xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 9513f2fdf2ad50f55726154a6b6a4aa463bc457f)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
796                           unsigned &Slot, unsigned InstNum, Value *&ResVal,
797                           BasicBlock *ConstExprInsertBB) {
798     if (Slot == Record.size())
799       return true;
800     unsigned ValID = Record[Slot++];
801     if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) {
802       unsigned TypeId;
803       return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId,
804                               ConstExprInsertBB);
805     }
806     if (Slot == Record.size())
807       return true;
808     unsigned ValNo = InstNum - (unsigned)Record[Slot++];
809     ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo));
810     return false;
811   }
812 
813   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
814   /// past the number of slots used by the value in the record. Return true if
815   /// there is an error.
816   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
817                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
818                 BasicBlock *ConstExprInsertBB) {
819     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
820       return true;
821     // All values currently take a single record slot.
822     ++Slot;
823     return false;
824   }
825 
826   /// Like popValue, but does not increment the Slot number.
827   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
829                 BasicBlock *ConstExprInsertBB) {
830     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
831     return ResVal == nullptr;
832   }
833 
834   /// Version of getValue that returns ResVal directly, or 0 if there is an
835   /// error.
836   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
837                   unsigned InstNum, Type *Ty, unsigned TyID,
838                   BasicBlock *ConstExprInsertBB) {
839     if (Slot == Record.size()) return nullptr;
840     unsigned ValNo = (unsigned)Record[Slot];
841     // Adjust the ValNo, if it was encoded relative to the InstNum.
842     if (UseRelativeIDs)
843       ValNo = InstNum - ValNo;
844     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
845   }
846 
847   /// Like getValue, but decodes signed VBRs.
848   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
849                         unsigned InstNum, Type *Ty, unsigned TyID,
850                         BasicBlock *ConstExprInsertBB) {
851     if (Slot == Record.size()) return nullptr;
852     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
853     // Adjust the ValNo, if it was encoded relative to the InstNum.
854     if (UseRelativeIDs)
855       ValNo = InstNum - ValNo;
856     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
857   }
858 
859   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
860                                             unsigned &OpNum,
861                                             unsigned BitWidth) {
862     if (Record.size() - OpNum < 2)
863       return error("Too few records for range");
864     if (BitWidth > 64) {
865       unsigned LowerActiveWords = Record[OpNum];
866       unsigned UpperActiveWords = Record[OpNum++] >> 32;
867       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
868         return error("Too few records for range");
869       APInt Lower =
870           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
871       OpNum += LowerActiveWords;
872       APInt Upper =
873           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
874       OpNum += UpperActiveWords;
875       return ConstantRange(Lower, Upper);
876     } else {
877       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
878       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
879       return ConstantRange(APInt(BitWidth, Start, true),
880                            APInt(BitWidth, End, true));
881     }
882   }
883 
884   Expected<ConstantRange>
885   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
886     if (Record.size() - OpNum < 1)
887       return error("Too few records for range");
888     unsigned BitWidth = Record[OpNum++];
889     return readConstantRange(Record, OpNum, BitWidth);
890   }
891 
892   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
893   /// corresponding argument's pointee type. Also upgrades intrinsics that now
894   /// require an elementtype attribute.
895   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
896 
897   /// Converts alignment exponent (i.e. power of two (or zero)) to the
898   /// corresponding alignment to use. If alignment is too large, returns
899   /// a corresponding error code.
900   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
901   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
902   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
903                     ParserCallbacks Callbacks = {});
904 
905   Error parseComdatRecord(ArrayRef<uint64_t> Record);
906   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
907   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
908   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
909                                         ArrayRef<uint64_t> Record);
910 
911   Error parseAttributeBlock();
912   Error parseAttributeGroupBlock();
913   Error parseTypeTable();
914   Error parseTypeTableBody();
915   Error parseOperandBundleTags();
916   Error parseSyncScopeNames();
917 
918   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
919                                 unsigned NameIndex, Triple &TT);
920   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
921                                ArrayRef<uint64_t> Record);
922   Error parseValueSymbolTable(uint64_t Offset = 0);
923   Error parseGlobalValueSymbolTable();
924   Error parseConstants();
925   Error rememberAndSkipFunctionBodies();
926   Error rememberAndSkipFunctionBody();
927   /// Save the positions of the Metadata blocks and skip parsing the blocks.
928   Error rememberAndSkipMetadata();
929   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
930   Error parseFunctionBody(Function *F);
931   Error globalCleanup();
932   Error resolveGlobalAndIndirectSymbolInits();
933   Error parseUseLists();
934   Error findFunctionInStream(
935       Function *F,
936       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
937 
938   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
939 };
940 
941 /// Class to manage reading and parsing function summary index bitcode
942 /// files/sections.
943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
944   /// The module index built during parsing.
945   ModuleSummaryIndex &TheIndex;
946 
947   /// Indicates whether we have encountered a global value summary section
948   /// yet during parsing.
949   bool SeenGlobalValSummary = false;
950 
951   /// Indicates whether we have already parsed the VST, used for error checking.
952   bool SeenValueSymbolTable = false;
953 
954   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
955   /// Used to enable on-demand parsing of the VST.
956   uint64_t VSTOffset = 0;
957 
958   // Map to save ValueId to ValueInfo association that was recorded in the
959   // ValueSymbolTable. It is used after the VST is parsed to convert
960   // call graph edges read from the function summary from referencing
961   // callees by their ValueId to using the ValueInfo instead, which is how
962   // they are recorded in the summary index being built.
963   // We save a GUID which refers to the same global as the ValueInfo, but
964   // ignoring the linkage, i.e. for values other than local linkage they are
965   // identical (this is the second member). ValueInfo has the real GUID.
966   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
967       ValueIdToValueInfoMap;
968 
969   /// Map populated during module path string table parsing, from the
970   /// module ID to a string reference owned by the index's module
971   /// path string table, used to correlate with combined index
972   /// summary records.
973   DenseMap<uint64_t, StringRef> ModuleIdMap;
974 
975   /// Original source file name recorded in a bitcode record.
976   std::string SourceFileName;
977 
978   /// The string identifier given to this module by the client, normally the
979   /// path to the bitcode file.
980   StringRef ModulePath;
981 
982   /// Callback to ask whether a symbol is the prevailing copy when invoked
983   /// during combined index building.
984   std::function<bool(GlobalValue::GUID)> IsPrevailing;
985 
986   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
987   /// ids from the lists in the callsite and alloc entries to the index.
988   std::vector<uint64_t> StackIds;
989 
990 public:
991   ModuleSummaryIndexBitcodeReader(
992       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
993       StringRef ModulePath,
994       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
995 
996   Error parseModule();
997 
998 private:
999   void setValueGUID(uint64_t ValueID, StringRef ValueName,
1000                     GlobalValue::LinkageTypes Linkage,
1001                     StringRef SourceFileName);
1002   Error parseValueSymbolTable(
1003       uint64_t Offset,
1004       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
1005   SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
1006   SmallVector<FunctionSummary::EdgeTy, 0>
1007   makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
1008                bool HasProfile, bool HasRelBF);
1009   Error parseEntireSummary(unsigned ID);
1010   Error parseModuleStringTable();
1011   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
1012   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
1013                                        TypeIdCompatibleVtableInfo &TypeId);
1014   std::vector<FunctionSummary::ParamAccess>
1015   parseParamAccesses(ArrayRef<uint64_t> Record);
1016 
1017   template <bool AllowNullValueInfo = false>
1018   std::pair<ValueInfo, GlobalValue::GUID>
1019   getValueInfoFromValueId(unsigned ValueId);
1020 
1021   void addThisModule();
1022   ModuleSummaryIndex::ModuleInfo *getThisModule();
1023 };
1024 
1025 } // end anonymous namespace
1026 
1027 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1028                                                     Error Err) {
1029   if (Err) {
1030     std::error_code EC;
1031     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1032       EC = EIB.convertToErrorCode();
1033       Ctx.emitError(EIB.message());
1034     });
1035     return EC;
1036   }
1037   return std::error_code();
1038 }
1039 
1040 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1041                              StringRef ProducerIdentification,
1042                              LLVMContext &Context)
1043     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1044       ValueList(this->Stream.SizeInBytes(),
1045                 [this](unsigned ValID, BasicBlock *InsertBB) {
1046                   return materializeValue(ValID, InsertBB);
1047                 }) {
1048   this->ProducerIdentification = std::string(ProducerIdentification);
1049 }
1050 
1051 Error BitcodeReader::materializeForwardReferencedFunctions() {
1052   if (WillMaterializeAllForwardRefs)
1053     return Error::success();
1054 
1055   // Prevent recursion.
1056   WillMaterializeAllForwardRefs = true;
1057 
1058   while (!BasicBlockFwdRefQueue.empty()) {
1059     Function *F = BasicBlockFwdRefQueue.front();
1060     BasicBlockFwdRefQueue.pop_front();
1061     assert(F && "Expected valid function");
1062     if (!BasicBlockFwdRefs.count(F))
1063       // Already materialized.
1064       continue;
1065 
1066     // Check for a function that isn't materializable to prevent an infinite
1067     // loop.  When parsing a blockaddress stored in a global variable, there
1068     // isn't a trivial way to check if a function will have a body without a
1069     // linear search through FunctionsWithBodies, so just check it here.
1070     if (!F->isMaterializable())
1071       return error("Never resolved function from blockaddress");
1072 
1073     // Try to materialize F.
1074     if (Error Err = materialize(F))
1075       return Err;
1076   }
1077   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1078 
1079   for (Function *F : BackwardRefFunctions)
1080     if (Error Err = materialize(F))
1081       return Err;
1082   BackwardRefFunctions.clear();
1083 
1084   // Reset state.
1085   WillMaterializeAllForwardRefs = false;
1086   return Error::success();
1087 }
1088 
1089 //===----------------------------------------------------------------------===//
1090 //  Helper functions to implement forward reference resolution, etc.
1091 //===----------------------------------------------------------------------===//
1092 
1093 static bool hasImplicitComdat(size_t Val) {
1094   switch (Val) {
1095   default:
1096     return false;
1097   case 1:  // Old WeakAnyLinkage
1098   case 4:  // Old LinkOnceAnyLinkage
1099   case 10: // Old WeakODRLinkage
1100   case 11: // Old LinkOnceODRLinkage
1101     return true;
1102   }
1103 }
1104 
1105 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1106   switch (Val) {
1107   default: // Map unknown/new linkages to external
1108   case 0:
1109     return GlobalValue::ExternalLinkage;
1110   case 2:
1111     return GlobalValue::AppendingLinkage;
1112   case 3:
1113     return GlobalValue::InternalLinkage;
1114   case 5:
1115     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1116   case 6:
1117     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1118   case 7:
1119     return GlobalValue::ExternalWeakLinkage;
1120   case 8:
1121     return GlobalValue::CommonLinkage;
1122   case 9:
1123     return GlobalValue::PrivateLinkage;
1124   case 12:
1125     return GlobalValue::AvailableExternallyLinkage;
1126   case 13:
1127     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1128   case 14:
1129     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1130   case 15:
1131     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1132   case 1: // Old value with implicit comdat.
1133   case 16:
1134     return GlobalValue::WeakAnyLinkage;
1135   case 10: // Old value with implicit comdat.
1136   case 17:
1137     return GlobalValue::WeakODRLinkage;
1138   case 4: // Old value with implicit comdat.
1139   case 18:
1140     return GlobalValue::LinkOnceAnyLinkage;
1141   case 11: // Old value with implicit comdat.
1142   case 19:
1143     return GlobalValue::LinkOnceODRLinkage;
1144   }
1145 }
1146 
1147 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1148   FunctionSummary::FFlags Flags;
1149   Flags.ReadNone = RawFlags & 0x1;
1150   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1151   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1152   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1153   Flags.NoInline = (RawFlags >> 4) & 0x1;
1154   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1155   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1156   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1157   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1158   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1159   return Flags;
1160 }
1161 
1162 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1163 //
1164 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1165 // visibility: [8, 10).
1166 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1167                                                             uint64_t Version) {
1168   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1169   // like getDecodedLinkage() above. Any future change to the linkage enum and
1170   // to getDecodedLinkage() will need to be taken into account here as above.
1171   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1172   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1173   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1174   RawFlags = RawFlags >> 4;
1175   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1176   // The Live flag wasn't introduced until version 3. For dead stripping
1177   // to work correctly on earlier versions, we must conservatively treat all
1178   // values as live.
1179   bool Live = (RawFlags & 0x2) || Version < 3;
1180   bool Local = (RawFlags & 0x4);
1181   bool AutoHide = (RawFlags & 0x8);
1182 
1183   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1184                                      Live, Local, AutoHide, IK);
1185 }
1186 
1187 // Decode the flags for GlobalVariable in the summary
1188 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1189   return GlobalVarSummary::GVarFlags(
1190       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1191       (RawFlags & 0x4) ? true : false,
1192       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1193 }
1194 
1195 static std::pair<CalleeInfo::HotnessType, bool>
1196 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1197   CalleeInfo::HotnessType Hotness =
1198       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1199   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1200   return {Hotness, HasTailCall};
1201 }
1202 
1203 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1204                                         bool &HasTailCall) {
1205   static constexpr uint64_t RelBlockFreqMask =
1206       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1207   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1208   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1209 }
1210 
1211 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1212   switch (Val) {
1213   default: // Map unknown visibilities to default.
1214   case 0: return GlobalValue::DefaultVisibility;
1215   case 1: return GlobalValue::HiddenVisibility;
1216   case 2: return GlobalValue::ProtectedVisibility;
1217   }
1218 }
1219 
1220 static GlobalValue::DLLStorageClassTypes
1221 getDecodedDLLStorageClass(unsigned Val) {
1222   switch (Val) {
1223   default: // Map unknown values to default.
1224   case 0: return GlobalValue::DefaultStorageClass;
1225   case 1: return GlobalValue::DLLImportStorageClass;
1226   case 2: return GlobalValue::DLLExportStorageClass;
1227   }
1228 }
1229 
1230 static bool getDecodedDSOLocal(unsigned Val) {
1231   switch(Val) {
1232   default: // Map unknown values to preemptable.
1233   case 0:  return false;
1234   case 1:  return true;
1235   }
1236 }
1237 
1238 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1239   switch (Val) {
1240   case 1:
1241     return CodeModel::Tiny;
1242   case 2:
1243     return CodeModel::Small;
1244   case 3:
1245     return CodeModel::Kernel;
1246   case 4:
1247     return CodeModel::Medium;
1248   case 5:
1249     return CodeModel::Large;
1250   }
1251 
1252   return {};
1253 }
1254 
1255 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1256   switch (Val) {
1257     case 0: return GlobalVariable::NotThreadLocal;
1258     default: // Map unknown non-zero value to general dynamic.
1259     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1260     case 2: return GlobalVariable::LocalDynamicTLSModel;
1261     case 3: return GlobalVariable::InitialExecTLSModel;
1262     case 4: return GlobalVariable::LocalExecTLSModel;
1263   }
1264 }
1265 
1266 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1267   switch (Val) {
1268     default: // Map unknown to UnnamedAddr::None.
1269     case 0: return GlobalVariable::UnnamedAddr::None;
1270     case 1: return GlobalVariable::UnnamedAddr::Global;
1271     case 2: return GlobalVariable::UnnamedAddr::Local;
1272   }
1273 }
1274 
1275 static int getDecodedCastOpcode(unsigned Val) {
1276   switch (Val) {
1277   default: return -1;
1278   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1279   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1280   case bitc::CAST_SEXT    : return Instruction::SExt;
1281   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1282   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1283   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1284   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1285   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1286   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1287   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1288   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1289   case bitc::CAST_BITCAST : return Instruction::BitCast;
1290   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1291   }
1292 }
1293 
1294 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1295   bool IsFP = Ty->isFPOrFPVectorTy();
1296   // UnOps are only valid for int/fp or vector of int/fp types
1297   if (!IsFP && !Ty->isIntOrIntVectorTy())
1298     return -1;
1299 
1300   switch (Val) {
1301   default:
1302     return -1;
1303   case bitc::UNOP_FNEG:
1304     return IsFP ? Instruction::FNeg : -1;
1305   }
1306 }
1307 
1308 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1309   bool IsFP = Ty->isFPOrFPVectorTy();
1310   // BinOps are only valid for int/fp or vector of int/fp types
1311   if (!IsFP && !Ty->isIntOrIntVectorTy())
1312     return -1;
1313 
1314   switch (Val) {
1315   default:
1316     return -1;
1317   case bitc::BINOP_ADD:
1318     return IsFP ? Instruction::FAdd : Instruction::Add;
1319   case bitc::BINOP_SUB:
1320     return IsFP ? Instruction::FSub : Instruction::Sub;
1321   case bitc::BINOP_MUL:
1322     return IsFP ? Instruction::FMul : Instruction::Mul;
1323   case bitc::BINOP_UDIV:
1324     return IsFP ? -1 : Instruction::UDiv;
1325   case bitc::BINOP_SDIV:
1326     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1327   case bitc::BINOP_UREM:
1328     return IsFP ? -1 : Instruction::URem;
1329   case bitc::BINOP_SREM:
1330     return IsFP ? Instruction::FRem : Instruction::SRem;
1331   case bitc::BINOP_SHL:
1332     return IsFP ? -1 : Instruction::Shl;
1333   case bitc::BINOP_LSHR:
1334     return IsFP ? -1 : Instruction::LShr;
1335   case bitc::BINOP_ASHR:
1336     return IsFP ? -1 : Instruction::AShr;
1337   case bitc::BINOP_AND:
1338     return IsFP ? -1 : Instruction::And;
1339   case bitc::BINOP_OR:
1340     return IsFP ? -1 : Instruction::Or;
1341   case bitc::BINOP_XOR:
1342     return IsFP ? -1 : Instruction::Xor;
1343   }
1344 }
1345 
1346 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1347   switch (Val) {
1348   default: return AtomicRMWInst::BAD_BINOP;
1349   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1350   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1351   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1352   case bitc::RMW_AND: return AtomicRMWInst::And;
1353   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1354   case bitc::RMW_OR: return AtomicRMWInst::Or;
1355   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1356   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1357   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1358   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1359   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1360   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1361   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1362   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1363   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1364   case bitc::RMW_UINC_WRAP:
1365     return AtomicRMWInst::UIncWrap;
1366   case bitc::RMW_UDEC_WRAP:
1367     return AtomicRMWInst::UDecWrap;
1368   case bitc::RMW_USUB_COND:
1369     return AtomicRMWInst::USubCond;
1370   case bitc::RMW_USUB_SAT:
1371     return AtomicRMWInst::USubSat;
1372   }
1373 }
1374 
1375 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1376   switch (Val) {
1377   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1378   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1379   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1380   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1381   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1382   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1383   default: // Map unknown orderings to sequentially-consistent.
1384   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1385   }
1386 }
1387 
1388 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1389   switch (Val) {
1390   default: // Map unknown selection kinds to any.
1391   case bitc::COMDAT_SELECTION_KIND_ANY:
1392     return Comdat::Any;
1393   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1394     return Comdat::ExactMatch;
1395   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1396     return Comdat::Largest;
1397   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1398     return Comdat::NoDeduplicate;
1399   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1400     return Comdat::SameSize;
1401   }
1402 }
1403 
1404 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1405   FastMathFlags FMF;
1406   if (0 != (Val & bitc::UnsafeAlgebra))
1407     FMF.setFast();
1408   if (0 != (Val & bitc::AllowReassoc))
1409     FMF.setAllowReassoc();
1410   if (0 != (Val & bitc::NoNaNs))
1411     FMF.setNoNaNs();
1412   if (0 != (Val & bitc::NoInfs))
1413     FMF.setNoInfs();
1414   if (0 != (Val & bitc::NoSignedZeros))
1415     FMF.setNoSignedZeros();
1416   if (0 != (Val & bitc::AllowReciprocal))
1417     FMF.setAllowReciprocal();
1418   if (0 != (Val & bitc::AllowContract))
1419     FMF.setAllowContract(true);
1420   if (0 != (Val & bitc::ApproxFunc))
1421     FMF.setApproxFunc();
1422   return FMF;
1423 }
1424 
1425 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1426   // A GlobalValue with local linkage cannot have a DLL storage class.
1427   if (GV->hasLocalLinkage())
1428     return;
1429   switch (Val) {
1430   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1431   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1432   }
1433 }
1434 
1435 Type *BitcodeReader::getTypeByID(unsigned ID) {
1436   // The type table size is always specified correctly.
1437   if (ID >= TypeList.size())
1438     return nullptr;
1439 
1440   if (Type *Ty = TypeList[ID])
1441     return Ty;
1442 
1443   // If we have a forward reference, the only possible case is when it is to a
1444   // named struct.  Just create a placeholder for now.
1445   return TypeList[ID] = createIdentifiedStructType(Context);
1446 }
1447 
1448 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1449   auto It = ContainedTypeIDs.find(ID);
1450   if (It == ContainedTypeIDs.end())
1451     return InvalidTypeID;
1452 
1453   if (Idx >= It->second.size())
1454     return InvalidTypeID;
1455 
1456   return It->second[Idx];
1457 }
1458 
1459 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1460   if (ID >= TypeList.size())
1461     return nullptr;
1462 
1463   Type *Ty = TypeList[ID];
1464   if (!Ty->isPointerTy())
1465     return nullptr;
1466 
1467   return getTypeByID(getContainedTypeID(ID, 0));
1468 }
1469 
1470 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1471                                          ArrayRef<unsigned> ChildTypeIDs) {
1472   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1473   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1474   auto It = VirtualTypeIDs.find(CacheKey);
1475   if (It != VirtualTypeIDs.end()) {
1476     // The cmpxchg return value is the only place we need more than one
1477     // contained type ID, however the second one will always be the same (i1),
1478     // so we don't need to include it in the cache key. This asserts that the
1479     // contained types are indeed as expected and there are no collisions.
1480     assert((ChildTypeIDs.empty() ||
1481             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1482            "Incorrect cached contained type IDs");
1483     return It->second;
1484   }
1485 
1486   unsigned TypeID = TypeList.size();
1487   TypeList.push_back(Ty);
1488   if (!ChildTypeIDs.empty())
1489     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1490   VirtualTypeIDs.insert({CacheKey, TypeID});
1491   return TypeID;
1492 }
1493 
1494 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1495   GEPNoWrapFlags NW;
1496   if (Flags & (1 << bitc::GEP_INBOUNDS))
1497     NW |= GEPNoWrapFlags::inBounds();
1498   if (Flags & (1 << bitc::GEP_NUSW))
1499     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1500   if (Flags & (1 << bitc::GEP_NUW))
1501     NW |= GEPNoWrapFlags::noUnsignedWrap();
1502   return NW;
1503 }
1504 
1505 static bool isConstExprSupported(const BitcodeConstant *BC) {
1506   uint8_t Opcode = BC->Opcode;
1507 
1508   // These are not real constant expressions, always consider them supported.
1509   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1510     return true;
1511 
1512   // If -expand-constant-exprs is set, we want to consider all expressions
1513   // as unsupported.
1514   if (ExpandConstantExprs)
1515     return false;
1516 
1517   if (Instruction::isBinaryOp(Opcode))
1518     return ConstantExpr::isSupportedBinOp(Opcode);
1519 
1520   if (Instruction::isCast(Opcode))
1521     return ConstantExpr::isSupportedCastOp(Opcode);
1522 
1523   if (Opcode == Instruction::GetElementPtr)
1524     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1525 
1526   switch (Opcode) {
1527   case Instruction::FNeg:
1528   case Instruction::Select:
1529   case Instruction::ICmp:
1530   case Instruction::FCmp:
1531     return false;
1532   default:
1533     return true;
1534   }
1535 }
1536 
1537 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1538                                                   BasicBlock *InsertBB) {
1539   // Quickly handle the case where there is no BitcodeConstant to resolve.
1540   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1541       !isa<BitcodeConstant>(ValueList[StartValID]))
1542     return ValueList[StartValID];
1543 
1544   SmallDenseMap<unsigned, Value *> MaterializedValues;
1545   SmallVector<unsigned> Worklist;
1546   Worklist.push_back(StartValID);
1547   while (!Worklist.empty()) {
1548     unsigned ValID = Worklist.back();
1549     if (MaterializedValues.count(ValID)) {
1550       // Duplicate expression that was already handled.
1551       Worklist.pop_back();
1552       continue;
1553     }
1554 
1555     if (ValID >= ValueList.size() || !ValueList[ValID])
1556       return error("Invalid value ID");
1557 
1558     Value *V = ValueList[ValID];
1559     auto *BC = dyn_cast<BitcodeConstant>(V);
1560     if (!BC) {
1561       MaterializedValues.insert({ValID, V});
1562       Worklist.pop_back();
1563       continue;
1564     }
1565 
1566     // Iterate in reverse, so values will get popped from the worklist in
1567     // expected order.
1568     SmallVector<Value *> Ops;
1569     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1570       auto It = MaterializedValues.find(OpID);
1571       if (It != MaterializedValues.end())
1572         Ops.push_back(It->second);
1573       else
1574         Worklist.push_back(OpID);
1575     }
1576 
1577     // Some expressions have not been resolved yet, handle them first and then
1578     // revisit this one.
1579     if (Ops.size() != BC->getOperandIDs().size())
1580       continue;
1581     std::reverse(Ops.begin(), Ops.end());
1582 
1583     SmallVector<Constant *> ConstOps;
1584     for (Value *Op : Ops)
1585       if (auto *C = dyn_cast<Constant>(Op))
1586         ConstOps.push_back(C);
1587 
1588     // Materialize as constant expression if possible.
1589     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1590       Constant *C;
1591       if (Instruction::isCast(BC->Opcode)) {
1592         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1593         if (!C)
1594           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1595       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1596         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1597       } else {
1598         switch (BC->Opcode) {
1599         case BitcodeConstant::ConstantPtrAuthOpcode: {
1600           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1601           if (!Key)
1602             return error("ptrauth key operand must be ConstantInt");
1603 
1604           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1605           if (!Disc)
1606             return error("ptrauth disc operand must be ConstantInt");
1607 
1608           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1609           break;
1610         }
1611         case BitcodeConstant::NoCFIOpcode: {
1612           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1613           if (!GV)
1614             return error("no_cfi operand must be GlobalValue");
1615           C = NoCFIValue::get(GV);
1616           break;
1617         }
1618         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1619           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1620           if (!GV)
1621             return error("dso_local operand must be GlobalValue");
1622           C = DSOLocalEquivalent::get(GV);
1623           break;
1624         }
1625         case BitcodeConstant::BlockAddressOpcode: {
1626           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1627           if (!Fn)
1628             return error("blockaddress operand must be a function");
1629 
1630           // If the function is already parsed we can insert the block address
1631           // right away.
1632           BasicBlock *BB;
1633           unsigned BBID = BC->BlockAddressBB;
1634           if (!BBID)
1635             // Invalid reference to entry block.
1636             return error("Invalid ID");
1637           if (!Fn->empty()) {
1638             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1639             for (size_t I = 0, E = BBID; I != E; ++I) {
1640               if (BBI == BBE)
1641                 return error("Invalid ID");
1642               ++BBI;
1643             }
1644             BB = &*BBI;
1645           } else {
1646             // Otherwise insert a placeholder and remember it so it can be
1647             // inserted when the function is parsed.
1648             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1649             if (FwdBBs.empty())
1650               BasicBlockFwdRefQueue.push_back(Fn);
1651             if (FwdBBs.size() < BBID + 1)
1652               FwdBBs.resize(BBID + 1);
1653             if (!FwdBBs[BBID])
1654               FwdBBs[BBID] = BasicBlock::Create(Context);
1655             BB = FwdBBs[BBID];
1656           }
1657           C = BlockAddress::get(Fn, BB);
1658           break;
1659         }
1660         case BitcodeConstant::ConstantStructOpcode:
1661           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1662           break;
1663         case BitcodeConstant::ConstantArrayOpcode:
1664           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1665           break;
1666         case BitcodeConstant::ConstantVectorOpcode:
1667           C = ConstantVector::get(ConstOps);
1668           break;
1669         case Instruction::GetElementPtr:
1670           C = ConstantExpr::getGetElementPtr(
1671               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1672               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1673           break;
1674         case Instruction::ExtractElement:
1675           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1676           break;
1677         case Instruction::InsertElement:
1678           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1679                                              ConstOps[2]);
1680           break;
1681         case Instruction::ShuffleVector: {
1682           SmallVector<int, 16> Mask;
1683           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1684           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1685           break;
1686         }
1687         default:
1688           llvm_unreachable("Unhandled bitcode constant");
1689         }
1690       }
1691 
1692       // Cache resolved constant.
1693       ValueList.replaceValueWithoutRAUW(ValID, C);
1694       MaterializedValues.insert({ValID, C});
1695       Worklist.pop_back();
1696       continue;
1697     }
1698 
1699     if (!InsertBB)
1700       return error(Twine("Value referenced by initializer is an unsupported "
1701                          "constant expression of type ") +
1702                    BC->getOpcodeName());
1703 
1704     // Materialize as instructions if necessary.
1705     Instruction *I;
1706     if (Instruction::isCast(BC->Opcode)) {
1707       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1708                            BC->getType(), "constexpr", InsertBB);
1709     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1710       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1711                                 "constexpr", InsertBB);
1712     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1713       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1714                                  Ops[1], "constexpr", InsertBB);
1715       if (isa<OverflowingBinaryOperator>(I)) {
1716         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1717           I->setHasNoSignedWrap();
1718         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1719           I->setHasNoUnsignedWrap();
1720       }
1721       if (isa<PossiblyExactOperator>(I) &&
1722           (BC->Flags & PossiblyExactOperator::IsExact))
1723         I->setIsExact();
1724     } else {
1725       switch (BC->Opcode) {
1726       case BitcodeConstant::ConstantVectorOpcode: {
1727         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1728         Value *V = PoisonValue::get(BC->getType());
1729         for (auto Pair : enumerate(Ops)) {
1730           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1731           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1732                                         InsertBB);
1733         }
1734         I = cast<Instruction>(V);
1735         break;
1736       }
1737       case BitcodeConstant::ConstantStructOpcode:
1738       case BitcodeConstant::ConstantArrayOpcode: {
1739         Value *V = PoisonValue::get(BC->getType());
1740         for (auto Pair : enumerate(Ops))
1741           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1742                                       "constexpr.ins", InsertBB);
1743         I = cast<Instruction>(V);
1744         break;
1745       }
1746       case Instruction::ICmp:
1747       case Instruction::FCmp:
1748         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1749                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1750                             "constexpr", InsertBB);
1751         break;
1752       case Instruction::GetElementPtr:
1753         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1754                                       ArrayRef(Ops).drop_front(), "constexpr",
1755                                       InsertBB);
1756         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1757         break;
1758       case Instruction::Select:
1759         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1760         break;
1761       case Instruction::ExtractElement:
1762         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1763         break;
1764       case Instruction::InsertElement:
1765         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1766                                       InsertBB);
1767         break;
1768       case Instruction::ShuffleVector:
1769         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1770                                   InsertBB);
1771         break;
1772       default:
1773         llvm_unreachable("Unhandled bitcode constant");
1774       }
1775     }
1776 
1777     MaterializedValues.insert({ValID, I});
1778     Worklist.pop_back();
1779   }
1780 
1781   return MaterializedValues[StartValID];
1782 }
1783 
1784 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1785   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1786   if (!MaybeV)
1787     return MaybeV.takeError();
1788 
1789   // Result must be Constant if InsertBB is nullptr.
1790   return cast<Constant>(MaybeV.get());
1791 }
1792 
1793 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1794                                                       StringRef Name) {
1795   auto *Ret = StructType::create(Context, Name);
1796   IdentifiedStructTypes.push_back(Ret);
1797   return Ret;
1798 }
1799 
1800 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1801   auto *Ret = StructType::create(Context);
1802   IdentifiedStructTypes.push_back(Ret);
1803   return Ret;
1804 }
1805 
1806 //===----------------------------------------------------------------------===//
1807 //  Functions for parsing blocks from the bitcode file
1808 //===----------------------------------------------------------------------===//
1809 
1810 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1811   switch (Val) {
1812   case Attribute::EndAttrKinds:
1813   case Attribute::EmptyKey:
1814   case Attribute::TombstoneKey:
1815     llvm_unreachable("Synthetic enumerators which should never get here");
1816 
1817   case Attribute::None:            return 0;
1818   case Attribute::ZExt:            return 1 << 0;
1819   case Attribute::SExt:            return 1 << 1;
1820   case Attribute::NoReturn:        return 1 << 2;
1821   case Attribute::InReg:           return 1 << 3;
1822   case Attribute::StructRet:       return 1 << 4;
1823   case Attribute::NoUnwind:        return 1 << 5;
1824   case Attribute::NoAlias:         return 1 << 6;
1825   case Attribute::ByVal:           return 1 << 7;
1826   case Attribute::Nest:            return 1 << 8;
1827   case Attribute::ReadNone:        return 1 << 9;
1828   case Attribute::ReadOnly:        return 1 << 10;
1829   case Attribute::NoInline:        return 1 << 11;
1830   case Attribute::AlwaysInline:    return 1 << 12;
1831   case Attribute::OptimizeForSize: return 1 << 13;
1832   case Attribute::StackProtect:    return 1 << 14;
1833   case Attribute::StackProtectReq: return 1 << 15;
1834   case Attribute::Alignment:       return 31 << 16;
1835   case Attribute::NoCapture:       return 1 << 21;
1836   case Attribute::NoRedZone:       return 1 << 22;
1837   case Attribute::NoImplicitFloat: return 1 << 23;
1838   case Attribute::Naked:           return 1 << 24;
1839   case Attribute::InlineHint:      return 1 << 25;
1840   case Attribute::StackAlignment:  return 7 << 26;
1841   case Attribute::ReturnsTwice:    return 1 << 29;
1842   case Attribute::UWTable:         return 1 << 30;
1843   case Attribute::NonLazyBind:     return 1U << 31;
1844   case Attribute::SanitizeAddress: return 1ULL << 32;
1845   case Attribute::MinSize:         return 1ULL << 33;
1846   case Attribute::NoDuplicate:     return 1ULL << 34;
1847   case Attribute::StackProtectStrong: return 1ULL << 35;
1848   case Attribute::SanitizeThread:  return 1ULL << 36;
1849   case Attribute::SanitizeMemory:  return 1ULL << 37;
1850   case Attribute::NoBuiltin:       return 1ULL << 38;
1851   case Attribute::Returned:        return 1ULL << 39;
1852   case Attribute::Cold:            return 1ULL << 40;
1853   case Attribute::Builtin:         return 1ULL << 41;
1854   case Attribute::OptimizeNone:    return 1ULL << 42;
1855   case Attribute::InAlloca:        return 1ULL << 43;
1856   case Attribute::NonNull:         return 1ULL << 44;
1857   case Attribute::JumpTable:       return 1ULL << 45;
1858   case Attribute::Convergent:      return 1ULL << 46;
1859   case Attribute::SafeStack:       return 1ULL << 47;
1860   case Attribute::NoRecurse:       return 1ULL << 48;
1861   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1862   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1863   case Attribute::SwiftSelf:       return 1ULL << 51;
1864   case Attribute::SwiftError:      return 1ULL << 52;
1865   case Attribute::WriteOnly:       return 1ULL << 53;
1866   case Attribute::Speculatable:    return 1ULL << 54;
1867   case Attribute::StrictFP:        return 1ULL << 55;
1868   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1869   case Attribute::NoCfCheck:       return 1ULL << 57;
1870   case Attribute::OptForFuzzing:   return 1ULL << 58;
1871   case Attribute::ShadowCallStack: return 1ULL << 59;
1872   case Attribute::SpeculativeLoadHardening:
1873     return 1ULL << 60;
1874   case Attribute::ImmArg:
1875     return 1ULL << 61;
1876   case Attribute::WillReturn:
1877     return 1ULL << 62;
1878   case Attribute::NoFree:
1879     return 1ULL << 63;
1880   default:
1881     // Other attributes are not supported in the raw format,
1882     // as we ran out of space.
1883     return 0;
1884   }
1885   llvm_unreachable("Unsupported attribute type");
1886 }
1887 
1888 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1889   if (!Val) return;
1890 
1891   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1892        I = Attribute::AttrKind(I + 1)) {
1893     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1894       if (I == Attribute::Alignment)
1895         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1896       else if (I == Attribute::StackAlignment)
1897         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1898       else if (Attribute::isTypeAttrKind(I))
1899         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1900       else
1901         B.addAttribute(I);
1902     }
1903   }
1904 }
1905 
1906 /// This fills an AttrBuilder object with the LLVM attributes that have
1907 /// been decoded from the given integer. This function must stay in sync with
1908 /// 'encodeLLVMAttributesForBitcode'.
1909 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1910                                            uint64_t EncodedAttrs,
1911                                            uint64_t AttrIdx) {
1912   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1913   // the bits above 31 down by 11 bits.
1914   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1915   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1916          "Alignment must be a power of two.");
1917 
1918   if (Alignment)
1919     B.addAlignmentAttr(Alignment);
1920 
1921   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1922                    (EncodedAttrs & 0xffff);
1923 
1924   if (AttrIdx == AttributeList::FunctionIndex) {
1925     // Upgrade old memory attributes.
1926     MemoryEffects ME = MemoryEffects::unknown();
1927     if (Attrs & (1ULL << 9)) {
1928       // ReadNone
1929       Attrs &= ~(1ULL << 9);
1930       ME &= MemoryEffects::none();
1931     }
1932     if (Attrs & (1ULL << 10)) {
1933       // ReadOnly
1934       Attrs &= ~(1ULL << 10);
1935       ME &= MemoryEffects::readOnly();
1936     }
1937     if (Attrs & (1ULL << 49)) {
1938       // InaccessibleMemOnly
1939       Attrs &= ~(1ULL << 49);
1940       ME &= MemoryEffects::inaccessibleMemOnly();
1941     }
1942     if (Attrs & (1ULL << 50)) {
1943       // InaccessibleMemOrArgMemOnly
1944       Attrs &= ~(1ULL << 50);
1945       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1946     }
1947     if (Attrs & (1ULL << 53)) {
1948       // WriteOnly
1949       Attrs &= ~(1ULL << 53);
1950       ME &= MemoryEffects::writeOnly();
1951     }
1952     if (ME != MemoryEffects::unknown())
1953       B.addMemoryAttr(ME);
1954   }
1955 
1956   addRawAttributeValue(B, Attrs);
1957 }
1958 
1959 Error BitcodeReader::parseAttributeBlock() {
1960   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1961     return Err;
1962 
1963   if (!MAttributes.empty())
1964     return error("Invalid multiple blocks");
1965 
1966   SmallVector<uint64_t, 64> Record;
1967 
1968   SmallVector<AttributeList, 8> Attrs;
1969 
1970   // Read all the records.
1971   while (true) {
1972     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1973     if (!MaybeEntry)
1974       return MaybeEntry.takeError();
1975     BitstreamEntry Entry = MaybeEntry.get();
1976 
1977     switch (Entry.Kind) {
1978     case BitstreamEntry::SubBlock: // Handled for us already.
1979     case BitstreamEntry::Error:
1980       return error("Malformed block");
1981     case BitstreamEntry::EndBlock:
1982       return Error::success();
1983     case BitstreamEntry::Record:
1984       // The interesting case.
1985       break;
1986     }
1987 
1988     // Read a record.
1989     Record.clear();
1990     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1991     if (!MaybeRecord)
1992       return MaybeRecord.takeError();
1993     switch (MaybeRecord.get()) {
1994     default:  // Default behavior: ignore.
1995       break;
1996     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1997       // Deprecated, but still needed to read old bitcode files.
1998       if (Record.size() & 1)
1999         return error("Invalid parameter attribute record");
2000 
2001       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2002         AttrBuilder B(Context);
2003         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
2004         Attrs.push_back(AttributeList::get(Context, Record[i], B));
2005       }
2006 
2007       MAttributes.push_back(AttributeList::get(Context, Attrs));
2008       Attrs.clear();
2009       break;
2010     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
2011       for (uint64_t Val : Record)
2012         Attrs.push_back(MAttributeGroups[Val]);
2013 
2014       MAttributes.push_back(AttributeList::get(Context, Attrs));
2015       Attrs.clear();
2016       break;
2017     }
2018   }
2019 }
2020 
2021 // Returns Attribute::None on unrecognized codes.
2022 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2023   switch (Code) {
2024   default:
2025     return Attribute::None;
2026   case bitc::ATTR_KIND_ALIGNMENT:
2027     return Attribute::Alignment;
2028   case bitc::ATTR_KIND_ALWAYS_INLINE:
2029     return Attribute::AlwaysInline;
2030   case bitc::ATTR_KIND_BUILTIN:
2031     return Attribute::Builtin;
2032   case bitc::ATTR_KIND_BY_VAL:
2033     return Attribute::ByVal;
2034   case bitc::ATTR_KIND_IN_ALLOCA:
2035     return Attribute::InAlloca;
2036   case bitc::ATTR_KIND_COLD:
2037     return Attribute::Cold;
2038   case bitc::ATTR_KIND_CONVERGENT:
2039     return Attribute::Convergent;
2040   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2041     return Attribute::DisableSanitizerInstrumentation;
2042   case bitc::ATTR_KIND_ELEMENTTYPE:
2043     return Attribute::ElementType;
2044   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2045     return Attribute::FnRetThunkExtern;
2046   case bitc::ATTR_KIND_INLINE_HINT:
2047     return Attribute::InlineHint;
2048   case bitc::ATTR_KIND_IN_REG:
2049     return Attribute::InReg;
2050   case bitc::ATTR_KIND_JUMP_TABLE:
2051     return Attribute::JumpTable;
2052   case bitc::ATTR_KIND_MEMORY:
2053     return Attribute::Memory;
2054   case bitc::ATTR_KIND_NOFPCLASS:
2055     return Attribute::NoFPClass;
2056   case bitc::ATTR_KIND_MIN_SIZE:
2057     return Attribute::MinSize;
2058   case bitc::ATTR_KIND_NAKED:
2059     return Attribute::Naked;
2060   case bitc::ATTR_KIND_NEST:
2061     return Attribute::Nest;
2062   case bitc::ATTR_KIND_NO_ALIAS:
2063     return Attribute::NoAlias;
2064   case bitc::ATTR_KIND_NO_BUILTIN:
2065     return Attribute::NoBuiltin;
2066   case bitc::ATTR_KIND_NO_CALLBACK:
2067     return Attribute::NoCallback;
2068   case bitc::ATTR_KIND_NO_CAPTURE:
2069     return Attribute::NoCapture;
2070   case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
2071     return Attribute::NoDivergenceSource;
2072   case bitc::ATTR_KIND_NO_DUPLICATE:
2073     return Attribute::NoDuplicate;
2074   case bitc::ATTR_KIND_NOFREE:
2075     return Attribute::NoFree;
2076   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2077     return Attribute::NoImplicitFloat;
2078   case bitc::ATTR_KIND_NO_INLINE:
2079     return Attribute::NoInline;
2080   case bitc::ATTR_KIND_NO_RECURSE:
2081     return Attribute::NoRecurse;
2082   case bitc::ATTR_KIND_NO_MERGE:
2083     return Attribute::NoMerge;
2084   case bitc::ATTR_KIND_NON_LAZY_BIND:
2085     return Attribute::NonLazyBind;
2086   case bitc::ATTR_KIND_NON_NULL:
2087     return Attribute::NonNull;
2088   case bitc::ATTR_KIND_DEREFERENCEABLE:
2089     return Attribute::Dereferenceable;
2090   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2091     return Attribute::DereferenceableOrNull;
2092   case bitc::ATTR_KIND_ALLOC_ALIGN:
2093     return Attribute::AllocAlign;
2094   case bitc::ATTR_KIND_ALLOC_KIND:
2095     return Attribute::AllocKind;
2096   case bitc::ATTR_KIND_ALLOC_SIZE:
2097     return Attribute::AllocSize;
2098   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2099     return Attribute::AllocatedPointer;
2100   case bitc::ATTR_KIND_NO_RED_ZONE:
2101     return Attribute::NoRedZone;
2102   case bitc::ATTR_KIND_NO_RETURN:
2103     return Attribute::NoReturn;
2104   case bitc::ATTR_KIND_NOSYNC:
2105     return Attribute::NoSync;
2106   case bitc::ATTR_KIND_NOCF_CHECK:
2107     return Attribute::NoCfCheck;
2108   case bitc::ATTR_KIND_NO_PROFILE:
2109     return Attribute::NoProfile;
2110   case bitc::ATTR_KIND_SKIP_PROFILE:
2111     return Attribute::SkipProfile;
2112   case bitc::ATTR_KIND_NO_UNWIND:
2113     return Attribute::NoUnwind;
2114   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2115     return Attribute::NoSanitizeBounds;
2116   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2117     return Attribute::NoSanitizeCoverage;
2118   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2119     return Attribute::NullPointerIsValid;
2120   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2121     return Attribute::OptimizeForDebugging;
2122   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2123     return Attribute::OptForFuzzing;
2124   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2125     return Attribute::OptimizeForSize;
2126   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2127     return Attribute::OptimizeNone;
2128   case bitc::ATTR_KIND_READ_NONE:
2129     return Attribute::ReadNone;
2130   case bitc::ATTR_KIND_READ_ONLY:
2131     return Attribute::ReadOnly;
2132   case bitc::ATTR_KIND_RETURNED:
2133     return Attribute::Returned;
2134   case bitc::ATTR_KIND_RETURNS_TWICE:
2135     return Attribute::ReturnsTwice;
2136   case bitc::ATTR_KIND_S_EXT:
2137     return Attribute::SExt;
2138   case bitc::ATTR_KIND_SPECULATABLE:
2139     return Attribute::Speculatable;
2140   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2141     return Attribute::StackAlignment;
2142   case bitc::ATTR_KIND_STACK_PROTECT:
2143     return Attribute::StackProtect;
2144   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2145     return Attribute::StackProtectReq;
2146   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2147     return Attribute::StackProtectStrong;
2148   case bitc::ATTR_KIND_SAFESTACK:
2149     return Attribute::SafeStack;
2150   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2151     return Attribute::ShadowCallStack;
2152   case bitc::ATTR_KIND_STRICT_FP:
2153     return Attribute::StrictFP;
2154   case bitc::ATTR_KIND_STRUCT_RET:
2155     return Attribute::StructRet;
2156   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2157     return Attribute::SanitizeAddress;
2158   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2159     return Attribute::SanitizeHWAddress;
2160   case bitc::ATTR_KIND_SANITIZE_THREAD:
2161     return Attribute::SanitizeThread;
2162   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2163     return Attribute::SanitizeMemory;
2164   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2165     return Attribute::SanitizeNumericalStability;
2166   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2167     return Attribute::SanitizeRealtime;
2168   case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING:
2169     return Attribute::SanitizeRealtimeBlocking;
2170   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2171     return Attribute::SpeculativeLoadHardening;
2172   case bitc::ATTR_KIND_SWIFT_ERROR:
2173     return Attribute::SwiftError;
2174   case bitc::ATTR_KIND_SWIFT_SELF:
2175     return Attribute::SwiftSelf;
2176   case bitc::ATTR_KIND_SWIFT_ASYNC:
2177     return Attribute::SwiftAsync;
2178   case bitc::ATTR_KIND_UW_TABLE:
2179     return Attribute::UWTable;
2180   case bitc::ATTR_KIND_VSCALE_RANGE:
2181     return Attribute::VScaleRange;
2182   case bitc::ATTR_KIND_WILLRETURN:
2183     return Attribute::WillReturn;
2184   case bitc::ATTR_KIND_WRITEONLY:
2185     return Attribute::WriteOnly;
2186   case bitc::ATTR_KIND_Z_EXT:
2187     return Attribute::ZExt;
2188   case bitc::ATTR_KIND_IMMARG:
2189     return Attribute::ImmArg;
2190   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2191     return Attribute::SanitizeMemTag;
2192   case bitc::ATTR_KIND_PREALLOCATED:
2193     return Attribute::Preallocated;
2194   case bitc::ATTR_KIND_NOUNDEF:
2195     return Attribute::NoUndef;
2196   case bitc::ATTR_KIND_BYREF:
2197     return Attribute::ByRef;
2198   case bitc::ATTR_KIND_MUSTPROGRESS:
2199     return Attribute::MustProgress;
2200   case bitc::ATTR_KIND_HOT:
2201     return Attribute::Hot;
2202   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2203     return Attribute::PresplitCoroutine;
2204   case bitc::ATTR_KIND_WRITABLE:
2205     return Attribute::Writable;
2206   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2207     return Attribute::CoroDestroyOnlyWhenComplete;
2208   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2209     return Attribute::DeadOnUnwind;
2210   case bitc::ATTR_KIND_RANGE:
2211     return Attribute::Range;
2212   case bitc::ATTR_KIND_INITIALIZES:
2213     return Attribute::Initializes;
2214   case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2215     return Attribute::CoroElideSafe;
2216   case bitc::ATTR_KIND_NO_EXT:
2217     return Attribute::NoExt;
2218   }
2219 }
2220 
2221 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2222                                          MaybeAlign &Alignment) {
2223   // Note: Alignment in bitcode files is incremented by 1, so that zero
2224   // can be used for default alignment.
2225   if (Exponent > Value::MaxAlignmentExponent + 1)
2226     return error("Invalid alignment value");
2227   Alignment = decodeMaybeAlign(Exponent);
2228   return Error::success();
2229 }
2230 
2231 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2232   *Kind = getAttrFromCode(Code);
2233   if (*Kind == Attribute::None)
2234     return error("Unknown attribute kind (" + Twine(Code) + ")");
2235   return Error::success();
2236 }
2237 
2238 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2239   switch (EncodedKind) {
2240   case bitc::ATTR_KIND_READ_NONE:
2241     ME &= MemoryEffects::none();
2242     return true;
2243   case bitc::ATTR_KIND_READ_ONLY:
2244     ME &= MemoryEffects::readOnly();
2245     return true;
2246   case bitc::ATTR_KIND_WRITEONLY:
2247     ME &= MemoryEffects::writeOnly();
2248     return true;
2249   case bitc::ATTR_KIND_ARGMEMONLY:
2250     ME &= MemoryEffects::argMemOnly();
2251     return true;
2252   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2253     ME &= MemoryEffects::inaccessibleMemOnly();
2254     return true;
2255   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2256     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2257     return true;
2258   default:
2259     return false;
2260   }
2261 }
2262 
2263 Error BitcodeReader::parseAttributeGroupBlock() {
2264   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2265     return Err;
2266 
2267   if (!MAttributeGroups.empty())
2268     return error("Invalid multiple blocks");
2269 
2270   SmallVector<uint64_t, 64> Record;
2271 
2272   // Read all the records.
2273   while (true) {
2274     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2275     if (!MaybeEntry)
2276       return MaybeEntry.takeError();
2277     BitstreamEntry Entry = MaybeEntry.get();
2278 
2279     switch (Entry.Kind) {
2280     case BitstreamEntry::SubBlock: // Handled for us already.
2281     case BitstreamEntry::Error:
2282       return error("Malformed block");
2283     case BitstreamEntry::EndBlock:
2284       return Error::success();
2285     case BitstreamEntry::Record:
2286       // The interesting case.
2287       break;
2288     }
2289 
2290     // Read a record.
2291     Record.clear();
2292     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2293     if (!MaybeRecord)
2294       return MaybeRecord.takeError();
2295     switch (MaybeRecord.get()) {
2296     default:  // Default behavior: ignore.
2297       break;
2298     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2299       if (Record.size() < 3)
2300         return error("Invalid grp record");
2301 
2302       uint64_t GrpID = Record[0];
2303       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2304 
2305       AttrBuilder B(Context);
2306       MemoryEffects ME = MemoryEffects::unknown();
2307       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2308         if (Record[i] == 0) {        // Enum attribute
2309           Attribute::AttrKind Kind;
2310           uint64_t EncodedKind = Record[++i];
2311           if (Idx == AttributeList::FunctionIndex &&
2312               upgradeOldMemoryAttribute(ME, EncodedKind))
2313             continue;
2314 
2315           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2316             return Err;
2317 
2318           // Upgrade old-style byval attribute to one with a type, even if it's
2319           // nullptr. We will have to insert the real type when we associate
2320           // this AttributeList with a function.
2321           if (Kind == Attribute::ByVal)
2322             B.addByValAttr(nullptr);
2323           else if (Kind == Attribute::StructRet)
2324             B.addStructRetAttr(nullptr);
2325           else if (Kind == Attribute::InAlloca)
2326             B.addInAllocaAttr(nullptr);
2327           else if (Kind == Attribute::UWTable)
2328             B.addUWTableAttr(UWTableKind::Default);
2329           else if (Attribute::isEnumAttrKind(Kind))
2330             B.addAttribute(Kind);
2331           else
2332             return error("Not an enum attribute");
2333         } else if (Record[i] == 1) { // Integer attribute
2334           Attribute::AttrKind Kind;
2335           if (Error Err = parseAttrKind(Record[++i], &Kind))
2336             return Err;
2337           if (!Attribute::isIntAttrKind(Kind))
2338             return error("Not an int attribute");
2339           if (Kind == Attribute::Alignment)
2340             B.addAlignmentAttr(Record[++i]);
2341           else if (Kind == Attribute::StackAlignment)
2342             B.addStackAlignmentAttr(Record[++i]);
2343           else if (Kind == Attribute::Dereferenceable)
2344             B.addDereferenceableAttr(Record[++i]);
2345           else if (Kind == Attribute::DereferenceableOrNull)
2346             B.addDereferenceableOrNullAttr(Record[++i]);
2347           else if (Kind == Attribute::AllocSize)
2348             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2349           else if (Kind == Attribute::VScaleRange)
2350             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2351           else if (Kind == Attribute::UWTable)
2352             B.addUWTableAttr(UWTableKind(Record[++i]));
2353           else if (Kind == Attribute::AllocKind)
2354             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2355           else if (Kind == Attribute::Memory)
2356             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2357           else if (Kind == Attribute::NoFPClass)
2358             B.addNoFPClassAttr(
2359                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2360         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2361           bool HasValue = (Record[i++] == 4);
2362           SmallString<64> KindStr;
2363           SmallString<64> ValStr;
2364 
2365           while (Record[i] != 0 && i != e)
2366             KindStr += Record[i++];
2367           assert(Record[i] == 0 && "Kind string not null terminated");
2368 
2369           if (HasValue) {
2370             // Has a value associated with it.
2371             ++i; // Skip the '0' that terminates the "kind" string.
2372             while (Record[i] != 0 && i != e)
2373               ValStr += Record[i++];
2374             assert(Record[i] == 0 && "Value string not null terminated");
2375           }
2376 
2377           B.addAttribute(KindStr.str(), ValStr.str());
2378         } else if (Record[i] == 5 || Record[i] == 6) {
2379           bool HasType = Record[i] == 6;
2380           Attribute::AttrKind Kind;
2381           if (Error Err = parseAttrKind(Record[++i], &Kind))
2382             return Err;
2383           if (!Attribute::isTypeAttrKind(Kind))
2384             return error("Not a type attribute");
2385 
2386           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2387         } else if (Record[i] == 7) {
2388           Attribute::AttrKind Kind;
2389 
2390           i++;
2391           if (Error Err = parseAttrKind(Record[i++], &Kind))
2392             return Err;
2393           if (!Attribute::isConstantRangeAttrKind(Kind))
2394             return error("Not a ConstantRange attribute");
2395 
2396           Expected<ConstantRange> MaybeCR =
2397               readBitWidthAndConstantRange(Record, i);
2398           if (!MaybeCR)
2399             return MaybeCR.takeError();
2400           i--;
2401 
2402           B.addConstantRangeAttr(Kind, MaybeCR.get());
2403         } else if (Record[i] == 8) {
2404           Attribute::AttrKind Kind;
2405 
2406           i++;
2407           if (Error Err = parseAttrKind(Record[i++], &Kind))
2408             return Err;
2409           if (!Attribute::isConstantRangeListAttrKind(Kind))
2410             return error("Not a constant range list attribute");
2411 
2412           SmallVector<ConstantRange, 2> Val;
2413           if (i + 2 > e)
2414             return error("Too few records for constant range list");
2415           unsigned RangeSize = Record[i++];
2416           unsigned BitWidth = Record[i++];
2417           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2418             Expected<ConstantRange> MaybeCR =
2419                 readConstantRange(Record, i, BitWidth);
2420             if (!MaybeCR)
2421               return MaybeCR.takeError();
2422             Val.push_back(MaybeCR.get());
2423           }
2424           i--;
2425 
2426           if (!ConstantRangeList::isOrderedRanges(Val))
2427             return error("Invalid (unordered or overlapping) range list");
2428           B.addConstantRangeListAttr(Kind, Val);
2429         } else {
2430           return error("Invalid attribute group entry");
2431         }
2432       }
2433 
2434       if (ME != MemoryEffects::unknown())
2435         B.addMemoryAttr(ME);
2436 
2437       UpgradeAttributes(B);
2438       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2439       break;
2440     }
2441     }
2442   }
2443 }
2444 
2445 Error BitcodeReader::parseTypeTable() {
2446   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2447     return Err;
2448 
2449   return parseTypeTableBody();
2450 }
2451 
2452 Error BitcodeReader::parseTypeTableBody() {
2453   if (!TypeList.empty())
2454     return error("Invalid multiple blocks");
2455 
2456   SmallVector<uint64_t, 64> Record;
2457   unsigned NumRecords = 0;
2458 
2459   SmallString<64> TypeName;
2460 
2461   // Read all the records for this type table.
2462   while (true) {
2463     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2464     if (!MaybeEntry)
2465       return MaybeEntry.takeError();
2466     BitstreamEntry Entry = MaybeEntry.get();
2467 
2468     switch (Entry.Kind) {
2469     case BitstreamEntry::SubBlock: // Handled for us already.
2470     case BitstreamEntry::Error:
2471       return error("Malformed block");
2472     case BitstreamEntry::EndBlock:
2473       if (NumRecords != TypeList.size())
2474         return error("Malformed block");
2475       return Error::success();
2476     case BitstreamEntry::Record:
2477       // The interesting case.
2478       break;
2479     }
2480 
2481     // Read a record.
2482     Record.clear();
2483     Type *ResultTy = nullptr;
2484     SmallVector<unsigned> ContainedIDs;
2485     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2486     if (!MaybeRecord)
2487       return MaybeRecord.takeError();
2488     switch (MaybeRecord.get()) {
2489     default:
2490       return error("Invalid value");
2491     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2492       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2493       // type list.  This allows us to reserve space.
2494       if (Record.empty())
2495         return error("Invalid numentry record");
2496       TypeList.resize(Record[0]);
2497       continue;
2498     case bitc::TYPE_CODE_VOID:      // VOID
2499       ResultTy = Type::getVoidTy(Context);
2500       break;
2501     case bitc::TYPE_CODE_HALF:     // HALF
2502       ResultTy = Type::getHalfTy(Context);
2503       break;
2504     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2505       ResultTy = Type::getBFloatTy(Context);
2506       break;
2507     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2508       ResultTy = Type::getFloatTy(Context);
2509       break;
2510     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2511       ResultTy = Type::getDoubleTy(Context);
2512       break;
2513     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2514       ResultTy = Type::getX86_FP80Ty(Context);
2515       break;
2516     case bitc::TYPE_CODE_FP128:     // FP128
2517       ResultTy = Type::getFP128Ty(Context);
2518       break;
2519     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2520       ResultTy = Type::getPPC_FP128Ty(Context);
2521       break;
2522     case bitc::TYPE_CODE_LABEL:     // LABEL
2523       ResultTy = Type::getLabelTy(Context);
2524       break;
2525     case bitc::TYPE_CODE_METADATA:  // METADATA
2526       ResultTy = Type::getMetadataTy(Context);
2527       break;
2528     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2529       // Deprecated: decodes as <1 x i64>
2530       ResultTy =
2531           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2532       break;
2533     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2534       ResultTy = Type::getX86_AMXTy(Context);
2535       break;
2536     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2537       ResultTy = Type::getTokenTy(Context);
2538       break;
2539     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2540       if (Record.empty())
2541         return error("Invalid integer record");
2542 
2543       uint64_t NumBits = Record[0];
2544       if (NumBits < IntegerType::MIN_INT_BITS ||
2545           NumBits > IntegerType::MAX_INT_BITS)
2546         return error("Bitwidth for integer type out of range");
2547       ResultTy = IntegerType::get(Context, NumBits);
2548       break;
2549     }
2550     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2551                                     //          [pointee type, address space]
2552       if (Record.empty())
2553         return error("Invalid pointer record");
2554       unsigned AddressSpace = 0;
2555       if (Record.size() == 2)
2556         AddressSpace = Record[1];
2557       ResultTy = getTypeByID(Record[0]);
2558       if (!ResultTy ||
2559           !PointerType::isValidElementType(ResultTy))
2560         return error("Invalid type");
2561       ContainedIDs.push_back(Record[0]);
2562       ResultTy = PointerType::get(ResultTy, AddressSpace);
2563       break;
2564     }
2565     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2566       if (Record.size() != 1)
2567         return error("Invalid opaque pointer record");
2568       unsigned AddressSpace = Record[0];
2569       ResultTy = PointerType::get(Context, AddressSpace);
2570       break;
2571     }
2572     case bitc::TYPE_CODE_FUNCTION_OLD: {
2573       // Deprecated, but still needed to read old bitcode files.
2574       // FUNCTION: [vararg, attrid, retty, paramty x N]
2575       if (Record.size() < 3)
2576         return error("Invalid function record");
2577       SmallVector<Type*, 8> ArgTys;
2578       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2579         if (Type *T = getTypeByID(Record[i]))
2580           ArgTys.push_back(T);
2581         else
2582           break;
2583       }
2584 
2585       ResultTy = getTypeByID(Record[2]);
2586       if (!ResultTy || ArgTys.size() < Record.size()-3)
2587         return error("Invalid type");
2588 
2589       ContainedIDs.append(Record.begin() + 2, Record.end());
2590       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2591       break;
2592     }
2593     case bitc::TYPE_CODE_FUNCTION: {
2594       // FUNCTION: [vararg, retty, paramty x N]
2595       if (Record.size() < 2)
2596         return error("Invalid function record");
2597       SmallVector<Type*, 8> ArgTys;
2598       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2599         if (Type *T = getTypeByID(Record[i])) {
2600           if (!FunctionType::isValidArgumentType(T))
2601             return error("Invalid function argument type");
2602           ArgTys.push_back(T);
2603         }
2604         else
2605           break;
2606       }
2607 
2608       ResultTy = getTypeByID(Record[1]);
2609       if (!ResultTy || ArgTys.size() < Record.size()-2)
2610         return error("Invalid type");
2611 
2612       ContainedIDs.append(Record.begin() + 1, Record.end());
2613       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2614       break;
2615     }
2616     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2617       if (Record.empty())
2618         return error("Invalid anon struct record");
2619       SmallVector<Type*, 8> EltTys;
2620       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2621         if (Type *T = getTypeByID(Record[i]))
2622           EltTys.push_back(T);
2623         else
2624           break;
2625       }
2626       if (EltTys.size() != Record.size()-1)
2627         return error("Invalid type");
2628       ContainedIDs.append(Record.begin() + 1, Record.end());
2629       ResultTy = StructType::get(Context, EltTys, Record[0]);
2630       break;
2631     }
2632     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2633       if (convertToString(Record, 0, TypeName))
2634         return error("Invalid struct name record");
2635       continue;
2636 
2637     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2638       if (Record.empty())
2639         return error("Invalid named struct record");
2640 
2641       if (NumRecords >= TypeList.size())
2642         return error("Invalid TYPE table");
2643 
2644       // Check to see if this was forward referenced, if so fill in the temp.
2645       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2646       if (Res) {
2647         Res->setName(TypeName);
2648         TypeList[NumRecords] = nullptr;
2649       } else  // Otherwise, create a new struct.
2650         Res = createIdentifiedStructType(Context, TypeName);
2651       TypeName.clear();
2652 
2653       SmallVector<Type*, 8> EltTys;
2654       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2655         if (Type *T = getTypeByID(Record[i]))
2656           EltTys.push_back(T);
2657         else
2658           break;
2659       }
2660       if (EltTys.size() != Record.size()-1)
2661         return error("Invalid named struct record");
2662       if (auto E = Res->setBodyOrError(EltTys, Record[0]))
2663         return E;
2664       ContainedIDs.append(Record.begin() + 1, Record.end());
2665       ResultTy = Res;
2666       break;
2667     }
2668     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2669       if (Record.size() != 1)
2670         return error("Invalid opaque type record");
2671 
2672       if (NumRecords >= TypeList.size())
2673         return error("Invalid TYPE table");
2674 
2675       // Check to see if this was forward referenced, if so fill in the temp.
2676       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2677       if (Res) {
2678         Res->setName(TypeName);
2679         TypeList[NumRecords] = nullptr;
2680       } else  // Otherwise, create a new struct with no body.
2681         Res = createIdentifiedStructType(Context, TypeName);
2682       TypeName.clear();
2683       ResultTy = Res;
2684       break;
2685     }
2686     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2687       if (Record.size() < 1)
2688         return error("Invalid target extension type record");
2689 
2690       if (NumRecords >= TypeList.size())
2691         return error("Invalid TYPE table");
2692 
2693       if (Record[0] >= Record.size())
2694         return error("Too many type parameters");
2695 
2696       unsigned NumTys = Record[0];
2697       SmallVector<Type *, 4> TypeParams;
2698       SmallVector<unsigned, 8> IntParams;
2699       for (unsigned i = 0; i < NumTys; i++) {
2700         if (Type *T = getTypeByID(Record[i + 1]))
2701           TypeParams.push_back(T);
2702         else
2703           return error("Invalid type");
2704       }
2705 
2706       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2707         if (Record[i] > UINT_MAX)
2708           return error("Integer parameter too large");
2709         IntParams.push_back(Record[i]);
2710       }
2711       auto TTy =
2712           TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
2713       if (auto E = TTy.takeError())
2714         return E;
2715       ResultTy = *TTy;
2716       TypeName.clear();
2717       break;
2718     }
2719     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2720       if (Record.size() < 2)
2721         return error("Invalid array type record");
2722       ResultTy = getTypeByID(Record[1]);
2723       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2724         return error("Invalid type");
2725       ContainedIDs.push_back(Record[1]);
2726       ResultTy = ArrayType::get(ResultTy, Record[0]);
2727       break;
2728     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2729                                     //         [numelts, eltty, scalable]
2730       if (Record.size() < 2)
2731         return error("Invalid vector type record");
2732       if (Record[0] == 0)
2733         return error("Invalid vector length");
2734       ResultTy = getTypeByID(Record[1]);
2735       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2736         return error("Invalid type");
2737       bool Scalable = Record.size() > 2 ? Record[2] : false;
2738       ContainedIDs.push_back(Record[1]);
2739       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2740       break;
2741     }
2742 
2743     if (NumRecords >= TypeList.size())
2744       return error("Invalid TYPE table");
2745     if (TypeList[NumRecords])
2746       return error(
2747           "Invalid TYPE table: Only named structs can be forward referenced");
2748     assert(ResultTy && "Didn't read a type?");
2749     TypeList[NumRecords] = ResultTy;
2750     if (!ContainedIDs.empty())
2751       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2752     ++NumRecords;
2753   }
2754 }
2755 
2756 Error BitcodeReader::parseOperandBundleTags() {
2757   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2758     return Err;
2759 
2760   if (!BundleTags.empty())
2761     return error("Invalid multiple blocks");
2762 
2763   SmallVector<uint64_t, 64> Record;
2764 
2765   while (true) {
2766     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2767     if (!MaybeEntry)
2768       return MaybeEntry.takeError();
2769     BitstreamEntry Entry = MaybeEntry.get();
2770 
2771     switch (Entry.Kind) {
2772     case BitstreamEntry::SubBlock: // Handled for us already.
2773     case BitstreamEntry::Error:
2774       return error("Malformed block");
2775     case BitstreamEntry::EndBlock:
2776       return Error::success();
2777     case BitstreamEntry::Record:
2778       // The interesting case.
2779       break;
2780     }
2781 
2782     // Tags are implicitly mapped to integers by their order.
2783 
2784     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2785     if (!MaybeRecord)
2786       return MaybeRecord.takeError();
2787     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2788       return error("Invalid operand bundle record");
2789 
2790     // OPERAND_BUNDLE_TAG: [strchr x N]
2791     BundleTags.emplace_back();
2792     if (convertToString(Record, 0, BundleTags.back()))
2793       return error("Invalid operand bundle record");
2794     Record.clear();
2795   }
2796 }
2797 
2798 Error BitcodeReader::parseSyncScopeNames() {
2799   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2800     return Err;
2801 
2802   if (!SSIDs.empty())
2803     return error("Invalid multiple synchronization scope names blocks");
2804 
2805   SmallVector<uint64_t, 64> Record;
2806   while (true) {
2807     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2808     if (!MaybeEntry)
2809       return MaybeEntry.takeError();
2810     BitstreamEntry Entry = MaybeEntry.get();
2811 
2812     switch (Entry.Kind) {
2813     case BitstreamEntry::SubBlock: // Handled for us already.
2814     case BitstreamEntry::Error:
2815       return error("Malformed block");
2816     case BitstreamEntry::EndBlock:
2817       if (SSIDs.empty())
2818         return error("Invalid empty synchronization scope names block");
2819       return Error::success();
2820     case BitstreamEntry::Record:
2821       // The interesting case.
2822       break;
2823     }
2824 
2825     // Synchronization scope names are implicitly mapped to synchronization
2826     // scope IDs by their order.
2827 
2828     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2829     if (!MaybeRecord)
2830       return MaybeRecord.takeError();
2831     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2832       return error("Invalid sync scope record");
2833 
2834     SmallString<16> SSN;
2835     if (convertToString(Record, 0, SSN))
2836       return error("Invalid sync scope record");
2837 
2838     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2839     Record.clear();
2840   }
2841 }
2842 
2843 /// Associate a value with its name from the given index in the provided record.
2844 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2845                                              unsigned NameIndex, Triple &TT) {
2846   SmallString<128> ValueName;
2847   if (convertToString(Record, NameIndex, ValueName))
2848     return error("Invalid record");
2849   unsigned ValueID = Record[0];
2850   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2851     return error("Invalid record");
2852   Value *V = ValueList[ValueID];
2853 
2854   StringRef NameStr(ValueName.data(), ValueName.size());
2855   if (NameStr.contains(0))
2856     return error("Invalid value name");
2857   V->setName(NameStr);
2858   auto *GO = dyn_cast<GlobalObject>(V);
2859   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2860     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2861   return V;
2862 }
2863 
2864 /// Helper to note and return the current location, and jump to the given
2865 /// offset.
2866 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2867                                                  BitstreamCursor &Stream) {
2868   // Save the current parsing location so we can jump back at the end
2869   // of the VST read.
2870   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2871   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2872     return std::move(JumpFailed);
2873   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2874   if (!MaybeEntry)
2875     return MaybeEntry.takeError();
2876   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2877       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2878     return error("Expected value symbol table subblock");
2879   return CurrentBit;
2880 }
2881 
2882 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2883                                             Function *F,
2884                                             ArrayRef<uint64_t> Record) {
2885   // Note that we subtract 1 here because the offset is relative to one word
2886   // before the start of the identification or module block, which was
2887   // historically always the start of the regular bitcode header.
2888   uint64_t FuncWordOffset = Record[1] - 1;
2889   uint64_t FuncBitOffset = FuncWordOffset * 32;
2890   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2891   // Set the LastFunctionBlockBit to point to the last function block.
2892   // Later when parsing is resumed after function materialization,
2893   // we can simply skip that last function block.
2894   if (FuncBitOffset > LastFunctionBlockBit)
2895     LastFunctionBlockBit = FuncBitOffset;
2896 }
2897 
2898 /// Read a new-style GlobalValue symbol table.
2899 Error BitcodeReader::parseGlobalValueSymbolTable() {
2900   unsigned FuncBitcodeOffsetDelta =
2901       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2902 
2903   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2904     return Err;
2905 
2906   SmallVector<uint64_t, 64> Record;
2907   while (true) {
2908     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2909     if (!MaybeEntry)
2910       return MaybeEntry.takeError();
2911     BitstreamEntry Entry = MaybeEntry.get();
2912 
2913     switch (Entry.Kind) {
2914     case BitstreamEntry::SubBlock:
2915     case BitstreamEntry::Error:
2916       return error("Malformed block");
2917     case BitstreamEntry::EndBlock:
2918       return Error::success();
2919     case BitstreamEntry::Record:
2920       break;
2921     }
2922 
2923     Record.clear();
2924     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2925     if (!MaybeRecord)
2926       return MaybeRecord.takeError();
2927     switch (MaybeRecord.get()) {
2928     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2929       unsigned ValueID = Record[0];
2930       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2931         return error("Invalid value reference in symbol table");
2932       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2933                               cast<Function>(ValueList[ValueID]), Record);
2934       break;
2935     }
2936     }
2937   }
2938 }
2939 
2940 /// Parse the value symbol table at either the current parsing location or
2941 /// at the given bit offset if provided.
2942 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2943   uint64_t CurrentBit;
2944   // Pass in the Offset to distinguish between calling for the module-level
2945   // VST (where we want to jump to the VST offset) and the function-level
2946   // VST (where we don't).
2947   if (Offset > 0) {
2948     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2949     if (!MaybeCurrentBit)
2950       return MaybeCurrentBit.takeError();
2951     CurrentBit = MaybeCurrentBit.get();
2952     // If this module uses a string table, read this as a module-level VST.
2953     if (UseStrtab) {
2954       if (Error Err = parseGlobalValueSymbolTable())
2955         return Err;
2956       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2957         return JumpFailed;
2958       return Error::success();
2959     }
2960     // Otherwise, the VST will be in a similar format to a function-level VST,
2961     // and will contain symbol names.
2962   }
2963 
2964   // Compute the delta between the bitcode indices in the VST (the word offset
2965   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2966   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2967   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2968   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2969   // just before entering the VST subblock because: 1) the EnterSubBlock
2970   // changes the AbbrevID width; 2) the VST block is nested within the same
2971   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2972   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2973   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2974   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2975   unsigned FuncBitcodeOffsetDelta =
2976       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2977 
2978   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2979     return Err;
2980 
2981   SmallVector<uint64_t, 64> Record;
2982 
2983   Triple TT(TheModule->getTargetTriple());
2984 
2985   // Read all the records for this value table.
2986   SmallString<128> ValueName;
2987 
2988   while (true) {
2989     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2990     if (!MaybeEntry)
2991       return MaybeEntry.takeError();
2992     BitstreamEntry Entry = MaybeEntry.get();
2993 
2994     switch (Entry.Kind) {
2995     case BitstreamEntry::SubBlock: // Handled for us already.
2996     case BitstreamEntry::Error:
2997       return error("Malformed block");
2998     case BitstreamEntry::EndBlock:
2999       if (Offset > 0)
3000         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
3001           return JumpFailed;
3002       return Error::success();
3003     case BitstreamEntry::Record:
3004       // The interesting case.
3005       break;
3006     }
3007 
3008     // Read a record.
3009     Record.clear();
3010     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3011     if (!MaybeRecord)
3012       return MaybeRecord.takeError();
3013     switch (MaybeRecord.get()) {
3014     default:  // Default behavior: unknown type.
3015       break;
3016     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
3017       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
3018       if (Error Err = ValOrErr.takeError())
3019         return Err;
3020       ValOrErr.get();
3021       break;
3022     }
3023     case bitc::VST_CODE_FNENTRY: {
3024       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
3025       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
3026       if (Error Err = ValOrErr.takeError())
3027         return Err;
3028       Value *V = ValOrErr.get();
3029 
3030       // Ignore function offsets emitted for aliases of functions in older
3031       // versions of LLVM.
3032       if (auto *F = dyn_cast<Function>(V))
3033         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3034       break;
3035     }
3036     case bitc::VST_CODE_BBENTRY: {
3037       if (convertToString(Record, 1, ValueName))
3038         return error("Invalid bbentry record");
3039       BasicBlock *BB = getBasicBlock(Record[0]);
3040       if (!BB)
3041         return error("Invalid bbentry record");
3042 
3043       BB->setName(ValueName.str());
3044       ValueName.clear();
3045       break;
3046     }
3047     }
3048   }
3049 }
3050 
3051 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3052 /// encoding.
3053 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3054   if ((V & 1) == 0)
3055     return V >> 1;
3056   if (V != 1)
3057     return -(V >> 1);
3058   // There is no such thing as -0 with integers.  "-0" really means MININT.
3059   return 1ULL << 63;
3060 }
3061 
3062 /// Resolve all of the initializers for global values and aliases that we can.
3063 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3064   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3065   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3066   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3067 
3068   GlobalInitWorklist.swap(GlobalInits);
3069   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3070   FunctionOperandWorklist.swap(FunctionOperands);
3071 
3072   while (!GlobalInitWorklist.empty()) {
3073     unsigned ValID = GlobalInitWorklist.back().second;
3074     if (ValID >= ValueList.size()) {
3075       // Not ready to resolve this yet, it requires something later in the file.
3076       GlobalInits.push_back(GlobalInitWorklist.back());
3077     } else {
3078       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3079       if (!MaybeC)
3080         return MaybeC.takeError();
3081       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3082     }
3083     GlobalInitWorklist.pop_back();
3084   }
3085 
3086   while (!IndirectSymbolInitWorklist.empty()) {
3087     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3088     if (ValID >= ValueList.size()) {
3089       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3090     } else {
3091       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3092       if (!MaybeC)
3093         return MaybeC.takeError();
3094       Constant *C = MaybeC.get();
3095       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3096       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3097         if (C->getType() != GV->getType())
3098           return error("Alias and aliasee types don't match");
3099         GA->setAliasee(C);
3100       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3101         GI->setResolver(C);
3102       } else {
3103         return error("Expected an alias or an ifunc");
3104       }
3105     }
3106     IndirectSymbolInitWorklist.pop_back();
3107   }
3108 
3109   while (!FunctionOperandWorklist.empty()) {
3110     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3111     if (Info.PersonalityFn) {
3112       unsigned ValID = Info.PersonalityFn - 1;
3113       if (ValID < ValueList.size()) {
3114         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3115         if (!MaybeC)
3116           return MaybeC.takeError();
3117         Info.F->setPersonalityFn(MaybeC.get());
3118         Info.PersonalityFn = 0;
3119       }
3120     }
3121     if (Info.Prefix) {
3122       unsigned ValID = Info.Prefix - 1;
3123       if (ValID < ValueList.size()) {
3124         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3125         if (!MaybeC)
3126           return MaybeC.takeError();
3127         Info.F->setPrefixData(MaybeC.get());
3128         Info.Prefix = 0;
3129       }
3130     }
3131     if (Info.Prologue) {
3132       unsigned ValID = Info.Prologue - 1;
3133       if (ValID < ValueList.size()) {
3134         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3135         if (!MaybeC)
3136           return MaybeC.takeError();
3137         Info.F->setPrologueData(MaybeC.get());
3138         Info.Prologue = 0;
3139       }
3140     }
3141     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3142       FunctionOperands.push_back(Info);
3143     FunctionOperandWorklist.pop_back();
3144   }
3145 
3146   return Error::success();
3147 }
3148 
3149 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3150   SmallVector<uint64_t, 8> Words(Vals.size());
3151   transform(Vals, Words.begin(),
3152                  BitcodeReader::decodeSignRotatedValue);
3153 
3154   return APInt(TypeBits, Words);
3155 }
3156 
3157 Error BitcodeReader::parseConstants() {
3158   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3159     return Err;
3160 
3161   SmallVector<uint64_t, 64> Record;
3162 
3163   // Read all the records for this value table.
3164   Type *CurTy = Type::getInt32Ty(Context);
3165   unsigned Int32TyID = getVirtualTypeID(CurTy);
3166   unsigned CurTyID = Int32TyID;
3167   Type *CurElemTy = nullptr;
3168   unsigned NextCstNo = ValueList.size();
3169 
3170   while (true) {
3171     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3172     if (!MaybeEntry)
3173       return MaybeEntry.takeError();
3174     BitstreamEntry Entry = MaybeEntry.get();
3175 
3176     switch (Entry.Kind) {
3177     case BitstreamEntry::SubBlock: // Handled for us already.
3178     case BitstreamEntry::Error:
3179       return error("Malformed block");
3180     case BitstreamEntry::EndBlock:
3181       if (NextCstNo != ValueList.size())
3182         return error("Invalid constant reference");
3183       return Error::success();
3184     case BitstreamEntry::Record:
3185       // The interesting case.
3186       break;
3187     }
3188 
3189     // Read a record.
3190     Record.clear();
3191     Type *VoidType = Type::getVoidTy(Context);
3192     Value *V = nullptr;
3193     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3194     if (!MaybeBitCode)
3195       return MaybeBitCode.takeError();
3196     switch (unsigned BitCode = MaybeBitCode.get()) {
3197     default:  // Default behavior: unknown constant
3198     case bitc::CST_CODE_UNDEF:     // UNDEF
3199       V = UndefValue::get(CurTy);
3200       break;
3201     case bitc::CST_CODE_POISON:    // POISON
3202       V = PoisonValue::get(CurTy);
3203       break;
3204     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3205       if (Record.empty())
3206         return error("Invalid settype record");
3207       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3208         return error("Invalid settype record");
3209       if (TypeList[Record[0]] == VoidType)
3210         return error("Invalid constant type");
3211       CurTyID = Record[0];
3212       CurTy = TypeList[CurTyID];
3213       CurElemTy = getPtrElementTypeByID(CurTyID);
3214       continue;  // Skip the ValueList manipulation.
3215     case bitc::CST_CODE_NULL:      // NULL
3216       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3217         return error("Invalid type for a constant null value");
3218       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3219         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3220           return error("Invalid type for a constant null value");
3221       V = Constant::getNullValue(CurTy);
3222       break;
3223     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3224       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3225         return error("Invalid integer const record");
3226       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3227       break;
3228     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3229       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3230         return error("Invalid wide integer const record");
3231 
3232       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3233       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3234       V = ConstantInt::get(CurTy, VInt);
3235       break;
3236     }
3237     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3238       if (Record.empty())
3239         return error("Invalid float const record");
3240 
3241       auto *ScalarTy = CurTy->getScalarType();
3242       if (ScalarTy->isHalfTy())
3243         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3244                                            APInt(16, (uint16_t)Record[0])));
3245       else if (ScalarTy->isBFloatTy())
3246         V = ConstantFP::get(
3247             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3248       else if (ScalarTy->isFloatTy())
3249         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3250                                            APInt(32, (uint32_t)Record[0])));
3251       else if (ScalarTy->isDoubleTy())
3252         V = ConstantFP::get(
3253             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3254       else if (ScalarTy->isX86_FP80Ty()) {
3255         // Bits are not stored the same way as a normal i80 APInt, compensate.
3256         uint64_t Rearrange[2];
3257         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3258         Rearrange[1] = Record[0] >> 48;
3259         V = ConstantFP::get(
3260             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3261       } else if (ScalarTy->isFP128Ty())
3262         V = ConstantFP::get(CurTy,
3263                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3264       else if (ScalarTy->isPPC_FP128Ty())
3265         V = ConstantFP::get(
3266             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3267       else
3268         V = PoisonValue::get(CurTy);
3269       break;
3270     }
3271 
3272     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3273       if (Record.empty())
3274         return error("Invalid aggregate record");
3275 
3276       unsigned Size = Record.size();
3277       SmallVector<unsigned, 16> Elts;
3278       for (unsigned i = 0; i != Size; ++i)
3279         Elts.push_back(Record[i]);
3280 
3281       if (isa<StructType>(CurTy)) {
3282         V = BitcodeConstant::create(
3283             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3284       } else if (isa<ArrayType>(CurTy)) {
3285         V = BitcodeConstant::create(Alloc, CurTy,
3286                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3287       } else if (isa<VectorType>(CurTy)) {
3288         V = BitcodeConstant::create(
3289             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3290       } else {
3291         V = PoisonValue::get(CurTy);
3292       }
3293       break;
3294     }
3295     case bitc::CST_CODE_STRING:    // STRING: [values]
3296     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3297       if (Record.empty())
3298         return error("Invalid string record");
3299 
3300       SmallString<16> Elts(Record.begin(), Record.end());
3301       V = ConstantDataArray::getString(Context, Elts,
3302                                        BitCode == bitc::CST_CODE_CSTRING);
3303       break;
3304     }
3305     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3306       if (Record.empty())
3307         return error("Invalid data record");
3308 
3309       Type *EltTy;
3310       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3311         EltTy = Array->getElementType();
3312       else
3313         EltTy = cast<VectorType>(CurTy)->getElementType();
3314       if (EltTy->isIntegerTy(8)) {
3315         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3316         if (isa<VectorType>(CurTy))
3317           V = ConstantDataVector::get(Context, Elts);
3318         else
3319           V = ConstantDataArray::get(Context, Elts);
3320       } else if (EltTy->isIntegerTy(16)) {
3321         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3322         if (isa<VectorType>(CurTy))
3323           V = ConstantDataVector::get(Context, Elts);
3324         else
3325           V = ConstantDataArray::get(Context, Elts);
3326       } else if (EltTy->isIntegerTy(32)) {
3327         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3328         if (isa<VectorType>(CurTy))
3329           V = ConstantDataVector::get(Context, Elts);
3330         else
3331           V = ConstantDataArray::get(Context, Elts);
3332       } else if (EltTy->isIntegerTy(64)) {
3333         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3334         if (isa<VectorType>(CurTy))
3335           V = ConstantDataVector::get(Context, Elts);
3336         else
3337           V = ConstantDataArray::get(Context, Elts);
3338       } else if (EltTy->isHalfTy()) {
3339         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3340         if (isa<VectorType>(CurTy))
3341           V = ConstantDataVector::getFP(EltTy, Elts);
3342         else
3343           V = ConstantDataArray::getFP(EltTy, Elts);
3344       } else if (EltTy->isBFloatTy()) {
3345         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3346         if (isa<VectorType>(CurTy))
3347           V = ConstantDataVector::getFP(EltTy, Elts);
3348         else
3349           V = ConstantDataArray::getFP(EltTy, Elts);
3350       } else if (EltTy->isFloatTy()) {
3351         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3352         if (isa<VectorType>(CurTy))
3353           V = ConstantDataVector::getFP(EltTy, Elts);
3354         else
3355           V = ConstantDataArray::getFP(EltTy, Elts);
3356       } else if (EltTy->isDoubleTy()) {
3357         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3358         if (isa<VectorType>(CurTy))
3359           V = ConstantDataVector::getFP(EltTy, Elts);
3360         else
3361           V = ConstantDataArray::getFP(EltTy, Elts);
3362       } else {
3363         return error("Invalid type for value");
3364       }
3365       break;
3366     }
3367     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3368       if (Record.size() < 2)
3369         return error("Invalid unary op constexpr record");
3370       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3371       if (Opc < 0) {
3372         V = PoisonValue::get(CurTy);  // Unknown unop.
3373       } else {
3374         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3375       }
3376       break;
3377     }
3378     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3379       if (Record.size() < 3)
3380         return error("Invalid binary op constexpr record");
3381       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3382       if (Opc < 0) {
3383         V = PoisonValue::get(CurTy);  // Unknown binop.
3384       } else {
3385         uint8_t Flags = 0;
3386         if (Record.size() >= 4) {
3387           if (Opc == Instruction::Add ||
3388               Opc == Instruction::Sub ||
3389               Opc == Instruction::Mul ||
3390               Opc == Instruction::Shl) {
3391             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3392               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3393             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3394               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3395           } else if (Opc == Instruction::SDiv ||
3396                      Opc == Instruction::UDiv ||
3397                      Opc == Instruction::LShr ||
3398                      Opc == Instruction::AShr) {
3399             if (Record[3] & (1 << bitc::PEO_EXACT))
3400               Flags |= PossiblyExactOperator::IsExact;
3401           }
3402         }
3403         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3404                                     {(unsigned)Record[1], (unsigned)Record[2]});
3405       }
3406       break;
3407     }
3408     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3409       if (Record.size() < 3)
3410         return error("Invalid cast constexpr record");
3411       int Opc = getDecodedCastOpcode(Record[0]);
3412       if (Opc < 0) {
3413         V = PoisonValue::get(CurTy);  // Unknown cast.
3414       } else {
3415         unsigned OpTyID = Record[1];
3416         Type *OpTy = getTypeByID(OpTyID);
3417         if (!OpTy)
3418           return error("Invalid cast constexpr record");
3419         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3420       }
3421       break;
3422     }
3423     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3424     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3425     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3426                                                        // operands]
3427     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3428     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3429                                                // operands]
3430       if (Record.size() < 2)
3431         return error("Constant GEP record must have at least two elements");
3432       unsigned OpNum = 0;
3433       Type *PointeeType = nullptr;
3434       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3435           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3436           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3437         PointeeType = getTypeByID(Record[OpNum++]);
3438 
3439       uint64_t Flags = 0;
3440       std::optional<ConstantRange> InRange;
3441       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3442         uint64_t Op = Record[OpNum++];
3443         Flags = Op & 1; // inbounds
3444         unsigned InRangeIndex = Op >> 1;
3445         // "Upgrade" inrange by dropping it. The feature is too niche to
3446         // bother.
3447         (void)InRangeIndex;
3448       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3449         Flags = Record[OpNum++];
3450         Expected<ConstantRange> MaybeInRange =
3451             readBitWidthAndConstantRange(Record, OpNum);
3452         if (!MaybeInRange)
3453           return MaybeInRange.takeError();
3454         InRange = MaybeInRange.get();
3455       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3456         Flags = Record[OpNum++];
3457       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3458         Flags = (1 << bitc::GEP_INBOUNDS);
3459 
3460       SmallVector<unsigned, 16> Elts;
3461       unsigned BaseTypeID = Record[OpNum];
3462       while (OpNum != Record.size()) {
3463         unsigned ElTyID = Record[OpNum++];
3464         Type *ElTy = getTypeByID(ElTyID);
3465         if (!ElTy)
3466           return error("Invalid getelementptr constexpr record");
3467         Elts.push_back(Record[OpNum++]);
3468       }
3469 
3470       if (Elts.size() < 1)
3471         return error("Invalid gep with no operands");
3472 
3473       Type *BaseType = getTypeByID(BaseTypeID);
3474       if (isa<VectorType>(BaseType)) {
3475         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3476         BaseType = getTypeByID(BaseTypeID);
3477       }
3478 
3479       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3480       if (!OrigPtrTy)
3481         return error("GEP base operand must be pointer or vector of pointer");
3482 
3483       if (!PointeeType) {
3484         PointeeType = getPtrElementTypeByID(BaseTypeID);
3485         if (!PointeeType)
3486           return error("Missing element type for old-style constant GEP");
3487       }
3488 
3489       V = BitcodeConstant::create(
3490           Alloc, CurTy,
3491           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3492           Elts);
3493       break;
3494     }
3495     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3496       if (Record.size() < 3)
3497         return error("Invalid select constexpr record");
3498 
3499       V = BitcodeConstant::create(
3500           Alloc, CurTy, Instruction::Select,
3501           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3502       break;
3503     }
3504     case bitc::CST_CODE_CE_EXTRACTELT
3505         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3506       if (Record.size() < 3)
3507         return error("Invalid extractelement constexpr record");
3508       unsigned OpTyID = Record[0];
3509       VectorType *OpTy =
3510         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3511       if (!OpTy)
3512         return error("Invalid extractelement constexpr record");
3513       unsigned IdxRecord;
3514       if (Record.size() == 4) {
3515         unsigned IdxTyID = Record[2];
3516         Type *IdxTy = getTypeByID(IdxTyID);
3517         if (!IdxTy)
3518           return error("Invalid extractelement constexpr record");
3519         IdxRecord = Record[3];
3520       } else {
3521         // Deprecated, but still needed to read old bitcode files.
3522         IdxRecord = Record[2];
3523       }
3524       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3525                                   {(unsigned)Record[1], IdxRecord});
3526       break;
3527     }
3528     case bitc::CST_CODE_CE_INSERTELT
3529         : { // CE_INSERTELT: [opval, opval, opty, opval]
3530       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3531       if (Record.size() < 3 || !OpTy)
3532         return error("Invalid insertelement constexpr record");
3533       unsigned IdxRecord;
3534       if (Record.size() == 4) {
3535         unsigned IdxTyID = Record[2];
3536         Type *IdxTy = getTypeByID(IdxTyID);
3537         if (!IdxTy)
3538           return error("Invalid insertelement constexpr record");
3539         IdxRecord = Record[3];
3540       } else {
3541         // Deprecated, but still needed to read old bitcode files.
3542         IdxRecord = Record[2];
3543       }
3544       V = BitcodeConstant::create(
3545           Alloc, CurTy, Instruction::InsertElement,
3546           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3547       break;
3548     }
3549     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3550       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3551       if (Record.size() < 3 || !OpTy)
3552         return error("Invalid shufflevector constexpr record");
3553       V = BitcodeConstant::create(
3554           Alloc, CurTy, Instruction::ShuffleVector,
3555           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3556       break;
3557     }
3558     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3559       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3560       VectorType *OpTy =
3561         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3562       if (Record.size() < 4 || !RTy || !OpTy)
3563         return error("Invalid shufflevector constexpr record");
3564       V = BitcodeConstant::create(
3565           Alloc, CurTy, Instruction::ShuffleVector,
3566           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3567       break;
3568     }
3569     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3570       if (Record.size() < 4)
3571         return error("Invalid cmp constexpt record");
3572       unsigned OpTyID = Record[0];
3573       Type *OpTy = getTypeByID(OpTyID);
3574       if (!OpTy)
3575         return error("Invalid cmp constexpr record");
3576       V = BitcodeConstant::create(
3577           Alloc, CurTy,
3578           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3579                                               : Instruction::ICmp),
3580            (uint8_t)Record[3]},
3581           {(unsigned)Record[1], (unsigned)Record[2]});
3582       break;
3583     }
3584     // This maintains backward compatibility, pre-asm dialect keywords.
3585     // Deprecated, but still needed to read old bitcode files.
3586     case bitc::CST_CODE_INLINEASM_OLD: {
3587       if (Record.size() < 2)
3588         return error("Invalid inlineasm record");
3589       std::string AsmStr, ConstrStr;
3590       bool HasSideEffects = Record[0] & 1;
3591       bool IsAlignStack = Record[0] >> 1;
3592       unsigned AsmStrSize = Record[1];
3593       if (2+AsmStrSize >= Record.size())
3594         return error("Invalid inlineasm record");
3595       unsigned ConstStrSize = Record[2+AsmStrSize];
3596       if (3+AsmStrSize+ConstStrSize > Record.size())
3597         return error("Invalid inlineasm record");
3598 
3599       for (unsigned i = 0; i != AsmStrSize; ++i)
3600         AsmStr += (char)Record[2+i];
3601       for (unsigned i = 0; i != ConstStrSize; ++i)
3602         ConstrStr += (char)Record[3+AsmStrSize+i];
3603       UpgradeInlineAsmString(&AsmStr);
3604       if (!CurElemTy)
3605         return error("Missing element type for old-style inlineasm");
3606       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3607                          HasSideEffects, IsAlignStack);
3608       break;
3609     }
3610     // This version adds support for the asm dialect keywords (e.g.,
3611     // inteldialect).
3612     case bitc::CST_CODE_INLINEASM_OLD2: {
3613       if (Record.size() < 2)
3614         return error("Invalid inlineasm record");
3615       std::string AsmStr, ConstrStr;
3616       bool HasSideEffects = Record[0] & 1;
3617       bool IsAlignStack = (Record[0] >> 1) & 1;
3618       unsigned AsmDialect = Record[0] >> 2;
3619       unsigned AsmStrSize = Record[1];
3620       if (2+AsmStrSize >= Record.size())
3621         return error("Invalid inlineasm record");
3622       unsigned ConstStrSize = Record[2+AsmStrSize];
3623       if (3+AsmStrSize+ConstStrSize > Record.size())
3624         return error("Invalid inlineasm record");
3625 
3626       for (unsigned i = 0; i != AsmStrSize; ++i)
3627         AsmStr += (char)Record[2+i];
3628       for (unsigned i = 0; i != ConstStrSize; ++i)
3629         ConstrStr += (char)Record[3+AsmStrSize+i];
3630       UpgradeInlineAsmString(&AsmStr);
3631       if (!CurElemTy)
3632         return error("Missing element type for old-style inlineasm");
3633       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3634                          HasSideEffects, IsAlignStack,
3635                          InlineAsm::AsmDialect(AsmDialect));
3636       break;
3637     }
3638     // This version adds support for the unwind keyword.
3639     case bitc::CST_CODE_INLINEASM_OLD3: {
3640       if (Record.size() < 2)
3641         return error("Invalid inlineasm record");
3642       unsigned OpNum = 0;
3643       std::string AsmStr, ConstrStr;
3644       bool HasSideEffects = Record[OpNum] & 1;
3645       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3646       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3647       bool CanThrow = (Record[OpNum] >> 3) & 1;
3648       ++OpNum;
3649       unsigned AsmStrSize = Record[OpNum];
3650       ++OpNum;
3651       if (OpNum + AsmStrSize >= Record.size())
3652         return error("Invalid inlineasm record");
3653       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3654       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3655         return error("Invalid inlineasm record");
3656 
3657       for (unsigned i = 0; i != AsmStrSize; ++i)
3658         AsmStr += (char)Record[OpNum + i];
3659       ++OpNum;
3660       for (unsigned i = 0; i != ConstStrSize; ++i)
3661         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3662       UpgradeInlineAsmString(&AsmStr);
3663       if (!CurElemTy)
3664         return error("Missing element type for old-style inlineasm");
3665       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3666                          HasSideEffects, IsAlignStack,
3667                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3668       break;
3669     }
3670     // This version adds explicit function type.
3671     case bitc::CST_CODE_INLINEASM: {
3672       if (Record.size() < 3)
3673         return error("Invalid inlineasm record");
3674       unsigned OpNum = 0;
3675       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3676       ++OpNum;
3677       if (!FnTy)
3678         return error("Invalid inlineasm record");
3679       std::string AsmStr, ConstrStr;
3680       bool HasSideEffects = Record[OpNum] & 1;
3681       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3682       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3683       bool CanThrow = (Record[OpNum] >> 3) & 1;
3684       ++OpNum;
3685       unsigned AsmStrSize = Record[OpNum];
3686       ++OpNum;
3687       if (OpNum + AsmStrSize >= Record.size())
3688         return error("Invalid inlineasm record");
3689       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3690       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3691         return error("Invalid inlineasm record");
3692 
3693       for (unsigned i = 0; i != AsmStrSize; ++i)
3694         AsmStr += (char)Record[OpNum + i];
3695       ++OpNum;
3696       for (unsigned i = 0; i != ConstStrSize; ++i)
3697         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3698       UpgradeInlineAsmString(&AsmStr);
3699       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3700                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3701       break;
3702     }
3703     case bitc::CST_CODE_BLOCKADDRESS:{
3704       if (Record.size() < 3)
3705         return error("Invalid blockaddress record");
3706       unsigned FnTyID = Record[0];
3707       Type *FnTy = getTypeByID(FnTyID);
3708       if (!FnTy)
3709         return error("Invalid blockaddress record");
3710       V = BitcodeConstant::create(
3711           Alloc, CurTy,
3712           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3713           Record[1]);
3714       break;
3715     }
3716     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3717       if (Record.size() < 2)
3718         return error("Invalid dso_local record");
3719       unsigned GVTyID = Record[0];
3720       Type *GVTy = getTypeByID(GVTyID);
3721       if (!GVTy)
3722         return error("Invalid dso_local record");
3723       V = BitcodeConstant::create(
3724           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3725       break;
3726     }
3727     case bitc::CST_CODE_NO_CFI_VALUE: {
3728       if (Record.size() < 2)
3729         return error("Invalid no_cfi record");
3730       unsigned GVTyID = Record[0];
3731       Type *GVTy = getTypeByID(GVTyID);
3732       if (!GVTy)
3733         return error("Invalid no_cfi record");
3734       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3735                                   Record[1]);
3736       break;
3737     }
3738     case bitc::CST_CODE_PTRAUTH: {
3739       if (Record.size() < 4)
3740         return error("Invalid ptrauth record");
3741       // Ptr, Key, Disc, AddrDisc
3742       V = BitcodeConstant::create(Alloc, CurTy,
3743                                   BitcodeConstant::ConstantPtrAuthOpcode,
3744                                   {(unsigned)Record[0], (unsigned)Record[1],
3745                                    (unsigned)Record[2], (unsigned)Record[3]});
3746       break;
3747     }
3748     }
3749 
3750     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3751     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3752       return Err;
3753     ++NextCstNo;
3754   }
3755 }
3756 
3757 Error BitcodeReader::parseUseLists() {
3758   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3759     return Err;
3760 
3761   // Read all the records.
3762   SmallVector<uint64_t, 64> Record;
3763 
3764   while (true) {
3765     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3766     if (!MaybeEntry)
3767       return MaybeEntry.takeError();
3768     BitstreamEntry Entry = MaybeEntry.get();
3769 
3770     switch (Entry.Kind) {
3771     case BitstreamEntry::SubBlock: // Handled for us already.
3772     case BitstreamEntry::Error:
3773       return error("Malformed block");
3774     case BitstreamEntry::EndBlock:
3775       return Error::success();
3776     case BitstreamEntry::Record:
3777       // The interesting case.
3778       break;
3779     }
3780 
3781     // Read a use list record.
3782     Record.clear();
3783     bool IsBB = false;
3784     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3785     if (!MaybeRecord)
3786       return MaybeRecord.takeError();
3787     switch (MaybeRecord.get()) {
3788     default:  // Default behavior: unknown type.
3789       break;
3790     case bitc::USELIST_CODE_BB:
3791       IsBB = true;
3792       [[fallthrough]];
3793     case bitc::USELIST_CODE_DEFAULT: {
3794       unsigned RecordLength = Record.size();
3795       if (RecordLength < 3)
3796         // Records should have at least an ID and two indexes.
3797         return error("Invalid record");
3798       unsigned ID = Record.pop_back_val();
3799 
3800       Value *V;
3801       if (IsBB) {
3802         assert(ID < FunctionBBs.size() && "Basic block not found");
3803         V = FunctionBBs[ID];
3804       } else
3805         V = ValueList[ID];
3806       unsigned NumUses = 0;
3807       SmallDenseMap<const Use *, unsigned, 16> Order;
3808       for (const Use &U : V->materialized_uses()) {
3809         if (++NumUses > Record.size())
3810           break;
3811         Order[&U] = Record[NumUses - 1];
3812       }
3813       if (Order.size() != Record.size() || NumUses > Record.size())
3814         // Mismatches can happen if the functions are being materialized lazily
3815         // (out-of-order), or a value has been upgraded.
3816         break;
3817 
3818       V->sortUseList([&](const Use &L, const Use &R) {
3819         return Order.lookup(&L) < Order.lookup(&R);
3820       });
3821       break;
3822     }
3823     }
3824   }
3825 }
3826 
3827 /// When we see the block for metadata, remember where it is and then skip it.
3828 /// This lets us lazily deserialize the metadata.
3829 Error BitcodeReader::rememberAndSkipMetadata() {
3830   // Save the current stream state.
3831   uint64_t CurBit = Stream.GetCurrentBitNo();
3832   DeferredMetadataInfo.push_back(CurBit);
3833 
3834   // Skip over the block for now.
3835   if (Error Err = Stream.SkipBlock())
3836     return Err;
3837   return Error::success();
3838 }
3839 
3840 Error BitcodeReader::materializeMetadata() {
3841   for (uint64_t BitPos : DeferredMetadataInfo) {
3842     // Move the bit stream to the saved position.
3843     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3844       return JumpFailed;
3845     if (Error Err = MDLoader->parseModuleMetadata())
3846       return Err;
3847   }
3848 
3849   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3850   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3851   // multiple times.
3852   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3853     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3854       NamedMDNode *LinkerOpts =
3855           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3856       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3857         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3858     }
3859   }
3860 
3861   DeferredMetadataInfo.clear();
3862   return Error::success();
3863 }
3864 
3865 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3866 
3867 /// When we see the block for a function body, remember where it is and then
3868 /// skip it.  This lets us lazily deserialize the functions.
3869 Error BitcodeReader::rememberAndSkipFunctionBody() {
3870   // Get the function we are talking about.
3871   if (FunctionsWithBodies.empty())
3872     return error("Insufficient function protos");
3873 
3874   Function *Fn = FunctionsWithBodies.back();
3875   FunctionsWithBodies.pop_back();
3876 
3877   // Save the current stream state.
3878   uint64_t CurBit = Stream.GetCurrentBitNo();
3879   assert(
3880       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3881       "Mismatch between VST and scanned function offsets");
3882   DeferredFunctionInfo[Fn] = CurBit;
3883 
3884   // Skip over the function block for now.
3885   if (Error Err = Stream.SkipBlock())
3886     return Err;
3887   return Error::success();
3888 }
3889 
3890 Error BitcodeReader::globalCleanup() {
3891   // Patch the initializers for globals and aliases up.
3892   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3893     return Err;
3894   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3895     return error("Malformed global initializer set");
3896 
3897   // Look for intrinsic functions which need to be upgraded at some point
3898   // and functions that need to have their function attributes upgraded.
3899   for (Function &F : *TheModule) {
3900     MDLoader->upgradeDebugIntrinsics(F);
3901     Function *NewFn;
3902     // If PreserveInputDbgFormat=true, then we don't know whether we want
3903     // intrinsics or records, and we won't perform any conversions in either
3904     // case, so don't upgrade intrinsics to records.
3905     if (UpgradeIntrinsicFunction(
3906             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3907       UpgradedIntrinsics[&F] = NewFn;
3908     // Look for functions that rely on old function attribute behavior.
3909     UpgradeFunctionAttributes(F);
3910   }
3911 
3912   // Look for global variables which need to be renamed.
3913   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3914   for (GlobalVariable &GV : TheModule->globals())
3915     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3916       UpgradedVariables.emplace_back(&GV, Upgraded);
3917   for (auto &Pair : UpgradedVariables) {
3918     Pair.first->eraseFromParent();
3919     TheModule->insertGlobalVariable(Pair.second);
3920   }
3921 
3922   // Force deallocation of memory for these vectors to favor the client that
3923   // want lazy deserialization.
3924   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3925   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3926   return Error::success();
3927 }
3928 
3929 /// Support for lazy parsing of function bodies. This is required if we
3930 /// either have an old bitcode file without a VST forward declaration record,
3931 /// or if we have an anonymous function being materialized, since anonymous
3932 /// functions do not have a name and are therefore not in the VST.
3933 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3934   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3935     return JumpFailed;
3936 
3937   if (Stream.AtEndOfStream())
3938     return error("Could not find function in stream");
3939 
3940   if (!SeenFirstFunctionBody)
3941     return error("Trying to materialize functions before seeing function blocks");
3942 
3943   // An old bitcode file with the symbol table at the end would have
3944   // finished the parse greedily.
3945   assert(SeenValueSymbolTable);
3946 
3947   SmallVector<uint64_t, 64> Record;
3948 
3949   while (true) {
3950     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3951     if (!MaybeEntry)
3952       return MaybeEntry.takeError();
3953     llvm::BitstreamEntry Entry = MaybeEntry.get();
3954 
3955     switch (Entry.Kind) {
3956     default:
3957       return error("Expect SubBlock");
3958     case BitstreamEntry::SubBlock:
3959       switch (Entry.ID) {
3960       default:
3961         return error("Expect function block");
3962       case bitc::FUNCTION_BLOCK_ID:
3963         if (Error Err = rememberAndSkipFunctionBody())
3964           return Err;
3965         NextUnreadBit = Stream.GetCurrentBitNo();
3966         return Error::success();
3967       }
3968     }
3969   }
3970 }
3971 
3972 Error BitcodeReaderBase::readBlockInfo() {
3973   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3974       Stream.ReadBlockInfoBlock();
3975   if (!MaybeNewBlockInfo)
3976     return MaybeNewBlockInfo.takeError();
3977   std::optional<BitstreamBlockInfo> NewBlockInfo =
3978       std::move(MaybeNewBlockInfo.get());
3979   if (!NewBlockInfo)
3980     return error("Malformed block");
3981   BlockInfo = std::move(*NewBlockInfo);
3982   return Error::success();
3983 }
3984 
3985 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3986   // v1: [selection_kind, name]
3987   // v2: [strtab_offset, strtab_size, selection_kind]
3988   StringRef Name;
3989   std::tie(Name, Record) = readNameFromStrtab(Record);
3990 
3991   if (Record.empty())
3992     return error("Invalid record");
3993   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3994   std::string OldFormatName;
3995   if (!UseStrtab) {
3996     if (Record.size() < 2)
3997       return error("Invalid record");
3998     unsigned ComdatNameSize = Record[1];
3999     if (ComdatNameSize > Record.size() - 2)
4000       return error("Comdat name size too large");
4001     OldFormatName.reserve(ComdatNameSize);
4002     for (unsigned i = 0; i != ComdatNameSize; ++i)
4003       OldFormatName += (char)Record[2 + i];
4004     Name = OldFormatName;
4005   }
4006   Comdat *C = TheModule->getOrInsertComdat(Name);
4007   C->setSelectionKind(SK);
4008   ComdatList.push_back(C);
4009   return Error::success();
4010 }
4011 
4012 static void inferDSOLocal(GlobalValue *GV) {
4013   // infer dso_local from linkage and visibility if it is not encoded.
4014   if (GV->hasLocalLinkage() ||
4015       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
4016     GV->setDSOLocal(true);
4017 }
4018 
4019 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
4020   GlobalValue::SanitizerMetadata Meta;
4021   if (V & (1 << 0))
4022     Meta.NoAddress = true;
4023   if (V & (1 << 1))
4024     Meta.NoHWAddress = true;
4025   if (V & (1 << 2))
4026     Meta.Memtag = true;
4027   if (V & (1 << 3))
4028     Meta.IsDynInit = true;
4029   return Meta;
4030 }
4031 
4032 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4033   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4034   // visibility, threadlocal, unnamed_addr, externally_initialized,
4035   // dllstorageclass, comdat, attributes, preemption specifier,
4036   // partition strtab offset, partition strtab size] (name in VST)
4037   // v2: [strtab_offset, strtab_size, v1]
4038   // v3: [v2, code_model]
4039   StringRef Name;
4040   std::tie(Name, Record) = readNameFromStrtab(Record);
4041 
4042   if (Record.size() < 6)
4043     return error("Invalid record");
4044   unsigned TyID = Record[0];
4045   Type *Ty = getTypeByID(TyID);
4046   if (!Ty)
4047     return error("Invalid record");
4048   bool isConstant = Record[1] & 1;
4049   bool explicitType = Record[1] & 2;
4050   unsigned AddressSpace;
4051   if (explicitType) {
4052     AddressSpace = Record[1] >> 2;
4053   } else {
4054     if (!Ty->isPointerTy())
4055       return error("Invalid type for value");
4056     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4057     TyID = getContainedTypeID(TyID);
4058     Ty = getTypeByID(TyID);
4059     if (!Ty)
4060       return error("Missing element type for old-style global");
4061   }
4062 
4063   uint64_t RawLinkage = Record[3];
4064   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4065   MaybeAlign Alignment;
4066   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4067     return Err;
4068   std::string Section;
4069   if (Record[5]) {
4070     if (Record[5] - 1 >= SectionTable.size())
4071       return error("Invalid ID");
4072     Section = SectionTable[Record[5] - 1];
4073   }
4074   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4075   // Local linkage must have default visibility.
4076   // auto-upgrade `hidden` and `protected` for old bitcode.
4077   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4078     Visibility = getDecodedVisibility(Record[6]);
4079 
4080   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4081   if (Record.size() > 7)
4082     TLM = getDecodedThreadLocalMode(Record[7]);
4083 
4084   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4085   if (Record.size() > 8)
4086     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4087 
4088   bool ExternallyInitialized = false;
4089   if (Record.size() > 9)
4090     ExternallyInitialized = Record[9];
4091 
4092   GlobalVariable *NewGV =
4093       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4094                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4095   if (Alignment)
4096     NewGV->setAlignment(*Alignment);
4097   if (!Section.empty())
4098     NewGV->setSection(Section);
4099   NewGV->setVisibility(Visibility);
4100   NewGV->setUnnamedAddr(UnnamedAddr);
4101 
4102   if (Record.size() > 10) {
4103     // A GlobalValue with local linkage cannot have a DLL storage class.
4104     if (!NewGV->hasLocalLinkage()) {
4105       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4106     }
4107   } else {
4108     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4109   }
4110 
4111   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4112 
4113   // Remember which value to use for the global initializer.
4114   if (unsigned InitID = Record[2])
4115     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4116 
4117   if (Record.size() > 11) {
4118     if (unsigned ComdatID = Record[11]) {
4119       if (ComdatID > ComdatList.size())
4120         return error("Invalid global variable comdat ID");
4121       NewGV->setComdat(ComdatList[ComdatID - 1]);
4122     }
4123   } else if (hasImplicitComdat(RawLinkage)) {
4124     ImplicitComdatObjects.insert(NewGV);
4125   }
4126 
4127   if (Record.size() > 12) {
4128     auto AS = getAttributes(Record[12]).getFnAttrs();
4129     NewGV->setAttributes(AS);
4130   }
4131 
4132   if (Record.size() > 13) {
4133     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4134   }
4135   inferDSOLocal(NewGV);
4136 
4137   // Check whether we have enough values to read a partition name.
4138   if (Record.size() > 15)
4139     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4140 
4141   if (Record.size() > 16 && Record[16]) {
4142     llvm::GlobalValue::SanitizerMetadata Meta =
4143         deserializeSanitizerMetadata(Record[16]);
4144     NewGV->setSanitizerMetadata(Meta);
4145   }
4146 
4147   if (Record.size() > 17 && Record[17]) {
4148     if (auto CM = getDecodedCodeModel(Record[17]))
4149       NewGV->setCodeModel(*CM);
4150     else
4151       return error("Invalid global variable code model");
4152   }
4153 
4154   return Error::success();
4155 }
4156 
4157 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4158   if (ValueTypeCallback) {
4159     (*ValueTypeCallback)(
4160         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4161         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4162   }
4163 }
4164 
4165 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4166   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4167   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4168   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4169   // v2: [strtab_offset, strtab_size, v1]
4170   StringRef Name;
4171   std::tie(Name, Record) = readNameFromStrtab(Record);
4172 
4173   if (Record.size() < 8)
4174     return error("Invalid record");
4175   unsigned FTyID = Record[0];
4176   Type *FTy = getTypeByID(FTyID);
4177   if (!FTy)
4178     return error("Invalid record");
4179   if (isa<PointerType>(FTy)) {
4180     FTyID = getContainedTypeID(FTyID, 0);
4181     FTy = getTypeByID(FTyID);
4182     if (!FTy)
4183       return error("Missing element type for old-style function");
4184   }
4185 
4186   if (!isa<FunctionType>(FTy))
4187     return error("Invalid type for value");
4188   auto CC = static_cast<CallingConv::ID>(Record[1]);
4189   if (CC & ~CallingConv::MaxID)
4190     return error("Invalid calling convention ID");
4191 
4192   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4193   if (Record.size() > 16)
4194     AddrSpace = Record[16];
4195 
4196   Function *Func =
4197       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4198                        AddrSpace, Name, TheModule);
4199 
4200   assert(Func->getFunctionType() == FTy &&
4201          "Incorrect fully specified type provided for function");
4202   FunctionTypeIDs[Func] = FTyID;
4203 
4204   Func->setCallingConv(CC);
4205   bool isProto = Record[2];
4206   uint64_t RawLinkage = Record[3];
4207   Func->setLinkage(getDecodedLinkage(RawLinkage));
4208   Func->setAttributes(getAttributes(Record[4]));
4209   callValueTypeCallback(Func, FTyID);
4210 
4211   // Upgrade any old-style byval or sret without a type by propagating the
4212   // argument's pointee type. There should be no opaque pointers where the byval
4213   // type is implicit.
4214   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4215     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4216                                      Attribute::InAlloca}) {
4217       if (!Func->hasParamAttribute(i, Kind))
4218         continue;
4219 
4220       if (Func->getParamAttribute(i, Kind).getValueAsType())
4221         continue;
4222 
4223       Func->removeParamAttr(i, Kind);
4224 
4225       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4226       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4227       if (!PtrEltTy)
4228         return error("Missing param element type for attribute upgrade");
4229 
4230       Attribute NewAttr;
4231       switch (Kind) {
4232       case Attribute::ByVal:
4233         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4234         break;
4235       case Attribute::StructRet:
4236         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4237         break;
4238       case Attribute::InAlloca:
4239         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4240         break;
4241       default:
4242         llvm_unreachable("not an upgraded type attribute");
4243       }
4244 
4245       Func->addParamAttr(i, NewAttr);
4246     }
4247   }
4248 
4249   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4250       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4251     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4252     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4253     if (!ByValTy)
4254       return error("Missing param element type for x86_intrcc upgrade");
4255     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4256     Func->addParamAttr(0, NewAttr);
4257   }
4258 
4259   MaybeAlign Alignment;
4260   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4261     return Err;
4262   if (Alignment)
4263     Func->setAlignment(*Alignment);
4264   if (Record[6]) {
4265     if (Record[6] - 1 >= SectionTable.size())
4266       return error("Invalid ID");
4267     Func->setSection(SectionTable[Record[6] - 1]);
4268   }
4269   // Local linkage must have default visibility.
4270   // auto-upgrade `hidden` and `protected` for old bitcode.
4271   if (!Func->hasLocalLinkage())
4272     Func->setVisibility(getDecodedVisibility(Record[7]));
4273   if (Record.size() > 8 && Record[8]) {
4274     if (Record[8] - 1 >= GCTable.size())
4275       return error("Invalid ID");
4276     Func->setGC(GCTable[Record[8] - 1]);
4277   }
4278   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4279   if (Record.size() > 9)
4280     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4281   Func->setUnnamedAddr(UnnamedAddr);
4282 
4283   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4284   if (Record.size() > 10)
4285     OperandInfo.Prologue = Record[10];
4286 
4287   if (Record.size() > 11) {
4288     // A GlobalValue with local linkage cannot have a DLL storage class.
4289     if (!Func->hasLocalLinkage()) {
4290       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4291     }
4292   } else {
4293     upgradeDLLImportExportLinkage(Func, RawLinkage);
4294   }
4295 
4296   if (Record.size() > 12) {
4297     if (unsigned ComdatID = Record[12]) {
4298       if (ComdatID > ComdatList.size())
4299         return error("Invalid function comdat ID");
4300       Func->setComdat(ComdatList[ComdatID - 1]);
4301     }
4302   } else if (hasImplicitComdat(RawLinkage)) {
4303     ImplicitComdatObjects.insert(Func);
4304   }
4305 
4306   if (Record.size() > 13)
4307     OperandInfo.Prefix = Record[13];
4308 
4309   if (Record.size() > 14)
4310     OperandInfo.PersonalityFn = Record[14];
4311 
4312   if (Record.size() > 15) {
4313     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4314   }
4315   inferDSOLocal(Func);
4316 
4317   // Record[16] is the address space number.
4318 
4319   // Check whether we have enough values to read a partition name. Also make
4320   // sure Strtab has enough values.
4321   if (Record.size() > 18 && Strtab.data() &&
4322       Record[17] + Record[18] <= Strtab.size()) {
4323     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4324   }
4325 
4326   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4327 
4328   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4329     FunctionOperands.push_back(OperandInfo);
4330 
4331   // If this is a function with a body, remember the prototype we are
4332   // creating now, so that we can match up the body with them later.
4333   if (!isProto) {
4334     Func->setIsMaterializable(true);
4335     FunctionsWithBodies.push_back(Func);
4336     DeferredFunctionInfo[Func] = 0;
4337   }
4338   return Error::success();
4339 }
4340 
4341 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4342     unsigned BitCode, ArrayRef<uint64_t> Record) {
4343   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4344   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4345   // dllstorageclass, threadlocal, unnamed_addr,
4346   // preemption specifier] (name in VST)
4347   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4348   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4349   // preemption specifier] (name in VST)
4350   // v2: [strtab_offset, strtab_size, v1]
4351   StringRef Name;
4352   std::tie(Name, Record) = readNameFromStrtab(Record);
4353 
4354   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4355   if (Record.size() < (3 + (unsigned)NewRecord))
4356     return error("Invalid record");
4357   unsigned OpNum = 0;
4358   unsigned TypeID = Record[OpNum++];
4359   Type *Ty = getTypeByID(TypeID);
4360   if (!Ty)
4361     return error("Invalid record");
4362 
4363   unsigned AddrSpace;
4364   if (!NewRecord) {
4365     auto *PTy = dyn_cast<PointerType>(Ty);
4366     if (!PTy)
4367       return error("Invalid type for value");
4368     AddrSpace = PTy->getAddressSpace();
4369     TypeID = getContainedTypeID(TypeID);
4370     Ty = getTypeByID(TypeID);
4371     if (!Ty)
4372       return error("Missing element type for old-style indirect symbol");
4373   } else {
4374     AddrSpace = Record[OpNum++];
4375   }
4376 
4377   auto Val = Record[OpNum++];
4378   auto Linkage = Record[OpNum++];
4379   GlobalValue *NewGA;
4380   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4381       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4382     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4383                                 TheModule);
4384   else
4385     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4386                                 nullptr, TheModule);
4387 
4388   // Local linkage must have default visibility.
4389   // auto-upgrade `hidden` and `protected` for old bitcode.
4390   if (OpNum != Record.size()) {
4391     auto VisInd = OpNum++;
4392     if (!NewGA->hasLocalLinkage())
4393       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4394   }
4395   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4396       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4397     if (OpNum != Record.size()) {
4398       auto S = Record[OpNum++];
4399       // A GlobalValue with local linkage cannot have a DLL storage class.
4400       if (!NewGA->hasLocalLinkage())
4401         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4402     }
4403     else
4404       upgradeDLLImportExportLinkage(NewGA, Linkage);
4405     if (OpNum != Record.size())
4406       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4407     if (OpNum != Record.size())
4408       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4409   }
4410   if (OpNum != Record.size())
4411     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4412   inferDSOLocal(NewGA);
4413 
4414   // Check whether we have enough values to read a partition name.
4415   if (OpNum + 1 < Record.size()) {
4416     // Check Strtab has enough values for the partition.
4417     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4418       return error("Malformed partition, too large.");
4419     NewGA->setPartition(
4420         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4421   }
4422 
4423   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4424   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4425   return Error::success();
4426 }
4427 
4428 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4429                                  bool ShouldLazyLoadMetadata,
4430                                  ParserCallbacks Callbacks) {
4431   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4432   // has been set to true and we aren't attempting to preserve the existing
4433   // format in the bitcode (default action: load into the old debug format).
4434   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4435     TheModule->IsNewDbgInfoFormat =
4436         UseNewDbgInfoFormat &&
4437         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4438   }
4439 
4440   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4441   if (ResumeBit) {
4442     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4443       return JumpFailed;
4444   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4445     return Err;
4446 
4447   SmallVector<uint64_t, 64> Record;
4448 
4449   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4450   // finalize the datalayout before we run any of that code.
4451   bool ResolvedDataLayout = false;
4452   // In order to support importing modules with illegal data layout strings,
4453   // delay parsing the data layout string until after upgrades and overrides
4454   // have been applied, allowing to fix illegal data layout strings.
4455   // Initialize to the current module's layout string in case none is specified.
4456   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4457 
4458   auto ResolveDataLayout = [&]() -> Error {
4459     if (ResolvedDataLayout)
4460       return Error::success();
4461 
4462     // Datalayout and triple can't be parsed after this point.
4463     ResolvedDataLayout = true;
4464 
4465     // Auto-upgrade the layout string
4466     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4467         TentativeDataLayoutStr, TheModule->getTargetTriple());
4468 
4469     // Apply override
4470     if (Callbacks.DataLayout) {
4471       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4472               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4473         TentativeDataLayoutStr = *LayoutOverride;
4474     }
4475 
4476     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4477     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4478     if (!MaybeDL)
4479       return MaybeDL.takeError();
4480 
4481     TheModule->setDataLayout(MaybeDL.get());
4482     return Error::success();
4483   };
4484 
4485   // Read all the records for this module.
4486   while (true) {
4487     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4488     if (!MaybeEntry)
4489       return MaybeEntry.takeError();
4490     llvm::BitstreamEntry Entry = MaybeEntry.get();
4491 
4492     switch (Entry.Kind) {
4493     case BitstreamEntry::Error:
4494       return error("Malformed block");
4495     case BitstreamEntry::EndBlock:
4496       if (Error Err = ResolveDataLayout())
4497         return Err;
4498       return globalCleanup();
4499 
4500     case BitstreamEntry::SubBlock:
4501       switch (Entry.ID) {
4502       default:  // Skip unknown content.
4503         if (Error Err = Stream.SkipBlock())
4504           return Err;
4505         break;
4506       case bitc::BLOCKINFO_BLOCK_ID:
4507         if (Error Err = readBlockInfo())
4508           return Err;
4509         break;
4510       case bitc::PARAMATTR_BLOCK_ID:
4511         if (Error Err = parseAttributeBlock())
4512           return Err;
4513         break;
4514       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4515         if (Error Err = parseAttributeGroupBlock())
4516           return Err;
4517         break;
4518       case bitc::TYPE_BLOCK_ID_NEW:
4519         if (Error Err = parseTypeTable())
4520           return Err;
4521         break;
4522       case bitc::VALUE_SYMTAB_BLOCK_ID:
4523         if (!SeenValueSymbolTable) {
4524           // Either this is an old form VST without function index and an
4525           // associated VST forward declaration record (which would have caused
4526           // the VST to be jumped to and parsed before it was encountered
4527           // normally in the stream), or there were no function blocks to
4528           // trigger an earlier parsing of the VST.
4529           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4530           if (Error Err = parseValueSymbolTable())
4531             return Err;
4532           SeenValueSymbolTable = true;
4533         } else {
4534           // We must have had a VST forward declaration record, which caused
4535           // the parser to jump to and parse the VST earlier.
4536           assert(VSTOffset > 0);
4537           if (Error Err = Stream.SkipBlock())
4538             return Err;
4539         }
4540         break;
4541       case bitc::CONSTANTS_BLOCK_ID:
4542         if (Error Err = parseConstants())
4543           return Err;
4544         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4545           return Err;
4546         break;
4547       case bitc::METADATA_BLOCK_ID:
4548         if (ShouldLazyLoadMetadata) {
4549           if (Error Err = rememberAndSkipMetadata())
4550             return Err;
4551           break;
4552         }
4553         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4554         if (Error Err = MDLoader->parseModuleMetadata())
4555           return Err;
4556         break;
4557       case bitc::METADATA_KIND_BLOCK_ID:
4558         if (Error Err = MDLoader->parseMetadataKinds())
4559           return Err;
4560         break;
4561       case bitc::FUNCTION_BLOCK_ID:
4562         if (Error Err = ResolveDataLayout())
4563           return Err;
4564 
4565         // If this is the first function body we've seen, reverse the
4566         // FunctionsWithBodies list.
4567         if (!SeenFirstFunctionBody) {
4568           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4569           if (Error Err = globalCleanup())
4570             return Err;
4571           SeenFirstFunctionBody = true;
4572         }
4573 
4574         if (VSTOffset > 0) {
4575           // If we have a VST forward declaration record, make sure we
4576           // parse the VST now if we haven't already. It is needed to
4577           // set up the DeferredFunctionInfo vector for lazy reading.
4578           if (!SeenValueSymbolTable) {
4579             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4580               return Err;
4581             SeenValueSymbolTable = true;
4582             // Fall through so that we record the NextUnreadBit below.
4583             // This is necessary in case we have an anonymous function that
4584             // is later materialized. Since it will not have a VST entry we
4585             // need to fall back to the lazy parse to find its offset.
4586           } else {
4587             // If we have a VST forward declaration record, but have already
4588             // parsed the VST (just above, when the first function body was
4589             // encountered here), then we are resuming the parse after
4590             // materializing functions. The ResumeBit points to the
4591             // start of the last function block recorded in the
4592             // DeferredFunctionInfo map. Skip it.
4593             if (Error Err = Stream.SkipBlock())
4594               return Err;
4595             continue;
4596           }
4597         }
4598 
4599         // Support older bitcode files that did not have the function
4600         // index in the VST, nor a VST forward declaration record, as
4601         // well as anonymous functions that do not have VST entries.
4602         // Build the DeferredFunctionInfo vector on the fly.
4603         if (Error Err = rememberAndSkipFunctionBody())
4604           return Err;
4605 
4606         // Suspend parsing when we reach the function bodies. Subsequent
4607         // materialization calls will resume it when necessary. If the bitcode
4608         // file is old, the symbol table will be at the end instead and will not
4609         // have been seen yet. In this case, just finish the parse now.
4610         if (SeenValueSymbolTable) {
4611           NextUnreadBit = Stream.GetCurrentBitNo();
4612           // After the VST has been parsed, we need to make sure intrinsic name
4613           // are auto-upgraded.
4614           return globalCleanup();
4615         }
4616         break;
4617       case bitc::USELIST_BLOCK_ID:
4618         if (Error Err = parseUseLists())
4619           return Err;
4620         break;
4621       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4622         if (Error Err = parseOperandBundleTags())
4623           return Err;
4624         break;
4625       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4626         if (Error Err = parseSyncScopeNames())
4627           return Err;
4628         break;
4629       }
4630       continue;
4631 
4632     case BitstreamEntry::Record:
4633       // The interesting case.
4634       break;
4635     }
4636 
4637     // Read a record.
4638     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4639     if (!MaybeBitCode)
4640       return MaybeBitCode.takeError();
4641     switch (unsigned BitCode = MaybeBitCode.get()) {
4642     default: break;  // Default behavior, ignore unknown content.
4643     case bitc::MODULE_CODE_VERSION: {
4644       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4645       if (!VersionOrErr)
4646         return VersionOrErr.takeError();
4647       UseRelativeIDs = *VersionOrErr >= 1;
4648       break;
4649     }
4650     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4651       if (ResolvedDataLayout)
4652         return error("target triple too late in module");
4653       std::string S;
4654       if (convertToString(Record, 0, S))
4655         return error("Invalid record");
4656       TheModule->setTargetTriple(S);
4657       break;
4658     }
4659     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4660       if (ResolvedDataLayout)
4661         return error("datalayout too late in module");
4662       if (convertToString(Record, 0, TentativeDataLayoutStr))
4663         return error("Invalid record");
4664       break;
4665     }
4666     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4667       std::string S;
4668       if (convertToString(Record, 0, S))
4669         return error("Invalid record");
4670       TheModule->setModuleInlineAsm(S);
4671       break;
4672     }
4673     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4674       // Deprecated, but still needed to read old bitcode files.
4675       std::string S;
4676       if (convertToString(Record, 0, S))
4677         return error("Invalid record");
4678       // Ignore value.
4679       break;
4680     }
4681     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4682       std::string S;
4683       if (convertToString(Record, 0, S))
4684         return error("Invalid record");
4685       SectionTable.push_back(S);
4686       break;
4687     }
4688     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4689       std::string S;
4690       if (convertToString(Record, 0, S))
4691         return error("Invalid record");
4692       GCTable.push_back(S);
4693       break;
4694     }
4695     case bitc::MODULE_CODE_COMDAT:
4696       if (Error Err = parseComdatRecord(Record))
4697         return Err;
4698       break;
4699     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4700     // written by ThinLinkBitcodeWriter. See
4701     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4702     // record
4703     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4704     case bitc::MODULE_CODE_GLOBALVAR:
4705       if (Error Err = parseGlobalVarRecord(Record))
4706         return Err;
4707       break;
4708     case bitc::MODULE_CODE_FUNCTION:
4709       if (Error Err = ResolveDataLayout())
4710         return Err;
4711       if (Error Err = parseFunctionRecord(Record))
4712         return Err;
4713       break;
4714     case bitc::MODULE_CODE_IFUNC:
4715     case bitc::MODULE_CODE_ALIAS:
4716     case bitc::MODULE_CODE_ALIAS_OLD:
4717       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4718         return Err;
4719       break;
4720     /// MODULE_CODE_VSTOFFSET: [offset]
4721     case bitc::MODULE_CODE_VSTOFFSET:
4722       if (Record.empty())
4723         return error("Invalid record");
4724       // Note that we subtract 1 here because the offset is relative to one word
4725       // before the start of the identification or module block, which was
4726       // historically always the start of the regular bitcode header.
4727       VSTOffset = Record[0] - 1;
4728       break;
4729     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4730     case bitc::MODULE_CODE_SOURCE_FILENAME:
4731       SmallString<128> ValueName;
4732       if (convertToString(Record, 0, ValueName))
4733         return error("Invalid record");
4734       TheModule->setSourceFileName(ValueName);
4735       break;
4736     }
4737     Record.clear();
4738   }
4739   this->ValueTypeCallback = std::nullopt;
4740   return Error::success();
4741 }
4742 
4743 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4744                                       bool IsImporting,
4745                                       ParserCallbacks Callbacks) {
4746   TheModule = M;
4747   MetadataLoaderCallbacks MDCallbacks;
4748   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4749   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4750     return getContainedTypeID(I, J);
4751   };
4752   MDCallbacks.MDType = Callbacks.MDType;
4753   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4754   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4755 }
4756 
4757 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4758   if (!isa<PointerType>(PtrType))
4759     return error("Load/Store operand is not a pointer type");
4760   if (!PointerType::isLoadableOrStorableType(ValType))
4761     return error("Cannot load/store from pointer");
4762   return Error::success();
4763 }
4764 
4765 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4766                                              ArrayRef<unsigned> ArgTyIDs) {
4767   AttributeList Attrs = CB->getAttributes();
4768   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4769     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4770                                      Attribute::InAlloca}) {
4771       if (!Attrs.hasParamAttr(i, Kind) ||
4772           Attrs.getParamAttr(i, Kind).getValueAsType())
4773         continue;
4774 
4775       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4776       if (!PtrEltTy)
4777         return error("Missing element type for typed attribute upgrade");
4778 
4779       Attribute NewAttr;
4780       switch (Kind) {
4781       case Attribute::ByVal:
4782         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4783         break;
4784       case Attribute::StructRet:
4785         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4786         break;
4787       case Attribute::InAlloca:
4788         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4789         break;
4790       default:
4791         llvm_unreachable("not an upgraded type attribute");
4792       }
4793 
4794       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4795     }
4796   }
4797 
4798   if (CB->isInlineAsm()) {
4799     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4800     unsigned ArgNo = 0;
4801     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4802       if (!CI.hasArg())
4803         continue;
4804 
4805       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4806         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4807         if (!ElemTy)
4808           return error("Missing element type for inline asm upgrade");
4809         Attrs = Attrs.addParamAttribute(
4810             Context, ArgNo,
4811             Attribute::get(Context, Attribute::ElementType, ElemTy));
4812       }
4813 
4814       ArgNo++;
4815     }
4816   }
4817 
4818   switch (CB->getIntrinsicID()) {
4819   case Intrinsic::preserve_array_access_index:
4820   case Intrinsic::preserve_struct_access_index:
4821   case Intrinsic::aarch64_ldaxr:
4822   case Intrinsic::aarch64_ldxr:
4823   case Intrinsic::aarch64_stlxr:
4824   case Intrinsic::aarch64_stxr:
4825   case Intrinsic::arm_ldaex:
4826   case Intrinsic::arm_ldrex:
4827   case Intrinsic::arm_stlex:
4828   case Intrinsic::arm_strex: {
4829     unsigned ArgNo;
4830     switch (CB->getIntrinsicID()) {
4831     case Intrinsic::aarch64_stlxr:
4832     case Intrinsic::aarch64_stxr:
4833     case Intrinsic::arm_stlex:
4834     case Intrinsic::arm_strex:
4835       ArgNo = 1;
4836       break;
4837     default:
4838       ArgNo = 0;
4839       break;
4840     }
4841     if (!Attrs.getParamElementType(ArgNo)) {
4842       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4843       if (!ElTy)
4844         return error("Missing element type for elementtype upgrade");
4845       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4846       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4847     }
4848     break;
4849   }
4850   default:
4851     break;
4852   }
4853 
4854   CB->setAttributes(Attrs);
4855   return Error::success();
4856 }
4857 
4858 /// Lazily parse the specified function body block.
4859 Error BitcodeReader::parseFunctionBody(Function *F) {
4860   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4861     return Err;
4862 
4863   // Unexpected unresolved metadata when parsing function.
4864   if (MDLoader->hasFwdRefs())
4865     return error("Invalid function metadata: incoming forward references");
4866 
4867   InstructionList.clear();
4868   unsigned ModuleValueListSize = ValueList.size();
4869   unsigned ModuleMDLoaderSize = MDLoader->size();
4870 
4871   // Add all the function arguments to the value table.
4872   unsigned ArgNo = 0;
4873   unsigned FTyID = FunctionTypeIDs[F];
4874   for (Argument &I : F->args()) {
4875     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4876     assert(I.getType() == getTypeByID(ArgTyID) &&
4877            "Incorrect fully specified type for Function Argument");
4878     ValueList.push_back(&I, ArgTyID);
4879     ++ArgNo;
4880   }
4881   unsigned NextValueNo = ValueList.size();
4882   BasicBlock *CurBB = nullptr;
4883   unsigned CurBBNo = 0;
4884   // Block into which constant expressions from phi nodes are materialized.
4885   BasicBlock *PhiConstExprBB = nullptr;
4886   // Edge blocks for phi nodes into which constant expressions have been
4887   // expanded.
4888   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4889     ConstExprEdgeBBs;
4890 
4891   DebugLoc LastLoc;
4892   auto getLastInstruction = [&]() -> Instruction * {
4893     if (CurBB && !CurBB->empty())
4894       return &CurBB->back();
4895     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4896              !FunctionBBs[CurBBNo - 1]->empty())
4897       return &FunctionBBs[CurBBNo - 1]->back();
4898     return nullptr;
4899   };
4900 
4901   std::vector<OperandBundleDef> OperandBundles;
4902 
4903   // Read all the records.
4904   SmallVector<uint64_t, 64> Record;
4905 
4906   while (true) {
4907     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4908     if (!MaybeEntry)
4909       return MaybeEntry.takeError();
4910     llvm::BitstreamEntry Entry = MaybeEntry.get();
4911 
4912     switch (Entry.Kind) {
4913     case BitstreamEntry::Error:
4914       return error("Malformed block");
4915     case BitstreamEntry::EndBlock:
4916       goto OutOfRecordLoop;
4917 
4918     case BitstreamEntry::SubBlock:
4919       switch (Entry.ID) {
4920       default:  // Skip unknown content.
4921         if (Error Err = Stream.SkipBlock())
4922           return Err;
4923         break;
4924       case bitc::CONSTANTS_BLOCK_ID:
4925         if (Error Err = parseConstants())
4926           return Err;
4927         NextValueNo = ValueList.size();
4928         break;
4929       case bitc::VALUE_SYMTAB_BLOCK_ID:
4930         if (Error Err = parseValueSymbolTable())
4931           return Err;
4932         break;
4933       case bitc::METADATA_ATTACHMENT_ID:
4934         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4935           return Err;
4936         break;
4937       case bitc::METADATA_BLOCK_ID:
4938         assert(DeferredMetadataInfo.empty() &&
4939                "Must read all module-level metadata before function-level");
4940         if (Error Err = MDLoader->parseFunctionMetadata())
4941           return Err;
4942         break;
4943       case bitc::USELIST_BLOCK_ID:
4944         if (Error Err = parseUseLists())
4945           return Err;
4946         break;
4947       }
4948       continue;
4949 
4950     case BitstreamEntry::Record:
4951       // The interesting case.
4952       break;
4953     }
4954 
4955     // Read a record.
4956     Record.clear();
4957     Instruction *I = nullptr;
4958     unsigned ResTypeID = InvalidTypeID;
4959     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4960     if (!MaybeBitCode)
4961       return MaybeBitCode.takeError();
4962     switch (unsigned BitCode = MaybeBitCode.get()) {
4963     default: // Default behavior: reject
4964       return error("Invalid value");
4965     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4966       if (Record.empty() || Record[0] == 0)
4967         return error("Invalid record");
4968       // Create all the basic blocks for the function.
4969       FunctionBBs.resize(Record[0]);
4970 
4971       // See if anything took the address of blocks in this function.
4972       auto BBFRI = BasicBlockFwdRefs.find(F);
4973       if (BBFRI == BasicBlockFwdRefs.end()) {
4974         for (BasicBlock *&BB : FunctionBBs)
4975           BB = BasicBlock::Create(Context, "", F);
4976       } else {
4977         auto &BBRefs = BBFRI->second;
4978         // Check for invalid basic block references.
4979         if (BBRefs.size() > FunctionBBs.size())
4980           return error("Invalid ID");
4981         assert(!BBRefs.empty() && "Unexpected empty array");
4982         assert(!BBRefs.front() && "Invalid reference to entry block");
4983         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4984              ++I)
4985           if (I < RE && BBRefs[I]) {
4986             BBRefs[I]->insertInto(F);
4987             FunctionBBs[I] = BBRefs[I];
4988           } else {
4989             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4990           }
4991 
4992         // Erase from the table.
4993         BasicBlockFwdRefs.erase(BBFRI);
4994       }
4995 
4996       CurBB = FunctionBBs[0];
4997       continue;
4998     }
4999 
5000     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
5001       // The record should not be emitted if it's an empty list.
5002       if (Record.empty())
5003         return error("Invalid record");
5004       // When we have the RARE case of a BlockAddress Constant that is not
5005       // scoped to the Function it refers to, we need to conservatively
5006       // materialize the referred to Function, regardless of whether or not
5007       // that Function will ultimately be linked, otherwise users of
5008       // BitcodeReader might start splicing out Function bodies such that we
5009       // might no longer be able to materialize the BlockAddress since the
5010       // BasicBlock (and entire body of the Function) the BlockAddress refers
5011       // to may have been moved. In the case that the user of BitcodeReader
5012       // decides ultimately not to link the Function body, materializing here
5013       // could be considered wasteful, but it's better than a deserialization
5014       // failure as described. This keeps BitcodeReader unaware of complex
5015       // linkage policy decisions such as those use by LTO, leaving those
5016       // decisions "one layer up."
5017       for (uint64_t ValID : Record)
5018         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
5019           BackwardRefFunctions.push_back(F);
5020         else
5021           return error("Invalid record");
5022 
5023       continue;
5024 
5025     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
5026       // This record indicates that the last instruction is at the same
5027       // location as the previous instruction with a location.
5028       I = getLastInstruction();
5029 
5030       if (!I)
5031         return error("Invalid record");
5032       I->setDebugLoc(LastLoc);
5033       I = nullptr;
5034       continue;
5035 
5036     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5037       I = getLastInstruction();
5038       if (!I || Record.size() < 4)
5039         return error("Invalid record");
5040 
5041       unsigned Line = Record[0], Col = Record[1];
5042       unsigned ScopeID = Record[2], IAID = Record[3];
5043       bool isImplicitCode = Record.size() == 5 && Record[4];
5044 
5045       MDNode *Scope = nullptr, *IA = nullptr;
5046       if (ScopeID) {
5047         Scope = dyn_cast_or_null<MDNode>(
5048             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5049         if (!Scope)
5050           return error("Invalid record");
5051       }
5052       if (IAID) {
5053         IA = dyn_cast_or_null<MDNode>(
5054             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5055         if (!IA)
5056           return error("Invalid record");
5057       }
5058       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5059                                 isImplicitCode);
5060       I->setDebugLoc(LastLoc);
5061       I = nullptr;
5062       continue;
5063     }
5064     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5065       unsigned OpNum = 0;
5066       Value *LHS;
5067       unsigned TypeID;
5068       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5069           OpNum+1 > Record.size())
5070         return error("Invalid record");
5071 
5072       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5073       if (Opc == -1)
5074         return error("Invalid record");
5075       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5076       ResTypeID = TypeID;
5077       InstructionList.push_back(I);
5078       if (OpNum < Record.size()) {
5079         if (isa<FPMathOperator>(I)) {
5080           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5081           if (FMF.any())
5082             I->setFastMathFlags(FMF);
5083         }
5084       }
5085       break;
5086     }
5087     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5088       unsigned OpNum = 0;
5089       Value *LHS, *RHS;
5090       unsigned TypeID;
5091       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5092           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5093                    CurBB) ||
5094           OpNum+1 > Record.size())
5095         return error("Invalid record");
5096 
5097       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5098       if (Opc == -1)
5099         return error("Invalid record");
5100       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5101       ResTypeID = TypeID;
5102       InstructionList.push_back(I);
5103       if (OpNum < Record.size()) {
5104         if (Opc == Instruction::Add ||
5105             Opc == Instruction::Sub ||
5106             Opc == Instruction::Mul ||
5107             Opc == Instruction::Shl) {
5108           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5109             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5110           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5111             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5112         } else if (Opc == Instruction::SDiv ||
5113                    Opc == Instruction::UDiv ||
5114                    Opc == Instruction::LShr ||
5115                    Opc == Instruction::AShr) {
5116           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5117             cast<BinaryOperator>(I)->setIsExact(true);
5118         } else if (Opc == Instruction::Or) {
5119           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5120             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5121         } else if (isa<FPMathOperator>(I)) {
5122           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5123           if (FMF.any())
5124             I->setFastMathFlags(FMF);
5125         }
5126       }
5127       break;
5128     }
5129     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5130       unsigned OpNum = 0;
5131       Value *Op;
5132       unsigned OpTypeID;
5133       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5134           OpNum + 1 > Record.size())
5135         return error("Invalid record");
5136 
5137       ResTypeID = Record[OpNum++];
5138       Type *ResTy = getTypeByID(ResTypeID);
5139       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5140 
5141       if (Opc == -1 || !ResTy)
5142         return error("Invalid record");
5143       Instruction *Temp = nullptr;
5144       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5145         if (Temp) {
5146           InstructionList.push_back(Temp);
5147           assert(CurBB && "No current BB?");
5148           Temp->insertInto(CurBB, CurBB->end());
5149         }
5150       } else {
5151         auto CastOp = (Instruction::CastOps)Opc;
5152         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5153           return error("Invalid cast");
5154         I = CastInst::Create(CastOp, Op, ResTy);
5155       }
5156 
5157       if (OpNum < Record.size()) {
5158         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5159           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5160             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5161         } else if (Opc == Instruction::Trunc) {
5162           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5163             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5164           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5165             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5166         }
5167       }
5168 
5169       InstructionList.push_back(I);
5170       break;
5171     }
5172     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5173     case bitc::FUNC_CODE_INST_GEP_OLD:
5174     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5175       unsigned OpNum = 0;
5176 
5177       unsigned TyID;
5178       Type *Ty;
5179       GEPNoWrapFlags NW;
5180 
5181       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5182         NW = toGEPNoWrapFlags(Record[OpNum++]);
5183         TyID = Record[OpNum++];
5184         Ty = getTypeByID(TyID);
5185       } else {
5186         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5187           NW = GEPNoWrapFlags::inBounds();
5188         TyID = InvalidTypeID;
5189         Ty = nullptr;
5190       }
5191 
5192       Value *BasePtr;
5193       unsigned BasePtrTypeID;
5194       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5195                            CurBB))
5196         return error("Invalid record");
5197 
5198       if (!Ty) {
5199         TyID = getContainedTypeID(BasePtrTypeID);
5200         if (BasePtr->getType()->isVectorTy())
5201           TyID = getContainedTypeID(TyID);
5202         Ty = getTypeByID(TyID);
5203       }
5204 
5205       SmallVector<Value*, 16> GEPIdx;
5206       while (OpNum != Record.size()) {
5207         Value *Op;
5208         unsigned OpTypeID;
5209         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5210           return error("Invalid record");
5211         GEPIdx.push_back(Op);
5212       }
5213 
5214       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5215       I = GEP;
5216 
5217       ResTypeID = TyID;
5218       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5219         auto GTI = std::next(gep_type_begin(I));
5220         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5221           unsigned SubType = 0;
5222           if (GTI.isStruct()) {
5223             ConstantInt *IdxC =
5224                 Idx->getType()->isVectorTy()
5225                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5226                     : cast<ConstantInt>(Idx);
5227             SubType = IdxC->getZExtValue();
5228           }
5229           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5230           ++GTI;
5231         }
5232       }
5233 
5234       // At this point ResTypeID is the result element type. We need a pointer
5235       // or vector of pointer to it.
5236       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5237       if (I->getType()->isVectorTy())
5238         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5239 
5240       InstructionList.push_back(I);
5241       GEP->setNoWrapFlags(NW);
5242       break;
5243     }
5244 
5245     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5246                                        // EXTRACTVAL: [opty, opval, n x indices]
5247       unsigned OpNum = 0;
5248       Value *Agg;
5249       unsigned AggTypeID;
5250       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5251         return error("Invalid record");
5252       Type *Ty = Agg->getType();
5253 
5254       unsigned RecSize = Record.size();
5255       if (OpNum == RecSize)
5256         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5257 
5258       SmallVector<unsigned, 4> EXTRACTVALIdx;
5259       ResTypeID = AggTypeID;
5260       for (; OpNum != RecSize; ++OpNum) {
5261         bool IsArray = Ty->isArrayTy();
5262         bool IsStruct = Ty->isStructTy();
5263         uint64_t Index = Record[OpNum];
5264 
5265         if (!IsStruct && !IsArray)
5266           return error("EXTRACTVAL: Invalid type");
5267         if ((unsigned)Index != Index)
5268           return error("Invalid value");
5269         if (IsStruct && Index >= Ty->getStructNumElements())
5270           return error("EXTRACTVAL: Invalid struct index");
5271         if (IsArray && Index >= Ty->getArrayNumElements())
5272           return error("EXTRACTVAL: Invalid array index");
5273         EXTRACTVALIdx.push_back((unsigned)Index);
5274 
5275         if (IsStruct) {
5276           Ty = Ty->getStructElementType(Index);
5277           ResTypeID = getContainedTypeID(ResTypeID, Index);
5278         } else {
5279           Ty = Ty->getArrayElementType();
5280           ResTypeID = getContainedTypeID(ResTypeID);
5281         }
5282       }
5283 
5284       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5285       InstructionList.push_back(I);
5286       break;
5287     }
5288 
5289     case bitc::FUNC_CODE_INST_INSERTVAL: {
5290                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5291       unsigned OpNum = 0;
5292       Value *Agg;
5293       unsigned AggTypeID;
5294       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5295         return error("Invalid record");
5296       Value *Val;
5297       unsigned ValTypeID;
5298       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5299         return error("Invalid record");
5300 
5301       unsigned RecSize = Record.size();
5302       if (OpNum == RecSize)
5303         return error("INSERTVAL: Invalid instruction with 0 indices");
5304 
5305       SmallVector<unsigned, 4> INSERTVALIdx;
5306       Type *CurTy = Agg->getType();
5307       for (; OpNum != RecSize; ++OpNum) {
5308         bool IsArray = CurTy->isArrayTy();
5309         bool IsStruct = CurTy->isStructTy();
5310         uint64_t Index = Record[OpNum];
5311 
5312         if (!IsStruct && !IsArray)
5313           return error("INSERTVAL: Invalid type");
5314         if ((unsigned)Index != Index)
5315           return error("Invalid value");
5316         if (IsStruct && Index >= CurTy->getStructNumElements())
5317           return error("INSERTVAL: Invalid struct index");
5318         if (IsArray && Index >= CurTy->getArrayNumElements())
5319           return error("INSERTVAL: Invalid array index");
5320 
5321         INSERTVALIdx.push_back((unsigned)Index);
5322         if (IsStruct)
5323           CurTy = CurTy->getStructElementType(Index);
5324         else
5325           CurTy = CurTy->getArrayElementType();
5326       }
5327 
5328       if (CurTy != Val->getType())
5329         return error("Inserted value type doesn't match aggregate type");
5330 
5331       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5332       ResTypeID = AggTypeID;
5333       InstructionList.push_back(I);
5334       break;
5335     }
5336 
5337     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5338       // obsolete form of select
5339       // handles select i1 ... in old bitcode
5340       unsigned OpNum = 0;
5341       Value *TrueVal, *FalseVal, *Cond;
5342       unsigned TypeID;
5343       Type *CondType = Type::getInt1Ty(Context);
5344       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5345                            CurBB) ||
5346           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5347                    FalseVal, CurBB) ||
5348           popValue(Record, OpNum, NextValueNo, CondType,
5349                    getVirtualTypeID(CondType), Cond, CurBB))
5350         return error("Invalid record");
5351 
5352       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5353       ResTypeID = TypeID;
5354       InstructionList.push_back(I);
5355       break;
5356     }
5357 
5358     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5359       // new form of select
5360       // handles select i1 or select [N x i1]
5361       unsigned OpNum = 0;
5362       Value *TrueVal, *FalseVal, *Cond;
5363       unsigned ValTypeID, CondTypeID;
5364       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5365                            CurBB) ||
5366           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5367                    FalseVal, CurBB) ||
5368           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5369         return error("Invalid record");
5370 
5371       // select condition can be either i1 or [N x i1]
5372       if (VectorType* vector_type =
5373           dyn_cast<VectorType>(Cond->getType())) {
5374         // expect <n x i1>
5375         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5376           return error("Invalid type for value");
5377       } else {
5378         // expect i1
5379         if (Cond->getType() != Type::getInt1Ty(Context))
5380           return error("Invalid type for value");
5381       }
5382 
5383       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5384       ResTypeID = ValTypeID;
5385       InstructionList.push_back(I);
5386       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5387         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5388         if (FMF.any())
5389           I->setFastMathFlags(FMF);
5390       }
5391       break;
5392     }
5393 
5394     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5395       unsigned OpNum = 0;
5396       Value *Vec, *Idx;
5397       unsigned VecTypeID, IdxTypeID;
5398       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5399           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5400         return error("Invalid record");
5401       if (!Vec->getType()->isVectorTy())
5402         return error("Invalid type for value");
5403       I = ExtractElementInst::Create(Vec, Idx);
5404       ResTypeID = getContainedTypeID(VecTypeID);
5405       InstructionList.push_back(I);
5406       break;
5407     }
5408 
5409     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5410       unsigned OpNum = 0;
5411       Value *Vec, *Elt, *Idx;
5412       unsigned VecTypeID, IdxTypeID;
5413       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5414         return error("Invalid record");
5415       if (!Vec->getType()->isVectorTy())
5416         return error("Invalid type for value");
5417       if (popValue(Record, OpNum, NextValueNo,
5418                    cast<VectorType>(Vec->getType())->getElementType(),
5419                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5420           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5421         return error("Invalid record");
5422       I = InsertElementInst::Create(Vec, Elt, Idx);
5423       ResTypeID = VecTypeID;
5424       InstructionList.push_back(I);
5425       break;
5426     }
5427 
5428     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5429       unsigned OpNum = 0;
5430       Value *Vec1, *Vec2, *Mask;
5431       unsigned Vec1TypeID;
5432       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5433                            CurBB) ||
5434           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5435                    Vec2, CurBB))
5436         return error("Invalid record");
5437 
5438       unsigned MaskTypeID;
5439       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5440         return error("Invalid record");
5441       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5442         return error("Invalid type for value");
5443 
5444       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5445       ResTypeID =
5446           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5447       InstructionList.push_back(I);
5448       break;
5449     }
5450 
5451     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5452       // Old form of ICmp/FCmp returning bool
5453       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5454       // both legal on vectors but had different behaviour.
5455     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5456       // FCmp/ICmp returning bool or vector of bool
5457 
5458       unsigned OpNum = 0;
5459       Value *LHS, *RHS;
5460       unsigned LHSTypeID;
5461       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5462           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5463                    CurBB))
5464         return error("Invalid record");
5465 
5466       if (OpNum >= Record.size())
5467         return error(
5468             "Invalid record: operand number exceeded available operands");
5469 
5470       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5471       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5472       FastMathFlags FMF;
5473       if (IsFP && Record.size() > OpNum+1)
5474         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5475 
5476       if (IsFP) {
5477         if (!CmpInst::isFPPredicate(PredVal))
5478           return error("Invalid fcmp predicate");
5479         I = new FCmpInst(PredVal, LHS, RHS);
5480       } else {
5481         if (!CmpInst::isIntPredicate(PredVal))
5482           return error("Invalid icmp predicate");
5483         I = new ICmpInst(PredVal, LHS, RHS);
5484         if (Record.size() > OpNum + 1 &&
5485             (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN)))
5486           cast<ICmpInst>(I)->setSameSign();
5487       }
5488 
5489       if (OpNum + 1 != Record.size())
5490         return error("Invalid record");
5491 
5492       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5493       if (LHS->getType()->isVectorTy())
5494         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5495 
5496       if (FMF.any())
5497         I->setFastMathFlags(FMF);
5498       InstructionList.push_back(I);
5499       break;
5500     }
5501 
5502     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5503       {
5504         unsigned Size = Record.size();
5505         if (Size == 0) {
5506           I = ReturnInst::Create(Context);
5507           InstructionList.push_back(I);
5508           break;
5509         }
5510 
5511         unsigned OpNum = 0;
5512         Value *Op = nullptr;
5513         unsigned OpTypeID;
5514         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5515           return error("Invalid record");
5516         if (OpNum != Record.size())
5517           return error("Invalid record");
5518 
5519         I = ReturnInst::Create(Context, Op);
5520         InstructionList.push_back(I);
5521         break;
5522       }
5523     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5524       if (Record.size() != 1 && Record.size() != 3)
5525         return error("Invalid record");
5526       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5527       if (!TrueDest)
5528         return error("Invalid record");
5529 
5530       if (Record.size() == 1) {
5531         I = BranchInst::Create(TrueDest);
5532         InstructionList.push_back(I);
5533       }
5534       else {
5535         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5536         Type *CondType = Type::getInt1Ty(Context);
5537         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5538                                getVirtualTypeID(CondType), CurBB);
5539         if (!FalseDest || !Cond)
5540           return error("Invalid record");
5541         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5542         InstructionList.push_back(I);
5543       }
5544       break;
5545     }
5546     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5547       if (Record.size() != 1 && Record.size() != 2)
5548         return error("Invalid record");
5549       unsigned Idx = 0;
5550       Type *TokenTy = Type::getTokenTy(Context);
5551       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5552                                    getVirtualTypeID(TokenTy), CurBB);
5553       if (!CleanupPad)
5554         return error("Invalid record");
5555       BasicBlock *UnwindDest = nullptr;
5556       if (Record.size() == 2) {
5557         UnwindDest = getBasicBlock(Record[Idx++]);
5558         if (!UnwindDest)
5559           return error("Invalid record");
5560       }
5561 
5562       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5563       InstructionList.push_back(I);
5564       break;
5565     }
5566     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5567       if (Record.size() != 2)
5568         return error("Invalid record");
5569       unsigned Idx = 0;
5570       Type *TokenTy = Type::getTokenTy(Context);
5571       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5572                                  getVirtualTypeID(TokenTy), CurBB);
5573       if (!CatchPad)
5574         return error("Invalid record");
5575       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5576       if (!BB)
5577         return error("Invalid record");
5578 
5579       I = CatchReturnInst::Create(CatchPad, BB);
5580       InstructionList.push_back(I);
5581       break;
5582     }
5583     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5584       // We must have, at minimum, the outer scope and the number of arguments.
5585       if (Record.size() < 2)
5586         return error("Invalid record");
5587 
5588       unsigned Idx = 0;
5589 
5590       Type *TokenTy = Type::getTokenTy(Context);
5591       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5592                                   getVirtualTypeID(TokenTy), CurBB);
5593       if (!ParentPad)
5594         return error("Invalid record");
5595 
5596       unsigned NumHandlers = Record[Idx++];
5597 
5598       SmallVector<BasicBlock *, 2> Handlers;
5599       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5600         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5601         if (!BB)
5602           return error("Invalid record");
5603         Handlers.push_back(BB);
5604       }
5605 
5606       BasicBlock *UnwindDest = nullptr;
5607       if (Idx + 1 == Record.size()) {
5608         UnwindDest = getBasicBlock(Record[Idx++]);
5609         if (!UnwindDest)
5610           return error("Invalid record");
5611       }
5612 
5613       if (Record.size() != Idx)
5614         return error("Invalid record");
5615 
5616       auto *CatchSwitch =
5617           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5618       for (BasicBlock *Handler : Handlers)
5619         CatchSwitch->addHandler(Handler);
5620       I = CatchSwitch;
5621       ResTypeID = getVirtualTypeID(I->getType());
5622       InstructionList.push_back(I);
5623       break;
5624     }
5625     case bitc::FUNC_CODE_INST_CATCHPAD:
5626     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5627       // We must have, at minimum, the outer scope and the number of arguments.
5628       if (Record.size() < 2)
5629         return error("Invalid record");
5630 
5631       unsigned Idx = 0;
5632 
5633       Type *TokenTy = Type::getTokenTy(Context);
5634       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5635                                   getVirtualTypeID(TokenTy), CurBB);
5636       if (!ParentPad)
5637         return error("Invald record");
5638 
5639       unsigned NumArgOperands = Record[Idx++];
5640 
5641       SmallVector<Value *, 2> Args;
5642       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5643         Value *Val;
5644         unsigned ValTypeID;
5645         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5646           return error("Invalid record");
5647         Args.push_back(Val);
5648       }
5649 
5650       if (Record.size() != Idx)
5651         return error("Invalid record");
5652 
5653       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5654         I = CleanupPadInst::Create(ParentPad, Args);
5655       else
5656         I = CatchPadInst::Create(ParentPad, Args);
5657       ResTypeID = getVirtualTypeID(I->getType());
5658       InstructionList.push_back(I);
5659       break;
5660     }
5661     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5662       // Check magic
5663       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5664         // "New" SwitchInst format with case ranges. The changes to write this
5665         // format were reverted but we still recognize bitcode that uses it.
5666         // Hopefully someday we will have support for case ranges and can use
5667         // this format again.
5668 
5669         unsigned OpTyID = Record[1];
5670         Type *OpTy = getTypeByID(OpTyID);
5671         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5672 
5673         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5674         BasicBlock *Default = getBasicBlock(Record[3]);
5675         if (!OpTy || !Cond || !Default)
5676           return error("Invalid record");
5677 
5678         unsigned NumCases = Record[4];
5679 
5680         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5681         InstructionList.push_back(SI);
5682 
5683         unsigned CurIdx = 5;
5684         for (unsigned i = 0; i != NumCases; ++i) {
5685           SmallVector<ConstantInt*, 1> CaseVals;
5686           unsigned NumItems = Record[CurIdx++];
5687           for (unsigned ci = 0; ci != NumItems; ++ci) {
5688             bool isSingleNumber = Record[CurIdx++];
5689 
5690             APInt Low;
5691             unsigned ActiveWords = 1;
5692             if (ValueBitWidth > 64)
5693               ActiveWords = Record[CurIdx++];
5694             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5695                                 ValueBitWidth);
5696             CurIdx += ActiveWords;
5697 
5698             if (!isSingleNumber) {
5699               ActiveWords = 1;
5700               if (ValueBitWidth > 64)
5701                 ActiveWords = Record[CurIdx++];
5702               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5703                                          ValueBitWidth);
5704               CurIdx += ActiveWords;
5705 
5706               // FIXME: It is not clear whether values in the range should be
5707               // compared as signed or unsigned values. The partially
5708               // implemented changes that used this format in the past used
5709               // unsigned comparisons.
5710               for ( ; Low.ule(High); ++Low)
5711                 CaseVals.push_back(ConstantInt::get(Context, Low));
5712             } else
5713               CaseVals.push_back(ConstantInt::get(Context, Low));
5714           }
5715           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5716           for (ConstantInt *Cst : CaseVals)
5717             SI->addCase(Cst, DestBB);
5718         }
5719         I = SI;
5720         break;
5721       }
5722 
5723       // Old SwitchInst format without case ranges.
5724 
5725       if (Record.size() < 3 || (Record.size() & 1) == 0)
5726         return error("Invalid record");
5727       unsigned OpTyID = Record[0];
5728       Type *OpTy = getTypeByID(OpTyID);
5729       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5730       BasicBlock *Default = getBasicBlock(Record[2]);
5731       if (!OpTy || !Cond || !Default)
5732         return error("Invalid record");
5733       unsigned NumCases = (Record.size()-3)/2;
5734       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5735       InstructionList.push_back(SI);
5736       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5737         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5738             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5739         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5740         if (!CaseVal || !DestBB) {
5741           delete SI;
5742           return error("Invalid record");
5743         }
5744         SI->addCase(CaseVal, DestBB);
5745       }
5746       I = SI;
5747       break;
5748     }
5749     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5750       if (Record.size() < 2)
5751         return error("Invalid record");
5752       unsigned OpTyID = Record[0];
5753       Type *OpTy = getTypeByID(OpTyID);
5754       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5755       if (!OpTy || !Address)
5756         return error("Invalid record");
5757       unsigned NumDests = Record.size()-2;
5758       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5759       InstructionList.push_back(IBI);
5760       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5761         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5762           IBI->addDestination(DestBB);
5763         } else {
5764           delete IBI;
5765           return error("Invalid record");
5766         }
5767       }
5768       I = IBI;
5769       break;
5770     }
5771 
5772     case bitc::FUNC_CODE_INST_INVOKE: {
5773       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5774       if (Record.size() < 4)
5775         return error("Invalid record");
5776       unsigned OpNum = 0;
5777       AttributeList PAL = getAttributes(Record[OpNum++]);
5778       unsigned CCInfo = Record[OpNum++];
5779       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5780       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5781 
5782       unsigned FTyID = InvalidTypeID;
5783       FunctionType *FTy = nullptr;
5784       if ((CCInfo >> 13) & 1) {
5785         FTyID = Record[OpNum++];
5786         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5787         if (!FTy)
5788           return error("Explicit invoke type is not a function type");
5789       }
5790 
5791       Value *Callee;
5792       unsigned CalleeTypeID;
5793       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5794                            CurBB))
5795         return error("Invalid record");
5796 
5797       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5798       if (!CalleeTy)
5799         return error("Callee is not a pointer");
5800       if (!FTy) {
5801         FTyID = getContainedTypeID(CalleeTypeID);
5802         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5803         if (!FTy)
5804           return error("Callee is not of pointer to function type");
5805       }
5806       if (Record.size() < FTy->getNumParams() + OpNum)
5807         return error("Insufficient operands to call");
5808 
5809       SmallVector<Value*, 16> Ops;
5810       SmallVector<unsigned, 16> ArgTyIDs;
5811       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5812         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5813         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5814                                ArgTyID, CurBB));
5815         ArgTyIDs.push_back(ArgTyID);
5816         if (!Ops.back())
5817           return error("Invalid record");
5818       }
5819 
5820       if (!FTy->isVarArg()) {
5821         if (Record.size() != OpNum)
5822           return error("Invalid record");
5823       } else {
5824         // Read type/value pairs for varargs params.
5825         while (OpNum != Record.size()) {
5826           Value *Op;
5827           unsigned OpTypeID;
5828           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5829             return error("Invalid record");
5830           Ops.push_back(Op);
5831           ArgTyIDs.push_back(OpTypeID);
5832         }
5833       }
5834 
5835       // Upgrade the bundles if needed.
5836       if (!OperandBundles.empty())
5837         UpgradeOperandBundles(OperandBundles);
5838 
5839       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5840                              OperandBundles);
5841       ResTypeID = getContainedTypeID(FTyID);
5842       OperandBundles.clear();
5843       InstructionList.push_back(I);
5844       cast<InvokeInst>(I)->setCallingConv(
5845           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5846       cast<InvokeInst>(I)->setAttributes(PAL);
5847       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5848         I->deleteValue();
5849         return Err;
5850       }
5851 
5852       break;
5853     }
5854     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5855       unsigned Idx = 0;
5856       Value *Val = nullptr;
5857       unsigned ValTypeID;
5858       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5859         return error("Invalid record");
5860       I = ResumeInst::Create(Val);
5861       InstructionList.push_back(I);
5862       break;
5863     }
5864     case bitc::FUNC_CODE_INST_CALLBR: {
5865       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5866       unsigned OpNum = 0;
5867       AttributeList PAL = getAttributes(Record[OpNum++]);
5868       unsigned CCInfo = Record[OpNum++];
5869 
5870       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5871       unsigned NumIndirectDests = Record[OpNum++];
5872       SmallVector<BasicBlock *, 16> IndirectDests;
5873       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5874         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5875 
5876       unsigned FTyID = InvalidTypeID;
5877       FunctionType *FTy = nullptr;
5878       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5879         FTyID = Record[OpNum++];
5880         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5881         if (!FTy)
5882           return error("Explicit call type is not a function type");
5883       }
5884 
5885       Value *Callee;
5886       unsigned CalleeTypeID;
5887       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5888                            CurBB))
5889         return error("Invalid record");
5890 
5891       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5892       if (!OpTy)
5893         return error("Callee is not a pointer type");
5894       if (!FTy) {
5895         FTyID = getContainedTypeID(CalleeTypeID);
5896         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5897         if (!FTy)
5898           return error("Callee is not of pointer to function type");
5899       }
5900       if (Record.size() < FTy->getNumParams() + OpNum)
5901         return error("Insufficient operands to call");
5902 
5903       SmallVector<Value*, 16> Args;
5904       SmallVector<unsigned, 16> ArgTyIDs;
5905       // Read the fixed params.
5906       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5907         Value *Arg;
5908         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5909         if (FTy->getParamType(i)->isLabelTy())
5910           Arg = getBasicBlock(Record[OpNum]);
5911         else
5912           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5913                          ArgTyID, CurBB);
5914         if (!Arg)
5915           return error("Invalid record");
5916         Args.push_back(Arg);
5917         ArgTyIDs.push_back(ArgTyID);
5918       }
5919 
5920       // Read type/value pairs for varargs params.
5921       if (!FTy->isVarArg()) {
5922         if (OpNum != Record.size())
5923           return error("Invalid record");
5924       } else {
5925         while (OpNum != Record.size()) {
5926           Value *Op;
5927           unsigned OpTypeID;
5928           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5929             return error("Invalid record");
5930           Args.push_back(Op);
5931           ArgTyIDs.push_back(OpTypeID);
5932         }
5933       }
5934 
5935       // Upgrade the bundles if needed.
5936       if (!OperandBundles.empty())
5937         UpgradeOperandBundles(OperandBundles);
5938 
5939       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5940         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5941         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5942           return CI.Type == InlineAsm::isLabel;
5943         };
5944         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5945           // Upgrade explicit blockaddress arguments to label constraints.
5946           // Verify that the last arguments are blockaddress arguments that
5947           // match the indirect destinations. Clang always generates callbr
5948           // in this form. We could support reordering with more effort.
5949           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5950           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5951             unsigned LabelNo = ArgNo - FirstBlockArg;
5952             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5953             if (!BA || BA->getFunction() != F ||
5954                 LabelNo > IndirectDests.size() ||
5955                 BA->getBasicBlock() != IndirectDests[LabelNo])
5956               return error("callbr argument does not match indirect dest");
5957           }
5958 
5959           // Remove blockaddress arguments.
5960           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5961           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5962 
5963           // Recreate the function type with less arguments.
5964           SmallVector<Type *> ArgTys;
5965           for (Value *Arg : Args)
5966             ArgTys.push_back(Arg->getType());
5967           FTy =
5968               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5969 
5970           // Update constraint string to use label constraints.
5971           std::string Constraints = IA->getConstraintString();
5972           unsigned ArgNo = 0;
5973           size_t Pos = 0;
5974           for (const auto &CI : ConstraintInfo) {
5975             if (CI.hasArg()) {
5976               if (ArgNo >= FirstBlockArg)
5977                 Constraints.insert(Pos, "!");
5978               ++ArgNo;
5979             }
5980 
5981             // Go to next constraint in string.
5982             Pos = Constraints.find(',', Pos);
5983             if (Pos == std::string::npos)
5984               break;
5985             ++Pos;
5986           }
5987 
5988           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5989                                   IA->hasSideEffects(), IA->isAlignStack(),
5990                                   IA->getDialect(), IA->canThrow());
5991         }
5992       }
5993 
5994       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5995                              OperandBundles);
5996       ResTypeID = getContainedTypeID(FTyID);
5997       OperandBundles.clear();
5998       InstructionList.push_back(I);
5999       cast<CallBrInst>(I)->setCallingConv(
6000           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6001       cast<CallBrInst>(I)->setAttributes(PAL);
6002       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6003         I->deleteValue();
6004         return Err;
6005       }
6006       break;
6007     }
6008     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
6009       I = new UnreachableInst(Context);
6010       InstructionList.push_back(I);
6011       break;
6012     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
6013       if (Record.empty())
6014         return error("Invalid phi record");
6015       // The first record specifies the type.
6016       unsigned TyID = Record[0];
6017       Type *Ty = getTypeByID(TyID);
6018       if (!Ty)
6019         return error("Invalid phi record");
6020 
6021       // Phi arguments are pairs of records of [value, basic block].
6022       // There is an optional final record for fast-math-flags if this phi has a
6023       // floating-point type.
6024       size_t NumArgs = (Record.size() - 1) / 2;
6025       PHINode *PN = PHINode::Create(Ty, NumArgs);
6026       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
6027         PN->deleteValue();
6028         return error("Invalid phi record");
6029       }
6030       InstructionList.push_back(PN);
6031 
6032       SmallDenseMap<BasicBlock *, Value *> Args;
6033       for (unsigned i = 0; i != NumArgs; i++) {
6034         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6035         if (!BB) {
6036           PN->deleteValue();
6037           return error("Invalid phi BB");
6038         }
6039 
6040         // Phi nodes may contain the same predecessor multiple times, in which
6041         // case the incoming value must be identical. Directly reuse the already
6042         // seen value here, to avoid expanding a constant expression multiple
6043         // times.
6044         auto It = Args.find(BB);
6045         if (It != Args.end()) {
6046           PN->addIncoming(It->second, BB);
6047           continue;
6048         }
6049 
6050         // If there already is a block for this edge (from a different phi),
6051         // use it.
6052         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6053         if (!EdgeBB) {
6054           // Otherwise, use a temporary block (that we will discard if it
6055           // turns out to be unnecessary).
6056           if (!PhiConstExprBB)
6057             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6058           EdgeBB = PhiConstExprBB;
6059         }
6060 
6061         // With the new function encoding, it is possible that operands have
6062         // negative IDs (for forward references).  Use a signed VBR
6063         // representation to keep the encoding small.
6064         Value *V;
6065         if (UseRelativeIDs)
6066           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6067         else
6068           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6069         if (!V) {
6070           PN->deleteValue();
6071           PhiConstExprBB->eraseFromParent();
6072           return error("Invalid phi record");
6073         }
6074 
6075         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6076           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6077           PhiConstExprBB = nullptr;
6078         }
6079         PN->addIncoming(V, BB);
6080         Args.insert({BB, V});
6081       }
6082       I = PN;
6083       ResTypeID = TyID;
6084 
6085       // If there are an even number of records, the final record must be FMF.
6086       if (Record.size() % 2 == 0) {
6087         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6088         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6089         if (FMF.any())
6090           I->setFastMathFlags(FMF);
6091       }
6092 
6093       break;
6094     }
6095 
6096     case bitc::FUNC_CODE_INST_LANDINGPAD:
6097     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6098       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6099       unsigned Idx = 0;
6100       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6101         if (Record.size() < 3)
6102           return error("Invalid record");
6103       } else {
6104         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6105         if (Record.size() < 4)
6106           return error("Invalid record");
6107       }
6108       ResTypeID = Record[Idx++];
6109       Type *Ty = getTypeByID(ResTypeID);
6110       if (!Ty)
6111         return error("Invalid record");
6112       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6113         Value *PersFn = nullptr;
6114         unsigned PersFnTypeID;
6115         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6116                              nullptr))
6117           return error("Invalid record");
6118 
6119         if (!F->hasPersonalityFn())
6120           F->setPersonalityFn(cast<Constant>(PersFn));
6121         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6122           return error("Personality function mismatch");
6123       }
6124 
6125       bool IsCleanup = !!Record[Idx++];
6126       unsigned NumClauses = Record[Idx++];
6127       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6128       LP->setCleanup(IsCleanup);
6129       for (unsigned J = 0; J != NumClauses; ++J) {
6130         LandingPadInst::ClauseType CT =
6131           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6132         Value *Val;
6133         unsigned ValTypeID;
6134 
6135         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6136                              nullptr)) {
6137           delete LP;
6138           return error("Invalid record");
6139         }
6140 
6141         assert((CT != LandingPadInst::Catch ||
6142                 !isa<ArrayType>(Val->getType())) &&
6143                "Catch clause has a invalid type!");
6144         assert((CT != LandingPadInst::Filter ||
6145                 isa<ArrayType>(Val->getType())) &&
6146                "Filter clause has invalid type!");
6147         LP->addClause(cast<Constant>(Val));
6148       }
6149 
6150       I = LP;
6151       InstructionList.push_back(I);
6152       break;
6153     }
6154 
6155     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6156       if (Record.size() != 4 && Record.size() != 5)
6157         return error("Invalid record");
6158       using APV = AllocaPackedValues;
6159       const uint64_t Rec = Record[3];
6160       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6161       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6162       unsigned TyID = Record[0];
6163       Type *Ty = getTypeByID(TyID);
6164       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6165         TyID = getContainedTypeID(TyID);
6166         Ty = getTypeByID(TyID);
6167         if (!Ty)
6168           return error("Missing element type for old-style alloca");
6169       }
6170       unsigned OpTyID = Record[1];
6171       Type *OpTy = getTypeByID(OpTyID);
6172       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6173       MaybeAlign Align;
6174       uint64_t AlignExp =
6175           Bitfield::get<APV::AlignLower>(Rec) |
6176           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6177       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6178         return Err;
6179       }
6180       if (!Ty || !Size)
6181         return error("Invalid record");
6182 
6183       const DataLayout &DL = TheModule->getDataLayout();
6184       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6185 
6186       SmallPtrSet<Type *, 4> Visited;
6187       if (!Align && !Ty->isSized(&Visited))
6188         return error("alloca of unsized type");
6189       if (!Align)
6190         Align = DL.getPrefTypeAlign(Ty);
6191 
6192       if (!Size->getType()->isIntegerTy())
6193         return error("alloca element count must have integer type");
6194 
6195       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6196       AI->setUsedWithInAlloca(InAlloca);
6197       AI->setSwiftError(SwiftError);
6198       I = AI;
6199       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6200       InstructionList.push_back(I);
6201       break;
6202     }
6203     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6204       unsigned OpNum = 0;
6205       Value *Op;
6206       unsigned OpTypeID;
6207       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6208           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6209         return error("Invalid record");
6210 
6211       if (!isa<PointerType>(Op->getType()))
6212         return error("Load operand is not a pointer type");
6213 
6214       Type *Ty = nullptr;
6215       if (OpNum + 3 == Record.size()) {
6216         ResTypeID = Record[OpNum++];
6217         Ty = getTypeByID(ResTypeID);
6218       } else {
6219         ResTypeID = getContainedTypeID(OpTypeID);
6220         Ty = getTypeByID(ResTypeID);
6221       }
6222 
6223       if (!Ty)
6224         return error("Missing load type");
6225 
6226       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6227         return Err;
6228 
6229       MaybeAlign Align;
6230       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6231         return Err;
6232       SmallPtrSet<Type *, 4> Visited;
6233       if (!Align && !Ty->isSized(&Visited))
6234         return error("load of unsized type");
6235       if (!Align)
6236         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6237       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6238       InstructionList.push_back(I);
6239       break;
6240     }
6241     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6242        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6243       unsigned OpNum = 0;
6244       Value *Op;
6245       unsigned OpTypeID;
6246       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6247           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6248         return error("Invalid record");
6249 
6250       if (!isa<PointerType>(Op->getType()))
6251         return error("Load operand is not a pointer type");
6252 
6253       Type *Ty = nullptr;
6254       if (OpNum + 5 == Record.size()) {
6255         ResTypeID = Record[OpNum++];
6256         Ty = getTypeByID(ResTypeID);
6257       } else {
6258         ResTypeID = getContainedTypeID(OpTypeID);
6259         Ty = getTypeByID(ResTypeID);
6260       }
6261 
6262       if (!Ty)
6263         return error("Missing atomic load type");
6264 
6265       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6266         return Err;
6267 
6268       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6269       if (Ordering == AtomicOrdering::NotAtomic ||
6270           Ordering == AtomicOrdering::Release ||
6271           Ordering == AtomicOrdering::AcquireRelease)
6272         return error("Invalid record");
6273       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6274         return error("Invalid record");
6275       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6276 
6277       MaybeAlign Align;
6278       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6279         return Err;
6280       if (!Align)
6281         return error("Alignment missing from atomic load");
6282       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6283       InstructionList.push_back(I);
6284       break;
6285     }
6286     case bitc::FUNC_CODE_INST_STORE:
6287     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6288       unsigned OpNum = 0;
6289       Value *Val, *Ptr;
6290       unsigned PtrTypeID, ValTypeID;
6291       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6292         return error("Invalid record");
6293 
6294       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6295         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6296           return error("Invalid record");
6297       } else {
6298         ValTypeID = getContainedTypeID(PtrTypeID);
6299         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6300                      ValTypeID, Val, CurBB))
6301           return error("Invalid record");
6302       }
6303 
6304       if (OpNum + 2 != Record.size())
6305         return error("Invalid record");
6306 
6307       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6308         return Err;
6309       MaybeAlign Align;
6310       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6311         return Err;
6312       SmallPtrSet<Type *, 4> Visited;
6313       if (!Align && !Val->getType()->isSized(&Visited))
6314         return error("store of unsized type");
6315       if (!Align)
6316         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6317       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6318       InstructionList.push_back(I);
6319       break;
6320     }
6321     case bitc::FUNC_CODE_INST_STOREATOMIC:
6322     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6323       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6324       unsigned OpNum = 0;
6325       Value *Val, *Ptr;
6326       unsigned PtrTypeID, ValTypeID;
6327       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6328           !isa<PointerType>(Ptr->getType()))
6329         return error("Invalid record");
6330       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6331         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6332           return error("Invalid record");
6333       } else {
6334         ValTypeID = getContainedTypeID(PtrTypeID);
6335         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6336                      ValTypeID, Val, CurBB))
6337           return error("Invalid record");
6338       }
6339 
6340       if (OpNum + 4 != Record.size())
6341         return error("Invalid record");
6342 
6343       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6344         return Err;
6345       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6346       if (Ordering == AtomicOrdering::NotAtomic ||
6347           Ordering == AtomicOrdering::Acquire ||
6348           Ordering == AtomicOrdering::AcquireRelease)
6349         return error("Invalid record");
6350       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6351       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6352         return error("Invalid record");
6353 
6354       MaybeAlign Align;
6355       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6356         return Err;
6357       if (!Align)
6358         return error("Alignment missing from atomic store");
6359       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6360       InstructionList.push_back(I);
6361       break;
6362     }
6363     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6364       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6365       // failure_ordering?, weak?]
6366       const size_t NumRecords = Record.size();
6367       unsigned OpNum = 0;
6368       Value *Ptr = nullptr;
6369       unsigned PtrTypeID;
6370       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6371         return error("Invalid record");
6372 
6373       if (!isa<PointerType>(Ptr->getType()))
6374         return error("Cmpxchg operand is not a pointer type");
6375 
6376       Value *Cmp = nullptr;
6377       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6378       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6379                    CmpTypeID, Cmp, CurBB))
6380         return error("Invalid record");
6381 
6382       Value *New = nullptr;
6383       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6384                    New, CurBB) ||
6385           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6386         return error("Invalid record");
6387 
6388       const AtomicOrdering SuccessOrdering =
6389           getDecodedOrdering(Record[OpNum + 1]);
6390       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6391           SuccessOrdering == AtomicOrdering::Unordered)
6392         return error("Invalid record");
6393 
6394       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6395 
6396       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6397         return Err;
6398 
6399       const AtomicOrdering FailureOrdering =
6400           NumRecords < 7
6401               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6402               : getDecodedOrdering(Record[OpNum + 3]);
6403 
6404       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6405           FailureOrdering == AtomicOrdering::Unordered)
6406         return error("Invalid record");
6407 
6408       const Align Alignment(
6409           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6410 
6411       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6412                                 FailureOrdering, SSID);
6413       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6414 
6415       if (NumRecords < 8) {
6416         // Before weak cmpxchgs existed, the instruction simply returned the
6417         // value loaded from memory, so bitcode files from that era will be
6418         // expecting the first component of a modern cmpxchg.
6419         I->insertInto(CurBB, CurBB->end());
6420         I = ExtractValueInst::Create(I, 0);
6421         ResTypeID = CmpTypeID;
6422       } else {
6423         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6424         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6425         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6426       }
6427 
6428       InstructionList.push_back(I);
6429       break;
6430     }
6431     case bitc::FUNC_CODE_INST_CMPXCHG: {
6432       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6433       // failure_ordering, weak, align?]
6434       const size_t NumRecords = Record.size();
6435       unsigned OpNum = 0;
6436       Value *Ptr = nullptr;
6437       unsigned PtrTypeID;
6438       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6439         return error("Invalid record");
6440 
6441       if (!isa<PointerType>(Ptr->getType()))
6442         return error("Cmpxchg operand is not a pointer type");
6443 
6444       Value *Cmp = nullptr;
6445       unsigned CmpTypeID;
6446       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6447         return error("Invalid record");
6448 
6449       Value *Val = nullptr;
6450       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6451                    CurBB))
6452         return error("Invalid record");
6453 
6454       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6455         return error("Invalid record");
6456 
6457       const bool IsVol = Record[OpNum];
6458 
6459       const AtomicOrdering SuccessOrdering =
6460           getDecodedOrdering(Record[OpNum + 1]);
6461       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6462         return error("Invalid cmpxchg success ordering");
6463 
6464       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6465 
6466       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6467         return Err;
6468 
6469       const AtomicOrdering FailureOrdering =
6470           getDecodedOrdering(Record[OpNum + 3]);
6471       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6472         return error("Invalid cmpxchg failure ordering");
6473 
6474       const bool IsWeak = Record[OpNum + 4];
6475 
6476       MaybeAlign Alignment;
6477 
6478       if (NumRecords == (OpNum + 6)) {
6479         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6480           return Err;
6481       }
6482       if (!Alignment)
6483         Alignment =
6484             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6485 
6486       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6487                                 FailureOrdering, SSID);
6488       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6489       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6490 
6491       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6492       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6493 
6494       InstructionList.push_back(I);
6495       break;
6496     }
6497     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6498     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6499       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6500       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6501       const size_t NumRecords = Record.size();
6502       unsigned OpNum = 0;
6503 
6504       Value *Ptr = nullptr;
6505       unsigned PtrTypeID;
6506       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6507         return error("Invalid record");
6508 
6509       if (!isa<PointerType>(Ptr->getType()))
6510         return error("Invalid record");
6511 
6512       Value *Val = nullptr;
6513       unsigned ValTypeID = InvalidTypeID;
6514       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6515         ValTypeID = getContainedTypeID(PtrTypeID);
6516         if (popValue(Record, OpNum, NextValueNo,
6517                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6518           return error("Invalid record");
6519       } else {
6520         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6521           return error("Invalid record");
6522       }
6523 
6524       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6525         return error("Invalid record");
6526 
6527       const AtomicRMWInst::BinOp Operation =
6528           getDecodedRMWOperation(Record[OpNum]);
6529       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6530           Operation > AtomicRMWInst::LAST_BINOP)
6531         return error("Invalid record");
6532 
6533       const bool IsVol = Record[OpNum + 1];
6534 
6535       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6536       if (Ordering == AtomicOrdering::NotAtomic ||
6537           Ordering == AtomicOrdering::Unordered)
6538         return error("Invalid record");
6539 
6540       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6541 
6542       MaybeAlign Alignment;
6543 
6544       if (NumRecords == (OpNum + 5)) {
6545         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6546           return Err;
6547       }
6548 
6549       if (!Alignment)
6550         Alignment =
6551             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6552 
6553       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6554       ResTypeID = ValTypeID;
6555       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6556 
6557       InstructionList.push_back(I);
6558       break;
6559     }
6560     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6561       if (2 != Record.size())
6562         return error("Invalid record");
6563       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6564       if (Ordering == AtomicOrdering::NotAtomic ||
6565           Ordering == AtomicOrdering::Unordered ||
6566           Ordering == AtomicOrdering::Monotonic)
6567         return error("Invalid record");
6568       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6569       I = new FenceInst(Context, Ordering, SSID);
6570       InstructionList.push_back(I);
6571       break;
6572     }
6573     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6574       // DbgLabelRecords are placed after the Instructions that they are
6575       // attached to.
6576       SeenDebugRecord = true;
6577       Instruction *Inst = getLastInstruction();
6578       if (!Inst)
6579         return error("Invalid dbg record: missing instruction");
6580       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6581       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6582       Inst->getParent()->insertDbgRecordBefore(
6583           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6584       continue; // This isn't an instruction.
6585     }
6586     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6587     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6588     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6589     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6590       // DbgVariableRecords are placed after the Instructions that they are
6591       // attached to.
6592       SeenDebugRecord = true;
6593       Instruction *Inst = getLastInstruction();
6594       if (!Inst)
6595         return error("Invalid dbg record: missing instruction");
6596 
6597       // First 3 fields are common to all kinds:
6598       //   DILocation, DILocalVariable, DIExpression
6599       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6600       //   ..., LocationMetadata
6601       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6602       //   ..., Value
6603       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6604       //   ..., LocationMetadata
6605       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6606       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6607       unsigned Slot = 0;
6608       // Common fields (0-2).
6609       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6610       DILocalVariable *Var =
6611           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6612       DIExpression *Expr =
6613           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6614 
6615       // Union field (3: LocationMetadata | Value).
6616       Metadata *RawLocation = nullptr;
6617       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6618         Value *V = nullptr;
6619         unsigned TyID = 0;
6620         // We never expect to see a fwd reference value here because
6621         // use-before-defs are encoded with the standard non-abbrev record
6622         // type (they'd require encoding the type too, and they're rare). As a
6623         // result, getValueTypePair only ever increments Slot by one here (once
6624         // for the value, never twice for value and type).
6625         unsigned SlotBefore = Slot;
6626         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6627           return error("Invalid dbg record: invalid value");
6628         (void)SlotBefore;
6629         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6630         RawLocation = ValueAsMetadata::get(V);
6631       } else {
6632         RawLocation = getFnMetadataByID(Record[Slot++]);
6633       }
6634 
6635       DbgVariableRecord *DVR = nullptr;
6636       switch (BitCode) {
6637       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6638       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6639         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6640                                     DbgVariableRecord::LocationType::Value);
6641         break;
6642       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6643         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6644                                     DbgVariableRecord::LocationType::Declare);
6645         break;
6646       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6647         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6648         DIExpression *AddrExpr =
6649             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6650         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6651         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6652                                     DIL);
6653         break;
6654       }
6655       default:
6656         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6657       }
6658       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6659       continue; // This isn't an instruction.
6660     }
6661     case bitc::FUNC_CODE_INST_CALL: {
6662       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6663       if (Record.size() < 3)
6664         return error("Invalid record");
6665 
6666       unsigned OpNum = 0;
6667       AttributeList PAL = getAttributes(Record[OpNum++]);
6668       unsigned CCInfo = Record[OpNum++];
6669 
6670       FastMathFlags FMF;
6671       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6672         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6673         if (!FMF.any())
6674           return error("Fast math flags indicator set for call with no FMF");
6675       }
6676 
6677       unsigned FTyID = InvalidTypeID;
6678       FunctionType *FTy = nullptr;
6679       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6680         FTyID = Record[OpNum++];
6681         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6682         if (!FTy)
6683           return error("Explicit call type is not a function type");
6684       }
6685 
6686       Value *Callee;
6687       unsigned CalleeTypeID;
6688       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6689                            CurBB))
6690         return error("Invalid record");
6691 
6692       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6693       if (!OpTy)
6694         return error("Callee is not a pointer type");
6695       if (!FTy) {
6696         FTyID = getContainedTypeID(CalleeTypeID);
6697         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6698         if (!FTy)
6699           return error("Callee is not of pointer to function type");
6700       }
6701       if (Record.size() < FTy->getNumParams() + OpNum)
6702         return error("Insufficient operands to call");
6703 
6704       SmallVector<Value*, 16> Args;
6705       SmallVector<unsigned, 16> ArgTyIDs;
6706       // Read the fixed params.
6707       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6708         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6709         if (FTy->getParamType(i)->isLabelTy())
6710           Args.push_back(getBasicBlock(Record[OpNum]));
6711         else
6712           Args.push_back(getValue(Record, OpNum, NextValueNo,
6713                                   FTy->getParamType(i), ArgTyID, CurBB));
6714         ArgTyIDs.push_back(ArgTyID);
6715         if (!Args.back())
6716           return error("Invalid record");
6717       }
6718 
6719       // Read type/value pairs for varargs params.
6720       if (!FTy->isVarArg()) {
6721         if (OpNum != Record.size())
6722           return error("Invalid record");
6723       } else {
6724         while (OpNum != Record.size()) {
6725           Value *Op;
6726           unsigned OpTypeID;
6727           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6728             return error("Invalid record");
6729           Args.push_back(Op);
6730           ArgTyIDs.push_back(OpTypeID);
6731         }
6732       }
6733 
6734       // Upgrade the bundles if needed.
6735       if (!OperandBundles.empty())
6736         UpgradeOperandBundles(OperandBundles);
6737 
6738       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6739       ResTypeID = getContainedTypeID(FTyID);
6740       OperandBundles.clear();
6741       InstructionList.push_back(I);
6742       cast<CallInst>(I)->setCallingConv(
6743           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6744       CallInst::TailCallKind TCK = CallInst::TCK_None;
6745       if (CCInfo & (1 << bitc::CALL_TAIL))
6746         TCK = CallInst::TCK_Tail;
6747       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6748         TCK = CallInst::TCK_MustTail;
6749       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6750         TCK = CallInst::TCK_NoTail;
6751       cast<CallInst>(I)->setTailCallKind(TCK);
6752       cast<CallInst>(I)->setAttributes(PAL);
6753       if (isa<DbgInfoIntrinsic>(I))
6754         SeenDebugIntrinsic = true;
6755       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6756         I->deleteValue();
6757         return Err;
6758       }
6759       if (FMF.any()) {
6760         if (!isa<FPMathOperator>(I))
6761           return error("Fast-math-flags specified for call without "
6762                        "floating-point scalar or vector return type");
6763         I->setFastMathFlags(FMF);
6764       }
6765       break;
6766     }
6767     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6768       if (Record.size() < 3)
6769         return error("Invalid record");
6770       unsigned OpTyID = Record[0];
6771       Type *OpTy = getTypeByID(OpTyID);
6772       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6773       ResTypeID = Record[2];
6774       Type *ResTy = getTypeByID(ResTypeID);
6775       if (!OpTy || !Op || !ResTy)
6776         return error("Invalid record");
6777       I = new VAArgInst(Op, ResTy);
6778       InstructionList.push_back(I);
6779       break;
6780     }
6781 
6782     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6783       // A call or an invoke can be optionally prefixed with some variable
6784       // number of operand bundle blocks.  These blocks are read into
6785       // OperandBundles and consumed at the next call or invoke instruction.
6786 
6787       if (Record.empty() || Record[0] >= BundleTags.size())
6788         return error("Invalid record");
6789 
6790       std::vector<Value *> Inputs;
6791 
6792       unsigned OpNum = 1;
6793       while (OpNum != Record.size()) {
6794         Value *Op;
6795         if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB))
6796           return error("Invalid record");
6797         Inputs.push_back(Op);
6798       }
6799 
6800       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6801       continue;
6802     }
6803 
6804     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6805       unsigned OpNum = 0;
6806       Value *Op = nullptr;
6807       unsigned OpTypeID;
6808       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6809         return error("Invalid record");
6810       if (OpNum != Record.size())
6811         return error("Invalid record");
6812 
6813       I = new FreezeInst(Op);
6814       ResTypeID = OpTypeID;
6815       InstructionList.push_back(I);
6816       break;
6817     }
6818     }
6819 
6820     // Add instruction to end of current BB.  If there is no current BB, reject
6821     // this file.
6822     if (!CurBB) {
6823       I->deleteValue();
6824       return error("Invalid instruction with no BB");
6825     }
6826     if (!OperandBundles.empty()) {
6827       I->deleteValue();
6828       return error("Operand bundles found with no consumer");
6829     }
6830     I->insertInto(CurBB, CurBB->end());
6831 
6832     // If this was a terminator instruction, move to the next block.
6833     if (I->isTerminator()) {
6834       ++CurBBNo;
6835       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6836     }
6837 
6838     // Non-void values get registered in the value table for future use.
6839     if (!I->getType()->isVoidTy()) {
6840       assert(I->getType() == getTypeByID(ResTypeID) &&
6841              "Incorrect result type ID");
6842       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6843         return Err;
6844     }
6845   }
6846 
6847 OutOfRecordLoop:
6848 
6849   if (!OperandBundles.empty())
6850     return error("Operand bundles found with no consumer");
6851 
6852   // Check the function list for unresolved values.
6853   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6854     if (!A->getParent()) {
6855       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6856       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6857         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6858           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6859           delete A;
6860         }
6861       }
6862       return error("Never resolved value found in function");
6863     }
6864   }
6865 
6866   // Unexpected unresolved metadata about to be dropped.
6867   if (MDLoader->hasFwdRefs())
6868     return error("Invalid function metadata: outgoing forward refs");
6869 
6870   if (PhiConstExprBB)
6871     PhiConstExprBB->eraseFromParent();
6872 
6873   for (const auto &Pair : ConstExprEdgeBBs) {
6874     BasicBlock *From = Pair.first.first;
6875     BasicBlock *To = Pair.first.second;
6876     BasicBlock *EdgeBB = Pair.second;
6877     BranchInst::Create(To, EdgeBB);
6878     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6879     To->replacePhiUsesWith(From, EdgeBB);
6880     EdgeBB->moveBefore(To);
6881   }
6882 
6883   // Trim the value list down to the size it was before we parsed this function.
6884   ValueList.shrinkTo(ModuleValueListSize);
6885   MDLoader->shrinkTo(ModuleMDLoaderSize);
6886   std::vector<BasicBlock*>().swap(FunctionBBs);
6887   return Error::success();
6888 }
6889 
6890 /// Find the function body in the bitcode stream
6891 Error BitcodeReader::findFunctionInStream(
6892     Function *F,
6893     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6894   while (DeferredFunctionInfoIterator->second == 0) {
6895     // This is the fallback handling for the old format bitcode that
6896     // didn't contain the function index in the VST, or when we have
6897     // an anonymous function which would not have a VST entry.
6898     // Assert that we have one of those two cases.
6899     assert(VSTOffset == 0 || !F->hasName());
6900     // Parse the next body in the stream and set its position in the
6901     // DeferredFunctionInfo map.
6902     if (Error Err = rememberAndSkipFunctionBodies())
6903       return Err;
6904   }
6905   return Error::success();
6906 }
6907 
6908 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6909   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6910     return SyncScope::ID(Val);
6911   if (Val >= SSIDs.size())
6912     return SyncScope::System; // Map unknown synchronization scopes to system.
6913   return SSIDs[Val];
6914 }
6915 
6916 //===----------------------------------------------------------------------===//
6917 // GVMaterializer implementation
6918 //===----------------------------------------------------------------------===//
6919 
6920 Error BitcodeReader::materialize(GlobalValue *GV) {
6921   Function *F = dyn_cast<Function>(GV);
6922   // If it's not a function or is already material, ignore the request.
6923   if (!F || !F->isMaterializable())
6924     return Error::success();
6925 
6926   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6927   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6928   // If its position is recorded as 0, its body is somewhere in the stream
6929   // but we haven't seen it yet.
6930   if (DFII->second == 0)
6931     if (Error Err = findFunctionInStream(F, DFII))
6932       return Err;
6933 
6934   // Materialize metadata before parsing any function bodies.
6935   if (Error Err = materializeMetadata())
6936     return Err;
6937 
6938   // Move the bit stream to the saved position of the deferred function body.
6939   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6940     return JumpFailed;
6941 
6942   // Regardless of the debug info format we want to end up in, we need
6943   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6944   F->IsNewDbgInfoFormat = true;
6945 
6946   if (Error Err = parseFunctionBody(F))
6947     return Err;
6948   F->setIsMaterializable(false);
6949 
6950   // All parsed Functions should load into the debug info format dictated by the
6951   // Module, unless we're attempting to preserve the input debug info format.
6952   if (SeenDebugIntrinsic && SeenDebugRecord)
6953     return error("Mixed debug intrinsics and debug records in bitcode module!");
6954   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6955     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6956     bool NewDbgInfoFormatDesired =
6957         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6958     if (SeenAnyDebugInfo) {
6959       UseNewDbgInfoFormat = SeenDebugRecord;
6960       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6961       WriteNewDbgInfoFormat = SeenDebugRecord;
6962     }
6963     // If the module's debug info format doesn't match the observed input
6964     // format, then set its format now; we don't need to call the conversion
6965     // function because there must be no existing intrinsics to convert.
6966     // Otherwise, just set the format on this function now.
6967     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6968       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6969     else
6970       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6971   } else {
6972     // If we aren't preserving formats, we use the Module flag to get our
6973     // desired format instead of reading flags, in case we are lazy-loading and
6974     // the format of the module has been changed since it was set by the flags.
6975     // We only need to convert debug info here if we have debug records but
6976     // desire the intrinsic format; everything else is a no-op or handled by the
6977     // autoupgrader.
6978     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6979     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6980       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6981     else
6982       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6983   }
6984 
6985   if (StripDebugInfo)
6986     stripDebugInfo(*F);
6987 
6988   // Upgrade any old intrinsic calls in the function.
6989   for (auto &I : UpgradedIntrinsics) {
6990     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6991       if (CallInst *CI = dyn_cast<CallInst>(U))
6992         UpgradeIntrinsicCall(CI, I.second);
6993   }
6994 
6995   // Finish fn->subprogram upgrade for materialized functions.
6996   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6997     F->setSubprogram(SP);
6998 
6999   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
7000   if (!MDLoader->isStrippingTBAA()) {
7001     for (auto &I : instructions(F)) {
7002       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
7003       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
7004         continue;
7005       MDLoader->setStripTBAA(true);
7006       stripTBAA(F->getParent());
7007     }
7008   }
7009 
7010   for (auto &I : instructions(F)) {
7011     // "Upgrade" older incorrect branch weights by dropping them.
7012     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
7013       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
7014         MDString *MDS = cast<MDString>(MD->getOperand(0));
7015         StringRef ProfName = MDS->getString();
7016         // Check consistency of !prof branch_weights metadata.
7017         if (ProfName != "branch_weights")
7018           continue;
7019         unsigned ExpectedNumOperands = 0;
7020         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
7021           ExpectedNumOperands = BI->getNumSuccessors();
7022         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
7023           ExpectedNumOperands = SI->getNumSuccessors();
7024         else if (isa<CallInst>(&I))
7025           ExpectedNumOperands = 1;
7026         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
7027           ExpectedNumOperands = IBI->getNumDestinations();
7028         else if (isa<SelectInst>(&I))
7029           ExpectedNumOperands = 2;
7030         else
7031           continue; // ignore and continue.
7032 
7033         unsigned Offset = getBranchWeightOffset(MD);
7034 
7035         // If branch weight doesn't match, just strip branch weight.
7036         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7037           I.setMetadata(LLVMContext::MD_prof, nullptr);
7038       }
7039     }
7040 
7041     // Remove incompatible attributes on function calls.
7042     if (auto *CI = dyn_cast<CallBase>(&I)) {
7043       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7044           CI->getFunctionType()->getReturnType(), CI->getRetAttributes()));
7045 
7046       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7047         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7048                                         CI->getArgOperand(ArgNo)->getType(),
7049                                         CI->getParamAttributes(ArgNo)));
7050     }
7051   }
7052 
7053   // Look for functions that rely on old function attribute behavior.
7054   UpgradeFunctionAttributes(*F);
7055 
7056   // Bring in any functions that this function forward-referenced via
7057   // blockaddresses.
7058   return materializeForwardReferencedFunctions();
7059 }
7060 
7061 Error BitcodeReader::materializeModule() {
7062   if (Error Err = materializeMetadata())
7063     return Err;
7064 
7065   // Promise to materialize all forward references.
7066   WillMaterializeAllForwardRefs = true;
7067 
7068   // Iterate over the module, deserializing any functions that are still on
7069   // disk.
7070   for (Function &F : *TheModule) {
7071     if (Error Err = materialize(&F))
7072       return Err;
7073   }
7074   // At this point, if there are any function bodies, parse the rest of
7075   // the bits in the module past the last function block we have recorded
7076   // through either lazy scanning or the VST.
7077   if (LastFunctionBlockBit || NextUnreadBit)
7078     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7079                                     ? LastFunctionBlockBit
7080                                     : NextUnreadBit))
7081       return Err;
7082 
7083   // Check that all block address forward references got resolved (as we
7084   // promised above).
7085   if (!BasicBlockFwdRefs.empty())
7086     return error("Never resolved function from blockaddress");
7087 
7088   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7089   // delete the old functions to clean up. We can't do this unless the entire
7090   // module is materialized because there could always be another function body
7091   // with calls to the old function.
7092   for (auto &I : UpgradedIntrinsics) {
7093     for (auto *U : I.first->users()) {
7094       if (CallInst *CI = dyn_cast<CallInst>(U))
7095         UpgradeIntrinsicCall(CI, I.second);
7096     }
7097     if (!I.first->use_empty())
7098       I.first->replaceAllUsesWith(I.second);
7099     I.first->eraseFromParent();
7100   }
7101   UpgradedIntrinsics.clear();
7102 
7103   UpgradeDebugInfo(*TheModule);
7104 
7105   UpgradeModuleFlags(*TheModule);
7106 
7107   UpgradeARCRuntime(*TheModule);
7108 
7109   return Error::success();
7110 }
7111 
7112 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7113   return IdentifiedStructTypes;
7114 }
7115 
7116 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7117     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7118     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7119     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7120       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7121 
7122 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7123   TheIndex.addModule(ModulePath);
7124 }
7125 
7126 ModuleSummaryIndex::ModuleInfo *
7127 ModuleSummaryIndexBitcodeReader::getThisModule() {
7128   return TheIndex.getModule(ModulePath);
7129 }
7130 
7131 template <bool AllowNullValueInfo>
7132 std::pair<ValueInfo, GlobalValue::GUID>
7133 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7134   auto VGI = ValueIdToValueInfoMap[ValueId];
7135   // We can have a null value info for memprof callsite info records in
7136   // distributed ThinLTO index files when the callee function summary is not
7137   // included in the index. The bitcode writer records 0 in that case,
7138   // and the caller of this helper will set AllowNullValueInfo to true.
7139   assert(AllowNullValueInfo || std::get<0>(VGI));
7140   return VGI;
7141 }
7142 
7143 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7144     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7145     StringRef SourceFileName) {
7146   std::string GlobalId =
7147       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7148   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7149   auto OriginalNameID = ValueGUID;
7150   if (GlobalValue::isLocalLinkage(Linkage))
7151     OriginalNameID = GlobalValue::getGUID(ValueName);
7152   if (PrintSummaryGUIDs)
7153     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7154            << ValueName << "\n";
7155 
7156   // UseStrtab is false for legacy summary formats and value names are
7157   // created on stack. In that case we save the name in a string saver in
7158   // the index so that the value name can be recorded.
7159   ValueIdToValueInfoMap[ValueID] = std::make_pair(
7160       TheIndex.getOrInsertValueInfo(
7161           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7162       OriginalNameID);
7163 }
7164 
7165 // Specialized value symbol table parser used when reading module index
7166 // blocks where we don't actually create global values. The parsed information
7167 // is saved in the bitcode reader for use when later parsing summaries.
7168 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7169     uint64_t Offset,
7170     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7171   // With a strtab the VST is not required to parse the summary.
7172   if (UseStrtab)
7173     return Error::success();
7174 
7175   assert(Offset > 0 && "Expected non-zero VST offset");
7176   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7177   if (!MaybeCurrentBit)
7178     return MaybeCurrentBit.takeError();
7179   uint64_t CurrentBit = MaybeCurrentBit.get();
7180 
7181   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7182     return Err;
7183 
7184   SmallVector<uint64_t, 64> Record;
7185 
7186   // Read all the records for this value table.
7187   SmallString<128> ValueName;
7188 
7189   while (true) {
7190     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7191     if (!MaybeEntry)
7192       return MaybeEntry.takeError();
7193     BitstreamEntry Entry = MaybeEntry.get();
7194 
7195     switch (Entry.Kind) {
7196     case BitstreamEntry::SubBlock: // Handled for us already.
7197     case BitstreamEntry::Error:
7198       return error("Malformed block");
7199     case BitstreamEntry::EndBlock:
7200       // Done parsing VST, jump back to wherever we came from.
7201       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7202         return JumpFailed;
7203       return Error::success();
7204     case BitstreamEntry::Record:
7205       // The interesting case.
7206       break;
7207     }
7208 
7209     // Read a record.
7210     Record.clear();
7211     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7212     if (!MaybeRecord)
7213       return MaybeRecord.takeError();
7214     switch (MaybeRecord.get()) {
7215     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7216       break;
7217     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7218       if (convertToString(Record, 1, ValueName))
7219         return error("Invalid record");
7220       unsigned ValueID = Record[0];
7221       assert(!SourceFileName.empty());
7222       auto VLI = ValueIdToLinkageMap.find(ValueID);
7223       assert(VLI != ValueIdToLinkageMap.end() &&
7224              "No linkage found for VST entry?");
7225       auto Linkage = VLI->second;
7226       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7227       ValueName.clear();
7228       break;
7229     }
7230     case bitc::VST_CODE_FNENTRY: {
7231       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7232       if (convertToString(Record, 2, ValueName))
7233         return error("Invalid record");
7234       unsigned ValueID = Record[0];
7235       assert(!SourceFileName.empty());
7236       auto VLI = ValueIdToLinkageMap.find(ValueID);
7237       assert(VLI != ValueIdToLinkageMap.end() &&
7238              "No linkage found for VST entry?");
7239       auto Linkage = VLI->second;
7240       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7241       ValueName.clear();
7242       break;
7243     }
7244     case bitc::VST_CODE_COMBINED_ENTRY: {
7245       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7246       unsigned ValueID = Record[0];
7247       GlobalValue::GUID RefGUID = Record[1];
7248       // The "original name", which is the second value of the pair will be
7249       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7250       ValueIdToValueInfoMap[ValueID] =
7251           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7252       break;
7253     }
7254     }
7255   }
7256 }
7257 
7258 // Parse just the blocks needed for building the index out of the module.
7259 // At the end of this routine the module Index is populated with a map
7260 // from global value id to GlobalValueSummary objects.
7261 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7262   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7263     return Err;
7264 
7265   SmallVector<uint64_t, 64> Record;
7266   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7267   unsigned ValueId = 0;
7268 
7269   // Read the index for this module.
7270   while (true) {
7271     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7272     if (!MaybeEntry)
7273       return MaybeEntry.takeError();
7274     llvm::BitstreamEntry Entry = MaybeEntry.get();
7275 
7276     switch (Entry.Kind) {
7277     case BitstreamEntry::Error:
7278       return error("Malformed block");
7279     case BitstreamEntry::EndBlock:
7280       return Error::success();
7281 
7282     case BitstreamEntry::SubBlock:
7283       switch (Entry.ID) {
7284       default: // Skip unknown content.
7285         if (Error Err = Stream.SkipBlock())
7286           return Err;
7287         break;
7288       case bitc::BLOCKINFO_BLOCK_ID:
7289         // Need to parse these to get abbrev ids (e.g. for VST)
7290         if (Error Err = readBlockInfo())
7291           return Err;
7292         break;
7293       case bitc::VALUE_SYMTAB_BLOCK_ID:
7294         // Should have been parsed earlier via VSTOffset, unless there
7295         // is no summary section.
7296         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7297                 !SeenGlobalValSummary) &&
7298                "Expected early VST parse via VSTOffset record");
7299         if (Error Err = Stream.SkipBlock())
7300           return Err;
7301         break;
7302       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7303       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7304         // Add the module if it is a per-module index (has a source file name).
7305         if (!SourceFileName.empty())
7306           addThisModule();
7307         assert(!SeenValueSymbolTable &&
7308                "Already read VST when parsing summary block?");
7309         // We might not have a VST if there were no values in the
7310         // summary. An empty summary block generated when we are
7311         // performing ThinLTO compiles so we don't later invoke
7312         // the regular LTO process on them.
7313         if (VSTOffset > 0) {
7314           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7315             return Err;
7316           SeenValueSymbolTable = true;
7317         }
7318         SeenGlobalValSummary = true;
7319         if (Error Err = parseEntireSummary(Entry.ID))
7320           return Err;
7321         break;
7322       case bitc::MODULE_STRTAB_BLOCK_ID:
7323         if (Error Err = parseModuleStringTable())
7324           return Err;
7325         break;
7326       }
7327       continue;
7328 
7329     case BitstreamEntry::Record: {
7330         Record.clear();
7331         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7332         if (!MaybeBitCode)
7333           return MaybeBitCode.takeError();
7334         switch (MaybeBitCode.get()) {
7335         default:
7336           break; // Default behavior, ignore unknown content.
7337         case bitc::MODULE_CODE_VERSION: {
7338           if (Error Err = parseVersionRecord(Record).takeError())
7339             return Err;
7340           break;
7341         }
7342         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7343         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7344           SmallString<128> ValueName;
7345           if (convertToString(Record, 0, ValueName))
7346             return error("Invalid record");
7347           SourceFileName = ValueName.c_str();
7348           break;
7349         }
7350         /// MODULE_CODE_HASH: [5*i32]
7351         case bitc::MODULE_CODE_HASH: {
7352           if (Record.size() != 5)
7353             return error("Invalid hash length " + Twine(Record.size()).str());
7354           auto &Hash = getThisModule()->second;
7355           int Pos = 0;
7356           for (auto &Val : Record) {
7357             assert(!(Val >> 32) && "Unexpected high bits set");
7358             Hash[Pos++] = Val;
7359           }
7360           break;
7361         }
7362         /// MODULE_CODE_VSTOFFSET: [offset]
7363         case bitc::MODULE_CODE_VSTOFFSET:
7364           if (Record.empty())
7365             return error("Invalid record");
7366           // Note that we subtract 1 here because the offset is relative to one
7367           // word before the start of the identification or module block, which
7368           // was historically always the start of the regular bitcode header.
7369           VSTOffset = Record[0] - 1;
7370           break;
7371         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7372         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7373         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7374         // v2: [strtab offset, strtab size, v1]
7375         case bitc::MODULE_CODE_GLOBALVAR:
7376         case bitc::MODULE_CODE_FUNCTION:
7377         case bitc::MODULE_CODE_ALIAS: {
7378           StringRef Name;
7379           ArrayRef<uint64_t> GVRecord;
7380           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7381           if (GVRecord.size() <= 3)
7382             return error("Invalid record");
7383           uint64_t RawLinkage = GVRecord[3];
7384           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7385           if (!UseStrtab) {
7386             ValueIdToLinkageMap[ValueId++] = Linkage;
7387             break;
7388           }
7389 
7390           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7391           break;
7392         }
7393         }
7394       }
7395       continue;
7396     }
7397   }
7398 }
7399 
7400 SmallVector<ValueInfo, 0>
7401 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7402   SmallVector<ValueInfo, 0> Ret;
7403   Ret.reserve(Record.size());
7404   for (uint64_t RefValueId : Record)
7405     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7406   return Ret;
7407 }
7408 
7409 SmallVector<FunctionSummary::EdgeTy, 0>
7410 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7411                                               bool IsOldProfileFormat,
7412                                               bool HasProfile, bool HasRelBF) {
7413   SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7414   // In the case of new profile formats, there are two Record entries per
7415   // Edge. Otherwise, conservatively reserve up to Record.size.
7416   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7417     Ret.reserve(Record.size() / 2);
7418   else
7419     Ret.reserve(Record.size());
7420 
7421   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7422     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7423     bool HasTailCall = false;
7424     uint64_t RelBF = 0;
7425     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7426     if (IsOldProfileFormat) {
7427       I += 1; // Skip old callsitecount field
7428       if (HasProfile)
7429         I += 1; // Skip old profilecount field
7430     } else if (HasProfile)
7431       std::tie(Hotness, HasTailCall) =
7432           getDecodedHotnessCallEdgeInfo(Record[++I]);
7433     else if (HasRelBF)
7434       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7435     Ret.push_back(FunctionSummary::EdgeTy{
7436         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7437   }
7438   return Ret;
7439 }
7440 
7441 static void
7442 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7443                                        WholeProgramDevirtResolution &Wpd) {
7444   uint64_t ArgNum = Record[Slot++];
7445   WholeProgramDevirtResolution::ByArg &B =
7446       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7447   Slot += ArgNum;
7448 
7449   B.TheKind =
7450       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7451   B.Info = Record[Slot++];
7452   B.Byte = Record[Slot++];
7453   B.Bit = Record[Slot++];
7454 }
7455 
7456 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7457                                               StringRef Strtab, size_t &Slot,
7458                                               TypeIdSummary &TypeId) {
7459   uint64_t Id = Record[Slot++];
7460   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7461 
7462   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7463   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7464                         static_cast<size_t>(Record[Slot + 1])};
7465   Slot += 2;
7466 
7467   uint64_t ResByArgNum = Record[Slot++];
7468   for (uint64_t I = 0; I != ResByArgNum; ++I)
7469     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7470 }
7471 
7472 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7473                                      StringRef Strtab,
7474                                      ModuleSummaryIndex &TheIndex) {
7475   size_t Slot = 0;
7476   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7477       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7478   Slot += 2;
7479 
7480   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7481   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7482   TypeId.TTRes.AlignLog2 = Record[Slot++];
7483   TypeId.TTRes.SizeM1 = Record[Slot++];
7484   TypeId.TTRes.BitMask = Record[Slot++];
7485   TypeId.TTRes.InlineBits = Record[Slot++];
7486 
7487   while (Slot < Record.size())
7488     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7489 }
7490 
7491 std::vector<FunctionSummary::ParamAccess>
7492 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7493   auto ReadRange = [&]() {
7494     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7495                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7496     Record = Record.drop_front();
7497     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7498                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7499     Record = Record.drop_front();
7500     ConstantRange Range{Lower, Upper};
7501     assert(!Range.isFullSet());
7502     assert(!Range.isUpperSignWrapped());
7503     return Range;
7504   };
7505 
7506   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7507   while (!Record.empty()) {
7508     PendingParamAccesses.emplace_back();
7509     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7510     ParamAccess.ParamNo = Record.front();
7511     Record = Record.drop_front();
7512     ParamAccess.Use = ReadRange();
7513     ParamAccess.Calls.resize(Record.front());
7514     Record = Record.drop_front();
7515     for (auto &Call : ParamAccess.Calls) {
7516       Call.ParamNo = Record.front();
7517       Record = Record.drop_front();
7518       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7519       Record = Record.drop_front();
7520       Call.Offsets = ReadRange();
7521     }
7522   }
7523   return PendingParamAccesses;
7524 }
7525 
7526 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7527     ArrayRef<uint64_t> Record, size_t &Slot,
7528     TypeIdCompatibleVtableInfo &TypeId) {
7529   uint64_t Offset = Record[Slot++];
7530   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7531   TypeId.push_back({Offset, Callee});
7532 }
7533 
7534 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7535     ArrayRef<uint64_t> Record) {
7536   size_t Slot = 0;
7537   TypeIdCompatibleVtableInfo &TypeId =
7538       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7539           {Strtab.data() + Record[Slot],
7540            static_cast<size_t>(Record[Slot + 1])});
7541   Slot += 2;
7542 
7543   while (Slot < Record.size())
7544     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7545 }
7546 
7547 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7548                            unsigned WOCnt) {
7549   // Readonly and writeonly refs are in the end of the refs list.
7550   assert(ROCnt + WOCnt <= Refs.size());
7551   unsigned FirstWORef = Refs.size() - WOCnt;
7552   unsigned RefNo = FirstWORef - ROCnt;
7553   for (; RefNo < FirstWORef; ++RefNo)
7554     Refs[RefNo].setReadOnly();
7555   for (; RefNo < Refs.size(); ++RefNo)
7556     Refs[RefNo].setWriteOnly();
7557 }
7558 
7559 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7560 // objects in the index.
7561 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7562   if (Error Err = Stream.EnterSubBlock(ID))
7563     return Err;
7564   SmallVector<uint64_t, 64> Record;
7565 
7566   // Parse version
7567   {
7568     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7569     if (!MaybeEntry)
7570       return MaybeEntry.takeError();
7571     BitstreamEntry Entry = MaybeEntry.get();
7572 
7573     if (Entry.Kind != BitstreamEntry::Record)
7574       return error("Invalid Summary Block: record for version expected");
7575     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7576     if (!MaybeRecord)
7577       return MaybeRecord.takeError();
7578     if (MaybeRecord.get() != bitc::FS_VERSION)
7579       return error("Invalid Summary Block: version expected");
7580   }
7581   const uint64_t Version = Record[0];
7582   const bool IsOldProfileFormat = Version == 1;
7583   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7584     return error("Invalid summary version " + Twine(Version) +
7585                  ". Version should be in the range [1-" +
7586                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7587                  "].");
7588   Record.clear();
7589 
7590   // Keep around the last seen summary to be used when we see an optional
7591   // "OriginalName" attachement.
7592   GlobalValueSummary *LastSeenSummary = nullptr;
7593   GlobalValue::GUID LastSeenGUID = 0;
7594 
7595   // We can expect to see any number of type ID information records before
7596   // each function summary records; these variables store the information
7597   // collected so far so that it can be used to create the summary object.
7598   std::vector<GlobalValue::GUID> PendingTypeTests;
7599   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7600       PendingTypeCheckedLoadVCalls;
7601   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7602       PendingTypeCheckedLoadConstVCalls;
7603   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7604 
7605   std::vector<CallsiteInfo> PendingCallsites;
7606   std::vector<AllocInfo> PendingAllocs;
7607   std::vector<uint64_t> PendingContextIds;
7608 
7609   while (true) {
7610     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7611     if (!MaybeEntry)
7612       return MaybeEntry.takeError();
7613     BitstreamEntry Entry = MaybeEntry.get();
7614 
7615     switch (Entry.Kind) {
7616     case BitstreamEntry::SubBlock: // Handled for us already.
7617     case BitstreamEntry::Error:
7618       return error("Malformed block");
7619     case BitstreamEntry::EndBlock:
7620       return Error::success();
7621     case BitstreamEntry::Record:
7622       // The interesting case.
7623       break;
7624     }
7625 
7626     // Read a record. The record format depends on whether this
7627     // is a per-module index or a combined index file. In the per-module
7628     // case the records contain the associated value's ID for correlation
7629     // with VST entries. In the combined index the correlation is done
7630     // via the bitcode offset of the summary records (which were saved
7631     // in the combined index VST entries). The records also contain
7632     // information used for ThinLTO renaming and importing.
7633     Record.clear();
7634     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7635     if (!MaybeBitCode)
7636       return MaybeBitCode.takeError();
7637     switch (unsigned BitCode = MaybeBitCode.get()) {
7638     default: // Default behavior: ignore.
7639       break;
7640     case bitc::FS_FLAGS: {  // [flags]
7641       TheIndex.setFlags(Record[0]);
7642       break;
7643     }
7644     case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7645       uint64_t ValueID = Record[0];
7646       GlobalValue::GUID RefGUID;
7647       if (Version >= 11) {
7648         RefGUID = Record[1] << 32 | Record[2];
7649       } else {
7650         RefGUID = Record[1];
7651       }
7652       ValueIdToValueInfoMap[ValueID] =
7653           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7654       break;
7655     }
7656     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7657     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7658     //                numrefs x valueid, n x (valueid)]
7659     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7660     //                        numrefs x valueid,
7661     //                        n x (valueid, hotness+tailcall flags)]
7662     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7663     //                      numrefs x valueid,
7664     //                      n x (valueid, relblockfreq+tailcall)]
7665     case bitc::FS_PERMODULE:
7666     case bitc::FS_PERMODULE_RELBF:
7667     case bitc::FS_PERMODULE_PROFILE: {
7668       unsigned ValueID = Record[0];
7669       uint64_t RawFlags = Record[1];
7670       unsigned InstCount = Record[2];
7671       uint64_t RawFunFlags = 0;
7672       unsigned NumRefs = Record[3];
7673       unsigned NumRORefs = 0, NumWORefs = 0;
7674       int RefListStartIndex = 4;
7675       if (Version >= 4) {
7676         RawFunFlags = Record[3];
7677         NumRefs = Record[4];
7678         RefListStartIndex = 5;
7679         if (Version >= 5) {
7680           NumRORefs = Record[5];
7681           RefListStartIndex = 6;
7682           if (Version >= 7) {
7683             NumWORefs = Record[6];
7684             RefListStartIndex = 7;
7685           }
7686         }
7687       }
7688 
7689       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7690       // The module path string ref set in the summary must be owned by the
7691       // index's module string table. Since we don't have a module path
7692       // string table section in the per-module index, we create a single
7693       // module path string table entry with an empty (0) ID to take
7694       // ownership.
7695       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7696       assert(Record.size() >= RefListStartIndex + NumRefs &&
7697              "Record size inconsistent with number of references");
7698       SmallVector<ValueInfo, 0> Refs = makeRefList(
7699           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7700       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7701       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7702       SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7703           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7704           IsOldProfileFormat, HasProfile, HasRelBF);
7705       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7706       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7707       // In order to save memory, only record the memprof summaries if this is
7708       // the prevailing copy of a symbol. The linker doesn't resolve local
7709       // linkage values so don't check whether those are prevailing.
7710       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7711       if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
7712           !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7713         PendingCallsites.clear();
7714         PendingAllocs.clear();
7715       }
7716       auto FS = std::make_unique<FunctionSummary>(
7717           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7718           std::move(Calls), std::move(PendingTypeTests),
7719           std::move(PendingTypeTestAssumeVCalls),
7720           std::move(PendingTypeCheckedLoadVCalls),
7721           std::move(PendingTypeTestAssumeConstVCalls),
7722           std::move(PendingTypeCheckedLoadConstVCalls),
7723           std::move(PendingParamAccesses), std::move(PendingCallsites),
7724           std::move(PendingAllocs));
7725       FS->setModulePath(getThisModule()->first());
7726       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7727       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7728                                      std::move(FS));
7729       break;
7730     }
7731     // FS_ALIAS: [valueid, flags, valueid]
7732     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7733     // they expect all aliasee summaries to be available.
7734     case bitc::FS_ALIAS: {
7735       unsigned ValueID = Record[0];
7736       uint64_t RawFlags = Record[1];
7737       unsigned AliaseeID = Record[2];
7738       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7739       auto AS = std::make_unique<AliasSummary>(Flags);
7740       // The module path string ref set in the summary must be owned by the
7741       // index's module string table. Since we don't have a module path
7742       // string table section in the per-module index, we create a single
7743       // module path string table entry with an empty (0) ID to take
7744       // ownership.
7745       AS->setModulePath(getThisModule()->first());
7746 
7747       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7748       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7749       if (!AliaseeInModule)
7750         return error("Alias expects aliasee summary to be parsed");
7751       AS->setAliasee(AliaseeVI, AliaseeInModule);
7752 
7753       auto GUID = getValueInfoFromValueId(ValueID);
7754       AS->setOriginalName(std::get<1>(GUID));
7755       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7756       break;
7757     }
7758     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7759     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7760       unsigned ValueID = Record[0];
7761       uint64_t RawFlags = Record[1];
7762       unsigned RefArrayStart = 2;
7763       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7764                                       /* WriteOnly */ false,
7765                                       /* Constant */ false,
7766                                       GlobalObject::VCallVisibilityPublic);
7767       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7768       if (Version >= 5) {
7769         GVF = getDecodedGVarFlags(Record[2]);
7770         RefArrayStart = 3;
7771       }
7772       SmallVector<ValueInfo, 0> Refs =
7773           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7774       auto FS =
7775           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7776       FS->setModulePath(getThisModule()->first());
7777       auto GUID = getValueInfoFromValueId(ValueID);
7778       FS->setOriginalName(std::get<1>(GUID));
7779       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7780       break;
7781     }
7782     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7783     //                        numrefs, numrefs x valueid,
7784     //                        n x (valueid, offset)]
7785     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7786       unsigned ValueID = Record[0];
7787       uint64_t RawFlags = Record[1];
7788       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7789       unsigned NumRefs = Record[3];
7790       unsigned RefListStartIndex = 4;
7791       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7792       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7793       SmallVector<ValueInfo, 0> Refs = makeRefList(
7794           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7795       VTableFuncList VTableFuncs;
7796       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7797         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7798         uint64_t Offset = Record[++I];
7799         VTableFuncs.push_back({Callee, Offset});
7800       }
7801       auto VS =
7802           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7803       VS->setModulePath(getThisModule()->first());
7804       VS->setVTableFuncs(VTableFuncs);
7805       auto GUID = getValueInfoFromValueId(ValueID);
7806       VS->setOriginalName(std::get<1>(GUID));
7807       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7808       break;
7809     }
7810     // FS_COMBINED is legacy and does not have support for the tail call flag.
7811     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7812     //               numrefs x valueid, n x (valueid)]
7813     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7814     //                       numrefs x valueid,
7815     //                       n x (valueid, hotness+tailcall flags)]
7816     case bitc::FS_COMBINED:
7817     case bitc::FS_COMBINED_PROFILE: {
7818       unsigned ValueID = Record[0];
7819       uint64_t ModuleId = Record[1];
7820       uint64_t RawFlags = Record[2];
7821       unsigned InstCount = Record[3];
7822       uint64_t RawFunFlags = 0;
7823       unsigned NumRefs = Record[4];
7824       unsigned NumRORefs = 0, NumWORefs = 0;
7825       int RefListStartIndex = 5;
7826 
7827       if (Version >= 4) {
7828         RawFunFlags = Record[4];
7829         RefListStartIndex = 6;
7830         size_t NumRefsIndex = 5;
7831         if (Version >= 5) {
7832           unsigned NumRORefsOffset = 1;
7833           RefListStartIndex = 7;
7834           if (Version >= 6) {
7835             NumRefsIndex = 6;
7836             RefListStartIndex = 8;
7837             if (Version >= 7) {
7838               RefListStartIndex = 9;
7839               NumWORefs = Record[8];
7840               NumRORefsOffset = 2;
7841             }
7842           }
7843           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7844         }
7845         NumRefs = Record[NumRefsIndex];
7846       }
7847 
7848       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7849       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7850       assert(Record.size() >= RefListStartIndex + NumRefs &&
7851              "Record size inconsistent with number of references");
7852       SmallVector<ValueInfo, 0> Refs = makeRefList(
7853           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7854       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7855       SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7856           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7857           IsOldProfileFormat, HasProfile, false);
7858       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7859       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7860       auto FS = std::make_unique<FunctionSummary>(
7861           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7862           std::move(Edges), std::move(PendingTypeTests),
7863           std::move(PendingTypeTestAssumeVCalls),
7864           std::move(PendingTypeCheckedLoadVCalls),
7865           std::move(PendingTypeTestAssumeConstVCalls),
7866           std::move(PendingTypeCheckedLoadConstVCalls),
7867           std::move(PendingParamAccesses), std::move(PendingCallsites),
7868           std::move(PendingAllocs));
7869       LastSeenSummary = FS.get();
7870       LastSeenGUID = VI.getGUID();
7871       FS->setModulePath(ModuleIdMap[ModuleId]);
7872       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7873       break;
7874     }
7875     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7876     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7877     // they expect all aliasee summaries to be available.
7878     case bitc::FS_COMBINED_ALIAS: {
7879       unsigned ValueID = Record[0];
7880       uint64_t ModuleId = Record[1];
7881       uint64_t RawFlags = Record[2];
7882       unsigned AliaseeValueId = Record[3];
7883       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7884       auto AS = std::make_unique<AliasSummary>(Flags);
7885       LastSeenSummary = AS.get();
7886       AS->setModulePath(ModuleIdMap[ModuleId]);
7887 
7888       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7889       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7890       AS->setAliasee(AliaseeVI, AliaseeInModule);
7891 
7892       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7893       LastSeenGUID = VI.getGUID();
7894       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7895       break;
7896     }
7897     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7898     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7899       unsigned ValueID = Record[0];
7900       uint64_t ModuleId = Record[1];
7901       uint64_t RawFlags = Record[2];
7902       unsigned RefArrayStart = 3;
7903       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7904                                       /* WriteOnly */ false,
7905                                       /* Constant */ false,
7906                                       GlobalObject::VCallVisibilityPublic);
7907       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7908       if (Version >= 5) {
7909         GVF = getDecodedGVarFlags(Record[3]);
7910         RefArrayStart = 4;
7911       }
7912       SmallVector<ValueInfo, 0> Refs =
7913           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7914       auto FS =
7915           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7916       LastSeenSummary = FS.get();
7917       FS->setModulePath(ModuleIdMap[ModuleId]);
7918       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7919       LastSeenGUID = VI.getGUID();
7920       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7921       break;
7922     }
7923     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7924     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7925       uint64_t OriginalName = Record[0];
7926       if (!LastSeenSummary)
7927         return error("Name attachment that does not follow a combined record");
7928       LastSeenSummary->setOriginalName(OriginalName);
7929       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7930       // Reset the LastSeenSummary
7931       LastSeenSummary = nullptr;
7932       LastSeenGUID = 0;
7933       break;
7934     }
7935     case bitc::FS_TYPE_TESTS:
7936       assert(PendingTypeTests.empty());
7937       llvm::append_range(PendingTypeTests, Record);
7938       break;
7939 
7940     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7941       assert(PendingTypeTestAssumeVCalls.empty());
7942       for (unsigned I = 0; I != Record.size(); I += 2)
7943         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7944       break;
7945 
7946     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7947       assert(PendingTypeCheckedLoadVCalls.empty());
7948       for (unsigned I = 0; I != Record.size(); I += 2)
7949         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7950       break;
7951 
7952     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7953       PendingTypeTestAssumeConstVCalls.push_back(
7954           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7955       break;
7956 
7957     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7958       PendingTypeCheckedLoadConstVCalls.push_back(
7959           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7960       break;
7961 
7962     case bitc::FS_CFI_FUNCTION_DEFS: {
7963       std::set<std::string, std::less<>> &CfiFunctionDefs =
7964           TheIndex.cfiFunctionDefs();
7965       for (unsigned I = 0; I != Record.size(); I += 2)
7966         CfiFunctionDefs.insert(
7967             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7968       break;
7969     }
7970 
7971     case bitc::FS_CFI_FUNCTION_DECLS: {
7972       std::set<std::string, std::less<>> &CfiFunctionDecls =
7973           TheIndex.cfiFunctionDecls();
7974       for (unsigned I = 0; I != Record.size(); I += 2)
7975         CfiFunctionDecls.insert(
7976             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7977       break;
7978     }
7979 
7980     case bitc::FS_TYPE_ID:
7981       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7982       break;
7983 
7984     case bitc::FS_TYPE_ID_METADATA:
7985       parseTypeIdCompatibleVtableSummaryRecord(Record);
7986       break;
7987 
7988     case bitc::FS_BLOCK_COUNT:
7989       TheIndex.addBlockCount(Record[0]);
7990       break;
7991 
7992     case bitc::FS_PARAM_ACCESS: {
7993       PendingParamAccesses = parseParamAccesses(Record);
7994       break;
7995     }
7996 
7997     case bitc::FS_STACK_IDS: { // [n x stackid]
7998       // Save stack ids in the reader to consult when adding stack ids from the
7999       // lists in the stack node and alloc node entries.
8000       StackIds = ArrayRef<uint64_t>(Record);
8001       break;
8002     }
8003 
8004     case bitc::FS_PERMODULE_CALLSITE_INFO: {
8005       unsigned ValueID = Record[0];
8006       SmallVector<unsigned> StackIdList;
8007       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
8008         assert(*R < StackIds.size());
8009         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
8010       }
8011       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8012       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
8013       break;
8014     }
8015 
8016     case bitc::FS_COMBINED_CALLSITE_INFO: {
8017       auto RecordIter = Record.begin();
8018       unsigned ValueID = *RecordIter++;
8019       unsigned NumStackIds = *RecordIter++;
8020       unsigned NumVersions = *RecordIter++;
8021       assert(Record.size() == 3 + NumStackIds + NumVersions);
8022       SmallVector<unsigned> StackIdList;
8023       for (unsigned J = 0; J < NumStackIds; J++) {
8024         assert(*RecordIter < StackIds.size());
8025         StackIdList.push_back(
8026             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
8027       }
8028       SmallVector<unsigned> Versions;
8029       for (unsigned J = 0; J < NumVersions; J++)
8030         Versions.push_back(*RecordIter++);
8031       ValueInfo VI = std::get<0>(
8032           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
8033       PendingCallsites.push_back(
8034           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8035       break;
8036     }
8037 
8038     case bitc::FS_ALLOC_CONTEXT_IDS: {
8039       // This is an array of 32-bit fixed-width values, holding each 64-bit
8040       // context id as a pair of adjacent (most significant first) 32-bit words.
8041       assert(Record.size() % 2 == 0);
8042       PendingContextIds.reserve(Record.size() / 2);
8043       for (auto R = Record.begin(); R != Record.end(); R += 2)
8044         PendingContextIds.push_back(*R << 32 | *(R + 1));
8045       break;
8046     }
8047 
8048     case bitc::FS_PERMODULE_ALLOC_INFO: {
8049       unsigned I = 0;
8050       std::vector<MIBInfo> MIBs;
8051       unsigned NumMIBs = 0;
8052       if (Version >= 10)
8053         NumMIBs = Record[I++];
8054       unsigned MIBsRead = 0;
8055       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8056              (Version < 10 && I < Record.size())) {
8057         assert(Record.size() - I >= 2);
8058         AllocationType AllocType = (AllocationType)Record[I++];
8059         unsigned NumStackEntries = Record[I++];
8060         assert(Record.size() - I >= NumStackEntries);
8061         SmallVector<unsigned> StackIdList;
8062         for (unsigned J = 0; J < NumStackEntries; J++) {
8063           assert(Record[I] < StackIds.size());
8064           StackIdList.push_back(
8065               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8066         }
8067         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8068       }
8069       // We either have nothing left or at least NumMIBs context size info
8070       // indices left (for the total sizes included when reporting of hinted
8071       // bytes is enabled).
8072       assert(I == Record.size() || Record.size() - I >= NumMIBs);
8073       std::vector<std::vector<ContextTotalSize>> AllContextSizes;
8074       if (I < Record.size()) {
8075         assert(!PendingContextIds.empty() &&
8076                "Missing context ids for alloc sizes");
8077         unsigned ContextIdIndex = 0;
8078         MIBsRead = 0;
8079         // The sizes are a linearized array of sizes, where for each MIB there
8080         // is 1 or more sizes (due to context trimming, each MIB in the metadata
8081         // and summarized here can correspond to more than one original context
8082         // from the profile).
8083         while (MIBsRead++ < NumMIBs) {
8084           // First read the number of contexts recorded for this MIB.
8085           unsigned NumContextSizeInfoEntries = Record[I++];
8086           assert(Record.size() - I >= NumContextSizeInfoEntries);
8087           std::vector<ContextTotalSize> ContextSizes;
8088           ContextSizes.reserve(NumContextSizeInfoEntries);
8089           for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) {
8090             assert(ContextIdIndex < PendingContextIds.size());
8091             // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS
8092             // should be in the same order as the total sizes.
8093             ContextSizes.push_back(
8094                 {PendingContextIds[ContextIdIndex++], Record[I++]});
8095           }
8096           AllContextSizes.push_back(std::move(ContextSizes));
8097         }
8098         PendingContextIds.clear();
8099       }
8100       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8101       if (!AllContextSizes.empty()) {
8102         assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size());
8103         PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes);
8104       }
8105       break;
8106     }
8107 
8108     case bitc::FS_COMBINED_ALLOC_INFO: {
8109       unsigned I = 0;
8110       std::vector<MIBInfo> MIBs;
8111       unsigned NumMIBs = Record[I++];
8112       unsigned NumVersions = Record[I++];
8113       unsigned MIBsRead = 0;
8114       while (MIBsRead++ < NumMIBs) {
8115         assert(Record.size() - I >= 2);
8116         AllocationType AllocType = (AllocationType)Record[I++];
8117         unsigned NumStackEntries = Record[I++];
8118         assert(Record.size() - I >= NumStackEntries);
8119         SmallVector<unsigned> StackIdList;
8120         for (unsigned J = 0; J < NumStackEntries; J++) {
8121           assert(Record[I] < StackIds.size());
8122           StackIdList.push_back(
8123               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8124         }
8125         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8126       }
8127       assert(Record.size() - I >= NumVersions);
8128       SmallVector<uint8_t> Versions;
8129       for (unsigned J = 0; J < NumVersions; J++)
8130         Versions.push_back(Record[I++]);
8131       assert(I == Record.size());
8132       PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs)));
8133       break;
8134     }
8135     }
8136   }
8137   llvm_unreachable("Exit infinite loop");
8138 }
8139 
8140 // Parse the  module string table block into the Index.
8141 // This populates the ModulePathStringTable map in the index.
8142 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8143   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8144     return Err;
8145 
8146   SmallVector<uint64_t, 64> Record;
8147 
8148   SmallString<128> ModulePath;
8149   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8150 
8151   while (true) {
8152     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8153     if (!MaybeEntry)
8154       return MaybeEntry.takeError();
8155     BitstreamEntry Entry = MaybeEntry.get();
8156 
8157     switch (Entry.Kind) {
8158     case BitstreamEntry::SubBlock: // Handled for us already.
8159     case BitstreamEntry::Error:
8160       return error("Malformed block");
8161     case BitstreamEntry::EndBlock:
8162       return Error::success();
8163     case BitstreamEntry::Record:
8164       // The interesting case.
8165       break;
8166     }
8167 
8168     Record.clear();
8169     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8170     if (!MaybeRecord)
8171       return MaybeRecord.takeError();
8172     switch (MaybeRecord.get()) {
8173     default: // Default behavior: ignore.
8174       break;
8175     case bitc::MST_CODE_ENTRY: {
8176       // MST_ENTRY: [modid, namechar x N]
8177       uint64_t ModuleId = Record[0];
8178 
8179       if (convertToString(Record, 1, ModulePath))
8180         return error("Invalid record");
8181 
8182       LastSeenModule = TheIndex.addModule(ModulePath);
8183       ModuleIdMap[ModuleId] = LastSeenModule->first();
8184 
8185       ModulePath.clear();
8186       break;
8187     }
8188     /// MST_CODE_HASH: [5*i32]
8189     case bitc::MST_CODE_HASH: {
8190       if (Record.size() != 5)
8191         return error("Invalid hash length " + Twine(Record.size()).str());
8192       if (!LastSeenModule)
8193         return error("Invalid hash that does not follow a module path");
8194       int Pos = 0;
8195       for (auto &Val : Record) {
8196         assert(!(Val >> 32) && "Unexpected high bits set");
8197         LastSeenModule->second[Pos++] = Val;
8198       }
8199       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8200       LastSeenModule = nullptr;
8201       break;
8202     }
8203     }
8204   }
8205   llvm_unreachable("Exit infinite loop");
8206 }
8207 
8208 namespace {
8209 
8210 // FIXME: This class is only here to support the transition to llvm::Error. It
8211 // will be removed once this transition is complete. Clients should prefer to
8212 // deal with the Error value directly, rather than converting to error_code.
8213 class BitcodeErrorCategoryType : public std::error_category {
8214   const char *name() const noexcept override {
8215     return "llvm.bitcode";
8216   }
8217 
8218   std::string message(int IE) const override {
8219     BitcodeError E = static_cast<BitcodeError>(IE);
8220     switch (E) {
8221     case BitcodeError::CorruptedBitcode:
8222       return "Corrupted bitcode";
8223     }
8224     llvm_unreachable("Unknown error type!");
8225   }
8226 };
8227 
8228 } // end anonymous namespace
8229 
8230 const std::error_category &llvm::BitcodeErrorCategory() {
8231   static BitcodeErrorCategoryType ErrorCategory;
8232   return ErrorCategory;
8233 }
8234 
8235 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8236                                             unsigned Block, unsigned RecordID) {
8237   if (Error Err = Stream.EnterSubBlock(Block))
8238     return std::move(Err);
8239 
8240   StringRef Strtab;
8241   while (true) {
8242     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8243     if (!MaybeEntry)
8244       return MaybeEntry.takeError();
8245     llvm::BitstreamEntry Entry = MaybeEntry.get();
8246 
8247     switch (Entry.Kind) {
8248     case BitstreamEntry::EndBlock:
8249       return Strtab;
8250 
8251     case BitstreamEntry::Error:
8252       return error("Malformed block");
8253 
8254     case BitstreamEntry::SubBlock:
8255       if (Error Err = Stream.SkipBlock())
8256         return std::move(Err);
8257       break;
8258 
8259     case BitstreamEntry::Record:
8260       StringRef Blob;
8261       SmallVector<uint64_t, 1> Record;
8262       Expected<unsigned> MaybeRecord =
8263           Stream.readRecord(Entry.ID, Record, &Blob);
8264       if (!MaybeRecord)
8265         return MaybeRecord.takeError();
8266       if (MaybeRecord.get() == RecordID)
8267         Strtab = Blob;
8268       break;
8269     }
8270   }
8271 }
8272 
8273 //===----------------------------------------------------------------------===//
8274 // External interface
8275 //===----------------------------------------------------------------------===//
8276 
8277 Expected<std::vector<BitcodeModule>>
8278 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8279   auto FOrErr = getBitcodeFileContents(Buffer);
8280   if (!FOrErr)
8281     return FOrErr.takeError();
8282   return std::move(FOrErr->Mods);
8283 }
8284 
8285 Expected<BitcodeFileContents>
8286 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8287   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8288   if (!StreamOrErr)
8289     return StreamOrErr.takeError();
8290   BitstreamCursor &Stream = *StreamOrErr;
8291 
8292   BitcodeFileContents F;
8293   while (true) {
8294     uint64_t BCBegin = Stream.getCurrentByteNo();
8295 
8296     // We may be consuming bitcode from a client that leaves garbage at the end
8297     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8298     // the end that there cannot possibly be another module, stop looking.
8299     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8300       return F;
8301 
8302     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8303     if (!MaybeEntry)
8304       return MaybeEntry.takeError();
8305     llvm::BitstreamEntry Entry = MaybeEntry.get();
8306 
8307     switch (Entry.Kind) {
8308     case BitstreamEntry::EndBlock:
8309     case BitstreamEntry::Error:
8310       return error("Malformed block");
8311 
8312     case BitstreamEntry::SubBlock: {
8313       uint64_t IdentificationBit = -1ull;
8314       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8315         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8316         if (Error Err = Stream.SkipBlock())
8317           return std::move(Err);
8318 
8319         {
8320           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8321           if (!MaybeEntry)
8322             return MaybeEntry.takeError();
8323           Entry = MaybeEntry.get();
8324         }
8325 
8326         if (Entry.Kind != BitstreamEntry::SubBlock ||
8327             Entry.ID != bitc::MODULE_BLOCK_ID)
8328           return error("Malformed block");
8329       }
8330 
8331       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8332         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8333         if (Error Err = Stream.SkipBlock())
8334           return std::move(Err);
8335 
8336         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8337                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8338                           Buffer.getBufferIdentifier(), IdentificationBit,
8339                           ModuleBit});
8340         continue;
8341       }
8342 
8343       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8344         Expected<StringRef> Strtab =
8345             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8346         if (!Strtab)
8347           return Strtab.takeError();
8348         // This string table is used by every preceding bitcode module that does
8349         // not have its own string table. A bitcode file may have multiple
8350         // string tables if it was created by binary concatenation, for example
8351         // with "llvm-cat -b".
8352         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8353           if (!I.Strtab.empty())
8354             break;
8355           I.Strtab = *Strtab;
8356         }
8357         // Similarly, the string table is used by every preceding symbol table;
8358         // normally there will be just one unless the bitcode file was created
8359         // by binary concatenation.
8360         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8361           F.StrtabForSymtab = *Strtab;
8362         continue;
8363       }
8364 
8365       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8366         Expected<StringRef> SymtabOrErr =
8367             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8368         if (!SymtabOrErr)
8369           return SymtabOrErr.takeError();
8370 
8371         // We can expect the bitcode file to have multiple symbol tables if it
8372         // was created by binary concatenation. In that case we silently
8373         // ignore any subsequent symbol tables, which is fine because this is a
8374         // low level function. The client is expected to notice that the number
8375         // of modules in the symbol table does not match the number of modules
8376         // in the input file and regenerate the symbol table.
8377         if (F.Symtab.empty())
8378           F.Symtab = *SymtabOrErr;
8379         continue;
8380       }
8381 
8382       if (Error Err = Stream.SkipBlock())
8383         return std::move(Err);
8384       continue;
8385     }
8386     case BitstreamEntry::Record:
8387       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8388         return std::move(E);
8389       continue;
8390     }
8391   }
8392 }
8393 
8394 /// Get a lazy one-at-time loading module from bitcode.
8395 ///
8396 /// This isn't always used in a lazy context.  In particular, it's also used by
8397 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8398 /// in forward-referenced functions from block address references.
8399 ///
8400 /// \param[in] MaterializeAll Set to \c true if we should materialize
8401 /// everything.
8402 Expected<std::unique_ptr<Module>>
8403 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8404                              bool ShouldLazyLoadMetadata, bool IsImporting,
8405                              ParserCallbacks Callbacks) {
8406   BitstreamCursor Stream(Buffer);
8407 
8408   std::string ProducerIdentification;
8409   if (IdentificationBit != -1ull) {
8410     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8411       return std::move(JumpFailed);
8412     if (Error E =
8413             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8414       return std::move(E);
8415   }
8416 
8417   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8418     return std::move(JumpFailed);
8419   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8420                               Context);
8421 
8422   std::unique_ptr<Module> M =
8423       std::make_unique<Module>(ModuleIdentifier, Context);
8424   M->setMaterializer(R);
8425 
8426   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8427   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8428                                       IsImporting, Callbacks))
8429     return std::move(Err);
8430 
8431   if (MaterializeAll) {
8432     // Read in the entire module, and destroy the BitcodeReader.
8433     if (Error Err = M->materializeAll())
8434       return std::move(Err);
8435   } else {
8436     // Resolve forward references from blockaddresses.
8437     if (Error Err = R->materializeForwardReferencedFunctions())
8438       return std::move(Err);
8439   }
8440 
8441   return std::move(M);
8442 }
8443 
8444 Expected<std::unique_ptr<Module>>
8445 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8446                              bool IsImporting, ParserCallbacks Callbacks) {
8447   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8448                        Callbacks);
8449 }
8450 
8451 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8452 // We don't use ModuleIdentifier here because the client may need to control the
8453 // module path used in the combined summary (e.g. when reading summaries for
8454 // regular LTO modules).
8455 Error BitcodeModule::readSummary(
8456     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8457     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8458   BitstreamCursor Stream(Buffer);
8459   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8460     return JumpFailed;
8461 
8462   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8463                                     ModulePath, IsPrevailing);
8464   return R.parseModule();
8465 }
8466 
8467 // Parse the specified bitcode buffer, returning the function info index.
8468 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8469   BitstreamCursor Stream(Buffer);
8470   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8471     return std::move(JumpFailed);
8472 
8473   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8474   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8475                                     ModuleIdentifier, 0);
8476 
8477   if (Error Err = R.parseModule())
8478     return std::move(Err);
8479 
8480   return std::move(Index);
8481 }
8482 
8483 static Expected<std::pair<bool, bool>>
8484 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8485                                                  unsigned ID,
8486                                                  BitcodeLTOInfo &LTOInfo) {
8487   if (Error Err = Stream.EnterSubBlock(ID))
8488     return std::move(Err);
8489   SmallVector<uint64_t, 64> Record;
8490 
8491   while (true) {
8492     BitstreamEntry Entry;
8493     std::pair<bool, bool> Result = {false,false};
8494     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8495       return std::move(E);
8496 
8497     switch (Entry.Kind) {
8498     case BitstreamEntry::SubBlock: // Handled for us already.
8499     case BitstreamEntry::Error:
8500       return error("Malformed block");
8501     case BitstreamEntry::EndBlock: {
8502       // If no flags record found, set both flags to false.
8503       return Result;
8504     }
8505     case BitstreamEntry::Record:
8506       // The interesting case.
8507       break;
8508     }
8509 
8510     // Look for the FS_FLAGS record.
8511     Record.clear();
8512     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8513     if (!MaybeBitCode)
8514       return MaybeBitCode.takeError();
8515     switch (MaybeBitCode.get()) {
8516     default: // Default behavior: ignore.
8517       break;
8518     case bitc::FS_FLAGS: { // [flags]
8519       uint64_t Flags = Record[0];
8520       // Scan flags.
8521       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8522 
8523       bool EnableSplitLTOUnit = Flags & 0x8;
8524       bool UnifiedLTO = Flags & 0x200;
8525       Result = {EnableSplitLTOUnit, UnifiedLTO};
8526 
8527       return Result;
8528     }
8529     }
8530   }
8531   llvm_unreachable("Exit infinite loop");
8532 }
8533 
8534 // Check if the given bitcode buffer contains a global value summary block.
8535 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8536   BitstreamCursor Stream(Buffer);
8537   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8538     return std::move(JumpFailed);
8539 
8540   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8541     return std::move(Err);
8542 
8543   while (true) {
8544     llvm::BitstreamEntry Entry;
8545     if (Error E = Stream.advance().moveInto(Entry))
8546       return std::move(E);
8547 
8548     switch (Entry.Kind) {
8549     case BitstreamEntry::Error:
8550       return error("Malformed block");
8551     case BitstreamEntry::EndBlock:
8552       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8553                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8554 
8555     case BitstreamEntry::SubBlock:
8556       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8557         BitcodeLTOInfo LTOInfo;
8558         Expected<std::pair<bool, bool>> Flags =
8559             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8560         if (!Flags)
8561           return Flags.takeError();
8562         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8563         LTOInfo.IsThinLTO = true;
8564         LTOInfo.HasSummary = true;
8565         return LTOInfo;
8566       }
8567 
8568       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8569         BitcodeLTOInfo LTOInfo;
8570         Expected<std::pair<bool, bool>> Flags =
8571             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8572         if (!Flags)
8573           return Flags.takeError();
8574         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8575         LTOInfo.IsThinLTO = false;
8576         LTOInfo.HasSummary = true;
8577         return LTOInfo;
8578       }
8579 
8580       // Ignore other sub-blocks.
8581       if (Error Err = Stream.SkipBlock())
8582         return std::move(Err);
8583       continue;
8584 
8585     case BitstreamEntry::Record:
8586       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8587         continue;
8588       else
8589         return StreamFailed.takeError();
8590     }
8591   }
8592 }
8593 
8594 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8595   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8596   if (!MsOrErr)
8597     return MsOrErr.takeError();
8598 
8599   if (MsOrErr->size() != 1)
8600     return error("Expected a single module");
8601 
8602   return (*MsOrErr)[0];
8603 }
8604 
8605 Expected<std::unique_ptr<Module>>
8606 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8607                            bool ShouldLazyLoadMetadata, bool IsImporting,
8608                            ParserCallbacks Callbacks) {
8609   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8610   if (!BM)
8611     return BM.takeError();
8612 
8613   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8614                            Callbacks);
8615 }
8616 
8617 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8618     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8619     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8620   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8621                                      IsImporting, Callbacks);
8622   if (MOrErr)
8623     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8624   return MOrErr;
8625 }
8626 
8627 Expected<std::unique_ptr<Module>>
8628 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8629   return getModuleImpl(Context, true, false, false, Callbacks);
8630   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8631   // written.  We must defer until the Module has been fully materialized.
8632 }
8633 
8634 Expected<std::unique_ptr<Module>>
8635 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8636                        ParserCallbacks Callbacks) {
8637   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8638   if (!BM)
8639     return BM.takeError();
8640 
8641   return BM->parseModule(Context, Callbacks);
8642 }
8643 
8644 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8645   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8646   if (!StreamOrErr)
8647     return StreamOrErr.takeError();
8648 
8649   return readTriple(*StreamOrErr);
8650 }
8651 
8652 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8653   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8654   if (!StreamOrErr)
8655     return StreamOrErr.takeError();
8656 
8657   return hasObjCCategory(*StreamOrErr);
8658 }
8659 
8660 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8661   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8662   if (!StreamOrErr)
8663     return StreamOrErr.takeError();
8664 
8665   return readIdentificationCode(*StreamOrErr);
8666 }
8667 
8668 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8669                                    ModuleSummaryIndex &CombinedIndex) {
8670   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8671   if (!BM)
8672     return BM.takeError();
8673 
8674   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8675 }
8676 
8677 Expected<std::unique_ptr<ModuleSummaryIndex>>
8678 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8679   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8680   if (!BM)
8681     return BM.takeError();
8682 
8683   return BM->getSummary();
8684 }
8685 
8686 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8687   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8688   if (!BM)
8689     return BM.takeError();
8690 
8691   return BM->getLTOInfo();
8692 }
8693 
8694 Expected<std::unique_ptr<ModuleSummaryIndex>>
8695 llvm::getModuleSummaryIndexForFile(StringRef Path,
8696                                    bool IgnoreEmptyThinLTOIndexFile) {
8697   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8698       MemoryBuffer::getFileOrSTDIN(Path);
8699   if (!FileOrErr)
8700     return errorCodeToError(FileOrErr.getError());
8701   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8702     return nullptr;
8703   return getModuleSummaryIndex(**FileOrErr);
8704 }
8705