1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 Optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return None; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 Optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 // Intrinsics which were remangled because of types rename 632 UpdatedIntrinsicMap RemangledIntrinsics; 633 634 // Several operations happen after the module header has been read, but 635 // before function bodies are processed. This keeps track of whether 636 // we've done this yet. 637 bool SeenFirstFunctionBody = false; 638 639 /// When function bodies are initially scanned, this map contains info about 640 /// where to find deferred function body in the stream. 641 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 642 643 /// When Metadata block is initially scanned when parsing the module, we may 644 /// choose to defer parsing of the metadata. This vector contains info about 645 /// which Metadata blocks are deferred. 646 std::vector<uint64_t> DeferredMetadataInfo; 647 648 /// These are basic blocks forward-referenced by block addresses. They are 649 /// inserted lazily into functions when they're loaded. The basic block ID is 650 /// its index into the vector. 651 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 652 std::deque<Function *> BasicBlockFwdRefQueue; 653 654 /// These are Functions that contain BlockAddresses which refer a different 655 /// Function. When parsing the different Function, queue Functions that refer 656 /// to the different Function. Those Functions must be materialized in order 657 /// to resolve their BlockAddress constants before the different Function 658 /// gets moved into another Module. 659 std::vector<Function *> BackwardRefFunctions; 660 661 /// Indicates that we are using a new encoding for instruction operands where 662 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 663 /// instruction number, for a more compact encoding. Some instruction 664 /// operands are not relative to the instruction ID: basic block numbers, and 665 /// types. Once the old style function blocks have been phased out, we would 666 /// not need this flag. 667 bool UseRelativeIDs = false; 668 669 /// True if all functions will be materialized, negating the need to process 670 /// (e.g.) blockaddress forward references. 671 bool WillMaterializeAllForwardRefs = false; 672 673 bool StripDebugInfo = false; 674 TBAAVerifier TBAAVerifyHelper; 675 676 std::vector<std::string> BundleTags; 677 SmallVector<SyncScope::ID, 8> SSIDs; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto( 692 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting, 693 DataLayoutCallbackTy DataLayoutCallback); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule( 825 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical. 889 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 890 ValueIdToValueInfoMap; 891 892 /// Map populated during module path string table parsing, from the 893 /// module ID to a string reference owned by the index's module 894 /// path string table, used to correlate with combined index 895 /// summary records. 896 DenseMap<uint64_t, StringRef> ModuleIdMap; 897 898 /// Original source file name recorded in a bitcode record. 899 std::string SourceFileName; 900 901 /// The string identifier given to this module by the client, normally the 902 /// path to the bitcode file. 903 StringRef ModulePath; 904 905 /// For per-module summary indexes, the unique numerical identifier given to 906 /// this module by the client. 907 unsigned ModuleId; 908 909 public: 910 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 911 ModuleSummaryIndex &TheIndex, 912 StringRef ModulePath, unsigned ModuleId); 913 914 Error parseModule(); 915 916 private: 917 void setValueGUID(uint64_t ValueID, StringRef ValueName, 918 GlobalValue::LinkageTypes Linkage, 919 StringRef SourceFileName); 920 Error parseValueSymbolTable( 921 uint64_t Offset, 922 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 923 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 924 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 925 bool IsOldProfileFormat, 926 bool HasProfile, 927 bool HasRelBF); 928 Error parseEntireSummary(unsigned ID); 929 Error parseModuleStringTable(); 930 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 931 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 932 TypeIdCompatibleVtableInfo &TypeId); 933 std::vector<FunctionSummary::ParamAccess> 934 parseParamAccesses(ArrayRef<uint64_t> Record); 935 936 std::pair<ValueInfo, GlobalValue::GUID> 937 getValueInfoFromValueId(unsigned ValueId); 938 939 void addThisModule(); 940 ModuleSummaryIndex::ModuleInfo *getThisModule(); 941 }; 942 943 } // end anonymous namespace 944 945 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 946 Error Err) { 947 if (Err) { 948 std::error_code EC; 949 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 950 EC = EIB.convertToErrorCode(); 951 Ctx.emitError(EIB.message()); 952 }); 953 return EC; 954 } 955 return std::error_code(); 956 } 957 958 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 959 StringRef ProducerIdentification, 960 LLVMContext &Context) 961 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 962 ValueList(this->Stream.SizeInBytes(), 963 [this](unsigned ValID, BasicBlock *InsertBB) { 964 return materializeValue(ValID, InsertBB); 965 }) { 966 this->ProducerIdentification = std::string(ProducerIdentification); 967 } 968 969 Error BitcodeReader::materializeForwardReferencedFunctions() { 970 if (WillMaterializeAllForwardRefs) 971 return Error::success(); 972 973 // Prevent recursion. 974 WillMaterializeAllForwardRefs = true; 975 976 while (!BasicBlockFwdRefQueue.empty()) { 977 Function *F = BasicBlockFwdRefQueue.front(); 978 BasicBlockFwdRefQueue.pop_front(); 979 assert(F && "Expected valid function"); 980 if (!BasicBlockFwdRefs.count(F)) 981 // Already materialized. 982 continue; 983 984 // Check for a function that isn't materializable to prevent an infinite 985 // loop. When parsing a blockaddress stored in a global variable, there 986 // isn't a trivial way to check if a function will have a body without a 987 // linear search through FunctionsWithBodies, so just check it here. 988 if (!F->isMaterializable()) 989 return error("Never resolved function from blockaddress"); 990 991 // Try to materialize F. 992 if (Error Err = materialize(F)) 993 return Err; 994 } 995 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 996 997 for (Function *F : BackwardRefFunctions) 998 if (Error Err = materialize(F)) 999 return Err; 1000 BackwardRefFunctions.clear(); 1001 1002 // Reset state. 1003 WillMaterializeAllForwardRefs = false; 1004 return Error::success(); 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Helper functions to implement forward reference resolution, etc. 1009 //===----------------------------------------------------------------------===// 1010 1011 static bool hasImplicitComdat(size_t Val) { 1012 switch (Val) { 1013 default: 1014 return false; 1015 case 1: // Old WeakAnyLinkage 1016 case 4: // Old LinkOnceAnyLinkage 1017 case 10: // Old WeakODRLinkage 1018 case 11: // Old LinkOnceODRLinkage 1019 return true; 1020 } 1021 } 1022 1023 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1024 switch (Val) { 1025 default: // Map unknown/new linkages to external 1026 case 0: 1027 return GlobalValue::ExternalLinkage; 1028 case 2: 1029 return GlobalValue::AppendingLinkage; 1030 case 3: 1031 return GlobalValue::InternalLinkage; 1032 case 5: 1033 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1034 case 6: 1035 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1036 case 7: 1037 return GlobalValue::ExternalWeakLinkage; 1038 case 8: 1039 return GlobalValue::CommonLinkage; 1040 case 9: 1041 return GlobalValue::PrivateLinkage; 1042 case 12: 1043 return GlobalValue::AvailableExternallyLinkage; 1044 case 13: 1045 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1046 case 14: 1047 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1048 case 15: 1049 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1050 case 1: // Old value with implicit comdat. 1051 case 16: 1052 return GlobalValue::WeakAnyLinkage; 1053 case 10: // Old value with implicit comdat. 1054 case 17: 1055 return GlobalValue::WeakODRLinkage; 1056 case 4: // Old value with implicit comdat. 1057 case 18: 1058 return GlobalValue::LinkOnceAnyLinkage; 1059 case 11: // Old value with implicit comdat. 1060 case 19: 1061 return GlobalValue::LinkOnceODRLinkage; 1062 } 1063 } 1064 1065 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1066 FunctionSummary::FFlags Flags; 1067 Flags.ReadNone = RawFlags & 0x1; 1068 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1069 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1070 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1071 Flags.NoInline = (RawFlags >> 4) & 0x1; 1072 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1073 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1074 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1075 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1076 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1077 return Flags; 1078 } 1079 1080 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1081 // 1082 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1083 // visibility: [8, 10). 1084 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1085 uint64_t Version) { 1086 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1087 // like getDecodedLinkage() above. Any future change to the linkage enum and 1088 // to getDecodedLinkage() will need to be taken into account here as above. 1089 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1090 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1091 RawFlags = RawFlags >> 4; 1092 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1093 // The Live flag wasn't introduced until version 3. For dead stripping 1094 // to work correctly on earlier versions, we must conservatively treat all 1095 // values as live. 1096 bool Live = (RawFlags & 0x2) || Version < 3; 1097 bool Local = (RawFlags & 0x4); 1098 bool AutoHide = (RawFlags & 0x8); 1099 1100 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1101 Live, Local, AutoHide); 1102 } 1103 1104 // Decode the flags for GlobalVariable in the summary 1105 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1106 return GlobalVarSummary::GVarFlags( 1107 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1108 (RawFlags & 0x4) ? true : false, 1109 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1110 } 1111 1112 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1113 switch (Val) { 1114 default: // Map unknown visibilities to default. 1115 case 0: return GlobalValue::DefaultVisibility; 1116 case 1: return GlobalValue::HiddenVisibility; 1117 case 2: return GlobalValue::ProtectedVisibility; 1118 } 1119 } 1120 1121 static GlobalValue::DLLStorageClassTypes 1122 getDecodedDLLStorageClass(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown values to default. 1125 case 0: return GlobalValue::DefaultStorageClass; 1126 case 1: return GlobalValue::DLLImportStorageClass; 1127 case 2: return GlobalValue::DLLExportStorageClass; 1128 } 1129 } 1130 1131 static bool getDecodedDSOLocal(unsigned Val) { 1132 switch(Val) { 1133 default: // Map unknown values to preemptable. 1134 case 0: return false; 1135 case 1: return true; 1136 } 1137 } 1138 1139 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1140 switch (Val) { 1141 case 0: return GlobalVariable::NotThreadLocal; 1142 default: // Map unknown non-zero value to general dynamic. 1143 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1144 case 2: return GlobalVariable::LocalDynamicTLSModel; 1145 case 3: return GlobalVariable::InitialExecTLSModel; 1146 case 4: return GlobalVariable::LocalExecTLSModel; 1147 } 1148 } 1149 1150 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1151 switch (Val) { 1152 default: // Map unknown to UnnamedAddr::None. 1153 case 0: return GlobalVariable::UnnamedAddr::None; 1154 case 1: return GlobalVariable::UnnamedAddr::Global; 1155 case 2: return GlobalVariable::UnnamedAddr::Local; 1156 } 1157 } 1158 1159 static int getDecodedCastOpcode(unsigned Val) { 1160 switch (Val) { 1161 default: return -1; 1162 case bitc::CAST_TRUNC : return Instruction::Trunc; 1163 case bitc::CAST_ZEXT : return Instruction::ZExt; 1164 case bitc::CAST_SEXT : return Instruction::SExt; 1165 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1166 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1167 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1168 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1169 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1170 case bitc::CAST_FPEXT : return Instruction::FPExt; 1171 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1172 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1173 case bitc::CAST_BITCAST : return Instruction::BitCast; 1174 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1175 } 1176 } 1177 1178 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1179 bool IsFP = Ty->isFPOrFPVectorTy(); 1180 // UnOps are only valid for int/fp or vector of int/fp types 1181 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1182 return -1; 1183 1184 switch (Val) { 1185 default: 1186 return -1; 1187 case bitc::UNOP_FNEG: 1188 return IsFP ? Instruction::FNeg : -1; 1189 } 1190 } 1191 1192 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1193 bool IsFP = Ty->isFPOrFPVectorTy(); 1194 // BinOps are only valid for int/fp or vector of int/fp types 1195 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1196 return -1; 1197 1198 switch (Val) { 1199 default: 1200 return -1; 1201 case bitc::BINOP_ADD: 1202 return IsFP ? Instruction::FAdd : Instruction::Add; 1203 case bitc::BINOP_SUB: 1204 return IsFP ? Instruction::FSub : Instruction::Sub; 1205 case bitc::BINOP_MUL: 1206 return IsFP ? Instruction::FMul : Instruction::Mul; 1207 case bitc::BINOP_UDIV: 1208 return IsFP ? -1 : Instruction::UDiv; 1209 case bitc::BINOP_SDIV: 1210 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1211 case bitc::BINOP_UREM: 1212 return IsFP ? -1 : Instruction::URem; 1213 case bitc::BINOP_SREM: 1214 return IsFP ? Instruction::FRem : Instruction::SRem; 1215 case bitc::BINOP_SHL: 1216 return IsFP ? -1 : Instruction::Shl; 1217 case bitc::BINOP_LSHR: 1218 return IsFP ? -1 : Instruction::LShr; 1219 case bitc::BINOP_ASHR: 1220 return IsFP ? -1 : Instruction::AShr; 1221 case bitc::BINOP_AND: 1222 return IsFP ? -1 : Instruction::And; 1223 case bitc::BINOP_OR: 1224 return IsFP ? -1 : Instruction::Or; 1225 case bitc::BINOP_XOR: 1226 return IsFP ? -1 : Instruction::Xor; 1227 } 1228 } 1229 1230 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1231 switch (Val) { 1232 default: return AtomicRMWInst::BAD_BINOP; 1233 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1234 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1235 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1236 case bitc::RMW_AND: return AtomicRMWInst::And; 1237 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1238 case bitc::RMW_OR: return AtomicRMWInst::Or; 1239 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1240 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1241 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1242 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1243 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1244 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1245 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1246 } 1247 } 1248 1249 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1250 switch (Val) { 1251 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1252 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1253 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1254 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1255 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1256 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1257 default: // Map unknown orderings to sequentially-consistent. 1258 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1259 } 1260 } 1261 1262 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1263 switch (Val) { 1264 default: // Map unknown selection kinds to any. 1265 case bitc::COMDAT_SELECTION_KIND_ANY: 1266 return Comdat::Any; 1267 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1268 return Comdat::ExactMatch; 1269 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1270 return Comdat::Largest; 1271 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1272 return Comdat::NoDeduplicate; 1273 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1274 return Comdat::SameSize; 1275 } 1276 } 1277 1278 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1279 FastMathFlags FMF; 1280 if (0 != (Val & bitc::UnsafeAlgebra)) 1281 FMF.setFast(); 1282 if (0 != (Val & bitc::AllowReassoc)) 1283 FMF.setAllowReassoc(); 1284 if (0 != (Val & bitc::NoNaNs)) 1285 FMF.setNoNaNs(); 1286 if (0 != (Val & bitc::NoInfs)) 1287 FMF.setNoInfs(); 1288 if (0 != (Val & bitc::NoSignedZeros)) 1289 FMF.setNoSignedZeros(); 1290 if (0 != (Val & bitc::AllowReciprocal)) 1291 FMF.setAllowReciprocal(); 1292 if (0 != (Val & bitc::AllowContract)) 1293 FMF.setAllowContract(true); 1294 if (0 != (Val & bitc::ApproxFunc)) 1295 FMF.setApproxFunc(); 1296 return FMF; 1297 } 1298 1299 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1300 switch (Val) { 1301 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1302 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1303 } 1304 } 1305 1306 Type *BitcodeReader::getTypeByID(unsigned ID) { 1307 // The type table size is always specified correctly. 1308 if (ID >= TypeList.size()) 1309 return nullptr; 1310 1311 if (Type *Ty = TypeList[ID]) 1312 return Ty; 1313 1314 // If we have a forward reference, the only possible case is when it is to a 1315 // named struct. Just create a placeholder for now. 1316 return TypeList[ID] = createIdentifiedStructType(Context); 1317 } 1318 1319 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1320 auto It = ContainedTypeIDs.find(ID); 1321 if (It == ContainedTypeIDs.end()) 1322 return InvalidTypeID; 1323 1324 if (Idx >= It->second.size()) 1325 return InvalidTypeID; 1326 1327 return It->second[Idx]; 1328 } 1329 1330 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1331 if (ID >= TypeList.size()) 1332 return nullptr; 1333 1334 Type *Ty = TypeList[ID]; 1335 if (!Ty->isPointerTy()) 1336 return nullptr; 1337 1338 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1339 if (!ElemTy) 1340 return nullptr; 1341 1342 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1343 "Incorrect element type"); 1344 return ElemTy; 1345 } 1346 1347 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1348 ArrayRef<unsigned> ChildTypeIDs) { 1349 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1350 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1351 auto It = VirtualTypeIDs.find(CacheKey); 1352 if (It != VirtualTypeIDs.end()) { 1353 // The cmpxchg return value is the only place we need more than one 1354 // contained type ID, however the second one will always be the same (i1), 1355 // so we don't need to include it in the cache key. This asserts that the 1356 // contained types are indeed as expected and there are no collisions. 1357 assert((ChildTypeIDs.empty() || 1358 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1359 "Incorrect cached contained type IDs"); 1360 return It->second; 1361 } 1362 1363 #ifndef NDEBUG 1364 if (!Ty->isOpaquePointerTy()) { 1365 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1366 "Wrong number of contained types"); 1367 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1368 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1369 "Incorrect contained type ID"); 1370 } 1371 } 1372 #endif 1373 1374 unsigned TypeID = TypeList.size(); 1375 TypeList.push_back(Ty); 1376 if (!ChildTypeIDs.empty()) 1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1378 VirtualTypeIDs.insert({CacheKey, TypeID}); 1379 return TypeID; 1380 } 1381 1382 static bool isConstExprSupported(uint8_t Opcode) { 1383 // These are not real constant expressions, always consider them supported. 1384 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1385 return true; 1386 1387 return !ExpandConstantExprs; 1388 } 1389 1390 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1391 BasicBlock *InsertBB) { 1392 // Quickly handle the case where there is no BitcodeConstant to resolve. 1393 if (StartValID < ValueList.size() && ValueList[StartValID] && 1394 !isa<BitcodeConstant>(ValueList[StartValID])) 1395 return ValueList[StartValID]; 1396 1397 SmallDenseMap<unsigned, Value *> MaterializedValues; 1398 SmallVector<unsigned> Worklist; 1399 Worklist.push_back(StartValID); 1400 while (!Worklist.empty()) { 1401 unsigned ValID = Worklist.back(); 1402 if (MaterializedValues.count(ValID)) { 1403 // Duplicate expression that was already handled. 1404 Worklist.pop_back(); 1405 continue; 1406 } 1407 1408 if (ValID >= ValueList.size() || !ValueList[ValID]) 1409 return error("Invalid value ID"); 1410 1411 Value *V = ValueList[ValID]; 1412 auto *BC = dyn_cast<BitcodeConstant>(V); 1413 if (!BC) { 1414 MaterializedValues.insert({ValID, V}); 1415 Worklist.pop_back(); 1416 continue; 1417 } 1418 1419 // Iterate in reverse, so values will get popped from the worklist in 1420 // expected order. 1421 SmallVector<Value *> Ops; 1422 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1423 auto It = MaterializedValues.find(OpID); 1424 if (It != MaterializedValues.end()) 1425 Ops.push_back(It->second); 1426 else 1427 Worklist.push_back(OpID); 1428 } 1429 1430 // Some expressions have not been resolved yet, handle them first and then 1431 // revisit this one. 1432 if (Ops.size() != BC->getOperandIDs().size()) 1433 continue; 1434 std::reverse(Ops.begin(), Ops.end()); 1435 1436 SmallVector<Constant *> ConstOps; 1437 for (Value *Op : Ops) 1438 if (auto *C = dyn_cast<Constant>(Op)) 1439 ConstOps.push_back(C); 1440 1441 // Materialize as constant expression if possible. 1442 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1443 Constant *C; 1444 if (Instruction::isCast(BC->Opcode)) { 1445 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1446 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1447 C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags); 1448 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1449 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1450 } else { 1451 switch (BC->Opcode) { 1452 case BitcodeConstant::NoCFIOpcode: { 1453 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1454 if (!GV) 1455 return error("no_cfi operand must be GlobalValue"); 1456 C = NoCFIValue::get(GV); 1457 break; 1458 } 1459 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1460 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1461 if (!GV) 1462 return error("dso_local operand must be GlobalValue"); 1463 C = DSOLocalEquivalent::get(GV); 1464 break; 1465 } 1466 case BitcodeConstant::BlockAddressOpcode: { 1467 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1468 if (!Fn) 1469 return error("blockaddress operand must be a function"); 1470 1471 // If the function is already parsed we can insert the block address 1472 // right away. 1473 BasicBlock *BB; 1474 unsigned BBID = BC->Extra; 1475 if (!BBID) 1476 // Invalid reference to entry block. 1477 return error("Invalid ID"); 1478 if (!Fn->empty()) { 1479 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1480 for (size_t I = 0, E = BBID; I != E; ++I) { 1481 if (BBI == BBE) 1482 return error("Invalid ID"); 1483 ++BBI; 1484 } 1485 BB = &*BBI; 1486 } else { 1487 // Otherwise insert a placeholder and remember it so it can be 1488 // inserted when the function is parsed. 1489 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1490 if (FwdBBs.empty()) 1491 BasicBlockFwdRefQueue.push_back(Fn); 1492 if (FwdBBs.size() < BBID + 1) 1493 FwdBBs.resize(BBID + 1); 1494 if (!FwdBBs[BBID]) 1495 FwdBBs[BBID] = BasicBlock::Create(Context); 1496 BB = FwdBBs[BBID]; 1497 } 1498 C = BlockAddress::get(Fn, BB); 1499 break; 1500 } 1501 case BitcodeConstant::ConstantStructOpcode: 1502 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1503 break; 1504 case BitcodeConstant::ConstantArrayOpcode: 1505 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1506 break; 1507 case BitcodeConstant::ConstantVectorOpcode: 1508 C = ConstantVector::get(ConstOps); 1509 break; 1510 case Instruction::ICmp: 1511 case Instruction::FCmp: 1512 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1513 break; 1514 case Instruction::GetElementPtr: 1515 C = ConstantExpr::getGetElementPtr( 1516 BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(), 1517 BC->Flags, BC->getInRangeIndex()); 1518 break; 1519 case Instruction::Select: 1520 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1521 break; 1522 case Instruction::ExtractElement: 1523 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1524 break; 1525 case Instruction::InsertElement: 1526 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1527 ConstOps[2]); 1528 break; 1529 case Instruction::ShuffleVector: { 1530 SmallVector<int, 16> Mask; 1531 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1532 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1533 break; 1534 } 1535 default: 1536 llvm_unreachable("Unhandled bitcode constant"); 1537 } 1538 } 1539 1540 // Cache resolved constant. 1541 ValueList.replaceValueWithoutRAUW(ValID, C); 1542 MaterializedValues.insert({ValID, C}); 1543 Worklist.pop_back(); 1544 continue; 1545 } 1546 1547 if (!InsertBB) 1548 return error(Twine("Value referenced by initializer is an unsupported " 1549 "constant expression of type ") + 1550 BC->getOpcodeName()); 1551 1552 // Materialize as instructions if necessary. 1553 Instruction *I; 1554 if (Instruction::isCast(BC->Opcode)) { 1555 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1556 BC->getType(), "constexpr", InsertBB); 1557 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1558 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1559 "constexpr", InsertBB); 1560 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1561 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1562 Ops[1], "constexpr", InsertBB); 1563 if (isa<OverflowingBinaryOperator>(I)) { 1564 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1565 I->setHasNoSignedWrap(); 1566 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1567 I->setHasNoUnsignedWrap(); 1568 } 1569 if (isa<PossiblyExactOperator>(I) && 1570 (BC->Flags & PossiblyExactOperator::IsExact)) 1571 I->setIsExact(); 1572 } else { 1573 switch (BC->Opcode) { 1574 case BitcodeConstant::ConstantStructOpcode: 1575 case BitcodeConstant::ConstantArrayOpcode: 1576 case BitcodeConstant::ConstantVectorOpcode: { 1577 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1578 Value *V = PoisonValue::get(BC->getType()); 1579 for (auto Pair : enumerate(Ops)) { 1580 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1581 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1582 InsertBB); 1583 } 1584 I = cast<Instruction>(V); 1585 break; 1586 } 1587 case Instruction::ICmp: 1588 case Instruction::FCmp: 1589 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1590 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1591 "constexpr", InsertBB); 1592 break; 1593 case Instruction::GetElementPtr: 1594 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1595 makeArrayRef(Ops).drop_front(), 1596 "constexpr", InsertBB); 1597 if (BC->Flags) 1598 cast<GetElementPtrInst>(I)->setIsInBounds(); 1599 break; 1600 case Instruction::Select: 1601 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1602 break; 1603 case Instruction::ExtractElement: 1604 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1605 break; 1606 case Instruction::InsertElement: 1607 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1608 InsertBB); 1609 break; 1610 case Instruction::ShuffleVector: 1611 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1612 InsertBB); 1613 break; 1614 default: 1615 llvm_unreachable("Unhandled bitcode constant"); 1616 } 1617 } 1618 1619 MaterializedValues.insert({ValID, I}); 1620 Worklist.pop_back(); 1621 } 1622 1623 return MaterializedValues[StartValID]; 1624 } 1625 1626 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1627 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1628 if (!MaybeV) 1629 return MaybeV.takeError(); 1630 1631 // Result must be Constant if InsertBB is nullptr. 1632 return cast<Constant>(MaybeV.get()); 1633 } 1634 1635 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1636 StringRef Name) { 1637 auto *Ret = StructType::create(Context, Name); 1638 IdentifiedStructTypes.push_back(Ret); 1639 return Ret; 1640 } 1641 1642 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1643 auto *Ret = StructType::create(Context); 1644 IdentifiedStructTypes.push_back(Ret); 1645 return Ret; 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // Functions for parsing blocks from the bitcode file 1650 //===----------------------------------------------------------------------===// 1651 1652 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1653 switch (Val) { 1654 case Attribute::EndAttrKinds: 1655 case Attribute::EmptyKey: 1656 case Attribute::TombstoneKey: 1657 llvm_unreachable("Synthetic enumerators which should never get here"); 1658 1659 case Attribute::None: return 0; 1660 case Attribute::ZExt: return 1 << 0; 1661 case Attribute::SExt: return 1 << 1; 1662 case Attribute::NoReturn: return 1 << 2; 1663 case Attribute::InReg: return 1 << 3; 1664 case Attribute::StructRet: return 1 << 4; 1665 case Attribute::NoUnwind: return 1 << 5; 1666 case Attribute::NoAlias: return 1 << 6; 1667 case Attribute::ByVal: return 1 << 7; 1668 case Attribute::Nest: return 1 << 8; 1669 case Attribute::ReadNone: return 1 << 9; 1670 case Attribute::ReadOnly: return 1 << 10; 1671 case Attribute::NoInline: return 1 << 11; 1672 case Attribute::AlwaysInline: return 1 << 12; 1673 case Attribute::OptimizeForSize: return 1 << 13; 1674 case Attribute::StackProtect: return 1 << 14; 1675 case Attribute::StackProtectReq: return 1 << 15; 1676 case Attribute::Alignment: return 31 << 16; 1677 case Attribute::NoCapture: return 1 << 21; 1678 case Attribute::NoRedZone: return 1 << 22; 1679 case Attribute::NoImplicitFloat: return 1 << 23; 1680 case Attribute::Naked: return 1 << 24; 1681 case Attribute::InlineHint: return 1 << 25; 1682 case Attribute::StackAlignment: return 7 << 26; 1683 case Attribute::ReturnsTwice: return 1 << 29; 1684 case Attribute::UWTable: return 1 << 30; 1685 case Attribute::NonLazyBind: return 1U << 31; 1686 case Attribute::SanitizeAddress: return 1ULL << 32; 1687 case Attribute::MinSize: return 1ULL << 33; 1688 case Attribute::NoDuplicate: return 1ULL << 34; 1689 case Attribute::StackProtectStrong: return 1ULL << 35; 1690 case Attribute::SanitizeThread: return 1ULL << 36; 1691 case Attribute::SanitizeMemory: return 1ULL << 37; 1692 case Attribute::NoBuiltin: return 1ULL << 38; 1693 case Attribute::Returned: return 1ULL << 39; 1694 case Attribute::Cold: return 1ULL << 40; 1695 case Attribute::Builtin: return 1ULL << 41; 1696 case Attribute::OptimizeNone: return 1ULL << 42; 1697 case Attribute::InAlloca: return 1ULL << 43; 1698 case Attribute::NonNull: return 1ULL << 44; 1699 case Attribute::JumpTable: return 1ULL << 45; 1700 case Attribute::Convergent: return 1ULL << 46; 1701 case Attribute::SafeStack: return 1ULL << 47; 1702 case Attribute::NoRecurse: return 1ULL << 48; 1703 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1704 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1705 case Attribute::SwiftSelf: return 1ULL << 51; 1706 case Attribute::SwiftError: return 1ULL << 52; 1707 case Attribute::WriteOnly: return 1ULL << 53; 1708 case Attribute::Speculatable: return 1ULL << 54; 1709 case Attribute::StrictFP: return 1ULL << 55; 1710 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1711 case Attribute::NoCfCheck: return 1ULL << 57; 1712 case Attribute::OptForFuzzing: return 1ULL << 58; 1713 case Attribute::ShadowCallStack: return 1ULL << 59; 1714 case Attribute::SpeculativeLoadHardening: 1715 return 1ULL << 60; 1716 case Attribute::ImmArg: 1717 return 1ULL << 61; 1718 case Attribute::WillReturn: 1719 return 1ULL << 62; 1720 case Attribute::NoFree: 1721 return 1ULL << 63; 1722 default: 1723 // Other attributes are not supported in the raw format, 1724 // as we ran out of space. 1725 return 0; 1726 } 1727 llvm_unreachable("Unsupported attribute type"); 1728 } 1729 1730 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1731 if (!Val) return; 1732 1733 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1734 I = Attribute::AttrKind(I + 1)) { 1735 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1736 if (I == Attribute::Alignment) 1737 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1738 else if (I == Attribute::StackAlignment) 1739 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1740 else if (Attribute::isTypeAttrKind(I)) 1741 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1742 else 1743 B.addAttribute(I); 1744 } 1745 } 1746 } 1747 1748 /// This fills an AttrBuilder object with the LLVM attributes that have 1749 /// been decoded from the given integer. This function must stay in sync with 1750 /// 'encodeLLVMAttributesForBitcode'. 1751 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1752 uint64_t EncodedAttrs) { 1753 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1754 // the bits above 31 down by 11 bits. 1755 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1756 assert((!Alignment || isPowerOf2_32(Alignment)) && 1757 "Alignment must be a power of two."); 1758 1759 if (Alignment) 1760 B.addAlignmentAttr(Alignment); 1761 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1762 (EncodedAttrs & 0xffff)); 1763 } 1764 1765 Error BitcodeReader::parseAttributeBlock() { 1766 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1767 return Err; 1768 1769 if (!MAttributes.empty()) 1770 return error("Invalid multiple blocks"); 1771 1772 SmallVector<uint64_t, 64> Record; 1773 1774 SmallVector<AttributeList, 8> Attrs; 1775 1776 // Read all the records. 1777 while (true) { 1778 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1779 if (!MaybeEntry) 1780 return MaybeEntry.takeError(); 1781 BitstreamEntry Entry = MaybeEntry.get(); 1782 1783 switch (Entry.Kind) { 1784 case BitstreamEntry::SubBlock: // Handled for us already. 1785 case BitstreamEntry::Error: 1786 return error("Malformed block"); 1787 case BitstreamEntry::EndBlock: 1788 return Error::success(); 1789 case BitstreamEntry::Record: 1790 // The interesting case. 1791 break; 1792 } 1793 1794 // Read a record. 1795 Record.clear(); 1796 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1797 if (!MaybeRecord) 1798 return MaybeRecord.takeError(); 1799 switch (MaybeRecord.get()) { 1800 default: // Default behavior: ignore. 1801 break; 1802 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1803 // Deprecated, but still needed to read old bitcode files. 1804 if (Record.size() & 1) 1805 return error("Invalid parameter attribute record"); 1806 1807 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1808 AttrBuilder B(Context); 1809 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1810 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1811 } 1812 1813 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1814 Attrs.clear(); 1815 break; 1816 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1817 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1818 Attrs.push_back(MAttributeGroups[Record[i]]); 1819 1820 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1821 Attrs.clear(); 1822 break; 1823 } 1824 } 1825 } 1826 1827 // Returns Attribute::None on unrecognized codes. 1828 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1829 switch (Code) { 1830 default: 1831 return Attribute::None; 1832 case bitc::ATTR_KIND_ALIGNMENT: 1833 return Attribute::Alignment; 1834 case bitc::ATTR_KIND_ALWAYS_INLINE: 1835 return Attribute::AlwaysInline; 1836 case bitc::ATTR_KIND_ARGMEMONLY: 1837 return Attribute::ArgMemOnly; 1838 case bitc::ATTR_KIND_BUILTIN: 1839 return Attribute::Builtin; 1840 case bitc::ATTR_KIND_BY_VAL: 1841 return Attribute::ByVal; 1842 case bitc::ATTR_KIND_IN_ALLOCA: 1843 return Attribute::InAlloca; 1844 case bitc::ATTR_KIND_COLD: 1845 return Attribute::Cold; 1846 case bitc::ATTR_KIND_CONVERGENT: 1847 return Attribute::Convergent; 1848 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1849 return Attribute::DisableSanitizerInstrumentation; 1850 case bitc::ATTR_KIND_ELEMENTTYPE: 1851 return Attribute::ElementType; 1852 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1853 return Attribute::InaccessibleMemOnly; 1854 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1855 return Attribute::InaccessibleMemOrArgMemOnly; 1856 case bitc::ATTR_KIND_INLINE_HINT: 1857 return Attribute::InlineHint; 1858 case bitc::ATTR_KIND_IN_REG: 1859 return Attribute::InReg; 1860 case bitc::ATTR_KIND_JUMP_TABLE: 1861 return Attribute::JumpTable; 1862 case bitc::ATTR_KIND_MIN_SIZE: 1863 return Attribute::MinSize; 1864 case bitc::ATTR_KIND_NAKED: 1865 return Attribute::Naked; 1866 case bitc::ATTR_KIND_NEST: 1867 return Attribute::Nest; 1868 case bitc::ATTR_KIND_NO_ALIAS: 1869 return Attribute::NoAlias; 1870 case bitc::ATTR_KIND_NO_BUILTIN: 1871 return Attribute::NoBuiltin; 1872 case bitc::ATTR_KIND_NO_CALLBACK: 1873 return Attribute::NoCallback; 1874 case bitc::ATTR_KIND_NO_CAPTURE: 1875 return Attribute::NoCapture; 1876 case bitc::ATTR_KIND_NO_DUPLICATE: 1877 return Attribute::NoDuplicate; 1878 case bitc::ATTR_KIND_NOFREE: 1879 return Attribute::NoFree; 1880 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1881 return Attribute::NoImplicitFloat; 1882 case bitc::ATTR_KIND_NO_INLINE: 1883 return Attribute::NoInline; 1884 case bitc::ATTR_KIND_NO_RECURSE: 1885 return Attribute::NoRecurse; 1886 case bitc::ATTR_KIND_NO_MERGE: 1887 return Attribute::NoMerge; 1888 case bitc::ATTR_KIND_NON_LAZY_BIND: 1889 return Attribute::NonLazyBind; 1890 case bitc::ATTR_KIND_NON_NULL: 1891 return Attribute::NonNull; 1892 case bitc::ATTR_KIND_DEREFERENCEABLE: 1893 return Attribute::Dereferenceable; 1894 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1895 return Attribute::DereferenceableOrNull; 1896 case bitc::ATTR_KIND_ALLOC_ALIGN: 1897 return Attribute::AllocAlign; 1898 case bitc::ATTR_KIND_ALLOC_KIND: 1899 return Attribute::AllocKind; 1900 case bitc::ATTR_KIND_ALLOC_SIZE: 1901 return Attribute::AllocSize; 1902 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1903 return Attribute::AllocatedPointer; 1904 case bitc::ATTR_KIND_NO_RED_ZONE: 1905 return Attribute::NoRedZone; 1906 case bitc::ATTR_KIND_NO_RETURN: 1907 return Attribute::NoReturn; 1908 case bitc::ATTR_KIND_NOSYNC: 1909 return Attribute::NoSync; 1910 case bitc::ATTR_KIND_NOCF_CHECK: 1911 return Attribute::NoCfCheck; 1912 case bitc::ATTR_KIND_NO_PROFILE: 1913 return Attribute::NoProfile; 1914 case bitc::ATTR_KIND_NO_UNWIND: 1915 return Attribute::NoUnwind; 1916 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1917 return Attribute::NoSanitizeBounds; 1918 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1919 return Attribute::NoSanitizeCoverage; 1920 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1921 return Attribute::NullPointerIsValid; 1922 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1923 return Attribute::OptForFuzzing; 1924 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1925 return Attribute::OptimizeForSize; 1926 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1927 return Attribute::OptimizeNone; 1928 case bitc::ATTR_KIND_READ_NONE: 1929 return Attribute::ReadNone; 1930 case bitc::ATTR_KIND_READ_ONLY: 1931 return Attribute::ReadOnly; 1932 case bitc::ATTR_KIND_RETURNED: 1933 return Attribute::Returned; 1934 case bitc::ATTR_KIND_RETURNS_TWICE: 1935 return Attribute::ReturnsTwice; 1936 case bitc::ATTR_KIND_S_EXT: 1937 return Attribute::SExt; 1938 case bitc::ATTR_KIND_SPECULATABLE: 1939 return Attribute::Speculatable; 1940 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1941 return Attribute::StackAlignment; 1942 case bitc::ATTR_KIND_STACK_PROTECT: 1943 return Attribute::StackProtect; 1944 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1945 return Attribute::StackProtectReq; 1946 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1947 return Attribute::StackProtectStrong; 1948 case bitc::ATTR_KIND_SAFESTACK: 1949 return Attribute::SafeStack; 1950 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1951 return Attribute::ShadowCallStack; 1952 case bitc::ATTR_KIND_STRICT_FP: 1953 return Attribute::StrictFP; 1954 case bitc::ATTR_KIND_STRUCT_RET: 1955 return Attribute::StructRet; 1956 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1957 return Attribute::SanitizeAddress; 1958 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1959 return Attribute::SanitizeHWAddress; 1960 case bitc::ATTR_KIND_SANITIZE_THREAD: 1961 return Attribute::SanitizeThread; 1962 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1963 return Attribute::SanitizeMemory; 1964 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1965 return Attribute::SpeculativeLoadHardening; 1966 case bitc::ATTR_KIND_SWIFT_ERROR: 1967 return Attribute::SwiftError; 1968 case bitc::ATTR_KIND_SWIFT_SELF: 1969 return Attribute::SwiftSelf; 1970 case bitc::ATTR_KIND_SWIFT_ASYNC: 1971 return Attribute::SwiftAsync; 1972 case bitc::ATTR_KIND_UW_TABLE: 1973 return Attribute::UWTable; 1974 case bitc::ATTR_KIND_VSCALE_RANGE: 1975 return Attribute::VScaleRange; 1976 case bitc::ATTR_KIND_WILLRETURN: 1977 return Attribute::WillReturn; 1978 case bitc::ATTR_KIND_WRITEONLY: 1979 return Attribute::WriteOnly; 1980 case bitc::ATTR_KIND_Z_EXT: 1981 return Attribute::ZExt; 1982 case bitc::ATTR_KIND_IMMARG: 1983 return Attribute::ImmArg; 1984 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1985 return Attribute::SanitizeMemTag; 1986 case bitc::ATTR_KIND_PREALLOCATED: 1987 return Attribute::Preallocated; 1988 case bitc::ATTR_KIND_NOUNDEF: 1989 return Attribute::NoUndef; 1990 case bitc::ATTR_KIND_BYREF: 1991 return Attribute::ByRef; 1992 case bitc::ATTR_KIND_MUSTPROGRESS: 1993 return Attribute::MustProgress; 1994 case bitc::ATTR_KIND_HOT: 1995 return Attribute::Hot; 1996 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 1997 return Attribute::PresplitCoroutine; 1998 } 1999 } 2000 2001 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2002 MaybeAlign &Alignment) { 2003 // Note: Alignment in bitcode files is incremented by 1, so that zero 2004 // can be used for default alignment. 2005 if (Exponent > Value::MaxAlignmentExponent + 1) 2006 return error("Invalid alignment value"); 2007 Alignment = decodeMaybeAlign(Exponent); 2008 return Error::success(); 2009 } 2010 2011 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2012 *Kind = getAttrFromCode(Code); 2013 if (*Kind == Attribute::None) 2014 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2015 return Error::success(); 2016 } 2017 2018 Error BitcodeReader::parseAttributeGroupBlock() { 2019 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2020 return Err; 2021 2022 if (!MAttributeGroups.empty()) 2023 return error("Invalid multiple blocks"); 2024 2025 SmallVector<uint64_t, 64> Record; 2026 2027 // Read all the records. 2028 while (true) { 2029 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2030 if (!MaybeEntry) 2031 return MaybeEntry.takeError(); 2032 BitstreamEntry Entry = MaybeEntry.get(); 2033 2034 switch (Entry.Kind) { 2035 case BitstreamEntry::SubBlock: // Handled for us already. 2036 case BitstreamEntry::Error: 2037 return error("Malformed block"); 2038 case BitstreamEntry::EndBlock: 2039 return Error::success(); 2040 case BitstreamEntry::Record: 2041 // The interesting case. 2042 break; 2043 } 2044 2045 // Read a record. 2046 Record.clear(); 2047 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2048 if (!MaybeRecord) 2049 return MaybeRecord.takeError(); 2050 switch (MaybeRecord.get()) { 2051 default: // Default behavior: ignore. 2052 break; 2053 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2054 if (Record.size() < 3) 2055 return error("Invalid grp record"); 2056 2057 uint64_t GrpID = Record[0]; 2058 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2059 2060 AttrBuilder B(Context); 2061 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2062 if (Record[i] == 0) { // Enum attribute 2063 Attribute::AttrKind Kind; 2064 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2065 return Err; 2066 2067 // Upgrade old-style byval attribute to one with a type, even if it's 2068 // nullptr. We will have to insert the real type when we associate 2069 // this AttributeList with a function. 2070 if (Kind == Attribute::ByVal) 2071 B.addByValAttr(nullptr); 2072 else if (Kind == Attribute::StructRet) 2073 B.addStructRetAttr(nullptr); 2074 else if (Kind == Attribute::InAlloca) 2075 B.addInAllocaAttr(nullptr); 2076 else if (Kind == Attribute::UWTable) 2077 B.addUWTableAttr(UWTableKind::Default); 2078 else if (Attribute::isEnumAttrKind(Kind)) 2079 B.addAttribute(Kind); 2080 else 2081 return error("Not an enum attribute"); 2082 } else if (Record[i] == 1) { // Integer attribute 2083 Attribute::AttrKind Kind; 2084 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2085 return Err; 2086 if (!Attribute::isIntAttrKind(Kind)) 2087 return error("Not an int attribute"); 2088 if (Kind == Attribute::Alignment) 2089 B.addAlignmentAttr(Record[++i]); 2090 else if (Kind == Attribute::StackAlignment) 2091 B.addStackAlignmentAttr(Record[++i]); 2092 else if (Kind == Attribute::Dereferenceable) 2093 B.addDereferenceableAttr(Record[++i]); 2094 else if (Kind == Attribute::DereferenceableOrNull) 2095 B.addDereferenceableOrNullAttr(Record[++i]); 2096 else if (Kind == Attribute::AllocSize) 2097 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2098 else if (Kind == Attribute::VScaleRange) 2099 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2100 else if (Kind == Attribute::UWTable) 2101 B.addUWTableAttr(UWTableKind(Record[++i])); 2102 else if (Kind == Attribute::AllocKind) 2103 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2104 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2105 bool HasValue = (Record[i++] == 4); 2106 SmallString<64> KindStr; 2107 SmallString<64> ValStr; 2108 2109 while (Record[i] != 0 && i != e) 2110 KindStr += Record[i++]; 2111 assert(Record[i] == 0 && "Kind string not null terminated"); 2112 2113 if (HasValue) { 2114 // Has a value associated with it. 2115 ++i; // Skip the '0' that terminates the "kind" string. 2116 while (Record[i] != 0 && i != e) 2117 ValStr += Record[i++]; 2118 assert(Record[i] == 0 && "Value string not null terminated"); 2119 } 2120 2121 B.addAttribute(KindStr.str(), ValStr.str()); 2122 } else if (Record[i] == 5 || Record[i] == 6) { 2123 bool HasType = Record[i] == 6; 2124 Attribute::AttrKind Kind; 2125 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2126 return Err; 2127 if (!Attribute::isTypeAttrKind(Kind)) 2128 return error("Not a type attribute"); 2129 2130 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2131 } else { 2132 return error("Invalid attribute group entry"); 2133 } 2134 } 2135 2136 UpgradeAttributes(B); 2137 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2138 break; 2139 } 2140 } 2141 } 2142 } 2143 2144 Error BitcodeReader::parseTypeTable() { 2145 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2146 return Err; 2147 2148 return parseTypeTableBody(); 2149 } 2150 2151 Error BitcodeReader::parseTypeTableBody() { 2152 if (!TypeList.empty()) 2153 return error("Invalid multiple blocks"); 2154 2155 SmallVector<uint64_t, 64> Record; 2156 unsigned NumRecords = 0; 2157 2158 SmallString<64> TypeName; 2159 2160 // Read all the records for this type table. 2161 while (true) { 2162 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2163 if (!MaybeEntry) 2164 return MaybeEntry.takeError(); 2165 BitstreamEntry Entry = MaybeEntry.get(); 2166 2167 switch (Entry.Kind) { 2168 case BitstreamEntry::SubBlock: // Handled for us already. 2169 case BitstreamEntry::Error: 2170 return error("Malformed block"); 2171 case BitstreamEntry::EndBlock: 2172 if (NumRecords != TypeList.size()) 2173 return error("Malformed block"); 2174 return Error::success(); 2175 case BitstreamEntry::Record: 2176 // The interesting case. 2177 break; 2178 } 2179 2180 // Read a record. 2181 Record.clear(); 2182 Type *ResultTy = nullptr; 2183 SmallVector<unsigned> ContainedIDs; 2184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2185 if (!MaybeRecord) 2186 return MaybeRecord.takeError(); 2187 switch (MaybeRecord.get()) { 2188 default: 2189 return error("Invalid value"); 2190 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2191 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2192 // type list. This allows us to reserve space. 2193 if (Record.empty()) 2194 return error("Invalid numentry record"); 2195 TypeList.resize(Record[0]); 2196 continue; 2197 case bitc::TYPE_CODE_VOID: // VOID 2198 ResultTy = Type::getVoidTy(Context); 2199 break; 2200 case bitc::TYPE_CODE_HALF: // HALF 2201 ResultTy = Type::getHalfTy(Context); 2202 break; 2203 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2204 ResultTy = Type::getBFloatTy(Context); 2205 break; 2206 case bitc::TYPE_CODE_FLOAT: // FLOAT 2207 ResultTy = Type::getFloatTy(Context); 2208 break; 2209 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2210 ResultTy = Type::getDoubleTy(Context); 2211 break; 2212 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2213 ResultTy = Type::getX86_FP80Ty(Context); 2214 break; 2215 case bitc::TYPE_CODE_FP128: // FP128 2216 ResultTy = Type::getFP128Ty(Context); 2217 break; 2218 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2219 ResultTy = Type::getPPC_FP128Ty(Context); 2220 break; 2221 case bitc::TYPE_CODE_LABEL: // LABEL 2222 ResultTy = Type::getLabelTy(Context); 2223 break; 2224 case bitc::TYPE_CODE_METADATA: // METADATA 2225 ResultTy = Type::getMetadataTy(Context); 2226 break; 2227 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2228 ResultTy = Type::getX86_MMXTy(Context); 2229 break; 2230 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2231 ResultTy = Type::getX86_AMXTy(Context); 2232 break; 2233 case bitc::TYPE_CODE_TOKEN: // TOKEN 2234 ResultTy = Type::getTokenTy(Context); 2235 break; 2236 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2237 if (Record.empty()) 2238 return error("Invalid integer record"); 2239 2240 uint64_t NumBits = Record[0]; 2241 if (NumBits < IntegerType::MIN_INT_BITS || 2242 NumBits > IntegerType::MAX_INT_BITS) 2243 return error("Bitwidth for integer type out of range"); 2244 ResultTy = IntegerType::get(Context, NumBits); 2245 break; 2246 } 2247 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2248 // [pointee type, address space] 2249 if (Record.empty()) 2250 return error("Invalid pointer record"); 2251 unsigned AddressSpace = 0; 2252 if (Record.size() == 2) 2253 AddressSpace = Record[1]; 2254 ResultTy = getTypeByID(Record[0]); 2255 if (!ResultTy || 2256 !PointerType::isValidElementType(ResultTy)) 2257 return error("Invalid type"); 2258 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) 2259 Context.setOpaquePointers(false); 2260 ContainedIDs.push_back(Record[0]); 2261 ResultTy = PointerType::get(ResultTy, AddressSpace); 2262 break; 2263 } 2264 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2265 if (Record.size() != 1) 2266 return error("Invalid opaque pointer record"); 2267 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) { 2268 Context.setOpaquePointers(true); 2269 } else if (Context.supportsTypedPointers()) 2270 return error( 2271 "Opaque pointers are only supported in -opaque-pointers mode"); 2272 unsigned AddressSpace = Record[0]; 2273 ResultTy = PointerType::get(Context, AddressSpace); 2274 break; 2275 } 2276 case bitc::TYPE_CODE_FUNCTION_OLD: { 2277 // Deprecated, but still needed to read old bitcode files. 2278 // FUNCTION: [vararg, attrid, retty, paramty x N] 2279 if (Record.size() < 3) 2280 return error("Invalid function record"); 2281 SmallVector<Type*, 8> ArgTys; 2282 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2283 if (Type *T = getTypeByID(Record[i])) 2284 ArgTys.push_back(T); 2285 else 2286 break; 2287 } 2288 2289 ResultTy = getTypeByID(Record[2]); 2290 if (!ResultTy || ArgTys.size() < Record.size()-3) 2291 return error("Invalid type"); 2292 2293 ContainedIDs.append(Record.begin() + 2, Record.end()); 2294 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2295 break; 2296 } 2297 case bitc::TYPE_CODE_FUNCTION: { 2298 // FUNCTION: [vararg, retty, paramty x N] 2299 if (Record.size() < 2) 2300 return error("Invalid function record"); 2301 SmallVector<Type*, 8> ArgTys; 2302 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2303 if (Type *T = getTypeByID(Record[i])) { 2304 if (!FunctionType::isValidArgumentType(T)) 2305 return error("Invalid function argument type"); 2306 ArgTys.push_back(T); 2307 } 2308 else 2309 break; 2310 } 2311 2312 ResultTy = getTypeByID(Record[1]); 2313 if (!ResultTy || ArgTys.size() < Record.size()-2) 2314 return error("Invalid type"); 2315 2316 ContainedIDs.append(Record.begin() + 1, Record.end()); 2317 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2318 break; 2319 } 2320 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2321 if (Record.empty()) 2322 return error("Invalid anon struct record"); 2323 SmallVector<Type*, 8> EltTys; 2324 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2325 if (Type *T = getTypeByID(Record[i])) 2326 EltTys.push_back(T); 2327 else 2328 break; 2329 } 2330 if (EltTys.size() != Record.size()-1) 2331 return error("Invalid type"); 2332 ContainedIDs.append(Record.begin() + 1, Record.end()); 2333 ResultTy = StructType::get(Context, EltTys, Record[0]); 2334 break; 2335 } 2336 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2337 if (convertToString(Record, 0, TypeName)) 2338 return error("Invalid struct name record"); 2339 continue; 2340 2341 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2342 if (Record.empty()) 2343 return error("Invalid named struct record"); 2344 2345 if (NumRecords >= TypeList.size()) 2346 return error("Invalid TYPE table"); 2347 2348 // Check to see if this was forward referenced, if so fill in the temp. 2349 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2350 if (Res) { 2351 Res->setName(TypeName); 2352 TypeList[NumRecords] = nullptr; 2353 } else // Otherwise, create a new struct. 2354 Res = createIdentifiedStructType(Context, TypeName); 2355 TypeName.clear(); 2356 2357 SmallVector<Type*, 8> EltTys; 2358 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2359 if (Type *T = getTypeByID(Record[i])) 2360 EltTys.push_back(T); 2361 else 2362 break; 2363 } 2364 if (EltTys.size() != Record.size()-1) 2365 return error("Invalid named struct record"); 2366 Res->setBody(EltTys, Record[0]); 2367 ContainedIDs.append(Record.begin() + 1, Record.end()); 2368 ResultTy = Res; 2369 break; 2370 } 2371 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2372 if (Record.size() != 1) 2373 return error("Invalid opaque type record"); 2374 2375 if (NumRecords >= TypeList.size()) 2376 return error("Invalid TYPE table"); 2377 2378 // Check to see if this was forward referenced, if so fill in the temp. 2379 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2380 if (Res) { 2381 Res->setName(TypeName); 2382 TypeList[NumRecords] = nullptr; 2383 } else // Otherwise, create a new struct with no body. 2384 Res = createIdentifiedStructType(Context, TypeName); 2385 TypeName.clear(); 2386 ResultTy = Res; 2387 break; 2388 } 2389 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2390 if (Record.size() < 2) 2391 return error("Invalid array type record"); 2392 ResultTy = getTypeByID(Record[1]); 2393 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2394 return error("Invalid type"); 2395 ContainedIDs.push_back(Record[1]); 2396 ResultTy = ArrayType::get(ResultTy, Record[0]); 2397 break; 2398 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2399 // [numelts, eltty, scalable] 2400 if (Record.size() < 2) 2401 return error("Invalid vector type record"); 2402 if (Record[0] == 0) 2403 return error("Invalid vector length"); 2404 ResultTy = getTypeByID(Record[1]); 2405 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2406 return error("Invalid type"); 2407 bool Scalable = Record.size() > 2 ? Record[2] : false; 2408 ContainedIDs.push_back(Record[1]); 2409 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2410 break; 2411 } 2412 2413 if (NumRecords >= TypeList.size()) 2414 return error("Invalid TYPE table"); 2415 if (TypeList[NumRecords]) 2416 return error( 2417 "Invalid TYPE table: Only named structs can be forward referenced"); 2418 assert(ResultTy && "Didn't read a type?"); 2419 TypeList[NumRecords] = ResultTy; 2420 if (!ContainedIDs.empty()) 2421 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2422 ++NumRecords; 2423 } 2424 } 2425 2426 Error BitcodeReader::parseOperandBundleTags() { 2427 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2428 return Err; 2429 2430 if (!BundleTags.empty()) 2431 return error("Invalid multiple blocks"); 2432 2433 SmallVector<uint64_t, 64> Record; 2434 2435 while (true) { 2436 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2437 if (!MaybeEntry) 2438 return MaybeEntry.takeError(); 2439 BitstreamEntry Entry = MaybeEntry.get(); 2440 2441 switch (Entry.Kind) { 2442 case BitstreamEntry::SubBlock: // Handled for us already. 2443 case BitstreamEntry::Error: 2444 return error("Malformed block"); 2445 case BitstreamEntry::EndBlock: 2446 return Error::success(); 2447 case BitstreamEntry::Record: 2448 // The interesting case. 2449 break; 2450 } 2451 2452 // Tags are implicitly mapped to integers by their order. 2453 2454 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2455 if (!MaybeRecord) 2456 return MaybeRecord.takeError(); 2457 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2458 return error("Invalid operand bundle record"); 2459 2460 // OPERAND_BUNDLE_TAG: [strchr x N] 2461 BundleTags.emplace_back(); 2462 if (convertToString(Record, 0, BundleTags.back())) 2463 return error("Invalid operand bundle record"); 2464 Record.clear(); 2465 } 2466 } 2467 2468 Error BitcodeReader::parseSyncScopeNames() { 2469 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2470 return Err; 2471 2472 if (!SSIDs.empty()) 2473 return error("Invalid multiple synchronization scope names blocks"); 2474 2475 SmallVector<uint64_t, 64> Record; 2476 while (true) { 2477 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2478 if (!MaybeEntry) 2479 return MaybeEntry.takeError(); 2480 BitstreamEntry Entry = MaybeEntry.get(); 2481 2482 switch (Entry.Kind) { 2483 case BitstreamEntry::SubBlock: // Handled for us already. 2484 case BitstreamEntry::Error: 2485 return error("Malformed block"); 2486 case BitstreamEntry::EndBlock: 2487 if (SSIDs.empty()) 2488 return error("Invalid empty synchronization scope names block"); 2489 return Error::success(); 2490 case BitstreamEntry::Record: 2491 // The interesting case. 2492 break; 2493 } 2494 2495 // Synchronization scope names are implicitly mapped to synchronization 2496 // scope IDs by their order. 2497 2498 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2499 if (!MaybeRecord) 2500 return MaybeRecord.takeError(); 2501 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2502 return error("Invalid sync scope record"); 2503 2504 SmallString<16> SSN; 2505 if (convertToString(Record, 0, SSN)) 2506 return error("Invalid sync scope record"); 2507 2508 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2509 Record.clear(); 2510 } 2511 } 2512 2513 /// Associate a value with its name from the given index in the provided record. 2514 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2515 unsigned NameIndex, Triple &TT) { 2516 SmallString<128> ValueName; 2517 if (convertToString(Record, NameIndex, ValueName)) 2518 return error("Invalid record"); 2519 unsigned ValueID = Record[0]; 2520 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2521 return error("Invalid record"); 2522 Value *V = ValueList[ValueID]; 2523 2524 StringRef NameStr(ValueName.data(), ValueName.size()); 2525 if (NameStr.find_first_of(0) != StringRef::npos) 2526 return error("Invalid value name"); 2527 V->setName(NameStr); 2528 auto *GO = dyn_cast<GlobalObject>(V); 2529 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2530 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2531 return V; 2532 } 2533 2534 /// Helper to note and return the current location, and jump to the given 2535 /// offset. 2536 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2537 BitstreamCursor &Stream) { 2538 // Save the current parsing location so we can jump back at the end 2539 // of the VST read. 2540 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2541 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2542 return std::move(JumpFailed); 2543 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2544 if (!MaybeEntry) 2545 return MaybeEntry.takeError(); 2546 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2547 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2548 return error("Expected value symbol table subblock"); 2549 return CurrentBit; 2550 } 2551 2552 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2553 Function *F, 2554 ArrayRef<uint64_t> Record) { 2555 // Note that we subtract 1 here because the offset is relative to one word 2556 // before the start of the identification or module block, which was 2557 // historically always the start of the regular bitcode header. 2558 uint64_t FuncWordOffset = Record[1] - 1; 2559 uint64_t FuncBitOffset = FuncWordOffset * 32; 2560 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2561 // Set the LastFunctionBlockBit to point to the last function block. 2562 // Later when parsing is resumed after function materialization, 2563 // we can simply skip that last function block. 2564 if (FuncBitOffset > LastFunctionBlockBit) 2565 LastFunctionBlockBit = FuncBitOffset; 2566 } 2567 2568 /// Read a new-style GlobalValue symbol table. 2569 Error BitcodeReader::parseGlobalValueSymbolTable() { 2570 unsigned FuncBitcodeOffsetDelta = 2571 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2572 2573 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2574 return Err; 2575 2576 SmallVector<uint64_t, 64> Record; 2577 while (true) { 2578 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2579 if (!MaybeEntry) 2580 return MaybeEntry.takeError(); 2581 BitstreamEntry Entry = MaybeEntry.get(); 2582 2583 switch (Entry.Kind) { 2584 case BitstreamEntry::SubBlock: 2585 case BitstreamEntry::Error: 2586 return error("Malformed block"); 2587 case BitstreamEntry::EndBlock: 2588 return Error::success(); 2589 case BitstreamEntry::Record: 2590 break; 2591 } 2592 2593 Record.clear(); 2594 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2595 if (!MaybeRecord) 2596 return MaybeRecord.takeError(); 2597 switch (MaybeRecord.get()) { 2598 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2599 unsigned ValueID = Record[0]; 2600 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2601 return error("Invalid value reference in symbol table"); 2602 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2603 cast<Function>(ValueList[ValueID]), Record); 2604 break; 2605 } 2606 } 2607 } 2608 } 2609 2610 /// Parse the value symbol table at either the current parsing location or 2611 /// at the given bit offset if provided. 2612 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2613 uint64_t CurrentBit; 2614 // Pass in the Offset to distinguish between calling for the module-level 2615 // VST (where we want to jump to the VST offset) and the function-level 2616 // VST (where we don't). 2617 if (Offset > 0) { 2618 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2619 if (!MaybeCurrentBit) 2620 return MaybeCurrentBit.takeError(); 2621 CurrentBit = MaybeCurrentBit.get(); 2622 // If this module uses a string table, read this as a module-level VST. 2623 if (UseStrtab) { 2624 if (Error Err = parseGlobalValueSymbolTable()) 2625 return Err; 2626 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2627 return JumpFailed; 2628 return Error::success(); 2629 } 2630 // Otherwise, the VST will be in a similar format to a function-level VST, 2631 // and will contain symbol names. 2632 } 2633 2634 // Compute the delta between the bitcode indices in the VST (the word offset 2635 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2636 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2637 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2638 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2639 // just before entering the VST subblock because: 1) the EnterSubBlock 2640 // changes the AbbrevID width; 2) the VST block is nested within the same 2641 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2642 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2643 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2644 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2645 unsigned FuncBitcodeOffsetDelta = 2646 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2647 2648 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2649 return Err; 2650 2651 SmallVector<uint64_t, 64> Record; 2652 2653 Triple TT(TheModule->getTargetTriple()); 2654 2655 // Read all the records for this value table. 2656 SmallString<128> ValueName; 2657 2658 while (true) { 2659 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2660 if (!MaybeEntry) 2661 return MaybeEntry.takeError(); 2662 BitstreamEntry Entry = MaybeEntry.get(); 2663 2664 switch (Entry.Kind) { 2665 case BitstreamEntry::SubBlock: // Handled for us already. 2666 case BitstreamEntry::Error: 2667 return error("Malformed block"); 2668 case BitstreamEntry::EndBlock: 2669 if (Offset > 0) 2670 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2671 return JumpFailed; 2672 return Error::success(); 2673 case BitstreamEntry::Record: 2674 // The interesting case. 2675 break; 2676 } 2677 2678 // Read a record. 2679 Record.clear(); 2680 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2681 if (!MaybeRecord) 2682 return MaybeRecord.takeError(); 2683 switch (MaybeRecord.get()) { 2684 default: // Default behavior: unknown type. 2685 break; 2686 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2687 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2688 if (Error Err = ValOrErr.takeError()) 2689 return Err; 2690 ValOrErr.get(); 2691 break; 2692 } 2693 case bitc::VST_CODE_FNENTRY: { 2694 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2695 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2696 if (Error Err = ValOrErr.takeError()) 2697 return Err; 2698 Value *V = ValOrErr.get(); 2699 2700 // Ignore function offsets emitted for aliases of functions in older 2701 // versions of LLVM. 2702 if (auto *F = dyn_cast<Function>(V)) 2703 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2704 break; 2705 } 2706 case bitc::VST_CODE_BBENTRY: { 2707 if (convertToString(Record, 1, ValueName)) 2708 return error("Invalid bbentry record"); 2709 BasicBlock *BB = getBasicBlock(Record[0]); 2710 if (!BB) 2711 return error("Invalid bbentry record"); 2712 2713 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2714 ValueName.clear(); 2715 break; 2716 } 2717 } 2718 } 2719 } 2720 2721 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2722 /// encoding. 2723 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2724 if ((V & 1) == 0) 2725 return V >> 1; 2726 if (V != 1) 2727 return -(V >> 1); 2728 // There is no such thing as -0 with integers. "-0" really means MININT. 2729 return 1ULL << 63; 2730 } 2731 2732 /// Resolve all of the initializers for global values and aliases that we can. 2733 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2734 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2735 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2736 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2737 2738 GlobalInitWorklist.swap(GlobalInits); 2739 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2740 FunctionOperandWorklist.swap(FunctionOperands); 2741 2742 while (!GlobalInitWorklist.empty()) { 2743 unsigned ValID = GlobalInitWorklist.back().second; 2744 if (ValID >= ValueList.size()) { 2745 // Not ready to resolve this yet, it requires something later in the file. 2746 GlobalInits.push_back(GlobalInitWorklist.back()); 2747 } else { 2748 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2749 if (!MaybeC) 2750 return MaybeC.takeError(); 2751 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2752 } 2753 GlobalInitWorklist.pop_back(); 2754 } 2755 2756 while (!IndirectSymbolInitWorklist.empty()) { 2757 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2758 if (ValID >= ValueList.size()) { 2759 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2760 } else { 2761 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2762 if (!MaybeC) 2763 return MaybeC.takeError(); 2764 Constant *C = MaybeC.get(); 2765 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2766 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2767 if (C->getType() != GV->getType()) 2768 return error("Alias and aliasee types don't match"); 2769 GA->setAliasee(C); 2770 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2771 Type *ResolverFTy = 2772 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2773 // Transparently fix up the type for compatiblity with older bitcode 2774 GI->setResolver( 2775 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2776 } else { 2777 return error("Expected an alias or an ifunc"); 2778 } 2779 } 2780 IndirectSymbolInitWorklist.pop_back(); 2781 } 2782 2783 while (!FunctionOperandWorklist.empty()) { 2784 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2785 if (Info.PersonalityFn) { 2786 unsigned ValID = Info.PersonalityFn - 1; 2787 if (ValID < ValueList.size()) { 2788 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2789 if (!MaybeC) 2790 return MaybeC.takeError(); 2791 Info.F->setPersonalityFn(MaybeC.get()); 2792 Info.PersonalityFn = 0; 2793 } 2794 } 2795 if (Info.Prefix) { 2796 unsigned ValID = Info.Prefix - 1; 2797 if (ValID < ValueList.size()) { 2798 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2799 if (!MaybeC) 2800 return MaybeC.takeError(); 2801 Info.F->setPrefixData(MaybeC.get()); 2802 Info.Prefix = 0; 2803 } 2804 } 2805 if (Info.Prologue) { 2806 unsigned ValID = Info.Prologue - 1; 2807 if (ValID < ValueList.size()) { 2808 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2809 if (!MaybeC) 2810 return MaybeC.takeError(); 2811 Info.F->setPrologueData(MaybeC.get()); 2812 Info.Prologue = 0; 2813 } 2814 } 2815 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2816 FunctionOperands.push_back(Info); 2817 FunctionOperandWorklist.pop_back(); 2818 } 2819 2820 return Error::success(); 2821 } 2822 2823 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2824 SmallVector<uint64_t, 8> Words(Vals.size()); 2825 transform(Vals, Words.begin(), 2826 BitcodeReader::decodeSignRotatedValue); 2827 2828 return APInt(TypeBits, Words); 2829 } 2830 2831 Error BitcodeReader::parseConstants() { 2832 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2833 return Err; 2834 2835 SmallVector<uint64_t, 64> Record; 2836 2837 // Read all the records for this value table. 2838 Type *CurTy = Type::getInt32Ty(Context); 2839 unsigned Int32TyID = getVirtualTypeID(CurTy); 2840 unsigned CurTyID = Int32TyID; 2841 Type *CurElemTy = nullptr; 2842 unsigned NextCstNo = ValueList.size(); 2843 2844 while (true) { 2845 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2846 if (!MaybeEntry) 2847 return MaybeEntry.takeError(); 2848 BitstreamEntry Entry = MaybeEntry.get(); 2849 2850 switch (Entry.Kind) { 2851 case BitstreamEntry::SubBlock: // Handled for us already. 2852 case BitstreamEntry::Error: 2853 return error("Malformed block"); 2854 case BitstreamEntry::EndBlock: 2855 if (NextCstNo != ValueList.size()) 2856 return error("Invalid constant reference"); 2857 return Error::success(); 2858 case BitstreamEntry::Record: 2859 // The interesting case. 2860 break; 2861 } 2862 2863 // Read a record. 2864 Record.clear(); 2865 Type *VoidType = Type::getVoidTy(Context); 2866 Value *V = nullptr; 2867 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2868 if (!MaybeBitCode) 2869 return MaybeBitCode.takeError(); 2870 switch (unsigned BitCode = MaybeBitCode.get()) { 2871 default: // Default behavior: unknown constant 2872 case bitc::CST_CODE_UNDEF: // UNDEF 2873 V = UndefValue::get(CurTy); 2874 break; 2875 case bitc::CST_CODE_POISON: // POISON 2876 V = PoisonValue::get(CurTy); 2877 break; 2878 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2879 if (Record.empty()) 2880 return error("Invalid settype record"); 2881 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2882 return error("Invalid settype record"); 2883 if (TypeList[Record[0]] == VoidType) 2884 return error("Invalid constant type"); 2885 CurTyID = Record[0]; 2886 CurTy = TypeList[CurTyID]; 2887 CurElemTy = getPtrElementTypeByID(CurTyID); 2888 continue; // Skip the ValueList manipulation. 2889 case bitc::CST_CODE_NULL: // NULL 2890 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2891 return error("Invalid type for a constant null value"); 2892 V = Constant::getNullValue(CurTy); 2893 break; 2894 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2895 if (!CurTy->isIntegerTy() || Record.empty()) 2896 return error("Invalid integer const record"); 2897 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2898 break; 2899 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2900 if (!CurTy->isIntegerTy() || Record.empty()) 2901 return error("Invalid wide integer const record"); 2902 2903 APInt VInt = 2904 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2905 V = ConstantInt::get(Context, VInt); 2906 2907 break; 2908 } 2909 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2910 if (Record.empty()) 2911 return error("Invalid float const record"); 2912 if (CurTy->isHalfTy()) 2913 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2914 APInt(16, (uint16_t)Record[0]))); 2915 else if (CurTy->isBFloatTy()) 2916 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2917 APInt(16, (uint32_t)Record[0]))); 2918 else if (CurTy->isFloatTy()) 2919 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2920 APInt(32, (uint32_t)Record[0]))); 2921 else if (CurTy->isDoubleTy()) 2922 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2923 APInt(64, Record[0]))); 2924 else if (CurTy->isX86_FP80Ty()) { 2925 // Bits are not stored the same way as a normal i80 APInt, compensate. 2926 uint64_t Rearrange[2]; 2927 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2928 Rearrange[1] = Record[0] >> 48; 2929 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2930 APInt(80, Rearrange))); 2931 } else if (CurTy->isFP128Ty()) 2932 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2933 APInt(128, Record))); 2934 else if (CurTy->isPPC_FP128Ty()) 2935 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2936 APInt(128, Record))); 2937 else 2938 V = UndefValue::get(CurTy); 2939 break; 2940 } 2941 2942 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2943 if (Record.empty()) 2944 return error("Invalid aggregate record"); 2945 2946 unsigned Size = Record.size(); 2947 SmallVector<unsigned, 16> Elts; 2948 for (unsigned i = 0; i != Size; ++i) 2949 Elts.push_back(Record[i]); 2950 2951 if (isa<StructType>(CurTy)) { 2952 V = BitcodeConstant::create( 2953 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 2954 } else if (isa<ArrayType>(CurTy)) { 2955 V = BitcodeConstant::create(Alloc, CurTy, 2956 BitcodeConstant::ConstantArrayOpcode, Elts); 2957 } else if (isa<VectorType>(CurTy)) { 2958 V = BitcodeConstant::create( 2959 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 2960 } else { 2961 V = UndefValue::get(CurTy); 2962 } 2963 break; 2964 } 2965 case bitc::CST_CODE_STRING: // STRING: [values] 2966 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2967 if (Record.empty()) 2968 return error("Invalid string record"); 2969 2970 SmallString<16> Elts(Record.begin(), Record.end()); 2971 V = ConstantDataArray::getString(Context, Elts, 2972 BitCode == bitc::CST_CODE_CSTRING); 2973 break; 2974 } 2975 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2976 if (Record.empty()) 2977 return error("Invalid data record"); 2978 2979 Type *EltTy; 2980 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2981 EltTy = Array->getElementType(); 2982 else 2983 EltTy = cast<VectorType>(CurTy)->getElementType(); 2984 if (EltTy->isIntegerTy(8)) { 2985 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2986 if (isa<VectorType>(CurTy)) 2987 V = ConstantDataVector::get(Context, Elts); 2988 else 2989 V = ConstantDataArray::get(Context, Elts); 2990 } else if (EltTy->isIntegerTy(16)) { 2991 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2992 if (isa<VectorType>(CurTy)) 2993 V = ConstantDataVector::get(Context, Elts); 2994 else 2995 V = ConstantDataArray::get(Context, Elts); 2996 } else if (EltTy->isIntegerTy(32)) { 2997 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2998 if (isa<VectorType>(CurTy)) 2999 V = ConstantDataVector::get(Context, Elts); 3000 else 3001 V = ConstantDataArray::get(Context, Elts); 3002 } else if (EltTy->isIntegerTy(64)) { 3003 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3004 if (isa<VectorType>(CurTy)) 3005 V = ConstantDataVector::get(Context, Elts); 3006 else 3007 V = ConstantDataArray::get(Context, Elts); 3008 } else if (EltTy->isHalfTy()) { 3009 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3010 if (isa<VectorType>(CurTy)) 3011 V = ConstantDataVector::getFP(EltTy, Elts); 3012 else 3013 V = ConstantDataArray::getFP(EltTy, Elts); 3014 } else if (EltTy->isBFloatTy()) { 3015 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3016 if (isa<VectorType>(CurTy)) 3017 V = ConstantDataVector::getFP(EltTy, Elts); 3018 else 3019 V = ConstantDataArray::getFP(EltTy, Elts); 3020 } else if (EltTy->isFloatTy()) { 3021 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3022 if (isa<VectorType>(CurTy)) 3023 V = ConstantDataVector::getFP(EltTy, Elts); 3024 else 3025 V = ConstantDataArray::getFP(EltTy, Elts); 3026 } else if (EltTy->isDoubleTy()) { 3027 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3028 if (isa<VectorType>(CurTy)) 3029 V = ConstantDataVector::getFP(EltTy, Elts); 3030 else 3031 V = ConstantDataArray::getFP(EltTy, Elts); 3032 } else { 3033 return error("Invalid type for value"); 3034 } 3035 break; 3036 } 3037 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3038 if (Record.size() < 2) 3039 return error("Invalid unary op constexpr record"); 3040 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3041 if (Opc < 0) { 3042 V = UndefValue::get(CurTy); // Unknown unop. 3043 } else { 3044 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3045 } 3046 break; 3047 } 3048 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3049 if (Record.size() < 3) 3050 return error("Invalid binary op constexpr record"); 3051 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3052 if (Opc < 0) { 3053 V = UndefValue::get(CurTy); // Unknown binop. 3054 } else { 3055 uint8_t Flags = 0; 3056 if (Record.size() >= 4) { 3057 if (Opc == Instruction::Add || 3058 Opc == Instruction::Sub || 3059 Opc == Instruction::Mul || 3060 Opc == Instruction::Shl) { 3061 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3062 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3063 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3064 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3065 } else if (Opc == Instruction::SDiv || 3066 Opc == Instruction::UDiv || 3067 Opc == Instruction::LShr || 3068 Opc == Instruction::AShr) { 3069 if (Record[3] & (1 << bitc::PEO_EXACT)) 3070 Flags |= SDivOperator::IsExact; 3071 } 3072 } 3073 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3074 {(unsigned)Record[1], (unsigned)Record[2]}); 3075 } 3076 break; 3077 } 3078 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3079 if (Record.size() < 3) 3080 return error("Invalid cast constexpr record"); 3081 int Opc = getDecodedCastOpcode(Record[0]); 3082 if (Opc < 0) { 3083 V = UndefValue::get(CurTy); // Unknown cast. 3084 } else { 3085 unsigned OpTyID = Record[1]; 3086 Type *OpTy = getTypeByID(OpTyID); 3087 if (!OpTy) 3088 return error("Invalid cast constexpr record"); 3089 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3090 } 3091 break; 3092 } 3093 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3094 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3095 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3096 // operands] 3097 if (Record.size() < 2) 3098 return error("Constant GEP record must have at least two elements"); 3099 unsigned OpNum = 0; 3100 Type *PointeeType = nullptr; 3101 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3102 Record.size() % 2) 3103 PointeeType = getTypeByID(Record[OpNum++]); 3104 3105 bool InBounds = false; 3106 Optional<unsigned> InRangeIndex; 3107 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3108 uint64_t Op = Record[OpNum++]; 3109 InBounds = Op & 1; 3110 InRangeIndex = Op >> 1; 3111 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3112 InBounds = true; 3113 3114 SmallVector<unsigned, 16> Elts; 3115 unsigned BaseTypeID = Record[OpNum]; 3116 while (OpNum != Record.size()) { 3117 unsigned ElTyID = Record[OpNum++]; 3118 Type *ElTy = getTypeByID(ElTyID); 3119 if (!ElTy) 3120 return error("Invalid getelementptr constexpr record"); 3121 Elts.push_back(Record[OpNum++]); 3122 } 3123 3124 if (Elts.size() < 1) 3125 return error("Invalid gep with no operands"); 3126 3127 Type *BaseType = getTypeByID(BaseTypeID); 3128 if (isa<VectorType>(BaseType)) { 3129 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3130 BaseType = getTypeByID(BaseTypeID); 3131 } 3132 3133 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3134 if (!OrigPtrTy) 3135 return error("GEP base operand must be pointer or vector of pointer"); 3136 3137 if (!PointeeType) { 3138 PointeeType = getPtrElementTypeByID(BaseTypeID); 3139 if (!PointeeType) 3140 return error("Missing element type for old-style constant GEP"); 3141 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3142 return error("Explicit gep operator type does not match pointee type " 3143 "of pointer operand"); 3144 3145 V = BitcodeConstant::create( 3146 Alloc, CurTy, 3147 {Instruction::GetElementPtr, InBounds, InRangeIndex.getValueOr(-1), 3148 PointeeType}, 3149 Elts); 3150 break; 3151 } 3152 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3153 if (Record.size() < 3) 3154 return error("Invalid select constexpr record"); 3155 3156 V = BitcodeConstant::create( 3157 Alloc, CurTy, Instruction::Select, 3158 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3159 break; 3160 } 3161 case bitc::CST_CODE_CE_EXTRACTELT 3162 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3163 if (Record.size() < 3) 3164 return error("Invalid extractelement constexpr record"); 3165 unsigned OpTyID = Record[0]; 3166 VectorType *OpTy = 3167 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3168 if (!OpTy) 3169 return error("Invalid extractelement constexpr record"); 3170 unsigned IdxRecord; 3171 if (Record.size() == 4) { 3172 unsigned IdxTyID = Record[2]; 3173 Type *IdxTy = getTypeByID(IdxTyID); 3174 if (!IdxTy) 3175 return error("Invalid extractelement constexpr record"); 3176 IdxRecord = Record[3]; 3177 } else { 3178 // Deprecated, but still needed to read old bitcode files. 3179 IdxRecord = Record[2]; 3180 } 3181 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3182 {(unsigned)Record[1], IdxRecord}); 3183 break; 3184 } 3185 case bitc::CST_CODE_CE_INSERTELT 3186 : { // CE_INSERTELT: [opval, opval, opty, opval] 3187 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3188 if (Record.size() < 3 || !OpTy) 3189 return error("Invalid insertelement constexpr record"); 3190 unsigned IdxRecord; 3191 if (Record.size() == 4) { 3192 unsigned IdxTyID = Record[2]; 3193 Type *IdxTy = getTypeByID(IdxTyID); 3194 if (!IdxTy) 3195 return error("Invalid insertelement constexpr record"); 3196 IdxRecord = Record[3]; 3197 } else { 3198 // Deprecated, but still needed to read old bitcode files. 3199 IdxRecord = Record[2]; 3200 } 3201 V = BitcodeConstant::create( 3202 Alloc, CurTy, Instruction::InsertElement, 3203 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3204 break; 3205 } 3206 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3207 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3208 if (Record.size() < 3 || !OpTy) 3209 return error("Invalid shufflevector constexpr record"); 3210 V = BitcodeConstant::create( 3211 Alloc, CurTy, Instruction::ShuffleVector, 3212 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3213 break; 3214 } 3215 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3216 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3217 VectorType *OpTy = 3218 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3219 if (Record.size() < 4 || !RTy || !OpTy) 3220 return error("Invalid shufflevector constexpr record"); 3221 V = BitcodeConstant::create( 3222 Alloc, CurTy, Instruction::ShuffleVector, 3223 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3224 break; 3225 } 3226 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3227 if (Record.size() < 4) 3228 return error("Invalid cmp constexpt record"); 3229 unsigned OpTyID = Record[0]; 3230 Type *OpTy = getTypeByID(OpTyID); 3231 if (!OpTy) 3232 return error("Invalid cmp constexpr record"); 3233 V = BitcodeConstant::create( 3234 Alloc, CurTy, 3235 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3236 : Instruction::ICmp), 3237 (uint8_t)Record[3]}, 3238 {(unsigned)Record[1], (unsigned)Record[2]}); 3239 break; 3240 } 3241 // This maintains backward compatibility, pre-asm dialect keywords. 3242 // Deprecated, but still needed to read old bitcode files. 3243 case bitc::CST_CODE_INLINEASM_OLD: { 3244 if (Record.size() < 2) 3245 return error("Invalid inlineasm record"); 3246 std::string AsmStr, ConstrStr; 3247 bool HasSideEffects = Record[0] & 1; 3248 bool IsAlignStack = Record[0] >> 1; 3249 unsigned AsmStrSize = Record[1]; 3250 if (2+AsmStrSize >= Record.size()) 3251 return error("Invalid inlineasm record"); 3252 unsigned ConstStrSize = Record[2+AsmStrSize]; 3253 if (3+AsmStrSize+ConstStrSize > Record.size()) 3254 return error("Invalid inlineasm record"); 3255 3256 for (unsigned i = 0; i != AsmStrSize; ++i) 3257 AsmStr += (char)Record[2+i]; 3258 for (unsigned i = 0; i != ConstStrSize; ++i) 3259 ConstrStr += (char)Record[3+AsmStrSize+i]; 3260 UpgradeInlineAsmString(&AsmStr); 3261 if (!CurElemTy) 3262 return error("Missing element type for old-style inlineasm"); 3263 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3264 HasSideEffects, IsAlignStack); 3265 break; 3266 } 3267 // This version adds support for the asm dialect keywords (e.g., 3268 // inteldialect). 3269 case bitc::CST_CODE_INLINEASM_OLD2: { 3270 if (Record.size() < 2) 3271 return error("Invalid inlineasm record"); 3272 std::string AsmStr, ConstrStr; 3273 bool HasSideEffects = Record[0] & 1; 3274 bool IsAlignStack = (Record[0] >> 1) & 1; 3275 unsigned AsmDialect = Record[0] >> 2; 3276 unsigned AsmStrSize = Record[1]; 3277 if (2+AsmStrSize >= Record.size()) 3278 return error("Invalid inlineasm record"); 3279 unsigned ConstStrSize = Record[2+AsmStrSize]; 3280 if (3+AsmStrSize+ConstStrSize > Record.size()) 3281 return error("Invalid inlineasm record"); 3282 3283 for (unsigned i = 0; i != AsmStrSize; ++i) 3284 AsmStr += (char)Record[2+i]; 3285 for (unsigned i = 0; i != ConstStrSize; ++i) 3286 ConstrStr += (char)Record[3+AsmStrSize+i]; 3287 UpgradeInlineAsmString(&AsmStr); 3288 if (!CurElemTy) 3289 return error("Missing element type for old-style inlineasm"); 3290 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3291 HasSideEffects, IsAlignStack, 3292 InlineAsm::AsmDialect(AsmDialect)); 3293 break; 3294 } 3295 // This version adds support for the unwind keyword. 3296 case bitc::CST_CODE_INLINEASM_OLD3: { 3297 if (Record.size() < 2) 3298 return error("Invalid inlineasm record"); 3299 unsigned OpNum = 0; 3300 std::string AsmStr, ConstrStr; 3301 bool HasSideEffects = Record[OpNum] & 1; 3302 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3303 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3304 bool CanThrow = (Record[OpNum] >> 3) & 1; 3305 ++OpNum; 3306 unsigned AsmStrSize = Record[OpNum]; 3307 ++OpNum; 3308 if (OpNum + AsmStrSize >= Record.size()) 3309 return error("Invalid inlineasm record"); 3310 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3311 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3312 return error("Invalid inlineasm record"); 3313 3314 for (unsigned i = 0; i != AsmStrSize; ++i) 3315 AsmStr += (char)Record[OpNum + i]; 3316 ++OpNum; 3317 for (unsigned i = 0; i != ConstStrSize; ++i) 3318 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3319 UpgradeInlineAsmString(&AsmStr); 3320 if (!CurElemTy) 3321 return error("Missing element type for old-style inlineasm"); 3322 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3323 HasSideEffects, IsAlignStack, 3324 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3325 break; 3326 } 3327 // This version adds explicit function type. 3328 case bitc::CST_CODE_INLINEASM: { 3329 if (Record.size() < 3) 3330 return error("Invalid inlineasm record"); 3331 unsigned OpNum = 0; 3332 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3333 ++OpNum; 3334 if (!FnTy) 3335 return error("Invalid inlineasm record"); 3336 std::string AsmStr, ConstrStr; 3337 bool HasSideEffects = Record[OpNum] & 1; 3338 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3339 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3340 bool CanThrow = (Record[OpNum] >> 3) & 1; 3341 ++OpNum; 3342 unsigned AsmStrSize = Record[OpNum]; 3343 ++OpNum; 3344 if (OpNum + AsmStrSize >= Record.size()) 3345 return error("Invalid inlineasm record"); 3346 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3347 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3348 return error("Invalid inlineasm record"); 3349 3350 for (unsigned i = 0; i != AsmStrSize; ++i) 3351 AsmStr += (char)Record[OpNum + i]; 3352 ++OpNum; 3353 for (unsigned i = 0; i != ConstStrSize; ++i) 3354 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3355 UpgradeInlineAsmString(&AsmStr); 3356 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3357 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3358 break; 3359 } 3360 case bitc::CST_CODE_BLOCKADDRESS:{ 3361 if (Record.size() < 3) 3362 return error("Invalid blockaddress record"); 3363 unsigned FnTyID = Record[0]; 3364 Type *FnTy = getTypeByID(FnTyID); 3365 if (!FnTy) 3366 return error("Invalid blockaddress record"); 3367 V = BitcodeConstant::create( 3368 Alloc, CurTy, 3369 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3370 Record[1]); 3371 break; 3372 } 3373 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3374 if (Record.size() < 2) 3375 return error("Invalid dso_local record"); 3376 unsigned GVTyID = Record[0]; 3377 Type *GVTy = getTypeByID(GVTyID); 3378 if (!GVTy) 3379 return error("Invalid dso_local record"); 3380 V = BitcodeConstant::create( 3381 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3382 break; 3383 } 3384 case bitc::CST_CODE_NO_CFI_VALUE: { 3385 if (Record.size() < 2) 3386 return error("Invalid no_cfi record"); 3387 unsigned GVTyID = Record[0]; 3388 Type *GVTy = getTypeByID(GVTyID); 3389 if (!GVTy) 3390 return error("Invalid no_cfi record"); 3391 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3392 Record[1]); 3393 break; 3394 } 3395 } 3396 3397 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3398 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3399 return Err; 3400 ++NextCstNo; 3401 } 3402 } 3403 3404 Error BitcodeReader::parseUseLists() { 3405 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3406 return Err; 3407 3408 // Read all the records. 3409 SmallVector<uint64_t, 64> Record; 3410 3411 while (true) { 3412 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3413 if (!MaybeEntry) 3414 return MaybeEntry.takeError(); 3415 BitstreamEntry Entry = MaybeEntry.get(); 3416 3417 switch (Entry.Kind) { 3418 case BitstreamEntry::SubBlock: // Handled for us already. 3419 case BitstreamEntry::Error: 3420 return error("Malformed block"); 3421 case BitstreamEntry::EndBlock: 3422 return Error::success(); 3423 case BitstreamEntry::Record: 3424 // The interesting case. 3425 break; 3426 } 3427 3428 // Read a use list record. 3429 Record.clear(); 3430 bool IsBB = false; 3431 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3432 if (!MaybeRecord) 3433 return MaybeRecord.takeError(); 3434 switch (MaybeRecord.get()) { 3435 default: // Default behavior: unknown type. 3436 break; 3437 case bitc::USELIST_CODE_BB: 3438 IsBB = true; 3439 LLVM_FALLTHROUGH; 3440 case bitc::USELIST_CODE_DEFAULT: { 3441 unsigned RecordLength = Record.size(); 3442 if (RecordLength < 3) 3443 // Records should have at least an ID and two indexes. 3444 return error("Invalid record"); 3445 unsigned ID = Record.pop_back_val(); 3446 3447 Value *V; 3448 if (IsBB) { 3449 assert(ID < FunctionBBs.size() && "Basic block not found"); 3450 V = FunctionBBs[ID]; 3451 } else 3452 V = ValueList[ID]; 3453 unsigned NumUses = 0; 3454 SmallDenseMap<const Use *, unsigned, 16> Order; 3455 for (const Use &U : V->materialized_uses()) { 3456 if (++NumUses > Record.size()) 3457 break; 3458 Order[&U] = Record[NumUses - 1]; 3459 } 3460 if (Order.size() != Record.size() || NumUses > Record.size()) 3461 // Mismatches can happen if the functions are being materialized lazily 3462 // (out-of-order), or a value has been upgraded. 3463 break; 3464 3465 V->sortUseList([&](const Use &L, const Use &R) { 3466 return Order.lookup(&L) < Order.lookup(&R); 3467 }); 3468 break; 3469 } 3470 } 3471 } 3472 } 3473 3474 /// When we see the block for metadata, remember where it is and then skip it. 3475 /// This lets us lazily deserialize the metadata. 3476 Error BitcodeReader::rememberAndSkipMetadata() { 3477 // Save the current stream state. 3478 uint64_t CurBit = Stream.GetCurrentBitNo(); 3479 DeferredMetadataInfo.push_back(CurBit); 3480 3481 // Skip over the block for now. 3482 if (Error Err = Stream.SkipBlock()) 3483 return Err; 3484 return Error::success(); 3485 } 3486 3487 Error BitcodeReader::materializeMetadata() { 3488 for (uint64_t BitPos : DeferredMetadataInfo) { 3489 // Move the bit stream to the saved position. 3490 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3491 return JumpFailed; 3492 if (Error Err = MDLoader->parseModuleMetadata()) 3493 return Err; 3494 } 3495 3496 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3497 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3498 // multiple times. 3499 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3500 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3501 NamedMDNode *LinkerOpts = 3502 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3503 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3504 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3505 } 3506 } 3507 3508 DeferredMetadataInfo.clear(); 3509 return Error::success(); 3510 } 3511 3512 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3513 3514 /// When we see the block for a function body, remember where it is and then 3515 /// skip it. This lets us lazily deserialize the functions. 3516 Error BitcodeReader::rememberAndSkipFunctionBody() { 3517 // Get the function we are talking about. 3518 if (FunctionsWithBodies.empty()) 3519 return error("Insufficient function protos"); 3520 3521 Function *Fn = FunctionsWithBodies.back(); 3522 FunctionsWithBodies.pop_back(); 3523 3524 // Save the current stream state. 3525 uint64_t CurBit = Stream.GetCurrentBitNo(); 3526 assert( 3527 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3528 "Mismatch between VST and scanned function offsets"); 3529 DeferredFunctionInfo[Fn] = CurBit; 3530 3531 // Skip over the function block for now. 3532 if (Error Err = Stream.SkipBlock()) 3533 return Err; 3534 return Error::success(); 3535 } 3536 3537 Error BitcodeReader::globalCleanup() { 3538 // Patch the initializers for globals and aliases up. 3539 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3540 return Err; 3541 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3542 return error("Malformed global initializer set"); 3543 3544 // Look for intrinsic functions which need to be upgraded at some point 3545 // and functions that need to have their function attributes upgraded. 3546 for (Function &F : *TheModule) { 3547 MDLoader->upgradeDebugIntrinsics(F); 3548 Function *NewFn; 3549 if (UpgradeIntrinsicFunction(&F, NewFn)) 3550 UpgradedIntrinsics[&F] = NewFn; 3551 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3552 // Some types could be renamed during loading if several modules are 3553 // loaded in the same LLVMContext (LTO scenario). In this case we should 3554 // remangle intrinsics names as well. 3555 RemangledIntrinsics[&F] = *Remangled; 3556 // Look for functions that rely on old function attribute behavior. 3557 UpgradeFunctionAttributes(F); 3558 } 3559 3560 // Look for global variables which need to be renamed. 3561 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3562 for (GlobalVariable &GV : TheModule->globals()) 3563 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3564 UpgradedVariables.emplace_back(&GV, Upgraded); 3565 for (auto &Pair : UpgradedVariables) { 3566 Pair.first->eraseFromParent(); 3567 TheModule->getGlobalList().push_back(Pair.second); 3568 } 3569 3570 // Force deallocation of memory for these vectors to favor the client that 3571 // want lazy deserialization. 3572 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3573 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3574 return Error::success(); 3575 } 3576 3577 /// Support for lazy parsing of function bodies. This is required if we 3578 /// either have an old bitcode file without a VST forward declaration record, 3579 /// or if we have an anonymous function being materialized, since anonymous 3580 /// functions do not have a name and are therefore not in the VST. 3581 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3582 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3583 return JumpFailed; 3584 3585 if (Stream.AtEndOfStream()) 3586 return error("Could not find function in stream"); 3587 3588 if (!SeenFirstFunctionBody) 3589 return error("Trying to materialize functions before seeing function blocks"); 3590 3591 // An old bitcode file with the symbol table at the end would have 3592 // finished the parse greedily. 3593 assert(SeenValueSymbolTable); 3594 3595 SmallVector<uint64_t, 64> Record; 3596 3597 while (true) { 3598 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3599 if (!MaybeEntry) 3600 return MaybeEntry.takeError(); 3601 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3602 3603 switch (Entry.Kind) { 3604 default: 3605 return error("Expect SubBlock"); 3606 case BitstreamEntry::SubBlock: 3607 switch (Entry.ID) { 3608 default: 3609 return error("Expect function block"); 3610 case bitc::FUNCTION_BLOCK_ID: 3611 if (Error Err = rememberAndSkipFunctionBody()) 3612 return Err; 3613 NextUnreadBit = Stream.GetCurrentBitNo(); 3614 return Error::success(); 3615 } 3616 } 3617 } 3618 } 3619 3620 Error BitcodeReaderBase::readBlockInfo() { 3621 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3622 Stream.ReadBlockInfoBlock(); 3623 if (!MaybeNewBlockInfo) 3624 return MaybeNewBlockInfo.takeError(); 3625 Optional<BitstreamBlockInfo> NewBlockInfo = 3626 std::move(MaybeNewBlockInfo.get()); 3627 if (!NewBlockInfo) 3628 return error("Malformed block"); 3629 BlockInfo = std::move(*NewBlockInfo); 3630 return Error::success(); 3631 } 3632 3633 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3634 // v1: [selection_kind, name] 3635 // v2: [strtab_offset, strtab_size, selection_kind] 3636 StringRef Name; 3637 std::tie(Name, Record) = readNameFromStrtab(Record); 3638 3639 if (Record.empty()) 3640 return error("Invalid record"); 3641 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3642 std::string OldFormatName; 3643 if (!UseStrtab) { 3644 if (Record.size() < 2) 3645 return error("Invalid record"); 3646 unsigned ComdatNameSize = Record[1]; 3647 if (ComdatNameSize > Record.size() - 2) 3648 return error("Comdat name size too large"); 3649 OldFormatName.reserve(ComdatNameSize); 3650 for (unsigned i = 0; i != ComdatNameSize; ++i) 3651 OldFormatName += (char)Record[2 + i]; 3652 Name = OldFormatName; 3653 } 3654 Comdat *C = TheModule->getOrInsertComdat(Name); 3655 C->setSelectionKind(SK); 3656 ComdatList.push_back(C); 3657 return Error::success(); 3658 } 3659 3660 static void inferDSOLocal(GlobalValue *GV) { 3661 // infer dso_local from linkage and visibility if it is not encoded. 3662 if (GV->hasLocalLinkage() || 3663 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3664 GV->setDSOLocal(true); 3665 } 3666 3667 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3668 GlobalValue::SanitizerMetadata Meta; 3669 if (V & (1 << 0)) 3670 Meta.NoAddress = true; 3671 if (V & (1 << 1)) 3672 Meta.NoHWAddress = true; 3673 if (V & (1 << 2)) 3674 Meta.NoMemtag = true; 3675 if (V & (1 << 3)) 3676 Meta.IsDynInit = true; 3677 return Meta; 3678 } 3679 3680 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3681 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3682 // visibility, threadlocal, unnamed_addr, externally_initialized, 3683 // dllstorageclass, comdat, attributes, preemption specifier, 3684 // partition strtab offset, partition strtab size] (name in VST) 3685 // v2: [strtab_offset, strtab_size, v1] 3686 StringRef Name; 3687 std::tie(Name, Record) = readNameFromStrtab(Record); 3688 3689 if (Record.size() < 6) 3690 return error("Invalid record"); 3691 unsigned TyID = Record[0]; 3692 Type *Ty = getTypeByID(TyID); 3693 if (!Ty) 3694 return error("Invalid record"); 3695 bool isConstant = Record[1] & 1; 3696 bool explicitType = Record[1] & 2; 3697 unsigned AddressSpace; 3698 if (explicitType) { 3699 AddressSpace = Record[1] >> 2; 3700 } else { 3701 if (!Ty->isPointerTy()) 3702 return error("Invalid type for value"); 3703 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3704 TyID = getContainedTypeID(TyID); 3705 Ty = getTypeByID(TyID); 3706 if (!Ty) 3707 return error("Missing element type for old-style global"); 3708 } 3709 3710 uint64_t RawLinkage = Record[3]; 3711 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3712 MaybeAlign Alignment; 3713 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3714 return Err; 3715 std::string Section; 3716 if (Record[5]) { 3717 if (Record[5] - 1 >= SectionTable.size()) 3718 return error("Invalid ID"); 3719 Section = SectionTable[Record[5] - 1]; 3720 } 3721 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3722 // Local linkage must have default visibility. 3723 // auto-upgrade `hidden` and `protected` for old bitcode. 3724 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3725 Visibility = getDecodedVisibility(Record[6]); 3726 3727 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3728 if (Record.size() > 7) 3729 TLM = getDecodedThreadLocalMode(Record[7]); 3730 3731 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3732 if (Record.size() > 8) 3733 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3734 3735 bool ExternallyInitialized = false; 3736 if (Record.size() > 9) 3737 ExternallyInitialized = Record[9]; 3738 3739 GlobalVariable *NewGV = 3740 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3741 nullptr, TLM, AddressSpace, ExternallyInitialized); 3742 NewGV->setAlignment(Alignment); 3743 if (!Section.empty()) 3744 NewGV->setSection(Section); 3745 NewGV->setVisibility(Visibility); 3746 NewGV->setUnnamedAddr(UnnamedAddr); 3747 3748 if (Record.size() > 10) 3749 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3750 else 3751 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3752 3753 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3754 3755 // Remember which value to use for the global initializer. 3756 if (unsigned InitID = Record[2]) 3757 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3758 3759 if (Record.size() > 11) { 3760 if (unsigned ComdatID = Record[11]) { 3761 if (ComdatID > ComdatList.size()) 3762 return error("Invalid global variable comdat ID"); 3763 NewGV->setComdat(ComdatList[ComdatID - 1]); 3764 } 3765 } else if (hasImplicitComdat(RawLinkage)) { 3766 ImplicitComdatObjects.insert(NewGV); 3767 } 3768 3769 if (Record.size() > 12) { 3770 auto AS = getAttributes(Record[12]).getFnAttrs(); 3771 NewGV->setAttributes(AS); 3772 } 3773 3774 if (Record.size() > 13) { 3775 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3776 } 3777 inferDSOLocal(NewGV); 3778 3779 // Check whether we have enough values to read a partition name. 3780 if (Record.size() > 15) 3781 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3782 3783 if (Record.size() > 16 && Record[16]) { 3784 llvm::GlobalValue::SanitizerMetadata Meta = 3785 deserializeSanitizerMetadata(Record[16]); 3786 NewGV->setSanitizerMetadata(Meta); 3787 } 3788 3789 return Error::success(); 3790 } 3791 3792 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3793 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3794 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3795 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3796 // v2: [strtab_offset, strtab_size, v1] 3797 StringRef Name; 3798 std::tie(Name, Record) = readNameFromStrtab(Record); 3799 3800 if (Record.size() < 8) 3801 return error("Invalid record"); 3802 unsigned FTyID = Record[0]; 3803 Type *FTy = getTypeByID(FTyID); 3804 if (!FTy) 3805 return error("Invalid record"); 3806 if (isa<PointerType>(FTy)) { 3807 FTyID = getContainedTypeID(FTyID, 0); 3808 FTy = getTypeByID(FTyID); 3809 if (!FTy) 3810 return error("Missing element type for old-style function"); 3811 } 3812 3813 if (!isa<FunctionType>(FTy)) 3814 return error("Invalid type for value"); 3815 auto CC = static_cast<CallingConv::ID>(Record[1]); 3816 if (CC & ~CallingConv::MaxID) 3817 return error("Invalid calling convention ID"); 3818 3819 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3820 if (Record.size() > 16) 3821 AddrSpace = Record[16]; 3822 3823 Function *Func = 3824 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3825 AddrSpace, Name, TheModule); 3826 3827 assert(Func->getFunctionType() == FTy && 3828 "Incorrect fully specified type provided for function"); 3829 FunctionTypeIDs[Func] = FTyID; 3830 3831 Func->setCallingConv(CC); 3832 bool isProto = Record[2]; 3833 uint64_t RawLinkage = Record[3]; 3834 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3835 Func->setAttributes(getAttributes(Record[4])); 3836 3837 // Upgrade any old-style byval or sret without a type by propagating the 3838 // argument's pointee type. There should be no opaque pointers where the byval 3839 // type is implicit. 3840 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3841 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3842 Attribute::InAlloca}) { 3843 if (!Func->hasParamAttribute(i, Kind)) 3844 continue; 3845 3846 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3847 continue; 3848 3849 Func->removeParamAttr(i, Kind); 3850 3851 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3852 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3853 if (!PtrEltTy) 3854 return error("Missing param element type for attribute upgrade"); 3855 3856 Attribute NewAttr; 3857 switch (Kind) { 3858 case Attribute::ByVal: 3859 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3860 break; 3861 case Attribute::StructRet: 3862 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3863 break; 3864 case Attribute::InAlloca: 3865 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3866 break; 3867 default: 3868 llvm_unreachable("not an upgraded type attribute"); 3869 } 3870 3871 Func->addParamAttr(i, NewAttr); 3872 } 3873 } 3874 3875 if (Func->getCallingConv() == CallingConv::X86_INTR && 3876 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3877 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3878 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3879 if (!ByValTy) 3880 return error("Missing param element type for x86_intrcc upgrade"); 3881 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3882 Func->addParamAttr(0, NewAttr); 3883 } 3884 3885 MaybeAlign Alignment; 3886 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3887 return Err; 3888 Func->setAlignment(Alignment); 3889 if (Record[6]) { 3890 if (Record[6] - 1 >= SectionTable.size()) 3891 return error("Invalid ID"); 3892 Func->setSection(SectionTable[Record[6] - 1]); 3893 } 3894 // Local linkage must have default visibility. 3895 // auto-upgrade `hidden` and `protected` for old bitcode. 3896 if (!Func->hasLocalLinkage()) 3897 Func->setVisibility(getDecodedVisibility(Record[7])); 3898 if (Record.size() > 8 && Record[8]) { 3899 if (Record[8] - 1 >= GCTable.size()) 3900 return error("Invalid ID"); 3901 Func->setGC(GCTable[Record[8] - 1]); 3902 } 3903 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3904 if (Record.size() > 9) 3905 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3906 Func->setUnnamedAddr(UnnamedAddr); 3907 3908 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3909 if (Record.size() > 10) 3910 OperandInfo.Prologue = Record[10]; 3911 3912 if (Record.size() > 11) 3913 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3914 else 3915 upgradeDLLImportExportLinkage(Func, RawLinkage); 3916 3917 if (Record.size() > 12) { 3918 if (unsigned ComdatID = Record[12]) { 3919 if (ComdatID > ComdatList.size()) 3920 return error("Invalid function comdat ID"); 3921 Func->setComdat(ComdatList[ComdatID - 1]); 3922 } 3923 } else if (hasImplicitComdat(RawLinkage)) { 3924 ImplicitComdatObjects.insert(Func); 3925 } 3926 3927 if (Record.size() > 13) 3928 OperandInfo.Prefix = Record[13]; 3929 3930 if (Record.size() > 14) 3931 OperandInfo.PersonalityFn = Record[14]; 3932 3933 if (Record.size() > 15) { 3934 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3935 } 3936 inferDSOLocal(Func); 3937 3938 // Record[16] is the address space number. 3939 3940 // Check whether we have enough values to read a partition name. Also make 3941 // sure Strtab has enough values. 3942 if (Record.size() > 18 && Strtab.data() && 3943 Record[17] + Record[18] <= Strtab.size()) { 3944 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3945 } 3946 3947 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3948 3949 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3950 FunctionOperands.push_back(OperandInfo); 3951 3952 // If this is a function with a body, remember the prototype we are 3953 // creating now, so that we can match up the body with them later. 3954 if (!isProto) { 3955 Func->setIsMaterializable(true); 3956 FunctionsWithBodies.push_back(Func); 3957 DeferredFunctionInfo[Func] = 0; 3958 } 3959 return Error::success(); 3960 } 3961 3962 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3963 unsigned BitCode, ArrayRef<uint64_t> Record) { 3964 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3965 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3966 // dllstorageclass, threadlocal, unnamed_addr, 3967 // preemption specifier] (name in VST) 3968 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3969 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3970 // preemption specifier] (name in VST) 3971 // v2: [strtab_offset, strtab_size, v1] 3972 StringRef Name; 3973 std::tie(Name, Record) = readNameFromStrtab(Record); 3974 3975 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3976 if (Record.size() < (3 + (unsigned)NewRecord)) 3977 return error("Invalid record"); 3978 unsigned OpNum = 0; 3979 unsigned TypeID = Record[OpNum++]; 3980 Type *Ty = getTypeByID(TypeID); 3981 if (!Ty) 3982 return error("Invalid record"); 3983 3984 unsigned AddrSpace; 3985 if (!NewRecord) { 3986 auto *PTy = dyn_cast<PointerType>(Ty); 3987 if (!PTy) 3988 return error("Invalid type for value"); 3989 AddrSpace = PTy->getAddressSpace(); 3990 TypeID = getContainedTypeID(TypeID); 3991 Ty = getTypeByID(TypeID); 3992 if (!Ty) 3993 return error("Missing element type for old-style indirect symbol"); 3994 } else { 3995 AddrSpace = Record[OpNum++]; 3996 } 3997 3998 auto Val = Record[OpNum++]; 3999 auto Linkage = Record[OpNum++]; 4000 GlobalValue *NewGA; 4001 if (BitCode == bitc::MODULE_CODE_ALIAS || 4002 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4003 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4004 TheModule); 4005 else 4006 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4007 nullptr, TheModule); 4008 4009 // Local linkage must have default visibility. 4010 // auto-upgrade `hidden` and `protected` for old bitcode. 4011 if (OpNum != Record.size()) { 4012 auto VisInd = OpNum++; 4013 if (!NewGA->hasLocalLinkage()) 4014 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4015 } 4016 if (BitCode == bitc::MODULE_CODE_ALIAS || 4017 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4018 if (OpNum != Record.size()) 4019 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4020 else 4021 upgradeDLLImportExportLinkage(NewGA, Linkage); 4022 if (OpNum != Record.size()) 4023 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4024 if (OpNum != Record.size()) 4025 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4026 } 4027 if (OpNum != Record.size()) 4028 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4029 inferDSOLocal(NewGA); 4030 4031 // Check whether we have enough values to read a partition name. 4032 if (OpNum + 1 < Record.size()) { 4033 NewGA->setPartition( 4034 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4035 OpNum += 2; 4036 } 4037 4038 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4039 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4040 return Error::success(); 4041 } 4042 4043 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4044 bool ShouldLazyLoadMetadata, 4045 DataLayoutCallbackTy DataLayoutCallback) { 4046 if (ResumeBit) { 4047 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4048 return JumpFailed; 4049 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4050 return Err; 4051 4052 SmallVector<uint64_t, 64> Record; 4053 4054 // Parts of bitcode parsing depend on the datalayout. Make sure we 4055 // finalize the datalayout before we run any of that code. 4056 bool ResolvedDataLayout = false; 4057 auto ResolveDataLayout = [&] { 4058 if (ResolvedDataLayout) 4059 return; 4060 4061 // datalayout and triple can't be parsed after this point. 4062 ResolvedDataLayout = true; 4063 4064 // Upgrade data layout string. 4065 std::string DL = llvm::UpgradeDataLayoutString( 4066 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 4067 TheModule->setDataLayout(DL); 4068 4069 if (auto LayoutOverride = 4070 DataLayoutCallback(TheModule->getTargetTriple())) 4071 TheModule->setDataLayout(*LayoutOverride); 4072 }; 4073 4074 // Read all the records for this module. 4075 while (true) { 4076 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4077 if (!MaybeEntry) 4078 return MaybeEntry.takeError(); 4079 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4080 4081 switch (Entry.Kind) { 4082 case BitstreamEntry::Error: 4083 return error("Malformed block"); 4084 case BitstreamEntry::EndBlock: 4085 ResolveDataLayout(); 4086 return globalCleanup(); 4087 4088 case BitstreamEntry::SubBlock: 4089 switch (Entry.ID) { 4090 default: // Skip unknown content. 4091 if (Error Err = Stream.SkipBlock()) 4092 return Err; 4093 break; 4094 case bitc::BLOCKINFO_BLOCK_ID: 4095 if (Error Err = readBlockInfo()) 4096 return Err; 4097 break; 4098 case bitc::PARAMATTR_BLOCK_ID: 4099 if (Error Err = parseAttributeBlock()) 4100 return Err; 4101 break; 4102 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4103 if (Error Err = parseAttributeGroupBlock()) 4104 return Err; 4105 break; 4106 case bitc::TYPE_BLOCK_ID_NEW: 4107 if (Error Err = parseTypeTable()) 4108 return Err; 4109 break; 4110 case bitc::VALUE_SYMTAB_BLOCK_ID: 4111 if (!SeenValueSymbolTable) { 4112 // Either this is an old form VST without function index and an 4113 // associated VST forward declaration record (which would have caused 4114 // the VST to be jumped to and parsed before it was encountered 4115 // normally in the stream), or there were no function blocks to 4116 // trigger an earlier parsing of the VST. 4117 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4118 if (Error Err = parseValueSymbolTable()) 4119 return Err; 4120 SeenValueSymbolTable = true; 4121 } else { 4122 // We must have had a VST forward declaration record, which caused 4123 // the parser to jump to and parse the VST earlier. 4124 assert(VSTOffset > 0); 4125 if (Error Err = Stream.SkipBlock()) 4126 return Err; 4127 } 4128 break; 4129 case bitc::CONSTANTS_BLOCK_ID: 4130 if (Error Err = parseConstants()) 4131 return Err; 4132 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4133 return Err; 4134 break; 4135 case bitc::METADATA_BLOCK_ID: 4136 if (ShouldLazyLoadMetadata) { 4137 if (Error Err = rememberAndSkipMetadata()) 4138 return Err; 4139 break; 4140 } 4141 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4142 if (Error Err = MDLoader->parseModuleMetadata()) 4143 return Err; 4144 break; 4145 case bitc::METADATA_KIND_BLOCK_ID: 4146 if (Error Err = MDLoader->parseMetadataKinds()) 4147 return Err; 4148 break; 4149 case bitc::FUNCTION_BLOCK_ID: 4150 ResolveDataLayout(); 4151 4152 // If this is the first function body we've seen, reverse the 4153 // FunctionsWithBodies list. 4154 if (!SeenFirstFunctionBody) { 4155 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4156 if (Error Err = globalCleanup()) 4157 return Err; 4158 SeenFirstFunctionBody = true; 4159 } 4160 4161 if (VSTOffset > 0) { 4162 // If we have a VST forward declaration record, make sure we 4163 // parse the VST now if we haven't already. It is needed to 4164 // set up the DeferredFunctionInfo vector for lazy reading. 4165 if (!SeenValueSymbolTable) { 4166 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4167 return Err; 4168 SeenValueSymbolTable = true; 4169 // Fall through so that we record the NextUnreadBit below. 4170 // This is necessary in case we have an anonymous function that 4171 // is later materialized. Since it will not have a VST entry we 4172 // need to fall back to the lazy parse to find its offset. 4173 } else { 4174 // If we have a VST forward declaration record, but have already 4175 // parsed the VST (just above, when the first function body was 4176 // encountered here), then we are resuming the parse after 4177 // materializing functions. The ResumeBit points to the 4178 // start of the last function block recorded in the 4179 // DeferredFunctionInfo map. Skip it. 4180 if (Error Err = Stream.SkipBlock()) 4181 return Err; 4182 continue; 4183 } 4184 } 4185 4186 // Support older bitcode files that did not have the function 4187 // index in the VST, nor a VST forward declaration record, as 4188 // well as anonymous functions that do not have VST entries. 4189 // Build the DeferredFunctionInfo vector on the fly. 4190 if (Error Err = rememberAndSkipFunctionBody()) 4191 return Err; 4192 4193 // Suspend parsing when we reach the function bodies. Subsequent 4194 // materialization calls will resume it when necessary. If the bitcode 4195 // file is old, the symbol table will be at the end instead and will not 4196 // have been seen yet. In this case, just finish the parse now. 4197 if (SeenValueSymbolTable) { 4198 NextUnreadBit = Stream.GetCurrentBitNo(); 4199 // After the VST has been parsed, we need to make sure intrinsic name 4200 // are auto-upgraded. 4201 return globalCleanup(); 4202 } 4203 break; 4204 case bitc::USELIST_BLOCK_ID: 4205 if (Error Err = parseUseLists()) 4206 return Err; 4207 break; 4208 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4209 if (Error Err = parseOperandBundleTags()) 4210 return Err; 4211 break; 4212 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4213 if (Error Err = parseSyncScopeNames()) 4214 return Err; 4215 break; 4216 } 4217 continue; 4218 4219 case BitstreamEntry::Record: 4220 // The interesting case. 4221 break; 4222 } 4223 4224 // Read a record. 4225 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4226 if (!MaybeBitCode) 4227 return MaybeBitCode.takeError(); 4228 switch (unsigned BitCode = MaybeBitCode.get()) { 4229 default: break; // Default behavior, ignore unknown content. 4230 case bitc::MODULE_CODE_VERSION: { 4231 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4232 if (!VersionOrErr) 4233 return VersionOrErr.takeError(); 4234 UseRelativeIDs = *VersionOrErr >= 1; 4235 break; 4236 } 4237 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4238 if (ResolvedDataLayout) 4239 return error("target triple too late in module"); 4240 std::string S; 4241 if (convertToString(Record, 0, S)) 4242 return error("Invalid record"); 4243 TheModule->setTargetTriple(S); 4244 break; 4245 } 4246 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4247 if (ResolvedDataLayout) 4248 return error("datalayout too late in module"); 4249 std::string S; 4250 if (convertToString(Record, 0, S)) 4251 return error("Invalid record"); 4252 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 4253 if (!MaybeDL) 4254 return MaybeDL.takeError(); 4255 TheModule->setDataLayout(MaybeDL.get()); 4256 break; 4257 } 4258 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4259 std::string S; 4260 if (convertToString(Record, 0, S)) 4261 return error("Invalid record"); 4262 TheModule->setModuleInlineAsm(S); 4263 break; 4264 } 4265 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4266 // Deprecated, but still needed to read old bitcode files. 4267 std::string S; 4268 if (convertToString(Record, 0, S)) 4269 return error("Invalid record"); 4270 // Ignore value. 4271 break; 4272 } 4273 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4274 std::string S; 4275 if (convertToString(Record, 0, S)) 4276 return error("Invalid record"); 4277 SectionTable.push_back(S); 4278 break; 4279 } 4280 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4281 std::string S; 4282 if (convertToString(Record, 0, S)) 4283 return error("Invalid record"); 4284 GCTable.push_back(S); 4285 break; 4286 } 4287 case bitc::MODULE_CODE_COMDAT: 4288 if (Error Err = parseComdatRecord(Record)) 4289 return Err; 4290 break; 4291 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4292 // written by ThinLinkBitcodeWriter. See 4293 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4294 // record 4295 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4296 case bitc::MODULE_CODE_GLOBALVAR: 4297 if (Error Err = parseGlobalVarRecord(Record)) 4298 return Err; 4299 break; 4300 case bitc::MODULE_CODE_FUNCTION: 4301 ResolveDataLayout(); 4302 if (Error Err = parseFunctionRecord(Record)) 4303 return Err; 4304 break; 4305 case bitc::MODULE_CODE_IFUNC: 4306 case bitc::MODULE_CODE_ALIAS: 4307 case bitc::MODULE_CODE_ALIAS_OLD: 4308 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4309 return Err; 4310 break; 4311 /// MODULE_CODE_VSTOFFSET: [offset] 4312 case bitc::MODULE_CODE_VSTOFFSET: 4313 if (Record.empty()) 4314 return error("Invalid record"); 4315 // Note that we subtract 1 here because the offset is relative to one word 4316 // before the start of the identification or module block, which was 4317 // historically always the start of the regular bitcode header. 4318 VSTOffset = Record[0] - 1; 4319 break; 4320 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4321 case bitc::MODULE_CODE_SOURCE_FILENAME: 4322 SmallString<128> ValueName; 4323 if (convertToString(Record, 0, ValueName)) 4324 return error("Invalid record"); 4325 TheModule->setSourceFileName(ValueName); 4326 break; 4327 } 4328 Record.clear(); 4329 } 4330 } 4331 4332 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4333 bool IsImporting, 4334 DataLayoutCallbackTy DataLayoutCallback) { 4335 TheModule = M; 4336 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4337 [&](unsigned ID) { return getTypeByID(ID); }); 4338 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4339 } 4340 4341 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4342 if (!isa<PointerType>(PtrType)) 4343 return error("Load/Store operand is not a pointer type"); 4344 4345 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4346 return error("Explicit load/store type does not match pointee " 4347 "type of pointer operand"); 4348 if (!PointerType::isLoadableOrStorableType(ValType)) 4349 return error("Cannot load/store from pointer"); 4350 return Error::success(); 4351 } 4352 4353 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4354 ArrayRef<unsigned> ArgTyIDs) { 4355 AttributeList Attrs = CB->getAttributes(); 4356 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4357 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4358 Attribute::InAlloca}) { 4359 if (!Attrs.hasParamAttr(i, Kind) || 4360 Attrs.getParamAttr(i, Kind).getValueAsType()) 4361 continue; 4362 4363 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4364 if (!PtrEltTy) 4365 return error("Missing element type for typed attribute upgrade"); 4366 4367 Attribute NewAttr; 4368 switch (Kind) { 4369 case Attribute::ByVal: 4370 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4371 break; 4372 case Attribute::StructRet: 4373 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4374 break; 4375 case Attribute::InAlloca: 4376 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4377 break; 4378 default: 4379 llvm_unreachable("not an upgraded type attribute"); 4380 } 4381 4382 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4383 } 4384 } 4385 4386 if (CB->isInlineAsm()) { 4387 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4388 unsigned ArgNo = 0; 4389 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4390 if (!CI.hasArg()) 4391 continue; 4392 4393 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4394 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4395 if (!ElemTy) 4396 return error("Missing element type for inline asm upgrade"); 4397 Attrs = Attrs.addParamAttribute( 4398 Context, ArgNo, 4399 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4400 } 4401 4402 ArgNo++; 4403 } 4404 } 4405 4406 switch (CB->getIntrinsicID()) { 4407 case Intrinsic::preserve_array_access_index: 4408 case Intrinsic::preserve_struct_access_index: 4409 case Intrinsic::aarch64_ldaxr: 4410 case Intrinsic::aarch64_ldxr: 4411 case Intrinsic::aarch64_stlxr: 4412 case Intrinsic::aarch64_stxr: 4413 case Intrinsic::arm_ldaex: 4414 case Intrinsic::arm_ldrex: 4415 case Intrinsic::arm_stlex: 4416 case Intrinsic::arm_strex: { 4417 unsigned ArgNo; 4418 switch (CB->getIntrinsicID()) { 4419 case Intrinsic::aarch64_stlxr: 4420 case Intrinsic::aarch64_stxr: 4421 case Intrinsic::arm_stlex: 4422 case Intrinsic::arm_strex: 4423 ArgNo = 1; 4424 break; 4425 default: 4426 ArgNo = 0; 4427 break; 4428 } 4429 if (!Attrs.getParamElementType(ArgNo)) { 4430 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4431 if (!ElTy) 4432 return error("Missing element type for elementtype upgrade"); 4433 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4434 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4435 } 4436 break; 4437 } 4438 default: 4439 break; 4440 } 4441 4442 CB->setAttributes(Attrs); 4443 return Error::success(); 4444 } 4445 4446 /// Lazily parse the specified function body block. 4447 Error BitcodeReader::parseFunctionBody(Function *F) { 4448 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4449 return Err; 4450 4451 // Unexpected unresolved metadata when parsing function. 4452 if (MDLoader->hasFwdRefs()) 4453 return error("Invalid function metadata: incoming forward references"); 4454 4455 InstructionList.clear(); 4456 unsigned ModuleValueListSize = ValueList.size(); 4457 unsigned ModuleMDLoaderSize = MDLoader->size(); 4458 4459 // Add all the function arguments to the value table. 4460 unsigned ArgNo = 0; 4461 unsigned FTyID = FunctionTypeIDs[F]; 4462 for (Argument &I : F->args()) { 4463 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4464 assert(I.getType() == getTypeByID(ArgTyID) && 4465 "Incorrect fully specified type for Function Argument"); 4466 ValueList.push_back(&I, ArgTyID); 4467 ++ArgNo; 4468 } 4469 unsigned NextValueNo = ValueList.size(); 4470 BasicBlock *CurBB = nullptr; 4471 unsigned CurBBNo = 0; 4472 // Block into which constant expressions from phi nodes are materialized. 4473 BasicBlock *PhiConstExprBB = nullptr; 4474 // Edge blocks for phi nodes into which constant expressions have been 4475 // expanded. 4476 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4477 ConstExprEdgeBBs; 4478 4479 DebugLoc LastLoc; 4480 auto getLastInstruction = [&]() -> Instruction * { 4481 if (CurBB && !CurBB->empty()) 4482 return &CurBB->back(); 4483 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4484 !FunctionBBs[CurBBNo - 1]->empty()) 4485 return &FunctionBBs[CurBBNo - 1]->back(); 4486 return nullptr; 4487 }; 4488 4489 std::vector<OperandBundleDef> OperandBundles; 4490 4491 // Read all the records. 4492 SmallVector<uint64_t, 64> Record; 4493 4494 while (true) { 4495 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4496 if (!MaybeEntry) 4497 return MaybeEntry.takeError(); 4498 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4499 4500 switch (Entry.Kind) { 4501 case BitstreamEntry::Error: 4502 return error("Malformed block"); 4503 case BitstreamEntry::EndBlock: 4504 goto OutOfRecordLoop; 4505 4506 case BitstreamEntry::SubBlock: 4507 switch (Entry.ID) { 4508 default: // Skip unknown content. 4509 if (Error Err = Stream.SkipBlock()) 4510 return Err; 4511 break; 4512 case bitc::CONSTANTS_BLOCK_ID: 4513 if (Error Err = parseConstants()) 4514 return Err; 4515 NextValueNo = ValueList.size(); 4516 break; 4517 case bitc::VALUE_SYMTAB_BLOCK_ID: 4518 if (Error Err = parseValueSymbolTable()) 4519 return Err; 4520 break; 4521 case bitc::METADATA_ATTACHMENT_ID: 4522 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4523 return Err; 4524 break; 4525 case bitc::METADATA_BLOCK_ID: 4526 assert(DeferredMetadataInfo.empty() && 4527 "Must read all module-level metadata before function-level"); 4528 if (Error Err = MDLoader->parseFunctionMetadata()) 4529 return Err; 4530 break; 4531 case bitc::USELIST_BLOCK_ID: 4532 if (Error Err = parseUseLists()) 4533 return Err; 4534 break; 4535 } 4536 continue; 4537 4538 case BitstreamEntry::Record: 4539 // The interesting case. 4540 break; 4541 } 4542 4543 // Read a record. 4544 Record.clear(); 4545 Instruction *I = nullptr; 4546 unsigned ResTypeID = InvalidTypeID; 4547 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4548 if (!MaybeBitCode) 4549 return MaybeBitCode.takeError(); 4550 switch (unsigned BitCode = MaybeBitCode.get()) { 4551 default: // Default behavior: reject 4552 return error("Invalid value"); 4553 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4554 if (Record.empty() || Record[0] == 0) 4555 return error("Invalid record"); 4556 // Create all the basic blocks for the function. 4557 FunctionBBs.resize(Record[0]); 4558 4559 // See if anything took the address of blocks in this function. 4560 auto BBFRI = BasicBlockFwdRefs.find(F); 4561 if (BBFRI == BasicBlockFwdRefs.end()) { 4562 for (BasicBlock *&BB : FunctionBBs) 4563 BB = BasicBlock::Create(Context, "", F); 4564 } else { 4565 auto &BBRefs = BBFRI->second; 4566 // Check for invalid basic block references. 4567 if (BBRefs.size() > FunctionBBs.size()) 4568 return error("Invalid ID"); 4569 assert(!BBRefs.empty() && "Unexpected empty array"); 4570 assert(!BBRefs.front() && "Invalid reference to entry block"); 4571 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4572 ++I) 4573 if (I < RE && BBRefs[I]) { 4574 BBRefs[I]->insertInto(F); 4575 FunctionBBs[I] = BBRefs[I]; 4576 } else { 4577 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4578 } 4579 4580 // Erase from the table. 4581 BasicBlockFwdRefs.erase(BBFRI); 4582 } 4583 4584 CurBB = FunctionBBs[0]; 4585 continue; 4586 } 4587 4588 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4589 // The record should not be emitted if it's an empty list. 4590 if (Record.empty()) 4591 return error("Invalid record"); 4592 // When we have the RARE case of a BlockAddress Constant that is not 4593 // scoped to the Function it refers to, we need to conservatively 4594 // materialize the referred to Function, regardless of whether or not 4595 // that Function will ultimately be linked, otherwise users of 4596 // BitcodeReader might start splicing out Function bodies such that we 4597 // might no longer be able to materialize the BlockAddress since the 4598 // BasicBlock (and entire body of the Function) the BlockAddress refers 4599 // to may have been moved. In the case that the user of BitcodeReader 4600 // decides ultimately not to link the Function body, materializing here 4601 // could be considered wasteful, but it's better than a deserialization 4602 // failure as described. This keeps BitcodeReader unaware of complex 4603 // linkage policy decisions such as those use by LTO, leaving those 4604 // decisions "one layer up." 4605 for (uint64_t ValID : Record) 4606 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4607 BackwardRefFunctions.push_back(F); 4608 else 4609 return error("Invalid record"); 4610 4611 continue; 4612 4613 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4614 // This record indicates that the last instruction is at the same 4615 // location as the previous instruction with a location. 4616 I = getLastInstruction(); 4617 4618 if (!I) 4619 return error("Invalid record"); 4620 I->setDebugLoc(LastLoc); 4621 I = nullptr; 4622 continue; 4623 4624 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4625 I = getLastInstruction(); 4626 if (!I || Record.size() < 4) 4627 return error("Invalid record"); 4628 4629 unsigned Line = Record[0], Col = Record[1]; 4630 unsigned ScopeID = Record[2], IAID = Record[3]; 4631 bool isImplicitCode = Record.size() == 5 && Record[4]; 4632 4633 MDNode *Scope = nullptr, *IA = nullptr; 4634 if (ScopeID) { 4635 Scope = dyn_cast_or_null<MDNode>( 4636 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4637 if (!Scope) 4638 return error("Invalid record"); 4639 } 4640 if (IAID) { 4641 IA = dyn_cast_or_null<MDNode>( 4642 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4643 if (!IA) 4644 return error("Invalid record"); 4645 } 4646 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4647 isImplicitCode); 4648 I->setDebugLoc(LastLoc); 4649 I = nullptr; 4650 continue; 4651 } 4652 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4653 unsigned OpNum = 0; 4654 Value *LHS; 4655 unsigned TypeID; 4656 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4657 OpNum+1 > Record.size()) 4658 return error("Invalid record"); 4659 4660 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4661 if (Opc == -1) 4662 return error("Invalid record"); 4663 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4664 ResTypeID = TypeID; 4665 InstructionList.push_back(I); 4666 if (OpNum < Record.size()) { 4667 if (isa<FPMathOperator>(I)) { 4668 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4669 if (FMF.any()) 4670 I->setFastMathFlags(FMF); 4671 } 4672 } 4673 break; 4674 } 4675 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4676 unsigned OpNum = 0; 4677 Value *LHS, *RHS; 4678 unsigned TypeID; 4679 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4680 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4681 CurBB) || 4682 OpNum+1 > Record.size()) 4683 return error("Invalid record"); 4684 4685 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4686 if (Opc == -1) 4687 return error("Invalid record"); 4688 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4689 ResTypeID = TypeID; 4690 InstructionList.push_back(I); 4691 if (OpNum < Record.size()) { 4692 if (Opc == Instruction::Add || 4693 Opc == Instruction::Sub || 4694 Opc == Instruction::Mul || 4695 Opc == Instruction::Shl) { 4696 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4697 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4698 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4699 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4700 } else if (Opc == Instruction::SDiv || 4701 Opc == Instruction::UDiv || 4702 Opc == Instruction::LShr || 4703 Opc == Instruction::AShr) { 4704 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4705 cast<BinaryOperator>(I)->setIsExact(true); 4706 } else if (isa<FPMathOperator>(I)) { 4707 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4708 if (FMF.any()) 4709 I->setFastMathFlags(FMF); 4710 } 4711 4712 } 4713 break; 4714 } 4715 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4716 unsigned OpNum = 0; 4717 Value *Op; 4718 unsigned OpTypeID; 4719 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4720 OpNum+2 != Record.size()) 4721 return error("Invalid record"); 4722 4723 ResTypeID = Record[OpNum]; 4724 Type *ResTy = getTypeByID(ResTypeID); 4725 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4726 if (Opc == -1 || !ResTy) 4727 return error("Invalid record"); 4728 Instruction *Temp = nullptr; 4729 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4730 if (Temp) { 4731 InstructionList.push_back(Temp); 4732 assert(CurBB && "No current BB?"); 4733 CurBB->getInstList().push_back(Temp); 4734 } 4735 } else { 4736 auto CastOp = (Instruction::CastOps)Opc; 4737 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4738 return error("Invalid cast"); 4739 I = CastInst::Create(CastOp, Op, ResTy); 4740 } 4741 InstructionList.push_back(I); 4742 break; 4743 } 4744 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4745 case bitc::FUNC_CODE_INST_GEP_OLD: 4746 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4747 unsigned OpNum = 0; 4748 4749 unsigned TyID; 4750 Type *Ty; 4751 bool InBounds; 4752 4753 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4754 InBounds = Record[OpNum++]; 4755 TyID = Record[OpNum++]; 4756 Ty = getTypeByID(TyID); 4757 } else { 4758 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4759 TyID = InvalidTypeID; 4760 Ty = nullptr; 4761 } 4762 4763 Value *BasePtr; 4764 unsigned BasePtrTypeID; 4765 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4766 CurBB)) 4767 return error("Invalid record"); 4768 4769 if (!Ty) { 4770 TyID = getContainedTypeID(BasePtrTypeID); 4771 if (BasePtr->getType()->isVectorTy()) 4772 TyID = getContainedTypeID(TyID); 4773 Ty = getTypeByID(TyID); 4774 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4775 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4776 return error( 4777 "Explicit gep type does not match pointee type of pointer operand"); 4778 } 4779 4780 SmallVector<Value*, 16> GEPIdx; 4781 while (OpNum != Record.size()) { 4782 Value *Op; 4783 unsigned OpTypeID; 4784 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4785 return error("Invalid record"); 4786 GEPIdx.push_back(Op); 4787 } 4788 4789 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4790 4791 ResTypeID = TyID; 4792 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4793 auto GTI = std::next(gep_type_begin(I)); 4794 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4795 unsigned SubType = 0; 4796 if (GTI.isStruct()) { 4797 ConstantInt *IdxC = 4798 Idx->getType()->isVectorTy() 4799 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4800 : cast<ConstantInt>(Idx); 4801 SubType = IdxC->getZExtValue(); 4802 } 4803 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4804 ++GTI; 4805 } 4806 } 4807 4808 // At this point ResTypeID is the result element type. We need a pointer 4809 // or vector of pointer to it. 4810 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4811 if (I->getType()->isVectorTy()) 4812 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4813 4814 InstructionList.push_back(I); 4815 if (InBounds) 4816 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4817 break; 4818 } 4819 4820 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4821 // EXTRACTVAL: [opty, opval, n x indices] 4822 unsigned OpNum = 0; 4823 Value *Agg; 4824 unsigned AggTypeID; 4825 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4826 return error("Invalid record"); 4827 Type *Ty = Agg->getType(); 4828 4829 unsigned RecSize = Record.size(); 4830 if (OpNum == RecSize) 4831 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4832 4833 SmallVector<unsigned, 4> EXTRACTVALIdx; 4834 ResTypeID = AggTypeID; 4835 for (; OpNum != RecSize; ++OpNum) { 4836 bool IsArray = Ty->isArrayTy(); 4837 bool IsStruct = Ty->isStructTy(); 4838 uint64_t Index = Record[OpNum]; 4839 4840 if (!IsStruct && !IsArray) 4841 return error("EXTRACTVAL: Invalid type"); 4842 if ((unsigned)Index != Index) 4843 return error("Invalid value"); 4844 if (IsStruct && Index >= Ty->getStructNumElements()) 4845 return error("EXTRACTVAL: Invalid struct index"); 4846 if (IsArray && Index >= Ty->getArrayNumElements()) 4847 return error("EXTRACTVAL: Invalid array index"); 4848 EXTRACTVALIdx.push_back((unsigned)Index); 4849 4850 if (IsStruct) { 4851 Ty = Ty->getStructElementType(Index); 4852 ResTypeID = getContainedTypeID(ResTypeID, Index); 4853 } else { 4854 Ty = Ty->getArrayElementType(); 4855 ResTypeID = getContainedTypeID(ResTypeID); 4856 } 4857 } 4858 4859 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4860 InstructionList.push_back(I); 4861 break; 4862 } 4863 4864 case bitc::FUNC_CODE_INST_INSERTVAL: { 4865 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4866 unsigned OpNum = 0; 4867 Value *Agg; 4868 unsigned AggTypeID; 4869 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4870 return error("Invalid record"); 4871 Value *Val; 4872 unsigned ValTypeID; 4873 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 4874 return error("Invalid record"); 4875 4876 unsigned RecSize = Record.size(); 4877 if (OpNum == RecSize) 4878 return error("INSERTVAL: Invalid instruction with 0 indices"); 4879 4880 SmallVector<unsigned, 4> INSERTVALIdx; 4881 Type *CurTy = Agg->getType(); 4882 for (; OpNum != RecSize; ++OpNum) { 4883 bool IsArray = CurTy->isArrayTy(); 4884 bool IsStruct = CurTy->isStructTy(); 4885 uint64_t Index = Record[OpNum]; 4886 4887 if (!IsStruct && !IsArray) 4888 return error("INSERTVAL: Invalid type"); 4889 if ((unsigned)Index != Index) 4890 return error("Invalid value"); 4891 if (IsStruct && Index >= CurTy->getStructNumElements()) 4892 return error("INSERTVAL: Invalid struct index"); 4893 if (IsArray && Index >= CurTy->getArrayNumElements()) 4894 return error("INSERTVAL: Invalid array index"); 4895 4896 INSERTVALIdx.push_back((unsigned)Index); 4897 if (IsStruct) 4898 CurTy = CurTy->getStructElementType(Index); 4899 else 4900 CurTy = CurTy->getArrayElementType(); 4901 } 4902 4903 if (CurTy != Val->getType()) 4904 return error("Inserted value type doesn't match aggregate type"); 4905 4906 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4907 ResTypeID = AggTypeID; 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 4912 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4913 // obsolete form of select 4914 // handles select i1 ... in old bitcode 4915 unsigned OpNum = 0; 4916 Value *TrueVal, *FalseVal, *Cond; 4917 unsigned TypeID; 4918 Type *CondType = Type::getInt1Ty(Context); 4919 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 4920 CurBB) || 4921 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4922 FalseVal, CurBB) || 4923 popValue(Record, OpNum, NextValueNo, CondType, 4924 getVirtualTypeID(CondType), Cond, CurBB)) 4925 return error("Invalid record"); 4926 4927 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4928 ResTypeID = TypeID; 4929 InstructionList.push_back(I); 4930 break; 4931 } 4932 4933 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4934 // new form of select 4935 // handles select i1 or select [N x i1] 4936 unsigned OpNum = 0; 4937 Value *TrueVal, *FalseVal, *Cond; 4938 unsigned ValTypeID, CondTypeID; 4939 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 4940 CurBB) || 4941 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4942 FalseVal, CurBB) || 4943 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 4944 return error("Invalid record"); 4945 4946 // select condition can be either i1 or [N x i1] 4947 if (VectorType* vector_type = 4948 dyn_cast<VectorType>(Cond->getType())) { 4949 // expect <n x i1> 4950 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4951 return error("Invalid type for value"); 4952 } else { 4953 // expect i1 4954 if (Cond->getType() != Type::getInt1Ty(Context)) 4955 return error("Invalid type for value"); 4956 } 4957 4958 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4959 ResTypeID = ValTypeID; 4960 InstructionList.push_back(I); 4961 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4962 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4963 if (FMF.any()) 4964 I->setFastMathFlags(FMF); 4965 } 4966 break; 4967 } 4968 4969 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4970 unsigned OpNum = 0; 4971 Value *Vec, *Idx; 4972 unsigned VecTypeID, IdxTypeID; 4973 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 4974 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 4975 return error("Invalid record"); 4976 if (!Vec->getType()->isVectorTy()) 4977 return error("Invalid type for value"); 4978 I = ExtractElementInst::Create(Vec, Idx); 4979 ResTypeID = getContainedTypeID(VecTypeID); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 4984 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4985 unsigned OpNum = 0; 4986 Value *Vec, *Elt, *Idx; 4987 unsigned VecTypeID, IdxTypeID; 4988 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 4989 return error("Invalid record"); 4990 if (!Vec->getType()->isVectorTy()) 4991 return error("Invalid type for value"); 4992 if (popValue(Record, OpNum, NextValueNo, 4993 cast<VectorType>(Vec->getType())->getElementType(), 4994 getContainedTypeID(VecTypeID), Elt, CurBB) || 4995 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 4996 return error("Invalid record"); 4997 I = InsertElementInst::Create(Vec, Elt, Idx); 4998 ResTypeID = VecTypeID; 4999 InstructionList.push_back(I); 5000 break; 5001 } 5002 5003 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5004 unsigned OpNum = 0; 5005 Value *Vec1, *Vec2, *Mask; 5006 unsigned Vec1TypeID; 5007 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5008 CurBB) || 5009 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5010 Vec2, CurBB)) 5011 return error("Invalid record"); 5012 5013 unsigned MaskTypeID; 5014 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5015 return error("Invalid record"); 5016 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5017 return error("Invalid type for value"); 5018 5019 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5020 ResTypeID = 5021 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 5026 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5027 // Old form of ICmp/FCmp returning bool 5028 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5029 // both legal on vectors but had different behaviour. 5030 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5031 // FCmp/ICmp returning bool or vector of bool 5032 5033 unsigned OpNum = 0; 5034 Value *LHS, *RHS; 5035 unsigned LHSTypeID; 5036 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5037 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5038 CurBB)) 5039 return error("Invalid record"); 5040 5041 if (OpNum >= Record.size()) 5042 return error( 5043 "Invalid record: operand number exceeded available operands"); 5044 5045 unsigned PredVal = Record[OpNum]; 5046 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5047 FastMathFlags FMF; 5048 if (IsFP && Record.size() > OpNum+1) 5049 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5050 5051 if (OpNum+1 != Record.size()) 5052 return error("Invalid record"); 5053 5054 if (LHS->getType()->isFPOrFPVectorTy()) 5055 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5056 else 5057 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5058 5059 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5060 if (LHS->getType()->isVectorTy()) 5061 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5062 5063 if (FMF.any()) 5064 I->setFastMathFlags(FMF); 5065 InstructionList.push_back(I); 5066 break; 5067 } 5068 5069 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5070 { 5071 unsigned Size = Record.size(); 5072 if (Size == 0) { 5073 I = ReturnInst::Create(Context); 5074 InstructionList.push_back(I); 5075 break; 5076 } 5077 5078 unsigned OpNum = 0; 5079 Value *Op = nullptr; 5080 unsigned OpTypeID; 5081 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5082 return error("Invalid record"); 5083 if (OpNum != Record.size()) 5084 return error("Invalid record"); 5085 5086 I = ReturnInst::Create(Context, Op); 5087 InstructionList.push_back(I); 5088 break; 5089 } 5090 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5091 if (Record.size() != 1 && Record.size() != 3) 5092 return error("Invalid record"); 5093 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5094 if (!TrueDest) 5095 return error("Invalid record"); 5096 5097 if (Record.size() == 1) { 5098 I = BranchInst::Create(TrueDest); 5099 InstructionList.push_back(I); 5100 } 5101 else { 5102 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5103 Type *CondType = Type::getInt1Ty(Context); 5104 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5105 getVirtualTypeID(CondType), CurBB); 5106 if (!FalseDest || !Cond) 5107 return error("Invalid record"); 5108 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5109 InstructionList.push_back(I); 5110 } 5111 break; 5112 } 5113 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5114 if (Record.size() != 1 && Record.size() != 2) 5115 return error("Invalid record"); 5116 unsigned Idx = 0; 5117 Type *TokenTy = Type::getTokenTy(Context); 5118 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5119 getVirtualTypeID(TokenTy), CurBB); 5120 if (!CleanupPad) 5121 return error("Invalid record"); 5122 BasicBlock *UnwindDest = nullptr; 5123 if (Record.size() == 2) { 5124 UnwindDest = getBasicBlock(Record[Idx++]); 5125 if (!UnwindDest) 5126 return error("Invalid record"); 5127 } 5128 5129 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5130 InstructionList.push_back(I); 5131 break; 5132 } 5133 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5134 if (Record.size() != 2) 5135 return error("Invalid record"); 5136 unsigned Idx = 0; 5137 Type *TokenTy = Type::getTokenTy(Context); 5138 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5139 getVirtualTypeID(TokenTy), CurBB); 5140 if (!CatchPad) 5141 return error("Invalid record"); 5142 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5143 if (!BB) 5144 return error("Invalid record"); 5145 5146 I = CatchReturnInst::Create(CatchPad, BB); 5147 InstructionList.push_back(I); 5148 break; 5149 } 5150 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5151 // We must have, at minimum, the outer scope and the number of arguments. 5152 if (Record.size() < 2) 5153 return error("Invalid record"); 5154 5155 unsigned Idx = 0; 5156 5157 Type *TokenTy = Type::getTokenTy(Context); 5158 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5159 getVirtualTypeID(TokenTy), CurBB); 5160 5161 unsigned NumHandlers = Record[Idx++]; 5162 5163 SmallVector<BasicBlock *, 2> Handlers; 5164 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5165 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5166 if (!BB) 5167 return error("Invalid record"); 5168 Handlers.push_back(BB); 5169 } 5170 5171 BasicBlock *UnwindDest = nullptr; 5172 if (Idx + 1 == Record.size()) { 5173 UnwindDest = getBasicBlock(Record[Idx++]); 5174 if (!UnwindDest) 5175 return error("Invalid record"); 5176 } 5177 5178 if (Record.size() != Idx) 5179 return error("Invalid record"); 5180 5181 auto *CatchSwitch = 5182 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5183 for (BasicBlock *Handler : Handlers) 5184 CatchSwitch->addHandler(Handler); 5185 I = CatchSwitch; 5186 ResTypeID = getVirtualTypeID(I->getType()); 5187 InstructionList.push_back(I); 5188 break; 5189 } 5190 case bitc::FUNC_CODE_INST_CATCHPAD: 5191 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5192 // We must have, at minimum, the outer scope and the number of arguments. 5193 if (Record.size() < 2) 5194 return error("Invalid record"); 5195 5196 unsigned Idx = 0; 5197 5198 Type *TokenTy = Type::getTokenTy(Context); 5199 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5200 getVirtualTypeID(TokenTy), CurBB); 5201 5202 unsigned NumArgOperands = Record[Idx++]; 5203 5204 SmallVector<Value *, 2> Args; 5205 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5206 Value *Val; 5207 unsigned ValTypeID; 5208 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5209 return error("Invalid record"); 5210 Args.push_back(Val); 5211 } 5212 5213 if (Record.size() != Idx) 5214 return error("Invalid record"); 5215 5216 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5217 I = CleanupPadInst::Create(ParentPad, Args); 5218 else 5219 I = CatchPadInst::Create(ParentPad, Args); 5220 ResTypeID = getVirtualTypeID(I->getType()); 5221 InstructionList.push_back(I); 5222 break; 5223 } 5224 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5225 // Check magic 5226 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5227 // "New" SwitchInst format with case ranges. The changes to write this 5228 // format were reverted but we still recognize bitcode that uses it. 5229 // Hopefully someday we will have support for case ranges and can use 5230 // this format again. 5231 5232 unsigned OpTyID = Record[1]; 5233 Type *OpTy = getTypeByID(OpTyID); 5234 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5235 5236 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5237 BasicBlock *Default = getBasicBlock(Record[3]); 5238 if (!OpTy || !Cond || !Default) 5239 return error("Invalid record"); 5240 5241 unsigned NumCases = Record[4]; 5242 5243 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5244 InstructionList.push_back(SI); 5245 5246 unsigned CurIdx = 5; 5247 for (unsigned i = 0; i != NumCases; ++i) { 5248 SmallVector<ConstantInt*, 1> CaseVals; 5249 unsigned NumItems = Record[CurIdx++]; 5250 for (unsigned ci = 0; ci != NumItems; ++ci) { 5251 bool isSingleNumber = Record[CurIdx++]; 5252 5253 APInt Low; 5254 unsigned ActiveWords = 1; 5255 if (ValueBitWidth > 64) 5256 ActiveWords = Record[CurIdx++]; 5257 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5258 ValueBitWidth); 5259 CurIdx += ActiveWords; 5260 5261 if (!isSingleNumber) { 5262 ActiveWords = 1; 5263 if (ValueBitWidth > 64) 5264 ActiveWords = Record[CurIdx++]; 5265 APInt High = readWideAPInt( 5266 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5267 CurIdx += ActiveWords; 5268 5269 // FIXME: It is not clear whether values in the range should be 5270 // compared as signed or unsigned values. The partially 5271 // implemented changes that used this format in the past used 5272 // unsigned comparisons. 5273 for ( ; Low.ule(High); ++Low) 5274 CaseVals.push_back(ConstantInt::get(Context, Low)); 5275 } else 5276 CaseVals.push_back(ConstantInt::get(Context, Low)); 5277 } 5278 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5279 for (ConstantInt *Cst : CaseVals) 5280 SI->addCase(Cst, DestBB); 5281 } 5282 I = SI; 5283 break; 5284 } 5285 5286 // Old SwitchInst format without case ranges. 5287 5288 if (Record.size() < 3 || (Record.size() & 1) == 0) 5289 return error("Invalid record"); 5290 unsigned OpTyID = Record[0]; 5291 Type *OpTy = getTypeByID(OpTyID); 5292 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5293 BasicBlock *Default = getBasicBlock(Record[2]); 5294 if (!OpTy || !Cond || !Default) 5295 return error("Invalid record"); 5296 unsigned NumCases = (Record.size()-3)/2; 5297 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5298 InstructionList.push_back(SI); 5299 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5300 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5301 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5302 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5303 if (!CaseVal || !DestBB) { 5304 delete SI; 5305 return error("Invalid record"); 5306 } 5307 SI->addCase(CaseVal, DestBB); 5308 } 5309 I = SI; 5310 break; 5311 } 5312 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5313 if (Record.size() < 2) 5314 return error("Invalid record"); 5315 unsigned OpTyID = Record[0]; 5316 Type *OpTy = getTypeByID(OpTyID); 5317 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5318 if (!OpTy || !Address) 5319 return error("Invalid record"); 5320 unsigned NumDests = Record.size()-2; 5321 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5322 InstructionList.push_back(IBI); 5323 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5324 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5325 IBI->addDestination(DestBB); 5326 } else { 5327 delete IBI; 5328 return error("Invalid record"); 5329 } 5330 } 5331 I = IBI; 5332 break; 5333 } 5334 5335 case bitc::FUNC_CODE_INST_INVOKE: { 5336 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5337 if (Record.size() < 4) 5338 return error("Invalid record"); 5339 unsigned OpNum = 0; 5340 AttributeList PAL = getAttributes(Record[OpNum++]); 5341 unsigned CCInfo = Record[OpNum++]; 5342 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5343 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5344 5345 unsigned FTyID = InvalidTypeID; 5346 FunctionType *FTy = nullptr; 5347 if ((CCInfo >> 13) & 1) { 5348 FTyID = Record[OpNum++]; 5349 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5350 if (!FTy) 5351 return error("Explicit invoke type is not a function type"); 5352 } 5353 5354 Value *Callee; 5355 unsigned CalleeTypeID; 5356 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5357 CurBB)) 5358 return error("Invalid record"); 5359 5360 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5361 if (!CalleeTy) 5362 return error("Callee is not a pointer"); 5363 if (!FTy) { 5364 FTyID = getContainedTypeID(CalleeTypeID); 5365 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5366 if (!FTy) 5367 return error("Callee is not of pointer to function type"); 5368 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5369 return error("Explicit invoke type does not match pointee type of " 5370 "callee operand"); 5371 if (Record.size() < FTy->getNumParams() + OpNum) 5372 return error("Insufficient operands to call"); 5373 5374 SmallVector<Value*, 16> Ops; 5375 SmallVector<unsigned, 16> ArgTyIDs; 5376 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5377 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5378 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5379 ArgTyID, CurBB)); 5380 ArgTyIDs.push_back(ArgTyID); 5381 if (!Ops.back()) 5382 return error("Invalid record"); 5383 } 5384 5385 if (!FTy->isVarArg()) { 5386 if (Record.size() != OpNum) 5387 return error("Invalid record"); 5388 } else { 5389 // Read type/value pairs for varargs params. 5390 while (OpNum != Record.size()) { 5391 Value *Op; 5392 unsigned OpTypeID; 5393 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5394 return error("Invalid record"); 5395 Ops.push_back(Op); 5396 ArgTyIDs.push_back(OpTypeID); 5397 } 5398 } 5399 5400 // Upgrade the bundles if needed. 5401 if (!OperandBundles.empty()) 5402 UpgradeOperandBundles(OperandBundles); 5403 5404 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5405 OperandBundles); 5406 ResTypeID = getContainedTypeID(FTyID); 5407 OperandBundles.clear(); 5408 InstructionList.push_back(I); 5409 cast<InvokeInst>(I)->setCallingConv( 5410 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5411 cast<InvokeInst>(I)->setAttributes(PAL); 5412 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5413 I->deleteValue(); 5414 return Err; 5415 } 5416 5417 break; 5418 } 5419 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5420 unsigned Idx = 0; 5421 Value *Val = nullptr; 5422 unsigned ValTypeID; 5423 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5424 return error("Invalid record"); 5425 I = ResumeInst::Create(Val); 5426 InstructionList.push_back(I); 5427 break; 5428 } 5429 case bitc::FUNC_CODE_INST_CALLBR: { 5430 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5431 unsigned OpNum = 0; 5432 AttributeList PAL = getAttributes(Record[OpNum++]); 5433 unsigned CCInfo = Record[OpNum++]; 5434 5435 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5436 unsigned NumIndirectDests = Record[OpNum++]; 5437 SmallVector<BasicBlock *, 16> IndirectDests; 5438 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5439 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5440 5441 unsigned FTyID = InvalidTypeID; 5442 FunctionType *FTy = nullptr; 5443 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5444 FTyID = Record[OpNum++]; 5445 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5446 if (!FTy) 5447 return error("Explicit call type is not a function type"); 5448 } 5449 5450 Value *Callee; 5451 unsigned CalleeTypeID; 5452 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5453 CurBB)) 5454 return error("Invalid record"); 5455 5456 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5457 if (!OpTy) 5458 return error("Callee is not a pointer type"); 5459 if (!FTy) { 5460 FTyID = getContainedTypeID(CalleeTypeID); 5461 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5462 if (!FTy) 5463 return error("Callee is not of pointer to function type"); 5464 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5465 return error("Explicit call type does not match pointee type of " 5466 "callee operand"); 5467 if (Record.size() < FTy->getNumParams() + OpNum) 5468 return error("Insufficient operands to call"); 5469 5470 SmallVector<Value*, 16> Args; 5471 SmallVector<unsigned, 16> ArgTyIDs; 5472 // Read the fixed params. 5473 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5474 Value *Arg; 5475 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5476 if (FTy->getParamType(i)->isLabelTy()) 5477 Arg = getBasicBlock(Record[OpNum]); 5478 else 5479 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5480 ArgTyID, CurBB); 5481 if (!Arg) 5482 return error("Invalid record"); 5483 Args.push_back(Arg); 5484 ArgTyIDs.push_back(ArgTyID); 5485 } 5486 5487 // Read type/value pairs for varargs params. 5488 if (!FTy->isVarArg()) { 5489 if (OpNum != Record.size()) 5490 return error("Invalid record"); 5491 } else { 5492 while (OpNum != Record.size()) { 5493 Value *Op; 5494 unsigned OpTypeID; 5495 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5496 return error("Invalid record"); 5497 Args.push_back(Op); 5498 ArgTyIDs.push_back(OpTypeID); 5499 } 5500 } 5501 5502 // Upgrade the bundles if needed. 5503 if (!OperandBundles.empty()) 5504 UpgradeOperandBundles(OperandBundles); 5505 5506 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5507 OperandBundles); 5508 ResTypeID = getContainedTypeID(FTyID); 5509 OperandBundles.clear(); 5510 InstructionList.push_back(I); 5511 cast<CallBrInst>(I)->setCallingConv( 5512 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5513 cast<CallBrInst>(I)->setAttributes(PAL); 5514 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5515 I->deleteValue(); 5516 return Err; 5517 } 5518 break; 5519 } 5520 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5521 I = new UnreachableInst(Context); 5522 InstructionList.push_back(I); 5523 break; 5524 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5525 if (Record.empty()) 5526 return error("Invalid phi record"); 5527 // The first record specifies the type. 5528 unsigned TyID = Record[0]; 5529 Type *Ty = getTypeByID(TyID); 5530 if (!Ty) 5531 return error("Invalid phi record"); 5532 5533 // Phi arguments are pairs of records of [value, basic block]. 5534 // There is an optional final record for fast-math-flags if this phi has a 5535 // floating-point type. 5536 size_t NumArgs = (Record.size() - 1) / 2; 5537 PHINode *PN = PHINode::Create(Ty, NumArgs); 5538 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5539 PN->deleteValue(); 5540 return error("Invalid phi record"); 5541 } 5542 InstructionList.push_back(PN); 5543 5544 SmallDenseMap<BasicBlock *, Value *> Args; 5545 for (unsigned i = 0; i != NumArgs; i++) { 5546 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5547 if (!BB) { 5548 PN->deleteValue(); 5549 return error("Invalid phi BB"); 5550 } 5551 5552 // Phi nodes may contain the same predecessor multiple times, in which 5553 // case the incoming value must be identical. Directly reuse the already 5554 // seen value here, to avoid expanding a constant expression multiple 5555 // times. 5556 auto It = Args.find(BB); 5557 if (It != Args.end()) { 5558 PN->addIncoming(It->second, BB); 5559 continue; 5560 } 5561 5562 // If there already is a block for this edge (from a different phi), 5563 // use it. 5564 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5565 if (!EdgeBB) { 5566 // Otherwise, use a temporary block (that we will discard if it 5567 // turns out to be unnecessary). 5568 if (!PhiConstExprBB) 5569 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5570 EdgeBB = PhiConstExprBB; 5571 } 5572 5573 // With the new function encoding, it is possible that operands have 5574 // negative IDs (for forward references). Use a signed VBR 5575 // representation to keep the encoding small. 5576 Value *V; 5577 if (UseRelativeIDs) 5578 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5579 else 5580 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5581 if (!V) { 5582 PN->deleteValue(); 5583 PhiConstExprBB->eraseFromParent(); 5584 return error("Invalid phi record"); 5585 } 5586 5587 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5588 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5589 PhiConstExprBB = nullptr; 5590 } 5591 PN->addIncoming(V, BB); 5592 Args.insert({BB, V}); 5593 } 5594 I = PN; 5595 ResTypeID = TyID; 5596 5597 // If there are an even number of records, the final record must be FMF. 5598 if (Record.size() % 2 == 0) { 5599 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5600 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5601 if (FMF.any()) 5602 I->setFastMathFlags(FMF); 5603 } 5604 5605 break; 5606 } 5607 5608 case bitc::FUNC_CODE_INST_LANDINGPAD: 5609 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5610 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5611 unsigned Idx = 0; 5612 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5613 if (Record.size() < 3) 5614 return error("Invalid record"); 5615 } else { 5616 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5617 if (Record.size() < 4) 5618 return error("Invalid record"); 5619 } 5620 ResTypeID = Record[Idx++]; 5621 Type *Ty = getTypeByID(ResTypeID); 5622 if (!Ty) 5623 return error("Invalid record"); 5624 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5625 Value *PersFn = nullptr; 5626 unsigned PersFnTypeID; 5627 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5628 nullptr)) 5629 return error("Invalid record"); 5630 5631 if (!F->hasPersonalityFn()) 5632 F->setPersonalityFn(cast<Constant>(PersFn)); 5633 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5634 return error("Personality function mismatch"); 5635 } 5636 5637 bool IsCleanup = !!Record[Idx++]; 5638 unsigned NumClauses = Record[Idx++]; 5639 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5640 LP->setCleanup(IsCleanup); 5641 for (unsigned J = 0; J != NumClauses; ++J) { 5642 LandingPadInst::ClauseType CT = 5643 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5644 Value *Val; 5645 unsigned ValTypeID; 5646 5647 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5648 nullptr)) { 5649 delete LP; 5650 return error("Invalid record"); 5651 } 5652 5653 assert((CT != LandingPadInst::Catch || 5654 !isa<ArrayType>(Val->getType())) && 5655 "Catch clause has a invalid type!"); 5656 assert((CT != LandingPadInst::Filter || 5657 isa<ArrayType>(Val->getType())) && 5658 "Filter clause has invalid type!"); 5659 LP->addClause(cast<Constant>(Val)); 5660 } 5661 5662 I = LP; 5663 InstructionList.push_back(I); 5664 break; 5665 } 5666 5667 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5668 if (Record.size() != 4 && Record.size() != 5) 5669 return error("Invalid record"); 5670 using APV = AllocaPackedValues; 5671 const uint64_t Rec = Record[3]; 5672 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5673 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5674 unsigned TyID = Record[0]; 5675 Type *Ty = getTypeByID(TyID); 5676 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5677 TyID = getContainedTypeID(TyID); 5678 Ty = getTypeByID(TyID); 5679 if (!Ty) 5680 return error("Missing element type for old-style alloca"); 5681 } 5682 unsigned OpTyID = Record[1]; 5683 Type *OpTy = getTypeByID(OpTyID); 5684 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5685 MaybeAlign Align; 5686 uint64_t AlignExp = 5687 Bitfield::get<APV::AlignLower>(Rec) | 5688 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5689 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5690 return Err; 5691 } 5692 if (!Ty || !Size) 5693 return error("Invalid record"); 5694 5695 const DataLayout &DL = TheModule->getDataLayout(); 5696 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5697 5698 SmallPtrSet<Type *, 4> Visited; 5699 if (!Align && !Ty->isSized(&Visited)) 5700 return error("alloca of unsized type"); 5701 if (!Align) 5702 Align = DL.getPrefTypeAlign(Ty); 5703 5704 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5705 AI->setUsedWithInAlloca(InAlloca); 5706 AI->setSwiftError(SwiftError); 5707 I = AI; 5708 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5709 InstructionList.push_back(I); 5710 break; 5711 } 5712 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5713 unsigned OpNum = 0; 5714 Value *Op; 5715 unsigned OpTypeID; 5716 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5717 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5718 return error("Invalid record"); 5719 5720 if (!isa<PointerType>(Op->getType())) 5721 return error("Load operand is not a pointer type"); 5722 5723 Type *Ty = nullptr; 5724 if (OpNum + 3 == Record.size()) { 5725 ResTypeID = Record[OpNum++]; 5726 Ty = getTypeByID(ResTypeID); 5727 } else { 5728 ResTypeID = getContainedTypeID(OpTypeID); 5729 Ty = getTypeByID(ResTypeID); 5730 if (!Ty) 5731 return error("Missing element type for old-style load"); 5732 } 5733 5734 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5735 return Err; 5736 5737 MaybeAlign Align; 5738 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5739 return Err; 5740 SmallPtrSet<Type *, 4> Visited; 5741 if (!Align && !Ty->isSized(&Visited)) 5742 return error("load of unsized type"); 5743 if (!Align) 5744 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5745 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5746 InstructionList.push_back(I); 5747 break; 5748 } 5749 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5750 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5751 unsigned OpNum = 0; 5752 Value *Op; 5753 unsigned OpTypeID; 5754 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5755 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5756 return error("Invalid record"); 5757 5758 if (!isa<PointerType>(Op->getType())) 5759 return error("Load operand is not a pointer type"); 5760 5761 Type *Ty = nullptr; 5762 if (OpNum + 5 == Record.size()) { 5763 ResTypeID = Record[OpNum++]; 5764 Ty = getTypeByID(ResTypeID); 5765 } else { 5766 ResTypeID = getContainedTypeID(OpTypeID); 5767 Ty = getTypeByID(ResTypeID); 5768 if (!Ty) 5769 return error("Missing element type for old style atomic load"); 5770 } 5771 5772 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5773 return Err; 5774 5775 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5776 if (Ordering == AtomicOrdering::NotAtomic || 5777 Ordering == AtomicOrdering::Release || 5778 Ordering == AtomicOrdering::AcquireRelease) 5779 return error("Invalid record"); 5780 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5781 return error("Invalid record"); 5782 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5783 5784 MaybeAlign Align; 5785 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5786 return Err; 5787 if (!Align) 5788 return error("Alignment missing from atomic load"); 5789 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5790 InstructionList.push_back(I); 5791 break; 5792 } 5793 case bitc::FUNC_CODE_INST_STORE: 5794 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5795 unsigned OpNum = 0; 5796 Value *Val, *Ptr; 5797 unsigned PtrTypeID, ValTypeID; 5798 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5799 return error("Invalid record"); 5800 5801 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5802 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5803 return error("Invalid record"); 5804 } else { 5805 ValTypeID = getContainedTypeID(PtrTypeID); 5806 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5807 ValTypeID, Val, CurBB)) 5808 return error("Invalid record"); 5809 } 5810 5811 if (OpNum + 2 != Record.size()) 5812 return error("Invalid record"); 5813 5814 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5815 return Err; 5816 MaybeAlign Align; 5817 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5818 return Err; 5819 SmallPtrSet<Type *, 4> Visited; 5820 if (!Align && !Val->getType()->isSized(&Visited)) 5821 return error("store of unsized type"); 5822 if (!Align) 5823 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5824 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5825 InstructionList.push_back(I); 5826 break; 5827 } 5828 case bitc::FUNC_CODE_INST_STOREATOMIC: 5829 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5830 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5831 unsigned OpNum = 0; 5832 Value *Val, *Ptr; 5833 unsigned PtrTypeID, ValTypeID; 5834 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 5835 !isa<PointerType>(Ptr->getType())) 5836 return error("Invalid record"); 5837 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5838 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5839 return error("Invalid record"); 5840 } else { 5841 ValTypeID = getContainedTypeID(PtrTypeID); 5842 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5843 ValTypeID, Val, CurBB)) 5844 return error("Invalid record"); 5845 } 5846 5847 if (OpNum + 4 != Record.size()) 5848 return error("Invalid record"); 5849 5850 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5851 return Err; 5852 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5853 if (Ordering == AtomicOrdering::NotAtomic || 5854 Ordering == AtomicOrdering::Acquire || 5855 Ordering == AtomicOrdering::AcquireRelease) 5856 return error("Invalid record"); 5857 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5858 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5859 return error("Invalid record"); 5860 5861 MaybeAlign Align; 5862 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5863 return Err; 5864 if (!Align) 5865 return error("Alignment missing from atomic store"); 5866 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5867 InstructionList.push_back(I); 5868 break; 5869 } 5870 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5871 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5872 // failure_ordering?, weak?] 5873 const size_t NumRecords = Record.size(); 5874 unsigned OpNum = 0; 5875 Value *Ptr = nullptr; 5876 unsigned PtrTypeID; 5877 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5878 return error("Invalid record"); 5879 5880 if (!isa<PointerType>(Ptr->getType())) 5881 return error("Cmpxchg operand is not a pointer type"); 5882 5883 Value *Cmp = nullptr; 5884 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5885 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5886 CmpTypeID, Cmp, CurBB)) 5887 return error("Invalid record"); 5888 5889 Value *New = nullptr; 5890 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5891 New, CurBB) || 5892 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5893 return error("Invalid record"); 5894 5895 const AtomicOrdering SuccessOrdering = 5896 getDecodedOrdering(Record[OpNum + 1]); 5897 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5898 SuccessOrdering == AtomicOrdering::Unordered) 5899 return error("Invalid record"); 5900 5901 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5902 5903 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5904 return Err; 5905 5906 const AtomicOrdering FailureOrdering = 5907 NumRecords < 7 5908 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5909 : getDecodedOrdering(Record[OpNum + 3]); 5910 5911 if (FailureOrdering == AtomicOrdering::NotAtomic || 5912 FailureOrdering == AtomicOrdering::Unordered) 5913 return error("Invalid record"); 5914 5915 const Align Alignment( 5916 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5917 5918 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5919 FailureOrdering, SSID); 5920 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5921 5922 if (NumRecords < 8) { 5923 // Before weak cmpxchgs existed, the instruction simply returned the 5924 // value loaded from memory, so bitcode files from that era will be 5925 // expecting the first component of a modern cmpxchg. 5926 CurBB->getInstList().push_back(I); 5927 I = ExtractValueInst::Create(I, 0); 5928 ResTypeID = CmpTypeID; 5929 } else { 5930 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5931 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5932 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5933 } 5934 5935 InstructionList.push_back(I); 5936 break; 5937 } 5938 case bitc::FUNC_CODE_INST_CMPXCHG: { 5939 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5940 // failure_ordering, weak, align?] 5941 const size_t NumRecords = Record.size(); 5942 unsigned OpNum = 0; 5943 Value *Ptr = nullptr; 5944 unsigned PtrTypeID; 5945 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5946 return error("Invalid record"); 5947 5948 if (!isa<PointerType>(Ptr->getType())) 5949 return error("Cmpxchg operand is not a pointer type"); 5950 5951 Value *Cmp = nullptr; 5952 unsigned CmpTypeID; 5953 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 5954 return error("Invalid record"); 5955 5956 Value *Val = nullptr; 5957 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 5958 CurBB)) 5959 return error("Invalid record"); 5960 5961 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5962 return error("Invalid record"); 5963 5964 const bool IsVol = Record[OpNum]; 5965 5966 const AtomicOrdering SuccessOrdering = 5967 getDecodedOrdering(Record[OpNum + 1]); 5968 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5969 return error("Invalid cmpxchg success ordering"); 5970 5971 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5972 5973 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5974 return Err; 5975 5976 const AtomicOrdering FailureOrdering = 5977 getDecodedOrdering(Record[OpNum + 3]); 5978 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5979 return error("Invalid cmpxchg failure ordering"); 5980 5981 const bool IsWeak = Record[OpNum + 4]; 5982 5983 MaybeAlign Alignment; 5984 5985 if (NumRecords == (OpNum + 6)) { 5986 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5987 return Err; 5988 } 5989 if (!Alignment) 5990 Alignment = 5991 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5992 5993 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5994 FailureOrdering, SSID); 5995 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5996 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5997 5998 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5999 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6000 6001 InstructionList.push_back(I); 6002 break; 6003 } 6004 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6005 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6006 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6007 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6008 const size_t NumRecords = Record.size(); 6009 unsigned OpNum = 0; 6010 6011 Value *Ptr = nullptr; 6012 unsigned PtrTypeID; 6013 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6014 return error("Invalid record"); 6015 6016 if (!isa<PointerType>(Ptr->getType())) 6017 return error("Invalid record"); 6018 6019 Value *Val = nullptr; 6020 unsigned ValTypeID = InvalidTypeID; 6021 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6022 ValTypeID = getContainedTypeID(PtrTypeID); 6023 if (popValue(Record, OpNum, NextValueNo, 6024 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6025 return error("Invalid record"); 6026 } else { 6027 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6028 return error("Invalid record"); 6029 } 6030 6031 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6032 return error("Invalid record"); 6033 6034 const AtomicRMWInst::BinOp Operation = 6035 getDecodedRMWOperation(Record[OpNum]); 6036 if (Operation < AtomicRMWInst::FIRST_BINOP || 6037 Operation > AtomicRMWInst::LAST_BINOP) 6038 return error("Invalid record"); 6039 6040 const bool IsVol = Record[OpNum + 1]; 6041 6042 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6043 if (Ordering == AtomicOrdering::NotAtomic || 6044 Ordering == AtomicOrdering::Unordered) 6045 return error("Invalid record"); 6046 6047 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6048 6049 MaybeAlign Alignment; 6050 6051 if (NumRecords == (OpNum + 5)) { 6052 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6053 return Err; 6054 } 6055 6056 if (!Alignment) 6057 Alignment = 6058 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6059 6060 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6061 ResTypeID = ValTypeID; 6062 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6063 6064 InstructionList.push_back(I); 6065 break; 6066 } 6067 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6068 if (2 != Record.size()) 6069 return error("Invalid record"); 6070 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6071 if (Ordering == AtomicOrdering::NotAtomic || 6072 Ordering == AtomicOrdering::Unordered || 6073 Ordering == AtomicOrdering::Monotonic) 6074 return error("Invalid record"); 6075 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6076 I = new FenceInst(Context, Ordering, SSID); 6077 InstructionList.push_back(I); 6078 break; 6079 } 6080 case bitc::FUNC_CODE_INST_CALL: { 6081 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6082 if (Record.size() < 3) 6083 return error("Invalid record"); 6084 6085 unsigned OpNum = 0; 6086 AttributeList PAL = getAttributes(Record[OpNum++]); 6087 unsigned CCInfo = Record[OpNum++]; 6088 6089 FastMathFlags FMF; 6090 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6091 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6092 if (!FMF.any()) 6093 return error("Fast math flags indicator set for call with no FMF"); 6094 } 6095 6096 unsigned FTyID = InvalidTypeID; 6097 FunctionType *FTy = nullptr; 6098 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6099 FTyID = Record[OpNum++]; 6100 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6101 if (!FTy) 6102 return error("Explicit call type is not a function type"); 6103 } 6104 6105 Value *Callee; 6106 unsigned CalleeTypeID; 6107 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6108 CurBB)) 6109 return error("Invalid record"); 6110 6111 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6112 if (!OpTy) 6113 return error("Callee is not a pointer type"); 6114 if (!FTy) { 6115 FTyID = getContainedTypeID(CalleeTypeID); 6116 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6117 if (!FTy) 6118 return error("Callee is not of pointer to function type"); 6119 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6120 return error("Explicit call type does not match pointee type of " 6121 "callee operand"); 6122 if (Record.size() < FTy->getNumParams() + OpNum) 6123 return error("Insufficient operands to call"); 6124 6125 SmallVector<Value*, 16> Args; 6126 SmallVector<unsigned, 16> ArgTyIDs; 6127 // Read the fixed params. 6128 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6129 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6130 if (FTy->getParamType(i)->isLabelTy()) 6131 Args.push_back(getBasicBlock(Record[OpNum])); 6132 else 6133 Args.push_back(getValue(Record, OpNum, NextValueNo, 6134 FTy->getParamType(i), ArgTyID, CurBB)); 6135 ArgTyIDs.push_back(ArgTyID); 6136 if (!Args.back()) 6137 return error("Invalid record"); 6138 } 6139 6140 // Read type/value pairs for varargs params. 6141 if (!FTy->isVarArg()) { 6142 if (OpNum != Record.size()) 6143 return error("Invalid record"); 6144 } else { 6145 while (OpNum != Record.size()) { 6146 Value *Op; 6147 unsigned OpTypeID; 6148 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6149 return error("Invalid record"); 6150 Args.push_back(Op); 6151 ArgTyIDs.push_back(OpTypeID); 6152 } 6153 } 6154 6155 // Upgrade the bundles if needed. 6156 if (!OperandBundles.empty()) 6157 UpgradeOperandBundles(OperandBundles); 6158 6159 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6160 ResTypeID = getContainedTypeID(FTyID); 6161 OperandBundles.clear(); 6162 InstructionList.push_back(I); 6163 cast<CallInst>(I)->setCallingConv( 6164 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6165 CallInst::TailCallKind TCK = CallInst::TCK_None; 6166 if (CCInfo & 1 << bitc::CALL_TAIL) 6167 TCK = CallInst::TCK_Tail; 6168 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6169 TCK = CallInst::TCK_MustTail; 6170 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6171 TCK = CallInst::TCK_NoTail; 6172 cast<CallInst>(I)->setTailCallKind(TCK); 6173 cast<CallInst>(I)->setAttributes(PAL); 6174 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6175 I->deleteValue(); 6176 return Err; 6177 } 6178 if (FMF.any()) { 6179 if (!isa<FPMathOperator>(I)) 6180 return error("Fast-math-flags specified for call without " 6181 "floating-point scalar or vector return type"); 6182 I->setFastMathFlags(FMF); 6183 } 6184 break; 6185 } 6186 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6187 if (Record.size() < 3) 6188 return error("Invalid record"); 6189 unsigned OpTyID = Record[0]; 6190 Type *OpTy = getTypeByID(OpTyID); 6191 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6192 ResTypeID = Record[2]; 6193 Type *ResTy = getTypeByID(ResTypeID); 6194 if (!OpTy || !Op || !ResTy) 6195 return error("Invalid record"); 6196 I = new VAArgInst(Op, ResTy); 6197 InstructionList.push_back(I); 6198 break; 6199 } 6200 6201 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6202 // A call or an invoke can be optionally prefixed with some variable 6203 // number of operand bundle blocks. These blocks are read into 6204 // OperandBundles and consumed at the next call or invoke instruction. 6205 6206 if (Record.empty() || Record[0] >= BundleTags.size()) 6207 return error("Invalid record"); 6208 6209 std::vector<Value *> Inputs; 6210 6211 unsigned OpNum = 1; 6212 while (OpNum != Record.size()) { 6213 Value *Op; 6214 unsigned OpTypeID; 6215 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6216 return error("Invalid record"); 6217 Inputs.push_back(Op); 6218 } 6219 6220 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6221 continue; 6222 } 6223 6224 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6225 unsigned OpNum = 0; 6226 Value *Op = nullptr; 6227 unsigned OpTypeID; 6228 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6229 return error("Invalid record"); 6230 if (OpNum != Record.size()) 6231 return error("Invalid record"); 6232 6233 I = new FreezeInst(Op); 6234 ResTypeID = OpTypeID; 6235 InstructionList.push_back(I); 6236 break; 6237 } 6238 } 6239 6240 // Add instruction to end of current BB. If there is no current BB, reject 6241 // this file. 6242 if (!CurBB) { 6243 I->deleteValue(); 6244 return error("Invalid instruction with no BB"); 6245 } 6246 if (!OperandBundles.empty()) { 6247 I->deleteValue(); 6248 return error("Operand bundles found with no consumer"); 6249 } 6250 CurBB->getInstList().push_back(I); 6251 6252 // If this was a terminator instruction, move to the next block. 6253 if (I->isTerminator()) { 6254 ++CurBBNo; 6255 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6256 } 6257 6258 // Non-void values get registered in the value table for future use. 6259 if (!I->getType()->isVoidTy()) { 6260 assert(I->getType() == getTypeByID(ResTypeID) && 6261 "Incorrect result type ID"); 6262 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6263 return Err; 6264 } 6265 } 6266 6267 OutOfRecordLoop: 6268 6269 if (!OperandBundles.empty()) 6270 return error("Operand bundles found with no consumer"); 6271 6272 // Check the function list for unresolved values. 6273 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6274 if (!A->getParent()) { 6275 // We found at least one unresolved value. Nuke them all to avoid leaks. 6276 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6277 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6278 A->replaceAllUsesWith(UndefValue::get(A->getType())); 6279 delete A; 6280 } 6281 } 6282 return error("Never resolved value found in function"); 6283 } 6284 } 6285 6286 // Unexpected unresolved metadata about to be dropped. 6287 if (MDLoader->hasFwdRefs()) 6288 return error("Invalid function metadata: outgoing forward refs"); 6289 6290 if (PhiConstExprBB) 6291 PhiConstExprBB->eraseFromParent(); 6292 6293 for (const auto &Pair : ConstExprEdgeBBs) { 6294 BasicBlock *From = Pair.first.first; 6295 BasicBlock *To = Pair.first.second; 6296 BasicBlock *EdgeBB = Pair.second; 6297 BranchInst::Create(To, EdgeBB); 6298 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6299 To->replacePhiUsesWith(From, EdgeBB); 6300 EdgeBB->moveBefore(To); 6301 } 6302 6303 // Trim the value list down to the size it was before we parsed this function. 6304 ValueList.shrinkTo(ModuleValueListSize); 6305 MDLoader->shrinkTo(ModuleMDLoaderSize); 6306 std::vector<BasicBlock*>().swap(FunctionBBs); 6307 return Error::success(); 6308 } 6309 6310 /// Find the function body in the bitcode stream 6311 Error BitcodeReader::findFunctionInStream( 6312 Function *F, 6313 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6314 while (DeferredFunctionInfoIterator->second == 0) { 6315 // This is the fallback handling for the old format bitcode that 6316 // didn't contain the function index in the VST, or when we have 6317 // an anonymous function which would not have a VST entry. 6318 // Assert that we have one of those two cases. 6319 assert(VSTOffset == 0 || !F->hasName()); 6320 // Parse the next body in the stream and set its position in the 6321 // DeferredFunctionInfo map. 6322 if (Error Err = rememberAndSkipFunctionBodies()) 6323 return Err; 6324 } 6325 return Error::success(); 6326 } 6327 6328 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6329 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6330 return SyncScope::ID(Val); 6331 if (Val >= SSIDs.size()) 6332 return SyncScope::System; // Map unknown synchronization scopes to system. 6333 return SSIDs[Val]; 6334 } 6335 6336 //===----------------------------------------------------------------------===// 6337 // GVMaterializer implementation 6338 //===----------------------------------------------------------------------===// 6339 6340 Error BitcodeReader::materialize(GlobalValue *GV) { 6341 Function *F = dyn_cast<Function>(GV); 6342 // If it's not a function or is already material, ignore the request. 6343 if (!F || !F->isMaterializable()) 6344 return Error::success(); 6345 6346 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6347 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6348 // If its position is recorded as 0, its body is somewhere in the stream 6349 // but we haven't seen it yet. 6350 if (DFII->second == 0) 6351 if (Error Err = findFunctionInStream(F, DFII)) 6352 return Err; 6353 6354 // Materialize metadata before parsing any function bodies. 6355 if (Error Err = materializeMetadata()) 6356 return Err; 6357 6358 // Move the bit stream to the saved position of the deferred function body. 6359 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6360 return JumpFailed; 6361 if (Error Err = parseFunctionBody(F)) 6362 return Err; 6363 F->setIsMaterializable(false); 6364 6365 if (StripDebugInfo) 6366 stripDebugInfo(*F); 6367 6368 // Upgrade any old intrinsic calls in the function. 6369 for (auto &I : UpgradedIntrinsics) { 6370 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6371 if (CallInst *CI = dyn_cast<CallInst>(U)) 6372 UpgradeIntrinsicCall(CI, I.second); 6373 } 6374 6375 // Update calls to the remangled intrinsics 6376 for (auto &I : RemangledIntrinsics) 6377 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6378 // Don't expect any other users than call sites 6379 cast<CallBase>(U)->setCalledFunction(I.second); 6380 6381 // Finish fn->subprogram upgrade for materialized functions. 6382 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6383 F->setSubprogram(SP); 6384 6385 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6386 if (!MDLoader->isStrippingTBAA()) { 6387 for (auto &I : instructions(F)) { 6388 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6389 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6390 continue; 6391 MDLoader->setStripTBAA(true); 6392 stripTBAA(F->getParent()); 6393 } 6394 } 6395 6396 for (auto &I : instructions(F)) { 6397 // "Upgrade" older incorrect branch weights by dropping them. 6398 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6399 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6400 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6401 StringRef ProfName = MDS->getString(); 6402 // Check consistency of !prof branch_weights metadata. 6403 if (!ProfName.equals("branch_weights")) 6404 continue; 6405 unsigned ExpectedNumOperands = 0; 6406 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6407 ExpectedNumOperands = BI->getNumSuccessors(); 6408 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6409 ExpectedNumOperands = SI->getNumSuccessors(); 6410 else if (isa<CallInst>(&I)) 6411 ExpectedNumOperands = 1; 6412 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6413 ExpectedNumOperands = IBI->getNumDestinations(); 6414 else if (isa<SelectInst>(&I)) 6415 ExpectedNumOperands = 2; 6416 else 6417 continue; // ignore and continue. 6418 6419 // If branch weight doesn't match, just strip branch weight. 6420 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6421 I.setMetadata(LLVMContext::MD_prof, nullptr); 6422 } 6423 } 6424 6425 // Remove incompatible attributes on function calls. 6426 if (auto *CI = dyn_cast<CallBase>(&I)) { 6427 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6428 CI->getFunctionType()->getReturnType())); 6429 6430 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6431 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6432 CI->getArgOperand(ArgNo)->getType())); 6433 } 6434 } 6435 6436 // Look for functions that rely on old function attribute behavior. 6437 UpgradeFunctionAttributes(*F); 6438 6439 // Bring in any functions that this function forward-referenced via 6440 // blockaddresses. 6441 return materializeForwardReferencedFunctions(); 6442 } 6443 6444 Error BitcodeReader::materializeModule() { 6445 if (Error Err = materializeMetadata()) 6446 return Err; 6447 6448 // Promise to materialize all forward references. 6449 WillMaterializeAllForwardRefs = true; 6450 6451 // Iterate over the module, deserializing any functions that are still on 6452 // disk. 6453 for (Function &F : *TheModule) { 6454 if (Error Err = materialize(&F)) 6455 return Err; 6456 } 6457 // At this point, if there are any function bodies, parse the rest of 6458 // the bits in the module past the last function block we have recorded 6459 // through either lazy scanning or the VST. 6460 if (LastFunctionBlockBit || NextUnreadBit) 6461 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6462 ? LastFunctionBlockBit 6463 : NextUnreadBit)) 6464 return Err; 6465 6466 // Check that all block address forward references got resolved (as we 6467 // promised above). 6468 if (!BasicBlockFwdRefs.empty()) 6469 return error("Never resolved function from blockaddress"); 6470 6471 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6472 // delete the old functions to clean up. We can't do this unless the entire 6473 // module is materialized because there could always be another function body 6474 // with calls to the old function. 6475 for (auto &I : UpgradedIntrinsics) { 6476 for (auto *U : I.first->users()) { 6477 if (CallInst *CI = dyn_cast<CallInst>(U)) 6478 UpgradeIntrinsicCall(CI, I.second); 6479 } 6480 if (!I.first->use_empty()) 6481 I.first->replaceAllUsesWith(I.second); 6482 I.first->eraseFromParent(); 6483 } 6484 UpgradedIntrinsics.clear(); 6485 // Do the same for remangled intrinsics 6486 for (auto &I : RemangledIntrinsics) { 6487 I.first->replaceAllUsesWith(I.second); 6488 I.first->eraseFromParent(); 6489 } 6490 RemangledIntrinsics.clear(); 6491 6492 UpgradeDebugInfo(*TheModule); 6493 6494 UpgradeModuleFlags(*TheModule); 6495 6496 UpgradeARCRuntime(*TheModule); 6497 6498 return Error::success(); 6499 } 6500 6501 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6502 return IdentifiedStructTypes; 6503 } 6504 6505 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6506 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6507 StringRef ModulePath, unsigned ModuleId) 6508 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6509 ModulePath(ModulePath), ModuleId(ModuleId) {} 6510 6511 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6512 TheIndex.addModule(ModulePath, ModuleId); 6513 } 6514 6515 ModuleSummaryIndex::ModuleInfo * 6516 ModuleSummaryIndexBitcodeReader::getThisModule() { 6517 return TheIndex.getModule(ModulePath); 6518 } 6519 6520 std::pair<ValueInfo, GlobalValue::GUID> 6521 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6522 auto VGI = ValueIdToValueInfoMap[ValueId]; 6523 assert(VGI.first); 6524 return VGI; 6525 } 6526 6527 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6528 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6529 StringRef SourceFileName) { 6530 std::string GlobalId = 6531 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6532 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6533 auto OriginalNameID = ValueGUID; 6534 if (GlobalValue::isLocalLinkage(Linkage)) 6535 OriginalNameID = GlobalValue::getGUID(ValueName); 6536 if (PrintSummaryGUIDs) 6537 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6538 << ValueName << "\n"; 6539 6540 // UseStrtab is false for legacy summary formats and value names are 6541 // created on stack. In that case we save the name in a string saver in 6542 // the index so that the value name can be recorded. 6543 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6544 TheIndex.getOrInsertValueInfo( 6545 ValueGUID, 6546 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6547 OriginalNameID); 6548 } 6549 6550 // Specialized value symbol table parser used when reading module index 6551 // blocks where we don't actually create global values. The parsed information 6552 // is saved in the bitcode reader for use when later parsing summaries. 6553 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6554 uint64_t Offset, 6555 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6556 // With a strtab the VST is not required to parse the summary. 6557 if (UseStrtab) 6558 return Error::success(); 6559 6560 assert(Offset > 0 && "Expected non-zero VST offset"); 6561 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6562 if (!MaybeCurrentBit) 6563 return MaybeCurrentBit.takeError(); 6564 uint64_t CurrentBit = MaybeCurrentBit.get(); 6565 6566 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6567 return Err; 6568 6569 SmallVector<uint64_t, 64> Record; 6570 6571 // Read all the records for this value table. 6572 SmallString<128> ValueName; 6573 6574 while (true) { 6575 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6576 if (!MaybeEntry) 6577 return MaybeEntry.takeError(); 6578 BitstreamEntry Entry = MaybeEntry.get(); 6579 6580 switch (Entry.Kind) { 6581 case BitstreamEntry::SubBlock: // Handled for us already. 6582 case BitstreamEntry::Error: 6583 return error("Malformed block"); 6584 case BitstreamEntry::EndBlock: 6585 // Done parsing VST, jump back to wherever we came from. 6586 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6587 return JumpFailed; 6588 return Error::success(); 6589 case BitstreamEntry::Record: 6590 // The interesting case. 6591 break; 6592 } 6593 6594 // Read a record. 6595 Record.clear(); 6596 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6597 if (!MaybeRecord) 6598 return MaybeRecord.takeError(); 6599 switch (MaybeRecord.get()) { 6600 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6601 break; 6602 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6603 if (convertToString(Record, 1, ValueName)) 6604 return error("Invalid record"); 6605 unsigned ValueID = Record[0]; 6606 assert(!SourceFileName.empty()); 6607 auto VLI = ValueIdToLinkageMap.find(ValueID); 6608 assert(VLI != ValueIdToLinkageMap.end() && 6609 "No linkage found for VST entry?"); 6610 auto Linkage = VLI->second; 6611 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6612 ValueName.clear(); 6613 break; 6614 } 6615 case bitc::VST_CODE_FNENTRY: { 6616 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6617 if (convertToString(Record, 2, ValueName)) 6618 return error("Invalid record"); 6619 unsigned ValueID = Record[0]; 6620 assert(!SourceFileName.empty()); 6621 auto VLI = ValueIdToLinkageMap.find(ValueID); 6622 assert(VLI != ValueIdToLinkageMap.end() && 6623 "No linkage found for VST entry?"); 6624 auto Linkage = VLI->second; 6625 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6626 ValueName.clear(); 6627 break; 6628 } 6629 case bitc::VST_CODE_COMBINED_ENTRY: { 6630 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6631 unsigned ValueID = Record[0]; 6632 GlobalValue::GUID RefGUID = Record[1]; 6633 // The "original name", which is the second value of the pair will be 6634 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6635 ValueIdToValueInfoMap[ValueID] = 6636 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6637 break; 6638 } 6639 } 6640 } 6641 } 6642 6643 // Parse just the blocks needed for building the index out of the module. 6644 // At the end of this routine the module Index is populated with a map 6645 // from global value id to GlobalValueSummary objects. 6646 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6647 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6648 return Err; 6649 6650 SmallVector<uint64_t, 64> Record; 6651 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6652 unsigned ValueId = 0; 6653 6654 // Read the index for this module. 6655 while (true) { 6656 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6657 if (!MaybeEntry) 6658 return MaybeEntry.takeError(); 6659 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6660 6661 switch (Entry.Kind) { 6662 case BitstreamEntry::Error: 6663 return error("Malformed block"); 6664 case BitstreamEntry::EndBlock: 6665 return Error::success(); 6666 6667 case BitstreamEntry::SubBlock: 6668 switch (Entry.ID) { 6669 default: // Skip unknown content. 6670 if (Error Err = Stream.SkipBlock()) 6671 return Err; 6672 break; 6673 case bitc::BLOCKINFO_BLOCK_ID: 6674 // Need to parse these to get abbrev ids (e.g. for VST) 6675 if (Error Err = readBlockInfo()) 6676 return Err; 6677 break; 6678 case bitc::VALUE_SYMTAB_BLOCK_ID: 6679 // Should have been parsed earlier via VSTOffset, unless there 6680 // is no summary section. 6681 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6682 !SeenGlobalValSummary) && 6683 "Expected early VST parse via VSTOffset record"); 6684 if (Error Err = Stream.SkipBlock()) 6685 return Err; 6686 break; 6687 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6688 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6689 // Add the module if it is a per-module index (has a source file name). 6690 if (!SourceFileName.empty()) 6691 addThisModule(); 6692 assert(!SeenValueSymbolTable && 6693 "Already read VST when parsing summary block?"); 6694 // We might not have a VST if there were no values in the 6695 // summary. An empty summary block generated when we are 6696 // performing ThinLTO compiles so we don't later invoke 6697 // the regular LTO process on them. 6698 if (VSTOffset > 0) { 6699 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6700 return Err; 6701 SeenValueSymbolTable = true; 6702 } 6703 SeenGlobalValSummary = true; 6704 if (Error Err = parseEntireSummary(Entry.ID)) 6705 return Err; 6706 break; 6707 case bitc::MODULE_STRTAB_BLOCK_ID: 6708 if (Error Err = parseModuleStringTable()) 6709 return Err; 6710 break; 6711 } 6712 continue; 6713 6714 case BitstreamEntry::Record: { 6715 Record.clear(); 6716 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6717 if (!MaybeBitCode) 6718 return MaybeBitCode.takeError(); 6719 switch (MaybeBitCode.get()) { 6720 default: 6721 break; // Default behavior, ignore unknown content. 6722 case bitc::MODULE_CODE_VERSION: { 6723 if (Error Err = parseVersionRecord(Record).takeError()) 6724 return Err; 6725 break; 6726 } 6727 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6728 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6729 SmallString<128> ValueName; 6730 if (convertToString(Record, 0, ValueName)) 6731 return error("Invalid record"); 6732 SourceFileName = ValueName.c_str(); 6733 break; 6734 } 6735 /// MODULE_CODE_HASH: [5*i32] 6736 case bitc::MODULE_CODE_HASH: { 6737 if (Record.size() != 5) 6738 return error("Invalid hash length " + Twine(Record.size()).str()); 6739 auto &Hash = getThisModule()->second.second; 6740 int Pos = 0; 6741 for (auto &Val : Record) { 6742 assert(!(Val >> 32) && "Unexpected high bits set"); 6743 Hash[Pos++] = Val; 6744 } 6745 break; 6746 } 6747 /// MODULE_CODE_VSTOFFSET: [offset] 6748 case bitc::MODULE_CODE_VSTOFFSET: 6749 if (Record.empty()) 6750 return error("Invalid record"); 6751 // Note that we subtract 1 here because the offset is relative to one 6752 // word before the start of the identification or module block, which 6753 // was historically always the start of the regular bitcode header. 6754 VSTOffset = Record[0] - 1; 6755 break; 6756 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6757 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6758 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6759 // v2: [strtab offset, strtab size, v1] 6760 case bitc::MODULE_CODE_GLOBALVAR: 6761 case bitc::MODULE_CODE_FUNCTION: 6762 case bitc::MODULE_CODE_ALIAS: { 6763 StringRef Name; 6764 ArrayRef<uint64_t> GVRecord; 6765 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6766 if (GVRecord.size() <= 3) 6767 return error("Invalid record"); 6768 uint64_t RawLinkage = GVRecord[3]; 6769 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6770 if (!UseStrtab) { 6771 ValueIdToLinkageMap[ValueId++] = Linkage; 6772 break; 6773 } 6774 6775 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6776 break; 6777 } 6778 } 6779 } 6780 continue; 6781 } 6782 } 6783 } 6784 6785 std::vector<ValueInfo> 6786 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6787 std::vector<ValueInfo> Ret; 6788 Ret.reserve(Record.size()); 6789 for (uint64_t RefValueId : Record) 6790 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6791 return Ret; 6792 } 6793 6794 std::vector<FunctionSummary::EdgeTy> 6795 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6796 bool IsOldProfileFormat, 6797 bool HasProfile, bool HasRelBF) { 6798 std::vector<FunctionSummary::EdgeTy> Ret; 6799 Ret.reserve(Record.size()); 6800 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6801 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6802 uint64_t RelBF = 0; 6803 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6804 if (IsOldProfileFormat) { 6805 I += 1; // Skip old callsitecount field 6806 if (HasProfile) 6807 I += 1; // Skip old profilecount field 6808 } else if (HasProfile) 6809 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6810 else if (HasRelBF) 6811 RelBF = Record[++I]; 6812 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6813 } 6814 return Ret; 6815 } 6816 6817 static void 6818 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6819 WholeProgramDevirtResolution &Wpd) { 6820 uint64_t ArgNum = Record[Slot++]; 6821 WholeProgramDevirtResolution::ByArg &B = 6822 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6823 Slot += ArgNum; 6824 6825 B.TheKind = 6826 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6827 B.Info = Record[Slot++]; 6828 B.Byte = Record[Slot++]; 6829 B.Bit = Record[Slot++]; 6830 } 6831 6832 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6833 StringRef Strtab, size_t &Slot, 6834 TypeIdSummary &TypeId) { 6835 uint64_t Id = Record[Slot++]; 6836 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6837 6838 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6839 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6840 static_cast<size_t>(Record[Slot + 1])}; 6841 Slot += 2; 6842 6843 uint64_t ResByArgNum = Record[Slot++]; 6844 for (uint64_t I = 0; I != ResByArgNum; ++I) 6845 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6846 } 6847 6848 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6849 StringRef Strtab, 6850 ModuleSummaryIndex &TheIndex) { 6851 size_t Slot = 0; 6852 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6853 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6854 Slot += 2; 6855 6856 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6857 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6858 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6859 TypeId.TTRes.SizeM1 = Record[Slot++]; 6860 TypeId.TTRes.BitMask = Record[Slot++]; 6861 TypeId.TTRes.InlineBits = Record[Slot++]; 6862 6863 while (Slot < Record.size()) 6864 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6865 } 6866 6867 std::vector<FunctionSummary::ParamAccess> 6868 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6869 auto ReadRange = [&]() { 6870 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6871 BitcodeReader::decodeSignRotatedValue(Record.front())); 6872 Record = Record.drop_front(); 6873 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6874 BitcodeReader::decodeSignRotatedValue(Record.front())); 6875 Record = Record.drop_front(); 6876 ConstantRange Range{Lower, Upper}; 6877 assert(!Range.isFullSet()); 6878 assert(!Range.isUpperSignWrapped()); 6879 return Range; 6880 }; 6881 6882 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6883 while (!Record.empty()) { 6884 PendingParamAccesses.emplace_back(); 6885 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6886 ParamAccess.ParamNo = Record.front(); 6887 Record = Record.drop_front(); 6888 ParamAccess.Use = ReadRange(); 6889 ParamAccess.Calls.resize(Record.front()); 6890 Record = Record.drop_front(); 6891 for (auto &Call : ParamAccess.Calls) { 6892 Call.ParamNo = Record.front(); 6893 Record = Record.drop_front(); 6894 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6895 Record = Record.drop_front(); 6896 Call.Offsets = ReadRange(); 6897 } 6898 } 6899 return PendingParamAccesses; 6900 } 6901 6902 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6903 ArrayRef<uint64_t> Record, size_t &Slot, 6904 TypeIdCompatibleVtableInfo &TypeId) { 6905 uint64_t Offset = Record[Slot++]; 6906 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6907 TypeId.push_back({Offset, Callee}); 6908 } 6909 6910 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6911 ArrayRef<uint64_t> Record) { 6912 size_t Slot = 0; 6913 TypeIdCompatibleVtableInfo &TypeId = 6914 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6915 {Strtab.data() + Record[Slot], 6916 static_cast<size_t>(Record[Slot + 1])}); 6917 Slot += 2; 6918 6919 while (Slot < Record.size()) 6920 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6921 } 6922 6923 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6924 unsigned WOCnt) { 6925 // Readonly and writeonly refs are in the end of the refs list. 6926 assert(ROCnt + WOCnt <= Refs.size()); 6927 unsigned FirstWORef = Refs.size() - WOCnt; 6928 unsigned RefNo = FirstWORef - ROCnt; 6929 for (; RefNo < FirstWORef; ++RefNo) 6930 Refs[RefNo].setReadOnly(); 6931 for (; RefNo < Refs.size(); ++RefNo) 6932 Refs[RefNo].setWriteOnly(); 6933 } 6934 6935 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6936 // objects in the index. 6937 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6938 if (Error Err = Stream.EnterSubBlock(ID)) 6939 return Err; 6940 SmallVector<uint64_t, 64> Record; 6941 6942 // Parse version 6943 { 6944 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6945 if (!MaybeEntry) 6946 return MaybeEntry.takeError(); 6947 BitstreamEntry Entry = MaybeEntry.get(); 6948 6949 if (Entry.Kind != BitstreamEntry::Record) 6950 return error("Invalid Summary Block: record for version expected"); 6951 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6952 if (!MaybeRecord) 6953 return MaybeRecord.takeError(); 6954 if (MaybeRecord.get() != bitc::FS_VERSION) 6955 return error("Invalid Summary Block: version expected"); 6956 } 6957 const uint64_t Version = Record[0]; 6958 const bool IsOldProfileFormat = Version == 1; 6959 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6960 return error("Invalid summary version " + Twine(Version) + 6961 ". Version should be in the range [1-" + 6962 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6963 "]."); 6964 Record.clear(); 6965 6966 // Keep around the last seen summary to be used when we see an optional 6967 // "OriginalName" attachement. 6968 GlobalValueSummary *LastSeenSummary = nullptr; 6969 GlobalValue::GUID LastSeenGUID = 0; 6970 6971 // We can expect to see any number of type ID information records before 6972 // each function summary records; these variables store the information 6973 // collected so far so that it can be used to create the summary object. 6974 std::vector<GlobalValue::GUID> PendingTypeTests; 6975 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6976 PendingTypeCheckedLoadVCalls; 6977 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6978 PendingTypeCheckedLoadConstVCalls; 6979 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6980 6981 while (true) { 6982 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6983 if (!MaybeEntry) 6984 return MaybeEntry.takeError(); 6985 BitstreamEntry Entry = MaybeEntry.get(); 6986 6987 switch (Entry.Kind) { 6988 case BitstreamEntry::SubBlock: // Handled for us already. 6989 case BitstreamEntry::Error: 6990 return error("Malformed block"); 6991 case BitstreamEntry::EndBlock: 6992 return Error::success(); 6993 case BitstreamEntry::Record: 6994 // The interesting case. 6995 break; 6996 } 6997 6998 // Read a record. The record format depends on whether this 6999 // is a per-module index or a combined index file. In the per-module 7000 // case the records contain the associated value's ID for correlation 7001 // with VST entries. In the combined index the correlation is done 7002 // via the bitcode offset of the summary records (which were saved 7003 // in the combined index VST entries). The records also contain 7004 // information used for ThinLTO renaming and importing. 7005 Record.clear(); 7006 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7007 if (!MaybeBitCode) 7008 return MaybeBitCode.takeError(); 7009 switch (unsigned BitCode = MaybeBitCode.get()) { 7010 default: // Default behavior: ignore. 7011 break; 7012 case bitc::FS_FLAGS: { // [flags] 7013 TheIndex.setFlags(Record[0]); 7014 break; 7015 } 7016 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7017 uint64_t ValueID = Record[0]; 7018 GlobalValue::GUID RefGUID = Record[1]; 7019 ValueIdToValueInfoMap[ValueID] = 7020 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7021 break; 7022 } 7023 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7024 // numrefs x valueid, n x (valueid)] 7025 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7026 // numrefs x valueid, 7027 // n x (valueid, hotness)] 7028 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7029 // numrefs x valueid, 7030 // n x (valueid, relblockfreq)] 7031 case bitc::FS_PERMODULE: 7032 case bitc::FS_PERMODULE_RELBF: 7033 case bitc::FS_PERMODULE_PROFILE: { 7034 unsigned ValueID = Record[0]; 7035 uint64_t RawFlags = Record[1]; 7036 unsigned InstCount = Record[2]; 7037 uint64_t RawFunFlags = 0; 7038 unsigned NumRefs = Record[3]; 7039 unsigned NumRORefs = 0, NumWORefs = 0; 7040 int RefListStartIndex = 4; 7041 if (Version >= 4) { 7042 RawFunFlags = Record[3]; 7043 NumRefs = Record[4]; 7044 RefListStartIndex = 5; 7045 if (Version >= 5) { 7046 NumRORefs = Record[5]; 7047 RefListStartIndex = 6; 7048 if (Version >= 7) { 7049 NumWORefs = Record[6]; 7050 RefListStartIndex = 7; 7051 } 7052 } 7053 } 7054 7055 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7056 // The module path string ref set in the summary must be owned by the 7057 // index's module string table. Since we don't have a module path 7058 // string table section in the per-module index, we create a single 7059 // module path string table entry with an empty (0) ID to take 7060 // ownership. 7061 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7062 assert(Record.size() >= RefListStartIndex + NumRefs && 7063 "Record size inconsistent with number of references"); 7064 std::vector<ValueInfo> Refs = makeRefList( 7065 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7066 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7067 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7068 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7069 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7070 IsOldProfileFormat, HasProfile, HasRelBF); 7071 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7072 auto FS = std::make_unique<FunctionSummary>( 7073 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7074 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7075 std::move(PendingTypeTestAssumeVCalls), 7076 std::move(PendingTypeCheckedLoadVCalls), 7077 std::move(PendingTypeTestAssumeConstVCalls), 7078 std::move(PendingTypeCheckedLoadConstVCalls), 7079 std::move(PendingParamAccesses)); 7080 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7081 FS->setModulePath(getThisModule()->first()); 7082 FS->setOriginalName(VIAndOriginalGUID.second); 7083 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 7084 break; 7085 } 7086 // FS_ALIAS: [valueid, flags, valueid] 7087 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7088 // they expect all aliasee summaries to be available. 7089 case bitc::FS_ALIAS: { 7090 unsigned ValueID = Record[0]; 7091 uint64_t RawFlags = Record[1]; 7092 unsigned AliaseeID = Record[2]; 7093 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7094 auto AS = std::make_unique<AliasSummary>(Flags); 7095 // The module path string ref set in the summary must be owned by the 7096 // index's module string table. Since we don't have a module path 7097 // string table section in the per-module index, we create a single 7098 // module path string table entry with an empty (0) ID to take 7099 // ownership. 7100 AS->setModulePath(getThisModule()->first()); 7101 7102 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 7103 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7104 if (!AliaseeInModule) 7105 return error("Alias expects aliasee summary to be parsed"); 7106 AS->setAliasee(AliaseeVI, AliaseeInModule); 7107 7108 auto GUID = getValueInfoFromValueId(ValueID); 7109 AS->setOriginalName(GUID.second); 7110 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 7111 break; 7112 } 7113 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7114 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7115 unsigned ValueID = Record[0]; 7116 uint64_t RawFlags = Record[1]; 7117 unsigned RefArrayStart = 2; 7118 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7119 /* WriteOnly */ false, 7120 /* Constant */ false, 7121 GlobalObject::VCallVisibilityPublic); 7122 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7123 if (Version >= 5) { 7124 GVF = getDecodedGVarFlags(Record[2]); 7125 RefArrayStart = 3; 7126 } 7127 std::vector<ValueInfo> Refs = 7128 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7129 auto FS = 7130 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7131 FS->setModulePath(getThisModule()->first()); 7132 auto GUID = getValueInfoFromValueId(ValueID); 7133 FS->setOriginalName(GUID.second); 7134 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 7135 break; 7136 } 7137 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7138 // numrefs, numrefs x valueid, 7139 // n x (valueid, offset)] 7140 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7141 unsigned ValueID = Record[0]; 7142 uint64_t RawFlags = Record[1]; 7143 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7144 unsigned NumRefs = Record[3]; 7145 unsigned RefListStartIndex = 4; 7146 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7147 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7148 std::vector<ValueInfo> Refs = makeRefList( 7149 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7150 VTableFuncList VTableFuncs; 7151 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7152 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 7153 uint64_t Offset = Record[++I]; 7154 VTableFuncs.push_back({Callee, Offset}); 7155 } 7156 auto VS = 7157 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7158 VS->setModulePath(getThisModule()->first()); 7159 VS->setVTableFuncs(VTableFuncs); 7160 auto GUID = getValueInfoFromValueId(ValueID); 7161 VS->setOriginalName(GUID.second); 7162 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 7163 break; 7164 } 7165 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7166 // numrefs x valueid, n x (valueid)] 7167 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7168 // numrefs x valueid, n x (valueid, hotness)] 7169 case bitc::FS_COMBINED: 7170 case bitc::FS_COMBINED_PROFILE: { 7171 unsigned ValueID = Record[0]; 7172 uint64_t ModuleId = Record[1]; 7173 uint64_t RawFlags = Record[2]; 7174 unsigned InstCount = Record[3]; 7175 uint64_t RawFunFlags = 0; 7176 uint64_t EntryCount = 0; 7177 unsigned NumRefs = Record[4]; 7178 unsigned NumRORefs = 0, NumWORefs = 0; 7179 int RefListStartIndex = 5; 7180 7181 if (Version >= 4) { 7182 RawFunFlags = Record[4]; 7183 RefListStartIndex = 6; 7184 size_t NumRefsIndex = 5; 7185 if (Version >= 5) { 7186 unsigned NumRORefsOffset = 1; 7187 RefListStartIndex = 7; 7188 if (Version >= 6) { 7189 NumRefsIndex = 6; 7190 EntryCount = Record[5]; 7191 RefListStartIndex = 8; 7192 if (Version >= 7) { 7193 RefListStartIndex = 9; 7194 NumWORefs = Record[8]; 7195 NumRORefsOffset = 2; 7196 } 7197 } 7198 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7199 } 7200 NumRefs = Record[NumRefsIndex]; 7201 } 7202 7203 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7204 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7205 assert(Record.size() >= RefListStartIndex + NumRefs && 7206 "Record size inconsistent with number of references"); 7207 std::vector<ValueInfo> Refs = makeRefList( 7208 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7209 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7210 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7211 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7212 IsOldProfileFormat, HasProfile, false); 7213 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7214 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7215 auto FS = std::make_unique<FunctionSummary>( 7216 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7217 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7218 std::move(PendingTypeTestAssumeVCalls), 7219 std::move(PendingTypeCheckedLoadVCalls), 7220 std::move(PendingTypeTestAssumeConstVCalls), 7221 std::move(PendingTypeCheckedLoadConstVCalls), 7222 std::move(PendingParamAccesses)); 7223 LastSeenSummary = FS.get(); 7224 LastSeenGUID = VI.getGUID(); 7225 FS->setModulePath(ModuleIdMap[ModuleId]); 7226 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7227 break; 7228 } 7229 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7230 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7231 // they expect all aliasee summaries to be available. 7232 case bitc::FS_COMBINED_ALIAS: { 7233 unsigned ValueID = Record[0]; 7234 uint64_t ModuleId = Record[1]; 7235 uint64_t RawFlags = Record[2]; 7236 unsigned AliaseeValueId = Record[3]; 7237 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7238 auto AS = std::make_unique<AliasSummary>(Flags); 7239 LastSeenSummary = AS.get(); 7240 AS->setModulePath(ModuleIdMap[ModuleId]); 7241 7242 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 7243 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7244 AS->setAliasee(AliaseeVI, AliaseeInModule); 7245 7246 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7247 LastSeenGUID = VI.getGUID(); 7248 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7249 break; 7250 } 7251 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7252 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7253 unsigned ValueID = Record[0]; 7254 uint64_t ModuleId = Record[1]; 7255 uint64_t RawFlags = Record[2]; 7256 unsigned RefArrayStart = 3; 7257 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7258 /* WriteOnly */ false, 7259 /* Constant */ false, 7260 GlobalObject::VCallVisibilityPublic); 7261 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7262 if (Version >= 5) { 7263 GVF = getDecodedGVarFlags(Record[3]); 7264 RefArrayStart = 4; 7265 } 7266 std::vector<ValueInfo> Refs = 7267 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7268 auto FS = 7269 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7270 LastSeenSummary = FS.get(); 7271 FS->setModulePath(ModuleIdMap[ModuleId]); 7272 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7273 LastSeenGUID = VI.getGUID(); 7274 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7275 break; 7276 } 7277 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7278 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7279 uint64_t OriginalName = Record[0]; 7280 if (!LastSeenSummary) 7281 return error("Name attachment that does not follow a combined record"); 7282 LastSeenSummary->setOriginalName(OriginalName); 7283 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7284 // Reset the LastSeenSummary 7285 LastSeenSummary = nullptr; 7286 LastSeenGUID = 0; 7287 break; 7288 } 7289 case bitc::FS_TYPE_TESTS: 7290 assert(PendingTypeTests.empty()); 7291 llvm::append_range(PendingTypeTests, Record); 7292 break; 7293 7294 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7295 assert(PendingTypeTestAssumeVCalls.empty()); 7296 for (unsigned I = 0; I != Record.size(); I += 2) 7297 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7298 break; 7299 7300 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7301 assert(PendingTypeCheckedLoadVCalls.empty()); 7302 for (unsigned I = 0; I != Record.size(); I += 2) 7303 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7304 break; 7305 7306 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7307 PendingTypeTestAssumeConstVCalls.push_back( 7308 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7309 break; 7310 7311 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7312 PendingTypeCheckedLoadConstVCalls.push_back( 7313 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7314 break; 7315 7316 case bitc::FS_CFI_FUNCTION_DEFS: { 7317 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7318 for (unsigned I = 0; I != Record.size(); I += 2) 7319 CfiFunctionDefs.insert( 7320 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7321 break; 7322 } 7323 7324 case bitc::FS_CFI_FUNCTION_DECLS: { 7325 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7326 for (unsigned I = 0; I != Record.size(); I += 2) 7327 CfiFunctionDecls.insert( 7328 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7329 break; 7330 } 7331 7332 case bitc::FS_TYPE_ID: 7333 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7334 break; 7335 7336 case bitc::FS_TYPE_ID_METADATA: 7337 parseTypeIdCompatibleVtableSummaryRecord(Record); 7338 break; 7339 7340 case bitc::FS_BLOCK_COUNT: 7341 TheIndex.addBlockCount(Record[0]); 7342 break; 7343 7344 case bitc::FS_PARAM_ACCESS: { 7345 PendingParamAccesses = parseParamAccesses(Record); 7346 break; 7347 } 7348 } 7349 } 7350 llvm_unreachable("Exit infinite loop"); 7351 } 7352 7353 // Parse the module string table block into the Index. 7354 // This populates the ModulePathStringTable map in the index. 7355 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7356 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7357 return Err; 7358 7359 SmallVector<uint64_t, 64> Record; 7360 7361 SmallString<128> ModulePath; 7362 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7363 7364 while (true) { 7365 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7366 if (!MaybeEntry) 7367 return MaybeEntry.takeError(); 7368 BitstreamEntry Entry = MaybeEntry.get(); 7369 7370 switch (Entry.Kind) { 7371 case BitstreamEntry::SubBlock: // Handled for us already. 7372 case BitstreamEntry::Error: 7373 return error("Malformed block"); 7374 case BitstreamEntry::EndBlock: 7375 return Error::success(); 7376 case BitstreamEntry::Record: 7377 // The interesting case. 7378 break; 7379 } 7380 7381 Record.clear(); 7382 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7383 if (!MaybeRecord) 7384 return MaybeRecord.takeError(); 7385 switch (MaybeRecord.get()) { 7386 default: // Default behavior: ignore. 7387 break; 7388 case bitc::MST_CODE_ENTRY: { 7389 // MST_ENTRY: [modid, namechar x N] 7390 uint64_t ModuleId = Record[0]; 7391 7392 if (convertToString(Record, 1, ModulePath)) 7393 return error("Invalid record"); 7394 7395 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7396 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7397 7398 ModulePath.clear(); 7399 break; 7400 } 7401 /// MST_CODE_HASH: [5*i32] 7402 case bitc::MST_CODE_HASH: { 7403 if (Record.size() != 5) 7404 return error("Invalid hash length " + Twine(Record.size()).str()); 7405 if (!LastSeenModule) 7406 return error("Invalid hash that does not follow a module path"); 7407 int Pos = 0; 7408 for (auto &Val : Record) { 7409 assert(!(Val >> 32) && "Unexpected high bits set"); 7410 LastSeenModule->second.second[Pos++] = Val; 7411 } 7412 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7413 LastSeenModule = nullptr; 7414 break; 7415 } 7416 } 7417 } 7418 llvm_unreachable("Exit infinite loop"); 7419 } 7420 7421 namespace { 7422 7423 // FIXME: This class is only here to support the transition to llvm::Error. It 7424 // will be removed once this transition is complete. Clients should prefer to 7425 // deal with the Error value directly, rather than converting to error_code. 7426 class BitcodeErrorCategoryType : public std::error_category { 7427 const char *name() const noexcept override { 7428 return "llvm.bitcode"; 7429 } 7430 7431 std::string message(int IE) const override { 7432 BitcodeError E = static_cast<BitcodeError>(IE); 7433 switch (E) { 7434 case BitcodeError::CorruptedBitcode: 7435 return "Corrupted bitcode"; 7436 } 7437 llvm_unreachable("Unknown error type!"); 7438 } 7439 }; 7440 7441 } // end anonymous namespace 7442 7443 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7444 7445 const std::error_category &llvm::BitcodeErrorCategory() { 7446 return *ErrorCategory; 7447 } 7448 7449 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7450 unsigned Block, unsigned RecordID) { 7451 if (Error Err = Stream.EnterSubBlock(Block)) 7452 return std::move(Err); 7453 7454 StringRef Strtab; 7455 while (true) { 7456 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7457 if (!MaybeEntry) 7458 return MaybeEntry.takeError(); 7459 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7460 7461 switch (Entry.Kind) { 7462 case BitstreamEntry::EndBlock: 7463 return Strtab; 7464 7465 case BitstreamEntry::Error: 7466 return error("Malformed block"); 7467 7468 case BitstreamEntry::SubBlock: 7469 if (Error Err = Stream.SkipBlock()) 7470 return std::move(Err); 7471 break; 7472 7473 case BitstreamEntry::Record: 7474 StringRef Blob; 7475 SmallVector<uint64_t, 1> Record; 7476 Expected<unsigned> MaybeRecord = 7477 Stream.readRecord(Entry.ID, Record, &Blob); 7478 if (!MaybeRecord) 7479 return MaybeRecord.takeError(); 7480 if (MaybeRecord.get() == RecordID) 7481 Strtab = Blob; 7482 break; 7483 } 7484 } 7485 } 7486 7487 //===----------------------------------------------------------------------===// 7488 // External interface 7489 //===----------------------------------------------------------------------===// 7490 7491 Expected<std::vector<BitcodeModule>> 7492 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7493 auto FOrErr = getBitcodeFileContents(Buffer); 7494 if (!FOrErr) 7495 return FOrErr.takeError(); 7496 return std::move(FOrErr->Mods); 7497 } 7498 7499 Expected<BitcodeFileContents> 7500 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7501 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7502 if (!StreamOrErr) 7503 return StreamOrErr.takeError(); 7504 BitstreamCursor &Stream = *StreamOrErr; 7505 7506 BitcodeFileContents F; 7507 while (true) { 7508 uint64_t BCBegin = Stream.getCurrentByteNo(); 7509 7510 // We may be consuming bitcode from a client that leaves garbage at the end 7511 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7512 // the end that there cannot possibly be another module, stop looking. 7513 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7514 return F; 7515 7516 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7517 if (!MaybeEntry) 7518 return MaybeEntry.takeError(); 7519 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7520 7521 switch (Entry.Kind) { 7522 case BitstreamEntry::EndBlock: 7523 case BitstreamEntry::Error: 7524 return error("Malformed block"); 7525 7526 case BitstreamEntry::SubBlock: { 7527 uint64_t IdentificationBit = -1ull; 7528 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7529 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7530 if (Error Err = Stream.SkipBlock()) 7531 return std::move(Err); 7532 7533 { 7534 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7535 if (!MaybeEntry) 7536 return MaybeEntry.takeError(); 7537 Entry = MaybeEntry.get(); 7538 } 7539 7540 if (Entry.Kind != BitstreamEntry::SubBlock || 7541 Entry.ID != bitc::MODULE_BLOCK_ID) 7542 return error("Malformed block"); 7543 } 7544 7545 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7546 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7547 if (Error Err = Stream.SkipBlock()) 7548 return std::move(Err); 7549 7550 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7551 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7552 Buffer.getBufferIdentifier(), IdentificationBit, 7553 ModuleBit}); 7554 continue; 7555 } 7556 7557 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7558 Expected<StringRef> Strtab = 7559 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7560 if (!Strtab) 7561 return Strtab.takeError(); 7562 // This string table is used by every preceding bitcode module that does 7563 // not have its own string table. A bitcode file may have multiple 7564 // string tables if it was created by binary concatenation, for example 7565 // with "llvm-cat -b". 7566 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7567 if (!I.Strtab.empty()) 7568 break; 7569 I.Strtab = *Strtab; 7570 } 7571 // Similarly, the string table is used by every preceding symbol table; 7572 // normally there will be just one unless the bitcode file was created 7573 // by binary concatenation. 7574 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7575 F.StrtabForSymtab = *Strtab; 7576 continue; 7577 } 7578 7579 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7580 Expected<StringRef> SymtabOrErr = 7581 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7582 if (!SymtabOrErr) 7583 return SymtabOrErr.takeError(); 7584 7585 // We can expect the bitcode file to have multiple symbol tables if it 7586 // was created by binary concatenation. In that case we silently 7587 // ignore any subsequent symbol tables, which is fine because this is a 7588 // low level function. The client is expected to notice that the number 7589 // of modules in the symbol table does not match the number of modules 7590 // in the input file and regenerate the symbol table. 7591 if (F.Symtab.empty()) 7592 F.Symtab = *SymtabOrErr; 7593 continue; 7594 } 7595 7596 if (Error Err = Stream.SkipBlock()) 7597 return std::move(Err); 7598 continue; 7599 } 7600 case BitstreamEntry::Record: 7601 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7602 return std::move(E); 7603 continue; 7604 } 7605 } 7606 } 7607 7608 /// Get a lazy one-at-time loading module from bitcode. 7609 /// 7610 /// This isn't always used in a lazy context. In particular, it's also used by 7611 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7612 /// in forward-referenced functions from block address references. 7613 /// 7614 /// \param[in] MaterializeAll Set to \c true if we should materialize 7615 /// everything. 7616 Expected<std::unique_ptr<Module>> 7617 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7618 bool ShouldLazyLoadMetadata, bool IsImporting, 7619 DataLayoutCallbackTy DataLayoutCallback) { 7620 BitstreamCursor Stream(Buffer); 7621 7622 std::string ProducerIdentification; 7623 if (IdentificationBit != -1ull) { 7624 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7625 return std::move(JumpFailed); 7626 if (Error E = 7627 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7628 return std::move(E); 7629 } 7630 7631 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7632 return std::move(JumpFailed); 7633 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7634 Context); 7635 7636 std::unique_ptr<Module> M = 7637 std::make_unique<Module>(ModuleIdentifier, Context); 7638 M->setMaterializer(R); 7639 7640 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7641 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7642 IsImporting, DataLayoutCallback)) 7643 return std::move(Err); 7644 7645 if (MaterializeAll) { 7646 // Read in the entire module, and destroy the BitcodeReader. 7647 if (Error Err = M->materializeAll()) 7648 return std::move(Err); 7649 } else { 7650 // Resolve forward references from blockaddresses. 7651 if (Error Err = R->materializeForwardReferencedFunctions()) 7652 return std::move(Err); 7653 } 7654 return std::move(M); 7655 } 7656 7657 Expected<std::unique_ptr<Module>> 7658 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7659 bool IsImporting) { 7660 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7661 [](StringRef) { return None; }); 7662 } 7663 7664 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7665 // We don't use ModuleIdentifier here because the client may need to control the 7666 // module path used in the combined summary (e.g. when reading summaries for 7667 // regular LTO modules). 7668 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7669 StringRef ModulePath, uint64_t ModuleId) { 7670 BitstreamCursor Stream(Buffer); 7671 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7672 return JumpFailed; 7673 7674 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7675 ModulePath, ModuleId); 7676 return R.parseModule(); 7677 } 7678 7679 // Parse the specified bitcode buffer, returning the function info index. 7680 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7681 BitstreamCursor Stream(Buffer); 7682 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7683 return std::move(JumpFailed); 7684 7685 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7686 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7687 ModuleIdentifier, 0); 7688 7689 if (Error Err = R.parseModule()) 7690 return std::move(Err); 7691 7692 return std::move(Index); 7693 } 7694 7695 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7696 unsigned ID) { 7697 if (Error Err = Stream.EnterSubBlock(ID)) 7698 return std::move(Err); 7699 SmallVector<uint64_t, 64> Record; 7700 7701 while (true) { 7702 BitstreamEntry Entry; 7703 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7704 return std::move(E); 7705 7706 switch (Entry.Kind) { 7707 case BitstreamEntry::SubBlock: // Handled for us already. 7708 case BitstreamEntry::Error: 7709 return error("Malformed block"); 7710 case BitstreamEntry::EndBlock: 7711 // If no flags record found, conservatively return true to mimic 7712 // behavior before this flag was added. 7713 return true; 7714 case BitstreamEntry::Record: 7715 // The interesting case. 7716 break; 7717 } 7718 7719 // Look for the FS_FLAGS record. 7720 Record.clear(); 7721 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7722 if (!MaybeBitCode) 7723 return MaybeBitCode.takeError(); 7724 switch (MaybeBitCode.get()) { 7725 default: // Default behavior: ignore. 7726 break; 7727 case bitc::FS_FLAGS: { // [flags] 7728 uint64_t Flags = Record[0]; 7729 // Scan flags. 7730 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7731 7732 return Flags & 0x8; 7733 } 7734 } 7735 } 7736 llvm_unreachable("Exit infinite loop"); 7737 } 7738 7739 // Check if the given bitcode buffer contains a global value summary block. 7740 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7741 BitstreamCursor Stream(Buffer); 7742 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7743 return std::move(JumpFailed); 7744 7745 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7746 return std::move(Err); 7747 7748 while (true) { 7749 llvm::BitstreamEntry Entry; 7750 if (Error E = Stream.advance().moveInto(Entry)) 7751 return std::move(E); 7752 7753 switch (Entry.Kind) { 7754 case BitstreamEntry::Error: 7755 return error("Malformed block"); 7756 case BitstreamEntry::EndBlock: 7757 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7758 /*EnableSplitLTOUnit=*/false}; 7759 7760 case BitstreamEntry::SubBlock: 7761 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7762 Expected<bool> EnableSplitLTOUnit = 7763 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7764 if (!EnableSplitLTOUnit) 7765 return EnableSplitLTOUnit.takeError(); 7766 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7767 *EnableSplitLTOUnit}; 7768 } 7769 7770 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7771 Expected<bool> EnableSplitLTOUnit = 7772 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7773 if (!EnableSplitLTOUnit) 7774 return EnableSplitLTOUnit.takeError(); 7775 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7776 *EnableSplitLTOUnit}; 7777 } 7778 7779 // Ignore other sub-blocks. 7780 if (Error Err = Stream.SkipBlock()) 7781 return std::move(Err); 7782 continue; 7783 7784 case BitstreamEntry::Record: 7785 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7786 continue; 7787 else 7788 return StreamFailed.takeError(); 7789 } 7790 } 7791 } 7792 7793 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7794 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7795 if (!MsOrErr) 7796 return MsOrErr.takeError(); 7797 7798 if (MsOrErr->size() != 1) 7799 return error("Expected a single module"); 7800 7801 return (*MsOrErr)[0]; 7802 } 7803 7804 Expected<std::unique_ptr<Module>> 7805 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7806 bool ShouldLazyLoadMetadata, bool IsImporting) { 7807 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7808 if (!BM) 7809 return BM.takeError(); 7810 7811 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7812 } 7813 7814 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7815 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7816 bool ShouldLazyLoadMetadata, bool IsImporting) { 7817 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7818 IsImporting); 7819 if (MOrErr) 7820 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7821 return MOrErr; 7822 } 7823 7824 Expected<std::unique_ptr<Module>> 7825 BitcodeModule::parseModule(LLVMContext &Context, 7826 DataLayoutCallbackTy DataLayoutCallback) { 7827 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7828 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7829 // written. We must defer until the Module has been fully materialized. 7830 } 7831 7832 Expected<std::unique_ptr<Module>> 7833 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7834 DataLayoutCallbackTy DataLayoutCallback) { 7835 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7836 if (!BM) 7837 return BM.takeError(); 7838 7839 return BM->parseModule(Context, DataLayoutCallback); 7840 } 7841 7842 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7843 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7844 if (!StreamOrErr) 7845 return StreamOrErr.takeError(); 7846 7847 return readTriple(*StreamOrErr); 7848 } 7849 7850 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7851 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7852 if (!StreamOrErr) 7853 return StreamOrErr.takeError(); 7854 7855 return hasObjCCategory(*StreamOrErr); 7856 } 7857 7858 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7859 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7860 if (!StreamOrErr) 7861 return StreamOrErr.takeError(); 7862 7863 return readIdentificationCode(*StreamOrErr); 7864 } 7865 7866 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7867 ModuleSummaryIndex &CombinedIndex, 7868 uint64_t ModuleId) { 7869 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7870 if (!BM) 7871 return BM.takeError(); 7872 7873 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7874 } 7875 7876 Expected<std::unique_ptr<ModuleSummaryIndex>> 7877 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7878 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7879 if (!BM) 7880 return BM.takeError(); 7881 7882 return BM->getSummary(); 7883 } 7884 7885 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7886 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7887 if (!BM) 7888 return BM.takeError(); 7889 7890 return BM->getLTOInfo(); 7891 } 7892 7893 Expected<std::unique_ptr<ModuleSummaryIndex>> 7894 llvm::getModuleSummaryIndexForFile(StringRef Path, 7895 bool IgnoreEmptyThinLTOIndexFile) { 7896 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7897 MemoryBuffer::getFileOrSTDIN(Path); 7898 if (!FileOrErr) 7899 return errorCodeToError(FileOrErr.getError()); 7900 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7901 return nullptr; 7902 return getModuleSummaryIndex(**FileOrErr); 7903 } 7904