1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 using namespace llvm; 27 28 void BitcodeReader::FreeState() { 29 delete Buffer; 30 Buffer = 0; 31 std::vector<PATypeHolder>().swap(TypeList); 32 ValueList.clear(); 33 34 std::vector<PAListPtr>().swap(ParamAttrs); 35 std::vector<BasicBlock*>().swap(FunctionBBs); 36 std::vector<Function*>().swap(FunctionsWithBodies); 37 DeferredFunctionInfo.clear(); 38 } 39 40 //===----------------------------------------------------------------------===// 41 // Helper functions to implement forward reference resolution, etc. 42 //===----------------------------------------------------------------------===// 43 44 /// ConvertToString - Convert a string from a record into an std::string, return 45 /// true on failure. 46 template<typename StrTy> 47 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 48 StrTy &Result) { 49 if (Idx > Record.size()) 50 return true; 51 52 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 53 Result += (char)Record[i]; 54 return false; 55 } 56 57 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 58 switch (Val) { 59 default: // Map unknown/new linkages to external 60 case 0: return GlobalValue::ExternalLinkage; 61 case 1: return GlobalValue::WeakLinkage; 62 case 2: return GlobalValue::AppendingLinkage; 63 case 3: return GlobalValue::InternalLinkage; 64 case 4: return GlobalValue::LinkOnceLinkage; 65 case 5: return GlobalValue::DLLImportLinkage; 66 case 6: return GlobalValue::DLLExportLinkage; 67 case 7: return GlobalValue::ExternalWeakLinkage; 68 } 69 } 70 71 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 72 switch (Val) { 73 default: // Map unknown visibilities to default. 74 case 0: return GlobalValue::DefaultVisibility; 75 case 1: return GlobalValue::HiddenVisibility; 76 case 2: return GlobalValue::ProtectedVisibility; 77 } 78 } 79 80 static int GetDecodedCastOpcode(unsigned Val) { 81 switch (Val) { 82 default: return -1; 83 case bitc::CAST_TRUNC : return Instruction::Trunc; 84 case bitc::CAST_ZEXT : return Instruction::ZExt; 85 case bitc::CAST_SEXT : return Instruction::SExt; 86 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 87 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 88 case bitc::CAST_UITOFP : return Instruction::UIToFP; 89 case bitc::CAST_SITOFP : return Instruction::SIToFP; 90 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 91 case bitc::CAST_FPEXT : return Instruction::FPExt; 92 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 93 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 94 case bitc::CAST_BITCAST : return Instruction::BitCast; 95 } 96 } 97 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 98 switch (Val) { 99 default: return -1; 100 case bitc::BINOP_ADD: return Instruction::Add; 101 case bitc::BINOP_SUB: return Instruction::Sub; 102 case bitc::BINOP_MUL: return Instruction::Mul; 103 case bitc::BINOP_UDIV: return Instruction::UDiv; 104 case bitc::BINOP_SDIV: 105 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 106 case bitc::BINOP_UREM: return Instruction::URem; 107 case bitc::BINOP_SREM: 108 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 109 case bitc::BINOP_SHL: return Instruction::Shl; 110 case bitc::BINOP_LSHR: return Instruction::LShr; 111 case bitc::BINOP_ASHR: return Instruction::AShr; 112 case bitc::BINOP_AND: return Instruction::And; 113 case bitc::BINOP_OR: return Instruction::Or; 114 case bitc::BINOP_XOR: return Instruction::Xor; 115 } 116 } 117 118 119 namespace { 120 /// @brief A class for maintaining the slot number definition 121 /// as a placeholder for the actual definition for forward constants defs. 122 class ConstantPlaceHolder : public ConstantExpr { 123 ConstantPlaceHolder(); // DO NOT IMPLEMENT 124 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 125 public: 126 Use Op; 127 explicit ConstantPlaceHolder(const Type *Ty) 128 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1), 129 Op(UndefValue::get(Type::Int32Ty), this) { 130 } 131 }; 132 } 133 134 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 135 const Type *Ty) { 136 if (Idx >= size()) { 137 // Insert a bunch of null values. 138 Uses.resize(Idx+1); 139 OperandList = &Uses[0]; 140 NumOperands = Idx+1; 141 } 142 143 if (Value *V = Uses[Idx]) { 144 assert(Ty == V->getType() && "Type mismatch in constant table!"); 145 return cast<Constant>(V); 146 } 147 148 // Create and return a placeholder, which will later be RAUW'd. 149 Constant *C = new ConstantPlaceHolder(Ty); 150 Uses[Idx].init(C, this); 151 return C; 152 } 153 154 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 155 if (Idx >= size()) { 156 // Insert a bunch of null values. 157 Uses.resize(Idx+1); 158 OperandList = &Uses[0]; 159 NumOperands = Idx+1; 160 } 161 162 if (Value *V = Uses[Idx]) { 163 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 164 return V; 165 } 166 167 // No type specified, must be invalid reference. 168 if (Ty == 0) return 0; 169 170 // Create and return a placeholder, which will later be RAUW'd. 171 Value *V = new Argument(Ty); 172 Uses[Idx].init(V, this); 173 return V; 174 } 175 176 177 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 178 // If the TypeID is in range, return it. 179 if (ID < TypeList.size()) 180 return TypeList[ID].get(); 181 if (!isTypeTable) return 0; 182 183 // The type table allows forward references. Push as many Opaque types as 184 // needed to get up to ID. 185 while (TypeList.size() <= ID) 186 TypeList.push_back(OpaqueType::get()); 187 return TypeList.back().get(); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Functions for parsing blocks from the bitcode file 192 //===----------------------------------------------------------------------===// 193 194 bool BitcodeReader::ParseParamAttrBlock() { 195 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 196 return Error("Malformed block record"); 197 198 if (!ParamAttrs.empty()) 199 return Error("Multiple PARAMATTR blocks found!"); 200 201 SmallVector<uint64_t, 64> Record; 202 203 SmallVector<ParamAttrsWithIndex, 8> Attrs; 204 205 // Read all the records. 206 while (1) { 207 unsigned Code = Stream.ReadCode(); 208 if (Code == bitc::END_BLOCK) { 209 if (Stream.ReadBlockEnd()) 210 return Error("Error at end of PARAMATTR block"); 211 return false; 212 } 213 214 if (Code == bitc::ENTER_SUBBLOCK) { 215 // No known subblocks, always skip them. 216 Stream.ReadSubBlockID(); 217 if (Stream.SkipBlock()) 218 return Error("Malformed block record"); 219 continue; 220 } 221 222 if (Code == bitc::DEFINE_ABBREV) { 223 Stream.ReadAbbrevRecord(); 224 continue; 225 } 226 227 // Read a record. 228 Record.clear(); 229 switch (Stream.ReadRecord(Code, Record)) { 230 default: // Default behavior: ignore. 231 break; 232 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 233 if (Record.size() & 1) 234 return Error("Invalid ENTRY record"); 235 236 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 237 if (Record[i+1] != ParamAttr::None) 238 Attrs.push_back(ParamAttrsWithIndex::get(Record[i], Record[i+1])); 239 } 240 241 ParamAttrs.push_back(PAListPtr::get(Attrs.begin(), Attrs.end())); 242 Attrs.clear(); 243 break; 244 } 245 } 246 } 247 } 248 249 250 bool BitcodeReader::ParseTypeTable() { 251 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 252 return Error("Malformed block record"); 253 254 if (!TypeList.empty()) 255 return Error("Multiple TYPE_BLOCKs found!"); 256 257 SmallVector<uint64_t, 64> Record; 258 unsigned NumRecords = 0; 259 260 // Read all the records for this type table. 261 while (1) { 262 unsigned Code = Stream.ReadCode(); 263 if (Code == bitc::END_BLOCK) { 264 if (NumRecords != TypeList.size()) 265 return Error("Invalid type forward reference in TYPE_BLOCK"); 266 if (Stream.ReadBlockEnd()) 267 return Error("Error at end of type table block"); 268 return false; 269 } 270 271 if (Code == bitc::ENTER_SUBBLOCK) { 272 // No known subblocks, always skip them. 273 Stream.ReadSubBlockID(); 274 if (Stream.SkipBlock()) 275 return Error("Malformed block record"); 276 continue; 277 } 278 279 if (Code == bitc::DEFINE_ABBREV) { 280 Stream.ReadAbbrevRecord(); 281 continue; 282 } 283 284 // Read a record. 285 Record.clear(); 286 const Type *ResultTy = 0; 287 switch (Stream.ReadRecord(Code, Record)) { 288 default: // Default behavior: unknown type. 289 ResultTy = 0; 290 break; 291 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 292 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 293 // type list. This allows us to reserve space. 294 if (Record.size() < 1) 295 return Error("Invalid TYPE_CODE_NUMENTRY record"); 296 TypeList.reserve(Record[0]); 297 continue; 298 case bitc::TYPE_CODE_VOID: // VOID 299 ResultTy = Type::VoidTy; 300 break; 301 case bitc::TYPE_CODE_FLOAT: // FLOAT 302 ResultTy = Type::FloatTy; 303 break; 304 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 305 ResultTy = Type::DoubleTy; 306 break; 307 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 308 ResultTy = Type::X86_FP80Ty; 309 break; 310 case bitc::TYPE_CODE_FP128: // FP128 311 ResultTy = Type::FP128Ty; 312 break; 313 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 314 ResultTy = Type::PPC_FP128Ty; 315 break; 316 case bitc::TYPE_CODE_LABEL: // LABEL 317 ResultTy = Type::LabelTy; 318 break; 319 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 320 ResultTy = 0; 321 break; 322 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 323 if (Record.size() < 1) 324 return Error("Invalid Integer type record"); 325 326 ResultTy = IntegerType::get(Record[0]); 327 break; 328 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 329 // [pointee type, address space] 330 if (Record.size() < 1) 331 return Error("Invalid POINTER type record"); 332 unsigned AddressSpace = 0; 333 if (Record.size() == 2) 334 AddressSpace = Record[1]; 335 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 336 break; 337 } 338 case bitc::TYPE_CODE_FUNCTION: { 339 // FIXME: attrid is dead, remove it in LLVM 3.0 340 // FUNCTION: [vararg, attrid, retty, paramty x N] 341 if (Record.size() < 3) 342 return Error("Invalid FUNCTION type record"); 343 std::vector<const Type*> ArgTys; 344 for (unsigned i = 3, e = Record.size(); i != e; ++i) 345 ArgTys.push_back(getTypeByID(Record[i], true)); 346 347 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 348 Record[0]); 349 break; 350 } 351 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 352 if (Record.size() < 1) 353 return Error("Invalid STRUCT type record"); 354 std::vector<const Type*> EltTys; 355 for (unsigned i = 1, e = Record.size(); i != e; ++i) 356 EltTys.push_back(getTypeByID(Record[i], true)); 357 ResultTy = StructType::get(EltTys, Record[0]); 358 break; 359 } 360 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 361 if (Record.size() < 2) 362 return Error("Invalid ARRAY type record"); 363 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 364 break; 365 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 366 if (Record.size() < 2) 367 return Error("Invalid VECTOR type record"); 368 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 369 break; 370 } 371 372 if (NumRecords == TypeList.size()) { 373 // If this is a new type slot, just append it. 374 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 375 ++NumRecords; 376 } else if (ResultTy == 0) { 377 // Otherwise, this was forward referenced, so an opaque type was created, 378 // but the result type is actually just an opaque. Leave the one we 379 // created previously. 380 ++NumRecords; 381 } else { 382 // Otherwise, this was forward referenced, so an opaque type was created. 383 // Resolve the opaque type to the real type now. 384 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 385 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 386 387 // Don't directly push the new type on the Tab. Instead we want to replace 388 // the opaque type we previously inserted with the new concrete value. The 389 // refinement from the abstract (opaque) type to the new type causes all 390 // uses of the abstract type to use the concrete type (NewTy). This will 391 // also cause the opaque type to be deleted. 392 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 393 394 // This should have replaced the old opaque type with the new type in the 395 // value table... or with a preexisting type that was already in the 396 // system. Let's just make sure it did. 397 assert(TypeList[NumRecords-1].get() != OldTy && 398 "refineAbstractType didn't work!"); 399 } 400 } 401 } 402 403 404 bool BitcodeReader::ParseTypeSymbolTable() { 405 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 406 return Error("Malformed block record"); 407 408 SmallVector<uint64_t, 64> Record; 409 410 // Read all the records for this type table. 411 std::string TypeName; 412 while (1) { 413 unsigned Code = Stream.ReadCode(); 414 if (Code == bitc::END_BLOCK) { 415 if (Stream.ReadBlockEnd()) 416 return Error("Error at end of type symbol table block"); 417 return false; 418 } 419 420 if (Code == bitc::ENTER_SUBBLOCK) { 421 // No known subblocks, always skip them. 422 Stream.ReadSubBlockID(); 423 if (Stream.SkipBlock()) 424 return Error("Malformed block record"); 425 continue; 426 } 427 428 if (Code == bitc::DEFINE_ABBREV) { 429 Stream.ReadAbbrevRecord(); 430 continue; 431 } 432 433 // Read a record. 434 Record.clear(); 435 switch (Stream.ReadRecord(Code, Record)) { 436 default: // Default behavior: unknown type. 437 break; 438 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 439 if (ConvertToString(Record, 1, TypeName)) 440 return Error("Invalid TST_ENTRY record"); 441 unsigned TypeID = Record[0]; 442 if (TypeID >= TypeList.size()) 443 return Error("Invalid Type ID in TST_ENTRY record"); 444 445 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 446 TypeName.clear(); 447 break; 448 } 449 } 450 } 451 452 bool BitcodeReader::ParseValueSymbolTable() { 453 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 454 return Error("Malformed block record"); 455 456 SmallVector<uint64_t, 64> Record; 457 458 // Read all the records for this value table. 459 SmallString<128> ValueName; 460 while (1) { 461 unsigned Code = Stream.ReadCode(); 462 if (Code == bitc::END_BLOCK) { 463 if (Stream.ReadBlockEnd()) 464 return Error("Error at end of value symbol table block"); 465 return false; 466 } 467 if (Code == bitc::ENTER_SUBBLOCK) { 468 // No known subblocks, always skip them. 469 Stream.ReadSubBlockID(); 470 if (Stream.SkipBlock()) 471 return Error("Malformed block record"); 472 continue; 473 } 474 475 if (Code == bitc::DEFINE_ABBREV) { 476 Stream.ReadAbbrevRecord(); 477 continue; 478 } 479 480 // Read a record. 481 Record.clear(); 482 switch (Stream.ReadRecord(Code, Record)) { 483 default: // Default behavior: unknown type. 484 break; 485 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 486 if (ConvertToString(Record, 1, ValueName)) 487 return Error("Invalid TST_ENTRY record"); 488 unsigned ValueID = Record[0]; 489 if (ValueID >= ValueList.size()) 490 return Error("Invalid Value ID in VST_ENTRY record"); 491 Value *V = ValueList[ValueID]; 492 493 V->setName(&ValueName[0], ValueName.size()); 494 ValueName.clear(); 495 break; 496 } 497 case bitc::VST_CODE_BBENTRY: { 498 if (ConvertToString(Record, 1, ValueName)) 499 return Error("Invalid VST_BBENTRY record"); 500 BasicBlock *BB = getBasicBlock(Record[0]); 501 if (BB == 0) 502 return Error("Invalid BB ID in VST_BBENTRY record"); 503 504 BB->setName(&ValueName[0], ValueName.size()); 505 ValueName.clear(); 506 break; 507 } 508 } 509 } 510 } 511 512 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 513 /// the LSB for dense VBR encoding. 514 static uint64_t DecodeSignRotatedValue(uint64_t V) { 515 if ((V & 1) == 0) 516 return V >> 1; 517 if (V != 1) 518 return -(V >> 1); 519 // There is no such thing as -0 with integers. "-0" really means MININT. 520 return 1ULL << 63; 521 } 522 523 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 524 /// values and aliases that we can. 525 bool BitcodeReader::ResolveGlobalAndAliasInits() { 526 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 527 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 528 529 GlobalInitWorklist.swap(GlobalInits); 530 AliasInitWorklist.swap(AliasInits); 531 532 while (!GlobalInitWorklist.empty()) { 533 unsigned ValID = GlobalInitWorklist.back().second; 534 if (ValID >= ValueList.size()) { 535 // Not ready to resolve this yet, it requires something later in the file. 536 GlobalInits.push_back(GlobalInitWorklist.back()); 537 } else { 538 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 539 GlobalInitWorklist.back().first->setInitializer(C); 540 else 541 return Error("Global variable initializer is not a constant!"); 542 } 543 GlobalInitWorklist.pop_back(); 544 } 545 546 while (!AliasInitWorklist.empty()) { 547 unsigned ValID = AliasInitWorklist.back().second; 548 if (ValID >= ValueList.size()) { 549 AliasInits.push_back(AliasInitWorklist.back()); 550 } else { 551 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 552 AliasInitWorklist.back().first->setAliasee(C); 553 else 554 return Error("Alias initializer is not a constant!"); 555 } 556 AliasInitWorklist.pop_back(); 557 } 558 return false; 559 } 560 561 562 bool BitcodeReader::ParseConstants() { 563 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 564 return Error("Malformed block record"); 565 566 SmallVector<uint64_t, 64> Record; 567 568 // Read all the records for this value table. 569 const Type *CurTy = Type::Int32Ty; 570 unsigned NextCstNo = ValueList.size(); 571 while (1) { 572 unsigned Code = Stream.ReadCode(); 573 if (Code == bitc::END_BLOCK) { 574 if (NextCstNo != ValueList.size()) 575 return Error("Invalid constant reference!"); 576 577 if (Stream.ReadBlockEnd()) 578 return Error("Error at end of constants block"); 579 return false; 580 } 581 582 if (Code == bitc::ENTER_SUBBLOCK) { 583 // No known subblocks, always skip them. 584 Stream.ReadSubBlockID(); 585 if (Stream.SkipBlock()) 586 return Error("Malformed block record"); 587 continue; 588 } 589 590 if (Code == bitc::DEFINE_ABBREV) { 591 Stream.ReadAbbrevRecord(); 592 continue; 593 } 594 595 // Read a record. 596 Record.clear(); 597 Value *V = 0; 598 switch (Stream.ReadRecord(Code, Record)) { 599 default: // Default behavior: unknown constant 600 case bitc::CST_CODE_UNDEF: // UNDEF 601 V = UndefValue::get(CurTy); 602 break; 603 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 604 if (Record.empty()) 605 return Error("Malformed CST_SETTYPE record"); 606 if (Record[0] >= TypeList.size()) 607 return Error("Invalid Type ID in CST_SETTYPE record"); 608 CurTy = TypeList[Record[0]]; 609 continue; // Skip the ValueList manipulation. 610 case bitc::CST_CODE_NULL: // NULL 611 V = Constant::getNullValue(CurTy); 612 break; 613 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 614 if (!isa<IntegerType>(CurTy) || Record.empty()) 615 return Error("Invalid CST_INTEGER record"); 616 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 617 break; 618 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 619 if (!isa<IntegerType>(CurTy) || Record.empty()) 620 return Error("Invalid WIDE_INTEGER record"); 621 622 unsigned NumWords = Record.size(); 623 SmallVector<uint64_t, 8> Words; 624 Words.resize(NumWords); 625 for (unsigned i = 0; i != NumWords; ++i) 626 Words[i] = DecodeSignRotatedValue(Record[i]); 627 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 628 NumWords, &Words[0])); 629 break; 630 } 631 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 632 if (Record.empty()) 633 return Error("Invalid FLOAT record"); 634 if (CurTy == Type::FloatTy) 635 V = ConstantFP::get(CurTy, APFloat(APInt(32, (uint32_t)Record[0]))); 636 else if (CurTy == Type::DoubleTy) 637 V = ConstantFP::get(CurTy, APFloat(APInt(64, Record[0]))); 638 else if (CurTy == Type::X86_FP80Ty) 639 V = ConstantFP::get(CurTy, APFloat(APInt(80, 2, &Record[0]))); 640 else if (CurTy == Type::FP128Ty) 641 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]), true)); 642 else if (CurTy == Type::PPC_FP128Ty) 643 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]))); 644 else 645 V = UndefValue::get(CurTy); 646 break; 647 } 648 649 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 650 if (Record.empty()) 651 return Error("Invalid CST_AGGREGATE record"); 652 653 unsigned Size = Record.size(); 654 std::vector<Constant*> Elts; 655 656 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 657 for (unsigned i = 0; i != Size; ++i) 658 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 659 STy->getElementType(i))); 660 V = ConstantStruct::get(STy, Elts); 661 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 662 const Type *EltTy = ATy->getElementType(); 663 for (unsigned i = 0; i != Size; ++i) 664 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 665 V = ConstantArray::get(ATy, Elts); 666 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 667 const Type *EltTy = VTy->getElementType(); 668 for (unsigned i = 0; i != Size; ++i) 669 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 670 V = ConstantVector::get(Elts); 671 } else { 672 V = UndefValue::get(CurTy); 673 } 674 break; 675 } 676 case bitc::CST_CODE_STRING: { // STRING: [values] 677 if (Record.empty()) 678 return Error("Invalid CST_AGGREGATE record"); 679 680 const ArrayType *ATy = cast<ArrayType>(CurTy); 681 const Type *EltTy = ATy->getElementType(); 682 683 unsigned Size = Record.size(); 684 std::vector<Constant*> Elts; 685 for (unsigned i = 0; i != Size; ++i) 686 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 687 V = ConstantArray::get(ATy, Elts); 688 break; 689 } 690 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 691 if (Record.empty()) 692 return Error("Invalid CST_AGGREGATE record"); 693 694 const ArrayType *ATy = cast<ArrayType>(CurTy); 695 const Type *EltTy = ATy->getElementType(); 696 697 unsigned Size = Record.size(); 698 std::vector<Constant*> Elts; 699 for (unsigned i = 0; i != Size; ++i) 700 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 701 Elts.push_back(Constant::getNullValue(EltTy)); 702 V = ConstantArray::get(ATy, Elts); 703 break; 704 } 705 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 706 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 707 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 708 if (Opc < 0) { 709 V = UndefValue::get(CurTy); // Unknown binop. 710 } else { 711 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 712 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 713 V = ConstantExpr::get(Opc, LHS, RHS); 714 } 715 break; 716 } 717 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 718 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 719 int Opc = GetDecodedCastOpcode(Record[0]); 720 if (Opc < 0) { 721 V = UndefValue::get(CurTy); // Unknown cast. 722 } else { 723 const Type *OpTy = getTypeByID(Record[1]); 724 if (!OpTy) return Error("Invalid CE_CAST record"); 725 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 726 V = ConstantExpr::getCast(Opc, Op, CurTy); 727 } 728 break; 729 } 730 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 731 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 732 SmallVector<Constant*, 16> Elts; 733 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 734 const Type *ElTy = getTypeByID(Record[i]); 735 if (!ElTy) return Error("Invalid CE_GEP record"); 736 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 737 } 738 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 739 break; 740 } 741 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 742 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 743 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 744 Type::Int1Ty), 745 ValueList.getConstantFwdRef(Record[1],CurTy), 746 ValueList.getConstantFwdRef(Record[2],CurTy)); 747 break; 748 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 749 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 750 const VectorType *OpTy = 751 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 752 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 753 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 754 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 755 OpTy->getElementType()); 756 V = ConstantExpr::getExtractElement(Op0, Op1); 757 break; 758 } 759 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 760 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 761 if (Record.size() < 3 || OpTy == 0) 762 return Error("Invalid CE_INSERTELT record"); 763 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 764 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 765 OpTy->getElementType()); 766 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 767 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 768 break; 769 } 770 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 771 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 772 if (Record.size() < 3 || OpTy == 0) 773 return Error("Invalid CE_INSERTELT record"); 774 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 775 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 776 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 777 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 778 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 779 break; 780 } 781 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 782 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 783 const Type *OpTy = getTypeByID(Record[0]); 784 if (OpTy == 0) return Error("Invalid CE_CMP record"); 785 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 786 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 787 788 if (OpTy->isFloatingPoint()) 789 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 790 else 791 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 792 break; 793 } 794 case bitc::CST_CODE_INLINEASM: { 795 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 796 std::string AsmStr, ConstrStr; 797 bool HasSideEffects = Record[0]; 798 unsigned AsmStrSize = Record[1]; 799 if (2+AsmStrSize >= Record.size()) 800 return Error("Invalid INLINEASM record"); 801 unsigned ConstStrSize = Record[2+AsmStrSize]; 802 if (3+AsmStrSize+ConstStrSize > Record.size()) 803 return Error("Invalid INLINEASM record"); 804 805 for (unsigned i = 0; i != AsmStrSize; ++i) 806 AsmStr += (char)Record[2+i]; 807 for (unsigned i = 0; i != ConstStrSize; ++i) 808 ConstrStr += (char)Record[3+AsmStrSize+i]; 809 const PointerType *PTy = cast<PointerType>(CurTy); 810 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 811 AsmStr, ConstrStr, HasSideEffects); 812 break; 813 } 814 } 815 816 ValueList.AssignValue(V, NextCstNo); 817 ++NextCstNo; 818 } 819 } 820 821 /// RememberAndSkipFunctionBody - When we see the block for a function body, 822 /// remember where it is and then skip it. This lets us lazily deserialize the 823 /// functions. 824 bool BitcodeReader::RememberAndSkipFunctionBody() { 825 // Get the function we are talking about. 826 if (FunctionsWithBodies.empty()) 827 return Error("Insufficient function protos"); 828 829 Function *Fn = FunctionsWithBodies.back(); 830 FunctionsWithBodies.pop_back(); 831 832 // Save the current stream state. 833 uint64_t CurBit = Stream.GetCurrentBitNo(); 834 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 835 836 // Set the functions linkage to GhostLinkage so we know it is lazily 837 // deserialized. 838 Fn->setLinkage(GlobalValue::GhostLinkage); 839 840 // Skip over the function block for now. 841 if (Stream.SkipBlock()) 842 return Error("Malformed block record"); 843 return false; 844 } 845 846 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 847 // Reject multiple MODULE_BLOCK's in a single bitstream. 848 if (TheModule) 849 return Error("Multiple MODULE_BLOCKs in same stream"); 850 851 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 852 return Error("Malformed block record"); 853 854 // Otherwise, create the module. 855 TheModule = new Module(ModuleID); 856 857 SmallVector<uint64_t, 64> Record; 858 std::vector<std::string> SectionTable; 859 std::vector<std::string> CollectorTable; 860 861 // Read all the records for this module. 862 while (!Stream.AtEndOfStream()) { 863 unsigned Code = Stream.ReadCode(); 864 if (Code == bitc::END_BLOCK) { 865 if (Stream.ReadBlockEnd()) 866 return Error("Error at end of module block"); 867 868 // Patch the initializers for globals and aliases up. 869 ResolveGlobalAndAliasInits(); 870 if (!GlobalInits.empty() || !AliasInits.empty()) 871 return Error("Malformed global initializer set"); 872 if (!FunctionsWithBodies.empty()) 873 return Error("Too few function bodies found"); 874 875 // Look for intrinsic functions which need to be upgraded at some point 876 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 877 FI != FE; ++FI) { 878 Function* NewFn; 879 if (UpgradeIntrinsicFunction(FI, NewFn)) 880 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 881 } 882 883 // Force deallocation of memory for these vectors to favor the client that 884 // want lazy deserialization. 885 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 886 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 887 std::vector<Function*>().swap(FunctionsWithBodies); 888 return false; 889 } 890 891 if (Code == bitc::ENTER_SUBBLOCK) { 892 switch (Stream.ReadSubBlockID()) { 893 default: // Skip unknown content. 894 if (Stream.SkipBlock()) 895 return Error("Malformed block record"); 896 break; 897 case bitc::BLOCKINFO_BLOCK_ID: 898 if (Stream.ReadBlockInfoBlock()) 899 return Error("Malformed BlockInfoBlock"); 900 break; 901 case bitc::PARAMATTR_BLOCK_ID: 902 if (ParseParamAttrBlock()) 903 return true; 904 break; 905 case bitc::TYPE_BLOCK_ID: 906 if (ParseTypeTable()) 907 return true; 908 break; 909 case bitc::TYPE_SYMTAB_BLOCK_ID: 910 if (ParseTypeSymbolTable()) 911 return true; 912 break; 913 case bitc::VALUE_SYMTAB_BLOCK_ID: 914 if (ParseValueSymbolTable()) 915 return true; 916 break; 917 case bitc::CONSTANTS_BLOCK_ID: 918 if (ParseConstants() || ResolveGlobalAndAliasInits()) 919 return true; 920 break; 921 case bitc::FUNCTION_BLOCK_ID: 922 // If this is the first function body we've seen, reverse the 923 // FunctionsWithBodies list. 924 if (!HasReversedFunctionsWithBodies) { 925 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 926 HasReversedFunctionsWithBodies = true; 927 } 928 929 if (RememberAndSkipFunctionBody()) 930 return true; 931 break; 932 } 933 continue; 934 } 935 936 if (Code == bitc::DEFINE_ABBREV) { 937 Stream.ReadAbbrevRecord(); 938 continue; 939 } 940 941 // Read a record. 942 switch (Stream.ReadRecord(Code, Record)) { 943 default: break; // Default behavior, ignore unknown content. 944 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 945 if (Record.size() < 1) 946 return Error("Malformed MODULE_CODE_VERSION"); 947 // Only version #0 is supported so far. 948 if (Record[0] != 0) 949 return Error("Unknown bitstream version!"); 950 break; 951 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 952 std::string S; 953 if (ConvertToString(Record, 0, S)) 954 return Error("Invalid MODULE_CODE_TRIPLE record"); 955 TheModule->setTargetTriple(S); 956 break; 957 } 958 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 959 std::string S; 960 if (ConvertToString(Record, 0, S)) 961 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 962 TheModule->setDataLayout(S); 963 break; 964 } 965 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 966 std::string S; 967 if (ConvertToString(Record, 0, S)) 968 return Error("Invalid MODULE_CODE_ASM record"); 969 TheModule->setModuleInlineAsm(S); 970 break; 971 } 972 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 973 std::string S; 974 if (ConvertToString(Record, 0, S)) 975 return Error("Invalid MODULE_CODE_DEPLIB record"); 976 TheModule->addLibrary(S); 977 break; 978 } 979 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 980 std::string S; 981 if (ConvertToString(Record, 0, S)) 982 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 983 SectionTable.push_back(S); 984 break; 985 } 986 case bitc::MODULE_CODE_COLLECTORNAME: { // SECTIONNAME: [strchr x N] 987 std::string S; 988 if (ConvertToString(Record, 0, S)) 989 return Error("Invalid MODULE_CODE_COLLECTORNAME record"); 990 CollectorTable.push_back(S); 991 break; 992 } 993 // GLOBALVAR: [pointer type, isconst, initid, 994 // linkage, alignment, section, visibility, threadlocal] 995 case bitc::MODULE_CODE_GLOBALVAR: { 996 if (Record.size() < 6) 997 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 998 const Type *Ty = getTypeByID(Record[0]); 999 if (!isa<PointerType>(Ty)) 1000 return Error("Global not a pointer type!"); 1001 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1002 Ty = cast<PointerType>(Ty)->getElementType(); 1003 1004 bool isConstant = Record[1]; 1005 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1006 unsigned Alignment = (1 << Record[4]) >> 1; 1007 std::string Section; 1008 if (Record[5]) { 1009 if (Record[5]-1 >= SectionTable.size()) 1010 return Error("Invalid section ID"); 1011 Section = SectionTable[Record[5]-1]; 1012 } 1013 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1014 if (Record.size() > 6) 1015 Visibility = GetDecodedVisibility(Record[6]); 1016 bool isThreadLocal = false; 1017 if (Record.size() > 7) 1018 isThreadLocal = Record[7]; 1019 1020 GlobalVariable *NewGV = 1021 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1022 isThreadLocal, AddressSpace); 1023 NewGV->setAlignment(Alignment); 1024 if (!Section.empty()) 1025 NewGV->setSection(Section); 1026 NewGV->setVisibility(Visibility); 1027 NewGV->setThreadLocal(isThreadLocal); 1028 1029 ValueList.push_back(NewGV); 1030 1031 // Remember which value to use for the global initializer. 1032 if (unsigned InitID = Record[2]) 1033 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1034 break; 1035 } 1036 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1037 // alignment, section, visibility, collector] 1038 case bitc::MODULE_CODE_FUNCTION: { 1039 if (Record.size() < 8) 1040 return Error("Invalid MODULE_CODE_FUNCTION record"); 1041 const Type *Ty = getTypeByID(Record[0]); 1042 if (!isa<PointerType>(Ty)) 1043 return Error("Function not a pointer type!"); 1044 const FunctionType *FTy = 1045 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1046 if (!FTy) 1047 return Error("Function not a pointer to function type!"); 1048 1049 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage, 1050 "", TheModule); 1051 1052 Func->setCallingConv(Record[1]); 1053 bool isProto = Record[2]; 1054 Func->setLinkage(GetDecodedLinkage(Record[3])); 1055 Func->setParamAttrs(getParamAttrs(Record[4])); 1056 1057 Func->setAlignment((1 << Record[5]) >> 1); 1058 if (Record[6]) { 1059 if (Record[6]-1 >= SectionTable.size()) 1060 return Error("Invalid section ID"); 1061 Func->setSection(SectionTable[Record[6]-1]); 1062 } 1063 Func->setVisibility(GetDecodedVisibility(Record[7])); 1064 if (Record.size() > 8 && Record[8]) { 1065 if (Record[8]-1 > CollectorTable.size()) 1066 return Error("Invalid collector ID"); 1067 Func->setCollector(CollectorTable[Record[8]-1].c_str()); 1068 } 1069 1070 ValueList.push_back(Func); 1071 1072 // If this is a function with a body, remember the prototype we are 1073 // creating now, so that we can match up the body with them later. 1074 if (!isProto) 1075 FunctionsWithBodies.push_back(Func); 1076 break; 1077 } 1078 // ALIAS: [alias type, aliasee val#, linkage] 1079 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1080 case bitc::MODULE_CODE_ALIAS: { 1081 if (Record.size() < 3) 1082 return Error("Invalid MODULE_ALIAS record"); 1083 const Type *Ty = getTypeByID(Record[0]); 1084 if (!isa<PointerType>(Ty)) 1085 return Error("Function not a pointer type!"); 1086 1087 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1088 "", 0, TheModule); 1089 // Old bitcode files didn't have visibility field. 1090 if (Record.size() > 3) 1091 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1092 ValueList.push_back(NewGA); 1093 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1094 break; 1095 } 1096 /// MODULE_CODE_PURGEVALS: [numvals] 1097 case bitc::MODULE_CODE_PURGEVALS: 1098 // Trim down the value list to the specified size. 1099 if (Record.size() < 1 || Record[0] > ValueList.size()) 1100 return Error("Invalid MODULE_PURGEVALS record"); 1101 ValueList.shrinkTo(Record[0]); 1102 break; 1103 } 1104 Record.clear(); 1105 } 1106 1107 return Error("Premature end of bitstream"); 1108 } 1109 1110 1111 bool BitcodeReader::ParseBitcode() { 1112 TheModule = 0; 1113 1114 if (Buffer->getBufferSize() & 3) 1115 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1116 1117 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1118 Stream.init(BufPtr, BufPtr+Buffer->getBufferSize()); 1119 1120 // Sniff for the signature. 1121 if (Stream.Read(8) != 'B' || 1122 Stream.Read(8) != 'C' || 1123 Stream.Read(4) != 0x0 || 1124 Stream.Read(4) != 0xC || 1125 Stream.Read(4) != 0xE || 1126 Stream.Read(4) != 0xD) 1127 return Error("Invalid bitcode signature"); 1128 1129 // We expect a number of well-defined blocks, though we don't necessarily 1130 // need to understand them all. 1131 while (!Stream.AtEndOfStream()) { 1132 unsigned Code = Stream.ReadCode(); 1133 1134 if (Code != bitc::ENTER_SUBBLOCK) 1135 return Error("Invalid record at top-level"); 1136 1137 unsigned BlockID = Stream.ReadSubBlockID(); 1138 1139 // We only know the MODULE subblock ID. 1140 switch (BlockID) { 1141 case bitc::BLOCKINFO_BLOCK_ID: 1142 if (Stream.ReadBlockInfoBlock()) 1143 return Error("Malformed BlockInfoBlock"); 1144 break; 1145 case bitc::MODULE_BLOCK_ID: 1146 if (ParseModule(Buffer->getBufferIdentifier())) 1147 return true; 1148 break; 1149 default: 1150 if (Stream.SkipBlock()) 1151 return Error("Malformed block record"); 1152 break; 1153 } 1154 } 1155 1156 return false; 1157 } 1158 1159 1160 /// ParseFunctionBody - Lazily parse the specified function body block. 1161 bool BitcodeReader::ParseFunctionBody(Function *F) { 1162 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1163 return Error("Malformed block record"); 1164 1165 unsigned ModuleValueListSize = ValueList.size(); 1166 1167 // Add all the function arguments to the value table. 1168 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1169 ValueList.push_back(I); 1170 1171 unsigned NextValueNo = ValueList.size(); 1172 BasicBlock *CurBB = 0; 1173 unsigned CurBBNo = 0; 1174 1175 // Read all the records. 1176 SmallVector<uint64_t, 64> Record; 1177 while (1) { 1178 unsigned Code = Stream.ReadCode(); 1179 if (Code == bitc::END_BLOCK) { 1180 if (Stream.ReadBlockEnd()) 1181 return Error("Error at end of function block"); 1182 break; 1183 } 1184 1185 if (Code == bitc::ENTER_SUBBLOCK) { 1186 switch (Stream.ReadSubBlockID()) { 1187 default: // Skip unknown content. 1188 if (Stream.SkipBlock()) 1189 return Error("Malformed block record"); 1190 break; 1191 case bitc::CONSTANTS_BLOCK_ID: 1192 if (ParseConstants()) return true; 1193 NextValueNo = ValueList.size(); 1194 break; 1195 case bitc::VALUE_SYMTAB_BLOCK_ID: 1196 if (ParseValueSymbolTable()) return true; 1197 break; 1198 } 1199 continue; 1200 } 1201 1202 if (Code == bitc::DEFINE_ABBREV) { 1203 Stream.ReadAbbrevRecord(); 1204 continue; 1205 } 1206 1207 // Read a record. 1208 Record.clear(); 1209 Instruction *I = 0; 1210 switch (Stream.ReadRecord(Code, Record)) { 1211 default: // Default behavior: reject 1212 return Error("Unknown instruction"); 1213 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1214 if (Record.size() < 1 || Record[0] == 0) 1215 return Error("Invalid DECLAREBLOCKS record"); 1216 // Create all the basic blocks for the function. 1217 FunctionBBs.resize(Record[0]); 1218 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1219 FunctionBBs[i] = new BasicBlock("", F); 1220 CurBB = FunctionBBs[0]; 1221 continue; 1222 1223 case bitc::FUNC_CODE_INST_BB_UNWINDDEST: // BB_UNWINDDEST: [bb#] 1224 if (CurBB->getUnwindDest()) 1225 return Error("Only permit one BB_UNWINDDEST per BB"); 1226 if (Record.size() != 1) 1227 return Error("Invalid BB_UNWINDDEST record"); 1228 1229 CurBB->setUnwindDest(getBasicBlock(Record[0])); 1230 continue; 1231 1232 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1233 unsigned OpNum = 0; 1234 Value *LHS, *RHS; 1235 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1236 getValue(Record, OpNum, LHS->getType(), RHS) || 1237 OpNum+1 != Record.size()) 1238 return Error("Invalid BINOP record"); 1239 1240 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1241 if (Opc == -1) return Error("Invalid BINOP record"); 1242 I = BinaryOperator::create((Instruction::BinaryOps)Opc, LHS, RHS); 1243 break; 1244 } 1245 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1246 unsigned OpNum = 0; 1247 Value *Op; 1248 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1249 OpNum+2 != Record.size()) 1250 return Error("Invalid CAST record"); 1251 1252 const Type *ResTy = getTypeByID(Record[OpNum]); 1253 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1254 if (Opc == -1 || ResTy == 0) 1255 return Error("Invalid CAST record"); 1256 I = CastInst::create((Instruction::CastOps)Opc, Op, ResTy); 1257 break; 1258 } 1259 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1260 unsigned OpNum = 0; 1261 Value *BasePtr; 1262 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1263 return Error("Invalid GEP record"); 1264 1265 SmallVector<Value*, 16> GEPIdx; 1266 while (OpNum != Record.size()) { 1267 Value *Op; 1268 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1269 return Error("Invalid GEP record"); 1270 GEPIdx.push_back(Op); 1271 } 1272 1273 I = new GetElementPtrInst(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1274 break; 1275 } 1276 1277 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1278 unsigned OpNum = 0; 1279 Value *TrueVal, *FalseVal, *Cond; 1280 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1281 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1282 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1283 return Error("Invalid SELECT record"); 1284 1285 I = new SelectInst(Cond, TrueVal, FalseVal); 1286 break; 1287 } 1288 1289 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1290 unsigned OpNum = 0; 1291 Value *Vec, *Idx; 1292 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1293 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1294 return Error("Invalid EXTRACTELT record"); 1295 I = new ExtractElementInst(Vec, Idx); 1296 break; 1297 } 1298 1299 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1300 unsigned OpNum = 0; 1301 Value *Vec, *Elt, *Idx; 1302 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1303 getValue(Record, OpNum, 1304 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1305 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1306 return Error("Invalid INSERTELT record"); 1307 I = new InsertElementInst(Vec, Elt, Idx); 1308 break; 1309 } 1310 1311 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1312 unsigned OpNum = 0; 1313 Value *Vec1, *Vec2, *Mask; 1314 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1315 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1316 return Error("Invalid SHUFFLEVEC record"); 1317 1318 const Type *MaskTy = 1319 VectorType::get(Type::Int32Ty, 1320 cast<VectorType>(Vec1->getType())->getNumElements()); 1321 1322 if (getValue(Record, OpNum, MaskTy, Mask)) 1323 return Error("Invalid SHUFFLEVEC record"); 1324 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1325 break; 1326 } 1327 1328 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1329 unsigned OpNum = 0; 1330 Value *LHS, *RHS; 1331 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1332 getValue(Record, OpNum, LHS->getType(), RHS) || 1333 OpNum+1 != Record.size()) 1334 return Error("Invalid CMP record"); 1335 1336 if (LHS->getType()->isFPOrFPVector()) 1337 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1338 else 1339 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1340 break; 1341 } 1342 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1343 if (Record.size() != 2) 1344 return Error("Invalid GETRESULT record"); 1345 unsigned OpNum = 0; 1346 Value *Op; 1347 getValueTypePair(Record, OpNum, NextValueNo, Op); 1348 unsigned Index = Record[1]; 1349 I = new GetResultInst(Op, Index); 1350 break; 1351 } 1352 1353 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1354 { 1355 unsigned Size = Record.size(); 1356 if (Size == 0) { 1357 I = new ReturnInst(); 1358 break; 1359 } else { 1360 unsigned OpNum = 0; 1361 SmallVector<Value *,4> Vs; 1362 do { 1363 Value *Op = NULL; 1364 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1365 return Error("Invalid RET record"); 1366 Vs.push_back(Op); 1367 } while(OpNum != Record.size()); 1368 1369 // SmallVector Vs has at least one element. 1370 I = new ReturnInst(&Vs[0], Vs.size()); 1371 break; 1372 } 1373 } 1374 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1375 if (Record.size() != 1 && Record.size() != 3) 1376 return Error("Invalid BR record"); 1377 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1378 if (TrueDest == 0) 1379 return Error("Invalid BR record"); 1380 1381 if (Record.size() == 1) 1382 I = new BranchInst(TrueDest); 1383 else { 1384 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1385 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1386 if (FalseDest == 0 || Cond == 0) 1387 return Error("Invalid BR record"); 1388 I = new BranchInst(TrueDest, FalseDest, Cond); 1389 } 1390 break; 1391 } 1392 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1393 if (Record.size() < 3 || (Record.size() & 1) == 0) 1394 return Error("Invalid SWITCH record"); 1395 const Type *OpTy = getTypeByID(Record[0]); 1396 Value *Cond = getFnValueByID(Record[1], OpTy); 1397 BasicBlock *Default = getBasicBlock(Record[2]); 1398 if (OpTy == 0 || Cond == 0 || Default == 0) 1399 return Error("Invalid SWITCH record"); 1400 unsigned NumCases = (Record.size()-3)/2; 1401 SwitchInst *SI = new SwitchInst(Cond, Default, NumCases); 1402 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1403 ConstantInt *CaseVal = 1404 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1405 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1406 if (CaseVal == 0 || DestBB == 0) { 1407 delete SI; 1408 return Error("Invalid SWITCH record!"); 1409 } 1410 SI->addCase(CaseVal, DestBB); 1411 } 1412 I = SI; 1413 break; 1414 } 1415 1416 case bitc::FUNC_CODE_INST_INVOKE: { 1417 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1418 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1419 PAListPtr PAL = getParamAttrs(Record[0]); 1420 unsigned CCInfo = Record[1]; 1421 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1422 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1423 1424 unsigned OpNum = 4; 1425 Value *Callee; 1426 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1427 return Error("Invalid INVOKE record"); 1428 1429 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1430 const FunctionType *FTy = !CalleeTy ? 0 : 1431 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1432 1433 // Check that the right number of fixed parameters are here. 1434 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1435 Record.size() < OpNum+FTy->getNumParams()) 1436 return Error("Invalid INVOKE record"); 1437 1438 SmallVector<Value*, 16> Ops; 1439 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1440 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1441 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1442 } 1443 1444 if (!FTy->isVarArg()) { 1445 if (Record.size() != OpNum) 1446 return Error("Invalid INVOKE record"); 1447 } else { 1448 // Read type/value pairs for varargs params. 1449 while (OpNum != Record.size()) { 1450 Value *Op; 1451 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1452 return Error("Invalid INVOKE record"); 1453 Ops.push_back(Op); 1454 } 1455 } 1456 1457 I = new InvokeInst(Callee, NormalBB, UnwindBB, Ops.begin(), Ops.end()); 1458 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1459 cast<InvokeInst>(I)->setParamAttrs(PAL); 1460 break; 1461 } 1462 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1463 I = new UnwindInst(); 1464 break; 1465 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1466 I = new UnreachableInst(); 1467 break; 1468 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1469 if (Record.size() < 1 || ((Record.size()-1)&1)) 1470 return Error("Invalid PHI record"); 1471 const Type *Ty = getTypeByID(Record[0]); 1472 if (!Ty) return Error("Invalid PHI record"); 1473 1474 PHINode *PN = new PHINode(Ty); 1475 PN->reserveOperandSpace(Record.size()-1); 1476 1477 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1478 Value *V = getFnValueByID(Record[1+i], Ty); 1479 BasicBlock *BB = getBasicBlock(Record[2+i]); 1480 if (!V || !BB) return Error("Invalid PHI record"); 1481 PN->addIncoming(V, BB); 1482 } 1483 I = PN; 1484 break; 1485 } 1486 1487 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1488 if (Record.size() < 3) 1489 return Error("Invalid MALLOC record"); 1490 const PointerType *Ty = 1491 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1492 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1493 unsigned Align = Record[2]; 1494 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1495 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1496 break; 1497 } 1498 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1499 unsigned OpNum = 0; 1500 Value *Op; 1501 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1502 OpNum != Record.size()) 1503 return Error("Invalid FREE record"); 1504 I = new FreeInst(Op); 1505 break; 1506 } 1507 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1508 if (Record.size() < 3) 1509 return Error("Invalid ALLOCA record"); 1510 const PointerType *Ty = 1511 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1512 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1513 unsigned Align = Record[2]; 1514 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1515 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1516 break; 1517 } 1518 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1519 unsigned OpNum = 0; 1520 Value *Op; 1521 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1522 OpNum+2 != Record.size()) 1523 return Error("Invalid LOAD record"); 1524 1525 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1526 break; 1527 } 1528 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1529 unsigned OpNum = 0; 1530 Value *Val, *Ptr; 1531 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1532 getValue(Record, OpNum, 1533 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1534 OpNum+2 != Record.size()) 1535 return Error("Invalid STORE record"); 1536 1537 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1538 break; 1539 } 1540 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1541 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1542 unsigned OpNum = 0; 1543 Value *Val, *Ptr; 1544 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1545 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1546 OpNum+2 != Record.size()) 1547 return Error("Invalid STORE record"); 1548 1549 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1550 break; 1551 } 1552 case bitc::FUNC_CODE_INST_CALL: { 1553 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1554 if (Record.size() < 3) 1555 return Error("Invalid CALL record"); 1556 1557 PAListPtr PAL = getParamAttrs(Record[0]); 1558 unsigned CCInfo = Record[1]; 1559 1560 unsigned OpNum = 2; 1561 Value *Callee; 1562 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1563 return Error("Invalid CALL record"); 1564 1565 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1566 const FunctionType *FTy = 0; 1567 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1568 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1569 return Error("Invalid CALL record"); 1570 1571 SmallVector<Value*, 16> Args; 1572 // Read the fixed params. 1573 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1574 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1575 Args.push_back(getBasicBlock(Record[OpNum])); 1576 else 1577 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1578 if (Args.back() == 0) return Error("Invalid CALL record"); 1579 } 1580 1581 // Read type/value pairs for varargs params. 1582 if (!FTy->isVarArg()) { 1583 if (OpNum != Record.size()) 1584 return Error("Invalid CALL record"); 1585 } else { 1586 while (OpNum != Record.size()) { 1587 Value *Op; 1588 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1589 return Error("Invalid CALL record"); 1590 Args.push_back(Op); 1591 } 1592 } 1593 1594 I = new CallInst(Callee, Args.begin(), Args.end()); 1595 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1596 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1597 cast<CallInst>(I)->setParamAttrs(PAL); 1598 break; 1599 } 1600 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1601 if (Record.size() < 3) 1602 return Error("Invalid VAARG record"); 1603 const Type *OpTy = getTypeByID(Record[0]); 1604 Value *Op = getFnValueByID(Record[1], OpTy); 1605 const Type *ResTy = getTypeByID(Record[2]); 1606 if (!OpTy || !Op || !ResTy) 1607 return Error("Invalid VAARG record"); 1608 I = new VAArgInst(Op, ResTy); 1609 break; 1610 } 1611 } 1612 1613 // Add instruction to end of current BB. If there is no current BB, reject 1614 // this file. 1615 if (CurBB == 0) { 1616 delete I; 1617 return Error("Invalid instruction with no BB"); 1618 } 1619 CurBB->getInstList().push_back(I); 1620 1621 // If this was a terminator instruction, move to the next block. 1622 if (isa<TerminatorInst>(I)) { 1623 ++CurBBNo; 1624 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1625 } 1626 1627 // Non-void values get registered in the value table for future use. 1628 if (I && I->getType() != Type::VoidTy) 1629 ValueList.AssignValue(I, NextValueNo++); 1630 } 1631 1632 // Check the function list for unresolved values. 1633 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1634 if (A->getParent() == 0) { 1635 // We found at least one unresolved value. Nuke them all to avoid leaks. 1636 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1637 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1638 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1639 delete A; 1640 } 1641 } 1642 return Error("Never resolved value found in function!"); 1643 } 1644 } 1645 1646 // Trim the value list down to the size it was before we parsed this function. 1647 ValueList.shrinkTo(ModuleValueListSize); 1648 std::vector<BasicBlock*>().swap(FunctionBBs); 1649 1650 return false; 1651 } 1652 1653 //===----------------------------------------------------------------------===// 1654 // ModuleProvider implementation 1655 //===----------------------------------------------------------------------===// 1656 1657 1658 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1659 // If it already is material, ignore the request. 1660 if (!F->hasNotBeenReadFromBitcode()) return false; 1661 1662 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1663 DeferredFunctionInfo.find(F); 1664 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 1665 1666 // Move the bit stream to the saved position of the deferred function body and 1667 // restore the real linkage type for the function. 1668 Stream.JumpToBit(DFII->second.first); 1669 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 1670 1671 if (ParseFunctionBody(F)) { 1672 if (ErrInfo) *ErrInfo = ErrorString; 1673 return true; 1674 } 1675 1676 // Upgrade any old intrinsic calls in the function. 1677 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 1678 E = UpgradedIntrinsics.end(); I != E; ++I) { 1679 if (I->first != I->second) { 1680 for (Value::use_iterator UI = I->first->use_begin(), 1681 UE = I->first->use_end(); UI != UE; ) { 1682 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1683 UpgradeIntrinsicCall(CI, I->second); 1684 } 1685 } 1686 } 1687 1688 return false; 1689 } 1690 1691 void BitcodeReader::dematerializeFunction(Function *F) { 1692 // If this function isn't materialized, or if it is a proto, this is a noop. 1693 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 1694 return; 1695 1696 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 1697 1698 // Just forget the function body, we can remat it later. 1699 F->deleteBody(); 1700 F->setLinkage(GlobalValue::GhostLinkage); 1701 } 1702 1703 1704 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 1705 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 1706 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 1707 ++I) { 1708 Function *F = I->first; 1709 if (F->hasNotBeenReadFromBitcode() && 1710 materializeFunction(F, ErrInfo)) 1711 return 0; 1712 } 1713 1714 // Upgrade any intrinsic calls that slipped through (should not happen!) and 1715 // delete the old functions to clean up. We can't do this unless the entire 1716 // module is materialized because there could always be another function body 1717 // with calls to the old function. 1718 for (std::vector<std::pair<Function*, Function*> >::iterator I = 1719 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 1720 if (I->first != I->second) { 1721 for (Value::use_iterator UI = I->first->use_begin(), 1722 UE = I->first->use_end(); UI != UE; ) { 1723 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1724 UpgradeIntrinsicCall(CI, I->second); 1725 } 1726 ValueList.replaceUsesOfWith(I->first, I->second); 1727 I->first->eraseFromParent(); 1728 } 1729 } 1730 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 1731 1732 return TheModule; 1733 } 1734 1735 1736 /// This method is provided by the parent ModuleProvde class and overriden 1737 /// here. It simply releases the module from its provided and frees up our 1738 /// state. 1739 /// @brief Release our hold on the generated module 1740 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 1741 // Since we're losing control of this Module, we must hand it back complete 1742 Module *M = ModuleProvider::releaseModule(ErrInfo); 1743 FreeState(); 1744 return M; 1745 } 1746 1747 1748 //===----------------------------------------------------------------------===// 1749 // External interface 1750 //===----------------------------------------------------------------------===// 1751 1752 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 1753 /// 1754 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 1755 std::string *ErrMsg) { 1756 BitcodeReader *R = new BitcodeReader(Buffer); 1757 if (R->ParseBitcode()) { 1758 if (ErrMsg) 1759 *ErrMsg = R->getErrorString(); 1760 1761 // Don't let the BitcodeReader dtor delete 'Buffer'. 1762 R->releaseMemoryBuffer(); 1763 delete R; 1764 return 0; 1765 } 1766 return R; 1767 } 1768 1769 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 1770 /// If an error occurs, return null and fill in *ErrMsg if non-null. 1771 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 1772 BitcodeReader *R; 1773 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 1774 if (!R) return 0; 1775 1776 // Read in the entire module. 1777 Module *M = R->materializeModule(ErrMsg); 1778 1779 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 1780 // there was an error. 1781 R->releaseMemoryBuffer(); 1782 1783 // If there was no error, tell ModuleProvider not to delete it when its dtor 1784 // is run. 1785 if (M) 1786 M = R->releaseModule(ErrMsg); 1787 1788 delete R; 1789 return M; 1790 } 1791