 953 954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 955 /// Used to enable on-demand parsing of the VST. 956 uint64_t VSTOffset = 0; 957 958 // Map to save ValueId to ValueInfo association that was recorded in the 959 // ValueSymbolTable. It is used after the VST is parsed to convert 960 // call graph edges read from the function summary from referencing 961 // callees by their ValueId to using the ValueInfo instead, which is how 962 // they are recorded in the summary index being built. 963 // We save a GUID which refers to the same global as the ValueInfo, but 964 // ignoring the linkage, i.e. for values other than local linkage they are 965 // identical (this is the second member). ValueInfo has the real GUID. 966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 967 ValueIdToValueInfoMap; 968 969 /// Map populated during module path string table parsing, from the 970 /// module ID to a string reference owned by the index's module 971 /// path string table, used to correlate with combined index 972 /// summary records. 973 DenseMap<uint64_t, StringRef> ModuleIdMap; 974 975 /// Original source file name recorded in a bitcode record. 976 std::string SourceFileName; 977 978 /// The string identifier given to this module by the client, normally the 979 /// path to the bitcode file. 980 StringRef ModulePath; 981 982 /// Callback to ask whether a symbol is the prevailing copy when invoked 983 /// during combined index building. 984 std::function<bool(GlobalValue::GUID)> IsPrevailing; 985 986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 987 /// ids from the lists in the callsite and alloc entries to the index. 988 std::vector<uint64_t> StackIds; 989 990 /// Linearized radix tree of allocation contexts. See the description above 991 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format. 992 std::vector<uint64_t> RadixArray; 993 994 public: 995 ModuleSummaryIndexBitcodeReader( 996 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 997 StringRef ModulePath, 998 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 999 1000 Error parseModule(); 1001 1002 private: 1003 void setValueGUID(uint64_t ValueID, StringRef ValueName, 1004 GlobalValue::LinkageTypes Linkage, 1005 StringRef SourceFileName); 1006 Error parseValueSymbolTable( 1007 uint64_t Offset, 1008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1009 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1010 SmallVector<FunctionSummary::EdgeTy, 0> 1011 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1012 bool HasProfile, bool HasRelBF); 1013 Error parseEntireSummary(unsigned ID); 1014 Error parseModuleStringTable(); 1015 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1016 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1017 TypeIdCompatibleVtableInfo &TypeId); 1018 std::vector<FunctionSummary::ParamAccess> 1019 parseParamAccesses(ArrayRef<uint64_t> Record); 1020 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record, 1021 unsigned &I); 1022 1023 template <bool AllowNullValueInfo = false> 1024 std::pair<ValueInfo, GlobalValue::GUID> 1025 getValueInfoFromValueId(unsigned ValueId); 1026 1027 void addThisModule(); 1028 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1029 }; 1030 1031 } // end anonymous namespace 1032 1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1034 Error Err) { 1035 if (Err) { 1036 std::error_code EC; 1037 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1038 EC = EIB.convertToErrorCode(); 1039 Ctx.emitError(EIB.message()); 1040 }); 1041 return EC; 1042 } 1043 return std::error_code(); 1044 } 1045 1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1047 StringRef ProducerIdentification, 1048 LLVMContext &Context) 1049 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1050 ValueList(this->Stream.SizeInBytes(), 1051 [this](unsigned ValID, BasicBlock *InsertBB) { 1052 return materializeValue(ValID, InsertBB); 1053 }) { 1054 this->ProducerIdentification = std::string(ProducerIdentification); 1055 } 1056 1057 Error BitcodeReader::materializeForwardReferencedFunctions() { 1058 if (WillMaterializeAllForwardRefs) 1059 return Error::success(); 1060 1061 // Prevent recursion. 1062 WillMaterializeAllForwardRefs = true; 1063 1064 while (!BasicBlockFwdRefQueue.empty()) { 1065 Function *F = BasicBlockFwdRefQueue.front(); 1066 BasicBlockFwdRefQueue.pop_front(); 1067 assert(F && "Expected valid function"); 1068 if (!BasicBlockFwdRefs.count(F)) 1069 // Already materialized. 1070 continue; 1071 1072 // Check for a function that isn't materializable to prevent an infinite 1073 // loop. When parsing a blockaddress stored in a global variable, there 1074 // isn't a trivial way to check if a function will have a body without a 1075 // linear search through FunctionsWithBodies, so just check it here. 1076 if (!F->isMaterializable()) 1077 return error("Never resolved function from blockaddress"); 1078 1079 // Try to materialize F. 1080 if (Error Err = materialize(F)) 1081 return Err; 1082 } 1083 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1084 1085 for (Function *F : BackwardRefFunctions) 1086 if (Error Err = materialize(F)) 1087 return Err; 1088 BackwardRefFunctions.clear(); 1089 1090 // Reset state. 1091 WillMaterializeAllForwardRefs = false; 1092 return Error::success(); 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // Helper functions to implement forward reference resolution, etc. 1097 //===----------------------------------------------------------------------===// 1098 1099 static bool hasImplicitComdat(size_t Val) { 1100 switch (Val) { 1101 default: 1102 return false; 1103 case 1: // Old WeakAnyLinkage 1104 case 4: // Old LinkOnceAnyLinkage 1105 case 10: // Old WeakODRLinkage 1106 case 11: // Old LinkOnceODRLinkage 1107 return true; 1108 } 1109 } 1110 1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1112 switch (Val) { 1113 default: // Map unknown/new linkages to external 1114 case 0: 1115 return GlobalValue::ExternalLinkage; 1116 case 2: 1117 return GlobalValue::AppendingLinkage; 1118 case 3: 1119 return GlobalValue::InternalLinkage; 1120 case 5: 1121 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1122 case 6: 1123 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1124 case 7: 1125 return GlobalValue::ExternalWeakLinkage; 1126 case 8: 1127 return GlobalValue::CommonLinkage; 1128 case 9: 1129 return GlobalValue::PrivateLinkage; 1130 case 12: 1131 return GlobalValue::AvailableExternallyLinkage; 1132 case 13: 1133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1134 case 14: 1135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1136 case 15: 1137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1138 case 1: // Old value with implicit comdat. 1139 case 16: 1140 return GlobalValue::WeakAnyLinkage; 1141 case 10: // Old value with implicit comdat. 1142 case 17: 1143 return GlobalValue::WeakODRLinkage; 1144 case 4: // Old value with implicit comdat. 1145 case 18: 1146 return GlobalValue::LinkOnceAnyLinkage; 1147 case 11: // Old value with implicit comdat. 1148 case 19: 1149 return GlobalValue::LinkOnceODRLinkage; 1150 } 1151 } 1152 1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1154 FunctionSummary::FFlags Flags; 1155 Flags.ReadNone = RawFlags & 0x1; 1156 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1157 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1158 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1159 Flags.NoInline = (RawFlags >> 4) & 0x1; 1160 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1161 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1162 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1163 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1164 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1165 return Flags; 1166 } 1167 1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1169 // 1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1171 // visibility: [8, 10). 1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1173 uint64_t Version) { 1174 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1175 // like getDecodedLinkage() above. Any future change to the linkage enum and 1176 // to getDecodedLinkage() will need to be taken into account here as above. 1177 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1178 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1179 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1180 RawFlags = RawFlags >> 4; 1181 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1182 // The Live flag wasn't introduced until version 3. For dead stripping 1183 // to work correctly on earlier versions, we must conservatively treat all 1184 // values as live. 1185 bool Live = (RawFlags & 0x2) || Version < 3; 1186 bool Local = (RawFlags & 0x4); 1187 bool AutoHide = (RawFlags & 0x8); 1188 1189 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1190 Live, Local, AutoHide, IK); 1191 } 1192 1193 // Decode the flags for GlobalVariable in the summary 1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1195 return GlobalVarSummary::GVarFlags( 1196 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1197 (RawFlags & 0x4) ? true : false, 1198 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1199 } 1200 1201 static std::pair<CalleeInfo::HotnessType, bool> 1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1203 CalleeInfo::HotnessType Hotness = 1204 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1205 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1206 return {Hotness, HasTailCall}; 1207 } 1208 1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1210 bool &HasTailCall) { 1211 static constexpr uint64_t RelBlockFreqMask = 1212 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1213 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1214 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1215 } 1216 1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1218 switch (Val) { 1219 default: // Map unknown visibilities to default. 1220 case 0: return GlobalValue::DefaultVisibility; 1221 case 1: return GlobalValue::HiddenVisibility; 1222 case 2: return GlobalValue::ProtectedVisibility; 1223 } 1224 } 1225 1226 static GlobalValue::DLLStorageClassTypes 1227 getDecodedDLLStorageClass(unsigned Val) { 1228 switch (Val) { 1229 default: // Map unknown values to default. 1230 case 0: return GlobalValue::DefaultStorageClass; 1231 case 1: return GlobalValue::DLLImportStorageClass; 1232 case 2: return GlobalValue::DLLExportStorageClass; 1233 } 1234 } 1235 1236 static bool getDecodedDSOLocal(unsigned Val) { 1237 switch(Val) { 1238 default: // Map unknown values to preemptable. 1239 case 0: return false; 1240 case 1: return true; 1241 } 1242 } 1243 1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1245 switch (Val) { 1246 case 1: 1247 return CodeModel::Tiny; 1248 case 2: 1249 return CodeModel::Small; 1250 case 3: 1251 return CodeModel::Kernel; 1252 case 4: 1253 return CodeModel::Medium; 1254 case 5: 1255 return CodeModel::Large; 1256 } 1257 1258 return {}; 1259 } 1260 1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1262 switch (Val) { 1263 case 0: return GlobalVariable::NotThreadLocal; 1264 default: // Map unknown non-zero value to general dynamic. 1265 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1266 case 2: return GlobalVariable::LocalDynamicTLSModel; 1267 case 3: return GlobalVariable::InitialExecTLSModel; 1268 case 4: return GlobalVariable::LocalExecTLSModel; 1269 } 1270 } 1271 1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1273 switch (Val) { 1274 default: // Map unknown to UnnamedAddr::None. 1275 case 0: return GlobalVariable::UnnamedAddr::None; 1276 case 1: return GlobalVariable::UnnamedAddr::Global; 1277 case 2: return GlobalVariable::UnnamedAddr::Local; 1278 } 1279 } 1280 1281 static int getDecodedCastOpcode(unsigned Val) { 1282 switch (Val) { 1283 default: return -1; 1284 case bitc::CAST_TRUNC : return Instruction::Trunc; 1285 case bitc::CAST_ZEXT : return Instruction::ZExt; 1286 case bitc::CAST_SEXT : return Instruction::SExt; 1287 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1288 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1289 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1290 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1291 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1292 case bitc::CAST_FPEXT : return Instruction::FPExt; 1293 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1294 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1295 case bitc::CAST_BITCAST : return Instruction::BitCast; 1296 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1297 } 1298 } 1299 1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1301 bool IsFP = Ty->isFPOrFPVectorTy(); 1302 // UnOps are only valid for int/fp or vector of int/fp types 1303 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1304 return -1; 1305 1306 switch (Val) { 1307 default: 1308 return -1; 1309 case bitc::UNOP_FNEG: 1310 return IsFP ? Instruction::FNeg : -1; 1311 } 1312 } 1313 1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1315 bool IsFP = Ty->isFPOrFPVectorTy(); 1316 // BinOps are only valid for int/fp or vector of int/fp types 1317 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1318 return -1; 1319 1320 switch (Val) { 1321 default: 1322 return -1; 1323 case bitc::BINOP_ADD: 1324 return IsFP ? Instruction::FAdd : Instruction::Add; 1325 case bitc::BINOP_SUB: 1326 return IsFP ? Instruction::FSub : Instruction::Sub; 1327 case bitc::BINOP_MUL: 1328 return IsFP ? Instruction::FMul : Instruction::Mul; 1329 case bitc::BINOP_UDIV: 1330 return IsFP ? -1 : Instruction::UDiv; 1331 case bitc::BINOP_SDIV: 1332 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1333 case bitc::BINOP_UREM: 1334 return IsFP ? -1 : Instruction::URem; 1335 case bitc::BINOP_SREM: 1336 return IsFP ? Instruction::FRem : Instruction::SRem; 1337 case bitc::BINOP_SHL: 1338 return IsFP ? -1 : Instruction::Shl; 1339 case bitc::BINOP_LSHR: 1340 return IsFP ? -1 : Instruction::LShr; 1341 case bitc::BINOP_ASHR: 1342 return IsFP ? -1 : Instruction::AShr; 1343 case bitc::BINOP_AND: 1344 return IsFP ? -1 : Instruction::And; 1345 case bitc::BINOP_OR: 1346 return IsFP ? -1 : Instruction::Or; 1347 case bitc::BINOP_XOR: 1348 return IsFP ? -1 : Instruction::Xor; 1349 } 1350 } 1351 1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1353 switch (Val) { 1354 default: return AtomicRMWInst::BAD_BINOP; 1355 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1356 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1357 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1358 case bitc::RMW_AND: return AtomicRMWInst::And; 1359 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1360 case bitc::RMW_OR: return AtomicRMWInst::Or; 1361 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1362 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1363 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1364 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1365 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1366 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1367 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1368 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1369 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1370 case bitc::RMW_UINC_WRAP: 1371 return AtomicRMWInst::UIncWrap; 1372 case bitc::RMW_UDEC_WRAP: 1373 return AtomicRMWInst::UDecWrap; 1374 case bitc::RMW_USUB_COND: 1375 return AtomicRMWInst::USubCond; 1376 case bitc::RMW_USUB_SAT: 1377 return AtomicRMWInst::USubSat; 1378 } 1379 } 1380 1381 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1382 switch (Val) { 1383 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1384 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1385 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1386 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1387 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1388 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1389 default: // Map unknown orderings to sequentially-consistent. 1390 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1391 } 1392 } 1393 1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1395 switch (Val) { 1396 default: // Map unknown selection kinds to any. 1397 case bitc::COMDAT_SELECTION_KIND_ANY: 1398 return Comdat::Any; 1399 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1400 return Comdat::ExactMatch; 1401 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1402 return Comdat::Largest; 1403 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1404 return Comdat::NoDeduplicate; 1405 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1406 return Comdat::SameSize; 1407 } 1408 } 1409 1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1411 FastMathFlags FMF; 1412 if (0 != (Val & bitc::UnsafeAlgebra)) 1413 FMF.setFast(); 1414 if (0 != (Val & bitc::AllowReassoc)) 1415 FMF.setAllowReassoc(); 1416 if (0 != (Val & bitc::NoNaNs)) 1417 FMF.setNoNaNs(); 1418 if (0 != (Val & bitc::NoInfs)) 1419 FMF.setNoInfs(); 1420 if (0 != (Val & bitc::NoSignedZeros)) 1421 FMF.setNoSignedZeros(); 1422 if (0 != (Val & bitc::AllowReciprocal)) 1423 FMF.setAllowReciprocal(); 1424 if (0 != (Val & bitc::AllowContract)) 1425 FMF.setAllowContract(true); 1426 if (0 != (Val & bitc::ApproxFunc)) 1427 FMF.setApproxFunc(); 1428 return FMF; 1429 } 1430 1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1432 // A GlobalValue with local linkage cannot have a DLL storage class. 1433 if (GV->hasLocalLinkage()) 1434 return; 1435 switch (Val) { 1436 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1437 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1438 } 1439 } 1440 1441 Type *BitcodeReader::getTypeByID(unsigned ID) { 1442 // The type table size is always specified correctly. 1443 if (ID >= TypeList.size()) 1444 return nullptr; 1445 1446 if (Type *Ty = TypeList[ID]) 1447 return Ty; 1448 1449 // If we have a forward reference, the only possible case is when it is to a 1450 // named struct. Just create a placeholder for now. 1451 return TypeList[ID] = createIdentifiedStructType(Context); 1452 } 1453 1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1455 auto It = ContainedTypeIDs.find(ID); 1456 if (It == ContainedTypeIDs.end()) 1457 return InvalidTypeID; 1458 1459 if (Idx >= It->second.size()) 1460 return InvalidTypeID; 1461 1462 return It->second[Idx]; 1463 } 1464 1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1466 if (ID >= TypeList.size()) 1467 return nullptr; 1468 1469 Type *Ty = TypeList[ID]; 1470 if (!Ty->isPointerTy()) 1471 return nullptr; 1472 1473 return getTypeByID(getContainedTypeID(ID, 0)); 1474 } 1475 1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1477 ArrayRef<unsigned> ChildTypeIDs) { 1478 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1479 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1480 auto It = VirtualTypeIDs.find(CacheKey); 1481 if (It != VirtualTypeIDs.end()) { 1482 // The cmpxchg return value is the only place we need more than one 1483 // contained type ID, however the second one will always be the same (i1), 1484 // so we don't need to include it in the cache key. This asserts that the 1485 // contained types are indeed as expected and there are no collisions. 1486 assert((ChildTypeIDs.empty() || 1487 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1488 "Incorrect cached contained type IDs"); 1489 return It->second; 1490 } 1491 1492 unsigned TypeID = TypeList.size(); 1493 TypeList.push_back(Ty); 1494 if (!ChildTypeIDs.empty()) 1495 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1496 VirtualTypeIDs.insert({CacheKey, TypeID}); 1497 return TypeID; 1498 } 1499 1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1501 GEPNoWrapFlags NW; 1502 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1503 NW |= GEPNoWrapFlags::inBounds(); 1504 if (Flags & (1 << bitc::GEP_NUSW)) 1505 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1506 if (Flags & (1 << bitc::GEP_NUW)) 1507 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1508 return NW; 1509 } 1510 1511 static bool isConstExprSupported(const BitcodeConstant *BC) { 1512 uint8_t Opcode = BC->Opcode; 1513 1514 // These are not real constant expressions, always consider them supported. 1515 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1516 return true; 1517 1518 // If -expand-constant-exprs is set, we want to consider all expressions 1519 // as unsupported. 1520 if (ExpandConstantExprs) 1521 return false; 1522 1523 if (Instruction::isBinaryOp(Opcode)) 1524 return ConstantExpr::isSupportedBinOp(Opcode); 1525 1526 if (Instruction::isCast(Opcode)) 1527 return ConstantExpr::isSupportedCastOp(Opcode); 1528 1529 if (Opcode == Instruction::GetElementPtr) 1530 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1531 1532 switch (Opcode) { 1533 case Instruction::FNeg: 1534 case Instruction::Select: 1535 case Instruction::ICmp: 1536 case Instruction::FCmp: 1537 return false; 1538 default: 1539 return true; 1540 } 1541 } 1542 1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1544 BasicBlock *InsertBB) { 1545 // Quickly handle the case where there is no BitcodeConstant to resolve. 1546 if (StartValID < ValueList.size() && ValueList[StartValID] && 1547 !isa<BitcodeConstant>(ValueList[StartValID])) 1548 return ValueList[StartValID]; 1549 1550 SmallDenseMap<unsigned, Value *> MaterializedValues; 1551 SmallVector<unsigned> Worklist; 1552 Worklist.push_back(StartValID); 1553 while (!Worklist.empty()) { 1554 unsigned ValID = Worklist.back(); 1555 if (MaterializedValues.count(ValID)) { 1556 // Duplicate expression that was already handled. 1557 Worklist.pop_back(); 1558 continue; 1559 } 1560 1561 if (ValID >= ValueList.size() || !ValueList[ValID]) 1562 return error("Invalid value ID"); 1563 1564 Value *V = ValueList[ValID]; 1565 auto *BC = dyn_cast<BitcodeConstant>(V); 1566 if (!BC) { 1567 MaterializedValues.insert({ValID, V}); 1568 Worklist.pop_back(); 1569 continue; 1570 } 1571 1572 // Iterate in reverse, so values will get popped from the worklist in 1573 // expected order. 1574 SmallVector<Value *> Ops; 1575 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1576 auto It = MaterializedValues.find(OpID); 1577 if (It != MaterializedValues.end()) 1578 Ops.push_back(It->second); 1579 else 1580 Worklist.push_back(OpID); 1581 } 1582 1583 // Some expressions have not been resolved yet, handle them first and then 1584 // revisit this one. 1585 if (Ops.size() != BC->getOperandIDs().size()) 1586 continue; 1587 std::reverse(Ops.begin(), Ops.end()); 1588 1589 SmallVector<Constant *> ConstOps; 1590 for (Value *Op : Ops) 1591 if (auto *C = dyn_cast<Constant>(Op)) 1592 ConstOps.push_back(C); 1593 1594 // Materialize as constant expression if possible. 1595 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1596 Constant *C; 1597 if (Instruction::isCast(BC->Opcode)) { 1598 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1599 if (!C) 1600 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1601 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1602 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1603 } else { 1604 switch (BC->Opcode) { 1605 case BitcodeConstant::ConstantPtrAuthOpcode: { 1606 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1607 if (!Key) 1608 return error("ptrauth key operand must be ConstantInt"); 1609 1610 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1611 if (!Disc) 1612 return error("ptrauth disc operand must be ConstantInt"); 1613 1614 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1615 break; 1616 } 1617 case BitcodeConstant::NoCFIOpcode: { 1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1619 if (!GV) 1620 return error("no_cfi operand must be GlobalValue"); 1621 C = NoCFIValue::get(GV); 1622 break; 1623 } 1624 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1625 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1626 if (!GV) 1627 return error("dso_local operand must be GlobalValue"); 1628 C = DSOLocalEquivalent::get(GV); 1629 break; 1630 } 1631 case BitcodeConstant::BlockAddressOpcode: { 1632 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1633 if (!Fn) 1634 return error("blockaddress operand must be a function"); 1635 1636 // If the function is already parsed we can insert the block address 1637 // right away. 1638 BasicBlock *BB; 1639 unsigned BBID = BC->BlockAddressBB; 1640 if (!BBID) 1641 // Invalid reference to entry block. 1642 return error("Invalid ID"); 1643 if (!Fn->empty()) { 1644 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1645 for (size_t I = 0, E = BBID; I != E; ++I) { 1646 if (BBI == BBE) 1647 return error("Invalid ID"); 1648 ++BBI; 1649 } 1650 BB = &*BBI; 1651 } else { 1652 // Otherwise insert a placeholder and remember it so it can be 1653 // inserted when the function is parsed. 1654 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1655 if (FwdBBs.empty()) 1656 BasicBlockFwdRefQueue.push_back(Fn); 1657 if (FwdBBs.size() < BBID + 1) 1658 FwdBBs.resize(BBID + 1); 1659 if (!FwdBBs[BBID]) 1660 FwdBBs[BBID] = BasicBlock::Create(Context); 1661 BB = FwdBBs[BBID]; 1662 } 1663 C = BlockAddress::get(Fn, BB); 1664 break; 1665 } 1666 case BitcodeConstant::ConstantStructOpcode: { 1667 auto *ST = cast<StructType>(BC->getType()); 1668 if (ST->getNumElements() != ConstOps.size()) 1669 return error("Invalid number of elements in struct initializer"); 1670 1671 for (const auto [Ty, Op] : zip(ST->elements(), ConstOps)) 1672 if (Op->getType() != Ty) 1673 return error("Incorrect type in struct initializer"); 1674 1675 C = ConstantStruct::get(ST, ConstOps); 1676 break; 1677 } 1678 case BitcodeConstant::ConstantArrayOpcode: { 1679 auto *AT = cast<ArrayType>(BC->getType()); 1680 if (AT->getNumElements() != ConstOps.size()) 1681 return error("Invalid number of elements in array initializer"); 1682 1683 for (Constant *Op : ConstOps) 1684 if (Op->getType() != AT->getElementType()) 1685 return error("Incorrect type in array initializer"); 1686 1687 C = ConstantArray::get(AT, ConstOps); 1688 break; 1689 } 1690 case BitcodeConstant::ConstantVectorOpcode: { 1691 auto *VT = cast<FixedVectorType>(BC->getType()); 1692 if (VT->getNumElements() != ConstOps.size()) 1693 return error("Invalid number of elements in vector initializer"); 1694 1695 for (Constant *Op : ConstOps) 1696 if (Op->getType() != VT->getElementType()) 1697 return error("Incorrect type in vector initializer"); 1698 1699 C = ConstantVector::get(ConstOps); 1700 break; 1701 } 1702 case Instruction::GetElementPtr: 1703 C = ConstantExpr::getGetElementPtr( 1704 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1705 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1706 break; 1707 case Instruction::ExtractElement: 1708 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1709 break; 1710 case Instruction::InsertElement: 1711 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1712 ConstOps[2]); 1713 break; 1714 case Instruction::ShuffleVector: { 1715 SmallVector<int, 16> Mask; 1716 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1717 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1718 break; 1719 } 1720 default: 1721 llvm_unreachable("Unhandled bitcode constant"); 1722 } 1723 } 1724 1725 // Cache resolved constant. 1726 ValueList.replaceValueWithoutRAUW(ValID, C); 1727 MaterializedValues.insert({ValID, C}); 1728 Worklist.pop_back(); 1729 continue; 1730 } 1731 1732 if (!InsertBB) 1733 return error(Twine("Value referenced by initializer is an unsupported " 1734 "constant expression of type ") + 1735 BC->getOpcodeName()); 1736 1737 // Materialize as instructions if necessary. 1738 Instruction *I; 1739 if (Instruction::isCast(BC->Opcode)) { 1740 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1741 BC->getType(), "constexpr", InsertBB); 1742 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1743 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1744 "constexpr", InsertBB); 1745 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1746 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1747 Ops[1], "constexpr", InsertBB); 1748 if (isa<OverflowingBinaryOperator>(I)) { 1749 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1750 I->setHasNoSignedWrap(); 1751 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1752 I->setHasNoUnsignedWrap(); 1753 } 1754 if (isa<PossiblyExactOperator>(I) && 1755 (BC->Flags & PossiblyExactOperator::IsExact)) 1756 I->setIsExact(); 1757 } else { 1758 switch (BC->Opcode) { 1759 case BitcodeConstant::ConstantVectorOpcode: { 1760 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1761 Value *V = PoisonValue::get(BC->getType()); 1762 for (auto Pair : enumerate(Ops)) { 1763 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1764 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1765 InsertBB); 1766 } 1767 I = cast<Instruction>(V); 1768 break; 1769 } 1770 case BitcodeConstant::ConstantStructOpcode: 1771 case BitcodeConstant::ConstantArrayOpcode: { 1772 Value *V = PoisonValue::get(BC->getType()); 1773 for (auto Pair : enumerate(Ops)) 1774 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1775 "constexpr.ins", InsertBB); 1776 I = cast<Instruction>(V); 1777 break; 1778 } 1779 case Instruction::ICmp: 1780 case Instruction::FCmp: 1781 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1782 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1783 "constexpr", InsertBB); 1784 break; 1785 case Instruction::GetElementPtr: 1786 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1787 ArrayRef(Ops).drop_front(), "constexpr", 1788 InsertBB); 1789 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1790 break; 1791 case Instruction::Select: 1792 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1793 break; 1794 case Instruction::ExtractElement: 1795 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1796 break; 1797 case Instruction::InsertElement: 1798 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1799 InsertBB); 1800 break; 1801 case Instruction::ShuffleVector: 1802 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1803 InsertBB); 1804 break; 1805 default: 1806 llvm_unreachable("Unhandled bitcode constant"); 1807 } 1808 } 1809 1810 MaterializedValues.insert({ValID, I}); 1811 Worklist.pop_back(); 1812 } 1813 1814 return MaterializedValues[StartValID]; 1815 } 1816 1817 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1818 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1819 if (!MaybeV) 1820 return MaybeV.takeError(); 1821 1822 // Result must be Constant if InsertBB is nullptr. 1823 return cast<Constant>(MaybeV.get()); 1824 } 1825 1826 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1827 StringRef Name) { 1828 auto *Ret = StructType::create(Context, Name); 1829 IdentifiedStructTypes.push_back(Ret); 1830 return Ret; 1831 } 1832 1833 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1834 auto *Ret = StructType::create(Context); 1835 IdentifiedStructTypes.push_back(Ret); 1836 return Ret; 1837 } 1838 1839 //===----------------------------------------------------------------------===// 1840 // Functions for parsing blocks from the bitcode file 1841 //===----------------------------------------------------------------------===// 1842 1843 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1844 switch (Val) { 1845 case Attribute::EndAttrKinds: 1846 case Attribute::EmptyKey: 1847 case Attribute::TombstoneKey: 1848 llvm_unreachable("Synthetic enumerators which should never get here"); 1849 1850 case Attribute::None: return 0; 1851 case Attribute::ZExt: return 1 << 0; 1852 case Attribute::SExt: return 1 << 1; 1853 case Attribute::NoReturn: return 1 << 2; 1854 case Attribute::InReg: return 1 << 3; 1855 case Attribute::StructRet: return 1 << 4; 1856 case Attribute::NoUnwind: return 1 << 5; 1857 case Attribute::NoAlias: return 1 << 6; 1858 case Attribute::ByVal: return 1 << 7; 1859 case Attribute::Nest: return 1 << 8; 1860 case Attribute::ReadNone: return 1 << 9; 1861 case Attribute::ReadOnly: return 1 << 10; 1862 case Attribute::NoInline: return 1 << 11; 1863 case Attribute::AlwaysInline: return 1 << 12; 1864 case Attribute::OptimizeForSize: return 1 << 13; 1865 case Attribute::StackProtect: return 1 << 14; 1866 case Attribute::StackProtectReq: return 1 << 15; 1867 case Attribute::Alignment: return 31 << 16; 1868 case Attribute::NoCapture: return 1 << 21; 1869 case Attribute::NoRedZone: return 1 << 22; 1870 case Attribute::NoImplicitFloat: return 1 << 23; 1871 case Attribute::Naked: return 1 << 24; 1872 case Attribute::InlineHint: return 1 << 25; 1873 case Attribute::StackAlignment: return 7 << 26; 1874 case Attribute::ReturnsTwice: return 1 << 29; 1875 case Attribute::UWTable: return 1 << 30; 1876 case Attribute::NonLazyBind: return 1U << 31; 1877 case Attribute::SanitizeAddress: return 1ULL << 32; 1878 case Attribute::MinSize: return 1ULL << 33; 1879 case Attribute::NoDuplicate: return 1ULL << 34; 1880 case Attribute::StackProtectStrong: return 1ULL << 35; 1881 case Attribute::SanitizeThread: return 1ULL << 36; 1882 case Attribute::SanitizeMemory: return 1ULL << 37; 1883 case Attribute::NoBuiltin: return 1ULL << 38; 1884 case Attribute::Returned: return 1ULL << 39; 1885 case Attribute::Cold: return 1ULL << 40; 1886 case Attribute::Builtin: return 1ULL << 41; 1887 case Attribute::OptimizeNone: return 1ULL << 42; 1888 case Attribute::InAlloca: return 1ULL << 43; 1889 case Attribute::NonNull: return 1ULL << 44; 1890 case Attribute::JumpTable: return 1ULL << 45; 1891 case Attribute::Convergent: return 1ULL << 46; 1892 case Attribute::SafeStack: return 1ULL << 47; 1893 case Attribute::NoRecurse: return 1ULL << 48; 1894 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1895 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1896 case Attribute::SwiftSelf: return 1ULL << 51; 1897 case Attribute::SwiftError: return 1ULL << 52; 1898 case Attribute::WriteOnly: return 1ULL << 53; 1899 case Attribute::Speculatable: return 1ULL << 54; 1900 case Attribute::StrictFP: return 1ULL << 55; 1901 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1902 case Attribute::NoCfCheck: return 1ULL << 57; 1903 case Attribute::OptForFuzzing: return 1ULL << 58; 1904 case Attribute::ShadowCallStack: return 1ULL << 59; 1905 case Attribute::SpeculativeLoadHardening: 1906 return 1ULL << 60; 1907 case Attribute::ImmArg: 1908 return 1ULL << 61; 1909 case Attribute::WillReturn: 1910 return 1ULL << 62; 1911 case Attribute::NoFree: 1912 return 1ULL << 63; 1913 default: 1914 // Other attributes are not supported in the raw format, 1915 // as we ran out of space. 1916 return 0; 1917 } 1918 llvm_unreachable("Unsupported attribute type"); 1919 } 1920 1921 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1922 if (!Val) return; 1923 1924 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1925 I = Attribute::AttrKind(I + 1)) { 1926 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1927 if (I == Attribute::Alignment) 1928 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1929 else if (I == Attribute::StackAlignment) 1930 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1931 else if (Attribute::isTypeAttrKind(I)) 1932 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1933 else 1934 B.addAttribute(I); 1935 } 1936 } 1937 } 1938 1939 /// This fills an AttrBuilder object with the LLVM attributes that have 1940 /// been decoded from the given integer. This function must stay in sync with 1941 /// 'encodeLLVMAttributesForBitcode'. 1942 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1943 uint64_t EncodedAttrs, 1944 uint64_t AttrIdx) { 1945 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1946 // the bits above 31 down by 11 bits. 1947 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1948 assert((!Alignment || isPowerOf2_32(Alignment)) && 1949 "Alignment must be a power of two."); 1950 1951 if (Alignment) 1952 B.addAlignmentAttr(Alignment); 1953 1954 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1955 (EncodedAttrs & 0xffff); 1956 1957 if (AttrIdx == AttributeList::FunctionIndex) { 1958 // Upgrade old memory attributes. 1959 MemoryEffects ME = MemoryEffects::unknown(); 1960 if (Attrs & (1ULL << 9)) { 1961 // ReadNone 1962 Attrs &= ~(1ULL << 9); 1963 ME &= MemoryEffects::none(); 1964 } 1965 if (Attrs & (1ULL << 10)) { 1966 // ReadOnly 1967 Attrs &= ~(1ULL << 10); 1968 ME &= MemoryEffects::readOnly(); 1969 } 1970 if (Attrs & (1ULL << 49)) { 1971 // InaccessibleMemOnly 1972 Attrs &= ~(1ULL << 49); 1973 ME &= MemoryEffects::inaccessibleMemOnly(); 1974 } 1975 if (Attrs & (1ULL << 50)) { 1976 // InaccessibleMemOrArgMemOnly 1977 Attrs &= ~(1ULL << 50); 1978 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1979 } 1980 if (Attrs & (1ULL << 53)) { 1981 // WriteOnly 1982 Attrs &= ~(1ULL << 53); 1983 ME &= MemoryEffects::writeOnly(); 1984 } 1985 if (ME != MemoryEffects::unknown()) 1986 B.addMemoryAttr(ME); 1987 } 1988 1989 addRawAttributeValue(B, Attrs); 1990 } 1991 1992 Error BitcodeReader::parseAttributeBlock() { 1993 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1994 return Err; 1995 1996 if (!MAttributes.empty()) 1997 return error("Invalid multiple blocks"); 1998 1999 SmallVector<uint64_t, 64> Record; 2000 2001 SmallVector<AttributeList, 8> Attrs; 2002 2003 // Read all the records. 2004 while (true) { 2005 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2006 if (!MaybeEntry) 2007 return MaybeEntry.takeError(); 2008 BitstreamEntry Entry = MaybeEntry.get(); 2009 2010 switch (Entry.Kind) { 2011 case BitstreamEntry::SubBlock: // Handled for us already. 2012 case BitstreamEntry::Error: 2013 return error("Malformed block"); 2014 case BitstreamEntry::EndBlock: 2015 return Error::success(); 2016 case BitstreamEntry::Record: 2017 // The interesting case. 2018 break; 2019 } 2020 2021 // Read a record. 2022 Record.clear(); 2023 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2024 if (!MaybeRecord) 2025 return MaybeRecord.takeError(); 2026 switch (MaybeRecord.get()) { 2027 default: // Default behavior: ignore. 2028 break; 2029 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 2030 // Deprecated, but still needed to read old bitcode files. 2031 if (Record.size() & 1) 2032 return error("Invalid parameter attribute record"); 2033 2034 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2035 AttrBuilder B(Context); 2036 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2037 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2038 } 2039 2040 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2041 Attrs.clear(); 2042 break; 2043 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2044 for (uint64_t Val : Record) 2045 Attrs.push_back(MAttributeGroups[Val]); 2046 2047 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2048 Attrs.clear(); 2049 break; 2050 } 2051 } 2052 } 2053 2054 // Returns Attribute::None on unrecognized codes. 2055 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2056 switch (Code) { 2057 default: 2058 return Attribute::None; 2059 case bitc::ATTR_KIND_ALIGNMENT: 2060 return Attribute::Alignment; 2061 case bitc::ATTR_KIND_ALWAYS_INLINE: 2062 return Attribute::AlwaysInline; 2063 case bitc::ATTR_KIND_BUILTIN: 2064 return Attribute::Builtin; 2065 case bitc::ATTR_KIND_BY_VAL: 2066 return Attribute::ByVal; 2067 case bitc::ATTR_KIND_IN_ALLOCA: 2068 return Attribute::InAlloca; 2069 case bitc::ATTR_KIND_COLD: 2070 return Attribute::Cold; 2071 case bitc::ATTR_KIND_CONVERGENT: 2072 return Attribute::Convergent; 2073 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2074 return Attribute::DisableSanitizerInstrumentation; 2075 case bitc::ATTR_KIND_ELEMENTTYPE: 2076 return Attribute::ElementType; 2077 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2078 return Attribute::FnRetThunkExtern; 2079 case bitc::ATTR_KIND_INLINE_HINT: 2080 return Attribute::InlineHint; 2081 case bitc::ATTR_KIND_IN_REG: 2082 return Attribute::InReg; 2083 case bitc::ATTR_KIND_JUMP_TABLE: 2084 return Attribute::JumpTable; 2085 case bitc::ATTR_KIND_MEMORY: 2086 return Attribute::Memory; 2087 case bitc::ATTR_KIND_NOFPCLASS: 2088 return Attribute::NoFPClass; 2089 case bitc::ATTR_KIND_MIN_SIZE: 2090 return Attribute::MinSize; 2091 case bitc::ATTR_KIND_NAKED: 2092 return Attribute::Naked; 2093 case bitc::ATTR_KIND_NEST: 2094 return Attribute::Nest; 2095 case bitc::ATTR_KIND_NO_ALIAS: 2096 return Attribute::NoAlias; 2097 case bitc::ATTR_KIND_NO_BUILTIN: 2098 return Attribute::NoBuiltin; 2099 case bitc::ATTR_KIND_NO_CALLBACK: 2100 return Attribute::NoCallback; 2101 case bitc::ATTR_KIND_NO_CAPTURE: 2102 return Attribute::NoCapture; 2103 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE: 2104 return Attribute::NoDivergenceSource; 2105 case bitc::ATTR_KIND_NO_DUPLICATE: 2106 return Attribute::NoDuplicate; 2107 case bitc::ATTR_KIND_NOFREE: 2108 return Attribute::NoFree; 2109 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2110 return Attribute::NoImplicitFloat; 2111 case bitc::ATTR_KIND_NO_INLINE: 2112 return Attribute::NoInline; 2113 case bitc::ATTR_KIND_NO_RECURSE: 2114 return Attribute::NoRecurse; 2115 case bitc::ATTR_KIND_NO_MERGE: 2116 return Attribute::NoMerge; 2117 case bitc::ATTR_KIND_NON_LAZY_BIND: 2118 return Attribute::NonLazyBind; 2119 case bitc::ATTR_KIND_NON_NULL: 2120 return Attribute::NonNull; 2121 case bitc::ATTR_KIND_DEREFERENCEABLE: 2122 return Attribute::Dereferenceable; 2123 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2124 return Attribute::DereferenceableOrNull; 2125 case bitc::ATTR_KIND_ALLOC_ALIGN: 2126 return Attribute::AllocAlign; 2127 case bitc::ATTR_KIND_ALLOC_KIND: 2128 return Attribute::AllocKind; 2129 case bitc::ATTR_KIND_ALLOC_SIZE: 2130 return Attribute::AllocSize; 2131 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2132 return Attribute::AllocatedPointer; 2133 case bitc::ATTR_KIND_NO_RED_ZONE: 2134 return Attribute::NoRedZone; 2135 case bitc::ATTR_KIND_NO_RETURN: 2136 return Attribute::NoReturn; 2137 case bitc::ATTR_KIND_NOSYNC: 2138 return Attribute::NoSync; 2139 case bitc::ATTR_KIND_NOCF_CHECK: 2140 return Attribute::NoCfCheck; 2141 case bitc::ATTR_KIND_NO_PROFILE: 2142 return Attribute::NoProfile; 2143 case bitc::ATTR_KIND_SKIP_PROFILE: 2144 return Attribute::SkipProfile; 2145 case bitc::ATTR_KIND_NO_UNWIND: 2146 return Attribute::NoUnwind; 2147 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2148 return Attribute::NoSanitizeBounds; 2149 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2150 return Attribute::NoSanitizeCoverage; 2151 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2152 return Attribute::NullPointerIsValid; 2153 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2154 return Attribute::OptimizeForDebugging; 2155 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2156 return Attribute::OptForFuzzing; 2157 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2158 return Attribute::OptimizeForSize; 2159 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2160 return Attribute::OptimizeNone; 2161 case bitc::ATTR_KIND_READ_NONE: 2162 return Attribute::ReadNone; 2163 case bitc::ATTR_KIND_READ_ONLY: 2164 return Attribute::ReadOnly; 2165 case bitc::ATTR_KIND_RETURNED: 2166 return Attribute::Returned; 2167 case bitc::ATTR_KIND_RETURNS_TWICE: 2168 return Attribute::ReturnsTwice; 2169 case bitc::ATTR_KIND_S_EXT: 2170 return Attribute::SExt; 2171 case bitc::ATTR_KIND_SPECULATABLE: 2172 return Attribute::Speculatable; 2173 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2174 return Attribute::StackAlignment; 2175 case bitc::ATTR_KIND_STACK_PROTECT: 2176 return Attribute::StackProtect; 2177 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2178 return Attribute::StackProtectReq; 2179 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2180 return Attribute::StackProtectStrong; 2181 case bitc::ATTR_KIND_SAFESTACK: 2182 return Attribute::SafeStack; 2183 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2184 return Attribute::ShadowCallStack; 2185 case bitc::ATTR_KIND_STRICT_FP: 2186 return Attribute::StrictFP; 2187 case bitc::ATTR_KIND_STRUCT_RET: 2188 return Attribute::StructRet; 2189 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2190 return Attribute::SanitizeAddress; 2191 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2192 return Attribute::SanitizeHWAddress; 2193 case bitc::ATTR_KIND_SANITIZE_THREAD: 2194 return Attribute::SanitizeThread; 2195 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2196 return Attribute::SanitizeMemory; 2197 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2198 return Attribute::SanitizeNumericalStability; 2199 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2200 return Attribute::SanitizeRealtime; 2201 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING: 2202 return Attribute::SanitizeRealtimeBlocking; 2203 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2204 return Attribute::SpeculativeLoadHardening; 2205 case bitc::ATTR_KIND_SWIFT_ERROR: 2206 return Attribute::SwiftError; 2207 case bitc::ATTR_KIND_SWIFT_SELF: 2208 return Attribute::SwiftSelf; 2209 case bitc::ATTR_KIND_SWIFT_ASYNC: 2210 return Attribute::SwiftAsync; 2211 case bitc::ATTR_KIND_UW_TABLE: 2212 return Attribute::UWTable; 2213 case bitc::ATTR_KIND_VSCALE_RANGE: 2214 return Attribute::VScaleRange; 2215 case bitc::ATTR_KIND_WILLRETURN: 2216 return Attribute::WillReturn; 2217 case bitc::ATTR_KIND_WRITEONLY: 2218 return Attribute::WriteOnly; 2219 case bitc::ATTR_KIND_Z_EXT: 2220 return Attribute::ZExt; 2221 case bitc::ATTR_KIND_IMMARG: 2222 return Attribute::ImmArg; 2223 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2224 return Attribute::SanitizeMemTag; 2225 case bitc::ATTR_KIND_PREALLOCATED: 2226 return Attribute::Preallocated; 2227 case bitc::ATTR_KIND_NOUNDEF: 2228 return Attribute::NoUndef; 2229 case bitc::ATTR_KIND_BYREF: 2230 return Attribute::ByRef; 2231 case bitc::ATTR_KIND_MUSTPROGRESS: 2232 return Attribute::MustProgress; 2233 case bitc::ATTR_KIND_HOT: 2234 return Attribute::Hot; 2235 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2236 return Attribute::PresplitCoroutine; 2237 case bitc::ATTR_KIND_WRITABLE: 2238 return Attribute::Writable; 2239 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2240 return Attribute::CoroDestroyOnlyWhenComplete; 2241 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2242 return Attribute::DeadOnUnwind; 2243 case bitc::ATTR_KIND_RANGE: 2244 return Attribute::Range; 2245 case bitc::ATTR_KIND_INITIALIZES: 2246 return Attribute::Initializes; 2247 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2248 return Attribute::CoroElideSafe; 2249 case bitc::ATTR_KIND_NO_EXT: 2250 return Attribute::NoExt; 2251 } 2252 } 2253 2254 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2255 MaybeAlign &Alignment) { 2256 // Note: Alignment in bitcode files is incremented by 1, so that zero 2257 // can be used for default alignment. 2258 if (Exponent > Value::MaxAlignmentExponent + 1) 2259 return error("Invalid alignment value"); 2260 Alignment = decodeMaybeAlign(Exponent); 2261 return Error::success(); 2262 } 2263 2264 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2265 *Kind = getAttrFromCode(Code); 2266 if (*Kind == Attribute::None) 2267 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2268 return Error::success(); 2269 } 2270 2271 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2272 switch (EncodedKind) { 2273 case bitc::ATTR_KIND_READ_NONE: 2274 ME &= MemoryEffects::none(); 2275 return true; 2276 case bitc::ATTR_KIND_READ_ONLY: 2277 ME &= MemoryEffects::readOnly(); 2278 return true; 2279 case bitc::ATTR_KIND_WRITEONLY: 2280 ME &= MemoryEffects::writeOnly(); 2281 return true; 2282 case bitc::ATTR_KIND_ARGMEMONLY: 2283 ME &= MemoryEffects::argMemOnly(); 2284 return true; 2285 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2286 ME &= MemoryEffects::inaccessibleMemOnly(); 2287 return true; 2288 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2289 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2290 return true; 2291 default: 2292 return false; 2293 } 2294 } 2295 2296 Error BitcodeReader::parseAttributeGroupBlock() { 2297 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2298 return Err; 2299 2300 if (!MAttributeGroups.empty()) 2301 return error("Invalid multiple blocks"); 2302 2303 SmallVector<uint64_t, 64> Record; 2304 2305 // Read all the records. 2306 while (true) { 2307 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2308 if (!MaybeEntry) 2309 return MaybeEntry.takeError(); 2310 BitstreamEntry Entry = MaybeEntry.get(); 2311 2312 switch (Entry.Kind) { 2313 case BitstreamEntry::SubBlock: // Handled for us already. 2314 case BitstreamEntry::Error: 2315 return error("Malformed block"); 2316 case BitstreamEntry::EndBlock: 2317 return Error::success(); 2318 case BitstreamEntry::Record: 2319 // The interesting case. 2320 break; 2321 } 2322 2323 // Read a record. 2324 Record.clear(); 2325 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2326 if (!MaybeRecord) 2327 return MaybeRecord.takeError(); 2328 switch (MaybeRecord.get()) { 2329 default: // Default behavior: ignore. 2330 break; 2331 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2332 if (Record.size() < 3) 2333 return error("Invalid grp record"); 2334 2335 uint64_t GrpID = Record[0]; 2336 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2337 2338 AttrBuilder B(Context); 2339 MemoryEffects ME = MemoryEffects::unknown(); 2340 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2341 if (Record[i] == 0) { // Enum attribute 2342 Attribute::AttrKind Kind; 2343 uint64_t EncodedKind = Record[++i]; 2344 if (Idx == AttributeList::FunctionIndex && 2345 upgradeOldMemoryAttribute(ME, EncodedKind)) 2346 continue; 2347 2348 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2349 return Err; 2350 2351 // Upgrade old-style byval attribute to one with a type, even if it's 2352 // nullptr. We will have to insert the real type when we associate 2353 // this AttributeList with a function. 2354 if (Kind == Attribute::ByVal) 2355 B.addByValAttr(nullptr); 2356 else if (Kind == Attribute::StructRet) 2357 B.addStructRetAttr(nullptr); 2358 else if (Kind == Attribute::InAlloca) 2359 B.addInAllocaAttr(nullptr); 2360 else if (Kind == Attribute::UWTable) 2361 B.addUWTableAttr(UWTableKind::Default); 2362 else if (Attribute::isEnumAttrKind(Kind)) 2363 B.addAttribute(Kind); 2364 else 2365 return error("Not an enum attribute"); 2366 } else if (Record[i] == 1) { // Integer attribute 2367 Attribute::AttrKind Kind; 2368 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2369 return Err; 2370 if (!Attribute::isIntAttrKind(Kind)) 2371 return error("Not an int attribute"); 2372 if (Kind == Attribute::Alignment) 2373 B.addAlignmentAttr(Record[++i]); 2374 else if (Kind == Attribute::StackAlignment) 2375 B.addStackAlignmentAttr(Record[++i]); 2376 else if (Kind == Attribute::Dereferenceable) 2377 B.addDereferenceableAttr(Record[++i]); 2378 else if (Kind == Attribute::DereferenceableOrNull) 2379 B.addDereferenceableOrNullAttr(Record[++i]); 2380 else if (Kind == Attribute::AllocSize) 2381 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2382 else if (Kind == Attribute::VScaleRange) 2383 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2384 else if (Kind == Attribute::UWTable) 2385 B.addUWTableAttr(UWTableKind(Record[++i])); 2386 else if (Kind == Attribute::AllocKind) 2387 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2388 else if (Kind == Attribute::Memory) 2389 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2390 else if (Kind == Attribute::NoFPClass) 2391 B.addNoFPClassAttr( 2392 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2393 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2394 bool HasValue = (Record[i++] == 4); 2395 SmallString<64> KindStr; 2396 SmallString<64> ValStr; 2397 2398 while (Record[i] != 0 && i != e) 2399 KindStr += Record[i++]; 2400 assert(Record[i] == 0 && "Kind string not null terminated"); 2401 2402 if (HasValue) { 2403 // Has a value associated with it. 2404 ++i; // Skip the '0' that terminates the "kind" string. 2405 while (Record[i] != 0 && i != e) 2406 ValStr += Record[i++]; 2407 assert(Record[i] == 0 && "Value string not null terminated"); 2408 } 2409 2410 B.addAttribute(KindStr.str(), ValStr.str()); 2411 } else if (Record[i] == 5 || Record[i] == 6) { 2412 bool HasType = Record[i] == 6; 2413 Attribute::AttrKind Kind; 2414 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2415 return Err; 2416 if (!Attribute::isTypeAttrKind(Kind)) 2417 return error("Not a type attribute"); 2418 2419 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2420 } else if (Record[i] == 7) { 2421 Attribute::AttrKind Kind; 2422 2423 i++; 2424 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2425 return Err; 2426 if (!Attribute::isConstantRangeAttrKind(Kind)) 2427 return error("Not a ConstantRange attribute"); 2428 2429 Expected<ConstantRange> MaybeCR = 2430 readBitWidthAndConstantRange(Record, i); 2431 if (!MaybeCR) 2432 return MaybeCR.takeError(); 2433 i--; 2434 2435 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2436 } else if (Record[i] == 8) { 2437 Attribute::AttrKind Kind; 2438 2439 i++; 2440 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2441 return Err; 2442 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2443 return error("Not a constant range list attribute"); 2444 2445 SmallVector<ConstantRange, 2> Val; 2446 if (i + 2 > e) 2447 return error("Too few records for constant range list"); 2448 unsigned RangeSize = Record[i++]; 2449 unsigned BitWidth = Record[i++]; 2450 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2451 Expected<ConstantRange> MaybeCR = 2452 readConstantRange(Record, i, BitWidth); 2453 if (!MaybeCR) 2454 return MaybeCR.takeError(); 2455 Val.push_back(MaybeCR.get()); 2456 } 2457 i--; 2458 2459 if (!ConstantRangeList::isOrderedRanges(Val)) 2460 return error("Invalid (unordered or overlapping) range list"); 2461 B.addConstantRangeListAttr(Kind, Val); 2462 } else { 2463 return error("Invalid attribute group entry"); 2464 } 2465 } 2466 2467 if (ME != MemoryEffects::unknown()) 2468 B.addMemoryAttr(ME); 2469 2470 UpgradeAttributes(B); 2471 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2472 break; 2473 } 2474 } 2475 } 2476 } 2477 2478 Error BitcodeReader::parseTypeTable() { 2479 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2480 return Err; 2481 2482 return parseTypeTableBody(); 2483 } 2484 2485 Error BitcodeReader::parseTypeTableBody() { 2486 if (!TypeList.empty()) 2487 return error("Invalid multiple blocks"); 2488 2489 SmallVector<uint64_t, 64> Record; 2490 unsigned NumRecords = 0; 2491 2492 SmallString<64> TypeName; 2493 2494 // Read all the records for this type table. 2495 while (true) { 2496 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2497 if (!MaybeEntry) 2498 return MaybeEntry.takeError(); 2499 BitstreamEntry Entry = MaybeEntry.get(); 2500 2501 switch (Entry.Kind) { 2502 case BitstreamEntry::SubBlock: // Handled for us already. 2503 case BitstreamEntry::Error: 2504 return error("Malformed block"); 2505 case BitstreamEntry::EndBlock: 2506 if (NumRecords != TypeList.size()) 2507 return error("Malformed block"); 2508 return Error::success(); 2509 case BitstreamEntry::Record: 2510 // The interesting case. 2511 break; 2512 } 2513 2514 // Read a record. 2515 Record.clear(); 2516 Type *ResultTy = nullptr; 2517 SmallVector<unsigned> ContainedIDs; 2518 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2519 if (!MaybeRecord) 2520 return MaybeRecord.takeError(); 2521 switch (MaybeRecord.get()) { 2522 default: 2523 return error("Invalid value"); 2524 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2525 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2526 // type list. This allows us to reserve space. 2527 if (Record.empty()) 2528 return error("Invalid numentry record"); 2529 TypeList.resize(Record[0]); 2530 continue; 2531 case bitc::TYPE_CODE_VOID: // VOID 2532 ResultTy = Type::getVoidTy(Context); 2533 break; 2534 case bitc::TYPE_CODE_HALF: // HALF 2535 ResultTy = Type::getHalfTy(Context); 2536 break; 2537 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2538 ResultTy = Type::getBFloatTy(Context); 2539 break; 2540 case bitc::TYPE_CODE_FLOAT: // FLOAT 2541 ResultTy = Type::getFloatTy(Context); 2542 break; 2543 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2544 ResultTy = Type::getDoubleTy(Context); 2545 break; 2546 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2547 ResultTy = Type::getX86_FP80Ty(Context); 2548 break; 2549 case bitc::TYPE_CODE_FP128: // FP128 2550 ResultTy = Type::getFP128Ty(Context); 2551 break; 2552 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2553 ResultTy = Type::getPPC_FP128Ty(Context); 2554 break; 2555 case bitc::TYPE_CODE_LABEL: // LABEL 2556 ResultTy = Type::getLabelTy(Context); 2557 break; 2558 case bitc::TYPE_CODE_METADATA: // METADATA 2559 ResultTy = Type::getMetadataTy(Context); 2560 break; 2561 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2562 // Deprecated: decodes as <1 x i64> 2563 ResultTy = 2564 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2565 break; 2566 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2567 ResultTy = Type::getX86_AMXTy(Context); 2568 break; 2569 case bitc::TYPE_CODE_TOKEN: // TOKEN 2570 ResultTy = Type::getTokenTy(Context); 2571 break; 2572 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2573 if (Record.empty()) 2574 return error("Invalid integer record"); 2575 2576 uint64_t NumBits = Record[0]; 2577 if (NumBits < IntegerType::MIN_INT_BITS || 2578 NumBits > IntegerType::MAX_INT_BITS) 2579 return error("Bitwidth for integer type out of range"); 2580 ResultTy = IntegerType::get(Context, NumBits); 2581 break; 2582 } 2583 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2584 // [pointee type, address space] 2585 if (Record.empty()) 2586 return error("Invalid pointer record"); 2587 unsigned AddressSpace = 0; 2588 if (Record.size() == 2) 2589 AddressSpace = Record[1]; 2590 ResultTy = getTypeByID(Record[0]); 2591 if (!ResultTy || 2592 !PointerType::isValidElementType(ResultTy)) 2593 return error("Invalid type"); 2594 ContainedIDs.push_back(Record[0]); 2595 ResultTy = PointerType::get(ResultTy, AddressSpace); 2596 break; 2597 } 2598 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2599 if (Record.size() != 1) 2600 return error("Invalid opaque pointer record"); 2601 unsigned AddressSpace = Record[0]; 2602 ResultTy = PointerType::get(Context, AddressSpace); 2603 break; 2604 } 2605 case bitc::TYPE_CODE_FUNCTION_OLD: { 2606 // Deprecated, but still needed to read old bitcode files. 2607 // FUNCTION: [vararg, attrid, retty, paramty x N] 2608 if (Record.size() < 3) 2609 return error("Invalid function record"); 2610 SmallVector<Type*, 8> ArgTys; 2611 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2612 if (Type *T = getTypeByID(Record[i])) 2613 ArgTys.push_back(T); 2614 else 2615 break; 2616 } 2617 2618 ResultTy = getTypeByID(Record[2]); 2619 if (!ResultTy || ArgTys.size() < Record.size()-3) 2620 return error("Invalid type"); 2621 2622 ContainedIDs.append(Record.begin() + 2, Record.end()); 2623 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2624 break; 2625 } 2626 case bitc::TYPE_CODE_FUNCTION: { 2627 // FUNCTION: [vararg, retty, paramty x N] 2628 if (Record.size() < 2) 2629 return error("Invalid function record"); 2630 SmallVector<Type*, 8> ArgTys; 2631 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2632 if (Type *T = getTypeByID(Record[i])) { 2633 if (!FunctionType::isValidArgumentType(T)) 2634 return error("Invalid function argument type"); 2635 ArgTys.push_back(T); 2636 } 2637 else 2638 break; 2639 } 2640 2641 ResultTy = getTypeByID(Record[1]); 2642 if (!ResultTy || ArgTys.size() < Record.size()-2) 2643 return error("Invalid type"); 2644 2645 ContainedIDs.append(Record.begin() + 1, Record.end()); 2646 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2647 break; 2648 } 2649 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2650 if (Record.empty()) 2651 return error("Invalid anon struct record"); 2652 SmallVector<Type*, 8> EltTys; 2653 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2654 if (Type *T = getTypeByID(Record[i])) 2655 EltTys.push_back(T); 2656 else 2657 break; 2658 } 2659 if (EltTys.size() != Record.size()-1) 2660 return error("Invalid type"); 2661 ContainedIDs.append(Record.begin() + 1, Record.end()); 2662 ResultTy = StructType::get(Context, EltTys, Record[0]); 2663 break; 2664 } 2665 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2666 if (convertToString(Record, 0, TypeName)) 2667 return error("Invalid struct name record"); 2668 continue; 2669 2670 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2671 if (Record.empty()) 2672 return error("Invalid named struct record"); 2673 2674 if (NumRecords >= TypeList.size()) 2675 return error("Invalid TYPE table"); 2676 2677 // Check to see if this was forward referenced, if so fill in the temp. 2678 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2679 if (Res) { 2680 Res->setName(TypeName); 2681 TypeList[NumRecords] = nullptr; 2682 } else // Otherwise, create a new struct. 2683 Res = createIdentifiedStructType(Context, TypeName); 2684 TypeName.clear(); 2685 2686 SmallVector<Type*, 8> EltTys; 2687 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2688 if (Type *T = getTypeByID(Record[i])) 2689 EltTys.push_back(T); 2690 else 2691 break; 2692 } 2693 if (EltTys.size() != Record.size()-1) 2694 return error("Invalid named struct record"); 2695 if (auto E = Res->setBodyOrError(EltTys, Record[0])) 2696 return E; 2697 ContainedIDs.append(Record.begin() + 1, Record.end()); 2698 ResultTy = Res; 2699 break; 2700 } 2701 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2702 if (Record.size() != 1) 2703 return error("Invalid opaque type record"); 2704 2705 if (NumRecords >= TypeList.size()) 2706 return error("Invalid TYPE table"); 2707 2708 // Check to see if this was forward referenced, if so fill in the temp. 2709 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2710 if (Res) { 2711 Res->setName(TypeName); 2712 TypeList[NumRecords] = nullptr; 2713 } else // Otherwise, create a new struct with no body. 2714 Res = createIdentifiedStructType(Context, TypeName); 2715 TypeName.clear(); 2716 ResultTy = Res; 2717 break; 2718 } 2719 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2720 if (Record.size() < 1) 2721 return error("Invalid target extension type record"); 2722 2723 if (NumRecords >= TypeList.size()) 2724 return error("Invalid TYPE table"); 2725 2726 if (Record[0] >= Record.size()) 2727 return error("Too many type parameters"); 2728 2729 unsigned NumTys = Record[0]; 2730 SmallVector<Type *, 4> TypeParams; 2731 SmallVector<unsigned, 8> IntParams; 2732 for (unsigned i = 0; i < NumTys; i++) { 2733 if (Type *T = getTypeByID(Record[i + 1])) 2734 TypeParams.push_back(T); 2735 else 2736 return error("Invalid type"); 2737 } 2738 2739 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2740 if (Record[i] > UINT_MAX) 2741 return error("Integer parameter too large"); 2742 IntParams.push_back(Record[i]); 2743 } 2744 auto TTy = 2745 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2746 if (auto E = TTy.takeError()) 2747 return E; 2748 ResultTy = *TTy; 2749 TypeName.clear(); 2750 break; 2751 } 2752 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2753 if (Record.size() < 2) 2754 return error("Invalid array type record"); 2755 ResultTy = getTypeByID(Record[1]); 2756 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2757 return error("Invalid type"); 2758 ContainedIDs.push_back(Record[1]); 2759 ResultTy = ArrayType::get(ResultTy, Record[0]); 2760 break; 2761 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2762 // [numelts, eltty, scalable] 2763 if (Record.size() < 2) 2764 return error("Invalid vector type record"); 2765 if (Record[0] == 0) 2766 return error("Invalid vector length"); 2767 ResultTy = getTypeByID(Record[1]); 2768 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2769 return error("Invalid type"); 2770 bool Scalable = Record.size() > 2 ? Record[2] : false; 2771 ContainedIDs.push_back(Record[1]); 2772 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2773 break; 2774 } 2775 2776 if (NumRecords >= TypeList.size()) 2777 return error("Invalid TYPE table"); 2778 if (TypeList[NumRecords]) 2779 return error( 2780 "Invalid TYPE table: Only named structs can be forward referenced"); 2781 assert(ResultTy && "Didn't read a type?"); 2782 TypeList[NumRecords] = ResultTy; 2783 if (!ContainedIDs.empty()) 2784 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2785 ++NumRecords; 2786 } 2787 } 2788 2789 Error BitcodeReader::parseOperandBundleTags() { 2790 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2791 return Err; 2792 2793 if (!BundleTags.empty()) 2794 return error("Invalid multiple blocks"); 2795 2796 SmallVector<uint64_t, 64> Record; 2797 2798 while (true) { 2799 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2800 if (!MaybeEntry) 2801 return MaybeEntry.takeError(); 2802 BitstreamEntry Entry = MaybeEntry.get(); 2803 2804 switch (Entry.Kind) { 2805 case BitstreamEntry::SubBlock: // Handled for us already. 2806 case BitstreamEntry::Error: 2807 return error("Malformed block"); 2808 case BitstreamEntry::EndBlock: 2809 return Error::success(); 2810 case BitstreamEntry::Record: 2811 // The interesting case. 2812 break; 2813 } 2814 2815 // Tags are implicitly mapped to integers by their order. 2816 2817 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2818 if (!MaybeRecord) 2819 return MaybeRecord.takeError(); 2820 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2821 return error("Invalid operand bundle record"); 2822 2823 // OPERAND_BUNDLE_TAG: [strchr x N] 2824 BundleTags.emplace_back(); 2825 if (convertToString(Record, 0, BundleTags.back())) 2826 return error("Invalid operand bundle record"); 2827 Record.clear(); 2828 } 2829 } 2830 2831 Error BitcodeReader::parseSyncScopeNames() { 2832 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2833 return Err; 2834 2835 if (!SSIDs.empty()) 2836 return error("Invalid multiple synchronization scope names blocks"); 2837 2838 SmallVector<uint64_t, 64> Record; 2839 while (true) { 2840 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2841 if (!MaybeEntry) 2842 return MaybeEntry.takeError(); 2843 BitstreamEntry Entry = MaybeEntry.get(); 2844 2845 switch (Entry.Kind) { 2846 case BitstreamEntry::SubBlock: // Handled for us already. 2847 case BitstreamEntry::Error: 2848 return error("Malformed block"); 2849 case BitstreamEntry::EndBlock: 2850 if (SSIDs.empty()) 2851 return error("Invalid empty synchronization scope names block"); 2852 return Error::success(); 2853 case BitstreamEntry::Record: 2854 // The interesting case. 2855 break; 2856 } 2857 2858 // Synchronization scope names are implicitly mapped to synchronization 2859 // scope IDs by their order. 2860 2861 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2862 if (!MaybeRecord) 2863 return MaybeRecord.takeError(); 2864 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2865 return error("Invalid sync scope record"); 2866 2867 SmallString<16> SSN; 2868 if (convertToString(Record, 0, SSN)) 2869 return error("Invalid sync scope record"); 2870 2871 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2872 Record.clear(); 2873 } 2874 } 2875 2876 /// Associate a value with its name from the given index in the provided record. 2877 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2878 unsigned NameIndex, Triple &TT) { 2879 SmallString<128> ValueName; 2880 if (convertToString(Record, NameIndex, ValueName)) 2881 return error("Invalid record"); 2882 unsigned ValueID = Record[0]; 2883 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2884 return error("Invalid record"); 2885 Value *V = ValueList[ValueID]; 2886 2887 StringRef NameStr(ValueName.data(), ValueName.size()); 2888 if (NameStr.contains(0)) 2889 return error("Invalid value name"); 2890 V->setName(NameStr); 2891 auto *GO = dyn_cast<GlobalObject>(V); 2892 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2893 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2894 return V; 2895 } 2896 2897 /// Helper to note and return the current location, and jump to the given 2898 /// offset. 2899 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2900 BitstreamCursor &Stream) { 2901 // Save the current parsing location so we can jump back at the end 2902 // of the VST read. 2903 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2904 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2905 return std::move(JumpFailed); 2906 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2907 if (!MaybeEntry) 2908 return MaybeEntry.takeError(); 2909 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2910 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2911 return error("Expected value symbol table subblock"); 2912 return CurrentBit; 2913 } 2914 2915 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2916 Function *F, 2917 ArrayRef<uint64_t> Record) { 2918 // Note that we subtract 1 here because the offset is relative to one word 2919 // before the start of the identification or module block, which was 2920 // historically always the start of the regular bitcode header. 2921 uint64_t FuncWordOffset = Record[1] - 1; 2922 uint64_t FuncBitOffset = FuncWordOffset * 32; 2923 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2924 // Set the LastFunctionBlockBit to point to the last function block. 2925 // Later when parsing is resumed after function materialization, 2926 // we can simply skip that last function block. 2927 if (FuncBitOffset > LastFunctionBlockBit) 2928 LastFunctionBlockBit = FuncBitOffset; 2929 } 2930 2931 /// Read a new-style GlobalValue symbol table. 2932 Error BitcodeReader::parseGlobalValueSymbolTable() { 2933 unsigned FuncBitcodeOffsetDelta = 2934 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2935 2936 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2937 return Err; 2938 2939 SmallVector<uint64_t, 64> Record; 2940 while (true) { 2941 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2942 if (!MaybeEntry) 2943 return MaybeEntry.takeError(); 2944 BitstreamEntry Entry = MaybeEntry.get(); 2945 2946 switch (Entry.Kind) { 2947 case BitstreamEntry::SubBlock: 2948 case BitstreamEntry::Error: 2949 return error("Malformed block"); 2950 case BitstreamEntry::EndBlock: 2951 return Error::success(); 2952 case BitstreamEntry::Record: 2953 break; 2954 } 2955 2956 Record.clear(); 2957 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2958 if (!MaybeRecord) 2959 return MaybeRecord.takeError(); 2960 switch (MaybeRecord.get()) { 2961 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2962 unsigned ValueID = Record[0]; 2963 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2964 return error("Invalid value reference in symbol table"); 2965 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2966 cast<Function>(ValueList[ValueID]), Record); 2967 break; 2968 } 2969 } 2970 } 2971 } 2972 2973 /// Parse the value symbol table at either the current parsing location or 2974 /// at the given bit offset if provided. 2975 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2976 uint64_t CurrentBit; 2977 // Pass in the Offset to distinguish between calling for the module-level 2978 // VST (where we want to jump to the VST offset) and the function-level 2979 // VST (where we don't). 2980 if (Offset > 0) { 2981 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2982 if (!MaybeCurrentBit) 2983 return MaybeCurrentBit.takeError(); 2984 CurrentBit = MaybeCurrentBit.get(); 2985 // If this module uses a string table, read this as a module-level VST. 2986 if (UseStrtab) { 2987 if (Error Err = parseGlobalValueSymbolTable()) 2988 return Err; 2989 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2990 return JumpFailed; 2991 return Error::success(); 2992 } 2993 // Otherwise, the VST will be in a similar format to a function-level VST, 2994 // and will contain symbol names. 2995 } 2996 2997 // Compute the delta between the bitcode indices in the VST (the word offset 2998 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2999 // expected by the lazy reader. The reader's EnterSubBlock expects to have 3000 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 3001 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 3002 // just before entering the VST subblock because: 1) the EnterSubBlock 3003 // changes the AbbrevID width; 2) the VST block is nested within the same 3004 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 3005 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 3006 // jump to the FUNCTION_BLOCK using this offset later, we don't want 3007 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 3008 unsigned FuncBitcodeOffsetDelta = 3009 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 3010 3011 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 3012 return Err; 3013 3014 SmallVector<uint64_t, 64> Record; 3015 3016 Triple TT(TheModule->getTargetTriple()); 3017 3018 // Read all the records for this value table. 3019 SmallString<128> ValueName; 3020 3021 while (true) { 3022 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3023 if (!MaybeEntry) 3024 return MaybeEntry.takeError(); 3025 BitstreamEntry Entry = MaybeEntry.get(); 3026 3027 switch (Entry.Kind) { 3028 case BitstreamEntry::SubBlock: // Handled for us already. 3029 case BitstreamEntry::Error: 3030 return error("Malformed block"); 3031 case BitstreamEntry::EndBlock: 3032 if (Offset > 0) 3033 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3034 return JumpFailed; 3035 return Error::success(); 3036 case BitstreamEntry::Record: 3037 // The interesting case. 3038 break; 3039 } 3040 3041 // Read a record. 3042 Record.clear(); 3043 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3044 if (!MaybeRecord) 3045 return MaybeRecord.takeError(); 3046 switch (MaybeRecord.get()) { 3047 default: // Default behavior: unknown type. 3048 break; 3049 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3050 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3051 if (Error Err = ValOrErr.takeError()) 3052 return Err; 3053 ValOrErr.get(); 3054 break; 3055 } 3056 case bitc::VST_CODE_FNENTRY: { 3057 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3058 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3059 if (Error Err = ValOrErr.takeError()) 3060 return Err; 3061 Value *V = ValOrErr.get(); 3062 3063 // Ignore function offsets emitted for aliases of functions in older 3064 // versions of LLVM. 3065 if (auto *F = dyn_cast<Function>(V)) 3066 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3067 break; 3068 } 3069 case bitc::VST_CODE_BBENTRY: { 3070 if (convertToString(Record, 1, ValueName)) 3071 return error("Invalid bbentry record"); 3072 BasicBlock *BB = getBasicBlock(Record[0]); 3073 if (!BB) 3074 return error("Invalid bbentry record"); 3075 3076 BB->setName(ValueName.str()); 3077 ValueName.clear(); 3078 break; 3079 } 3080 } 3081 } 3082 } 3083 3084 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3085 /// encoding. 3086 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3087 if ((V & 1) == 0) 3088 return V >> 1; 3089 if (V != 1) 3090 return -(V >> 1); 3091 // There is no such thing as -0 with integers. "-0" really means MININT. 3092 return 1ULL << 63; 3093 } 3094 3095 /// Resolve all of the initializers for global values and aliases that we can. 3096 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3097 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3098 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3099 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3100 3101 GlobalInitWorklist.swap(GlobalInits); 3102 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3103 FunctionOperandWorklist.swap(FunctionOperands); 3104 3105 while (!GlobalInitWorklist.empty()) { 3106 unsigned ValID = GlobalInitWorklist.back().second; 3107 if (ValID >= ValueList.size()) { 3108 // Not ready to resolve this yet, it requires something later in the file. 3109 GlobalInits.push_back(GlobalInitWorklist.back()); 3110 } else { 3111 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3112 if (!MaybeC) 3113 return MaybeC.takeError(); 3114 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3115 } 3116 GlobalInitWorklist.pop_back(); 3117 } 3118 3119 while (!IndirectSymbolInitWorklist.empty()) { 3120 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3121 if (ValID >= ValueList.size()) { 3122 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3123 } else { 3124 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3125 if (!MaybeC) 3126 return MaybeC.takeError(); 3127 Constant *C = MaybeC.get(); 3128 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3129 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3130 if (C->getType() != GV->getType()) 3131 return error("Alias and aliasee types don't match"); 3132 GA->setAliasee(C); 3133 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3134 GI->setResolver(C); 3135 } else { 3136 return error("Expected an alias or an ifunc"); 3137 } 3138 } 3139 IndirectSymbolInitWorklist.pop_back(); 3140 } 3141 3142 while (!FunctionOperandWorklist.empty()) { 3143 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3144 if (Info.PersonalityFn) { 3145 unsigned ValID = Info.PersonalityFn - 1; 3146 if (ValID < ValueList.size()) { 3147 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3148 if (!MaybeC) 3149 return MaybeC.takeError(); 3150 Info.F->setPersonalityFn(MaybeC.get()); 3151 Info.PersonalityFn = 0; 3152 } 3153 } 3154 if (Info.Prefix) { 3155 unsigned ValID = Info.Prefix - 1; 3156 if (ValID < ValueList.size()) { 3157 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3158 if (!MaybeC) 3159 return MaybeC.takeError(); 3160 Info.F->setPrefixData(MaybeC.get()); 3161 Info.Prefix = 0; 3162 } 3163 } 3164 if (Info.Prologue) { 3165 unsigned ValID = Info.Prologue - 1; 3166 if (ValID < ValueList.size()) { 3167 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3168 if (!MaybeC) 3169 return MaybeC.takeError(); 3170 Info.F->setPrologueData(MaybeC.get()); 3171 Info.Prologue = 0; 3172 } 3173 } 3174 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3175 FunctionOperands.push_back(Info); 3176 FunctionOperandWorklist.pop_back(); 3177 } 3178 3179 return Error::success(); 3180 } 3181 3182 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3183 SmallVector<uint64_t, 8> Words(Vals.size()); 3184 transform(Vals, Words.begin(), 3185 BitcodeReader::decodeSignRotatedValue); 3186 3187 return APInt(TypeBits, Words); 3188 } 3189 3190 Error BitcodeReader::parseConstants() { 3191 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3192 return Err; 3193 3194 SmallVector<uint64_t, 64> Record; 3195 3196 // Read all the records for this value table. 3197 Type *CurTy = Type::getInt32Ty(Context); 3198 unsigned Int32TyID = getVirtualTypeID(CurTy); 3199 unsigned CurTyID = Int32TyID; 3200 Type *CurElemTy = nullptr; 3201 unsigned NextCstNo = ValueList.size(); 3202 3203 while (true) { 3204 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3205 if (!MaybeEntry) 3206 return MaybeEntry.takeError(); 3207 BitstreamEntry Entry = MaybeEntry.get(); 3208 3209 switch (Entry.Kind) { 3210 case BitstreamEntry::SubBlock: // Handled for us already. 3211 case BitstreamEntry::Error: 3212 return error("Malformed block"); 3213 case BitstreamEntry::EndBlock: 3214 if (NextCstNo != ValueList.size()) 3215 return error("Invalid constant reference"); 3216 return Error::success(); 3217 case BitstreamEntry::Record: 3218 // The interesting case. 3219 break; 3220 } 3221 3222 // Read a record. 3223 Record.clear(); 3224 Type *VoidType = Type::getVoidTy(Context); 3225 Value *V = nullptr; 3226 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3227 if (!MaybeBitCode) 3228 return MaybeBitCode.takeError(); 3229 switch (unsigned BitCode = MaybeBitCode.get()) { 3230 default: // Default behavior: unknown constant 3231 case bitc::CST_CODE_UNDEF: // UNDEF 3232 V = UndefValue::get(CurTy); 3233 break; 3234 case bitc::CST_CODE_POISON: // POISON 3235 V = PoisonValue::get(CurTy); 3236 break; 3237 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3238 if (Record.empty()) 3239 return error("Invalid settype record"); 3240 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3241 return error("Invalid settype record"); 3242 if (TypeList[Record[0]] == VoidType) 3243 return error("Invalid constant type"); 3244 CurTyID = Record[0]; 3245 CurTy = TypeList[CurTyID]; 3246 CurElemTy = getPtrElementTypeByID(CurTyID); 3247 continue; // Skip the ValueList manipulation. 3248 case bitc::CST_CODE_NULL: // NULL 3249 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3250 return error("Invalid type for a constant null value"); 3251 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3252 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3253 return error("Invalid type for a constant null value"); 3254 V = Constant::getNullValue(CurTy); 3255 break; 3256 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3257 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3258 return error("Invalid integer const record"); 3259 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3260 break; 3261 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3262 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3263 return error("Invalid wide integer const record"); 3264 3265 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3266 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3267 V = ConstantInt::get(CurTy, VInt); 3268 break; 3269 } 3270 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3271 if (Record.empty()) 3272 return error("Invalid float const record"); 3273 3274 auto *ScalarTy = CurTy->getScalarType(); 3275 if (ScalarTy->isHalfTy()) 3276 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3277 APInt(16, (uint16_t)Record[0]))); 3278 else if (ScalarTy->isBFloatTy()) 3279 V = ConstantFP::get( 3280 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3281 else if (ScalarTy->isFloatTy()) 3282 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3283 APInt(32, (uint32_t)Record[0]))); 3284 else if (ScalarTy->isDoubleTy()) 3285 V = ConstantFP::get( 3286 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3287 else if (ScalarTy->isX86_FP80Ty()) { 3288 // Bits are not stored the same way as a normal i80 APInt, compensate. 3289 uint64_t Rearrange[2]; 3290 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3291 Rearrange[1] = Record[0] >> 48; 3292 V = ConstantFP::get( 3293 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3294 } else if (ScalarTy->isFP128Ty()) 3295 V = ConstantFP::get(CurTy, 3296 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3297 else if (ScalarTy->isPPC_FP128Ty()) 3298 V = ConstantFP::get( 3299 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3300 else 3301 V = PoisonValue::get(CurTy); 3302 break; 3303 } 3304 3305 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3306 if (Record.empty()) 3307 return error("Invalid aggregate record"); 3308 3309 unsigned Size = Record.size(); 3310 SmallVector<unsigned, 16> Elts; 3311 for (unsigned i = 0; i != Size; ++i) 3312 Elts.push_back(Record[i]); 3313 3314 if (isa<StructType>(CurTy)) { 3315 V = BitcodeConstant::create( 3316 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3317 } else if (isa<ArrayType>(CurTy)) { 3318 V = BitcodeConstant::create(Alloc, CurTy, 3319 BitcodeConstant::ConstantArrayOpcode, Elts); 3320 } else if (isa<VectorType>(CurTy)) { 3321 V = BitcodeConstant::create( 3322 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3323 } else { 3324 V = PoisonValue::get(CurTy); 3325 } 3326 break; 3327 } 3328 case bitc::CST_CODE_STRING: // STRING: [values] 3329 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3330 if (Record.empty()) 3331 return error("Invalid string record"); 3332 3333 SmallString<16> Elts(Record.begin(), Record.end()); 3334 V = ConstantDataArray::getString(Context, Elts, 3335 BitCode == bitc::CST_CODE_CSTRING); 3336 break; 3337 } 3338 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3339 if (Record.empty()) 3340 return error("Invalid data record"); 3341 3342 Type *EltTy; 3343 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3344 EltTy = Array->getElementType(); 3345 else 3346 EltTy = cast<VectorType>(CurTy)->getElementType(); 3347 if (EltTy->isIntegerTy(8)) { 3348 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3349 if (isa<VectorType>(CurTy)) 3350 V = ConstantDataVector::get(Context, Elts); 3351 else 3352 V = ConstantDataArray::get(Context, Elts); 3353 } else if (EltTy->isIntegerTy(16)) { 3354 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3355 if (isa<VectorType>(CurTy)) 3356 V = ConstantDataVector::get(Context, Elts); 3357 else 3358 V = ConstantDataArray::get(Context, Elts); 3359 } else if (EltTy->isIntegerTy(32)) { 3360 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3361 if (isa<VectorType>(CurTy)) 3362 V = ConstantDataVector::get(Context, Elts); 3363 else 3364 V = ConstantDataArray::get(Context, Elts); 3365 } else if (EltTy->isIntegerTy(64)) { 3366 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3367 if (isa<VectorType>(CurTy)) 3368 V = ConstantDataVector::get(Context, Elts); 3369 else 3370 V = ConstantDataArray::get(Context, Elts); 3371 } else if (EltTy->isHalfTy()) { 3372 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3373 if (isa<VectorType>(CurTy)) 3374 V = ConstantDataVector::getFP(EltTy, Elts); 3375 else 3376 V = ConstantDataArray::getFP(EltTy, Elts); 3377 } else if (EltTy->isBFloatTy()) { 3378 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3379 if (isa<VectorType>(CurTy)) 3380 V = ConstantDataVector::getFP(EltTy, Elts); 3381 else 3382 V = ConstantDataArray::getFP(EltTy, Elts); 3383 } else if (EltTy->isFloatTy()) { 3384 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3385 if (isa<VectorType>(CurTy)) 3386 V = ConstantDataVector::getFP(EltTy, Elts); 3387 else 3388 V = ConstantDataArray::getFP(EltTy, Elts); 3389 } else if (EltTy->isDoubleTy()) { 3390 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3391 if (isa<VectorType>(CurTy)) 3392 V = ConstantDataVector::getFP(EltTy, Elts); 3393 else 3394 V = ConstantDataArray::getFP(EltTy, Elts); 3395 } else { 3396 return error("Invalid type for value"); 3397 } 3398 break; 3399 } 3400 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3401 if (Record.size() < 2) 3402 return error("Invalid unary op constexpr record"); 3403 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3404 if (Opc < 0) { 3405 V = PoisonValue::get(CurTy); // Unknown unop. 3406 } else { 3407 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3408 } 3409 break; 3410 } 3411 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3412 if (Record.size() < 3) 3413 return error("Invalid binary op constexpr record"); 3414 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3415 if (Opc < 0) { 3416 V = PoisonValue::get(CurTy); // Unknown binop. 3417 } else { 3418 uint8_t Flags = 0; 3419 if (Record.size() >= 4) { 3420 if (Opc == Instruction::Add || 3421 Opc == Instruction::Sub || 3422 Opc == Instruction::Mul || 3423 Opc == Instruction::Shl) { 3424 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3425 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3426 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3427 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3428 } else if (Opc == Instruction::SDiv || 3429 Opc == Instruction::UDiv || 3430 Opc == Instruction::LShr || 3431 Opc == Instruction::AShr) { 3432 if (Record[3] & (1 << bitc::PEO_EXACT)) 3433 Flags |= PossiblyExactOperator::IsExact; 3434 } 3435 } 3436 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3437 {(unsigned)Record[1], (unsigned)Record[2]}); 3438 } 3439 break; 3440 } 3441 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3442 if (Record.size() < 3) 3443 return error("Invalid cast constexpr record"); 3444 int Opc = getDecodedCastOpcode(Record[0]); 3445 if (Opc < 0) { 3446 V = PoisonValue::get(CurTy); // Unknown cast. 3447 } else { 3448 unsigned OpTyID = Record[1]; 3449 Type *OpTy = getTypeByID(OpTyID); 3450 if (!OpTy) 3451 return error("Invalid cast constexpr record"); 3452 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3453 } 3454 break; 3455 } 3456 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3457 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3458 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3459 // operands] 3460 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3461 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3462 // operands] 3463 if (Record.size() < 2) 3464 return error("Constant GEP record must have at least two elements"); 3465 unsigned OpNum = 0; 3466 Type *PointeeType = nullptr; 3467 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3468 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3469 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3470 PointeeType = getTypeByID(Record[OpNum++]); 3471 3472 uint64_t Flags = 0; 3473 std::optional<ConstantRange> InRange; 3474 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3475 uint64_t Op = Record[OpNum++]; 3476 Flags = Op & 1; // inbounds 3477 unsigned InRangeIndex = Op >> 1; 3478 // "Upgrade" inrange by dropping it. The feature is too niche to 3479 // bother. 3480 (void)InRangeIndex; 3481 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3482 Flags = Record[OpNum++]; 3483 Expected<ConstantRange> MaybeInRange = 3484 readBitWidthAndConstantRange(Record, OpNum); 3485 if (!MaybeInRange) 3486 return MaybeInRange.takeError(); 3487 InRange = MaybeInRange.get(); 3488 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3489 Flags = Record[OpNum++]; 3490 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3491 Flags = (1 << bitc::GEP_INBOUNDS); 3492 3493 SmallVector<unsigned, 16> Elts; 3494 unsigned BaseTypeID = Record[OpNum]; 3495 while (OpNum != Record.size()) { 3496 unsigned ElTyID = Record[OpNum++]; 3497 Type *ElTy = getTypeByID(ElTyID); 3498 if (!ElTy) 3499 return error("Invalid getelementptr constexpr record"); 3500 Elts.push_back(Record[OpNum++]); 3501 } 3502 3503 if (Elts.size() < 1) 3504 return error("Invalid gep with no operands"); 3505 3506 Type *BaseType = getTypeByID(BaseTypeID); 3507 if (isa<VectorType>(BaseType)) { 3508 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3509 BaseType = getTypeByID(BaseTypeID); 3510 } 3511 3512 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3513 if (!OrigPtrTy) 3514 return error("GEP base operand must be pointer or vector of pointer"); 3515 3516 if (!PointeeType) { 3517 PointeeType = getPtrElementTypeByID(BaseTypeID); 3518 if (!PointeeType) 3519 return error("Missing element type for old-style constant GEP"); 3520 } 3521 3522 V = BitcodeConstant::create( 3523 Alloc, CurTy, 3524 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3525 Elts); 3526 break; 3527 } 3528 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3529 if (Record.size() < 3) 3530 return error("Invalid select constexpr record"); 3531 3532 V = BitcodeConstant::create( 3533 Alloc, CurTy, Instruction::Select, 3534 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3535 break; 3536 } 3537 case bitc::CST_CODE_CE_EXTRACTELT 3538 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3539 if (Record.size() < 3) 3540 return error("Invalid extractelement constexpr record"); 3541 unsigned OpTyID = Record[0]; 3542 VectorType *OpTy = 3543 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3544 if (!OpTy) 3545 return error("Invalid extractelement constexpr record"); 3546 unsigned IdxRecord; 3547 if (Record.size() == 4) { 3548 unsigned IdxTyID = Record[2]; 3549 Type *IdxTy = getTypeByID(IdxTyID); 3550 if (!IdxTy) 3551 return error("Invalid extractelement constexpr record"); 3552 IdxRecord = Record[3]; 3553 } else { 3554 // Deprecated, but still needed to read old bitcode files. 3555 IdxRecord = Record[2]; 3556 } 3557 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3558 {(unsigned)Record[1], IdxRecord}); 3559 break; 3560 } 3561 case bitc::CST_CODE_CE_INSERTELT 3562 : { // CE_INSERTELT: [opval, opval, opty, opval] 3563 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3564 if (Record.size() < 3 || !OpTy) 3565 return error("Invalid insertelement constexpr record"); 3566 unsigned IdxRecord; 3567 if (Record.size() == 4) { 3568 unsigned IdxTyID = Record[2]; 3569 Type *IdxTy = getTypeByID(IdxTyID); 3570 if (!IdxTy) 3571 return error("Invalid insertelement constexpr record"); 3572 IdxRecord = Record[3]; 3573 } else { 3574 // Deprecated, but still needed to read old bitcode files. 3575 IdxRecord = Record[2]; 3576 } 3577 V = BitcodeConstant::create( 3578 Alloc, CurTy, Instruction::InsertElement, 3579 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3580 break; 3581 } 3582 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3583 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3584 if (Record.size() < 3 || !OpTy) 3585 return error("Invalid shufflevector constexpr record"); 3586 V = BitcodeConstant::create( 3587 Alloc, CurTy, Instruction::ShuffleVector, 3588 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3589 break; 3590 } 3591 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3592 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3593 VectorType *OpTy = 3594 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3595 if (Record.size() < 4 || !RTy || !OpTy) 3596 return error("Invalid shufflevector constexpr record"); 3597 V = BitcodeConstant::create( 3598 Alloc, CurTy, Instruction::ShuffleVector, 3599 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3600 break; 3601 } 3602 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3603 if (Record.size() < 4) 3604 return error("Invalid cmp constexpt record"); 3605 unsigned OpTyID = Record[0]; 3606 Type *OpTy = getTypeByID(OpTyID); 3607 if (!OpTy) 3608 return error("Invalid cmp constexpr record"); 3609 V = BitcodeConstant::create( 3610 Alloc, CurTy, 3611 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3612 : Instruction::ICmp), 3613 (uint8_t)Record[3]}, 3614 {(unsigned)Record[1], (unsigned)Record[2]}); 3615 break; 3616 } 3617 // This maintains backward compatibility, pre-asm dialect keywords. 3618 // Deprecated, but still needed to read old bitcode files. 3619 case bitc::CST_CODE_INLINEASM_OLD: { 3620 if (Record.size() < 2) 3621 return error("Invalid inlineasm record"); 3622 std::string AsmStr, ConstrStr; 3623 bool HasSideEffects = Record[0] & 1; 3624 bool IsAlignStack = Record[0] >> 1; 3625 unsigned AsmStrSize = Record[1]; 3626 if (2+AsmStrSize >= Record.size()) 3627 return error("Invalid inlineasm record"); 3628 unsigned ConstStrSize = Record[2+AsmStrSize]; 3629 if (3+AsmStrSize+ConstStrSize > Record.size()) 3630 return error("Invalid inlineasm record"); 3631 3632 for (unsigned i = 0; i != AsmStrSize; ++i) 3633 AsmStr += (char)Record[2+i]; 3634 for (unsigned i = 0; i != ConstStrSize; ++i) 3635 ConstrStr += (char)Record[3+AsmStrSize+i]; 3636 UpgradeInlineAsmString(&AsmStr); 3637 if (!CurElemTy) 3638 return error("Missing element type for old-style inlineasm"); 3639 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3640 HasSideEffects, IsAlignStack); 3641 break; 3642 } 3643 // This version adds support for the asm dialect keywords (e.g., 3644 // inteldialect). 3645 case bitc::CST_CODE_INLINEASM_OLD2: { 3646 if (Record.size() < 2) 3647 return error("Invalid inlineasm record"); 3648 std::string AsmStr, ConstrStr; 3649 bool HasSideEffects = Record[0] & 1; 3650 bool IsAlignStack = (Record[0] >> 1) & 1; 3651 unsigned AsmDialect = Record[0] >> 2; 3652 unsigned AsmStrSize = Record[1]; 3653 if (2+AsmStrSize >= Record.size()) 3654 return error("Invalid inlineasm record"); 3655 unsigned ConstStrSize = Record[2+AsmStrSize]; 3656 if (3+AsmStrSize+ConstStrSize > Record.size()) 3657 return error("Invalid inlineasm record"); 3658 3659 for (unsigned i = 0; i != AsmStrSize; ++i) 3660 AsmStr += (char)Record[2+i]; 3661 for (unsigned i = 0; i != ConstStrSize; ++i) 3662 ConstrStr += (char)Record[3+AsmStrSize+i]; 3663 UpgradeInlineAsmString(&AsmStr); 3664 if (!CurElemTy) 3665 return error("Missing element type for old-style inlineasm"); 3666 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3667 HasSideEffects, IsAlignStack, 3668 InlineAsm::AsmDialect(AsmDialect)); 3669 break; 3670 } 3671 // This version adds support for the unwind keyword. 3672 case bitc::CST_CODE_INLINEASM_OLD3: { 3673 if (Record.size() < 2) 3674 return error("Invalid inlineasm record"); 3675 unsigned OpNum = 0; 3676 std::string AsmStr, ConstrStr; 3677 bool HasSideEffects = Record[OpNum] & 1; 3678 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3679 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3680 bool CanThrow = (Record[OpNum] >> 3) & 1; 3681 ++OpNum; 3682 unsigned AsmStrSize = Record[OpNum]; 3683 ++OpNum; 3684 if (OpNum + AsmStrSize >= Record.size()) 3685 return error("Invalid inlineasm record"); 3686 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3687 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3688 return error("Invalid inlineasm record"); 3689 3690 for (unsigned i = 0; i != AsmStrSize; ++i) 3691 AsmStr += (char)Record[OpNum + i]; 3692 ++OpNum; 3693 for (unsigned i = 0; i != ConstStrSize; ++i) 3694 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3695 UpgradeInlineAsmString(&AsmStr); 3696 if (!CurElemTy) 3697 return error("Missing element type for old-style inlineasm"); 3698 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3699 HasSideEffects, IsAlignStack, 3700 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3701 break; 3702 } 3703 // This version adds explicit function type. 3704 case bitc::CST_CODE_INLINEASM: { 3705 if (Record.size() < 3) 3706 return error("Invalid inlineasm record"); 3707 unsigned OpNum = 0; 3708 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3709 ++OpNum; 3710 if (!FnTy) 3711 return error("Invalid inlineasm record"); 3712 std::string AsmStr, ConstrStr; 3713 bool HasSideEffects = Record[OpNum] & 1; 3714 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3715 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3716 bool CanThrow = (Record[OpNum] >> 3) & 1; 3717 ++OpNum; 3718 unsigned AsmStrSize = Record[OpNum]; 3719 ++OpNum; 3720 if (OpNum + AsmStrSize >= Record.size()) 3721 return error("Invalid inlineasm record"); 3722 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3723 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3724 return error("Invalid inlineasm record"); 3725 3726 for (unsigned i = 0; i != AsmStrSize; ++i) 3727 AsmStr += (char)Record[OpNum + i]; 3728 ++OpNum; 3729 for (unsigned i = 0; i != ConstStrSize; ++i) 3730 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3731 UpgradeInlineAsmString(&AsmStr); 3732 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3733 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3734 break; 3735 } 3736 case bitc::CST_CODE_BLOCKADDRESS:{ 3737 if (Record.size() < 3) 3738 return error("Invalid blockaddress record"); 3739 unsigned FnTyID = Record[0]; 3740 Type *FnTy = getTypeByID(FnTyID); 3741 if (!FnTy) 3742 return error("Invalid blockaddress record"); 3743 V = BitcodeConstant::create( 3744 Alloc, CurTy, 3745 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3746 Record[1]); 3747 break; 3748 } 3749 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3750 if (Record.size() < 2) 3751 return error("Invalid dso_local record"); 3752 unsigned GVTyID = Record[0]; 3753 Type *GVTy = getTypeByID(GVTyID); 3754 if (!GVTy) 3755 return error("Invalid dso_local record"); 3756 V = BitcodeConstant::create( 3757 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3758 break; 3759 } 3760 case bitc::CST_CODE_NO_CFI_VALUE: { 3761 if (Record.size() < 2) 3762 return error("Invalid no_cfi record"); 3763 unsigned GVTyID = Record[0]; 3764 Type *GVTy = getTypeByID(GVTyID); 3765 if (!GVTy) 3766 return error("Invalid no_cfi record"); 3767 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3768 Record[1]); 3769 break; 3770 } 3771 case bitc::CST_CODE_PTRAUTH: { 3772 if (Record.size() < 4) 3773 return error("Invalid ptrauth record"); 3774 // Ptr, Key, Disc, AddrDisc 3775 V = BitcodeConstant::create(Alloc, CurTy, 3776 BitcodeConstant::ConstantPtrAuthOpcode, 3777 {(unsigned)Record[0], (unsigned)Record[1], 3778 (unsigned)Record[2], (unsigned)Record[3]}); 3779 break; 3780 } 3781 } 3782 3783 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3784 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3785 return Err; 3786 ++NextCstNo; 3787 } 3788 } 3789 3790 Error BitcodeReader::parseUseLists() { 3791 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3792 return Err; 3793 3794 // Read all the records. 3795 SmallVector<uint64_t, 64> Record; 3796 3797 while (true) { 3798 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3799 if (!MaybeEntry) 3800 return MaybeEntry.takeError(); 3801 BitstreamEntry Entry = MaybeEntry.get(); 3802 3803 switch (Entry.Kind) { 3804 case BitstreamEntry::SubBlock: // Handled for us already. 3805 case BitstreamEntry::Error: 3806 return error("Malformed block"); 3807 case BitstreamEntry::EndBlock: 3808 return Error::success(); 3809 case BitstreamEntry::Record: 3810 // The interesting case. 3811 break; 3812 } 3813 3814 // Read a use list record. 3815 Record.clear(); 3816 bool IsBB = false; 3817 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3818 if (!MaybeRecord) 3819 return MaybeRecord.takeError(); 3820 switch (MaybeRecord.get()) { 3821 default: // Default behavior: unknown type. 3822 break; 3823 case bitc::USELIST_CODE_BB: 3824 IsBB = true; 3825 [[fallthrough]]; 3826 case bitc::USELIST_CODE_DEFAULT: { 3827 unsigned RecordLength = Record.size(); 3828 if (RecordLength < 3) 3829 // Records should have at least an ID and two indexes. 3830 return error("Invalid record"); 3831 unsigned ID = Record.pop_back_val(); 3832 3833 Value *V; 3834 if (IsBB) { 3835 assert(ID < FunctionBBs.size() && "Basic block not found"); 3836 V = FunctionBBs[ID]; 3837 } else 3838 V = ValueList[ID]; 3839 unsigned NumUses = 0; 3840 SmallDenseMap<const Use *, unsigned, 16> Order; 3841 for (const Use &U : V->materialized_uses()) { 3842 if (++NumUses > Record.size()) 3843 break; 3844 Order[&U] = Record[NumUses - 1]; 3845 } 3846 if (Order.size() != Record.size() || NumUses > Record.size()) 3847 // Mismatches can happen if the functions are being materialized lazily 3848 // (out-of-order), or a value has been upgraded. 3849 break; 3850 3851 V->sortUseList([&](const Use &L, const Use &R) { 3852 return Order.lookup(&L) < Order.lookup(&R); 3853 }); 3854 break; 3855 } 3856 } 3857 } 3858 } 3859 3860 /// When we see the block for metadata, remember where it is and then skip it. 3861 /// This lets us lazily deserialize the metadata. 3862 Error BitcodeReader::rememberAndSkipMetadata() { 3863 // Save the current stream state. 3864 uint64_t CurBit = Stream.GetCurrentBitNo(); 3865 DeferredMetadataInfo.push_back(CurBit); 3866 3867 // Skip over the block for now. 3868 if (Error Err = Stream.SkipBlock()) 3869 return Err; 3870 return Error::success(); 3871 } 3872 3873 Error BitcodeReader::materializeMetadata() { 3874 for (uint64_t BitPos : DeferredMetadataInfo) { 3875 // Move the bit stream to the saved position. 3876 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3877 return JumpFailed; 3878 if (Error Err = MDLoader->parseModuleMetadata()) 3879 return Err; 3880 } 3881 3882 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3883 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3884 // multiple times. 3885 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3886 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3887 NamedMDNode *LinkerOpts = 3888 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3889 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3890 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3891 } 3892 } 3893 3894 DeferredMetadataInfo.clear(); 3895 return Error::success(); 3896 } 3897 3898 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3899 3900 /// When we see the block for a function body, remember where it is and then 3901 /// skip it. This lets us lazily deserialize the functions. 3902 Error BitcodeReader::rememberAndSkipFunctionBody() { 3903 // Get the function we are talking about. 3904 if (FunctionsWithBodies.empty()) 3905 return error("Insufficient function protos"); 3906 3907 Function *Fn = FunctionsWithBodies.back(); 3908 FunctionsWithBodies.pop_back(); 3909 3910 // Save the current stream state. 3911 uint64_t CurBit = Stream.GetCurrentBitNo(); 3912 assert( 3913 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3914 "Mismatch between VST and scanned function offsets"); 3915 DeferredFunctionInfo[Fn] = CurBit; 3916 3917 // Skip over the function block for now. 3918 if (Error Err = Stream.SkipBlock()) 3919 return Err; 3920 return Error::success(); 3921 } 3922 3923 Error BitcodeReader::globalCleanup() { 3924 // Patch the initializers for globals and aliases up. 3925 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3926 return Err; 3927 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3928 return error("Malformed global initializer set"); 3929 3930 // Look for intrinsic functions which need to be upgraded at some point 3931 // and functions that need to have their function attributes upgraded. 3932 for (Function &F : *TheModule) { 3933 MDLoader->upgradeDebugIntrinsics(F); 3934 Function *NewFn; 3935 // If PreserveInputDbgFormat=true, then we don't know whether we want 3936 // intrinsics or records, and we won't perform any conversions in either 3937 // case, so don't upgrade intrinsics to records. 3938 if (UpgradeIntrinsicFunction( 3939 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3940 UpgradedIntrinsics[&F] = NewFn; 3941 // Look for functions that rely on old function attribute behavior. 3942 UpgradeFunctionAttributes(F); 3943 } 3944 3945 // Look for global variables which need to be renamed. 3946 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3947 for (GlobalVariable &GV : TheModule->globals()) 3948 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3949 UpgradedVariables.emplace_back(&GV, Upgraded); 3950 for (auto &Pair : UpgradedVariables) { 3951 Pair.first->eraseFromParent(); 3952 TheModule->insertGlobalVariable(Pair.second); 3953 } 3954 3955 // Force deallocation of memory for these vectors to favor the client that 3956 // want lazy deserialization. 3957 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3958 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3959 return Error::success(); 3960 } 3961 3962 /// Support for lazy parsing of function bodies. This is required if we 3963 /// either have an old bitcode file without a VST forward declaration record, 3964 /// or if we have an anonymous function being materialized, since anonymous 3965 /// functions do not have a name and are therefore not in the VST. 3966 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3967 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3968 return JumpFailed; 3969 3970 if (Stream.AtEndOfStream()) 3971 return error("Could not find function in stream"); 3972 3973 if (!SeenFirstFunctionBody) 3974 return error("Trying to materialize functions before seeing function blocks"); 3975 3976 // An old bitcode file with the symbol table at the end would have 3977 // finished the parse greedily. 3978 assert(SeenValueSymbolTable); 3979 3980 SmallVector<uint64_t, 64> Record; 3981 3982 while (true) { 3983 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3984 if (!MaybeEntry) 3985 return MaybeEntry.takeError(); 3986 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3987 3988 switch (Entry.Kind) { 3989 default: 3990 return error("Expect SubBlock"); 3991 case BitstreamEntry::SubBlock: 3992 switch (Entry.ID) { 3993 default: 3994 return error("Expect function block"); 3995 case bitc::FUNCTION_BLOCK_ID: 3996 if (Error Err = rememberAndSkipFunctionBody()) 3997 return Err; 3998 NextUnreadBit = Stream.GetCurrentBitNo(); 3999 return Error::success(); 4000 } 4001 } 4002 } 4003 } 4004 4005 Error BitcodeReaderBase::readBlockInfo() { 4006 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 4007 Stream.ReadBlockInfoBlock(); 4008 if (!MaybeNewBlockInfo) 4009 return MaybeNewBlockInfo.takeError(); 4010 std::optional<BitstreamBlockInfo> NewBlockInfo = 4011 std::move(MaybeNewBlockInfo.get()); 4012 if (!NewBlockInfo) 4013 return error("Malformed block"); 4014 BlockInfo = std::move(*NewBlockInfo); 4015 return Error::success(); 4016 } 4017 4018 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 4019 // v1: [selection_kind, name] 4020 // v2: [strtab_offset, strtab_size, selection_kind] 4021 StringRef Name; 4022 std::tie(Name, Record) = readNameFromStrtab(Record); 4023 4024 if (Record.empty()) 4025 return error("Invalid record"); 4026 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4027 std::string OldFormatName; 4028 if (!UseStrtab) { 4029 if (Record.size() < 2) 4030 return error("Invalid record"); 4031 unsigned ComdatNameSize = Record[1]; 4032 if (ComdatNameSize > Record.size() - 2) 4033 return error("Comdat name size too large"); 4034 OldFormatName.reserve(ComdatNameSize); 4035 for (unsigned i = 0; i != ComdatNameSize; ++i) 4036 OldFormatName += (char)Record[2 + i]; 4037 Name = OldFormatName; 4038 } 4039 Comdat *C = TheModule->getOrInsertComdat(Name); 4040 C->setSelectionKind(SK); 4041 ComdatList.push_back(C); 4042 return Error::success(); 4043 } 4044 4045 static void inferDSOLocal(GlobalValue *GV) { 4046 // infer dso_local from linkage and visibility if it is not encoded. 4047 if (GV->hasLocalLinkage() || 4048 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4049 GV->setDSOLocal(true); 4050 } 4051 4052 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4053 GlobalValue::SanitizerMetadata Meta; 4054 if (V & (1 << 0)) 4055 Meta.NoAddress = true; 4056 if (V & (1 << 1)) 4057 Meta.NoHWAddress = true; 4058 if (V & (1 << 2)) 4059 Meta.Memtag = true; 4060 if (V & (1 << 3)) 4061 Meta.IsDynInit = true; 4062 return Meta; 4063 } 4064 4065 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4066 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4067 // visibility, threadlocal, unnamed_addr, externally_initialized, 4068 // dllstorageclass, comdat, attributes, preemption specifier, 4069 // partition strtab offset, partition strtab size] (name in VST) 4070 // v2: [strtab_offset, strtab_size, v1] 4071 // v3: [v2, code_model] 4072 StringRef Name; 4073 std::tie(Name, Record) = readNameFromStrtab(Record); 4074 4075 if (Record.size() < 6) 4076 return error("Invalid record"); 4077 unsigned TyID = Record[0]; 4078 Type *Ty = getTypeByID(TyID); 4079 if (!Ty) 4080 return error("Invalid record"); 4081 bool isConstant = Record[1] & 1; 4082 bool explicitType = Record[1] & 2; 4083 unsigned AddressSpace; 4084 if (explicitType) { 4085 AddressSpace = Record[1] >> 2; 4086 } else { 4087 if (!Ty->isPointerTy()) 4088 return error("Invalid type for value"); 4089 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4090 TyID = getContainedTypeID(TyID); 4091 Ty = getTypeByID(TyID); 4092 if (!Ty) 4093 return error("Missing element type for old-style global"); 4094 } 4095 4096 uint64_t RawLinkage = Record[3]; 4097 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4098 MaybeAlign Alignment; 4099 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4100 return Err; 4101 std::string Section; 4102 if (Record[5]) { 4103 if (Record[5] - 1 >= SectionTable.size()) 4104 return error("Invalid ID"); 4105 Section = SectionTable[Record[5] - 1]; 4106 } 4107 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4108 // Local linkage must have default visibility. 4109 // auto-upgrade `hidden` and `protected` for old bitcode. 4110 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4111 Visibility = getDecodedVisibility(Record[6]); 4112 4113 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4114 if (Record.size() > 7) 4115 TLM = getDecodedThreadLocalMode(Record[7]); 4116 4117 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4118 if (Record.size() > 8) 4119 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4120 4121 bool ExternallyInitialized = false; 4122 if (Record.size() > 9) 4123 ExternallyInitialized = Record[9]; 4124 4125 GlobalVariable *NewGV = 4126 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4127 nullptr, TLM, AddressSpace, ExternallyInitialized); 4128 if (Alignment) 4129 NewGV->setAlignment(*Alignment); 4130 if (!Section.empty()) 4131 NewGV->setSection(Section); 4132 NewGV->setVisibility(Visibility); 4133 NewGV->setUnnamedAddr(UnnamedAddr); 4134 4135 if (Record.size() > 10) { 4136 // A GlobalValue with local linkage cannot have a DLL storage class. 4137 if (!NewGV->hasLocalLinkage()) { 4138 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4139 } 4140 } else { 4141 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4142 } 4143 4144 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4145 4146 // Remember which value to use for the global initializer. 4147 if (unsigned InitID = Record[2]) 4148 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4149 4150 if (Record.size() > 11) { 4151 if (unsigned ComdatID = Record[11]) { 4152 if (ComdatID > ComdatList.size()) 4153 return error("Invalid global variable comdat ID"); 4154 NewGV->setComdat(ComdatList[ComdatID - 1]); 4155 } 4156 } else if (hasImplicitComdat(RawLinkage)) { 4157 ImplicitComdatObjects.insert(NewGV); 4158 } 4159 4160 if (Record.size() > 12) { 4161 auto AS = getAttributes(Record[12]).getFnAttrs(); 4162 NewGV->setAttributes(AS); 4163 } 4164 4165 if (Record.size() > 13) { 4166 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4167 } 4168 inferDSOLocal(NewGV); 4169 4170 // Check whether we have enough values to read a partition name. 4171 if (Record.size() > 15) 4172 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4173 4174 if (Record.size() > 16 && Record[16]) { 4175 llvm::GlobalValue::SanitizerMetadata Meta = 4176 deserializeSanitizerMetadata(Record[16]); 4177 NewGV->setSanitizerMetadata(Meta); 4178 } 4179 4180 if (Record.size() > 17 && Record[17]) { 4181 if (auto CM = getDecodedCodeModel(Record[17])) 4182 NewGV->setCodeModel(*CM); 4183 else 4184 return error("Invalid global variable code model"); 4185 } 4186 4187 return Error::success(); 4188 } 4189 4190 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4191 if (ValueTypeCallback) { 4192 (*ValueTypeCallback)( 4193 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4194 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4195 } 4196 } 4197 4198 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4199 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4200 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4201 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4202 // v2: [strtab_offset, strtab_size, v1] 4203 StringRef Name; 4204 std::tie(Name, Record) = readNameFromStrtab(Record); 4205 4206 if (Record.size() < 8) 4207 return error("Invalid record"); 4208 unsigned FTyID = Record[0]; 4209 Type *FTy = getTypeByID(FTyID); 4210 if (!FTy) 4211 return error("Invalid record"); 4212 if (isa<PointerType>(FTy)) { 4213 FTyID = getContainedTypeID(FTyID, 0); 4214 FTy = getTypeByID(FTyID); 4215 if (!FTy) 4216 return error("Missing element type for old-style function"); 4217 } 4218 4219 if (!isa<FunctionType>(FTy)) 4220 return error("Invalid type for value"); 4221 auto CC = static_cast<CallingConv::ID>(Record[1]); 4222 if (CC & ~CallingConv::MaxID) 4223 return error("Invalid calling convention ID"); 4224 4225 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4226 if (Record.size() > 16) 4227 AddrSpace = Record[16]; 4228 4229 Function *Func = 4230 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4231 AddrSpace, Name, TheModule); 4232 4233 assert(Func->getFunctionType() == FTy && 4234 "Incorrect fully specified type provided for function"); 4235 FunctionTypeIDs[Func] = FTyID; 4236 4237 Func->setCallingConv(CC); 4238 bool isProto = Record[2]; 4239 uint64_t RawLinkage = Record[3]; 4240 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4241 Func->setAttributes(getAttributes(Record[4])); 4242 callValueTypeCallback(Func, FTyID); 4243 4244 // Upgrade any old-style byval or sret without a type by propagating the 4245 // argument's pointee type. There should be no opaque pointers where the byval 4246 // type is implicit. 4247 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4248 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4249 Attribute::InAlloca}) { 4250 if (!Func->hasParamAttribute(i, Kind)) 4251 continue; 4252 4253 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4254 continue; 4255 4256 Func->removeParamAttr(i, Kind); 4257 4258 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4259 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4260 if (!PtrEltTy) 4261 return error("Missing param element type for attribute upgrade"); 4262 4263 Attribute NewAttr; 4264 switch (Kind) { 4265 case Attribute::ByVal: 4266 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4267 break; 4268 case Attribute::StructRet: 4269 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4270 break; 4271 case Attribute::InAlloca: 4272 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4273 break; 4274 default: 4275 llvm_unreachable("not an upgraded type attribute"); 4276 } 4277 4278 Func->addParamAttr(i, NewAttr); 4279 } 4280 } 4281 4282 if (Func->getCallingConv() == CallingConv::X86_INTR && 4283 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4284 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4285 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4286 if (!ByValTy) 4287 return error("Missing param element type for x86_intrcc upgrade"); 4288 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4289 Func->addParamAttr(0, NewAttr); 4290 } 4291 4292 MaybeAlign Alignment; 4293 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4294 return Err; 4295 if (Alignment) 4296 Func->setAlignment(*Alignment); 4297 if (Record[6]) { 4298 if (Record[6] - 1 >= SectionTable.size()) 4299 return error("Invalid ID"); 4300 Func->setSection(SectionTable[Record[6] - 1]); 4301 } 4302 // Local linkage must have default visibility. 4303 // auto-upgrade `hidden` and `protected` for old bitcode. 4304 if (!Func->hasLocalLinkage()) 4305 Func->setVisibility(getDecodedVisibility(Record[7])); 4306 if (Record.size() > 8 && Record[8]) { 4307 if (Record[8] - 1 >= GCTable.size()) 4308 return error("Invalid ID"); 4309 Func->setGC(GCTable[Record[8] - 1]); 4310 } 4311 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4312 if (Record.size() > 9) 4313 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4314 Func->setUnnamedAddr(UnnamedAddr); 4315 4316 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4317 if (Record.size() > 10) 4318 OperandInfo.Prologue = Record[10]; 4319 4320 if (Record.size() > 11) { 4321 // A GlobalValue with local linkage cannot have a DLL storage class. 4322 if (!Func->hasLocalLinkage()) { 4323 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4324 } 4325 } else { 4326 upgradeDLLImportExportLinkage(Func, RawLinkage); 4327 } 4328 4329 if (Record.size() > 12) { 4330 if (unsigned ComdatID = Record[12]) { 4331 if (ComdatID > ComdatList.size()) 4332 return error("Invalid function comdat ID"); 4333 Func->setComdat(ComdatList[ComdatID - 1]); 4334 } 4335 } else if (hasImplicitComdat(RawLinkage)) { 4336 ImplicitComdatObjects.insert(Func); 4337 } 4338 4339 if (Record.size() > 13) 4340 OperandInfo.Prefix = Record[13]; 4341 4342 if (Record.size() > 14) 4343 OperandInfo.PersonalityFn = Record[14]; 4344 4345 if (Record.size() > 15) { 4346 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4347 } 4348 inferDSOLocal(Func); 4349 4350 // Record[16] is the address space number. 4351 4352 // Check whether we have enough values to read a partition name. Also make 4353 // sure Strtab has enough values. 4354 if (Record.size() > 18 && Strtab.data() && 4355 Record[17] + Record[18] <= Strtab.size()) { 4356 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4357 } 4358 4359 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4360 4361 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4362 FunctionOperands.push_back(OperandInfo); 4363 4364 // If this is a function with a body, remember the prototype we are 4365 // creating now, so that we can match up the body with them later. 4366 if (!isProto) { 4367 Func->setIsMaterializable(true); 4368 FunctionsWithBodies.push_back(Func); 4369 DeferredFunctionInfo[Func] = 0; 4370 } 4371 return Error::success(); 4372 } 4373 4374 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4375 unsigned BitCode, ArrayRef<uint64_t> Record) { 4376 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4377 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4378 // dllstorageclass, threadlocal, unnamed_addr, 4379 // preemption specifier] (name in VST) 4380 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4381 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4382 // preemption specifier] (name in VST) 4383 // v2: [strtab_offset, strtab_size, v1] 4384 StringRef Name; 4385 std::tie(Name, Record) = readNameFromStrtab(Record); 4386 4387 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4388 if (Record.size() < (3 + (unsigned)NewRecord)) 4389 return error("Invalid record"); 4390 unsigned OpNum = 0; 4391 unsigned TypeID = Record[OpNum++]; 4392 Type *Ty = getTypeByID(TypeID); 4393 if (!Ty) 4394 return error("Invalid record"); 4395 4396 unsigned AddrSpace; 4397 if (!NewRecord) { 4398 auto *PTy = dyn_cast<PointerType>(Ty); 4399 if (!PTy) 4400 return error("Invalid type for value"); 4401 AddrSpace = PTy->getAddressSpace(); 4402 TypeID = getContainedTypeID(TypeID); 4403 Ty = getTypeByID(TypeID); 4404 if (!Ty) 4405 return error("Missing element type for old-style indirect symbol"); 4406 } else { 4407 AddrSpace = Record[OpNum++]; 4408 } 4409 4410 auto Val = Record[OpNum++]; 4411 auto Linkage = Record[OpNum++]; 4412 GlobalValue *NewGA; 4413 if (BitCode == bitc::MODULE_CODE_ALIAS || 4414 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4415 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4416 TheModule); 4417 else 4418 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4419 nullptr, TheModule); 4420 4421 // Local linkage must have default visibility. 4422 // auto-upgrade `hidden` and `protected` for old bitcode. 4423 if (OpNum != Record.size()) { 4424 auto VisInd = OpNum++; 4425 if (!NewGA->hasLocalLinkage()) 4426 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4427 } 4428 if (BitCode == bitc::MODULE_CODE_ALIAS || 4429 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4430 if (OpNum != Record.size()) { 4431 auto S = Record[OpNum++]; 4432 // A GlobalValue with local linkage cannot have a DLL storage class. 4433 if (!NewGA->hasLocalLinkage()) 4434 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4435 } 4436 else 4437 upgradeDLLImportExportLinkage(NewGA, Linkage); 4438 if (OpNum != Record.size()) 4439 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4440 if (OpNum != Record.size()) 4441 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4442 } 4443 if (OpNum != Record.size()) 4444 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4445 inferDSOLocal(NewGA); 4446 4447 // Check whether we have enough values to read a partition name. 4448 if (OpNum + 1 < Record.size()) { 4449 // Check Strtab has enough values for the partition. 4450 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4451 return error("Malformed partition, too large."); 4452 NewGA->setPartition( 4453 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4454 } 4455 4456 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4457 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4458 return Error::success(); 4459 } 4460 4461 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4462 bool ShouldLazyLoadMetadata, 4463 ParserCallbacks Callbacks) { 4464 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4465 // has been set to true and we aren't attempting to preserve the existing 4466 // format in the bitcode (default action: load into the old debug format). 4467 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4468 TheModule->IsNewDbgInfoFormat = 4469 UseNewDbgInfoFormat && 4470 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4471 } 4472 4473 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4474 if (ResumeBit) { 4475 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4476 return JumpFailed; 4477 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4478 return Err; 4479 4480 SmallVector<uint64_t, 64> Record; 4481 4482 // Parts of bitcode parsing depend on the datalayout. Make sure we 4483 // finalize the datalayout before we run any of that code. 4484 bool ResolvedDataLayout = false; 4485 // In order to support importing modules with illegal data layout strings, 4486 // delay parsing the data layout string until after upgrades and overrides 4487 // have been applied, allowing to fix illegal data layout strings. 4488 // Initialize to the current module's layout string in case none is specified. 4489 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4490 4491 auto ResolveDataLayout = [&]() -> Error { 4492 if (ResolvedDataLayout) 4493 return Error::success(); 4494 4495 // Datalayout and triple can't be parsed after this point. 4496 ResolvedDataLayout = true; 4497 4498 // Auto-upgrade the layout string 4499 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4500 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4501 4502 // Apply override 4503 if (Callbacks.DataLayout) { 4504 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4505 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4506 TentativeDataLayoutStr = *LayoutOverride; 4507 } 4508 4509 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4510 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4511 if (!MaybeDL) 4512 return MaybeDL.takeError(); 4513 4514 TheModule->setDataLayout(MaybeDL.get()); 4515 return Error::success(); 4516 }; 4517 4518 // Read all the records for this module. 4519 while (true) { 4520 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4521 if (!MaybeEntry) 4522 return MaybeEntry.takeError(); 4523 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4524 4525 switch (Entry.Kind) { 4526 case BitstreamEntry::Error: 4527 return error("Malformed block"); 4528 case BitstreamEntry::EndBlock: 4529 if (Error Err = ResolveDataLayout()) 4530 return Err; 4531 return globalCleanup(); 4532 4533 case BitstreamEntry::SubBlock: 4534 switch (Entry.ID) { 4535 default: // Skip unknown content. 4536 if (Error Err = Stream.SkipBlock()) 4537 return Err; 4538 break; 4539 case bitc::BLOCKINFO_BLOCK_ID: 4540 if (Error Err = readBlockInfo()) 4541 return Err; 4542 break; 4543 case bitc::PARAMATTR_BLOCK_ID: 4544 if (Error Err = parseAttributeBlock()) 4545 return Err; 4546 break; 4547 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4548 if (Error Err = parseAttributeGroupBlock()) 4549 return Err; 4550 break; 4551 case bitc::TYPE_BLOCK_ID_NEW: 4552 if (Error Err = parseTypeTable()) 4553 return Err; 4554 break; 4555 case bitc::VALUE_SYMTAB_BLOCK_ID: 4556 if (!SeenValueSymbolTable) { 4557 // Either this is an old form VST without function index and an 4558 // associated VST forward declaration record (which would have caused 4559 // the VST to be jumped to and parsed before it was encountered 4560 // normally in the stream), or there were no function blocks to 4561 // trigger an earlier parsing of the VST. 4562 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4563 if (Error Err = parseValueSymbolTable()) 4564 return Err; 4565 SeenValueSymbolTable = true; 4566 } else { 4567 // We must have had a VST forward declaration record, which caused 4568 // the parser to jump to and parse the VST earlier. 4569 assert(VSTOffset > 0); 4570 if (Error Err = Stream.SkipBlock()) 4571 return Err; 4572 } 4573 break; 4574 case bitc::CONSTANTS_BLOCK_ID: 4575 if (Error Err = parseConstants()) 4576 return Err; 4577 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4578 return Err; 4579 break; 4580 case bitc::METADATA_BLOCK_ID: 4581 if (ShouldLazyLoadMetadata) { 4582 if (Error Err = rememberAndSkipMetadata()) 4583 return Err; 4584 break; 4585 } 4586 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4587 if (Error Err = MDLoader->parseModuleMetadata()) 4588 return Err; 4589 break; 4590 case bitc::METADATA_KIND_BLOCK_ID: 4591 if (Error Err = MDLoader->parseMetadataKinds()) 4592 return Err; 4593 break; 4594 case bitc::FUNCTION_BLOCK_ID: 4595 if (Error Err = ResolveDataLayout()) 4596 return Err; 4597 4598 // If this is the first function body we've seen, reverse the 4599 // FunctionsWithBodies list. 4600 if (!SeenFirstFunctionBody) { 4601 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4602 if (Error Err = globalCleanup()) 4603 return Err; 4604 SeenFirstFunctionBody = true; 4605 } 4606 4607 if (VSTOffset > 0) { 4608 // If we have a VST forward declaration record, make sure we 4609 // parse the VST now if we haven't already. It is needed to 4610 // set up the DeferredFunctionInfo vector for lazy reading. 4611 if (!SeenValueSymbolTable) { 4612 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4613 return Err; 4614 SeenValueSymbolTable = true; 4615 // Fall through so that we record the NextUnreadBit below. 4616 // This is necessary in case we have an anonymous function that 4617 // is later materialized. Since it will not have a VST entry we 4618 // need to fall back to the lazy parse to find its offset. 4619 } else { 4620 // If we have a VST forward declaration record, but have already 4621 // parsed the VST (just above, when the first function body was 4622 // encountered here), then we are resuming the parse after 4623 // materializing functions. The ResumeBit points to the 4624 // start of the last function block recorded in the 4625 // DeferredFunctionInfo map. Skip it. 4626 if (Error Err = Stream.SkipBlock()) 4627 return Err; 4628 continue; 4629 } 4630 } 4631 4632 // Support older bitcode files that did not have the function 4633 // index in the VST, nor a VST forward declaration record, as 4634 // well as anonymous functions that do not have VST entries. 4635 // Build the DeferredFunctionInfo vector on the fly. 4636 if (Error Err = rememberAndSkipFunctionBody()) 4637 return Err; 4638 4639 // Suspend parsing when we reach the function bodies. Subsequent 4640 // materialization calls will resume it when necessary. If the bitcode 4641 // file is old, the symbol table will be at the end instead and will not 4642 // have been seen yet. In this case, just finish the parse now. 4643 if (SeenValueSymbolTable) { 4644 NextUnreadBit = Stream.GetCurrentBitNo(); 4645 // After the VST has been parsed, we need to make sure intrinsic name 4646 // are auto-upgraded. 4647 return globalCleanup(); 4648 } 4649 break; 4650 case bitc::USELIST_BLOCK_ID: 4651 if (Error Err = parseUseLists()) 4652 return Err; 4653 break; 4654 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4655 if (Error Err = parseOperandBundleTags()) 4656 return Err; 4657 break; 4658 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4659 if (Error Err = parseSyncScopeNames()) 4660 return Err; 4661 break; 4662 } 4663 continue; 4664 4665 case BitstreamEntry::Record: 4666 // The interesting case. 4667 break; 4668 } 4669 4670 // Read a record. 4671 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4672 if (!MaybeBitCode) 4673 return MaybeBitCode.takeError(); 4674 switch (unsigned BitCode = MaybeBitCode.get()) { 4675 default: break; // Default behavior, ignore unknown content. 4676 case bitc::MODULE_CODE_VERSION: { 4677 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4678 if (!VersionOrErr) 4679 return VersionOrErr.takeError(); 4680 UseRelativeIDs = *VersionOrErr >= 1; 4681 break; 4682 } 4683 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4684 if (ResolvedDataLayout) 4685 return error("target triple too late in module"); 4686 std::string S; 4687 if (convertToString(Record, 0, S)) 4688 return error("Invalid record"); 4689 TheModule->setTargetTriple(S); 4690 break; 4691 } 4692 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4693 if (ResolvedDataLayout) 4694 return error("datalayout too late in module"); 4695 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4696 return error("Invalid record"); 4697 break; 4698 } 4699 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4700 std::string S; 4701 if (convertToString(Record, 0, S)) 4702 return error("Invalid record"); 4703 TheModule->setModuleInlineAsm(S); 4704 break; 4705 } 4706 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4707 // Deprecated, but still needed to read old bitcode files. 4708 std::string S; 4709 if (convertToString(Record, 0, S)) 4710 return error("Invalid record"); 4711 // Ignore value. 4712 break; 4713 } 4714 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4715 std::string S; 4716 if (convertToString(Record, 0, S)) 4717 return error("Invalid record"); 4718 SectionTable.push_back(S); 4719 break; 4720 } 4721 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4722 std::string S; 4723 if (convertToString(Record, 0, S)) 4724 return error("Invalid record"); 4725 GCTable.push_back(S); 4726 break; 4727 } 4728 case bitc::MODULE_CODE_COMDAT: 4729 if (Error Err = parseComdatRecord(Record)) 4730 return Err; 4731 break; 4732 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4733 // written by ThinLinkBitcodeWriter. See 4734 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4735 // record 4736 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4737 case bitc::MODULE_CODE_GLOBALVAR: 4738 if (Error Err = parseGlobalVarRecord(Record)) 4739 return Err; 4740 break; 4741 case bitc::MODULE_CODE_FUNCTION: 4742 if (Error Err = ResolveDataLayout()) 4743 return Err; 4744 if (Error Err = parseFunctionRecord(Record)) 4745 return Err; 4746 break; 4747 case bitc::MODULE_CODE_IFUNC: 4748 case bitc::MODULE_CODE_ALIAS: 4749 case bitc::MODULE_CODE_ALIAS_OLD: 4750 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4751 return Err; 4752 break; 4753 /// MODULE_CODE_VSTOFFSET: [offset] 4754 case bitc::MODULE_CODE_VSTOFFSET: 4755 if (Record.empty()) 4756 return error("Invalid record"); 4757 // Note that we subtract 1 here because the offset is relative to one word 4758 // before the start of the identification or module block, which was 4759 // historically always the start of the regular bitcode header. 4760 VSTOffset = Record[0] - 1; 4761 break; 4762 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4763 case bitc::MODULE_CODE_SOURCE_FILENAME: 4764 SmallString<128> ValueName; 4765 if (convertToString(Record, 0, ValueName)) 4766 return error("Invalid record"); 4767 TheModule->setSourceFileName(ValueName); 4768 break; 4769 } 4770 Record.clear(); 4771 } 4772 this->ValueTypeCallback = std::nullopt; 4773 return Error::success(); 4774 } 4775 4776 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4777 bool IsImporting, 4778 ParserCallbacks Callbacks) { 4779 TheModule = M; 4780 MetadataLoaderCallbacks MDCallbacks; 4781 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4782 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4783 return getContainedTypeID(I, J); 4784 }; 4785 MDCallbacks.MDType = Callbacks.MDType; 4786 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4787 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4788 } 4789 4790 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4791 if (!isa<PointerType>(PtrType)) 4792 return error("Load/Store operand is not a pointer type"); 4793 if (!PointerType::isLoadableOrStorableType(ValType)) 4794 return error("Cannot load/store from pointer"); 4795 return Error::success(); 4796 } 4797 4798 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4799 ArrayRef<unsigned> ArgTyIDs) { 4800 AttributeList Attrs = CB->getAttributes(); 4801 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4802 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4803 Attribute::InAlloca}) { 4804 if (!Attrs.hasParamAttr(i, Kind) || 4805 Attrs.getParamAttr(i, Kind).getValueAsType()) 4806 continue; 4807 4808 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4809 if (!PtrEltTy) 4810 return error("Missing element type for typed attribute upgrade"); 4811 4812 Attribute NewAttr; 4813 switch (Kind) { 4814 case Attribute::ByVal: 4815 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4816 break; 4817 case Attribute::StructRet: 4818 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4819 break; 4820 case Attribute::InAlloca: 4821 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4822 break; 4823 default: 4824 llvm_unreachable("not an upgraded type attribute"); 4825 } 4826 4827 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4828 } 4829 } 4830 4831 if (CB->isInlineAsm()) { 4832 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4833 unsigned ArgNo = 0; 4834 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4835 if (!CI.hasArg()) 4836 continue; 4837 4838 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4839 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4840 if (!ElemTy) 4841 return error("Missing element type for inline asm upgrade"); 4842 Attrs = Attrs.addParamAttribute( 4843 Context, ArgNo, 4844 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4845 } 4846 4847 ArgNo++; 4848 } 4849 } 4850 4851 switch (CB->getIntrinsicID()) { 4852 case Intrinsic::preserve_array_access_index: 4853 case Intrinsic::preserve_struct_access_index: 4854 case Intrinsic::aarch64_ldaxr: 4855 case Intrinsic::aarch64_ldxr: 4856 case Intrinsic::aarch64_stlxr: 4857 case Intrinsic::aarch64_stxr: 4858 case Intrinsic::arm_ldaex: 4859 case Intrinsic::arm_ldrex: 4860 case Intrinsic::arm_stlex: 4861 case Intrinsic::arm_strex: { 4862 unsigned ArgNo; 4863 switch (CB->getIntrinsicID()) { 4864 case Intrinsic::aarch64_stlxr: 4865 case Intrinsic::aarch64_stxr: 4866 case Intrinsic::arm_stlex: 4867 case Intrinsic::arm_strex: 4868 ArgNo = 1; 4869 break; 4870 default: 4871 ArgNo = 0; 4872 break; 4873 } 4874 if (!Attrs.getParamElementType(ArgNo)) { 4875 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4876 if (!ElTy) 4877 return error("Missing element type for elementtype upgrade"); 4878 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4879 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4880 } 4881 break; 4882 } 4883 default: 4884 break; 4885 } 4886 4887 CB->setAttributes(Attrs); 4888 return Error::success(); 4889 } 4890 4891 /// Lazily parse the specified function body block. 4892 Error BitcodeReader::parseFunctionBody(Function *F) { 4893 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4894 return Err; 4895 4896 // Unexpected unresolved metadata when parsing function. 4897 if (MDLoader->hasFwdRefs()) 4898 return error("Invalid function metadata: incoming forward references"); 4899 4900 InstructionList.clear(); 4901 unsigned ModuleValueListSize = ValueList.size(); 4902 unsigned ModuleMDLoaderSize = MDLoader->size(); 4903 4904 // Add all the function arguments to the value table. 4905 unsigned ArgNo = 0; 4906 unsigned FTyID = FunctionTypeIDs[F]; 4907 for (Argument &I : F->args()) { 4908 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4909 assert(I.getType() == getTypeByID(ArgTyID) && 4910 "Incorrect fully specified type for Function Argument"); 4911 ValueList.push_back(&I, ArgTyID); 4912 ++ArgNo; 4913 } 4914 unsigned NextValueNo = ValueList.size(); 4915 BasicBlock *CurBB = nullptr; 4916 unsigned CurBBNo = 0; 4917 // Block into which constant expressions from phi nodes are materialized. 4918 BasicBlock *PhiConstExprBB = nullptr; 4919 // Edge blocks for phi nodes into which constant expressions have been 4920 // expanded. 4921 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4922 ConstExprEdgeBBs; 4923 4924 DebugLoc LastLoc; 4925 auto getLastInstruction = [&]() -> Instruction * { 4926 if (CurBB && !CurBB->empty()) 4927 return &CurBB->back(); 4928 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4929 !FunctionBBs[CurBBNo - 1]->empty()) 4930 return &FunctionBBs[CurBBNo - 1]->back(); 4931 return nullptr; 4932 }; 4933 4934 std::vector<OperandBundleDef> OperandBundles; 4935 4936 // Read all the records. 4937 SmallVector<uint64_t, 64> Record; 4938 4939 while (true) { 4940 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4941 if (!MaybeEntry) 4942 return MaybeEntry.takeError(); 4943 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4944 4945 switch (Entry.Kind) { 4946 case BitstreamEntry::Error: 4947 return error("Malformed block"); 4948 case BitstreamEntry::EndBlock: 4949 goto OutOfRecordLoop; 4950 4951 case BitstreamEntry::SubBlock: 4952 switch (Entry.ID) { 4953 default: // Skip unknown content. 4954 if (Error Err = Stream.SkipBlock()) 4955 return Err; 4956 break; 4957 case bitc::CONSTANTS_BLOCK_ID: 4958 if (Error Err = parseConstants()) 4959 return Err; 4960 NextValueNo = ValueList.size(); 4961 break; 4962 case bitc::VALUE_SYMTAB_BLOCK_ID: 4963 if (Error Err = parseValueSymbolTable()) 4964 return Err; 4965 break; 4966 case bitc::METADATA_ATTACHMENT_ID: 4967 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4968 return Err; 4969 break; 4970 case bitc::METADATA_BLOCK_ID: 4971 assert(DeferredMetadataInfo.empty() && 4972 "Must read all module-level metadata before function-level"); 4973 if (Error Err = MDLoader->parseFunctionMetadata()) 4974 return Err; 4975 break; 4976 case bitc::USELIST_BLOCK_ID: 4977 if (Error Err = parseUseLists()) 4978 return Err; 4979 break; 4980 } 4981 continue; 4982 4983 case BitstreamEntry::Record: 4984 // The interesting case. 4985 break; 4986 } 4987 4988 // Read a record. 4989 Record.clear(); 4990 Instruction *I = nullptr; 4991 unsigned ResTypeID = InvalidTypeID; 4992 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4993 if (!MaybeBitCode) 4994 return MaybeBitCode.takeError(); 4995 switch (unsigned BitCode = MaybeBitCode.get()) { 4996 default: // Default behavior: reject 4997 return error("Invalid value"); 4998 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4999 if (Record.empty() || Record[0] == 0) 5000 return error("Invalid record"); 5001 // Create all the basic blocks for the function. 5002 FunctionBBs.resize(Record[0]); 5003 5004 // See if anything took the address of blocks in this function. 5005 auto BBFRI = BasicBlockFwdRefs.find(F); 5006 if (BBFRI == BasicBlockFwdRefs.end()) { 5007 for (BasicBlock *&BB : FunctionBBs) 5008 BB = BasicBlock::Create(Context, "", F); 5009 } else { 5010 auto &BBRefs = BBFRI->second; 5011 // Check for invalid basic block references. 5012 if (BBRefs.size() > FunctionBBs.size()) 5013 return error("Invalid ID"); 5014 assert(!BBRefs.empty() && "Unexpected empty array"); 5015 assert(!BBRefs.front() && "Invalid reference to entry block"); 5016 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 5017 ++I) 5018 if (I < RE && BBRefs[I]) { 5019 BBRefs[I]->insertInto(F); 5020 FunctionBBs[I] = BBRefs[I]; 5021 } else { 5022 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 5023 } 5024 5025 // Erase from the table. 5026 BasicBlockFwdRefs.erase(BBFRI); 5027 } 5028 5029 CurBB = FunctionBBs[0]; 5030 continue; 5031 } 5032 5033 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 5034 // The record should not be emitted if it's an empty list. 5035 if (Record.empty()) 5036 return error("Invalid record"); 5037 // When we have the RARE case of a BlockAddress Constant that is not 5038 // scoped to the Function it refers to, we need to conservatively 5039 // materialize the referred to Function, regardless of whether or not 5040 // that Function will ultimately be linked, otherwise users of 5041 // BitcodeReader might start splicing out Function bodies such that we 5042 // might no longer be able to materialize the BlockAddress since the 5043 // BasicBlock (and entire body of the Function) the BlockAddress refers 5044 // to may have been moved. In the case that the user of BitcodeReader 5045 // decides ultimately not to link the Function body, materializing here 5046 // could be considered wasteful, but it's better than a deserialization 5047 // failure as described. This keeps BitcodeReader unaware of complex 5048 // linkage policy decisions such as those use by LTO, leaving those 5049 // decisions "one layer up." 5050 for (uint64_t ValID : Record) 5051 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5052 BackwardRefFunctions.push_back(F); 5053 else 5054 return error("Invalid record"); 5055 5056 continue; 5057 5058 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5059 // This record indicates that the last instruction is at the same 5060 // location as the previous instruction with a location. 5061 I = getLastInstruction(); 5062 5063 if (!I) 5064 return error("Invalid record"); 5065 I->setDebugLoc(LastLoc); 5066 I = nullptr; 5067 continue; 5068 5069 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5070 I = getLastInstruction(); 5071 if (!I || Record.size() < 4) 5072 return error("Invalid record"); 5073 5074 unsigned Line = Record[0], Col = Record[1]; 5075 unsigned ScopeID = Record[2], IAID = Record[3]; 5076 bool isImplicitCode = Record.size() == 5 && Record[4]; 5077 5078 MDNode *Scope = nullptr, *IA = nullptr; 5079 if (ScopeID) { 5080 Scope = dyn_cast_or_null<MDNode>( 5081 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5082 if (!Scope) 5083 return error("Invalid record"); 5084 } 5085 if (IAID) { 5086 IA = dyn_cast_or_null<MDNode>( 5087 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5088 if (!IA) 5089 return error("Invalid record"); 5090 } 5091 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5092 isImplicitCode); 5093 I->setDebugLoc(LastLoc); 5094 I = nullptr; 5095 continue; 5096 } 5097 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5098 unsigned OpNum = 0; 5099 Value *LHS; 5100 unsigned TypeID; 5101 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5102 OpNum+1 > Record.size()) 5103 return error("Invalid record"); 5104 5105 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5106 if (Opc == -1) 5107 return error("Invalid record"); 5108 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5109 ResTypeID = TypeID; 5110 InstructionList.push_back(I); 5111 if (OpNum < Record.size()) { 5112 if (isa<FPMathOperator>(I)) { 5113 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5114 if (FMF.any()) 5115 I->setFastMathFlags(FMF); 5116 } 5117 } 5118 break; 5119 } 5120 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5121 unsigned OpNum = 0; 5122 Value *LHS, *RHS; 5123 unsigned TypeID; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5125 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5126 CurBB) || 5127 OpNum+1 > Record.size()) 5128 return error("Invalid record"); 5129 5130 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5131 if (Opc == -1) 5132 return error("Invalid record"); 5133 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5134 ResTypeID = TypeID; 5135 InstructionList.push_back(I); 5136 if (OpNum < Record.size()) { 5137 if (Opc == Instruction::Add || 5138 Opc == Instruction::Sub || 5139 Opc == Instruction::Mul || 5140 Opc == Instruction::Shl) { 5141 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5142 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5143 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5144 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5145 } else if (Opc == Instruction::SDiv || 5146 Opc == Instruction::UDiv || 5147 Opc == Instruction::LShr || 5148 Opc == Instruction::AShr) { 5149 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5150 cast<BinaryOperator>(I)->setIsExact(true); 5151 } else if (Opc == Instruction::Or) { 5152 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5153 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5154 } else if (isa<FPMathOperator>(I)) { 5155 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5156 if (FMF.any()) 5157 I->setFastMathFlags(FMF); 5158 } 5159 } 5160 break; 5161 } 5162 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5163 unsigned OpNum = 0; 5164 Value *Op; 5165 unsigned OpTypeID; 5166 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5167 OpNum + 1 > Record.size()) 5168 return error("Invalid record"); 5169 5170 ResTypeID = Record[OpNum++]; 5171 Type *ResTy = getTypeByID(ResTypeID); 5172 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5173 5174 if (Opc == -1 || !ResTy) 5175 return error("Invalid record"); 5176 Instruction *Temp = nullptr; 5177 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5178 if (Temp) { 5179 InstructionList.push_back(Temp); 5180 assert(CurBB && "No current BB?"); 5181 Temp->insertInto(CurBB, CurBB->end()); 5182 } 5183 } else { 5184 auto CastOp = (Instruction::CastOps)Opc; 5185 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5186 return error("Invalid cast"); 5187 I = CastInst::Create(CastOp, Op, ResTy); 5188 } 5189 5190 if (OpNum < Record.size()) { 5191 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5192 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5193 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5194 } else if (Opc == Instruction::Trunc) { 5195 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5196 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5197 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5198 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5199 } 5200 } 5201 5202 InstructionList.push_back(I); 5203 break; 5204 } 5205 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5206 case bitc::FUNC_CODE_INST_GEP_OLD: 5207 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5208 unsigned OpNum = 0; 5209 5210 unsigned TyID; 5211 Type *Ty; 5212 GEPNoWrapFlags NW; 5213 5214 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5215 NW = toGEPNoWrapFlags(Record[OpNum++]); 5216 TyID = Record[OpNum++]; 5217 Ty = getTypeByID(TyID); 5218 } else { 5219 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5220 NW = GEPNoWrapFlags::inBounds(); 5221 TyID = InvalidTypeID; 5222 Ty = nullptr; 5223 } 5224 5225 Value *BasePtr; 5226 unsigned BasePtrTypeID; 5227 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5228 CurBB)) 5229 return error("Invalid record"); 5230 5231 if (!Ty) { 5232 TyID = getContainedTypeID(BasePtrTypeID); 5233 if (BasePtr->getType()->isVectorTy()) 5234 TyID = getContainedTypeID(TyID); 5235 Ty = getTypeByID(TyID); 5236 } 5237 5238 SmallVector<Value*, 16> GEPIdx; 5239 while (OpNum != Record.size()) { 5240 Value *Op; 5241 unsigned OpTypeID; 5242 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5243 return error("Invalid record"); 5244 GEPIdx.push_back(Op); 5245 } 5246 5247 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5248 I = GEP; 5249 5250 ResTypeID = TyID; 5251 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5252 auto GTI = std::next(gep_type_begin(I)); 5253 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5254 unsigned SubType = 0; 5255 if (GTI.isStruct()) { 5256 ConstantInt *IdxC = 5257 Idx->getType()->isVectorTy() 5258 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5259 : cast<ConstantInt>(Idx); 5260 SubType = IdxC->getZExtValue(); 5261 } 5262 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5263 ++GTI; 5264 } 5265 } 5266 5267 // At this point ResTypeID is the result element type. We need a pointer 5268 // or vector of pointer to it. 5269 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5270 if (I->getType()->isVectorTy()) 5271 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5272 5273 InstructionList.push_back(I); 5274 GEP->setNoWrapFlags(NW); 5275 break; 5276 } 5277 5278 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5279 // EXTRACTVAL: [opty, opval, n x indices] 5280 unsigned OpNum = 0; 5281 Value *Agg; 5282 unsigned AggTypeID; 5283 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5284 return error("Invalid record"); 5285 Type *Ty = Agg->getType(); 5286 5287 unsigned RecSize = Record.size(); 5288 if (OpNum == RecSize) 5289 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5290 5291 SmallVector<unsigned, 4> EXTRACTVALIdx; 5292 ResTypeID = AggTypeID; 5293 for (; OpNum != RecSize; ++OpNum) { 5294 bool IsArray = Ty->isArrayTy(); 5295 bool IsStruct = Ty->isStructTy(); 5296 uint64_t Index = Record[OpNum]; 5297 5298 if (!IsStruct && !IsArray) 5299 return error("EXTRACTVAL: Invalid type"); 5300 if ((unsigned)Index != Index) 5301 return error("Invalid value"); 5302 if (IsStruct && Index >= Ty->getStructNumElements()) 5303 return error("EXTRACTVAL: Invalid struct index"); 5304 if (IsArray && Index >= Ty->getArrayNumElements()) 5305 return error("EXTRACTVAL: Invalid array index"); 5306 EXTRACTVALIdx.push_back((unsigned)Index); 5307 5308 if (IsStruct) { 5309 Ty = Ty->getStructElementType(Index); 5310 ResTypeID = getContainedTypeID(ResTypeID, Index); 5311 } else { 5312 Ty = Ty->getArrayElementType(); 5313 ResTypeID = getContainedTypeID(ResTypeID); 5314 } 5315 } 5316 5317 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5318 InstructionList.push_back(I); 5319 break; 5320 } 5321 5322 case bitc::FUNC_CODE_INST_INSERTVAL: { 5323 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5324 unsigned OpNum = 0; 5325 Value *Agg; 5326 unsigned AggTypeID; 5327 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5328 return error("Invalid record"); 5329 Value *Val; 5330 unsigned ValTypeID; 5331 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5332 return error("Invalid record"); 5333 5334 unsigned RecSize = Record.size(); 5335 if (OpNum == RecSize) 5336 return error("INSERTVAL: Invalid instruction with 0 indices"); 5337 5338 SmallVector<unsigned, 4> INSERTVALIdx; 5339 Type *CurTy = Agg->getType(); 5340 for (; OpNum != RecSize; ++OpNum) { 5341 bool IsArray = CurTy->isArrayTy(); 5342 bool IsStruct = CurTy->isStructTy(); 5343 uint64_t Index = Record[OpNum]; 5344 5345 if (!IsStruct && !IsArray) 5346 return error("INSERTVAL: Invalid type"); 5347 if ((unsigned)Index != Index) 5348 return error("Invalid value"); 5349 if (IsStruct && Index >= CurTy->getStructNumElements()) 5350 return error("INSERTVAL: Invalid struct index"); 5351 if (IsArray && Index >= CurTy->getArrayNumElements()) 5352 return error("INSERTVAL: Invalid array index"); 5353 5354 INSERTVALIdx.push_back((unsigned)Index); 5355 if (IsStruct) 5356 CurTy = CurTy->getStructElementType(Index); 5357 else 5358 CurTy = CurTy->getArrayElementType(); 5359 } 5360 5361 if (CurTy != Val->getType()) 5362 return error("Inserted value type doesn't match aggregate type"); 5363 5364 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5365 ResTypeID = AggTypeID; 5366 InstructionList.push_back(I); 5367 break; 5368 } 5369 5370 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5371 // obsolete form of select 5372 // handles select i1 ... in old bitcode 5373 unsigned OpNum = 0; 5374 Value *TrueVal, *FalseVal, *Cond; 5375 unsigned TypeID; 5376 Type *CondType = Type::getInt1Ty(Context); 5377 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5378 CurBB) || 5379 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5380 FalseVal, CurBB) || 5381 popValue(Record, OpNum, NextValueNo, CondType, 5382 getVirtualTypeID(CondType), Cond, CurBB)) 5383 return error("Invalid record"); 5384 5385 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5386 ResTypeID = TypeID; 5387 InstructionList.push_back(I); 5388 break; 5389 } 5390 5391 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5392 // new form of select 5393 // handles select i1 or select [N x i1] 5394 unsigned OpNum = 0; 5395 Value *TrueVal, *FalseVal, *Cond; 5396 unsigned ValTypeID, CondTypeID; 5397 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5398 CurBB) || 5399 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5400 FalseVal, CurBB) || 5401 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5402 return error("Invalid record"); 5403 5404 // select condition can be either i1 or [N x i1] 5405 if (VectorType* vector_type = 5406 dyn_cast<VectorType>(Cond->getType())) { 5407 // expect <n x i1> 5408 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5409 return error("Invalid type for value"); 5410 } else { 5411 // expect i1 5412 if (Cond->getType() != Type::getInt1Ty(Context)) 5413 return error("Invalid type for value"); 5414 } 5415 5416 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5417 ResTypeID = ValTypeID; 5418 InstructionList.push_back(I); 5419 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5420 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5421 if (FMF.any()) 5422 I->setFastMathFlags(FMF); 5423 } 5424 break; 5425 } 5426 5427 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5428 unsigned OpNum = 0; 5429 Value *Vec, *Idx; 5430 unsigned VecTypeID, IdxTypeID; 5431 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5432 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5433 return error("Invalid record"); 5434 if (!Vec->getType()->isVectorTy()) 5435 return error("Invalid type for value"); 5436 I = ExtractElementInst::Create(Vec, Idx); 5437 ResTypeID = getContainedTypeID(VecTypeID); 5438 InstructionList.push_back(I); 5439 break; 5440 } 5441 5442 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5443 unsigned OpNum = 0; 5444 Value *Vec, *Elt, *Idx; 5445 unsigned VecTypeID, IdxTypeID; 5446 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5447 return error("Invalid record"); 5448 if (!Vec->getType()->isVectorTy()) 5449 return error("Invalid type for value"); 5450 if (popValue(Record, OpNum, NextValueNo, 5451 cast<VectorType>(Vec->getType())->getElementType(), 5452 getContainedTypeID(VecTypeID), Elt, CurBB) || 5453 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5454 return error("Invalid record"); 5455 I = InsertElementInst::Create(Vec, Elt, Idx); 5456 ResTypeID = VecTypeID; 5457 InstructionList.push_back(I); 5458 break; 5459 } 5460 5461 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5462 unsigned OpNum = 0; 5463 Value *Vec1, *Vec2, *Mask; 5464 unsigned Vec1TypeID; 5465 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5466 CurBB) || 5467 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5468 Vec2, CurBB)) 5469 return error("Invalid record"); 5470 5471 unsigned MaskTypeID; 5472 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5473 return error("Invalid record"); 5474 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5475 return error("Invalid type for value"); 5476 5477 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5478 ResTypeID = 5479 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5480 InstructionList.push_back(I); 5481 break; 5482 } 5483 5484 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5485 // Old form of ICmp/FCmp returning bool 5486 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5487 // both legal on vectors but had different behaviour. 5488 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5489 // FCmp/ICmp returning bool or vector of bool 5490 5491 unsigned OpNum = 0; 5492 Value *LHS, *RHS; 5493 unsigned LHSTypeID; 5494 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5495 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5496 CurBB)) 5497 return error("Invalid record"); 5498 5499 if (OpNum >= Record.size()) 5500 return error( 5501 "Invalid record: operand number exceeded available operands"); 5502 5503 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5504 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5505 FastMathFlags FMF; 5506 if (IsFP && Record.size() > OpNum+1) 5507 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5508 5509 if (IsFP) { 5510 if (!CmpInst::isFPPredicate(PredVal)) 5511 return error("Invalid fcmp predicate"); 5512 I = new FCmpInst(PredVal, LHS, RHS); 5513 } else { 5514 if (!CmpInst::isIntPredicate(PredVal)) 5515 return error("Invalid icmp predicate"); 5516 I = new ICmpInst(PredVal, LHS, RHS); 5517 if (Record.size() > OpNum + 1 && 5518 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN))) 5519 cast<ICmpInst>(I)->setSameSign(); 5520 } 5521 5522 if (OpNum + 1 != Record.size()) 5523 return error("Invalid record"); 5524 5525 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5526 if (LHS->getType()->isVectorTy()) 5527 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5528 5529 if (FMF.any()) 5530 I->setFastMathFlags(FMF); 5531 InstructionList.push_back(I); 5532 break; 5533 } 5534 5535 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5536 { 5537 unsigned Size = Record.size(); 5538 if (Size == 0) { 5539 I = ReturnInst::Create(Context); 5540 InstructionList.push_back(I); 5541 break; 5542 } 5543 5544 unsigned OpNum = 0; 5545 Value *Op = nullptr; 5546 unsigned OpTypeID; 5547 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5548 return error("Invalid record"); 5549 if (OpNum != Record.size()) 5550 return error("Invalid record"); 5551 5552 I = ReturnInst::Create(Context, Op); 5553 InstructionList.push_back(I); 5554 break; 5555 } 5556 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5557 if (Record.size() != 1 && Record.size() != 3) 5558 return error("Invalid record"); 5559 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5560 if (!TrueDest) 5561 return error("Invalid record"); 5562 5563 if (Record.size() == 1) { 5564 I = BranchInst::Create(TrueDest); 5565 InstructionList.push_back(I); 5566 } 5567 else { 5568 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5569 Type *CondType = Type::getInt1Ty(Context); 5570 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5571 getVirtualTypeID(CondType), CurBB); 5572 if (!FalseDest || !Cond) 5573 return error("Invalid record"); 5574 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5575 InstructionList.push_back(I); 5576 } 5577 break; 5578 } 5579 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5580 if (Record.size() != 1 && Record.size() != 2) 5581 return error("Invalid record"); 5582 unsigned Idx = 0; 5583 Type *TokenTy = Type::getTokenTy(Context); 5584 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5585 getVirtualTypeID(TokenTy), CurBB); 5586 if (!CleanupPad) 5587 return error("Invalid record"); 5588 BasicBlock *UnwindDest = nullptr; 5589 if (Record.size() == 2) { 5590 UnwindDest = getBasicBlock(Record[Idx++]); 5591 if (!UnwindDest) 5592 return error("Invalid record"); 5593 } 5594 5595 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5596 InstructionList.push_back(I); 5597 break; 5598 } 5599 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5600 if (Record.size() != 2) 5601 return error("Invalid record"); 5602 unsigned Idx = 0; 5603 Type *TokenTy = Type::getTokenTy(Context); 5604 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5605 getVirtualTypeID(TokenTy), CurBB); 5606 if (!CatchPad) 5607 return error("Invalid record"); 5608 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5609 if (!BB) 5610 return error("Invalid record"); 5611 5612 I = CatchReturnInst::Create(CatchPad, BB); 5613 InstructionList.push_back(I); 5614 break; 5615 } 5616 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5617 // We must have, at minimum, the outer scope and the number of arguments. 5618 if (Record.size() < 2) 5619 return error("Invalid record"); 5620 5621 unsigned Idx = 0; 5622 5623 Type *TokenTy = Type::getTokenTy(Context); 5624 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5625 getVirtualTypeID(TokenTy), CurBB); 5626 if (!ParentPad) 5627 return error("Invalid record"); 5628 5629 unsigned NumHandlers = Record[Idx++]; 5630 5631 SmallVector<BasicBlock *, 2> Handlers; 5632 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5633 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5634 if (!BB) 5635 return error("Invalid record"); 5636 Handlers.push_back(BB); 5637 } 5638 5639 BasicBlock *UnwindDest = nullptr; 5640 if (Idx + 1 == Record.size()) { 5641 UnwindDest = getBasicBlock(Record[Idx++]); 5642 if (!UnwindDest) 5643 return error("Invalid record"); 5644 } 5645 5646 if (Record.size() != Idx) 5647 return error("Invalid record"); 5648 5649 auto *CatchSwitch = 5650 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5651 for (BasicBlock *Handler : Handlers) 5652 CatchSwitch->addHandler(Handler); 5653 I = CatchSwitch; 5654 ResTypeID = getVirtualTypeID(I->getType()); 5655 InstructionList.push_back(I); 5656 break; 5657 } 5658 case bitc::FUNC_CODE_INST_CATCHPAD: 5659 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5660 // We must have, at minimum, the outer scope and the number of arguments. 5661 if (Record.size() < 2) 5662 return error("Invalid record"); 5663 5664 unsigned Idx = 0; 5665 5666 Type *TokenTy = Type::getTokenTy(Context); 5667 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5668 getVirtualTypeID(TokenTy), CurBB); 5669 if (!ParentPad) 5670 return error("Invald record"); 5671 5672 unsigned NumArgOperands = Record[Idx++]; 5673 5674 SmallVector<Value *, 2> Args; 5675 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5676 Value *Val; 5677 unsigned ValTypeID; 5678 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5679 return error("Invalid record"); 5680 Args.push_back(Val); 5681 } 5682 5683 if (Record.size() != Idx) 5684 return error("Invalid record"); 5685 5686 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5687 I = CleanupPadInst::Create(ParentPad, Args); 5688 else 5689 I = CatchPadInst::Create(ParentPad, Args); 5690 ResTypeID = getVirtualTypeID(I->getType()); 5691 InstructionList.push_back(I); 5692 break; 5693 } 5694 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5695 // Check magic 5696 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5697 // "New" SwitchInst format with case ranges. The changes to write this 5698 // format were reverted but we still recognize bitcode that uses it. 5699 // Hopefully someday we will have support for case ranges and can use 5700 // this format again. 5701 5702 unsigned OpTyID = Record[1]; 5703 Type *OpTy = getTypeByID(OpTyID); 5704 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5705 5706 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5707 BasicBlock *Default = getBasicBlock(Record[3]); 5708 if (!OpTy || !Cond || !Default) 5709 return error("Invalid record"); 5710 5711 unsigned NumCases = Record[4]; 5712 5713 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5714 InstructionList.push_back(SI); 5715 5716 unsigned CurIdx = 5; 5717 for (unsigned i = 0; i != NumCases; ++i) { 5718 SmallVector<ConstantInt*, 1> CaseVals; 5719 unsigned NumItems = Record[CurIdx++]; 5720 for (unsigned ci = 0; ci != NumItems; ++ci) { 5721 bool isSingleNumber = Record[CurIdx++]; 5722 5723 APInt Low; 5724 unsigned ActiveWords = 1; 5725 if (ValueBitWidth > 64) 5726 ActiveWords = Record[CurIdx++]; 5727 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5728 ValueBitWidth); 5729 CurIdx += ActiveWords; 5730 5731 if (!isSingleNumber) { 5732 ActiveWords = 1; 5733 if (ValueBitWidth > 64) 5734 ActiveWords = Record[CurIdx++]; 5735 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5736 ValueBitWidth); 5737 CurIdx += ActiveWords; 5738 5739 // FIXME: It is not clear whether values in the range should be 5740 // compared as signed or unsigned values. The partially 5741 // implemented changes that used this format in the past used 5742 // unsigned comparisons. 5743 for ( ; Low.ule(High); ++Low) 5744 CaseVals.push_back(ConstantInt::get(Context, Low)); 5745 } else 5746 CaseVals.push_back(ConstantInt::get(Context, Low)); 5747 } 5748 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5749 for (ConstantInt *Cst : CaseVals) 5750 SI->addCase(Cst, DestBB); 5751 } 5752 I = SI; 5753 break; 5754 } 5755 5756 // Old SwitchInst format without case ranges. 5757 5758 if (Record.size() < 3 || (Record.size() & 1) == 0) 5759 return error("Invalid record"); 5760 unsigned OpTyID = Record[0]; 5761 Type *OpTy = getTypeByID(OpTyID); 5762 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5763 BasicBlock *Default = getBasicBlock(Record[2]); 5764 if (!OpTy || !Cond || !Default) 5765 return error("Invalid record"); 5766 unsigned NumCases = (Record.size()-3)/2; 5767 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5768 InstructionList.push_back(SI); 5769 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5770 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5771 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5772 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5773 if (!CaseVal || !DestBB) { 5774 delete SI; 5775 return error("Invalid record"); 5776 } 5777 SI->addCase(CaseVal, DestBB); 5778 } 5779 I = SI; 5780 break; 5781 } 5782 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5783 if (Record.size() < 2) 5784 return error("Invalid record"); 5785 unsigned OpTyID = Record[0]; 5786 Type *OpTy = getTypeByID(OpTyID); 5787 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5788 if (!OpTy || !Address) 5789 return error("Invalid record"); 5790 unsigned NumDests = Record.size()-2; 5791 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5792 InstructionList.push_back(IBI); 5793 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5794 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5795 IBI->addDestination(DestBB); 5796 } else { 5797 delete IBI; 5798 return error("Invalid record"); 5799 } 5800 } 5801 I = IBI; 5802 break; 5803 } 5804 5805 case bitc::FUNC_CODE_INST_INVOKE: { 5806 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5807 if (Record.size() < 4) 5808 return error("Invalid record"); 5809 unsigned OpNum = 0; 5810 AttributeList PAL = getAttributes(Record[OpNum++]); 5811 unsigned CCInfo = Record[OpNum++]; 5812 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5813 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5814 5815 unsigned FTyID = InvalidTypeID; 5816 FunctionType *FTy = nullptr; 5817 if ((CCInfo >> 13) & 1) { 5818 FTyID = Record[OpNum++]; 5819 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5820 if (!FTy) 5821 return error("Explicit invoke type is not a function type"); 5822 } 5823 5824 Value *Callee; 5825 unsigned CalleeTypeID; 5826 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5827 CurBB)) 5828 return error("Invalid record"); 5829 5830 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5831 if (!CalleeTy) 5832 return error("Callee is not a pointer"); 5833 if (!FTy) { 5834 FTyID = getContainedTypeID(CalleeTypeID); 5835 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5836 if (!FTy) 5837 return error("Callee is not of pointer to function type"); 5838 } 5839 if (Record.size() < FTy->getNumParams() + OpNum) 5840 return error("Insufficient operands to call"); 5841 5842 SmallVector<Value*, 16> Ops; 5843 SmallVector<unsigned, 16> ArgTyIDs; 5844 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5845 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5846 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5847 ArgTyID, CurBB)); 5848 ArgTyIDs.push_back(ArgTyID); 5849 if (!Ops.back()) 5850 return error("Invalid record"); 5851 } 5852 5853 if (!FTy->isVarArg()) { 5854 if (Record.size() != OpNum) 5855 return error("Invalid record"); 5856 } else { 5857 // Read type/value pairs for varargs params. 5858 while (OpNum != Record.size()) { 5859 Value *Op; 5860 unsigned OpTypeID; 5861 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5862 return error("Invalid record"); 5863 Ops.push_back(Op); 5864 ArgTyIDs.push_back(OpTypeID); 5865 } 5866 } 5867 5868 // Upgrade the bundles if needed. 5869 if (!OperandBundles.empty()) 5870 UpgradeOperandBundles(OperandBundles); 5871 5872 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5873 OperandBundles); 5874 ResTypeID = getContainedTypeID(FTyID); 5875 OperandBundles.clear(); 5876 InstructionList.push_back(I); 5877 cast<InvokeInst>(I)->setCallingConv( 5878 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5879 cast<InvokeInst>(I)->setAttributes(PAL); 5880 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5881 I->deleteValue(); 5882 return Err; 5883 } 5884 5885 break; 5886 } 5887 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5888 unsigned Idx = 0; 5889 Value *Val = nullptr; 5890 unsigned ValTypeID; 5891 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5892 return error("Invalid record"); 5893 I = ResumeInst::Create(Val); 5894 InstructionList.push_back(I); 5895 break; 5896 } 5897 case bitc::FUNC_CODE_INST_CALLBR: { 5898 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5899 unsigned OpNum = 0; 5900 AttributeList PAL = getAttributes(Record[OpNum++]); 5901 unsigned CCInfo = Record[OpNum++]; 5902 5903 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5904 unsigned NumIndirectDests = Record[OpNum++]; 5905 SmallVector<BasicBlock *, 16> IndirectDests; 5906 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5907 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5908 5909 unsigned FTyID = InvalidTypeID; 5910 FunctionType *FTy = nullptr; 5911 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5912 FTyID = Record[OpNum++]; 5913 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5914 if (!FTy) 5915 return error("Explicit call type is not a function type"); 5916 } 5917 5918 Value *Callee; 5919 unsigned CalleeTypeID; 5920 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5921 CurBB)) 5922 return error("Invalid record"); 5923 5924 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5925 if (!OpTy) 5926 return error("Callee is not a pointer type"); 5927 if (!FTy) { 5928 FTyID = getContainedTypeID(CalleeTypeID); 5929 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5930 if (!FTy) 5931 return error("Callee is not of pointer to function type"); 5932 } 5933 if (Record.size() < FTy->getNumParams() + OpNum) 5934 return error("Insufficient operands to call"); 5935 5936 SmallVector<Value*, 16> Args; 5937 SmallVector<unsigned, 16> ArgTyIDs; 5938 // Read the fixed params. 5939 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5940 Value *Arg; 5941 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5942 if (FTy->getParamType(i)->isLabelTy()) 5943 Arg = getBasicBlock(Record[OpNum]); 5944 else 5945 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5946 ArgTyID, CurBB); 5947 if (!Arg) 5948 return error("Invalid record"); 5949 Args.push_back(Arg); 5950 ArgTyIDs.push_back(ArgTyID); 5951 } 5952 5953 // Read type/value pairs for varargs params. 5954 if (!FTy->isVarArg()) { 5955 if (OpNum != Record.size()) 5956 return error("Invalid record"); 5957 } else { 5958 while (OpNum != Record.size()) { 5959 Value *Op; 5960 unsigned OpTypeID; 5961 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5962 return error("Invalid record"); 5963 Args.push_back(Op); 5964 ArgTyIDs.push_back(OpTypeID); 5965 } 5966 } 5967 5968 // Upgrade the bundles if needed. 5969 if (!OperandBundles.empty()) 5970 UpgradeOperandBundles(OperandBundles); 5971 5972 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5973 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5974 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5975 return CI.Type == InlineAsm::isLabel; 5976 }; 5977 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5978 // Upgrade explicit blockaddress arguments to label constraints. 5979 // Verify that the last arguments are blockaddress arguments that 5980 // match the indirect destinations. Clang always generates callbr 5981 // in this form. We could support reordering with more effort. 5982 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5983 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5984 unsigned LabelNo = ArgNo - FirstBlockArg; 5985 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5986 if (!BA || BA->getFunction() != F || 5987 LabelNo > IndirectDests.size() || 5988 BA->getBasicBlock() != IndirectDests[LabelNo]) 5989 return error("callbr argument does not match indirect dest"); 5990 } 5991 5992 // Remove blockaddress arguments. 5993 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5994 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5995 5996 // Recreate the function type with less arguments. 5997 SmallVector<Type *> ArgTys; 5998 for (Value *Arg : Args) 5999 ArgTys.push_back(Arg->getType()); 6000 FTy = 6001 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 6002 6003 // Update constraint string to use label constraints. 6004 std::string Constraints = IA->getConstraintString(); 6005 unsigned ArgNo = 0; 6006 size_t Pos = 0; 6007 for (const auto &CI : ConstraintInfo) { 6008 if (CI.hasArg()) { 6009 if (ArgNo >= FirstBlockArg) 6010 Constraints.insert(Pos, "!"); 6011 ++ArgNo; 6012 } 6013 6014 // Go to next constraint in string. 6015 Pos = Constraints.find(',', Pos); 6016 if (Pos == std::string::npos) 6017 break; 6018 ++Pos; 6019 } 6020 6021 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 6022 IA->hasSideEffects(), IA->isAlignStack(), 6023 IA->getDialect(), IA->canThrow()); 6024 } 6025 } 6026 6027 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 6028 OperandBundles); 6029 ResTypeID = getContainedTypeID(FTyID); 6030 OperandBundles.clear(); 6031 InstructionList.push_back(I); 6032 cast<CallBrInst>(I)->setCallingConv( 6033 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6034 cast<CallBrInst>(I)->setAttributes(PAL); 6035 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6036 I->deleteValue(); 6037 return Err; 6038 } 6039 break; 6040 } 6041 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6042 I = new UnreachableInst(Context); 6043 InstructionList.push_back(I); 6044 break; 6045 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6046 if (Record.empty()) 6047 return error("Invalid phi record"); 6048 // The first record specifies the type. 6049 unsigned TyID = Record[0]; 6050 Type *Ty = getTypeByID(TyID); 6051 if (!Ty) 6052 return error("Invalid phi record"); 6053 6054 // Phi arguments are pairs of records of [value, basic block]. 6055 // There is an optional final record for fast-math-flags if this phi has a 6056 // floating-point type. 6057 size_t NumArgs = (Record.size() - 1) / 2; 6058 PHINode *PN = PHINode::Create(Ty, NumArgs); 6059 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6060 PN->deleteValue(); 6061 return error("Invalid phi record"); 6062 } 6063 InstructionList.push_back(PN); 6064 6065 SmallDenseMap<BasicBlock *, Value *> Args; 6066 for (unsigned i = 0; i != NumArgs; i++) { 6067 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6068 if (!BB) { 6069 PN->deleteValue(); 6070 return error("Invalid phi BB"); 6071 } 6072 6073 // Phi nodes may contain the same predecessor multiple times, in which 6074 // case the incoming value must be identical. Directly reuse the already 6075 // seen value here, to avoid expanding a constant expression multiple 6076 // times. 6077 auto It = Args.find(BB); 6078 if (It != Args.end()) { 6079 PN->addIncoming(It->second, BB); 6080 continue; 6081 } 6082 6083 // If there already is a block for this edge (from a different phi), 6084 // use it. 6085 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6086 if (!EdgeBB) { 6087 // Otherwise, use a temporary block (that we will discard if it 6088 // turns out to be unnecessary). 6089 if (!PhiConstExprBB) 6090 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6091 EdgeBB = PhiConstExprBB; 6092 } 6093 6094 // With the new function encoding, it is possible that operands have 6095 // negative IDs (for forward references). Use a signed VBR 6096 // representation to keep the encoding small. 6097 Value *V; 6098 if (UseRelativeIDs) 6099 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6100 else 6101 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6102 if (!V) { 6103 PN->deleteValue(); 6104 PhiConstExprBB->eraseFromParent(); 6105 return error("Invalid phi record"); 6106 } 6107 6108 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6109 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6110 PhiConstExprBB = nullptr; 6111 } 6112 PN->addIncoming(V, BB); 6113 Args.insert({BB, V}); 6114 } 6115 I = PN; 6116 ResTypeID = TyID; 6117 6118 // If there are an even number of records, the final record must be FMF. 6119 if (Record.size() % 2 == 0) { 6120 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6121 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6122 if (FMF.any()) 6123 I->setFastMathFlags(FMF); 6124 } 6125 6126 break; 6127 } 6128 6129 case bitc::FUNC_CODE_INST_LANDINGPAD: 6130 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6131 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6132 unsigned Idx = 0; 6133 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6134 if (Record.size() < 3) 6135 return error("Invalid record"); 6136 } else { 6137 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6138 if (Record.size() < 4) 6139 return error("Invalid record"); 6140 } 6141 ResTypeID = Record[Idx++]; 6142 Type *Ty = getTypeByID(ResTypeID); 6143 if (!Ty) 6144 return error("Invalid record"); 6145 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6146 Value *PersFn = nullptr; 6147 unsigned PersFnTypeID; 6148 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6149 nullptr)) 6150 return error("Invalid record"); 6151 6152 if (!F->hasPersonalityFn()) 6153 F->setPersonalityFn(cast<Constant>(PersFn)); 6154 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6155 return error("Personality function mismatch"); 6156 } 6157 6158 bool IsCleanup = !!Record[Idx++]; 6159 unsigned NumClauses = Record[Idx++]; 6160 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6161 LP->setCleanup(IsCleanup); 6162 for (unsigned J = 0; J != NumClauses; ++J) { 6163 LandingPadInst::ClauseType CT = 6164 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6165 Value *Val; 6166 unsigned ValTypeID; 6167 6168 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6169 nullptr)) { 6170 delete LP; 6171 return error("Invalid record"); 6172 } 6173 6174 assert((CT != LandingPadInst::Catch || 6175 !isa<ArrayType>(Val->getType())) && 6176 "Catch clause has a invalid type!"); 6177 assert((CT != LandingPadInst::Filter || 6178 isa<ArrayType>(Val->getType())) && 6179 "Filter clause has invalid type!"); 6180 LP->addClause(cast<Constant>(Val)); 6181 } 6182 6183 I = LP; 6184 InstructionList.push_back(I); 6185 break; 6186 } 6187 6188 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6189 if (Record.size() != 4 && Record.size() != 5) 6190 return error("Invalid record"); 6191 using APV = AllocaPackedValues; 6192 const uint64_t Rec = Record[3]; 6193 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6194 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6195 unsigned TyID = Record[0]; 6196 Type *Ty = getTypeByID(TyID); 6197 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6198 TyID = getContainedTypeID(TyID); 6199 Ty = getTypeByID(TyID); 6200 if (!Ty) 6201 return error("Missing element type for old-style alloca"); 6202 } 6203 unsigned OpTyID = Record[1]; 6204 Type *OpTy = getTypeByID(OpTyID); 6205 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6206 MaybeAlign Align; 6207 uint64_t AlignExp = 6208 Bitfield::get<APV::AlignLower>(Rec) | 6209 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6210 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6211 return Err; 6212 } 6213 if (!Ty || !Size) 6214 return error("Invalid record"); 6215 6216 const DataLayout &DL = TheModule->getDataLayout(); 6217 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6218 6219 SmallPtrSet<Type *, 4> Visited; 6220 if (!Align && !Ty->isSized(&Visited)) 6221 return error("alloca of unsized type"); 6222 if (!Align) 6223 Align = DL.getPrefTypeAlign(Ty); 6224 6225 if (!Size->getType()->isIntegerTy()) 6226 return error("alloca element count must have integer type"); 6227 6228 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6229 AI->setUsedWithInAlloca(InAlloca); 6230 AI->setSwiftError(SwiftError); 6231 I = AI; 6232 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6233 InstructionList.push_back(I); 6234 break; 6235 } 6236 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6237 unsigned OpNum = 0; 6238 Value *Op; 6239 unsigned OpTypeID; 6240 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6241 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6242 return error("Invalid record"); 6243 6244 if (!isa<PointerType>(Op->getType())) 6245 return error("Load operand is not a pointer type"); 6246 6247 Type *Ty = nullptr; 6248 if (OpNum + 3 == Record.size()) { 6249 ResTypeID = Record[OpNum++]; 6250 Ty = getTypeByID(ResTypeID); 6251 } else { 6252 ResTypeID = getContainedTypeID(OpTypeID); 6253 Ty = getTypeByID(ResTypeID); 6254 } 6255 6256 if (!Ty) 6257 return error("Missing load type"); 6258 6259 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6260 return Err; 6261 6262 MaybeAlign Align; 6263 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6264 return Err; 6265 SmallPtrSet<Type *, 4> Visited; 6266 if (!Align && !Ty->isSized(&Visited)) 6267 return error("load of unsized type"); 6268 if (!Align) 6269 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6270 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6271 InstructionList.push_back(I); 6272 break; 6273 } 6274 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6275 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6276 unsigned OpNum = 0; 6277 Value *Op; 6278 unsigned OpTypeID; 6279 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6280 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6281 return error("Invalid record"); 6282 6283 if (!isa<PointerType>(Op->getType())) 6284 return error("Load operand is not a pointer type"); 6285 6286 Type *Ty = nullptr; 6287 if (OpNum + 5 == Record.size()) { 6288 ResTypeID = Record[OpNum++]; 6289 Ty = getTypeByID(ResTypeID); 6290 } else { 6291 ResTypeID = getContainedTypeID(OpTypeID); 6292 Ty = getTypeByID(ResTypeID); 6293 } 6294 6295 if (!Ty) 6296 return error("Missing atomic load type"); 6297 6298 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6299 return Err; 6300 6301 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6302 if (Ordering == AtomicOrdering::NotAtomic || 6303 Ordering == AtomicOrdering::Release || 6304 Ordering == AtomicOrdering::AcquireRelease) 6305 return error("Invalid record"); 6306 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6307 return error("Invalid record"); 6308 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6309 6310 MaybeAlign Align; 6311 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6312 return Err; 6313 if (!Align) 6314 return error("Alignment missing from atomic load"); 6315 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6316 InstructionList.push_back(I); 6317 break; 6318 } 6319 case bitc::FUNC_CODE_INST_STORE: 6320 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6321 unsigned OpNum = 0; 6322 Value *Val, *Ptr; 6323 unsigned PtrTypeID, ValTypeID; 6324 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6325 return error("Invalid record"); 6326 6327 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6328 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6329 return error("Invalid record"); 6330 } else { 6331 ValTypeID = getContainedTypeID(PtrTypeID); 6332 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6333 ValTypeID, Val, CurBB)) 6334 return error("Invalid record"); 6335 } 6336 6337 if (OpNum + 2 != Record.size()) 6338 return error("Invalid record"); 6339 6340 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6341 return Err; 6342 MaybeAlign Align; 6343 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6344 return Err; 6345 SmallPtrSet<Type *, 4> Visited; 6346 if (!Align && !Val->getType()->isSized(&Visited)) 6347 return error("store of unsized type"); 6348 if (!Align) 6349 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6350 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6351 InstructionList.push_back(I); 6352 break; 6353 } 6354 case bitc::FUNC_CODE_INST_STOREATOMIC: 6355 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6356 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6357 unsigned OpNum = 0; 6358 Value *Val, *Ptr; 6359 unsigned PtrTypeID, ValTypeID; 6360 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6361 !isa<PointerType>(Ptr->getType())) 6362 return error("Invalid record"); 6363 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6364 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6365 return error("Invalid record"); 6366 } else { 6367 ValTypeID = getContainedTypeID(PtrTypeID); 6368 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6369 ValTypeID, Val, CurBB)) 6370 return error("Invalid record"); 6371 } 6372 6373 if (OpNum + 4 != Record.size()) 6374 return error("Invalid record"); 6375 6376 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6377 return Err; 6378 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6379 if (Ordering == AtomicOrdering::NotAtomic || 6380 Ordering == AtomicOrdering::Acquire || 6381 Ordering == AtomicOrdering::AcquireRelease) 6382 return error("Invalid record"); 6383 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6384 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6385 return error("Invalid record"); 6386 6387 MaybeAlign Align; 6388 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6389 return Err; 6390 if (!Align) 6391 return error("Alignment missing from atomic store"); 6392 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6393 InstructionList.push_back(I); 6394 break; 6395 } 6396 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6397 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6398 // failure_ordering?, weak?] 6399 const size_t NumRecords = Record.size(); 6400 unsigned OpNum = 0; 6401 Value *Ptr = nullptr; 6402 unsigned PtrTypeID; 6403 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6404 return error("Invalid record"); 6405 6406 if (!isa<PointerType>(Ptr->getType())) 6407 return error("Cmpxchg operand is not a pointer type"); 6408 6409 Value *Cmp = nullptr; 6410 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6411 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6412 CmpTypeID, Cmp, CurBB)) 6413 return error("Invalid record"); 6414 6415 Value *New = nullptr; 6416 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6417 New, CurBB) || 6418 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6419 return error("Invalid record"); 6420 6421 const AtomicOrdering SuccessOrdering = 6422 getDecodedOrdering(Record[OpNum + 1]); 6423 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6424 SuccessOrdering == AtomicOrdering::Unordered) 6425 return error("Invalid record"); 6426 6427 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6428 6429 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6430 return Err; 6431 6432 const AtomicOrdering FailureOrdering = 6433 NumRecords < 7 6434 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6435 : getDecodedOrdering(Record[OpNum + 3]); 6436 6437 if (FailureOrdering == AtomicOrdering::NotAtomic || 6438 FailureOrdering == AtomicOrdering::Unordered) 6439 return error("Invalid record"); 6440 6441 const Align Alignment( 6442 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6443 6444 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6445 FailureOrdering, SSID); 6446 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6447 6448 if (NumRecords < 8) { 6449 // Before weak cmpxchgs existed, the instruction simply returned the 6450 // value loaded from memory, so bitcode files from that era will be 6451 // expecting the first component of a modern cmpxchg. 6452 I->insertInto(CurBB, CurBB->end()); 6453 I = ExtractValueInst::Create(I, 0); 6454 ResTypeID = CmpTypeID; 6455 } else { 6456 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6457 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6458 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6459 } 6460 6461 InstructionList.push_back(I); 6462 break; 6463 } 6464 case bitc::FUNC_CODE_INST_CMPXCHG: { 6465 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6466 // failure_ordering, weak, align?] 6467 const size_t NumRecords = Record.size(); 6468 unsigned OpNum = 0; 6469 Value *Ptr = nullptr; 6470 unsigned PtrTypeID; 6471 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6472 return error("Invalid record"); 6473 6474 if (!isa<PointerType>(Ptr->getType())) 6475 return error("Cmpxchg operand is not a pointer type"); 6476 6477 Value *Cmp = nullptr; 6478 unsigned CmpTypeID; 6479 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6480 return error("Invalid record"); 6481 6482 Value *Val = nullptr; 6483 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6484 CurBB)) 6485 return error("Invalid record"); 6486 6487 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6488 return error("Invalid record"); 6489 6490 const bool IsVol = Record[OpNum]; 6491 6492 const AtomicOrdering SuccessOrdering = 6493 getDecodedOrdering(Record[OpNum + 1]); 6494 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6495 return error("Invalid cmpxchg success ordering"); 6496 6497 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6498 6499 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6500 return Err; 6501 6502 const AtomicOrdering FailureOrdering = 6503 getDecodedOrdering(Record[OpNum + 3]); 6504 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6505 return error("Invalid cmpxchg failure ordering"); 6506 6507 const bool IsWeak = Record[OpNum + 4]; 6508 6509 MaybeAlign Alignment; 6510 6511 if (NumRecords == (OpNum + 6)) { 6512 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6513 return Err; 6514 } 6515 if (!Alignment) 6516 Alignment = 6517 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6518 6519 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6520 FailureOrdering, SSID); 6521 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6522 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6523 6524 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6525 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6526 6527 InstructionList.push_back(I); 6528 break; 6529 } 6530 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6531 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6532 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6533 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6534 const size_t NumRecords = Record.size(); 6535 unsigned OpNum = 0; 6536 6537 Value *Ptr = nullptr; 6538 unsigned PtrTypeID; 6539 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6540 return error("Invalid record"); 6541 6542 if (!isa<PointerType>(Ptr->getType())) 6543 return error("Invalid record"); 6544 6545 Value *Val = nullptr; 6546 unsigned ValTypeID = InvalidTypeID; 6547 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6548 ValTypeID = getContainedTypeID(PtrTypeID); 6549 if (popValue(Record, OpNum, NextValueNo, 6550 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6551 return error("Invalid record"); 6552 } else { 6553 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6554 return error("Invalid record"); 6555 } 6556 6557 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6558 return error("Invalid record"); 6559 6560 const AtomicRMWInst::BinOp Operation = 6561 getDecodedRMWOperation(Record[OpNum]); 6562 if (Operation < AtomicRMWInst::FIRST_BINOP || 6563 Operation > AtomicRMWInst::LAST_BINOP) 6564 return error("Invalid record"); 6565 6566 const bool IsVol = Record[OpNum + 1]; 6567 6568 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6569 if (Ordering == AtomicOrdering::NotAtomic || 6570 Ordering == AtomicOrdering::Unordered) 6571 return error("Invalid record"); 6572 6573 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6574 6575 MaybeAlign Alignment; 6576 6577 if (NumRecords == (OpNum + 5)) { 6578 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6579 return Err; 6580 } 6581 6582 if (!Alignment) 6583 Alignment = 6584 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6585 6586 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6587 ResTypeID = ValTypeID; 6588 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6589 6590 InstructionList.push_back(I); 6591 break; 6592 } 6593 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6594 if (2 != Record.size()) 6595 return error("Invalid record"); 6596 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6597 if (Ordering == AtomicOrdering::NotAtomic || 6598 Ordering == AtomicOrdering::Unordered || 6599 Ordering == AtomicOrdering::Monotonic) 6600 return error("Invalid record"); 6601 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6602 I = new FenceInst(Context, Ordering, SSID); 6603 InstructionList.push_back(I); 6604 break; 6605 } 6606 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6607 // DbgLabelRecords are placed after the Instructions that they are 6608 // attached to. 6609 SeenDebugRecord = true; 6610 Instruction *Inst = getLastInstruction(); 6611 if (!Inst) 6612 return error("Invalid dbg record: missing instruction"); 6613 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6614 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6615 Inst->getParent()->insertDbgRecordBefore( 6616 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6617 continue; // This isn't an instruction. 6618 } 6619 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6620 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6621 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6622 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6623 // DbgVariableRecords are placed after the Instructions that they are 6624 // attached to. 6625 SeenDebugRecord = true; 6626 Instruction *Inst = getLastInstruction(); 6627 if (!Inst) 6628 return error("Invalid dbg record: missing instruction"); 6629 6630 // First 3 fields are common to all kinds: 6631 // DILocation, DILocalVariable, DIExpression 6632 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6633 // ..., LocationMetadata 6634 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6635 // ..., Value 6636 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6637 // ..., LocationMetadata 6638 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6639 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6640 unsigned Slot = 0; 6641 // Common fields (0-2). 6642 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6643 DILocalVariable *Var = 6644 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6645 DIExpression *Expr = 6646 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6647 6648 // Union field (3: LocationMetadata | Value). 6649 Metadata *RawLocation = nullptr; 6650 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6651 Value *V = nullptr; 6652 unsigned TyID = 0; 6653 // We never expect to see a fwd reference value here because 6654 // use-before-defs are encoded with the standard non-abbrev record 6655 // type (they'd require encoding the type too, and they're rare). As a 6656 // result, getValueTypePair only ever increments Slot by one here (once 6657 // for the value, never twice for value and type). 6658 unsigned SlotBefore = Slot; 6659 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6660 return error("Invalid dbg record: invalid value"); 6661 (void)SlotBefore; 6662 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6663 RawLocation = ValueAsMetadata::get(V); 6664 } else { 6665 RawLocation = getFnMetadataByID(Record[Slot++]); 6666 } 6667 6668 DbgVariableRecord *DVR = nullptr; 6669 switch (BitCode) { 6670 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6671 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6672 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6673 DbgVariableRecord::LocationType::Value); 6674 break; 6675 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6676 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6677 DbgVariableRecord::LocationType::Declare); 6678 break; 6679 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6680 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6681 DIExpression *AddrExpr = 6682 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6683 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6684 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6685 DIL); 6686 break; 6687 } 6688 default: 6689 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6690 } 6691 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6692 continue; // This isn't an instruction. 6693 } 6694 case bitc::FUNC_CODE_INST_CALL: { 6695 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6696 if (Record.size() < 3) 6697 return error("Invalid record"); 6698 6699 unsigned OpNum = 0; 6700 AttributeList PAL = getAttributes(Record[OpNum++]); 6701 unsigned CCInfo = Record[OpNum++]; 6702 6703 FastMathFlags FMF; 6704 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6705 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6706 if (!FMF.any()) 6707 return error("Fast math flags indicator set for call with no FMF"); 6708 } 6709 6710 unsigned FTyID = InvalidTypeID; 6711 FunctionType *FTy = nullptr; 6712 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6713 FTyID = Record[OpNum++]; 6714 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6715 if (!FTy) 6716 return error("Explicit call type is not a function type"); 6717 } 6718 6719 Value *Callee; 6720 unsigned CalleeTypeID; 6721 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6722 CurBB)) 6723 return error("Invalid record"); 6724 6725 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6726 if (!OpTy) 6727 return error("Callee is not a pointer type"); 6728 if (!FTy) { 6729 FTyID = getContainedTypeID(CalleeTypeID); 6730 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6731 if (!FTy) 6732 return error("Callee is not of pointer to function type"); 6733 } 6734 if (Record.size() < FTy->getNumParams() + OpNum) 6735 return error("Insufficient operands to call"); 6736 6737 SmallVector<Value*, 16> Args; 6738 SmallVector<unsigned, 16> ArgTyIDs; 6739 // Read the fixed params. 6740 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6741 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6742 if (FTy->getParamType(i)->isLabelTy()) 6743 Args.push_back(getBasicBlock(Record[OpNum])); 6744 else 6745 Args.push_back(getValue(Record, OpNum, NextValueNo, 6746 FTy->getParamType(i), ArgTyID, CurBB)); 6747 ArgTyIDs.push_back(ArgTyID); 6748 if (!Args.back()) 6749 return error("Invalid record"); 6750 } 6751 6752 // Read type/value pairs for varargs params. 6753 if (!FTy->isVarArg()) { 6754 if (OpNum != Record.size()) 6755 return error("Invalid record"); 6756 } else { 6757 while (OpNum != Record.size()) { 6758 Value *Op; 6759 unsigned OpTypeID; 6760 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6761 return error("Invalid record"); 6762 Args.push_back(Op); 6763 ArgTyIDs.push_back(OpTypeID); 6764 } 6765 } 6766 6767 // Upgrade the bundles if needed. 6768 if (!OperandBundles.empty()) 6769 UpgradeOperandBundles(OperandBundles); 6770 6771 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6772 ResTypeID = getContainedTypeID(FTyID); 6773 OperandBundles.clear(); 6774 InstructionList.push_back(I); 6775 cast<CallInst>(I)->setCallingConv( 6776 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6777 CallInst::TailCallKind TCK = CallInst::TCK_None; 6778 if (CCInfo & (1 << bitc::CALL_TAIL)) 6779 TCK = CallInst::TCK_Tail; 6780 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6781 TCK = CallInst::TCK_MustTail; 6782 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6783 TCK = CallInst::TCK_NoTail; 6784 cast<CallInst>(I)->setTailCallKind(TCK); 6785 cast<CallInst>(I)->setAttributes(PAL); 6786 if (isa<DbgInfoIntrinsic>(I)) 6787 SeenDebugIntrinsic = true; 6788 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6789 I->deleteValue(); 6790 return Err; 6791 } 6792 if (FMF.any()) { 6793 if (!isa<FPMathOperator>(I)) 6794 return error("Fast-math-flags specified for call without " 6795 "floating-point scalar or vector return type"); 6796 I->setFastMathFlags(FMF); 6797 } 6798 break; 6799 } 6800 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6801 if (Record.size() < 3) 6802 return error("Invalid record"); 6803 unsigned OpTyID = Record[0]; 6804 Type *OpTy = getTypeByID(OpTyID); 6805 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6806 ResTypeID = Record[2]; 6807 Type *ResTy = getTypeByID(ResTypeID); 6808 if (!OpTy || !Op || !ResTy) 6809 return error("Invalid record"); 6810 I = new VAArgInst(Op, ResTy); 6811 InstructionList.push_back(I); 6812 break; 6813 } 6814 6815 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6816 // A call or an invoke can be optionally prefixed with some variable 6817 // number of operand bundle blocks. These blocks are read into 6818 // OperandBundles and consumed at the next call or invoke instruction. 6819 6820 if (Record.empty() || Record[0] >= BundleTags.size()) 6821 return error("Invalid record"); 6822 6823 std::vector<Value *> Inputs; 6824 6825 unsigned OpNum = 1; 6826 while (OpNum != Record.size()) { 6827 Value *Op; 6828 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6829 return error("Invalid record"); 6830 Inputs.push_back(Op); 6831 } 6832 6833 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6834 continue; 6835 } 6836 6837 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6838 unsigned OpNum = 0; 6839 Value *Op = nullptr; 6840 unsigned OpTypeID; 6841 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6842 return error("Invalid record"); 6843 if (OpNum != Record.size()) 6844 return error("Invalid record"); 6845 6846 I = new FreezeInst(Op); 6847 ResTypeID = OpTypeID; 6848 InstructionList.push_back(I); 6849 break; 6850 } 6851 } 6852 6853 // Add instruction to end of current BB. If there is no current BB, reject 6854 // this file. 6855 if (!CurBB) { 6856 I->deleteValue(); 6857 return error("Invalid instruction with no BB"); 6858 } 6859 if (!OperandBundles.empty()) { 6860 I->deleteValue(); 6861 return error("Operand bundles found with no consumer"); 6862 } 6863 I->insertInto(CurBB, CurBB->end()); 6864 6865 // If this was a terminator instruction, move to the next block. 6866 if (I->isTerminator()) { 6867 ++CurBBNo; 6868 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6869 } 6870 6871 // Non-void values get registered in the value table for future use. 6872 if (!I->getType()->isVoidTy()) { 6873 assert(I->getType() == getTypeByID(ResTypeID) && 6874 "Incorrect result type ID"); 6875 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6876 return Err; 6877 } 6878 } 6879 6880 OutOfRecordLoop: 6881 6882 if (!OperandBundles.empty()) 6883 return error("Operand bundles found with no consumer"); 6884 6885 // Check the function list for unresolved values. 6886 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6887 if (!A->getParent()) { 6888 // We found at least one unresolved value. Nuke them all to avoid leaks. 6889 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6890 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6891 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6892 delete A; 6893 } 6894 } 6895 return error("Never resolved value found in function"); 6896 } 6897 } 6898 6899 // Unexpected unresolved metadata about to be dropped. 6900 if (MDLoader->hasFwdRefs()) 6901 return error("Invalid function metadata: outgoing forward refs"); 6902 6903 if (PhiConstExprBB) 6904 PhiConstExprBB->eraseFromParent(); 6905 6906 for (const auto &Pair : ConstExprEdgeBBs) { 6907 BasicBlock *From = Pair.first.first; 6908 BasicBlock *To = Pair.first.second; 6909 BasicBlock *EdgeBB = Pair.second; 6910 BranchInst::Create(To, EdgeBB); 6911 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6912 To->replacePhiUsesWith(From, EdgeBB); 6913 EdgeBB->moveBefore(To); 6914 } 6915 6916 // Trim the value list down to the size it was before we parsed this function. 6917 ValueList.shrinkTo(ModuleValueListSize); 6918 MDLoader->shrinkTo(ModuleMDLoaderSize); 6919 std::vector<BasicBlock*>().swap(FunctionBBs); 6920 return Error::success(); 6921 } 6922 6923 /// Find the function body in the bitcode stream 6924 Error BitcodeReader::findFunctionInStream( 6925 Function *F, 6926 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6927 while (DeferredFunctionInfoIterator->second == 0) { 6928 // This is the fallback handling for the old format bitcode that 6929 // didn't contain the function index in the VST, or when we have 6930 // an anonymous function which would not have a VST entry. 6931 // Assert that we have one of those two cases. 6932 assert(VSTOffset == 0 || !F->hasName()); 6933 // Parse the next body in the stream and set its position in the 6934 // DeferredFunctionInfo map. 6935 if (Error Err = rememberAndSkipFunctionBodies()) 6936 return Err; 6937 } 6938 return Error::success(); 6939 } 6940 6941 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6942 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6943 return SyncScope::ID(Val); 6944 if (Val >= SSIDs.size()) 6945 return SyncScope::System; // Map unknown synchronization scopes to system. 6946 return SSIDs[Val]; 6947 } 6948 6949 //===----------------------------------------------------------------------===// 6950 // GVMaterializer implementation 6951 //===----------------------------------------------------------------------===// 6952 6953 Error BitcodeReader::materialize(GlobalValue *GV) { 6954 Function *F = dyn_cast<Function>(GV); 6955 // If it's not a function or is already material, ignore the request. 6956 if (!F || !F->isMaterializable()) 6957 return Error::success(); 6958 6959 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6960 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6961 // If its position is recorded as 0, its body is somewhere in the stream 6962 // but we haven't seen it yet. 6963 if (DFII->second == 0) 6964 if (Error Err = findFunctionInStream(F, DFII)) 6965 return Err; 6966 6967 // Materialize metadata before parsing any function bodies. 6968 if (Error Err = materializeMetadata()) 6969 return Err; 6970 6971 // Move the bit stream to the saved position of the deferred function body. 6972 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6973 return JumpFailed; 6974 6975 // Regardless of the debug info format we want to end up in, we need 6976 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6977 F->IsNewDbgInfoFormat = true; 6978 6979 if (Error Err = parseFunctionBody(F)) 6980 return Err; 6981 F->setIsMaterializable(false); 6982 6983 // All parsed Functions should load into the debug info format dictated by the 6984 // Module, unless we're attempting to preserve the input debug info format. 6985 if (SeenDebugIntrinsic && SeenDebugRecord) 6986 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6987 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6988 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6989 bool NewDbgInfoFormatDesired = 6990 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6991 if (SeenAnyDebugInfo) { 6992 UseNewDbgInfoFormat = SeenDebugRecord; 6993 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6994 WriteNewDbgInfoFormat = SeenDebugRecord; 6995 } 6996 // If the module's debug info format doesn't match the observed input 6997 // format, then set its format now; we don't need to call the conversion 6998 // function because there must be no existing intrinsics to convert. 6999 // Otherwise, just set the format on this function now. 7000 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 7001 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7002 else 7003 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7004 } else { 7005 // If we aren't preserving formats, we use the Module flag to get our 7006 // desired format instead of reading flags, in case we are lazy-loading and 7007 // the format of the module has been changed since it was set by the flags. 7008 // We only need to convert debug info here if we have debug records but 7009 // desire the intrinsic format; everything else is a no-op or handled by the 7010 // autoupgrader. 7011 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 7012 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 7013 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 7014 else 7015 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 7016 } 7017 7018 if (StripDebugInfo) 7019 stripDebugInfo(*F); 7020 7021 // Upgrade any old intrinsic calls in the function. 7022 for (auto &I : UpgradedIntrinsics) { 7023 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 7024 if (CallInst *CI = dyn_cast<CallInst>(U)) 7025 UpgradeIntrinsicCall(CI, I.second); 7026 } 7027 7028 // Finish fn->subprogram upgrade for materialized functions. 7029 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 7030 F->setSubprogram(SP); 7031 7032 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 7033 if (!MDLoader->isStrippingTBAA()) { 7034 for (auto &I : instructions(F)) { 7035 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 7036 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 7037 continue; 7038 MDLoader->setStripTBAA(true); 7039 stripTBAA(F->getParent()); 7040 } 7041 } 7042 7043 for (auto &I : instructions(F)) { 7044 // "Upgrade" older incorrect branch weights by dropping them. 7045 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7046 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7047 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7048 StringRef ProfName = MDS->getString(); 7049 // Check consistency of !prof branch_weights metadata. 7050 if (ProfName != "branch_weights") 7051 continue; 7052 unsigned ExpectedNumOperands = 0; 7053 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7054 ExpectedNumOperands = BI->getNumSuccessors(); 7055 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7056 ExpectedNumOperands = SI->getNumSuccessors(); 7057 else if (isa<CallInst>(&I)) 7058 ExpectedNumOperands = 1; 7059 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7060 ExpectedNumOperands = IBI->getNumDestinations(); 7061 else if (isa<SelectInst>(&I)) 7062 ExpectedNumOperands = 2; 7063 else 7064 continue; // ignore and continue. 7065 7066 unsigned Offset = getBranchWeightOffset(MD); 7067 7068 // If branch weight doesn't match, just strip branch weight. 7069 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7070 I.setMetadata(LLVMContext::MD_prof, nullptr); 7071 } 7072 } 7073 7074 // Remove incompatible attributes on function calls. 7075 if (auto *CI = dyn_cast<CallBase>(&I)) { 7076 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7077 CI->getFunctionType()->getReturnType(), CI->getRetAttributes())); 7078 7079 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7080 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7081 CI->getArgOperand(ArgNo)->getType(), 7082 CI->getParamAttributes(ArgNo))); 7083 } 7084 } 7085 7086 // Look for functions that rely on old function attribute behavior. 7087 UpgradeFunctionAttributes(*F); 7088 7089 // Bring in any functions that this function forward-referenced via 7090 // blockaddresses. 7091 return materializeForwardReferencedFunctions(); 7092 } 7093 7094 Error BitcodeReader::materializeModule() { 7095 if (Error Err = materializeMetadata()) 7096 return Err; 7097 7098 // Promise to materialize all forward references. 7099 WillMaterializeAllForwardRefs = true; 7100 7101 // Iterate over the module, deserializing any functions that are still on 7102 // disk. 7103 for (Function &F : *TheModule) { 7104 if (Error Err = materialize(&F)) 7105 return Err; 7106 } 7107 // At this point, if there are any function bodies, parse the rest of 7108 // the bits in the module past the last function block we have recorded 7109 // through either lazy scanning or the VST. 7110 if (LastFunctionBlockBit || NextUnreadBit) 7111 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7112 ? LastFunctionBlockBit 7113 : NextUnreadBit)) 7114 return Err; 7115 7116 // Check that all block address forward references got resolved (as we 7117 // promised above). 7118 if (!BasicBlockFwdRefs.empty()) 7119 return error("Never resolved function from blockaddress"); 7120 7121 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7122 // delete the old functions to clean up. We can't do this unless the entire 7123 // module is materialized because there could always be another function body 7124 // with calls to the old function. 7125 for (auto &I : UpgradedIntrinsics) { 7126 for (auto *U : I.first->users()) { 7127 if (CallInst *CI = dyn_cast<CallInst>(U)) 7128 UpgradeIntrinsicCall(CI, I.second); 7129 } 7130 if (!I.first->use_empty()) 7131 I.first->replaceAllUsesWith(I.second); 7132 I.first->eraseFromParent(); 7133 } 7134 UpgradedIntrinsics.clear(); 7135 7136 UpgradeDebugInfo(*TheModule); 7137 7138 UpgradeModuleFlags(*TheModule); 7139 7140 UpgradeARCRuntime(*TheModule); 7141 7142 return Error::success(); 7143 } 7144 7145 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7146 return IdentifiedStructTypes; 7147 } 7148 7149 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7150 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7151 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7152 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7153 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7154 7155 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7156 TheIndex.addModule(ModulePath); 7157 } 7158 7159 ModuleSummaryIndex::ModuleInfo * 7160 ModuleSummaryIndexBitcodeReader::getThisModule() { 7161 return TheIndex.getModule(ModulePath); 7162 } 7163 7164 template <bool AllowNullValueInfo> 7165 std::pair<ValueInfo, GlobalValue::GUID> 7166 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7167 auto VGI = ValueIdToValueInfoMap[ValueId]; 7168 // We can have a null value info for memprof callsite info records in 7169 // distributed ThinLTO index files when the callee function summary is not 7170 // included in the index. The bitcode writer records 0 in that case, 7171 // and the caller of this helper will set AllowNullValueInfo to true. 7172 assert(AllowNullValueInfo || std::get<0>(VGI)); 7173 return VGI; 7174 } 7175 7176 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7177 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7178 StringRef SourceFileName) { 7179 std::string GlobalId = 7180 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7181 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7182 auto OriginalNameID = ValueGUID; 7183 if (GlobalValue::isLocalLinkage(Linkage)) 7184 OriginalNameID = GlobalValue::getGUID(ValueName); 7185 if (PrintSummaryGUIDs) 7186 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7187 << ValueName << "\n"; 7188 7189 // UseStrtab is false for legacy summary formats and value names are 7190 // created on stack. In that case we save the name in a string saver in 7191 // the index so that the value name can be recorded. 7192 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7193 TheIndex.getOrInsertValueInfo( 7194 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7195 OriginalNameID); 7196 } 7197 7198 // Specialized value symbol table parser used when reading module index 7199 // blocks where we don't actually create global values. The parsed information 7200 // is saved in the bitcode reader for use when later parsing summaries. 7201 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7202 uint64_t Offset, 7203 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7204 // With a strtab the VST is not required to parse the summary. 7205 if (UseStrtab) 7206 return Error::success(); 7207 7208 assert(Offset > 0 && "Expected non-zero VST offset"); 7209 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7210 if (!MaybeCurrentBit) 7211 return MaybeCurrentBit.takeError(); 7212 uint64_t CurrentBit = MaybeCurrentBit.get(); 7213 7214 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7215 return Err; 7216 7217 SmallVector<uint64_t, 64> Record; 7218 7219 // Read all the records for this value table. 7220 SmallString<128> ValueName; 7221 7222 while (true) { 7223 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7224 if (!MaybeEntry) 7225 return MaybeEntry.takeError(); 7226 BitstreamEntry Entry = MaybeEntry.get(); 7227 7228 switch (Entry.Kind) { 7229 case BitstreamEntry::SubBlock: // Handled for us already. 7230 case BitstreamEntry::Error: 7231 return error("Malformed block"); 7232 case BitstreamEntry::EndBlock: 7233 // Done parsing VST, jump back to wherever we came from. 7234 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7235 return JumpFailed; 7236 return Error::success(); 7237 case BitstreamEntry::Record: 7238 // The interesting case. 7239 break; 7240 } 7241 7242 // Read a record. 7243 Record.clear(); 7244 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7245 if (!MaybeRecord) 7246 return MaybeRecord.takeError(); 7247 switch (MaybeRecord.get()) { 7248 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7249 break; 7250 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7251 if (convertToString(Record, 1, ValueName)) 7252 return error("Invalid record"); 7253 unsigned ValueID = Record[0]; 7254 assert(!SourceFileName.empty()); 7255 auto VLI = ValueIdToLinkageMap.find(ValueID); 7256 assert(VLI != ValueIdToLinkageMap.end() && 7257 "No linkage found for VST entry?"); 7258 auto Linkage = VLI->second; 7259 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7260 ValueName.clear(); 7261 break; 7262 } 7263 case bitc::VST_CODE_FNENTRY: { 7264 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7265 if (convertToString(Record, 2, ValueName)) 7266 return error("Invalid record"); 7267 unsigned ValueID = Record[0]; 7268 assert(!SourceFileName.empty()); 7269 auto VLI = ValueIdToLinkageMap.find(ValueID); 7270 assert(VLI != ValueIdToLinkageMap.end() && 7271 "No linkage found for VST entry?"); 7272 auto Linkage = VLI->second; 7273 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7274 ValueName.clear(); 7275 break; 7276 } 7277 case bitc::VST_CODE_COMBINED_ENTRY: { 7278 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7279 unsigned ValueID = Record[0]; 7280 GlobalValue::GUID RefGUID = Record[1]; 7281 // The "original name", which is the second value of the pair will be 7282 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7283 ValueIdToValueInfoMap[ValueID] = 7284 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7285 break; 7286 } 7287 } 7288 } 7289 } 7290 7291 // Parse just the blocks needed for building the index out of the module. 7292 // At the end of this routine the module Index is populated with a map 7293 // from global value id to GlobalValueSummary objects. 7294 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7295 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7296 return Err; 7297 7298 SmallVector<uint64_t, 64> Record; 7299 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7300 unsigned ValueId = 0; 7301 7302 // Read the index for this module. 7303 while (true) { 7304 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7305 if (!MaybeEntry) 7306 return MaybeEntry.takeError(); 7307 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7308 7309 switch (Entry.Kind) { 7310 case BitstreamEntry::Error: 7311 return error("Malformed block"); 7312 case BitstreamEntry::EndBlock: 7313 return Error::success(); 7314 7315 case BitstreamEntry::SubBlock: 7316 switch (Entry.ID) { 7317 default: // Skip unknown content. 7318 if (Error Err = Stream.SkipBlock()) 7319 return Err; 7320 break; 7321 case bitc::BLOCKINFO_BLOCK_ID: 7322 // Need to parse these to get abbrev ids (e.g. for VST) 7323 if (Error Err = readBlockInfo()) 7324 return Err; 7325 break; 7326 case bitc::VALUE_SYMTAB_BLOCK_ID: 7327 // Should have been parsed earlier via VSTOffset, unless there 7328 // is no summary section. 7329 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7330 !SeenGlobalValSummary) && 7331 "Expected early VST parse via VSTOffset record"); 7332 if (Error Err = Stream.SkipBlock()) 7333 return Err; 7334 break; 7335 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7336 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7337 // Add the module if it is a per-module index (has a source file name). 7338 if (!SourceFileName.empty()) 7339 addThisModule(); 7340 assert(!SeenValueSymbolTable && 7341 "Already read VST when parsing summary block?"); 7342 // We might not have a VST if there were no values in the 7343 // summary. An empty summary block generated when we are 7344 // performing ThinLTO compiles so we don't later invoke 7345 // the regular LTO process on them. 7346 if (VSTOffset > 0) { 7347 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7348 return Err; 7349 SeenValueSymbolTable = true; 7350 } 7351 SeenGlobalValSummary = true; 7352 if (Error Err = parseEntireSummary(Entry.ID)) 7353 return Err; 7354 break; 7355 case bitc::MODULE_STRTAB_BLOCK_ID: 7356 if (Error Err = parseModuleStringTable()) 7357 return Err; 7358 break; 7359 } 7360 continue; 7361 7362 case BitstreamEntry::Record: { 7363 Record.clear(); 7364 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7365 if (!MaybeBitCode) 7366 return MaybeBitCode.takeError(); 7367 switch (MaybeBitCode.get()) { 7368 default: 7369 break; // Default behavior, ignore unknown content. 7370 case bitc::MODULE_CODE_VERSION: { 7371 if (Error Err = parseVersionRecord(Record).takeError()) 7372 return Err; 7373 break; 7374 } 7375 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7376 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7377 SmallString<128> ValueName; 7378 if (convertToString(Record, 0, ValueName)) 7379 return error("Invalid record"); 7380 SourceFileName = ValueName.c_str(); 7381 break; 7382 } 7383 /// MODULE_CODE_HASH: [5*i32] 7384 case bitc::MODULE_CODE_HASH: { 7385 if (Record.size() != 5) 7386 return error("Invalid hash length " + Twine(Record.size()).str()); 7387 auto &Hash = getThisModule()->second; 7388 int Pos = 0; 7389 for (auto &Val : Record) { 7390 assert(!(Val >> 32) && "Unexpected high bits set"); 7391 Hash[Pos++] = Val; 7392 } 7393 break; 7394 } 7395 /// MODULE_CODE_VSTOFFSET: [offset] 7396 case bitc::MODULE_CODE_VSTOFFSET: 7397 if (Record.empty()) 7398 return error("Invalid record"); 7399 // Note that we subtract 1 here because the offset is relative to one 7400 // word before the start of the identification or module block, which 7401 // was historically always the start of the regular bitcode header. 7402 VSTOffset = Record[0] - 1; 7403 break; 7404 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7405 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7406 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7407 // v2: [strtab offset, strtab size, v1] 7408 case bitc::MODULE_CODE_GLOBALVAR: 7409 case bitc::MODULE_CODE_FUNCTION: 7410 case bitc::MODULE_CODE_ALIAS: { 7411 StringRef Name; 7412 ArrayRef<uint64_t> GVRecord; 7413 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7414 if (GVRecord.size() <= 3) 7415 return error("Invalid record"); 7416 uint64_t RawLinkage = GVRecord[3]; 7417 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7418 if (!UseStrtab) { 7419 ValueIdToLinkageMap[ValueId++] = Linkage; 7420 break; 7421 } 7422 7423 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7424 break; 7425 } 7426 } 7427 } 7428 continue; 7429 } 7430 } 7431 } 7432 7433 SmallVector<ValueInfo, 0> 7434 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7435 SmallVector<ValueInfo, 0> Ret; 7436 Ret.reserve(Record.size()); 7437 for (uint64_t RefValueId : Record) 7438 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7439 return Ret; 7440 } 7441 7442 SmallVector<FunctionSummary::EdgeTy, 0> 7443 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7444 bool IsOldProfileFormat, 7445 bool HasProfile, bool HasRelBF) { 7446 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7447 // In the case of new profile formats, there are two Record entries per 7448 // Edge. Otherwise, conservatively reserve up to Record.size. 7449 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7450 Ret.reserve(Record.size() / 2); 7451 else 7452 Ret.reserve(Record.size()); 7453 7454 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7455 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7456 bool HasTailCall = false; 7457 uint64_t RelBF = 0; 7458 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7459 if (IsOldProfileFormat) { 7460 I += 1; // Skip old callsitecount field 7461 if (HasProfile) 7462 I += 1; // Skip old profilecount field 7463 } else if (HasProfile) 7464 std::tie(Hotness, HasTailCall) = 7465 getDecodedHotnessCallEdgeInfo(Record[++I]); 7466 else if (HasRelBF) 7467 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7468 Ret.push_back(FunctionSummary::EdgeTy{ 7469 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7470 } 7471 return Ret; 7472 } 7473 7474 static void 7475 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7476 WholeProgramDevirtResolution &Wpd) { 7477 uint64_t ArgNum = Record[Slot++]; 7478 WholeProgramDevirtResolution::ByArg &B = 7479 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7480 Slot += ArgNum; 7481 7482 B.TheKind = 7483 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7484 B.Info = Record[Slot++]; 7485 B.Byte = Record[Slot++]; 7486 B.Bit = Record[Slot++]; 7487 } 7488 7489 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7490 StringRef Strtab, size_t &Slot, 7491 TypeIdSummary &TypeId) { 7492 uint64_t Id = Record[Slot++]; 7493 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7494 7495 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7496 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7497 static_cast<size_t>(Record[Slot + 1])}; 7498 Slot += 2; 7499 7500 uint64_t ResByArgNum = Record[Slot++]; 7501 for (uint64_t I = 0; I != ResByArgNum; ++I) 7502 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7503 } 7504 7505 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7506 StringRef Strtab, 7507 ModuleSummaryIndex &TheIndex) { 7508 size_t Slot = 0; 7509 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7510 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7511 Slot += 2; 7512 7513 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7514 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7515 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7516 TypeId.TTRes.SizeM1 = Record[Slot++]; 7517 TypeId.TTRes.BitMask = Record[Slot++]; 7518 TypeId.TTRes.InlineBits = Record[Slot++]; 7519 7520 while (Slot < Record.size()) 7521 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7522 } 7523 7524 std::vector<FunctionSummary::ParamAccess> 7525 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7526 auto ReadRange = [&]() { 7527 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7528 BitcodeReader::decodeSignRotatedValue(Record.front())); 7529 Record = Record.drop_front(); 7530 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7531 BitcodeReader::decodeSignRotatedValue(Record.front())); 7532 Record = Record.drop_front(); 7533 ConstantRange Range{Lower, Upper}; 7534 assert(!Range.isFullSet()); 7535 assert(!Range.isUpperSignWrapped()); 7536 return Range; 7537 }; 7538 7539 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7540 while (!Record.empty()) { 7541 PendingParamAccesses.emplace_back(); 7542 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7543 ParamAccess.ParamNo = Record.front(); 7544 Record = Record.drop_front(); 7545 ParamAccess.Use = ReadRange(); 7546 ParamAccess.Calls.resize(Record.front()); 7547 Record = Record.drop_front(); 7548 for (auto &Call : ParamAccess.Calls) { 7549 Call.ParamNo = Record.front(); 7550 Record = Record.drop_front(); 7551 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7552 Record = Record.drop_front(); 7553 Call.Offsets = ReadRange(); 7554 } 7555 } 7556 return PendingParamAccesses; 7557 } 7558 7559 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7560 ArrayRef<uint64_t> Record, size_t &Slot, 7561 TypeIdCompatibleVtableInfo &TypeId) { 7562 uint64_t Offset = Record[Slot++]; 7563 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7564 TypeId.push_back({Offset, Callee}); 7565 } 7566 7567 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7568 ArrayRef<uint64_t> Record) { 7569 size_t Slot = 0; 7570 TypeIdCompatibleVtableInfo &TypeId = 7571 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7572 {Strtab.data() + Record[Slot], 7573 static_cast<size_t>(Record[Slot + 1])}); 7574 Slot += 2; 7575 7576 while (Slot < Record.size()) 7577 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7578 } 7579 7580 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext( 7581 ArrayRef<uint64_t> Record, unsigned &I) { 7582 SmallVector<unsigned> StackIdList; 7583 // For backwards compatibility with old format before radix tree was 7584 // used, simply see if we found a radix tree array record (and thus if 7585 // the RadixArray is non-empty). 7586 if (RadixArray.empty()) { 7587 unsigned NumStackEntries = Record[I++]; 7588 assert(Record.size() - I >= NumStackEntries); 7589 StackIdList.reserve(NumStackEntries); 7590 for (unsigned J = 0; J < NumStackEntries; J++) { 7591 assert(Record[I] < StackIds.size()); 7592 StackIdList.push_back( 7593 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7594 } 7595 } else { 7596 unsigned RadixIndex = Record[I++]; 7597 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h 7598 // for a detailed description of the radix tree array format. Briefly, the 7599 // first entry will be the number of frames, any negative values are the 7600 // negative of the offset of the next frame, and otherwise the frames are in 7601 // increasing linear order. 7602 assert(RadixIndex < RadixArray.size()); 7603 unsigned NumStackIds = RadixArray[RadixIndex++]; 7604 StackIdList.reserve(NumStackIds); 7605 while (NumStackIds--) { 7606 assert(RadixIndex < RadixArray.size()); 7607 unsigned Elem = RadixArray[RadixIndex]; 7608 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) { 7609 RadixIndex = RadixIndex - Elem; 7610 assert(RadixIndex < RadixArray.size()); 7611 Elem = RadixArray[RadixIndex]; 7612 // We shouldn't encounter a second offset in a row. 7613 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0); 7614 } 7615 RadixIndex++; 7616 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem])); 7617 } 7618 } 7619 return StackIdList; 7620 } 7621 7622 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7623 unsigned WOCnt) { 7624 // Readonly and writeonly refs are in the end of the refs list. 7625 assert(ROCnt + WOCnt <= Refs.size()); 7626 unsigned FirstWORef = Refs.size() - WOCnt; 7627 unsigned RefNo = FirstWORef - ROCnt; 7628 for (; RefNo < FirstWORef; ++RefNo) 7629 Refs[RefNo].setReadOnly(); 7630 for (; RefNo < Refs.size(); ++RefNo) 7631 Refs[RefNo].setWriteOnly(); 7632 } 7633 7634 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7635 // objects in the index. 7636 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7637 if (Error Err = Stream.EnterSubBlock(ID)) 7638 return Err; 7639 SmallVector<uint64_t, 64> Record; 7640 7641 // Parse version 7642 { 7643 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7644 if (!MaybeEntry) 7645 return MaybeEntry.takeError(); 7646 BitstreamEntry Entry = MaybeEntry.get(); 7647 7648 if (Entry.Kind != BitstreamEntry::Record) 7649 return error("Invalid Summary Block: record for version expected"); 7650 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7651 if (!MaybeRecord) 7652 return MaybeRecord.takeError(); 7653 if (MaybeRecord.get() != bitc::FS_VERSION) 7654 return error("Invalid Summary Block: version expected"); 7655 } 7656 const uint64_t Version = Record[0]; 7657 const bool IsOldProfileFormat = Version == 1; 7658 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7659 return error("Invalid summary version " + Twine(Version) + 7660 ". Version should be in the range [1-" + 7661 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7662 "]."); 7663 Record.clear(); 7664 7665 // Keep around the last seen summary to be used when we see an optional 7666 // "OriginalName" attachement. 7667 GlobalValueSummary *LastSeenSummary = nullptr; 7668 GlobalValue::GUID LastSeenGUID = 0; 7669 7670 // We can expect to see any number of type ID information records before 7671 // each function summary records; these variables store the information 7672 // collected so far so that it can be used to create the summary object. 7673 std::vector<GlobalValue::GUID> PendingTypeTests; 7674 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7675 PendingTypeCheckedLoadVCalls; 7676 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7677 PendingTypeCheckedLoadConstVCalls; 7678 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7679 7680 std::vector<CallsiteInfo> PendingCallsites; 7681 std::vector<AllocInfo> PendingAllocs; 7682 std::vector<uint64_t> PendingContextIds; 7683 7684 while (true) { 7685 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7686 if (!MaybeEntry) 7687 return MaybeEntry.takeError(); 7688 BitstreamEntry Entry = MaybeEntry.get(); 7689 7690 switch (Entry.Kind) { 7691 case BitstreamEntry::SubBlock: // Handled for us already. 7692 case BitstreamEntry::Error: 7693 return error("Malformed block"); 7694 case BitstreamEntry::EndBlock: 7695 return Error::success(); 7696 case BitstreamEntry::Record: 7697 // The interesting case. 7698 break; 7699 } 7700 7701 // Read a record. The record format depends on whether this 7702 // is a per-module index or a combined index file. In the per-module 7703 // case the records contain the associated value's ID for correlation 7704 // with VST entries. In the combined index the correlation is done 7705 // via the bitcode offset of the summary records (which were saved 7706 // in the combined index VST entries). The records also contain 7707 // information used for ThinLTO renaming and importing. 7708 Record.clear(); 7709 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7710 if (!MaybeBitCode) 7711 return MaybeBitCode.takeError(); 7712 switch (unsigned BitCode = MaybeBitCode.get()) { 7713 default: // Default behavior: ignore. 7714 break; 7715 case bitc::FS_FLAGS: { // [flags] 7716 TheIndex.setFlags(Record[0]); 7717 break; 7718 } 7719 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7720 uint64_t ValueID = Record[0]; 7721 GlobalValue::GUID RefGUID; 7722 if (Version >= 11) { 7723 RefGUID = Record[1] << 32 | Record[2]; 7724 } else { 7725 RefGUID = Record[1]; 7726 } 7727 ValueIdToValueInfoMap[ValueID] = 7728 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7729 break; 7730 } 7731 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7732 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7733 // numrefs x valueid, n x (valueid)] 7734 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7735 // numrefs x valueid, 7736 // n x (valueid, hotness+tailcall flags)] 7737 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7738 // numrefs x valueid, 7739 // n x (valueid, relblockfreq+tailcall)] 7740 case bitc::FS_PERMODULE: 7741 case bitc::FS_PERMODULE_RELBF: 7742 case bitc::FS_PERMODULE_PROFILE: { 7743 unsigned ValueID = Record[0]; 7744 uint64_t RawFlags = Record[1]; 7745 unsigned InstCount = Record[2]; 7746 uint64_t RawFunFlags = 0; 7747 unsigned NumRefs = Record[3]; 7748 unsigned NumRORefs = 0, NumWORefs = 0; 7749 int RefListStartIndex = 4; 7750 if (Version >= 4) { 7751 RawFunFlags = Record[3]; 7752 NumRefs = Record[4]; 7753 RefListStartIndex = 5; 7754 if (Version >= 5) { 7755 NumRORefs = Record[5]; 7756 RefListStartIndex = 6; 7757 if (Version >= 7) { 7758 NumWORefs = Record[6]; 7759 RefListStartIndex = 7; 7760 } 7761 } 7762 } 7763 7764 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7765 // The module path string ref set in the summary must be owned by the 7766 // index's module string table. Since we don't have a module path 7767 // string table section in the per-module index, we create a single 7768 // module path string table entry with an empty (0) ID to take 7769 // ownership. 7770 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7771 assert(Record.size() >= RefListStartIndex + NumRefs && 7772 "Record size inconsistent with number of references"); 7773 SmallVector<ValueInfo, 0> Refs = makeRefList( 7774 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7775 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7776 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7777 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7778 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7779 IsOldProfileFormat, HasProfile, HasRelBF); 7780 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7781 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7782 // In order to save memory, only record the memprof summaries if this is 7783 // the prevailing copy of a symbol. The linker doesn't resolve local 7784 // linkage values so don't check whether those are prevailing. 7785 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7786 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7787 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7788 PendingCallsites.clear(); 7789 PendingAllocs.clear(); 7790 } 7791 auto FS = std::make_unique<FunctionSummary>( 7792 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7793 std::move(Calls), std::move(PendingTypeTests), 7794 std::move(PendingTypeTestAssumeVCalls), 7795 std::move(PendingTypeCheckedLoadVCalls), 7796 std::move(PendingTypeTestAssumeConstVCalls), 7797 std::move(PendingTypeCheckedLoadConstVCalls), 7798 std::move(PendingParamAccesses), std::move(PendingCallsites), 7799 std::move(PendingAllocs)); 7800 FS->setModulePath(getThisModule()->first()); 7801 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7802 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7803 std::move(FS)); 7804 break; 7805 } 7806 // FS_ALIAS: [valueid, flags, valueid] 7807 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7808 // they expect all aliasee summaries to be available. 7809 case bitc::FS_ALIAS: { 7810 unsigned ValueID = Record[0]; 7811 uint64_t RawFlags = Record[1]; 7812 unsigned AliaseeID = Record[2]; 7813 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7814 auto AS = std::make_unique<AliasSummary>(Flags); 7815 // The module path string ref set in the summary must be owned by the 7816 // index's module string table. Since we don't have a module path 7817 // string table section in the per-module index, we create a single 7818 // module path string table entry with an empty (0) ID to take 7819 // ownership. 7820 AS->setModulePath(getThisModule()->first()); 7821 7822 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7823 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7824 if (!AliaseeInModule) 7825 return error("Alias expects aliasee summary to be parsed"); 7826 AS->setAliasee(AliaseeVI, AliaseeInModule); 7827 7828 auto GUID = getValueInfoFromValueId(ValueID); 7829 AS->setOriginalName(std::get<1>(GUID)); 7830 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7831 break; 7832 } 7833 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7834 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7835 unsigned ValueID = Record[0]; 7836 uint64_t RawFlags = Record[1]; 7837 unsigned RefArrayStart = 2; 7838 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7839 /* WriteOnly */ false, 7840 /* Constant */ false, 7841 GlobalObject::VCallVisibilityPublic); 7842 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7843 if (Version >= 5) { 7844 GVF = getDecodedGVarFlags(Record[2]); 7845 RefArrayStart = 3; 7846 } 7847 SmallVector<ValueInfo, 0> Refs = 7848 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7849 auto FS = 7850 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7851 FS->setModulePath(getThisModule()->first()); 7852 auto GUID = getValueInfoFromValueId(ValueID); 7853 FS->setOriginalName(std::get<1>(GUID)); 7854 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7855 break; 7856 } 7857 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7858 // numrefs, numrefs x valueid, 7859 // n x (valueid, offset)] 7860 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7861 unsigned ValueID = Record[0]; 7862 uint64_t RawFlags = Record[1]; 7863 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7864 unsigned NumRefs = Record[3]; 7865 unsigned RefListStartIndex = 4; 7866 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7867 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7868 SmallVector<ValueInfo, 0> Refs = makeRefList( 7869 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7870 VTableFuncList VTableFuncs; 7871 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7872 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7873 uint64_t Offset = Record[++I]; 7874 VTableFuncs.push_back({Callee, Offset}); 7875 } 7876 auto VS = 7877 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7878 VS->setModulePath(getThisModule()->first()); 7879 VS->setVTableFuncs(VTableFuncs); 7880 auto GUID = getValueInfoFromValueId(ValueID); 7881 VS->setOriginalName(std::get<1>(GUID)); 7882 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7883 break; 7884 } 7885 // FS_COMBINED is legacy and does not have support for the tail call flag. 7886 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7887 // numrefs x valueid, n x (valueid)] 7888 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7889 // numrefs x valueid, 7890 // n x (valueid, hotness+tailcall flags)] 7891 case bitc::FS_COMBINED: 7892 case bitc::FS_COMBINED_PROFILE: { 7893 unsigned ValueID = Record[0]; 7894 uint64_t ModuleId = Record[1]; 7895 uint64_t RawFlags = Record[2]; 7896 unsigned InstCount = Record[3]; 7897 uint64_t RawFunFlags = 0; 7898 unsigned NumRefs = Record[4]; 7899 unsigned NumRORefs = 0, NumWORefs = 0; 7900 int RefListStartIndex = 5; 7901 7902 if (Version >= 4) { 7903 RawFunFlags = Record[4]; 7904 RefListStartIndex = 6; 7905 size_t NumRefsIndex = 5; 7906 if (Version >= 5) { 7907 unsigned NumRORefsOffset = 1; 7908 RefListStartIndex = 7; 7909 if (Version >= 6) { 7910 NumRefsIndex = 6; 7911 RefListStartIndex = 8; 7912 if (Version >= 7) { 7913 RefListStartIndex = 9; 7914 NumWORefs = Record[8]; 7915 NumRORefsOffset = 2; 7916 } 7917 } 7918 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7919 } 7920 NumRefs = Record[NumRefsIndex]; 7921 } 7922 7923 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7924 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7925 assert(Record.size() >= RefListStartIndex + NumRefs && 7926 "Record size inconsistent with number of references"); 7927 SmallVector<ValueInfo, 0> Refs = makeRefList( 7928 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7929 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7930 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7931 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7932 IsOldProfileFormat, HasProfile, false); 7933 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7934 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7935 auto FS = std::make_unique<FunctionSummary>( 7936 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7937 std::move(Edges), std::move(PendingTypeTests), 7938 std::move(PendingTypeTestAssumeVCalls), 7939 std::move(PendingTypeCheckedLoadVCalls), 7940 std::move(PendingTypeTestAssumeConstVCalls), 7941 std::move(PendingTypeCheckedLoadConstVCalls), 7942 std::move(PendingParamAccesses), std::move(PendingCallsites), 7943 std::move(PendingAllocs)); 7944 LastSeenSummary = FS.get(); 7945 LastSeenGUID = VI.getGUID(); 7946 FS->setModulePath(ModuleIdMap[ModuleId]); 7947 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7948 break; 7949 } 7950 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7951 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7952 // they expect all aliasee summaries to be available. 7953 case bitc::FS_COMBINED_ALIAS: { 7954 unsigned ValueID = Record[0]; 7955 uint64_t ModuleId = Record[1]; 7956 uint64_t RawFlags = Record[2]; 7957 unsigned AliaseeValueId = Record[3]; 7958 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7959 auto AS = std::make_unique<AliasSummary>(Flags); 7960 LastSeenSummary = AS.get(); 7961 AS->setModulePath(ModuleIdMap[ModuleId]); 7962 7963 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7964 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7965 AS->setAliasee(AliaseeVI, AliaseeInModule); 7966 7967 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7968 LastSeenGUID = VI.getGUID(); 7969 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7970 break; 7971 } 7972 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7973 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7974 unsigned ValueID = Record[0]; 7975 uint64_t ModuleId = Record[1]; 7976 uint64_t RawFlags = Record[2]; 7977 unsigned RefArrayStart = 3; 7978 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7979 /* WriteOnly */ false, 7980 /* Constant */ false, 7981 GlobalObject::VCallVisibilityPublic); 7982 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7983 if (Version >= 5) { 7984 GVF = getDecodedGVarFlags(Record[3]); 7985 RefArrayStart = 4; 7986 } 7987 SmallVector<ValueInfo, 0> Refs = 7988 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7989 auto FS = 7990 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7991 LastSeenSummary = FS.get(); 7992 FS->setModulePath(ModuleIdMap[ModuleId]); 7993 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7994 LastSeenGUID = VI.getGUID(); 7995 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7996 break; 7997 } 7998 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7999 case bitc::FS_COMBINED_ORIGINAL_NAME: { 8000 uint64_t OriginalName = Record[0]; 8001 if (!LastSeenSummary) 8002 return error("Name attachment that does not follow a combined record"); 8003 LastSeenSummary->setOriginalName(OriginalName); 8004 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 8005 // Reset the LastSeenSummary 8006 LastSeenSummary = nullptr; 8007 LastSeenGUID = 0; 8008 break; 8009 } 8010 case bitc::FS_TYPE_TESTS: 8011 assert(PendingTypeTests.empty()); 8012 llvm::append_range(PendingTypeTests, Record); 8013 break; 8014 8015 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 8016 assert(PendingTypeTestAssumeVCalls.empty()); 8017 for (unsigned I = 0; I != Record.size(); I += 2) 8018 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 8019 break; 8020 8021 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 8022 assert(PendingTypeCheckedLoadVCalls.empty()); 8023 for (unsigned I = 0; I != Record.size(); I += 2) 8024 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 8025 break; 8026 8027 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 8028 PendingTypeTestAssumeConstVCalls.push_back( 8029 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8030 break; 8031 8032 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 8033 PendingTypeCheckedLoadConstVCalls.push_back( 8034 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8035 break; 8036 8037 case bitc::FS_CFI_FUNCTION_DEFS: { 8038 std::set<std::string, std::less<>> &CfiFunctionDefs = 8039 TheIndex.cfiFunctionDefs(); 8040 for (unsigned I = 0; I != Record.size(); I += 2) 8041 CfiFunctionDefs.insert( 8042 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8043 break; 8044 } 8045 8046 case bitc::FS_CFI_FUNCTION_DECLS: { 8047 std::set<std::string, std::less<>> &CfiFunctionDecls = 8048 TheIndex.cfiFunctionDecls(); 8049 for (unsigned I = 0; I != Record.size(); I += 2) 8050 CfiFunctionDecls.insert( 8051 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8052 break; 8053 } 8054 8055 case bitc::FS_TYPE_ID: 8056 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 8057 break; 8058 8059 case bitc::FS_TYPE_ID_METADATA: 8060 parseTypeIdCompatibleVtableSummaryRecord(Record); 8061 break; 8062 8063 case bitc::FS_BLOCK_COUNT: 8064 TheIndex.addBlockCount(Record[0]); 8065 break; 8066 8067 case bitc::FS_PARAM_ACCESS: { 8068 PendingParamAccesses = parseParamAccesses(Record); 8069 break; 8070 } 8071 8072 case bitc::FS_STACK_IDS: { // [n x stackid] 8073 // Save stack ids in the reader to consult when adding stack ids from the 8074 // lists in the stack node and alloc node entries. 8075 if (Version <= 11) { 8076 StackIds = ArrayRef<uint64_t>(Record); 8077 break; 8078 } 8079 // This is an array of 32-bit fixed-width values, holding each 64-bit 8080 // context id as a pair of adjacent (most significant first) 32-bit words. 8081 assert(Record.size() % 2 == 0); 8082 StackIds.reserve(Record.size() / 2); 8083 for (auto R = Record.begin(); R != Record.end(); R += 2) 8084 StackIds.push_back(*R << 32 | *(R + 1)); 8085 break; 8086 } 8087 8088 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry] 8089 RadixArray = ArrayRef<uint64_t>(Record); 8090 break; 8091 } 8092 8093 case bitc::FS_PERMODULE_CALLSITE_INFO: { 8094 unsigned ValueID = Record[0]; 8095 SmallVector<unsigned> StackIdList; 8096 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 8097 assert(*R < StackIds.size()); 8098 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 8099 } 8100 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8101 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8102 break; 8103 } 8104 8105 case bitc::FS_COMBINED_CALLSITE_INFO: { 8106 auto RecordIter = Record.begin(); 8107 unsigned ValueID = *RecordIter++; 8108 unsigned NumStackIds = *RecordIter++; 8109 unsigned NumVersions = *RecordIter++; 8110 assert(Record.size() == 3 + NumStackIds + NumVersions); 8111 SmallVector<unsigned> StackIdList; 8112 for (unsigned J = 0; J < NumStackIds; J++) { 8113 assert(*RecordIter < StackIds.size()); 8114 StackIdList.push_back( 8115 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8116 } 8117 SmallVector<unsigned> Versions; 8118 for (unsigned J = 0; J < NumVersions; J++) 8119 Versions.push_back(*RecordIter++); 8120 ValueInfo VI = std::get<0>( 8121 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8122 PendingCallsites.push_back( 8123 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8124 break; 8125 } 8126 8127 case bitc::FS_ALLOC_CONTEXT_IDS: { 8128 // This is an array of 32-bit fixed-width values, holding each 64-bit 8129 // context id as a pair of adjacent (most significant first) 32-bit words. 8130 assert(Record.size() % 2 == 0); 8131 PendingContextIds.reserve(Record.size() / 2); 8132 for (auto R = Record.begin(); R != Record.end(); R += 2) 8133 PendingContextIds.push_back(*R << 32 | *(R + 1)); 8134 break; 8135 } 8136 8137 case bitc::FS_PERMODULE_ALLOC_INFO: { 8138 unsigned I = 0; 8139 std::vector<MIBInfo> MIBs; 8140 unsigned NumMIBs = 0; 8141 if (Version >= 10) 8142 NumMIBs = Record[I++]; 8143 unsigned MIBsRead = 0; 8144 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8145 (Version < 10 && I < Record.size())) { 8146 assert(Record.size() - I >= 2); 8147 AllocationType AllocType = (AllocationType)Record[I++]; 8148 auto StackIdList = parseAllocInfoContext(Record, I); 8149 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8150 } 8151 // We either have nothing left or at least NumMIBs context size info 8152 // indices left (for the total sizes included when reporting of hinted 8153 // bytes is enabled). 8154 assert(I == Record.size() || Record.size() - I >= NumMIBs); 8155 std::vector<std::vector<ContextTotalSize>> AllContextSizes; 8156 if (I < Record.size()) { 8157 assert(!PendingContextIds.empty() && 8158 "Missing context ids for alloc sizes"); 8159 unsigned ContextIdIndex = 0; 8160 MIBsRead = 0; 8161 // The sizes are a linearized array of sizes, where for each MIB there 8162 // is 1 or more sizes (due to context trimming, each MIB in the metadata 8163 // and summarized here can correspond to more than one original context 8164 // from the profile). 8165 while (MIBsRead++ < NumMIBs) { 8166 // First read the number of contexts recorded for this MIB. 8167 unsigned NumContextSizeInfoEntries = Record[I++]; 8168 assert(Record.size() - I >= NumContextSizeInfoEntries); 8169 std::vector<ContextTotalSize> ContextSizes; 8170 ContextSizes.reserve(NumContextSizeInfoEntries); 8171 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) { 8172 assert(ContextIdIndex < PendingContextIds.size()); 8173 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS 8174 // should be in the same order as the total sizes. 8175 ContextSizes.push_back( 8176 {PendingContextIds[ContextIdIndex++], Record[I++]}); 8177 } 8178 AllContextSizes.push_back(std::move(ContextSizes)); 8179 } 8180 PendingContextIds.clear(); 8181 } 8182 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8183 if (!AllContextSizes.empty()) { 8184 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size()); 8185 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes); 8186 } 8187 break; 8188 } 8189 8190 case bitc::FS_COMBINED_ALLOC_INFO: { 8191 unsigned I = 0; 8192 std::vector<MIBInfo> MIBs; 8193 unsigned NumMIBs = Record[I++]; 8194 unsigned NumVersions = Record[I++]; 8195 unsigned MIBsRead = 0; 8196 while (MIBsRead++ < NumMIBs) { 8197 assert(Record.size() - I >= 2); 8198 AllocationType AllocType = (AllocationType)Record[I++]; 8199 auto StackIdList = parseAllocInfoContext(Record, I); 8200 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8201 } 8202 assert(Record.size() - I >= NumVersions); 8203 SmallVector<uint8_t> Versions; 8204 for (unsigned J = 0; J < NumVersions; J++) 8205 Versions.push_back(Record[I++]); 8206 assert(I == Record.size()); 8207 PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs))); 8208 break; 8209 } 8210 } 8211 } 8212 llvm_unreachable("Exit infinite loop"); 8213 } 8214 8215 // Parse the module string table block into the Index. 8216 // This populates the ModulePathStringTable map in the index. 8217 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8218 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8219 return Err; 8220 8221 SmallVector<uint64_t, 64> Record; 8222 8223 SmallString<128> ModulePath; 8224 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8225 8226 while (true) { 8227 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8228 if (!MaybeEntry) 8229 return MaybeEntry.takeError(); 8230 BitstreamEntry Entry = MaybeEntry.get(); 8231 8232 switch (Entry.Kind) { 8233 case BitstreamEntry::SubBlock: // Handled for us already. 8234 case BitstreamEntry::Error: 8235 return error("Malformed block"); 8236 case BitstreamEntry::EndBlock: 8237 return Error::success(); 8238 case BitstreamEntry::Record: 8239 // The interesting case. 8240 break; 8241 } 8242 8243 Record.clear(); 8244 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8245 if (!MaybeRecord) 8246 return MaybeRecord.takeError(); 8247 switch (MaybeRecord.get()) { 8248 default: // Default behavior: ignore. 8249 break; 8250 case bitc::MST_CODE_ENTRY: { 8251 // MST_ENTRY: [modid, namechar x N] 8252 uint64_t ModuleId = Record[0]; 8253 8254 if (convertToString(Record, 1, ModulePath)) 8255 return error("Invalid record"); 8256 8257 LastSeenModule = TheIndex.addModule(ModulePath); 8258 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8259 8260 ModulePath.clear(); 8261 break; 8262 } 8263 /// MST_CODE_HASH: [5*i32] 8264 case bitc::MST_CODE_HASH: { 8265 if (Record.size() != 5) 8266 return error("Invalid hash length " + Twine(Record.size()).str()); 8267 if (!LastSeenModule) 8268 return error("Invalid hash that does not follow a module path"); 8269 int Pos = 0; 8270 for (auto &Val : Record) { 8271 assert(!(Val >> 32) && "Unexpected high bits set"); 8272 LastSeenModule->second[Pos++] = Val; 8273 } 8274 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8275 LastSeenModule = nullptr; 8276 break; 8277 } 8278 } 8279 } 8280 llvm_unreachable("Exit infinite loop"); 8281 } 8282 8283 namespace { 8284 8285 // FIXME: This class is only here to support the transition to llvm::Error. It 8286 // will be removed once this transition is complete. Clients should prefer to 8287 // deal with the Error value directly, rather than converting to error_code. 8288 class BitcodeErrorCategoryType : public std::error_category { 8289 const char *name() const noexcept override { 8290 return "llvm.bitcode"; 8291 } 8292 8293 std::string message(int IE) const override { 8294 BitcodeError E = static_cast<BitcodeError>(IE); 8295 switch (E) { 8296 case BitcodeError::CorruptedBitcode: 8297 return "Corrupted bitcode"; 8298 } 8299 llvm_unreachable("Unknown error type!"); 8300 } 8301 }; 8302 8303 } // end anonymous namespace 8304 8305 const std::error_category &llvm::BitcodeErrorCategory() { 8306 static BitcodeErrorCategoryType ErrorCategory; 8307 return ErrorCategory; 8308 } 8309 8310 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8311 unsigned Block, unsigned RecordID) { 8312 if (Error Err = Stream.EnterSubBlock(Block)) 8313 return std::move(Err); 8314 8315 StringRef Strtab; 8316 while (true) { 8317 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8318 if (!MaybeEntry) 8319 return MaybeEntry.takeError(); 8320 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8321 8322 switch (Entry.Kind) { 8323 case BitstreamEntry::EndBlock: 8324 return Strtab; 8325 8326 case BitstreamEntry::Error: 8327 return error("Malformed block"); 8328 8329 case BitstreamEntry::SubBlock: 8330 if (Error Err = Stream.SkipBlock()) 8331 return std::move(Err); 8332 break; 8333 8334 case BitstreamEntry::Record: 8335 StringRef Blob; 8336 SmallVector<uint64_t, 1> Record; 8337 Expected<unsigned> MaybeRecord = 8338 Stream.readRecord(Entry.ID, Record, &Blob); 8339 if (!MaybeRecord) 8340 return MaybeRecord.takeError(); 8341 if (MaybeRecord.get() == RecordID) 8342 Strtab = Blob; 8343 break; 8344 } 8345 } 8346 } 8347 8348 //===----------------------------------------------------------------------===// 8349 // External interface 8350 //===----------------------------------------------------------------------===// 8351 8352 Expected<std::vector<BitcodeModule>> 8353 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8354 auto FOrErr = getBitcodeFileContents(Buffer); 8355 if (!FOrErr) 8356 return FOrErr.takeError(); 8357 return std::move(FOrErr->Mods); 8358 } 8359 8360 Expected<BitcodeFileContents> 8361 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8362 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8363 if (!StreamOrErr) 8364 return StreamOrErr.takeError(); 8365 BitstreamCursor &Stream = *StreamOrErr; 8366 8367 BitcodeFileContents F; 8368 while (true) { 8369 uint64_t BCBegin = Stream.getCurrentByteNo(); 8370 8371 // We may be consuming bitcode from a client that leaves garbage at the end 8372 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8373 // the end that there cannot possibly be another module, stop looking. 8374 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8375 return F; 8376 8377 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8378 if (!MaybeEntry) 8379 return MaybeEntry.takeError(); 8380 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8381 8382 switch (Entry.Kind) { 8383 case BitstreamEntry::EndBlock: 8384 case BitstreamEntry::Error: 8385 return error("Malformed block"); 8386 8387 case BitstreamEntry::SubBlock: { 8388 uint64_t IdentificationBit = -1ull; 8389 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8390 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8391 if (Error Err = Stream.SkipBlock()) 8392 return std::move(Err); 8393 8394 { 8395 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8396 if (!MaybeEntry) 8397 return MaybeEntry.takeError(); 8398 Entry = MaybeEntry.get(); 8399 } 8400 8401 if (Entry.Kind != BitstreamEntry::SubBlock || 8402 Entry.ID != bitc::MODULE_BLOCK_ID) 8403 return error("Malformed block"); 8404 } 8405 8406 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8407 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8408 if (Error Err = Stream.SkipBlock()) 8409 return std::move(Err); 8410 8411 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8412 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8413 Buffer.getBufferIdentifier(), IdentificationBit, 8414 ModuleBit}); 8415 continue; 8416 } 8417 8418 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8419 Expected<StringRef> Strtab = 8420 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8421 if (!Strtab) 8422 return Strtab.takeError(); 8423 // This string table is used by every preceding bitcode module that does 8424 // not have its own string table. A bitcode file may have multiple 8425 // string tables if it was created by binary concatenation, for example 8426 // with "llvm-cat -b". 8427 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8428 if (!I.Strtab.empty()) 8429 break; 8430 I.Strtab = *Strtab; 8431 } 8432 // Similarly, the string table is used by every preceding symbol table; 8433 // normally there will be just one unless the bitcode file was created 8434 // by binary concatenation. 8435 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8436 F.StrtabForSymtab = *Strtab; 8437 continue; 8438 } 8439 8440 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8441 Expected<StringRef> SymtabOrErr = 8442 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8443 if (!SymtabOrErr) 8444 return SymtabOrErr.takeError(); 8445 8446 // We can expect the bitcode file to have multiple symbol tables if it 8447 // was created by binary concatenation. In that case we silently 8448 // ignore any subsequent symbol tables, which is fine because this is a 8449 // low level function. The client is expected to notice that the number 8450 // of modules in the symbol table does not match the number of modules 8451 // in the input file and regenerate the symbol table. 8452 if (F.Symtab.empty()) 8453 F.Symtab = *SymtabOrErr; 8454 continue; 8455 } 8456 8457 if (Error Err = Stream.SkipBlock()) 8458 return std::move(Err); 8459 continue; 8460 } 8461 case BitstreamEntry::Record: 8462 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8463 return std::move(E); 8464 continue; 8465 } 8466 } 8467 } 8468 8469 /// Get a lazy one-at-time loading module from bitcode. 8470 /// 8471 /// This isn't always used in a lazy context. In particular, it's also used by 8472 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8473 /// in forward-referenced functions from block address references. 8474 /// 8475 /// \param[in] MaterializeAll Set to \c true if we should materialize 8476 /// everything. 8477 Expected<std::unique_ptr<Module>> 8478 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8479 bool ShouldLazyLoadMetadata, bool IsImporting, 8480 ParserCallbacks Callbacks) { 8481 BitstreamCursor Stream(Buffer); 8482 8483 std::string ProducerIdentification; 8484 if (IdentificationBit != -1ull) { 8485 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8486 return std::move(JumpFailed); 8487 if (Error E = 8488 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8489 return std::move(E); 8490 } 8491 8492 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8493 return std::move(JumpFailed); 8494 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8495 Context); 8496 8497 std::unique_ptr<Module> M = 8498 std::make_unique<Module>(ModuleIdentifier, Context); 8499 M->setMaterializer(R); 8500 8501 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8502 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8503 IsImporting, Callbacks)) 8504 return std::move(Err); 8505 8506 if (MaterializeAll) { 8507 // Read in the entire module, and destroy the BitcodeReader. 8508 if (Error Err = M->materializeAll()) 8509 return std::move(Err); 8510 } else { 8511 // Resolve forward references from blockaddresses. 8512 if (Error Err = R->materializeForwardReferencedFunctions()) 8513 return std::move(Err); 8514 } 8515 8516 return std::move(M); 8517 } 8518 8519 Expected<std::unique_ptr<Module>> 8520 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8521 bool IsImporting, ParserCallbacks Callbacks) { 8522 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8523 Callbacks); 8524 } 8525 8526 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8527 // We don't use ModuleIdentifier here because the client may need to control the 8528 // module path used in the combined summary (e.g. when reading summaries for 8529 // regular LTO modules). 8530 Error BitcodeModule::readSummary( 8531 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8532 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8533 BitstreamCursor Stream(Buffer); 8534 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8535 return JumpFailed; 8536 8537 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8538 ModulePath, IsPrevailing); 8539 return R.parseModule(); 8540 } 8541 8542 // Parse the specified bitcode buffer, returning the function info index. 8543 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8544 BitstreamCursor Stream(Buffer); 8545 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8546 return std::move(JumpFailed); 8547 8548 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8549 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8550 ModuleIdentifier, 0); 8551 8552 if (Error Err = R.parseModule()) 8553 return std::move(Err); 8554 8555 return std::move(Index); 8556 } 8557 8558 static Expected<std::pair<bool, bool>> 8559 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8560 unsigned ID, 8561 BitcodeLTOInfo <OInfo) { 8562 if (Error Err = Stream.EnterSubBlock(ID)) 8563 return std::move(Err); 8564 SmallVector<uint64_t, 64> Record; 8565 8566 while (true) { 8567 BitstreamEntry Entry; 8568 std::pair<bool, bool> Result = {false,false}; 8569 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8570 return std::move(E); 8571 8572 switch (Entry.Kind) { 8573 case BitstreamEntry::SubBlock: // Handled for us already. 8574 case BitstreamEntry::Error: 8575 return error("Malformed block"); 8576 case BitstreamEntry::EndBlock: { 8577 // If no flags record found, set both flags to false. 8578 return Result; 8579 } 8580 case BitstreamEntry::Record: 8581 // The interesting case. 8582 break; 8583 } 8584 8585 // Look for the FS_FLAGS record. 8586 Record.clear(); 8587 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8588 if (!MaybeBitCode) 8589 return MaybeBitCode.takeError(); 8590 switch (MaybeBitCode.get()) { 8591 default: // Default behavior: ignore. 8592 break; 8593 case bitc::FS_FLAGS: { // [flags] 8594 uint64_t Flags = Record[0]; 8595 // Scan flags. 8596 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8597 8598 bool EnableSplitLTOUnit = Flags & 0x8; 8599 bool UnifiedLTO = Flags & 0x200; 8600 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8601 8602 return Result; 8603 } 8604 } 8605 } 8606 llvm_unreachable("Exit infinite loop"); 8607 } 8608 8609 // Check if the given bitcode buffer contains a global value summary block. 8610 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8611 BitstreamCursor Stream(Buffer); 8612 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8613 return std::move(JumpFailed); 8614 8615 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8616 return std::move(Err); 8617 8618 while (true) { 8619 llvm::BitstreamEntry Entry; 8620 if (Error E = Stream.advance().moveInto(Entry)) 8621 return std::move(E); 8622 8623 switch (Entry.Kind) { 8624 case BitstreamEntry::Error: 8625 return error("Malformed block"); 8626 case BitstreamEntry::EndBlock: 8627 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8628 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8629 8630 case BitstreamEntry::SubBlock: 8631 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8632 BitcodeLTOInfo LTOInfo; 8633 Expected<std::pair<bool, bool>> Flags = 8634 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8635 if (!Flags) 8636 return Flags.takeError(); 8637 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8638 LTOInfo.IsThinLTO = true; 8639 LTOInfo.HasSummary = true; 8640 return LTOInfo; 8641 } 8642 8643 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8644 BitcodeLTOInfo LTOInfo; 8645 Expected<std::pair<bool, bool>> Flags = 8646 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8647 if (!Flags) 8648 return Flags.takeError(); 8649 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8650 LTOInfo.IsThinLTO = false; 8651 LTOInfo.HasSummary = true; 8652 return LTOInfo; 8653 } 8654 8655 // Ignore other sub-blocks. 8656 if (Error Err = Stream.SkipBlock()) 8657 return std::move(Err); 8658 continue; 8659 8660 case BitstreamEntry::Record: 8661 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8662 continue; 8663 else 8664 return StreamFailed.takeError(); 8665 } 8666 } 8667 } 8668 8669 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8670 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8671 if (!MsOrErr) 8672 return MsOrErr.takeError(); 8673 8674 if (MsOrErr->size() != 1) 8675 return error("Expected a single module"); 8676 8677 return (*MsOrErr)[0]; 8678 } 8679 8680 Expected<std::unique_ptr<Module>> 8681 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8682 bool ShouldLazyLoadMetadata, bool IsImporting, 8683 ParserCallbacks Callbacks) { 8684 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8685 if (!BM) 8686 return BM.takeError(); 8687 8688 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8689 Callbacks); 8690 } 8691 8692 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8693 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8694 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8695 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8696 IsImporting, Callbacks); 8697 if (MOrErr) 8698 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8699 return MOrErr; 8700 } 8701 8702 Expected<std::unique_ptr<Module>> 8703 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8704 return getModuleImpl(Context, true, false, false, Callbacks); 8705 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8706 // written. We must defer until the Module has been fully materialized. 8707 } 8708 8709 Expected<std::unique_ptr<Module>> 8710 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8711 ParserCallbacks Callbacks) { 8712 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8713 if (!BM) 8714 return BM.takeError(); 8715 8716 return BM->parseModule(Context, Callbacks); 8717 } 8718 8719 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8720 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8721 if (!StreamOrErr) 8722 return StreamOrErr.takeError(); 8723 8724 return readTriple(*StreamOrErr); 8725 } 8726 8727 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8728 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8729 if (!StreamOrErr) 8730 return StreamOrErr.takeError(); 8731 8732 return hasObjCCategory(*StreamOrErr); 8733 } 8734 8735 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8736 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8737 if (!StreamOrErr) 8738 return StreamOrErr.takeError(); 8739 8740 return readIdentificationCode(*StreamOrErr); 8741 } 8742 8743 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8744 ModuleSummaryIndex &CombinedIndex) { 8745 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8746 if (!BM) 8747 return BM.takeError(); 8748 8749 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8750 } 8751 8752 Expected<std::unique_ptr<ModuleSummaryIndex>> 8753 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8754 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8755 if (!BM) 8756 return BM.takeError(); 8757 8758 return BM->getSummary(); 8759 } 8760 8761 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8762 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8763 if (!BM) 8764 return BM.takeError(); 8765 8766 return BM->getLTOInfo(); 8767 } 8768 8769 Expected<std::unique_ptr<ModuleSummaryIndex>> 8770 llvm::getModuleSummaryIndexForFile(StringRef Path, 8771 bool IgnoreEmptyThinLTOIndexFile) { 8772 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8773 MemoryBuffer::getFileOrSTDIN(Path); 8774 if (!FileOrErr) 8775 return errorCodeToError(FileOrErr.getError()); 8776 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8777 return nullptr; 8778 return getModuleSummaryIndex(**FileOrErr); 8779 } 8780