1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 /// Load bitcode directly into RemoveDIs format (use debug records instead 104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 105 /// is to do nothing. Individual tools can override this to incrementally add 106 /// support for the RemoveDIs format. 107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 108 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 109 cl::desc("Load bitcode directly into the new debug info format (regardless " 110 "of input format)")); 111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 112 extern bool WriteNewDbgInfoFormatToBitcode; 113 extern cl::opt<bool> WriteNewDbgInfoFormat; 114 115 namespace { 116 117 enum { 118 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 119 }; 120 121 } // end anonymous namespace 122 123 static Error error(const Twine &Message) { 124 return make_error<StringError>( 125 Message, make_error_code(BitcodeError::CorruptedBitcode)); 126 } 127 128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 129 if (!Stream.canSkipToPos(4)) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file too small to contain bitcode header"); 132 for (unsigned C : {'B', 'C'}) 133 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 134 if (Res.get() != C) 135 return createStringError(std::errc::illegal_byte_sequence, 136 "file doesn't start with bitcode header"); 137 } else 138 return Res.takeError(); 139 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 140 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 141 if (Res.get() != C) 142 return createStringError(std::errc::illegal_byte_sequence, 143 "file doesn't start with bitcode header"); 144 } else 145 return Res.takeError(); 146 return Error::success(); 147 } 148 149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 150 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 151 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 152 153 if (Buffer.getBufferSize() & 3) 154 return error("Invalid bitcode signature"); 155 156 // If we have a wrapper header, parse it and ignore the non-bc file contents. 157 // The magic number is 0x0B17C0DE stored in little endian. 158 if (isBitcodeWrapper(BufPtr, BufEnd)) 159 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 160 return error("Invalid bitcode wrapper header"); 161 162 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 163 if (Error Err = hasInvalidBitcodeHeader(Stream)) 164 return std::move(Err); 165 166 return std::move(Stream); 167 } 168 169 /// Convert a string from a record into an std::string, return true on failure. 170 template <typename StrTy> 171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 172 StrTy &Result) { 173 if (Idx > Record.size()) 174 return true; 175 176 Result.append(Record.begin() + Idx, Record.end()); 177 return false; 178 } 179 180 // Strip all the TBAA attachment for the module. 181 static void stripTBAA(Module *M) { 182 for (auto &F : *M) { 183 if (F.isMaterializable()) 184 continue; 185 for (auto &I : instructions(F)) 186 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 187 } 188 } 189 190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 191 /// "epoch" encoded in the bitcode, and return the producer name if any. 192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 193 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 194 return std::move(Err); 195 196 // Read all the records. 197 SmallVector<uint64_t, 64> Record; 198 199 std::string ProducerIdentification; 200 201 while (true) { 202 BitstreamEntry Entry; 203 if (Error E = Stream.advance().moveInto(Entry)) 204 return std::move(E); 205 206 switch (Entry.Kind) { 207 default: 208 case BitstreamEntry::Error: 209 return error("Malformed block"); 210 case BitstreamEntry::EndBlock: 211 return ProducerIdentification; 212 case BitstreamEntry::Record: 213 // The interesting case. 214 break; 215 } 216 217 // Read a record. 218 Record.clear(); 219 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 220 if (!MaybeBitCode) 221 return MaybeBitCode.takeError(); 222 switch (MaybeBitCode.get()) { 223 default: // Default behavior: reject 224 return error("Invalid value"); 225 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 226 convertToString(Record, 0, ProducerIdentification); 227 break; 228 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 229 unsigned epoch = (unsigned)Record[0]; 230 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 231 return error( 232 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 233 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 234 } 235 } 236 } 237 } 238 } 239 240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 241 // We expect a number of well-defined blocks, though we don't necessarily 242 // need to understand them all. 243 while (true) { 244 if (Stream.AtEndOfStream()) 245 return ""; 246 247 BitstreamEntry Entry; 248 if (Error E = Stream.advance().moveInto(Entry)) 249 return std::move(E); 250 251 switch (Entry.Kind) { 252 case BitstreamEntry::EndBlock: 253 case BitstreamEntry::Error: 254 return error("Malformed block"); 255 256 case BitstreamEntry::SubBlock: 257 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 258 return readIdentificationBlock(Stream); 259 260 // Ignore other sub-blocks. 261 if (Error Err = Stream.SkipBlock()) 262 return std::move(Err); 263 continue; 264 case BitstreamEntry::Record: 265 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 266 return std::move(E); 267 continue; 268 } 269 } 270 } 271 272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 273 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 274 return std::move(Err); 275 276 SmallVector<uint64_t, 64> Record; 277 // Read all the records for this module. 278 279 while (true) { 280 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 281 if (!MaybeEntry) 282 return MaybeEntry.takeError(); 283 BitstreamEntry Entry = MaybeEntry.get(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::SubBlock: // Handled for us already. 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 case BitstreamEntry::Record: 292 // The interesting case. 293 break; 294 } 295 296 // Read a record. 297 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 298 if (!MaybeRecord) 299 return MaybeRecord.takeError(); 300 switch (MaybeRecord.get()) { 301 default: 302 break; // Default behavior, ignore unknown content. 303 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 304 std::string S; 305 if (convertToString(Record, 0, S)) 306 return error("Invalid section name record"); 307 // Check for the i386 and other (x86_64, ARM) conventions 308 if (S.find("__DATA,__objc_catlist") != std::string::npos || 309 S.find("__OBJC,__category") != std::string::npos || 310 S.find("__TEXT,__swift") != std::string::npos) 311 return true; 312 break; 313 } 314 } 315 Record.clear(); 316 } 317 llvm_unreachable("Exit infinite loop"); 318 } 319 320 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 321 // We expect a number of well-defined blocks, though we don't necessarily 322 // need to understand them all. 323 while (true) { 324 BitstreamEntry Entry; 325 if (Error E = Stream.advance().moveInto(Entry)) 326 return std::move(E); 327 328 switch (Entry.Kind) { 329 case BitstreamEntry::Error: 330 return error("Malformed block"); 331 case BitstreamEntry::EndBlock: 332 return false; 333 334 case BitstreamEntry::SubBlock: 335 if (Entry.ID == bitc::MODULE_BLOCK_ID) 336 return hasObjCCategoryInModule(Stream); 337 338 // Ignore other sub-blocks. 339 if (Error Err = Stream.SkipBlock()) 340 return std::move(Err); 341 continue; 342 343 case BitstreamEntry::Record: 344 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 345 return std::move(E); 346 continue; 347 } 348 } 349 } 350 351 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 352 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 353 return std::move(Err); 354 355 SmallVector<uint64_t, 64> Record; 356 357 std::string Triple; 358 359 // Read all the records for this module. 360 while (true) { 361 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 362 if (!MaybeEntry) 363 return MaybeEntry.takeError(); 364 BitstreamEntry Entry = MaybeEntry.get(); 365 366 switch (Entry.Kind) { 367 case BitstreamEntry::SubBlock: // Handled for us already. 368 case BitstreamEntry::Error: 369 return error("Malformed block"); 370 case BitstreamEntry::EndBlock: 371 return Triple; 372 case BitstreamEntry::Record: 373 // The interesting case. 374 break; 375 } 376 377 // Read a record. 378 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 379 if (!MaybeRecord) 380 return MaybeRecord.takeError(); 381 switch (MaybeRecord.get()) { 382 default: break; // Default behavior, ignore unknown content. 383 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 384 std::string S; 385 if (convertToString(Record, 0, S)) 386 return error("Invalid triple record"); 387 Triple = S; 388 break; 389 } 390 } 391 Record.clear(); 392 } 393 llvm_unreachable("Exit infinite loop"); 394 } 395 396 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 397 // We expect a number of well-defined blocks, though we don't necessarily 398 // need to understand them all. 399 while (true) { 400 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 401 if (!MaybeEntry) 402 return MaybeEntry.takeError(); 403 BitstreamEntry Entry = MaybeEntry.get(); 404 405 switch (Entry.Kind) { 406 case BitstreamEntry::Error: 407 return error("Malformed block"); 408 case BitstreamEntry::EndBlock: 409 return ""; 410 411 case BitstreamEntry::SubBlock: 412 if (Entry.ID == bitc::MODULE_BLOCK_ID) 413 return readModuleTriple(Stream); 414 415 // Ignore other sub-blocks. 416 if (Error Err = Stream.SkipBlock()) 417 return std::move(Err); 418 continue; 419 420 case BitstreamEntry::Record: 421 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 422 continue; 423 else 424 return Skipped.takeError(); 425 } 426 } 427 } 428 429 namespace { 430 431 class BitcodeReaderBase { 432 protected: 433 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 434 : Stream(std::move(Stream)), Strtab(Strtab) { 435 this->Stream.setBlockInfo(&BlockInfo); 436 } 437 438 BitstreamBlockInfo BlockInfo; 439 BitstreamCursor Stream; 440 StringRef Strtab; 441 442 /// In version 2 of the bitcode we store names of global values and comdats in 443 /// a string table rather than in the VST. 444 bool UseStrtab = false; 445 446 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 447 448 /// If this module uses a string table, pop the reference to the string table 449 /// and return the referenced string and the rest of the record. Otherwise 450 /// just return the record itself. 451 std::pair<StringRef, ArrayRef<uint64_t>> 452 readNameFromStrtab(ArrayRef<uint64_t> Record); 453 454 Error readBlockInfo(); 455 456 // Contains an arbitrary and optional string identifying the bitcode producer 457 std::string ProducerIdentification; 458 459 Error error(const Twine &Message); 460 }; 461 462 } // end anonymous namespace 463 464 Error BitcodeReaderBase::error(const Twine &Message) { 465 std::string FullMsg = Message.str(); 466 if (!ProducerIdentification.empty()) 467 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 468 LLVM_VERSION_STRING "')"; 469 return ::error(FullMsg); 470 } 471 472 Expected<unsigned> 473 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 474 if (Record.empty()) 475 return error("Invalid version record"); 476 unsigned ModuleVersion = Record[0]; 477 if (ModuleVersion > 2) 478 return error("Invalid value"); 479 UseStrtab = ModuleVersion >= 2; 480 return ModuleVersion; 481 } 482 483 std::pair<StringRef, ArrayRef<uint64_t>> 484 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 485 if (!UseStrtab) 486 return {"", Record}; 487 // Invalid reference. Let the caller complain about the record being empty. 488 if (Record[0] + Record[1] > Strtab.size()) 489 return {"", {}}; 490 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 491 } 492 493 namespace { 494 495 /// This represents a constant expression or constant aggregate using a custom 496 /// structure internal to the bitcode reader. Later, this structure will be 497 /// expanded by materializeValue() either into a constant expression/aggregate, 498 /// or into an instruction sequence at the point of use. This allows us to 499 /// upgrade bitcode using constant expressions even if this kind of constant 500 /// expression is no longer supported. 501 class BitcodeConstant final : public Value, 502 TrailingObjects<BitcodeConstant, unsigned> { 503 friend TrailingObjects; 504 505 // Value subclass ID: Pick largest possible value to avoid any clashes. 506 static constexpr uint8_t SubclassID = 255; 507 508 public: 509 // Opcodes used for non-expressions. This includes constant aggregates 510 // (struct, array, vector) that might need expansion, as well as non-leaf 511 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 512 // but still go through BitcodeConstant to avoid different uselist orders 513 // between the two cases. 514 static constexpr uint8_t ConstantStructOpcode = 255; 515 static constexpr uint8_t ConstantArrayOpcode = 254; 516 static constexpr uint8_t ConstantVectorOpcode = 253; 517 static constexpr uint8_t NoCFIOpcode = 252; 518 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 519 static constexpr uint8_t BlockAddressOpcode = 250; 520 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 521 522 // Separate struct to make passing different number of parameters to 523 // BitcodeConstant::create() more convenient. 524 struct ExtraInfo { 525 uint8_t Opcode; 526 uint8_t Flags; 527 unsigned BlockAddressBB = 0; 528 Type *SrcElemTy = nullptr; 529 std::optional<ConstantRange> InRange; 530 531 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 532 std::optional<ConstantRange> InRange = std::nullopt) 533 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 534 InRange(std::move(InRange)) {} 535 536 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 537 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 538 }; 539 540 uint8_t Opcode; 541 uint8_t Flags; 542 unsigned NumOperands; 543 unsigned BlockAddressBB; 544 Type *SrcElemTy; // GEP source element type. 545 std::optional<ConstantRange> InRange; // GEP inrange attribute. 546 547 private: 548 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 549 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 550 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 551 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 552 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 553 getTrailingObjects<unsigned>()); 554 } 555 556 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 557 558 public: 559 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 560 const ExtraInfo &Info, 561 ArrayRef<unsigned> OpIDs) { 562 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 563 alignof(BitcodeConstant)); 564 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 565 } 566 567 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 568 569 ArrayRef<unsigned> getOperandIDs() const { 570 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 571 } 572 573 std::optional<ConstantRange> getInRange() const { 574 assert(Opcode == Instruction::GetElementPtr); 575 return InRange; 576 } 577 578 const char *getOpcodeName() const { 579 return Instruction::getOpcodeName(Opcode); 580 } 581 }; 582 583 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 584 LLVMContext &Context; 585 Module *TheModule = nullptr; 586 // Next offset to start scanning for lazy parsing of function bodies. 587 uint64_t NextUnreadBit = 0; 588 // Last function offset found in the VST. 589 uint64_t LastFunctionBlockBit = 0; 590 bool SeenValueSymbolTable = false; 591 uint64_t VSTOffset = 0; 592 593 std::vector<std::string> SectionTable; 594 std::vector<std::string> GCTable; 595 596 std::vector<Type *> TypeList; 597 /// Track type IDs of contained types. Order is the same as the contained 598 /// types of a Type*. This is used during upgrades of typed pointer IR in 599 /// opaque pointer mode. 600 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 601 /// In some cases, we need to create a type ID for a type that was not 602 /// explicitly encoded in the bitcode, or we don't know about at the current 603 /// point. For example, a global may explicitly encode the value type ID, but 604 /// not have a type ID for the pointer to value type, for which we create a 605 /// virtual type ID instead. This map stores the new type ID that was created 606 /// for the given pair of Type and contained type ID. 607 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 608 DenseMap<Function *, unsigned> FunctionTypeIDs; 609 /// Allocator for BitcodeConstants. This should come before ValueList, 610 /// because the ValueList might hold ValueHandles to these constants, so 611 /// ValueList must be destroyed before Alloc. 612 BumpPtrAllocator Alloc; 613 BitcodeReaderValueList ValueList; 614 std::optional<MetadataLoader> MDLoader; 615 std::vector<Comdat *> ComdatList; 616 DenseSet<GlobalObject *> ImplicitComdatObjects; 617 SmallVector<Instruction *, 64> InstructionList; 618 619 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 620 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 621 622 struct FunctionOperandInfo { 623 Function *F; 624 unsigned PersonalityFn; 625 unsigned Prefix; 626 unsigned Prologue; 627 }; 628 std::vector<FunctionOperandInfo> FunctionOperands; 629 630 /// The set of attributes by index. Index zero in the file is for null, and 631 /// is thus not represented here. As such all indices are off by one. 632 std::vector<AttributeList> MAttributes; 633 634 /// The set of attribute groups. 635 std::map<unsigned, AttributeList> MAttributeGroups; 636 637 /// While parsing a function body, this is a list of the basic blocks for the 638 /// function. 639 std::vector<BasicBlock*> FunctionBBs; 640 641 // When reading the module header, this list is populated with functions that 642 // have bodies later in the file. 643 std::vector<Function*> FunctionsWithBodies; 644 645 // When intrinsic functions are encountered which require upgrading they are 646 // stored here with their replacement function. 647 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 648 UpdatedIntrinsicMap UpgradedIntrinsics; 649 650 // Several operations happen after the module header has been read, but 651 // before function bodies are processed. This keeps track of whether 652 // we've done this yet. 653 bool SeenFirstFunctionBody = false; 654 655 /// When function bodies are initially scanned, this map contains info about 656 /// where to find deferred function body in the stream. 657 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 658 659 /// When Metadata block is initially scanned when parsing the module, we may 660 /// choose to defer parsing of the metadata. This vector contains info about 661 /// which Metadata blocks are deferred. 662 std::vector<uint64_t> DeferredMetadataInfo; 663 664 /// These are basic blocks forward-referenced by block addresses. They are 665 /// inserted lazily into functions when they're loaded. The basic block ID is 666 /// its index into the vector. 667 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 668 std::deque<Function *> BasicBlockFwdRefQueue; 669 670 /// These are Functions that contain BlockAddresses which refer a different 671 /// Function. When parsing the different Function, queue Functions that refer 672 /// to the different Function. Those Functions must be materialized in order 673 /// to resolve their BlockAddress constants before the different Function 674 /// gets moved into another Module. 675 std::vector<Function *> BackwardRefFunctions; 676 677 /// Indicates that we are using a new encoding for instruction operands where 678 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 679 /// instruction number, for a more compact encoding. Some instruction 680 /// operands are not relative to the instruction ID: basic block numbers, and 681 /// types. Once the old style function blocks have been phased out, we would 682 /// not need this flag. 683 bool UseRelativeIDs = false; 684 685 /// True if all functions will be materialized, negating the need to process 686 /// (e.g.) blockaddress forward references. 687 bool WillMaterializeAllForwardRefs = false; 688 689 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 690 /// seeing both in a single module is currently a fatal error. 691 bool SeenDebugIntrinsic = false; 692 bool SeenDebugRecord = false; 693 694 bool StripDebugInfo = false; 695 TBAAVerifier TBAAVerifyHelper; 696 697 std::vector<std::string> BundleTags; 698 SmallVector<SyncScope::ID, 8> SSIDs; 699 700 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 701 702 public: 703 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 704 StringRef ProducerIdentification, LLVMContext &Context); 705 706 Error materializeForwardReferencedFunctions(); 707 708 Error materialize(GlobalValue *GV) override; 709 Error materializeModule() override; 710 std::vector<StructType *> getIdentifiedStructTypes() const override; 711 712 /// Main interface to parsing a bitcode buffer. 713 /// \returns true if an error occurred. 714 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 715 bool IsImporting, ParserCallbacks Callbacks = {}); 716 717 static uint64_t decodeSignRotatedValue(uint64_t V); 718 719 /// Materialize any deferred Metadata block. 720 Error materializeMetadata() override; 721 722 void setStripDebugInfo() override; 723 724 private: 725 std::vector<StructType *> IdentifiedStructTypes; 726 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 727 StructType *createIdentifiedStructType(LLVMContext &Context); 728 729 static constexpr unsigned InvalidTypeID = ~0u; 730 731 Type *getTypeByID(unsigned ID); 732 Type *getPtrElementTypeByID(unsigned ID); 733 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 734 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 735 736 void callValueTypeCallback(Value *F, unsigned TypeID); 737 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 738 Expected<Constant *> getValueForInitializer(unsigned ID); 739 740 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 741 BasicBlock *ConstExprInsertBB) { 742 if (Ty && Ty->isMetadataTy()) 743 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 744 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 745 } 746 747 Metadata *getFnMetadataByID(unsigned ID) { 748 return MDLoader->getMetadataFwdRefOrLoad(ID); 749 } 750 751 BasicBlock *getBasicBlock(unsigned ID) const { 752 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 753 return FunctionBBs[ID]; 754 } 755 756 AttributeList getAttributes(unsigned i) const { 757 if (i-1 < MAttributes.size()) 758 return MAttributes[i-1]; 759 return AttributeList(); 760 } 761 762 /// Read a value/type pair out of the specified record from slot 'Slot'. 763 /// Increment Slot past the number of slots used in the record. Return true on 764 /// failure. 765 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 766 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 767 BasicBlock *ConstExprInsertBB) { 768 if (Slot == Record.size()) return true; 769 unsigned ValNo = (unsigned)Record[Slot++]; 770 // Adjust the ValNo, if it was encoded relative to the InstNum. 771 if (UseRelativeIDs) 772 ValNo = InstNum - ValNo; 773 if (ValNo < InstNum) { 774 // If this is not a forward reference, just return the value we already 775 // have. 776 TypeID = ValueList.getTypeID(ValNo); 777 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 778 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 779 "Incorrect type ID stored for value"); 780 return ResVal == nullptr; 781 } 782 if (Slot == Record.size()) 783 return true; 784 785 TypeID = (unsigned)Record[Slot++]; 786 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 787 ConstExprInsertBB); 788 return ResVal == nullptr; 789 } 790 791 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 792 /// past the number of slots used by the value in the record. Return true if 793 /// there is an error. 794 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 795 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 796 BasicBlock *ConstExprInsertBB) { 797 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 798 return true; 799 // All values currently take a single record slot. 800 ++Slot; 801 return false; 802 } 803 804 /// Like popValue, but does not increment the Slot number. 805 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 806 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 807 BasicBlock *ConstExprInsertBB) { 808 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 809 return ResVal == nullptr; 810 } 811 812 /// Version of getValue that returns ResVal directly, or 0 if there is an 813 /// error. 814 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 815 unsigned InstNum, Type *Ty, unsigned TyID, 816 BasicBlock *ConstExprInsertBB) { 817 if (Slot == Record.size()) return nullptr; 818 unsigned ValNo = (unsigned)Record[Slot]; 819 // Adjust the ValNo, if it was encoded relative to the InstNum. 820 if (UseRelativeIDs) 821 ValNo = InstNum - ValNo; 822 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 823 } 824 825 /// Like getValue, but decodes signed VBRs. 826 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 827 unsigned InstNum, Type *Ty, unsigned TyID, 828 BasicBlock *ConstExprInsertBB) { 829 if (Slot == Record.size()) return nullptr; 830 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 831 // Adjust the ValNo, if it was encoded relative to the InstNum. 832 if (UseRelativeIDs) 833 ValNo = InstNum - ValNo; 834 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 835 } 836 837 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 838 unsigned &OpNum) { 839 if (Record.size() - OpNum < 3) 840 return error("Too few records for range"); 841 unsigned BitWidth = Record[OpNum++]; 842 if (BitWidth > 64) { 843 unsigned LowerActiveWords = Record[OpNum]; 844 unsigned UpperActiveWords = Record[OpNum++] >> 32; 845 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 846 return error("Too few records for range"); 847 APInt Lower = 848 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 849 OpNum += LowerActiveWords; 850 APInt Upper = 851 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 852 OpNum += UpperActiveWords; 853 return ConstantRange(Lower, Upper); 854 } else { 855 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 856 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 857 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 858 } 859 } 860 861 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 862 /// corresponding argument's pointee type. Also upgrades intrinsics that now 863 /// require an elementtype attribute. 864 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 865 866 /// Converts alignment exponent (i.e. power of two (or zero)) to the 867 /// corresponding alignment to use. If alignment is too large, returns 868 /// a corresponding error code. 869 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 870 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 871 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 872 ParserCallbacks Callbacks = {}); 873 874 Error parseComdatRecord(ArrayRef<uint64_t> Record); 875 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 876 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 877 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 878 ArrayRef<uint64_t> Record); 879 880 Error parseAttributeBlock(); 881 Error parseAttributeGroupBlock(); 882 Error parseTypeTable(); 883 Error parseTypeTableBody(); 884 Error parseOperandBundleTags(); 885 Error parseSyncScopeNames(); 886 887 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 888 unsigned NameIndex, Triple &TT); 889 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 890 ArrayRef<uint64_t> Record); 891 Error parseValueSymbolTable(uint64_t Offset = 0); 892 Error parseGlobalValueSymbolTable(); 893 Error parseConstants(); 894 Error rememberAndSkipFunctionBodies(); 895 Error rememberAndSkipFunctionBody(); 896 /// Save the positions of the Metadata blocks and skip parsing the blocks. 897 Error rememberAndSkipMetadata(); 898 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 899 Error parseFunctionBody(Function *F); 900 Error globalCleanup(); 901 Error resolveGlobalAndIndirectSymbolInits(); 902 Error parseUseLists(); 903 Error findFunctionInStream( 904 Function *F, 905 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 906 907 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 908 }; 909 910 /// Class to manage reading and parsing function summary index bitcode 911 /// files/sections. 912 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 913 /// The module index built during parsing. 914 ModuleSummaryIndex &TheIndex; 915 916 /// Indicates whether we have encountered a global value summary section 917 /// yet during parsing. 918 bool SeenGlobalValSummary = false; 919 920 /// Indicates whether we have already parsed the VST, used for error checking. 921 bool SeenValueSymbolTable = false; 922 923 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 924 /// Used to enable on-demand parsing of the VST. 925 uint64_t VSTOffset = 0; 926 927 // Map to save ValueId to ValueInfo association that was recorded in the 928 // ValueSymbolTable. It is used after the VST is parsed to convert 929 // call graph edges read from the function summary from referencing 930 // callees by their ValueId to using the ValueInfo instead, which is how 931 // they are recorded in the summary index being built. 932 // We save a GUID which refers to the same global as the ValueInfo, but 933 // ignoring the linkage, i.e. for values other than local linkage they are 934 // identical (this is the second tuple member). 935 // The third tuple member is the real GUID of the ValueInfo. 936 DenseMap<unsigned, 937 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 938 ValueIdToValueInfoMap; 939 940 /// Map populated during module path string table parsing, from the 941 /// module ID to a string reference owned by the index's module 942 /// path string table, used to correlate with combined index 943 /// summary records. 944 DenseMap<uint64_t, StringRef> ModuleIdMap; 945 946 /// Original source file name recorded in a bitcode record. 947 std::string SourceFileName; 948 949 /// The string identifier given to this module by the client, normally the 950 /// path to the bitcode file. 951 StringRef ModulePath; 952 953 /// Callback to ask whether a symbol is the prevailing copy when invoked 954 /// during combined index building. 955 std::function<bool(GlobalValue::GUID)> IsPrevailing; 956 957 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 958 /// ids from the lists in the callsite and alloc entries to the index. 959 std::vector<uint64_t> StackIds; 960 961 public: 962 ModuleSummaryIndexBitcodeReader( 963 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 964 StringRef ModulePath, 965 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 966 967 Error parseModule(); 968 969 private: 970 void setValueGUID(uint64_t ValueID, StringRef ValueName, 971 GlobalValue::LinkageTypes Linkage, 972 StringRef SourceFileName); 973 Error parseValueSymbolTable( 974 uint64_t Offset, 975 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 976 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 977 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 978 bool IsOldProfileFormat, 979 bool HasProfile, 980 bool HasRelBF); 981 Error parseEntireSummary(unsigned ID); 982 Error parseModuleStringTable(); 983 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 984 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 985 TypeIdCompatibleVtableInfo &TypeId); 986 std::vector<FunctionSummary::ParamAccess> 987 parseParamAccesses(ArrayRef<uint64_t> Record); 988 989 template <bool AllowNullValueInfo = false> 990 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 991 getValueInfoFromValueId(unsigned ValueId); 992 993 void addThisModule(); 994 ModuleSummaryIndex::ModuleInfo *getThisModule(); 995 }; 996 997 } // end anonymous namespace 998 999 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1000 Error Err) { 1001 if (Err) { 1002 std::error_code EC; 1003 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1004 EC = EIB.convertToErrorCode(); 1005 Ctx.emitError(EIB.message()); 1006 }); 1007 return EC; 1008 } 1009 return std::error_code(); 1010 } 1011 1012 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1013 StringRef ProducerIdentification, 1014 LLVMContext &Context) 1015 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1016 ValueList(this->Stream.SizeInBytes(), 1017 [this](unsigned ValID, BasicBlock *InsertBB) { 1018 return materializeValue(ValID, InsertBB); 1019 }) { 1020 this->ProducerIdentification = std::string(ProducerIdentification); 1021 } 1022 1023 Error BitcodeReader::materializeForwardReferencedFunctions() { 1024 if (WillMaterializeAllForwardRefs) 1025 return Error::success(); 1026 1027 // Prevent recursion. 1028 WillMaterializeAllForwardRefs = true; 1029 1030 while (!BasicBlockFwdRefQueue.empty()) { 1031 Function *F = BasicBlockFwdRefQueue.front(); 1032 BasicBlockFwdRefQueue.pop_front(); 1033 assert(F && "Expected valid function"); 1034 if (!BasicBlockFwdRefs.count(F)) 1035 // Already materialized. 1036 continue; 1037 1038 // Check for a function that isn't materializable to prevent an infinite 1039 // loop. When parsing a blockaddress stored in a global variable, there 1040 // isn't a trivial way to check if a function will have a body without a 1041 // linear search through FunctionsWithBodies, so just check it here. 1042 if (!F->isMaterializable()) 1043 return error("Never resolved function from blockaddress"); 1044 1045 // Try to materialize F. 1046 if (Error Err = materialize(F)) 1047 return Err; 1048 } 1049 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1050 1051 for (Function *F : BackwardRefFunctions) 1052 if (Error Err = materialize(F)) 1053 return Err; 1054 BackwardRefFunctions.clear(); 1055 1056 // Reset state. 1057 WillMaterializeAllForwardRefs = false; 1058 return Error::success(); 1059 } 1060 1061 //===----------------------------------------------------------------------===// 1062 // Helper functions to implement forward reference resolution, etc. 1063 //===----------------------------------------------------------------------===// 1064 1065 static bool hasImplicitComdat(size_t Val) { 1066 switch (Val) { 1067 default: 1068 return false; 1069 case 1: // Old WeakAnyLinkage 1070 case 4: // Old LinkOnceAnyLinkage 1071 case 10: // Old WeakODRLinkage 1072 case 11: // Old LinkOnceODRLinkage 1073 return true; 1074 } 1075 } 1076 1077 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1078 switch (Val) { 1079 default: // Map unknown/new linkages to external 1080 case 0: 1081 return GlobalValue::ExternalLinkage; 1082 case 2: 1083 return GlobalValue::AppendingLinkage; 1084 case 3: 1085 return GlobalValue::InternalLinkage; 1086 case 5: 1087 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1088 case 6: 1089 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1090 case 7: 1091 return GlobalValue::ExternalWeakLinkage; 1092 case 8: 1093 return GlobalValue::CommonLinkage; 1094 case 9: 1095 return GlobalValue::PrivateLinkage; 1096 case 12: 1097 return GlobalValue::AvailableExternallyLinkage; 1098 case 13: 1099 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1100 case 14: 1101 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1102 case 15: 1103 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1104 case 1: // Old value with implicit comdat. 1105 case 16: 1106 return GlobalValue::WeakAnyLinkage; 1107 case 10: // Old value with implicit comdat. 1108 case 17: 1109 return GlobalValue::WeakODRLinkage; 1110 case 4: // Old value with implicit comdat. 1111 case 18: 1112 return GlobalValue::LinkOnceAnyLinkage; 1113 case 11: // Old value with implicit comdat. 1114 case 19: 1115 return GlobalValue::LinkOnceODRLinkage; 1116 } 1117 } 1118 1119 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1120 FunctionSummary::FFlags Flags; 1121 Flags.ReadNone = RawFlags & 0x1; 1122 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1123 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1124 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1125 Flags.NoInline = (RawFlags >> 4) & 0x1; 1126 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1127 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1128 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1129 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1130 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1131 return Flags; 1132 } 1133 1134 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1135 // 1136 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1137 // visibility: [8, 10). 1138 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1139 uint64_t Version) { 1140 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1141 // like getDecodedLinkage() above. Any future change to the linkage enum and 1142 // to getDecodedLinkage() will need to be taken into account here as above. 1143 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1144 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1145 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1146 RawFlags = RawFlags >> 4; 1147 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1148 // The Live flag wasn't introduced until version 3. For dead stripping 1149 // to work correctly on earlier versions, we must conservatively treat all 1150 // values as live. 1151 bool Live = (RawFlags & 0x2) || Version < 3; 1152 bool Local = (RawFlags & 0x4); 1153 bool AutoHide = (RawFlags & 0x8); 1154 1155 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1156 Live, Local, AutoHide, IK); 1157 } 1158 1159 // Decode the flags for GlobalVariable in the summary 1160 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1161 return GlobalVarSummary::GVarFlags( 1162 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1163 (RawFlags & 0x4) ? true : false, 1164 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1165 } 1166 1167 static std::pair<CalleeInfo::HotnessType, bool> 1168 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1169 CalleeInfo::HotnessType Hotness = 1170 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1171 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1172 return {Hotness, HasTailCall}; 1173 } 1174 1175 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1176 bool &HasTailCall) { 1177 static constexpr uint64_t RelBlockFreqMask = 1178 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1179 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1180 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1181 } 1182 1183 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1184 switch (Val) { 1185 default: // Map unknown visibilities to default. 1186 case 0: return GlobalValue::DefaultVisibility; 1187 case 1: return GlobalValue::HiddenVisibility; 1188 case 2: return GlobalValue::ProtectedVisibility; 1189 } 1190 } 1191 1192 static GlobalValue::DLLStorageClassTypes 1193 getDecodedDLLStorageClass(unsigned Val) { 1194 switch (Val) { 1195 default: // Map unknown values to default. 1196 case 0: return GlobalValue::DefaultStorageClass; 1197 case 1: return GlobalValue::DLLImportStorageClass; 1198 case 2: return GlobalValue::DLLExportStorageClass; 1199 } 1200 } 1201 1202 static bool getDecodedDSOLocal(unsigned Val) { 1203 switch(Val) { 1204 default: // Map unknown values to preemptable. 1205 case 0: return false; 1206 case 1: return true; 1207 } 1208 } 1209 1210 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1211 switch (Val) { 1212 case 1: 1213 return CodeModel::Tiny; 1214 case 2: 1215 return CodeModel::Small; 1216 case 3: 1217 return CodeModel::Kernel; 1218 case 4: 1219 return CodeModel::Medium; 1220 case 5: 1221 return CodeModel::Large; 1222 } 1223 1224 return {}; 1225 } 1226 1227 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1228 switch (Val) { 1229 case 0: return GlobalVariable::NotThreadLocal; 1230 default: // Map unknown non-zero value to general dynamic. 1231 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1232 case 2: return GlobalVariable::LocalDynamicTLSModel; 1233 case 3: return GlobalVariable::InitialExecTLSModel; 1234 case 4: return GlobalVariable::LocalExecTLSModel; 1235 } 1236 } 1237 1238 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1239 switch (Val) { 1240 default: // Map unknown to UnnamedAddr::None. 1241 case 0: return GlobalVariable::UnnamedAddr::None; 1242 case 1: return GlobalVariable::UnnamedAddr::Global; 1243 case 2: return GlobalVariable::UnnamedAddr::Local; 1244 } 1245 } 1246 1247 static int getDecodedCastOpcode(unsigned Val) { 1248 switch (Val) { 1249 default: return -1; 1250 case bitc::CAST_TRUNC : return Instruction::Trunc; 1251 case bitc::CAST_ZEXT : return Instruction::ZExt; 1252 case bitc::CAST_SEXT : return Instruction::SExt; 1253 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1254 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1255 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1256 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1257 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1258 case bitc::CAST_FPEXT : return Instruction::FPExt; 1259 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1260 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1261 case bitc::CAST_BITCAST : return Instruction::BitCast; 1262 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1263 } 1264 } 1265 1266 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1267 bool IsFP = Ty->isFPOrFPVectorTy(); 1268 // UnOps are only valid for int/fp or vector of int/fp types 1269 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1270 return -1; 1271 1272 switch (Val) { 1273 default: 1274 return -1; 1275 case bitc::UNOP_FNEG: 1276 return IsFP ? Instruction::FNeg : -1; 1277 } 1278 } 1279 1280 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1281 bool IsFP = Ty->isFPOrFPVectorTy(); 1282 // BinOps are only valid for int/fp or vector of int/fp types 1283 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1284 return -1; 1285 1286 switch (Val) { 1287 default: 1288 return -1; 1289 case bitc::BINOP_ADD: 1290 return IsFP ? Instruction::FAdd : Instruction::Add; 1291 case bitc::BINOP_SUB: 1292 return IsFP ? Instruction::FSub : Instruction::Sub; 1293 case bitc::BINOP_MUL: 1294 return IsFP ? Instruction::FMul : Instruction::Mul; 1295 case bitc::BINOP_UDIV: 1296 return IsFP ? -1 : Instruction::UDiv; 1297 case bitc::BINOP_SDIV: 1298 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1299 case bitc::BINOP_UREM: 1300 return IsFP ? -1 : Instruction::URem; 1301 case bitc::BINOP_SREM: 1302 return IsFP ? Instruction::FRem : Instruction::SRem; 1303 case bitc::BINOP_SHL: 1304 return IsFP ? -1 : Instruction::Shl; 1305 case bitc::BINOP_LSHR: 1306 return IsFP ? -1 : Instruction::LShr; 1307 case bitc::BINOP_ASHR: 1308 return IsFP ? -1 : Instruction::AShr; 1309 case bitc::BINOP_AND: 1310 return IsFP ? -1 : Instruction::And; 1311 case bitc::BINOP_OR: 1312 return IsFP ? -1 : Instruction::Or; 1313 case bitc::BINOP_XOR: 1314 return IsFP ? -1 : Instruction::Xor; 1315 } 1316 } 1317 1318 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1319 switch (Val) { 1320 default: return AtomicRMWInst::BAD_BINOP; 1321 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1322 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1323 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1324 case bitc::RMW_AND: return AtomicRMWInst::And; 1325 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1326 case bitc::RMW_OR: return AtomicRMWInst::Or; 1327 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1328 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1329 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1330 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1331 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1332 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1333 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1334 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1335 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1336 case bitc::RMW_UINC_WRAP: 1337 return AtomicRMWInst::UIncWrap; 1338 case bitc::RMW_UDEC_WRAP: 1339 return AtomicRMWInst::UDecWrap; 1340 } 1341 } 1342 1343 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1344 switch (Val) { 1345 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1346 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1347 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1348 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1349 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1350 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1351 default: // Map unknown orderings to sequentially-consistent. 1352 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1353 } 1354 } 1355 1356 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1357 switch (Val) { 1358 default: // Map unknown selection kinds to any. 1359 case bitc::COMDAT_SELECTION_KIND_ANY: 1360 return Comdat::Any; 1361 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1362 return Comdat::ExactMatch; 1363 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1364 return Comdat::Largest; 1365 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1366 return Comdat::NoDeduplicate; 1367 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1368 return Comdat::SameSize; 1369 } 1370 } 1371 1372 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1373 FastMathFlags FMF; 1374 if (0 != (Val & bitc::UnsafeAlgebra)) 1375 FMF.setFast(); 1376 if (0 != (Val & bitc::AllowReassoc)) 1377 FMF.setAllowReassoc(); 1378 if (0 != (Val & bitc::NoNaNs)) 1379 FMF.setNoNaNs(); 1380 if (0 != (Val & bitc::NoInfs)) 1381 FMF.setNoInfs(); 1382 if (0 != (Val & bitc::NoSignedZeros)) 1383 FMF.setNoSignedZeros(); 1384 if (0 != (Val & bitc::AllowReciprocal)) 1385 FMF.setAllowReciprocal(); 1386 if (0 != (Val & bitc::AllowContract)) 1387 FMF.setAllowContract(true); 1388 if (0 != (Val & bitc::ApproxFunc)) 1389 FMF.setApproxFunc(); 1390 return FMF; 1391 } 1392 1393 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1394 // A GlobalValue with local linkage cannot have a DLL storage class. 1395 if (GV->hasLocalLinkage()) 1396 return; 1397 switch (Val) { 1398 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1399 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1400 } 1401 } 1402 1403 Type *BitcodeReader::getTypeByID(unsigned ID) { 1404 // The type table size is always specified correctly. 1405 if (ID >= TypeList.size()) 1406 return nullptr; 1407 1408 if (Type *Ty = TypeList[ID]) 1409 return Ty; 1410 1411 // If we have a forward reference, the only possible case is when it is to a 1412 // named struct. Just create a placeholder for now. 1413 return TypeList[ID] = createIdentifiedStructType(Context); 1414 } 1415 1416 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1417 auto It = ContainedTypeIDs.find(ID); 1418 if (It == ContainedTypeIDs.end()) 1419 return InvalidTypeID; 1420 1421 if (Idx >= It->second.size()) 1422 return InvalidTypeID; 1423 1424 return It->second[Idx]; 1425 } 1426 1427 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1428 if (ID >= TypeList.size()) 1429 return nullptr; 1430 1431 Type *Ty = TypeList[ID]; 1432 if (!Ty->isPointerTy()) 1433 return nullptr; 1434 1435 return getTypeByID(getContainedTypeID(ID, 0)); 1436 } 1437 1438 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1439 ArrayRef<unsigned> ChildTypeIDs) { 1440 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1441 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1442 auto It = VirtualTypeIDs.find(CacheKey); 1443 if (It != VirtualTypeIDs.end()) { 1444 // The cmpxchg return value is the only place we need more than one 1445 // contained type ID, however the second one will always be the same (i1), 1446 // so we don't need to include it in the cache key. This asserts that the 1447 // contained types are indeed as expected and there are no collisions. 1448 assert((ChildTypeIDs.empty() || 1449 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1450 "Incorrect cached contained type IDs"); 1451 return It->second; 1452 } 1453 1454 unsigned TypeID = TypeList.size(); 1455 TypeList.push_back(Ty); 1456 if (!ChildTypeIDs.empty()) 1457 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1458 VirtualTypeIDs.insert({CacheKey, TypeID}); 1459 return TypeID; 1460 } 1461 1462 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1463 GEPNoWrapFlags NW; 1464 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1465 NW |= GEPNoWrapFlags::inBounds(); 1466 if (Flags & (1 << bitc::GEP_NUSW)) 1467 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1468 if (Flags & (1 << bitc::GEP_NUW)) 1469 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1470 return NW; 1471 } 1472 1473 static bool isConstExprSupported(const BitcodeConstant *BC) { 1474 uint8_t Opcode = BC->Opcode; 1475 1476 // These are not real constant expressions, always consider them supported. 1477 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1478 return true; 1479 1480 // If -expand-constant-exprs is set, we want to consider all expressions 1481 // as unsupported. 1482 if (ExpandConstantExprs) 1483 return false; 1484 1485 if (Instruction::isBinaryOp(Opcode)) 1486 return ConstantExpr::isSupportedBinOp(Opcode); 1487 1488 if (Instruction::isCast(Opcode)) 1489 return ConstantExpr::isSupportedCastOp(Opcode); 1490 1491 if (Opcode == Instruction::GetElementPtr) 1492 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1493 1494 switch (Opcode) { 1495 case Instruction::FNeg: 1496 case Instruction::Select: 1497 return false; 1498 default: 1499 return true; 1500 } 1501 } 1502 1503 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1504 BasicBlock *InsertBB) { 1505 // Quickly handle the case where there is no BitcodeConstant to resolve. 1506 if (StartValID < ValueList.size() && ValueList[StartValID] && 1507 !isa<BitcodeConstant>(ValueList[StartValID])) 1508 return ValueList[StartValID]; 1509 1510 SmallDenseMap<unsigned, Value *> MaterializedValues; 1511 SmallVector<unsigned> Worklist; 1512 Worklist.push_back(StartValID); 1513 while (!Worklist.empty()) { 1514 unsigned ValID = Worklist.back(); 1515 if (MaterializedValues.count(ValID)) { 1516 // Duplicate expression that was already handled. 1517 Worklist.pop_back(); 1518 continue; 1519 } 1520 1521 if (ValID >= ValueList.size() || !ValueList[ValID]) 1522 return error("Invalid value ID"); 1523 1524 Value *V = ValueList[ValID]; 1525 auto *BC = dyn_cast<BitcodeConstant>(V); 1526 if (!BC) { 1527 MaterializedValues.insert({ValID, V}); 1528 Worklist.pop_back(); 1529 continue; 1530 } 1531 1532 // Iterate in reverse, so values will get popped from the worklist in 1533 // expected order. 1534 SmallVector<Value *> Ops; 1535 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1536 auto It = MaterializedValues.find(OpID); 1537 if (It != MaterializedValues.end()) 1538 Ops.push_back(It->second); 1539 else 1540 Worklist.push_back(OpID); 1541 } 1542 1543 // Some expressions have not been resolved yet, handle them first and then 1544 // revisit this one. 1545 if (Ops.size() != BC->getOperandIDs().size()) 1546 continue; 1547 std::reverse(Ops.begin(), Ops.end()); 1548 1549 SmallVector<Constant *> ConstOps; 1550 for (Value *Op : Ops) 1551 if (auto *C = dyn_cast<Constant>(Op)) 1552 ConstOps.push_back(C); 1553 1554 // Materialize as constant expression if possible. 1555 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1556 Constant *C; 1557 if (Instruction::isCast(BC->Opcode)) { 1558 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1559 if (!C) 1560 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1561 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1562 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1563 } else { 1564 switch (BC->Opcode) { 1565 case BitcodeConstant::NoCFIOpcode: { 1566 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1567 if (!GV) 1568 return error("no_cfi operand must be GlobalValue"); 1569 C = NoCFIValue::get(GV); 1570 break; 1571 } 1572 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1573 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1574 if (!GV) 1575 return error("dso_local operand must be GlobalValue"); 1576 C = DSOLocalEquivalent::get(GV); 1577 break; 1578 } 1579 case BitcodeConstant::BlockAddressOpcode: { 1580 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1581 if (!Fn) 1582 return error("blockaddress operand must be a function"); 1583 1584 // If the function is already parsed we can insert the block address 1585 // right away. 1586 BasicBlock *BB; 1587 unsigned BBID = BC->BlockAddressBB; 1588 if (!BBID) 1589 // Invalid reference to entry block. 1590 return error("Invalid ID"); 1591 if (!Fn->empty()) { 1592 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1593 for (size_t I = 0, E = BBID; I != E; ++I) { 1594 if (BBI == BBE) 1595 return error("Invalid ID"); 1596 ++BBI; 1597 } 1598 BB = &*BBI; 1599 } else { 1600 // Otherwise insert a placeholder and remember it so it can be 1601 // inserted when the function is parsed. 1602 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1603 if (FwdBBs.empty()) 1604 BasicBlockFwdRefQueue.push_back(Fn); 1605 if (FwdBBs.size() < BBID + 1) 1606 FwdBBs.resize(BBID + 1); 1607 if (!FwdBBs[BBID]) 1608 FwdBBs[BBID] = BasicBlock::Create(Context); 1609 BB = FwdBBs[BBID]; 1610 } 1611 C = BlockAddress::get(Fn, BB); 1612 break; 1613 } 1614 case BitcodeConstant::ConstantStructOpcode: 1615 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1616 break; 1617 case BitcodeConstant::ConstantArrayOpcode: 1618 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1619 break; 1620 case BitcodeConstant::ConstantVectorOpcode: 1621 C = ConstantVector::get(ConstOps); 1622 break; 1623 case Instruction::ICmp: 1624 case Instruction::FCmp: 1625 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1626 break; 1627 case Instruction::GetElementPtr: 1628 C = ConstantExpr::getGetElementPtr( 1629 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1630 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1631 break; 1632 case Instruction::ExtractElement: 1633 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1634 break; 1635 case Instruction::InsertElement: 1636 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1637 ConstOps[2]); 1638 break; 1639 case Instruction::ShuffleVector: { 1640 SmallVector<int, 16> Mask; 1641 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1642 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1643 break; 1644 } 1645 default: 1646 llvm_unreachable("Unhandled bitcode constant"); 1647 } 1648 } 1649 1650 // Cache resolved constant. 1651 ValueList.replaceValueWithoutRAUW(ValID, C); 1652 MaterializedValues.insert({ValID, C}); 1653 Worklist.pop_back(); 1654 continue; 1655 } 1656 1657 if (!InsertBB) 1658 return error(Twine("Value referenced by initializer is an unsupported " 1659 "constant expression of type ") + 1660 BC->getOpcodeName()); 1661 1662 // Materialize as instructions if necessary. 1663 Instruction *I; 1664 if (Instruction::isCast(BC->Opcode)) { 1665 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1666 BC->getType(), "constexpr", InsertBB); 1667 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1668 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1669 "constexpr", InsertBB); 1670 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1671 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1672 Ops[1], "constexpr", InsertBB); 1673 if (isa<OverflowingBinaryOperator>(I)) { 1674 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1675 I->setHasNoSignedWrap(); 1676 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1677 I->setHasNoUnsignedWrap(); 1678 } 1679 if (isa<PossiblyExactOperator>(I) && 1680 (BC->Flags & PossiblyExactOperator::IsExact)) 1681 I->setIsExact(); 1682 } else { 1683 switch (BC->Opcode) { 1684 case BitcodeConstant::ConstantVectorOpcode: { 1685 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1686 Value *V = PoisonValue::get(BC->getType()); 1687 for (auto Pair : enumerate(Ops)) { 1688 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1689 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1690 InsertBB); 1691 } 1692 I = cast<Instruction>(V); 1693 break; 1694 } 1695 case BitcodeConstant::ConstantStructOpcode: 1696 case BitcodeConstant::ConstantArrayOpcode: { 1697 Value *V = PoisonValue::get(BC->getType()); 1698 for (auto Pair : enumerate(Ops)) 1699 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1700 "constexpr.ins", InsertBB); 1701 I = cast<Instruction>(V); 1702 break; 1703 } 1704 case Instruction::ICmp: 1705 case Instruction::FCmp: 1706 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1707 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1708 "constexpr", InsertBB); 1709 break; 1710 case Instruction::GetElementPtr: 1711 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1712 ArrayRef(Ops).drop_front(), "constexpr", 1713 InsertBB); 1714 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1715 break; 1716 case Instruction::Select: 1717 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1718 break; 1719 case Instruction::ExtractElement: 1720 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1721 break; 1722 case Instruction::InsertElement: 1723 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1724 InsertBB); 1725 break; 1726 case Instruction::ShuffleVector: 1727 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1728 InsertBB); 1729 break; 1730 default: 1731 llvm_unreachable("Unhandled bitcode constant"); 1732 } 1733 } 1734 1735 MaterializedValues.insert({ValID, I}); 1736 Worklist.pop_back(); 1737 } 1738 1739 return MaterializedValues[StartValID]; 1740 } 1741 1742 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1743 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1744 if (!MaybeV) 1745 return MaybeV.takeError(); 1746 1747 // Result must be Constant if InsertBB is nullptr. 1748 return cast<Constant>(MaybeV.get()); 1749 } 1750 1751 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1752 StringRef Name) { 1753 auto *Ret = StructType::create(Context, Name); 1754 IdentifiedStructTypes.push_back(Ret); 1755 return Ret; 1756 } 1757 1758 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1759 auto *Ret = StructType::create(Context); 1760 IdentifiedStructTypes.push_back(Ret); 1761 return Ret; 1762 } 1763 1764 //===----------------------------------------------------------------------===// 1765 // Functions for parsing blocks from the bitcode file 1766 //===----------------------------------------------------------------------===// 1767 1768 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1769 switch (Val) { 1770 case Attribute::EndAttrKinds: 1771 case Attribute::EmptyKey: 1772 case Attribute::TombstoneKey: 1773 llvm_unreachable("Synthetic enumerators which should never get here"); 1774 1775 case Attribute::None: return 0; 1776 case Attribute::ZExt: return 1 << 0; 1777 case Attribute::SExt: return 1 << 1; 1778 case Attribute::NoReturn: return 1 << 2; 1779 case Attribute::InReg: return 1 << 3; 1780 case Attribute::StructRet: return 1 << 4; 1781 case Attribute::NoUnwind: return 1 << 5; 1782 case Attribute::NoAlias: return 1 << 6; 1783 case Attribute::ByVal: return 1 << 7; 1784 case Attribute::Nest: return 1 << 8; 1785 case Attribute::ReadNone: return 1 << 9; 1786 case Attribute::ReadOnly: return 1 << 10; 1787 case Attribute::NoInline: return 1 << 11; 1788 case Attribute::AlwaysInline: return 1 << 12; 1789 case Attribute::OptimizeForSize: return 1 << 13; 1790 case Attribute::StackProtect: return 1 << 14; 1791 case Attribute::StackProtectReq: return 1 << 15; 1792 case Attribute::Alignment: return 31 << 16; 1793 case Attribute::NoCapture: return 1 << 21; 1794 case Attribute::NoRedZone: return 1 << 22; 1795 case Attribute::NoImplicitFloat: return 1 << 23; 1796 case Attribute::Naked: return 1 << 24; 1797 case Attribute::InlineHint: return 1 << 25; 1798 case Attribute::StackAlignment: return 7 << 26; 1799 case Attribute::ReturnsTwice: return 1 << 29; 1800 case Attribute::UWTable: return 1 << 30; 1801 case Attribute::NonLazyBind: return 1U << 31; 1802 case Attribute::SanitizeAddress: return 1ULL << 32; 1803 case Attribute::MinSize: return 1ULL << 33; 1804 case Attribute::NoDuplicate: return 1ULL << 34; 1805 case Attribute::StackProtectStrong: return 1ULL << 35; 1806 case Attribute::SanitizeThread: return 1ULL << 36; 1807 case Attribute::SanitizeMemory: return 1ULL << 37; 1808 case Attribute::NoBuiltin: return 1ULL << 38; 1809 case Attribute::Returned: return 1ULL << 39; 1810 case Attribute::Cold: return 1ULL << 40; 1811 case Attribute::Builtin: return 1ULL << 41; 1812 case Attribute::OptimizeNone: return 1ULL << 42; 1813 case Attribute::InAlloca: return 1ULL << 43; 1814 case Attribute::NonNull: return 1ULL << 44; 1815 case Attribute::JumpTable: return 1ULL << 45; 1816 case Attribute::Convergent: return 1ULL << 46; 1817 case Attribute::SafeStack: return 1ULL << 47; 1818 case Attribute::NoRecurse: return 1ULL << 48; 1819 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1820 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1821 case Attribute::SwiftSelf: return 1ULL << 51; 1822 case Attribute::SwiftError: return 1ULL << 52; 1823 case Attribute::WriteOnly: return 1ULL << 53; 1824 case Attribute::Speculatable: return 1ULL << 54; 1825 case Attribute::StrictFP: return 1ULL << 55; 1826 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1827 case Attribute::NoCfCheck: return 1ULL << 57; 1828 case Attribute::OptForFuzzing: return 1ULL << 58; 1829 case Attribute::ShadowCallStack: return 1ULL << 59; 1830 case Attribute::SpeculativeLoadHardening: 1831 return 1ULL << 60; 1832 case Attribute::ImmArg: 1833 return 1ULL << 61; 1834 case Attribute::WillReturn: 1835 return 1ULL << 62; 1836 case Attribute::NoFree: 1837 return 1ULL << 63; 1838 default: 1839 // Other attributes are not supported in the raw format, 1840 // as we ran out of space. 1841 return 0; 1842 } 1843 llvm_unreachable("Unsupported attribute type"); 1844 } 1845 1846 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1847 if (!Val) return; 1848 1849 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1850 I = Attribute::AttrKind(I + 1)) { 1851 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1852 if (I == Attribute::Alignment) 1853 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1854 else if (I == Attribute::StackAlignment) 1855 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1856 else if (Attribute::isTypeAttrKind(I)) 1857 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1858 else 1859 B.addAttribute(I); 1860 } 1861 } 1862 } 1863 1864 /// This fills an AttrBuilder object with the LLVM attributes that have 1865 /// been decoded from the given integer. This function must stay in sync with 1866 /// 'encodeLLVMAttributesForBitcode'. 1867 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1868 uint64_t EncodedAttrs, 1869 uint64_t AttrIdx) { 1870 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1871 // the bits above 31 down by 11 bits. 1872 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1873 assert((!Alignment || isPowerOf2_32(Alignment)) && 1874 "Alignment must be a power of two."); 1875 1876 if (Alignment) 1877 B.addAlignmentAttr(Alignment); 1878 1879 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1880 (EncodedAttrs & 0xffff); 1881 1882 if (AttrIdx == AttributeList::FunctionIndex) { 1883 // Upgrade old memory attributes. 1884 MemoryEffects ME = MemoryEffects::unknown(); 1885 if (Attrs & (1ULL << 9)) { 1886 // ReadNone 1887 Attrs &= ~(1ULL << 9); 1888 ME &= MemoryEffects::none(); 1889 } 1890 if (Attrs & (1ULL << 10)) { 1891 // ReadOnly 1892 Attrs &= ~(1ULL << 10); 1893 ME &= MemoryEffects::readOnly(); 1894 } 1895 if (Attrs & (1ULL << 49)) { 1896 // InaccessibleMemOnly 1897 Attrs &= ~(1ULL << 49); 1898 ME &= MemoryEffects::inaccessibleMemOnly(); 1899 } 1900 if (Attrs & (1ULL << 50)) { 1901 // InaccessibleMemOrArgMemOnly 1902 Attrs &= ~(1ULL << 50); 1903 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1904 } 1905 if (Attrs & (1ULL << 53)) { 1906 // WriteOnly 1907 Attrs &= ~(1ULL << 53); 1908 ME &= MemoryEffects::writeOnly(); 1909 } 1910 if (ME != MemoryEffects::unknown()) 1911 B.addMemoryAttr(ME); 1912 } 1913 1914 addRawAttributeValue(B, Attrs); 1915 } 1916 1917 Error BitcodeReader::parseAttributeBlock() { 1918 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1919 return Err; 1920 1921 if (!MAttributes.empty()) 1922 return error("Invalid multiple blocks"); 1923 1924 SmallVector<uint64_t, 64> Record; 1925 1926 SmallVector<AttributeList, 8> Attrs; 1927 1928 // Read all the records. 1929 while (true) { 1930 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1931 if (!MaybeEntry) 1932 return MaybeEntry.takeError(); 1933 BitstreamEntry Entry = MaybeEntry.get(); 1934 1935 switch (Entry.Kind) { 1936 case BitstreamEntry::SubBlock: // Handled for us already. 1937 case BitstreamEntry::Error: 1938 return error("Malformed block"); 1939 case BitstreamEntry::EndBlock: 1940 return Error::success(); 1941 case BitstreamEntry::Record: 1942 // The interesting case. 1943 break; 1944 } 1945 1946 // Read a record. 1947 Record.clear(); 1948 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1949 if (!MaybeRecord) 1950 return MaybeRecord.takeError(); 1951 switch (MaybeRecord.get()) { 1952 default: // Default behavior: ignore. 1953 break; 1954 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1955 // Deprecated, but still needed to read old bitcode files. 1956 if (Record.size() & 1) 1957 return error("Invalid parameter attribute record"); 1958 1959 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1960 AttrBuilder B(Context); 1961 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1962 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1963 } 1964 1965 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1966 Attrs.clear(); 1967 break; 1968 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1969 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1970 Attrs.push_back(MAttributeGroups[Record[i]]); 1971 1972 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1973 Attrs.clear(); 1974 break; 1975 } 1976 } 1977 } 1978 1979 // Returns Attribute::None on unrecognized codes. 1980 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1981 switch (Code) { 1982 default: 1983 return Attribute::None; 1984 case bitc::ATTR_KIND_ALIGNMENT: 1985 return Attribute::Alignment; 1986 case bitc::ATTR_KIND_ALWAYS_INLINE: 1987 return Attribute::AlwaysInline; 1988 case bitc::ATTR_KIND_BUILTIN: 1989 return Attribute::Builtin; 1990 case bitc::ATTR_KIND_BY_VAL: 1991 return Attribute::ByVal; 1992 case bitc::ATTR_KIND_IN_ALLOCA: 1993 return Attribute::InAlloca; 1994 case bitc::ATTR_KIND_COLD: 1995 return Attribute::Cold; 1996 case bitc::ATTR_KIND_CONVERGENT: 1997 return Attribute::Convergent; 1998 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1999 return Attribute::DisableSanitizerInstrumentation; 2000 case bitc::ATTR_KIND_ELEMENTTYPE: 2001 return Attribute::ElementType; 2002 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2003 return Attribute::FnRetThunkExtern; 2004 case bitc::ATTR_KIND_INLINE_HINT: 2005 return Attribute::InlineHint; 2006 case bitc::ATTR_KIND_IN_REG: 2007 return Attribute::InReg; 2008 case bitc::ATTR_KIND_JUMP_TABLE: 2009 return Attribute::JumpTable; 2010 case bitc::ATTR_KIND_MEMORY: 2011 return Attribute::Memory; 2012 case bitc::ATTR_KIND_NOFPCLASS: 2013 return Attribute::NoFPClass; 2014 case bitc::ATTR_KIND_MIN_SIZE: 2015 return Attribute::MinSize; 2016 case bitc::ATTR_KIND_NAKED: 2017 return Attribute::Naked; 2018 case bitc::ATTR_KIND_NEST: 2019 return Attribute::Nest; 2020 case bitc::ATTR_KIND_NO_ALIAS: 2021 return Attribute::NoAlias; 2022 case bitc::ATTR_KIND_NO_BUILTIN: 2023 return Attribute::NoBuiltin; 2024 case bitc::ATTR_KIND_NO_CALLBACK: 2025 return Attribute::NoCallback; 2026 case bitc::ATTR_KIND_NO_CAPTURE: 2027 return Attribute::NoCapture; 2028 case bitc::ATTR_KIND_NO_DUPLICATE: 2029 return Attribute::NoDuplicate; 2030 case bitc::ATTR_KIND_NOFREE: 2031 return Attribute::NoFree; 2032 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2033 return Attribute::NoImplicitFloat; 2034 case bitc::ATTR_KIND_NO_INLINE: 2035 return Attribute::NoInline; 2036 case bitc::ATTR_KIND_NO_RECURSE: 2037 return Attribute::NoRecurse; 2038 case bitc::ATTR_KIND_NO_MERGE: 2039 return Attribute::NoMerge; 2040 case bitc::ATTR_KIND_NON_LAZY_BIND: 2041 return Attribute::NonLazyBind; 2042 case bitc::ATTR_KIND_NON_NULL: 2043 return Attribute::NonNull; 2044 case bitc::ATTR_KIND_DEREFERENCEABLE: 2045 return Attribute::Dereferenceable; 2046 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2047 return Attribute::DereferenceableOrNull; 2048 case bitc::ATTR_KIND_ALLOC_ALIGN: 2049 return Attribute::AllocAlign; 2050 case bitc::ATTR_KIND_ALLOC_KIND: 2051 return Attribute::AllocKind; 2052 case bitc::ATTR_KIND_ALLOC_SIZE: 2053 return Attribute::AllocSize; 2054 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2055 return Attribute::AllocatedPointer; 2056 case bitc::ATTR_KIND_NO_RED_ZONE: 2057 return Attribute::NoRedZone; 2058 case bitc::ATTR_KIND_NO_RETURN: 2059 return Attribute::NoReturn; 2060 case bitc::ATTR_KIND_NOSYNC: 2061 return Attribute::NoSync; 2062 case bitc::ATTR_KIND_NOCF_CHECK: 2063 return Attribute::NoCfCheck; 2064 case bitc::ATTR_KIND_NO_PROFILE: 2065 return Attribute::NoProfile; 2066 case bitc::ATTR_KIND_SKIP_PROFILE: 2067 return Attribute::SkipProfile; 2068 case bitc::ATTR_KIND_NO_UNWIND: 2069 return Attribute::NoUnwind; 2070 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2071 return Attribute::NoSanitizeBounds; 2072 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2073 return Attribute::NoSanitizeCoverage; 2074 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2075 return Attribute::NullPointerIsValid; 2076 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2077 return Attribute::OptimizeForDebugging; 2078 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2079 return Attribute::OptForFuzzing; 2080 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2081 return Attribute::OptimizeForSize; 2082 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2083 return Attribute::OptimizeNone; 2084 case bitc::ATTR_KIND_READ_NONE: 2085 return Attribute::ReadNone; 2086 case bitc::ATTR_KIND_READ_ONLY: 2087 return Attribute::ReadOnly; 2088 case bitc::ATTR_KIND_RETURNED: 2089 return Attribute::Returned; 2090 case bitc::ATTR_KIND_RETURNS_TWICE: 2091 return Attribute::ReturnsTwice; 2092 case bitc::ATTR_KIND_S_EXT: 2093 return Attribute::SExt; 2094 case bitc::ATTR_KIND_SPECULATABLE: 2095 return Attribute::Speculatable; 2096 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2097 return Attribute::StackAlignment; 2098 case bitc::ATTR_KIND_STACK_PROTECT: 2099 return Attribute::StackProtect; 2100 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2101 return Attribute::StackProtectReq; 2102 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2103 return Attribute::StackProtectStrong; 2104 case bitc::ATTR_KIND_SAFESTACK: 2105 return Attribute::SafeStack; 2106 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2107 return Attribute::ShadowCallStack; 2108 case bitc::ATTR_KIND_STRICT_FP: 2109 return Attribute::StrictFP; 2110 case bitc::ATTR_KIND_STRUCT_RET: 2111 return Attribute::StructRet; 2112 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2113 return Attribute::SanitizeAddress; 2114 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2115 return Attribute::SanitizeHWAddress; 2116 case bitc::ATTR_KIND_SANITIZE_THREAD: 2117 return Attribute::SanitizeThread; 2118 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2119 return Attribute::SanitizeMemory; 2120 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2121 return Attribute::SpeculativeLoadHardening; 2122 case bitc::ATTR_KIND_SWIFT_ERROR: 2123 return Attribute::SwiftError; 2124 case bitc::ATTR_KIND_SWIFT_SELF: 2125 return Attribute::SwiftSelf; 2126 case bitc::ATTR_KIND_SWIFT_ASYNC: 2127 return Attribute::SwiftAsync; 2128 case bitc::ATTR_KIND_UW_TABLE: 2129 return Attribute::UWTable; 2130 case bitc::ATTR_KIND_VSCALE_RANGE: 2131 return Attribute::VScaleRange; 2132 case bitc::ATTR_KIND_WILLRETURN: 2133 return Attribute::WillReturn; 2134 case bitc::ATTR_KIND_WRITEONLY: 2135 return Attribute::WriteOnly; 2136 case bitc::ATTR_KIND_Z_EXT: 2137 return Attribute::ZExt; 2138 case bitc::ATTR_KIND_IMMARG: 2139 return Attribute::ImmArg; 2140 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2141 return Attribute::SanitizeMemTag; 2142 case bitc::ATTR_KIND_PREALLOCATED: 2143 return Attribute::Preallocated; 2144 case bitc::ATTR_KIND_NOUNDEF: 2145 return Attribute::NoUndef; 2146 case bitc::ATTR_KIND_BYREF: 2147 return Attribute::ByRef; 2148 case bitc::ATTR_KIND_MUSTPROGRESS: 2149 return Attribute::MustProgress; 2150 case bitc::ATTR_KIND_HOT: 2151 return Attribute::Hot; 2152 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2153 return Attribute::PresplitCoroutine; 2154 case bitc::ATTR_KIND_WRITABLE: 2155 return Attribute::Writable; 2156 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2157 return Attribute::CoroDestroyOnlyWhenComplete; 2158 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2159 return Attribute::DeadOnUnwind; 2160 case bitc::ATTR_KIND_RANGE: 2161 return Attribute::Range; 2162 } 2163 } 2164 2165 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2166 MaybeAlign &Alignment) { 2167 // Note: Alignment in bitcode files is incremented by 1, so that zero 2168 // can be used for default alignment. 2169 if (Exponent > Value::MaxAlignmentExponent + 1) 2170 return error("Invalid alignment value"); 2171 Alignment = decodeMaybeAlign(Exponent); 2172 return Error::success(); 2173 } 2174 2175 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2176 *Kind = getAttrFromCode(Code); 2177 if (*Kind == Attribute::None) 2178 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2179 return Error::success(); 2180 } 2181 2182 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2183 switch (EncodedKind) { 2184 case bitc::ATTR_KIND_READ_NONE: 2185 ME &= MemoryEffects::none(); 2186 return true; 2187 case bitc::ATTR_KIND_READ_ONLY: 2188 ME &= MemoryEffects::readOnly(); 2189 return true; 2190 case bitc::ATTR_KIND_WRITEONLY: 2191 ME &= MemoryEffects::writeOnly(); 2192 return true; 2193 case bitc::ATTR_KIND_ARGMEMONLY: 2194 ME &= MemoryEffects::argMemOnly(); 2195 return true; 2196 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2197 ME &= MemoryEffects::inaccessibleMemOnly(); 2198 return true; 2199 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2200 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2201 return true; 2202 default: 2203 return false; 2204 } 2205 } 2206 2207 Error BitcodeReader::parseAttributeGroupBlock() { 2208 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2209 return Err; 2210 2211 if (!MAttributeGroups.empty()) 2212 return error("Invalid multiple blocks"); 2213 2214 SmallVector<uint64_t, 64> Record; 2215 2216 // Read all the records. 2217 while (true) { 2218 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2219 if (!MaybeEntry) 2220 return MaybeEntry.takeError(); 2221 BitstreamEntry Entry = MaybeEntry.get(); 2222 2223 switch (Entry.Kind) { 2224 case BitstreamEntry::SubBlock: // Handled for us already. 2225 case BitstreamEntry::Error: 2226 return error("Malformed block"); 2227 case BitstreamEntry::EndBlock: 2228 return Error::success(); 2229 case BitstreamEntry::Record: 2230 // The interesting case. 2231 break; 2232 } 2233 2234 // Read a record. 2235 Record.clear(); 2236 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2237 if (!MaybeRecord) 2238 return MaybeRecord.takeError(); 2239 switch (MaybeRecord.get()) { 2240 default: // Default behavior: ignore. 2241 break; 2242 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2243 if (Record.size() < 3) 2244 return error("Invalid grp record"); 2245 2246 uint64_t GrpID = Record[0]; 2247 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2248 2249 AttrBuilder B(Context); 2250 MemoryEffects ME = MemoryEffects::unknown(); 2251 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2252 if (Record[i] == 0) { // Enum attribute 2253 Attribute::AttrKind Kind; 2254 uint64_t EncodedKind = Record[++i]; 2255 if (Idx == AttributeList::FunctionIndex && 2256 upgradeOldMemoryAttribute(ME, EncodedKind)) 2257 continue; 2258 2259 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2260 return Err; 2261 2262 // Upgrade old-style byval attribute to one with a type, even if it's 2263 // nullptr. We will have to insert the real type when we associate 2264 // this AttributeList with a function. 2265 if (Kind == Attribute::ByVal) 2266 B.addByValAttr(nullptr); 2267 else if (Kind == Attribute::StructRet) 2268 B.addStructRetAttr(nullptr); 2269 else if (Kind == Attribute::InAlloca) 2270 B.addInAllocaAttr(nullptr); 2271 else if (Kind == Attribute::UWTable) 2272 B.addUWTableAttr(UWTableKind::Default); 2273 else if (Attribute::isEnumAttrKind(Kind)) 2274 B.addAttribute(Kind); 2275 else 2276 return error("Not an enum attribute"); 2277 } else if (Record[i] == 1) { // Integer attribute 2278 Attribute::AttrKind Kind; 2279 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2280 return Err; 2281 if (!Attribute::isIntAttrKind(Kind)) 2282 return error("Not an int attribute"); 2283 if (Kind == Attribute::Alignment) 2284 B.addAlignmentAttr(Record[++i]); 2285 else if (Kind == Attribute::StackAlignment) 2286 B.addStackAlignmentAttr(Record[++i]); 2287 else if (Kind == Attribute::Dereferenceable) 2288 B.addDereferenceableAttr(Record[++i]); 2289 else if (Kind == Attribute::DereferenceableOrNull) 2290 B.addDereferenceableOrNullAttr(Record[++i]); 2291 else if (Kind == Attribute::AllocSize) 2292 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2293 else if (Kind == Attribute::VScaleRange) 2294 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2295 else if (Kind == Attribute::UWTable) 2296 B.addUWTableAttr(UWTableKind(Record[++i])); 2297 else if (Kind == Attribute::AllocKind) 2298 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2299 else if (Kind == Attribute::Memory) 2300 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2301 else if (Kind == Attribute::NoFPClass) 2302 B.addNoFPClassAttr( 2303 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2304 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2305 bool HasValue = (Record[i++] == 4); 2306 SmallString<64> KindStr; 2307 SmallString<64> ValStr; 2308 2309 while (Record[i] != 0 && i != e) 2310 KindStr += Record[i++]; 2311 assert(Record[i] == 0 && "Kind string not null terminated"); 2312 2313 if (HasValue) { 2314 // Has a value associated with it. 2315 ++i; // Skip the '0' that terminates the "kind" string. 2316 while (Record[i] != 0 && i != e) 2317 ValStr += Record[i++]; 2318 assert(Record[i] == 0 && "Value string not null terminated"); 2319 } 2320 2321 B.addAttribute(KindStr.str(), ValStr.str()); 2322 } else if (Record[i] == 5 || Record[i] == 6) { 2323 bool HasType = Record[i] == 6; 2324 Attribute::AttrKind Kind; 2325 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2326 return Err; 2327 if (!Attribute::isTypeAttrKind(Kind)) 2328 return error("Not a type attribute"); 2329 2330 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2331 } else if (Record[i] == 7) { 2332 Attribute::AttrKind Kind; 2333 2334 i++; 2335 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2336 return Err; 2337 if (!Attribute::isConstantRangeAttrKind(Kind)) 2338 return error("Not a ConstantRange attribute"); 2339 2340 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2341 if (!MaybeCR) 2342 return MaybeCR.takeError(); 2343 i--; 2344 2345 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2346 } else { 2347 return error("Invalid attribute group entry"); 2348 } 2349 } 2350 2351 if (ME != MemoryEffects::unknown()) 2352 B.addMemoryAttr(ME); 2353 2354 UpgradeAttributes(B); 2355 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2356 break; 2357 } 2358 } 2359 } 2360 } 2361 2362 Error BitcodeReader::parseTypeTable() { 2363 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2364 return Err; 2365 2366 return parseTypeTableBody(); 2367 } 2368 2369 Error BitcodeReader::parseTypeTableBody() { 2370 if (!TypeList.empty()) 2371 return error("Invalid multiple blocks"); 2372 2373 SmallVector<uint64_t, 64> Record; 2374 unsigned NumRecords = 0; 2375 2376 SmallString<64> TypeName; 2377 2378 // Read all the records for this type table. 2379 while (true) { 2380 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2381 if (!MaybeEntry) 2382 return MaybeEntry.takeError(); 2383 BitstreamEntry Entry = MaybeEntry.get(); 2384 2385 switch (Entry.Kind) { 2386 case BitstreamEntry::SubBlock: // Handled for us already. 2387 case BitstreamEntry::Error: 2388 return error("Malformed block"); 2389 case BitstreamEntry::EndBlock: 2390 if (NumRecords != TypeList.size()) 2391 return error("Malformed block"); 2392 return Error::success(); 2393 case BitstreamEntry::Record: 2394 // The interesting case. 2395 break; 2396 } 2397 2398 // Read a record. 2399 Record.clear(); 2400 Type *ResultTy = nullptr; 2401 SmallVector<unsigned> ContainedIDs; 2402 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2403 if (!MaybeRecord) 2404 return MaybeRecord.takeError(); 2405 switch (MaybeRecord.get()) { 2406 default: 2407 return error("Invalid value"); 2408 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2409 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2410 // type list. This allows us to reserve space. 2411 if (Record.empty()) 2412 return error("Invalid numentry record"); 2413 TypeList.resize(Record[0]); 2414 continue; 2415 case bitc::TYPE_CODE_VOID: // VOID 2416 ResultTy = Type::getVoidTy(Context); 2417 break; 2418 case bitc::TYPE_CODE_HALF: // HALF 2419 ResultTy = Type::getHalfTy(Context); 2420 break; 2421 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2422 ResultTy = Type::getBFloatTy(Context); 2423 break; 2424 case bitc::TYPE_CODE_FLOAT: // FLOAT 2425 ResultTy = Type::getFloatTy(Context); 2426 break; 2427 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2428 ResultTy = Type::getDoubleTy(Context); 2429 break; 2430 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2431 ResultTy = Type::getX86_FP80Ty(Context); 2432 break; 2433 case bitc::TYPE_CODE_FP128: // FP128 2434 ResultTy = Type::getFP128Ty(Context); 2435 break; 2436 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2437 ResultTy = Type::getPPC_FP128Ty(Context); 2438 break; 2439 case bitc::TYPE_CODE_LABEL: // LABEL 2440 ResultTy = Type::getLabelTy(Context); 2441 break; 2442 case bitc::TYPE_CODE_METADATA: // METADATA 2443 ResultTy = Type::getMetadataTy(Context); 2444 break; 2445 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2446 ResultTy = Type::getX86_MMXTy(Context); 2447 break; 2448 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2449 ResultTy = Type::getX86_AMXTy(Context); 2450 break; 2451 case bitc::TYPE_CODE_TOKEN: // TOKEN 2452 ResultTy = Type::getTokenTy(Context); 2453 break; 2454 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2455 if (Record.empty()) 2456 return error("Invalid integer record"); 2457 2458 uint64_t NumBits = Record[0]; 2459 if (NumBits < IntegerType::MIN_INT_BITS || 2460 NumBits > IntegerType::MAX_INT_BITS) 2461 return error("Bitwidth for integer type out of range"); 2462 ResultTy = IntegerType::get(Context, NumBits); 2463 break; 2464 } 2465 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2466 // [pointee type, address space] 2467 if (Record.empty()) 2468 return error("Invalid pointer record"); 2469 unsigned AddressSpace = 0; 2470 if (Record.size() == 2) 2471 AddressSpace = Record[1]; 2472 ResultTy = getTypeByID(Record[0]); 2473 if (!ResultTy || 2474 !PointerType::isValidElementType(ResultTy)) 2475 return error("Invalid type"); 2476 ContainedIDs.push_back(Record[0]); 2477 ResultTy = PointerType::get(ResultTy, AddressSpace); 2478 break; 2479 } 2480 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2481 if (Record.size() != 1) 2482 return error("Invalid opaque pointer record"); 2483 unsigned AddressSpace = Record[0]; 2484 ResultTy = PointerType::get(Context, AddressSpace); 2485 break; 2486 } 2487 case bitc::TYPE_CODE_FUNCTION_OLD: { 2488 // Deprecated, but still needed to read old bitcode files. 2489 // FUNCTION: [vararg, attrid, retty, paramty x N] 2490 if (Record.size() < 3) 2491 return error("Invalid function record"); 2492 SmallVector<Type*, 8> ArgTys; 2493 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2494 if (Type *T = getTypeByID(Record[i])) 2495 ArgTys.push_back(T); 2496 else 2497 break; 2498 } 2499 2500 ResultTy = getTypeByID(Record[2]); 2501 if (!ResultTy || ArgTys.size() < Record.size()-3) 2502 return error("Invalid type"); 2503 2504 ContainedIDs.append(Record.begin() + 2, Record.end()); 2505 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2506 break; 2507 } 2508 case bitc::TYPE_CODE_FUNCTION: { 2509 // FUNCTION: [vararg, retty, paramty x N] 2510 if (Record.size() < 2) 2511 return error("Invalid function record"); 2512 SmallVector<Type*, 8> ArgTys; 2513 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2514 if (Type *T = getTypeByID(Record[i])) { 2515 if (!FunctionType::isValidArgumentType(T)) 2516 return error("Invalid function argument type"); 2517 ArgTys.push_back(T); 2518 } 2519 else 2520 break; 2521 } 2522 2523 ResultTy = getTypeByID(Record[1]); 2524 if (!ResultTy || ArgTys.size() < Record.size()-2) 2525 return error("Invalid type"); 2526 2527 ContainedIDs.append(Record.begin() + 1, Record.end()); 2528 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2529 break; 2530 } 2531 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2532 if (Record.empty()) 2533 return error("Invalid anon struct record"); 2534 SmallVector<Type*, 8> EltTys; 2535 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2536 if (Type *T = getTypeByID(Record[i])) 2537 EltTys.push_back(T); 2538 else 2539 break; 2540 } 2541 if (EltTys.size() != Record.size()-1) 2542 return error("Invalid type"); 2543 ContainedIDs.append(Record.begin() + 1, Record.end()); 2544 ResultTy = StructType::get(Context, EltTys, Record[0]); 2545 break; 2546 } 2547 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2548 if (convertToString(Record, 0, TypeName)) 2549 return error("Invalid struct name record"); 2550 continue; 2551 2552 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2553 if (Record.empty()) 2554 return error("Invalid named struct record"); 2555 2556 if (NumRecords >= TypeList.size()) 2557 return error("Invalid TYPE table"); 2558 2559 // Check to see if this was forward referenced, if so fill in the temp. 2560 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2561 if (Res) { 2562 Res->setName(TypeName); 2563 TypeList[NumRecords] = nullptr; 2564 } else // Otherwise, create a new struct. 2565 Res = createIdentifiedStructType(Context, TypeName); 2566 TypeName.clear(); 2567 2568 SmallVector<Type*, 8> EltTys; 2569 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2570 if (Type *T = getTypeByID(Record[i])) 2571 EltTys.push_back(T); 2572 else 2573 break; 2574 } 2575 if (EltTys.size() != Record.size()-1) 2576 return error("Invalid named struct record"); 2577 Res->setBody(EltTys, Record[0]); 2578 ContainedIDs.append(Record.begin() + 1, Record.end()); 2579 ResultTy = Res; 2580 break; 2581 } 2582 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2583 if (Record.size() != 1) 2584 return error("Invalid opaque type record"); 2585 2586 if (NumRecords >= TypeList.size()) 2587 return error("Invalid TYPE table"); 2588 2589 // Check to see if this was forward referenced, if so fill in the temp. 2590 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2591 if (Res) { 2592 Res->setName(TypeName); 2593 TypeList[NumRecords] = nullptr; 2594 } else // Otherwise, create a new struct with no body. 2595 Res = createIdentifiedStructType(Context, TypeName); 2596 TypeName.clear(); 2597 ResultTy = Res; 2598 break; 2599 } 2600 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2601 if (Record.size() < 1) 2602 return error("Invalid target extension type record"); 2603 2604 if (NumRecords >= TypeList.size()) 2605 return error("Invalid TYPE table"); 2606 2607 if (Record[0] >= Record.size()) 2608 return error("Too many type parameters"); 2609 2610 unsigned NumTys = Record[0]; 2611 SmallVector<Type *, 4> TypeParams; 2612 SmallVector<unsigned, 8> IntParams; 2613 for (unsigned i = 0; i < NumTys; i++) { 2614 if (Type *T = getTypeByID(Record[i + 1])) 2615 TypeParams.push_back(T); 2616 else 2617 return error("Invalid type"); 2618 } 2619 2620 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2621 if (Record[i] > UINT_MAX) 2622 return error("Integer parameter too large"); 2623 IntParams.push_back(Record[i]); 2624 } 2625 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2626 TypeName.clear(); 2627 break; 2628 } 2629 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2630 if (Record.size() < 2) 2631 return error("Invalid array type record"); 2632 ResultTy = getTypeByID(Record[1]); 2633 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2634 return error("Invalid type"); 2635 ContainedIDs.push_back(Record[1]); 2636 ResultTy = ArrayType::get(ResultTy, Record[0]); 2637 break; 2638 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2639 // [numelts, eltty, scalable] 2640 if (Record.size() < 2) 2641 return error("Invalid vector type record"); 2642 if (Record[0] == 0) 2643 return error("Invalid vector length"); 2644 ResultTy = getTypeByID(Record[1]); 2645 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2646 return error("Invalid type"); 2647 bool Scalable = Record.size() > 2 ? Record[2] : false; 2648 ContainedIDs.push_back(Record[1]); 2649 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2650 break; 2651 } 2652 2653 if (NumRecords >= TypeList.size()) 2654 return error("Invalid TYPE table"); 2655 if (TypeList[NumRecords]) 2656 return error( 2657 "Invalid TYPE table: Only named structs can be forward referenced"); 2658 assert(ResultTy && "Didn't read a type?"); 2659 TypeList[NumRecords] = ResultTy; 2660 if (!ContainedIDs.empty()) 2661 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2662 ++NumRecords; 2663 } 2664 } 2665 2666 Error BitcodeReader::parseOperandBundleTags() { 2667 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2668 return Err; 2669 2670 if (!BundleTags.empty()) 2671 return error("Invalid multiple blocks"); 2672 2673 SmallVector<uint64_t, 64> Record; 2674 2675 while (true) { 2676 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2677 if (!MaybeEntry) 2678 return MaybeEntry.takeError(); 2679 BitstreamEntry Entry = MaybeEntry.get(); 2680 2681 switch (Entry.Kind) { 2682 case BitstreamEntry::SubBlock: // Handled for us already. 2683 case BitstreamEntry::Error: 2684 return error("Malformed block"); 2685 case BitstreamEntry::EndBlock: 2686 return Error::success(); 2687 case BitstreamEntry::Record: 2688 // The interesting case. 2689 break; 2690 } 2691 2692 // Tags are implicitly mapped to integers by their order. 2693 2694 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2695 if (!MaybeRecord) 2696 return MaybeRecord.takeError(); 2697 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2698 return error("Invalid operand bundle record"); 2699 2700 // OPERAND_BUNDLE_TAG: [strchr x N] 2701 BundleTags.emplace_back(); 2702 if (convertToString(Record, 0, BundleTags.back())) 2703 return error("Invalid operand bundle record"); 2704 Record.clear(); 2705 } 2706 } 2707 2708 Error BitcodeReader::parseSyncScopeNames() { 2709 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2710 return Err; 2711 2712 if (!SSIDs.empty()) 2713 return error("Invalid multiple synchronization scope names blocks"); 2714 2715 SmallVector<uint64_t, 64> Record; 2716 while (true) { 2717 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2718 if (!MaybeEntry) 2719 return MaybeEntry.takeError(); 2720 BitstreamEntry Entry = MaybeEntry.get(); 2721 2722 switch (Entry.Kind) { 2723 case BitstreamEntry::SubBlock: // Handled for us already. 2724 case BitstreamEntry::Error: 2725 return error("Malformed block"); 2726 case BitstreamEntry::EndBlock: 2727 if (SSIDs.empty()) 2728 return error("Invalid empty synchronization scope names block"); 2729 return Error::success(); 2730 case BitstreamEntry::Record: 2731 // The interesting case. 2732 break; 2733 } 2734 2735 // Synchronization scope names are implicitly mapped to synchronization 2736 // scope IDs by their order. 2737 2738 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2739 if (!MaybeRecord) 2740 return MaybeRecord.takeError(); 2741 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2742 return error("Invalid sync scope record"); 2743 2744 SmallString<16> SSN; 2745 if (convertToString(Record, 0, SSN)) 2746 return error("Invalid sync scope record"); 2747 2748 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2749 Record.clear(); 2750 } 2751 } 2752 2753 /// Associate a value with its name from the given index in the provided record. 2754 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2755 unsigned NameIndex, Triple &TT) { 2756 SmallString<128> ValueName; 2757 if (convertToString(Record, NameIndex, ValueName)) 2758 return error("Invalid record"); 2759 unsigned ValueID = Record[0]; 2760 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2761 return error("Invalid record"); 2762 Value *V = ValueList[ValueID]; 2763 2764 StringRef NameStr(ValueName.data(), ValueName.size()); 2765 if (NameStr.contains(0)) 2766 return error("Invalid value name"); 2767 V->setName(NameStr); 2768 auto *GO = dyn_cast<GlobalObject>(V); 2769 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2770 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2771 return V; 2772 } 2773 2774 /// Helper to note and return the current location, and jump to the given 2775 /// offset. 2776 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2777 BitstreamCursor &Stream) { 2778 // Save the current parsing location so we can jump back at the end 2779 // of the VST read. 2780 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2781 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2782 return std::move(JumpFailed); 2783 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2784 if (!MaybeEntry) 2785 return MaybeEntry.takeError(); 2786 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2787 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2788 return error("Expected value symbol table subblock"); 2789 return CurrentBit; 2790 } 2791 2792 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2793 Function *F, 2794 ArrayRef<uint64_t> Record) { 2795 // Note that we subtract 1 here because the offset is relative to one word 2796 // before the start of the identification or module block, which was 2797 // historically always the start of the regular bitcode header. 2798 uint64_t FuncWordOffset = Record[1] - 1; 2799 uint64_t FuncBitOffset = FuncWordOffset * 32; 2800 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2801 // Set the LastFunctionBlockBit to point to the last function block. 2802 // Later when parsing is resumed after function materialization, 2803 // we can simply skip that last function block. 2804 if (FuncBitOffset > LastFunctionBlockBit) 2805 LastFunctionBlockBit = FuncBitOffset; 2806 } 2807 2808 /// Read a new-style GlobalValue symbol table. 2809 Error BitcodeReader::parseGlobalValueSymbolTable() { 2810 unsigned FuncBitcodeOffsetDelta = 2811 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2812 2813 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2814 return Err; 2815 2816 SmallVector<uint64_t, 64> Record; 2817 while (true) { 2818 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2819 if (!MaybeEntry) 2820 return MaybeEntry.takeError(); 2821 BitstreamEntry Entry = MaybeEntry.get(); 2822 2823 switch (Entry.Kind) { 2824 case BitstreamEntry::SubBlock: 2825 case BitstreamEntry::Error: 2826 return error("Malformed block"); 2827 case BitstreamEntry::EndBlock: 2828 return Error::success(); 2829 case BitstreamEntry::Record: 2830 break; 2831 } 2832 2833 Record.clear(); 2834 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2835 if (!MaybeRecord) 2836 return MaybeRecord.takeError(); 2837 switch (MaybeRecord.get()) { 2838 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2839 unsigned ValueID = Record[0]; 2840 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2841 return error("Invalid value reference in symbol table"); 2842 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2843 cast<Function>(ValueList[ValueID]), Record); 2844 break; 2845 } 2846 } 2847 } 2848 } 2849 2850 /// Parse the value symbol table at either the current parsing location or 2851 /// at the given bit offset if provided. 2852 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2853 uint64_t CurrentBit; 2854 // Pass in the Offset to distinguish between calling for the module-level 2855 // VST (where we want to jump to the VST offset) and the function-level 2856 // VST (where we don't). 2857 if (Offset > 0) { 2858 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2859 if (!MaybeCurrentBit) 2860 return MaybeCurrentBit.takeError(); 2861 CurrentBit = MaybeCurrentBit.get(); 2862 // If this module uses a string table, read this as a module-level VST. 2863 if (UseStrtab) { 2864 if (Error Err = parseGlobalValueSymbolTable()) 2865 return Err; 2866 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2867 return JumpFailed; 2868 return Error::success(); 2869 } 2870 // Otherwise, the VST will be in a similar format to a function-level VST, 2871 // and will contain symbol names. 2872 } 2873 2874 // Compute the delta between the bitcode indices in the VST (the word offset 2875 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2876 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2877 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2878 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2879 // just before entering the VST subblock because: 1) the EnterSubBlock 2880 // changes the AbbrevID width; 2) the VST block is nested within the same 2881 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2882 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2883 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2884 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2885 unsigned FuncBitcodeOffsetDelta = 2886 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2887 2888 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2889 return Err; 2890 2891 SmallVector<uint64_t, 64> Record; 2892 2893 Triple TT(TheModule->getTargetTriple()); 2894 2895 // Read all the records for this value table. 2896 SmallString<128> ValueName; 2897 2898 while (true) { 2899 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2900 if (!MaybeEntry) 2901 return MaybeEntry.takeError(); 2902 BitstreamEntry Entry = MaybeEntry.get(); 2903 2904 switch (Entry.Kind) { 2905 case BitstreamEntry::SubBlock: // Handled for us already. 2906 case BitstreamEntry::Error: 2907 return error("Malformed block"); 2908 case BitstreamEntry::EndBlock: 2909 if (Offset > 0) 2910 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2911 return JumpFailed; 2912 return Error::success(); 2913 case BitstreamEntry::Record: 2914 // The interesting case. 2915 break; 2916 } 2917 2918 // Read a record. 2919 Record.clear(); 2920 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2921 if (!MaybeRecord) 2922 return MaybeRecord.takeError(); 2923 switch (MaybeRecord.get()) { 2924 default: // Default behavior: unknown type. 2925 break; 2926 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2927 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2928 if (Error Err = ValOrErr.takeError()) 2929 return Err; 2930 ValOrErr.get(); 2931 break; 2932 } 2933 case bitc::VST_CODE_FNENTRY: { 2934 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2935 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2936 if (Error Err = ValOrErr.takeError()) 2937 return Err; 2938 Value *V = ValOrErr.get(); 2939 2940 // Ignore function offsets emitted for aliases of functions in older 2941 // versions of LLVM. 2942 if (auto *F = dyn_cast<Function>(V)) 2943 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2944 break; 2945 } 2946 case bitc::VST_CODE_BBENTRY: { 2947 if (convertToString(Record, 1, ValueName)) 2948 return error("Invalid bbentry record"); 2949 BasicBlock *BB = getBasicBlock(Record[0]); 2950 if (!BB) 2951 return error("Invalid bbentry record"); 2952 2953 BB->setName(ValueName.str()); 2954 ValueName.clear(); 2955 break; 2956 } 2957 } 2958 } 2959 } 2960 2961 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2962 /// encoding. 2963 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2964 if ((V & 1) == 0) 2965 return V >> 1; 2966 if (V != 1) 2967 return -(V >> 1); 2968 // There is no such thing as -0 with integers. "-0" really means MININT. 2969 return 1ULL << 63; 2970 } 2971 2972 /// Resolve all of the initializers for global values and aliases that we can. 2973 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2974 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2975 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2976 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2977 2978 GlobalInitWorklist.swap(GlobalInits); 2979 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2980 FunctionOperandWorklist.swap(FunctionOperands); 2981 2982 while (!GlobalInitWorklist.empty()) { 2983 unsigned ValID = GlobalInitWorklist.back().second; 2984 if (ValID >= ValueList.size()) { 2985 // Not ready to resolve this yet, it requires something later in the file. 2986 GlobalInits.push_back(GlobalInitWorklist.back()); 2987 } else { 2988 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2989 if (!MaybeC) 2990 return MaybeC.takeError(); 2991 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2992 } 2993 GlobalInitWorklist.pop_back(); 2994 } 2995 2996 while (!IndirectSymbolInitWorklist.empty()) { 2997 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2998 if (ValID >= ValueList.size()) { 2999 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3000 } else { 3001 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3002 if (!MaybeC) 3003 return MaybeC.takeError(); 3004 Constant *C = MaybeC.get(); 3005 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3006 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3007 if (C->getType() != GV->getType()) 3008 return error("Alias and aliasee types don't match"); 3009 GA->setAliasee(C); 3010 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3011 GI->setResolver(C); 3012 } else { 3013 return error("Expected an alias or an ifunc"); 3014 } 3015 } 3016 IndirectSymbolInitWorklist.pop_back(); 3017 } 3018 3019 while (!FunctionOperandWorklist.empty()) { 3020 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3021 if (Info.PersonalityFn) { 3022 unsigned ValID = Info.PersonalityFn - 1; 3023 if (ValID < ValueList.size()) { 3024 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3025 if (!MaybeC) 3026 return MaybeC.takeError(); 3027 Info.F->setPersonalityFn(MaybeC.get()); 3028 Info.PersonalityFn = 0; 3029 } 3030 } 3031 if (Info.Prefix) { 3032 unsigned ValID = Info.Prefix - 1; 3033 if (ValID < ValueList.size()) { 3034 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3035 if (!MaybeC) 3036 return MaybeC.takeError(); 3037 Info.F->setPrefixData(MaybeC.get()); 3038 Info.Prefix = 0; 3039 } 3040 } 3041 if (Info.Prologue) { 3042 unsigned ValID = Info.Prologue - 1; 3043 if (ValID < ValueList.size()) { 3044 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3045 if (!MaybeC) 3046 return MaybeC.takeError(); 3047 Info.F->setPrologueData(MaybeC.get()); 3048 Info.Prologue = 0; 3049 } 3050 } 3051 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3052 FunctionOperands.push_back(Info); 3053 FunctionOperandWorklist.pop_back(); 3054 } 3055 3056 return Error::success(); 3057 } 3058 3059 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3060 SmallVector<uint64_t, 8> Words(Vals.size()); 3061 transform(Vals, Words.begin(), 3062 BitcodeReader::decodeSignRotatedValue); 3063 3064 return APInt(TypeBits, Words); 3065 } 3066 3067 Error BitcodeReader::parseConstants() { 3068 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3069 return Err; 3070 3071 SmallVector<uint64_t, 64> Record; 3072 3073 // Read all the records for this value table. 3074 Type *CurTy = Type::getInt32Ty(Context); 3075 unsigned Int32TyID = getVirtualTypeID(CurTy); 3076 unsigned CurTyID = Int32TyID; 3077 Type *CurElemTy = nullptr; 3078 unsigned NextCstNo = ValueList.size(); 3079 3080 while (true) { 3081 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3082 if (!MaybeEntry) 3083 return MaybeEntry.takeError(); 3084 BitstreamEntry Entry = MaybeEntry.get(); 3085 3086 switch (Entry.Kind) { 3087 case BitstreamEntry::SubBlock: // Handled for us already. 3088 case BitstreamEntry::Error: 3089 return error("Malformed block"); 3090 case BitstreamEntry::EndBlock: 3091 if (NextCstNo != ValueList.size()) 3092 return error("Invalid constant reference"); 3093 return Error::success(); 3094 case BitstreamEntry::Record: 3095 // The interesting case. 3096 break; 3097 } 3098 3099 // Read a record. 3100 Record.clear(); 3101 Type *VoidType = Type::getVoidTy(Context); 3102 Value *V = nullptr; 3103 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3104 if (!MaybeBitCode) 3105 return MaybeBitCode.takeError(); 3106 switch (unsigned BitCode = MaybeBitCode.get()) { 3107 default: // Default behavior: unknown constant 3108 case bitc::CST_CODE_UNDEF: // UNDEF 3109 V = UndefValue::get(CurTy); 3110 break; 3111 case bitc::CST_CODE_POISON: // POISON 3112 V = PoisonValue::get(CurTy); 3113 break; 3114 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3115 if (Record.empty()) 3116 return error("Invalid settype record"); 3117 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3118 return error("Invalid settype record"); 3119 if (TypeList[Record[0]] == VoidType) 3120 return error("Invalid constant type"); 3121 CurTyID = Record[0]; 3122 CurTy = TypeList[CurTyID]; 3123 CurElemTy = getPtrElementTypeByID(CurTyID); 3124 continue; // Skip the ValueList manipulation. 3125 case bitc::CST_CODE_NULL: // NULL 3126 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3127 return error("Invalid type for a constant null value"); 3128 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3129 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3130 return error("Invalid type for a constant null value"); 3131 V = Constant::getNullValue(CurTy); 3132 break; 3133 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3134 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3135 return error("Invalid integer const record"); 3136 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3137 break; 3138 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3139 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3140 return error("Invalid wide integer const record"); 3141 3142 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3143 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3144 V = ConstantInt::get(CurTy, VInt); 3145 break; 3146 } 3147 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3148 if (Record.empty()) 3149 return error("Invalid float const record"); 3150 3151 auto *ScalarTy = CurTy->getScalarType(); 3152 if (ScalarTy->isHalfTy()) 3153 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3154 APInt(16, (uint16_t)Record[0]))); 3155 else if (ScalarTy->isBFloatTy()) 3156 V = ConstantFP::get( 3157 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3158 else if (ScalarTy->isFloatTy()) 3159 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3160 APInt(32, (uint32_t)Record[0]))); 3161 else if (ScalarTy->isDoubleTy()) 3162 V = ConstantFP::get( 3163 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3164 else if (ScalarTy->isX86_FP80Ty()) { 3165 // Bits are not stored the same way as a normal i80 APInt, compensate. 3166 uint64_t Rearrange[2]; 3167 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3168 Rearrange[1] = Record[0] >> 48; 3169 V = ConstantFP::get( 3170 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3171 } else if (ScalarTy->isFP128Ty()) 3172 V = ConstantFP::get(CurTy, 3173 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3174 else if (ScalarTy->isPPC_FP128Ty()) 3175 V = ConstantFP::get( 3176 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3177 else 3178 V = UndefValue::get(CurTy); 3179 break; 3180 } 3181 3182 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3183 if (Record.empty()) 3184 return error("Invalid aggregate record"); 3185 3186 unsigned Size = Record.size(); 3187 SmallVector<unsigned, 16> Elts; 3188 for (unsigned i = 0; i != Size; ++i) 3189 Elts.push_back(Record[i]); 3190 3191 if (isa<StructType>(CurTy)) { 3192 V = BitcodeConstant::create( 3193 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3194 } else if (isa<ArrayType>(CurTy)) { 3195 V = BitcodeConstant::create(Alloc, CurTy, 3196 BitcodeConstant::ConstantArrayOpcode, Elts); 3197 } else if (isa<VectorType>(CurTy)) { 3198 V = BitcodeConstant::create( 3199 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3200 } else { 3201 V = UndefValue::get(CurTy); 3202 } 3203 break; 3204 } 3205 case bitc::CST_CODE_STRING: // STRING: [values] 3206 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3207 if (Record.empty()) 3208 return error("Invalid string record"); 3209 3210 SmallString<16> Elts(Record.begin(), Record.end()); 3211 V = ConstantDataArray::getString(Context, Elts, 3212 BitCode == bitc::CST_CODE_CSTRING); 3213 break; 3214 } 3215 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3216 if (Record.empty()) 3217 return error("Invalid data record"); 3218 3219 Type *EltTy; 3220 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3221 EltTy = Array->getElementType(); 3222 else 3223 EltTy = cast<VectorType>(CurTy)->getElementType(); 3224 if (EltTy->isIntegerTy(8)) { 3225 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3226 if (isa<VectorType>(CurTy)) 3227 V = ConstantDataVector::get(Context, Elts); 3228 else 3229 V = ConstantDataArray::get(Context, Elts); 3230 } else if (EltTy->isIntegerTy(16)) { 3231 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3232 if (isa<VectorType>(CurTy)) 3233 V = ConstantDataVector::get(Context, Elts); 3234 else 3235 V = ConstantDataArray::get(Context, Elts); 3236 } else if (EltTy->isIntegerTy(32)) { 3237 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3238 if (isa<VectorType>(CurTy)) 3239 V = ConstantDataVector::get(Context, Elts); 3240 else 3241 V = ConstantDataArray::get(Context, Elts); 3242 } else if (EltTy->isIntegerTy(64)) { 3243 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3244 if (isa<VectorType>(CurTy)) 3245 V = ConstantDataVector::get(Context, Elts); 3246 else 3247 V = ConstantDataArray::get(Context, Elts); 3248 } else if (EltTy->isHalfTy()) { 3249 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3250 if (isa<VectorType>(CurTy)) 3251 V = ConstantDataVector::getFP(EltTy, Elts); 3252 else 3253 V = ConstantDataArray::getFP(EltTy, Elts); 3254 } else if (EltTy->isBFloatTy()) { 3255 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3256 if (isa<VectorType>(CurTy)) 3257 V = ConstantDataVector::getFP(EltTy, Elts); 3258 else 3259 V = ConstantDataArray::getFP(EltTy, Elts); 3260 } else if (EltTy->isFloatTy()) { 3261 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3262 if (isa<VectorType>(CurTy)) 3263 V = ConstantDataVector::getFP(EltTy, Elts); 3264 else 3265 V = ConstantDataArray::getFP(EltTy, Elts); 3266 } else if (EltTy->isDoubleTy()) { 3267 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3268 if (isa<VectorType>(CurTy)) 3269 V = ConstantDataVector::getFP(EltTy, Elts); 3270 else 3271 V = ConstantDataArray::getFP(EltTy, Elts); 3272 } else { 3273 return error("Invalid type for value"); 3274 } 3275 break; 3276 } 3277 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3278 if (Record.size() < 2) 3279 return error("Invalid unary op constexpr record"); 3280 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3281 if (Opc < 0) { 3282 V = UndefValue::get(CurTy); // Unknown unop. 3283 } else { 3284 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3285 } 3286 break; 3287 } 3288 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3289 if (Record.size() < 3) 3290 return error("Invalid binary op constexpr record"); 3291 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3292 if (Opc < 0) { 3293 V = UndefValue::get(CurTy); // Unknown binop. 3294 } else { 3295 uint8_t Flags = 0; 3296 if (Record.size() >= 4) { 3297 if (Opc == Instruction::Add || 3298 Opc == Instruction::Sub || 3299 Opc == Instruction::Mul || 3300 Opc == Instruction::Shl) { 3301 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3302 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3303 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3304 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3305 } else if (Opc == Instruction::SDiv || 3306 Opc == Instruction::UDiv || 3307 Opc == Instruction::LShr || 3308 Opc == Instruction::AShr) { 3309 if (Record[3] & (1 << bitc::PEO_EXACT)) 3310 Flags |= PossiblyExactOperator::IsExact; 3311 } 3312 } 3313 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3314 {(unsigned)Record[1], (unsigned)Record[2]}); 3315 } 3316 break; 3317 } 3318 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3319 if (Record.size() < 3) 3320 return error("Invalid cast constexpr record"); 3321 int Opc = getDecodedCastOpcode(Record[0]); 3322 if (Opc < 0) { 3323 V = UndefValue::get(CurTy); // Unknown cast. 3324 } else { 3325 unsigned OpTyID = Record[1]; 3326 Type *OpTy = getTypeByID(OpTyID); 3327 if (!OpTy) 3328 return error("Invalid cast constexpr record"); 3329 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3330 } 3331 break; 3332 } 3333 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3334 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3335 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3336 // operands] 3337 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3338 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3339 // operands] 3340 if (Record.size() < 2) 3341 return error("Constant GEP record must have at least two elements"); 3342 unsigned OpNum = 0; 3343 Type *PointeeType = nullptr; 3344 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3345 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3346 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3347 PointeeType = getTypeByID(Record[OpNum++]); 3348 3349 uint64_t Flags = 0; 3350 std::optional<ConstantRange> InRange; 3351 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3352 uint64_t Op = Record[OpNum++]; 3353 Flags = Op & 1; // inbounds 3354 unsigned InRangeIndex = Op >> 1; 3355 // "Upgrade" inrange by dropping it. The feature is too niche to 3356 // bother. 3357 (void)InRangeIndex; 3358 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3359 Flags = Record[OpNum++]; 3360 Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum); 3361 if (!MaybeInRange) 3362 return MaybeInRange.takeError(); 3363 InRange = MaybeInRange.get(); 3364 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3365 Flags = Record[OpNum++]; 3366 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3367 Flags = (1 << bitc::GEP_INBOUNDS); 3368 3369 SmallVector<unsigned, 16> Elts; 3370 unsigned BaseTypeID = Record[OpNum]; 3371 while (OpNum != Record.size()) { 3372 unsigned ElTyID = Record[OpNum++]; 3373 Type *ElTy = getTypeByID(ElTyID); 3374 if (!ElTy) 3375 return error("Invalid getelementptr constexpr record"); 3376 Elts.push_back(Record[OpNum++]); 3377 } 3378 3379 if (Elts.size() < 1) 3380 return error("Invalid gep with no operands"); 3381 3382 Type *BaseType = getTypeByID(BaseTypeID); 3383 if (isa<VectorType>(BaseType)) { 3384 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3385 BaseType = getTypeByID(BaseTypeID); 3386 } 3387 3388 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3389 if (!OrigPtrTy) 3390 return error("GEP base operand must be pointer or vector of pointer"); 3391 3392 if (!PointeeType) { 3393 PointeeType = getPtrElementTypeByID(BaseTypeID); 3394 if (!PointeeType) 3395 return error("Missing element type for old-style constant GEP"); 3396 } 3397 3398 V = BitcodeConstant::create( 3399 Alloc, CurTy, 3400 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3401 Elts); 3402 break; 3403 } 3404 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3405 if (Record.size() < 3) 3406 return error("Invalid select constexpr record"); 3407 3408 V = BitcodeConstant::create( 3409 Alloc, CurTy, Instruction::Select, 3410 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3411 break; 3412 } 3413 case bitc::CST_CODE_CE_EXTRACTELT 3414 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3415 if (Record.size() < 3) 3416 return error("Invalid extractelement constexpr record"); 3417 unsigned OpTyID = Record[0]; 3418 VectorType *OpTy = 3419 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3420 if (!OpTy) 3421 return error("Invalid extractelement constexpr record"); 3422 unsigned IdxRecord; 3423 if (Record.size() == 4) { 3424 unsigned IdxTyID = Record[2]; 3425 Type *IdxTy = getTypeByID(IdxTyID); 3426 if (!IdxTy) 3427 return error("Invalid extractelement constexpr record"); 3428 IdxRecord = Record[3]; 3429 } else { 3430 // Deprecated, but still needed to read old bitcode files. 3431 IdxRecord = Record[2]; 3432 } 3433 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3434 {(unsigned)Record[1], IdxRecord}); 3435 break; 3436 } 3437 case bitc::CST_CODE_CE_INSERTELT 3438 : { // CE_INSERTELT: [opval, opval, opty, opval] 3439 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3440 if (Record.size() < 3 || !OpTy) 3441 return error("Invalid insertelement constexpr record"); 3442 unsigned IdxRecord; 3443 if (Record.size() == 4) { 3444 unsigned IdxTyID = Record[2]; 3445 Type *IdxTy = getTypeByID(IdxTyID); 3446 if (!IdxTy) 3447 return error("Invalid insertelement constexpr record"); 3448 IdxRecord = Record[3]; 3449 } else { 3450 // Deprecated, but still needed to read old bitcode files. 3451 IdxRecord = Record[2]; 3452 } 3453 V = BitcodeConstant::create( 3454 Alloc, CurTy, Instruction::InsertElement, 3455 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3456 break; 3457 } 3458 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3459 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3460 if (Record.size() < 3 || !OpTy) 3461 return error("Invalid shufflevector constexpr record"); 3462 V = BitcodeConstant::create( 3463 Alloc, CurTy, Instruction::ShuffleVector, 3464 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3465 break; 3466 } 3467 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3468 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3469 VectorType *OpTy = 3470 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3471 if (Record.size() < 4 || !RTy || !OpTy) 3472 return error("Invalid shufflevector constexpr record"); 3473 V = BitcodeConstant::create( 3474 Alloc, CurTy, Instruction::ShuffleVector, 3475 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3476 break; 3477 } 3478 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3479 if (Record.size() < 4) 3480 return error("Invalid cmp constexpt record"); 3481 unsigned OpTyID = Record[0]; 3482 Type *OpTy = getTypeByID(OpTyID); 3483 if (!OpTy) 3484 return error("Invalid cmp constexpr record"); 3485 V = BitcodeConstant::create( 3486 Alloc, CurTy, 3487 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3488 : Instruction::ICmp), 3489 (uint8_t)Record[3]}, 3490 {(unsigned)Record[1], (unsigned)Record[2]}); 3491 break; 3492 } 3493 // This maintains backward compatibility, pre-asm dialect keywords. 3494 // Deprecated, but still needed to read old bitcode files. 3495 case bitc::CST_CODE_INLINEASM_OLD: { 3496 if (Record.size() < 2) 3497 return error("Invalid inlineasm record"); 3498 std::string AsmStr, ConstrStr; 3499 bool HasSideEffects = Record[0] & 1; 3500 bool IsAlignStack = Record[0] >> 1; 3501 unsigned AsmStrSize = Record[1]; 3502 if (2+AsmStrSize >= Record.size()) 3503 return error("Invalid inlineasm record"); 3504 unsigned ConstStrSize = Record[2+AsmStrSize]; 3505 if (3+AsmStrSize+ConstStrSize > Record.size()) 3506 return error("Invalid inlineasm record"); 3507 3508 for (unsigned i = 0; i != AsmStrSize; ++i) 3509 AsmStr += (char)Record[2+i]; 3510 for (unsigned i = 0; i != ConstStrSize; ++i) 3511 ConstrStr += (char)Record[3+AsmStrSize+i]; 3512 UpgradeInlineAsmString(&AsmStr); 3513 if (!CurElemTy) 3514 return error("Missing element type for old-style inlineasm"); 3515 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3516 HasSideEffects, IsAlignStack); 3517 break; 3518 } 3519 // This version adds support for the asm dialect keywords (e.g., 3520 // inteldialect). 3521 case bitc::CST_CODE_INLINEASM_OLD2: { 3522 if (Record.size() < 2) 3523 return error("Invalid inlineasm record"); 3524 std::string AsmStr, ConstrStr; 3525 bool HasSideEffects = Record[0] & 1; 3526 bool IsAlignStack = (Record[0] >> 1) & 1; 3527 unsigned AsmDialect = Record[0] >> 2; 3528 unsigned AsmStrSize = Record[1]; 3529 if (2+AsmStrSize >= Record.size()) 3530 return error("Invalid inlineasm record"); 3531 unsigned ConstStrSize = Record[2+AsmStrSize]; 3532 if (3+AsmStrSize+ConstStrSize > Record.size()) 3533 return error("Invalid inlineasm record"); 3534 3535 for (unsigned i = 0; i != AsmStrSize; ++i) 3536 AsmStr += (char)Record[2+i]; 3537 for (unsigned i = 0; i != ConstStrSize; ++i) 3538 ConstrStr += (char)Record[3+AsmStrSize+i]; 3539 UpgradeInlineAsmString(&AsmStr); 3540 if (!CurElemTy) 3541 return error("Missing element type for old-style inlineasm"); 3542 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3543 HasSideEffects, IsAlignStack, 3544 InlineAsm::AsmDialect(AsmDialect)); 3545 break; 3546 } 3547 // This version adds support for the unwind keyword. 3548 case bitc::CST_CODE_INLINEASM_OLD3: { 3549 if (Record.size() < 2) 3550 return error("Invalid inlineasm record"); 3551 unsigned OpNum = 0; 3552 std::string AsmStr, ConstrStr; 3553 bool HasSideEffects = Record[OpNum] & 1; 3554 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3555 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3556 bool CanThrow = (Record[OpNum] >> 3) & 1; 3557 ++OpNum; 3558 unsigned AsmStrSize = Record[OpNum]; 3559 ++OpNum; 3560 if (OpNum + AsmStrSize >= Record.size()) 3561 return error("Invalid inlineasm record"); 3562 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3563 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3564 return error("Invalid inlineasm record"); 3565 3566 for (unsigned i = 0; i != AsmStrSize; ++i) 3567 AsmStr += (char)Record[OpNum + i]; 3568 ++OpNum; 3569 for (unsigned i = 0; i != ConstStrSize; ++i) 3570 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3571 UpgradeInlineAsmString(&AsmStr); 3572 if (!CurElemTy) 3573 return error("Missing element type for old-style inlineasm"); 3574 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3575 HasSideEffects, IsAlignStack, 3576 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3577 break; 3578 } 3579 // This version adds explicit function type. 3580 case bitc::CST_CODE_INLINEASM: { 3581 if (Record.size() < 3) 3582 return error("Invalid inlineasm record"); 3583 unsigned OpNum = 0; 3584 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3585 ++OpNum; 3586 if (!FnTy) 3587 return error("Invalid inlineasm record"); 3588 std::string AsmStr, ConstrStr; 3589 bool HasSideEffects = Record[OpNum] & 1; 3590 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3591 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3592 bool CanThrow = (Record[OpNum] >> 3) & 1; 3593 ++OpNum; 3594 unsigned AsmStrSize = Record[OpNum]; 3595 ++OpNum; 3596 if (OpNum + AsmStrSize >= Record.size()) 3597 return error("Invalid inlineasm record"); 3598 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3599 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3600 return error("Invalid inlineasm record"); 3601 3602 for (unsigned i = 0; i != AsmStrSize; ++i) 3603 AsmStr += (char)Record[OpNum + i]; 3604 ++OpNum; 3605 for (unsigned i = 0; i != ConstStrSize; ++i) 3606 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3607 UpgradeInlineAsmString(&AsmStr); 3608 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3609 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3610 break; 3611 } 3612 case bitc::CST_CODE_BLOCKADDRESS:{ 3613 if (Record.size() < 3) 3614 return error("Invalid blockaddress record"); 3615 unsigned FnTyID = Record[0]; 3616 Type *FnTy = getTypeByID(FnTyID); 3617 if (!FnTy) 3618 return error("Invalid blockaddress record"); 3619 V = BitcodeConstant::create( 3620 Alloc, CurTy, 3621 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3622 Record[1]); 3623 break; 3624 } 3625 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3626 if (Record.size() < 2) 3627 return error("Invalid dso_local record"); 3628 unsigned GVTyID = Record[0]; 3629 Type *GVTy = getTypeByID(GVTyID); 3630 if (!GVTy) 3631 return error("Invalid dso_local record"); 3632 V = BitcodeConstant::create( 3633 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3634 break; 3635 } 3636 case bitc::CST_CODE_NO_CFI_VALUE: { 3637 if (Record.size() < 2) 3638 return error("Invalid no_cfi record"); 3639 unsigned GVTyID = Record[0]; 3640 Type *GVTy = getTypeByID(GVTyID); 3641 if (!GVTy) 3642 return error("Invalid no_cfi record"); 3643 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3644 Record[1]); 3645 break; 3646 } 3647 } 3648 3649 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3650 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3651 return Err; 3652 ++NextCstNo; 3653 } 3654 } 3655 3656 Error BitcodeReader::parseUseLists() { 3657 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3658 return Err; 3659 3660 // Read all the records. 3661 SmallVector<uint64_t, 64> Record; 3662 3663 while (true) { 3664 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3665 if (!MaybeEntry) 3666 return MaybeEntry.takeError(); 3667 BitstreamEntry Entry = MaybeEntry.get(); 3668 3669 switch (Entry.Kind) { 3670 case BitstreamEntry::SubBlock: // Handled for us already. 3671 case BitstreamEntry::Error: 3672 return error("Malformed block"); 3673 case BitstreamEntry::EndBlock: 3674 return Error::success(); 3675 case BitstreamEntry::Record: 3676 // The interesting case. 3677 break; 3678 } 3679 3680 // Read a use list record. 3681 Record.clear(); 3682 bool IsBB = false; 3683 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3684 if (!MaybeRecord) 3685 return MaybeRecord.takeError(); 3686 switch (MaybeRecord.get()) { 3687 default: // Default behavior: unknown type. 3688 break; 3689 case bitc::USELIST_CODE_BB: 3690 IsBB = true; 3691 [[fallthrough]]; 3692 case bitc::USELIST_CODE_DEFAULT: { 3693 unsigned RecordLength = Record.size(); 3694 if (RecordLength < 3) 3695 // Records should have at least an ID and two indexes. 3696 return error("Invalid record"); 3697 unsigned ID = Record.pop_back_val(); 3698 3699 Value *V; 3700 if (IsBB) { 3701 assert(ID < FunctionBBs.size() && "Basic block not found"); 3702 V = FunctionBBs[ID]; 3703 } else 3704 V = ValueList[ID]; 3705 unsigned NumUses = 0; 3706 SmallDenseMap<const Use *, unsigned, 16> Order; 3707 for (const Use &U : V->materialized_uses()) { 3708 if (++NumUses > Record.size()) 3709 break; 3710 Order[&U] = Record[NumUses - 1]; 3711 } 3712 if (Order.size() != Record.size() || NumUses > Record.size()) 3713 // Mismatches can happen if the functions are being materialized lazily 3714 // (out-of-order), or a value has been upgraded. 3715 break; 3716 3717 V->sortUseList([&](const Use &L, const Use &R) { 3718 return Order.lookup(&L) < Order.lookup(&R); 3719 }); 3720 break; 3721 } 3722 } 3723 } 3724 } 3725 3726 /// When we see the block for metadata, remember where it is and then skip it. 3727 /// This lets us lazily deserialize the metadata. 3728 Error BitcodeReader::rememberAndSkipMetadata() { 3729 // Save the current stream state. 3730 uint64_t CurBit = Stream.GetCurrentBitNo(); 3731 DeferredMetadataInfo.push_back(CurBit); 3732 3733 // Skip over the block for now. 3734 if (Error Err = Stream.SkipBlock()) 3735 return Err; 3736 return Error::success(); 3737 } 3738 3739 Error BitcodeReader::materializeMetadata() { 3740 for (uint64_t BitPos : DeferredMetadataInfo) { 3741 // Move the bit stream to the saved position. 3742 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3743 return JumpFailed; 3744 if (Error Err = MDLoader->parseModuleMetadata()) 3745 return Err; 3746 } 3747 3748 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3749 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3750 // multiple times. 3751 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3752 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3753 NamedMDNode *LinkerOpts = 3754 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3755 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3756 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3757 } 3758 } 3759 3760 DeferredMetadataInfo.clear(); 3761 return Error::success(); 3762 } 3763 3764 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3765 3766 /// When we see the block for a function body, remember where it is and then 3767 /// skip it. This lets us lazily deserialize the functions. 3768 Error BitcodeReader::rememberAndSkipFunctionBody() { 3769 // Get the function we are talking about. 3770 if (FunctionsWithBodies.empty()) 3771 return error("Insufficient function protos"); 3772 3773 Function *Fn = FunctionsWithBodies.back(); 3774 FunctionsWithBodies.pop_back(); 3775 3776 // Save the current stream state. 3777 uint64_t CurBit = Stream.GetCurrentBitNo(); 3778 assert( 3779 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3780 "Mismatch between VST and scanned function offsets"); 3781 DeferredFunctionInfo[Fn] = CurBit; 3782 3783 // Skip over the function block for now. 3784 if (Error Err = Stream.SkipBlock()) 3785 return Err; 3786 return Error::success(); 3787 } 3788 3789 Error BitcodeReader::globalCleanup() { 3790 // Patch the initializers for globals and aliases up. 3791 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3792 return Err; 3793 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3794 return error("Malformed global initializer set"); 3795 3796 // Look for intrinsic functions which need to be upgraded at some point 3797 // and functions that need to have their function attributes upgraded. 3798 for (Function &F : *TheModule) { 3799 MDLoader->upgradeDebugIntrinsics(F); 3800 Function *NewFn; 3801 // If PreserveInputDbgFormat=true, then we don't know whether we want 3802 // intrinsics or records, and we won't perform any conversions in either 3803 // case, so don't upgrade intrinsics to records. 3804 if (UpgradeIntrinsicFunction( 3805 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3806 UpgradedIntrinsics[&F] = NewFn; 3807 // Look for functions that rely on old function attribute behavior. 3808 UpgradeFunctionAttributes(F); 3809 } 3810 3811 // Look for global variables which need to be renamed. 3812 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3813 for (GlobalVariable &GV : TheModule->globals()) 3814 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3815 UpgradedVariables.emplace_back(&GV, Upgraded); 3816 for (auto &Pair : UpgradedVariables) { 3817 Pair.first->eraseFromParent(); 3818 TheModule->insertGlobalVariable(Pair.second); 3819 } 3820 3821 // Force deallocation of memory for these vectors to favor the client that 3822 // want lazy deserialization. 3823 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3824 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3825 return Error::success(); 3826 } 3827 3828 /// Support for lazy parsing of function bodies. This is required if we 3829 /// either have an old bitcode file without a VST forward declaration record, 3830 /// or if we have an anonymous function being materialized, since anonymous 3831 /// functions do not have a name and are therefore not in the VST. 3832 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3833 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3834 return JumpFailed; 3835 3836 if (Stream.AtEndOfStream()) 3837 return error("Could not find function in stream"); 3838 3839 if (!SeenFirstFunctionBody) 3840 return error("Trying to materialize functions before seeing function blocks"); 3841 3842 // An old bitcode file with the symbol table at the end would have 3843 // finished the parse greedily. 3844 assert(SeenValueSymbolTable); 3845 3846 SmallVector<uint64_t, 64> Record; 3847 3848 while (true) { 3849 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3850 if (!MaybeEntry) 3851 return MaybeEntry.takeError(); 3852 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3853 3854 switch (Entry.Kind) { 3855 default: 3856 return error("Expect SubBlock"); 3857 case BitstreamEntry::SubBlock: 3858 switch (Entry.ID) { 3859 default: 3860 return error("Expect function block"); 3861 case bitc::FUNCTION_BLOCK_ID: 3862 if (Error Err = rememberAndSkipFunctionBody()) 3863 return Err; 3864 NextUnreadBit = Stream.GetCurrentBitNo(); 3865 return Error::success(); 3866 } 3867 } 3868 } 3869 } 3870 3871 Error BitcodeReaderBase::readBlockInfo() { 3872 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3873 Stream.ReadBlockInfoBlock(); 3874 if (!MaybeNewBlockInfo) 3875 return MaybeNewBlockInfo.takeError(); 3876 std::optional<BitstreamBlockInfo> NewBlockInfo = 3877 std::move(MaybeNewBlockInfo.get()); 3878 if (!NewBlockInfo) 3879 return error("Malformed block"); 3880 BlockInfo = std::move(*NewBlockInfo); 3881 return Error::success(); 3882 } 3883 3884 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3885 // v1: [selection_kind, name] 3886 // v2: [strtab_offset, strtab_size, selection_kind] 3887 StringRef Name; 3888 std::tie(Name, Record) = readNameFromStrtab(Record); 3889 3890 if (Record.empty()) 3891 return error("Invalid record"); 3892 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3893 std::string OldFormatName; 3894 if (!UseStrtab) { 3895 if (Record.size() < 2) 3896 return error("Invalid record"); 3897 unsigned ComdatNameSize = Record[1]; 3898 if (ComdatNameSize > Record.size() - 2) 3899 return error("Comdat name size too large"); 3900 OldFormatName.reserve(ComdatNameSize); 3901 for (unsigned i = 0; i != ComdatNameSize; ++i) 3902 OldFormatName += (char)Record[2 + i]; 3903 Name = OldFormatName; 3904 } 3905 Comdat *C = TheModule->getOrInsertComdat(Name); 3906 C->setSelectionKind(SK); 3907 ComdatList.push_back(C); 3908 return Error::success(); 3909 } 3910 3911 static void inferDSOLocal(GlobalValue *GV) { 3912 // infer dso_local from linkage and visibility if it is not encoded. 3913 if (GV->hasLocalLinkage() || 3914 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3915 GV->setDSOLocal(true); 3916 } 3917 3918 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3919 GlobalValue::SanitizerMetadata Meta; 3920 if (V & (1 << 0)) 3921 Meta.NoAddress = true; 3922 if (V & (1 << 1)) 3923 Meta.NoHWAddress = true; 3924 if (V & (1 << 2)) 3925 Meta.Memtag = true; 3926 if (V & (1 << 3)) 3927 Meta.IsDynInit = true; 3928 return Meta; 3929 } 3930 3931 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3932 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3933 // visibility, threadlocal, unnamed_addr, externally_initialized, 3934 // dllstorageclass, comdat, attributes, preemption specifier, 3935 // partition strtab offset, partition strtab size] (name in VST) 3936 // v2: [strtab_offset, strtab_size, v1] 3937 // v3: [v2, code_model] 3938 StringRef Name; 3939 std::tie(Name, Record) = readNameFromStrtab(Record); 3940 3941 if (Record.size() < 6) 3942 return error("Invalid record"); 3943 unsigned TyID = Record[0]; 3944 Type *Ty = getTypeByID(TyID); 3945 if (!Ty) 3946 return error("Invalid record"); 3947 bool isConstant = Record[1] & 1; 3948 bool explicitType = Record[1] & 2; 3949 unsigned AddressSpace; 3950 if (explicitType) { 3951 AddressSpace = Record[1] >> 2; 3952 } else { 3953 if (!Ty->isPointerTy()) 3954 return error("Invalid type for value"); 3955 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3956 TyID = getContainedTypeID(TyID); 3957 Ty = getTypeByID(TyID); 3958 if (!Ty) 3959 return error("Missing element type for old-style global"); 3960 } 3961 3962 uint64_t RawLinkage = Record[3]; 3963 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3964 MaybeAlign Alignment; 3965 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3966 return Err; 3967 std::string Section; 3968 if (Record[5]) { 3969 if (Record[5] - 1 >= SectionTable.size()) 3970 return error("Invalid ID"); 3971 Section = SectionTable[Record[5] - 1]; 3972 } 3973 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3974 // Local linkage must have default visibility. 3975 // auto-upgrade `hidden` and `protected` for old bitcode. 3976 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3977 Visibility = getDecodedVisibility(Record[6]); 3978 3979 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3980 if (Record.size() > 7) 3981 TLM = getDecodedThreadLocalMode(Record[7]); 3982 3983 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3984 if (Record.size() > 8) 3985 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3986 3987 bool ExternallyInitialized = false; 3988 if (Record.size() > 9) 3989 ExternallyInitialized = Record[9]; 3990 3991 GlobalVariable *NewGV = 3992 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3993 nullptr, TLM, AddressSpace, ExternallyInitialized); 3994 if (Alignment) 3995 NewGV->setAlignment(*Alignment); 3996 if (!Section.empty()) 3997 NewGV->setSection(Section); 3998 NewGV->setVisibility(Visibility); 3999 NewGV->setUnnamedAddr(UnnamedAddr); 4000 4001 if (Record.size() > 10) { 4002 // A GlobalValue with local linkage cannot have a DLL storage class. 4003 if (!NewGV->hasLocalLinkage()) { 4004 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4005 } 4006 } else { 4007 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4008 } 4009 4010 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4011 4012 // Remember which value to use for the global initializer. 4013 if (unsigned InitID = Record[2]) 4014 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4015 4016 if (Record.size() > 11) { 4017 if (unsigned ComdatID = Record[11]) { 4018 if (ComdatID > ComdatList.size()) 4019 return error("Invalid global variable comdat ID"); 4020 NewGV->setComdat(ComdatList[ComdatID - 1]); 4021 } 4022 } else if (hasImplicitComdat(RawLinkage)) { 4023 ImplicitComdatObjects.insert(NewGV); 4024 } 4025 4026 if (Record.size() > 12) { 4027 auto AS = getAttributes(Record[12]).getFnAttrs(); 4028 NewGV->setAttributes(AS); 4029 } 4030 4031 if (Record.size() > 13) { 4032 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4033 } 4034 inferDSOLocal(NewGV); 4035 4036 // Check whether we have enough values to read a partition name. 4037 if (Record.size() > 15) 4038 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4039 4040 if (Record.size() > 16 && Record[16]) { 4041 llvm::GlobalValue::SanitizerMetadata Meta = 4042 deserializeSanitizerMetadata(Record[16]); 4043 NewGV->setSanitizerMetadata(Meta); 4044 } 4045 4046 if (Record.size() > 17 && Record[17]) { 4047 if (auto CM = getDecodedCodeModel(Record[17])) 4048 NewGV->setCodeModel(*CM); 4049 else 4050 return error("Invalid global variable code model"); 4051 } 4052 4053 return Error::success(); 4054 } 4055 4056 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4057 if (ValueTypeCallback) { 4058 (*ValueTypeCallback)( 4059 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4060 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4061 } 4062 } 4063 4064 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4065 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4066 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4067 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4068 // v2: [strtab_offset, strtab_size, v1] 4069 StringRef Name; 4070 std::tie(Name, Record) = readNameFromStrtab(Record); 4071 4072 if (Record.size() < 8) 4073 return error("Invalid record"); 4074 unsigned FTyID = Record[0]; 4075 Type *FTy = getTypeByID(FTyID); 4076 if (!FTy) 4077 return error("Invalid record"); 4078 if (isa<PointerType>(FTy)) { 4079 FTyID = getContainedTypeID(FTyID, 0); 4080 FTy = getTypeByID(FTyID); 4081 if (!FTy) 4082 return error("Missing element type for old-style function"); 4083 } 4084 4085 if (!isa<FunctionType>(FTy)) 4086 return error("Invalid type for value"); 4087 auto CC = static_cast<CallingConv::ID>(Record[1]); 4088 if (CC & ~CallingConv::MaxID) 4089 return error("Invalid calling convention ID"); 4090 4091 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4092 if (Record.size() > 16) 4093 AddrSpace = Record[16]; 4094 4095 Function *Func = 4096 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4097 AddrSpace, Name, TheModule); 4098 4099 assert(Func->getFunctionType() == FTy && 4100 "Incorrect fully specified type provided for function"); 4101 FunctionTypeIDs[Func] = FTyID; 4102 4103 Func->setCallingConv(CC); 4104 bool isProto = Record[2]; 4105 uint64_t RawLinkage = Record[3]; 4106 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4107 Func->setAttributes(getAttributes(Record[4])); 4108 callValueTypeCallback(Func, FTyID); 4109 4110 // Upgrade any old-style byval or sret without a type by propagating the 4111 // argument's pointee type. There should be no opaque pointers where the byval 4112 // type is implicit. 4113 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4114 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4115 Attribute::InAlloca}) { 4116 if (!Func->hasParamAttribute(i, Kind)) 4117 continue; 4118 4119 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4120 continue; 4121 4122 Func->removeParamAttr(i, Kind); 4123 4124 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4125 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4126 if (!PtrEltTy) 4127 return error("Missing param element type for attribute upgrade"); 4128 4129 Attribute NewAttr; 4130 switch (Kind) { 4131 case Attribute::ByVal: 4132 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4133 break; 4134 case Attribute::StructRet: 4135 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4136 break; 4137 case Attribute::InAlloca: 4138 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4139 break; 4140 default: 4141 llvm_unreachable("not an upgraded type attribute"); 4142 } 4143 4144 Func->addParamAttr(i, NewAttr); 4145 } 4146 } 4147 4148 if (Func->getCallingConv() == CallingConv::X86_INTR && 4149 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4150 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4151 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4152 if (!ByValTy) 4153 return error("Missing param element type for x86_intrcc upgrade"); 4154 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4155 Func->addParamAttr(0, NewAttr); 4156 } 4157 4158 MaybeAlign Alignment; 4159 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4160 return Err; 4161 if (Alignment) 4162 Func->setAlignment(*Alignment); 4163 if (Record[6]) { 4164 if (Record[6] - 1 >= SectionTable.size()) 4165 return error("Invalid ID"); 4166 Func->setSection(SectionTable[Record[6] - 1]); 4167 } 4168 // Local linkage must have default visibility. 4169 // auto-upgrade `hidden` and `protected` for old bitcode. 4170 if (!Func->hasLocalLinkage()) 4171 Func->setVisibility(getDecodedVisibility(Record[7])); 4172 if (Record.size() > 8 && Record[8]) { 4173 if (Record[8] - 1 >= GCTable.size()) 4174 return error("Invalid ID"); 4175 Func->setGC(GCTable[Record[8] - 1]); 4176 } 4177 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4178 if (Record.size() > 9) 4179 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4180 Func->setUnnamedAddr(UnnamedAddr); 4181 4182 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4183 if (Record.size() > 10) 4184 OperandInfo.Prologue = Record[10]; 4185 4186 if (Record.size() > 11) { 4187 // A GlobalValue with local linkage cannot have a DLL storage class. 4188 if (!Func->hasLocalLinkage()) { 4189 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4190 } 4191 } else { 4192 upgradeDLLImportExportLinkage(Func, RawLinkage); 4193 } 4194 4195 if (Record.size() > 12) { 4196 if (unsigned ComdatID = Record[12]) { 4197 if (ComdatID > ComdatList.size()) 4198 return error("Invalid function comdat ID"); 4199 Func->setComdat(ComdatList[ComdatID - 1]); 4200 } 4201 } else if (hasImplicitComdat(RawLinkage)) { 4202 ImplicitComdatObjects.insert(Func); 4203 } 4204 4205 if (Record.size() > 13) 4206 OperandInfo.Prefix = Record[13]; 4207 4208 if (Record.size() > 14) 4209 OperandInfo.PersonalityFn = Record[14]; 4210 4211 if (Record.size() > 15) { 4212 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4213 } 4214 inferDSOLocal(Func); 4215 4216 // Record[16] is the address space number. 4217 4218 // Check whether we have enough values to read a partition name. Also make 4219 // sure Strtab has enough values. 4220 if (Record.size() > 18 && Strtab.data() && 4221 Record[17] + Record[18] <= Strtab.size()) { 4222 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4223 } 4224 4225 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4226 4227 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4228 FunctionOperands.push_back(OperandInfo); 4229 4230 // If this is a function with a body, remember the prototype we are 4231 // creating now, so that we can match up the body with them later. 4232 if (!isProto) { 4233 Func->setIsMaterializable(true); 4234 FunctionsWithBodies.push_back(Func); 4235 DeferredFunctionInfo[Func] = 0; 4236 } 4237 return Error::success(); 4238 } 4239 4240 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4241 unsigned BitCode, ArrayRef<uint64_t> Record) { 4242 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4243 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4244 // dllstorageclass, threadlocal, unnamed_addr, 4245 // preemption specifier] (name in VST) 4246 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4247 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4248 // preemption specifier] (name in VST) 4249 // v2: [strtab_offset, strtab_size, v1] 4250 StringRef Name; 4251 std::tie(Name, Record) = readNameFromStrtab(Record); 4252 4253 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4254 if (Record.size() < (3 + (unsigned)NewRecord)) 4255 return error("Invalid record"); 4256 unsigned OpNum = 0; 4257 unsigned TypeID = Record[OpNum++]; 4258 Type *Ty = getTypeByID(TypeID); 4259 if (!Ty) 4260 return error("Invalid record"); 4261 4262 unsigned AddrSpace; 4263 if (!NewRecord) { 4264 auto *PTy = dyn_cast<PointerType>(Ty); 4265 if (!PTy) 4266 return error("Invalid type for value"); 4267 AddrSpace = PTy->getAddressSpace(); 4268 TypeID = getContainedTypeID(TypeID); 4269 Ty = getTypeByID(TypeID); 4270 if (!Ty) 4271 return error("Missing element type for old-style indirect symbol"); 4272 } else { 4273 AddrSpace = Record[OpNum++]; 4274 } 4275 4276 auto Val = Record[OpNum++]; 4277 auto Linkage = Record[OpNum++]; 4278 GlobalValue *NewGA; 4279 if (BitCode == bitc::MODULE_CODE_ALIAS || 4280 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4281 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4282 TheModule); 4283 else 4284 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4285 nullptr, TheModule); 4286 4287 // Local linkage must have default visibility. 4288 // auto-upgrade `hidden` and `protected` for old bitcode. 4289 if (OpNum != Record.size()) { 4290 auto VisInd = OpNum++; 4291 if (!NewGA->hasLocalLinkage()) 4292 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4293 } 4294 if (BitCode == bitc::MODULE_CODE_ALIAS || 4295 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4296 if (OpNum != Record.size()) { 4297 auto S = Record[OpNum++]; 4298 // A GlobalValue with local linkage cannot have a DLL storage class. 4299 if (!NewGA->hasLocalLinkage()) 4300 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4301 } 4302 else 4303 upgradeDLLImportExportLinkage(NewGA, Linkage); 4304 if (OpNum != Record.size()) 4305 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4306 if (OpNum != Record.size()) 4307 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4308 } 4309 if (OpNum != Record.size()) 4310 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4311 inferDSOLocal(NewGA); 4312 4313 // Check whether we have enough values to read a partition name. 4314 if (OpNum + 1 < Record.size()) { 4315 // Check Strtab has enough values for the partition. 4316 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4317 return error("Malformed partition, too large."); 4318 NewGA->setPartition( 4319 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4320 OpNum += 2; 4321 } 4322 4323 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4324 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4325 return Error::success(); 4326 } 4327 4328 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4329 bool ShouldLazyLoadMetadata, 4330 ParserCallbacks Callbacks) { 4331 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4332 // has been set to true and we aren't attempting to preserve the existing 4333 // format in the bitcode (default action: load into the old debug format). 4334 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4335 TheModule->IsNewDbgInfoFormat = 4336 UseNewDbgInfoFormat && 4337 LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE; 4338 } 4339 4340 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4341 if (ResumeBit) { 4342 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4343 return JumpFailed; 4344 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4345 return Err; 4346 4347 SmallVector<uint64_t, 64> Record; 4348 4349 // Parts of bitcode parsing depend on the datalayout. Make sure we 4350 // finalize the datalayout before we run any of that code. 4351 bool ResolvedDataLayout = false; 4352 // In order to support importing modules with illegal data layout strings, 4353 // delay parsing the data layout string until after upgrades and overrides 4354 // have been applied, allowing to fix illegal data layout strings. 4355 // Initialize to the current module's layout string in case none is specified. 4356 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4357 4358 auto ResolveDataLayout = [&]() -> Error { 4359 if (ResolvedDataLayout) 4360 return Error::success(); 4361 4362 // Datalayout and triple can't be parsed after this point. 4363 ResolvedDataLayout = true; 4364 4365 // Auto-upgrade the layout string 4366 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4367 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4368 4369 // Apply override 4370 if (Callbacks.DataLayout) { 4371 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4372 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4373 TentativeDataLayoutStr = *LayoutOverride; 4374 } 4375 4376 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4377 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4378 if (!MaybeDL) 4379 return MaybeDL.takeError(); 4380 4381 TheModule->setDataLayout(MaybeDL.get()); 4382 return Error::success(); 4383 }; 4384 4385 // Read all the records for this module. 4386 while (true) { 4387 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4388 if (!MaybeEntry) 4389 return MaybeEntry.takeError(); 4390 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4391 4392 switch (Entry.Kind) { 4393 case BitstreamEntry::Error: 4394 return error("Malformed block"); 4395 case BitstreamEntry::EndBlock: 4396 if (Error Err = ResolveDataLayout()) 4397 return Err; 4398 return globalCleanup(); 4399 4400 case BitstreamEntry::SubBlock: 4401 switch (Entry.ID) { 4402 default: // Skip unknown content. 4403 if (Error Err = Stream.SkipBlock()) 4404 return Err; 4405 break; 4406 case bitc::BLOCKINFO_BLOCK_ID: 4407 if (Error Err = readBlockInfo()) 4408 return Err; 4409 break; 4410 case bitc::PARAMATTR_BLOCK_ID: 4411 if (Error Err = parseAttributeBlock()) 4412 return Err; 4413 break; 4414 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4415 if (Error Err = parseAttributeGroupBlock()) 4416 return Err; 4417 break; 4418 case bitc::TYPE_BLOCK_ID_NEW: 4419 if (Error Err = parseTypeTable()) 4420 return Err; 4421 break; 4422 case bitc::VALUE_SYMTAB_BLOCK_ID: 4423 if (!SeenValueSymbolTable) { 4424 // Either this is an old form VST without function index and an 4425 // associated VST forward declaration record (which would have caused 4426 // the VST to be jumped to and parsed before it was encountered 4427 // normally in the stream), or there were no function blocks to 4428 // trigger an earlier parsing of the VST. 4429 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4430 if (Error Err = parseValueSymbolTable()) 4431 return Err; 4432 SeenValueSymbolTable = true; 4433 } else { 4434 // We must have had a VST forward declaration record, which caused 4435 // the parser to jump to and parse the VST earlier. 4436 assert(VSTOffset > 0); 4437 if (Error Err = Stream.SkipBlock()) 4438 return Err; 4439 } 4440 break; 4441 case bitc::CONSTANTS_BLOCK_ID: 4442 if (Error Err = parseConstants()) 4443 return Err; 4444 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4445 return Err; 4446 break; 4447 case bitc::METADATA_BLOCK_ID: 4448 if (ShouldLazyLoadMetadata) { 4449 if (Error Err = rememberAndSkipMetadata()) 4450 return Err; 4451 break; 4452 } 4453 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4454 if (Error Err = MDLoader->parseModuleMetadata()) 4455 return Err; 4456 break; 4457 case bitc::METADATA_KIND_BLOCK_ID: 4458 if (Error Err = MDLoader->parseMetadataKinds()) 4459 return Err; 4460 break; 4461 case bitc::FUNCTION_BLOCK_ID: 4462 if (Error Err = ResolveDataLayout()) 4463 return Err; 4464 4465 // If this is the first function body we've seen, reverse the 4466 // FunctionsWithBodies list. 4467 if (!SeenFirstFunctionBody) { 4468 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4469 if (Error Err = globalCleanup()) 4470 return Err; 4471 SeenFirstFunctionBody = true; 4472 } 4473 4474 if (VSTOffset > 0) { 4475 // If we have a VST forward declaration record, make sure we 4476 // parse the VST now if we haven't already. It is needed to 4477 // set up the DeferredFunctionInfo vector for lazy reading. 4478 if (!SeenValueSymbolTable) { 4479 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4480 return Err; 4481 SeenValueSymbolTable = true; 4482 // Fall through so that we record the NextUnreadBit below. 4483 // This is necessary in case we have an anonymous function that 4484 // is later materialized. Since it will not have a VST entry we 4485 // need to fall back to the lazy parse to find its offset. 4486 } else { 4487 // If we have a VST forward declaration record, but have already 4488 // parsed the VST (just above, when the first function body was 4489 // encountered here), then we are resuming the parse after 4490 // materializing functions. The ResumeBit points to the 4491 // start of the last function block recorded in the 4492 // DeferredFunctionInfo map. Skip it. 4493 if (Error Err = Stream.SkipBlock()) 4494 return Err; 4495 continue; 4496 } 4497 } 4498 4499 // Support older bitcode files that did not have the function 4500 // index in the VST, nor a VST forward declaration record, as 4501 // well as anonymous functions that do not have VST entries. 4502 // Build the DeferredFunctionInfo vector on the fly. 4503 if (Error Err = rememberAndSkipFunctionBody()) 4504 return Err; 4505 4506 // Suspend parsing when we reach the function bodies. Subsequent 4507 // materialization calls will resume it when necessary. If the bitcode 4508 // file is old, the symbol table will be at the end instead and will not 4509 // have been seen yet. In this case, just finish the parse now. 4510 if (SeenValueSymbolTable) { 4511 NextUnreadBit = Stream.GetCurrentBitNo(); 4512 // After the VST has been parsed, we need to make sure intrinsic name 4513 // are auto-upgraded. 4514 return globalCleanup(); 4515 } 4516 break; 4517 case bitc::USELIST_BLOCK_ID: 4518 if (Error Err = parseUseLists()) 4519 return Err; 4520 break; 4521 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4522 if (Error Err = parseOperandBundleTags()) 4523 return Err; 4524 break; 4525 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4526 if (Error Err = parseSyncScopeNames()) 4527 return Err; 4528 break; 4529 } 4530 continue; 4531 4532 case BitstreamEntry::Record: 4533 // The interesting case. 4534 break; 4535 } 4536 4537 // Read a record. 4538 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4539 if (!MaybeBitCode) 4540 return MaybeBitCode.takeError(); 4541 switch (unsigned BitCode = MaybeBitCode.get()) { 4542 default: break; // Default behavior, ignore unknown content. 4543 case bitc::MODULE_CODE_VERSION: { 4544 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4545 if (!VersionOrErr) 4546 return VersionOrErr.takeError(); 4547 UseRelativeIDs = *VersionOrErr >= 1; 4548 break; 4549 } 4550 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4551 if (ResolvedDataLayout) 4552 return error("target triple too late in module"); 4553 std::string S; 4554 if (convertToString(Record, 0, S)) 4555 return error("Invalid record"); 4556 TheModule->setTargetTriple(S); 4557 break; 4558 } 4559 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4560 if (ResolvedDataLayout) 4561 return error("datalayout too late in module"); 4562 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4563 return error("Invalid record"); 4564 break; 4565 } 4566 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4567 std::string S; 4568 if (convertToString(Record, 0, S)) 4569 return error("Invalid record"); 4570 TheModule->setModuleInlineAsm(S); 4571 break; 4572 } 4573 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4574 // Deprecated, but still needed to read old bitcode files. 4575 std::string S; 4576 if (convertToString(Record, 0, S)) 4577 return error("Invalid record"); 4578 // Ignore value. 4579 break; 4580 } 4581 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4582 std::string S; 4583 if (convertToString(Record, 0, S)) 4584 return error("Invalid record"); 4585 SectionTable.push_back(S); 4586 break; 4587 } 4588 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4589 std::string S; 4590 if (convertToString(Record, 0, S)) 4591 return error("Invalid record"); 4592 GCTable.push_back(S); 4593 break; 4594 } 4595 case bitc::MODULE_CODE_COMDAT: 4596 if (Error Err = parseComdatRecord(Record)) 4597 return Err; 4598 break; 4599 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4600 // written by ThinLinkBitcodeWriter. See 4601 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4602 // record 4603 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4604 case bitc::MODULE_CODE_GLOBALVAR: 4605 if (Error Err = parseGlobalVarRecord(Record)) 4606 return Err; 4607 break; 4608 case bitc::MODULE_CODE_FUNCTION: 4609 if (Error Err = ResolveDataLayout()) 4610 return Err; 4611 if (Error Err = parseFunctionRecord(Record)) 4612 return Err; 4613 break; 4614 case bitc::MODULE_CODE_IFUNC: 4615 case bitc::MODULE_CODE_ALIAS: 4616 case bitc::MODULE_CODE_ALIAS_OLD: 4617 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4618 return Err; 4619 break; 4620 /// MODULE_CODE_VSTOFFSET: [offset] 4621 case bitc::MODULE_CODE_VSTOFFSET: 4622 if (Record.empty()) 4623 return error("Invalid record"); 4624 // Note that we subtract 1 here because the offset is relative to one word 4625 // before the start of the identification or module block, which was 4626 // historically always the start of the regular bitcode header. 4627 VSTOffset = Record[0] - 1; 4628 break; 4629 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4630 case bitc::MODULE_CODE_SOURCE_FILENAME: 4631 SmallString<128> ValueName; 4632 if (convertToString(Record, 0, ValueName)) 4633 return error("Invalid record"); 4634 TheModule->setSourceFileName(ValueName); 4635 break; 4636 } 4637 Record.clear(); 4638 } 4639 this->ValueTypeCallback = std::nullopt; 4640 return Error::success(); 4641 } 4642 4643 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4644 bool IsImporting, 4645 ParserCallbacks Callbacks) { 4646 TheModule = M; 4647 MetadataLoaderCallbacks MDCallbacks; 4648 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4649 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4650 return getContainedTypeID(I, J); 4651 }; 4652 MDCallbacks.MDType = Callbacks.MDType; 4653 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4654 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4655 } 4656 4657 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4658 if (!isa<PointerType>(PtrType)) 4659 return error("Load/Store operand is not a pointer type"); 4660 if (!PointerType::isLoadableOrStorableType(ValType)) 4661 return error("Cannot load/store from pointer"); 4662 return Error::success(); 4663 } 4664 4665 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4666 ArrayRef<unsigned> ArgTyIDs) { 4667 AttributeList Attrs = CB->getAttributes(); 4668 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4669 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4670 Attribute::InAlloca}) { 4671 if (!Attrs.hasParamAttr(i, Kind) || 4672 Attrs.getParamAttr(i, Kind).getValueAsType()) 4673 continue; 4674 4675 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4676 if (!PtrEltTy) 4677 return error("Missing element type for typed attribute upgrade"); 4678 4679 Attribute NewAttr; 4680 switch (Kind) { 4681 case Attribute::ByVal: 4682 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4683 break; 4684 case Attribute::StructRet: 4685 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4686 break; 4687 case Attribute::InAlloca: 4688 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4689 break; 4690 default: 4691 llvm_unreachable("not an upgraded type attribute"); 4692 } 4693 4694 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4695 } 4696 } 4697 4698 if (CB->isInlineAsm()) { 4699 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4700 unsigned ArgNo = 0; 4701 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4702 if (!CI.hasArg()) 4703 continue; 4704 4705 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4706 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4707 if (!ElemTy) 4708 return error("Missing element type for inline asm upgrade"); 4709 Attrs = Attrs.addParamAttribute( 4710 Context, ArgNo, 4711 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4712 } 4713 4714 ArgNo++; 4715 } 4716 } 4717 4718 switch (CB->getIntrinsicID()) { 4719 case Intrinsic::preserve_array_access_index: 4720 case Intrinsic::preserve_struct_access_index: 4721 case Intrinsic::aarch64_ldaxr: 4722 case Intrinsic::aarch64_ldxr: 4723 case Intrinsic::aarch64_stlxr: 4724 case Intrinsic::aarch64_stxr: 4725 case Intrinsic::arm_ldaex: 4726 case Intrinsic::arm_ldrex: 4727 case Intrinsic::arm_stlex: 4728 case Intrinsic::arm_strex: { 4729 unsigned ArgNo; 4730 switch (CB->getIntrinsicID()) { 4731 case Intrinsic::aarch64_stlxr: 4732 case Intrinsic::aarch64_stxr: 4733 case Intrinsic::arm_stlex: 4734 case Intrinsic::arm_strex: 4735 ArgNo = 1; 4736 break; 4737 default: 4738 ArgNo = 0; 4739 break; 4740 } 4741 if (!Attrs.getParamElementType(ArgNo)) { 4742 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4743 if (!ElTy) 4744 return error("Missing element type for elementtype upgrade"); 4745 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4746 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4747 } 4748 break; 4749 } 4750 default: 4751 break; 4752 } 4753 4754 CB->setAttributes(Attrs); 4755 return Error::success(); 4756 } 4757 4758 /// Lazily parse the specified function body block. 4759 Error BitcodeReader::parseFunctionBody(Function *F) { 4760 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4761 return Err; 4762 4763 // Unexpected unresolved metadata when parsing function. 4764 if (MDLoader->hasFwdRefs()) 4765 return error("Invalid function metadata: incoming forward references"); 4766 4767 InstructionList.clear(); 4768 unsigned ModuleValueListSize = ValueList.size(); 4769 unsigned ModuleMDLoaderSize = MDLoader->size(); 4770 4771 // Add all the function arguments to the value table. 4772 unsigned ArgNo = 0; 4773 unsigned FTyID = FunctionTypeIDs[F]; 4774 for (Argument &I : F->args()) { 4775 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4776 assert(I.getType() == getTypeByID(ArgTyID) && 4777 "Incorrect fully specified type for Function Argument"); 4778 ValueList.push_back(&I, ArgTyID); 4779 ++ArgNo; 4780 } 4781 unsigned NextValueNo = ValueList.size(); 4782 BasicBlock *CurBB = nullptr; 4783 unsigned CurBBNo = 0; 4784 // Block into which constant expressions from phi nodes are materialized. 4785 BasicBlock *PhiConstExprBB = nullptr; 4786 // Edge blocks for phi nodes into which constant expressions have been 4787 // expanded. 4788 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4789 ConstExprEdgeBBs; 4790 4791 DebugLoc LastLoc; 4792 auto getLastInstruction = [&]() -> Instruction * { 4793 if (CurBB && !CurBB->empty()) 4794 return &CurBB->back(); 4795 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4796 !FunctionBBs[CurBBNo - 1]->empty()) 4797 return &FunctionBBs[CurBBNo - 1]->back(); 4798 return nullptr; 4799 }; 4800 4801 std::vector<OperandBundleDef> OperandBundles; 4802 4803 // Read all the records. 4804 SmallVector<uint64_t, 64> Record; 4805 4806 while (true) { 4807 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4808 if (!MaybeEntry) 4809 return MaybeEntry.takeError(); 4810 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4811 4812 switch (Entry.Kind) { 4813 case BitstreamEntry::Error: 4814 return error("Malformed block"); 4815 case BitstreamEntry::EndBlock: 4816 goto OutOfRecordLoop; 4817 4818 case BitstreamEntry::SubBlock: 4819 switch (Entry.ID) { 4820 default: // Skip unknown content. 4821 if (Error Err = Stream.SkipBlock()) 4822 return Err; 4823 break; 4824 case bitc::CONSTANTS_BLOCK_ID: 4825 if (Error Err = parseConstants()) 4826 return Err; 4827 NextValueNo = ValueList.size(); 4828 break; 4829 case bitc::VALUE_SYMTAB_BLOCK_ID: 4830 if (Error Err = parseValueSymbolTable()) 4831 return Err; 4832 break; 4833 case bitc::METADATA_ATTACHMENT_ID: 4834 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4835 return Err; 4836 break; 4837 case bitc::METADATA_BLOCK_ID: 4838 assert(DeferredMetadataInfo.empty() && 4839 "Must read all module-level metadata before function-level"); 4840 if (Error Err = MDLoader->parseFunctionMetadata()) 4841 return Err; 4842 break; 4843 case bitc::USELIST_BLOCK_ID: 4844 if (Error Err = parseUseLists()) 4845 return Err; 4846 break; 4847 } 4848 continue; 4849 4850 case BitstreamEntry::Record: 4851 // The interesting case. 4852 break; 4853 } 4854 4855 // Read a record. 4856 Record.clear(); 4857 Instruction *I = nullptr; 4858 unsigned ResTypeID = InvalidTypeID; 4859 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4860 if (!MaybeBitCode) 4861 return MaybeBitCode.takeError(); 4862 switch (unsigned BitCode = MaybeBitCode.get()) { 4863 default: // Default behavior: reject 4864 return error("Invalid value"); 4865 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4866 if (Record.empty() || Record[0] == 0) 4867 return error("Invalid record"); 4868 // Create all the basic blocks for the function. 4869 FunctionBBs.resize(Record[0]); 4870 4871 // See if anything took the address of blocks in this function. 4872 auto BBFRI = BasicBlockFwdRefs.find(F); 4873 if (BBFRI == BasicBlockFwdRefs.end()) { 4874 for (BasicBlock *&BB : FunctionBBs) 4875 BB = BasicBlock::Create(Context, "", F); 4876 } else { 4877 auto &BBRefs = BBFRI->second; 4878 // Check for invalid basic block references. 4879 if (BBRefs.size() > FunctionBBs.size()) 4880 return error("Invalid ID"); 4881 assert(!BBRefs.empty() && "Unexpected empty array"); 4882 assert(!BBRefs.front() && "Invalid reference to entry block"); 4883 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4884 ++I) 4885 if (I < RE && BBRefs[I]) { 4886 BBRefs[I]->insertInto(F); 4887 FunctionBBs[I] = BBRefs[I]; 4888 } else { 4889 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4890 } 4891 4892 // Erase from the table. 4893 BasicBlockFwdRefs.erase(BBFRI); 4894 } 4895 4896 CurBB = FunctionBBs[0]; 4897 continue; 4898 } 4899 4900 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4901 // The record should not be emitted if it's an empty list. 4902 if (Record.empty()) 4903 return error("Invalid record"); 4904 // When we have the RARE case of a BlockAddress Constant that is not 4905 // scoped to the Function it refers to, we need to conservatively 4906 // materialize the referred to Function, regardless of whether or not 4907 // that Function will ultimately be linked, otherwise users of 4908 // BitcodeReader might start splicing out Function bodies such that we 4909 // might no longer be able to materialize the BlockAddress since the 4910 // BasicBlock (and entire body of the Function) the BlockAddress refers 4911 // to may have been moved. In the case that the user of BitcodeReader 4912 // decides ultimately not to link the Function body, materializing here 4913 // could be considered wasteful, but it's better than a deserialization 4914 // failure as described. This keeps BitcodeReader unaware of complex 4915 // linkage policy decisions such as those use by LTO, leaving those 4916 // decisions "one layer up." 4917 for (uint64_t ValID : Record) 4918 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4919 BackwardRefFunctions.push_back(F); 4920 else 4921 return error("Invalid record"); 4922 4923 continue; 4924 4925 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4926 // This record indicates that the last instruction is at the same 4927 // location as the previous instruction with a location. 4928 I = getLastInstruction(); 4929 4930 if (!I) 4931 return error("Invalid record"); 4932 I->setDebugLoc(LastLoc); 4933 I = nullptr; 4934 continue; 4935 4936 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4937 I = getLastInstruction(); 4938 if (!I || Record.size() < 4) 4939 return error("Invalid record"); 4940 4941 unsigned Line = Record[0], Col = Record[1]; 4942 unsigned ScopeID = Record[2], IAID = Record[3]; 4943 bool isImplicitCode = Record.size() == 5 && Record[4]; 4944 4945 MDNode *Scope = nullptr, *IA = nullptr; 4946 if (ScopeID) { 4947 Scope = dyn_cast_or_null<MDNode>( 4948 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4949 if (!Scope) 4950 return error("Invalid record"); 4951 } 4952 if (IAID) { 4953 IA = dyn_cast_or_null<MDNode>( 4954 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4955 if (!IA) 4956 return error("Invalid record"); 4957 } 4958 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4959 isImplicitCode); 4960 I->setDebugLoc(LastLoc); 4961 I = nullptr; 4962 continue; 4963 } 4964 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4965 unsigned OpNum = 0; 4966 Value *LHS; 4967 unsigned TypeID; 4968 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4969 OpNum+1 > Record.size()) 4970 return error("Invalid record"); 4971 4972 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4973 if (Opc == -1) 4974 return error("Invalid record"); 4975 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4976 ResTypeID = TypeID; 4977 InstructionList.push_back(I); 4978 if (OpNum < Record.size()) { 4979 if (isa<FPMathOperator>(I)) { 4980 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4981 if (FMF.any()) 4982 I->setFastMathFlags(FMF); 4983 } 4984 } 4985 break; 4986 } 4987 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4988 unsigned OpNum = 0; 4989 Value *LHS, *RHS; 4990 unsigned TypeID; 4991 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4992 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4993 CurBB) || 4994 OpNum+1 > Record.size()) 4995 return error("Invalid record"); 4996 4997 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4998 if (Opc == -1) 4999 return error("Invalid record"); 5000 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5001 ResTypeID = TypeID; 5002 InstructionList.push_back(I); 5003 if (OpNum < Record.size()) { 5004 if (Opc == Instruction::Add || 5005 Opc == Instruction::Sub || 5006 Opc == Instruction::Mul || 5007 Opc == Instruction::Shl) { 5008 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5009 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5010 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5011 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5012 } else if (Opc == Instruction::SDiv || 5013 Opc == Instruction::UDiv || 5014 Opc == Instruction::LShr || 5015 Opc == Instruction::AShr) { 5016 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5017 cast<BinaryOperator>(I)->setIsExact(true); 5018 } else if (Opc == Instruction::Or) { 5019 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5020 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5021 } else if (isa<FPMathOperator>(I)) { 5022 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5023 if (FMF.any()) 5024 I->setFastMathFlags(FMF); 5025 } 5026 } 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5030 unsigned OpNum = 0; 5031 Value *Op; 5032 unsigned OpTypeID; 5033 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5034 OpNum + 1 > Record.size()) 5035 return error("Invalid record"); 5036 5037 ResTypeID = Record[OpNum++]; 5038 Type *ResTy = getTypeByID(ResTypeID); 5039 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5040 5041 if (Opc == -1 || !ResTy) 5042 return error("Invalid record"); 5043 Instruction *Temp = nullptr; 5044 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5045 if (Temp) { 5046 InstructionList.push_back(Temp); 5047 assert(CurBB && "No current BB?"); 5048 Temp->insertInto(CurBB, CurBB->end()); 5049 } 5050 } else { 5051 auto CastOp = (Instruction::CastOps)Opc; 5052 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5053 return error("Invalid cast"); 5054 I = CastInst::Create(CastOp, Op, ResTy); 5055 } 5056 5057 if (OpNum < Record.size()) { 5058 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5059 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5060 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5061 } else if (Opc == Instruction::Trunc) { 5062 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5063 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5064 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5065 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5066 } 5067 } 5068 5069 InstructionList.push_back(I); 5070 break; 5071 } 5072 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5073 case bitc::FUNC_CODE_INST_GEP_OLD: 5074 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5075 unsigned OpNum = 0; 5076 5077 unsigned TyID; 5078 Type *Ty; 5079 GEPNoWrapFlags NW; 5080 5081 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5082 NW = toGEPNoWrapFlags(Record[OpNum++]); 5083 TyID = Record[OpNum++]; 5084 Ty = getTypeByID(TyID); 5085 } else { 5086 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5087 NW = GEPNoWrapFlags::inBounds(); 5088 TyID = InvalidTypeID; 5089 Ty = nullptr; 5090 } 5091 5092 Value *BasePtr; 5093 unsigned BasePtrTypeID; 5094 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5095 CurBB)) 5096 return error("Invalid record"); 5097 5098 if (!Ty) { 5099 TyID = getContainedTypeID(BasePtrTypeID); 5100 if (BasePtr->getType()->isVectorTy()) 5101 TyID = getContainedTypeID(TyID); 5102 Ty = getTypeByID(TyID); 5103 } 5104 5105 SmallVector<Value*, 16> GEPIdx; 5106 while (OpNum != Record.size()) { 5107 Value *Op; 5108 unsigned OpTypeID; 5109 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5110 return error("Invalid record"); 5111 GEPIdx.push_back(Op); 5112 } 5113 5114 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5115 I = GEP; 5116 5117 ResTypeID = TyID; 5118 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5119 auto GTI = std::next(gep_type_begin(I)); 5120 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5121 unsigned SubType = 0; 5122 if (GTI.isStruct()) { 5123 ConstantInt *IdxC = 5124 Idx->getType()->isVectorTy() 5125 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5126 : cast<ConstantInt>(Idx); 5127 SubType = IdxC->getZExtValue(); 5128 } 5129 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5130 ++GTI; 5131 } 5132 } 5133 5134 // At this point ResTypeID is the result element type. We need a pointer 5135 // or vector of pointer to it. 5136 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5137 if (I->getType()->isVectorTy()) 5138 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5139 5140 InstructionList.push_back(I); 5141 GEP->setNoWrapFlags(NW); 5142 break; 5143 } 5144 5145 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5146 // EXTRACTVAL: [opty, opval, n x indices] 5147 unsigned OpNum = 0; 5148 Value *Agg; 5149 unsigned AggTypeID; 5150 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5151 return error("Invalid record"); 5152 Type *Ty = Agg->getType(); 5153 5154 unsigned RecSize = Record.size(); 5155 if (OpNum == RecSize) 5156 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5157 5158 SmallVector<unsigned, 4> EXTRACTVALIdx; 5159 ResTypeID = AggTypeID; 5160 for (; OpNum != RecSize; ++OpNum) { 5161 bool IsArray = Ty->isArrayTy(); 5162 bool IsStruct = Ty->isStructTy(); 5163 uint64_t Index = Record[OpNum]; 5164 5165 if (!IsStruct && !IsArray) 5166 return error("EXTRACTVAL: Invalid type"); 5167 if ((unsigned)Index != Index) 5168 return error("Invalid value"); 5169 if (IsStruct && Index >= Ty->getStructNumElements()) 5170 return error("EXTRACTVAL: Invalid struct index"); 5171 if (IsArray && Index >= Ty->getArrayNumElements()) 5172 return error("EXTRACTVAL: Invalid array index"); 5173 EXTRACTVALIdx.push_back((unsigned)Index); 5174 5175 if (IsStruct) { 5176 Ty = Ty->getStructElementType(Index); 5177 ResTypeID = getContainedTypeID(ResTypeID, Index); 5178 } else { 5179 Ty = Ty->getArrayElementType(); 5180 ResTypeID = getContainedTypeID(ResTypeID); 5181 } 5182 } 5183 5184 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5185 InstructionList.push_back(I); 5186 break; 5187 } 5188 5189 case bitc::FUNC_CODE_INST_INSERTVAL: { 5190 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5191 unsigned OpNum = 0; 5192 Value *Agg; 5193 unsigned AggTypeID; 5194 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5195 return error("Invalid record"); 5196 Value *Val; 5197 unsigned ValTypeID; 5198 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5199 return error("Invalid record"); 5200 5201 unsigned RecSize = Record.size(); 5202 if (OpNum == RecSize) 5203 return error("INSERTVAL: Invalid instruction with 0 indices"); 5204 5205 SmallVector<unsigned, 4> INSERTVALIdx; 5206 Type *CurTy = Agg->getType(); 5207 for (; OpNum != RecSize; ++OpNum) { 5208 bool IsArray = CurTy->isArrayTy(); 5209 bool IsStruct = CurTy->isStructTy(); 5210 uint64_t Index = Record[OpNum]; 5211 5212 if (!IsStruct && !IsArray) 5213 return error("INSERTVAL: Invalid type"); 5214 if ((unsigned)Index != Index) 5215 return error("Invalid value"); 5216 if (IsStruct && Index >= CurTy->getStructNumElements()) 5217 return error("INSERTVAL: Invalid struct index"); 5218 if (IsArray && Index >= CurTy->getArrayNumElements()) 5219 return error("INSERTVAL: Invalid array index"); 5220 5221 INSERTVALIdx.push_back((unsigned)Index); 5222 if (IsStruct) 5223 CurTy = CurTy->getStructElementType(Index); 5224 else 5225 CurTy = CurTy->getArrayElementType(); 5226 } 5227 5228 if (CurTy != Val->getType()) 5229 return error("Inserted value type doesn't match aggregate type"); 5230 5231 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5232 ResTypeID = AggTypeID; 5233 InstructionList.push_back(I); 5234 break; 5235 } 5236 5237 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5238 // obsolete form of select 5239 // handles select i1 ... in old bitcode 5240 unsigned OpNum = 0; 5241 Value *TrueVal, *FalseVal, *Cond; 5242 unsigned TypeID; 5243 Type *CondType = Type::getInt1Ty(Context); 5244 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5245 CurBB) || 5246 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5247 FalseVal, CurBB) || 5248 popValue(Record, OpNum, NextValueNo, CondType, 5249 getVirtualTypeID(CondType), Cond, CurBB)) 5250 return error("Invalid record"); 5251 5252 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5253 ResTypeID = TypeID; 5254 InstructionList.push_back(I); 5255 break; 5256 } 5257 5258 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5259 // new form of select 5260 // handles select i1 or select [N x i1] 5261 unsigned OpNum = 0; 5262 Value *TrueVal, *FalseVal, *Cond; 5263 unsigned ValTypeID, CondTypeID; 5264 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5265 CurBB) || 5266 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5267 FalseVal, CurBB) || 5268 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5269 return error("Invalid record"); 5270 5271 // select condition can be either i1 or [N x i1] 5272 if (VectorType* vector_type = 5273 dyn_cast<VectorType>(Cond->getType())) { 5274 // expect <n x i1> 5275 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5276 return error("Invalid type for value"); 5277 } else { 5278 // expect i1 5279 if (Cond->getType() != Type::getInt1Ty(Context)) 5280 return error("Invalid type for value"); 5281 } 5282 5283 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5284 ResTypeID = ValTypeID; 5285 InstructionList.push_back(I); 5286 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5287 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5288 if (FMF.any()) 5289 I->setFastMathFlags(FMF); 5290 } 5291 break; 5292 } 5293 5294 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5295 unsigned OpNum = 0; 5296 Value *Vec, *Idx; 5297 unsigned VecTypeID, IdxTypeID; 5298 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5299 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5300 return error("Invalid record"); 5301 if (!Vec->getType()->isVectorTy()) 5302 return error("Invalid type for value"); 5303 I = ExtractElementInst::Create(Vec, Idx); 5304 ResTypeID = getContainedTypeID(VecTypeID); 5305 InstructionList.push_back(I); 5306 break; 5307 } 5308 5309 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5310 unsigned OpNum = 0; 5311 Value *Vec, *Elt, *Idx; 5312 unsigned VecTypeID, IdxTypeID; 5313 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5314 return error("Invalid record"); 5315 if (!Vec->getType()->isVectorTy()) 5316 return error("Invalid type for value"); 5317 if (popValue(Record, OpNum, NextValueNo, 5318 cast<VectorType>(Vec->getType())->getElementType(), 5319 getContainedTypeID(VecTypeID), Elt, CurBB) || 5320 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5321 return error("Invalid record"); 5322 I = InsertElementInst::Create(Vec, Elt, Idx); 5323 ResTypeID = VecTypeID; 5324 InstructionList.push_back(I); 5325 break; 5326 } 5327 5328 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5329 unsigned OpNum = 0; 5330 Value *Vec1, *Vec2, *Mask; 5331 unsigned Vec1TypeID; 5332 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5333 CurBB) || 5334 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5335 Vec2, CurBB)) 5336 return error("Invalid record"); 5337 5338 unsigned MaskTypeID; 5339 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5340 return error("Invalid record"); 5341 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5342 return error("Invalid type for value"); 5343 5344 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5345 ResTypeID = 5346 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5347 InstructionList.push_back(I); 5348 break; 5349 } 5350 5351 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5352 // Old form of ICmp/FCmp returning bool 5353 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5354 // both legal on vectors but had different behaviour. 5355 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5356 // FCmp/ICmp returning bool or vector of bool 5357 5358 unsigned OpNum = 0; 5359 Value *LHS, *RHS; 5360 unsigned LHSTypeID; 5361 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5362 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5363 CurBB)) 5364 return error("Invalid record"); 5365 5366 if (OpNum >= Record.size()) 5367 return error( 5368 "Invalid record: operand number exceeded available operands"); 5369 5370 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5371 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5372 FastMathFlags FMF; 5373 if (IsFP && Record.size() > OpNum+1) 5374 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5375 5376 if (OpNum+1 != Record.size()) 5377 return error("Invalid record"); 5378 5379 if (IsFP) { 5380 if (!CmpInst::isFPPredicate(PredVal)) 5381 return error("Invalid fcmp predicate"); 5382 I = new FCmpInst(PredVal, LHS, RHS); 5383 } else { 5384 if (!CmpInst::isIntPredicate(PredVal)) 5385 return error("Invalid icmp predicate"); 5386 I = new ICmpInst(PredVal, LHS, RHS); 5387 } 5388 5389 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5390 if (LHS->getType()->isVectorTy()) 5391 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5392 5393 if (FMF.any()) 5394 I->setFastMathFlags(FMF); 5395 InstructionList.push_back(I); 5396 break; 5397 } 5398 5399 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5400 { 5401 unsigned Size = Record.size(); 5402 if (Size == 0) { 5403 I = ReturnInst::Create(Context); 5404 InstructionList.push_back(I); 5405 break; 5406 } 5407 5408 unsigned OpNum = 0; 5409 Value *Op = nullptr; 5410 unsigned OpTypeID; 5411 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5412 return error("Invalid record"); 5413 if (OpNum != Record.size()) 5414 return error("Invalid record"); 5415 5416 I = ReturnInst::Create(Context, Op); 5417 InstructionList.push_back(I); 5418 break; 5419 } 5420 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5421 if (Record.size() != 1 && Record.size() != 3) 5422 return error("Invalid record"); 5423 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5424 if (!TrueDest) 5425 return error("Invalid record"); 5426 5427 if (Record.size() == 1) { 5428 I = BranchInst::Create(TrueDest); 5429 InstructionList.push_back(I); 5430 } 5431 else { 5432 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5433 Type *CondType = Type::getInt1Ty(Context); 5434 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5435 getVirtualTypeID(CondType), CurBB); 5436 if (!FalseDest || !Cond) 5437 return error("Invalid record"); 5438 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5439 InstructionList.push_back(I); 5440 } 5441 break; 5442 } 5443 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5444 if (Record.size() != 1 && Record.size() != 2) 5445 return error("Invalid record"); 5446 unsigned Idx = 0; 5447 Type *TokenTy = Type::getTokenTy(Context); 5448 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5449 getVirtualTypeID(TokenTy), CurBB); 5450 if (!CleanupPad) 5451 return error("Invalid record"); 5452 BasicBlock *UnwindDest = nullptr; 5453 if (Record.size() == 2) { 5454 UnwindDest = getBasicBlock(Record[Idx++]); 5455 if (!UnwindDest) 5456 return error("Invalid record"); 5457 } 5458 5459 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5460 InstructionList.push_back(I); 5461 break; 5462 } 5463 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5464 if (Record.size() != 2) 5465 return error("Invalid record"); 5466 unsigned Idx = 0; 5467 Type *TokenTy = Type::getTokenTy(Context); 5468 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5469 getVirtualTypeID(TokenTy), CurBB); 5470 if (!CatchPad) 5471 return error("Invalid record"); 5472 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5473 if (!BB) 5474 return error("Invalid record"); 5475 5476 I = CatchReturnInst::Create(CatchPad, BB); 5477 InstructionList.push_back(I); 5478 break; 5479 } 5480 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5481 // We must have, at minimum, the outer scope and the number of arguments. 5482 if (Record.size() < 2) 5483 return error("Invalid record"); 5484 5485 unsigned Idx = 0; 5486 5487 Type *TokenTy = Type::getTokenTy(Context); 5488 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5489 getVirtualTypeID(TokenTy), CurBB); 5490 if (!ParentPad) 5491 return error("Invalid record"); 5492 5493 unsigned NumHandlers = Record[Idx++]; 5494 5495 SmallVector<BasicBlock *, 2> Handlers; 5496 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5497 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5498 if (!BB) 5499 return error("Invalid record"); 5500 Handlers.push_back(BB); 5501 } 5502 5503 BasicBlock *UnwindDest = nullptr; 5504 if (Idx + 1 == Record.size()) { 5505 UnwindDest = getBasicBlock(Record[Idx++]); 5506 if (!UnwindDest) 5507 return error("Invalid record"); 5508 } 5509 5510 if (Record.size() != Idx) 5511 return error("Invalid record"); 5512 5513 auto *CatchSwitch = 5514 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5515 for (BasicBlock *Handler : Handlers) 5516 CatchSwitch->addHandler(Handler); 5517 I = CatchSwitch; 5518 ResTypeID = getVirtualTypeID(I->getType()); 5519 InstructionList.push_back(I); 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_CATCHPAD: 5523 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5524 // We must have, at minimum, the outer scope and the number of arguments. 5525 if (Record.size() < 2) 5526 return error("Invalid record"); 5527 5528 unsigned Idx = 0; 5529 5530 Type *TokenTy = Type::getTokenTy(Context); 5531 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5532 getVirtualTypeID(TokenTy), CurBB); 5533 if (!ParentPad) 5534 return error("Invald record"); 5535 5536 unsigned NumArgOperands = Record[Idx++]; 5537 5538 SmallVector<Value *, 2> Args; 5539 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5540 Value *Val; 5541 unsigned ValTypeID; 5542 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5543 return error("Invalid record"); 5544 Args.push_back(Val); 5545 } 5546 5547 if (Record.size() != Idx) 5548 return error("Invalid record"); 5549 5550 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5551 I = CleanupPadInst::Create(ParentPad, Args); 5552 else 5553 I = CatchPadInst::Create(ParentPad, Args); 5554 ResTypeID = getVirtualTypeID(I->getType()); 5555 InstructionList.push_back(I); 5556 break; 5557 } 5558 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5559 // Check magic 5560 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5561 // "New" SwitchInst format with case ranges. The changes to write this 5562 // format were reverted but we still recognize bitcode that uses it. 5563 // Hopefully someday we will have support for case ranges and can use 5564 // this format again. 5565 5566 unsigned OpTyID = Record[1]; 5567 Type *OpTy = getTypeByID(OpTyID); 5568 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5569 5570 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5571 BasicBlock *Default = getBasicBlock(Record[3]); 5572 if (!OpTy || !Cond || !Default) 5573 return error("Invalid record"); 5574 5575 unsigned NumCases = Record[4]; 5576 5577 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5578 InstructionList.push_back(SI); 5579 5580 unsigned CurIdx = 5; 5581 for (unsigned i = 0; i != NumCases; ++i) { 5582 SmallVector<ConstantInt*, 1> CaseVals; 5583 unsigned NumItems = Record[CurIdx++]; 5584 for (unsigned ci = 0; ci != NumItems; ++ci) { 5585 bool isSingleNumber = Record[CurIdx++]; 5586 5587 APInt Low; 5588 unsigned ActiveWords = 1; 5589 if (ValueBitWidth > 64) 5590 ActiveWords = Record[CurIdx++]; 5591 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5592 ValueBitWidth); 5593 CurIdx += ActiveWords; 5594 5595 if (!isSingleNumber) { 5596 ActiveWords = 1; 5597 if (ValueBitWidth > 64) 5598 ActiveWords = Record[CurIdx++]; 5599 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5600 ValueBitWidth); 5601 CurIdx += ActiveWords; 5602 5603 // FIXME: It is not clear whether values in the range should be 5604 // compared as signed or unsigned values. The partially 5605 // implemented changes that used this format in the past used 5606 // unsigned comparisons. 5607 for ( ; Low.ule(High); ++Low) 5608 CaseVals.push_back(ConstantInt::get(Context, Low)); 5609 } else 5610 CaseVals.push_back(ConstantInt::get(Context, Low)); 5611 } 5612 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5613 for (ConstantInt *Cst : CaseVals) 5614 SI->addCase(Cst, DestBB); 5615 } 5616 I = SI; 5617 break; 5618 } 5619 5620 // Old SwitchInst format without case ranges. 5621 5622 if (Record.size() < 3 || (Record.size() & 1) == 0) 5623 return error("Invalid record"); 5624 unsigned OpTyID = Record[0]; 5625 Type *OpTy = getTypeByID(OpTyID); 5626 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5627 BasicBlock *Default = getBasicBlock(Record[2]); 5628 if (!OpTy || !Cond || !Default) 5629 return error("Invalid record"); 5630 unsigned NumCases = (Record.size()-3)/2; 5631 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5632 InstructionList.push_back(SI); 5633 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5634 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5635 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5636 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5637 if (!CaseVal || !DestBB) { 5638 delete SI; 5639 return error("Invalid record"); 5640 } 5641 SI->addCase(CaseVal, DestBB); 5642 } 5643 I = SI; 5644 break; 5645 } 5646 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5647 if (Record.size() < 2) 5648 return error("Invalid record"); 5649 unsigned OpTyID = Record[0]; 5650 Type *OpTy = getTypeByID(OpTyID); 5651 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5652 if (!OpTy || !Address) 5653 return error("Invalid record"); 5654 unsigned NumDests = Record.size()-2; 5655 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5656 InstructionList.push_back(IBI); 5657 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5658 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5659 IBI->addDestination(DestBB); 5660 } else { 5661 delete IBI; 5662 return error("Invalid record"); 5663 } 5664 } 5665 I = IBI; 5666 break; 5667 } 5668 5669 case bitc::FUNC_CODE_INST_INVOKE: { 5670 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5671 if (Record.size() < 4) 5672 return error("Invalid record"); 5673 unsigned OpNum = 0; 5674 AttributeList PAL = getAttributes(Record[OpNum++]); 5675 unsigned CCInfo = Record[OpNum++]; 5676 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5677 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5678 5679 unsigned FTyID = InvalidTypeID; 5680 FunctionType *FTy = nullptr; 5681 if ((CCInfo >> 13) & 1) { 5682 FTyID = Record[OpNum++]; 5683 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5684 if (!FTy) 5685 return error("Explicit invoke type is not a function type"); 5686 } 5687 5688 Value *Callee; 5689 unsigned CalleeTypeID; 5690 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5691 CurBB)) 5692 return error("Invalid record"); 5693 5694 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5695 if (!CalleeTy) 5696 return error("Callee is not a pointer"); 5697 if (!FTy) { 5698 FTyID = getContainedTypeID(CalleeTypeID); 5699 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5700 if (!FTy) 5701 return error("Callee is not of pointer to function type"); 5702 } 5703 if (Record.size() < FTy->getNumParams() + OpNum) 5704 return error("Insufficient operands to call"); 5705 5706 SmallVector<Value*, 16> Ops; 5707 SmallVector<unsigned, 16> ArgTyIDs; 5708 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5709 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5710 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5711 ArgTyID, CurBB)); 5712 ArgTyIDs.push_back(ArgTyID); 5713 if (!Ops.back()) 5714 return error("Invalid record"); 5715 } 5716 5717 if (!FTy->isVarArg()) { 5718 if (Record.size() != OpNum) 5719 return error("Invalid record"); 5720 } else { 5721 // Read type/value pairs for varargs params. 5722 while (OpNum != Record.size()) { 5723 Value *Op; 5724 unsigned OpTypeID; 5725 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5726 return error("Invalid record"); 5727 Ops.push_back(Op); 5728 ArgTyIDs.push_back(OpTypeID); 5729 } 5730 } 5731 5732 // Upgrade the bundles if needed. 5733 if (!OperandBundles.empty()) 5734 UpgradeOperandBundles(OperandBundles); 5735 5736 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5737 OperandBundles); 5738 ResTypeID = getContainedTypeID(FTyID); 5739 OperandBundles.clear(); 5740 InstructionList.push_back(I); 5741 cast<InvokeInst>(I)->setCallingConv( 5742 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5743 cast<InvokeInst>(I)->setAttributes(PAL); 5744 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5745 I->deleteValue(); 5746 return Err; 5747 } 5748 5749 break; 5750 } 5751 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5752 unsigned Idx = 0; 5753 Value *Val = nullptr; 5754 unsigned ValTypeID; 5755 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5756 return error("Invalid record"); 5757 I = ResumeInst::Create(Val); 5758 InstructionList.push_back(I); 5759 break; 5760 } 5761 case bitc::FUNC_CODE_INST_CALLBR: { 5762 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5763 unsigned OpNum = 0; 5764 AttributeList PAL = getAttributes(Record[OpNum++]); 5765 unsigned CCInfo = Record[OpNum++]; 5766 5767 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5768 unsigned NumIndirectDests = Record[OpNum++]; 5769 SmallVector<BasicBlock *, 16> IndirectDests; 5770 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5771 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5772 5773 unsigned FTyID = InvalidTypeID; 5774 FunctionType *FTy = nullptr; 5775 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5776 FTyID = Record[OpNum++]; 5777 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5778 if (!FTy) 5779 return error("Explicit call type is not a function type"); 5780 } 5781 5782 Value *Callee; 5783 unsigned CalleeTypeID; 5784 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5785 CurBB)) 5786 return error("Invalid record"); 5787 5788 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5789 if (!OpTy) 5790 return error("Callee is not a pointer type"); 5791 if (!FTy) { 5792 FTyID = getContainedTypeID(CalleeTypeID); 5793 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5794 if (!FTy) 5795 return error("Callee is not of pointer to function type"); 5796 } 5797 if (Record.size() < FTy->getNumParams() + OpNum) 5798 return error("Insufficient operands to call"); 5799 5800 SmallVector<Value*, 16> Args; 5801 SmallVector<unsigned, 16> ArgTyIDs; 5802 // Read the fixed params. 5803 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5804 Value *Arg; 5805 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5806 if (FTy->getParamType(i)->isLabelTy()) 5807 Arg = getBasicBlock(Record[OpNum]); 5808 else 5809 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5810 ArgTyID, CurBB); 5811 if (!Arg) 5812 return error("Invalid record"); 5813 Args.push_back(Arg); 5814 ArgTyIDs.push_back(ArgTyID); 5815 } 5816 5817 // Read type/value pairs for varargs params. 5818 if (!FTy->isVarArg()) { 5819 if (OpNum != Record.size()) 5820 return error("Invalid record"); 5821 } else { 5822 while (OpNum != Record.size()) { 5823 Value *Op; 5824 unsigned OpTypeID; 5825 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5826 return error("Invalid record"); 5827 Args.push_back(Op); 5828 ArgTyIDs.push_back(OpTypeID); 5829 } 5830 } 5831 5832 // Upgrade the bundles if needed. 5833 if (!OperandBundles.empty()) 5834 UpgradeOperandBundles(OperandBundles); 5835 5836 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5837 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5838 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5839 return CI.Type == InlineAsm::isLabel; 5840 }; 5841 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5842 // Upgrade explicit blockaddress arguments to label constraints. 5843 // Verify that the last arguments are blockaddress arguments that 5844 // match the indirect destinations. Clang always generates callbr 5845 // in this form. We could support reordering with more effort. 5846 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5847 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5848 unsigned LabelNo = ArgNo - FirstBlockArg; 5849 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5850 if (!BA || BA->getFunction() != F || 5851 LabelNo > IndirectDests.size() || 5852 BA->getBasicBlock() != IndirectDests[LabelNo]) 5853 return error("callbr argument does not match indirect dest"); 5854 } 5855 5856 // Remove blockaddress arguments. 5857 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5858 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5859 5860 // Recreate the function type with less arguments. 5861 SmallVector<Type *> ArgTys; 5862 for (Value *Arg : Args) 5863 ArgTys.push_back(Arg->getType()); 5864 FTy = 5865 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5866 5867 // Update constraint string to use label constraints. 5868 std::string Constraints = IA->getConstraintString(); 5869 unsigned ArgNo = 0; 5870 size_t Pos = 0; 5871 for (const auto &CI : ConstraintInfo) { 5872 if (CI.hasArg()) { 5873 if (ArgNo >= FirstBlockArg) 5874 Constraints.insert(Pos, "!"); 5875 ++ArgNo; 5876 } 5877 5878 // Go to next constraint in string. 5879 Pos = Constraints.find(',', Pos); 5880 if (Pos == std::string::npos) 5881 break; 5882 ++Pos; 5883 } 5884 5885 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5886 IA->hasSideEffects(), IA->isAlignStack(), 5887 IA->getDialect(), IA->canThrow()); 5888 } 5889 } 5890 5891 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5892 OperandBundles); 5893 ResTypeID = getContainedTypeID(FTyID); 5894 OperandBundles.clear(); 5895 InstructionList.push_back(I); 5896 cast<CallBrInst>(I)->setCallingConv( 5897 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5898 cast<CallBrInst>(I)->setAttributes(PAL); 5899 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5900 I->deleteValue(); 5901 return Err; 5902 } 5903 break; 5904 } 5905 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5906 I = new UnreachableInst(Context); 5907 InstructionList.push_back(I); 5908 break; 5909 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5910 if (Record.empty()) 5911 return error("Invalid phi record"); 5912 // The first record specifies the type. 5913 unsigned TyID = Record[0]; 5914 Type *Ty = getTypeByID(TyID); 5915 if (!Ty) 5916 return error("Invalid phi record"); 5917 5918 // Phi arguments are pairs of records of [value, basic block]. 5919 // There is an optional final record for fast-math-flags if this phi has a 5920 // floating-point type. 5921 size_t NumArgs = (Record.size() - 1) / 2; 5922 PHINode *PN = PHINode::Create(Ty, NumArgs); 5923 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5924 PN->deleteValue(); 5925 return error("Invalid phi record"); 5926 } 5927 InstructionList.push_back(PN); 5928 5929 SmallDenseMap<BasicBlock *, Value *> Args; 5930 for (unsigned i = 0; i != NumArgs; i++) { 5931 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5932 if (!BB) { 5933 PN->deleteValue(); 5934 return error("Invalid phi BB"); 5935 } 5936 5937 // Phi nodes may contain the same predecessor multiple times, in which 5938 // case the incoming value must be identical. Directly reuse the already 5939 // seen value here, to avoid expanding a constant expression multiple 5940 // times. 5941 auto It = Args.find(BB); 5942 if (It != Args.end()) { 5943 PN->addIncoming(It->second, BB); 5944 continue; 5945 } 5946 5947 // If there already is a block for this edge (from a different phi), 5948 // use it. 5949 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5950 if (!EdgeBB) { 5951 // Otherwise, use a temporary block (that we will discard if it 5952 // turns out to be unnecessary). 5953 if (!PhiConstExprBB) 5954 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5955 EdgeBB = PhiConstExprBB; 5956 } 5957 5958 // With the new function encoding, it is possible that operands have 5959 // negative IDs (for forward references). Use a signed VBR 5960 // representation to keep the encoding small. 5961 Value *V; 5962 if (UseRelativeIDs) 5963 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5964 else 5965 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5966 if (!V) { 5967 PN->deleteValue(); 5968 PhiConstExprBB->eraseFromParent(); 5969 return error("Invalid phi record"); 5970 } 5971 5972 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5973 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5974 PhiConstExprBB = nullptr; 5975 } 5976 PN->addIncoming(V, BB); 5977 Args.insert({BB, V}); 5978 } 5979 I = PN; 5980 ResTypeID = TyID; 5981 5982 // If there are an even number of records, the final record must be FMF. 5983 if (Record.size() % 2 == 0) { 5984 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5985 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5986 if (FMF.any()) 5987 I->setFastMathFlags(FMF); 5988 } 5989 5990 break; 5991 } 5992 5993 case bitc::FUNC_CODE_INST_LANDINGPAD: 5994 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5995 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5996 unsigned Idx = 0; 5997 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5998 if (Record.size() < 3) 5999 return error("Invalid record"); 6000 } else { 6001 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6002 if (Record.size() < 4) 6003 return error("Invalid record"); 6004 } 6005 ResTypeID = Record[Idx++]; 6006 Type *Ty = getTypeByID(ResTypeID); 6007 if (!Ty) 6008 return error("Invalid record"); 6009 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6010 Value *PersFn = nullptr; 6011 unsigned PersFnTypeID; 6012 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6013 nullptr)) 6014 return error("Invalid record"); 6015 6016 if (!F->hasPersonalityFn()) 6017 F->setPersonalityFn(cast<Constant>(PersFn)); 6018 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6019 return error("Personality function mismatch"); 6020 } 6021 6022 bool IsCleanup = !!Record[Idx++]; 6023 unsigned NumClauses = Record[Idx++]; 6024 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6025 LP->setCleanup(IsCleanup); 6026 for (unsigned J = 0; J != NumClauses; ++J) { 6027 LandingPadInst::ClauseType CT = 6028 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6029 Value *Val; 6030 unsigned ValTypeID; 6031 6032 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6033 nullptr)) { 6034 delete LP; 6035 return error("Invalid record"); 6036 } 6037 6038 assert((CT != LandingPadInst::Catch || 6039 !isa<ArrayType>(Val->getType())) && 6040 "Catch clause has a invalid type!"); 6041 assert((CT != LandingPadInst::Filter || 6042 isa<ArrayType>(Val->getType())) && 6043 "Filter clause has invalid type!"); 6044 LP->addClause(cast<Constant>(Val)); 6045 } 6046 6047 I = LP; 6048 InstructionList.push_back(I); 6049 break; 6050 } 6051 6052 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6053 if (Record.size() != 4 && Record.size() != 5) 6054 return error("Invalid record"); 6055 using APV = AllocaPackedValues; 6056 const uint64_t Rec = Record[3]; 6057 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6058 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6059 unsigned TyID = Record[0]; 6060 Type *Ty = getTypeByID(TyID); 6061 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6062 TyID = getContainedTypeID(TyID); 6063 Ty = getTypeByID(TyID); 6064 if (!Ty) 6065 return error("Missing element type for old-style alloca"); 6066 } 6067 unsigned OpTyID = Record[1]; 6068 Type *OpTy = getTypeByID(OpTyID); 6069 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6070 MaybeAlign Align; 6071 uint64_t AlignExp = 6072 Bitfield::get<APV::AlignLower>(Rec) | 6073 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6074 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6075 return Err; 6076 } 6077 if (!Ty || !Size) 6078 return error("Invalid record"); 6079 6080 const DataLayout &DL = TheModule->getDataLayout(); 6081 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6082 6083 SmallPtrSet<Type *, 4> Visited; 6084 if (!Align && !Ty->isSized(&Visited)) 6085 return error("alloca of unsized type"); 6086 if (!Align) 6087 Align = DL.getPrefTypeAlign(Ty); 6088 6089 if (!Size->getType()->isIntegerTy()) 6090 return error("alloca element count must have integer type"); 6091 6092 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6093 AI->setUsedWithInAlloca(InAlloca); 6094 AI->setSwiftError(SwiftError); 6095 I = AI; 6096 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6097 InstructionList.push_back(I); 6098 break; 6099 } 6100 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6101 unsigned OpNum = 0; 6102 Value *Op; 6103 unsigned OpTypeID; 6104 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6105 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6106 return error("Invalid record"); 6107 6108 if (!isa<PointerType>(Op->getType())) 6109 return error("Load operand is not a pointer type"); 6110 6111 Type *Ty = nullptr; 6112 if (OpNum + 3 == Record.size()) { 6113 ResTypeID = Record[OpNum++]; 6114 Ty = getTypeByID(ResTypeID); 6115 } else { 6116 ResTypeID = getContainedTypeID(OpTypeID); 6117 Ty = getTypeByID(ResTypeID); 6118 } 6119 6120 if (!Ty) 6121 return error("Missing load type"); 6122 6123 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6124 return Err; 6125 6126 MaybeAlign Align; 6127 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6128 return Err; 6129 SmallPtrSet<Type *, 4> Visited; 6130 if (!Align && !Ty->isSized(&Visited)) 6131 return error("load of unsized type"); 6132 if (!Align) 6133 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6134 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6135 InstructionList.push_back(I); 6136 break; 6137 } 6138 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6139 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6140 unsigned OpNum = 0; 6141 Value *Op; 6142 unsigned OpTypeID; 6143 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6144 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6145 return error("Invalid record"); 6146 6147 if (!isa<PointerType>(Op->getType())) 6148 return error("Load operand is not a pointer type"); 6149 6150 Type *Ty = nullptr; 6151 if (OpNum + 5 == Record.size()) { 6152 ResTypeID = Record[OpNum++]; 6153 Ty = getTypeByID(ResTypeID); 6154 } else { 6155 ResTypeID = getContainedTypeID(OpTypeID); 6156 Ty = getTypeByID(ResTypeID); 6157 } 6158 6159 if (!Ty) 6160 return error("Missing atomic load type"); 6161 6162 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6163 return Err; 6164 6165 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6166 if (Ordering == AtomicOrdering::NotAtomic || 6167 Ordering == AtomicOrdering::Release || 6168 Ordering == AtomicOrdering::AcquireRelease) 6169 return error("Invalid record"); 6170 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6171 return error("Invalid record"); 6172 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6173 6174 MaybeAlign Align; 6175 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6176 return Err; 6177 if (!Align) 6178 return error("Alignment missing from atomic load"); 6179 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6180 InstructionList.push_back(I); 6181 break; 6182 } 6183 case bitc::FUNC_CODE_INST_STORE: 6184 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6185 unsigned OpNum = 0; 6186 Value *Val, *Ptr; 6187 unsigned PtrTypeID, ValTypeID; 6188 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6189 return error("Invalid record"); 6190 6191 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6192 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6193 return error("Invalid record"); 6194 } else { 6195 ValTypeID = getContainedTypeID(PtrTypeID); 6196 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6197 ValTypeID, Val, CurBB)) 6198 return error("Invalid record"); 6199 } 6200 6201 if (OpNum + 2 != Record.size()) 6202 return error("Invalid record"); 6203 6204 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6205 return Err; 6206 MaybeAlign Align; 6207 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6208 return Err; 6209 SmallPtrSet<Type *, 4> Visited; 6210 if (!Align && !Val->getType()->isSized(&Visited)) 6211 return error("store of unsized type"); 6212 if (!Align) 6213 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6214 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6215 InstructionList.push_back(I); 6216 break; 6217 } 6218 case bitc::FUNC_CODE_INST_STOREATOMIC: 6219 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6220 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6221 unsigned OpNum = 0; 6222 Value *Val, *Ptr; 6223 unsigned PtrTypeID, ValTypeID; 6224 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6225 !isa<PointerType>(Ptr->getType())) 6226 return error("Invalid record"); 6227 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6228 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6229 return error("Invalid record"); 6230 } else { 6231 ValTypeID = getContainedTypeID(PtrTypeID); 6232 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6233 ValTypeID, Val, CurBB)) 6234 return error("Invalid record"); 6235 } 6236 6237 if (OpNum + 4 != Record.size()) 6238 return error("Invalid record"); 6239 6240 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6241 return Err; 6242 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6243 if (Ordering == AtomicOrdering::NotAtomic || 6244 Ordering == AtomicOrdering::Acquire || 6245 Ordering == AtomicOrdering::AcquireRelease) 6246 return error("Invalid record"); 6247 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6248 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6249 return error("Invalid record"); 6250 6251 MaybeAlign Align; 6252 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6253 return Err; 6254 if (!Align) 6255 return error("Alignment missing from atomic store"); 6256 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6257 InstructionList.push_back(I); 6258 break; 6259 } 6260 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6261 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6262 // failure_ordering?, weak?] 6263 const size_t NumRecords = Record.size(); 6264 unsigned OpNum = 0; 6265 Value *Ptr = nullptr; 6266 unsigned PtrTypeID; 6267 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6268 return error("Invalid record"); 6269 6270 if (!isa<PointerType>(Ptr->getType())) 6271 return error("Cmpxchg operand is not a pointer type"); 6272 6273 Value *Cmp = nullptr; 6274 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6275 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6276 CmpTypeID, Cmp, CurBB)) 6277 return error("Invalid record"); 6278 6279 Value *New = nullptr; 6280 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6281 New, CurBB) || 6282 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6283 return error("Invalid record"); 6284 6285 const AtomicOrdering SuccessOrdering = 6286 getDecodedOrdering(Record[OpNum + 1]); 6287 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6288 SuccessOrdering == AtomicOrdering::Unordered) 6289 return error("Invalid record"); 6290 6291 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6292 6293 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6294 return Err; 6295 6296 const AtomicOrdering FailureOrdering = 6297 NumRecords < 7 6298 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6299 : getDecodedOrdering(Record[OpNum + 3]); 6300 6301 if (FailureOrdering == AtomicOrdering::NotAtomic || 6302 FailureOrdering == AtomicOrdering::Unordered) 6303 return error("Invalid record"); 6304 6305 const Align Alignment( 6306 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6307 6308 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6309 FailureOrdering, SSID); 6310 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6311 6312 if (NumRecords < 8) { 6313 // Before weak cmpxchgs existed, the instruction simply returned the 6314 // value loaded from memory, so bitcode files from that era will be 6315 // expecting the first component of a modern cmpxchg. 6316 I->insertInto(CurBB, CurBB->end()); 6317 I = ExtractValueInst::Create(I, 0); 6318 ResTypeID = CmpTypeID; 6319 } else { 6320 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6321 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6322 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6323 } 6324 6325 InstructionList.push_back(I); 6326 break; 6327 } 6328 case bitc::FUNC_CODE_INST_CMPXCHG: { 6329 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6330 // failure_ordering, weak, align?] 6331 const size_t NumRecords = Record.size(); 6332 unsigned OpNum = 0; 6333 Value *Ptr = nullptr; 6334 unsigned PtrTypeID; 6335 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6336 return error("Invalid record"); 6337 6338 if (!isa<PointerType>(Ptr->getType())) 6339 return error("Cmpxchg operand is not a pointer type"); 6340 6341 Value *Cmp = nullptr; 6342 unsigned CmpTypeID; 6343 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6344 return error("Invalid record"); 6345 6346 Value *Val = nullptr; 6347 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6348 CurBB)) 6349 return error("Invalid record"); 6350 6351 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6352 return error("Invalid record"); 6353 6354 const bool IsVol = Record[OpNum]; 6355 6356 const AtomicOrdering SuccessOrdering = 6357 getDecodedOrdering(Record[OpNum + 1]); 6358 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6359 return error("Invalid cmpxchg success ordering"); 6360 6361 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6362 6363 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6364 return Err; 6365 6366 const AtomicOrdering FailureOrdering = 6367 getDecodedOrdering(Record[OpNum + 3]); 6368 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6369 return error("Invalid cmpxchg failure ordering"); 6370 6371 const bool IsWeak = Record[OpNum + 4]; 6372 6373 MaybeAlign Alignment; 6374 6375 if (NumRecords == (OpNum + 6)) { 6376 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6377 return Err; 6378 } 6379 if (!Alignment) 6380 Alignment = 6381 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6382 6383 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6384 FailureOrdering, SSID); 6385 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6386 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6387 6388 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6389 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6390 6391 InstructionList.push_back(I); 6392 break; 6393 } 6394 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6395 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6396 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6397 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6398 const size_t NumRecords = Record.size(); 6399 unsigned OpNum = 0; 6400 6401 Value *Ptr = nullptr; 6402 unsigned PtrTypeID; 6403 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6404 return error("Invalid record"); 6405 6406 if (!isa<PointerType>(Ptr->getType())) 6407 return error("Invalid record"); 6408 6409 Value *Val = nullptr; 6410 unsigned ValTypeID = InvalidTypeID; 6411 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6412 ValTypeID = getContainedTypeID(PtrTypeID); 6413 if (popValue(Record, OpNum, NextValueNo, 6414 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6415 return error("Invalid record"); 6416 } else { 6417 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6418 return error("Invalid record"); 6419 } 6420 6421 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6422 return error("Invalid record"); 6423 6424 const AtomicRMWInst::BinOp Operation = 6425 getDecodedRMWOperation(Record[OpNum]); 6426 if (Operation < AtomicRMWInst::FIRST_BINOP || 6427 Operation > AtomicRMWInst::LAST_BINOP) 6428 return error("Invalid record"); 6429 6430 const bool IsVol = Record[OpNum + 1]; 6431 6432 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6433 if (Ordering == AtomicOrdering::NotAtomic || 6434 Ordering == AtomicOrdering::Unordered) 6435 return error("Invalid record"); 6436 6437 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6438 6439 MaybeAlign Alignment; 6440 6441 if (NumRecords == (OpNum + 5)) { 6442 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6443 return Err; 6444 } 6445 6446 if (!Alignment) 6447 Alignment = 6448 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6449 6450 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6451 ResTypeID = ValTypeID; 6452 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6453 6454 InstructionList.push_back(I); 6455 break; 6456 } 6457 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6458 if (2 != Record.size()) 6459 return error("Invalid record"); 6460 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6461 if (Ordering == AtomicOrdering::NotAtomic || 6462 Ordering == AtomicOrdering::Unordered || 6463 Ordering == AtomicOrdering::Monotonic) 6464 return error("Invalid record"); 6465 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6466 I = new FenceInst(Context, Ordering, SSID); 6467 InstructionList.push_back(I); 6468 break; 6469 } 6470 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6471 // DbgLabelRecords are placed after the Instructions that they are 6472 // attached to. 6473 SeenDebugRecord = true; 6474 Instruction *Inst = getLastInstruction(); 6475 if (!Inst) 6476 return error("Invalid dbg record: missing instruction"); 6477 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6478 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6479 Inst->getParent()->insertDbgRecordBefore( 6480 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6481 continue; // This isn't an instruction. 6482 } 6483 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6484 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6485 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6486 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6487 // DbgVariableRecords are placed after the Instructions that they are 6488 // attached to. 6489 SeenDebugRecord = true; 6490 Instruction *Inst = getLastInstruction(); 6491 if (!Inst) 6492 return error("Invalid dbg record: missing instruction"); 6493 6494 // First 3 fields are common to all kinds: 6495 // DILocation, DILocalVariable, DIExpression 6496 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6497 // ..., LocationMetadata 6498 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6499 // ..., Value 6500 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6501 // ..., LocationMetadata 6502 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6503 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6504 unsigned Slot = 0; 6505 // Common fields (0-2). 6506 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6507 DILocalVariable *Var = 6508 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6509 DIExpression *Expr = 6510 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6511 6512 // Union field (3: LocationMetadata | Value). 6513 Metadata *RawLocation = nullptr; 6514 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6515 Value *V = nullptr; 6516 unsigned TyID = 0; 6517 // We never expect to see a fwd reference value here because 6518 // use-before-defs are encoded with the standard non-abbrev record 6519 // type (they'd require encoding the type too, and they're rare). As a 6520 // result, getValueTypePair only ever increments Slot by one here (once 6521 // for the value, never twice for value and type). 6522 unsigned SlotBefore = Slot; 6523 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6524 return error("Invalid dbg record: invalid value"); 6525 (void)SlotBefore; 6526 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6527 RawLocation = ValueAsMetadata::get(V); 6528 } else { 6529 RawLocation = getFnMetadataByID(Record[Slot++]); 6530 } 6531 6532 DbgVariableRecord *DVR = nullptr; 6533 switch (BitCode) { 6534 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6535 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6536 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6537 DbgVariableRecord::LocationType::Value); 6538 break; 6539 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6540 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6541 DbgVariableRecord::LocationType::Declare); 6542 break; 6543 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6544 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6545 DIExpression *AddrExpr = 6546 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6547 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6548 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6549 DIL); 6550 break; 6551 } 6552 default: 6553 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6554 } 6555 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6556 continue; // This isn't an instruction. 6557 } 6558 case bitc::FUNC_CODE_INST_CALL: { 6559 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6560 if (Record.size() < 3) 6561 return error("Invalid record"); 6562 6563 unsigned OpNum = 0; 6564 AttributeList PAL = getAttributes(Record[OpNum++]); 6565 unsigned CCInfo = Record[OpNum++]; 6566 6567 FastMathFlags FMF; 6568 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6569 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6570 if (!FMF.any()) 6571 return error("Fast math flags indicator set for call with no FMF"); 6572 } 6573 6574 unsigned FTyID = InvalidTypeID; 6575 FunctionType *FTy = nullptr; 6576 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6577 FTyID = Record[OpNum++]; 6578 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6579 if (!FTy) 6580 return error("Explicit call type is not a function type"); 6581 } 6582 6583 Value *Callee; 6584 unsigned CalleeTypeID; 6585 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6586 CurBB)) 6587 return error("Invalid record"); 6588 6589 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6590 if (!OpTy) 6591 return error("Callee is not a pointer type"); 6592 if (!FTy) { 6593 FTyID = getContainedTypeID(CalleeTypeID); 6594 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6595 if (!FTy) 6596 return error("Callee is not of pointer to function type"); 6597 } 6598 if (Record.size() < FTy->getNumParams() + OpNum) 6599 return error("Insufficient operands to call"); 6600 6601 SmallVector<Value*, 16> Args; 6602 SmallVector<unsigned, 16> ArgTyIDs; 6603 // Read the fixed params. 6604 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6605 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6606 if (FTy->getParamType(i)->isLabelTy()) 6607 Args.push_back(getBasicBlock(Record[OpNum])); 6608 else 6609 Args.push_back(getValue(Record, OpNum, NextValueNo, 6610 FTy->getParamType(i), ArgTyID, CurBB)); 6611 ArgTyIDs.push_back(ArgTyID); 6612 if (!Args.back()) 6613 return error("Invalid record"); 6614 } 6615 6616 // Read type/value pairs for varargs params. 6617 if (!FTy->isVarArg()) { 6618 if (OpNum != Record.size()) 6619 return error("Invalid record"); 6620 } else { 6621 while (OpNum != Record.size()) { 6622 Value *Op; 6623 unsigned OpTypeID; 6624 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6625 return error("Invalid record"); 6626 Args.push_back(Op); 6627 ArgTyIDs.push_back(OpTypeID); 6628 } 6629 } 6630 6631 // Upgrade the bundles if needed. 6632 if (!OperandBundles.empty()) 6633 UpgradeOperandBundles(OperandBundles); 6634 6635 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6636 ResTypeID = getContainedTypeID(FTyID); 6637 OperandBundles.clear(); 6638 InstructionList.push_back(I); 6639 cast<CallInst>(I)->setCallingConv( 6640 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6641 CallInst::TailCallKind TCK = CallInst::TCK_None; 6642 if (CCInfo & (1 << bitc::CALL_TAIL)) 6643 TCK = CallInst::TCK_Tail; 6644 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6645 TCK = CallInst::TCK_MustTail; 6646 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6647 TCK = CallInst::TCK_NoTail; 6648 cast<CallInst>(I)->setTailCallKind(TCK); 6649 cast<CallInst>(I)->setAttributes(PAL); 6650 if (isa<DbgInfoIntrinsic>(I)) 6651 SeenDebugIntrinsic = true; 6652 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6653 I->deleteValue(); 6654 return Err; 6655 } 6656 if (FMF.any()) { 6657 if (!isa<FPMathOperator>(I)) 6658 return error("Fast-math-flags specified for call without " 6659 "floating-point scalar or vector return type"); 6660 I->setFastMathFlags(FMF); 6661 } 6662 break; 6663 } 6664 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6665 if (Record.size() < 3) 6666 return error("Invalid record"); 6667 unsigned OpTyID = Record[0]; 6668 Type *OpTy = getTypeByID(OpTyID); 6669 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6670 ResTypeID = Record[2]; 6671 Type *ResTy = getTypeByID(ResTypeID); 6672 if (!OpTy || !Op || !ResTy) 6673 return error("Invalid record"); 6674 I = new VAArgInst(Op, ResTy); 6675 InstructionList.push_back(I); 6676 break; 6677 } 6678 6679 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6680 // A call or an invoke can be optionally prefixed with some variable 6681 // number of operand bundle blocks. These blocks are read into 6682 // OperandBundles and consumed at the next call or invoke instruction. 6683 6684 if (Record.empty() || Record[0] >= BundleTags.size()) 6685 return error("Invalid record"); 6686 6687 std::vector<Value *> Inputs; 6688 6689 unsigned OpNum = 1; 6690 while (OpNum != Record.size()) { 6691 Value *Op; 6692 unsigned OpTypeID; 6693 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6694 return error("Invalid record"); 6695 Inputs.push_back(Op); 6696 } 6697 6698 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6699 continue; 6700 } 6701 6702 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6703 unsigned OpNum = 0; 6704 Value *Op = nullptr; 6705 unsigned OpTypeID; 6706 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6707 return error("Invalid record"); 6708 if (OpNum != Record.size()) 6709 return error("Invalid record"); 6710 6711 I = new FreezeInst(Op); 6712 ResTypeID = OpTypeID; 6713 InstructionList.push_back(I); 6714 break; 6715 } 6716 } 6717 6718 // Add instruction to end of current BB. If there is no current BB, reject 6719 // this file. 6720 if (!CurBB) { 6721 I->deleteValue(); 6722 return error("Invalid instruction with no BB"); 6723 } 6724 if (!OperandBundles.empty()) { 6725 I->deleteValue(); 6726 return error("Operand bundles found with no consumer"); 6727 } 6728 I->insertInto(CurBB, CurBB->end()); 6729 6730 // If this was a terminator instruction, move to the next block. 6731 if (I->isTerminator()) { 6732 ++CurBBNo; 6733 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6734 } 6735 6736 // Non-void values get registered in the value table for future use. 6737 if (!I->getType()->isVoidTy()) { 6738 assert(I->getType() == getTypeByID(ResTypeID) && 6739 "Incorrect result type ID"); 6740 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6741 return Err; 6742 } 6743 } 6744 6745 OutOfRecordLoop: 6746 6747 if (!OperandBundles.empty()) 6748 return error("Operand bundles found with no consumer"); 6749 6750 // Check the function list for unresolved values. 6751 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6752 if (!A->getParent()) { 6753 // We found at least one unresolved value. Nuke them all to avoid leaks. 6754 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6755 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6756 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6757 delete A; 6758 } 6759 } 6760 return error("Never resolved value found in function"); 6761 } 6762 } 6763 6764 // Unexpected unresolved metadata about to be dropped. 6765 if (MDLoader->hasFwdRefs()) 6766 return error("Invalid function metadata: outgoing forward refs"); 6767 6768 if (PhiConstExprBB) 6769 PhiConstExprBB->eraseFromParent(); 6770 6771 for (const auto &Pair : ConstExprEdgeBBs) { 6772 BasicBlock *From = Pair.first.first; 6773 BasicBlock *To = Pair.first.second; 6774 BasicBlock *EdgeBB = Pair.second; 6775 BranchInst::Create(To, EdgeBB); 6776 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6777 To->replacePhiUsesWith(From, EdgeBB); 6778 EdgeBB->moveBefore(To); 6779 } 6780 6781 // Trim the value list down to the size it was before we parsed this function. 6782 ValueList.shrinkTo(ModuleValueListSize); 6783 MDLoader->shrinkTo(ModuleMDLoaderSize); 6784 std::vector<BasicBlock*>().swap(FunctionBBs); 6785 return Error::success(); 6786 } 6787 6788 /// Find the function body in the bitcode stream 6789 Error BitcodeReader::findFunctionInStream( 6790 Function *F, 6791 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6792 while (DeferredFunctionInfoIterator->second == 0) { 6793 // This is the fallback handling for the old format bitcode that 6794 // didn't contain the function index in the VST, or when we have 6795 // an anonymous function which would not have a VST entry. 6796 // Assert that we have one of those two cases. 6797 assert(VSTOffset == 0 || !F->hasName()); 6798 // Parse the next body in the stream and set its position in the 6799 // DeferredFunctionInfo map. 6800 if (Error Err = rememberAndSkipFunctionBodies()) 6801 return Err; 6802 } 6803 return Error::success(); 6804 } 6805 6806 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6807 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6808 return SyncScope::ID(Val); 6809 if (Val >= SSIDs.size()) 6810 return SyncScope::System; // Map unknown synchronization scopes to system. 6811 return SSIDs[Val]; 6812 } 6813 6814 //===----------------------------------------------------------------------===// 6815 // GVMaterializer implementation 6816 //===----------------------------------------------------------------------===// 6817 6818 Error BitcodeReader::materialize(GlobalValue *GV) { 6819 Function *F = dyn_cast<Function>(GV); 6820 // If it's not a function or is already material, ignore the request. 6821 if (!F || !F->isMaterializable()) 6822 return Error::success(); 6823 6824 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6825 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6826 // If its position is recorded as 0, its body is somewhere in the stream 6827 // but we haven't seen it yet. 6828 if (DFII->second == 0) 6829 if (Error Err = findFunctionInStream(F, DFII)) 6830 return Err; 6831 6832 // Materialize metadata before parsing any function bodies. 6833 if (Error Err = materializeMetadata()) 6834 return Err; 6835 6836 // Move the bit stream to the saved position of the deferred function body. 6837 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6838 return JumpFailed; 6839 6840 // Regardless of the debug info format we want to end up in, we need 6841 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6842 F->IsNewDbgInfoFormat = true; 6843 6844 if (Error Err = parseFunctionBody(F)) 6845 return Err; 6846 F->setIsMaterializable(false); 6847 6848 // All parsed Functions should load into the debug info format dictated by the 6849 // Module, unless we're attempting to preserve the input debug info format. 6850 if (SeenDebugIntrinsic && SeenDebugRecord) 6851 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6852 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6853 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6854 bool NewDbgInfoFormatDesired = 6855 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6856 if (SeenAnyDebugInfo) { 6857 UseNewDbgInfoFormat = SeenDebugRecord; 6858 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6859 WriteNewDbgInfoFormat = SeenDebugRecord; 6860 } 6861 // If the module's debug info format doesn't match the observed input 6862 // format, then set its format now; we don't need to call the conversion 6863 // function because there must be no existing intrinsics to convert. 6864 // Otherwise, just set the format on this function now. 6865 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6866 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6867 else 6868 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6869 } else { 6870 // If we aren't preserving formats, we use the Module flag to get our 6871 // desired format instead of reading flags, in case we are lazy-loading and 6872 // the format of the module has been changed since it was set by the flags. 6873 // We only need to convert debug info here if we have debug records but 6874 // desire the intrinsic format; everything else is a no-op or handled by the 6875 // autoupgrader. 6876 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6877 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6878 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6879 else 6880 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6881 } 6882 6883 if (StripDebugInfo) 6884 stripDebugInfo(*F); 6885 6886 // Upgrade any old intrinsic calls in the function. 6887 for (auto &I : UpgradedIntrinsics) { 6888 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6889 if (CallInst *CI = dyn_cast<CallInst>(U)) 6890 UpgradeIntrinsicCall(CI, I.second); 6891 } 6892 6893 // Finish fn->subprogram upgrade for materialized functions. 6894 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6895 F->setSubprogram(SP); 6896 6897 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6898 if (!MDLoader->isStrippingTBAA()) { 6899 for (auto &I : instructions(F)) { 6900 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6901 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6902 continue; 6903 MDLoader->setStripTBAA(true); 6904 stripTBAA(F->getParent()); 6905 } 6906 } 6907 6908 for (auto &I : instructions(F)) { 6909 // "Upgrade" older incorrect branch weights by dropping them. 6910 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6911 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6912 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6913 StringRef ProfName = MDS->getString(); 6914 // Check consistency of !prof branch_weights metadata. 6915 if (ProfName != "branch_weights") 6916 continue; 6917 unsigned ExpectedNumOperands = 0; 6918 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6919 ExpectedNumOperands = BI->getNumSuccessors(); 6920 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6921 ExpectedNumOperands = SI->getNumSuccessors(); 6922 else if (isa<CallInst>(&I)) 6923 ExpectedNumOperands = 1; 6924 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6925 ExpectedNumOperands = IBI->getNumDestinations(); 6926 else if (isa<SelectInst>(&I)) 6927 ExpectedNumOperands = 2; 6928 else 6929 continue; // ignore and continue. 6930 6931 // If branch weight doesn't match, just strip branch weight. 6932 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6933 I.setMetadata(LLVMContext::MD_prof, nullptr); 6934 } 6935 } 6936 6937 // Remove incompatible attributes on function calls. 6938 if (auto *CI = dyn_cast<CallBase>(&I)) { 6939 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6940 CI->getFunctionType()->getReturnType())); 6941 6942 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6943 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6944 CI->getArgOperand(ArgNo)->getType())); 6945 } 6946 } 6947 6948 // Look for functions that rely on old function attribute behavior. 6949 UpgradeFunctionAttributes(*F); 6950 6951 // Bring in any functions that this function forward-referenced via 6952 // blockaddresses. 6953 return materializeForwardReferencedFunctions(); 6954 } 6955 6956 Error BitcodeReader::materializeModule() { 6957 if (Error Err = materializeMetadata()) 6958 return Err; 6959 6960 // Promise to materialize all forward references. 6961 WillMaterializeAllForwardRefs = true; 6962 6963 // Iterate over the module, deserializing any functions that are still on 6964 // disk. 6965 for (Function &F : *TheModule) { 6966 if (Error Err = materialize(&F)) 6967 return Err; 6968 } 6969 // At this point, if there are any function bodies, parse the rest of 6970 // the bits in the module past the last function block we have recorded 6971 // through either lazy scanning or the VST. 6972 if (LastFunctionBlockBit || NextUnreadBit) 6973 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6974 ? LastFunctionBlockBit 6975 : NextUnreadBit)) 6976 return Err; 6977 6978 // Check that all block address forward references got resolved (as we 6979 // promised above). 6980 if (!BasicBlockFwdRefs.empty()) 6981 return error("Never resolved function from blockaddress"); 6982 6983 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6984 // delete the old functions to clean up. We can't do this unless the entire 6985 // module is materialized because there could always be another function body 6986 // with calls to the old function. 6987 for (auto &I : UpgradedIntrinsics) { 6988 for (auto *U : I.first->users()) { 6989 if (CallInst *CI = dyn_cast<CallInst>(U)) 6990 UpgradeIntrinsicCall(CI, I.second); 6991 } 6992 if (!I.first->use_empty()) 6993 I.first->replaceAllUsesWith(I.second); 6994 I.first->eraseFromParent(); 6995 } 6996 UpgradedIntrinsics.clear(); 6997 6998 UpgradeDebugInfo(*TheModule); 6999 7000 UpgradeModuleFlags(*TheModule); 7001 7002 UpgradeARCRuntime(*TheModule); 7003 7004 return Error::success(); 7005 } 7006 7007 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7008 return IdentifiedStructTypes; 7009 } 7010 7011 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7012 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7013 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7014 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7015 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7016 7017 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7018 TheIndex.addModule(ModulePath); 7019 } 7020 7021 ModuleSummaryIndex::ModuleInfo * 7022 ModuleSummaryIndexBitcodeReader::getThisModule() { 7023 return TheIndex.getModule(ModulePath); 7024 } 7025 7026 template <bool AllowNullValueInfo> 7027 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7028 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7029 auto VGI = ValueIdToValueInfoMap[ValueId]; 7030 // We can have a null value info for memprof callsite info records in 7031 // distributed ThinLTO index files when the callee function summary is not 7032 // included in the index. The bitcode writer records 0 in that case, 7033 // and the caller of this helper will set AllowNullValueInfo to true. 7034 assert(AllowNullValueInfo || std::get<0>(VGI)); 7035 return VGI; 7036 } 7037 7038 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7039 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7040 StringRef SourceFileName) { 7041 std::string GlobalId = 7042 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7043 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7044 auto OriginalNameID = ValueGUID; 7045 if (GlobalValue::isLocalLinkage(Linkage)) 7046 OriginalNameID = GlobalValue::getGUID(ValueName); 7047 if (PrintSummaryGUIDs) 7048 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7049 << ValueName << "\n"; 7050 7051 // UseStrtab is false for legacy summary formats and value names are 7052 // created on stack. In that case we save the name in a string saver in 7053 // the index so that the value name can be recorded. 7054 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7055 TheIndex.getOrInsertValueInfo( 7056 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7057 OriginalNameID, ValueGUID); 7058 } 7059 7060 // Specialized value symbol table parser used when reading module index 7061 // blocks where we don't actually create global values. The parsed information 7062 // is saved in the bitcode reader for use when later parsing summaries. 7063 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7064 uint64_t Offset, 7065 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7066 // With a strtab the VST is not required to parse the summary. 7067 if (UseStrtab) 7068 return Error::success(); 7069 7070 assert(Offset > 0 && "Expected non-zero VST offset"); 7071 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7072 if (!MaybeCurrentBit) 7073 return MaybeCurrentBit.takeError(); 7074 uint64_t CurrentBit = MaybeCurrentBit.get(); 7075 7076 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7077 return Err; 7078 7079 SmallVector<uint64_t, 64> Record; 7080 7081 // Read all the records for this value table. 7082 SmallString<128> ValueName; 7083 7084 while (true) { 7085 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7086 if (!MaybeEntry) 7087 return MaybeEntry.takeError(); 7088 BitstreamEntry Entry = MaybeEntry.get(); 7089 7090 switch (Entry.Kind) { 7091 case BitstreamEntry::SubBlock: // Handled for us already. 7092 case BitstreamEntry::Error: 7093 return error("Malformed block"); 7094 case BitstreamEntry::EndBlock: 7095 // Done parsing VST, jump back to wherever we came from. 7096 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7097 return JumpFailed; 7098 return Error::success(); 7099 case BitstreamEntry::Record: 7100 // The interesting case. 7101 break; 7102 } 7103 7104 // Read a record. 7105 Record.clear(); 7106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7107 if (!MaybeRecord) 7108 return MaybeRecord.takeError(); 7109 switch (MaybeRecord.get()) { 7110 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7111 break; 7112 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7113 if (convertToString(Record, 1, ValueName)) 7114 return error("Invalid record"); 7115 unsigned ValueID = Record[0]; 7116 assert(!SourceFileName.empty()); 7117 auto VLI = ValueIdToLinkageMap.find(ValueID); 7118 assert(VLI != ValueIdToLinkageMap.end() && 7119 "No linkage found for VST entry?"); 7120 auto Linkage = VLI->second; 7121 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7122 ValueName.clear(); 7123 break; 7124 } 7125 case bitc::VST_CODE_FNENTRY: { 7126 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7127 if (convertToString(Record, 2, ValueName)) 7128 return error("Invalid record"); 7129 unsigned ValueID = Record[0]; 7130 assert(!SourceFileName.empty()); 7131 auto VLI = ValueIdToLinkageMap.find(ValueID); 7132 assert(VLI != ValueIdToLinkageMap.end() && 7133 "No linkage found for VST entry?"); 7134 auto Linkage = VLI->second; 7135 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7136 ValueName.clear(); 7137 break; 7138 } 7139 case bitc::VST_CODE_COMBINED_ENTRY: { 7140 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7141 unsigned ValueID = Record[0]; 7142 GlobalValue::GUID RefGUID = Record[1]; 7143 // The "original name", which is the second value of the pair will be 7144 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7145 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7146 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7147 break; 7148 } 7149 } 7150 } 7151 } 7152 7153 // Parse just the blocks needed for building the index out of the module. 7154 // At the end of this routine the module Index is populated with a map 7155 // from global value id to GlobalValueSummary objects. 7156 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7157 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7158 return Err; 7159 7160 SmallVector<uint64_t, 64> Record; 7161 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7162 unsigned ValueId = 0; 7163 7164 // Read the index for this module. 7165 while (true) { 7166 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7167 if (!MaybeEntry) 7168 return MaybeEntry.takeError(); 7169 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7170 7171 switch (Entry.Kind) { 7172 case BitstreamEntry::Error: 7173 return error("Malformed block"); 7174 case BitstreamEntry::EndBlock: 7175 return Error::success(); 7176 7177 case BitstreamEntry::SubBlock: 7178 switch (Entry.ID) { 7179 default: // Skip unknown content. 7180 if (Error Err = Stream.SkipBlock()) 7181 return Err; 7182 break; 7183 case bitc::BLOCKINFO_BLOCK_ID: 7184 // Need to parse these to get abbrev ids (e.g. for VST) 7185 if (Error Err = readBlockInfo()) 7186 return Err; 7187 break; 7188 case bitc::VALUE_SYMTAB_BLOCK_ID: 7189 // Should have been parsed earlier via VSTOffset, unless there 7190 // is no summary section. 7191 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7192 !SeenGlobalValSummary) && 7193 "Expected early VST parse via VSTOffset record"); 7194 if (Error Err = Stream.SkipBlock()) 7195 return Err; 7196 break; 7197 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7198 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7199 // Add the module if it is a per-module index (has a source file name). 7200 if (!SourceFileName.empty()) 7201 addThisModule(); 7202 assert(!SeenValueSymbolTable && 7203 "Already read VST when parsing summary block?"); 7204 // We might not have a VST if there were no values in the 7205 // summary. An empty summary block generated when we are 7206 // performing ThinLTO compiles so we don't later invoke 7207 // the regular LTO process on them. 7208 if (VSTOffset > 0) { 7209 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7210 return Err; 7211 SeenValueSymbolTable = true; 7212 } 7213 SeenGlobalValSummary = true; 7214 if (Error Err = parseEntireSummary(Entry.ID)) 7215 return Err; 7216 break; 7217 case bitc::MODULE_STRTAB_BLOCK_ID: 7218 if (Error Err = parseModuleStringTable()) 7219 return Err; 7220 break; 7221 } 7222 continue; 7223 7224 case BitstreamEntry::Record: { 7225 Record.clear(); 7226 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7227 if (!MaybeBitCode) 7228 return MaybeBitCode.takeError(); 7229 switch (MaybeBitCode.get()) { 7230 default: 7231 break; // Default behavior, ignore unknown content. 7232 case bitc::MODULE_CODE_VERSION: { 7233 if (Error Err = parseVersionRecord(Record).takeError()) 7234 return Err; 7235 break; 7236 } 7237 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7238 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7239 SmallString<128> ValueName; 7240 if (convertToString(Record, 0, ValueName)) 7241 return error("Invalid record"); 7242 SourceFileName = ValueName.c_str(); 7243 break; 7244 } 7245 /// MODULE_CODE_HASH: [5*i32] 7246 case bitc::MODULE_CODE_HASH: { 7247 if (Record.size() != 5) 7248 return error("Invalid hash length " + Twine(Record.size()).str()); 7249 auto &Hash = getThisModule()->second; 7250 int Pos = 0; 7251 for (auto &Val : Record) { 7252 assert(!(Val >> 32) && "Unexpected high bits set"); 7253 Hash[Pos++] = Val; 7254 } 7255 break; 7256 } 7257 /// MODULE_CODE_VSTOFFSET: [offset] 7258 case bitc::MODULE_CODE_VSTOFFSET: 7259 if (Record.empty()) 7260 return error("Invalid record"); 7261 // Note that we subtract 1 here because the offset is relative to one 7262 // word before the start of the identification or module block, which 7263 // was historically always the start of the regular bitcode header. 7264 VSTOffset = Record[0] - 1; 7265 break; 7266 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7267 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7268 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7269 // v2: [strtab offset, strtab size, v1] 7270 case bitc::MODULE_CODE_GLOBALVAR: 7271 case bitc::MODULE_CODE_FUNCTION: 7272 case bitc::MODULE_CODE_ALIAS: { 7273 StringRef Name; 7274 ArrayRef<uint64_t> GVRecord; 7275 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7276 if (GVRecord.size() <= 3) 7277 return error("Invalid record"); 7278 uint64_t RawLinkage = GVRecord[3]; 7279 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7280 if (!UseStrtab) { 7281 ValueIdToLinkageMap[ValueId++] = Linkage; 7282 break; 7283 } 7284 7285 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7286 break; 7287 } 7288 } 7289 } 7290 continue; 7291 } 7292 } 7293 } 7294 7295 std::vector<ValueInfo> 7296 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7297 std::vector<ValueInfo> Ret; 7298 Ret.reserve(Record.size()); 7299 for (uint64_t RefValueId : Record) 7300 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7301 return Ret; 7302 } 7303 7304 std::vector<FunctionSummary::EdgeTy> 7305 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7306 bool IsOldProfileFormat, 7307 bool HasProfile, bool HasRelBF) { 7308 std::vector<FunctionSummary::EdgeTy> Ret; 7309 Ret.reserve(Record.size()); 7310 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7311 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7312 bool HasTailCall = false; 7313 uint64_t RelBF = 0; 7314 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7315 if (IsOldProfileFormat) { 7316 I += 1; // Skip old callsitecount field 7317 if (HasProfile) 7318 I += 1; // Skip old profilecount field 7319 } else if (HasProfile) 7320 std::tie(Hotness, HasTailCall) = 7321 getDecodedHotnessCallEdgeInfo(Record[++I]); 7322 else if (HasRelBF) 7323 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7324 Ret.push_back(FunctionSummary::EdgeTy{ 7325 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7326 } 7327 return Ret; 7328 } 7329 7330 static void 7331 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7332 WholeProgramDevirtResolution &Wpd) { 7333 uint64_t ArgNum = Record[Slot++]; 7334 WholeProgramDevirtResolution::ByArg &B = 7335 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7336 Slot += ArgNum; 7337 7338 B.TheKind = 7339 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7340 B.Info = Record[Slot++]; 7341 B.Byte = Record[Slot++]; 7342 B.Bit = Record[Slot++]; 7343 } 7344 7345 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7346 StringRef Strtab, size_t &Slot, 7347 TypeIdSummary &TypeId) { 7348 uint64_t Id = Record[Slot++]; 7349 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7350 7351 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7352 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7353 static_cast<size_t>(Record[Slot + 1])}; 7354 Slot += 2; 7355 7356 uint64_t ResByArgNum = Record[Slot++]; 7357 for (uint64_t I = 0; I != ResByArgNum; ++I) 7358 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7359 } 7360 7361 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7362 StringRef Strtab, 7363 ModuleSummaryIndex &TheIndex) { 7364 size_t Slot = 0; 7365 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7366 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7367 Slot += 2; 7368 7369 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7370 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7371 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7372 TypeId.TTRes.SizeM1 = Record[Slot++]; 7373 TypeId.TTRes.BitMask = Record[Slot++]; 7374 TypeId.TTRes.InlineBits = Record[Slot++]; 7375 7376 while (Slot < Record.size()) 7377 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7378 } 7379 7380 std::vector<FunctionSummary::ParamAccess> 7381 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7382 auto ReadRange = [&]() { 7383 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7384 BitcodeReader::decodeSignRotatedValue(Record.front())); 7385 Record = Record.drop_front(); 7386 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7387 BitcodeReader::decodeSignRotatedValue(Record.front())); 7388 Record = Record.drop_front(); 7389 ConstantRange Range{Lower, Upper}; 7390 assert(!Range.isFullSet()); 7391 assert(!Range.isUpperSignWrapped()); 7392 return Range; 7393 }; 7394 7395 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7396 while (!Record.empty()) { 7397 PendingParamAccesses.emplace_back(); 7398 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7399 ParamAccess.ParamNo = Record.front(); 7400 Record = Record.drop_front(); 7401 ParamAccess.Use = ReadRange(); 7402 ParamAccess.Calls.resize(Record.front()); 7403 Record = Record.drop_front(); 7404 for (auto &Call : ParamAccess.Calls) { 7405 Call.ParamNo = Record.front(); 7406 Record = Record.drop_front(); 7407 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7408 Record = Record.drop_front(); 7409 Call.Offsets = ReadRange(); 7410 } 7411 } 7412 return PendingParamAccesses; 7413 } 7414 7415 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7416 ArrayRef<uint64_t> Record, size_t &Slot, 7417 TypeIdCompatibleVtableInfo &TypeId) { 7418 uint64_t Offset = Record[Slot++]; 7419 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7420 TypeId.push_back({Offset, Callee}); 7421 } 7422 7423 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7424 ArrayRef<uint64_t> Record) { 7425 size_t Slot = 0; 7426 TypeIdCompatibleVtableInfo &TypeId = 7427 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7428 {Strtab.data() + Record[Slot], 7429 static_cast<size_t>(Record[Slot + 1])}); 7430 Slot += 2; 7431 7432 while (Slot < Record.size()) 7433 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7434 } 7435 7436 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7437 unsigned WOCnt) { 7438 // Readonly and writeonly refs are in the end of the refs list. 7439 assert(ROCnt + WOCnt <= Refs.size()); 7440 unsigned FirstWORef = Refs.size() - WOCnt; 7441 unsigned RefNo = FirstWORef - ROCnt; 7442 for (; RefNo < FirstWORef; ++RefNo) 7443 Refs[RefNo].setReadOnly(); 7444 for (; RefNo < Refs.size(); ++RefNo) 7445 Refs[RefNo].setWriteOnly(); 7446 } 7447 7448 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7449 // objects in the index. 7450 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7451 if (Error Err = Stream.EnterSubBlock(ID)) 7452 return Err; 7453 SmallVector<uint64_t, 64> Record; 7454 7455 // Parse version 7456 { 7457 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7458 if (!MaybeEntry) 7459 return MaybeEntry.takeError(); 7460 BitstreamEntry Entry = MaybeEntry.get(); 7461 7462 if (Entry.Kind != BitstreamEntry::Record) 7463 return error("Invalid Summary Block: record for version expected"); 7464 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7465 if (!MaybeRecord) 7466 return MaybeRecord.takeError(); 7467 if (MaybeRecord.get() != bitc::FS_VERSION) 7468 return error("Invalid Summary Block: version expected"); 7469 } 7470 const uint64_t Version = Record[0]; 7471 const bool IsOldProfileFormat = Version == 1; 7472 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7473 return error("Invalid summary version " + Twine(Version) + 7474 ". Version should be in the range [1-" + 7475 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7476 "]."); 7477 Record.clear(); 7478 7479 // Keep around the last seen summary to be used when we see an optional 7480 // "OriginalName" attachement. 7481 GlobalValueSummary *LastSeenSummary = nullptr; 7482 GlobalValue::GUID LastSeenGUID = 0; 7483 7484 // We can expect to see any number of type ID information records before 7485 // each function summary records; these variables store the information 7486 // collected so far so that it can be used to create the summary object. 7487 std::vector<GlobalValue::GUID> PendingTypeTests; 7488 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7489 PendingTypeCheckedLoadVCalls; 7490 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7491 PendingTypeCheckedLoadConstVCalls; 7492 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7493 7494 std::vector<CallsiteInfo> PendingCallsites; 7495 std::vector<AllocInfo> PendingAllocs; 7496 7497 while (true) { 7498 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7499 if (!MaybeEntry) 7500 return MaybeEntry.takeError(); 7501 BitstreamEntry Entry = MaybeEntry.get(); 7502 7503 switch (Entry.Kind) { 7504 case BitstreamEntry::SubBlock: // Handled for us already. 7505 case BitstreamEntry::Error: 7506 return error("Malformed block"); 7507 case BitstreamEntry::EndBlock: 7508 return Error::success(); 7509 case BitstreamEntry::Record: 7510 // The interesting case. 7511 break; 7512 } 7513 7514 // Read a record. The record format depends on whether this 7515 // is a per-module index or a combined index file. In the per-module 7516 // case the records contain the associated value's ID for correlation 7517 // with VST entries. In the combined index the correlation is done 7518 // via the bitcode offset of the summary records (which were saved 7519 // in the combined index VST entries). The records also contain 7520 // information used for ThinLTO renaming and importing. 7521 Record.clear(); 7522 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7523 if (!MaybeBitCode) 7524 return MaybeBitCode.takeError(); 7525 switch (unsigned BitCode = MaybeBitCode.get()) { 7526 default: // Default behavior: ignore. 7527 break; 7528 case bitc::FS_FLAGS: { // [flags] 7529 TheIndex.setFlags(Record[0]); 7530 break; 7531 } 7532 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7533 uint64_t ValueID = Record[0]; 7534 GlobalValue::GUID RefGUID = Record[1]; 7535 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7536 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7537 break; 7538 } 7539 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7540 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7541 // numrefs x valueid, n x (valueid)] 7542 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7543 // numrefs x valueid, 7544 // n x (valueid, hotness+tailcall flags)] 7545 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7546 // numrefs x valueid, 7547 // n x (valueid, relblockfreq+tailcall)] 7548 case bitc::FS_PERMODULE: 7549 case bitc::FS_PERMODULE_RELBF: 7550 case bitc::FS_PERMODULE_PROFILE: { 7551 unsigned ValueID = Record[0]; 7552 uint64_t RawFlags = Record[1]; 7553 unsigned InstCount = Record[2]; 7554 uint64_t RawFunFlags = 0; 7555 unsigned NumRefs = Record[3]; 7556 unsigned NumRORefs = 0, NumWORefs = 0; 7557 int RefListStartIndex = 4; 7558 if (Version >= 4) { 7559 RawFunFlags = Record[3]; 7560 NumRefs = Record[4]; 7561 RefListStartIndex = 5; 7562 if (Version >= 5) { 7563 NumRORefs = Record[5]; 7564 RefListStartIndex = 6; 7565 if (Version >= 7) { 7566 NumWORefs = Record[6]; 7567 RefListStartIndex = 7; 7568 } 7569 } 7570 } 7571 7572 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7573 // The module path string ref set in the summary must be owned by the 7574 // index's module string table. Since we don't have a module path 7575 // string table section in the per-module index, we create a single 7576 // module path string table entry with an empty (0) ID to take 7577 // ownership. 7578 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7579 assert(Record.size() >= RefListStartIndex + NumRefs && 7580 "Record size inconsistent with number of references"); 7581 std::vector<ValueInfo> Refs = makeRefList( 7582 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7583 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7584 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7585 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7586 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7587 IsOldProfileFormat, HasProfile, HasRelBF); 7588 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7589 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7590 // In order to save memory, only record the memprof summaries if this is 7591 // the prevailing copy of a symbol. The linker doesn't resolve local 7592 // linkage values so don't check whether those are prevailing. 7593 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7594 if (IsPrevailing && 7595 !GlobalValue::isLocalLinkage(LT) && 7596 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7597 PendingCallsites.clear(); 7598 PendingAllocs.clear(); 7599 } 7600 auto FS = std::make_unique<FunctionSummary>( 7601 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7602 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7603 std::move(PendingTypeTestAssumeVCalls), 7604 std::move(PendingTypeCheckedLoadVCalls), 7605 std::move(PendingTypeTestAssumeConstVCalls), 7606 std::move(PendingTypeCheckedLoadConstVCalls), 7607 std::move(PendingParamAccesses), std::move(PendingCallsites), 7608 std::move(PendingAllocs)); 7609 FS->setModulePath(getThisModule()->first()); 7610 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7611 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7612 std::move(FS)); 7613 break; 7614 } 7615 // FS_ALIAS: [valueid, flags, valueid] 7616 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7617 // they expect all aliasee summaries to be available. 7618 case bitc::FS_ALIAS: { 7619 unsigned ValueID = Record[0]; 7620 uint64_t RawFlags = Record[1]; 7621 unsigned AliaseeID = Record[2]; 7622 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7623 auto AS = std::make_unique<AliasSummary>(Flags); 7624 // The module path string ref set in the summary must be owned by the 7625 // index's module string table. Since we don't have a module path 7626 // string table section in the per-module index, we create a single 7627 // module path string table entry with an empty (0) ID to take 7628 // ownership. 7629 AS->setModulePath(getThisModule()->first()); 7630 7631 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7632 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7633 if (!AliaseeInModule) 7634 return error("Alias expects aliasee summary to be parsed"); 7635 AS->setAliasee(AliaseeVI, AliaseeInModule); 7636 7637 auto GUID = getValueInfoFromValueId(ValueID); 7638 AS->setOriginalName(std::get<1>(GUID)); 7639 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7640 break; 7641 } 7642 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7643 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7644 unsigned ValueID = Record[0]; 7645 uint64_t RawFlags = Record[1]; 7646 unsigned RefArrayStart = 2; 7647 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7648 /* WriteOnly */ false, 7649 /* Constant */ false, 7650 GlobalObject::VCallVisibilityPublic); 7651 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7652 if (Version >= 5) { 7653 GVF = getDecodedGVarFlags(Record[2]); 7654 RefArrayStart = 3; 7655 } 7656 std::vector<ValueInfo> Refs = 7657 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7658 auto FS = 7659 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7660 FS->setModulePath(getThisModule()->first()); 7661 auto GUID = getValueInfoFromValueId(ValueID); 7662 FS->setOriginalName(std::get<1>(GUID)); 7663 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7664 break; 7665 } 7666 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7667 // numrefs, numrefs x valueid, 7668 // n x (valueid, offset)] 7669 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7670 unsigned ValueID = Record[0]; 7671 uint64_t RawFlags = Record[1]; 7672 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7673 unsigned NumRefs = Record[3]; 7674 unsigned RefListStartIndex = 4; 7675 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7676 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7677 std::vector<ValueInfo> Refs = makeRefList( 7678 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7679 VTableFuncList VTableFuncs; 7680 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7681 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7682 uint64_t Offset = Record[++I]; 7683 VTableFuncs.push_back({Callee, Offset}); 7684 } 7685 auto VS = 7686 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7687 VS->setModulePath(getThisModule()->first()); 7688 VS->setVTableFuncs(VTableFuncs); 7689 auto GUID = getValueInfoFromValueId(ValueID); 7690 VS->setOriginalName(std::get<1>(GUID)); 7691 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7692 break; 7693 } 7694 // FS_COMBINED is legacy and does not have support for the tail call flag. 7695 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7696 // numrefs x valueid, n x (valueid)] 7697 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7698 // numrefs x valueid, 7699 // n x (valueid, hotness+tailcall flags)] 7700 case bitc::FS_COMBINED: 7701 case bitc::FS_COMBINED_PROFILE: { 7702 unsigned ValueID = Record[0]; 7703 uint64_t ModuleId = Record[1]; 7704 uint64_t RawFlags = Record[2]; 7705 unsigned InstCount = Record[3]; 7706 uint64_t RawFunFlags = 0; 7707 uint64_t EntryCount = 0; 7708 unsigned NumRefs = Record[4]; 7709 unsigned NumRORefs = 0, NumWORefs = 0; 7710 int RefListStartIndex = 5; 7711 7712 if (Version >= 4) { 7713 RawFunFlags = Record[4]; 7714 RefListStartIndex = 6; 7715 size_t NumRefsIndex = 5; 7716 if (Version >= 5) { 7717 unsigned NumRORefsOffset = 1; 7718 RefListStartIndex = 7; 7719 if (Version >= 6) { 7720 NumRefsIndex = 6; 7721 EntryCount = Record[5]; 7722 RefListStartIndex = 8; 7723 if (Version >= 7) { 7724 RefListStartIndex = 9; 7725 NumWORefs = Record[8]; 7726 NumRORefsOffset = 2; 7727 } 7728 } 7729 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7730 } 7731 NumRefs = Record[NumRefsIndex]; 7732 } 7733 7734 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7735 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7736 assert(Record.size() >= RefListStartIndex + NumRefs && 7737 "Record size inconsistent with number of references"); 7738 std::vector<ValueInfo> Refs = makeRefList( 7739 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7740 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7741 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7742 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7743 IsOldProfileFormat, HasProfile, false); 7744 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7745 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7746 auto FS = std::make_unique<FunctionSummary>( 7747 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7748 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7749 std::move(PendingTypeTestAssumeVCalls), 7750 std::move(PendingTypeCheckedLoadVCalls), 7751 std::move(PendingTypeTestAssumeConstVCalls), 7752 std::move(PendingTypeCheckedLoadConstVCalls), 7753 std::move(PendingParamAccesses), std::move(PendingCallsites), 7754 std::move(PendingAllocs)); 7755 LastSeenSummary = FS.get(); 7756 LastSeenGUID = VI.getGUID(); 7757 FS->setModulePath(ModuleIdMap[ModuleId]); 7758 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7759 break; 7760 } 7761 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7762 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7763 // they expect all aliasee summaries to be available. 7764 case bitc::FS_COMBINED_ALIAS: { 7765 unsigned ValueID = Record[0]; 7766 uint64_t ModuleId = Record[1]; 7767 uint64_t RawFlags = Record[2]; 7768 unsigned AliaseeValueId = Record[3]; 7769 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7770 auto AS = std::make_unique<AliasSummary>(Flags); 7771 LastSeenSummary = AS.get(); 7772 AS->setModulePath(ModuleIdMap[ModuleId]); 7773 7774 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7775 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7776 AS->setAliasee(AliaseeVI, AliaseeInModule); 7777 7778 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7779 LastSeenGUID = VI.getGUID(); 7780 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7781 break; 7782 } 7783 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7784 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7785 unsigned ValueID = Record[0]; 7786 uint64_t ModuleId = Record[1]; 7787 uint64_t RawFlags = Record[2]; 7788 unsigned RefArrayStart = 3; 7789 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7790 /* WriteOnly */ false, 7791 /* Constant */ false, 7792 GlobalObject::VCallVisibilityPublic); 7793 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7794 if (Version >= 5) { 7795 GVF = getDecodedGVarFlags(Record[3]); 7796 RefArrayStart = 4; 7797 } 7798 std::vector<ValueInfo> Refs = 7799 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7800 auto FS = 7801 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7802 LastSeenSummary = FS.get(); 7803 FS->setModulePath(ModuleIdMap[ModuleId]); 7804 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7805 LastSeenGUID = VI.getGUID(); 7806 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7807 break; 7808 } 7809 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7810 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7811 uint64_t OriginalName = Record[0]; 7812 if (!LastSeenSummary) 7813 return error("Name attachment that does not follow a combined record"); 7814 LastSeenSummary->setOriginalName(OriginalName); 7815 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7816 // Reset the LastSeenSummary 7817 LastSeenSummary = nullptr; 7818 LastSeenGUID = 0; 7819 break; 7820 } 7821 case bitc::FS_TYPE_TESTS: 7822 assert(PendingTypeTests.empty()); 7823 llvm::append_range(PendingTypeTests, Record); 7824 break; 7825 7826 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7827 assert(PendingTypeTestAssumeVCalls.empty()); 7828 for (unsigned I = 0; I != Record.size(); I += 2) 7829 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7830 break; 7831 7832 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7833 assert(PendingTypeCheckedLoadVCalls.empty()); 7834 for (unsigned I = 0; I != Record.size(); I += 2) 7835 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7836 break; 7837 7838 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7839 PendingTypeTestAssumeConstVCalls.push_back( 7840 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7841 break; 7842 7843 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7844 PendingTypeCheckedLoadConstVCalls.push_back( 7845 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7846 break; 7847 7848 case bitc::FS_CFI_FUNCTION_DEFS: { 7849 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7850 for (unsigned I = 0; I != Record.size(); I += 2) 7851 CfiFunctionDefs.insert( 7852 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7853 break; 7854 } 7855 7856 case bitc::FS_CFI_FUNCTION_DECLS: { 7857 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7858 for (unsigned I = 0; I != Record.size(); I += 2) 7859 CfiFunctionDecls.insert( 7860 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7861 break; 7862 } 7863 7864 case bitc::FS_TYPE_ID: 7865 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7866 break; 7867 7868 case bitc::FS_TYPE_ID_METADATA: 7869 parseTypeIdCompatibleVtableSummaryRecord(Record); 7870 break; 7871 7872 case bitc::FS_BLOCK_COUNT: 7873 TheIndex.addBlockCount(Record[0]); 7874 break; 7875 7876 case bitc::FS_PARAM_ACCESS: { 7877 PendingParamAccesses = parseParamAccesses(Record); 7878 break; 7879 } 7880 7881 case bitc::FS_STACK_IDS: { // [n x stackid] 7882 // Save stack ids in the reader to consult when adding stack ids from the 7883 // lists in the stack node and alloc node entries. 7884 StackIds = ArrayRef<uint64_t>(Record); 7885 break; 7886 } 7887 7888 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7889 unsigned ValueID = Record[0]; 7890 SmallVector<unsigned> StackIdList; 7891 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7892 assert(*R < StackIds.size()); 7893 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7894 } 7895 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7896 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7897 break; 7898 } 7899 7900 case bitc::FS_COMBINED_CALLSITE_INFO: { 7901 auto RecordIter = Record.begin(); 7902 unsigned ValueID = *RecordIter++; 7903 unsigned NumStackIds = *RecordIter++; 7904 unsigned NumVersions = *RecordIter++; 7905 assert(Record.size() == 3 + NumStackIds + NumVersions); 7906 SmallVector<unsigned> StackIdList; 7907 for (unsigned J = 0; J < NumStackIds; J++) { 7908 assert(*RecordIter < StackIds.size()); 7909 StackIdList.push_back( 7910 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7911 } 7912 SmallVector<unsigned> Versions; 7913 for (unsigned J = 0; J < NumVersions; J++) 7914 Versions.push_back(*RecordIter++); 7915 ValueInfo VI = std::get<0>( 7916 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7917 PendingCallsites.push_back( 7918 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7919 break; 7920 } 7921 7922 case bitc::FS_PERMODULE_ALLOC_INFO: { 7923 unsigned I = 0; 7924 std::vector<MIBInfo> MIBs; 7925 while (I < Record.size()) { 7926 assert(Record.size() - I >= 2); 7927 AllocationType AllocType = (AllocationType)Record[I++]; 7928 unsigned NumStackEntries = Record[I++]; 7929 assert(Record.size() - I >= NumStackEntries); 7930 SmallVector<unsigned> StackIdList; 7931 for (unsigned J = 0; J < NumStackEntries; J++) { 7932 assert(Record[I] < StackIds.size()); 7933 StackIdList.push_back( 7934 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7935 } 7936 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7937 } 7938 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7939 break; 7940 } 7941 7942 case bitc::FS_COMBINED_ALLOC_INFO: { 7943 unsigned I = 0; 7944 std::vector<MIBInfo> MIBs; 7945 unsigned NumMIBs = Record[I++]; 7946 unsigned NumVersions = Record[I++]; 7947 unsigned MIBsRead = 0; 7948 while (MIBsRead++ < NumMIBs) { 7949 assert(Record.size() - I >= 2); 7950 AllocationType AllocType = (AllocationType)Record[I++]; 7951 unsigned NumStackEntries = Record[I++]; 7952 assert(Record.size() - I >= NumStackEntries); 7953 SmallVector<unsigned> StackIdList; 7954 for (unsigned J = 0; J < NumStackEntries; J++) { 7955 assert(Record[I] < StackIds.size()); 7956 StackIdList.push_back( 7957 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7958 } 7959 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7960 } 7961 assert(Record.size() - I >= NumVersions); 7962 SmallVector<uint8_t> Versions; 7963 for (unsigned J = 0; J < NumVersions; J++) 7964 Versions.push_back(Record[I++]); 7965 PendingAllocs.push_back( 7966 AllocInfo(std::move(Versions), std::move(MIBs))); 7967 break; 7968 } 7969 } 7970 } 7971 llvm_unreachable("Exit infinite loop"); 7972 } 7973 7974 // Parse the module string table block into the Index. 7975 // This populates the ModulePathStringTable map in the index. 7976 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7977 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7978 return Err; 7979 7980 SmallVector<uint64_t, 64> Record; 7981 7982 SmallString<128> ModulePath; 7983 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7984 7985 while (true) { 7986 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7987 if (!MaybeEntry) 7988 return MaybeEntry.takeError(); 7989 BitstreamEntry Entry = MaybeEntry.get(); 7990 7991 switch (Entry.Kind) { 7992 case BitstreamEntry::SubBlock: // Handled for us already. 7993 case BitstreamEntry::Error: 7994 return error("Malformed block"); 7995 case BitstreamEntry::EndBlock: 7996 return Error::success(); 7997 case BitstreamEntry::Record: 7998 // The interesting case. 7999 break; 8000 } 8001 8002 Record.clear(); 8003 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8004 if (!MaybeRecord) 8005 return MaybeRecord.takeError(); 8006 switch (MaybeRecord.get()) { 8007 default: // Default behavior: ignore. 8008 break; 8009 case bitc::MST_CODE_ENTRY: { 8010 // MST_ENTRY: [modid, namechar x N] 8011 uint64_t ModuleId = Record[0]; 8012 8013 if (convertToString(Record, 1, ModulePath)) 8014 return error("Invalid record"); 8015 8016 LastSeenModule = TheIndex.addModule(ModulePath); 8017 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8018 8019 ModulePath.clear(); 8020 break; 8021 } 8022 /// MST_CODE_HASH: [5*i32] 8023 case bitc::MST_CODE_HASH: { 8024 if (Record.size() != 5) 8025 return error("Invalid hash length " + Twine(Record.size()).str()); 8026 if (!LastSeenModule) 8027 return error("Invalid hash that does not follow a module path"); 8028 int Pos = 0; 8029 for (auto &Val : Record) { 8030 assert(!(Val >> 32) && "Unexpected high bits set"); 8031 LastSeenModule->second[Pos++] = Val; 8032 } 8033 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8034 LastSeenModule = nullptr; 8035 break; 8036 } 8037 } 8038 } 8039 llvm_unreachable("Exit infinite loop"); 8040 } 8041 8042 namespace { 8043 8044 // FIXME: This class is only here to support the transition to llvm::Error. It 8045 // will be removed once this transition is complete. Clients should prefer to 8046 // deal with the Error value directly, rather than converting to error_code. 8047 class BitcodeErrorCategoryType : public std::error_category { 8048 const char *name() const noexcept override { 8049 return "llvm.bitcode"; 8050 } 8051 8052 std::string message(int IE) const override { 8053 BitcodeError E = static_cast<BitcodeError>(IE); 8054 switch (E) { 8055 case BitcodeError::CorruptedBitcode: 8056 return "Corrupted bitcode"; 8057 } 8058 llvm_unreachable("Unknown error type!"); 8059 } 8060 }; 8061 8062 } // end anonymous namespace 8063 8064 const std::error_category &llvm::BitcodeErrorCategory() { 8065 static BitcodeErrorCategoryType ErrorCategory; 8066 return ErrorCategory; 8067 } 8068 8069 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8070 unsigned Block, unsigned RecordID) { 8071 if (Error Err = Stream.EnterSubBlock(Block)) 8072 return std::move(Err); 8073 8074 StringRef Strtab; 8075 while (true) { 8076 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8077 if (!MaybeEntry) 8078 return MaybeEntry.takeError(); 8079 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8080 8081 switch (Entry.Kind) { 8082 case BitstreamEntry::EndBlock: 8083 return Strtab; 8084 8085 case BitstreamEntry::Error: 8086 return error("Malformed block"); 8087 8088 case BitstreamEntry::SubBlock: 8089 if (Error Err = Stream.SkipBlock()) 8090 return std::move(Err); 8091 break; 8092 8093 case BitstreamEntry::Record: 8094 StringRef Blob; 8095 SmallVector<uint64_t, 1> Record; 8096 Expected<unsigned> MaybeRecord = 8097 Stream.readRecord(Entry.ID, Record, &Blob); 8098 if (!MaybeRecord) 8099 return MaybeRecord.takeError(); 8100 if (MaybeRecord.get() == RecordID) 8101 Strtab = Blob; 8102 break; 8103 } 8104 } 8105 } 8106 8107 //===----------------------------------------------------------------------===// 8108 // External interface 8109 //===----------------------------------------------------------------------===// 8110 8111 Expected<std::vector<BitcodeModule>> 8112 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8113 auto FOrErr = getBitcodeFileContents(Buffer); 8114 if (!FOrErr) 8115 return FOrErr.takeError(); 8116 return std::move(FOrErr->Mods); 8117 } 8118 8119 Expected<BitcodeFileContents> 8120 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8121 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8122 if (!StreamOrErr) 8123 return StreamOrErr.takeError(); 8124 BitstreamCursor &Stream = *StreamOrErr; 8125 8126 BitcodeFileContents F; 8127 while (true) { 8128 uint64_t BCBegin = Stream.getCurrentByteNo(); 8129 8130 // We may be consuming bitcode from a client that leaves garbage at the end 8131 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8132 // the end that there cannot possibly be another module, stop looking. 8133 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8134 return F; 8135 8136 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8137 if (!MaybeEntry) 8138 return MaybeEntry.takeError(); 8139 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8140 8141 switch (Entry.Kind) { 8142 case BitstreamEntry::EndBlock: 8143 case BitstreamEntry::Error: 8144 return error("Malformed block"); 8145 8146 case BitstreamEntry::SubBlock: { 8147 uint64_t IdentificationBit = -1ull; 8148 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8149 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8150 if (Error Err = Stream.SkipBlock()) 8151 return std::move(Err); 8152 8153 { 8154 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8155 if (!MaybeEntry) 8156 return MaybeEntry.takeError(); 8157 Entry = MaybeEntry.get(); 8158 } 8159 8160 if (Entry.Kind != BitstreamEntry::SubBlock || 8161 Entry.ID != bitc::MODULE_BLOCK_ID) 8162 return error("Malformed block"); 8163 } 8164 8165 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8166 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8167 if (Error Err = Stream.SkipBlock()) 8168 return std::move(Err); 8169 8170 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8171 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8172 Buffer.getBufferIdentifier(), IdentificationBit, 8173 ModuleBit}); 8174 continue; 8175 } 8176 8177 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8178 Expected<StringRef> Strtab = 8179 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8180 if (!Strtab) 8181 return Strtab.takeError(); 8182 // This string table is used by every preceding bitcode module that does 8183 // not have its own string table. A bitcode file may have multiple 8184 // string tables if it was created by binary concatenation, for example 8185 // with "llvm-cat -b". 8186 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8187 if (!I.Strtab.empty()) 8188 break; 8189 I.Strtab = *Strtab; 8190 } 8191 // Similarly, the string table is used by every preceding symbol table; 8192 // normally there will be just one unless the bitcode file was created 8193 // by binary concatenation. 8194 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8195 F.StrtabForSymtab = *Strtab; 8196 continue; 8197 } 8198 8199 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8200 Expected<StringRef> SymtabOrErr = 8201 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8202 if (!SymtabOrErr) 8203 return SymtabOrErr.takeError(); 8204 8205 // We can expect the bitcode file to have multiple symbol tables if it 8206 // was created by binary concatenation. In that case we silently 8207 // ignore any subsequent symbol tables, which is fine because this is a 8208 // low level function. The client is expected to notice that the number 8209 // of modules in the symbol table does not match the number of modules 8210 // in the input file and regenerate the symbol table. 8211 if (F.Symtab.empty()) 8212 F.Symtab = *SymtabOrErr; 8213 continue; 8214 } 8215 8216 if (Error Err = Stream.SkipBlock()) 8217 return std::move(Err); 8218 continue; 8219 } 8220 case BitstreamEntry::Record: 8221 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8222 return std::move(E); 8223 continue; 8224 } 8225 } 8226 } 8227 8228 /// Get a lazy one-at-time loading module from bitcode. 8229 /// 8230 /// This isn't always used in a lazy context. In particular, it's also used by 8231 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8232 /// in forward-referenced functions from block address references. 8233 /// 8234 /// \param[in] MaterializeAll Set to \c true if we should materialize 8235 /// everything. 8236 Expected<std::unique_ptr<Module>> 8237 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8238 bool ShouldLazyLoadMetadata, bool IsImporting, 8239 ParserCallbacks Callbacks) { 8240 BitstreamCursor Stream(Buffer); 8241 8242 std::string ProducerIdentification; 8243 if (IdentificationBit != -1ull) { 8244 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8245 return std::move(JumpFailed); 8246 if (Error E = 8247 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8248 return std::move(E); 8249 } 8250 8251 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8252 return std::move(JumpFailed); 8253 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8254 Context); 8255 8256 std::unique_ptr<Module> M = 8257 std::make_unique<Module>(ModuleIdentifier, Context); 8258 M->setMaterializer(R); 8259 8260 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8261 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8262 IsImporting, Callbacks)) 8263 return std::move(Err); 8264 8265 if (MaterializeAll) { 8266 // Read in the entire module, and destroy the BitcodeReader. 8267 if (Error Err = M->materializeAll()) 8268 return std::move(Err); 8269 } else { 8270 // Resolve forward references from blockaddresses. 8271 if (Error Err = R->materializeForwardReferencedFunctions()) 8272 return std::move(Err); 8273 } 8274 8275 return std::move(M); 8276 } 8277 8278 Expected<std::unique_ptr<Module>> 8279 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8280 bool IsImporting, ParserCallbacks Callbacks) { 8281 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8282 Callbacks); 8283 } 8284 8285 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8286 // We don't use ModuleIdentifier here because the client may need to control the 8287 // module path used in the combined summary (e.g. when reading summaries for 8288 // regular LTO modules). 8289 Error BitcodeModule::readSummary( 8290 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8291 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8292 BitstreamCursor Stream(Buffer); 8293 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8294 return JumpFailed; 8295 8296 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8297 ModulePath, IsPrevailing); 8298 return R.parseModule(); 8299 } 8300 8301 // Parse the specified bitcode buffer, returning the function info index. 8302 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8303 BitstreamCursor Stream(Buffer); 8304 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8305 return std::move(JumpFailed); 8306 8307 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8308 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8309 ModuleIdentifier, 0); 8310 8311 if (Error Err = R.parseModule()) 8312 return std::move(Err); 8313 8314 return std::move(Index); 8315 } 8316 8317 static Expected<std::pair<bool, bool>> 8318 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8319 unsigned ID, 8320 BitcodeLTOInfo <OInfo) { 8321 if (Error Err = Stream.EnterSubBlock(ID)) 8322 return std::move(Err); 8323 SmallVector<uint64_t, 64> Record; 8324 8325 while (true) { 8326 BitstreamEntry Entry; 8327 std::pair<bool, bool> Result = {false,false}; 8328 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8329 return std::move(E); 8330 8331 switch (Entry.Kind) { 8332 case BitstreamEntry::SubBlock: // Handled for us already. 8333 case BitstreamEntry::Error: 8334 return error("Malformed block"); 8335 case BitstreamEntry::EndBlock: { 8336 // If no flags record found, set both flags to false. 8337 return Result; 8338 } 8339 case BitstreamEntry::Record: 8340 // The interesting case. 8341 break; 8342 } 8343 8344 // Look for the FS_FLAGS record. 8345 Record.clear(); 8346 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8347 if (!MaybeBitCode) 8348 return MaybeBitCode.takeError(); 8349 switch (MaybeBitCode.get()) { 8350 default: // Default behavior: ignore. 8351 break; 8352 case bitc::FS_FLAGS: { // [flags] 8353 uint64_t Flags = Record[0]; 8354 // Scan flags. 8355 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8356 8357 bool EnableSplitLTOUnit = Flags & 0x8; 8358 bool UnifiedLTO = Flags & 0x200; 8359 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8360 8361 return Result; 8362 } 8363 } 8364 } 8365 llvm_unreachable("Exit infinite loop"); 8366 } 8367 8368 // Check if the given bitcode buffer contains a global value summary block. 8369 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8370 BitstreamCursor Stream(Buffer); 8371 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8372 return std::move(JumpFailed); 8373 8374 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8375 return std::move(Err); 8376 8377 while (true) { 8378 llvm::BitstreamEntry Entry; 8379 if (Error E = Stream.advance().moveInto(Entry)) 8380 return std::move(E); 8381 8382 switch (Entry.Kind) { 8383 case BitstreamEntry::Error: 8384 return error("Malformed block"); 8385 case BitstreamEntry::EndBlock: 8386 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8387 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8388 8389 case BitstreamEntry::SubBlock: 8390 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8391 BitcodeLTOInfo LTOInfo; 8392 Expected<std::pair<bool, bool>> Flags = 8393 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8394 if (!Flags) 8395 return Flags.takeError(); 8396 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8397 LTOInfo.IsThinLTO = true; 8398 LTOInfo.HasSummary = true; 8399 return LTOInfo; 8400 } 8401 8402 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8403 BitcodeLTOInfo LTOInfo; 8404 Expected<std::pair<bool, bool>> Flags = 8405 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8406 if (!Flags) 8407 return Flags.takeError(); 8408 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8409 LTOInfo.IsThinLTO = false; 8410 LTOInfo.HasSummary = true; 8411 return LTOInfo; 8412 } 8413 8414 // Ignore other sub-blocks. 8415 if (Error Err = Stream.SkipBlock()) 8416 return std::move(Err); 8417 continue; 8418 8419 case BitstreamEntry::Record: 8420 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8421 continue; 8422 else 8423 return StreamFailed.takeError(); 8424 } 8425 } 8426 } 8427 8428 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8429 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8430 if (!MsOrErr) 8431 return MsOrErr.takeError(); 8432 8433 if (MsOrErr->size() != 1) 8434 return error("Expected a single module"); 8435 8436 return (*MsOrErr)[0]; 8437 } 8438 8439 Expected<std::unique_ptr<Module>> 8440 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8441 bool ShouldLazyLoadMetadata, bool IsImporting, 8442 ParserCallbacks Callbacks) { 8443 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8444 if (!BM) 8445 return BM.takeError(); 8446 8447 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8448 Callbacks); 8449 } 8450 8451 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8452 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8453 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8454 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8455 IsImporting, Callbacks); 8456 if (MOrErr) 8457 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8458 return MOrErr; 8459 } 8460 8461 Expected<std::unique_ptr<Module>> 8462 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8463 return getModuleImpl(Context, true, false, false, Callbacks); 8464 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8465 // written. We must defer until the Module has been fully materialized. 8466 } 8467 8468 Expected<std::unique_ptr<Module>> 8469 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8470 ParserCallbacks Callbacks) { 8471 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8472 if (!BM) 8473 return BM.takeError(); 8474 8475 return BM->parseModule(Context, Callbacks); 8476 } 8477 8478 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8479 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8480 if (!StreamOrErr) 8481 return StreamOrErr.takeError(); 8482 8483 return readTriple(*StreamOrErr); 8484 } 8485 8486 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8487 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8488 if (!StreamOrErr) 8489 return StreamOrErr.takeError(); 8490 8491 return hasObjCCategory(*StreamOrErr); 8492 } 8493 8494 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8495 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8496 if (!StreamOrErr) 8497 return StreamOrErr.takeError(); 8498 8499 return readIdentificationCode(*StreamOrErr); 8500 } 8501 8502 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8503 ModuleSummaryIndex &CombinedIndex) { 8504 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8505 if (!BM) 8506 return BM.takeError(); 8507 8508 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8509 } 8510 8511 Expected<std::unique_ptr<ModuleSummaryIndex>> 8512 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8513 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8514 if (!BM) 8515 return BM.takeError(); 8516 8517 return BM->getSummary(); 8518 } 8519 8520 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8521 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8522 if (!BM) 8523 return BM.takeError(); 8524 8525 return BM->getLTOInfo(); 8526 } 8527 8528 Expected<std::unique_ptr<ModuleSummaryIndex>> 8529 llvm::getModuleSummaryIndexForFile(StringRef Path, 8530 bool IgnoreEmptyThinLTOIndexFile) { 8531 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8532 MemoryBuffer::getFileOrSTDIN(Path); 8533 if (!FileOrErr) 8534 return errorCodeToError(FileOrErr.getError()); 8535 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8536 return nullptr; 8537 return getModuleSummaryIndex(**FileOrErr); 8538 } 8539