1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (isa<ConstantVector>(UserC)) { 300 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 301 } else { 302 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 303 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 304 NewOps.size()); 305 } 306 307 UserC->replaceAllUsesWith(NewC); 308 UserC->destroyConstant(); 309 NewOps.clear(); 310 } 311 312 // Update all ValueHandles, they should be the only users at this point. 313 Placeholder->replaceAllUsesWith(RealVal); 314 delete Placeholder; 315 } 316 } 317 318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 319 if (Idx == size()) { 320 push_back(V); 321 return; 322 } 323 324 if (Idx >= size()) 325 resize(Idx+1); 326 327 WeakVH &OldV = MDValuePtrs[Idx]; 328 if (OldV == 0) { 329 OldV = V; 330 return; 331 } 332 333 // If there was a forward reference to this value, replace it. 334 MDNode *PrevVal = cast<MDNode>(OldV); 335 OldV->replaceAllUsesWith(V); 336 MDNode::deleteTemporary(PrevVal); 337 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 338 // value for Idx. 339 MDValuePtrs[Idx] = V; 340 } 341 342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 343 if (Idx >= size()) 344 resize(Idx + 1); 345 346 if (Value *V = MDValuePtrs[Idx]) { 347 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 348 return V; 349 } 350 351 // Create and return a placeholder, which will later be RAUW'd. 352 Value *V = MDNode::getTemporary(Context, 0, 0); 353 MDValuePtrs[Idx] = V; 354 return V; 355 } 356 357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 358 // If the TypeID is in range, return it. 359 if (ID < TypeList.size()) 360 return TypeList[ID].get(); 361 if (!isTypeTable) return 0; 362 363 // The type table allows forward references. Push as many Opaque types as 364 // needed to get up to ID. 365 while (TypeList.size() <= ID) 366 TypeList.push_back(OpaqueType::get(Context)); 367 return TypeList.back().get(); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Functions for parsing blocks from the bitcode file 372 //===----------------------------------------------------------------------===// 373 374 bool BitcodeReader::ParseAttributeBlock() { 375 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 376 return Error("Malformed block record"); 377 378 if (!MAttributes.empty()) 379 return Error("Multiple PARAMATTR blocks found!"); 380 381 SmallVector<uint64_t, 64> Record; 382 383 SmallVector<AttributeWithIndex, 8> Attrs; 384 385 // Read all the records. 386 while (1) { 387 unsigned Code = Stream.ReadCode(); 388 if (Code == bitc::END_BLOCK) { 389 if (Stream.ReadBlockEnd()) 390 return Error("Error at end of PARAMATTR block"); 391 return false; 392 } 393 394 if (Code == bitc::ENTER_SUBBLOCK) { 395 // No known subblocks, always skip them. 396 Stream.ReadSubBlockID(); 397 if (Stream.SkipBlock()) 398 return Error("Malformed block record"); 399 continue; 400 } 401 402 if (Code == bitc::DEFINE_ABBREV) { 403 Stream.ReadAbbrevRecord(); 404 continue; 405 } 406 407 // Read a record. 408 Record.clear(); 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: ignore. 411 break; 412 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 413 if (Record.size() & 1) 414 return Error("Invalid ENTRY record"); 415 416 // FIXME : Remove this autoupgrade code in LLVM 3.0. 417 // If Function attributes are using index 0 then transfer them 418 // to index ~0. Index 0 is used for return value attributes but used to be 419 // used for function attributes. 420 Attributes RetAttribute = Attribute::None; 421 Attributes FnAttribute = Attribute::None; 422 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 423 // FIXME: remove in LLVM 3.0 424 // The alignment is stored as a 16-bit raw value from bits 31--16. 425 // We shift the bits above 31 down by 11 bits. 426 427 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 428 if (Alignment && !isPowerOf2_32(Alignment)) 429 return Error("Alignment is not a power of two."); 430 431 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 432 if (Alignment) 433 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 434 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 435 Record[i+1] = ReconstitutedAttr; 436 437 if (Record[i] == 0) 438 RetAttribute = Record[i+1]; 439 else if (Record[i] == ~0U) 440 FnAttribute = Record[i+1]; 441 } 442 443 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 444 Attribute::ReadOnly|Attribute::ReadNone); 445 446 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 447 (RetAttribute & OldRetAttrs) != 0) { 448 if (FnAttribute == Attribute::None) { // add a slot so they get added. 449 Record.push_back(~0U); 450 Record.push_back(0); 451 } 452 453 FnAttribute |= RetAttribute & OldRetAttrs; 454 RetAttribute &= ~OldRetAttrs; 455 } 456 457 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 458 if (Record[i] == 0) { 459 if (RetAttribute != Attribute::None) 460 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 461 } else if (Record[i] == ~0U) { 462 if (FnAttribute != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 464 } else if (Record[i+1] != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 466 } 467 468 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 469 Attrs.clear(); 470 break; 471 } 472 } 473 } 474 } 475 476 477 bool BitcodeReader::ParseTypeTable() { 478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 479 return Error("Malformed block record"); 480 481 if (!TypeList.empty()) 482 return Error("Multiple TYPE_BLOCKs found!"); 483 484 SmallVector<uint64_t, 64> Record; 485 unsigned NumRecords = 0; 486 487 // Read all the records for this type table. 488 while (1) { 489 unsigned Code = Stream.ReadCode(); 490 if (Code == bitc::END_BLOCK) { 491 if (NumRecords != TypeList.size()) 492 return Error("Invalid type forward reference in TYPE_BLOCK"); 493 if (Stream.ReadBlockEnd()) 494 return Error("Error at end of type table block"); 495 return false; 496 } 497 498 if (Code == bitc::ENTER_SUBBLOCK) { 499 // No known subblocks, always skip them. 500 Stream.ReadSubBlockID(); 501 if (Stream.SkipBlock()) 502 return Error("Malformed block record"); 503 continue; 504 } 505 506 if (Code == bitc::DEFINE_ABBREV) { 507 Stream.ReadAbbrevRecord(); 508 continue; 509 } 510 511 // Read a record. 512 Record.clear(); 513 const Type *ResultTy = 0; 514 switch (Stream.ReadRecord(Code, Record)) { 515 default: // Default behavior: unknown type. 516 ResultTy = 0; 517 break; 518 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 519 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 520 // type list. This allows us to reserve space. 521 if (Record.size() < 1) 522 return Error("Invalid TYPE_CODE_NUMENTRY record"); 523 TypeList.reserve(Record[0]); 524 continue; 525 case bitc::TYPE_CODE_VOID: // VOID 526 ResultTy = Type::getVoidTy(Context); 527 break; 528 case bitc::TYPE_CODE_FLOAT: // FLOAT 529 ResultTy = Type::getFloatTy(Context); 530 break; 531 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 532 ResultTy = Type::getDoubleTy(Context); 533 break; 534 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 535 ResultTy = Type::getX86_FP80Ty(Context); 536 break; 537 case bitc::TYPE_CODE_FP128: // FP128 538 ResultTy = Type::getFP128Ty(Context); 539 break; 540 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 541 ResultTy = Type::getPPC_FP128Ty(Context); 542 break; 543 case bitc::TYPE_CODE_LABEL: // LABEL 544 ResultTy = Type::getLabelTy(Context); 545 break; 546 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 547 ResultTy = 0; 548 break; 549 case bitc::TYPE_CODE_METADATA: // METADATA 550 ResultTy = Type::getMetadataTy(Context); 551 break; 552 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 553 ResultTy = Type::getX86_MMXTy(Context); 554 break; 555 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 556 if (Record.size() < 1) 557 return Error("Invalid Integer type record"); 558 559 ResultTy = IntegerType::get(Context, Record[0]); 560 break; 561 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 562 // [pointee type, address space] 563 if (Record.size() < 1) 564 return Error("Invalid POINTER type record"); 565 unsigned AddressSpace = 0; 566 if (Record.size() == 2) 567 AddressSpace = Record[1]; 568 ResultTy = PointerType::get(getTypeByID(Record[0], true), 569 AddressSpace); 570 break; 571 } 572 case bitc::TYPE_CODE_FUNCTION: { 573 // FIXME: attrid is dead, remove it in LLVM 3.0 574 // FUNCTION: [vararg, attrid, retty, paramty x N] 575 if (Record.size() < 3) 576 return Error("Invalid FUNCTION type record"); 577 std::vector<const Type*> ArgTys; 578 for (unsigned i = 3, e = Record.size(); i != e; ++i) 579 ArgTys.push_back(getTypeByID(Record[i], true)); 580 581 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 582 Record[0]); 583 break; 584 } 585 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 586 if (Record.size() < 1) 587 return Error("Invalid STRUCT type record"); 588 std::vector<const Type*> EltTys; 589 for (unsigned i = 1, e = Record.size(); i != e; ++i) 590 EltTys.push_back(getTypeByID(Record[i], true)); 591 ResultTy = StructType::get(Context, EltTys, Record[0]); 592 break; 593 } 594 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid ARRAY type record"); 597 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 600 if (Record.size() < 2) 601 return Error("Invalid VECTOR type record"); 602 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 603 break; 604 } 605 606 if (NumRecords == TypeList.size()) { 607 // If this is a new type slot, just append it. 608 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 609 ++NumRecords; 610 } else if (ResultTy == 0) { 611 // Otherwise, this was forward referenced, so an opaque type was created, 612 // but the result type is actually just an opaque. Leave the one we 613 // created previously. 614 ++NumRecords; 615 } else { 616 // Otherwise, this was forward referenced, so an opaque type was created. 617 // Resolve the opaque type to the real type now. 618 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 619 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 620 621 // Don't directly push the new type on the Tab. Instead we want to replace 622 // the opaque type we previously inserted with the new concrete value. The 623 // refinement from the abstract (opaque) type to the new type causes all 624 // uses of the abstract type to use the concrete type (NewTy). This will 625 // also cause the opaque type to be deleted. 626 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 627 628 // This should have replaced the old opaque type with the new type in the 629 // value table... or with a preexisting type that was already in the 630 // system. Let's just make sure it did. 631 assert(TypeList[NumRecords-1].get() != OldTy && 632 "refineAbstractType didn't work!"); 633 } 634 } 635 } 636 637 638 bool BitcodeReader::ParseTypeSymbolTable() { 639 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 640 return Error("Malformed block record"); 641 642 SmallVector<uint64_t, 64> Record; 643 644 // Read all the records for this type table. 645 std::string TypeName; 646 while (1) { 647 unsigned Code = Stream.ReadCode(); 648 if (Code == bitc::END_BLOCK) { 649 if (Stream.ReadBlockEnd()) 650 return Error("Error at end of type symbol table block"); 651 return false; 652 } 653 654 if (Code == bitc::ENTER_SUBBLOCK) { 655 // No known subblocks, always skip them. 656 Stream.ReadSubBlockID(); 657 if (Stream.SkipBlock()) 658 return Error("Malformed block record"); 659 continue; 660 } 661 662 if (Code == bitc::DEFINE_ABBREV) { 663 Stream.ReadAbbrevRecord(); 664 continue; 665 } 666 667 // Read a record. 668 Record.clear(); 669 switch (Stream.ReadRecord(Code, Record)) { 670 default: // Default behavior: unknown type. 671 break; 672 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 673 if (ConvertToString(Record, 1, TypeName)) 674 return Error("Invalid TST_ENTRY record"); 675 unsigned TypeID = Record[0]; 676 if (TypeID >= TypeList.size()) 677 return Error("Invalid Type ID in TST_ENTRY record"); 678 679 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 680 TypeName.clear(); 681 break; 682 } 683 } 684 } 685 686 bool BitcodeReader::ParseValueSymbolTable() { 687 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 688 return Error("Malformed block record"); 689 690 SmallVector<uint64_t, 64> Record; 691 692 // Read all the records for this value table. 693 SmallString<128> ValueName; 694 while (1) { 695 unsigned Code = Stream.ReadCode(); 696 if (Code == bitc::END_BLOCK) { 697 if (Stream.ReadBlockEnd()) 698 return Error("Error at end of value symbol table block"); 699 return false; 700 } 701 if (Code == bitc::ENTER_SUBBLOCK) { 702 // No known subblocks, always skip them. 703 Stream.ReadSubBlockID(); 704 if (Stream.SkipBlock()) 705 return Error("Malformed block record"); 706 continue; 707 } 708 709 if (Code == bitc::DEFINE_ABBREV) { 710 Stream.ReadAbbrevRecord(); 711 continue; 712 } 713 714 // Read a record. 715 Record.clear(); 716 switch (Stream.ReadRecord(Code, Record)) { 717 default: // Default behavior: unknown type. 718 break; 719 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 720 if (ConvertToString(Record, 1, ValueName)) 721 return Error("Invalid VST_ENTRY record"); 722 unsigned ValueID = Record[0]; 723 if (ValueID >= ValueList.size()) 724 return Error("Invalid Value ID in VST_ENTRY record"); 725 Value *V = ValueList[ValueID]; 726 727 V->setName(StringRef(ValueName.data(), ValueName.size())); 728 ValueName.clear(); 729 break; 730 } 731 case bitc::VST_CODE_BBENTRY: { 732 if (ConvertToString(Record, 1, ValueName)) 733 return Error("Invalid VST_BBENTRY record"); 734 BasicBlock *BB = getBasicBlock(Record[0]); 735 if (BB == 0) 736 return Error("Invalid BB ID in VST_BBENTRY record"); 737 738 BB->setName(StringRef(ValueName.data(), ValueName.size())); 739 ValueName.clear(); 740 break; 741 } 742 } 743 } 744 } 745 746 bool BitcodeReader::ParseMetadata() { 747 unsigned NextMDValueNo = MDValueList.size(); 748 749 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 750 return Error("Malformed block record"); 751 752 SmallVector<uint64_t, 64> Record; 753 754 // Read all the records. 755 while (1) { 756 unsigned Code = Stream.ReadCode(); 757 if (Code == bitc::END_BLOCK) { 758 if (Stream.ReadBlockEnd()) 759 return Error("Error at end of PARAMATTR block"); 760 return false; 761 } 762 763 if (Code == bitc::ENTER_SUBBLOCK) { 764 // No known subblocks, always skip them. 765 Stream.ReadSubBlockID(); 766 if (Stream.SkipBlock()) 767 return Error("Malformed block record"); 768 continue; 769 } 770 771 if (Code == bitc::DEFINE_ABBREV) { 772 Stream.ReadAbbrevRecord(); 773 continue; 774 } 775 776 bool IsFunctionLocal = false; 777 // Read a record. 778 Record.clear(); 779 Code = Stream.ReadRecord(Code, Record); 780 switch (Code) { 781 default: // Default behavior: ignore. 782 break; 783 case bitc::METADATA_NAME: { 784 // Read named of the named metadata. 785 unsigned NameLength = Record.size(); 786 SmallString<8> Name; 787 Name.resize(NameLength); 788 for (unsigned i = 0; i != NameLength; ++i) 789 Name[i] = Record[i]; 790 Record.clear(); 791 Code = Stream.ReadCode(); 792 793 // METADATA_NAME is always followed by METADATA_NAMED_NODE2. 794 // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0. 795 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 796 if (NextBitCode == bitc::METADATA_NAMED_NODE) { 797 LLVM2_7MetadataDetected = true; 798 } else if (NextBitCode != bitc::METADATA_NAMED_NODE2) 799 assert ( 0 && "Invalid Named Metadata record"); 800 801 // Read named metadata elements. 802 unsigned Size = Record.size(); 803 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 804 for (unsigned i = 0; i != Size; ++i) { 805 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 806 if (MD == 0) 807 return Error("Malformed metadata record"); 808 NMD->addOperand(MD); 809 } 810 // Backwards compatibility hack: NamedMDValues used to be Values, 811 // and they got their own slots in the value numbering. They are no 812 // longer Values, however we still need to account for them in the 813 // numbering in order to be able to read old bitcode files. 814 // FIXME: Remove this in LLVM 3.0. 815 if (LLVM2_7MetadataDetected) 816 MDValueList.AssignValue(0, NextMDValueNo++); 817 break; 818 } 819 case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0. 820 case bitc::METADATA_FN_NODE2: 821 IsFunctionLocal = true; 822 // fall-through 823 case bitc::METADATA_NODE: // FIXME: Remove in LLVM 3.0. 824 case bitc::METADATA_NODE2: { 825 826 // Detect 2.7-era metadata. 827 // FIXME: Remove in LLVM 3.0. 828 if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE) 829 LLVM2_7MetadataDetected = true; 830 831 if (Record.size() % 2 == 1) 832 return Error("Invalid METADATA_NODE2 record"); 833 834 unsigned Size = Record.size(); 835 SmallVector<Value*, 8> Elts; 836 for (unsigned i = 0; i != Size; i += 2) { 837 const Type *Ty = getTypeByID(Record[i]); 838 if (!Ty) return Error("Invalid METADATA_NODE2 record"); 839 if (Ty->isMetadataTy()) 840 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 841 else if (!Ty->isVoidTy()) 842 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 843 else 844 Elts.push_back(NULL); 845 } 846 Value *V = MDNode::getWhenValsUnresolved(Context, 847 Elts.data(), Elts.size(), 848 IsFunctionLocal); 849 IsFunctionLocal = false; 850 MDValueList.AssignValue(V, NextMDValueNo++); 851 break; 852 } 853 case bitc::METADATA_STRING: { 854 unsigned MDStringLength = Record.size(); 855 SmallString<8> String; 856 String.resize(MDStringLength); 857 for (unsigned i = 0; i != MDStringLength; ++i) 858 String[i] = Record[i]; 859 Value *V = MDString::get(Context, 860 StringRef(String.data(), String.size())); 861 MDValueList.AssignValue(V, NextMDValueNo++); 862 break; 863 } 864 case bitc::METADATA_KIND: { 865 unsigned RecordLength = Record.size(); 866 if (Record.empty() || RecordLength < 2) 867 return Error("Invalid METADATA_KIND record"); 868 SmallString<8> Name; 869 Name.resize(RecordLength-1); 870 unsigned Kind = Record[0]; 871 for (unsigned i = 1; i != RecordLength; ++i) 872 Name[i-1] = Record[i]; 873 874 unsigned NewKind = TheModule->getMDKindID(Name.str()); 875 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 876 return Error("Conflicting METADATA_KIND records"); 877 break; 878 } 879 } 880 } 881 } 882 883 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 884 /// the LSB for dense VBR encoding. 885 static uint64_t DecodeSignRotatedValue(uint64_t V) { 886 if ((V & 1) == 0) 887 return V >> 1; 888 if (V != 1) 889 return -(V >> 1); 890 // There is no such thing as -0 with integers. "-0" really means MININT. 891 return 1ULL << 63; 892 } 893 894 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 895 /// values and aliases that we can. 896 bool BitcodeReader::ResolveGlobalAndAliasInits() { 897 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 898 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 899 900 GlobalInitWorklist.swap(GlobalInits); 901 AliasInitWorklist.swap(AliasInits); 902 903 while (!GlobalInitWorklist.empty()) { 904 unsigned ValID = GlobalInitWorklist.back().second; 905 if (ValID >= ValueList.size()) { 906 // Not ready to resolve this yet, it requires something later in the file. 907 GlobalInits.push_back(GlobalInitWorklist.back()); 908 } else { 909 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 910 GlobalInitWorklist.back().first->setInitializer(C); 911 else 912 return Error("Global variable initializer is not a constant!"); 913 } 914 GlobalInitWorklist.pop_back(); 915 } 916 917 while (!AliasInitWorklist.empty()) { 918 unsigned ValID = AliasInitWorklist.back().second; 919 if (ValID >= ValueList.size()) { 920 AliasInits.push_back(AliasInitWorklist.back()); 921 } else { 922 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 923 AliasInitWorklist.back().first->setAliasee(C); 924 else 925 return Error("Alias initializer is not a constant!"); 926 } 927 AliasInitWorklist.pop_back(); 928 } 929 return false; 930 } 931 932 bool BitcodeReader::ParseConstants() { 933 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 934 return Error("Malformed block record"); 935 936 SmallVector<uint64_t, 64> Record; 937 938 // Read all the records for this value table. 939 const Type *CurTy = Type::getInt32Ty(Context); 940 unsigned NextCstNo = ValueList.size(); 941 while (1) { 942 unsigned Code = Stream.ReadCode(); 943 if (Code == bitc::END_BLOCK) 944 break; 945 946 if (Code == bitc::ENTER_SUBBLOCK) { 947 // No known subblocks, always skip them. 948 Stream.ReadSubBlockID(); 949 if (Stream.SkipBlock()) 950 return Error("Malformed block record"); 951 continue; 952 } 953 954 if (Code == bitc::DEFINE_ABBREV) { 955 Stream.ReadAbbrevRecord(); 956 continue; 957 } 958 959 // Read a record. 960 Record.clear(); 961 Value *V = 0; 962 unsigned BitCode = Stream.ReadRecord(Code, Record); 963 switch (BitCode) { 964 default: // Default behavior: unknown constant 965 case bitc::CST_CODE_UNDEF: // UNDEF 966 V = UndefValue::get(CurTy); 967 break; 968 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 969 if (Record.empty()) 970 return Error("Malformed CST_SETTYPE record"); 971 if (Record[0] >= TypeList.size()) 972 return Error("Invalid Type ID in CST_SETTYPE record"); 973 CurTy = TypeList[Record[0]]; 974 continue; // Skip the ValueList manipulation. 975 case bitc::CST_CODE_NULL: // NULL 976 V = Constant::getNullValue(CurTy); 977 break; 978 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 979 if (!CurTy->isIntegerTy() || Record.empty()) 980 return Error("Invalid CST_INTEGER record"); 981 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 982 break; 983 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 984 if (!CurTy->isIntegerTy() || Record.empty()) 985 return Error("Invalid WIDE_INTEGER record"); 986 987 unsigned NumWords = Record.size(); 988 SmallVector<uint64_t, 8> Words; 989 Words.resize(NumWords); 990 for (unsigned i = 0; i != NumWords; ++i) 991 Words[i] = DecodeSignRotatedValue(Record[i]); 992 V = ConstantInt::get(Context, 993 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 994 NumWords, &Words[0])); 995 break; 996 } 997 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 998 if (Record.empty()) 999 return Error("Invalid FLOAT record"); 1000 if (CurTy->isFloatTy()) 1001 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 1002 else if (CurTy->isDoubleTy()) 1003 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 1004 else if (CurTy->isX86_FP80Ty()) { 1005 // Bits are not stored the same way as a normal i80 APInt, compensate. 1006 uint64_t Rearrange[2]; 1007 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1008 Rearrange[1] = Record[0] >> 48; 1009 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 1010 } else if (CurTy->isFP128Ty()) 1011 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1012 else if (CurTy->isPPC_FP128Ty()) 1013 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1014 else 1015 V = UndefValue::get(CurTy); 1016 break; 1017 } 1018 1019 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1020 if (Record.empty()) 1021 return Error("Invalid CST_AGGREGATE record"); 1022 1023 unsigned Size = Record.size(); 1024 std::vector<Constant*> Elts; 1025 1026 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1027 for (unsigned i = 0; i != Size; ++i) 1028 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1029 STy->getElementType(i))); 1030 V = ConstantStruct::get(STy, Elts); 1031 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1032 const Type *EltTy = ATy->getElementType(); 1033 for (unsigned i = 0; i != Size; ++i) 1034 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1035 V = ConstantArray::get(ATy, Elts); 1036 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1037 const Type *EltTy = VTy->getElementType(); 1038 for (unsigned i = 0; i != Size; ++i) 1039 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1040 V = ConstantVector::get(Elts); 1041 } else { 1042 V = UndefValue::get(CurTy); 1043 } 1044 break; 1045 } 1046 case bitc::CST_CODE_STRING: { // STRING: [values] 1047 if (Record.empty()) 1048 return Error("Invalid CST_AGGREGATE record"); 1049 1050 const ArrayType *ATy = cast<ArrayType>(CurTy); 1051 const Type *EltTy = ATy->getElementType(); 1052 1053 unsigned Size = Record.size(); 1054 std::vector<Constant*> Elts; 1055 for (unsigned i = 0; i != Size; ++i) 1056 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1057 V = ConstantArray::get(ATy, Elts); 1058 break; 1059 } 1060 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1061 if (Record.empty()) 1062 return Error("Invalid CST_AGGREGATE record"); 1063 1064 const ArrayType *ATy = cast<ArrayType>(CurTy); 1065 const Type *EltTy = ATy->getElementType(); 1066 1067 unsigned Size = Record.size(); 1068 std::vector<Constant*> Elts; 1069 for (unsigned i = 0; i != Size; ++i) 1070 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1071 Elts.push_back(Constant::getNullValue(EltTy)); 1072 V = ConstantArray::get(ATy, Elts); 1073 break; 1074 } 1075 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1076 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1077 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1078 if (Opc < 0) { 1079 V = UndefValue::get(CurTy); // Unknown binop. 1080 } else { 1081 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1082 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1083 unsigned Flags = 0; 1084 if (Record.size() >= 4) { 1085 if (Opc == Instruction::Add || 1086 Opc == Instruction::Sub || 1087 Opc == Instruction::Mul) { 1088 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1089 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1090 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1091 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1092 } else if (Opc == Instruction::SDiv) { 1093 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1094 Flags |= SDivOperator::IsExact; 1095 } 1096 } 1097 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1098 } 1099 break; 1100 } 1101 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1102 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1103 int Opc = GetDecodedCastOpcode(Record[0]); 1104 if (Opc < 0) { 1105 V = UndefValue::get(CurTy); // Unknown cast. 1106 } else { 1107 const Type *OpTy = getTypeByID(Record[1]); 1108 if (!OpTy) return Error("Invalid CE_CAST record"); 1109 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1110 V = ConstantExpr::getCast(Opc, Op, CurTy); 1111 } 1112 break; 1113 } 1114 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1115 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1116 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1117 SmallVector<Constant*, 16> Elts; 1118 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1119 const Type *ElTy = getTypeByID(Record[i]); 1120 if (!ElTy) return Error("Invalid CE_GEP record"); 1121 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1122 } 1123 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1124 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1125 Elts.size()-1); 1126 else 1127 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1128 Elts.size()-1); 1129 break; 1130 } 1131 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1132 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1133 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1134 Type::getInt1Ty(Context)), 1135 ValueList.getConstantFwdRef(Record[1],CurTy), 1136 ValueList.getConstantFwdRef(Record[2],CurTy)); 1137 break; 1138 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1139 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1140 const VectorType *OpTy = 1141 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1142 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1143 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1144 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1145 V = ConstantExpr::getExtractElement(Op0, Op1); 1146 break; 1147 } 1148 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1149 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1150 if (Record.size() < 3 || OpTy == 0) 1151 return Error("Invalid CE_INSERTELT record"); 1152 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1153 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1154 OpTy->getElementType()); 1155 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1156 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1157 break; 1158 } 1159 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1160 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1161 if (Record.size() < 3 || OpTy == 0) 1162 return Error("Invalid CE_SHUFFLEVEC record"); 1163 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1164 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1165 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1166 OpTy->getNumElements()); 1167 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1168 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1169 break; 1170 } 1171 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1172 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1173 const VectorType *OpTy = 1174 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1175 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1176 return Error("Invalid CE_SHUFVEC_EX record"); 1177 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1178 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1179 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1180 RTy->getNumElements()); 1181 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1182 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1183 break; 1184 } 1185 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1186 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1187 const Type *OpTy = getTypeByID(Record[0]); 1188 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1189 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1190 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1191 1192 if (OpTy->isFPOrFPVectorTy()) 1193 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1194 else 1195 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1196 break; 1197 } 1198 case bitc::CST_CODE_INLINEASM: { 1199 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1200 std::string AsmStr, ConstrStr; 1201 bool HasSideEffects = Record[0] & 1; 1202 bool IsAlignStack = Record[0] >> 1; 1203 unsigned AsmStrSize = Record[1]; 1204 if (2+AsmStrSize >= Record.size()) 1205 return Error("Invalid INLINEASM record"); 1206 unsigned ConstStrSize = Record[2+AsmStrSize]; 1207 if (3+AsmStrSize+ConstStrSize > Record.size()) 1208 return Error("Invalid INLINEASM record"); 1209 1210 for (unsigned i = 0; i != AsmStrSize; ++i) 1211 AsmStr += (char)Record[2+i]; 1212 for (unsigned i = 0; i != ConstStrSize; ++i) 1213 ConstrStr += (char)Record[3+AsmStrSize+i]; 1214 const PointerType *PTy = cast<PointerType>(CurTy); 1215 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1216 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1217 break; 1218 } 1219 case bitc::CST_CODE_BLOCKADDRESS:{ 1220 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1221 const Type *FnTy = getTypeByID(Record[0]); 1222 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1223 Function *Fn = 1224 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1225 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1226 1227 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1228 Type::getInt8Ty(Context), 1229 false, GlobalValue::InternalLinkage, 1230 0, ""); 1231 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1232 V = FwdRef; 1233 break; 1234 } 1235 } 1236 1237 ValueList.AssignValue(V, NextCstNo); 1238 ++NextCstNo; 1239 } 1240 1241 if (NextCstNo != ValueList.size()) 1242 return Error("Invalid constant reference!"); 1243 1244 if (Stream.ReadBlockEnd()) 1245 return Error("Error at end of constants block"); 1246 1247 // Once all the constants have been read, go through and resolve forward 1248 // references. 1249 ValueList.ResolveConstantForwardRefs(); 1250 return false; 1251 } 1252 1253 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1254 /// remember where it is and then skip it. This lets us lazily deserialize the 1255 /// functions. 1256 bool BitcodeReader::RememberAndSkipFunctionBody() { 1257 // Get the function we are talking about. 1258 if (FunctionsWithBodies.empty()) 1259 return Error("Insufficient function protos"); 1260 1261 Function *Fn = FunctionsWithBodies.back(); 1262 FunctionsWithBodies.pop_back(); 1263 1264 // Save the current stream state. 1265 uint64_t CurBit = Stream.GetCurrentBitNo(); 1266 DeferredFunctionInfo[Fn] = CurBit; 1267 1268 // Skip over the function block for now. 1269 if (Stream.SkipBlock()) 1270 return Error("Malformed block record"); 1271 return false; 1272 } 1273 1274 bool BitcodeReader::ParseModule() { 1275 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1276 return Error("Malformed block record"); 1277 1278 SmallVector<uint64_t, 64> Record; 1279 std::vector<std::string> SectionTable; 1280 std::vector<std::string> GCTable; 1281 1282 // Read all the records for this module. 1283 while (!Stream.AtEndOfStream()) { 1284 unsigned Code = Stream.ReadCode(); 1285 if (Code == bitc::END_BLOCK) { 1286 if (Stream.ReadBlockEnd()) 1287 return Error("Error at end of module block"); 1288 1289 // Patch the initializers for globals and aliases up. 1290 ResolveGlobalAndAliasInits(); 1291 if (!GlobalInits.empty() || !AliasInits.empty()) 1292 return Error("Malformed global initializer set"); 1293 if (!FunctionsWithBodies.empty()) 1294 return Error("Too few function bodies found"); 1295 1296 // Look for intrinsic functions which need to be upgraded at some point 1297 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1298 FI != FE; ++FI) { 1299 Function* NewFn; 1300 if (UpgradeIntrinsicFunction(FI, NewFn)) 1301 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1302 } 1303 1304 // Look for global variables which need to be renamed. 1305 for (Module::global_iterator 1306 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1307 GI != GE; ++GI) 1308 UpgradeGlobalVariable(GI); 1309 1310 // Force deallocation of memory for these vectors to favor the client that 1311 // want lazy deserialization. 1312 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1313 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1314 std::vector<Function*>().swap(FunctionsWithBodies); 1315 return false; 1316 } 1317 1318 if (Code == bitc::ENTER_SUBBLOCK) { 1319 switch (Stream.ReadSubBlockID()) { 1320 default: // Skip unknown content. 1321 if (Stream.SkipBlock()) 1322 return Error("Malformed block record"); 1323 break; 1324 case bitc::BLOCKINFO_BLOCK_ID: 1325 if (Stream.ReadBlockInfoBlock()) 1326 return Error("Malformed BlockInfoBlock"); 1327 break; 1328 case bitc::PARAMATTR_BLOCK_ID: 1329 if (ParseAttributeBlock()) 1330 return true; 1331 break; 1332 case bitc::TYPE_BLOCK_ID: 1333 if (ParseTypeTable()) 1334 return true; 1335 break; 1336 case bitc::TYPE_SYMTAB_BLOCK_ID: 1337 if (ParseTypeSymbolTable()) 1338 return true; 1339 break; 1340 case bitc::VALUE_SYMTAB_BLOCK_ID: 1341 if (ParseValueSymbolTable()) 1342 return true; 1343 break; 1344 case bitc::CONSTANTS_BLOCK_ID: 1345 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1346 return true; 1347 break; 1348 case bitc::METADATA_BLOCK_ID: 1349 if (ParseMetadata()) 1350 return true; 1351 break; 1352 case bitc::FUNCTION_BLOCK_ID: 1353 // If this is the first function body we've seen, reverse the 1354 // FunctionsWithBodies list. 1355 if (!HasReversedFunctionsWithBodies) { 1356 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1357 HasReversedFunctionsWithBodies = true; 1358 } 1359 1360 if (RememberAndSkipFunctionBody()) 1361 return true; 1362 break; 1363 } 1364 continue; 1365 } 1366 1367 if (Code == bitc::DEFINE_ABBREV) { 1368 Stream.ReadAbbrevRecord(); 1369 continue; 1370 } 1371 1372 // Read a record. 1373 switch (Stream.ReadRecord(Code, Record)) { 1374 default: break; // Default behavior, ignore unknown content. 1375 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1376 if (Record.size() < 1) 1377 return Error("Malformed MODULE_CODE_VERSION"); 1378 // Only version #0 is supported so far. 1379 if (Record[0] != 0) 1380 return Error("Unknown bitstream version!"); 1381 break; 1382 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1383 std::string S; 1384 if (ConvertToString(Record, 0, S)) 1385 return Error("Invalid MODULE_CODE_TRIPLE record"); 1386 TheModule->setTargetTriple(S); 1387 break; 1388 } 1389 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1390 std::string S; 1391 if (ConvertToString(Record, 0, S)) 1392 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1393 TheModule->setDataLayout(S); 1394 break; 1395 } 1396 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1397 std::string S; 1398 if (ConvertToString(Record, 0, S)) 1399 return Error("Invalid MODULE_CODE_ASM record"); 1400 TheModule->setModuleInlineAsm(S); 1401 break; 1402 } 1403 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1404 std::string S; 1405 if (ConvertToString(Record, 0, S)) 1406 return Error("Invalid MODULE_CODE_DEPLIB record"); 1407 TheModule->addLibrary(S); 1408 break; 1409 } 1410 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1411 std::string S; 1412 if (ConvertToString(Record, 0, S)) 1413 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1414 SectionTable.push_back(S); 1415 break; 1416 } 1417 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1418 std::string S; 1419 if (ConvertToString(Record, 0, S)) 1420 return Error("Invalid MODULE_CODE_GCNAME record"); 1421 GCTable.push_back(S); 1422 break; 1423 } 1424 // GLOBALVAR: [pointer type, isconst, initid, 1425 // linkage, alignment, section, visibility, threadlocal] 1426 case bitc::MODULE_CODE_GLOBALVAR: { 1427 if (Record.size() < 6) 1428 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1429 const Type *Ty = getTypeByID(Record[0]); 1430 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1431 if (!Ty->isPointerTy()) 1432 return Error("Global not a pointer type!"); 1433 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1434 Ty = cast<PointerType>(Ty)->getElementType(); 1435 1436 bool isConstant = Record[1]; 1437 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1438 unsigned Alignment = (1 << Record[4]) >> 1; 1439 std::string Section; 1440 if (Record[5]) { 1441 if (Record[5]-1 >= SectionTable.size()) 1442 return Error("Invalid section ID"); 1443 Section = SectionTable[Record[5]-1]; 1444 } 1445 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1446 if (Record.size() > 6) 1447 Visibility = GetDecodedVisibility(Record[6]); 1448 bool isThreadLocal = false; 1449 if (Record.size() > 7) 1450 isThreadLocal = Record[7]; 1451 1452 GlobalVariable *NewGV = 1453 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1454 isThreadLocal, AddressSpace); 1455 NewGV->setAlignment(Alignment); 1456 if (!Section.empty()) 1457 NewGV->setSection(Section); 1458 NewGV->setVisibility(Visibility); 1459 NewGV->setThreadLocal(isThreadLocal); 1460 1461 ValueList.push_back(NewGV); 1462 1463 // Remember which value to use for the global initializer. 1464 if (unsigned InitID = Record[2]) 1465 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1466 break; 1467 } 1468 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1469 // alignment, section, visibility, gc] 1470 case bitc::MODULE_CODE_FUNCTION: { 1471 if (Record.size() < 8) 1472 return Error("Invalid MODULE_CODE_FUNCTION record"); 1473 const Type *Ty = getTypeByID(Record[0]); 1474 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1475 if (!Ty->isPointerTy()) 1476 return Error("Function not a pointer type!"); 1477 const FunctionType *FTy = 1478 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1479 if (!FTy) 1480 return Error("Function not a pointer to function type!"); 1481 1482 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1483 "", TheModule); 1484 1485 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1486 bool isProto = Record[2]; 1487 Func->setLinkage(GetDecodedLinkage(Record[3])); 1488 Func->setAttributes(getAttributes(Record[4])); 1489 1490 Func->setAlignment((1 << Record[5]) >> 1); 1491 if (Record[6]) { 1492 if (Record[6]-1 >= SectionTable.size()) 1493 return Error("Invalid section ID"); 1494 Func->setSection(SectionTable[Record[6]-1]); 1495 } 1496 Func->setVisibility(GetDecodedVisibility(Record[7])); 1497 if (Record.size() > 8 && Record[8]) { 1498 if (Record[8]-1 > GCTable.size()) 1499 return Error("Invalid GC ID"); 1500 Func->setGC(GCTable[Record[8]-1].c_str()); 1501 } 1502 ValueList.push_back(Func); 1503 1504 // If this is a function with a body, remember the prototype we are 1505 // creating now, so that we can match up the body with them later. 1506 if (!isProto) 1507 FunctionsWithBodies.push_back(Func); 1508 break; 1509 } 1510 // ALIAS: [alias type, aliasee val#, linkage] 1511 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1512 case bitc::MODULE_CODE_ALIAS: { 1513 if (Record.size() < 3) 1514 return Error("Invalid MODULE_ALIAS record"); 1515 const Type *Ty = getTypeByID(Record[0]); 1516 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1517 if (!Ty->isPointerTy()) 1518 return Error("Function not a pointer type!"); 1519 1520 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1521 "", 0, TheModule); 1522 // Old bitcode files didn't have visibility field. 1523 if (Record.size() > 3) 1524 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1525 ValueList.push_back(NewGA); 1526 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1527 break; 1528 } 1529 /// MODULE_CODE_PURGEVALS: [numvals] 1530 case bitc::MODULE_CODE_PURGEVALS: 1531 // Trim down the value list to the specified size. 1532 if (Record.size() < 1 || Record[0] > ValueList.size()) 1533 return Error("Invalid MODULE_PURGEVALS record"); 1534 ValueList.shrinkTo(Record[0]); 1535 break; 1536 } 1537 Record.clear(); 1538 } 1539 1540 return Error("Premature end of bitstream"); 1541 } 1542 1543 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1544 TheModule = 0; 1545 1546 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1547 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1548 1549 if (Buffer->getBufferSize() & 3) { 1550 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1551 return Error("Invalid bitcode signature"); 1552 else 1553 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1554 } 1555 1556 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1557 // The magic number is 0x0B17C0DE stored in little endian. 1558 if (isBitcodeWrapper(BufPtr, BufEnd)) 1559 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1560 return Error("Invalid bitcode wrapper header"); 1561 1562 StreamFile.init(BufPtr, BufEnd); 1563 Stream.init(StreamFile); 1564 1565 // Sniff for the signature. 1566 if (Stream.Read(8) != 'B' || 1567 Stream.Read(8) != 'C' || 1568 Stream.Read(4) != 0x0 || 1569 Stream.Read(4) != 0xC || 1570 Stream.Read(4) != 0xE || 1571 Stream.Read(4) != 0xD) 1572 return Error("Invalid bitcode signature"); 1573 1574 // We expect a number of well-defined blocks, though we don't necessarily 1575 // need to understand them all. 1576 while (!Stream.AtEndOfStream()) { 1577 unsigned Code = Stream.ReadCode(); 1578 1579 if (Code != bitc::ENTER_SUBBLOCK) 1580 return Error("Invalid record at top-level"); 1581 1582 unsigned BlockID = Stream.ReadSubBlockID(); 1583 1584 // We only know the MODULE subblock ID. 1585 switch (BlockID) { 1586 case bitc::BLOCKINFO_BLOCK_ID: 1587 if (Stream.ReadBlockInfoBlock()) 1588 return Error("Malformed BlockInfoBlock"); 1589 break; 1590 case bitc::MODULE_BLOCK_ID: 1591 // Reject multiple MODULE_BLOCK's in a single bitstream. 1592 if (TheModule) 1593 return Error("Multiple MODULE_BLOCKs in same stream"); 1594 TheModule = M; 1595 if (ParseModule()) 1596 return true; 1597 break; 1598 default: 1599 if (Stream.SkipBlock()) 1600 return Error("Malformed block record"); 1601 break; 1602 } 1603 } 1604 1605 return false; 1606 } 1607 1608 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1609 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1610 return Error("Malformed block record"); 1611 1612 SmallVector<uint64_t, 64> Record; 1613 1614 // Read all the records for this module. 1615 while (!Stream.AtEndOfStream()) { 1616 unsigned Code = Stream.ReadCode(); 1617 if (Code == bitc::END_BLOCK) { 1618 if (Stream.ReadBlockEnd()) 1619 return Error("Error at end of module block"); 1620 1621 return false; 1622 } 1623 1624 if (Code == bitc::ENTER_SUBBLOCK) { 1625 switch (Stream.ReadSubBlockID()) { 1626 default: // Skip unknown content. 1627 if (Stream.SkipBlock()) 1628 return Error("Malformed block record"); 1629 break; 1630 } 1631 continue; 1632 } 1633 1634 if (Code == bitc::DEFINE_ABBREV) { 1635 Stream.ReadAbbrevRecord(); 1636 continue; 1637 } 1638 1639 // Read a record. 1640 switch (Stream.ReadRecord(Code, Record)) { 1641 default: break; // Default behavior, ignore unknown content. 1642 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1643 if (Record.size() < 1) 1644 return Error("Malformed MODULE_CODE_VERSION"); 1645 // Only version #0 is supported so far. 1646 if (Record[0] != 0) 1647 return Error("Unknown bitstream version!"); 1648 break; 1649 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1650 std::string S; 1651 if (ConvertToString(Record, 0, S)) 1652 return Error("Invalid MODULE_CODE_TRIPLE record"); 1653 Triple = S; 1654 break; 1655 } 1656 } 1657 Record.clear(); 1658 } 1659 1660 return Error("Premature end of bitstream"); 1661 } 1662 1663 bool BitcodeReader::ParseTriple(std::string &Triple) { 1664 if (Buffer->getBufferSize() & 3) 1665 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1666 1667 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1668 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1669 1670 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1671 // The magic number is 0x0B17C0DE stored in little endian. 1672 if (isBitcodeWrapper(BufPtr, BufEnd)) 1673 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1674 return Error("Invalid bitcode wrapper header"); 1675 1676 StreamFile.init(BufPtr, BufEnd); 1677 Stream.init(StreamFile); 1678 1679 // Sniff for the signature. 1680 if (Stream.Read(8) != 'B' || 1681 Stream.Read(8) != 'C' || 1682 Stream.Read(4) != 0x0 || 1683 Stream.Read(4) != 0xC || 1684 Stream.Read(4) != 0xE || 1685 Stream.Read(4) != 0xD) 1686 return Error("Invalid bitcode signature"); 1687 1688 // We expect a number of well-defined blocks, though we don't necessarily 1689 // need to understand them all. 1690 while (!Stream.AtEndOfStream()) { 1691 unsigned Code = Stream.ReadCode(); 1692 1693 if (Code != bitc::ENTER_SUBBLOCK) 1694 return Error("Invalid record at top-level"); 1695 1696 unsigned BlockID = Stream.ReadSubBlockID(); 1697 1698 // We only know the MODULE subblock ID. 1699 switch (BlockID) { 1700 case bitc::MODULE_BLOCK_ID: 1701 if (ParseModuleTriple(Triple)) 1702 return true; 1703 break; 1704 default: 1705 if (Stream.SkipBlock()) 1706 return Error("Malformed block record"); 1707 break; 1708 } 1709 } 1710 1711 return false; 1712 } 1713 1714 /// ParseMetadataAttachment - Parse metadata attachments. 1715 bool BitcodeReader::ParseMetadataAttachment() { 1716 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1717 return Error("Malformed block record"); 1718 1719 SmallVector<uint64_t, 64> Record; 1720 while(1) { 1721 unsigned Code = Stream.ReadCode(); 1722 if (Code == bitc::END_BLOCK) { 1723 if (Stream.ReadBlockEnd()) 1724 return Error("Error at end of PARAMATTR block"); 1725 break; 1726 } 1727 if (Code == bitc::DEFINE_ABBREV) { 1728 Stream.ReadAbbrevRecord(); 1729 continue; 1730 } 1731 // Read a metadata attachment record. 1732 Record.clear(); 1733 switch (Stream.ReadRecord(Code, Record)) { 1734 default: // Default behavior: ignore. 1735 break; 1736 // FIXME: Remove in LLVM 3.0. 1737 case bitc::METADATA_ATTACHMENT: 1738 LLVM2_7MetadataDetected = true; 1739 case bitc::METADATA_ATTACHMENT2: { 1740 unsigned RecordLength = Record.size(); 1741 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1742 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1743 Instruction *Inst = InstructionList[Record[0]]; 1744 for (unsigned i = 1; i != RecordLength; i = i+2) { 1745 unsigned Kind = Record[i]; 1746 DenseMap<unsigned, unsigned>::iterator I = 1747 MDKindMap.find(Kind); 1748 if (I == MDKindMap.end()) 1749 return Error("Invalid metadata kind ID"); 1750 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1751 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1752 } 1753 break; 1754 } 1755 } 1756 } 1757 return false; 1758 } 1759 1760 /// ParseFunctionBody - Lazily parse the specified function body block. 1761 bool BitcodeReader::ParseFunctionBody(Function *F) { 1762 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1763 return Error("Malformed block record"); 1764 1765 InstructionList.clear(); 1766 unsigned ModuleValueListSize = ValueList.size(); 1767 unsigned ModuleMDValueListSize = MDValueList.size(); 1768 1769 // Add all the function arguments to the value table. 1770 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1771 ValueList.push_back(I); 1772 1773 unsigned NextValueNo = ValueList.size(); 1774 BasicBlock *CurBB = 0; 1775 unsigned CurBBNo = 0; 1776 1777 DebugLoc LastLoc; 1778 1779 // Read all the records. 1780 SmallVector<uint64_t, 64> Record; 1781 while (1) { 1782 unsigned Code = Stream.ReadCode(); 1783 if (Code == bitc::END_BLOCK) { 1784 if (Stream.ReadBlockEnd()) 1785 return Error("Error at end of function block"); 1786 break; 1787 } 1788 1789 if (Code == bitc::ENTER_SUBBLOCK) { 1790 switch (Stream.ReadSubBlockID()) { 1791 default: // Skip unknown content. 1792 if (Stream.SkipBlock()) 1793 return Error("Malformed block record"); 1794 break; 1795 case bitc::CONSTANTS_BLOCK_ID: 1796 if (ParseConstants()) return true; 1797 NextValueNo = ValueList.size(); 1798 break; 1799 case bitc::VALUE_SYMTAB_BLOCK_ID: 1800 if (ParseValueSymbolTable()) return true; 1801 break; 1802 case bitc::METADATA_ATTACHMENT_ID: 1803 if (ParseMetadataAttachment()) return true; 1804 break; 1805 case bitc::METADATA_BLOCK_ID: 1806 if (ParseMetadata()) return true; 1807 break; 1808 } 1809 continue; 1810 } 1811 1812 if (Code == bitc::DEFINE_ABBREV) { 1813 Stream.ReadAbbrevRecord(); 1814 continue; 1815 } 1816 1817 // Read a record. 1818 Record.clear(); 1819 Instruction *I = 0; 1820 unsigned BitCode = Stream.ReadRecord(Code, Record); 1821 switch (BitCode) { 1822 default: // Default behavior: reject 1823 return Error("Unknown instruction"); 1824 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1825 if (Record.size() < 1 || Record[0] == 0) 1826 return Error("Invalid DECLAREBLOCKS record"); 1827 // Create all the basic blocks for the function. 1828 FunctionBBs.resize(Record[0]); 1829 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1830 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1831 CurBB = FunctionBBs[0]; 1832 continue; 1833 1834 1835 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1836 // This record indicates that the last instruction is at the same 1837 // location as the previous instruction with a location. 1838 I = 0; 1839 1840 // Get the last instruction emitted. 1841 if (CurBB && !CurBB->empty()) 1842 I = &CurBB->back(); 1843 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1844 !FunctionBBs[CurBBNo-1]->empty()) 1845 I = &FunctionBBs[CurBBNo-1]->back(); 1846 1847 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1848 I->setDebugLoc(LastLoc); 1849 I = 0; 1850 continue; 1851 1852 // FIXME: Remove this in LLVM 3.0. 1853 case bitc::FUNC_CODE_DEBUG_LOC: 1854 LLVM2_7MetadataDetected = true; 1855 case bitc::FUNC_CODE_DEBUG_LOC2: { // DEBUG_LOC: [line, col, scope, ia] 1856 I = 0; // Get the last instruction emitted. 1857 if (CurBB && !CurBB->empty()) 1858 I = &CurBB->back(); 1859 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1860 !FunctionBBs[CurBBNo-1]->empty()) 1861 I = &FunctionBBs[CurBBNo-1]->back(); 1862 if (I == 0 || Record.size() < 4) 1863 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1864 1865 unsigned Line = Record[0], Col = Record[1]; 1866 unsigned ScopeID = Record[2], IAID = Record[3]; 1867 1868 MDNode *Scope = 0, *IA = 0; 1869 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1870 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1871 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1872 I->setDebugLoc(LastLoc); 1873 I = 0; 1874 continue; 1875 } 1876 1877 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1878 unsigned OpNum = 0; 1879 Value *LHS, *RHS; 1880 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1881 getValue(Record, OpNum, LHS->getType(), RHS) || 1882 OpNum+1 > Record.size()) 1883 return Error("Invalid BINOP record"); 1884 1885 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1886 if (Opc == -1) return Error("Invalid BINOP record"); 1887 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1888 InstructionList.push_back(I); 1889 if (OpNum < Record.size()) { 1890 if (Opc == Instruction::Add || 1891 Opc == Instruction::Sub || 1892 Opc == Instruction::Mul) { 1893 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1894 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1895 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1896 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1897 } else if (Opc == Instruction::SDiv) { 1898 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1899 cast<BinaryOperator>(I)->setIsExact(true); 1900 } 1901 } 1902 break; 1903 } 1904 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1905 unsigned OpNum = 0; 1906 Value *Op; 1907 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1908 OpNum+2 != Record.size()) 1909 return Error("Invalid CAST record"); 1910 1911 const Type *ResTy = getTypeByID(Record[OpNum]); 1912 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1913 if (Opc == -1 || ResTy == 0) 1914 return Error("Invalid CAST record"); 1915 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1916 InstructionList.push_back(I); 1917 break; 1918 } 1919 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1920 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1921 unsigned OpNum = 0; 1922 Value *BasePtr; 1923 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1924 return Error("Invalid GEP record"); 1925 1926 SmallVector<Value*, 16> GEPIdx; 1927 while (OpNum != Record.size()) { 1928 Value *Op; 1929 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1930 return Error("Invalid GEP record"); 1931 GEPIdx.push_back(Op); 1932 } 1933 1934 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1935 InstructionList.push_back(I); 1936 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1937 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1938 break; 1939 } 1940 1941 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1942 // EXTRACTVAL: [opty, opval, n x indices] 1943 unsigned OpNum = 0; 1944 Value *Agg; 1945 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1946 return Error("Invalid EXTRACTVAL record"); 1947 1948 SmallVector<unsigned, 4> EXTRACTVALIdx; 1949 for (unsigned RecSize = Record.size(); 1950 OpNum != RecSize; ++OpNum) { 1951 uint64_t Index = Record[OpNum]; 1952 if ((unsigned)Index != Index) 1953 return Error("Invalid EXTRACTVAL index"); 1954 EXTRACTVALIdx.push_back((unsigned)Index); 1955 } 1956 1957 I = ExtractValueInst::Create(Agg, 1958 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1959 InstructionList.push_back(I); 1960 break; 1961 } 1962 1963 case bitc::FUNC_CODE_INST_INSERTVAL: { 1964 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1965 unsigned OpNum = 0; 1966 Value *Agg; 1967 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1968 return Error("Invalid INSERTVAL record"); 1969 Value *Val; 1970 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1971 return Error("Invalid INSERTVAL record"); 1972 1973 SmallVector<unsigned, 4> INSERTVALIdx; 1974 for (unsigned RecSize = Record.size(); 1975 OpNum != RecSize; ++OpNum) { 1976 uint64_t Index = Record[OpNum]; 1977 if ((unsigned)Index != Index) 1978 return Error("Invalid INSERTVAL index"); 1979 INSERTVALIdx.push_back((unsigned)Index); 1980 } 1981 1982 I = InsertValueInst::Create(Agg, Val, 1983 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1984 InstructionList.push_back(I); 1985 break; 1986 } 1987 1988 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1989 // obsolete form of select 1990 // handles select i1 ... in old bitcode 1991 unsigned OpNum = 0; 1992 Value *TrueVal, *FalseVal, *Cond; 1993 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1994 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1995 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1996 return Error("Invalid SELECT record"); 1997 1998 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1999 InstructionList.push_back(I); 2000 break; 2001 } 2002 2003 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2004 // new form of select 2005 // handles select i1 or select [N x i1] 2006 unsigned OpNum = 0; 2007 Value *TrueVal, *FalseVal, *Cond; 2008 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2009 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2010 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2011 return Error("Invalid SELECT record"); 2012 2013 // select condition can be either i1 or [N x i1] 2014 if (const VectorType* vector_type = 2015 dyn_cast<const VectorType>(Cond->getType())) { 2016 // expect <n x i1> 2017 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2018 return Error("Invalid SELECT condition type"); 2019 } else { 2020 // expect i1 2021 if (Cond->getType() != Type::getInt1Ty(Context)) 2022 return Error("Invalid SELECT condition type"); 2023 } 2024 2025 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2026 InstructionList.push_back(I); 2027 break; 2028 } 2029 2030 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2031 unsigned OpNum = 0; 2032 Value *Vec, *Idx; 2033 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2034 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2035 return Error("Invalid EXTRACTELT record"); 2036 I = ExtractElementInst::Create(Vec, Idx); 2037 InstructionList.push_back(I); 2038 break; 2039 } 2040 2041 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2042 unsigned OpNum = 0; 2043 Value *Vec, *Elt, *Idx; 2044 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2045 getValue(Record, OpNum, 2046 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2047 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2048 return Error("Invalid INSERTELT record"); 2049 I = InsertElementInst::Create(Vec, Elt, Idx); 2050 InstructionList.push_back(I); 2051 break; 2052 } 2053 2054 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2055 unsigned OpNum = 0; 2056 Value *Vec1, *Vec2, *Mask; 2057 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2058 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2059 return Error("Invalid SHUFFLEVEC record"); 2060 2061 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2062 return Error("Invalid SHUFFLEVEC record"); 2063 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2064 InstructionList.push_back(I); 2065 break; 2066 } 2067 2068 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2069 // Old form of ICmp/FCmp returning bool 2070 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2071 // both legal on vectors but had different behaviour. 2072 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2073 // FCmp/ICmp returning bool or vector of bool 2074 2075 unsigned OpNum = 0; 2076 Value *LHS, *RHS; 2077 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2078 getValue(Record, OpNum, LHS->getType(), RHS) || 2079 OpNum+1 != Record.size()) 2080 return Error("Invalid CMP record"); 2081 2082 if (LHS->getType()->isFPOrFPVectorTy()) 2083 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2084 else 2085 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2086 InstructionList.push_back(I); 2087 break; 2088 } 2089 2090 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 2091 if (Record.size() != 2) 2092 return Error("Invalid GETRESULT record"); 2093 unsigned OpNum = 0; 2094 Value *Op; 2095 getValueTypePair(Record, OpNum, NextValueNo, Op); 2096 unsigned Index = Record[1]; 2097 I = ExtractValueInst::Create(Op, Index); 2098 InstructionList.push_back(I); 2099 break; 2100 } 2101 2102 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2103 { 2104 unsigned Size = Record.size(); 2105 if (Size == 0) { 2106 I = ReturnInst::Create(Context); 2107 InstructionList.push_back(I); 2108 break; 2109 } 2110 2111 unsigned OpNum = 0; 2112 SmallVector<Value *,4> Vs; 2113 do { 2114 Value *Op = NULL; 2115 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2116 return Error("Invalid RET record"); 2117 Vs.push_back(Op); 2118 } while(OpNum != Record.size()); 2119 2120 const Type *ReturnType = F->getReturnType(); 2121 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 2122 if (Vs.size() > 1 || 2123 (ReturnType->isStructTy() && 2124 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 2125 Value *RV = UndefValue::get(ReturnType); 2126 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2127 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2128 InstructionList.push_back(I); 2129 CurBB->getInstList().push_back(I); 2130 ValueList.AssignValue(I, NextValueNo++); 2131 RV = I; 2132 } 2133 I = ReturnInst::Create(Context, RV); 2134 InstructionList.push_back(I); 2135 break; 2136 } 2137 2138 I = ReturnInst::Create(Context, Vs[0]); 2139 InstructionList.push_back(I); 2140 break; 2141 } 2142 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2143 if (Record.size() != 1 && Record.size() != 3) 2144 return Error("Invalid BR record"); 2145 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2146 if (TrueDest == 0) 2147 return Error("Invalid BR record"); 2148 2149 if (Record.size() == 1) { 2150 I = BranchInst::Create(TrueDest); 2151 InstructionList.push_back(I); 2152 } 2153 else { 2154 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2155 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2156 if (FalseDest == 0 || Cond == 0) 2157 return Error("Invalid BR record"); 2158 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2159 InstructionList.push_back(I); 2160 } 2161 break; 2162 } 2163 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2164 if (Record.size() < 3 || (Record.size() & 1) == 0) 2165 return Error("Invalid SWITCH record"); 2166 const Type *OpTy = getTypeByID(Record[0]); 2167 Value *Cond = getFnValueByID(Record[1], OpTy); 2168 BasicBlock *Default = getBasicBlock(Record[2]); 2169 if (OpTy == 0 || Cond == 0 || Default == 0) 2170 return Error("Invalid SWITCH record"); 2171 unsigned NumCases = (Record.size()-3)/2; 2172 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2173 InstructionList.push_back(SI); 2174 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2175 ConstantInt *CaseVal = 2176 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2177 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2178 if (CaseVal == 0 || DestBB == 0) { 2179 delete SI; 2180 return Error("Invalid SWITCH record!"); 2181 } 2182 SI->addCase(CaseVal, DestBB); 2183 } 2184 I = SI; 2185 break; 2186 } 2187 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2188 if (Record.size() < 2) 2189 return Error("Invalid INDIRECTBR record"); 2190 const Type *OpTy = getTypeByID(Record[0]); 2191 Value *Address = getFnValueByID(Record[1], OpTy); 2192 if (OpTy == 0 || Address == 0) 2193 return Error("Invalid INDIRECTBR record"); 2194 unsigned NumDests = Record.size()-2; 2195 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2196 InstructionList.push_back(IBI); 2197 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2198 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2199 IBI->addDestination(DestBB); 2200 } else { 2201 delete IBI; 2202 return Error("Invalid INDIRECTBR record!"); 2203 } 2204 } 2205 I = IBI; 2206 break; 2207 } 2208 2209 case bitc::FUNC_CODE_INST_INVOKE: { 2210 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2211 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2212 AttrListPtr PAL = getAttributes(Record[0]); 2213 unsigned CCInfo = Record[1]; 2214 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2215 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2216 2217 unsigned OpNum = 4; 2218 Value *Callee; 2219 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2220 return Error("Invalid INVOKE record"); 2221 2222 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2223 const FunctionType *FTy = !CalleeTy ? 0 : 2224 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2225 2226 // Check that the right number of fixed parameters are here. 2227 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2228 Record.size() < OpNum+FTy->getNumParams()) 2229 return Error("Invalid INVOKE record"); 2230 2231 SmallVector<Value*, 16> Ops; 2232 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2233 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2234 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2235 } 2236 2237 if (!FTy->isVarArg()) { 2238 if (Record.size() != OpNum) 2239 return Error("Invalid INVOKE record"); 2240 } else { 2241 // Read type/value pairs for varargs params. 2242 while (OpNum != Record.size()) { 2243 Value *Op; 2244 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2245 return Error("Invalid INVOKE record"); 2246 Ops.push_back(Op); 2247 } 2248 } 2249 2250 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2251 Ops.begin(), Ops.end()); 2252 InstructionList.push_back(I); 2253 cast<InvokeInst>(I)->setCallingConv( 2254 static_cast<CallingConv::ID>(CCInfo)); 2255 cast<InvokeInst>(I)->setAttributes(PAL); 2256 break; 2257 } 2258 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2259 I = new UnwindInst(Context); 2260 InstructionList.push_back(I); 2261 break; 2262 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2263 I = new UnreachableInst(Context); 2264 InstructionList.push_back(I); 2265 break; 2266 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2267 if (Record.size() < 1 || ((Record.size()-1)&1)) 2268 return Error("Invalid PHI record"); 2269 const Type *Ty = getTypeByID(Record[0]); 2270 if (!Ty) return Error("Invalid PHI record"); 2271 2272 PHINode *PN = PHINode::Create(Ty); 2273 InstructionList.push_back(PN); 2274 PN->reserveOperandSpace((Record.size()-1)/2); 2275 2276 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2277 Value *V = getFnValueByID(Record[1+i], Ty); 2278 BasicBlock *BB = getBasicBlock(Record[2+i]); 2279 if (!V || !BB) return Error("Invalid PHI record"); 2280 PN->addIncoming(V, BB); 2281 } 2282 I = PN; 2283 break; 2284 } 2285 2286 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2287 // Autoupgrade malloc instruction to malloc call. 2288 // FIXME: Remove in LLVM 3.0. 2289 if (Record.size() < 3) 2290 return Error("Invalid MALLOC record"); 2291 const PointerType *Ty = 2292 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2293 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2294 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2295 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2296 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2297 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2298 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2299 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2300 AllocSize, Size, NULL); 2301 InstructionList.push_back(I); 2302 break; 2303 } 2304 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2305 unsigned OpNum = 0; 2306 Value *Op; 2307 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2308 OpNum != Record.size()) 2309 return Error("Invalid FREE record"); 2310 if (!CurBB) return Error("Invalid free instruction with no BB"); 2311 I = CallInst::CreateFree(Op, CurBB); 2312 InstructionList.push_back(I); 2313 break; 2314 } 2315 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2316 // For backward compatibility, tolerate a lack of an opty, and use i32. 2317 // Remove this in LLVM 3.0. 2318 if (Record.size() < 3 || Record.size() > 4) 2319 return Error("Invalid ALLOCA record"); 2320 unsigned OpNum = 0; 2321 const PointerType *Ty = 2322 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2323 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2324 Type::getInt32Ty(Context); 2325 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2326 unsigned Align = Record[OpNum++]; 2327 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2328 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2329 InstructionList.push_back(I); 2330 break; 2331 } 2332 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2333 unsigned OpNum = 0; 2334 Value *Op; 2335 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2336 OpNum+2 != Record.size()) 2337 return Error("Invalid LOAD record"); 2338 2339 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2340 InstructionList.push_back(I); 2341 break; 2342 } 2343 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2344 unsigned OpNum = 0; 2345 Value *Val, *Ptr; 2346 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2347 getValue(Record, OpNum, 2348 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2349 OpNum+2 != Record.size()) 2350 return Error("Invalid STORE record"); 2351 2352 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2353 InstructionList.push_back(I); 2354 break; 2355 } 2356 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2357 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2358 unsigned OpNum = 0; 2359 Value *Val, *Ptr; 2360 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2361 getValue(Record, OpNum, 2362 PointerType::getUnqual(Val->getType()), Ptr)|| 2363 OpNum+2 != Record.size()) 2364 return Error("Invalid STORE record"); 2365 2366 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2367 InstructionList.push_back(I); 2368 break; 2369 } 2370 // FIXME: Remove this in LLVM 3.0. 2371 case bitc::FUNC_CODE_INST_CALL: 2372 LLVM2_7MetadataDetected = true; 2373 case bitc::FUNC_CODE_INST_CALL2: { 2374 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2375 if (Record.size() < 3) 2376 return Error("Invalid CALL record"); 2377 2378 AttrListPtr PAL = getAttributes(Record[0]); 2379 unsigned CCInfo = Record[1]; 2380 2381 unsigned OpNum = 2; 2382 Value *Callee; 2383 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2384 return Error("Invalid CALL record"); 2385 2386 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2387 const FunctionType *FTy = 0; 2388 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2389 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2390 return Error("Invalid CALL record"); 2391 2392 SmallVector<Value*, 16> Args; 2393 // Read the fixed params. 2394 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2395 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2396 Args.push_back(getBasicBlock(Record[OpNum])); 2397 else 2398 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2399 if (Args.back() == 0) return Error("Invalid CALL record"); 2400 } 2401 2402 // Read type/value pairs for varargs params. 2403 if (!FTy->isVarArg()) { 2404 if (OpNum != Record.size()) 2405 return Error("Invalid CALL record"); 2406 } else { 2407 while (OpNum != Record.size()) { 2408 Value *Op; 2409 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2410 return Error("Invalid CALL record"); 2411 Args.push_back(Op); 2412 } 2413 } 2414 2415 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2416 InstructionList.push_back(I); 2417 cast<CallInst>(I)->setCallingConv( 2418 static_cast<CallingConv::ID>(CCInfo>>1)); 2419 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2420 cast<CallInst>(I)->setAttributes(PAL); 2421 break; 2422 } 2423 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2424 if (Record.size() < 3) 2425 return Error("Invalid VAARG record"); 2426 const Type *OpTy = getTypeByID(Record[0]); 2427 Value *Op = getFnValueByID(Record[1], OpTy); 2428 const Type *ResTy = getTypeByID(Record[2]); 2429 if (!OpTy || !Op || !ResTy) 2430 return Error("Invalid VAARG record"); 2431 I = new VAArgInst(Op, ResTy); 2432 InstructionList.push_back(I); 2433 break; 2434 } 2435 } 2436 2437 // Add instruction to end of current BB. If there is no current BB, reject 2438 // this file. 2439 if (CurBB == 0) { 2440 delete I; 2441 return Error("Invalid instruction with no BB"); 2442 } 2443 CurBB->getInstList().push_back(I); 2444 2445 // If this was a terminator instruction, move to the next block. 2446 if (isa<TerminatorInst>(I)) { 2447 ++CurBBNo; 2448 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2449 } 2450 2451 // Non-void values get registered in the value table for future use. 2452 if (I && !I->getType()->isVoidTy()) 2453 ValueList.AssignValue(I, NextValueNo++); 2454 } 2455 2456 // Check the function list for unresolved values. 2457 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2458 if (A->getParent() == 0) { 2459 // We found at least one unresolved value. Nuke them all to avoid leaks. 2460 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2461 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2462 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2463 delete A; 2464 } 2465 } 2466 return Error("Never resolved value found in function!"); 2467 } 2468 } 2469 2470 // FIXME: Check for unresolved forward-declared metadata references 2471 // and clean up leaks. 2472 2473 // See if anything took the address of blocks in this function. If so, 2474 // resolve them now. 2475 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2476 BlockAddrFwdRefs.find(F); 2477 if (BAFRI != BlockAddrFwdRefs.end()) { 2478 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2479 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2480 unsigned BlockIdx = RefList[i].first; 2481 if (BlockIdx >= FunctionBBs.size()) 2482 return Error("Invalid blockaddress block #"); 2483 2484 GlobalVariable *FwdRef = RefList[i].second; 2485 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2486 FwdRef->eraseFromParent(); 2487 } 2488 2489 BlockAddrFwdRefs.erase(BAFRI); 2490 } 2491 2492 // FIXME: Remove this in LLVM 3.0. 2493 unsigned NewMDValueListSize = MDValueList.size(); 2494 2495 // Trim the value list down to the size it was before we parsed this function. 2496 ValueList.shrinkTo(ModuleValueListSize); 2497 MDValueList.shrinkTo(ModuleMDValueListSize); 2498 2499 // Backwards compatibility hack: Function-local metadata numbers 2500 // were previously not reset between functions. This is now fixed, 2501 // however we still need to understand the old numbering in order 2502 // to be able to read old bitcode files. 2503 // FIXME: Remove this in LLVM 3.0. 2504 if (LLVM2_7MetadataDetected) 2505 MDValueList.resize(NewMDValueListSize); 2506 2507 std::vector<BasicBlock*>().swap(FunctionBBs); 2508 2509 return false; 2510 } 2511 2512 //===----------------------------------------------------------------------===// 2513 // GVMaterializer implementation 2514 //===----------------------------------------------------------------------===// 2515 2516 2517 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2518 if (const Function *F = dyn_cast<Function>(GV)) { 2519 return F->isDeclaration() && 2520 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2521 } 2522 return false; 2523 } 2524 2525 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2526 Function *F = dyn_cast<Function>(GV); 2527 // If it's not a function or is already material, ignore the request. 2528 if (!F || !F->isMaterializable()) return false; 2529 2530 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2531 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2532 2533 // Move the bit stream to the saved position of the deferred function body. 2534 Stream.JumpToBit(DFII->second); 2535 2536 if (ParseFunctionBody(F)) { 2537 if (ErrInfo) *ErrInfo = ErrorString; 2538 return true; 2539 } 2540 2541 // Upgrade any old intrinsic calls in the function. 2542 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2543 E = UpgradedIntrinsics.end(); I != E; ++I) { 2544 if (I->first != I->second) { 2545 for (Value::use_iterator UI = I->first->use_begin(), 2546 UE = I->first->use_end(); UI != UE; ) { 2547 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2548 UpgradeIntrinsicCall(CI, I->second); 2549 } 2550 } 2551 } 2552 2553 return false; 2554 } 2555 2556 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2557 const Function *F = dyn_cast<Function>(GV); 2558 if (!F || F->isDeclaration()) 2559 return false; 2560 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2561 } 2562 2563 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2564 Function *F = dyn_cast<Function>(GV); 2565 // If this function isn't dematerializable, this is a noop. 2566 if (!F || !isDematerializable(F)) 2567 return; 2568 2569 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2570 2571 // Just forget the function body, we can remat it later. 2572 F->deleteBody(); 2573 } 2574 2575 2576 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2577 assert(M == TheModule && 2578 "Can only Materialize the Module this BitcodeReader is attached to."); 2579 // Iterate over the module, deserializing any functions that are still on 2580 // disk. 2581 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2582 F != E; ++F) 2583 if (F->isMaterializable() && 2584 Materialize(F, ErrInfo)) 2585 return true; 2586 2587 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2588 // delete the old functions to clean up. We can't do this unless the entire 2589 // module is materialized because there could always be another function body 2590 // with calls to the old function. 2591 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2592 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2593 if (I->first != I->second) { 2594 for (Value::use_iterator UI = I->first->use_begin(), 2595 UE = I->first->use_end(); UI != UE; ) { 2596 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2597 UpgradeIntrinsicCall(CI, I->second); 2598 } 2599 if (!I->first->use_empty()) 2600 I->first->replaceAllUsesWith(I->second); 2601 I->first->eraseFromParent(); 2602 } 2603 } 2604 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2605 2606 // Check debug info intrinsics. 2607 CheckDebugInfoIntrinsics(TheModule); 2608 2609 return false; 2610 } 2611 2612 2613 //===----------------------------------------------------------------------===// 2614 // External interface 2615 //===----------------------------------------------------------------------===// 2616 2617 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2618 /// 2619 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2620 LLVMContext& Context, 2621 std::string *ErrMsg) { 2622 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2623 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2624 M->setMaterializer(R); 2625 if (R->ParseBitcodeInto(M)) { 2626 if (ErrMsg) 2627 *ErrMsg = R->getErrorString(); 2628 2629 delete M; // Also deletes R. 2630 return 0; 2631 } 2632 // Have the BitcodeReader dtor delete 'Buffer'. 2633 R->setBufferOwned(true); 2634 return M; 2635 } 2636 2637 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2638 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2639 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2640 std::string *ErrMsg){ 2641 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2642 if (!M) return 0; 2643 2644 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2645 // there was an error. 2646 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2647 2648 // Read in the entire module, and destroy the BitcodeReader. 2649 if (M->MaterializeAllPermanently(ErrMsg)) { 2650 delete M; 2651 return 0; 2652 } 2653 2654 return M; 2655 } 2656 2657 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2658 LLVMContext& Context, 2659 std::string *ErrMsg) { 2660 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2661 // Don't let the BitcodeReader dtor delete 'Buffer'. 2662 R->setBufferOwned(false); 2663 2664 std::string Triple(""); 2665 if (R->ParseTriple(Triple)) 2666 if (ErrMsg) 2667 *ErrMsg = R->getErrorString(); 2668 2669 delete R; 2670 return Triple; 2671 } 2672