1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 /// Load bitcode directly into RemoveDIs format (use debug records instead 104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 105 /// is to do nothing. Individual tools can override this to incrementally add 106 /// support for the RemoveDIs format. 107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 108 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 109 cl::desc("Load bitcode directly into the new debug info format (regardless " 110 "of input format)")); 111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 112 extern bool WriteNewDbgInfoFormatToBitcode; 113 extern cl::opt<bool> WriteNewDbgInfoFormat; 114 115 namespace { 116 117 enum { 118 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 119 }; 120 121 } // end anonymous namespace 122 123 static Error error(const Twine &Message) { 124 return make_error<StringError>( 125 Message, make_error_code(BitcodeError::CorruptedBitcode)); 126 } 127 128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 129 if (!Stream.canSkipToPos(4)) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file too small to contain bitcode header"); 132 for (unsigned C : {'B', 'C'}) 133 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 134 if (Res.get() != C) 135 return createStringError(std::errc::illegal_byte_sequence, 136 "file doesn't start with bitcode header"); 137 } else 138 return Res.takeError(); 139 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 140 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 141 if (Res.get() != C) 142 return createStringError(std::errc::illegal_byte_sequence, 143 "file doesn't start with bitcode header"); 144 } else 145 return Res.takeError(); 146 return Error::success(); 147 } 148 149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 150 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 151 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 152 153 if (Buffer.getBufferSize() & 3) 154 return error("Invalid bitcode signature"); 155 156 // If we have a wrapper header, parse it and ignore the non-bc file contents. 157 // The magic number is 0x0B17C0DE stored in little endian. 158 if (isBitcodeWrapper(BufPtr, BufEnd)) 159 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 160 return error("Invalid bitcode wrapper header"); 161 162 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 163 if (Error Err = hasInvalidBitcodeHeader(Stream)) 164 return std::move(Err); 165 166 return std::move(Stream); 167 } 168 169 /// Convert a string from a record into an std::string, return true on failure. 170 template <typename StrTy> 171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 172 StrTy &Result) { 173 if (Idx > Record.size()) 174 return true; 175 176 Result.append(Record.begin() + Idx, Record.end()); 177 return false; 178 } 179 180 // Strip all the TBAA attachment for the module. 181 static void stripTBAA(Module *M) { 182 for (auto &F : *M) { 183 if (F.isMaterializable()) 184 continue; 185 for (auto &I : instructions(F)) 186 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 187 } 188 } 189 190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 191 /// "epoch" encoded in the bitcode, and return the producer name if any. 192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 193 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 194 return std::move(Err); 195 196 // Read all the records. 197 SmallVector<uint64_t, 64> Record; 198 199 std::string ProducerIdentification; 200 201 while (true) { 202 BitstreamEntry Entry; 203 if (Error E = Stream.advance().moveInto(Entry)) 204 return std::move(E); 205 206 switch (Entry.Kind) { 207 default: 208 case BitstreamEntry::Error: 209 return error("Malformed block"); 210 case BitstreamEntry::EndBlock: 211 return ProducerIdentification; 212 case BitstreamEntry::Record: 213 // The interesting case. 214 break; 215 } 216 217 // Read a record. 218 Record.clear(); 219 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 220 if (!MaybeBitCode) 221 return MaybeBitCode.takeError(); 222 switch (MaybeBitCode.get()) { 223 default: // Default behavior: reject 224 return error("Invalid value"); 225 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 226 convertToString(Record, 0, ProducerIdentification); 227 break; 228 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 229 unsigned epoch = (unsigned)Record[0]; 230 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 231 return error( 232 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 233 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 234 } 235 } 236 } 237 } 238 } 239 240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 241 // We expect a number of well-defined blocks, though we don't necessarily 242 // need to understand them all. 243 while (true) { 244 if (Stream.AtEndOfStream()) 245 return ""; 246 247 BitstreamEntry Entry; 248 if (Error E = Stream.advance().moveInto(Entry)) 249 return std::move(E); 250 251 switch (Entry.Kind) { 252 case BitstreamEntry::EndBlock: 253 case BitstreamEntry::Error: 254 return error("Malformed block"); 255 256 case BitstreamEntry::SubBlock: 257 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 258 return readIdentificationBlock(Stream); 259 260 // Ignore other sub-blocks. 261 if (Error Err = Stream.SkipBlock()) 262 return std::move(Err); 263 continue; 264 case BitstreamEntry::Record: 265 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 266 return std::move(E); 267 continue; 268 } 269 } 270 } 271 272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 273 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 274 return std::move(Err); 275 276 SmallVector<uint64_t, 64> Record; 277 // Read all the records for this module. 278 279 while (true) { 280 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 281 if (!MaybeEntry) 282 return MaybeEntry.takeError(); 283 BitstreamEntry Entry = MaybeEntry.get(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::SubBlock: // Handled for us already. 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 case BitstreamEntry::Record: 292 // The interesting case. 293 break; 294 } 295 296 // Read a record. 297 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 298 if (!MaybeRecord) 299 return MaybeRecord.takeError(); 300 switch (MaybeRecord.get()) { 301 default: 302 break; // Default behavior, ignore unknown content. 303 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 304 std::string S; 305 if (convertToString(Record, 0, S)) 306 return error("Invalid section name record"); 307 // Check for the i386 and other (x86_64, ARM) conventions 308 if (S.find("__DATA,__objc_catlist") != std::string::npos || 309 S.find("__OBJC,__category") != std::string::npos) 310 return true; 311 break; 312 } 313 } 314 Record.clear(); 315 } 316 llvm_unreachable("Exit infinite loop"); 317 } 318 319 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 320 // We expect a number of well-defined blocks, though we don't necessarily 321 // need to understand them all. 322 while (true) { 323 BitstreamEntry Entry; 324 if (Error E = Stream.advance().moveInto(Entry)) 325 return std::move(E); 326 327 switch (Entry.Kind) { 328 case BitstreamEntry::Error: 329 return error("Malformed block"); 330 case BitstreamEntry::EndBlock: 331 return false; 332 333 case BitstreamEntry::SubBlock: 334 if (Entry.ID == bitc::MODULE_BLOCK_ID) 335 return hasObjCCategoryInModule(Stream); 336 337 // Ignore other sub-blocks. 338 if (Error Err = Stream.SkipBlock()) 339 return std::move(Err); 340 continue; 341 342 case BitstreamEntry::Record: 343 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 344 return std::move(E); 345 continue; 346 } 347 } 348 } 349 350 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 351 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 352 return std::move(Err); 353 354 SmallVector<uint64_t, 64> Record; 355 356 std::string Triple; 357 358 // Read all the records for this module. 359 while (true) { 360 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 361 if (!MaybeEntry) 362 return MaybeEntry.takeError(); 363 BitstreamEntry Entry = MaybeEntry.get(); 364 365 switch (Entry.Kind) { 366 case BitstreamEntry::SubBlock: // Handled for us already. 367 case BitstreamEntry::Error: 368 return error("Malformed block"); 369 case BitstreamEntry::EndBlock: 370 return Triple; 371 case BitstreamEntry::Record: 372 // The interesting case. 373 break; 374 } 375 376 // Read a record. 377 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 378 if (!MaybeRecord) 379 return MaybeRecord.takeError(); 380 switch (MaybeRecord.get()) { 381 default: break; // Default behavior, ignore unknown content. 382 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 383 std::string S; 384 if (convertToString(Record, 0, S)) 385 return error("Invalid triple record"); 386 Triple = S; 387 break; 388 } 389 } 390 Record.clear(); 391 } 392 llvm_unreachable("Exit infinite loop"); 393 } 394 395 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 396 // We expect a number of well-defined blocks, though we don't necessarily 397 // need to understand them all. 398 while (true) { 399 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 400 if (!MaybeEntry) 401 return MaybeEntry.takeError(); 402 BitstreamEntry Entry = MaybeEntry.get(); 403 404 switch (Entry.Kind) { 405 case BitstreamEntry::Error: 406 return error("Malformed block"); 407 case BitstreamEntry::EndBlock: 408 return ""; 409 410 case BitstreamEntry::SubBlock: 411 if (Entry.ID == bitc::MODULE_BLOCK_ID) 412 return readModuleTriple(Stream); 413 414 // Ignore other sub-blocks. 415 if (Error Err = Stream.SkipBlock()) 416 return std::move(Err); 417 continue; 418 419 case BitstreamEntry::Record: 420 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 421 continue; 422 else 423 return Skipped.takeError(); 424 } 425 } 426 } 427 428 namespace { 429 430 class BitcodeReaderBase { 431 protected: 432 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 433 : Stream(std::move(Stream)), Strtab(Strtab) { 434 this->Stream.setBlockInfo(&BlockInfo); 435 } 436 437 BitstreamBlockInfo BlockInfo; 438 BitstreamCursor Stream; 439 StringRef Strtab; 440 441 /// In version 2 of the bitcode we store names of global values and comdats in 442 /// a string table rather than in the VST. 443 bool UseStrtab = false; 444 445 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 446 447 /// If this module uses a string table, pop the reference to the string table 448 /// and return the referenced string and the rest of the record. Otherwise 449 /// just return the record itself. 450 std::pair<StringRef, ArrayRef<uint64_t>> 451 readNameFromStrtab(ArrayRef<uint64_t> Record); 452 453 Error readBlockInfo(); 454 455 // Contains an arbitrary and optional string identifying the bitcode producer 456 std::string ProducerIdentification; 457 458 Error error(const Twine &Message); 459 }; 460 461 } // end anonymous namespace 462 463 Error BitcodeReaderBase::error(const Twine &Message) { 464 std::string FullMsg = Message.str(); 465 if (!ProducerIdentification.empty()) 466 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 467 LLVM_VERSION_STRING "')"; 468 return ::error(FullMsg); 469 } 470 471 Expected<unsigned> 472 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 473 if (Record.empty()) 474 return error("Invalid version record"); 475 unsigned ModuleVersion = Record[0]; 476 if (ModuleVersion > 2) 477 return error("Invalid value"); 478 UseStrtab = ModuleVersion >= 2; 479 return ModuleVersion; 480 } 481 482 std::pair<StringRef, ArrayRef<uint64_t>> 483 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 484 if (!UseStrtab) 485 return {"", Record}; 486 // Invalid reference. Let the caller complain about the record being empty. 487 if (Record[0] + Record[1] > Strtab.size()) 488 return {"", {}}; 489 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 490 } 491 492 namespace { 493 494 /// This represents a constant expression or constant aggregate using a custom 495 /// structure internal to the bitcode reader. Later, this structure will be 496 /// expanded by materializeValue() either into a constant expression/aggregate, 497 /// or into an instruction sequence at the point of use. This allows us to 498 /// upgrade bitcode using constant expressions even if this kind of constant 499 /// expression is no longer supported. 500 class BitcodeConstant final : public Value, 501 TrailingObjects<BitcodeConstant, unsigned> { 502 friend TrailingObjects; 503 504 // Value subclass ID: Pick largest possible value to avoid any clashes. 505 static constexpr uint8_t SubclassID = 255; 506 507 public: 508 // Opcodes used for non-expressions. This includes constant aggregates 509 // (struct, array, vector) that might need expansion, as well as non-leaf 510 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 511 // but still go through BitcodeConstant to avoid different uselist orders 512 // between the two cases. 513 static constexpr uint8_t ConstantStructOpcode = 255; 514 static constexpr uint8_t ConstantArrayOpcode = 254; 515 static constexpr uint8_t ConstantVectorOpcode = 253; 516 static constexpr uint8_t NoCFIOpcode = 252; 517 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 518 static constexpr uint8_t BlockAddressOpcode = 250; 519 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 520 521 // Separate struct to make passing different number of parameters to 522 // BitcodeConstant::create() more convenient. 523 struct ExtraInfo { 524 uint8_t Opcode; 525 uint8_t Flags; 526 unsigned BlockAddressBB = 0; 527 Type *SrcElemTy = nullptr; 528 std::optional<ConstantRange> InRange; 529 530 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 531 std::optional<ConstantRange> InRange = std::nullopt) 532 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 533 InRange(std::move(InRange)) {} 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 536 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 537 }; 538 539 uint8_t Opcode; 540 uint8_t Flags; 541 unsigned NumOperands; 542 unsigned BlockAddressBB; 543 Type *SrcElemTy; // GEP source element type. 544 std::optional<ConstantRange> InRange; // GEP inrange attribute. 545 546 private: 547 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 548 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 549 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 550 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 551 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 552 getTrailingObjects<unsigned>()); 553 } 554 555 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 556 557 public: 558 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 559 const ExtraInfo &Info, 560 ArrayRef<unsigned> OpIDs) { 561 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 562 alignof(BitcodeConstant)); 563 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 564 } 565 566 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 567 568 ArrayRef<unsigned> getOperandIDs() const { 569 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 570 } 571 572 std::optional<ConstantRange> getInRange() const { 573 assert(Opcode == Instruction::GetElementPtr); 574 return InRange; 575 } 576 577 const char *getOpcodeName() const { 578 return Instruction::getOpcodeName(Opcode); 579 } 580 }; 581 582 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 583 LLVMContext &Context; 584 Module *TheModule = nullptr; 585 // Next offset to start scanning for lazy parsing of function bodies. 586 uint64_t NextUnreadBit = 0; 587 // Last function offset found in the VST. 588 uint64_t LastFunctionBlockBit = 0; 589 bool SeenValueSymbolTable = false; 590 uint64_t VSTOffset = 0; 591 592 std::vector<std::string> SectionTable; 593 std::vector<std::string> GCTable; 594 595 std::vector<Type *> TypeList; 596 /// Track type IDs of contained types. Order is the same as the contained 597 /// types of a Type*. This is used during upgrades of typed pointer IR in 598 /// opaque pointer mode. 599 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 600 /// In some cases, we need to create a type ID for a type that was not 601 /// explicitly encoded in the bitcode, or we don't know about at the current 602 /// point. For example, a global may explicitly encode the value type ID, but 603 /// not have a type ID for the pointer to value type, for which we create a 604 /// virtual type ID instead. This map stores the new type ID that was created 605 /// for the given pair of Type and contained type ID. 606 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 607 DenseMap<Function *, unsigned> FunctionTypeIDs; 608 /// Allocator for BitcodeConstants. This should come before ValueList, 609 /// because the ValueList might hold ValueHandles to these constants, so 610 /// ValueList must be destroyed before Alloc. 611 BumpPtrAllocator Alloc; 612 BitcodeReaderValueList ValueList; 613 std::optional<MetadataLoader> MDLoader; 614 std::vector<Comdat *> ComdatList; 615 DenseSet<GlobalObject *> ImplicitComdatObjects; 616 SmallVector<Instruction *, 64> InstructionList; 617 618 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 619 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 620 621 struct FunctionOperandInfo { 622 Function *F; 623 unsigned PersonalityFn; 624 unsigned Prefix; 625 unsigned Prologue; 626 }; 627 std::vector<FunctionOperandInfo> FunctionOperands; 628 629 /// The set of attributes by index. Index zero in the file is for null, and 630 /// is thus not represented here. As such all indices are off by one. 631 std::vector<AttributeList> MAttributes; 632 633 /// The set of attribute groups. 634 std::map<unsigned, AttributeList> MAttributeGroups; 635 636 /// While parsing a function body, this is a list of the basic blocks for the 637 /// function. 638 std::vector<BasicBlock*> FunctionBBs; 639 640 // When reading the module header, this list is populated with functions that 641 // have bodies later in the file. 642 std::vector<Function*> FunctionsWithBodies; 643 644 // When intrinsic functions are encountered which require upgrading they are 645 // stored here with their replacement function. 646 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 647 UpdatedIntrinsicMap UpgradedIntrinsics; 648 649 // Several operations happen after the module header has been read, but 650 // before function bodies are processed. This keeps track of whether 651 // we've done this yet. 652 bool SeenFirstFunctionBody = false; 653 654 /// When function bodies are initially scanned, this map contains info about 655 /// where to find deferred function body in the stream. 656 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 657 658 /// When Metadata block is initially scanned when parsing the module, we may 659 /// choose to defer parsing of the metadata. This vector contains info about 660 /// which Metadata blocks are deferred. 661 std::vector<uint64_t> DeferredMetadataInfo; 662 663 /// These are basic blocks forward-referenced by block addresses. They are 664 /// inserted lazily into functions when they're loaded. The basic block ID is 665 /// its index into the vector. 666 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 667 std::deque<Function *> BasicBlockFwdRefQueue; 668 669 /// These are Functions that contain BlockAddresses which refer a different 670 /// Function. When parsing the different Function, queue Functions that refer 671 /// to the different Function. Those Functions must be materialized in order 672 /// to resolve their BlockAddress constants before the different Function 673 /// gets moved into another Module. 674 std::vector<Function *> BackwardRefFunctions; 675 676 /// Indicates that we are using a new encoding for instruction operands where 677 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 678 /// instruction number, for a more compact encoding. Some instruction 679 /// operands are not relative to the instruction ID: basic block numbers, and 680 /// types. Once the old style function blocks have been phased out, we would 681 /// not need this flag. 682 bool UseRelativeIDs = false; 683 684 /// True if all functions will be materialized, negating the need to process 685 /// (e.g.) blockaddress forward references. 686 bool WillMaterializeAllForwardRefs = false; 687 688 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 689 /// seeing both in a single module is currently a fatal error. 690 bool SeenDebugIntrinsic = false; 691 bool SeenDebugRecord = false; 692 693 bool StripDebugInfo = false; 694 TBAAVerifier TBAAVerifyHelper; 695 696 std::vector<std::string> BundleTags; 697 SmallVector<SyncScope::ID, 8> SSIDs; 698 699 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 700 701 public: 702 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 703 StringRef ProducerIdentification, LLVMContext &Context); 704 705 Error materializeForwardReferencedFunctions(); 706 707 Error materialize(GlobalValue *GV) override; 708 Error materializeModule() override; 709 std::vector<StructType *> getIdentifiedStructTypes() const override; 710 711 /// Main interface to parsing a bitcode buffer. 712 /// \returns true if an error occurred. 713 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 714 bool IsImporting, ParserCallbacks Callbacks = {}); 715 716 static uint64_t decodeSignRotatedValue(uint64_t V); 717 718 /// Materialize any deferred Metadata block. 719 Error materializeMetadata() override; 720 721 void setStripDebugInfo() override; 722 723 private: 724 std::vector<StructType *> IdentifiedStructTypes; 725 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 726 StructType *createIdentifiedStructType(LLVMContext &Context); 727 728 static constexpr unsigned InvalidTypeID = ~0u; 729 730 Type *getTypeByID(unsigned ID); 731 Type *getPtrElementTypeByID(unsigned ID); 732 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 733 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 734 735 void callValueTypeCallback(Value *F, unsigned TypeID); 736 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 737 Expected<Constant *> getValueForInitializer(unsigned ID); 738 739 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 740 BasicBlock *ConstExprInsertBB) { 741 if (Ty && Ty->isMetadataTy()) 742 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 743 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 744 } 745 746 Metadata *getFnMetadataByID(unsigned ID) { 747 return MDLoader->getMetadataFwdRefOrLoad(ID); 748 } 749 750 BasicBlock *getBasicBlock(unsigned ID) const { 751 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 752 return FunctionBBs[ID]; 753 } 754 755 AttributeList getAttributes(unsigned i) const { 756 if (i-1 < MAttributes.size()) 757 return MAttributes[i-1]; 758 return AttributeList(); 759 } 760 761 /// Read a value/type pair out of the specified record from slot 'Slot'. 762 /// Increment Slot past the number of slots used in the record. Return true on 763 /// failure. 764 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 765 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 766 BasicBlock *ConstExprInsertBB) { 767 if (Slot == Record.size()) return true; 768 unsigned ValNo = (unsigned)Record[Slot++]; 769 // Adjust the ValNo, if it was encoded relative to the InstNum. 770 if (UseRelativeIDs) 771 ValNo = InstNum - ValNo; 772 if (ValNo < InstNum) { 773 // If this is not a forward reference, just return the value we already 774 // have. 775 TypeID = ValueList.getTypeID(ValNo); 776 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 777 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 778 "Incorrect type ID stored for value"); 779 return ResVal == nullptr; 780 } 781 if (Slot == Record.size()) 782 return true; 783 784 TypeID = (unsigned)Record[Slot++]; 785 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 786 ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 791 /// past the number of slots used by the value in the record. Return true if 792 /// there is an error. 793 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 794 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 795 BasicBlock *ConstExprInsertBB) { 796 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 797 return true; 798 // All values currently take a single record slot. 799 ++Slot; 800 return false; 801 } 802 803 /// Like popValue, but does not increment the Slot number. 804 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 806 BasicBlock *ConstExprInsertBB) { 807 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 808 return ResVal == nullptr; 809 } 810 811 /// Version of getValue that returns ResVal directly, or 0 if there is an 812 /// error. 813 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 814 unsigned InstNum, Type *Ty, unsigned TyID, 815 BasicBlock *ConstExprInsertBB) { 816 if (Slot == Record.size()) return nullptr; 817 unsigned ValNo = (unsigned)Record[Slot]; 818 // Adjust the ValNo, if it was encoded relative to the InstNum. 819 if (UseRelativeIDs) 820 ValNo = InstNum - ValNo; 821 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 822 } 823 824 /// Like getValue, but decodes signed VBRs. 825 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 826 unsigned InstNum, Type *Ty, unsigned TyID, 827 BasicBlock *ConstExprInsertBB) { 828 if (Slot == Record.size()) return nullptr; 829 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 830 // Adjust the ValNo, if it was encoded relative to the InstNum. 831 if (UseRelativeIDs) 832 ValNo = InstNum - ValNo; 833 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 834 } 835 836 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 837 unsigned &OpNum) { 838 if (Record.size() - OpNum < 3) 839 return error("Too few records for range"); 840 unsigned BitWidth = Record[OpNum++]; 841 if (BitWidth > 64) { 842 unsigned LowerActiveWords = Record[OpNum]; 843 unsigned UpperActiveWords = Record[OpNum++] >> 32; 844 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 845 return error("Too few records for range"); 846 APInt Lower = 847 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 848 OpNum += LowerActiveWords; 849 APInt Upper = 850 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 851 OpNum += UpperActiveWords; 852 return ConstantRange(Lower, Upper); 853 } else { 854 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 855 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 856 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 857 } 858 } 859 860 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 861 /// corresponding argument's pointee type. Also upgrades intrinsics that now 862 /// require an elementtype attribute. 863 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 864 865 /// Converts alignment exponent (i.e. power of two (or zero)) to the 866 /// corresponding alignment to use. If alignment is too large, returns 867 /// a corresponding error code. 868 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 869 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 870 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 871 ParserCallbacks Callbacks = {}); 872 873 Error parseComdatRecord(ArrayRef<uint64_t> Record); 874 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 875 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 876 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 877 ArrayRef<uint64_t> Record); 878 879 Error parseAttributeBlock(); 880 Error parseAttributeGroupBlock(); 881 Error parseTypeTable(); 882 Error parseTypeTableBody(); 883 Error parseOperandBundleTags(); 884 Error parseSyncScopeNames(); 885 886 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 887 unsigned NameIndex, Triple &TT); 888 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 889 ArrayRef<uint64_t> Record); 890 Error parseValueSymbolTable(uint64_t Offset = 0); 891 Error parseGlobalValueSymbolTable(); 892 Error parseConstants(); 893 Error rememberAndSkipFunctionBodies(); 894 Error rememberAndSkipFunctionBody(); 895 /// Save the positions of the Metadata blocks and skip parsing the blocks. 896 Error rememberAndSkipMetadata(); 897 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 898 Error parseFunctionBody(Function *F); 899 Error globalCleanup(); 900 Error resolveGlobalAndIndirectSymbolInits(); 901 Error parseUseLists(); 902 Error findFunctionInStream( 903 Function *F, 904 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 905 906 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 907 }; 908 909 /// Class to manage reading and parsing function summary index bitcode 910 /// files/sections. 911 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 912 /// The module index built during parsing. 913 ModuleSummaryIndex &TheIndex; 914 915 /// Indicates whether we have encountered a global value summary section 916 /// yet during parsing. 917 bool SeenGlobalValSummary = false; 918 919 /// Indicates whether we have already parsed the VST, used for error checking. 920 bool SeenValueSymbolTable = false; 921 922 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 923 /// Used to enable on-demand parsing of the VST. 924 uint64_t VSTOffset = 0; 925 926 // Map to save ValueId to ValueInfo association that was recorded in the 927 // ValueSymbolTable. It is used after the VST is parsed to convert 928 // call graph edges read from the function summary from referencing 929 // callees by their ValueId to using the ValueInfo instead, which is how 930 // they are recorded in the summary index being built. 931 // We save a GUID which refers to the same global as the ValueInfo, but 932 // ignoring the linkage, i.e. for values other than local linkage they are 933 // identical (this is the second tuple member). 934 // The third tuple member is the real GUID of the ValueInfo. 935 DenseMap<unsigned, 936 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 937 ValueIdToValueInfoMap; 938 939 /// Map populated during module path string table parsing, from the 940 /// module ID to a string reference owned by the index's module 941 /// path string table, used to correlate with combined index 942 /// summary records. 943 DenseMap<uint64_t, StringRef> ModuleIdMap; 944 945 /// Original source file name recorded in a bitcode record. 946 std::string SourceFileName; 947 948 /// The string identifier given to this module by the client, normally the 949 /// path to the bitcode file. 950 StringRef ModulePath; 951 952 /// Callback to ask whether a symbol is the prevailing copy when invoked 953 /// during combined index building. 954 std::function<bool(GlobalValue::GUID)> IsPrevailing; 955 956 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 957 /// ids from the lists in the callsite and alloc entries to the index. 958 std::vector<uint64_t> StackIds; 959 960 public: 961 ModuleSummaryIndexBitcodeReader( 962 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 963 StringRef ModulePath, 964 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 965 966 Error parseModule(); 967 968 private: 969 void setValueGUID(uint64_t ValueID, StringRef ValueName, 970 GlobalValue::LinkageTypes Linkage, 971 StringRef SourceFileName); 972 Error parseValueSymbolTable( 973 uint64_t Offset, 974 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 975 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 976 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 977 bool IsOldProfileFormat, 978 bool HasProfile, 979 bool HasRelBF); 980 Error parseEntireSummary(unsigned ID); 981 Error parseModuleStringTable(); 982 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 983 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 984 TypeIdCompatibleVtableInfo &TypeId); 985 std::vector<FunctionSummary::ParamAccess> 986 parseParamAccesses(ArrayRef<uint64_t> Record); 987 988 template <bool AllowNullValueInfo = false> 989 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 990 getValueInfoFromValueId(unsigned ValueId); 991 992 void addThisModule(); 993 ModuleSummaryIndex::ModuleInfo *getThisModule(); 994 }; 995 996 } // end anonymous namespace 997 998 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 999 Error Err) { 1000 if (Err) { 1001 std::error_code EC; 1002 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1003 EC = EIB.convertToErrorCode(); 1004 Ctx.emitError(EIB.message()); 1005 }); 1006 return EC; 1007 } 1008 return std::error_code(); 1009 } 1010 1011 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1012 StringRef ProducerIdentification, 1013 LLVMContext &Context) 1014 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1015 ValueList(this->Stream.SizeInBytes(), 1016 [this](unsigned ValID, BasicBlock *InsertBB) { 1017 return materializeValue(ValID, InsertBB); 1018 }) { 1019 this->ProducerIdentification = std::string(ProducerIdentification); 1020 } 1021 1022 Error BitcodeReader::materializeForwardReferencedFunctions() { 1023 if (WillMaterializeAllForwardRefs) 1024 return Error::success(); 1025 1026 // Prevent recursion. 1027 WillMaterializeAllForwardRefs = true; 1028 1029 while (!BasicBlockFwdRefQueue.empty()) { 1030 Function *F = BasicBlockFwdRefQueue.front(); 1031 BasicBlockFwdRefQueue.pop_front(); 1032 assert(F && "Expected valid function"); 1033 if (!BasicBlockFwdRefs.count(F)) 1034 // Already materialized. 1035 continue; 1036 1037 // Check for a function that isn't materializable to prevent an infinite 1038 // loop. When parsing a blockaddress stored in a global variable, there 1039 // isn't a trivial way to check if a function will have a body without a 1040 // linear search through FunctionsWithBodies, so just check it here. 1041 if (!F->isMaterializable()) 1042 return error("Never resolved function from blockaddress"); 1043 1044 // Try to materialize F. 1045 if (Error Err = materialize(F)) 1046 return Err; 1047 } 1048 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1049 1050 for (Function *F : BackwardRefFunctions) 1051 if (Error Err = materialize(F)) 1052 return Err; 1053 BackwardRefFunctions.clear(); 1054 1055 // Reset state. 1056 WillMaterializeAllForwardRefs = false; 1057 return Error::success(); 1058 } 1059 1060 //===----------------------------------------------------------------------===// 1061 // Helper functions to implement forward reference resolution, etc. 1062 //===----------------------------------------------------------------------===// 1063 1064 static bool hasImplicitComdat(size_t Val) { 1065 switch (Val) { 1066 default: 1067 return false; 1068 case 1: // Old WeakAnyLinkage 1069 case 4: // Old LinkOnceAnyLinkage 1070 case 10: // Old WeakODRLinkage 1071 case 11: // Old LinkOnceODRLinkage 1072 return true; 1073 } 1074 } 1075 1076 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1077 switch (Val) { 1078 default: // Map unknown/new linkages to external 1079 case 0: 1080 return GlobalValue::ExternalLinkage; 1081 case 2: 1082 return GlobalValue::AppendingLinkage; 1083 case 3: 1084 return GlobalValue::InternalLinkage; 1085 case 5: 1086 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1087 case 6: 1088 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1089 case 7: 1090 return GlobalValue::ExternalWeakLinkage; 1091 case 8: 1092 return GlobalValue::CommonLinkage; 1093 case 9: 1094 return GlobalValue::PrivateLinkage; 1095 case 12: 1096 return GlobalValue::AvailableExternallyLinkage; 1097 case 13: 1098 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1099 case 14: 1100 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1101 case 15: 1102 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1103 case 1: // Old value with implicit comdat. 1104 case 16: 1105 return GlobalValue::WeakAnyLinkage; 1106 case 10: // Old value with implicit comdat. 1107 case 17: 1108 return GlobalValue::WeakODRLinkage; 1109 case 4: // Old value with implicit comdat. 1110 case 18: 1111 return GlobalValue::LinkOnceAnyLinkage; 1112 case 11: // Old value with implicit comdat. 1113 case 19: 1114 return GlobalValue::LinkOnceODRLinkage; 1115 } 1116 } 1117 1118 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1119 FunctionSummary::FFlags Flags; 1120 Flags.ReadNone = RawFlags & 0x1; 1121 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1122 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1123 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1124 Flags.NoInline = (RawFlags >> 4) & 0x1; 1125 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1126 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1127 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1128 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1129 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1130 return Flags; 1131 } 1132 1133 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1134 // 1135 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1136 // visibility: [8, 10). 1137 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1138 uint64_t Version) { 1139 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1140 // like getDecodedLinkage() above. Any future change to the linkage enum and 1141 // to getDecodedLinkage() will need to be taken into account here as above. 1142 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1143 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1144 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1145 RawFlags = RawFlags >> 4; 1146 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1147 // The Live flag wasn't introduced until version 3. For dead stripping 1148 // to work correctly on earlier versions, we must conservatively treat all 1149 // values as live. 1150 bool Live = (RawFlags & 0x2) || Version < 3; 1151 bool Local = (RawFlags & 0x4); 1152 bool AutoHide = (RawFlags & 0x8); 1153 1154 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1155 Live, Local, AutoHide, IK); 1156 } 1157 1158 // Decode the flags for GlobalVariable in the summary 1159 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1160 return GlobalVarSummary::GVarFlags( 1161 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1162 (RawFlags & 0x4) ? true : false, 1163 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1164 } 1165 1166 static std::pair<CalleeInfo::HotnessType, bool> 1167 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1168 CalleeInfo::HotnessType Hotness = 1169 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1170 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1171 return {Hotness, HasTailCall}; 1172 } 1173 1174 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1175 bool &HasTailCall) { 1176 static constexpr uint64_t RelBlockFreqMask = 1177 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1178 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1179 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1180 } 1181 1182 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1183 switch (Val) { 1184 default: // Map unknown visibilities to default. 1185 case 0: return GlobalValue::DefaultVisibility; 1186 case 1: return GlobalValue::HiddenVisibility; 1187 case 2: return GlobalValue::ProtectedVisibility; 1188 } 1189 } 1190 1191 static GlobalValue::DLLStorageClassTypes 1192 getDecodedDLLStorageClass(unsigned Val) { 1193 switch (Val) { 1194 default: // Map unknown values to default. 1195 case 0: return GlobalValue::DefaultStorageClass; 1196 case 1: return GlobalValue::DLLImportStorageClass; 1197 case 2: return GlobalValue::DLLExportStorageClass; 1198 } 1199 } 1200 1201 static bool getDecodedDSOLocal(unsigned Val) { 1202 switch(Val) { 1203 default: // Map unknown values to preemptable. 1204 case 0: return false; 1205 case 1: return true; 1206 } 1207 } 1208 1209 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1210 switch (Val) { 1211 case 1: 1212 return CodeModel::Tiny; 1213 case 2: 1214 return CodeModel::Small; 1215 case 3: 1216 return CodeModel::Kernel; 1217 case 4: 1218 return CodeModel::Medium; 1219 case 5: 1220 return CodeModel::Large; 1221 } 1222 1223 return {}; 1224 } 1225 1226 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1227 switch (Val) { 1228 case 0: return GlobalVariable::NotThreadLocal; 1229 default: // Map unknown non-zero value to general dynamic. 1230 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1231 case 2: return GlobalVariable::LocalDynamicTLSModel; 1232 case 3: return GlobalVariable::InitialExecTLSModel; 1233 case 4: return GlobalVariable::LocalExecTLSModel; 1234 } 1235 } 1236 1237 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1238 switch (Val) { 1239 default: // Map unknown to UnnamedAddr::None. 1240 case 0: return GlobalVariable::UnnamedAddr::None; 1241 case 1: return GlobalVariable::UnnamedAddr::Global; 1242 case 2: return GlobalVariable::UnnamedAddr::Local; 1243 } 1244 } 1245 1246 static int getDecodedCastOpcode(unsigned Val) { 1247 switch (Val) { 1248 default: return -1; 1249 case bitc::CAST_TRUNC : return Instruction::Trunc; 1250 case bitc::CAST_ZEXT : return Instruction::ZExt; 1251 case bitc::CAST_SEXT : return Instruction::SExt; 1252 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1253 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1254 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1255 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1256 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1257 case bitc::CAST_FPEXT : return Instruction::FPExt; 1258 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1259 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1260 case bitc::CAST_BITCAST : return Instruction::BitCast; 1261 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1262 } 1263 } 1264 1265 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1266 bool IsFP = Ty->isFPOrFPVectorTy(); 1267 // UnOps are only valid for int/fp or vector of int/fp types 1268 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1269 return -1; 1270 1271 switch (Val) { 1272 default: 1273 return -1; 1274 case bitc::UNOP_FNEG: 1275 return IsFP ? Instruction::FNeg : -1; 1276 } 1277 } 1278 1279 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1280 bool IsFP = Ty->isFPOrFPVectorTy(); 1281 // BinOps are only valid for int/fp or vector of int/fp types 1282 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1283 return -1; 1284 1285 switch (Val) { 1286 default: 1287 return -1; 1288 case bitc::BINOP_ADD: 1289 return IsFP ? Instruction::FAdd : Instruction::Add; 1290 case bitc::BINOP_SUB: 1291 return IsFP ? Instruction::FSub : Instruction::Sub; 1292 case bitc::BINOP_MUL: 1293 return IsFP ? Instruction::FMul : Instruction::Mul; 1294 case bitc::BINOP_UDIV: 1295 return IsFP ? -1 : Instruction::UDiv; 1296 case bitc::BINOP_SDIV: 1297 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1298 case bitc::BINOP_UREM: 1299 return IsFP ? -1 : Instruction::URem; 1300 case bitc::BINOP_SREM: 1301 return IsFP ? Instruction::FRem : Instruction::SRem; 1302 case bitc::BINOP_SHL: 1303 return IsFP ? -1 : Instruction::Shl; 1304 case bitc::BINOP_LSHR: 1305 return IsFP ? -1 : Instruction::LShr; 1306 case bitc::BINOP_ASHR: 1307 return IsFP ? -1 : Instruction::AShr; 1308 case bitc::BINOP_AND: 1309 return IsFP ? -1 : Instruction::And; 1310 case bitc::BINOP_OR: 1311 return IsFP ? -1 : Instruction::Or; 1312 case bitc::BINOP_XOR: 1313 return IsFP ? -1 : Instruction::Xor; 1314 } 1315 } 1316 1317 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1318 switch (Val) { 1319 default: return AtomicRMWInst::BAD_BINOP; 1320 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1321 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1322 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1323 case bitc::RMW_AND: return AtomicRMWInst::And; 1324 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1325 case bitc::RMW_OR: return AtomicRMWInst::Or; 1326 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1327 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1328 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1329 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1330 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1331 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1332 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1333 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1334 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1335 case bitc::RMW_UINC_WRAP: 1336 return AtomicRMWInst::UIncWrap; 1337 case bitc::RMW_UDEC_WRAP: 1338 return AtomicRMWInst::UDecWrap; 1339 } 1340 } 1341 1342 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1343 switch (Val) { 1344 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1345 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1346 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1347 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1348 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1349 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1350 default: // Map unknown orderings to sequentially-consistent. 1351 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1352 } 1353 } 1354 1355 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1356 switch (Val) { 1357 default: // Map unknown selection kinds to any. 1358 case bitc::COMDAT_SELECTION_KIND_ANY: 1359 return Comdat::Any; 1360 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1361 return Comdat::ExactMatch; 1362 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1363 return Comdat::Largest; 1364 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1365 return Comdat::NoDeduplicate; 1366 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1367 return Comdat::SameSize; 1368 } 1369 } 1370 1371 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1372 FastMathFlags FMF; 1373 if (0 != (Val & bitc::UnsafeAlgebra)) 1374 FMF.setFast(); 1375 if (0 != (Val & bitc::AllowReassoc)) 1376 FMF.setAllowReassoc(); 1377 if (0 != (Val & bitc::NoNaNs)) 1378 FMF.setNoNaNs(); 1379 if (0 != (Val & bitc::NoInfs)) 1380 FMF.setNoInfs(); 1381 if (0 != (Val & bitc::NoSignedZeros)) 1382 FMF.setNoSignedZeros(); 1383 if (0 != (Val & bitc::AllowReciprocal)) 1384 FMF.setAllowReciprocal(); 1385 if (0 != (Val & bitc::AllowContract)) 1386 FMF.setAllowContract(true); 1387 if (0 != (Val & bitc::ApproxFunc)) 1388 FMF.setApproxFunc(); 1389 return FMF; 1390 } 1391 1392 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1393 // A GlobalValue with local linkage cannot have a DLL storage class. 1394 if (GV->hasLocalLinkage()) 1395 return; 1396 switch (Val) { 1397 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1398 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1399 } 1400 } 1401 1402 Type *BitcodeReader::getTypeByID(unsigned ID) { 1403 // The type table size is always specified correctly. 1404 if (ID >= TypeList.size()) 1405 return nullptr; 1406 1407 if (Type *Ty = TypeList[ID]) 1408 return Ty; 1409 1410 // If we have a forward reference, the only possible case is when it is to a 1411 // named struct. Just create a placeholder for now. 1412 return TypeList[ID] = createIdentifiedStructType(Context); 1413 } 1414 1415 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1416 auto It = ContainedTypeIDs.find(ID); 1417 if (It == ContainedTypeIDs.end()) 1418 return InvalidTypeID; 1419 1420 if (Idx >= It->second.size()) 1421 return InvalidTypeID; 1422 1423 return It->second[Idx]; 1424 } 1425 1426 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1427 if (ID >= TypeList.size()) 1428 return nullptr; 1429 1430 Type *Ty = TypeList[ID]; 1431 if (!Ty->isPointerTy()) 1432 return nullptr; 1433 1434 return getTypeByID(getContainedTypeID(ID, 0)); 1435 } 1436 1437 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1438 ArrayRef<unsigned> ChildTypeIDs) { 1439 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1440 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1441 auto It = VirtualTypeIDs.find(CacheKey); 1442 if (It != VirtualTypeIDs.end()) { 1443 // The cmpxchg return value is the only place we need more than one 1444 // contained type ID, however the second one will always be the same (i1), 1445 // so we don't need to include it in the cache key. This asserts that the 1446 // contained types are indeed as expected and there are no collisions. 1447 assert((ChildTypeIDs.empty() || 1448 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1449 "Incorrect cached contained type IDs"); 1450 return It->second; 1451 } 1452 1453 unsigned TypeID = TypeList.size(); 1454 TypeList.push_back(Ty); 1455 if (!ChildTypeIDs.empty()) 1456 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1457 VirtualTypeIDs.insert({CacheKey, TypeID}); 1458 return TypeID; 1459 } 1460 1461 static bool isConstExprSupported(const BitcodeConstant *BC) { 1462 uint8_t Opcode = BC->Opcode; 1463 1464 // These are not real constant expressions, always consider them supported. 1465 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1466 return true; 1467 1468 // If -expand-constant-exprs is set, we want to consider all expressions 1469 // as unsupported. 1470 if (ExpandConstantExprs) 1471 return false; 1472 1473 if (Instruction::isBinaryOp(Opcode)) 1474 return ConstantExpr::isSupportedBinOp(Opcode); 1475 1476 if (Instruction::isCast(Opcode)) 1477 return ConstantExpr::isSupportedCastOp(Opcode); 1478 1479 if (Opcode == Instruction::GetElementPtr) 1480 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1481 1482 switch (Opcode) { 1483 case Instruction::FNeg: 1484 case Instruction::Select: 1485 return false; 1486 default: 1487 return true; 1488 } 1489 } 1490 1491 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1492 BasicBlock *InsertBB) { 1493 // Quickly handle the case where there is no BitcodeConstant to resolve. 1494 if (StartValID < ValueList.size() && ValueList[StartValID] && 1495 !isa<BitcodeConstant>(ValueList[StartValID])) 1496 return ValueList[StartValID]; 1497 1498 SmallDenseMap<unsigned, Value *> MaterializedValues; 1499 SmallVector<unsigned> Worklist; 1500 Worklist.push_back(StartValID); 1501 while (!Worklist.empty()) { 1502 unsigned ValID = Worklist.back(); 1503 if (MaterializedValues.count(ValID)) { 1504 // Duplicate expression that was already handled. 1505 Worklist.pop_back(); 1506 continue; 1507 } 1508 1509 if (ValID >= ValueList.size() || !ValueList[ValID]) 1510 return error("Invalid value ID"); 1511 1512 Value *V = ValueList[ValID]; 1513 auto *BC = dyn_cast<BitcodeConstant>(V); 1514 if (!BC) { 1515 MaterializedValues.insert({ValID, V}); 1516 Worklist.pop_back(); 1517 continue; 1518 } 1519 1520 // Iterate in reverse, so values will get popped from the worklist in 1521 // expected order. 1522 SmallVector<Value *> Ops; 1523 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1524 auto It = MaterializedValues.find(OpID); 1525 if (It != MaterializedValues.end()) 1526 Ops.push_back(It->second); 1527 else 1528 Worklist.push_back(OpID); 1529 } 1530 1531 // Some expressions have not been resolved yet, handle them first and then 1532 // revisit this one. 1533 if (Ops.size() != BC->getOperandIDs().size()) 1534 continue; 1535 std::reverse(Ops.begin(), Ops.end()); 1536 1537 SmallVector<Constant *> ConstOps; 1538 for (Value *Op : Ops) 1539 if (auto *C = dyn_cast<Constant>(Op)) 1540 ConstOps.push_back(C); 1541 1542 // Materialize as constant expression if possible. 1543 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1544 Constant *C; 1545 if (Instruction::isCast(BC->Opcode)) { 1546 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1547 if (!C) 1548 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1549 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1550 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1551 } else { 1552 switch (BC->Opcode) { 1553 case BitcodeConstant::NoCFIOpcode: { 1554 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1555 if (!GV) 1556 return error("no_cfi operand must be GlobalValue"); 1557 C = NoCFIValue::get(GV); 1558 break; 1559 } 1560 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1561 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1562 if (!GV) 1563 return error("dso_local operand must be GlobalValue"); 1564 C = DSOLocalEquivalent::get(GV); 1565 break; 1566 } 1567 case BitcodeConstant::BlockAddressOpcode: { 1568 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1569 if (!Fn) 1570 return error("blockaddress operand must be a function"); 1571 1572 // If the function is already parsed we can insert the block address 1573 // right away. 1574 BasicBlock *BB; 1575 unsigned BBID = BC->BlockAddressBB; 1576 if (!BBID) 1577 // Invalid reference to entry block. 1578 return error("Invalid ID"); 1579 if (!Fn->empty()) { 1580 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1581 for (size_t I = 0, E = BBID; I != E; ++I) { 1582 if (BBI == BBE) 1583 return error("Invalid ID"); 1584 ++BBI; 1585 } 1586 BB = &*BBI; 1587 } else { 1588 // Otherwise insert a placeholder and remember it so it can be 1589 // inserted when the function is parsed. 1590 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1591 if (FwdBBs.empty()) 1592 BasicBlockFwdRefQueue.push_back(Fn); 1593 if (FwdBBs.size() < BBID + 1) 1594 FwdBBs.resize(BBID + 1); 1595 if (!FwdBBs[BBID]) 1596 FwdBBs[BBID] = BasicBlock::Create(Context); 1597 BB = FwdBBs[BBID]; 1598 } 1599 C = BlockAddress::get(Fn, BB); 1600 break; 1601 } 1602 case BitcodeConstant::ConstantStructOpcode: 1603 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1604 break; 1605 case BitcodeConstant::ConstantArrayOpcode: 1606 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1607 break; 1608 case BitcodeConstant::ConstantVectorOpcode: 1609 C = ConstantVector::get(ConstOps); 1610 break; 1611 case Instruction::ICmp: 1612 case Instruction::FCmp: 1613 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1614 break; 1615 case Instruction::GetElementPtr: 1616 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1617 ArrayRef(ConstOps).drop_front(), 1618 BC->Flags, BC->getInRange()); 1619 break; 1620 case Instruction::ExtractElement: 1621 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1622 break; 1623 case Instruction::InsertElement: 1624 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1625 ConstOps[2]); 1626 break; 1627 case Instruction::ShuffleVector: { 1628 SmallVector<int, 16> Mask; 1629 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1630 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1631 break; 1632 } 1633 default: 1634 llvm_unreachable("Unhandled bitcode constant"); 1635 } 1636 } 1637 1638 // Cache resolved constant. 1639 ValueList.replaceValueWithoutRAUW(ValID, C); 1640 MaterializedValues.insert({ValID, C}); 1641 Worklist.pop_back(); 1642 continue; 1643 } 1644 1645 if (!InsertBB) 1646 return error(Twine("Value referenced by initializer is an unsupported " 1647 "constant expression of type ") + 1648 BC->getOpcodeName()); 1649 1650 // Materialize as instructions if necessary. 1651 Instruction *I; 1652 if (Instruction::isCast(BC->Opcode)) { 1653 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1654 BC->getType(), "constexpr", InsertBB); 1655 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1656 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1657 "constexpr", InsertBB); 1658 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1659 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1660 Ops[1], "constexpr", InsertBB); 1661 if (isa<OverflowingBinaryOperator>(I)) { 1662 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1663 I->setHasNoSignedWrap(); 1664 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1665 I->setHasNoUnsignedWrap(); 1666 } 1667 if (isa<PossiblyExactOperator>(I) && 1668 (BC->Flags & PossiblyExactOperator::IsExact)) 1669 I->setIsExact(); 1670 } else { 1671 switch (BC->Opcode) { 1672 case BitcodeConstant::ConstantVectorOpcode: { 1673 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1674 Value *V = PoisonValue::get(BC->getType()); 1675 for (auto Pair : enumerate(Ops)) { 1676 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1677 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1678 InsertBB); 1679 } 1680 I = cast<Instruction>(V); 1681 break; 1682 } 1683 case BitcodeConstant::ConstantStructOpcode: 1684 case BitcodeConstant::ConstantArrayOpcode: { 1685 Value *V = PoisonValue::get(BC->getType()); 1686 for (auto Pair : enumerate(Ops)) 1687 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1688 "constexpr.ins", InsertBB); 1689 I = cast<Instruction>(V); 1690 break; 1691 } 1692 case Instruction::ICmp: 1693 case Instruction::FCmp: 1694 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1695 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1696 "constexpr", InsertBB); 1697 break; 1698 case Instruction::GetElementPtr: 1699 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1700 ArrayRef(Ops).drop_front(), "constexpr", 1701 InsertBB); 1702 if (BC->Flags) 1703 cast<GetElementPtrInst>(I)->setIsInBounds(); 1704 break; 1705 case Instruction::Select: 1706 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1707 break; 1708 case Instruction::ExtractElement: 1709 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1710 break; 1711 case Instruction::InsertElement: 1712 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1713 InsertBB); 1714 break; 1715 case Instruction::ShuffleVector: 1716 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1717 InsertBB); 1718 break; 1719 default: 1720 llvm_unreachable("Unhandled bitcode constant"); 1721 } 1722 } 1723 1724 MaterializedValues.insert({ValID, I}); 1725 Worklist.pop_back(); 1726 } 1727 1728 return MaterializedValues[StartValID]; 1729 } 1730 1731 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1732 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1733 if (!MaybeV) 1734 return MaybeV.takeError(); 1735 1736 // Result must be Constant if InsertBB is nullptr. 1737 return cast<Constant>(MaybeV.get()); 1738 } 1739 1740 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1741 StringRef Name) { 1742 auto *Ret = StructType::create(Context, Name); 1743 IdentifiedStructTypes.push_back(Ret); 1744 return Ret; 1745 } 1746 1747 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1748 auto *Ret = StructType::create(Context); 1749 IdentifiedStructTypes.push_back(Ret); 1750 return Ret; 1751 } 1752 1753 //===----------------------------------------------------------------------===// 1754 // Functions for parsing blocks from the bitcode file 1755 //===----------------------------------------------------------------------===// 1756 1757 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1758 switch (Val) { 1759 case Attribute::EndAttrKinds: 1760 case Attribute::EmptyKey: 1761 case Attribute::TombstoneKey: 1762 llvm_unreachable("Synthetic enumerators which should never get here"); 1763 1764 case Attribute::None: return 0; 1765 case Attribute::ZExt: return 1 << 0; 1766 case Attribute::SExt: return 1 << 1; 1767 case Attribute::NoReturn: return 1 << 2; 1768 case Attribute::InReg: return 1 << 3; 1769 case Attribute::StructRet: return 1 << 4; 1770 case Attribute::NoUnwind: return 1 << 5; 1771 case Attribute::NoAlias: return 1 << 6; 1772 case Attribute::ByVal: return 1 << 7; 1773 case Attribute::Nest: return 1 << 8; 1774 case Attribute::ReadNone: return 1 << 9; 1775 case Attribute::ReadOnly: return 1 << 10; 1776 case Attribute::NoInline: return 1 << 11; 1777 case Attribute::AlwaysInline: return 1 << 12; 1778 case Attribute::OptimizeForSize: return 1 << 13; 1779 case Attribute::StackProtect: return 1 << 14; 1780 case Attribute::StackProtectReq: return 1 << 15; 1781 case Attribute::Alignment: return 31 << 16; 1782 case Attribute::NoCapture: return 1 << 21; 1783 case Attribute::NoRedZone: return 1 << 22; 1784 case Attribute::NoImplicitFloat: return 1 << 23; 1785 case Attribute::Naked: return 1 << 24; 1786 case Attribute::InlineHint: return 1 << 25; 1787 case Attribute::StackAlignment: return 7 << 26; 1788 case Attribute::ReturnsTwice: return 1 << 29; 1789 case Attribute::UWTable: return 1 << 30; 1790 case Attribute::NonLazyBind: return 1U << 31; 1791 case Attribute::SanitizeAddress: return 1ULL << 32; 1792 case Attribute::MinSize: return 1ULL << 33; 1793 case Attribute::NoDuplicate: return 1ULL << 34; 1794 case Attribute::StackProtectStrong: return 1ULL << 35; 1795 case Attribute::SanitizeThread: return 1ULL << 36; 1796 case Attribute::SanitizeMemory: return 1ULL << 37; 1797 case Attribute::NoBuiltin: return 1ULL << 38; 1798 case Attribute::Returned: return 1ULL << 39; 1799 case Attribute::Cold: return 1ULL << 40; 1800 case Attribute::Builtin: return 1ULL << 41; 1801 case Attribute::OptimizeNone: return 1ULL << 42; 1802 case Attribute::InAlloca: return 1ULL << 43; 1803 case Attribute::NonNull: return 1ULL << 44; 1804 case Attribute::JumpTable: return 1ULL << 45; 1805 case Attribute::Convergent: return 1ULL << 46; 1806 case Attribute::SafeStack: return 1ULL << 47; 1807 case Attribute::NoRecurse: return 1ULL << 48; 1808 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1809 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1810 case Attribute::SwiftSelf: return 1ULL << 51; 1811 case Attribute::SwiftError: return 1ULL << 52; 1812 case Attribute::WriteOnly: return 1ULL << 53; 1813 case Attribute::Speculatable: return 1ULL << 54; 1814 case Attribute::StrictFP: return 1ULL << 55; 1815 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1816 case Attribute::NoCfCheck: return 1ULL << 57; 1817 case Attribute::OptForFuzzing: return 1ULL << 58; 1818 case Attribute::ShadowCallStack: return 1ULL << 59; 1819 case Attribute::SpeculativeLoadHardening: 1820 return 1ULL << 60; 1821 case Attribute::ImmArg: 1822 return 1ULL << 61; 1823 case Attribute::WillReturn: 1824 return 1ULL << 62; 1825 case Attribute::NoFree: 1826 return 1ULL << 63; 1827 default: 1828 // Other attributes are not supported in the raw format, 1829 // as we ran out of space. 1830 return 0; 1831 } 1832 llvm_unreachable("Unsupported attribute type"); 1833 } 1834 1835 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1836 if (!Val) return; 1837 1838 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1839 I = Attribute::AttrKind(I + 1)) { 1840 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1841 if (I == Attribute::Alignment) 1842 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1843 else if (I == Attribute::StackAlignment) 1844 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1845 else if (Attribute::isTypeAttrKind(I)) 1846 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1847 else 1848 B.addAttribute(I); 1849 } 1850 } 1851 } 1852 1853 /// This fills an AttrBuilder object with the LLVM attributes that have 1854 /// been decoded from the given integer. This function must stay in sync with 1855 /// 'encodeLLVMAttributesForBitcode'. 1856 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1857 uint64_t EncodedAttrs, 1858 uint64_t AttrIdx) { 1859 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1860 // the bits above 31 down by 11 bits. 1861 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1862 assert((!Alignment || isPowerOf2_32(Alignment)) && 1863 "Alignment must be a power of two."); 1864 1865 if (Alignment) 1866 B.addAlignmentAttr(Alignment); 1867 1868 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1869 (EncodedAttrs & 0xffff); 1870 1871 if (AttrIdx == AttributeList::FunctionIndex) { 1872 // Upgrade old memory attributes. 1873 MemoryEffects ME = MemoryEffects::unknown(); 1874 if (Attrs & (1ULL << 9)) { 1875 // ReadNone 1876 Attrs &= ~(1ULL << 9); 1877 ME &= MemoryEffects::none(); 1878 } 1879 if (Attrs & (1ULL << 10)) { 1880 // ReadOnly 1881 Attrs &= ~(1ULL << 10); 1882 ME &= MemoryEffects::readOnly(); 1883 } 1884 if (Attrs & (1ULL << 49)) { 1885 // InaccessibleMemOnly 1886 Attrs &= ~(1ULL << 49); 1887 ME &= MemoryEffects::inaccessibleMemOnly(); 1888 } 1889 if (Attrs & (1ULL << 50)) { 1890 // InaccessibleMemOrArgMemOnly 1891 Attrs &= ~(1ULL << 50); 1892 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1893 } 1894 if (Attrs & (1ULL << 53)) { 1895 // WriteOnly 1896 Attrs &= ~(1ULL << 53); 1897 ME &= MemoryEffects::writeOnly(); 1898 } 1899 if (ME != MemoryEffects::unknown()) 1900 B.addMemoryAttr(ME); 1901 } 1902 1903 addRawAttributeValue(B, Attrs); 1904 } 1905 1906 Error BitcodeReader::parseAttributeBlock() { 1907 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1908 return Err; 1909 1910 if (!MAttributes.empty()) 1911 return error("Invalid multiple blocks"); 1912 1913 SmallVector<uint64_t, 64> Record; 1914 1915 SmallVector<AttributeList, 8> Attrs; 1916 1917 // Read all the records. 1918 while (true) { 1919 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1920 if (!MaybeEntry) 1921 return MaybeEntry.takeError(); 1922 BitstreamEntry Entry = MaybeEntry.get(); 1923 1924 switch (Entry.Kind) { 1925 case BitstreamEntry::SubBlock: // Handled for us already. 1926 case BitstreamEntry::Error: 1927 return error("Malformed block"); 1928 case BitstreamEntry::EndBlock: 1929 return Error::success(); 1930 case BitstreamEntry::Record: 1931 // The interesting case. 1932 break; 1933 } 1934 1935 // Read a record. 1936 Record.clear(); 1937 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1938 if (!MaybeRecord) 1939 return MaybeRecord.takeError(); 1940 switch (MaybeRecord.get()) { 1941 default: // Default behavior: ignore. 1942 break; 1943 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1944 // Deprecated, but still needed to read old bitcode files. 1945 if (Record.size() & 1) 1946 return error("Invalid parameter attribute record"); 1947 1948 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1949 AttrBuilder B(Context); 1950 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1951 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1952 } 1953 1954 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1955 Attrs.clear(); 1956 break; 1957 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1958 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1959 Attrs.push_back(MAttributeGroups[Record[i]]); 1960 1961 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1962 Attrs.clear(); 1963 break; 1964 } 1965 } 1966 } 1967 1968 // Returns Attribute::None on unrecognized codes. 1969 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1970 switch (Code) { 1971 default: 1972 return Attribute::None; 1973 case bitc::ATTR_KIND_ALIGNMENT: 1974 return Attribute::Alignment; 1975 case bitc::ATTR_KIND_ALWAYS_INLINE: 1976 return Attribute::AlwaysInline; 1977 case bitc::ATTR_KIND_BUILTIN: 1978 return Attribute::Builtin; 1979 case bitc::ATTR_KIND_BY_VAL: 1980 return Attribute::ByVal; 1981 case bitc::ATTR_KIND_IN_ALLOCA: 1982 return Attribute::InAlloca; 1983 case bitc::ATTR_KIND_COLD: 1984 return Attribute::Cold; 1985 case bitc::ATTR_KIND_CONVERGENT: 1986 return Attribute::Convergent; 1987 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1988 return Attribute::DisableSanitizerInstrumentation; 1989 case bitc::ATTR_KIND_ELEMENTTYPE: 1990 return Attribute::ElementType; 1991 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1992 return Attribute::FnRetThunkExtern; 1993 case bitc::ATTR_KIND_INLINE_HINT: 1994 return Attribute::InlineHint; 1995 case bitc::ATTR_KIND_IN_REG: 1996 return Attribute::InReg; 1997 case bitc::ATTR_KIND_JUMP_TABLE: 1998 return Attribute::JumpTable; 1999 case bitc::ATTR_KIND_MEMORY: 2000 return Attribute::Memory; 2001 case bitc::ATTR_KIND_NOFPCLASS: 2002 return Attribute::NoFPClass; 2003 case bitc::ATTR_KIND_MIN_SIZE: 2004 return Attribute::MinSize; 2005 case bitc::ATTR_KIND_NAKED: 2006 return Attribute::Naked; 2007 case bitc::ATTR_KIND_NEST: 2008 return Attribute::Nest; 2009 case bitc::ATTR_KIND_NO_ALIAS: 2010 return Attribute::NoAlias; 2011 case bitc::ATTR_KIND_NO_BUILTIN: 2012 return Attribute::NoBuiltin; 2013 case bitc::ATTR_KIND_NO_CALLBACK: 2014 return Attribute::NoCallback; 2015 case bitc::ATTR_KIND_NO_CAPTURE: 2016 return Attribute::NoCapture; 2017 case bitc::ATTR_KIND_NO_DUPLICATE: 2018 return Attribute::NoDuplicate; 2019 case bitc::ATTR_KIND_NOFREE: 2020 return Attribute::NoFree; 2021 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2022 return Attribute::NoImplicitFloat; 2023 case bitc::ATTR_KIND_NO_INLINE: 2024 return Attribute::NoInline; 2025 case bitc::ATTR_KIND_NO_RECURSE: 2026 return Attribute::NoRecurse; 2027 case bitc::ATTR_KIND_NO_MERGE: 2028 return Attribute::NoMerge; 2029 case bitc::ATTR_KIND_NON_LAZY_BIND: 2030 return Attribute::NonLazyBind; 2031 case bitc::ATTR_KIND_NON_NULL: 2032 return Attribute::NonNull; 2033 case bitc::ATTR_KIND_DEREFERENCEABLE: 2034 return Attribute::Dereferenceable; 2035 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2036 return Attribute::DereferenceableOrNull; 2037 case bitc::ATTR_KIND_ALLOC_ALIGN: 2038 return Attribute::AllocAlign; 2039 case bitc::ATTR_KIND_ALLOC_KIND: 2040 return Attribute::AllocKind; 2041 case bitc::ATTR_KIND_ALLOC_SIZE: 2042 return Attribute::AllocSize; 2043 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2044 return Attribute::AllocatedPointer; 2045 case bitc::ATTR_KIND_NO_RED_ZONE: 2046 return Attribute::NoRedZone; 2047 case bitc::ATTR_KIND_NO_RETURN: 2048 return Attribute::NoReturn; 2049 case bitc::ATTR_KIND_NOSYNC: 2050 return Attribute::NoSync; 2051 case bitc::ATTR_KIND_NOCF_CHECK: 2052 return Attribute::NoCfCheck; 2053 case bitc::ATTR_KIND_NO_PROFILE: 2054 return Attribute::NoProfile; 2055 case bitc::ATTR_KIND_SKIP_PROFILE: 2056 return Attribute::SkipProfile; 2057 case bitc::ATTR_KIND_NO_UNWIND: 2058 return Attribute::NoUnwind; 2059 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2060 return Attribute::NoSanitizeBounds; 2061 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2062 return Attribute::NoSanitizeCoverage; 2063 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2064 return Attribute::NullPointerIsValid; 2065 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2066 return Attribute::OptimizeForDebugging; 2067 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2068 return Attribute::OptForFuzzing; 2069 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2070 return Attribute::OptimizeForSize; 2071 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2072 return Attribute::OptimizeNone; 2073 case bitc::ATTR_KIND_READ_NONE: 2074 return Attribute::ReadNone; 2075 case bitc::ATTR_KIND_READ_ONLY: 2076 return Attribute::ReadOnly; 2077 case bitc::ATTR_KIND_RETURNED: 2078 return Attribute::Returned; 2079 case bitc::ATTR_KIND_RETURNS_TWICE: 2080 return Attribute::ReturnsTwice; 2081 case bitc::ATTR_KIND_S_EXT: 2082 return Attribute::SExt; 2083 case bitc::ATTR_KIND_SPECULATABLE: 2084 return Attribute::Speculatable; 2085 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2086 return Attribute::StackAlignment; 2087 case bitc::ATTR_KIND_STACK_PROTECT: 2088 return Attribute::StackProtect; 2089 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2090 return Attribute::StackProtectReq; 2091 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2092 return Attribute::StackProtectStrong; 2093 case bitc::ATTR_KIND_SAFESTACK: 2094 return Attribute::SafeStack; 2095 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2096 return Attribute::ShadowCallStack; 2097 case bitc::ATTR_KIND_STRICT_FP: 2098 return Attribute::StrictFP; 2099 case bitc::ATTR_KIND_STRUCT_RET: 2100 return Attribute::StructRet; 2101 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2102 return Attribute::SanitizeAddress; 2103 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2104 return Attribute::SanitizeHWAddress; 2105 case bitc::ATTR_KIND_SANITIZE_THREAD: 2106 return Attribute::SanitizeThread; 2107 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2108 return Attribute::SanitizeMemory; 2109 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2110 return Attribute::SpeculativeLoadHardening; 2111 case bitc::ATTR_KIND_SWIFT_ERROR: 2112 return Attribute::SwiftError; 2113 case bitc::ATTR_KIND_SWIFT_SELF: 2114 return Attribute::SwiftSelf; 2115 case bitc::ATTR_KIND_SWIFT_ASYNC: 2116 return Attribute::SwiftAsync; 2117 case bitc::ATTR_KIND_UW_TABLE: 2118 return Attribute::UWTable; 2119 case bitc::ATTR_KIND_VSCALE_RANGE: 2120 return Attribute::VScaleRange; 2121 case bitc::ATTR_KIND_WILLRETURN: 2122 return Attribute::WillReturn; 2123 case bitc::ATTR_KIND_WRITEONLY: 2124 return Attribute::WriteOnly; 2125 case bitc::ATTR_KIND_Z_EXT: 2126 return Attribute::ZExt; 2127 case bitc::ATTR_KIND_IMMARG: 2128 return Attribute::ImmArg; 2129 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2130 return Attribute::SanitizeMemTag; 2131 case bitc::ATTR_KIND_PREALLOCATED: 2132 return Attribute::Preallocated; 2133 case bitc::ATTR_KIND_NOUNDEF: 2134 return Attribute::NoUndef; 2135 case bitc::ATTR_KIND_BYREF: 2136 return Attribute::ByRef; 2137 case bitc::ATTR_KIND_MUSTPROGRESS: 2138 return Attribute::MustProgress; 2139 case bitc::ATTR_KIND_HOT: 2140 return Attribute::Hot; 2141 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2142 return Attribute::PresplitCoroutine; 2143 case bitc::ATTR_KIND_WRITABLE: 2144 return Attribute::Writable; 2145 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2146 return Attribute::CoroDestroyOnlyWhenComplete; 2147 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2148 return Attribute::DeadOnUnwind; 2149 case bitc::ATTR_KIND_RANGE: 2150 return Attribute::Range; 2151 } 2152 } 2153 2154 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2155 MaybeAlign &Alignment) { 2156 // Note: Alignment in bitcode files is incremented by 1, so that zero 2157 // can be used for default alignment. 2158 if (Exponent > Value::MaxAlignmentExponent + 1) 2159 return error("Invalid alignment value"); 2160 Alignment = decodeMaybeAlign(Exponent); 2161 return Error::success(); 2162 } 2163 2164 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2165 *Kind = getAttrFromCode(Code); 2166 if (*Kind == Attribute::None) 2167 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2168 return Error::success(); 2169 } 2170 2171 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2172 switch (EncodedKind) { 2173 case bitc::ATTR_KIND_READ_NONE: 2174 ME &= MemoryEffects::none(); 2175 return true; 2176 case bitc::ATTR_KIND_READ_ONLY: 2177 ME &= MemoryEffects::readOnly(); 2178 return true; 2179 case bitc::ATTR_KIND_WRITEONLY: 2180 ME &= MemoryEffects::writeOnly(); 2181 return true; 2182 case bitc::ATTR_KIND_ARGMEMONLY: 2183 ME &= MemoryEffects::argMemOnly(); 2184 return true; 2185 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2186 ME &= MemoryEffects::inaccessibleMemOnly(); 2187 return true; 2188 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2189 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2190 return true; 2191 default: 2192 return false; 2193 } 2194 } 2195 2196 Error BitcodeReader::parseAttributeGroupBlock() { 2197 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2198 return Err; 2199 2200 if (!MAttributeGroups.empty()) 2201 return error("Invalid multiple blocks"); 2202 2203 SmallVector<uint64_t, 64> Record; 2204 2205 // Read all the records. 2206 while (true) { 2207 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2208 if (!MaybeEntry) 2209 return MaybeEntry.takeError(); 2210 BitstreamEntry Entry = MaybeEntry.get(); 2211 2212 switch (Entry.Kind) { 2213 case BitstreamEntry::SubBlock: // Handled for us already. 2214 case BitstreamEntry::Error: 2215 return error("Malformed block"); 2216 case BitstreamEntry::EndBlock: 2217 return Error::success(); 2218 case BitstreamEntry::Record: 2219 // The interesting case. 2220 break; 2221 } 2222 2223 // Read a record. 2224 Record.clear(); 2225 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2226 if (!MaybeRecord) 2227 return MaybeRecord.takeError(); 2228 switch (MaybeRecord.get()) { 2229 default: // Default behavior: ignore. 2230 break; 2231 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2232 if (Record.size() < 3) 2233 return error("Invalid grp record"); 2234 2235 uint64_t GrpID = Record[0]; 2236 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2237 2238 AttrBuilder B(Context); 2239 MemoryEffects ME = MemoryEffects::unknown(); 2240 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2241 if (Record[i] == 0) { // Enum attribute 2242 Attribute::AttrKind Kind; 2243 uint64_t EncodedKind = Record[++i]; 2244 if (Idx == AttributeList::FunctionIndex && 2245 upgradeOldMemoryAttribute(ME, EncodedKind)) 2246 continue; 2247 2248 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2249 return Err; 2250 2251 // Upgrade old-style byval attribute to one with a type, even if it's 2252 // nullptr. We will have to insert the real type when we associate 2253 // this AttributeList with a function. 2254 if (Kind == Attribute::ByVal) 2255 B.addByValAttr(nullptr); 2256 else if (Kind == Attribute::StructRet) 2257 B.addStructRetAttr(nullptr); 2258 else if (Kind == Attribute::InAlloca) 2259 B.addInAllocaAttr(nullptr); 2260 else if (Kind == Attribute::UWTable) 2261 B.addUWTableAttr(UWTableKind::Default); 2262 else if (Attribute::isEnumAttrKind(Kind)) 2263 B.addAttribute(Kind); 2264 else 2265 return error("Not an enum attribute"); 2266 } else if (Record[i] == 1) { // Integer attribute 2267 Attribute::AttrKind Kind; 2268 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2269 return Err; 2270 if (!Attribute::isIntAttrKind(Kind)) 2271 return error("Not an int attribute"); 2272 if (Kind == Attribute::Alignment) 2273 B.addAlignmentAttr(Record[++i]); 2274 else if (Kind == Attribute::StackAlignment) 2275 B.addStackAlignmentAttr(Record[++i]); 2276 else if (Kind == Attribute::Dereferenceable) 2277 B.addDereferenceableAttr(Record[++i]); 2278 else if (Kind == Attribute::DereferenceableOrNull) 2279 B.addDereferenceableOrNullAttr(Record[++i]); 2280 else if (Kind == Attribute::AllocSize) 2281 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2282 else if (Kind == Attribute::VScaleRange) 2283 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2284 else if (Kind == Attribute::UWTable) 2285 B.addUWTableAttr(UWTableKind(Record[++i])); 2286 else if (Kind == Attribute::AllocKind) 2287 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2288 else if (Kind == Attribute::Memory) 2289 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2290 else if (Kind == Attribute::NoFPClass) 2291 B.addNoFPClassAttr( 2292 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2293 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2294 bool HasValue = (Record[i++] == 4); 2295 SmallString<64> KindStr; 2296 SmallString<64> ValStr; 2297 2298 while (Record[i] != 0 && i != e) 2299 KindStr += Record[i++]; 2300 assert(Record[i] == 0 && "Kind string not null terminated"); 2301 2302 if (HasValue) { 2303 // Has a value associated with it. 2304 ++i; // Skip the '0' that terminates the "kind" string. 2305 while (Record[i] != 0 && i != e) 2306 ValStr += Record[i++]; 2307 assert(Record[i] == 0 && "Value string not null terminated"); 2308 } 2309 2310 B.addAttribute(KindStr.str(), ValStr.str()); 2311 } else if (Record[i] == 5 || Record[i] == 6) { 2312 bool HasType = Record[i] == 6; 2313 Attribute::AttrKind Kind; 2314 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2315 return Err; 2316 if (!Attribute::isTypeAttrKind(Kind)) 2317 return error("Not a type attribute"); 2318 2319 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2320 } else if (Record[i] == 7) { 2321 Attribute::AttrKind Kind; 2322 2323 i++; 2324 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2325 return Err; 2326 if (!Attribute::isConstantRangeAttrKind(Kind)) 2327 return error("Not a ConstantRange attribute"); 2328 2329 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2330 if (!MaybeCR) 2331 return MaybeCR.takeError(); 2332 i--; 2333 2334 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2335 } else { 2336 return error("Invalid attribute group entry"); 2337 } 2338 } 2339 2340 if (ME != MemoryEffects::unknown()) 2341 B.addMemoryAttr(ME); 2342 2343 UpgradeAttributes(B); 2344 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2345 break; 2346 } 2347 } 2348 } 2349 } 2350 2351 Error BitcodeReader::parseTypeTable() { 2352 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2353 return Err; 2354 2355 return parseTypeTableBody(); 2356 } 2357 2358 Error BitcodeReader::parseTypeTableBody() { 2359 if (!TypeList.empty()) 2360 return error("Invalid multiple blocks"); 2361 2362 SmallVector<uint64_t, 64> Record; 2363 unsigned NumRecords = 0; 2364 2365 SmallString<64> TypeName; 2366 2367 // Read all the records for this type table. 2368 while (true) { 2369 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2370 if (!MaybeEntry) 2371 return MaybeEntry.takeError(); 2372 BitstreamEntry Entry = MaybeEntry.get(); 2373 2374 switch (Entry.Kind) { 2375 case BitstreamEntry::SubBlock: // Handled for us already. 2376 case BitstreamEntry::Error: 2377 return error("Malformed block"); 2378 case BitstreamEntry::EndBlock: 2379 if (NumRecords != TypeList.size()) 2380 return error("Malformed block"); 2381 return Error::success(); 2382 case BitstreamEntry::Record: 2383 // The interesting case. 2384 break; 2385 } 2386 2387 // Read a record. 2388 Record.clear(); 2389 Type *ResultTy = nullptr; 2390 SmallVector<unsigned> ContainedIDs; 2391 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2392 if (!MaybeRecord) 2393 return MaybeRecord.takeError(); 2394 switch (MaybeRecord.get()) { 2395 default: 2396 return error("Invalid value"); 2397 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2398 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2399 // type list. This allows us to reserve space. 2400 if (Record.empty()) 2401 return error("Invalid numentry record"); 2402 TypeList.resize(Record[0]); 2403 continue; 2404 case bitc::TYPE_CODE_VOID: // VOID 2405 ResultTy = Type::getVoidTy(Context); 2406 break; 2407 case bitc::TYPE_CODE_HALF: // HALF 2408 ResultTy = Type::getHalfTy(Context); 2409 break; 2410 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2411 ResultTy = Type::getBFloatTy(Context); 2412 break; 2413 case bitc::TYPE_CODE_FLOAT: // FLOAT 2414 ResultTy = Type::getFloatTy(Context); 2415 break; 2416 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2417 ResultTy = Type::getDoubleTy(Context); 2418 break; 2419 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2420 ResultTy = Type::getX86_FP80Ty(Context); 2421 break; 2422 case bitc::TYPE_CODE_FP128: // FP128 2423 ResultTy = Type::getFP128Ty(Context); 2424 break; 2425 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2426 ResultTy = Type::getPPC_FP128Ty(Context); 2427 break; 2428 case bitc::TYPE_CODE_LABEL: // LABEL 2429 ResultTy = Type::getLabelTy(Context); 2430 break; 2431 case bitc::TYPE_CODE_METADATA: // METADATA 2432 ResultTy = Type::getMetadataTy(Context); 2433 break; 2434 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2435 ResultTy = Type::getX86_MMXTy(Context); 2436 break; 2437 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2438 ResultTy = Type::getX86_AMXTy(Context); 2439 break; 2440 case bitc::TYPE_CODE_TOKEN: // TOKEN 2441 ResultTy = Type::getTokenTy(Context); 2442 break; 2443 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2444 if (Record.empty()) 2445 return error("Invalid integer record"); 2446 2447 uint64_t NumBits = Record[0]; 2448 if (NumBits < IntegerType::MIN_INT_BITS || 2449 NumBits > IntegerType::MAX_INT_BITS) 2450 return error("Bitwidth for integer type out of range"); 2451 ResultTy = IntegerType::get(Context, NumBits); 2452 break; 2453 } 2454 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2455 // [pointee type, address space] 2456 if (Record.empty()) 2457 return error("Invalid pointer record"); 2458 unsigned AddressSpace = 0; 2459 if (Record.size() == 2) 2460 AddressSpace = Record[1]; 2461 ResultTy = getTypeByID(Record[0]); 2462 if (!ResultTy || 2463 !PointerType::isValidElementType(ResultTy)) 2464 return error("Invalid type"); 2465 ContainedIDs.push_back(Record[0]); 2466 ResultTy = PointerType::get(ResultTy, AddressSpace); 2467 break; 2468 } 2469 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2470 if (Record.size() != 1) 2471 return error("Invalid opaque pointer record"); 2472 unsigned AddressSpace = Record[0]; 2473 ResultTy = PointerType::get(Context, AddressSpace); 2474 break; 2475 } 2476 case bitc::TYPE_CODE_FUNCTION_OLD: { 2477 // Deprecated, but still needed to read old bitcode files. 2478 // FUNCTION: [vararg, attrid, retty, paramty x N] 2479 if (Record.size() < 3) 2480 return error("Invalid function record"); 2481 SmallVector<Type*, 8> ArgTys; 2482 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2483 if (Type *T = getTypeByID(Record[i])) 2484 ArgTys.push_back(T); 2485 else 2486 break; 2487 } 2488 2489 ResultTy = getTypeByID(Record[2]); 2490 if (!ResultTy || ArgTys.size() < Record.size()-3) 2491 return error("Invalid type"); 2492 2493 ContainedIDs.append(Record.begin() + 2, Record.end()); 2494 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2495 break; 2496 } 2497 case bitc::TYPE_CODE_FUNCTION: { 2498 // FUNCTION: [vararg, retty, paramty x N] 2499 if (Record.size() < 2) 2500 return error("Invalid function record"); 2501 SmallVector<Type*, 8> ArgTys; 2502 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2503 if (Type *T = getTypeByID(Record[i])) { 2504 if (!FunctionType::isValidArgumentType(T)) 2505 return error("Invalid function argument type"); 2506 ArgTys.push_back(T); 2507 } 2508 else 2509 break; 2510 } 2511 2512 ResultTy = getTypeByID(Record[1]); 2513 if (!ResultTy || ArgTys.size() < Record.size()-2) 2514 return error("Invalid type"); 2515 2516 ContainedIDs.append(Record.begin() + 1, Record.end()); 2517 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2518 break; 2519 } 2520 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2521 if (Record.empty()) 2522 return error("Invalid anon struct record"); 2523 SmallVector<Type*, 8> EltTys; 2524 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2525 if (Type *T = getTypeByID(Record[i])) 2526 EltTys.push_back(T); 2527 else 2528 break; 2529 } 2530 if (EltTys.size() != Record.size()-1) 2531 return error("Invalid type"); 2532 ContainedIDs.append(Record.begin() + 1, Record.end()); 2533 ResultTy = StructType::get(Context, EltTys, Record[0]); 2534 break; 2535 } 2536 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2537 if (convertToString(Record, 0, TypeName)) 2538 return error("Invalid struct name record"); 2539 continue; 2540 2541 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2542 if (Record.empty()) 2543 return error("Invalid named struct record"); 2544 2545 if (NumRecords >= TypeList.size()) 2546 return error("Invalid TYPE table"); 2547 2548 // Check to see if this was forward referenced, if so fill in the temp. 2549 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2550 if (Res) { 2551 Res->setName(TypeName); 2552 TypeList[NumRecords] = nullptr; 2553 } else // Otherwise, create a new struct. 2554 Res = createIdentifiedStructType(Context, TypeName); 2555 TypeName.clear(); 2556 2557 SmallVector<Type*, 8> EltTys; 2558 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2559 if (Type *T = getTypeByID(Record[i])) 2560 EltTys.push_back(T); 2561 else 2562 break; 2563 } 2564 if (EltTys.size() != Record.size()-1) 2565 return error("Invalid named struct record"); 2566 Res->setBody(EltTys, Record[0]); 2567 ContainedIDs.append(Record.begin() + 1, Record.end()); 2568 ResultTy = Res; 2569 break; 2570 } 2571 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2572 if (Record.size() != 1) 2573 return error("Invalid opaque type record"); 2574 2575 if (NumRecords >= TypeList.size()) 2576 return error("Invalid TYPE table"); 2577 2578 // Check to see if this was forward referenced, if so fill in the temp. 2579 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2580 if (Res) { 2581 Res->setName(TypeName); 2582 TypeList[NumRecords] = nullptr; 2583 } else // Otherwise, create a new struct with no body. 2584 Res = createIdentifiedStructType(Context, TypeName); 2585 TypeName.clear(); 2586 ResultTy = Res; 2587 break; 2588 } 2589 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2590 if (Record.size() < 1) 2591 return error("Invalid target extension type record"); 2592 2593 if (NumRecords >= TypeList.size()) 2594 return error("Invalid TYPE table"); 2595 2596 if (Record[0] >= Record.size()) 2597 return error("Too many type parameters"); 2598 2599 unsigned NumTys = Record[0]; 2600 SmallVector<Type *, 4> TypeParams; 2601 SmallVector<unsigned, 8> IntParams; 2602 for (unsigned i = 0; i < NumTys; i++) { 2603 if (Type *T = getTypeByID(Record[i + 1])) 2604 TypeParams.push_back(T); 2605 else 2606 return error("Invalid type"); 2607 } 2608 2609 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2610 if (Record[i] > UINT_MAX) 2611 return error("Integer parameter too large"); 2612 IntParams.push_back(Record[i]); 2613 } 2614 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2615 TypeName.clear(); 2616 break; 2617 } 2618 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2619 if (Record.size() < 2) 2620 return error("Invalid array type record"); 2621 ResultTy = getTypeByID(Record[1]); 2622 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2623 return error("Invalid type"); 2624 ContainedIDs.push_back(Record[1]); 2625 ResultTy = ArrayType::get(ResultTy, Record[0]); 2626 break; 2627 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2628 // [numelts, eltty, scalable] 2629 if (Record.size() < 2) 2630 return error("Invalid vector type record"); 2631 if (Record[0] == 0) 2632 return error("Invalid vector length"); 2633 ResultTy = getTypeByID(Record[1]); 2634 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2635 return error("Invalid type"); 2636 bool Scalable = Record.size() > 2 ? Record[2] : false; 2637 ContainedIDs.push_back(Record[1]); 2638 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2639 break; 2640 } 2641 2642 if (NumRecords >= TypeList.size()) 2643 return error("Invalid TYPE table"); 2644 if (TypeList[NumRecords]) 2645 return error( 2646 "Invalid TYPE table: Only named structs can be forward referenced"); 2647 assert(ResultTy && "Didn't read a type?"); 2648 TypeList[NumRecords] = ResultTy; 2649 if (!ContainedIDs.empty()) 2650 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2651 ++NumRecords; 2652 } 2653 } 2654 2655 Error BitcodeReader::parseOperandBundleTags() { 2656 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2657 return Err; 2658 2659 if (!BundleTags.empty()) 2660 return error("Invalid multiple blocks"); 2661 2662 SmallVector<uint64_t, 64> Record; 2663 2664 while (true) { 2665 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2666 if (!MaybeEntry) 2667 return MaybeEntry.takeError(); 2668 BitstreamEntry Entry = MaybeEntry.get(); 2669 2670 switch (Entry.Kind) { 2671 case BitstreamEntry::SubBlock: // Handled for us already. 2672 case BitstreamEntry::Error: 2673 return error("Malformed block"); 2674 case BitstreamEntry::EndBlock: 2675 return Error::success(); 2676 case BitstreamEntry::Record: 2677 // The interesting case. 2678 break; 2679 } 2680 2681 // Tags are implicitly mapped to integers by their order. 2682 2683 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2684 if (!MaybeRecord) 2685 return MaybeRecord.takeError(); 2686 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2687 return error("Invalid operand bundle record"); 2688 2689 // OPERAND_BUNDLE_TAG: [strchr x N] 2690 BundleTags.emplace_back(); 2691 if (convertToString(Record, 0, BundleTags.back())) 2692 return error("Invalid operand bundle record"); 2693 Record.clear(); 2694 } 2695 } 2696 2697 Error BitcodeReader::parseSyncScopeNames() { 2698 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2699 return Err; 2700 2701 if (!SSIDs.empty()) 2702 return error("Invalid multiple synchronization scope names blocks"); 2703 2704 SmallVector<uint64_t, 64> Record; 2705 while (true) { 2706 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2707 if (!MaybeEntry) 2708 return MaybeEntry.takeError(); 2709 BitstreamEntry Entry = MaybeEntry.get(); 2710 2711 switch (Entry.Kind) { 2712 case BitstreamEntry::SubBlock: // Handled for us already. 2713 case BitstreamEntry::Error: 2714 return error("Malformed block"); 2715 case BitstreamEntry::EndBlock: 2716 if (SSIDs.empty()) 2717 return error("Invalid empty synchronization scope names block"); 2718 return Error::success(); 2719 case BitstreamEntry::Record: 2720 // The interesting case. 2721 break; 2722 } 2723 2724 // Synchronization scope names are implicitly mapped to synchronization 2725 // scope IDs by their order. 2726 2727 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2728 if (!MaybeRecord) 2729 return MaybeRecord.takeError(); 2730 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2731 return error("Invalid sync scope record"); 2732 2733 SmallString<16> SSN; 2734 if (convertToString(Record, 0, SSN)) 2735 return error("Invalid sync scope record"); 2736 2737 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2738 Record.clear(); 2739 } 2740 } 2741 2742 /// Associate a value with its name from the given index in the provided record. 2743 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2744 unsigned NameIndex, Triple &TT) { 2745 SmallString<128> ValueName; 2746 if (convertToString(Record, NameIndex, ValueName)) 2747 return error("Invalid record"); 2748 unsigned ValueID = Record[0]; 2749 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2750 return error("Invalid record"); 2751 Value *V = ValueList[ValueID]; 2752 2753 StringRef NameStr(ValueName.data(), ValueName.size()); 2754 if (NameStr.contains(0)) 2755 return error("Invalid value name"); 2756 V->setName(NameStr); 2757 auto *GO = dyn_cast<GlobalObject>(V); 2758 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2759 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2760 return V; 2761 } 2762 2763 /// Helper to note and return the current location, and jump to the given 2764 /// offset. 2765 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2766 BitstreamCursor &Stream) { 2767 // Save the current parsing location so we can jump back at the end 2768 // of the VST read. 2769 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2770 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2771 return std::move(JumpFailed); 2772 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2773 if (!MaybeEntry) 2774 return MaybeEntry.takeError(); 2775 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2776 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2777 return error("Expected value symbol table subblock"); 2778 return CurrentBit; 2779 } 2780 2781 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2782 Function *F, 2783 ArrayRef<uint64_t> Record) { 2784 // Note that we subtract 1 here because the offset is relative to one word 2785 // before the start of the identification or module block, which was 2786 // historically always the start of the regular bitcode header. 2787 uint64_t FuncWordOffset = Record[1] - 1; 2788 uint64_t FuncBitOffset = FuncWordOffset * 32; 2789 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2790 // Set the LastFunctionBlockBit to point to the last function block. 2791 // Later when parsing is resumed after function materialization, 2792 // we can simply skip that last function block. 2793 if (FuncBitOffset > LastFunctionBlockBit) 2794 LastFunctionBlockBit = FuncBitOffset; 2795 } 2796 2797 /// Read a new-style GlobalValue symbol table. 2798 Error BitcodeReader::parseGlobalValueSymbolTable() { 2799 unsigned FuncBitcodeOffsetDelta = 2800 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2801 2802 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2803 return Err; 2804 2805 SmallVector<uint64_t, 64> Record; 2806 while (true) { 2807 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2808 if (!MaybeEntry) 2809 return MaybeEntry.takeError(); 2810 BitstreamEntry Entry = MaybeEntry.get(); 2811 2812 switch (Entry.Kind) { 2813 case BitstreamEntry::SubBlock: 2814 case BitstreamEntry::Error: 2815 return error("Malformed block"); 2816 case BitstreamEntry::EndBlock: 2817 return Error::success(); 2818 case BitstreamEntry::Record: 2819 break; 2820 } 2821 2822 Record.clear(); 2823 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2824 if (!MaybeRecord) 2825 return MaybeRecord.takeError(); 2826 switch (MaybeRecord.get()) { 2827 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2828 unsigned ValueID = Record[0]; 2829 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2830 return error("Invalid value reference in symbol table"); 2831 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2832 cast<Function>(ValueList[ValueID]), Record); 2833 break; 2834 } 2835 } 2836 } 2837 } 2838 2839 /// Parse the value symbol table at either the current parsing location or 2840 /// at the given bit offset if provided. 2841 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2842 uint64_t CurrentBit; 2843 // Pass in the Offset to distinguish between calling for the module-level 2844 // VST (where we want to jump to the VST offset) and the function-level 2845 // VST (where we don't). 2846 if (Offset > 0) { 2847 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2848 if (!MaybeCurrentBit) 2849 return MaybeCurrentBit.takeError(); 2850 CurrentBit = MaybeCurrentBit.get(); 2851 // If this module uses a string table, read this as a module-level VST. 2852 if (UseStrtab) { 2853 if (Error Err = parseGlobalValueSymbolTable()) 2854 return Err; 2855 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2856 return JumpFailed; 2857 return Error::success(); 2858 } 2859 // Otherwise, the VST will be in a similar format to a function-level VST, 2860 // and will contain symbol names. 2861 } 2862 2863 // Compute the delta between the bitcode indices in the VST (the word offset 2864 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2865 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2866 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2867 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2868 // just before entering the VST subblock because: 1) the EnterSubBlock 2869 // changes the AbbrevID width; 2) the VST block is nested within the same 2870 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2871 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2872 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2873 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2874 unsigned FuncBitcodeOffsetDelta = 2875 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2876 2877 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2878 return Err; 2879 2880 SmallVector<uint64_t, 64> Record; 2881 2882 Triple TT(TheModule->getTargetTriple()); 2883 2884 // Read all the records for this value table. 2885 SmallString<128> ValueName; 2886 2887 while (true) { 2888 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2889 if (!MaybeEntry) 2890 return MaybeEntry.takeError(); 2891 BitstreamEntry Entry = MaybeEntry.get(); 2892 2893 switch (Entry.Kind) { 2894 case BitstreamEntry::SubBlock: // Handled for us already. 2895 case BitstreamEntry::Error: 2896 return error("Malformed block"); 2897 case BitstreamEntry::EndBlock: 2898 if (Offset > 0) 2899 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2900 return JumpFailed; 2901 return Error::success(); 2902 case BitstreamEntry::Record: 2903 // The interesting case. 2904 break; 2905 } 2906 2907 // Read a record. 2908 Record.clear(); 2909 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2910 if (!MaybeRecord) 2911 return MaybeRecord.takeError(); 2912 switch (MaybeRecord.get()) { 2913 default: // Default behavior: unknown type. 2914 break; 2915 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2916 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2917 if (Error Err = ValOrErr.takeError()) 2918 return Err; 2919 ValOrErr.get(); 2920 break; 2921 } 2922 case bitc::VST_CODE_FNENTRY: { 2923 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2924 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2925 if (Error Err = ValOrErr.takeError()) 2926 return Err; 2927 Value *V = ValOrErr.get(); 2928 2929 // Ignore function offsets emitted for aliases of functions in older 2930 // versions of LLVM. 2931 if (auto *F = dyn_cast<Function>(V)) 2932 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2933 break; 2934 } 2935 case bitc::VST_CODE_BBENTRY: { 2936 if (convertToString(Record, 1, ValueName)) 2937 return error("Invalid bbentry record"); 2938 BasicBlock *BB = getBasicBlock(Record[0]); 2939 if (!BB) 2940 return error("Invalid bbentry record"); 2941 2942 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2943 ValueName.clear(); 2944 break; 2945 } 2946 } 2947 } 2948 } 2949 2950 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2951 /// encoding. 2952 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2953 if ((V & 1) == 0) 2954 return V >> 1; 2955 if (V != 1) 2956 return -(V >> 1); 2957 // There is no such thing as -0 with integers. "-0" really means MININT. 2958 return 1ULL << 63; 2959 } 2960 2961 /// Resolve all of the initializers for global values and aliases that we can. 2962 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2963 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2964 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2965 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2966 2967 GlobalInitWorklist.swap(GlobalInits); 2968 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2969 FunctionOperandWorklist.swap(FunctionOperands); 2970 2971 while (!GlobalInitWorklist.empty()) { 2972 unsigned ValID = GlobalInitWorklist.back().second; 2973 if (ValID >= ValueList.size()) { 2974 // Not ready to resolve this yet, it requires something later in the file. 2975 GlobalInits.push_back(GlobalInitWorklist.back()); 2976 } else { 2977 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2978 if (!MaybeC) 2979 return MaybeC.takeError(); 2980 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2981 } 2982 GlobalInitWorklist.pop_back(); 2983 } 2984 2985 while (!IndirectSymbolInitWorklist.empty()) { 2986 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2987 if (ValID >= ValueList.size()) { 2988 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2989 } else { 2990 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2991 if (!MaybeC) 2992 return MaybeC.takeError(); 2993 Constant *C = MaybeC.get(); 2994 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2995 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2996 if (C->getType() != GV->getType()) 2997 return error("Alias and aliasee types don't match"); 2998 GA->setAliasee(C); 2999 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3000 GI->setResolver(C); 3001 } else { 3002 return error("Expected an alias or an ifunc"); 3003 } 3004 } 3005 IndirectSymbolInitWorklist.pop_back(); 3006 } 3007 3008 while (!FunctionOperandWorklist.empty()) { 3009 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3010 if (Info.PersonalityFn) { 3011 unsigned ValID = Info.PersonalityFn - 1; 3012 if (ValID < ValueList.size()) { 3013 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3014 if (!MaybeC) 3015 return MaybeC.takeError(); 3016 Info.F->setPersonalityFn(MaybeC.get()); 3017 Info.PersonalityFn = 0; 3018 } 3019 } 3020 if (Info.Prefix) { 3021 unsigned ValID = Info.Prefix - 1; 3022 if (ValID < ValueList.size()) { 3023 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3024 if (!MaybeC) 3025 return MaybeC.takeError(); 3026 Info.F->setPrefixData(MaybeC.get()); 3027 Info.Prefix = 0; 3028 } 3029 } 3030 if (Info.Prologue) { 3031 unsigned ValID = Info.Prologue - 1; 3032 if (ValID < ValueList.size()) { 3033 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3034 if (!MaybeC) 3035 return MaybeC.takeError(); 3036 Info.F->setPrologueData(MaybeC.get()); 3037 Info.Prologue = 0; 3038 } 3039 } 3040 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3041 FunctionOperands.push_back(Info); 3042 FunctionOperandWorklist.pop_back(); 3043 } 3044 3045 return Error::success(); 3046 } 3047 3048 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3049 SmallVector<uint64_t, 8> Words(Vals.size()); 3050 transform(Vals, Words.begin(), 3051 BitcodeReader::decodeSignRotatedValue); 3052 3053 return APInt(TypeBits, Words); 3054 } 3055 3056 Error BitcodeReader::parseConstants() { 3057 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3058 return Err; 3059 3060 SmallVector<uint64_t, 64> Record; 3061 3062 // Read all the records for this value table. 3063 Type *CurTy = Type::getInt32Ty(Context); 3064 unsigned Int32TyID = getVirtualTypeID(CurTy); 3065 unsigned CurTyID = Int32TyID; 3066 Type *CurElemTy = nullptr; 3067 unsigned NextCstNo = ValueList.size(); 3068 3069 while (true) { 3070 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3071 if (!MaybeEntry) 3072 return MaybeEntry.takeError(); 3073 BitstreamEntry Entry = MaybeEntry.get(); 3074 3075 switch (Entry.Kind) { 3076 case BitstreamEntry::SubBlock: // Handled for us already. 3077 case BitstreamEntry::Error: 3078 return error("Malformed block"); 3079 case BitstreamEntry::EndBlock: 3080 if (NextCstNo != ValueList.size()) 3081 return error("Invalid constant reference"); 3082 return Error::success(); 3083 case BitstreamEntry::Record: 3084 // The interesting case. 3085 break; 3086 } 3087 3088 // Read a record. 3089 Record.clear(); 3090 Type *VoidType = Type::getVoidTy(Context); 3091 Value *V = nullptr; 3092 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3093 if (!MaybeBitCode) 3094 return MaybeBitCode.takeError(); 3095 switch (unsigned BitCode = MaybeBitCode.get()) { 3096 default: // Default behavior: unknown constant 3097 case bitc::CST_CODE_UNDEF: // UNDEF 3098 V = UndefValue::get(CurTy); 3099 break; 3100 case bitc::CST_CODE_POISON: // POISON 3101 V = PoisonValue::get(CurTy); 3102 break; 3103 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3104 if (Record.empty()) 3105 return error("Invalid settype record"); 3106 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3107 return error("Invalid settype record"); 3108 if (TypeList[Record[0]] == VoidType) 3109 return error("Invalid constant type"); 3110 CurTyID = Record[0]; 3111 CurTy = TypeList[CurTyID]; 3112 CurElemTy = getPtrElementTypeByID(CurTyID); 3113 continue; // Skip the ValueList manipulation. 3114 case bitc::CST_CODE_NULL: // NULL 3115 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3116 return error("Invalid type for a constant null value"); 3117 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3118 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3119 return error("Invalid type for a constant null value"); 3120 V = Constant::getNullValue(CurTy); 3121 break; 3122 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3123 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3124 return error("Invalid integer const record"); 3125 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3126 break; 3127 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3128 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3129 return error("Invalid wide integer const record"); 3130 3131 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3132 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3133 V = ConstantInt::get(CurTy, VInt); 3134 break; 3135 } 3136 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3137 if (Record.empty()) 3138 return error("Invalid float const record"); 3139 3140 auto *ScalarTy = CurTy->getScalarType(); 3141 if (ScalarTy->isHalfTy()) 3142 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3143 APInt(16, (uint16_t)Record[0]))); 3144 else if (ScalarTy->isBFloatTy()) 3145 V = ConstantFP::get( 3146 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3147 else if (ScalarTy->isFloatTy()) 3148 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3149 APInt(32, (uint32_t)Record[0]))); 3150 else if (ScalarTy->isDoubleTy()) 3151 V = ConstantFP::get( 3152 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3153 else if (ScalarTy->isX86_FP80Ty()) { 3154 // Bits are not stored the same way as a normal i80 APInt, compensate. 3155 uint64_t Rearrange[2]; 3156 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3157 Rearrange[1] = Record[0] >> 48; 3158 V = ConstantFP::get( 3159 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3160 } else if (ScalarTy->isFP128Ty()) 3161 V = ConstantFP::get(CurTy, 3162 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3163 else if (ScalarTy->isPPC_FP128Ty()) 3164 V = ConstantFP::get( 3165 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3166 else 3167 V = UndefValue::get(CurTy); 3168 break; 3169 } 3170 3171 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3172 if (Record.empty()) 3173 return error("Invalid aggregate record"); 3174 3175 unsigned Size = Record.size(); 3176 SmallVector<unsigned, 16> Elts; 3177 for (unsigned i = 0; i != Size; ++i) 3178 Elts.push_back(Record[i]); 3179 3180 if (isa<StructType>(CurTy)) { 3181 V = BitcodeConstant::create( 3182 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3183 } else if (isa<ArrayType>(CurTy)) { 3184 V = BitcodeConstant::create(Alloc, CurTy, 3185 BitcodeConstant::ConstantArrayOpcode, Elts); 3186 } else if (isa<VectorType>(CurTy)) { 3187 V = BitcodeConstant::create( 3188 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3189 } else { 3190 V = UndefValue::get(CurTy); 3191 } 3192 break; 3193 } 3194 case bitc::CST_CODE_STRING: // STRING: [values] 3195 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3196 if (Record.empty()) 3197 return error("Invalid string record"); 3198 3199 SmallString<16> Elts(Record.begin(), Record.end()); 3200 V = ConstantDataArray::getString(Context, Elts, 3201 BitCode == bitc::CST_CODE_CSTRING); 3202 break; 3203 } 3204 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3205 if (Record.empty()) 3206 return error("Invalid data record"); 3207 3208 Type *EltTy; 3209 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3210 EltTy = Array->getElementType(); 3211 else 3212 EltTy = cast<VectorType>(CurTy)->getElementType(); 3213 if (EltTy->isIntegerTy(8)) { 3214 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3215 if (isa<VectorType>(CurTy)) 3216 V = ConstantDataVector::get(Context, Elts); 3217 else 3218 V = ConstantDataArray::get(Context, Elts); 3219 } else if (EltTy->isIntegerTy(16)) { 3220 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3221 if (isa<VectorType>(CurTy)) 3222 V = ConstantDataVector::get(Context, Elts); 3223 else 3224 V = ConstantDataArray::get(Context, Elts); 3225 } else if (EltTy->isIntegerTy(32)) { 3226 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3227 if (isa<VectorType>(CurTy)) 3228 V = ConstantDataVector::get(Context, Elts); 3229 else 3230 V = ConstantDataArray::get(Context, Elts); 3231 } else if (EltTy->isIntegerTy(64)) { 3232 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3233 if (isa<VectorType>(CurTy)) 3234 V = ConstantDataVector::get(Context, Elts); 3235 else 3236 V = ConstantDataArray::get(Context, Elts); 3237 } else if (EltTy->isHalfTy()) { 3238 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3239 if (isa<VectorType>(CurTy)) 3240 V = ConstantDataVector::getFP(EltTy, Elts); 3241 else 3242 V = ConstantDataArray::getFP(EltTy, Elts); 3243 } else if (EltTy->isBFloatTy()) { 3244 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3245 if (isa<VectorType>(CurTy)) 3246 V = ConstantDataVector::getFP(EltTy, Elts); 3247 else 3248 V = ConstantDataArray::getFP(EltTy, Elts); 3249 } else if (EltTy->isFloatTy()) { 3250 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3251 if (isa<VectorType>(CurTy)) 3252 V = ConstantDataVector::getFP(EltTy, Elts); 3253 else 3254 V = ConstantDataArray::getFP(EltTy, Elts); 3255 } else if (EltTy->isDoubleTy()) { 3256 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3257 if (isa<VectorType>(CurTy)) 3258 V = ConstantDataVector::getFP(EltTy, Elts); 3259 else 3260 V = ConstantDataArray::getFP(EltTy, Elts); 3261 } else { 3262 return error("Invalid type for value"); 3263 } 3264 break; 3265 } 3266 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3267 if (Record.size() < 2) 3268 return error("Invalid unary op constexpr record"); 3269 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3270 if (Opc < 0) { 3271 V = UndefValue::get(CurTy); // Unknown unop. 3272 } else { 3273 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3274 } 3275 break; 3276 } 3277 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3278 if (Record.size() < 3) 3279 return error("Invalid binary op constexpr record"); 3280 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3281 if (Opc < 0) { 3282 V = UndefValue::get(CurTy); // Unknown binop. 3283 } else { 3284 uint8_t Flags = 0; 3285 if (Record.size() >= 4) { 3286 if (Opc == Instruction::Add || 3287 Opc == Instruction::Sub || 3288 Opc == Instruction::Mul || 3289 Opc == Instruction::Shl) { 3290 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3291 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3292 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3293 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3294 } else if (Opc == Instruction::SDiv || 3295 Opc == Instruction::UDiv || 3296 Opc == Instruction::LShr || 3297 Opc == Instruction::AShr) { 3298 if (Record[3] & (1 << bitc::PEO_EXACT)) 3299 Flags |= PossiblyExactOperator::IsExact; 3300 } 3301 } 3302 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3303 {(unsigned)Record[1], (unsigned)Record[2]}); 3304 } 3305 break; 3306 } 3307 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3308 if (Record.size() < 3) 3309 return error("Invalid cast constexpr record"); 3310 int Opc = getDecodedCastOpcode(Record[0]); 3311 if (Opc < 0) { 3312 V = UndefValue::get(CurTy); // Unknown cast. 3313 } else { 3314 unsigned OpTyID = Record[1]; 3315 Type *OpTy = getTypeByID(OpTyID); 3316 if (!OpTy) 3317 return error("Invalid cast constexpr record"); 3318 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3319 } 3320 break; 3321 } 3322 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3323 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3324 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3325 // operands] 3326 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3327 // operands] 3328 if (Record.size() < 2) 3329 return error("Constant GEP record must have at least two elements"); 3330 unsigned OpNum = 0; 3331 Type *PointeeType = nullptr; 3332 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3333 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || Record.size() % 2) 3334 PointeeType = getTypeByID(Record[OpNum++]); 3335 3336 bool InBounds = false; 3337 std::optional<ConstantRange> InRange; 3338 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3339 uint64_t Op = Record[OpNum++]; 3340 InBounds = Op & 1; 3341 unsigned InRangeIndex = Op >> 1; 3342 // "Upgrade" inrange by dropping it. The feature is too niche to 3343 // bother. 3344 (void)InRangeIndex; 3345 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3346 uint64_t Op = Record[OpNum++]; 3347 InBounds = Op & 1; 3348 Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum); 3349 if (!MaybeInRange) 3350 return MaybeInRange.takeError(); 3351 InRange = MaybeInRange.get(); 3352 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3353 InBounds = true; 3354 3355 SmallVector<unsigned, 16> Elts; 3356 unsigned BaseTypeID = Record[OpNum]; 3357 while (OpNum != Record.size()) { 3358 unsigned ElTyID = Record[OpNum++]; 3359 Type *ElTy = getTypeByID(ElTyID); 3360 if (!ElTy) 3361 return error("Invalid getelementptr constexpr record"); 3362 Elts.push_back(Record[OpNum++]); 3363 } 3364 3365 if (Elts.size() < 1) 3366 return error("Invalid gep with no operands"); 3367 3368 Type *BaseType = getTypeByID(BaseTypeID); 3369 if (isa<VectorType>(BaseType)) { 3370 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3371 BaseType = getTypeByID(BaseTypeID); 3372 } 3373 3374 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3375 if (!OrigPtrTy) 3376 return error("GEP base operand must be pointer or vector of pointer"); 3377 3378 if (!PointeeType) { 3379 PointeeType = getPtrElementTypeByID(BaseTypeID); 3380 if (!PointeeType) 3381 return error("Missing element type for old-style constant GEP"); 3382 } 3383 3384 V = BitcodeConstant::create( 3385 Alloc, CurTy, 3386 {Instruction::GetElementPtr, InBounds, PointeeType, InRange}, Elts); 3387 break; 3388 } 3389 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3390 if (Record.size() < 3) 3391 return error("Invalid select constexpr record"); 3392 3393 V = BitcodeConstant::create( 3394 Alloc, CurTy, Instruction::Select, 3395 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3396 break; 3397 } 3398 case bitc::CST_CODE_CE_EXTRACTELT 3399 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3400 if (Record.size() < 3) 3401 return error("Invalid extractelement constexpr record"); 3402 unsigned OpTyID = Record[0]; 3403 VectorType *OpTy = 3404 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3405 if (!OpTy) 3406 return error("Invalid extractelement constexpr record"); 3407 unsigned IdxRecord; 3408 if (Record.size() == 4) { 3409 unsigned IdxTyID = Record[2]; 3410 Type *IdxTy = getTypeByID(IdxTyID); 3411 if (!IdxTy) 3412 return error("Invalid extractelement constexpr record"); 3413 IdxRecord = Record[3]; 3414 } else { 3415 // Deprecated, but still needed to read old bitcode files. 3416 IdxRecord = Record[2]; 3417 } 3418 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3419 {(unsigned)Record[1], IdxRecord}); 3420 break; 3421 } 3422 case bitc::CST_CODE_CE_INSERTELT 3423 : { // CE_INSERTELT: [opval, opval, opty, opval] 3424 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3425 if (Record.size() < 3 || !OpTy) 3426 return error("Invalid insertelement constexpr record"); 3427 unsigned IdxRecord; 3428 if (Record.size() == 4) { 3429 unsigned IdxTyID = Record[2]; 3430 Type *IdxTy = getTypeByID(IdxTyID); 3431 if (!IdxTy) 3432 return error("Invalid insertelement constexpr record"); 3433 IdxRecord = Record[3]; 3434 } else { 3435 // Deprecated, but still needed to read old bitcode files. 3436 IdxRecord = Record[2]; 3437 } 3438 V = BitcodeConstant::create( 3439 Alloc, CurTy, Instruction::InsertElement, 3440 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3441 break; 3442 } 3443 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3444 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3445 if (Record.size() < 3 || !OpTy) 3446 return error("Invalid shufflevector constexpr record"); 3447 V = BitcodeConstant::create( 3448 Alloc, CurTy, Instruction::ShuffleVector, 3449 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3450 break; 3451 } 3452 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3453 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3454 VectorType *OpTy = 3455 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3456 if (Record.size() < 4 || !RTy || !OpTy) 3457 return error("Invalid shufflevector constexpr record"); 3458 V = BitcodeConstant::create( 3459 Alloc, CurTy, Instruction::ShuffleVector, 3460 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3461 break; 3462 } 3463 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3464 if (Record.size() < 4) 3465 return error("Invalid cmp constexpt record"); 3466 unsigned OpTyID = Record[0]; 3467 Type *OpTy = getTypeByID(OpTyID); 3468 if (!OpTy) 3469 return error("Invalid cmp constexpr record"); 3470 V = BitcodeConstant::create( 3471 Alloc, CurTy, 3472 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3473 : Instruction::ICmp), 3474 (uint8_t)Record[3]}, 3475 {(unsigned)Record[1], (unsigned)Record[2]}); 3476 break; 3477 } 3478 // This maintains backward compatibility, pre-asm dialect keywords. 3479 // Deprecated, but still needed to read old bitcode files. 3480 case bitc::CST_CODE_INLINEASM_OLD: { 3481 if (Record.size() < 2) 3482 return error("Invalid inlineasm record"); 3483 std::string AsmStr, ConstrStr; 3484 bool HasSideEffects = Record[0] & 1; 3485 bool IsAlignStack = Record[0] >> 1; 3486 unsigned AsmStrSize = Record[1]; 3487 if (2+AsmStrSize >= Record.size()) 3488 return error("Invalid inlineasm record"); 3489 unsigned ConstStrSize = Record[2+AsmStrSize]; 3490 if (3+AsmStrSize+ConstStrSize > Record.size()) 3491 return error("Invalid inlineasm record"); 3492 3493 for (unsigned i = 0; i != AsmStrSize; ++i) 3494 AsmStr += (char)Record[2+i]; 3495 for (unsigned i = 0; i != ConstStrSize; ++i) 3496 ConstrStr += (char)Record[3+AsmStrSize+i]; 3497 UpgradeInlineAsmString(&AsmStr); 3498 if (!CurElemTy) 3499 return error("Missing element type for old-style inlineasm"); 3500 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3501 HasSideEffects, IsAlignStack); 3502 break; 3503 } 3504 // This version adds support for the asm dialect keywords (e.g., 3505 // inteldialect). 3506 case bitc::CST_CODE_INLINEASM_OLD2: { 3507 if (Record.size() < 2) 3508 return error("Invalid inlineasm record"); 3509 std::string AsmStr, ConstrStr; 3510 bool HasSideEffects = Record[0] & 1; 3511 bool IsAlignStack = (Record[0] >> 1) & 1; 3512 unsigned AsmDialect = Record[0] >> 2; 3513 unsigned AsmStrSize = Record[1]; 3514 if (2+AsmStrSize >= Record.size()) 3515 return error("Invalid inlineasm record"); 3516 unsigned ConstStrSize = Record[2+AsmStrSize]; 3517 if (3+AsmStrSize+ConstStrSize > Record.size()) 3518 return error("Invalid inlineasm record"); 3519 3520 for (unsigned i = 0; i != AsmStrSize; ++i) 3521 AsmStr += (char)Record[2+i]; 3522 for (unsigned i = 0; i != ConstStrSize; ++i) 3523 ConstrStr += (char)Record[3+AsmStrSize+i]; 3524 UpgradeInlineAsmString(&AsmStr); 3525 if (!CurElemTy) 3526 return error("Missing element type for old-style inlineasm"); 3527 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3528 HasSideEffects, IsAlignStack, 3529 InlineAsm::AsmDialect(AsmDialect)); 3530 break; 3531 } 3532 // This version adds support for the unwind keyword. 3533 case bitc::CST_CODE_INLINEASM_OLD3: { 3534 if (Record.size() < 2) 3535 return error("Invalid inlineasm record"); 3536 unsigned OpNum = 0; 3537 std::string AsmStr, ConstrStr; 3538 bool HasSideEffects = Record[OpNum] & 1; 3539 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3540 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3541 bool CanThrow = (Record[OpNum] >> 3) & 1; 3542 ++OpNum; 3543 unsigned AsmStrSize = Record[OpNum]; 3544 ++OpNum; 3545 if (OpNum + AsmStrSize >= Record.size()) 3546 return error("Invalid inlineasm record"); 3547 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3548 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3549 return error("Invalid inlineasm record"); 3550 3551 for (unsigned i = 0; i != AsmStrSize; ++i) 3552 AsmStr += (char)Record[OpNum + i]; 3553 ++OpNum; 3554 for (unsigned i = 0; i != ConstStrSize; ++i) 3555 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3556 UpgradeInlineAsmString(&AsmStr); 3557 if (!CurElemTy) 3558 return error("Missing element type for old-style inlineasm"); 3559 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3560 HasSideEffects, IsAlignStack, 3561 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3562 break; 3563 } 3564 // This version adds explicit function type. 3565 case bitc::CST_CODE_INLINEASM: { 3566 if (Record.size() < 3) 3567 return error("Invalid inlineasm record"); 3568 unsigned OpNum = 0; 3569 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3570 ++OpNum; 3571 if (!FnTy) 3572 return error("Invalid inlineasm record"); 3573 std::string AsmStr, ConstrStr; 3574 bool HasSideEffects = Record[OpNum] & 1; 3575 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3576 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3577 bool CanThrow = (Record[OpNum] >> 3) & 1; 3578 ++OpNum; 3579 unsigned AsmStrSize = Record[OpNum]; 3580 ++OpNum; 3581 if (OpNum + AsmStrSize >= Record.size()) 3582 return error("Invalid inlineasm record"); 3583 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3584 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3585 return error("Invalid inlineasm record"); 3586 3587 for (unsigned i = 0; i != AsmStrSize; ++i) 3588 AsmStr += (char)Record[OpNum + i]; 3589 ++OpNum; 3590 for (unsigned i = 0; i != ConstStrSize; ++i) 3591 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3592 UpgradeInlineAsmString(&AsmStr); 3593 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3594 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3595 break; 3596 } 3597 case bitc::CST_CODE_BLOCKADDRESS:{ 3598 if (Record.size() < 3) 3599 return error("Invalid blockaddress record"); 3600 unsigned FnTyID = Record[0]; 3601 Type *FnTy = getTypeByID(FnTyID); 3602 if (!FnTy) 3603 return error("Invalid blockaddress record"); 3604 V = BitcodeConstant::create( 3605 Alloc, CurTy, 3606 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3607 Record[1]); 3608 break; 3609 } 3610 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3611 if (Record.size() < 2) 3612 return error("Invalid dso_local record"); 3613 unsigned GVTyID = Record[0]; 3614 Type *GVTy = getTypeByID(GVTyID); 3615 if (!GVTy) 3616 return error("Invalid dso_local record"); 3617 V = BitcodeConstant::create( 3618 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3619 break; 3620 } 3621 case bitc::CST_CODE_NO_CFI_VALUE: { 3622 if (Record.size() < 2) 3623 return error("Invalid no_cfi record"); 3624 unsigned GVTyID = Record[0]; 3625 Type *GVTy = getTypeByID(GVTyID); 3626 if (!GVTy) 3627 return error("Invalid no_cfi record"); 3628 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3629 Record[1]); 3630 break; 3631 } 3632 } 3633 3634 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3635 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3636 return Err; 3637 ++NextCstNo; 3638 } 3639 } 3640 3641 Error BitcodeReader::parseUseLists() { 3642 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3643 return Err; 3644 3645 // Read all the records. 3646 SmallVector<uint64_t, 64> Record; 3647 3648 while (true) { 3649 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3650 if (!MaybeEntry) 3651 return MaybeEntry.takeError(); 3652 BitstreamEntry Entry = MaybeEntry.get(); 3653 3654 switch (Entry.Kind) { 3655 case BitstreamEntry::SubBlock: // Handled for us already. 3656 case BitstreamEntry::Error: 3657 return error("Malformed block"); 3658 case BitstreamEntry::EndBlock: 3659 return Error::success(); 3660 case BitstreamEntry::Record: 3661 // The interesting case. 3662 break; 3663 } 3664 3665 // Read a use list record. 3666 Record.clear(); 3667 bool IsBB = false; 3668 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3669 if (!MaybeRecord) 3670 return MaybeRecord.takeError(); 3671 switch (MaybeRecord.get()) { 3672 default: // Default behavior: unknown type. 3673 break; 3674 case bitc::USELIST_CODE_BB: 3675 IsBB = true; 3676 [[fallthrough]]; 3677 case bitc::USELIST_CODE_DEFAULT: { 3678 unsigned RecordLength = Record.size(); 3679 if (RecordLength < 3) 3680 // Records should have at least an ID and two indexes. 3681 return error("Invalid record"); 3682 unsigned ID = Record.pop_back_val(); 3683 3684 Value *V; 3685 if (IsBB) { 3686 assert(ID < FunctionBBs.size() && "Basic block not found"); 3687 V = FunctionBBs[ID]; 3688 } else 3689 V = ValueList[ID]; 3690 unsigned NumUses = 0; 3691 SmallDenseMap<const Use *, unsigned, 16> Order; 3692 for (const Use &U : V->materialized_uses()) { 3693 if (++NumUses > Record.size()) 3694 break; 3695 Order[&U] = Record[NumUses - 1]; 3696 } 3697 if (Order.size() != Record.size() || NumUses > Record.size()) 3698 // Mismatches can happen if the functions are being materialized lazily 3699 // (out-of-order), or a value has been upgraded. 3700 break; 3701 3702 V->sortUseList([&](const Use &L, const Use &R) { 3703 return Order.lookup(&L) < Order.lookup(&R); 3704 }); 3705 break; 3706 } 3707 } 3708 } 3709 } 3710 3711 /// When we see the block for metadata, remember where it is and then skip it. 3712 /// This lets us lazily deserialize the metadata. 3713 Error BitcodeReader::rememberAndSkipMetadata() { 3714 // Save the current stream state. 3715 uint64_t CurBit = Stream.GetCurrentBitNo(); 3716 DeferredMetadataInfo.push_back(CurBit); 3717 3718 // Skip over the block for now. 3719 if (Error Err = Stream.SkipBlock()) 3720 return Err; 3721 return Error::success(); 3722 } 3723 3724 Error BitcodeReader::materializeMetadata() { 3725 for (uint64_t BitPos : DeferredMetadataInfo) { 3726 // Move the bit stream to the saved position. 3727 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3728 return JumpFailed; 3729 if (Error Err = MDLoader->parseModuleMetadata()) 3730 return Err; 3731 } 3732 3733 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3734 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3735 // multiple times. 3736 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3737 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3738 NamedMDNode *LinkerOpts = 3739 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3740 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3741 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3742 } 3743 } 3744 3745 DeferredMetadataInfo.clear(); 3746 return Error::success(); 3747 } 3748 3749 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3750 3751 /// When we see the block for a function body, remember where it is and then 3752 /// skip it. This lets us lazily deserialize the functions. 3753 Error BitcodeReader::rememberAndSkipFunctionBody() { 3754 // Get the function we are talking about. 3755 if (FunctionsWithBodies.empty()) 3756 return error("Insufficient function protos"); 3757 3758 Function *Fn = FunctionsWithBodies.back(); 3759 FunctionsWithBodies.pop_back(); 3760 3761 // Save the current stream state. 3762 uint64_t CurBit = Stream.GetCurrentBitNo(); 3763 assert( 3764 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3765 "Mismatch between VST and scanned function offsets"); 3766 DeferredFunctionInfo[Fn] = CurBit; 3767 3768 // Skip over the function block for now. 3769 if (Error Err = Stream.SkipBlock()) 3770 return Err; 3771 return Error::success(); 3772 } 3773 3774 Error BitcodeReader::globalCleanup() { 3775 // Patch the initializers for globals and aliases up. 3776 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3777 return Err; 3778 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3779 return error("Malformed global initializer set"); 3780 3781 // Look for intrinsic functions which need to be upgraded at some point 3782 // and functions that need to have their function attributes upgraded. 3783 for (Function &F : *TheModule) { 3784 MDLoader->upgradeDebugIntrinsics(F); 3785 Function *NewFn; 3786 // If PreserveInputDbgFormat=true, then we don't know whether we want 3787 // intrinsics or records, and we won't perform any conversions in either 3788 // case, so don't upgrade intrinsics to records. 3789 if (UpgradeIntrinsicFunction( 3790 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3791 UpgradedIntrinsics[&F] = NewFn; 3792 // Look for functions that rely on old function attribute behavior. 3793 UpgradeFunctionAttributes(F); 3794 } 3795 3796 // Look for global variables which need to be renamed. 3797 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3798 for (GlobalVariable &GV : TheModule->globals()) 3799 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3800 UpgradedVariables.emplace_back(&GV, Upgraded); 3801 for (auto &Pair : UpgradedVariables) { 3802 Pair.first->eraseFromParent(); 3803 TheModule->insertGlobalVariable(Pair.second); 3804 } 3805 3806 // Force deallocation of memory for these vectors to favor the client that 3807 // want lazy deserialization. 3808 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3809 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3810 return Error::success(); 3811 } 3812 3813 /// Support for lazy parsing of function bodies. This is required if we 3814 /// either have an old bitcode file without a VST forward declaration record, 3815 /// or if we have an anonymous function being materialized, since anonymous 3816 /// functions do not have a name and are therefore not in the VST. 3817 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3818 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3819 return JumpFailed; 3820 3821 if (Stream.AtEndOfStream()) 3822 return error("Could not find function in stream"); 3823 3824 if (!SeenFirstFunctionBody) 3825 return error("Trying to materialize functions before seeing function blocks"); 3826 3827 // An old bitcode file with the symbol table at the end would have 3828 // finished the parse greedily. 3829 assert(SeenValueSymbolTable); 3830 3831 SmallVector<uint64_t, 64> Record; 3832 3833 while (true) { 3834 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3835 if (!MaybeEntry) 3836 return MaybeEntry.takeError(); 3837 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3838 3839 switch (Entry.Kind) { 3840 default: 3841 return error("Expect SubBlock"); 3842 case BitstreamEntry::SubBlock: 3843 switch (Entry.ID) { 3844 default: 3845 return error("Expect function block"); 3846 case bitc::FUNCTION_BLOCK_ID: 3847 if (Error Err = rememberAndSkipFunctionBody()) 3848 return Err; 3849 NextUnreadBit = Stream.GetCurrentBitNo(); 3850 return Error::success(); 3851 } 3852 } 3853 } 3854 } 3855 3856 Error BitcodeReaderBase::readBlockInfo() { 3857 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3858 Stream.ReadBlockInfoBlock(); 3859 if (!MaybeNewBlockInfo) 3860 return MaybeNewBlockInfo.takeError(); 3861 std::optional<BitstreamBlockInfo> NewBlockInfo = 3862 std::move(MaybeNewBlockInfo.get()); 3863 if (!NewBlockInfo) 3864 return error("Malformed block"); 3865 BlockInfo = std::move(*NewBlockInfo); 3866 return Error::success(); 3867 } 3868 3869 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3870 // v1: [selection_kind, name] 3871 // v2: [strtab_offset, strtab_size, selection_kind] 3872 StringRef Name; 3873 std::tie(Name, Record) = readNameFromStrtab(Record); 3874 3875 if (Record.empty()) 3876 return error("Invalid record"); 3877 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3878 std::string OldFormatName; 3879 if (!UseStrtab) { 3880 if (Record.size() < 2) 3881 return error("Invalid record"); 3882 unsigned ComdatNameSize = Record[1]; 3883 if (ComdatNameSize > Record.size() - 2) 3884 return error("Comdat name size too large"); 3885 OldFormatName.reserve(ComdatNameSize); 3886 for (unsigned i = 0; i != ComdatNameSize; ++i) 3887 OldFormatName += (char)Record[2 + i]; 3888 Name = OldFormatName; 3889 } 3890 Comdat *C = TheModule->getOrInsertComdat(Name); 3891 C->setSelectionKind(SK); 3892 ComdatList.push_back(C); 3893 return Error::success(); 3894 } 3895 3896 static void inferDSOLocal(GlobalValue *GV) { 3897 // infer dso_local from linkage and visibility if it is not encoded. 3898 if (GV->hasLocalLinkage() || 3899 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3900 GV->setDSOLocal(true); 3901 } 3902 3903 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3904 GlobalValue::SanitizerMetadata Meta; 3905 if (V & (1 << 0)) 3906 Meta.NoAddress = true; 3907 if (V & (1 << 1)) 3908 Meta.NoHWAddress = true; 3909 if (V & (1 << 2)) 3910 Meta.Memtag = true; 3911 if (V & (1 << 3)) 3912 Meta.IsDynInit = true; 3913 return Meta; 3914 } 3915 3916 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3917 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3918 // visibility, threadlocal, unnamed_addr, externally_initialized, 3919 // dllstorageclass, comdat, attributes, preemption specifier, 3920 // partition strtab offset, partition strtab size] (name in VST) 3921 // v2: [strtab_offset, strtab_size, v1] 3922 // v3: [v2, code_model] 3923 StringRef Name; 3924 std::tie(Name, Record) = readNameFromStrtab(Record); 3925 3926 if (Record.size() < 6) 3927 return error("Invalid record"); 3928 unsigned TyID = Record[0]; 3929 Type *Ty = getTypeByID(TyID); 3930 if (!Ty) 3931 return error("Invalid record"); 3932 bool isConstant = Record[1] & 1; 3933 bool explicitType = Record[1] & 2; 3934 unsigned AddressSpace; 3935 if (explicitType) { 3936 AddressSpace = Record[1] >> 2; 3937 } else { 3938 if (!Ty->isPointerTy()) 3939 return error("Invalid type for value"); 3940 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3941 TyID = getContainedTypeID(TyID); 3942 Ty = getTypeByID(TyID); 3943 if (!Ty) 3944 return error("Missing element type for old-style global"); 3945 } 3946 3947 uint64_t RawLinkage = Record[3]; 3948 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3949 MaybeAlign Alignment; 3950 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3951 return Err; 3952 std::string Section; 3953 if (Record[5]) { 3954 if (Record[5] - 1 >= SectionTable.size()) 3955 return error("Invalid ID"); 3956 Section = SectionTable[Record[5] - 1]; 3957 } 3958 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3959 // Local linkage must have default visibility. 3960 // auto-upgrade `hidden` and `protected` for old bitcode. 3961 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3962 Visibility = getDecodedVisibility(Record[6]); 3963 3964 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3965 if (Record.size() > 7) 3966 TLM = getDecodedThreadLocalMode(Record[7]); 3967 3968 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3969 if (Record.size() > 8) 3970 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3971 3972 bool ExternallyInitialized = false; 3973 if (Record.size() > 9) 3974 ExternallyInitialized = Record[9]; 3975 3976 GlobalVariable *NewGV = 3977 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3978 nullptr, TLM, AddressSpace, ExternallyInitialized); 3979 if (Alignment) 3980 NewGV->setAlignment(*Alignment); 3981 if (!Section.empty()) 3982 NewGV->setSection(Section); 3983 NewGV->setVisibility(Visibility); 3984 NewGV->setUnnamedAddr(UnnamedAddr); 3985 3986 if (Record.size() > 10) { 3987 // A GlobalValue with local linkage cannot have a DLL storage class. 3988 if (!NewGV->hasLocalLinkage()) { 3989 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3990 } 3991 } else { 3992 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3993 } 3994 3995 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3996 3997 // Remember which value to use for the global initializer. 3998 if (unsigned InitID = Record[2]) 3999 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4000 4001 if (Record.size() > 11) { 4002 if (unsigned ComdatID = Record[11]) { 4003 if (ComdatID > ComdatList.size()) 4004 return error("Invalid global variable comdat ID"); 4005 NewGV->setComdat(ComdatList[ComdatID - 1]); 4006 } 4007 } else if (hasImplicitComdat(RawLinkage)) { 4008 ImplicitComdatObjects.insert(NewGV); 4009 } 4010 4011 if (Record.size() > 12) { 4012 auto AS = getAttributes(Record[12]).getFnAttrs(); 4013 NewGV->setAttributes(AS); 4014 } 4015 4016 if (Record.size() > 13) { 4017 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4018 } 4019 inferDSOLocal(NewGV); 4020 4021 // Check whether we have enough values to read a partition name. 4022 if (Record.size() > 15) 4023 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4024 4025 if (Record.size() > 16 && Record[16]) { 4026 llvm::GlobalValue::SanitizerMetadata Meta = 4027 deserializeSanitizerMetadata(Record[16]); 4028 NewGV->setSanitizerMetadata(Meta); 4029 } 4030 4031 if (Record.size() > 17 && Record[17]) { 4032 if (auto CM = getDecodedCodeModel(Record[17])) 4033 NewGV->setCodeModel(*CM); 4034 else 4035 return error("Invalid global variable code model"); 4036 } 4037 4038 return Error::success(); 4039 } 4040 4041 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4042 if (ValueTypeCallback) { 4043 (*ValueTypeCallback)( 4044 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4045 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4046 } 4047 } 4048 4049 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4050 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4051 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4052 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4053 // v2: [strtab_offset, strtab_size, v1] 4054 StringRef Name; 4055 std::tie(Name, Record) = readNameFromStrtab(Record); 4056 4057 if (Record.size() < 8) 4058 return error("Invalid record"); 4059 unsigned FTyID = Record[0]; 4060 Type *FTy = getTypeByID(FTyID); 4061 if (!FTy) 4062 return error("Invalid record"); 4063 if (isa<PointerType>(FTy)) { 4064 FTyID = getContainedTypeID(FTyID, 0); 4065 FTy = getTypeByID(FTyID); 4066 if (!FTy) 4067 return error("Missing element type for old-style function"); 4068 } 4069 4070 if (!isa<FunctionType>(FTy)) 4071 return error("Invalid type for value"); 4072 auto CC = static_cast<CallingConv::ID>(Record[1]); 4073 if (CC & ~CallingConv::MaxID) 4074 return error("Invalid calling convention ID"); 4075 4076 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4077 if (Record.size() > 16) 4078 AddrSpace = Record[16]; 4079 4080 Function *Func = 4081 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4082 AddrSpace, Name, TheModule); 4083 4084 assert(Func->getFunctionType() == FTy && 4085 "Incorrect fully specified type provided for function"); 4086 FunctionTypeIDs[Func] = FTyID; 4087 4088 Func->setCallingConv(CC); 4089 bool isProto = Record[2]; 4090 uint64_t RawLinkage = Record[3]; 4091 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4092 Func->setAttributes(getAttributes(Record[4])); 4093 callValueTypeCallback(Func, FTyID); 4094 4095 // Upgrade any old-style byval or sret without a type by propagating the 4096 // argument's pointee type. There should be no opaque pointers where the byval 4097 // type is implicit. 4098 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4099 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4100 Attribute::InAlloca}) { 4101 if (!Func->hasParamAttribute(i, Kind)) 4102 continue; 4103 4104 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4105 continue; 4106 4107 Func->removeParamAttr(i, Kind); 4108 4109 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4110 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4111 if (!PtrEltTy) 4112 return error("Missing param element type for attribute upgrade"); 4113 4114 Attribute NewAttr; 4115 switch (Kind) { 4116 case Attribute::ByVal: 4117 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4118 break; 4119 case Attribute::StructRet: 4120 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4121 break; 4122 case Attribute::InAlloca: 4123 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4124 break; 4125 default: 4126 llvm_unreachable("not an upgraded type attribute"); 4127 } 4128 4129 Func->addParamAttr(i, NewAttr); 4130 } 4131 } 4132 4133 if (Func->getCallingConv() == CallingConv::X86_INTR && 4134 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4135 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4136 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4137 if (!ByValTy) 4138 return error("Missing param element type for x86_intrcc upgrade"); 4139 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4140 Func->addParamAttr(0, NewAttr); 4141 } 4142 4143 MaybeAlign Alignment; 4144 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4145 return Err; 4146 if (Alignment) 4147 Func->setAlignment(*Alignment); 4148 if (Record[6]) { 4149 if (Record[6] - 1 >= SectionTable.size()) 4150 return error("Invalid ID"); 4151 Func->setSection(SectionTable[Record[6] - 1]); 4152 } 4153 // Local linkage must have default visibility. 4154 // auto-upgrade `hidden` and `protected` for old bitcode. 4155 if (!Func->hasLocalLinkage()) 4156 Func->setVisibility(getDecodedVisibility(Record[7])); 4157 if (Record.size() > 8 && Record[8]) { 4158 if (Record[8] - 1 >= GCTable.size()) 4159 return error("Invalid ID"); 4160 Func->setGC(GCTable[Record[8] - 1]); 4161 } 4162 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4163 if (Record.size() > 9) 4164 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4165 Func->setUnnamedAddr(UnnamedAddr); 4166 4167 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4168 if (Record.size() > 10) 4169 OperandInfo.Prologue = Record[10]; 4170 4171 if (Record.size() > 11) { 4172 // A GlobalValue with local linkage cannot have a DLL storage class. 4173 if (!Func->hasLocalLinkage()) { 4174 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4175 } 4176 } else { 4177 upgradeDLLImportExportLinkage(Func, RawLinkage); 4178 } 4179 4180 if (Record.size() > 12) { 4181 if (unsigned ComdatID = Record[12]) { 4182 if (ComdatID > ComdatList.size()) 4183 return error("Invalid function comdat ID"); 4184 Func->setComdat(ComdatList[ComdatID - 1]); 4185 } 4186 } else if (hasImplicitComdat(RawLinkage)) { 4187 ImplicitComdatObjects.insert(Func); 4188 } 4189 4190 if (Record.size() > 13) 4191 OperandInfo.Prefix = Record[13]; 4192 4193 if (Record.size() > 14) 4194 OperandInfo.PersonalityFn = Record[14]; 4195 4196 if (Record.size() > 15) { 4197 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4198 } 4199 inferDSOLocal(Func); 4200 4201 // Record[16] is the address space number. 4202 4203 // Check whether we have enough values to read a partition name. Also make 4204 // sure Strtab has enough values. 4205 if (Record.size() > 18 && Strtab.data() && 4206 Record[17] + Record[18] <= Strtab.size()) { 4207 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4208 } 4209 4210 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4211 4212 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4213 FunctionOperands.push_back(OperandInfo); 4214 4215 // If this is a function with a body, remember the prototype we are 4216 // creating now, so that we can match up the body with them later. 4217 if (!isProto) { 4218 Func->setIsMaterializable(true); 4219 FunctionsWithBodies.push_back(Func); 4220 DeferredFunctionInfo[Func] = 0; 4221 } 4222 return Error::success(); 4223 } 4224 4225 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4226 unsigned BitCode, ArrayRef<uint64_t> Record) { 4227 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4228 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4229 // dllstorageclass, threadlocal, unnamed_addr, 4230 // preemption specifier] (name in VST) 4231 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4232 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4233 // preemption specifier] (name in VST) 4234 // v2: [strtab_offset, strtab_size, v1] 4235 StringRef Name; 4236 std::tie(Name, Record) = readNameFromStrtab(Record); 4237 4238 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4239 if (Record.size() < (3 + (unsigned)NewRecord)) 4240 return error("Invalid record"); 4241 unsigned OpNum = 0; 4242 unsigned TypeID = Record[OpNum++]; 4243 Type *Ty = getTypeByID(TypeID); 4244 if (!Ty) 4245 return error("Invalid record"); 4246 4247 unsigned AddrSpace; 4248 if (!NewRecord) { 4249 auto *PTy = dyn_cast<PointerType>(Ty); 4250 if (!PTy) 4251 return error("Invalid type for value"); 4252 AddrSpace = PTy->getAddressSpace(); 4253 TypeID = getContainedTypeID(TypeID); 4254 Ty = getTypeByID(TypeID); 4255 if (!Ty) 4256 return error("Missing element type for old-style indirect symbol"); 4257 } else { 4258 AddrSpace = Record[OpNum++]; 4259 } 4260 4261 auto Val = Record[OpNum++]; 4262 auto Linkage = Record[OpNum++]; 4263 GlobalValue *NewGA; 4264 if (BitCode == bitc::MODULE_CODE_ALIAS || 4265 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4266 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4267 TheModule); 4268 else 4269 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4270 nullptr, TheModule); 4271 4272 // Local linkage must have default visibility. 4273 // auto-upgrade `hidden` and `protected` for old bitcode. 4274 if (OpNum != Record.size()) { 4275 auto VisInd = OpNum++; 4276 if (!NewGA->hasLocalLinkage()) 4277 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4278 } 4279 if (BitCode == bitc::MODULE_CODE_ALIAS || 4280 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4281 if (OpNum != Record.size()) { 4282 auto S = Record[OpNum++]; 4283 // A GlobalValue with local linkage cannot have a DLL storage class. 4284 if (!NewGA->hasLocalLinkage()) 4285 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4286 } 4287 else 4288 upgradeDLLImportExportLinkage(NewGA, Linkage); 4289 if (OpNum != Record.size()) 4290 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4291 if (OpNum != Record.size()) 4292 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4293 } 4294 if (OpNum != Record.size()) 4295 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4296 inferDSOLocal(NewGA); 4297 4298 // Check whether we have enough values to read a partition name. 4299 if (OpNum + 1 < Record.size()) { 4300 // Check Strtab has enough values for the partition. 4301 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4302 return error("Malformed partition, too large."); 4303 NewGA->setPartition( 4304 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4305 OpNum += 2; 4306 } 4307 4308 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4309 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4310 return Error::success(); 4311 } 4312 4313 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4314 bool ShouldLazyLoadMetadata, 4315 ParserCallbacks Callbacks) { 4316 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4317 // has been set to true and we aren't attempting to preserve the existing 4318 // format in the bitcode (default action: load into the old debug format). 4319 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4320 TheModule->IsNewDbgInfoFormat = 4321 UseNewDbgInfoFormat && 4322 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4323 } 4324 4325 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4326 if (ResumeBit) { 4327 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4328 return JumpFailed; 4329 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4330 return Err; 4331 4332 SmallVector<uint64_t, 64> Record; 4333 4334 // Parts of bitcode parsing depend on the datalayout. Make sure we 4335 // finalize the datalayout before we run any of that code. 4336 bool ResolvedDataLayout = false; 4337 // In order to support importing modules with illegal data layout strings, 4338 // delay parsing the data layout string until after upgrades and overrides 4339 // have been applied, allowing to fix illegal data layout strings. 4340 // Initialize to the current module's layout string in case none is specified. 4341 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4342 4343 auto ResolveDataLayout = [&]() -> Error { 4344 if (ResolvedDataLayout) 4345 return Error::success(); 4346 4347 // Datalayout and triple can't be parsed after this point. 4348 ResolvedDataLayout = true; 4349 4350 // Auto-upgrade the layout string 4351 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4352 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4353 4354 // Apply override 4355 if (Callbacks.DataLayout) { 4356 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4357 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4358 TentativeDataLayoutStr = *LayoutOverride; 4359 } 4360 4361 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4362 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4363 if (!MaybeDL) 4364 return MaybeDL.takeError(); 4365 4366 TheModule->setDataLayout(MaybeDL.get()); 4367 return Error::success(); 4368 }; 4369 4370 // Read all the records for this module. 4371 while (true) { 4372 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4373 if (!MaybeEntry) 4374 return MaybeEntry.takeError(); 4375 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4376 4377 switch (Entry.Kind) { 4378 case BitstreamEntry::Error: 4379 return error("Malformed block"); 4380 case BitstreamEntry::EndBlock: 4381 if (Error Err = ResolveDataLayout()) 4382 return Err; 4383 return globalCleanup(); 4384 4385 case BitstreamEntry::SubBlock: 4386 switch (Entry.ID) { 4387 default: // Skip unknown content. 4388 if (Error Err = Stream.SkipBlock()) 4389 return Err; 4390 break; 4391 case bitc::BLOCKINFO_BLOCK_ID: 4392 if (Error Err = readBlockInfo()) 4393 return Err; 4394 break; 4395 case bitc::PARAMATTR_BLOCK_ID: 4396 if (Error Err = parseAttributeBlock()) 4397 return Err; 4398 break; 4399 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4400 if (Error Err = parseAttributeGroupBlock()) 4401 return Err; 4402 break; 4403 case bitc::TYPE_BLOCK_ID_NEW: 4404 if (Error Err = parseTypeTable()) 4405 return Err; 4406 break; 4407 case bitc::VALUE_SYMTAB_BLOCK_ID: 4408 if (!SeenValueSymbolTable) { 4409 // Either this is an old form VST without function index and an 4410 // associated VST forward declaration record (which would have caused 4411 // the VST to be jumped to and parsed before it was encountered 4412 // normally in the stream), or there were no function blocks to 4413 // trigger an earlier parsing of the VST. 4414 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4415 if (Error Err = parseValueSymbolTable()) 4416 return Err; 4417 SeenValueSymbolTable = true; 4418 } else { 4419 // We must have had a VST forward declaration record, which caused 4420 // the parser to jump to and parse the VST earlier. 4421 assert(VSTOffset > 0); 4422 if (Error Err = Stream.SkipBlock()) 4423 return Err; 4424 } 4425 break; 4426 case bitc::CONSTANTS_BLOCK_ID: 4427 if (Error Err = parseConstants()) 4428 return Err; 4429 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4430 return Err; 4431 break; 4432 case bitc::METADATA_BLOCK_ID: 4433 if (ShouldLazyLoadMetadata) { 4434 if (Error Err = rememberAndSkipMetadata()) 4435 return Err; 4436 break; 4437 } 4438 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4439 if (Error Err = MDLoader->parseModuleMetadata()) 4440 return Err; 4441 break; 4442 case bitc::METADATA_KIND_BLOCK_ID: 4443 if (Error Err = MDLoader->parseMetadataKinds()) 4444 return Err; 4445 break; 4446 case bitc::FUNCTION_BLOCK_ID: 4447 if (Error Err = ResolveDataLayout()) 4448 return Err; 4449 4450 // If this is the first function body we've seen, reverse the 4451 // FunctionsWithBodies list. 4452 if (!SeenFirstFunctionBody) { 4453 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4454 if (Error Err = globalCleanup()) 4455 return Err; 4456 SeenFirstFunctionBody = true; 4457 } 4458 4459 if (VSTOffset > 0) { 4460 // If we have a VST forward declaration record, make sure we 4461 // parse the VST now if we haven't already. It is needed to 4462 // set up the DeferredFunctionInfo vector for lazy reading. 4463 if (!SeenValueSymbolTable) { 4464 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4465 return Err; 4466 SeenValueSymbolTable = true; 4467 // Fall through so that we record the NextUnreadBit below. 4468 // This is necessary in case we have an anonymous function that 4469 // is later materialized. Since it will not have a VST entry we 4470 // need to fall back to the lazy parse to find its offset. 4471 } else { 4472 // If we have a VST forward declaration record, but have already 4473 // parsed the VST (just above, when the first function body was 4474 // encountered here), then we are resuming the parse after 4475 // materializing functions. The ResumeBit points to the 4476 // start of the last function block recorded in the 4477 // DeferredFunctionInfo map. Skip it. 4478 if (Error Err = Stream.SkipBlock()) 4479 return Err; 4480 continue; 4481 } 4482 } 4483 4484 // Support older bitcode files that did not have the function 4485 // index in the VST, nor a VST forward declaration record, as 4486 // well as anonymous functions that do not have VST entries. 4487 // Build the DeferredFunctionInfo vector on the fly. 4488 if (Error Err = rememberAndSkipFunctionBody()) 4489 return Err; 4490 4491 // Suspend parsing when we reach the function bodies. Subsequent 4492 // materialization calls will resume it when necessary. If the bitcode 4493 // file is old, the symbol table will be at the end instead and will not 4494 // have been seen yet. In this case, just finish the parse now. 4495 if (SeenValueSymbolTable) { 4496 NextUnreadBit = Stream.GetCurrentBitNo(); 4497 // After the VST has been parsed, we need to make sure intrinsic name 4498 // are auto-upgraded. 4499 return globalCleanup(); 4500 } 4501 break; 4502 case bitc::USELIST_BLOCK_ID: 4503 if (Error Err = parseUseLists()) 4504 return Err; 4505 break; 4506 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4507 if (Error Err = parseOperandBundleTags()) 4508 return Err; 4509 break; 4510 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4511 if (Error Err = parseSyncScopeNames()) 4512 return Err; 4513 break; 4514 } 4515 continue; 4516 4517 case BitstreamEntry::Record: 4518 // The interesting case. 4519 break; 4520 } 4521 4522 // Read a record. 4523 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4524 if (!MaybeBitCode) 4525 return MaybeBitCode.takeError(); 4526 switch (unsigned BitCode = MaybeBitCode.get()) { 4527 default: break; // Default behavior, ignore unknown content. 4528 case bitc::MODULE_CODE_VERSION: { 4529 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4530 if (!VersionOrErr) 4531 return VersionOrErr.takeError(); 4532 UseRelativeIDs = *VersionOrErr >= 1; 4533 break; 4534 } 4535 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4536 if (ResolvedDataLayout) 4537 return error("target triple too late in module"); 4538 std::string S; 4539 if (convertToString(Record, 0, S)) 4540 return error("Invalid record"); 4541 TheModule->setTargetTriple(S); 4542 break; 4543 } 4544 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4545 if (ResolvedDataLayout) 4546 return error("datalayout too late in module"); 4547 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4548 return error("Invalid record"); 4549 break; 4550 } 4551 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4552 std::string S; 4553 if (convertToString(Record, 0, S)) 4554 return error("Invalid record"); 4555 TheModule->setModuleInlineAsm(S); 4556 break; 4557 } 4558 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4559 // Deprecated, but still needed to read old bitcode files. 4560 std::string S; 4561 if (convertToString(Record, 0, S)) 4562 return error("Invalid record"); 4563 // Ignore value. 4564 break; 4565 } 4566 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4567 std::string S; 4568 if (convertToString(Record, 0, S)) 4569 return error("Invalid record"); 4570 SectionTable.push_back(S); 4571 break; 4572 } 4573 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4574 std::string S; 4575 if (convertToString(Record, 0, S)) 4576 return error("Invalid record"); 4577 GCTable.push_back(S); 4578 break; 4579 } 4580 case bitc::MODULE_CODE_COMDAT: 4581 if (Error Err = parseComdatRecord(Record)) 4582 return Err; 4583 break; 4584 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4585 // written by ThinLinkBitcodeWriter. See 4586 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4587 // record 4588 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4589 case bitc::MODULE_CODE_GLOBALVAR: 4590 if (Error Err = parseGlobalVarRecord(Record)) 4591 return Err; 4592 break; 4593 case bitc::MODULE_CODE_FUNCTION: 4594 if (Error Err = ResolveDataLayout()) 4595 return Err; 4596 if (Error Err = parseFunctionRecord(Record)) 4597 return Err; 4598 break; 4599 case bitc::MODULE_CODE_IFUNC: 4600 case bitc::MODULE_CODE_ALIAS: 4601 case bitc::MODULE_CODE_ALIAS_OLD: 4602 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4603 return Err; 4604 break; 4605 /// MODULE_CODE_VSTOFFSET: [offset] 4606 case bitc::MODULE_CODE_VSTOFFSET: 4607 if (Record.empty()) 4608 return error("Invalid record"); 4609 // Note that we subtract 1 here because the offset is relative to one word 4610 // before the start of the identification or module block, which was 4611 // historically always the start of the regular bitcode header. 4612 VSTOffset = Record[0] - 1; 4613 break; 4614 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4615 case bitc::MODULE_CODE_SOURCE_FILENAME: 4616 SmallString<128> ValueName; 4617 if (convertToString(Record, 0, ValueName)) 4618 return error("Invalid record"); 4619 TheModule->setSourceFileName(ValueName); 4620 break; 4621 } 4622 Record.clear(); 4623 } 4624 this->ValueTypeCallback = std::nullopt; 4625 return Error::success(); 4626 } 4627 4628 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4629 bool IsImporting, 4630 ParserCallbacks Callbacks) { 4631 TheModule = M; 4632 MetadataLoaderCallbacks MDCallbacks; 4633 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4634 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4635 return getContainedTypeID(I, J); 4636 }; 4637 MDCallbacks.MDType = Callbacks.MDType; 4638 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4639 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4640 } 4641 4642 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4643 if (!isa<PointerType>(PtrType)) 4644 return error("Load/Store operand is not a pointer type"); 4645 if (!PointerType::isLoadableOrStorableType(ValType)) 4646 return error("Cannot load/store from pointer"); 4647 return Error::success(); 4648 } 4649 4650 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4651 ArrayRef<unsigned> ArgTyIDs) { 4652 AttributeList Attrs = CB->getAttributes(); 4653 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4654 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4655 Attribute::InAlloca}) { 4656 if (!Attrs.hasParamAttr(i, Kind) || 4657 Attrs.getParamAttr(i, Kind).getValueAsType()) 4658 continue; 4659 4660 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4661 if (!PtrEltTy) 4662 return error("Missing element type for typed attribute upgrade"); 4663 4664 Attribute NewAttr; 4665 switch (Kind) { 4666 case Attribute::ByVal: 4667 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4668 break; 4669 case Attribute::StructRet: 4670 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4671 break; 4672 case Attribute::InAlloca: 4673 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4674 break; 4675 default: 4676 llvm_unreachable("not an upgraded type attribute"); 4677 } 4678 4679 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4680 } 4681 } 4682 4683 if (CB->isInlineAsm()) { 4684 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4685 unsigned ArgNo = 0; 4686 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4687 if (!CI.hasArg()) 4688 continue; 4689 4690 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4691 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4692 if (!ElemTy) 4693 return error("Missing element type for inline asm upgrade"); 4694 Attrs = Attrs.addParamAttribute( 4695 Context, ArgNo, 4696 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4697 } 4698 4699 ArgNo++; 4700 } 4701 } 4702 4703 switch (CB->getIntrinsicID()) { 4704 case Intrinsic::preserve_array_access_index: 4705 case Intrinsic::preserve_struct_access_index: 4706 case Intrinsic::aarch64_ldaxr: 4707 case Intrinsic::aarch64_ldxr: 4708 case Intrinsic::aarch64_stlxr: 4709 case Intrinsic::aarch64_stxr: 4710 case Intrinsic::arm_ldaex: 4711 case Intrinsic::arm_ldrex: 4712 case Intrinsic::arm_stlex: 4713 case Intrinsic::arm_strex: { 4714 unsigned ArgNo; 4715 switch (CB->getIntrinsicID()) { 4716 case Intrinsic::aarch64_stlxr: 4717 case Intrinsic::aarch64_stxr: 4718 case Intrinsic::arm_stlex: 4719 case Intrinsic::arm_strex: 4720 ArgNo = 1; 4721 break; 4722 default: 4723 ArgNo = 0; 4724 break; 4725 } 4726 if (!Attrs.getParamElementType(ArgNo)) { 4727 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4728 if (!ElTy) 4729 return error("Missing element type for elementtype upgrade"); 4730 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4731 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4732 } 4733 break; 4734 } 4735 default: 4736 break; 4737 } 4738 4739 CB->setAttributes(Attrs); 4740 return Error::success(); 4741 } 4742 4743 /// Lazily parse the specified function body block. 4744 Error BitcodeReader::parseFunctionBody(Function *F) { 4745 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4746 return Err; 4747 4748 // Unexpected unresolved metadata when parsing function. 4749 if (MDLoader->hasFwdRefs()) 4750 return error("Invalid function metadata: incoming forward references"); 4751 4752 InstructionList.clear(); 4753 unsigned ModuleValueListSize = ValueList.size(); 4754 unsigned ModuleMDLoaderSize = MDLoader->size(); 4755 4756 // Add all the function arguments to the value table. 4757 unsigned ArgNo = 0; 4758 unsigned FTyID = FunctionTypeIDs[F]; 4759 for (Argument &I : F->args()) { 4760 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4761 assert(I.getType() == getTypeByID(ArgTyID) && 4762 "Incorrect fully specified type for Function Argument"); 4763 ValueList.push_back(&I, ArgTyID); 4764 ++ArgNo; 4765 } 4766 unsigned NextValueNo = ValueList.size(); 4767 BasicBlock *CurBB = nullptr; 4768 unsigned CurBBNo = 0; 4769 // Block into which constant expressions from phi nodes are materialized. 4770 BasicBlock *PhiConstExprBB = nullptr; 4771 // Edge blocks for phi nodes into which constant expressions have been 4772 // expanded. 4773 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4774 ConstExprEdgeBBs; 4775 4776 DebugLoc LastLoc; 4777 auto getLastInstruction = [&]() -> Instruction * { 4778 if (CurBB && !CurBB->empty()) 4779 return &CurBB->back(); 4780 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4781 !FunctionBBs[CurBBNo - 1]->empty()) 4782 return &FunctionBBs[CurBBNo - 1]->back(); 4783 return nullptr; 4784 }; 4785 4786 std::vector<OperandBundleDef> OperandBundles; 4787 4788 // Read all the records. 4789 SmallVector<uint64_t, 64> Record; 4790 4791 while (true) { 4792 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4793 if (!MaybeEntry) 4794 return MaybeEntry.takeError(); 4795 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4796 4797 switch (Entry.Kind) { 4798 case BitstreamEntry::Error: 4799 return error("Malformed block"); 4800 case BitstreamEntry::EndBlock: 4801 goto OutOfRecordLoop; 4802 4803 case BitstreamEntry::SubBlock: 4804 switch (Entry.ID) { 4805 default: // Skip unknown content. 4806 if (Error Err = Stream.SkipBlock()) 4807 return Err; 4808 break; 4809 case bitc::CONSTANTS_BLOCK_ID: 4810 if (Error Err = parseConstants()) 4811 return Err; 4812 NextValueNo = ValueList.size(); 4813 break; 4814 case bitc::VALUE_SYMTAB_BLOCK_ID: 4815 if (Error Err = parseValueSymbolTable()) 4816 return Err; 4817 break; 4818 case bitc::METADATA_ATTACHMENT_ID: 4819 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4820 return Err; 4821 break; 4822 case bitc::METADATA_BLOCK_ID: 4823 assert(DeferredMetadataInfo.empty() && 4824 "Must read all module-level metadata before function-level"); 4825 if (Error Err = MDLoader->parseFunctionMetadata()) 4826 return Err; 4827 break; 4828 case bitc::USELIST_BLOCK_ID: 4829 if (Error Err = parseUseLists()) 4830 return Err; 4831 break; 4832 } 4833 continue; 4834 4835 case BitstreamEntry::Record: 4836 // The interesting case. 4837 break; 4838 } 4839 4840 // Read a record. 4841 Record.clear(); 4842 Instruction *I = nullptr; 4843 unsigned ResTypeID = InvalidTypeID; 4844 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4845 if (!MaybeBitCode) 4846 return MaybeBitCode.takeError(); 4847 switch (unsigned BitCode = MaybeBitCode.get()) { 4848 default: // Default behavior: reject 4849 return error("Invalid value"); 4850 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4851 if (Record.empty() || Record[0] == 0) 4852 return error("Invalid record"); 4853 // Create all the basic blocks for the function. 4854 FunctionBBs.resize(Record[0]); 4855 4856 // See if anything took the address of blocks in this function. 4857 auto BBFRI = BasicBlockFwdRefs.find(F); 4858 if (BBFRI == BasicBlockFwdRefs.end()) { 4859 for (BasicBlock *&BB : FunctionBBs) 4860 BB = BasicBlock::Create(Context, "", F); 4861 } else { 4862 auto &BBRefs = BBFRI->second; 4863 // Check for invalid basic block references. 4864 if (BBRefs.size() > FunctionBBs.size()) 4865 return error("Invalid ID"); 4866 assert(!BBRefs.empty() && "Unexpected empty array"); 4867 assert(!BBRefs.front() && "Invalid reference to entry block"); 4868 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4869 ++I) 4870 if (I < RE && BBRefs[I]) { 4871 BBRefs[I]->insertInto(F); 4872 FunctionBBs[I] = BBRefs[I]; 4873 } else { 4874 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4875 } 4876 4877 // Erase from the table. 4878 BasicBlockFwdRefs.erase(BBFRI); 4879 } 4880 4881 CurBB = FunctionBBs[0]; 4882 continue; 4883 } 4884 4885 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4886 // The record should not be emitted if it's an empty list. 4887 if (Record.empty()) 4888 return error("Invalid record"); 4889 // When we have the RARE case of a BlockAddress Constant that is not 4890 // scoped to the Function it refers to, we need to conservatively 4891 // materialize the referred to Function, regardless of whether or not 4892 // that Function will ultimately be linked, otherwise users of 4893 // BitcodeReader might start splicing out Function bodies such that we 4894 // might no longer be able to materialize the BlockAddress since the 4895 // BasicBlock (and entire body of the Function) the BlockAddress refers 4896 // to may have been moved. In the case that the user of BitcodeReader 4897 // decides ultimately not to link the Function body, materializing here 4898 // could be considered wasteful, but it's better than a deserialization 4899 // failure as described. This keeps BitcodeReader unaware of complex 4900 // linkage policy decisions such as those use by LTO, leaving those 4901 // decisions "one layer up." 4902 for (uint64_t ValID : Record) 4903 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4904 BackwardRefFunctions.push_back(F); 4905 else 4906 return error("Invalid record"); 4907 4908 continue; 4909 4910 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4911 // This record indicates that the last instruction is at the same 4912 // location as the previous instruction with a location. 4913 I = getLastInstruction(); 4914 4915 if (!I) 4916 return error("Invalid record"); 4917 I->setDebugLoc(LastLoc); 4918 I = nullptr; 4919 continue; 4920 4921 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4922 I = getLastInstruction(); 4923 if (!I || Record.size() < 4) 4924 return error("Invalid record"); 4925 4926 unsigned Line = Record[0], Col = Record[1]; 4927 unsigned ScopeID = Record[2], IAID = Record[3]; 4928 bool isImplicitCode = Record.size() == 5 && Record[4]; 4929 4930 MDNode *Scope = nullptr, *IA = nullptr; 4931 if (ScopeID) { 4932 Scope = dyn_cast_or_null<MDNode>( 4933 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4934 if (!Scope) 4935 return error("Invalid record"); 4936 } 4937 if (IAID) { 4938 IA = dyn_cast_or_null<MDNode>( 4939 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4940 if (!IA) 4941 return error("Invalid record"); 4942 } 4943 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4944 isImplicitCode); 4945 I->setDebugLoc(LastLoc); 4946 I = nullptr; 4947 continue; 4948 } 4949 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4950 unsigned OpNum = 0; 4951 Value *LHS; 4952 unsigned TypeID; 4953 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4954 OpNum+1 > Record.size()) 4955 return error("Invalid record"); 4956 4957 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4958 if (Opc == -1) 4959 return error("Invalid record"); 4960 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4961 ResTypeID = TypeID; 4962 InstructionList.push_back(I); 4963 if (OpNum < Record.size()) { 4964 if (isa<FPMathOperator>(I)) { 4965 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4966 if (FMF.any()) 4967 I->setFastMathFlags(FMF); 4968 } 4969 } 4970 break; 4971 } 4972 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4973 unsigned OpNum = 0; 4974 Value *LHS, *RHS; 4975 unsigned TypeID; 4976 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4977 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4978 CurBB) || 4979 OpNum+1 > Record.size()) 4980 return error("Invalid record"); 4981 4982 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4983 if (Opc == -1) 4984 return error("Invalid record"); 4985 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4986 ResTypeID = TypeID; 4987 InstructionList.push_back(I); 4988 if (OpNum < Record.size()) { 4989 if (Opc == Instruction::Add || 4990 Opc == Instruction::Sub || 4991 Opc == Instruction::Mul || 4992 Opc == Instruction::Shl) { 4993 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4994 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4995 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4996 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4997 } else if (Opc == Instruction::SDiv || 4998 Opc == Instruction::UDiv || 4999 Opc == Instruction::LShr || 5000 Opc == Instruction::AShr) { 5001 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5002 cast<BinaryOperator>(I)->setIsExact(true); 5003 } else if (Opc == Instruction::Or) { 5004 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5005 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5006 } else if (isa<FPMathOperator>(I)) { 5007 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5008 if (FMF.any()) 5009 I->setFastMathFlags(FMF); 5010 } 5011 } 5012 break; 5013 } 5014 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5015 unsigned OpNum = 0; 5016 Value *Op; 5017 unsigned OpTypeID; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5019 OpNum + 1 > Record.size()) 5020 return error("Invalid record"); 5021 5022 ResTypeID = Record[OpNum++]; 5023 Type *ResTy = getTypeByID(ResTypeID); 5024 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5025 5026 if (Opc == -1 || !ResTy) 5027 return error("Invalid record"); 5028 Instruction *Temp = nullptr; 5029 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5030 if (Temp) { 5031 InstructionList.push_back(Temp); 5032 assert(CurBB && "No current BB?"); 5033 Temp->insertInto(CurBB, CurBB->end()); 5034 } 5035 } else { 5036 auto CastOp = (Instruction::CastOps)Opc; 5037 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5038 return error("Invalid cast"); 5039 I = CastInst::Create(CastOp, Op, ResTy); 5040 } 5041 5042 if (OpNum < Record.size()) { 5043 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5044 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5045 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5046 } else if (Opc == Instruction::Trunc) { 5047 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5048 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5049 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5050 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5051 } 5052 } 5053 5054 InstructionList.push_back(I); 5055 break; 5056 } 5057 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5058 case bitc::FUNC_CODE_INST_GEP_OLD: 5059 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5060 unsigned OpNum = 0; 5061 5062 unsigned TyID; 5063 Type *Ty; 5064 bool InBounds; 5065 5066 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5067 InBounds = Record[OpNum++]; 5068 TyID = Record[OpNum++]; 5069 Ty = getTypeByID(TyID); 5070 } else { 5071 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 5072 TyID = InvalidTypeID; 5073 Ty = nullptr; 5074 } 5075 5076 Value *BasePtr; 5077 unsigned BasePtrTypeID; 5078 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5079 CurBB)) 5080 return error("Invalid record"); 5081 5082 if (!Ty) { 5083 TyID = getContainedTypeID(BasePtrTypeID); 5084 if (BasePtr->getType()->isVectorTy()) 5085 TyID = getContainedTypeID(TyID); 5086 Ty = getTypeByID(TyID); 5087 } 5088 5089 SmallVector<Value*, 16> GEPIdx; 5090 while (OpNum != Record.size()) { 5091 Value *Op; 5092 unsigned OpTypeID; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5094 return error("Invalid record"); 5095 GEPIdx.push_back(Op); 5096 } 5097 5098 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5099 5100 ResTypeID = TyID; 5101 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5102 auto GTI = std::next(gep_type_begin(I)); 5103 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5104 unsigned SubType = 0; 5105 if (GTI.isStruct()) { 5106 ConstantInt *IdxC = 5107 Idx->getType()->isVectorTy() 5108 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5109 : cast<ConstantInt>(Idx); 5110 SubType = IdxC->getZExtValue(); 5111 } 5112 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5113 ++GTI; 5114 } 5115 } 5116 5117 // At this point ResTypeID is the result element type. We need a pointer 5118 // or vector of pointer to it. 5119 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5120 if (I->getType()->isVectorTy()) 5121 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5122 5123 InstructionList.push_back(I); 5124 if (InBounds) 5125 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5126 break; 5127 } 5128 5129 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5130 // EXTRACTVAL: [opty, opval, n x indices] 5131 unsigned OpNum = 0; 5132 Value *Agg; 5133 unsigned AggTypeID; 5134 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5135 return error("Invalid record"); 5136 Type *Ty = Agg->getType(); 5137 5138 unsigned RecSize = Record.size(); 5139 if (OpNum == RecSize) 5140 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5141 5142 SmallVector<unsigned, 4> EXTRACTVALIdx; 5143 ResTypeID = AggTypeID; 5144 for (; OpNum != RecSize; ++OpNum) { 5145 bool IsArray = Ty->isArrayTy(); 5146 bool IsStruct = Ty->isStructTy(); 5147 uint64_t Index = Record[OpNum]; 5148 5149 if (!IsStruct && !IsArray) 5150 return error("EXTRACTVAL: Invalid type"); 5151 if ((unsigned)Index != Index) 5152 return error("Invalid value"); 5153 if (IsStruct && Index >= Ty->getStructNumElements()) 5154 return error("EXTRACTVAL: Invalid struct index"); 5155 if (IsArray && Index >= Ty->getArrayNumElements()) 5156 return error("EXTRACTVAL: Invalid array index"); 5157 EXTRACTVALIdx.push_back((unsigned)Index); 5158 5159 if (IsStruct) { 5160 Ty = Ty->getStructElementType(Index); 5161 ResTypeID = getContainedTypeID(ResTypeID, Index); 5162 } else { 5163 Ty = Ty->getArrayElementType(); 5164 ResTypeID = getContainedTypeID(ResTypeID); 5165 } 5166 } 5167 5168 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5169 InstructionList.push_back(I); 5170 break; 5171 } 5172 5173 case bitc::FUNC_CODE_INST_INSERTVAL: { 5174 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5175 unsigned OpNum = 0; 5176 Value *Agg; 5177 unsigned AggTypeID; 5178 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5179 return error("Invalid record"); 5180 Value *Val; 5181 unsigned ValTypeID; 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5183 return error("Invalid record"); 5184 5185 unsigned RecSize = Record.size(); 5186 if (OpNum == RecSize) 5187 return error("INSERTVAL: Invalid instruction with 0 indices"); 5188 5189 SmallVector<unsigned, 4> INSERTVALIdx; 5190 Type *CurTy = Agg->getType(); 5191 for (; OpNum != RecSize; ++OpNum) { 5192 bool IsArray = CurTy->isArrayTy(); 5193 bool IsStruct = CurTy->isStructTy(); 5194 uint64_t Index = Record[OpNum]; 5195 5196 if (!IsStruct && !IsArray) 5197 return error("INSERTVAL: Invalid type"); 5198 if ((unsigned)Index != Index) 5199 return error("Invalid value"); 5200 if (IsStruct && Index >= CurTy->getStructNumElements()) 5201 return error("INSERTVAL: Invalid struct index"); 5202 if (IsArray && Index >= CurTy->getArrayNumElements()) 5203 return error("INSERTVAL: Invalid array index"); 5204 5205 INSERTVALIdx.push_back((unsigned)Index); 5206 if (IsStruct) 5207 CurTy = CurTy->getStructElementType(Index); 5208 else 5209 CurTy = CurTy->getArrayElementType(); 5210 } 5211 5212 if (CurTy != Val->getType()) 5213 return error("Inserted value type doesn't match aggregate type"); 5214 5215 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5216 ResTypeID = AggTypeID; 5217 InstructionList.push_back(I); 5218 break; 5219 } 5220 5221 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5222 // obsolete form of select 5223 // handles select i1 ... in old bitcode 5224 unsigned OpNum = 0; 5225 Value *TrueVal, *FalseVal, *Cond; 5226 unsigned TypeID; 5227 Type *CondType = Type::getInt1Ty(Context); 5228 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5229 CurBB) || 5230 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5231 FalseVal, CurBB) || 5232 popValue(Record, OpNum, NextValueNo, CondType, 5233 getVirtualTypeID(CondType), Cond, CurBB)) 5234 return error("Invalid record"); 5235 5236 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5237 ResTypeID = TypeID; 5238 InstructionList.push_back(I); 5239 break; 5240 } 5241 5242 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5243 // new form of select 5244 // handles select i1 or select [N x i1] 5245 unsigned OpNum = 0; 5246 Value *TrueVal, *FalseVal, *Cond; 5247 unsigned ValTypeID, CondTypeID; 5248 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5249 CurBB) || 5250 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5251 FalseVal, CurBB) || 5252 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5253 return error("Invalid record"); 5254 5255 // select condition can be either i1 or [N x i1] 5256 if (VectorType* vector_type = 5257 dyn_cast<VectorType>(Cond->getType())) { 5258 // expect <n x i1> 5259 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5260 return error("Invalid type for value"); 5261 } else { 5262 // expect i1 5263 if (Cond->getType() != Type::getInt1Ty(Context)) 5264 return error("Invalid type for value"); 5265 } 5266 5267 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5268 ResTypeID = ValTypeID; 5269 InstructionList.push_back(I); 5270 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5271 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5272 if (FMF.any()) 5273 I->setFastMathFlags(FMF); 5274 } 5275 break; 5276 } 5277 5278 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5279 unsigned OpNum = 0; 5280 Value *Vec, *Idx; 5281 unsigned VecTypeID, IdxTypeID; 5282 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5283 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5284 return error("Invalid record"); 5285 if (!Vec->getType()->isVectorTy()) 5286 return error("Invalid type for value"); 5287 I = ExtractElementInst::Create(Vec, Idx); 5288 ResTypeID = getContainedTypeID(VecTypeID); 5289 InstructionList.push_back(I); 5290 break; 5291 } 5292 5293 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5294 unsigned OpNum = 0; 5295 Value *Vec, *Elt, *Idx; 5296 unsigned VecTypeID, IdxTypeID; 5297 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5298 return error("Invalid record"); 5299 if (!Vec->getType()->isVectorTy()) 5300 return error("Invalid type for value"); 5301 if (popValue(Record, OpNum, NextValueNo, 5302 cast<VectorType>(Vec->getType())->getElementType(), 5303 getContainedTypeID(VecTypeID), Elt, CurBB) || 5304 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5305 return error("Invalid record"); 5306 I = InsertElementInst::Create(Vec, Elt, Idx); 5307 ResTypeID = VecTypeID; 5308 InstructionList.push_back(I); 5309 break; 5310 } 5311 5312 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5313 unsigned OpNum = 0; 5314 Value *Vec1, *Vec2, *Mask; 5315 unsigned Vec1TypeID; 5316 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5317 CurBB) || 5318 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5319 Vec2, CurBB)) 5320 return error("Invalid record"); 5321 5322 unsigned MaskTypeID; 5323 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5324 return error("Invalid record"); 5325 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5326 return error("Invalid type for value"); 5327 5328 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5329 ResTypeID = 5330 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5331 InstructionList.push_back(I); 5332 break; 5333 } 5334 5335 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5336 // Old form of ICmp/FCmp returning bool 5337 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5338 // both legal on vectors but had different behaviour. 5339 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5340 // FCmp/ICmp returning bool or vector of bool 5341 5342 unsigned OpNum = 0; 5343 Value *LHS, *RHS; 5344 unsigned LHSTypeID; 5345 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5346 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5347 CurBB)) 5348 return error("Invalid record"); 5349 5350 if (OpNum >= Record.size()) 5351 return error( 5352 "Invalid record: operand number exceeded available operands"); 5353 5354 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5355 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5356 FastMathFlags FMF; 5357 if (IsFP && Record.size() > OpNum+1) 5358 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5359 5360 if (OpNum+1 != Record.size()) 5361 return error("Invalid record"); 5362 5363 if (IsFP) { 5364 if (!CmpInst::isFPPredicate(PredVal)) 5365 return error("Invalid fcmp predicate"); 5366 I = new FCmpInst(PredVal, LHS, RHS); 5367 } else { 5368 if (!CmpInst::isIntPredicate(PredVal)) 5369 return error("Invalid icmp predicate"); 5370 I = new ICmpInst(PredVal, LHS, RHS); 5371 } 5372 5373 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5374 if (LHS->getType()->isVectorTy()) 5375 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5376 5377 if (FMF.any()) 5378 I->setFastMathFlags(FMF); 5379 InstructionList.push_back(I); 5380 break; 5381 } 5382 5383 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5384 { 5385 unsigned Size = Record.size(); 5386 if (Size == 0) { 5387 I = ReturnInst::Create(Context); 5388 InstructionList.push_back(I); 5389 break; 5390 } 5391 5392 unsigned OpNum = 0; 5393 Value *Op = nullptr; 5394 unsigned OpTypeID; 5395 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5396 return error("Invalid record"); 5397 if (OpNum != Record.size()) 5398 return error("Invalid record"); 5399 5400 I = ReturnInst::Create(Context, Op); 5401 InstructionList.push_back(I); 5402 break; 5403 } 5404 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5405 if (Record.size() != 1 && Record.size() != 3) 5406 return error("Invalid record"); 5407 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5408 if (!TrueDest) 5409 return error("Invalid record"); 5410 5411 if (Record.size() == 1) { 5412 I = BranchInst::Create(TrueDest); 5413 InstructionList.push_back(I); 5414 } 5415 else { 5416 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5417 Type *CondType = Type::getInt1Ty(Context); 5418 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5419 getVirtualTypeID(CondType), CurBB); 5420 if (!FalseDest || !Cond) 5421 return error("Invalid record"); 5422 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5423 InstructionList.push_back(I); 5424 } 5425 break; 5426 } 5427 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5428 if (Record.size() != 1 && Record.size() != 2) 5429 return error("Invalid record"); 5430 unsigned Idx = 0; 5431 Type *TokenTy = Type::getTokenTy(Context); 5432 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5433 getVirtualTypeID(TokenTy), CurBB); 5434 if (!CleanupPad) 5435 return error("Invalid record"); 5436 BasicBlock *UnwindDest = nullptr; 5437 if (Record.size() == 2) { 5438 UnwindDest = getBasicBlock(Record[Idx++]); 5439 if (!UnwindDest) 5440 return error("Invalid record"); 5441 } 5442 5443 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5444 InstructionList.push_back(I); 5445 break; 5446 } 5447 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5448 if (Record.size() != 2) 5449 return error("Invalid record"); 5450 unsigned Idx = 0; 5451 Type *TokenTy = Type::getTokenTy(Context); 5452 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5453 getVirtualTypeID(TokenTy), CurBB); 5454 if (!CatchPad) 5455 return error("Invalid record"); 5456 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5457 if (!BB) 5458 return error("Invalid record"); 5459 5460 I = CatchReturnInst::Create(CatchPad, BB); 5461 InstructionList.push_back(I); 5462 break; 5463 } 5464 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5465 // We must have, at minimum, the outer scope and the number of arguments. 5466 if (Record.size() < 2) 5467 return error("Invalid record"); 5468 5469 unsigned Idx = 0; 5470 5471 Type *TokenTy = Type::getTokenTy(Context); 5472 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5473 getVirtualTypeID(TokenTy), CurBB); 5474 if (!ParentPad) 5475 return error("Invalid record"); 5476 5477 unsigned NumHandlers = Record[Idx++]; 5478 5479 SmallVector<BasicBlock *, 2> Handlers; 5480 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5481 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5482 if (!BB) 5483 return error("Invalid record"); 5484 Handlers.push_back(BB); 5485 } 5486 5487 BasicBlock *UnwindDest = nullptr; 5488 if (Idx + 1 == Record.size()) { 5489 UnwindDest = getBasicBlock(Record[Idx++]); 5490 if (!UnwindDest) 5491 return error("Invalid record"); 5492 } 5493 5494 if (Record.size() != Idx) 5495 return error("Invalid record"); 5496 5497 auto *CatchSwitch = 5498 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5499 for (BasicBlock *Handler : Handlers) 5500 CatchSwitch->addHandler(Handler); 5501 I = CatchSwitch; 5502 ResTypeID = getVirtualTypeID(I->getType()); 5503 InstructionList.push_back(I); 5504 break; 5505 } 5506 case bitc::FUNC_CODE_INST_CATCHPAD: 5507 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5508 // We must have, at minimum, the outer scope and the number of arguments. 5509 if (Record.size() < 2) 5510 return error("Invalid record"); 5511 5512 unsigned Idx = 0; 5513 5514 Type *TokenTy = Type::getTokenTy(Context); 5515 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5516 getVirtualTypeID(TokenTy), CurBB); 5517 if (!ParentPad) 5518 return error("Invald record"); 5519 5520 unsigned NumArgOperands = Record[Idx++]; 5521 5522 SmallVector<Value *, 2> Args; 5523 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5524 Value *Val; 5525 unsigned ValTypeID; 5526 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5527 return error("Invalid record"); 5528 Args.push_back(Val); 5529 } 5530 5531 if (Record.size() != Idx) 5532 return error("Invalid record"); 5533 5534 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5535 I = CleanupPadInst::Create(ParentPad, Args); 5536 else 5537 I = CatchPadInst::Create(ParentPad, Args); 5538 ResTypeID = getVirtualTypeID(I->getType()); 5539 InstructionList.push_back(I); 5540 break; 5541 } 5542 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5543 // Check magic 5544 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5545 // "New" SwitchInst format with case ranges. The changes to write this 5546 // format were reverted but we still recognize bitcode that uses it. 5547 // Hopefully someday we will have support for case ranges and can use 5548 // this format again. 5549 5550 unsigned OpTyID = Record[1]; 5551 Type *OpTy = getTypeByID(OpTyID); 5552 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5553 5554 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5555 BasicBlock *Default = getBasicBlock(Record[3]); 5556 if (!OpTy || !Cond || !Default) 5557 return error("Invalid record"); 5558 5559 unsigned NumCases = Record[4]; 5560 5561 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5562 InstructionList.push_back(SI); 5563 5564 unsigned CurIdx = 5; 5565 for (unsigned i = 0; i != NumCases; ++i) { 5566 SmallVector<ConstantInt*, 1> CaseVals; 5567 unsigned NumItems = Record[CurIdx++]; 5568 for (unsigned ci = 0; ci != NumItems; ++ci) { 5569 bool isSingleNumber = Record[CurIdx++]; 5570 5571 APInt Low; 5572 unsigned ActiveWords = 1; 5573 if (ValueBitWidth > 64) 5574 ActiveWords = Record[CurIdx++]; 5575 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5576 ValueBitWidth); 5577 CurIdx += ActiveWords; 5578 5579 if (!isSingleNumber) { 5580 ActiveWords = 1; 5581 if (ValueBitWidth > 64) 5582 ActiveWords = Record[CurIdx++]; 5583 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5584 ValueBitWidth); 5585 CurIdx += ActiveWords; 5586 5587 // FIXME: It is not clear whether values in the range should be 5588 // compared as signed or unsigned values. The partially 5589 // implemented changes that used this format in the past used 5590 // unsigned comparisons. 5591 for ( ; Low.ule(High); ++Low) 5592 CaseVals.push_back(ConstantInt::get(Context, Low)); 5593 } else 5594 CaseVals.push_back(ConstantInt::get(Context, Low)); 5595 } 5596 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5597 for (ConstantInt *Cst : CaseVals) 5598 SI->addCase(Cst, DestBB); 5599 } 5600 I = SI; 5601 break; 5602 } 5603 5604 // Old SwitchInst format without case ranges. 5605 5606 if (Record.size() < 3 || (Record.size() & 1) == 0) 5607 return error("Invalid record"); 5608 unsigned OpTyID = Record[0]; 5609 Type *OpTy = getTypeByID(OpTyID); 5610 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5611 BasicBlock *Default = getBasicBlock(Record[2]); 5612 if (!OpTy || !Cond || !Default) 5613 return error("Invalid record"); 5614 unsigned NumCases = (Record.size()-3)/2; 5615 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5616 InstructionList.push_back(SI); 5617 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5618 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5619 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5620 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5621 if (!CaseVal || !DestBB) { 5622 delete SI; 5623 return error("Invalid record"); 5624 } 5625 SI->addCase(CaseVal, DestBB); 5626 } 5627 I = SI; 5628 break; 5629 } 5630 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5631 if (Record.size() < 2) 5632 return error("Invalid record"); 5633 unsigned OpTyID = Record[0]; 5634 Type *OpTy = getTypeByID(OpTyID); 5635 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5636 if (!OpTy || !Address) 5637 return error("Invalid record"); 5638 unsigned NumDests = Record.size()-2; 5639 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5640 InstructionList.push_back(IBI); 5641 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5642 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5643 IBI->addDestination(DestBB); 5644 } else { 5645 delete IBI; 5646 return error("Invalid record"); 5647 } 5648 } 5649 I = IBI; 5650 break; 5651 } 5652 5653 case bitc::FUNC_CODE_INST_INVOKE: { 5654 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5655 if (Record.size() < 4) 5656 return error("Invalid record"); 5657 unsigned OpNum = 0; 5658 AttributeList PAL = getAttributes(Record[OpNum++]); 5659 unsigned CCInfo = Record[OpNum++]; 5660 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5661 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5662 5663 unsigned FTyID = InvalidTypeID; 5664 FunctionType *FTy = nullptr; 5665 if ((CCInfo >> 13) & 1) { 5666 FTyID = Record[OpNum++]; 5667 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5668 if (!FTy) 5669 return error("Explicit invoke type is not a function type"); 5670 } 5671 5672 Value *Callee; 5673 unsigned CalleeTypeID; 5674 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5675 CurBB)) 5676 return error("Invalid record"); 5677 5678 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5679 if (!CalleeTy) 5680 return error("Callee is not a pointer"); 5681 if (!FTy) { 5682 FTyID = getContainedTypeID(CalleeTypeID); 5683 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5684 if (!FTy) 5685 return error("Callee is not of pointer to function type"); 5686 } 5687 if (Record.size() < FTy->getNumParams() + OpNum) 5688 return error("Insufficient operands to call"); 5689 5690 SmallVector<Value*, 16> Ops; 5691 SmallVector<unsigned, 16> ArgTyIDs; 5692 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5693 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5694 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5695 ArgTyID, CurBB)); 5696 ArgTyIDs.push_back(ArgTyID); 5697 if (!Ops.back()) 5698 return error("Invalid record"); 5699 } 5700 5701 if (!FTy->isVarArg()) { 5702 if (Record.size() != OpNum) 5703 return error("Invalid record"); 5704 } else { 5705 // Read type/value pairs for varargs params. 5706 while (OpNum != Record.size()) { 5707 Value *Op; 5708 unsigned OpTypeID; 5709 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5710 return error("Invalid record"); 5711 Ops.push_back(Op); 5712 ArgTyIDs.push_back(OpTypeID); 5713 } 5714 } 5715 5716 // Upgrade the bundles if needed. 5717 if (!OperandBundles.empty()) 5718 UpgradeOperandBundles(OperandBundles); 5719 5720 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5721 OperandBundles); 5722 ResTypeID = getContainedTypeID(FTyID); 5723 OperandBundles.clear(); 5724 InstructionList.push_back(I); 5725 cast<InvokeInst>(I)->setCallingConv( 5726 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5727 cast<InvokeInst>(I)->setAttributes(PAL); 5728 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5729 I->deleteValue(); 5730 return Err; 5731 } 5732 5733 break; 5734 } 5735 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5736 unsigned Idx = 0; 5737 Value *Val = nullptr; 5738 unsigned ValTypeID; 5739 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5740 return error("Invalid record"); 5741 I = ResumeInst::Create(Val); 5742 InstructionList.push_back(I); 5743 break; 5744 } 5745 case bitc::FUNC_CODE_INST_CALLBR: { 5746 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5747 unsigned OpNum = 0; 5748 AttributeList PAL = getAttributes(Record[OpNum++]); 5749 unsigned CCInfo = Record[OpNum++]; 5750 5751 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5752 unsigned NumIndirectDests = Record[OpNum++]; 5753 SmallVector<BasicBlock *, 16> IndirectDests; 5754 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5755 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5756 5757 unsigned FTyID = InvalidTypeID; 5758 FunctionType *FTy = nullptr; 5759 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5760 FTyID = Record[OpNum++]; 5761 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5762 if (!FTy) 5763 return error("Explicit call type is not a function type"); 5764 } 5765 5766 Value *Callee; 5767 unsigned CalleeTypeID; 5768 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5769 CurBB)) 5770 return error("Invalid record"); 5771 5772 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5773 if (!OpTy) 5774 return error("Callee is not a pointer type"); 5775 if (!FTy) { 5776 FTyID = getContainedTypeID(CalleeTypeID); 5777 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5778 if (!FTy) 5779 return error("Callee is not of pointer to function type"); 5780 } 5781 if (Record.size() < FTy->getNumParams() + OpNum) 5782 return error("Insufficient operands to call"); 5783 5784 SmallVector<Value*, 16> Args; 5785 SmallVector<unsigned, 16> ArgTyIDs; 5786 // Read the fixed params. 5787 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5788 Value *Arg; 5789 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5790 if (FTy->getParamType(i)->isLabelTy()) 5791 Arg = getBasicBlock(Record[OpNum]); 5792 else 5793 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5794 ArgTyID, CurBB); 5795 if (!Arg) 5796 return error("Invalid record"); 5797 Args.push_back(Arg); 5798 ArgTyIDs.push_back(ArgTyID); 5799 } 5800 5801 // Read type/value pairs for varargs params. 5802 if (!FTy->isVarArg()) { 5803 if (OpNum != Record.size()) 5804 return error("Invalid record"); 5805 } else { 5806 while (OpNum != Record.size()) { 5807 Value *Op; 5808 unsigned OpTypeID; 5809 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5810 return error("Invalid record"); 5811 Args.push_back(Op); 5812 ArgTyIDs.push_back(OpTypeID); 5813 } 5814 } 5815 5816 // Upgrade the bundles if needed. 5817 if (!OperandBundles.empty()) 5818 UpgradeOperandBundles(OperandBundles); 5819 5820 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5821 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5822 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5823 return CI.Type == InlineAsm::isLabel; 5824 }; 5825 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5826 // Upgrade explicit blockaddress arguments to label constraints. 5827 // Verify that the last arguments are blockaddress arguments that 5828 // match the indirect destinations. Clang always generates callbr 5829 // in this form. We could support reordering with more effort. 5830 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5831 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5832 unsigned LabelNo = ArgNo - FirstBlockArg; 5833 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5834 if (!BA || BA->getFunction() != F || 5835 LabelNo > IndirectDests.size() || 5836 BA->getBasicBlock() != IndirectDests[LabelNo]) 5837 return error("callbr argument does not match indirect dest"); 5838 } 5839 5840 // Remove blockaddress arguments. 5841 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5842 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5843 5844 // Recreate the function type with less arguments. 5845 SmallVector<Type *> ArgTys; 5846 for (Value *Arg : Args) 5847 ArgTys.push_back(Arg->getType()); 5848 FTy = 5849 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5850 5851 // Update constraint string to use label constraints. 5852 std::string Constraints = IA->getConstraintString(); 5853 unsigned ArgNo = 0; 5854 size_t Pos = 0; 5855 for (const auto &CI : ConstraintInfo) { 5856 if (CI.hasArg()) { 5857 if (ArgNo >= FirstBlockArg) 5858 Constraints.insert(Pos, "!"); 5859 ++ArgNo; 5860 } 5861 5862 // Go to next constraint in string. 5863 Pos = Constraints.find(',', Pos); 5864 if (Pos == std::string::npos) 5865 break; 5866 ++Pos; 5867 } 5868 5869 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5870 IA->hasSideEffects(), IA->isAlignStack(), 5871 IA->getDialect(), IA->canThrow()); 5872 } 5873 } 5874 5875 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5876 OperandBundles); 5877 ResTypeID = getContainedTypeID(FTyID); 5878 OperandBundles.clear(); 5879 InstructionList.push_back(I); 5880 cast<CallBrInst>(I)->setCallingConv( 5881 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5882 cast<CallBrInst>(I)->setAttributes(PAL); 5883 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5884 I->deleteValue(); 5885 return Err; 5886 } 5887 break; 5888 } 5889 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5890 I = new UnreachableInst(Context); 5891 InstructionList.push_back(I); 5892 break; 5893 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5894 if (Record.empty()) 5895 return error("Invalid phi record"); 5896 // The first record specifies the type. 5897 unsigned TyID = Record[0]; 5898 Type *Ty = getTypeByID(TyID); 5899 if (!Ty) 5900 return error("Invalid phi record"); 5901 5902 // Phi arguments are pairs of records of [value, basic block]. 5903 // There is an optional final record for fast-math-flags if this phi has a 5904 // floating-point type. 5905 size_t NumArgs = (Record.size() - 1) / 2; 5906 PHINode *PN = PHINode::Create(Ty, NumArgs); 5907 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5908 PN->deleteValue(); 5909 return error("Invalid phi record"); 5910 } 5911 InstructionList.push_back(PN); 5912 5913 SmallDenseMap<BasicBlock *, Value *> Args; 5914 for (unsigned i = 0; i != NumArgs; i++) { 5915 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5916 if (!BB) { 5917 PN->deleteValue(); 5918 return error("Invalid phi BB"); 5919 } 5920 5921 // Phi nodes may contain the same predecessor multiple times, in which 5922 // case the incoming value must be identical. Directly reuse the already 5923 // seen value here, to avoid expanding a constant expression multiple 5924 // times. 5925 auto It = Args.find(BB); 5926 if (It != Args.end()) { 5927 PN->addIncoming(It->second, BB); 5928 continue; 5929 } 5930 5931 // If there already is a block for this edge (from a different phi), 5932 // use it. 5933 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5934 if (!EdgeBB) { 5935 // Otherwise, use a temporary block (that we will discard if it 5936 // turns out to be unnecessary). 5937 if (!PhiConstExprBB) 5938 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5939 EdgeBB = PhiConstExprBB; 5940 } 5941 5942 // With the new function encoding, it is possible that operands have 5943 // negative IDs (for forward references). Use a signed VBR 5944 // representation to keep the encoding small. 5945 Value *V; 5946 if (UseRelativeIDs) 5947 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5948 else 5949 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5950 if (!V) { 5951 PN->deleteValue(); 5952 PhiConstExprBB->eraseFromParent(); 5953 return error("Invalid phi record"); 5954 } 5955 5956 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5957 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5958 PhiConstExprBB = nullptr; 5959 } 5960 PN->addIncoming(V, BB); 5961 Args.insert({BB, V}); 5962 } 5963 I = PN; 5964 ResTypeID = TyID; 5965 5966 // If there are an even number of records, the final record must be FMF. 5967 if (Record.size() % 2 == 0) { 5968 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5969 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5970 if (FMF.any()) 5971 I->setFastMathFlags(FMF); 5972 } 5973 5974 break; 5975 } 5976 5977 case bitc::FUNC_CODE_INST_LANDINGPAD: 5978 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5979 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5980 unsigned Idx = 0; 5981 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5982 if (Record.size() < 3) 5983 return error("Invalid record"); 5984 } else { 5985 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5986 if (Record.size() < 4) 5987 return error("Invalid record"); 5988 } 5989 ResTypeID = Record[Idx++]; 5990 Type *Ty = getTypeByID(ResTypeID); 5991 if (!Ty) 5992 return error("Invalid record"); 5993 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5994 Value *PersFn = nullptr; 5995 unsigned PersFnTypeID; 5996 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5997 nullptr)) 5998 return error("Invalid record"); 5999 6000 if (!F->hasPersonalityFn()) 6001 F->setPersonalityFn(cast<Constant>(PersFn)); 6002 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6003 return error("Personality function mismatch"); 6004 } 6005 6006 bool IsCleanup = !!Record[Idx++]; 6007 unsigned NumClauses = Record[Idx++]; 6008 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6009 LP->setCleanup(IsCleanup); 6010 for (unsigned J = 0; J != NumClauses; ++J) { 6011 LandingPadInst::ClauseType CT = 6012 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6013 Value *Val; 6014 unsigned ValTypeID; 6015 6016 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6017 nullptr)) { 6018 delete LP; 6019 return error("Invalid record"); 6020 } 6021 6022 assert((CT != LandingPadInst::Catch || 6023 !isa<ArrayType>(Val->getType())) && 6024 "Catch clause has a invalid type!"); 6025 assert((CT != LandingPadInst::Filter || 6026 isa<ArrayType>(Val->getType())) && 6027 "Filter clause has invalid type!"); 6028 LP->addClause(cast<Constant>(Val)); 6029 } 6030 6031 I = LP; 6032 InstructionList.push_back(I); 6033 break; 6034 } 6035 6036 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6037 if (Record.size() != 4 && Record.size() != 5) 6038 return error("Invalid record"); 6039 using APV = AllocaPackedValues; 6040 const uint64_t Rec = Record[3]; 6041 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6042 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6043 unsigned TyID = Record[0]; 6044 Type *Ty = getTypeByID(TyID); 6045 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6046 TyID = getContainedTypeID(TyID); 6047 Ty = getTypeByID(TyID); 6048 if (!Ty) 6049 return error("Missing element type for old-style alloca"); 6050 } 6051 unsigned OpTyID = Record[1]; 6052 Type *OpTy = getTypeByID(OpTyID); 6053 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6054 MaybeAlign Align; 6055 uint64_t AlignExp = 6056 Bitfield::get<APV::AlignLower>(Rec) | 6057 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6058 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6059 return Err; 6060 } 6061 if (!Ty || !Size) 6062 return error("Invalid record"); 6063 6064 const DataLayout &DL = TheModule->getDataLayout(); 6065 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6066 6067 SmallPtrSet<Type *, 4> Visited; 6068 if (!Align && !Ty->isSized(&Visited)) 6069 return error("alloca of unsized type"); 6070 if (!Align) 6071 Align = DL.getPrefTypeAlign(Ty); 6072 6073 if (!Size->getType()->isIntegerTy()) 6074 return error("alloca element count must have integer type"); 6075 6076 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6077 AI->setUsedWithInAlloca(InAlloca); 6078 AI->setSwiftError(SwiftError); 6079 I = AI; 6080 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6081 InstructionList.push_back(I); 6082 break; 6083 } 6084 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6085 unsigned OpNum = 0; 6086 Value *Op; 6087 unsigned OpTypeID; 6088 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6089 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6090 return error("Invalid record"); 6091 6092 if (!isa<PointerType>(Op->getType())) 6093 return error("Load operand is not a pointer type"); 6094 6095 Type *Ty = nullptr; 6096 if (OpNum + 3 == Record.size()) { 6097 ResTypeID = Record[OpNum++]; 6098 Ty = getTypeByID(ResTypeID); 6099 } else { 6100 ResTypeID = getContainedTypeID(OpTypeID); 6101 Ty = getTypeByID(ResTypeID); 6102 } 6103 6104 if (!Ty) 6105 return error("Missing load type"); 6106 6107 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6108 return Err; 6109 6110 MaybeAlign Align; 6111 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6112 return Err; 6113 SmallPtrSet<Type *, 4> Visited; 6114 if (!Align && !Ty->isSized(&Visited)) 6115 return error("load of unsized type"); 6116 if (!Align) 6117 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6118 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6119 InstructionList.push_back(I); 6120 break; 6121 } 6122 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6123 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6124 unsigned OpNum = 0; 6125 Value *Op; 6126 unsigned OpTypeID; 6127 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6128 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6129 return error("Invalid record"); 6130 6131 if (!isa<PointerType>(Op->getType())) 6132 return error("Load operand is not a pointer type"); 6133 6134 Type *Ty = nullptr; 6135 if (OpNum + 5 == Record.size()) { 6136 ResTypeID = Record[OpNum++]; 6137 Ty = getTypeByID(ResTypeID); 6138 } else { 6139 ResTypeID = getContainedTypeID(OpTypeID); 6140 Ty = getTypeByID(ResTypeID); 6141 } 6142 6143 if (!Ty) 6144 return error("Missing atomic load type"); 6145 6146 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6147 return Err; 6148 6149 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6150 if (Ordering == AtomicOrdering::NotAtomic || 6151 Ordering == AtomicOrdering::Release || 6152 Ordering == AtomicOrdering::AcquireRelease) 6153 return error("Invalid record"); 6154 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6155 return error("Invalid record"); 6156 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6157 6158 MaybeAlign Align; 6159 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6160 return Err; 6161 if (!Align) 6162 return error("Alignment missing from atomic load"); 6163 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6164 InstructionList.push_back(I); 6165 break; 6166 } 6167 case bitc::FUNC_CODE_INST_STORE: 6168 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6169 unsigned OpNum = 0; 6170 Value *Val, *Ptr; 6171 unsigned PtrTypeID, ValTypeID; 6172 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6173 return error("Invalid record"); 6174 6175 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6176 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6177 return error("Invalid record"); 6178 } else { 6179 ValTypeID = getContainedTypeID(PtrTypeID); 6180 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6181 ValTypeID, Val, CurBB)) 6182 return error("Invalid record"); 6183 } 6184 6185 if (OpNum + 2 != Record.size()) 6186 return error("Invalid record"); 6187 6188 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6189 return Err; 6190 MaybeAlign Align; 6191 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6192 return Err; 6193 SmallPtrSet<Type *, 4> Visited; 6194 if (!Align && !Val->getType()->isSized(&Visited)) 6195 return error("store of unsized type"); 6196 if (!Align) 6197 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6198 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6199 InstructionList.push_back(I); 6200 break; 6201 } 6202 case bitc::FUNC_CODE_INST_STOREATOMIC: 6203 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6204 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6205 unsigned OpNum = 0; 6206 Value *Val, *Ptr; 6207 unsigned PtrTypeID, ValTypeID; 6208 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6209 !isa<PointerType>(Ptr->getType())) 6210 return error("Invalid record"); 6211 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6212 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6213 return error("Invalid record"); 6214 } else { 6215 ValTypeID = getContainedTypeID(PtrTypeID); 6216 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6217 ValTypeID, Val, CurBB)) 6218 return error("Invalid record"); 6219 } 6220 6221 if (OpNum + 4 != Record.size()) 6222 return error("Invalid record"); 6223 6224 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6225 return Err; 6226 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6227 if (Ordering == AtomicOrdering::NotAtomic || 6228 Ordering == AtomicOrdering::Acquire || 6229 Ordering == AtomicOrdering::AcquireRelease) 6230 return error("Invalid record"); 6231 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6232 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6233 return error("Invalid record"); 6234 6235 MaybeAlign Align; 6236 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6237 return Err; 6238 if (!Align) 6239 return error("Alignment missing from atomic store"); 6240 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6241 InstructionList.push_back(I); 6242 break; 6243 } 6244 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6245 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6246 // failure_ordering?, weak?] 6247 const size_t NumRecords = Record.size(); 6248 unsigned OpNum = 0; 6249 Value *Ptr = nullptr; 6250 unsigned PtrTypeID; 6251 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6252 return error("Invalid record"); 6253 6254 if (!isa<PointerType>(Ptr->getType())) 6255 return error("Cmpxchg operand is not a pointer type"); 6256 6257 Value *Cmp = nullptr; 6258 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6259 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6260 CmpTypeID, Cmp, CurBB)) 6261 return error("Invalid record"); 6262 6263 Value *New = nullptr; 6264 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6265 New, CurBB) || 6266 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6267 return error("Invalid record"); 6268 6269 const AtomicOrdering SuccessOrdering = 6270 getDecodedOrdering(Record[OpNum + 1]); 6271 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6272 SuccessOrdering == AtomicOrdering::Unordered) 6273 return error("Invalid record"); 6274 6275 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6276 6277 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6278 return Err; 6279 6280 const AtomicOrdering FailureOrdering = 6281 NumRecords < 7 6282 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6283 : getDecodedOrdering(Record[OpNum + 3]); 6284 6285 if (FailureOrdering == AtomicOrdering::NotAtomic || 6286 FailureOrdering == AtomicOrdering::Unordered) 6287 return error("Invalid record"); 6288 6289 const Align Alignment( 6290 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6291 6292 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6293 FailureOrdering, SSID); 6294 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6295 6296 if (NumRecords < 8) { 6297 // Before weak cmpxchgs existed, the instruction simply returned the 6298 // value loaded from memory, so bitcode files from that era will be 6299 // expecting the first component of a modern cmpxchg. 6300 I->insertInto(CurBB, CurBB->end()); 6301 I = ExtractValueInst::Create(I, 0); 6302 ResTypeID = CmpTypeID; 6303 } else { 6304 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6305 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6306 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6307 } 6308 6309 InstructionList.push_back(I); 6310 break; 6311 } 6312 case bitc::FUNC_CODE_INST_CMPXCHG: { 6313 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6314 // failure_ordering, weak, align?] 6315 const size_t NumRecords = Record.size(); 6316 unsigned OpNum = 0; 6317 Value *Ptr = nullptr; 6318 unsigned PtrTypeID; 6319 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6320 return error("Invalid record"); 6321 6322 if (!isa<PointerType>(Ptr->getType())) 6323 return error("Cmpxchg operand is not a pointer type"); 6324 6325 Value *Cmp = nullptr; 6326 unsigned CmpTypeID; 6327 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6328 return error("Invalid record"); 6329 6330 Value *Val = nullptr; 6331 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6332 CurBB)) 6333 return error("Invalid record"); 6334 6335 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6336 return error("Invalid record"); 6337 6338 const bool IsVol = Record[OpNum]; 6339 6340 const AtomicOrdering SuccessOrdering = 6341 getDecodedOrdering(Record[OpNum + 1]); 6342 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6343 return error("Invalid cmpxchg success ordering"); 6344 6345 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6346 6347 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6348 return Err; 6349 6350 const AtomicOrdering FailureOrdering = 6351 getDecodedOrdering(Record[OpNum + 3]); 6352 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6353 return error("Invalid cmpxchg failure ordering"); 6354 6355 const bool IsWeak = Record[OpNum + 4]; 6356 6357 MaybeAlign Alignment; 6358 6359 if (NumRecords == (OpNum + 6)) { 6360 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6361 return Err; 6362 } 6363 if (!Alignment) 6364 Alignment = 6365 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6366 6367 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6368 FailureOrdering, SSID); 6369 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6370 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6371 6372 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6373 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6374 6375 InstructionList.push_back(I); 6376 break; 6377 } 6378 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6379 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6380 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6381 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6382 const size_t NumRecords = Record.size(); 6383 unsigned OpNum = 0; 6384 6385 Value *Ptr = nullptr; 6386 unsigned PtrTypeID; 6387 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6388 return error("Invalid record"); 6389 6390 if (!isa<PointerType>(Ptr->getType())) 6391 return error("Invalid record"); 6392 6393 Value *Val = nullptr; 6394 unsigned ValTypeID = InvalidTypeID; 6395 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6396 ValTypeID = getContainedTypeID(PtrTypeID); 6397 if (popValue(Record, OpNum, NextValueNo, 6398 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6399 return error("Invalid record"); 6400 } else { 6401 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6402 return error("Invalid record"); 6403 } 6404 6405 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6406 return error("Invalid record"); 6407 6408 const AtomicRMWInst::BinOp Operation = 6409 getDecodedRMWOperation(Record[OpNum]); 6410 if (Operation < AtomicRMWInst::FIRST_BINOP || 6411 Operation > AtomicRMWInst::LAST_BINOP) 6412 return error("Invalid record"); 6413 6414 const bool IsVol = Record[OpNum + 1]; 6415 6416 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6417 if (Ordering == AtomicOrdering::NotAtomic || 6418 Ordering == AtomicOrdering::Unordered) 6419 return error("Invalid record"); 6420 6421 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6422 6423 MaybeAlign Alignment; 6424 6425 if (NumRecords == (OpNum + 5)) { 6426 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6427 return Err; 6428 } 6429 6430 if (!Alignment) 6431 Alignment = 6432 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6433 6434 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6435 ResTypeID = ValTypeID; 6436 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6437 6438 InstructionList.push_back(I); 6439 break; 6440 } 6441 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6442 if (2 != Record.size()) 6443 return error("Invalid record"); 6444 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6445 if (Ordering == AtomicOrdering::NotAtomic || 6446 Ordering == AtomicOrdering::Unordered || 6447 Ordering == AtomicOrdering::Monotonic) 6448 return error("Invalid record"); 6449 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6450 I = new FenceInst(Context, Ordering, SSID); 6451 InstructionList.push_back(I); 6452 break; 6453 } 6454 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6455 // DbgLabelRecords are placed after the Instructions that they are 6456 // attached to. 6457 SeenDebugRecord = true; 6458 Instruction *Inst = getLastInstruction(); 6459 if (!Inst) 6460 return error("Invalid dbg record: missing instruction"); 6461 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6462 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6463 Inst->getParent()->insertDbgRecordBefore( 6464 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6465 continue; // This isn't an instruction. 6466 } 6467 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6468 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6469 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6470 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6471 // DbgVariableRecords are placed after the Instructions that they are 6472 // attached to. 6473 SeenDebugRecord = true; 6474 Instruction *Inst = getLastInstruction(); 6475 if (!Inst) 6476 return error("Invalid dbg record: missing instruction"); 6477 6478 // First 3 fields are common to all kinds: 6479 // DILocation, DILocalVariable, DIExpression 6480 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6481 // ..., LocationMetadata 6482 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6483 // ..., Value 6484 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6485 // ..., LocationMetadata 6486 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6487 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6488 unsigned Slot = 0; 6489 // Common fields (0-2). 6490 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6491 DILocalVariable *Var = 6492 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6493 DIExpression *Expr = 6494 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6495 6496 // Union field (3: LocationMetadata | Value). 6497 Metadata *RawLocation = nullptr; 6498 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6499 Value *V = nullptr; 6500 unsigned TyID = 0; 6501 // We never expect to see a fwd reference value here because 6502 // use-before-defs are encoded with the standard non-abbrev record 6503 // type (they'd require encoding the type too, and they're rare). As a 6504 // result, getValueTypePair only ever increments Slot by one here (once 6505 // for the value, never twice for value and type). 6506 unsigned SlotBefore = Slot; 6507 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6508 return error("Invalid dbg record: invalid value"); 6509 (void)SlotBefore; 6510 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6511 RawLocation = ValueAsMetadata::get(V); 6512 } else { 6513 RawLocation = getFnMetadataByID(Record[Slot++]); 6514 } 6515 6516 DbgVariableRecord *DVR = nullptr; 6517 switch (BitCode) { 6518 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6519 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6520 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6521 DbgVariableRecord::LocationType::Value); 6522 break; 6523 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6524 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6525 DbgVariableRecord::LocationType::Declare); 6526 break; 6527 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6528 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6529 DIExpression *AddrExpr = 6530 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6531 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6532 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6533 DIL); 6534 break; 6535 } 6536 default: 6537 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6538 } 6539 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6540 continue; // This isn't an instruction. 6541 } 6542 case bitc::FUNC_CODE_INST_CALL: { 6543 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6544 if (Record.size() < 3) 6545 return error("Invalid record"); 6546 6547 unsigned OpNum = 0; 6548 AttributeList PAL = getAttributes(Record[OpNum++]); 6549 unsigned CCInfo = Record[OpNum++]; 6550 6551 FastMathFlags FMF; 6552 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6553 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6554 if (!FMF.any()) 6555 return error("Fast math flags indicator set for call with no FMF"); 6556 } 6557 6558 unsigned FTyID = InvalidTypeID; 6559 FunctionType *FTy = nullptr; 6560 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6561 FTyID = Record[OpNum++]; 6562 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6563 if (!FTy) 6564 return error("Explicit call type is not a function type"); 6565 } 6566 6567 Value *Callee; 6568 unsigned CalleeTypeID; 6569 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6570 CurBB)) 6571 return error("Invalid record"); 6572 6573 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6574 if (!OpTy) 6575 return error("Callee is not a pointer type"); 6576 if (!FTy) { 6577 FTyID = getContainedTypeID(CalleeTypeID); 6578 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6579 if (!FTy) 6580 return error("Callee is not of pointer to function type"); 6581 } 6582 if (Record.size() < FTy->getNumParams() + OpNum) 6583 return error("Insufficient operands to call"); 6584 6585 SmallVector<Value*, 16> Args; 6586 SmallVector<unsigned, 16> ArgTyIDs; 6587 // Read the fixed params. 6588 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6589 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6590 if (FTy->getParamType(i)->isLabelTy()) 6591 Args.push_back(getBasicBlock(Record[OpNum])); 6592 else 6593 Args.push_back(getValue(Record, OpNum, NextValueNo, 6594 FTy->getParamType(i), ArgTyID, CurBB)); 6595 ArgTyIDs.push_back(ArgTyID); 6596 if (!Args.back()) 6597 return error("Invalid record"); 6598 } 6599 6600 // Read type/value pairs for varargs params. 6601 if (!FTy->isVarArg()) { 6602 if (OpNum != Record.size()) 6603 return error("Invalid record"); 6604 } else { 6605 while (OpNum != Record.size()) { 6606 Value *Op; 6607 unsigned OpTypeID; 6608 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6609 return error("Invalid record"); 6610 Args.push_back(Op); 6611 ArgTyIDs.push_back(OpTypeID); 6612 } 6613 } 6614 6615 // Upgrade the bundles if needed. 6616 if (!OperandBundles.empty()) 6617 UpgradeOperandBundles(OperandBundles); 6618 6619 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6620 ResTypeID = getContainedTypeID(FTyID); 6621 OperandBundles.clear(); 6622 InstructionList.push_back(I); 6623 cast<CallInst>(I)->setCallingConv( 6624 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6625 CallInst::TailCallKind TCK = CallInst::TCK_None; 6626 if (CCInfo & (1 << bitc::CALL_TAIL)) 6627 TCK = CallInst::TCK_Tail; 6628 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6629 TCK = CallInst::TCK_MustTail; 6630 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6631 TCK = CallInst::TCK_NoTail; 6632 cast<CallInst>(I)->setTailCallKind(TCK); 6633 cast<CallInst>(I)->setAttributes(PAL); 6634 if (isa<DbgInfoIntrinsic>(I)) 6635 SeenDebugIntrinsic = true; 6636 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6637 I->deleteValue(); 6638 return Err; 6639 } 6640 if (FMF.any()) { 6641 if (!isa<FPMathOperator>(I)) 6642 return error("Fast-math-flags specified for call without " 6643 "floating-point scalar or vector return type"); 6644 I->setFastMathFlags(FMF); 6645 } 6646 break; 6647 } 6648 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6649 if (Record.size() < 3) 6650 return error("Invalid record"); 6651 unsigned OpTyID = Record[0]; 6652 Type *OpTy = getTypeByID(OpTyID); 6653 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6654 ResTypeID = Record[2]; 6655 Type *ResTy = getTypeByID(ResTypeID); 6656 if (!OpTy || !Op || !ResTy) 6657 return error("Invalid record"); 6658 I = new VAArgInst(Op, ResTy); 6659 InstructionList.push_back(I); 6660 break; 6661 } 6662 6663 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6664 // A call or an invoke can be optionally prefixed with some variable 6665 // number of operand bundle blocks. These blocks are read into 6666 // OperandBundles and consumed at the next call or invoke instruction. 6667 6668 if (Record.empty() || Record[0] >= BundleTags.size()) 6669 return error("Invalid record"); 6670 6671 std::vector<Value *> Inputs; 6672 6673 unsigned OpNum = 1; 6674 while (OpNum != Record.size()) { 6675 Value *Op; 6676 unsigned OpTypeID; 6677 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6678 return error("Invalid record"); 6679 Inputs.push_back(Op); 6680 } 6681 6682 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6683 continue; 6684 } 6685 6686 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6687 unsigned OpNum = 0; 6688 Value *Op = nullptr; 6689 unsigned OpTypeID; 6690 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6691 return error("Invalid record"); 6692 if (OpNum != Record.size()) 6693 return error("Invalid record"); 6694 6695 I = new FreezeInst(Op); 6696 ResTypeID = OpTypeID; 6697 InstructionList.push_back(I); 6698 break; 6699 } 6700 } 6701 6702 // Add instruction to end of current BB. If there is no current BB, reject 6703 // this file. 6704 if (!CurBB) { 6705 I->deleteValue(); 6706 return error("Invalid instruction with no BB"); 6707 } 6708 if (!OperandBundles.empty()) { 6709 I->deleteValue(); 6710 return error("Operand bundles found with no consumer"); 6711 } 6712 I->insertInto(CurBB, CurBB->end()); 6713 6714 // If this was a terminator instruction, move to the next block. 6715 if (I->isTerminator()) { 6716 ++CurBBNo; 6717 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6718 } 6719 6720 // Non-void values get registered in the value table for future use. 6721 if (!I->getType()->isVoidTy()) { 6722 assert(I->getType() == getTypeByID(ResTypeID) && 6723 "Incorrect result type ID"); 6724 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6725 return Err; 6726 } 6727 } 6728 6729 OutOfRecordLoop: 6730 6731 if (!OperandBundles.empty()) 6732 return error("Operand bundles found with no consumer"); 6733 6734 // Check the function list for unresolved values. 6735 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6736 if (!A->getParent()) { 6737 // We found at least one unresolved value. Nuke them all to avoid leaks. 6738 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6739 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6740 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6741 delete A; 6742 } 6743 } 6744 return error("Never resolved value found in function"); 6745 } 6746 } 6747 6748 // Unexpected unresolved metadata about to be dropped. 6749 if (MDLoader->hasFwdRefs()) 6750 return error("Invalid function metadata: outgoing forward refs"); 6751 6752 if (PhiConstExprBB) 6753 PhiConstExprBB->eraseFromParent(); 6754 6755 for (const auto &Pair : ConstExprEdgeBBs) { 6756 BasicBlock *From = Pair.first.first; 6757 BasicBlock *To = Pair.first.second; 6758 BasicBlock *EdgeBB = Pair.second; 6759 BranchInst::Create(To, EdgeBB); 6760 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6761 To->replacePhiUsesWith(From, EdgeBB); 6762 EdgeBB->moveBefore(To); 6763 } 6764 6765 // Trim the value list down to the size it was before we parsed this function. 6766 ValueList.shrinkTo(ModuleValueListSize); 6767 MDLoader->shrinkTo(ModuleMDLoaderSize); 6768 std::vector<BasicBlock*>().swap(FunctionBBs); 6769 return Error::success(); 6770 } 6771 6772 /// Find the function body in the bitcode stream 6773 Error BitcodeReader::findFunctionInStream( 6774 Function *F, 6775 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6776 while (DeferredFunctionInfoIterator->second == 0) { 6777 // This is the fallback handling for the old format bitcode that 6778 // didn't contain the function index in the VST, or when we have 6779 // an anonymous function which would not have a VST entry. 6780 // Assert that we have one of those two cases. 6781 assert(VSTOffset == 0 || !F->hasName()); 6782 // Parse the next body in the stream and set its position in the 6783 // DeferredFunctionInfo map. 6784 if (Error Err = rememberAndSkipFunctionBodies()) 6785 return Err; 6786 } 6787 return Error::success(); 6788 } 6789 6790 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6791 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6792 return SyncScope::ID(Val); 6793 if (Val >= SSIDs.size()) 6794 return SyncScope::System; // Map unknown synchronization scopes to system. 6795 return SSIDs[Val]; 6796 } 6797 6798 //===----------------------------------------------------------------------===// 6799 // GVMaterializer implementation 6800 //===----------------------------------------------------------------------===// 6801 6802 Error BitcodeReader::materialize(GlobalValue *GV) { 6803 Function *F = dyn_cast<Function>(GV); 6804 // If it's not a function or is already material, ignore the request. 6805 if (!F || !F->isMaterializable()) 6806 return Error::success(); 6807 6808 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6809 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6810 // If its position is recorded as 0, its body is somewhere in the stream 6811 // but we haven't seen it yet. 6812 if (DFII->second == 0) 6813 if (Error Err = findFunctionInStream(F, DFII)) 6814 return Err; 6815 6816 // Materialize metadata before parsing any function bodies. 6817 if (Error Err = materializeMetadata()) 6818 return Err; 6819 6820 // Move the bit stream to the saved position of the deferred function body. 6821 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6822 return JumpFailed; 6823 6824 // Regardless of the debug info format we want to end up in, we need 6825 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6826 F->IsNewDbgInfoFormat = true; 6827 6828 if (Error Err = parseFunctionBody(F)) 6829 return Err; 6830 F->setIsMaterializable(false); 6831 6832 // All parsed Functions should load into the debug info format dictated by the 6833 // Module, unless we're attempting to preserve the input debug info format. 6834 if (SeenDebugIntrinsic && SeenDebugRecord) 6835 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6836 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6837 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6838 bool NewDbgInfoFormatDesired = 6839 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6840 if (SeenAnyDebugInfo) { 6841 UseNewDbgInfoFormat = SeenDebugRecord; 6842 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6843 WriteNewDbgInfoFormat = SeenDebugRecord; 6844 } 6845 // If the module's debug info format doesn't match the observed input 6846 // format, then set its format now; we don't need to call the conversion 6847 // function because there must be no existing intrinsics to convert. 6848 // Otherwise, just set the format on this function now. 6849 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6850 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6851 else 6852 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6853 } else { 6854 // If we aren't preserving formats, we use the Module flag to get our 6855 // desired format instead of reading flags, in case we are lazy-loading and 6856 // the format of the module has been changed since it was set by the flags. 6857 // We only need to convert debug info here if we have debug records but 6858 // desire the intrinsic format; everything else is a no-op or handled by the 6859 // autoupgrader. 6860 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6861 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6862 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6863 else 6864 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6865 } 6866 6867 if (StripDebugInfo) 6868 stripDebugInfo(*F); 6869 6870 // Upgrade any old intrinsic calls in the function. 6871 for (auto &I : UpgradedIntrinsics) { 6872 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6873 if (CallInst *CI = dyn_cast<CallInst>(U)) 6874 UpgradeIntrinsicCall(CI, I.second); 6875 } 6876 6877 // Finish fn->subprogram upgrade for materialized functions. 6878 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6879 F->setSubprogram(SP); 6880 6881 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6882 if (!MDLoader->isStrippingTBAA()) { 6883 for (auto &I : instructions(F)) { 6884 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6885 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6886 continue; 6887 MDLoader->setStripTBAA(true); 6888 stripTBAA(F->getParent()); 6889 } 6890 } 6891 6892 for (auto &I : instructions(F)) { 6893 // "Upgrade" older incorrect branch weights by dropping them. 6894 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6895 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6896 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6897 StringRef ProfName = MDS->getString(); 6898 // Check consistency of !prof branch_weights metadata. 6899 if (!ProfName.equals("branch_weights")) 6900 continue; 6901 unsigned ExpectedNumOperands = 0; 6902 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6903 ExpectedNumOperands = BI->getNumSuccessors(); 6904 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6905 ExpectedNumOperands = SI->getNumSuccessors(); 6906 else if (isa<CallInst>(&I)) 6907 ExpectedNumOperands = 1; 6908 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6909 ExpectedNumOperands = IBI->getNumDestinations(); 6910 else if (isa<SelectInst>(&I)) 6911 ExpectedNumOperands = 2; 6912 else 6913 continue; // ignore and continue. 6914 6915 // If branch weight doesn't match, just strip branch weight. 6916 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6917 I.setMetadata(LLVMContext::MD_prof, nullptr); 6918 } 6919 } 6920 6921 // Remove incompatible attributes on function calls. 6922 if (auto *CI = dyn_cast<CallBase>(&I)) { 6923 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6924 CI->getFunctionType()->getReturnType())); 6925 6926 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6927 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6928 CI->getArgOperand(ArgNo)->getType())); 6929 } 6930 } 6931 6932 // Look for functions that rely on old function attribute behavior. 6933 UpgradeFunctionAttributes(*F); 6934 6935 // Bring in any functions that this function forward-referenced via 6936 // blockaddresses. 6937 return materializeForwardReferencedFunctions(); 6938 } 6939 6940 Error BitcodeReader::materializeModule() { 6941 if (Error Err = materializeMetadata()) 6942 return Err; 6943 6944 // Promise to materialize all forward references. 6945 WillMaterializeAllForwardRefs = true; 6946 6947 // Iterate over the module, deserializing any functions that are still on 6948 // disk. 6949 for (Function &F : *TheModule) { 6950 if (Error Err = materialize(&F)) 6951 return Err; 6952 } 6953 // At this point, if there are any function bodies, parse the rest of 6954 // the bits in the module past the last function block we have recorded 6955 // through either lazy scanning or the VST. 6956 if (LastFunctionBlockBit || NextUnreadBit) 6957 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6958 ? LastFunctionBlockBit 6959 : NextUnreadBit)) 6960 return Err; 6961 6962 // Check that all block address forward references got resolved (as we 6963 // promised above). 6964 if (!BasicBlockFwdRefs.empty()) 6965 return error("Never resolved function from blockaddress"); 6966 6967 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6968 // delete the old functions to clean up. We can't do this unless the entire 6969 // module is materialized because there could always be another function body 6970 // with calls to the old function. 6971 for (auto &I : UpgradedIntrinsics) { 6972 for (auto *U : I.first->users()) { 6973 if (CallInst *CI = dyn_cast<CallInst>(U)) 6974 UpgradeIntrinsicCall(CI, I.second); 6975 } 6976 if (!I.first->use_empty()) 6977 I.first->replaceAllUsesWith(I.second); 6978 I.first->eraseFromParent(); 6979 } 6980 UpgradedIntrinsics.clear(); 6981 6982 UpgradeDebugInfo(*TheModule); 6983 6984 UpgradeModuleFlags(*TheModule); 6985 6986 UpgradeARCRuntime(*TheModule); 6987 6988 return Error::success(); 6989 } 6990 6991 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6992 return IdentifiedStructTypes; 6993 } 6994 6995 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6996 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6997 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6998 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6999 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7000 7001 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7002 TheIndex.addModule(ModulePath); 7003 } 7004 7005 ModuleSummaryIndex::ModuleInfo * 7006 ModuleSummaryIndexBitcodeReader::getThisModule() { 7007 return TheIndex.getModule(ModulePath); 7008 } 7009 7010 template <bool AllowNullValueInfo> 7011 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7012 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7013 auto VGI = ValueIdToValueInfoMap[ValueId]; 7014 // We can have a null value info for memprof callsite info records in 7015 // distributed ThinLTO index files when the callee function summary is not 7016 // included in the index. The bitcode writer records 0 in that case, 7017 // and the caller of this helper will set AllowNullValueInfo to true. 7018 assert(AllowNullValueInfo || std::get<0>(VGI)); 7019 return VGI; 7020 } 7021 7022 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7023 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7024 StringRef SourceFileName) { 7025 std::string GlobalId = 7026 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7027 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7028 auto OriginalNameID = ValueGUID; 7029 if (GlobalValue::isLocalLinkage(Linkage)) 7030 OriginalNameID = GlobalValue::getGUID(ValueName); 7031 if (PrintSummaryGUIDs) 7032 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7033 << ValueName << "\n"; 7034 7035 // UseStrtab is false for legacy summary formats and value names are 7036 // created on stack. In that case we save the name in a string saver in 7037 // the index so that the value name can be recorded. 7038 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7039 TheIndex.getOrInsertValueInfo( 7040 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7041 OriginalNameID, ValueGUID); 7042 } 7043 7044 // Specialized value symbol table parser used when reading module index 7045 // blocks where we don't actually create global values. The parsed information 7046 // is saved in the bitcode reader for use when later parsing summaries. 7047 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7048 uint64_t Offset, 7049 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7050 // With a strtab the VST is not required to parse the summary. 7051 if (UseStrtab) 7052 return Error::success(); 7053 7054 assert(Offset > 0 && "Expected non-zero VST offset"); 7055 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7056 if (!MaybeCurrentBit) 7057 return MaybeCurrentBit.takeError(); 7058 uint64_t CurrentBit = MaybeCurrentBit.get(); 7059 7060 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7061 return Err; 7062 7063 SmallVector<uint64_t, 64> Record; 7064 7065 // Read all the records for this value table. 7066 SmallString<128> ValueName; 7067 7068 while (true) { 7069 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7070 if (!MaybeEntry) 7071 return MaybeEntry.takeError(); 7072 BitstreamEntry Entry = MaybeEntry.get(); 7073 7074 switch (Entry.Kind) { 7075 case BitstreamEntry::SubBlock: // Handled for us already. 7076 case BitstreamEntry::Error: 7077 return error("Malformed block"); 7078 case BitstreamEntry::EndBlock: 7079 // Done parsing VST, jump back to wherever we came from. 7080 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7081 return JumpFailed; 7082 return Error::success(); 7083 case BitstreamEntry::Record: 7084 // The interesting case. 7085 break; 7086 } 7087 7088 // Read a record. 7089 Record.clear(); 7090 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7091 if (!MaybeRecord) 7092 return MaybeRecord.takeError(); 7093 switch (MaybeRecord.get()) { 7094 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7095 break; 7096 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7097 if (convertToString(Record, 1, ValueName)) 7098 return error("Invalid record"); 7099 unsigned ValueID = Record[0]; 7100 assert(!SourceFileName.empty()); 7101 auto VLI = ValueIdToLinkageMap.find(ValueID); 7102 assert(VLI != ValueIdToLinkageMap.end() && 7103 "No linkage found for VST entry?"); 7104 auto Linkage = VLI->second; 7105 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7106 ValueName.clear(); 7107 break; 7108 } 7109 case bitc::VST_CODE_FNENTRY: { 7110 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7111 if (convertToString(Record, 2, ValueName)) 7112 return error("Invalid record"); 7113 unsigned ValueID = Record[0]; 7114 assert(!SourceFileName.empty()); 7115 auto VLI = ValueIdToLinkageMap.find(ValueID); 7116 assert(VLI != ValueIdToLinkageMap.end() && 7117 "No linkage found for VST entry?"); 7118 auto Linkage = VLI->second; 7119 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7120 ValueName.clear(); 7121 break; 7122 } 7123 case bitc::VST_CODE_COMBINED_ENTRY: { 7124 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7125 unsigned ValueID = Record[0]; 7126 GlobalValue::GUID RefGUID = Record[1]; 7127 // The "original name", which is the second value of the pair will be 7128 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7129 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7130 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7131 break; 7132 } 7133 } 7134 } 7135 } 7136 7137 // Parse just the blocks needed for building the index out of the module. 7138 // At the end of this routine the module Index is populated with a map 7139 // from global value id to GlobalValueSummary objects. 7140 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7141 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7142 return Err; 7143 7144 SmallVector<uint64_t, 64> Record; 7145 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7146 unsigned ValueId = 0; 7147 7148 // Read the index for this module. 7149 while (true) { 7150 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7151 if (!MaybeEntry) 7152 return MaybeEntry.takeError(); 7153 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7154 7155 switch (Entry.Kind) { 7156 case BitstreamEntry::Error: 7157 return error("Malformed block"); 7158 case BitstreamEntry::EndBlock: 7159 return Error::success(); 7160 7161 case BitstreamEntry::SubBlock: 7162 switch (Entry.ID) { 7163 default: // Skip unknown content. 7164 if (Error Err = Stream.SkipBlock()) 7165 return Err; 7166 break; 7167 case bitc::BLOCKINFO_BLOCK_ID: 7168 // Need to parse these to get abbrev ids (e.g. for VST) 7169 if (Error Err = readBlockInfo()) 7170 return Err; 7171 break; 7172 case bitc::VALUE_SYMTAB_BLOCK_ID: 7173 // Should have been parsed earlier via VSTOffset, unless there 7174 // is no summary section. 7175 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7176 !SeenGlobalValSummary) && 7177 "Expected early VST parse via VSTOffset record"); 7178 if (Error Err = Stream.SkipBlock()) 7179 return Err; 7180 break; 7181 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7182 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7183 // Add the module if it is a per-module index (has a source file name). 7184 if (!SourceFileName.empty()) 7185 addThisModule(); 7186 assert(!SeenValueSymbolTable && 7187 "Already read VST when parsing summary block?"); 7188 // We might not have a VST if there were no values in the 7189 // summary. An empty summary block generated when we are 7190 // performing ThinLTO compiles so we don't later invoke 7191 // the regular LTO process on them. 7192 if (VSTOffset > 0) { 7193 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7194 return Err; 7195 SeenValueSymbolTable = true; 7196 } 7197 SeenGlobalValSummary = true; 7198 if (Error Err = parseEntireSummary(Entry.ID)) 7199 return Err; 7200 break; 7201 case bitc::MODULE_STRTAB_BLOCK_ID: 7202 if (Error Err = parseModuleStringTable()) 7203 return Err; 7204 break; 7205 } 7206 continue; 7207 7208 case BitstreamEntry::Record: { 7209 Record.clear(); 7210 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7211 if (!MaybeBitCode) 7212 return MaybeBitCode.takeError(); 7213 switch (MaybeBitCode.get()) { 7214 default: 7215 break; // Default behavior, ignore unknown content. 7216 case bitc::MODULE_CODE_VERSION: { 7217 if (Error Err = parseVersionRecord(Record).takeError()) 7218 return Err; 7219 break; 7220 } 7221 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7222 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7223 SmallString<128> ValueName; 7224 if (convertToString(Record, 0, ValueName)) 7225 return error("Invalid record"); 7226 SourceFileName = ValueName.c_str(); 7227 break; 7228 } 7229 /// MODULE_CODE_HASH: [5*i32] 7230 case bitc::MODULE_CODE_HASH: { 7231 if (Record.size() != 5) 7232 return error("Invalid hash length " + Twine(Record.size()).str()); 7233 auto &Hash = getThisModule()->second; 7234 int Pos = 0; 7235 for (auto &Val : Record) { 7236 assert(!(Val >> 32) && "Unexpected high bits set"); 7237 Hash[Pos++] = Val; 7238 } 7239 break; 7240 } 7241 /// MODULE_CODE_VSTOFFSET: [offset] 7242 case bitc::MODULE_CODE_VSTOFFSET: 7243 if (Record.empty()) 7244 return error("Invalid record"); 7245 // Note that we subtract 1 here because the offset is relative to one 7246 // word before the start of the identification or module block, which 7247 // was historically always the start of the regular bitcode header. 7248 VSTOffset = Record[0] - 1; 7249 break; 7250 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7251 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7252 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7253 // v2: [strtab offset, strtab size, v1] 7254 case bitc::MODULE_CODE_GLOBALVAR: 7255 case bitc::MODULE_CODE_FUNCTION: 7256 case bitc::MODULE_CODE_ALIAS: { 7257 StringRef Name; 7258 ArrayRef<uint64_t> GVRecord; 7259 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7260 if (GVRecord.size() <= 3) 7261 return error("Invalid record"); 7262 uint64_t RawLinkage = GVRecord[3]; 7263 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7264 if (!UseStrtab) { 7265 ValueIdToLinkageMap[ValueId++] = Linkage; 7266 break; 7267 } 7268 7269 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7270 break; 7271 } 7272 } 7273 } 7274 continue; 7275 } 7276 } 7277 } 7278 7279 std::vector<ValueInfo> 7280 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7281 std::vector<ValueInfo> Ret; 7282 Ret.reserve(Record.size()); 7283 for (uint64_t RefValueId : Record) 7284 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7285 return Ret; 7286 } 7287 7288 std::vector<FunctionSummary::EdgeTy> 7289 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7290 bool IsOldProfileFormat, 7291 bool HasProfile, bool HasRelBF) { 7292 std::vector<FunctionSummary::EdgeTy> Ret; 7293 Ret.reserve(Record.size()); 7294 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7295 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7296 bool HasTailCall = false; 7297 uint64_t RelBF = 0; 7298 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7299 if (IsOldProfileFormat) { 7300 I += 1; // Skip old callsitecount field 7301 if (HasProfile) 7302 I += 1; // Skip old profilecount field 7303 } else if (HasProfile) 7304 std::tie(Hotness, HasTailCall) = 7305 getDecodedHotnessCallEdgeInfo(Record[++I]); 7306 else if (HasRelBF) 7307 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7308 Ret.push_back(FunctionSummary::EdgeTy{ 7309 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7310 } 7311 return Ret; 7312 } 7313 7314 static void 7315 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7316 WholeProgramDevirtResolution &Wpd) { 7317 uint64_t ArgNum = Record[Slot++]; 7318 WholeProgramDevirtResolution::ByArg &B = 7319 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7320 Slot += ArgNum; 7321 7322 B.TheKind = 7323 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7324 B.Info = Record[Slot++]; 7325 B.Byte = Record[Slot++]; 7326 B.Bit = Record[Slot++]; 7327 } 7328 7329 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7330 StringRef Strtab, size_t &Slot, 7331 TypeIdSummary &TypeId) { 7332 uint64_t Id = Record[Slot++]; 7333 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7334 7335 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7336 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7337 static_cast<size_t>(Record[Slot + 1])}; 7338 Slot += 2; 7339 7340 uint64_t ResByArgNum = Record[Slot++]; 7341 for (uint64_t I = 0; I != ResByArgNum; ++I) 7342 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7343 } 7344 7345 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7346 StringRef Strtab, 7347 ModuleSummaryIndex &TheIndex) { 7348 size_t Slot = 0; 7349 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7350 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7351 Slot += 2; 7352 7353 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7354 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7355 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7356 TypeId.TTRes.SizeM1 = Record[Slot++]; 7357 TypeId.TTRes.BitMask = Record[Slot++]; 7358 TypeId.TTRes.InlineBits = Record[Slot++]; 7359 7360 while (Slot < Record.size()) 7361 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7362 } 7363 7364 std::vector<FunctionSummary::ParamAccess> 7365 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7366 auto ReadRange = [&]() { 7367 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7368 BitcodeReader::decodeSignRotatedValue(Record.front())); 7369 Record = Record.drop_front(); 7370 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7371 BitcodeReader::decodeSignRotatedValue(Record.front())); 7372 Record = Record.drop_front(); 7373 ConstantRange Range{Lower, Upper}; 7374 assert(!Range.isFullSet()); 7375 assert(!Range.isUpperSignWrapped()); 7376 return Range; 7377 }; 7378 7379 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7380 while (!Record.empty()) { 7381 PendingParamAccesses.emplace_back(); 7382 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7383 ParamAccess.ParamNo = Record.front(); 7384 Record = Record.drop_front(); 7385 ParamAccess.Use = ReadRange(); 7386 ParamAccess.Calls.resize(Record.front()); 7387 Record = Record.drop_front(); 7388 for (auto &Call : ParamAccess.Calls) { 7389 Call.ParamNo = Record.front(); 7390 Record = Record.drop_front(); 7391 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7392 Record = Record.drop_front(); 7393 Call.Offsets = ReadRange(); 7394 } 7395 } 7396 return PendingParamAccesses; 7397 } 7398 7399 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7400 ArrayRef<uint64_t> Record, size_t &Slot, 7401 TypeIdCompatibleVtableInfo &TypeId) { 7402 uint64_t Offset = Record[Slot++]; 7403 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7404 TypeId.push_back({Offset, Callee}); 7405 } 7406 7407 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7408 ArrayRef<uint64_t> Record) { 7409 size_t Slot = 0; 7410 TypeIdCompatibleVtableInfo &TypeId = 7411 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7412 {Strtab.data() + Record[Slot], 7413 static_cast<size_t>(Record[Slot + 1])}); 7414 Slot += 2; 7415 7416 while (Slot < Record.size()) 7417 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7418 } 7419 7420 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7421 unsigned WOCnt) { 7422 // Readonly and writeonly refs are in the end of the refs list. 7423 assert(ROCnt + WOCnt <= Refs.size()); 7424 unsigned FirstWORef = Refs.size() - WOCnt; 7425 unsigned RefNo = FirstWORef - ROCnt; 7426 for (; RefNo < FirstWORef; ++RefNo) 7427 Refs[RefNo].setReadOnly(); 7428 for (; RefNo < Refs.size(); ++RefNo) 7429 Refs[RefNo].setWriteOnly(); 7430 } 7431 7432 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7433 // objects in the index. 7434 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7435 if (Error Err = Stream.EnterSubBlock(ID)) 7436 return Err; 7437 SmallVector<uint64_t, 64> Record; 7438 7439 // Parse version 7440 { 7441 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7442 if (!MaybeEntry) 7443 return MaybeEntry.takeError(); 7444 BitstreamEntry Entry = MaybeEntry.get(); 7445 7446 if (Entry.Kind != BitstreamEntry::Record) 7447 return error("Invalid Summary Block: record for version expected"); 7448 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7449 if (!MaybeRecord) 7450 return MaybeRecord.takeError(); 7451 if (MaybeRecord.get() != bitc::FS_VERSION) 7452 return error("Invalid Summary Block: version expected"); 7453 } 7454 const uint64_t Version = Record[0]; 7455 const bool IsOldProfileFormat = Version == 1; 7456 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7457 return error("Invalid summary version " + Twine(Version) + 7458 ". Version should be in the range [1-" + 7459 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7460 "]."); 7461 Record.clear(); 7462 7463 // Keep around the last seen summary to be used when we see an optional 7464 // "OriginalName" attachement. 7465 GlobalValueSummary *LastSeenSummary = nullptr; 7466 GlobalValue::GUID LastSeenGUID = 0; 7467 7468 // We can expect to see any number of type ID information records before 7469 // each function summary records; these variables store the information 7470 // collected so far so that it can be used to create the summary object. 7471 std::vector<GlobalValue::GUID> PendingTypeTests; 7472 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7473 PendingTypeCheckedLoadVCalls; 7474 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7475 PendingTypeCheckedLoadConstVCalls; 7476 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7477 7478 std::vector<CallsiteInfo> PendingCallsites; 7479 std::vector<AllocInfo> PendingAllocs; 7480 7481 while (true) { 7482 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7483 if (!MaybeEntry) 7484 return MaybeEntry.takeError(); 7485 BitstreamEntry Entry = MaybeEntry.get(); 7486 7487 switch (Entry.Kind) { 7488 case BitstreamEntry::SubBlock: // Handled for us already. 7489 case BitstreamEntry::Error: 7490 return error("Malformed block"); 7491 case BitstreamEntry::EndBlock: 7492 return Error::success(); 7493 case BitstreamEntry::Record: 7494 // The interesting case. 7495 break; 7496 } 7497 7498 // Read a record. The record format depends on whether this 7499 // is a per-module index or a combined index file. In the per-module 7500 // case the records contain the associated value's ID for correlation 7501 // with VST entries. In the combined index the correlation is done 7502 // via the bitcode offset of the summary records (which were saved 7503 // in the combined index VST entries). The records also contain 7504 // information used for ThinLTO renaming and importing. 7505 Record.clear(); 7506 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7507 if (!MaybeBitCode) 7508 return MaybeBitCode.takeError(); 7509 switch (unsigned BitCode = MaybeBitCode.get()) { 7510 default: // Default behavior: ignore. 7511 break; 7512 case bitc::FS_FLAGS: { // [flags] 7513 TheIndex.setFlags(Record[0]); 7514 break; 7515 } 7516 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7517 uint64_t ValueID = Record[0]; 7518 GlobalValue::GUID RefGUID; 7519 if (Version >= 10) { 7520 RefGUID = Record[1] << 32 | Record[2]; 7521 } else { 7522 RefGUID = Record[1]; 7523 } 7524 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7525 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7526 break; 7527 } 7528 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7529 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7530 // numrefs x valueid, n x (valueid)] 7531 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7532 // numrefs x valueid, 7533 // n x (valueid, hotness+tailcall flags)] 7534 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7535 // numrefs x valueid, 7536 // n x (valueid, relblockfreq+tailcall)] 7537 case bitc::FS_PERMODULE: 7538 case bitc::FS_PERMODULE_RELBF: 7539 case bitc::FS_PERMODULE_PROFILE: { 7540 unsigned ValueID = Record[0]; 7541 uint64_t RawFlags = Record[1]; 7542 unsigned InstCount = Record[2]; 7543 uint64_t RawFunFlags = 0; 7544 unsigned NumRefs = Record[3]; 7545 unsigned NumRORefs = 0, NumWORefs = 0; 7546 int RefListStartIndex = 4; 7547 if (Version >= 4) { 7548 RawFunFlags = Record[3]; 7549 NumRefs = Record[4]; 7550 RefListStartIndex = 5; 7551 if (Version >= 5) { 7552 NumRORefs = Record[5]; 7553 RefListStartIndex = 6; 7554 if (Version >= 7) { 7555 NumWORefs = Record[6]; 7556 RefListStartIndex = 7; 7557 } 7558 } 7559 } 7560 7561 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7562 // The module path string ref set in the summary must be owned by the 7563 // index's module string table. Since we don't have a module path 7564 // string table section in the per-module index, we create a single 7565 // module path string table entry with an empty (0) ID to take 7566 // ownership. 7567 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7568 assert(Record.size() >= RefListStartIndex + NumRefs && 7569 "Record size inconsistent with number of references"); 7570 std::vector<ValueInfo> Refs = makeRefList( 7571 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7572 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7573 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7574 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7575 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7576 IsOldProfileFormat, HasProfile, HasRelBF); 7577 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7578 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7579 // In order to save memory, only record the memprof summaries if this is 7580 // the prevailing copy of a symbol. The linker doesn't resolve local 7581 // linkage values so don't check whether those are prevailing. 7582 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7583 if (IsPrevailing && 7584 !GlobalValue::isLocalLinkage(LT) && 7585 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7586 PendingCallsites.clear(); 7587 PendingAllocs.clear(); 7588 } 7589 auto FS = std::make_unique<FunctionSummary>( 7590 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7591 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7592 std::move(PendingTypeTestAssumeVCalls), 7593 std::move(PendingTypeCheckedLoadVCalls), 7594 std::move(PendingTypeTestAssumeConstVCalls), 7595 std::move(PendingTypeCheckedLoadConstVCalls), 7596 std::move(PendingParamAccesses), std::move(PendingCallsites), 7597 std::move(PendingAllocs)); 7598 FS->setModulePath(getThisModule()->first()); 7599 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7600 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7601 std::move(FS)); 7602 break; 7603 } 7604 // FS_ALIAS: [valueid, flags, valueid] 7605 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7606 // they expect all aliasee summaries to be available. 7607 case bitc::FS_ALIAS: { 7608 unsigned ValueID = Record[0]; 7609 uint64_t RawFlags = Record[1]; 7610 unsigned AliaseeID = Record[2]; 7611 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7612 auto AS = std::make_unique<AliasSummary>(Flags); 7613 // The module path string ref set in the summary must be owned by the 7614 // index's module string table. Since we don't have a module path 7615 // string table section in the per-module index, we create a single 7616 // module path string table entry with an empty (0) ID to take 7617 // ownership. 7618 AS->setModulePath(getThisModule()->first()); 7619 7620 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7621 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7622 if (!AliaseeInModule) 7623 return error("Alias expects aliasee summary to be parsed"); 7624 AS->setAliasee(AliaseeVI, AliaseeInModule); 7625 7626 auto GUID = getValueInfoFromValueId(ValueID); 7627 AS->setOriginalName(std::get<1>(GUID)); 7628 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7629 break; 7630 } 7631 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7632 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7633 unsigned ValueID = Record[0]; 7634 uint64_t RawFlags = Record[1]; 7635 unsigned RefArrayStart = 2; 7636 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7637 /* WriteOnly */ false, 7638 /* Constant */ false, 7639 GlobalObject::VCallVisibilityPublic); 7640 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7641 if (Version >= 5) { 7642 GVF = getDecodedGVarFlags(Record[2]); 7643 RefArrayStart = 3; 7644 } 7645 std::vector<ValueInfo> Refs = 7646 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7647 auto FS = 7648 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7649 FS->setModulePath(getThisModule()->first()); 7650 auto GUID = getValueInfoFromValueId(ValueID); 7651 FS->setOriginalName(std::get<1>(GUID)); 7652 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7653 break; 7654 } 7655 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7656 // numrefs, numrefs x valueid, 7657 // n x (valueid, offset)] 7658 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7659 unsigned ValueID = Record[0]; 7660 uint64_t RawFlags = Record[1]; 7661 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7662 unsigned NumRefs = Record[3]; 7663 unsigned RefListStartIndex = 4; 7664 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7665 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7666 std::vector<ValueInfo> Refs = makeRefList( 7667 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7668 VTableFuncList VTableFuncs; 7669 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7670 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7671 uint64_t Offset = Record[++I]; 7672 VTableFuncs.push_back({Callee, Offset}); 7673 } 7674 auto VS = 7675 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7676 VS->setModulePath(getThisModule()->first()); 7677 VS->setVTableFuncs(VTableFuncs); 7678 auto GUID = getValueInfoFromValueId(ValueID); 7679 VS->setOriginalName(std::get<1>(GUID)); 7680 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7681 break; 7682 } 7683 // FS_COMBINED is legacy and does not have support for the tail call flag. 7684 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7685 // numrefs x valueid, n x (valueid)] 7686 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7687 // numrefs x valueid, 7688 // n x (valueid, hotness+tailcall flags)] 7689 case bitc::FS_COMBINED: 7690 case bitc::FS_COMBINED_PROFILE: { 7691 unsigned ValueID = Record[0]; 7692 uint64_t ModuleId = Record[1]; 7693 uint64_t RawFlags = Record[2]; 7694 unsigned InstCount = Record[3]; 7695 uint64_t RawFunFlags = 0; 7696 uint64_t EntryCount = 0; 7697 unsigned NumRefs = Record[4]; 7698 unsigned NumRORefs = 0, NumWORefs = 0; 7699 int RefListStartIndex = 5; 7700 7701 if (Version >= 4) { 7702 RawFunFlags = Record[4]; 7703 RefListStartIndex = 6; 7704 size_t NumRefsIndex = 5; 7705 if (Version >= 5) { 7706 unsigned NumRORefsOffset = 1; 7707 RefListStartIndex = 7; 7708 if (Version >= 6) { 7709 NumRefsIndex = 6; 7710 EntryCount = Record[5]; 7711 RefListStartIndex = 8; 7712 if (Version >= 7) { 7713 RefListStartIndex = 9; 7714 NumWORefs = Record[8]; 7715 NumRORefsOffset = 2; 7716 } 7717 } 7718 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7719 } 7720 NumRefs = Record[NumRefsIndex]; 7721 } 7722 7723 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7724 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7725 assert(Record.size() >= RefListStartIndex + NumRefs && 7726 "Record size inconsistent with number of references"); 7727 std::vector<ValueInfo> Refs = makeRefList( 7728 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7729 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7730 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7731 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7732 IsOldProfileFormat, HasProfile, false); 7733 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7734 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7735 auto FS = std::make_unique<FunctionSummary>( 7736 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7737 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7738 std::move(PendingTypeTestAssumeVCalls), 7739 std::move(PendingTypeCheckedLoadVCalls), 7740 std::move(PendingTypeTestAssumeConstVCalls), 7741 std::move(PendingTypeCheckedLoadConstVCalls), 7742 std::move(PendingParamAccesses), std::move(PendingCallsites), 7743 std::move(PendingAllocs)); 7744 LastSeenSummary = FS.get(); 7745 LastSeenGUID = VI.getGUID(); 7746 FS->setModulePath(ModuleIdMap[ModuleId]); 7747 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7748 break; 7749 } 7750 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7751 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7752 // they expect all aliasee summaries to be available. 7753 case bitc::FS_COMBINED_ALIAS: { 7754 unsigned ValueID = Record[0]; 7755 uint64_t ModuleId = Record[1]; 7756 uint64_t RawFlags = Record[2]; 7757 unsigned AliaseeValueId = Record[3]; 7758 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7759 auto AS = std::make_unique<AliasSummary>(Flags); 7760 LastSeenSummary = AS.get(); 7761 AS->setModulePath(ModuleIdMap[ModuleId]); 7762 7763 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7764 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7765 AS->setAliasee(AliaseeVI, AliaseeInModule); 7766 7767 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7768 LastSeenGUID = VI.getGUID(); 7769 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7770 break; 7771 } 7772 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7773 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7774 unsigned ValueID = Record[0]; 7775 uint64_t ModuleId = Record[1]; 7776 uint64_t RawFlags = Record[2]; 7777 unsigned RefArrayStart = 3; 7778 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7779 /* WriteOnly */ false, 7780 /* Constant */ false, 7781 GlobalObject::VCallVisibilityPublic); 7782 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7783 if (Version >= 5) { 7784 GVF = getDecodedGVarFlags(Record[3]); 7785 RefArrayStart = 4; 7786 } 7787 std::vector<ValueInfo> Refs = 7788 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7789 auto FS = 7790 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7791 LastSeenSummary = FS.get(); 7792 FS->setModulePath(ModuleIdMap[ModuleId]); 7793 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7794 LastSeenGUID = VI.getGUID(); 7795 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7796 break; 7797 } 7798 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7799 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7800 uint64_t OriginalName = Record[0]; 7801 if (!LastSeenSummary) 7802 return error("Name attachment that does not follow a combined record"); 7803 LastSeenSummary->setOriginalName(OriginalName); 7804 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7805 // Reset the LastSeenSummary 7806 LastSeenSummary = nullptr; 7807 LastSeenGUID = 0; 7808 break; 7809 } 7810 case bitc::FS_TYPE_TESTS: 7811 assert(PendingTypeTests.empty()); 7812 llvm::append_range(PendingTypeTests, Record); 7813 break; 7814 7815 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7816 assert(PendingTypeTestAssumeVCalls.empty()); 7817 for (unsigned I = 0; I != Record.size(); I += 2) 7818 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7819 break; 7820 7821 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7822 assert(PendingTypeCheckedLoadVCalls.empty()); 7823 for (unsigned I = 0; I != Record.size(); I += 2) 7824 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7825 break; 7826 7827 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7828 PendingTypeTestAssumeConstVCalls.push_back( 7829 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7830 break; 7831 7832 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7833 PendingTypeCheckedLoadConstVCalls.push_back( 7834 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7835 break; 7836 7837 case bitc::FS_CFI_FUNCTION_DEFS: { 7838 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7839 for (unsigned I = 0; I != Record.size(); I += 2) 7840 CfiFunctionDefs.insert( 7841 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7842 break; 7843 } 7844 7845 case bitc::FS_CFI_FUNCTION_DECLS: { 7846 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7847 for (unsigned I = 0; I != Record.size(); I += 2) 7848 CfiFunctionDecls.insert( 7849 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7850 break; 7851 } 7852 7853 case bitc::FS_TYPE_ID: 7854 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7855 break; 7856 7857 case bitc::FS_TYPE_ID_METADATA: 7858 parseTypeIdCompatibleVtableSummaryRecord(Record); 7859 break; 7860 7861 case bitc::FS_BLOCK_COUNT: 7862 TheIndex.addBlockCount(Record[0]); 7863 break; 7864 7865 case bitc::FS_PARAM_ACCESS: { 7866 PendingParamAccesses = parseParamAccesses(Record); 7867 break; 7868 } 7869 7870 case bitc::FS_STACK_IDS: { // [n x stackid] 7871 // Save stack ids in the reader to consult when adding stack ids from the 7872 // lists in the stack node and alloc node entries. 7873 StackIds = ArrayRef<uint64_t>(Record); 7874 break; 7875 } 7876 7877 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7878 unsigned ValueID = Record[0]; 7879 SmallVector<unsigned> StackIdList; 7880 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7881 assert(*R < StackIds.size()); 7882 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7883 } 7884 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7885 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7886 break; 7887 } 7888 7889 case bitc::FS_COMBINED_CALLSITE_INFO: { 7890 auto RecordIter = Record.begin(); 7891 unsigned ValueID = *RecordIter++; 7892 unsigned NumStackIds = *RecordIter++; 7893 unsigned NumVersions = *RecordIter++; 7894 assert(Record.size() == 3 + NumStackIds + NumVersions); 7895 SmallVector<unsigned> StackIdList; 7896 for (unsigned J = 0; J < NumStackIds; J++) { 7897 assert(*RecordIter < StackIds.size()); 7898 StackIdList.push_back( 7899 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7900 } 7901 SmallVector<unsigned> Versions; 7902 for (unsigned J = 0; J < NumVersions; J++) 7903 Versions.push_back(*RecordIter++); 7904 ValueInfo VI = std::get<0>( 7905 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7906 PendingCallsites.push_back( 7907 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7908 break; 7909 } 7910 7911 case bitc::FS_PERMODULE_ALLOC_INFO: { 7912 unsigned I = 0; 7913 std::vector<MIBInfo> MIBs; 7914 while (I < Record.size()) { 7915 assert(Record.size() - I >= 2); 7916 AllocationType AllocType = (AllocationType)Record[I++]; 7917 unsigned NumStackEntries = Record[I++]; 7918 assert(Record.size() - I >= NumStackEntries); 7919 SmallVector<unsigned> StackIdList; 7920 for (unsigned J = 0; J < NumStackEntries; J++) { 7921 assert(Record[I] < StackIds.size()); 7922 StackIdList.push_back( 7923 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7924 } 7925 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7926 } 7927 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7928 break; 7929 } 7930 7931 case bitc::FS_COMBINED_ALLOC_INFO: { 7932 unsigned I = 0; 7933 std::vector<MIBInfo> MIBs; 7934 unsigned NumMIBs = Record[I++]; 7935 unsigned NumVersions = Record[I++]; 7936 unsigned MIBsRead = 0; 7937 while (MIBsRead++ < NumMIBs) { 7938 assert(Record.size() - I >= 2); 7939 AllocationType AllocType = (AllocationType)Record[I++]; 7940 unsigned NumStackEntries = Record[I++]; 7941 assert(Record.size() - I >= NumStackEntries); 7942 SmallVector<unsigned> StackIdList; 7943 for (unsigned J = 0; J < NumStackEntries; J++) { 7944 assert(Record[I] < StackIds.size()); 7945 StackIdList.push_back( 7946 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7947 } 7948 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7949 } 7950 assert(Record.size() - I >= NumVersions); 7951 SmallVector<uint8_t> Versions; 7952 for (unsigned J = 0; J < NumVersions; J++) 7953 Versions.push_back(Record[I++]); 7954 PendingAllocs.push_back( 7955 AllocInfo(std::move(Versions), std::move(MIBs))); 7956 break; 7957 } 7958 } 7959 } 7960 llvm_unreachable("Exit infinite loop"); 7961 } 7962 7963 // Parse the module string table block into the Index. 7964 // This populates the ModulePathStringTable map in the index. 7965 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7966 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7967 return Err; 7968 7969 SmallVector<uint64_t, 64> Record; 7970 7971 SmallString<128> ModulePath; 7972 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7973 7974 while (true) { 7975 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7976 if (!MaybeEntry) 7977 return MaybeEntry.takeError(); 7978 BitstreamEntry Entry = MaybeEntry.get(); 7979 7980 switch (Entry.Kind) { 7981 case BitstreamEntry::SubBlock: // Handled for us already. 7982 case BitstreamEntry::Error: 7983 return error("Malformed block"); 7984 case BitstreamEntry::EndBlock: 7985 return Error::success(); 7986 case BitstreamEntry::Record: 7987 // The interesting case. 7988 break; 7989 } 7990 7991 Record.clear(); 7992 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7993 if (!MaybeRecord) 7994 return MaybeRecord.takeError(); 7995 switch (MaybeRecord.get()) { 7996 default: // Default behavior: ignore. 7997 break; 7998 case bitc::MST_CODE_ENTRY: { 7999 // MST_ENTRY: [modid, namechar x N] 8000 uint64_t ModuleId = Record[0]; 8001 8002 if (convertToString(Record, 1, ModulePath)) 8003 return error("Invalid record"); 8004 8005 LastSeenModule = TheIndex.addModule(ModulePath); 8006 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8007 8008 ModulePath.clear(); 8009 break; 8010 } 8011 /// MST_CODE_HASH: [5*i32] 8012 case bitc::MST_CODE_HASH: { 8013 if (Record.size() != 5) 8014 return error("Invalid hash length " + Twine(Record.size()).str()); 8015 if (!LastSeenModule) 8016 return error("Invalid hash that does not follow a module path"); 8017 int Pos = 0; 8018 for (auto &Val : Record) { 8019 assert(!(Val >> 32) && "Unexpected high bits set"); 8020 LastSeenModule->second[Pos++] = Val; 8021 } 8022 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8023 LastSeenModule = nullptr; 8024 break; 8025 } 8026 } 8027 } 8028 llvm_unreachable("Exit infinite loop"); 8029 } 8030 8031 namespace { 8032 8033 // FIXME: This class is only here to support the transition to llvm::Error. It 8034 // will be removed once this transition is complete. Clients should prefer to 8035 // deal with the Error value directly, rather than converting to error_code. 8036 class BitcodeErrorCategoryType : public std::error_category { 8037 const char *name() const noexcept override { 8038 return "llvm.bitcode"; 8039 } 8040 8041 std::string message(int IE) const override { 8042 BitcodeError E = static_cast<BitcodeError>(IE); 8043 switch (E) { 8044 case BitcodeError::CorruptedBitcode: 8045 return "Corrupted bitcode"; 8046 } 8047 llvm_unreachable("Unknown error type!"); 8048 } 8049 }; 8050 8051 } // end anonymous namespace 8052 8053 const std::error_category &llvm::BitcodeErrorCategory() { 8054 static BitcodeErrorCategoryType ErrorCategory; 8055 return ErrorCategory; 8056 } 8057 8058 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8059 unsigned Block, unsigned RecordID) { 8060 if (Error Err = Stream.EnterSubBlock(Block)) 8061 return std::move(Err); 8062 8063 StringRef Strtab; 8064 while (true) { 8065 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8066 if (!MaybeEntry) 8067 return MaybeEntry.takeError(); 8068 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8069 8070 switch (Entry.Kind) { 8071 case BitstreamEntry::EndBlock: 8072 return Strtab; 8073 8074 case BitstreamEntry::Error: 8075 return error("Malformed block"); 8076 8077 case BitstreamEntry::SubBlock: 8078 if (Error Err = Stream.SkipBlock()) 8079 return std::move(Err); 8080 break; 8081 8082 case BitstreamEntry::Record: 8083 StringRef Blob; 8084 SmallVector<uint64_t, 1> Record; 8085 Expected<unsigned> MaybeRecord = 8086 Stream.readRecord(Entry.ID, Record, &Blob); 8087 if (!MaybeRecord) 8088 return MaybeRecord.takeError(); 8089 if (MaybeRecord.get() == RecordID) 8090 Strtab = Blob; 8091 break; 8092 } 8093 } 8094 } 8095 8096 //===----------------------------------------------------------------------===// 8097 // External interface 8098 //===----------------------------------------------------------------------===// 8099 8100 Expected<std::vector<BitcodeModule>> 8101 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8102 auto FOrErr = getBitcodeFileContents(Buffer); 8103 if (!FOrErr) 8104 return FOrErr.takeError(); 8105 return std::move(FOrErr->Mods); 8106 } 8107 8108 Expected<BitcodeFileContents> 8109 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8110 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8111 if (!StreamOrErr) 8112 return StreamOrErr.takeError(); 8113 BitstreamCursor &Stream = *StreamOrErr; 8114 8115 BitcodeFileContents F; 8116 while (true) { 8117 uint64_t BCBegin = Stream.getCurrentByteNo(); 8118 8119 // We may be consuming bitcode from a client that leaves garbage at the end 8120 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8121 // the end that there cannot possibly be another module, stop looking. 8122 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8123 return F; 8124 8125 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8126 if (!MaybeEntry) 8127 return MaybeEntry.takeError(); 8128 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8129 8130 switch (Entry.Kind) { 8131 case BitstreamEntry::EndBlock: 8132 case BitstreamEntry::Error: 8133 return error("Malformed block"); 8134 8135 case BitstreamEntry::SubBlock: { 8136 uint64_t IdentificationBit = -1ull; 8137 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8138 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8139 if (Error Err = Stream.SkipBlock()) 8140 return std::move(Err); 8141 8142 { 8143 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8144 if (!MaybeEntry) 8145 return MaybeEntry.takeError(); 8146 Entry = MaybeEntry.get(); 8147 } 8148 8149 if (Entry.Kind != BitstreamEntry::SubBlock || 8150 Entry.ID != bitc::MODULE_BLOCK_ID) 8151 return error("Malformed block"); 8152 } 8153 8154 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8155 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8156 if (Error Err = Stream.SkipBlock()) 8157 return std::move(Err); 8158 8159 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8160 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8161 Buffer.getBufferIdentifier(), IdentificationBit, 8162 ModuleBit}); 8163 continue; 8164 } 8165 8166 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8167 Expected<StringRef> Strtab = 8168 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8169 if (!Strtab) 8170 return Strtab.takeError(); 8171 // This string table is used by every preceding bitcode module that does 8172 // not have its own string table. A bitcode file may have multiple 8173 // string tables if it was created by binary concatenation, for example 8174 // with "llvm-cat -b". 8175 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8176 if (!I.Strtab.empty()) 8177 break; 8178 I.Strtab = *Strtab; 8179 } 8180 // Similarly, the string table is used by every preceding symbol table; 8181 // normally there will be just one unless the bitcode file was created 8182 // by binary concatenation. 8183 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8184 F.StrtabForSymtab = *Strtab; 8185 continue; 8186 } 8187 8188 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8189 Expected<StringRef> SymtabOrErr = 8190 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8191 if (!SymtabOrErr) 8192 return SymtabOrErr.takeError(); 8193 8194 // We can expect the bitcode file to have multiple symbol tables if it 8195 // was created by binary concatenation. In that case we silently 8196 // ignore any subsequent symbol tables, which is fine because this is a 8197 // low level function. The client is expected to notice that the number 8198 // of modules in the symbol table does not match the number of modules 8199 // in the input file and regenerate the symbol table. 8200 if (F.Symtab.empty()) 8201 F.Symtab = *SymtabOrErr; 8202 continue; 8203 } 8204 8205 if (Error Err = Stream.SkipBlock()) 8206 return std::move(Err); 8207 continue; 8208 } 8209 case BitstreamEntry::Record: 8210 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8211 return std::move(E); 8212 continue; 8213 } 8214 } 8215 } 8216 8217 /// Get a lazy one-at-time loading module from bitcode. 8218 /// 8219 /// This isn't always used in a lazy context. In particular, it's also used by 8220 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8221 /// in forward-referenced functions from block address references. 8222 /// 8223 /// \param[in] MaterializeAll Set to \c true if we should materialize 8224 /// everything. 8225 Expected<std::unique_ptr<Module>> 8226 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8227 bool ShouldLazyLoadMetadata, bool IsImporting, 8228 ParserCallbacks Callbacks) { 8229 BitstreamCursor Stream(Buffer); 8230 8231 std::string ProducerIdentification; 8232 if (IdentificationBit != -1ull) { 8233 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8234 return std::move(JumpFailed); 8235 if (Error E = 8236 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8237 return std::move(E); 8238 } 8239 8240 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8241 return std::move(JumpFailed); 8242 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8243 Context); 8244 8245 std::unique_ptr<Module> M = 8246 std::make_unique<Module>(ModuleIdentifier, Context); 8247 M->setMaterializer(R); 8248 8249 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8250 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8251 IsImporting, Callbacks)) 8252 return std::move(Err); 8253 8254 if (MaterializeAll) { 8255 // Read in the entire module, and destroy the BitcodeReader. 8256 if (Error Err = M->materializeAll()) 8257 return std::move(Err); 8258 } else { 8259 // Resolve forward references from blockaddresses. 8260 if (Error Err = R->materializeForwardReferencedFunctions()) 8261 return std::move(Err); 8262 } 8263 8264 return std::move(M); 8265 } 8266 8267 Expected<std::unique_ptr<Module>> 8268 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8269 bool IsImporting, ParserCallbacks Callbacks) { 8270 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8271 Callbacks); 8272 } 8273 8274 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8275 // We don't use ModuleIdentifier here because the client may need to control the 8276 // module path used in the combined summary (e.g. when reading summaries for 8277 // regular LTO modules). 8278 Error BitcodeModule::readSummary( 8279 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8280 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8281 BitstreamCursor Stream(Buffer); 8282 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8283 return JumpFailed; 8284 8285 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8286 ModulePath, IsPrevailing); 8287 return R.parseModule(); 8288 } 8289 8290 // Parse the specified bitcode buffer, returning the function info index. 8291 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8292 BitstreamCursor Stream(Buffer); 8293 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8294 return std::move(JumpFailed); 8295 8296 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8297 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8298 ModuleIdentifier, 0); 8299 8300 if (Error Err = R.parseModule()) 8301 return std::move(Err); 8302 8303 return std::move(Index); 8304 } 8305 8306 static Expected<std::pair<bool, bool>> 8307 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8308 unsigned ID, 8309 BitcodeLTOInfo <OInfo) { 8310 if (Error Err = Stream.EnterSubBlock(ID)) 8311 return std::move(Err); 8312 SmallVector<uint64_t, 64> Record; 8313 8314 while (true) { 8315 BitstreamEntry Entry; 8316 std::pair<bool, bool> Result = {false,false}; 8317 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8318 return std::move(E); 8319 8320 switch (Entry.Kind) { 8321 case BitstreamEntry::SubBlock: // Handled for us already. 8322 case BitstreamEntry::Error: 8323 return error("Malformed block"); 8324 case BitstreamEntry::EndBlock: { 8325 // If no flags record found, set both flags to false. 8326 return Result; 8327 } 8328 case BitstreamEntry::Record: 8329 // The interesting case. 8330 break; 8331 } 8332 8333 // Look for the FS_FLAGS record. 8334 Record.clear(); 8335 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8336 if (!MaybeBitCode) 8337 return MaybeBitCode.takeError(); 8338 switch (MaybeBitCode.get()) { 8339 default: // Default behavior: ignore. 8340 break; 8341 case bitc::FS_FLAGS: { // [flags] 8342 uint64_t Flags = Record[0]; 8343 // Scan flags. 8344 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8345 8346 bool EnableSplitLTOUnit = Flags & 0x8; 8347 bool UnifiedLTO = Flags & 0x200; 8348 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8349 8350 return Result; 8351 } 8352 } 8353 } 8354 llvm_unreachable("Exit infinite loop"); 8355 } 8356 8357 // Check if the given bitcode buffer contains a global value summary block. 8358 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8359 BitstreamCursor Stream(Buffer); 8360 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8361 return std::move(JumpFailed); 8362 8363 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8364 return std::move(Err); 8365 8366 while (true) { 8367 llvm::BitstreamEntry Entry; 8368 if (Error E = Stream.advance().moveInto(Entry)) 8369 return std::move(E); 8370 8371 switch (Entry.Kind) { 8372 case BitstreamEntry::Error: 8373 return error("Malformed block"); 8374 case BitstreamEntry::EndBlock: 8375 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8376 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8377 8378 case BitstreamEntry::SubBlock: 8379 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8380 BitcodeLTOInfo LTOInfo; 8381 Expected<std::pair<bool, bool>> Flags = 8382 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8383 if (!Flags) 8384 return Flags.takeError(); 8385 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8386 LTOInfo.IsThinLTO = true; 8387 LTOInfo.HasSummary = true; 8388 return LTOInfo; 8389 } 8390 8391 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8392 BitcodeLTOInfo LTOInfo; 8393 Expected<std::pair<bool, bool>> Flags = 8394 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8395 if (!Flags) 8396 return Flags.takeError(); 8397 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8398 LTOInfo.IsThinLTO = false; 8399 LTOInfo.HasSummary = true; 8400 return LTOInfo; 8401 } 8402 8403 // Ignore other sub-blocks. 8404 if (Error Err = Stream.SkipBlock()) 8405 return std::move(Err); 8406 continue; 8407 8408 case BitstreamEntry::Record: 8409 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8410 continue; 8411 else 8412 return StreamFailed.takeError(); 8413 } 8414 } 8415 } 8416 8417 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8418 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8419 if (!MsOrErr) 8420 return MsOrErr.takeError(); 8421 8422 if (MsOrErr->size() != 1) 8423 return error("Expected a single module"); 8424 8425 return (*MsOrErr)[0]; 8426 } 8427 8428 Expected<std::unique_ptr<Module>> 8429 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8430 bool ShouldLazyLoadMetadata, bool IsImporting, 8431 ParserCallbacks Callbacks) { 8432 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8433 if (!BM) 8434 return BM.takeError(); 8435 8436 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8437 Callbacks); 8438 } 8439 8440 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8441 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8442 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8443 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8444 IsImporting, Callbacks); 8445 if (MOrErr) 8446 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8447 return MOrErr; 8448 } 8449 8450 Expected<std::unique_ptr<Module>> 8451 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8452 return getModuleImpl(Context, true, false, false, Callbacks); 8453 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8454 // written. We must defer until the Module has been fully materialized. 8455 } 8456 8457 Expected<std::unique_ptr<Module>> 8458 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8459 ParserCallbacks Callbacks) { 8460 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8461 if (!BM) 8462 return BM.takeError(); 8463 8464 return BM->parseModule(Context, Callbacks); 8465 } 8466 8467 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8468 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8469 if (!StreamOrErr) 8470 return StreamOrErr.takeError(); 8471 8472 return readTriple(*StreamOrErr); 8473 } 8474 8475 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8476 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8477 if (!StreamOrErr) 8478 return StreamOrErr.takeError(); 8479 8480 return hasObjCCategory(*StreamOrErr); 8481 } 8482 8483 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8484 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8485 if (!StreamOrErr) 8486 return StreamOrErr.takeError(); 8487 8488 return readIdentificationCode(*StreamOrErr); 8489 } 8490 8491 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8492 ModuleSummaryIndex &CombinedIndex) { 8493 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8494 if (!BM) 8495 return BM.takeError(); 8496 8497 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8498 } 8499 8500 Expected<std::unique_ptr<ModuleSummaryIndex>> 8501 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8502 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8503 if (!BM) 8504 return BM.takeError(); 8505 8506 return BM->getSummary(); 8507 } 8508 8509 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8510 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8511 if (!BM) 8512 return BM.takeError(); 8513 8514 return BM->getLTOInfo(); 8515 } 8516 8517 Expected<std::unique_ptr<ModuleSummaryIndex>> 8518 llvm::getModuleSummaryIndexForFile(StringRef Path, 8519 bool IgnoreEmptyThinLTOIndexFile) { 8520 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8521 MemoryBuffer::getFileOrSTDIN(Path); 8522 if (!FileOrErr) 8523 return errorCodeToError(FileOrErr.getError()); 8524 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8525 return nullptr; 8526 return getModuleSummaryIndex(**FileOrErr); 8527 } 8528