xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 80ec0ebfdc5692a58e0832125f2c6a991df9d63f)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 namespace {
98 
99 enum {
100   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
101 };
102 
103 } // end anonymous namespace
104 
105 static Error error(const Twine &Message) {
106   return make_error<StringError>(
107       Message, make_error_code(BitcodeError::CorruptedBitcode));
108 }
109 
110 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
111   if (!Stream.canSkipToPos(4))
112     return createStringError(std::errc::illegal_byte_sequence,
113                              "file too small to contain bitcode header");
114   for (unsigned C : {'B', 'C'})
115     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
116       if (Res.get() != C)
117         return createStringError(std::errc::illegal_byte_sequence,
118                                  "file doesn't start with bitcode header");
119     } else
120       return Res.takeError();
121   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
122     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
123       if (Res.get() != C)
124         return createStringError(std::errc::illegal_byte_sequence,
125                                  "file doesn't start with bitcode header");
126     } else
127       return Res.takeError();
128   return Error::success();
129 }
130 
131 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
132   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
133   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
134 
135   if (Buffer.getBufferSize() & 3)
136     return error("Invalid bitcode signature");
137 
138   // If we have a wrapper header, parse it and ignore the non-bc file contents.
139   // The magic number is 0x0B17C0DE stored in little endian.
140   if (isBitcodeWrapper(BufPtr, BufEnd))
141     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
142       return error("Invalid bitcode wrapper header");
143 
144   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
145   if (Error Err = hasInvalidBitcodeHeader(Stream))
146     return std::move(Err);
147 
148   return std::move(Stream);
149 }
150 
151 /// Convert a string from a record into an std::string, return true on failure.
152 template <typename StrTy>
153 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
154                             StrTy &Result) {
155   if (Idx > Record.size())
156     return true;
157 
158   Result.append(Record.begin() + Idx, Record.end());
159   return false;
160 }
161 
162 // Strip all the TBAA attachment for the module.
163 static void stripTBAA(Module *M) {
164   for (auto &F : *M) {
165     if (F.isMaterializable())
166       continue;
167     for (auto &I : instructions(F))
168       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
169   }
170 }
171 
172 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
173 /// "epoch" encoded in the bitcode, and return the producer name if any.
174 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
175   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
176     return std::move(Err);
177 
178   // Read all the records.
179   SmallVector<uint64_t, 64> Record;
180 
181   std::string ProducerIdentification;
182 
183   while (true) {
184     BitstreamEntry Entry;
185     if (Error E = Stream.advance().moveInto(Entry))
186       return std::move(E);
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Error E = Stream.advance().moveInto(Entry))
231       return std::move(E);
232 
233     switch (Entry.Kind) {
234     case BitstreamEntry::EndBlock:
235     case BitstreamEntry::Error:
236       return error("Malformed block");
237 
238     case BitstreamEntry::SubBlock:
239       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
240         return readIdentificationBlock(Stream);
241 
242       // Ignore other sub-blocks.
243       if (Error Err = Stream.SkipBlock())
244         return std::move(Err);
245       continue;
246     case BitstreamEntry::Record:
247       if (Error E = Stream.skipRecord(Entry.ID).takeError())
248         return std::move(E);
249       continue;
250     }
251   }
252 }
253 
254 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
255   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
256     return std::move(Err);
257 
258   SmallVector<uint64_t, 64> Record;
259   // Read all the records for this module.
260 
261   while (true) {
262     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
263     if (!MaybeEntry)
264       return MaybeEntry.takeError();
265     BitstreamEntry Entry = MaybeEntry.get();
266 
267     switch (Entry.Kind) {
268     case BitstreamEntry::SubBlock: // Handled for us already.
269     case BitstreamEntry::Error:
270       return error("Malformed block");
271     case BitstreamEntry::EndBlock:
272       return false;
273     case BitstreamEntry::Record:
274       // The interesting case.
275       break;
276     }
277 
278     // Read a record.
279     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
280     if (!MaybeRecord)
281       return MaybeRecord.takeError();
282     switch (MaybeRecord.get()) {
283     default:
284       break; // Default behavior, ignore unknown content.
285     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
286       std::string S;
287       if (convertToString(Record, 0, S))
288         return error("Invalid section name record");
289       // Check for the i386 and other (x86_64, ARM) conventions
290       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
291           S.find("__OBJC,__category") != std::string::npos)
292         return true;
293       break;
294     }
295     }
296     Record.clear();
297   }
298   llvm_unreachable("Exit infinite loop");
299 }
300 
301 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
302   // We expect a number of well-defined blocks, though we don't necessarily
303   // need to understand them all.
304   while (true) {
305     BitstreamEntry Entry;
306     if (Error E = Stream.advance().moveInto(Entry))
307       return std::move(E);
308 
309     switch (Entry.Kind) {
310     case BitstreamEntry::Error:
311       return error("Malformed block");
312     case BitstreamEntry::EndBlock:
313       return false;
314 
315     case BitstreamEntry::SubBlock:
316       if (Entry.ID == bitc::MODULE_BLOCK_ID)
317         return hasObjCCategoryInModule(Stream);
318 
319       // Ignore other sub-blocks.
320       if (Error Err = Stream.SkipBlock())
321         return std::move(Err);
322       continue;
323 
324     case BitstreamEntry::Record:
325       if (Error E = Stream.skipRecord(Entry.ID).takeError())
326         return std::move(E);
327       continue;
328     }
329   }
330 }
331 
332 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
333   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
334     return std::move(Err);
335 
336   SmallVector<uint64_t, 64> Record;
337 
338   std::string Triple;
339 
340   // Read all the records for this module.
341   while (true) {
342     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
343     if (!MaybeEntry)
344       return MaybeEntry.takeError();
345     BitstreamEntry Entry = MaybeEntry.get();
346 
347     switch (Entry.Kind) {
348     case BitstreamEntry::SubBlock: // Handled for us already.
349     case BitstreamEntry::Error:
350       return error("Malformed block");
351     case BitstreamEntry::EndBlock:
352       return Triple;
353     case BitstreamEntry::Record:
354       // The interesting case.
355       break;
356     }
357 
358     // Read a record.
359     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
360     if (!MaybeRecord)
361       return MaybeRecord.takeError();
362     switch (MaybeRecord.get()) {
363     default: break;  // Default behavior, ignore unknown content.
364     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
365       std::string S;
366       if (convertToString(Record, 0, S))
367         return error("Invalid triple record");
368       Triple = S;
369       break;
370     }
371     }
372     Record.clear();
373   }
374   llvm_unreachable("Exit infinite loop");
375 }
376 
377 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
378   // We expect a number of well-defined blocks, though we don't necessarily
379   // need to understand them all.
380   while (true) {
381     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
382     if (!MaybeEntry)
383       return MaybeEntry.takeError();
384     BitstreamEntry Entry = MaybeEntry.get();
385 
386     switch (Entry.Kind) {
387     case BitstreamEntry::Error:
388       return error("Malformed block");
389     case BitstreamEntry::EndBlock:
390       return "";
391 
392     case BitstreamEntry::SubBlock:
393       if (Entry.ID == bitc::MODULE_BLOCK_ID)
394         return readModuleTriple(Stream);
395 
396       // Ignore other sub-blocks.
397       if (Error Err = Stream.SkipBlock())
398         return std::move(Err);
399       continue;
400 
401     case BitstreamEntry::Record:
402       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
403         continue;
404       else
405         return Skipped.takeError();
406     }
407   }
408 }
409 
410 namespace {
411 
412 class BitcodeReaderBase {
413 protected:
414   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
415       : Stream(std::move(Stream)), Strtab(Strtab) {
416     this->Stream.setBlockInfo(&BlockInfo);
417   }
418 
419   BitstreamBlockInfo BlockInfo;
420   BitstreamCursor Stream;
421   StringRef Strtab;
422 
423   /// In version 2 of the bitcode we store names of global values and comdats in
424   /// a string table rather than in the VST.
425   bool UseStrtab = false;
426 
427   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
428 
429   /// If this module uses a string table, pop the reference to the string table
430   /// and return the referenced string and the rest of the record. Otherwise
431   /// just return the record itself.
432   std::pair<StringRef, ArrayRef<uint64_t>>
433   readNameFromStrtab(ArrayRef<uint64_t> Record);
434 
435   Error readBlockInfo();
436 
437   // Contains an arbitrary and optional string identifying the bitcode producer
438   std::string ProducerIdentification;
439 
440   Error error(const Twine &Message);
441 };
442 
443 } // end anonymous namespace
444 
445 Error BitcodeReaderBase::error(const Twine &Message) {
446   std::string FullMsg = Message.str();
447   if (!ProducerIdentification.empty())
448     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
449                LLVM_VERSION_STRING "')";
450   return ::error(FullMsg);
451 }
452 
453 Expected<unsigned>
454 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
455   if (Record.empty())
456     return error("Invalid version record");
457   unsigned ModuleVersion = Record[0];
458   if (ModuleVersion > 2)
459     return error("Invalid value");
460   UseStrtab = ModuleVersion >= 2;
461   return ModuleVersion;
462 }
463 
464 std::pair<StringRef, ArrayRef<uint64_t>>
465 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
466   if (!UseStrtab)
467     return {"", Record};
468   // Invalid reference. Let the caller complain about the record being empty.
469   if (Record[0] + Record[1] > Strtab.size())
470     return {"", {}};
471   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
472 }
473 
474 namespace {
475 
476 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
477   LLVMContext &Context;
478   Module *TheModule = nullptr;
479   // Next offset to start scanning for lazy parsing of function bodies.
480   uint64_t NextUnreadBit = 0;
481   // Last function offset found in the VST.
482   uint64_t LastFunctionBlockBit = 0;
483   bool SeenValueSymbolTable = false;
484   uint64_t VSTOffset = 0;
485 
486   std::vector<std::string> SectionTable;
487   std::vector<std::string> GCTable;
488 
489   std::vector<Type *> TypeList;
490   /// Track type IDs of contained types. Order is the same as the contained
491   /// types of a Type*. This is used during upgrades of typed pointer IR in
492   /// opaque pointer mode.
493   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
494   /// In some cases, we need to create a type ID for a type that was not
495   /// explicitly encoded in the bitcode, or we don't know about at the current
496   /// point. For example, a global may explicitly encode the value type ID, but
497   /// not have a type ID for the pointer to value type, for which we create a
498   /// virtual type ID instead. This map stores the new type ID that was created
499   /// for the given pair of Type and contained type ID.
500   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
501   DenseMap<Function *, unsigned> FunctionTypeIDs;
502   BitcodeReaderValueList ValueList;
503   Optional<MetadataLoader> MDLoader;
504   std::vector<Comdat *> ComdatList;
505   DenseSet<GlobalObject *> ImplicitComdatObjects;
506   SmallVector<Instruction *, 64> InstructionList;
507 
508   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
509   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
510 
511   struct FunctionOperandInfo {
512     Function *F;
513     unsigned PersonalityFn;
514     unsigned Prefix;
515     unsigned Prologue;
516   };
517   std::vector<FunctionOperandInfo> FunctionOperands;
518 
519   /// The set of attributes by index.  Index zero in the file is for null, and
520   /// is thus not represented here.  As such all indices are off by one.
521   std::vector<AttributeList> MAttributes;
522 
523   /// The set of attribute groups.
524   std::map<unsigned, AttributeList> MAttributeGroups;
525 
526   /// While parsing a function body, this is a list of the basic blocks for the
527   /// function.
528   std::vector<BasicBlock*> FunctionBBs;
529 
530   // When reading the module header, this list is populated with functions that
531   // have bodies later in the file.
532   std::vector<Function*> FunctionsWithBodies;
533 
534   // When intrinsic functions are encountered which require upgrading they are
535   // stored here with their replacement function.
536   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
537   UpdatedIntrinsicMap UpgradedIntrinsics;
538   // Intrinsics which were remangled because of types rename
539   UpdatedIntrinsicMap RemangledIntrinsics;
540 
541   // Several operations happen after the module header has been read, but
542   // before function bodies are processed. This keeps track of whether
543   // we've done this yet.
544   bool SeenFirstFunctionBody = false;
545 
546   /// When function bodies are initially scanned, this map contains info about
547   /// where to find deferred function body in the stream.
548   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
549 
550   /// When Metadata block is initially scanned when parsing the module, we may
551   /// choose to defer parsing of the metadata. This vector contains info about
552   /// which Metadata blocks are deferred.
553   std::vector<uint64_t> DeferredMetadataInfo;
554 
555   /// These are basic blocks forward-referenced by block addresses.  They are
556   /// inserted lazily into functions when they're loaded.  The basic block ID is
557   /// its index into the vector.
558   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
559   std::deque<Function *> BasicBlockFwdRefQueue;
560 
561   /// Indicates that we are using a new encoding for instruction operands where
562   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
563   /// instruction number, for a more compact encoding.  Some instruction
564   /// operands are not relative to the instruction ID: basic block numbers, and
565   /// types. Once the old style function blocks have been phased out, we would
566   /// not need this flag.
567   bool UseRelativeIDs = false;
568 
569   /// True if all functions will be materialized, negating the need to process
570   /// (e.g.) blockaddress forward references.
571   bool WillMaterializeAllForwardRefs = false;
572 
573   bool StripDebugInfo = false;
574   TBAAVerifier TBAAVerifyHelper;
575 
576   std::vector<std::string> BundleTags;
577   SmallVector<SyncScope::ID, 8> SSIDs;
578 
579 public:
580   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
581                 StringRef ProducerIdentification, LLVMContext &Context);
582 
583   Error materializeForwardReferencedFunctions();
584 
585   Error materialize(GlobalValue *GV) override;
586   Error materializeModule() override;
587   std::vector<StructType *> getIdentifiedStructTypes() const override;
588 
589   /// Main interface to parsing a bitcode buffer.
590   /// \returns true if an error occurred.
591   Error parseBitcodeInto(
592       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
593       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
594 
595   static uint64_t decodeSignRotatedValue(uint64_t V);
596 
597   /// Materialize any deferred Metadata block.
598   Error materializeMetadata() override;
599 
600   void setStripDebugInfo() override;
601 
602 private:
603   std::vector<StructType *> IdentifiedStructTypes;
604   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
605   StructType *createIdentifiedStructType(LLVMContext &Context);
606 
607   static constexpr unsigned InvalidTypeID = ~0u;
608 
609   Type *getTypeByID(unsigned ID);
610   Type *getPtrElementTypeByID(unsigned ID);
611   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
612   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
613 
614   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) {
615     if (Ty && Ty->isMetadataTy())
616       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
617     return ValueList.getValueFwdRef(ID, Ty, TyID);
618   }
619 
620   Metadata *getFnMetadataByID(unsigned ID) {
621     return MDLoader->getMetadataFwdRefOrLoad(ID);
622   }
623 
624   BasicBlock *getBasicBlock(unsigned ID) const {
625     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
626     return FunctionBBs[ID];
627   }
628 
629   AttributeList getAttributes(unsigned i) const {
630     if (i-1 < MAttributes.size())
631       return MAttributes[i-1];
632     return AttributeList();
633   }
634 
635   /// Read a value/type pair out of the specified record from slot 'Slot'.
636   /// Increment Slot past the number of slots used in the record. Return true on
637   /// failure.
638   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
639                         unsigned InstNum, Value *&ResVal, unsigned &TypeID) {
640     if (Slot == Record.size()) return true;
641     unsigned ValNo = (unsigned)Record[Slot++];
642     // Adjust the ValNo, if it was encoded relative to the InstNum.
643     if (UseRelativeIDs)
644       ValNo = InstNum - ValNo;
645     if (ValNo < InstNum) {
646       // If this is not a forward reference, just return the value we already
647       // have.
648       TypeID = ValueList.getTypeID(ValNo);
649       ResVal = getFnValueByID(ValNo, nullptr, TypeID);
650       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
651              "Incorrect type ID stored for value");
652       return ResVal == nullptr;
653     }
654     if (Slot == Record.size())
655       return true;
656 
657     TypeID = (unsigned)Record[Slot++];
658     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID);
659     return ResVal == nullptr;
660   }
661 
662   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
663   /// past the number of slots used by the value in the record. Return true if
664   /// there is an error.
665   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
666                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) {
667     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal))
668       return true;
669     // All values currently take a single record slot.
670     ++Slot;
671     return false;
672   }
673 
674   /// Like popValue, but does not increment the Slot number.
675   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676                 unsigned InstNum, Type *Ty, unsigned TyID,  Value *&ResVal) {
677     ResVal = getValue(Record, Slot, InstNum, Ty, TyID);
678     return ResVal == nullptr;
679   }
680 
681   /// Version of getValue that returns ResVal directly, or 0 if there is an
682   /// error.
683   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
684                   unsigned InstNum, Type *Ty, unsigned TyID) {
685     if (Slot == Record.size()) return nullptr;
686     unsigned ValNo = (unsigned)Record[Slot];
687     // Adjust the ValNo, if it was encoded relative to the InstNum.
688     if (UseRelativeIDs)
689       ValNo = InstNum - ValNo;
690     return getFnValueByID(ValNo, Ty, TyID);
691   }
692 
693   /// Like getValue, but decodes signed VBRs.
694   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
695                         unsigned InstNum, Type *Ty, unsigned TyID) {
696     if (Slot == Record.size()) return nullptr;
697     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
698     // Adjust the ValNo, if it was encoded relative to the InstNum.
699     if (UseRelativeIDs)
700       ValNo = InstNum - ValNo;
701     return getFnValueByID(ValNo, Ty, TyID);
702   }
703 
704   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
705   /// corresponding argument's pointee type. Also upgrades intrinsics that now
706   /// require an elementtype attribute.
707   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
708 
709   /// Converts alignment exponent (i.e. power of two (or zero)) to the
710   /// corresponding alignment to use. If alignment is too large, returns
711   /// a corresponding error code.
712   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
713   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
714   Error parseModule(
715       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
716       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
717 
718   Error parseComdatRecord(ArrayRef<uint64_t> Record);
719   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
720   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
721   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
722                                         ArrayRef<uint64_t> Record);
723 
724   Error parseAttributeBlock();
725   Error parseAttributeGroupBlock();
726   Error parseTypeTable();
727   Error parseTypeTableBody();
728   Error parseOperandBundleTags();
729   Error parseSyncScopeNames();
730 
731   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
732                                 unsigned NameIndex, Triple &TT);
733   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
734                                ArrayRef<uint64_t> Record);
735   Error parseValueSymbolTable(uint64_t Offset = 0);
736   Error parseGlobalValueSymbolTable();
737   Error parseConstants();
738   Error rememberAndSkipFunctionBodies();
739   Error rememberAndSkipFunctionBody();
740   /// Save the positions of the Metadata blocks and skip parsing the blocks.
741   Error rememberAndSkipMetadata();
742   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
743   Error parseFunctionBody(Function *F);
744   Error globalCleanup();
745   Error resolveGlobalAndIndirectSymbolInits();
746   Error parseUseLists();
747   Error findFunctionInStream(
748       Function *F,
749       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
750 
751   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
752 };
753 
754 /// Class to manage reading and parsing function summary index bitcode
755 /// files/sections.
756 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
757   /// The module index built during parsing.
758   ModuleSummaryIndex &TheIndex;
759 
760   /// Indicates whether we have encountered a global value summary section
761   /// yet during parsing.
762   bool SeenGlobalValSummary = false;
763 
764   /// Indicates whether we have already parsed the VST, used for error checking.
765   bool SeenValueSymbolTable = false;
766 
767   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
768   /// Used to enable on-demand parsing of the VST.
769   uint64_t VSTOffset = 0;
770 
771   // Map to save ValueId to ValueInfo association that was recorded in the
772   // ValueSymbolTable. It is used after the VST is parsed to convert
773   // call graph edges read from the function summary from referencing
774   // callees by their ValueId to using the ValueInfo instead, which is how
775   // they are recorded in the summary index being built.
776   // We save a GUID which refers to the same global as the ValueInfo, but
777   // ignoring the linkage, i.e. for values other than local linkage they are
778   // identical.
779   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
780       ValueIdToValueInfoMap;
781 
782   /// Map populated during module path string table parsing, from the
783   /// module ID to a string reference owned by the index's module
784   /// path string table, used to correlate with combined index
785   /// summary records.
786   DenseMap<uint64_t, StringRef> ModuleIdMap;
787 
788   /// Original source file name recorded in a bitcode record.
789   std::string SourceFileName;
790 
791   /// The string identifier given to this module by the client, normally the
792   /// path to the bitcode file.
793   StringRef ModulePath;
794 
795   /// For per-module summary indexes, the unique numerical identifier given to
796   /// this module by the client.
797   unsigned ModuleId;
798 
799 public:
800   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
801                                   ModuleSummaryIndex &TheIndex,
802                                   StringRef ModulePath, unsigned ModuleId);
803 
804   Error parseModule();
805 
806 private:
807   void setValueGUID(uint64_t ValueID, StringRef ValueName,
808                     GlobalValue::LinkageTypes Linkage,
809                     StringRef SourceFileName);
810   Error parseValueSymbolTable(
811       uint64_t Offset,
812       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
813   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
814   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
815                                                     bool IsOldProfileFormat,
816                                                     bool HasProfile,
817                                                     bool HasRelBF);
818   Error parseEntireSummary(unsigned ID);
819   Error parseModuleStringTable();
820   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
821   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
822                                        TypeIdCompatibleVtableInfo &TypeId);
823   std::vector<FunctionSummary::ParamAccess>
824   parseParamAccesses(ArrayRef<uint64_t> Record);
825 
826   std::pair<ValueInfo, GlobalValue::GUID>
827   getValueInfoFromValueId(unsigned ValueId);
828 
829   void addThisModule();
830   ModuleSummaryIndex::ModuleInfo *getThisModule();
831 };
832 
833 } // end anonymous namespace
834 
835 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
836                                                     Error Err) {
837   if (Err) {
838     std::error_code EC;
839     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
840       EC = EIB.convertToErrorCode();
841       Ctx.emitError(EIB.message());
842     });
843     return EC;
844   }
845   return std::error_code();
846 }
847 
848 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
849                              StringRef ProducerIdentification,
850                              LLVMContext &Context)
851     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
852       ValueList(Context, this->Stream.SizeInBytes()) {
853   this->ProducerIdentification = std::string(ProducerIdentification);
854 }
855 
856 Error BitcodeReader::materializeForwardReferencedFunctions() {
857   if (WillMaterializeAllForwardRefs)
858     return Error::success();
859 
860   // Prevent recursion.
861   WillMaterializeAllForwardRefs = true;
862 
863   while (!BasicBlockFwdRefQueue.empty()) {
864     Function *F = BasicBlockFwdRefQueue.front();
865     BasicBlockFwdRefQueue.pop_front();
866     assert(F && "Expected valid function");
867     if (!BasicBlockFwdRefs.count(F))
868       // Already materialized.
869       continue;
870 
871     // Check for a function that isn't materializable to prevent an infinite
872     // loop.  When parsing a blockaddress stored in a global variable, there
873     // isn't a trivial way to check if a function will have a body without a
874     // linear search through FunctionsWithBodies, so just check it here.
875     if (!F->isMaterializable())
876       return error("Never resolved function from blockaddress");
877 
878     // Try to materialize F.
879     if (Error Err = materialize(F))
880       return Err;
881   }
882   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
883 
884   // Reset state.
885   WillMaterializeAllForwardRefs = false;
886   return Error::success();
887 }
888 
889 //===----------------------------------------------------------------------===//
890 //  Helper functions to implement forward reference resolution, etc.
891 //===----------------------------------------------------------------------===//
892 
893 static bool hasImplicitComdat(size_t Val) {
894   switch (Val) {
895   default:
896     return false;
897   case 1:  // Old WeakAnyLinkage
898   case 4:  // Old LinkOnceAnyLinkage
899   case 10: // Old WeakODRLinkage
900   case 11: // Old LinkOnceODRLinkage
901     return true;
902   }
903 }
904 
905 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
906   switch (Val) {
907   default: // Map unknown/new linkages to external
908   case 0:
909     return GlobalValue::ExternalLinkage;
910   case 2:
911     return GlobalValue::AppendingLinkage;
912   case 3:
913     return GlobalValue::InternalLinkage;
914   case 5:
915     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
916   case 6:
917     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
918   case 7:
919     return GlobalValue::ExternalWeakLinkage;
920   case 8:
921     return GlobalValue::CommonLinkage;
922   case 9:
923     return GlobalValue::PrivateLinkage;
924   case 12:
925     return GlobalValue::AvailableExternallyLinkage;
926   case 13:
927     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
928   case 14:
929     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
930   case 15:
931     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
932   case 1: // Old value with implicit comdat.
933   case 16:
934     return GlobalValue::WeakAnyLinkage;
935   case 10: // Old value with implicit comdat.
936   case 17:
937     return GlobalValue::WeakODRLinkage;
938   case 4: // Old value with implicit comdat.
939   case 18:
940     return GlobalValue::LinkOnceAnyLinkage;
941   case 11: // Old value with implicit comdat.
942   case 19:
943     return GlobalValue::LinkOnceODRLinkage;
944   }
945 }
946 
947 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
948   FunctionSummary::FFlags Flags;
949   Flags.ReadNone = RawFlags & 0x1;
950   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
951   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
952   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
953   Flags.NoInline = (RawFlags >> 4) & 0x1;
954   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
955   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
956   Flags.MayThrow = (RawFlags >> 7) & 0x1;
957   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
958   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
959   return Flags;
960 }
961 
962 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
963 //
964 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
965 // visibility: [8, 10).
966 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
967                                                             uint64_t Version) {
968   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
969   // like getDecodedLinkage() above. Any future change to the linkage enum and
970   // to getDecodedLinkage() will need to be taken into account here as above.
971   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
972   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981 
982   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
983                                      Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags(
989       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
990       (RawFlags & 0x4) ? true : false,
991       (GlobalObject::VCallVisibility)(RawFlags >> 3));
992 }
993 
994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
995   switch (Val) {
996   default: // Map unknown visibilities to default.
997   case 0: return GlobalValue::DefaultVisibility;
998   case 1: return GlobalValue::HiddenVisibility;
999   case 2: return GlobalValue::ProtectedVisibility;
1000   }
1001 }
1002 
1003 static GlobalValue::DLLStorageClassTypes
1004 getDecodedDLLStorageClass(unsigned Val) {
1005   switch (Val) {
1006   default: // Map unknown values to default.
1007   case 0: return GlobalValue::DefaultStorageClass;
1008   case 1: return GlobalValue::DLLImportStorageClass;
1009   case 2: return GlobalValue::DLLExportStorageClass;
1010   }
1011 }
1012 
1013 static bool getDecodedDSOLocal(unsigned Val) {
1014   switch(Val) {
1015   default: // Map unknown values to preemptable.
1016   case 0:  return false;
1017   case 1:  return true;
1018   }
1019 }
1020 
1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1022   switch (Val) {
1023     case 0: return GlobalVariable::NotThreadLocal;
1024     default: // Map unknown non-zero value to general dynamic.
1025     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1026     case 2: return GlobalVariable::LocalDynamicTLSModel;
1027     case 3: return GlobalVariable::InitialExecTLSModel;
1028     case 4: return GlobalVariable::LocalExecTLSModel;
1029   }
1030 }
1031 
1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1033   switch (Val) {
1034     default: // Map unknown to UnnamedAddr::None.
1035     case 0: return GlobalVariable::UnnamedAddr::None;
1036     case 1: return GlobalVariable::UnnamedAddr::Global;
1037     case 2: return GlobalVariable::UnnamedAddr::Local;
1038   }
1039 }
1040 
1041 static int getDecodedCastOpcode(unsigned Val) {
1042   switch (Val) {
1043   default: return -1;
1044   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1045   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1046   case bitc::CAST_SEXT    : return Instruction::SExt;
1047   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1048   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1049   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1050   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1051   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1052   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1053   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1054   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1055   case bitc::CAST_BITCAST : return Instruction::BitCast;
1056   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1057   }
1058 }
1059 
1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1061   bool IsFP = Ty->isFPOrFPVectorTy();
1062   // UnOps are only valid for int/fp or vector of int/fp types
1063   if (!IsFP && !Ty->isIntOrIntVectorTy())
1064     return -1;
1065 
1066   switch (Val) {
1067   default:
1068     return -1;
1069   case bitc::UNOP_FNEG:
1070     return IsFP ? Instruction::FNeg : -1;
1071   }
1072 }
1073 
1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1075   bool IsFP = Ty->isFPOrFPVectorTy();
1076   // BinOps are only valid for int/fp or vector of int/fp types
1077   if (!IsFP && !Ty->isIntOrIntVectorTy())
1078     return -1;
1079 
1080   switch (Val) {
1081   default:
1082     return -1;
1083   case bitc::BINOP_ADD:
1084     return IsFP ? Instruction::FAdd : Instruction::Add;
1085   case bitc::BINOP_SUB:
1086     return IsFP ? Instruction::FSub : Instruction::Sub;
1087   case bitc::BINOP_MUL:
1088     return IsFP ? Instruction::FMul : Instruction::Mul;
1089   case bitc::BINOP_UDIV:
1090     return IsFP ? -1 : Instruction::UDiv;
1091   case bitc::BINOP_SDIV:
1092     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1093   case bitc::BINOP_UREM:
1094     return IsFP ? -1 : Instruction::URem;
1095   case bitc::BINOP_SREM:
1096     return IsFP ? Instruction::FRem : Instruction::SRem;
1097   case bitc::BINOP_SHL:
1098     return IsFP ? -1 : Instruction::Shl;
1099   case bitc::BINOP_LSHR:
1100     return IsFP ? -1 : Instruction::LShr;
1101   case bitc::BINOP_ASHR:
1102     return IsFP ? -1 : Instruction::AShr;
1103   case bitc::BINOP_AND:
1104     return IsFP ? -1 : Instruction::And;
1105   case bitc::BINOP_OR:
1106     return IsFP ? -1 : Instruction::Or;
1107   case bitc::BINOP_XOR:
1108     return IsFP ? -1 : Instruction::Xor;
1109   }
1110 }
1111 
1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1113   switch (Val) {
1114   default: return AtomicRMWInst::BAD_BINOP;
1115   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1116   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1117   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1118   case bitc::RMW_AND: return AtomicRMWInst::And;
1119   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1120   case bitc::RMW_OR: return AtomicRMWInst::Or;
1121   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1122   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1123   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1124   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1125   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1126   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1127   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1128   }
1129 }
1130 
1131 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1132   switch (Val) {
1133   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1134   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1135   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1136   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1137   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1138   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1139   default: // Map unknown orderings to sequentially-consistent.
1140   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1141   }
1142 }
1143 
1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1145   switch (Val) {
1146   default: // Map unknown selection kinds to any.
1147   case bitc::COMDAT_SELECTION_KIND_ANY:
1148     return Comdat::Any;
1149   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1150     return Comdat::ExactMatch;
1151   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1152     return Comdat::Largest;
1153   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1154     return Comdat::NoDeduplicate;
1155   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1156     return Comdat::SameSize;
1157   }
1158 }
1159 
1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1161   FastMathFlags FMF;
1162   if (0 != (Val & bitc::UnsafeAlgebra))
1163     FMF.setFast();
1164   if (0 != (Val & bitc::AllowReassoc))
1165     FMF.setAllowReassoc();
1166   if (0 != (Val & bitc::NoNaNs))
1167     FMF.setNoNaNs();
1168   if (0 != (Val & bitc::NoInfs))
1169     FMF.setNoInfs();
1170   if (0 != (Val & bitc::NoSignedZeros))
1171     FMF.setNoSignedZeros();
1172   if (0 != (Val & bitc::AllowReciprocal))
1173     FMF.setAllowReciprocal();
1174   if (0 != (Val & bitc::AllowContract))
1175     FMF.setAllowContract(true);
1176   if (0 != (Val & bitc::ApproxFunc))
1177     FMF.setApproxFunc();
1178   return FMF;
1179 }
1180 
1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1182   switch (Val) {
1183   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1184   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1185   }
1186 }
1187 
1188 Type *BitcodeReader::getTypeByID(unsigned ID) {
1189   // The type table size is always specified correctly.
1190   if (ID >= TypeList.size())
1191     return nullptr;
1192 
1193   if (Type *Ty = TypeList[ID])
1194     return Ty;
1195 
1196   // If we have a forward reference, the only possible case is when it is to a
1197   // named struct.  Just create a placeholder for now.
1198   return TypeList[ID] = createIdentifiedStructType(Context);
1199 }
1200 
1201 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1202   auto It = ContainedTypeIDs.find(ID);
1203   if (It == ContainedTypeIDs.end())
1204     return InvalidTypeID;
1205 
1206   if (Idx >= It->second.size())
1207     return InvalidTypeID;
1208 
1209   return It->second[Idx];
1210 }
1211 
1212 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1213   if (ID >= TypeList.size())
1214     return nullptr;
1215 
1216   Type *Ty = TypeList[ID];
1217   if (!Ty->isPointerTy())
1218     return nullptr;
1219 
1220   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1221   if (!ElemTy)
1222     return nullptr;
1223 
1224   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1225          "Incorrect element type");
1226   return ElemTy;
1227 }
1228 
1229 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1230                                          ArrayRef<unsigned> ChildTypeIDs) {
1231   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1232   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1233   auto It = VirtualTypeIDs.find(CacheKey);
1234   if (It != VirtualTypeIDs.end()) {
1235     // The cmpxchg return value is the only place we need more than one
1236     // contained type ID, however the second one will always be the same (i1),
1237     // so we don't need to include it in the cache key. This asserts that the
1238     // contained types are indeed as expected and there are no collisions.
1239     assert((ChildTypeIDs.empty() ||
1240             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1241            "Incorrect cached contained type IDs");
1242     return It->second;
1243   }
1244 
1245 #ifndef NDEBUG
1246   if (!Ty->isOpaquePointerTy()) {
1247     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1248            "Wrong number of contained types");
1249     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1250       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1251              "Incorrect contained type ID");
1252     }
1253   }
1254 #endif
1255 
1256   unsigned TypeID = TypeList.size();
1257   TypeList.push_back(Ty);
1258   if (!ChildTypeIDs.empty())
1259     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1260   VirtualTypeIDs.insert({CacheKey, TypeID});
1261   return TypeID;
1262 }
1263 
1264 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1265                                                       StringRef Name) {
1266   auto *Ret = StructType::create(Context, Name);
1267   IdentifiedStructTypes.push_back(Ret);
1268   return Ret;
1269 }
1270 
1271 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1272   auto *Ret = StructType::create(Context);
1273   IdentifiedStructTypes.push_back(Ret);
1274   return Ret;
1275 }
1276 
1277 //===----------------------------------------------------------------------===//
1278 //  Functions for parsing blocks from the bitcode file
1279 //===----------------------------------------------------------------------===//
1280 
1281 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1282   switch (Val) {
1283   case Attribute::EndAttrKinds:
1284   case Attribute::EmptyKey:
1285   case Attribute::TombstoneKey:
1286     llvm_unreachable("Synthetic enumerators which should never get here");
1287 
1288   case Attribute::None:            return 0;
1289   case Attribute::ZExt:            return 1 << 0;
1290   case Attribute::SExt:            return 1 << 1;
1291   case Attribute::NoReturn:        return 1 << 2;
1292   case Attribute::InReg:           return 1 << 3;
1293   case Attribute::StructRet:       return 1 << 4;
1294   case Attribute::NoUnwind:        return 1 << 5;
1295   case Attribute::NoAlias:         return 1 << 6;
1296   case Attribute::ByVal:           return 1 << 7;
1297   case Attribute::Nest:            return 1 << 8;
1298   case Attribute::ReadNone:        return 1 << 9;
1299   case Attribute::ReadOnly:        return 1 << 10;
1300   case Attribute::NoInline:        return 1 << 11;
1301   case Attribute::AlwaysInline:    return 1 << 12;
1302   case Attribute::OptimizeForSize: return 1 << 13;
1303   case Attribute::StackProtect:    return 1 << 14;
1304   case Attribute::StackProtectReq: return 1 << 15;
1305   case Attribute::Alignment:       return 31 << 16;
1306   case Attribute::NoCapture:       return 1 << 21;
1307   case Attribute::NoRedZone:       return 1 << 22;
1308   case Attribute::NoImplicitFloat: return 1 << 23;
1309   case Attribute::Naked:           return 1 << 24;
1310   case Attribute::InlineHint:      return 1 << 25;
1311   case Attribute::StackAlignment:  return 7 << 26;
1312   case Attribute::ReturnsTwice:    return 1 << 29;
1313   case Attribute::UWTable:         return 1 << 30;
1314   case Attribute::NonLazyBind:     return 1U << 31;
1315   case Attribute::SanitizeAddress: return 1ULL << 32;
1316   case Attribute::MinSize:         return 1ULL << 33;
1317   case Attribute::NoDuplicate:     return 1ULL << 34;
1318   case Attribute::StackProtectStrong: return 1ULL << 35;
1319   case Attribute::SanitizeThread:  return 1ULL << 36;
1320   case Attribute::SanitizeMemory:  return 1ULL << 37;
1321   case Attribute::NoBuiltin:       return 1ULL << 38;
1322   case Attribute::Returned:        return 1ULL << 39;
1323   case Attribute::Cold:            return 1ULL << 40;
1324   case Attribute::Builtin:         return 1ULL << 41;
1325   case Attribute::OptimizeNone:    return 1ULL << 42;
1326   case Attribute::InAlloca:        return 1ULL << 43;
1327   case Attribute::NonNull:         return 1ULL << 44;
1328   case Attribute::JumpTable:       return 1ULL << 45;
1329   case Attribute::Convergent:      return 1ULL << 46;
1330   case Attribute::SafeStack:       return 1ULL << 47;
1331   case Attribute::NoRecurse:       return 1ULL << 48;
1332   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1333   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1334   case Attribute::SwiftSelf:       return 1ULL << 51;
1335   case Attribute::SwiftError:      return 1ULL << 52;
1336   case Attribute::WriteOnly:       return 1ULL << 53;
1337   case Attribute::Speculatable:    return 1ULL << 54;
1338   case Attribute::StrictFP:        return 1ULL << 55;
1339   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1340   case Attribute::NoCfCheck:       return 1ULL << 57;
1341   case Attribute::OptForFuzzing:   return 1ULL << 58;
1342   case Attribute::ShadowCallStack: return 1ULL << 59;
1343   case Attribute::SpeculativeLoadHardening:
1344     return 1ULL << 60;
1345   case Attribute::ImmArg:
1346     return 1ULL << 61;
1347   case Attribute::WillReturn:
1348     return 1ULL << 62;
1349   case Attribute::NoFree:
1350     return 1ULL << 63;
1351   default:
1352     // Other attributes are not supported in the raw format,
1353     // as we ran out of space.
1354     return 0;
1355   }
1356   llvm_unreachable("Unsupported attribute type");
1357 }
1358 
1359 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1360   if (!Val) return;
1361 
1362   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1363        I = Attribute::AttrKind(I + 1)) {
1364     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1365       if (I == Attribute::Alignment)
1366         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1367       else if (I == Attribute::StackAlignment)
1368         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1369       else if (Attribute::isTypeAttrKind(I))
1370         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1371       else
1372         B.addAttribute(I);
1373     }
1374   }
1375 }
1376 
1377 /// This fills an AttrBuilder object with the LLVM attributes that have
1378 /// been decoded from the given integer. This function must stay in sync with
1379 /// 'encodeLLVMAttributesForBitcode'.
1380 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1381                                            uint64_t EncodedAttrs) {
1382   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1383   // the bits above 31 down by 11 bits.
1384   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1385   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1386          "Alignment must be a power of two.");
1387 
1388   if (Alignment)
1389     B.addAlignmentAttr(Alignment);
1390   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1391                           (EncodedAttrs & 0xffff));
1392 }
1393 
1394 Error BitcodeReader::parseAttributeBlock() {
1395   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1396     return Err;
1397 
1398   if (!MAttributes.empty())
1399     return error("Invalid multiple blocks");
1400 
1401   SmallVector<uint64_t, 64> Record;
1402 
1403   SmallVector<AttributeList, 8> Attrs;
1404 
1405   // Read all the records.
1406   while (true) {
1407     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1408     if (!MaybeEntry)
1409       return MaybeEntry.takeError();
1410     BitstreamEntry Entry = MaybeEntry.get();
1411 
1412     switch (Entry.Kind) {
1413     case BitstreamEntry::SubBlock: // Handled for us already.
1414     case BitstreamEntry::Error:
1415       return error("Malformed block");
1416     case BitstreamEntry::EndBlock:
1417       return Error::success();
1418     case BitstreamEntry::Record:
1419       // The interesting case.
1420       break;
1421     }
1422 
1423     // Read a record.
1424     Record.clear();
1425     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1426     if (!MaybeRecord)
1427       return MaybeRecord.takeError();
1428     switch (MaybeRecord.get()) {
1429     default:  // Default behavior: ignore.
1430       break;
1431     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1432       // Deprecated, but still needed to read old bitcode files.
1433       if (Record.size() & 1)
1434         return error("Invalid parameter attribute record");
1435 
1436       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1437         AttrBuilder B(Context);
1438         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1439         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1440       }
1441 
1442       MAttributes.push_back(AttributeList::get(Context, Attrs));
1443       Attrs.clear();
1444       break;
1445     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1446       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1447         Attrs.push_back(MAttributeGroups[Record[i]]);
1448 
1449       MAttributes.push_back(AttributeList::get(Context, Attrs));
1450       Attrs.clear();
1451       break;
1452     }
1453   }
1454 }
1455 
1456 // Returns Attribute::None on unrecognized codes.
1457 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1458   switch (Code) {
1459   default:
1460     return Attribute::None;
1461   case bitc::ATTR_KIND_ALIGNMENT:
1462     return Attribute::Alignment;
1463   case bitc::ATTR_KIND_ALWAYS_INLINE:
1464     return Attribute::AlwaysInline;
1465   case bitc::ATTR_KIND_ARGMEMONLY:
1466     return Attribute::ArgMemOnly;
1467   case bitc::ATTR_KIND_BUILTIN:
1468     return Attribute::Builtin;
1469   case bitc::ATTR_KIND_BY_VAL:
1470     return Attribute::ByVal;
1471   case bitc::ATTR_KIND_IN_ALLOCA:
1472     return Attribute::InAlloca;
1473   case bitc::ATTR_KIND_COLD:
1474     return Attribute::Cold;
1475   case bitc::ATTR_KIND_CONVERGENT:
1476     return Attribute::Convergent;
1477   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1478     return Attribute::DisableSanitizerInstrumentation;
1479   case bitc::ATTR_KIND_ELEMENTTYPE:
1480     return Attribute::ElementType;
1481   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1482     return Attribute::InaccessibleMemOnly;
1483   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1484     return Attribute::InaccessibleMemOrArgMemOnly;
1485   case bitc::ATTR_KIND_INLINE_HINT:
1486     return Attribute::InlineHint;
1487   case bitc::ATTR_KIND_IN_REG:
1488     return Attribute::InReg;
1489   case bitc::ATTR_KIND_JUMP_TABLE:
1490     return Attribute::JumpTable;
1491   case bitc::ATTR_KIND_MIN_SIZE:
1492     return Attribute::MinSize;
1493   case bitc::ATTR_KIND_NAKED:
1494     return Attribute::Naked;
1495   case bitc::ATTR_KIND_NEST:
1496     return Attribute::Nest;
1497   case bitc::ATTR_KIND_NO_ALIAS:
1498     return Attribute::NoAlias;
1499   case bitc::ATTR_KIND_NO_BUILTIN:
1500     return Attribute::NoBuiltin;
1501   case bitc::ATTR_KIND_NO_CALLBACK:
1502     return Attribute::NoCallback;
1503   case bitc::ATTR_KIND_NO_CAPTURE:
1504     return Attribute::NoCapture;
1505   case bitc::ATTR_KIND_NO_DUPLICATE:
1506     return Attribute::NoDuplicate;
1507   case bitc::ATTR_KIND_NOFREE:
1508     return Attribute::NoFree;
1509   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1510     return Attribute::NoImplicitFloat;
1511   case bitc::ATTR_KIND_NO_INLINE:
1512     return Attribute::NoInline;
1513   case bitc::ATTR_KIND_NO_RECURSE:
1514     return Attribute::NoRecurse;
1515   case bitc::ATTR_KIND_NO_MERGE:
1516     return Attribute::NoMerge;
1517   case bitc::ATTR_KIND_NON_LAZY_BIND:
1518     return Attribute::NonLazyBind;
1519   case bitc::ATTR_KIND_NON_NULL:
1520     return Attribute::NonNull;
1521   case bitc::ATTR_KIND_DEREFERENCEABLE:
1522     return Attribute::Dereferenceable;
1523   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1524     return Attribute::DereferenceableOrNull;
1525   case bitc::ATTR_KIND_ALLOC_ALIGN:
1526     return Attribute::AllocAlign;
1527   case bitc::ATTR_KIND_ALLOC_SIZE:
1528     return Attribute::AllocSize;
1529   case bitc::ATTR_KIND_NO_RED_ZONE:
1530     return Attribute::NoRedZone;
1531   case bitc::ATTR_KIND_NO_RETURN:
1532     return Attribute::NoReturn;
1533   case bitc::ATTR_KIND_NOSYNC:
1534     return Attribute::NoSync;
1535   case bitc::ATTR_KIND_NOCF_CHECK:
1536     return Attribute::NoCfCheck;
1537   case bitc::ATTR_KIND_NO_PROFILE:
1538     return Attribute::NoProfile;
1539   case bitc::ATTR_KIND_NO_UNWIND:
1540     return Attribute::NoUnwind;
1541   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1542     return Attribute::NoSanitizeBounds;
1543   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1544     return Attribute::NoSanitizeCoverage;
1545   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1546     return Attribute::NullPointerIsValid;
1547   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1548     return Attribute::OptForFuzzing;
1549   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1550     return Attribute::OptimizeForSize;
1551   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1552     return Attribute::OptimizeNone;
1553   case bitc::ATTR_KIND_READ_NONE:
1554     return Attribute::ReadNone;
1555   case bitc::ATTR_KIND_READ_ONLY:
1556     return Attribute::ReadOnly;
1557   case bitc::ATTR_KIND_RETURNED:
1558     return Attribute::Returned;
1559   case bitc::ATTR_KIND_RETURNS_TWICE:
1560     return Attribute::ReturnsTwice;
1561   case bitc::ATTR_KIND_S_EXT:
1562     return Attribute::SExt;
1563   case bitc::ATTR_KIND_SPECULATABLE:
1564     return Attribute::Speculatable;
1565   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1566     return Attribute::StackAlignment;
1567   case bitc::ATTR_KIND_STACK_PROTECT:
1568     return Attribute::StackProtect;
1569   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1570     return Attribute::StackProtectReq;
1571   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1572     return Attribute::StackProtectStrong;
1573   case bitc::ATTR_KIND_SAFESTACK:
1574     return Attribute::SafeStack;
1575   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1576     return Attribute::ShadowCallStack;
1577   case bitc::ATTR_KIND_STRICT_FP:
1578     return Attribute::StrictFP;
1579   case bitc::ATTR_KIND_STRUCT_RET:
1580     return Attribute::StructRet;
1581   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1582     return Attribute::SanitizeAddress;
1583   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1584     return Attribute::SanitizeHWAddress;
1585   case bitc::ATTR_KIND_SANITIZE_THREAD:
1586     return Attribute::SanitizeThread;
1587   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1588     return Attribute::SanitizeMemory;
1589   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1590     return Attribute::SpeculativeLoadHardening;
1591   case bitc::ATTR_KIND_SWIFT_ERROR:
1592     return Attribute::SwiftError;
1593   case bitc::ATTR_KIND_SWIFT_SELF:
1594     return Attribute::SwiftSelf;
1595   case bitc::ATTR_KIND_SWIFT_ASYNC:
1596     return Attribute::SwiftAsync;
1597   case bitc::ATTR_KIND_UW_TABLE:
1598     return Attribute::UWTable;
1599   case bitc::ATTR_KIND_VSCALE_RANGE:
1600     return Attribute::VScaleRange;
1601   case bitc::ATTR_KIND_WILLRETURN:
1602     return Attribute::WillReturn;
1603   case bitc::ATTR_KIND_WRITEONLY:
1604     return Attribute::WriteOnly;
1605   case bitc::ATTR_KIND_Z_EXT:
1606     return Attribute::ZExt;
1607   case bitc::ATTR_KIND_IMMARG:
1608     return Attribute::ImmArg;
1609   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1610     return Attribute::SanitizeMemTag;
1611   case bitc::ATTR_KIND_PREALLOCATED:
1612     return Attribute::Preallocated;
1613   case bitc::ATTR_KIND_NOUNDEF:
1614     return Attribute::NoUndef;
1615   case bitc::ATTR_KIND_BYREF:
1616     return Attribute::ByRef;
1617   case bitc::ATTR_KIND_MUSTPROGRESS:
1618     return Attribute::MustProgress;
1619   case bitc::ATTR_KIND_HOT:
1620     return Attribute::Hot;
1621   }
1622 }
1623 
1624 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1625                                          MaybeAlign &Alignment) {
1626   // Note: Alignment in bitcode files is incremented by 1, so that zero
1627   // can be used for default alignment.
1628   if (Exponent > Value::MaxAlignmentExponent + 1)
1629     return error("Invalid alignment value");
1630   Alignment = decodeMaybeAlign(Exponent);
1631   return Error::success();
1632 }
1633 
1634 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1635   *Kind = getAttrFromCode(Code);
1636   if (*Kind == Attribute::None)
1637     return error("Unknown attribute kind (" + Twine(Code) + ")");
1638   return Error::success();
1639 }
1640 
1641 Error BitcodeReader::parseAttributeGroupBlock() {
1642   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1643     return Err;
1644 
1645   if (!MAttributeGroups.empty())
1646     return error("Invalid multiple blocks");
1647 
1648   SmallVector<uint64_t, 64> Record;
1649 
1650   // Read all the records.
1651   while (true) {
1652     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1653     if (!MaybeEntry)
1654       return MaybeEntry.takeError();
1655     BitstreamEntry Entry = MaybeEntry.get();
1656 
1657     switch (Entry.Kind) {
1658     case BitstreamEntry::SubBlock: // Handled for us already.
1659     case BitstreamEntry::Error:
1660       return error("Malformed block");
1661     case BitstreamEntry::EndBlock:
1662       return Error::success();
1663     case BitstreamEntry::Record:
1664       // The interesting case.
1665       break;
1666     }
1667 
1668     // Read a record.
1669     Record.clear();
1670     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1671     if (!MaybeRecord)
1672       return MaybeRecord.takeError();
1673     switch (MaybeRecord.get()) {
1674     default:  // Default behavior: ignore.
1675       break;
1676     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1677       if (Record.size() < 3)
1678         return error("Invalid grp record");
1679 
1680       uint64_t GrpID = Record[0];
1681       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1682 
1683       AttrBuilder B(Context);
1684       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1685         if (Record[i] == 0) {        // Enum attribute
1686           Attribute::AttrKind Kind;
1687           if (Error Err = parseAttrKind(Record[++i], &Kind))
1688             return Err;
1689 
1690           // Upgrade old-style byval attribute to one with a type, even if it's
1691           // nullptr. We will have to insert the real type when we associate
1692           // this AttributeList with a function.
1693           if (Kind == Attribute::ByVal)
1694             B.addByValAttr(nullptr);
1695           else if (Kind == Attribute::StructRet)
1696             B.addStructRetAttr(nullptr);
1697           else if (Kind == Attribute::InAlloca)
1698             B.addInAllocaAttr(nullptr);
1699           else if (Kind == Attribute::UWTable)
1700             B.addUWTableAttr(UWTableKind::Default);
1701           else if (Attribute::isEnumAttrKind(Kind))
1702             B.addAttribute(Kind);
1703           else
1704             return error("Not an enum attribute");
1705         } else if (Record[i] == 1) { // Integer attribute
1706           Attribute::AttrKind Kind;
1707           if (Error Err = parseAttrKind(Record[++i], &Kind))
1708             return Err;
1709           if (!Attribute::isIntAttrKind(Kind))
1710             return error("Not an int attribute");
1711           if (Kind == Attribute::Alignment)
1712             B.addAlignmentAttr(Record[++i]);
1713           else if (Kind == Attribute::StackAlignment)
1714             B.addStackAlignmentAttr(Record[++i]);
1715           else if (Kind == Attribute::Dereferenceable)
1716             B.addDereferenceableAttr(Record[++i]);
1717           else if (Kind == Attribute::DereferenceableOrNull)
1718             B.addDereferenceableOrNullAttr(Record[++i]);
1719           else if (Kind == Attribute::AllocSize)
1720             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1721           else if (Kind == Attribute::VScaleRange)
1722             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1723           else if (Kind == Attribute::UWTable)
1724             B.addUWTableAttr(UWTableKind(Record[++i]));
1725         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1726           bool HasValue = (Record[i++] == 4);
1727           SmallString<64> KindStr;
1728           SmallString<64> ValStr;
1729 
1730           while (Record[i] != 0 && i != e)
1731             KindStr += Record[i++];
1732           assert(Record[i] == 0 && "Kind string not null terminated");
1733 
1734           if (HasValue) {
1735             // Has a value associated with it.
1736             ++i; // Skip the '0' that terminates the "kind" string.
1737             while (Record[i] != 0 && i != e)
1738               ValStr += Record[i++];
1739             assert(Record[i] == 0 && "Value string not null terminated");
1740           }
1741 
1742           B.addAttribute(KindStr.str(), ValStr.str());
1743         } else if (Record[i] == 5 || Record[i] == 6) {
1744           bool HasType = Record[i] == 6;
1745           Attribute::AttrKind Kind;
1746           if (Error Err = parseAttrKind(Record[++i], &Kind))
1747             return Err;
1748           if (!Attribute::isTypeAttrKind(Kind))
1749             return error("Not a type attribute");
1750 
1751           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1752         } else {
1753           return error("Invalid attribute group entry");
1754         }
1755       }
1756 
1757       UpgradeAttributes(B);
1758       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1759       break;
1760     }
1761     }
1762   }
1763 }
1764 
1765 Error BitcodeReader::parseTypeTable() {
1766   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1767     return Err;
1768 
1769   return parseTypeTableBody();
1770 }
1771 
1772 Error BitcodeReader::parseTypeTableBody() {
1773   if (!TypeList.empty())
1774     return error("Invalid multiple blocks");
1775 
1776   SmallVector<uint64_t, 64> Record;
1777   unsigned NumRecords = 0;
1778 
1779   SmallString<64> TypeName;
1780 
1781   // Read all the records for this type table.
1782   while (true) {
1783     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1784     if (!MaybeEntry)
1785       return MaybeEntry.takeError();
1786     BitstreamEntry Entry = MaybeEntry.get();
1787 
1788     switch (Entry.Kind) {
1789     case BitstreamEntry::SubBlock: // Handled for us already.
1790     case BitstreamEntry::Error:
1791       return error("Malformed block");
1792     case BitstreamEntry::EndBlock:
1793       if (NumRecords != TypeList.size())
1794         return error("Malformed block");
1795       return Error::success();
1796     case BitstreamEntry::Record:
1797       // The interesting case.
1798       break;
1799     }
1800 
1801     // Read a record.
1802     Record.clear();
1803     Type *ResultTy = nullptr;
1804     SmallVector<unsigned> ContainedIDs;
1805     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1806     if (!MaybeRecord)
1807       return MaybeRecord.takeError();
1808     switch (MaybeRecord.get()) {
1809     default:
1810       return error("Invalid value");
1811     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1812       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1813       // type list.  This allows us to reserve space.
1814       if (Record.empty())
1815         return error("Invalid numentry record");
1816       TypeList.resize(Record[0]);
1817       continue;
1818     case bitc::TYPE_CODE_VOID:      // VOID
1819       ResultTy = Type::getVoidTy(Context);
1820       break;
1821     case bitc::TYPE_CODE_HALF:     // HALF
1822       ResultTy = Type::getHalfTy(Context);
1823       break;
1824     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1825       ResultTy = Type::getBFloatTy(Context);
1826       break;
1827     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1828       ResultTy = Type::getFloatTy(Context);
1829       break;
1830     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1831       ResultTy = Type::getDoubleTy(Context);
1832       break;
1833     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1834       ResultTy = Type::getX86_FP80Ty(Context);
1835       break;
1836     case bitc::TYPE_CODE_FP128:     // FP128
1837       ResultTy = Type::getFP128Ty(Context);
1838       break;
1839     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1840       ResultTy = Type::getPPC_FP128Ty(Context);
1841       break;
1842     case bitc::TYPE_CODE_LABEL:     // LABEL
1843       ResultTy = Type::getLabelTy(Context);
1844       break;
1845     case bitc::TYPE_CODE_METADATA:  // METADATA
1846       ResultTy = Type::getMetadataTy(Context);
1847       break;
1848     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1849       ResultTy = Type::getX86_MMXTy(Context);
1850       break;
1851     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1852       ResultTy = Type::getX86_AMXTy(Context);
1853       break;
1854     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1855       ResultTy = Type::getTokenTy(Context);
1856       break;
1857     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1858       if (Record.empty())
1859         return error("Invalid integer record");
1860 
1861       uint64_t NumBits = Record[0];
1862       if (NumBits < IntegerType::MIN_INT_BITS ||
1863           NumBits > IntegerType::MAX_INT_BITS)
1864         return error("Bitwidth for integer type out of range");
1865       ResultTy = IntegerType::get(Context, NumBits);
1866       break;
1867     }
1868     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1869                                     //          [pointee type, address space]
1870       if (Record.empty())
1871         return error("Invalid pointer record");
1872       unsigned AddressSpace = 0;
1873       if (Record.size() == 2)
1874         AddressSpace = Record[1];
1875       ResultTy = getTypeByID(Record[0]);
1876       if (!ResultTy ||
1877           !PointerType::isValidElementType(ResultTy))
1878         return error("Invalid type");
1879       ContainedIDs.push_back(Record[0]);
1880       ResultTy = PointerType::get(ResultTy, AddressSpace);
1881       break;
1882     }
1883     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1884       if (Record.size() != 1)
1885         return error("Invalid opaque pointer record");
1886       if (Context.supportsTypedPointers())
1887         return error(
1888             "Opaque pointers are only supported in -opaque-pointers mode");
1889       unsigned AddressSpace = Record[0];
1890       ResultTy = PointerType::get(Context, AddressSpace);
1891       break;
1892     }
1893     case bitc::TYPE_CODE_FUNCTION_OLD: {
1894       // Deprecated, but still needed to read old bitcode files.
1895       // FUNCTION: [vararg, attrid, retty, paramty x N]
1896       if (Record.size() < 3)
1897         return error("Invalid function record");
1898       SmallVector<Type*, 8> ArgTys;
1899       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1900         if (Type *T = getTypeByID(Record[i]))
1901           ArgTys.push_back(T);
1902         else
1903           break;
1904       }
1905 
1906       ResultTy = getTypeByID(Record[2]);
1907       if (!ResultTy || ArgTys.size() < Record.size()-3)
1908         return error("Invalid type");
1909 
1910       ContainedIDs.append(Record.begin() + 2, Record.end());
1911       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1912       break;
1913     }
1914     case bitc::TYPE_CODE_FUNCTION: {
1915       // FUNCTION: [vararg, retty, paramty x N]
1916       if (Record.size() < 2)
1917         return error("Invalid function record");
1918       SmallVector<Type*, 8> ArgTys;
1919       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1920         if (Type *T = getTypeByID(Record[i])) {
1921           if (!FunctionType::isValidArgumentType(T))
1922             return error("Invalid function argument type");
1923           ArgTys.push_back(T);
1924         }
1925         else
1926           break;
1927       }
1928 
1929       ResultTy = getTypeByID(Record[1]);
1930       if (!ResultTy || ArgTys.size() < Record.size()-2)
1931         return error("Invalid type");
1932 
1933       ContainedIDs.append(Record.begin() + 1, Record.end());
1934       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1935       break;
1936     }
1937     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1938       if (Record.empty())
1939         return error("Invalid anon struct record");
1940       SmallVector<Type*, 8> EltTys;
1941       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1942         if (Type *T = getTypeByID(Record[i]))
1943           EltTys.push_back(T);
1944         else
1945           break;
1946       }
1947       if (EltTys.size() != Record.size()-1)
1948         return error("Invalid type");
1949       ContainedIDs.append(Record.begin() + 1, Record.end());
1950       ResultTy = StructType::get(Context, EltTys, Record[0]);
1951       break;
1952     }
1953     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1954       if (convertToString(Record, 0, TypeName))
1955         return error("Invalid struct name record");
1956       continue;
1957 
1958     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1959       if (Record.empty())
1960         return error("Invalid named struct record");
1961 
1962       if (NumRecords >= TypeList.size())
1963         return error("Invalid TYPE table");
1964 
1965       // Check to see if this was forward referenced, if so fill in the temp.
1966       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1967       if (Res) {
1968         Res->setName(TypeName);
1969         TypeList[NumRecords] = nullptr;
1970       } else  // Otherwise, create a new struct.
1971         Res = createIdentifiedStructType(Context, TypeName);
1972       TypeName.clear();
1973 
1974       SmallVector<Type*, 8> EltTys;
1975       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1976         if (Type *T = getTypeByID(Record[i]))
1977           EltTys.push_back(T);
1978         else
1979           break;
1980       }
1981       if (EltTys.size() != Record.size()-1)
1982         return error("Invalid named struct record");
1983       Res->setBody(EltTys, Record[0]);
1984       ContainedIDs.append(Record.begin() + 1, Record.end());
1985       ResultTy = Res;
1986       break;
1987     }
1988     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1989       if (Record.size() != 1)
1990         return error("Invalid opaque type record");
1991 
1992       if (NumRecords >= TypeList.size())
1993         return error("Invalid TYPE table");
1994 
1995       // Check to see if this was forward referenced, if so fill in the temp.
1996       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1997       if (Res) {
1998         Res->setName(TypeName);
1999         TypeList[NumRecords] = nullptr;
2000       } else  // Otherwise, create a new struct with no body.
2001         Res = createIdentifiedStructType(Context, TypeName);
2002       TypeName.clear();
2003       ResultTy = Res;
2004       break;
2005     }
2006     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2007       if (Record.size() < 2)
2008         return error("Invalid array type record");
2009       ResultTy = getTypeByID(Record[1]);
2010       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2011         return error("Invalid type");
2012       ContainedIDs.push_back(Record[1]);
2013       ResultTy = ArrayType::get(ResultTy, Record[0]);
2014       break;
2015     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2016                                     //         [numelts, eltty, scalable]
2017       if (Record.size() < 2)
2018         return error("Invalid vector type record");
2019       if (Record[0] == 0)
2020         return error("Invalid vector length");
2021       ResultTy = getTypeByID(Record[1]);
2022       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2023         return error("Invalid type");
2024       bool Scalable = Record.size() > 2 ? Record[2] : false;
2025       ContainedIDs.push_back(Record[1]);
2026       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2027       break;
2028     }
2029 
2030     if (NumRecords >= TypeList.size())
2031       return error("Invalid TYPE table");
2032     if (TypeList[NumRecords])
2033       return error(
2034           "Invalid TYPE table: Only named structs can be forward referenced");
2035     assert(ResultTy && "Didn't read a type?");
2036     TypeList[NumRecords] = ResultTy;
2037     if (!ContainedIDs.empty())
2038       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2039     ++NumRecords;
2040   }
2041 }
2042 
2043 Error BitcodeReader::parseOperandBundleTags() {
2044   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2045     return Err;
2046 
2047   if (!BundleTags.empty())
2048     return error("Invalid multiple blocks");
2049 
2050   SmallVector<uint64_t, 64> Record;
2051 
2052   while (true) {
2053     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2054     if (!MaybeEntry)
2055       return MaybeEntry.takeError();
2056     BitstreamEntry Entry = MaybeEntry.get();
2057 
2058     switch (Entry.Kind) {
2059     case BitstreamEntry::SubBlock: // Handled for us already.
2060     case BitstreamEntry::Error:
2061       return error("Malformed block");
2062     case BitstreamEntry::EndBlock:
2063       return Error::success();
2064     case BitstreamEntry::Record:
2065       // The interesting case.
2066       break;
2067     }
2068 
2069     // Tags are implicitly mapped to integers by their order.
2070 
2071     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2072     if (!MaybeRecord)
2073       return MaybeRecord.takeError();
2074     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2075       return error("Invalid operand bundle record");
2076 
2077     // OPERAND_BUNDLE_TAG: [strchr x N]
2078     BundleTags.emplace_back();
2079     if (convertToString(Record, 0, BundleTags.back()))
2080       return error("Invalid operand bundle record");
2081     Record.clear();
2082   }
2083 }
2084 
2085 Error BitcodeReader::parseSyncScopeNames() {
2086   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2087     return Err;
2088 
2089   if (!SSIDs.empty())
2090     return error("Invalid multiple synchronization scope names blocks");
2091 
2092   SmallVector<uint64_t, 64> Record;
2093   while (true) {
2094     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2095     if (!MaybeEntry)
2096       return MaybeEntry.takeError();
2097     BitstreamEntry Entry = MaybeEntry.get();
2098 
2099     switch (Entry.Kind) {
2100     case BitstreamEntry::SubBlock: // Handled for us already.
2101     case BitstreamEntry::Error:
2102       return error("Malformed block");
2103     case BitstreamEntry::EndBlock:
2104       if (SSIDs.empty())
2105         return error("Invalid empty synchronization scope names block");
2106       return Error::success();
2107     case BitstreamEntry::Record:
2108       // The interesting case.
2109       break;
2110     }
2111 
2112     // Synchronization scope names are implicitly mapped to synchronization
2113     // scope IDs by their order.
2114 
2115     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2116     if (!MaybeRecord)
2117       return MaybeRecord.takeError();
2118     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2119       return error("Invalid sync scope record");
2120 
2121     SmallString<16> SSN;
2122     if (convertToString(Record, 0, SSN))
2123       return error("Invalid sync scope record");
2124 
2125     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2126     Record.clear();
2127   }
2128 }
2129 
2130 /// Associate a value with its name from the given index in the provided record.
2131 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2132                                              unsigned NameIndex, Triple &TT) {
2133   SmallString<128> ValueName;
2134   if (convertToString(Record, NameIndex, ValueName))
2135     return error("Invalid record");
2136   unsigned ValueID = Record[0];
2137   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2138     return error("Invalid record");
2139   Value *V = ValueList[ValueID];
2140 
2141   StringRef NameStr(ValueName.data(), ValueName.size());
2142   if (NameStr.find_first_of(0) != StringRef::npos)
2143     return error("Invalid value name");
2144   V->setName(NameStr);
2145   auto *GO = dyn_cast<GlobalObject>(V);
2146   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2147     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2148   return V;
2149 }
2150 
2151 /// Helper to note and return the current location, and jump to the given
2152 /// offset.
2153 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2154                                                  BitstreamCursor &Stream) {
2155   // Save the current parsing location so we can jump back at the end
2156   // of the VST read.
2157   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2158   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2159     return std::move(JumpFailed);
2160   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2161   if (!MaybeEntry)
2162     return MaybeEntry.takeError();
2163   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2164       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2165     return error("Expected value symbol table subblock");
2166   return CurrentBit;
2167 }
2168 
2169 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2170                                             Function *F,
2171                                             ArrayRef<uint64_t> Record) {
2172   // Note that we subtract 1 here because the offset is relative to one word
2173   // before the start of the identification or module block, which was
2174   // historically always the start of the regular bitcode header.
2175   uint64_t FuncWordOffset = Record[1] - 1;
2176   uint64_t FuncBitOffset = FuncWordOffset * 32;
2177   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2178   // Set the LastFunctionBlockBit to point to the last function block.
2179   // Later when parsing is resumed after function materialization,
2180   // we can simply skip that last function block.
2181   if (FuncBitOffset > LastFunctionBlockBit)
2182     LastFunctionBlockBit = FuncBitOffset;
2183 }
2184 
2185 /// Read a new-style GlobalValue symbol table.
2186 Error BitcodeReader::parseGlobalValueSymbolTable() {
2187   unsigned FuncBitcodeOffsetDelta =
2188       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2189 
2190   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2191     return Err;
2192 
2193   SmallVector<uint64_t, 64> Record;
2194   while (true) {
2195     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2196     if (!MaybeEntry)
2197       return MaybeEntry.takeError();
2198     BitstreamEntry Entry = MaybeEntry.get();
2199 
2200     switch (Entry.Kind) {
2201     case BitstreamEntry::SubBlock:
2202     case BitstreamEntry::Error:
2203       return error("Malformed block");
2204     case BitstreamEntry::EndBlock:
2205       return Error::success();
2206     case BitstreamEntry::Record:
2207       break;
2208     }
2209 
2210     Record.clear();
2211     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2212     if (!MaybeRecord)
2213       return MaybeRecord.takeError();
2214     switch (MaybeRecord.get()) {
2215     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2216       unsigned ValueID = Record[0];
2217       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2218         return error("Invalid value reference in symbol table");
2219       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2220                               cast<Function>(ValueList[ValueID]), Record);
2221       break;
2222     }
2223     }
2224   }
2225 }
2226 
2227 /// Parse the value symbol table at either the current parsing location or
2228 /// at the given bit offset if provided.
2229 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2230   uint64_t CurrentBit;
2231   // Pass in the Offset to distinguish between calling for the module-level
2232   // VST (where we want to jump to the VST offset) and the function-level
2233   // VST (where we don't).
2234   if (Offset > 0) {
2235     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2236     if (!MaybeCurrentBit)
2237       return MaybeCurrentBit.takeError();
2238     CurrentBit = MaybeCurrentBit.get();
2239     // If this module uses a string table, read this as a module-level VST.
2240     if (UseStrtab) {
2241       if (Error Err = parseGlobalValueSymbolTable())
2242         return Err;
2243       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2244         return JumpFailed;
2245       return Error::success();
2246     }
2247     // Otherwise, the VST will be in a similar format to a function-level VST,
2248     // and will contain symbol names.
2249   }
2250 
2251   // Compute the delta between the bitcode indices in the VST (the word offset
2252   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2253   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2254   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2255   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2256   // just before entering the VST subblock because: 1) the EnterSubBlock
2257   // changes the AbbrevID width; 2) the VST block is nested within the same
2258   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2259   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2260   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2261   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2262   unsigned FuncBitcodeOffsetDelta =
2263       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2264 
2265   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2266     return Err;
2267 
2268   SmallVector<uint64_t, 64> Record;
2269 
2270   Triple TT(TheModule->getTargetTriple());
2271 
2272   // Read all the records for this value table.
2273   SmallString<128> ValueName;
2274 
2275   while (true) {
2276     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2277     if (!MaybeEntry)
2278       return MaybeEntry.takeError();
2279     BitstreamEntry Entry = MaybeEntry.get();
2280 
2281     switch (Entry.Kind) {
2282     case BitstreamEntry::SubBlock: // Handled for us already.
2283     case BitstreamEntry::Error:
2284       return error("Malformed block");
2285     case BitstreamEntry::EndBlock:
2286       if (Offset > 0)
2287         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2288           return JumpFailed;
2289       return Error::success();
2290     case BitstreamEntry::Record:
2291       // The interesting case.
2292       break;
2293     }
2294 
2295     // Read a record.
2296     Record.clear();
2297     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2298     if (!MaybeRecord)
2299       return MaybeRecord.takeError();
2300     switch (MaybeRecord.get()) {
2301     default:  // Default behavior: unknown type.
2302       break;
2303     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2304       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2305       if (Error Err = ValOrErr.takeError())
2306         return Err;
2307       ValOrErr.get();
2308       break;
2309     }
2310     case bitc::VST_CODE_FNENTRY: {
2311       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2312       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2313       if (Error Err = ValOrErr.takeError())
2314         return Err;
2315       Value *V = ValOrErr.get();
2316 
2317       // Ignore function offsets emitted for aliases of functions in older
2318       // versions of LLVM.
2319       if (auto *F = dyn_cast<Function>(V))
2320         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2321       break;
2322     }
2323     case bitc::VST_CODE_BBENTRY: {
2324       if (convertToString(Record, 1, ValueName))
2325         return error("Invalid bbentry record");
2326       BasicBlock *BB = getBasicBlock(Record[0]);
2327       if (!BB)
2328         return error("Invalid bbentry record");
2329 
2330       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2331       ValueName.clear();
2332       break;
2333     }
2334     }
2335   }
2336 }
2337 
2338 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2339 /// encoding.
2340 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2341   if ((V & 1) == 0)
2342     return V >> 1;
2343   if (V != 1)
2344     return -(V >> 1);
2345   // There is no such thing as -0 with integers.  "-0" really means MININT.
2346   return 1ULL << 63;
2347 }
2348 
2349 /// Resolve all of the initializers for global values and aliases that we can.
2350 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2351   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2352   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2353   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2354 
2355   GlobalInitWorklist.swap(GlobalInits);
2356   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2357   FunctionOperandWorklist.swap(FunctionOperands);
2358 
2359   while (!GlobalInitWorklist.empty()) {
2360     unsigned ValID = GlobalInitWorklist.back().second;
2361     if (ValID >= ValueList.size()) {
2362       // Not ready to resolve this yet, it requires something later in the file.
2363       GlobalInits.push_back(GlobalInitWorklist.back());
2364     } else {
2365       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2366         GlobalInitWorklist.back().first->setInitializer(C);
2367       else
2368         return error("Expected a constant");
2369     }
2370     GlobalInitWorklist.pop_back();
2371   }
2372 
2373   while (!IndirectSymbolInitWorklist.empty()) {
2374     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2375     if (ValID >= ValueList.size()) {
2376       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2377     } else {
2378       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2379       if (!C)
2380         return error("Expected a constant");
2381       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2382       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2383         if (C->getType() != GV->getType())
2384           return error("Alias and aliasee types don't match");
2385         GA->setAliasee(C);
2386       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2387         Type *ResolverFTy =
2388             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2389         // Transparently fix up the type for compatiblity with older bitcode
2390         GI->setResolver(
2391             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2392       } else {
2393         return error("Expected an alias or an ifunc");
2394       }
2395     }
2396     IndirectSymbolInitWorklist.pop_back();
2397   }
2398 
2399   while (!FunctionOperandWorklist.empty()) {
2400     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2401     if (Info.PersonalityFn) {
2402       unsigned ValID = Info.PersonalityFn - 1;
2403       if (ValID < ValueList.size()) {
2404         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2405           Info.F->setPersonalityFn(C);
2406         else
2407           return error("Expected a constant");
2408         Info.PersonalityFn = 0;
2409       }
2410     }
2411     if (Info.Prefix) {
2412       unsigned ValID = Info.Prefix - 1;
2413       if (ValID < ValueList.size()) {
2414         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2415           Info.F->setPrefixData(C);
2416         else
2417           return error("Expected a constant");
2418         Info.Prefix = 0;
2419       }
2420     }
2421     if (Info.Prologue) {
2422       unsigned ValID = Info.Prologue - 1;
2423       if (ValID < ValueList.size()) {
2424         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2425           Info.F->setPrologueData(C);
2426         else
2427           return error("Expected a constant");
2428         Info.Prologue = 0;
2429       }
2430     }
2431     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2432       FunctionOperands.push_back(Info);
2433     FunctionOperandWorklist.pop_back();
2434   }
2435 
2436   return Error::success();
2437 }
2438 
2439 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2440   SmallVector<uint64_t, 8> Words(Vals.size());
2441   transform(Vals, Words.begin(),
2442                  BitcodeReader::decodeSignRotatedValue);
2443 
2444   return APInt(TypeBits, Words);
2445 }
2446 
2447 Error BitcodeReader::parseConstants() {
2448   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2449     return Err;
2450 
2451   SmallVector<uint64_t, 64> Record;
2452 
2453   // Read all the records for this value table.
2454   Type *CurTy = Type::getInt32Ty(Context);
2455   unsigned Int32TyID = getVirtualTypeID(CurTy);
2456   unsigned CurTyID = Int32TyID;
2457   Type *CurElemTy = nullptr;
2458   unsigned NextCstNo = ValueList.size();
2459 
2460   struct DelayedShufTy {
2461     VectorType *OpTy;
2462     unsigned OpTyID;
2463     VectorType *RTy;
2464     uint64_t Op0Idx;
2465     uint64_t Op1Idx;
2466     uint64_t Op2Idx;
2467     unsigned CstNo;
2468   };
2469   std::vector<DelayedShufTy> DelayedShuffles;
2470   struct DelayedSelTy {
2471     Type *OpTy;
2472     unsigned OpTyID;
2473     uint64_t Op0Idx;
2474     uint64_t Op1Idx;
2475     uint64_t Op2Idx;
2476     unsigned CstNo;
2477   };
2478   std::vector<DelayedSelTy> DelayedSelectors;
2479 
2480   while (true) {
2481     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2482     if (!MaybeEntry)
2483       return MaybeEntry.takeError();
2484     BitstreamEntry Entry = MaybeEntry.get();
2485 
2486     switch (Entry.Kind) {
2487     case BitstreamEntry::SubBlock: // Handled for us already.
2488     case BitstreamEntry::Error:
2489       return error("Malformed block");
2490     case BitstreamEntry::EndBlock:
2491       // Once all the constants have been read, go through and resolve forward
2492       // references.
2493       //
2494       // We have to treat shuffles specially because they don't have three
2495       // operands anymore.  We need to convert the shuffle mask into an array,
2496       // and we can't convert a forward reference.
2497       for (auto &DelayedShuffle : DelayedShuffles) {
2498         VectorType *OpTy = DelayedShuffle.OpTy;
2499         unsigned OpTyID = DelayedShuffle.OpTyID;
2500         VectorType *RTy = DelayedShuffle.RTy;
2501         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2502         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2503         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2504         uint64_t CstNo = DelayedShuffle.CstNo;
2505         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID);
2506         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2507         Type *ShufTy =
2508             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2509         Constant *Op2 = ValueList.getConstantFwdRef(
2510             Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID));
2511         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2512           return error("Invalid shufflevector operands");
2513         SmallVector<int, 16> Mask;
2514         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2515         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2516         if (Error Err = ValueList.assignValue(
2517                 CstNo, V,
2518                 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID))))
2519           return Err;
2520       }
2521       for (auto &DelayedSelector : DelayedSelectors) {
2522         Type *OpTy = DelayedSelector.OpTy;
2523         unsigned OpTyID = DelayedSelector.OpTyID;
2524         Type *SelectorTy = Type::getInt1Ty(Context);
2525         unsigned SelectorTyID = getVirtualTypeID(SelectorTy);
2526         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2527         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2528         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2529         uint64_t CstNo = DelayedSelector.CstNo;
2530         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2531         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID);
2532         // The selector might be an i1 or an <n x i1>
2533         // Get the type from the ValueList before getting a forward ref.
2534         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2535           Value *V = ValueList[Op0Idx];
2536           assert(V);
2537           if (SelectorTy != V->getType()) {
2538             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2539             SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID);
2540           }
2541         }
2542         Constant *Op0 =
2543             ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID);
2544         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2545         if (Error Err = ValueList.assignValue(CstNo, V, OpTyID))
2546           return Err;
2547       }
2548 
2549       if (NextCstNo != ValueList.size())
2550         return error("Invalid constant reference");
2551 
2552       ValueList.resolveConstantForwardRefs();
2553       return Error::success();
2554     case BitstreamEntry::Record:
2555       // The interesting case.
2556       break;
2557     }
2558 
2559     // Read a record.
2560     Record.clear();
2561     Type *VoidType = Type::getVoidTy(Context);
2562     Value *V = nullptr;
2563     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2564     if (!MaybeBitCode)
2565       return MaybeBitCode.takeError();
2566     switch (unsigned BitCode = MaybeBitCode.get()) {
2567     default:  // Default behavior: unknown constant
2568     case bitc::CST_CODE_UNDEF:     // UNDEF
2569       V = UndefValue::get(CurTy);
2570       break;
2571     case bitc::CST_CODE_POISON:    // POISON
2572       V = PoisonValue::get(CurTy);
2573       break;
2574     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2575       if (Record.empty())
2576         return error("Invalid settype record");
2577       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2578         return error("Invalid settype record");
2579       if (TypeList[Record[0]] == VoidType)
2580         return error("Invalid constant type");
2581       CurTyID = Record[0];
2582       CurTy = TypeList[CurTyID];
2583       CurElemTy = getPtrElementTypeByID(CurTyID);
2584       continue;  // Skip the ValueList manipulation.
2585     case bitc::CST_CODE_NULL:      // NULL
2586       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2587         return error("Invalid type for a constant null value");
2588       V = Constant::getNullValue(CurTy);
2589       break;
2590     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2591       if (!CurTy->isIntegerTy() || Record.empty())
2592         return error("Invalid integer const record");
2593       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2594       break;
2595     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2596       if (!CurTy->isIntegerTy() || Record.empty())
2597         return error("Invalid wide integer const record");
2598 
2599       APInt VInt =
2600           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2601       V = ConstantInt::get(Context, VInt);
2602 
2603       break;
2604     }
2605     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2606       if (Record.empty())
2607         return error("Invalid float const record");
2608       if (CurTy->isHalfTy())
2609         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2610                                              APInt(16, (uint16_t)Record[0])));
2611       else if (CurTy->isBFloatTy())
2612         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2613                                              APInt(16, (uint32_t)Record[0])));
2614       else if (CurTy->isFloatTy())
2615         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2616                                              APInt(32, (uint32_t)Record[0])));
2617       else if (CurTy->isDoubleTy())
2618         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2619                                              APInt(64, Record[0])));
2620       else if (CurTy->isX86_FP80Ty()) {
2621         // Bits are not stored the same way as a normal i80 APInt, compensate.
2622         uint64_t Rearrange[2];
2623         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2624         Rearrange[1] = Record[0] >> 48;
2625         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2626                                              APInt(80, Rearrange)));
2627       } else if (CurTy->isFP128Ty())
2628         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2629                                              APInt(128, Record)));
2630       else if (CurTy->isPPC_FP128Ty())
2631         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2632                                              APInt(128, Record)));
2633       else
2634         V = UndefValue::get(CurTy);
2635       break;
2636     }
2637 
2638     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2639       if (Record.empty())
2640         return error("Invalid aggregate record");
2641 
2642       unsigned Size = Record.size();
2643       SmallVector<Constant*, 16> Elts;
2644 
2645       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2646         for (unsigned i = 0; i != Size; ++i)
2647           Elts.push_back(ValueList.getConstantFwdRef(
2648               Record[i], STy->getElementType(i),
2649               getContainedTypeID(CurTyID, i)));
2650         V = ConstantStruct::get(STy, Elts);
2651       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2652         Type *EltTy = ATy->getElementType();
2653         unsigned EltTyID = getContainedTypeID(CurTyID);
2654         for (unsigned i = 0; i != Size; ++i)
2655           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2656                                                      EltTyID));
2657         V = ConstantArray::get(ATy, Elts);
2658       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2659         Type *EltTy = VTy->getElementType();
2660         unsigned EltTyID = getContainedTypeID(CurTyID);
2661         for (unsigned i = 0; i != Size; ++i)
2662           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2663                                                      EltTyID));
2664         V = ConstantVector::get(Elts);
2665       } else {
2666         V = UndefValue::get(CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_STRING:    // STRING: [values]
2671     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2672       if (Record.empty())
2673         return error("Invalid string record");
2674 
2675       SmallString<16> Elts(Record.begin(), Record.end());
2676       V = ConstantDataArray::getString(Context, Elts,
2677                                        BitCode == bitc::CST_CODE_CSTRING);
2678       break;
2679     }
2680     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2681       if (Record.empty())
2682         return error("Invalid data record");
2683 
2684       Type *EltTy;
2685       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2686         EltTy = Array->getElementType();
2687       else
2688         EltTy = cast<VectorType>(CurTy)->getElementType();
2689       if (EltTy->isIntegerTy(8)) {
2690         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2691         if (isa<VectorType>(CurTy))
2692           V = ConstantDataVector::get(Context, Elts);
2693         else
2694           V = ConstantDataArray::get(Context, Elts);
2695       } else if (EltTy->isIntegerTy(16)) {
2696         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2697         if (isa<VectorType>(CurTy))
2698           V = ConstantDataVector::get(Context, Elts);
2699         else
2700           V = ConstantDataArray::get(Context, Elts);
2701       } else if (EltTy->isIntegerTy(32)) {
2702         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2703         if (isa<VectorType>(CurTy))
2704           V = ConstantDataVector::get(Context, Elts);
2705         else
2706           V = ConstantDataArray::get(Context, Elts);
2707       } else if (EltTy->isIntegerTy(64)) {
2708         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2709         if (isa<VectorType>(CurTy))
2710           V = ConstantDataVector::get(Context, Elts);
2711         else
2712           V = ConstantDataArray::get(Context, Elts);
2713       } else if (EltTy->isHalfTy()) {
2714         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2715         if (isa<VectorType>(CurTy))
2716           V = ConstantDataVector::getFP(EltTy, Elts);
2717         else
2718           V = ConstantDataArray::getFP(EltTy, Elts);
2719       } else if (EltTy->isBFloatTy()) {
2720         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2721         if (isa<VectorType>(CurTy))
2722           V = ConstantDataVector::getFP(EltTy, Elts);
2723         else
2724           V = ConstantDataArray::getFP(EltTy, Elts);
2725       } else if (EltTy->isFloatTy()) {
2726         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2727         if (isa<VectorType>(CurTy))
2728           V = ConstantDataVector::getFP(EltTy, Elts);
2729         else
2730           V = ConstantDataArray::getFP(EltTy, Elts);
2731       } else if (EltTy->isDoubleTy()) {
2732         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2733         if (isa<VectorType>(CurTy))
2734           V = ConstantDataVector::getFP(EltTy, Elts);
2735         else
2736           V = ConstantDataArray::getFP(EltTy, Elts);
2737       } else {
2738         return error("Invalid type for value");
2739       }
2740       break;
2741     }
2742     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2743       if (Record.size() < 2)
2744         return error("Invalid unary op constexpr record");
2745       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2746       if (Opc < 0) {
2747         V = UndefValue::get(CurTy);  // Unknown unop.
2748       } else {
2749         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2750         unsigned Flags = 0;
2751         V = ConstantExpr::get(Opc, LHS, Flags);
2752       }
2753       break;
2754     }
2755     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2756       if (Record.size() < 3)
2757         return error("Invalid binary op constexpr record");
2758       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2759       if (Opc < 0) {
2760         V = UndefValue::get(CurTy);  // Unknown binop.
2761       } else {
2762         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2763         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID);
2764         unsigned Flags = 0;
2765         if (Record.size() >= 4) {
2766           if (Opc == Instruction::Add ||
2767               Opc == Instruction::Sub ||
2768               Opc == Instruction::Mul ||
2769               Opc == Instruction::Shl) {
2770             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2771               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2772             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2773               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2774           } else if (Opc == Instruction::SDiv ||
2775                      Opc == Instruction::UDiv ||
2776                      Opc == Instruction::LShr ||
2777                      Opc == Instruction::AShr) {
2778             if (Record[3] & (1 << bitc::PEO_EXACT))
2779               Flags |= SDivOperator::IsExact;
2780           }
2781         }
2782         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2783       }
2784       break;
2785     }
2786     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2787       if (Record.size() < 3)
2788         return error("Invalid cast constexpr record");
2789       int Opc = getDecodedCastOpcode(Record[0]);
2790       if (Opc < 0) {
2791         V = UndefValue::get(CurTy);  // Unknown cast.
2792       } else {
2793         unsigned OpTyID = Record[1];
2794         Type *OpTy = getTypeByID(OpTyID);
2795         if (!OpTy)
2796           return error("Invalid cast constexpr record");
2797         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2798         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2799         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2800       }
2801       break;
2802     }
2803     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2804     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2805     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2806                                                      // operands]
2807       if (Record.size() < 2)
2808         return error("Constant GEP record must have at least two elements");
2809       unsigned OpNum = 0;
2810       Type *PointeeType = nullptr;
2811       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2812           Record.size() % 2)
2813         PointeeType = getTypeByID(Record[OpNum++]);
2814 
2815       bool InBounds = false;
2816       Optional<unsigned> InRangeIndex;
2817       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2818         uint64_t Op = Record[OpNum++];
2819         InBounds = Op & 1;
2820         InRangeIndex = Op >> 1;
2821       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2822         InBounds = true;
2823 
2824       SmallVector<Constant*, 16> Elts;
2825       unsigned BaseTypeID = Record[OpNum];
2826       while (OpNum != Record.size()) {
2827         unsigned ElTyID = Record[OpNum++];
2828         Type *ElTy = getTypeByID(ElTyID);
2829         if (!ElTy)
2830           return error("Invalid getelementptr constexpr record");
2831         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy,
2832                                                    ElTyID));
2833       }
2834 
2835       if (Elts.size() < 1)
2836         return error("Invalid gep with no operands");
2837 
2838       Type *BaseType = getTypeByID(BaseTypeID);
2839       if (isa<VectorType>(BaseType)) {
2840         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
2841         BaseType = getTypeByID(BaseTypeID);
2842       }
2843 
2844       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
2845       if (!OrigPtrTy)
2846         return error("GEP base operand must be pointer or vector of pointer");
2847 
2848       if (!PointeeType) {
2849         PointeeType = getPtrElementTypeByID(BaseTypeID);
2850         if (!PointeeType)
2851           return error("Missing element type for old-style constant GEP");
2852       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2853         return error("Explicit gep operator type does not match pointee type "
2854                      "of pointer operand");
2855 
2856       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2857       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2858                                          InBounds, InRangeIndex);
2859       break;
2860     }
2861     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2862       if (Record.size() < 3)
2863         return error("Invalid select constexpr record");
2864 
2865       DelayedSelectors.push_back(
2866           {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo});
2867       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID);
2868       ++NextCstNo;
2869       continue;
2870     }
2871     case bitc::CST_CODE_CE_EXTRACTELT
2872         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2873       if (Record.size() < 3)
2874         return error("Invalid extractelement constexpr record");
2875       unsigned OpTyID = Record[0];
2876       VectorType *OpTy =
2877         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
2878       if (!OpTy)
2879         return error("Invalid extractelement constexpr record");
2880       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2881       Constant *Op1 = nullptr;
2882       if (Record.size() == 4) {
2883         unsigned IdxTyID = Record[2];
2884         Type *IdxTy = getTypeByID(IdxTyID);
2885         if (!IdxTy)
2886           return error("Invalid extractelement constexpr record");
2887         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2888       } else {
2889         // Deprecated, but still needed to read old bitcode files.
2890         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2891                                           Int32TyID);
2892       }
2893       if (!Op1)
2894         return error("Invalid extractelement constexpr record");
2895       V = ConstantExpr::getExtractElement(Op0, Op1);
2896       break;
2897     }
2898     case bitc::CST_CODE_CE_INSERTELT
2899         : { // CE_INSERTELT: [opval, opval, opty, opval]
2900       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2901       if (Record.size() < 3 || !OpTy)
2902         return error("Invalid insertelement constexpr record");
2903       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID);
2904       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2905                                                   OpTy->getElementType(),
2906                                                   getContainedTypeID(CurTyID));
2907       Constant *Op2 = nullptr;
2908       if (Record.size() == 4) {
2909         unsigned IdxTyID = Record[2];
2910         Type *IdxTy = getTypeByID(IdxTyID);
2911         if (!IdxTy)
2912           return error("Invalid insertelement constexpr record");
2913         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2914       } else {
2915         // Deprecated, but still needed to read old bitcode files.
2916         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2917                                           Int32TyID);
2918       }
2919       if (!Op2)
2920         return error("Invalid insertelement constexpr record");
2921       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2922       break;
2923     }
2924     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2925       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2926       if (Record.size() < 3 || !OpTy)
2927         return error("Invalid shufflevector constexpr record");
2928       DelayedShuffles.push_back(
2929           {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2930       ++NextCstNo;
2931       continue;
2932     }
2933     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2934       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2935       VectorType *OpTy =
2936         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2937       if (Record.size() < 4 || !RTy || !OpTy)
2938         return error("Invalid shufflevector constexpr record");
2939       DelayedShuffles.push_back(
2940           {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo});
2941       ++NextCstNo;
2942       continue;
2943     }
2944     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2945       if (Record.size() < 4)
2946         return error("Invalid cmp constexpt record");
2947       unsigned OpTyID = Record[0];
2948       Type *OpTy = getTypeByID(OpTyID);
2949       if (!OpTy)
2950         return error("Invalid cmp constexpr record");
2951       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2952       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2953 
2954       if (OpTy->isFPOrFPVectorTy())
2955         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2956       else
2957         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2958       break;
2959     }
2960     // This maintains backward compatibility, pre-asm dialect keywords.
2961     // Deprecated, but still needed to read old bitcode files.
2962     case bitc::CST_CODE_INLINEASM_OLD: {
2963       if (Record.size() < 2)
2964         return error("Invalid inlineasm record");
2965       std::string AsmStr, ConstrStr;
2966       bool HasSideEffects = Record[0] & 1;
2967       bool IsAlignStack = Record[0] >> 1;
2968       unsigned AsmStrSize = Record[1];
2969       if (2+AsmStrSize >= Record.size())
2970         return error("Invalid inlineasm record");
2971       unsigned ConstStrSize = Record[2+AsmStrSize];
2972       if (3+AsmStrSize+ConstStrSize > Record.size())
2973         return error("Invalid inlineasm record");
2974 
2975       for (unsigned i = 0; i != AsmStrSize; ++i)
2976         AsmStr += (char)Record[2+i];
2977       for (unsigned i = 0; i != ConstStrSize; ++i)
2978         ConstrStr += (char)Record[3+AsmStrSize+i];
2979       UpgradeInlineAsmString(&AsmStr);
2980       if (!CurElemTy)
2981         return error("Missing element type for old-style inlineasm");
2982       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
2983                          HasSideEffects, IsAlignStack);
2984       break;
2985     }
2986     // This version adds support for the asm dialect keywords (e.g.,
2987     // inteldialect).
2988     case bitc::CST_CODE_INLINEASM_OLD2: {
2989       if (Record.size() < 2)
2990         return error("Invalid inlineasm record");
2991       std::string AsmStr, ConstrStr;
2992       bool HasSideEffects = Record[0] & 1;
2993       bool IsAlignStack = (Record[0] >> 1) & 1;
2994       unsigned AsmDialect = Record[0] >> 2;
2995       unsigned AsmStrSize = Record[1];
2996       if (2+AsmStrSize >= Record.size())
2997         return error("Invalid inlineasm record");
2998       unsigned ConstStrSize = Record[2+AsmStrSize];
2999       if (3+AsmStrSize+ConstStrSize > Record.size())
3000         return error("Invalid inlineasm record");
3001 
3002       for (unsigned i = 0; i != AsmStrSize; ++i)
3003         AsmStr += (char)Record[2+i];
3004       for (unsigned i = 0; i != ConstStrSize; ++i)
3005         ConstrStr += (char)Record[3+AsmStrSize+i];
3006       UpgradeInlineAsmString(&AsmStr);
3007       if (!CurElemTy)
3008         return error("Missing element type for old-style inlineasm");
3009       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3010                          HasSideEffects, IsAlignStack,
3011                          InlineAsm::AsmDialect(AsmDialect));
3012       break;
3013     }
3014     // This version adds support for the unwind keyword.
3015     case bitc::CST_CODE_INLINEASM_OLD3: {
3016       if (Record.size() < 2)
3017         return error("Invalid inlineasm record");
3018       unsigned OpNum = 0;
3019       std::string AsmStr, ConstrStr;
3020       bool HasSideEffects = Record[OpNum] & 1;
3021       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3022       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3023       bool CanThrow = (Record[OpNum] >> 3) & 1;
3024       ++OpNum;
3025       unsigned AsmStrSize = Record[OpNum];
3026       ++OpNum;
3027       if (OpNum + AsmStrSize >= Record.size())
3028         return error("Invalid inlineasm record");
3029       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3030       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3031         return error("Invalid inlineasm record");
3032 
3033       for (unsigned i = 0; i != AsmStrSize; ++i)
3034         AsmStr += (char)Record[OpNum + i];
3035       ++OpNum;
3036       for (unsigned i = 0; i != ConstStrSize; ++i)
3037         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3038       UpgradeInlineAsmString(&AsmStr);
3039       if (!CurElemTy)
3040         return error("Missing element type for old-style inlineasm");
3041       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3042                          HasSideEffects, IsAlignStack,
3043                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3044       break;
3045     }
3046     // This version adds explicit function type.
3047     case bitc::CST_CODE_INLINEASM: {
3048       if (Record.size() < 3)
3049         return error("Invalid inlineasm record");
3050       unsigned OpNum = 0;
3051       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3052       ++OpNum;
3053       if (!FnTy)
3054         return error("Invalid inlineasm record");
3055       std::string AsmStr, ConstrStr;
3056       bool HasSideEffects = Record[OpNum] & 1;
3057       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3058       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3059       bool CanThrow = (Record[OpNum] >> 3) & 1;
3060       ++OpNum;
3061       unsigned AsmStrSize = Record[OpNum];
3062       ++OpNum;
3063       if (OpNum + AsmStrSize >= Record.size())
3064         return error("Invalid inlineasm record");
3065       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3066       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3067         return error("Invalid inlineasm record");
3068 
3069       for (unsigned i = 0; i != AsmStrSize; ++i)
3070         AsmStr += (char)Record[OpNum + i];
3071       ++OpNum;
3072       for (unsigned i = 0; i != ConstStrSize; ++i)
3073         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3074       UpgradeInlineAsmString(&AsmStr);
3075       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3076                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3077       break;
3078     }
3079     case bitc::CST_CODE_BLOCKADDRESS:{
3080       if (Record.size() < 3)
3081         return error("Invalid blockaddress record");
3082       unsigned FnTyID = Record[0];
3083       Type *FnTy = getTypeByID(FnTyID);
3084       if (!FnTy)
3085         return error("Invalid blockaddress record");
3086       Function *Fn = dyn_cast_or_null<Function>(
3087           ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID));
3088       if (!Fn)
3089         return error("Invalid blockaddress record");
3090 
3091       // If the function is already parsed we can insert the block address right
3092       // away.
3093       BasicBlock *BB;
3094       unsigned BBID = Record[2];
3095       if (!BBID)
3096         // Invalid reference to entry block.
3097         return error("Invalid ID");
3098       if (!Fn->empty()) {
3099         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3100         for (size_t I = 0, E = BBID; I != E; ++I) {
3101           if (BBI == BBE)
3102             return error("Invalid ID");
3103           ++BBI;
3104         }
3105         BB = &*BBI;
3106       } else {
3107         // Otherwise insert a placeholder and remember it so it can be inserted
3108         // when the function is parsed.
3109         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3110         if (FwdBBs.empty())
3111           BasicBlockFwdRefQueue.push_back(Fn);
3112         if (FwdBBs.size() < BBID + 1)
3113           FwdBBs.resize(BBID + 1);
3114         if (!FwdBBs[BBID])
3115           FwdBBs[BBID] = BasicBlock::Create(Context);
3116         BB = FwdBBs[BBID];
3117       }
3118       V = BlockAddress::get(Fn, BB);
3119       break;
3120     }
3121     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3122       if (Record.size() < 2)
3123         return error("Invalid dso_local record");
3124       unsigned GVTyID = Record[0];
3125       Type *GVTy = getTypeByID(GVTyID);
3126       if (!GVTy)
3127         return error("Invalid dso_local record");
3128       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3129           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3130       if (!GV)
3131         return error("Invalid dso_local record");
3132 
3133       V = DSOLocalEquivalent::get(GV);
3134       break;
3135     }
3136     case bitc::CST_CODE_NO_CFI_VALUE: {
3137       if (Record.size() < 2)
3138         return error("Invalid no_cfi record");
3139       unsigned GVTyID = Record[0];
3140       Type *GVTy = getTypeByID(GVTyID);
3141       if (!GVTy)
3142         return error("Invalid no_cfi record");
3143       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3144           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3145       if (!GV)
3146         return error("Invalid no_cfi record");
3147       V = NoCFIValue::get(GV);
3148       break;
3149     }
3150     }
3151 
3152     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3153     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3154       return Err;
3155     ++NextCstNo;
3156   }
3157 }
3158 
3159 Error BitcodeReader::parseUseLists() {
3160   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3161     return Err;
3162 
3163   // Read all the records.
3164   SmallVector<uint64_t, 64> Record;
3165 
3166   while (true) {
3167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3168     if (!MaybeEntry)
3169       return MaybeEntry.takeError();
3170     BitstreamEntry Entry = MaybeEntry.get();
3171 
3172     switch (Entry.Kind) {
3173     case BitstreamEntry::SubBlock: // Handled for us already.
3174     case BitstreamEntry::Error:
3175       return error("Malformed block");
3176     case BitstreamEntry::EndBlock:
3177       return Error::success();
3178     case BitstreamEntry::Record:
3179       // The interesting case.
3180       break;
3181     }
3182 
3183     // Read a use list record.
3184     Record.clear();
3185     bool IsBB = false;
3186     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3187     if (!MaybeRecord)
3188       return MaybeRecord.takeError();
3189     switch (MaybeRecord.get()) {
3190     default:  // Default behavior: unknown type.
3191       break;
3192     case bitc::USELIST_CODE_BB:
3193       IsBB = true;
3194       LLVM_FALLTHROUGH;
3195     case bitc::USELIST_CODE_DEFAULT: {
3196       unsigned RecordLength = Record.size();
3197       if (RecordLength < 3)
3198         // Records should have at least an ID and two indexes.
3199         return error("Invalid record");
3200       unsigned ID = Record.pop_back_val();
3201 
3202       Value *V;
3203       if (IsBB) {
3204         assert(ID < FunctionBBs.size() && "Basic block not found");
3205         V = FunctionBBs[ID];
3206       } else
3207         V = ValueList[ID];
3208       unsigned NumUses = 0;
3209       SmallDenseMap<const Use *, unsigned, 16> Order;
3210       for (const Use &U : V->materialized_uses()) {
3211         if (++NumUses > Record.size())
3212           break;
3213         Order[&U] = Record[NumUses - 1];
3214       }
3215       if (Order.size() != Record.size() || NumUses > Record.size())
3216         // Mismatches can happen if the functions are being materialized lazily
3217         // (out-of-order), or a value has been upgraded.
3218         break;
3219 
3220       V->sortUseList([&](const Use &L, const Use &R) {
3221         return Order.lookup(&L) < Order.lookup(&R);
3222       });
3223       break;
3224     }
3225     }
3226   }
3227 }
3228 
3229 /// When we see the block for metadata, remember where it is and then skip it.
3230 /// This lets us lazily deserialize the metadata.
3231 Error BitcodeReader::rememberAndSkipMetadata() {
3232   // Save the current stream state.
3233   uint64_t CurBit = Stream.GetCurrentBitNo();
3234   DeferredMetadataInfo.push_back(CurBit);
3235 
3236   // Skip over the block for now.
3237   if (Error Err = Stream.SkipBlock())
3238     return Err;
3239   return Error::success();
3240 }
3241 
3242 Error BitcodeReader::materializeMetadata() {
3243   for (uint64_t BitPos : DeferredMetadataInfo) {
3244     // Move the bit stream to the saved position.
3245     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3246       return JumpFailed;
3247     if (Error Err = MDLoader->parseModuleMetadata())
3248       return Err;
3249   }
3250 
3251   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3252   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3253   // multiple times.
3254   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3255     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3256       NamedMDNode *LinkerOpts =
3257           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3258       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3259         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3260     }
3261   }
3262 
3263   DeferredMetadataInfo.clear();
3264   return Error::success();
3265 }
3266 
3267 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3268 
3269 /// When we see the block for a function body, remember where it is and then
3270 /// skip it.  This lets us lazily deserialize the functions.
3271 Error BitcodeReader::rememberAndSkipFunctionBody() {
3272   // Get the function we are talking about.
3273   if (FunctionsWithBodies.empty())
3274     return error("Insufficient function protos");
3275 
3276   Function *Fn = FunctionsWithBodies.back();
3277   FunctionsWithBodies.pop_back();
3278 
3279   // Save the current stream state.
3280   uint64_t CurBit = Stream.GetCurrentBitNo();
3281   assert(
3282       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3283       "Mismatch between VST and scanned function offsets");
3284   DeferredFunctionInfo[Fn] = CurBit;
3285 
3286   // Skip over the function block for now.
3287   if (Error Err = Stream.SkipBlock())
3288     return Err;
3289   return Error::success();
3290 }
3291 
3292 Error BitcodeReader::globalCleanup() {
3293   // Patch the initializers for globals and aliases up.
3294   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3295     return Err;
3296   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3297     return error("Malformed global initializer set");
3298 
3299   // Look for intrinsic functions which need to be upgraded at some point
3300   // and functions that need to have their function attributes upgraded.
3301   for (Function &F : *TheModule) {
3302     MDLoader->upgradeDebugIntrinsics(F);
3303     Function *NewFn;
3304     if (UpgradeIntrinsicFunction(&F, NewFn))
3305       UpgradedIntrinsics[&F] = NewFn;
3306     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3307       // Some types could be renamed during loading if several modules are
3308       // loaded in the same LLVMContext (LTO scenario). In this case we should
3309       // remangle intrinsics names as well.
3310       RemangledIntrinsics[&F] = Remangled.getValue();
3311     // Look for functions that rely on old function attribute behavior.
3312     UpgradeFunctionAttributes(F);
3313   }
3314 
3315   // Look for global variables which need to be renamed.
3316   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3317   for (GlobalVariable &GV : TheModule->globals())
3318     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3319       UpgradedVariables.emplace_back(&GV, Upgraded);
3320   for (auto &Pair : UpgradedVariables) {
3321     Pair.first->eraseFromParent();
3322     TheModule->getGlobalList().push_back(Pair.second);
3323   }
3324 
3325   // Force deallocation of memory for these vectors to favor the client that
3326   // want lazy deserialization.
3327   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3328   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3329   return Error::success();
3330 }
3331 
3332 /// Support for lazy parsing of function bodies. This is required if we
3333 /// either have an old bitcode file without a VST forward declaration record,
3334 /// or if we have an anonymous function being materialized, since anonymous
3335 /// functions do not have a name and are therefore not in the VST.
3336 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3337   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3338     return JumpFailed;
3339 
3340   if (Stream.AtEndOfStream())
3341     return error("Could not find function in stream");
3342 
3343   if (!SeenFirstFunctionBody)
3344     return error("Trying to materialize functions before seeing function blocks");
3345 
3346   // An old bitcode file with the symbol table at the end would have
3347   // finished the parse greedily.
3348   assert(SeenValueSymbolTable);
3349 
3350   SmallVector<uint64_t, 64> Record;
3351 
3352   while (true) {
3353     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3354     if (!MaybeEntry)
3355       return MaybeEntry.takeError();
3356     llvm::BitstreamEntry Entry = MaybeEntry.get();
3357 
3358     switch (Entry.Kind) {
3359     default:
3360       return error("Expect SubBlock");
3361     case BitstreamEntry::SubBlock:
3362       switch (Entry.ID) {
3363       default:
3364         return error("Expect function block");
3365       case bitc::FUNCTION_BLOCK_ID:
3366         if (Error Err = rememberAndSkipFunctionBody())
3367           return Err;
3368         NextUnreadBit = Stream.GetCurrentBitNo();
3369         return Error::success();
3370       }
3371     }
3372   }
3373 }
3374 
3375 Error BitcodeReaderBase::readBlockInfo() {
3376   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3377       Stream.ReadBlockInfoBlock();
3378   if (!MaybeNewBlockInfo)
3379     return MaybeNewBlockInfo.takeError();
3380   Optional<BitstreamBlockInfo> NewBlockInfo =
3381       std::move(MaybeNewBlockInfo.get());
3382   if (!NewBlockInfo)
3383     return error("Malformed block");
3384   BlockInfo = std::move(*NewBlockInfo);
3385   return Error::success();
3386 }
3387 
3388 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3389   // v1: [selection_kind, name]
3390   // v2: [strtab_offset, strtab_size, selection_kind]
3391   StringRef Name;
3392   std::tie(Name, Record) = readNameFromStrtab(Record);
3393 
3394   if (Record.empty())
3395     return error("Invalid record");
3396   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3397   std::string OldFormatName;
3398   if (!UseStrtab) {
3399     if (Record.size() < 2)
3400       return error("Invalid record");
3401     unsigned ComdatNameSize = Record[1];
3402     if (ComdatNameSize > Record.size() - 2)
3403       return error("Comdat name size too large");
3404     OldFormatName.reserve(ComdatNameSize);
3405     for (unsigned i = 0; i != ComdatNameSize; ++i)
3406       OldFormatName += (char)Record[2 + i];
3407     Name = OldFormatName;
3408   }
3409   Comdat *C = TheModule->getOrInsertComdat(Name);
3410   C->setSelectionKind(SK);
3411   ComdatList.push_back(C);
3412   return Error::success();
3413 }
3414 
3415 static void inferDSOLocal(GlobalValue *GV) {
3416   // infer dso_local from linkage and visibility if it is not encoded.
3417   if (GV->hasLocalLinkage() ||
3418       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3419     GV->setDSOLocal(true);
3420 }
3421 
3422 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3423   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3424   // visibility, threadlocal, unnamed_addr, externally_initialized,
3425   // dllstorageclass, comdat, attributes, preemption specifier,
3426   // partition strtab offset, partition strtab size] (name in VST)
3427   // v2: [strtab_offset, strtab_size, v1]
3428   StringRef Name;
3429   std::tie(Name, Record) = readNameFromStrtab(Record);
3430 
3431   if (Record.size() < 6)
3432     return error("Invalid record");
3433   unsigned TyID = Record[0];
3434   Type *Ty = getTypeByID(TyID);
3435   if (!Ty)
3436     return error("Invalid record");
3437   bool isConstant = Record[1] & 1;
3438   bool explicitType = Record[1] & 2;
3439   unsigned AddressSpace;
3440   if (explicitType) {
3441     AddressSpace = Record[1] >> 2;
3442   } else {
3443     if (!Ty->isPointerTy())
3444       return error("Invalid type for value");
3445     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3446     TyID = getContainedTypeID(TyID);
3447     Ty = getTypeByID(TyID);
3448     if (!Ty)
3449       return error("Missing element type for old-style global");
3450   }
3451 
3452   uint64_t RawLinkage = Record[3];
3453   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3454   MaybeAlign Alignment;
3455   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3456     return Err;
3457   std::string Section;
3458   if (Record[5]) {
3459     if (Record[5] - 1 >= SectionTable.size())
3460       return error("Invalid ID");
3461     Section = SectionTable[Record[5] - 1];
3462   }
3463   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3464   // Local linkage must have default visibility.
3465   // auto-upgrade `hidden` and `protected` for old bitcode.
3466   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3467     Visibility = getDecodedVisibility(Record[6]);
3468 
3469   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3470   if (Record.size() > 7)
3471     TLM = getDecodedThreadLocalMode(Record[7]);
3472 
3473   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3474   if (Record.size() > 8)
3475     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3476 
3477   bool ExternallyInitialized = false;
3478   if (Record.size() > 9)
3479     ExternallyInitialized = Record[9];
3480 
3481   GlobalVariable *NewGV =
3482       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3483                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3484   NewGV->setAlignment(Alignment);
3485   if (!Section.empty())
3486     NewGV->setSection(Section);
3487   NewGV->setVisibility(Visibility);
3488   NewGV->setUnnamedAddr(UnnamedAddr);
3489 
3490   if (Record.size() > 10)
3491     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3492   else
3493     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3494 
3495   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3496 
3497   // Remember which value to use for the global initializer.
3498   if (unsigned InitID = Record[2])
3499     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3500 
3501   if (Record.size() > 11) {
3502     if (unsigned ComdatID = Record[11]) {
3503       if (ComdatID > ComdatList.size())
3504         return error("Invalid global variable comdat ID");
3505       NewGV->setComdat(ComdatList[ComdatID - 1]);
3506     }
3507   } else if (hasImplicitComdat(RawLinkage)) {
3508     ImplicitComdatObjects.insert(NewGV);
3509   }
3510 
3511   if (Record.size() > 12) {
3512     auto AS = getAttributes(Record[12]).getFnAttrs();
3513     NewGV->setAttributes(AS);
3514   }
3515 
3516   if (Record.size() > 13) {
3517     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3518   }
3519   inferDSOLocal(NewGV);
3520 
3521   // Check whether we have enough values to read a partition name.
3522   if (Record.size() > 15)
3523     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3524 
3525   return Error::success();
3526 }
3527 
3528 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3529   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3530   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3531   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3532   // v2: [strtab_offset, strtab_size, v1]
3533   StringRef Name;
3534   std::tie(Name, Record) = readNameFromStrtab(Record);
3535 
3536   if (Record.size() < 8)
3537     return error("Invalid record");
3538   unsigned FTyID = Record[0];
3539   Type *FTy = getTypeByID(FTyID);
3540   if (!FTy)
3541     return error("Invalid record");
3542   if (isa<PointerType>(FTy)) {
3543     FTyID = getContainedTypeID(FTyID, 0);
3544     FTy = getTypeByID(FTyID);
3545     if (!FTy)
3546       return error("Missing element type for old-style function");
3547   }
3548 
3549   if (!isa<FunctionType>(FTy))
3550     return error("Invalid type for value");
3551   auto CC = static_cast<CallingConv::ID>(Record[1]);
3552   if (CC & ~CallingConv::MaxID)
3553     return error("Invalid calling convention ID");
3554 
3555   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3556   if (Record.size() > 16)
3557     AddrSpace = Record[16];
3558 
3559   Function *Func =
3560       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3561                        AddrSpace, Name, TheModule);
3562 
3563   assert(Func->getFunctionType() == FTy &&
3564          "Incorrect fully specified type provided for function");
3565   FunctionTypeIDs[Func] = FTyID;
3566 
3567   Func->setCallingConv(CC);
3568   bool isProto = Record[2];
3569   uint64_t RawLinkage = Record[3];
3570   Func->setLinkage(getDecodedLinkage(RawLinkage));
3571   Func->setAttributes(getAttributes(Record[4]));
3572 
3573   // Upgrade any old-style byval or sret without a type by propagating the
3574   // argument's pointee type. There should be no opaque pointers where the byval
3575   // type is implicit.
3576   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3577     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3578                                      Attribute::InAlloca}) {
3579       if (!Func->hasParamAttribute(i, Kind))
3580         continue;
3581 
3582       if (Func->getParamAttribute(i, Kind).getValueAsType())
3583         continue;
3584 
3585       Func->removeParamAttr(i, Kind);
3586 
3587       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3588       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3589       if (!PtrEltTy)
3590         return error("Missing param element type for attribute upgrade");
3591 
3592       Attribute NewAttr;
3593       switch (Kind) {
3594       case Attribute::ByVal:
3595         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3596         break;
3597       case Attribute::StructRet:
3598         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3599         break;
3600       case Attribute::InAlloca:
3601         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3602         break;
3603       default:
3604         llvm_unreachable("not an upgraded type attribute");
3605       }
3606 
3607       Func->addParamAttr(i, NewAttr);
3608     }
3609   }
3610 
3611   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3612       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3613     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3614     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3615     if (!ByValTy)
3616       return error("Missing param element type for x86_intrcc upgrade");
3617     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3618     Func->addParamAttr(0, NewAttr);
3619   }
3620 
3621   MaybeAlign Alignment;
3622   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3623     return Err;
3624   Func->setAlignment(Alignment);
3625   if (Record[6]) {
3626     if (Record[6] - 1 >= SectionTable.size())
3627       return error("Invalid ID");
3628     Func->setSection(SectionTable[Record[6] - 1]);
3629   }
3630   // Local linkage must have default visibility.
3631   // auto-upgrade `hidden` and `protected` for old bitcode.
3632   if (!Func->hasLocalLinkage())
3633     Func->setVisibility(getDecodedVisibility(Record[7]));
3634   if (Record.size() > 8 && Record[8]) {
3635     if (Record[8] - 1 >= GCTable.size())
3636       return error("Invalid ID");
3637     Func->setGC(GCTable[Record[8] - 1]);
3638   }
3639   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3640   if (Record.size() > 9)
3641     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3642   Func->setUnnamedAddr(UnnamedAddr);
3643 
3644   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3645   if (Record.size() > 10)
3646     OperandInfo.Prologue = Record[10];
3647 
3648   if (Record.size() > 11)
3649     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3650   else
3651     upgradeDLLImportExportLinkage(Func, RawLinkage);
3652 
3653   if (Record.size() > 12) {
3654     if (unsigned ComdatID = Record[12]) {
3655       if (ComdatID > ComdatList.size())
3656         return error("Invalid function comdat ID");
3657       Func->setComdat(ComdatList[ComdatID - 1]);
3658     }
3659   } else if (hasImplicitComdat(RawLinkage)) {
3660     ImplicitComdatObjects.insert(Func);
3661   }
3662 
3663   if (Record.size() > 13)
3664     OperandInfo.Prefix = Record[13];
3665 
3666   if (Record.size() > 14)
3667     OperandInfo.PersonalityFn = Record[14];
3668 
3669   if (Record.size() > 15) {
3670     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3671   }
3672   inferDSOLocal(Func);
3673 
3674   // Record[16] is the address space number.
3675 
3676   // Check whether we have enough values to read a partition name. Also make
3677   // sure Strtab has enough values.
3678   if (Record.size() > 18 && Strtab.data() &&
3679       Record[17] + Record[18] <= Strtab.size()) {
3680     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3681   }
3682 
3683   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3684 
3685   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3686     FunctionOperands.push_back(OperandInfo);
3687 
3688   // If this is a function with a body, remember the prototype we are
3689   // creating now, so that we can match up the body with them later.
3690   if (!isProto) {
3691     Func->setIsMaterializable(true);
3692     FunctionsWithBodies.push_back(Func);
3693     DeferredFunctionInfo[Func] = 0;
3694   }
3695   return Error::success();
3696 }
3697 
3698 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3699     unsigned BitCode, ArrayRef<uint64_t> Record) {
3700   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3701   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3702   // dllstorageclass, threadlocal, unnamed_addr,
3703   // preemption specifier] (name in VST)
3704   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3705   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3706   // preemption specifier] (name in VST)
3707   // v2: [strtab_offset, strtab_size, v1]
3708   StringRef Name;
3709   std::tie(Name, Record) = readNameFromStrtab(Record);
3710 
3711   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3712   if (Record.size() < (3 + (unsigned)NewRecord))
3713     return error("Invalid record");
3714   unsigned OpNum = 0;
3715   unsigned TypeID = Record[OpNum++];
3716   Type *Ty = getTypeByID(TypeID);
3717   if (!Ty)
3718     return error("Invalid record");
3719 
3720   unsigned AddrSpace;
3721   if (!NewRecord) {
3722     auto *PTy = dyn_cast<PointerType>(Ty);
3723     if (!PTy)
3724       return error("Invalid type for value");
3725     AddrSpace = PTy->getAddressSpace();
3726     TypeID = getContainedTypeID(TypeID);
3727     Ty = getTypeByID(TypeID);
3728     if (!Ty)
3729       return error("Missing element type for old-style indirect symbol");
3730   } else {
3731     AddrSpace = Record[OpNum++];
3732   }
3733 
3734   auto Val = Record[OpNum++];
3735   auto Linkage = Record[OpNum++];
3736   GlobalValue *NewGA;
3737   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3738       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3739     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3740                                 TheModule);
3741   else
3742     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3743                                 nullptr, TheModule);
3744 
3745   // Local linkage must have default visibility.
3746   // auto-upgrade `hidden` and `protected` for old bitcode.
3747   if (OpNum != Record.size()) {
3748     auto VisInd = OpNum++;
3749     if (!NewGA->hasLocalLinkage())
3750       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3751   }
3752   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3753       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3754     if (OpNum != Record.size())
3755       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3756     else
3757       upgradeDLLImportExportLinkage(NewGA, Linkage);
3758     if (OpNum != Record.size())
3759       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3760     if (OpNum != Record.size())
3761       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3762   }
3763   if (OpNum != Record.size())
3764     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3765   inferDSOLocal(NewGA);
3766 
3767   // Check whether we have enough values to read a partition name.
3768   if (OpNum + 1 < Record.size()) {
3769     NewGA->setPartition(
3770         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3771     OpNum += 2;
3772   }
3773 
3774   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
3775   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3776   return Error::success();
3777 }
3778 
3779 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3780                                  bool ShouldLazyLoadMetadata,
3781                                  DataLayoutCallbackTy DataLayoutCallback) {
3782   if (ResumeBit) {
3783     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3784       return JumpFailed;
3785   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3786     return Err;
3787 
3788   SmallVector<uint64_t, 64> Record;
3789 
3790   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3791   // finalize the datalayout before we run any of that code.
3792   bool ResolvedDataLayout = false;
3793   auto ResolveDataLayout = [&] {
3794     if (ResolvedDataLayout)
3795       return;
3796 
3797     // datalayout and triple can't be parsed after this point.
3798     ResolvedDataLayout = true;
3799 
3800     // Upgrade data layout string.
3801     std::string DL = llvm::UpgradeDataLayoutString(
3802         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3803     TheModule->setDataLayout(DL);
3804 
3805     if (auto LayoutOverride =
3806             DataLayoutCallback(TheModule->getTargetTriple()))
3807       TheModule->setDataLayout(*LayoutOverride);
3808   };
3809 
3810   // Read all the records for this module.
3811   while (true) {
3812     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3813     if (!MaybeEntry)
3814       return MaybeEntry.takeError();
3815     llvm::BitstreamEntry Entry = MaybeEntry.get();
3816 
3817     switch (Entry.Kind) {
3818     case BitstreamEntry::Error:
3819       return error("Malformed block");
3820     case BitstreamEntry::EndBlock:
3821       ResolveDataLayout();
3822       return globalCleanup();
3823 
3824     case BitstreamEntry::SubBlock:
3825       switch (Entry.ID) {
3826       default:  // Skip unknown content.
3827         if (Error Err = Stream.SkipBlock())
3828           return Err;
3829         break;
3830       case bitc::BLOCKINFO_BLOCK_ID:
3831         if (Error Err = readBlockInfo())
3832           return Err;
3833         break;
3834       case bitc::PARAMATTR_BLOCK_ID:
3835         if (Error Err = parseAttributeBlock())
3836           return Err;
3837         break;
3838       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3839         if (Error Err = parseAttributeGroupBlock())
3840           return Err;
3841         break;
3842       case bitc::TYPE_BLOCK_ID_NEW:
3843         if (Error Err = parseTypeTable())
3844           return Err;
3845         break;
3846       case bitc::VALUE_SYMTAB_BLOCK_ID:
3847         if (!SeenValueSymbolTable) {
3848           // Either this is an old form VST without function index and an
3849           // associated VST forward declaration record (which would have caused
3850           // the VST to be jumped to and parsed before it was encountered
3851           // normally in the stream), or there were no function blocks to
3852           // trigger an earlier parsing of the VST.
3853           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3854           if (Error Err = parseValueSymbolTable())
3855             return Err;
3856           SeenValueSymbolTable = true;
3857         } else {
3858           // We must have had a VST forward declaration record, which caused
3859           // the parser to jump to and parse the VST earlier.
3860           assert(VSTOffset > 0);
3861           if (Error Err = Stream.SkipBlock())
3862             return Err;
3863         }
3864         break;
3865       case bitc::CONSTANTS_BLOCK_ID:
3866         if (Error Err = parseConstants())
3867           return Err;
3868         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3869           return Err;
3870         break;
3871       case bitc::METADATA_BLOCK_ID:
3872         if (ShouldLazyLoadMetadata) {
3873           if (Error Err = rememberAndSkipMetadata())
3874             return Err;
3875           break;
3876         }
3877         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3878         if (Error Err = MDLoader->parseModuleMetadata())
3879           return Err;
3880         break;
3881       case bitc::METADATA_KIND_BLOCK_ID:
3882         if (Error Err = MDLoader->parseMetadataKinds())
3883           return Err;
3884         break;
3885       case bitc::FUNCTION_BLOCK_ID:
3886         ResolveDataLayout();
3887 
3888         // If this is the first function body we've seen, reverse the
3889         // FunctionsWithBodies list.
3890         if (!SeenFirstFunctionBody) {
3891           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3892           if (Error Err = globalCleanup())
3893             return Err;
3894           SeenFirstFunctionBody = true;
3895         }
3896 
3897         if (VSTOffset > 0) {
3898           // If we have a VST forward declaration record, make sure we
3899           // parse the VST now if we haven't already. It is needed to
3900           // set up the DeferredFunctionInfo vector for lazy reading.
3901           if (!SeenValueSymbolTable) {
3902             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3903               return Err;
3904             SeenValueSymbolTable = true;
3905             // Fall through so that we record the NextUnreadBit below.
3906             // This is necessary in case we have an anonymous function that
3907             // is later materialized. Since it will not have a VST entry we
3908             // need to fall back to the lazy parse to find its offset.
3909           } else {
3910             // If we have a VST forward declaration record, but have already
3911             // parsed the VST (just above, when the first function body was
3912             // encountered here), then we are resuming the parse after
3913             // materializing functions. The ResumeBit points to the
3914             // start of the last function block recorded in the
3915             // DeferredFunctionInfo map. Skip it.
3916             if (Error Err = Stream.SkipBlock())
3917               return Err;
3918             continue;
3919           }
3920         }
3921 
3922         // Support older bitcode files that did not have the function
3923         // index in the VST, nor a VST forward declaration record, as
3924         // well as anonymous functions that do not have VST entries.
3925         // Build the DeferredFunctionInfo vector on the fly.
3926         if (Error Err = rememberAndSkipFunctionBody())
3927           return Err;
3928 
3929         // Suspend parsing when we reach the function bodies. Subsequent
3930         // materialization calls will resume it when necessary. If the bitcode
3931         // file is old, the symbol table will be at the end instead and will not
3932         // have been seen yet. In this case, just finish the parse now.
3933         if (SeenValueSymbolTable) {
3934           NextUnreadBit = Stream.GetCurrentBitNo();
3935           // After the VST has been parsed, we need to make sure intrinsic name
3936           // are auto-upgraded.
3937           return globalCleanup();
3938         }
3939         break;
3940       case bitc::USELIST_BLOCK_ID:
3941         if (Error Err = parseUseLists())
3942           return Err;
3943         break;
3944       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3945         if (Error Err = parseOperandBundleTags())
3946           return Err;
3947         break;
3948       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3949         if (Error Err = parseSyncScopeNames())
3950           return Err;
3951         break;
3952       }
3953       continue;
3954 
3955     case BitstreamEntry::Record:
3956       // The interesting case.
3957       break;
3958     }
3959 
3960     // Read a record.
3961     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3962     if (!MaybeBitCode)
3963       return MaybeBitCode.takeError();
3964     switch (unsigned BitCode = MaybeBitCode.get()) {
3965     default: break;  // Default behavior, ignore unknown content.
3966     case bitc::MODULE_CODE_VERSION: {
3967       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3968       if (!VersionOrErr)
3969         return VersionOrErr.takeError();
3970       UseRelativeIDs = *VersionOrErr >= 1;
3971       break;
3972     }
3973     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3974       if (ResolvedDataLayout)
3975         return error("target triple too late in module");
3976       std::string S;
3977       if (convertToString(Record, 0, S))
3978         return error("Invalid record");
3979       TheModule->setTargetTriple(S);
3980       break;
3981     }
3982     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3983       if (ResolvedDataLayout)
3984         return error("datalayout too late in module");
3985       std::string S;
3986       if (convertToString(Record, 0, S))
3987         return error("Invalid record");
3988       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3989       if (!MaybeDL)
3990         return MaybeDL.takeError();
3991       TheModule->setDataLayout(MaybeDL.get());
3992       break;
3993     }
3994     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3995       std::string S;
3996       if (convertToString(Record, 0, S))
3997         return error("Invalid record");
3998       TheModule->setModuleInlineAsm(S);
3999       break;
4000     }
4001     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4002       // Deprecated, but still needed to read old bitcode files.
4003       std::string S;
4004       if (convertToString(Record, 0, S))
4005         return error("Invalid record");
4006       // Ignore value.
4007       break;
4008     }
4009     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4010       std::string S;
4011       if (convertToString(Record, 0, S))
4012         return error("Invalid record");
4013       SectionTable.push_back(S);
4014       break;
4015     }
4016     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4017       std::string S;
4018       if (convertToString(Record, 0, S))
4019         return error("Invalid record");
4020       GCTable.push_back(S);
4021       break;
4022     }
4023     case bitc::MODULE_CODE_COMDAT:
4024       if (Error Err = parseComdatRecord(Record))
4025         return Err;
4026       break;
4027     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4028     // written by ThinLinkBitcodeWriter. See
4029     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4030     // record
4031     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4032     case bitc::MODULE_CODE_GLOBALVAR:
4033       if (Error Err = parseGlobalVarRecord(Record))
4034         return Err;
4035       break;
4036     case bitc::MODULE_CODE_FUNCTION:
4037       ResolveDataLayout();
4038       if (Error Err = parseFunctionRecord(Record))
4039         return Err;
4040       break;
4041     case bitc::MODULE_CODE_IFUNC:
4042     case bitc::MODULE_CODE_ALIAS:
4043     case bitc::MODULE_CODE_ALIAS_OLD:
4044       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4045         return Err;
4046       break;
4047     /// MODULE_CODE_VSTOFFSET: [offset]
4048     case bitc::MODULE_CODE_VSTOFFSET:
4049       if (Record.empty())
4050         return error("Invalid record");
4051       // Note that we subtract 1 here because the offset is relative to one word
4052       // before the start of the identification or module block, which was
4053       // historically always the start of the regular bitcode header.
4054       VSTOffset = Record[0] - 1;
4055       break;
4056     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4057     case bitc::MODULE_CODE_SOURCE_FILENAME:
4058       SmallString<128> ValueName;
4059       if (convertToString(Record, 0, ValueName))
4060         return error("Invalid record");
4061       TheModule->setSourceFileName(ValueName);
4062       break;
4063     }
4064     Record.clear();
4065   }
4066 }
4067 
4068 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4069                                       bool IsImporting,
4070                                       DataLayoutCallbackTy DataLayoutCallback) {
4071   TheModule = M;
4072   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4073                             [&](unsigned ID) { return getTypeByID(ID); });
4074   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4075 }
4076 
4077 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4078   if (!isa<PointerType>(PtrType))
4079     return error("Load/Store operand is not a pointer type");
4080 
4081   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4082     return error("Explicit load/store type does not match pointee "
4083                  "type of pointer operand");
4084   if (!PointerType::isLoadableOrStorableType(ValType))
4085     return error("Cannot load/store from pointer");
4086   return Error::success();
4087 }
4088 
4089 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4090                                              ArrayRef<unsigned> ArgTyIDs) {
4091   AttributeList Attrs = CB->getAttributes();
4092   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4093     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4094                                      Attribute::InAlloca}) {
4095       if (!Attrs.hasParamAttr(i, Kind) ||
4096           Attrs.getParamAttr(i, Kind).getValueAsType())
4097         continue;
4098 
4099       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4100       if (!PtrEltTy)
4101         return error("Missing element type for typed attribute upgrade");
4102 
4103       Attribute NewAttr;
4104       switch (Kind) {
4105       case Attribute::ByVal:
4106         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4107         break;
4108       case Attribute::StructRet:
4109         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4110         break;
4111       case Attribute::InAlloca:
4112         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4113         break;
4114       default:
4115         llvm_unreachable("not an upgraded type attribute");
4116       }
4117 
4118       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4119     }
4120   }
4121 
4122   if (CB->isInlineAsm()) {
4123     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4124     unsigned ArgNo = 0;
4125     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4126       if (!CI.hasArg())
4127         continue;
4128 
4129       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4130         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4131         if (!ElemTy)
4132           return error("Missing element type for inline asm upgrade");
4133         Attrs = Attrs.addParamAttribute(
4134             Context, ArgNo,
4135             Attribute::get(Context, Attribute::ElementType, ElemTy));
4136       }
4137 
4138       ArgNo++;
4139     }
4140   }
4141 
4142   switch (CB->getIntrinsicID()) {
4143   case Intrinsic::preserve_array_access_index:
4144   case Intrinsic::preserve_struct_access_index:
4145   case Intrinsic::aarch64_ldaxr:
4146   case Intrinsic::aarch64_ldxr:
4147   case Intrinsic::aarch64_stlxr:
4148   case Intrinsic::aarch64_stxr:
4149   case Intrinsic::arm_ldaex:
4150   case Intrinsic::arm_ldrex:
4151   case Intrinsic::arm_stlex:
4152   case Intrinsic::arm_strex: {
4153     unsigned ArgNo;
4154     switch (CB->getIntrinsicID()) {
4155     case Intrinsic::aarch64_stlxr:
4156     case Intrinsic::aarch64_stxr:
4157     case Intrinsic::arm_stlex:
4158     case Intrinsic::arm_strex:
4159       ArgNo = 1;
4160       break;
4161     default:
4162       ArgNo = 0;
4163       break;
4164     }
4165     if (!Attrs.getParamElementType(ArgNo)) {
4166       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4167       if (!ElTy)
4168         return error("Missing element type for elementtype upgrade");
4169       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4170       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4171     }
4172     break;
4173   }
4174   default:
4175     break;
4176   }
4177 
4178   CB->setAttributes(Attrs);
4179   return Error::success();
4180 }
4181 
4182 /// Lazily parse the specified function body block.
4183 Error BitcodeReader::parseFunctionBody(Function *F) {
4184   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4185     return Err;
4186 
4187   // Unexpected unresolved metadata when parsing function.
4188   if (MDLoader->hasFwdRefs())
4189     return error("Invalid function metadata: incoming forward references");
4190 
4191   InstructionList.clear();
4192   unsigned ModuleValueListSize = ValueList.size();
4193   unsigned ModuleMDLoaderSize = MDLoader->size();
4194 
4195   // Add all the function arguments to the value table.
4196   unsigned ArgNo = 0;
4197   unsigned FTyID = FunctionTypeIDs[F];
4198   for (Argument &I : F->args()) {
4199     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4200     assert(I.getType() == getTypeByID(ArgTyID) &&
4201            "Incorrect fully specified type for Function Argument");
4202     ValueList.push_back(&I, ArgTyID);
4203     ++ArgNo;
4204   }
4205   unsigned NextValueNo = ValueList.size();
4206   BasicBlock *CurBB = nullptr;
4207   unsigned CurBBNo = 0;
4208 
4209   DebugLoc LastLoc;
4210   auto getLastInstruction = [&]() -> Instruction * {
4211     if (CurBB && !CurBB->empty())
4212       return &CurBB->back();
4213     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4214              !FunctionBBs[CurBBNo - 1]->empty())
4215       return &FunctionBBs[CurBBNo - 1]->back();
4216     return nullptr;
4217   };
4218 
4219   std::vector<OperandBundleDef> OperandBundles;
4220 
4221   // Read all the records.
4222   SmallVector<uint64_t, 64> Record;
4223 
4224   while (true) {
4225     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4226     if (!MaybeEntry)
4227       return MaybeEntry.takeError();
4228     llvm::BitstreamEntry Entry = MaybeEntry.get();
4229 
4230     switch (Entry.Kind) {
4231     case BitstreamEntry::Error:
4232       return error("Malformed block");
4233     case BitstreamEntry::EndBlock:
4234       goto OutOfRecordLoop;
4235 
4236     case BitstreamEntry::SubBlock:
4237       switch (Entry.ID) {
4238       default:  // Skip unknown content.
4239         if (Error Err = Stream.SkipBlock())
4240           return Err;
4241         break;
4242       case bitc::CONSTANTS_BLOCK_ID:
4243         if (Error Err = parseConstants())
4244           return Err;
4245         NextValueNo = ValueList.size();
4246         break;
4247       case bitc::VALUE_SYMTAB_BLOCK_ID:
4248         if (Error Err = parseValueSymbolTable())
4249           return Err;
4250         break;
4251       case bitc::METADATA_ATTACHMENT_ID:
4252         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4253           return Err;
4254         break;
4255       case bitc::METADATA_BLOCK_ID:
4256         assert(DeferredMetadataInfo.empty() &&
4257                "Must read all module-level metadata before function-level");
4258         if (Error Err = MDLoader->parseFunctionMetadata())
4259           return Err;
4260         break;
4261       case bitc::USELIST_BLOCK_ID:
4262         if (Error Err = parseUseLists())
4263           return Err;
4264         break;
4265       }
4266       continue;
4267 
4268     case BitstreamEntry::Record:
4269       // The interesting case.
4270       break;
4271     }
4272 
4273     // Read a record.
4274     Record.clear();
4275     Instruction *I = nullptr;
4276     unsigned ResTypeID = InvalidTypeID;
4277     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4278     if (!MaybeBitCode)
4279       return MaybeBitCode.takeError();
4280     switch (unsigned BitCode = MaybeBitCode.get()) {
4281     default: // Default behavior: reject
4282       return error("Invalid value");
4283     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4284       if (Record.empty() || Record[0] == 0)
4285         return error("Invalid record");
4286       // Create all the basic blocks for the function.
4287       FunctionBBs.resize(Record[0]);
4288 
4289       // See if anything took the address of blocks in this function.
4290       auto BBFRI = BasicBlockFwdRefs.find(F);
4291       if (BBFRI == BasicBlockFwdRefs.end()) {
4292         for (BasicBlock *&BB : FunctionBBs)
4293           BB = BasicBlock::Create(Context, "", F);
4294       } else {
4295         auto &BBRefs = BBFRI->second;
4296         // Check for invalid basic block references.
4297         if (BBRefs.size() > FunctionBBs.size())
4298           return error("Invalid ID");
4299         assert(!BBRefs.empty() && "Unexpected empty array");
4300         assert(!BBRefs.front() && "Invalid reference to entry block");
4301         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4302              ++I)
4303           if (I < RE && BBRefs[I]) {
4304             BBRefs[I]->insertInto(F);
4305             FunctionBBs[I] = BBRefs[I];
4306           } else {
4307             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4308           }
4309 
4310         // Erase from the table.
4311         BasicBlockFwdRefs.erase(BBFRI);
4312       }
4313 
4314       CurBB = FunctionBBs[0];
4315       continue;
4316     }
4317 
4318     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4319       // This record indicates that the last instruction is at the same
4320       // location as the previous instruction with a location.
4321       I = getLastInstruction();
4322 
4323       if (!I)
4324         return error("Invalid record");
4325       I->setDebugLoc(LastLoc);
4326       I = nullptr;
4327       continue;
4328 
4329     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4330       I = getLastInstruction();
4331       if (!I || Record.size() < 4)
4332         return error("Invalid record");
4333 
4334       unsigned Line = Record[0], Col = Record[1];
4335       unsigned ScopeID = Record[2], IAID = Record[3];
4336       bool isImplicitCode = Record.size() == 5 && Record[4];
4337 
4338       MDNode *Scope = nullptr, *IA = nullptr;
4339       if (ScopeID) {
4340         Scope = dyn_cast_or_null<MDNode>(
4341             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4342         if (!Scope)
4343           return error("Invalid record");
4344       }
4345       if (IAID) {
4346         IA = dyn_cast_or_null<MDNode>(
4347             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4348         if (!IA)
4349           return error("Invalid record");
4350       }
4351       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4352                                 isImplicitCode);
4353       I->setDebugLoc(LastLoc);
4354       I = nullptr;
4355       continue;
4356     }
4357     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4358       unsigned OpNum = 0;
4359       Value *LHS;
4360       unsigned TypeID;
4361       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4362           OpNum+1 > Record.size())
4363         return error("Invalid record");
4364 
4365       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4366       if (Opc == -1)
4367         return error("Invalid record");
4368       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4369       ResTypeID = TypeID;
4370       InstructionList.push_back(I);
4371       if (OpNum < Record.size()) {
4372         if (isa<FPMathOperator>(I)) {
4373           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4374           if (FMF.any())
4375             I->setFastMathFlags(FMF);
4376         }
4377       }
4378       break;
4379     }
4380     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4381       unsigned OpNum = 0;
4382       Value *LHS, *RHS;
4383       unsigned TypeID;
4384       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4385           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) ||
4386           OpNum+1 > Record.size())
4387         return error("Invalid record");
4388 
4389       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4390       if (Opc == -1)
4391         return error("Invalid record");
4392       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4393       ResTypeID = TypeID;
4394       InstructionList.push_back(I);
4395       if (OpNum < Record.size()) {
4396         if (Opc == Instruction::Add ||
4397             Opc == Instruction::Sub ||
4398             Opc == Instruction::Mul ||
4399             Opc == Instruction::Shl) {
4400           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4401             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4402           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4403             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4404         } else if (Opc == Instruction::SDiv ||
4405                    Opc == Instruction::UDiv ||
4406                    Opc == Instruction::LShr ||
4407                    Opc == Instruction::AShr) {
4408           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4409             cast<BinaryOperator>(I)->setIsExact(true);
4410         } else if (isa<FPMathOperator>(I)) {
4411           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4412           if (FMF.any())
4413             I->setFastMathFlags(FMF);
4414         }
4415 
4416       }
4417       break;
4418     }
4419     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4420       unsigned OpNum = 0;
4421       Value *Op;
4422       unsigned OpTypeID;
4423       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
4424           OpNum+2 != Record.size())
4425         return error("Invalid record");
4426 
4427       ResTypeID = Record[OpNum];
4428       Type *ResTy = getTypeByID(ResTypeID);
4429       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4430       if (Opc == -1 || !ResTy)
4431         return error("Invalid record");
4432       Instruction *Temp = nullptr;
4433       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4434         if (Temp) {
4435           InstructionList.push_back(Temp);
4436           assert(CurBB && "No current BB?");
4437           CurBB->getInstList().push_back(Temp);
4438         }
4439       } else {
4440         auto CastOp = (Instruction::CastOps)Opc;
4441         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4442           return error("Invalid cast");
4443         I = CastInst::Create(CastOp, Op, ResTy);
4444       }
4445       InstructionList.push_back(I);
4446       break;
4447     }
4448     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4449     case bitc::FUNC_CODE_INST_GEP_OLD:
4450     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4451       unsigned OpNum = 0;
4452 
4453       unsigned TyID;
4454       Type *Ty;
4455       bool InBounds;
4456 
4457       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4458         InBounds = Record[OpNum++];
4459         TyID = Record[OpNum++];
4460         Ty = getTypeByID(TyID);
4461       } else {
4462         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4463         TyID = InvalidTypeID;
4464         Ty = nullptr;
4465       }
4466 
4467       Value *BasePtr;
4468       unsigned BasePtrTypeID;
4469       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID))
4470         return error("Invalid record");
4471 
4472       if (!Ty) {
4473         TyID = getContainedTypeID(BasePtrTypeID);
4474         if (BasePtr->getType()->isVectorTy())
4475           TyID = getContainedTypeID(TyID);
4476         Ty = getTypeByID(TyID);
4477       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4478                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4479         return error(
4480             "Explicit gep type does not match pointee type of pointer operand");
4481       }
4482 
4483       SmallVector<Value*, 16> GEPIdx;
4484       while (OpNum != Record.size()) {
4485         Value *Op;
4486         unsigned OpTypeID;
4487         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4488           return error("Invalid record");
4489         GEPIdx.push_back(Op);
4490       }
4491 
4492       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4493 
4494       ResTypeID = TyID;
4495       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4496         auto GTI = std::next(gep_type_begin(I));
4497         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4498           unsigned SubType = 0;
4499           if (GTI.isStruct()) {
4500             ConstantInt *IdxC =
4501                 Idx->getType()->isVectorTy()
4502                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4503                     : cast<ConstantInt>(Idx);
4504             SubType = IdxC->getZExtValue();
4505           }
4506           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4507           ++GTI;
4508         }
4509       }
4510 
4511       // At this point ResTypeID is the result element type. We need a pointer
4512       // or vector of pointer to it.
4513       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4514       if (I->getType()->isVectorTy())
4515         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4516 
4517       InstructionList.push_back(I);
4518       if (InBounds)
4519         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4520       break;
4521     }
4522 
4523     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4524                                        // EXTRACTVAL: [opty, opval, n x indices]
4525       unsigned OpNum = 0;
4526       Value *Agg;
4527       unsigned AggTypeID;
4528       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4529         return error("Invalid record");
4530       Type *Ty = Agg->getType();
4531 
4532       unsigned RecSize = Record.size();
4533       if (OpNum == RecSize)
4534         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4535 
4536       SmallVector<unsigned, 4> EXTRACTVALIdx;
4537       ResTypeID = AggTypeID;
4538       for (; OpNum != RecSize; ++OpNum) {
4539         bool IsArray = Ty->isArrayTy();
4540         bool IsStruct = Ty->isStructTy();
4541         uint64_t Index = Record[OpNum];
4542 
4543         if (!IsStruct && !IsArray)
4544           return error("EXTRACTVAL: Invalid type");
4545         if ((unsigned)Index != Index)
4546           return error("Invalid value");
4547         if (IsStruct && Index >= Ty->getStructNumElements())
4548           return error("EXTRACTVAL: Invalid struct index");
4549         if (IsArray && Index >= Ty->getArrayNumElements())
4550           return error("EXTRACTVAL: Invalid array index");
4551         EXTRACTVALIdx.push_back((unsigned)Index);
4552 
4553         if (IsStruct) {
4554           Ty = Ty->getStructElementType(Index);
4555           ResTypeID = getContainedTypeID(ResTypeID, Index);
4556         } else {
4557           Ty = Ty->getArrayElementType();
4558           ResTypeID = getContainedTypeID(ResTypeID);
4559         }
4560       }
4561 
4562       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4563       InstructionList.push_back(I);
4564       break;
4565     }
4566 
4567     case bitc::FUNC_CODE_INST_INSERTVAL: {
4568                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4569       unsigned OpNum = 0;
4570       Value *Agg;
4571       unsigned AggTypeID;
4572       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4573         return error("Invalid record");
4574       Value *Val;
4575       unsigned ValTypeID;
4576       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
4577         return error("Invalid record");
4578 
4579       unsigned RecSize = Record.size();
4580       if (OpNum == RecSize)
4581         return error("INSERTVAL: Invalid instruction with 0 indices");
4582 
4583       SmallVector<unsigned, 4> INSERTVALIdx;
4584       Type *CurTy = Agg->getType();
4585       for (; OpNum != RecSize; ++OpNum) {
4586         bool IsArray = CurTy->isArrayTy();
4587         bool IsStruct = CurTy->isStructTy();
4588         uint64_t Index = Record[OpNum];
4589 
4590         if (!IsStruct && !IsArray)
4591           return error("INSERTVAL: Invalid type");
4592         if ((unsigned)Index != Index)
4593           return error("Invalid value");
4594         if (IsStruct && Index >= CurTy->getStructNumElements())
4595           return error("INSERTVAL: Invalid struct index");
4596         if (IsArray && Index >= CurTy->getArrayNumElements())
4597           return error("INSERTVAL: Invalid array index");
4598 
4599         INSERTVALIdx.push_back((unsigned)Index);
4600         if (IsStruct)
4601           CurTy = CurTy->getStructElementType(Index);
4602         else
4603           CurTy = CurTy->getArrayElementType();
4604       }
4605 
4606       if (CurTy != Val->getType())
4607         return error("Inserted value type doesn't match aggregate type");
4608 
4609       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4610       ResTypeID = AggTypeID;
4611       InstructionList.push_back(I);
4612       break;
4613     }
4614 
4615     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4616       // obsolete form of select
4617       // handles select i1 ... in old bitcode
4618       unsigned OpNum = 0;
4619       Value *TrueVal, *FalseVal, *Cond;
4620       unsigned TypeID;
4621       Type *CondType = Type::getInt1Ty(Context);
4622       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) ||
4623           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4624                    FalseVal) ||
4625           popValue(Record, OpNum, NextValueNo, CondType,
4626                    getVirtualTypeID(CondType), Cond))
4627         return error("Invalid record");
4628 
4629       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4630       ResTypeID = TypeID;
4631       InstructionList.push_back(I);
4632       break;
4633     }
4634 
4635     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4636       // new form of select
4637       // handles select i1 or select [N x i1]
4638       unsigned OpNum = 0;
4639       Value *TrueVal, *FalseVal, *Cond;
4640       unsigned ValTypeID, CondTypeID;
4641       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) ||
4642           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4643                    FalseVal) ||
4644           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID))
4645         return error("Invalid record");
4646 
4647       // select condition can be either i1 or [N x i1]
4648       if (VectorType* vector_type =
4649           dyn_cast<VectorType>(Cond->getType())) {
4650         // expect <n x i1>
4651         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4652           return error("Invalid type for value");
4653       } else {
4654         // expect i1
4655         if (Cond->getType() != Type::getInt1Ty(Context))
4656           return error("Invalid type for value");
4657       }
4658 
4659       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4660       ResTypeID = ValTypeID;
4661       InstructionList.push_back(I);
4662       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4663         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4664         if (FMF.any())
4665           I->setFastMathFlags(FMF);
4666       }
4667       break;
4668     }
4669 
4670     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4671       unsigned OpNum = 0;
4672       Value *Vec, *Idx;
4673       unsigned VecTypeID, IdxTypeID;
4674       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) ||
4675           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4676         return error("Invalid record");
4677       if (!Vec->getType()->isVectorTy())
4678         return error("Invalid type for value");
4679       I = ExtractElementInst::Create(Vec, Idx);
4680       ResTypeID = getContainedTypeID(VecTypeID);
4681       InstructionList.push_back(I);
4682       break;
4683     }
4684 
4685     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4686       unsigned OpNum = 0;
4687       Value *Vec, *Elt, *Idx;
4688       unsigned VecTypeID, IdxTypeID;
4689       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID))
4690         return error("Invalid record");
4691       if (!Vec->getType()->isVectorTy())
4692         return error("Invalid type for value");
4693       if (popValue(Record, OpNum, NextValueNo,
4694                    cast<VectorType>(Vec->getType())->getElementType(),
4695                    getContainedTypeID(VecTypeID), Elt) ||
4696           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4697         return error("Invalid record");
4698       I = InsertElementInst::Create(Vec, Elt, Idx);
4699       ResTypeID = VecTypeID;
4700       InstructionList.push_back(I);
4701       break;
4702     }
4703 
4704     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4705       unsigned OpNum = 0;
4706       Value *Vec1, *Vec2, *Mask;
4707       unsigned Vec1TypeID;
4708       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) ||
4709           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
4710                    Vec2))
4711         return error("Invalid record");
4712 
4713       unsigned MaskTypeID;
4714       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID))
4715         return error("Invalid record");
4716       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4717         return error("Invalid type for value");
4718 
4719       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4720       ResTypeID =
4721           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
4722       InstructionList.push_back(I);
4723       break;
4724     }
4725 
4726     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4727       // Old form of ICmp/FCmp returning bool
4728       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4729       // both legal on vectors but had different behaviour.
4730     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4731       // FCmp/ICmp returning bool or vector of bool
4732 
4733       unsigned OpNum = 0;
4734       Value *LHS, *RHS;
4735       unsigned LHSTypeID;
4736       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) ||
4737           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS))
4738         return error("Invalid record");
4739 
4740       if (OpNum >= Record.size())
4741         return error(
4742             "Invalid record: operand number exceeded available operands");
4743 
4744       unsigned PredVal = Record[OpNum];
4745       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4746       FastMathFlags FMF;
4747       if (IsFP && Record.size() > OpNum+1)
4748         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4749 
4750       if (OpNum+1 != Record.size())
4751         return error("Invalid record");
4752 
4753       if (LHS->getType()->isFPOrFPVectorTy())
4754         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4755       else
4756         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4757 
4758       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
4759       if (LHS->getType()->isVectorTy())
4760         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4761 
4762       if (FMF.any())
4763         I->setFastMathFlags(FMF);
4764       InstructionList.push_back(I);
4765       break;
4766     }
4767 
4768     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4769       {
4770         unsigned Size = Record.size();
4771         if (Size == 0) {
4772           I = ReturnInst::Create(Context);
4773           InstructionList.push_back(I);
4774           break;
4775         }
4776 
4777         unsigned OpNum = 0;
4778         Value *Op = nullptr;
4779         unsigned OpTypeID;
4780         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4781           return error("Invalid record");
4782         if (OpNum != Record.size())
4783           return error("Invalid record");
4784 
4785         I = ReturnInst::Create(Context, Op);
4786         InstructionList.push_back(I);
4787         break;
4788       }
4789     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4790       if (Record.size() != 1 && Record.size() != 3)
4791         return error("Invalid record");
4792       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4793       if (!TrueDest)
4794         return error("Invalid record");
4795 
4796       if (Record.size() == 1) {
4797         I = BranchInst::Create(TrueDest);
4798         InstructionList.push_back(I);
4799       }
4800       else {
4801         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4802         Type *CondType = Type::getInt1Ty(Context);
4803         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
4804                                getVirtualTypeID(CondType));
4805         if (!FalseDest || !Cond)
4806           return error("Invalid record");
4807         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4808         InstructionList.push_back(I);
4809       }
4810       break;
4811     }
4812     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4813       if (Record.size() != 1 && Record.size() != 2)
4814         return error("Invalid record");
4815       unsigned Idx = 0;
4816       Type *TokenTy = Type::getTokenTy(Context);
4817       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4818                                    getVirtualTypeID(TokenTy));
4819       if (!CleanupPad)
4820         return error("Invalid record");
4821       BasicBlock *UnwindDest = nullptr;
4822       if (Record.size() == 2) {
4823         UnwindDest = getBasicBlock(Record[Idx++]);
4824         if (!UnwindDest)
4825           return error("Invalid record");
4826       }
4827 
4828       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4829       InstructionList.push_back(I);
4830       break;
4831     }
4832     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4833       if (Record.size() != 2)
4834         return error("Invalid record");
4835       unsigned Idx = 0;
4836       Type *TokenTy = Type::getTokenTy(Context);
4837       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4838                                  getVirtualTypeID(TokenTy));
4839       if (!CatchPad)
4840         return error("Invalid record");
4841       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4842       if (!BB)
4843         return error("Invalid record");
4844 
4845       I = CatchReturnInst::Create(CatchPad, BB);
4846       InstructionList.push_back(I);
4847       break;
4848     }
4849     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4850       // We must have, at minimum, the outer scope and the number of arguments.
4851       if (Record.size() < 2)
4852         return error("Invalid record");
4853 
4854       unsigned Idx = 0;
4855 
4856       Type *TokenTy = Type::getTokenTy(Context);
4857       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4858                                   getVirtualTypeID(TokenTy));
4859 
4860       unsigned NumHandlers = Record[Idx++];
4861 
4862       SmallVector<BasicBlock *, 2> Handlers;
4863       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4864         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4865         if (!BB)
4866           return error("Invalid record");
4867         Handlers.push_back(BB);
4868       }
4869 
4870       BasicBlock *UnwindDest = nullptr;
4871       if (Idx + 1 == Record.size()) {
4872         UnwindDest = getBasicBlock(Record[Idx++]);
4873         if (!UnwindDest)
4874           return error("Invalid record");
4875       }
4876 
4877       if (Record.size() != Idx)
4878         return error("Invalid record");
4879 
4880       auto *CatchSwitch =
4881           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4882       for (BasicBlock *Handler : Handlers)
4883         CatchSwitch->addHandler(Handler);
4884       I = CatchSwitch;
4885       ResTypeID = getVirtualTypeID(I->getType());
4886       InstructionList.push_back(I);
4887       break;
4888     }
4889     case bitc::FUNC_CODE_INST_CATCHPAD:
4890     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4891       // We must have, at minimum, the outer scope and the number of arguments.
4892       if (Record.size() < 2)
4893         return error("Invalid record");
4894 
4895       unsigned Idx = 0;
4896 
4897       Type *TokenTy = Type::getTokenTy(Context);
4898       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4899                                   getVirtualTypeID(TokenTy));
4900 
4901       unsigned NumArgOperands = Record[Idx++];
4902 
4903       SmallVector<Value *, 2> Args;
4904       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4905         Value *Val;
4906         unsigned ValTypeID;
4907         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
4908           return error("Invalid record");
4909         Args.push_back(Val);
4910       }
4911 
4912       if (Record.size() != Idx)
4913         return error("Invalid record");
4914 
4915       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4916         I = CleanupPadInst::Create(ParentPad, Args);
4917       else
4918         I = CatchPadInst::Create(ParentPad, Args);
4919       ResTypeID = getVirtualTypeID(I->getType());
4920       InstructionList.push_back(I);
4921       break;
4922     }
4923     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4924       // Check magic
4925       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4926         // "New" SwitchInst format with case ranges. The changes to write this
4927         // format were reverted but we still recognize bitcode that uses it.
4928         // Hopefully someday we will have support for case ranges and can use
4929         // this format again.
4930 
4931         unsigned OpTyID = Record[1];
4932         Type *OpTy = getTypeByID(OpTyID);
4933         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4934 
4935         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID);
4936         BasicBlock *Default = getBasicBlock(Record[3]);
4937         if (!OpTy || !Cond || !Default)
4938           return error("Invalid record");
4939 
4940         unsigned NumCases = Record[4];
4941 
4942         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4943         InstructionList.push_back(SI);
4944 
4945         unsigned CurIdx = 5;
4946         for (unsigned i = 0; i != NumCases; ++i) {
4947           SmallVector<ConstantInt*, 1> CaseVals;
4948           unsigned NumItems = Record[CurIdx++];
4949           for (unsigned ci = 0; ci != NumItems; ++ci) {
4950             bool isSingleNumber = Record[CurIdx++];
4951 
4952             APInt Low;
4953             unsigned ActiveWords = 1;
4954             if (ValueBitWidth > 64)
4955               ActiveWords = Record[CurIdx++];
4956             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4957                                 ValueBitWidth);
4958             CurIdx += ActiveWords;
4959 
4960             if (!isSingleNumber) {
4961               ActiveWords = 1;
4962               if (ValueBitWidth > 64)
4963                 ActiveWords = Record[CurIdx++];
4964               APInt High = readWideAPInt(
4965                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4966               CurIdx += ActiveWords;
4967 
4968               // FIXME: It is not clear whether values in the range should be
4969               // compared as signed or unsigned values. The partially
4970               // implemented changes that used this format in the past used
4971               // unsigned comparisons.
4972               for ( ; Low.ule(High); ++Low)
4973                 CaseVals.push_back(ConstantInt::get(Context, Low));
4974             } else
4975               CaseVals.push_back(ConstantInt::get(Context, Low));
4976           }
4977           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4978           for (ConstantInt *Cst : CaseVals)
4979             SI->addCase(Cst, DestBB);
4980         }
4981         I = SI;
4982         break;
4983       }
4984 
4985       // Old SwitchInst format without case ranges.
4986 
4987       if (Record.size() < 3 || (Record.size() & 1) == 0)
4988         return error("Invalid record");
4989       unsigned OpTyID = Record[0];
4990       Type *OpTy = getTypeByID(OpTyID);
4991       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
4992       BasicBlock *Default = getBasicBlock(Record[2]);
4993       if (!OpTy || !Cond || !Default)
4994         return error("Invalid record");
4995       unsigned NumCases = (Record.size()-3)/2;
4996       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4997       InstructionList.push_back(SI);
4998       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4999         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5000             getFnValueByID(Record[3+i*2], OpTy, OpTyID));
5001         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5002         if (!CaseVal || !DestBB) {
5003           delete SI;
5004           return error("Invalid record");
5005         }
5006         SI->addCase(CaseVal, DestBB);
5007       }
5008       I = SI;
5009       break;
5010     }
5011     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5012       if (Record.size() < 2)
5013         return error("Invalid record");
5014       unsigned OpTyID = Record[0];
5015       Type *OpTy = getTypeByID(OpTyID);
5016       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5017       if (!OpTy || !Address)
5018         return error("Invalid record");
5019       unsigned NumDests = Record.size()-2;
5020       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5021       InstructionList.push_back(IBI);
5022       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5023         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5024           IBI->addDestination(DestBB);
5025         } else {
5026           delete IBI;
5027           return error("Invalid record");
5028         }
5029       }
5030       I = IBI;
5031       break;
5032     }
5033 
5034     case bitc::FUNC_CODE_INST_INVOKE: {
5035       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5036       if (Record.size() < 4)
5037         return error("Invalid record");
5038       unsigned OpNum = 0;
5039       AttributeList PAL = getAttributes(Record[OpNum++]);
5040       unsigned CCInfo = Record[OpNum++];
5041       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5042       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5043 
5044       unsigned FTyID = InvalidTypeID;
5045       FunctionType *FTy = nullptr;
5046       if ((CCInfo >> 13) & 1) {
5047         FTyID = Record[OpNum++];
5048         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5049         if (!FTy)
5050           return error("Explicit invoke type is not a function type");
5051       }
5052 
5053       Value *Callee;
5054       unsigned CalleeTypeID;
5055       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5056         return error("Invalid record");
5057 
5058       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5059       if (!CalleeTy)
5060         return error("Callee is not a pointer");
5061       if (!FTy) {
5062         FTyID = getContainedTypeID(CalleeTypeID);
5063         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5064         if (!FTy)
5065           return error("Callee is not of pointer to function type");
5066       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5067         return error("Explicit invoke type does not match pointee type of "
5068                      "callee operand");
5069       if (Record.size() < FTy->getNumParams() + OpNum)
5070         return error("Insufficient operands to call");
5071 
5072       SmallVector<Value*, 16> Ops;
5073       SmallVector<unsigned, 16> ArgTyIDs;
5074       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5075         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5076         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5077                                ArgTyID));
5078         ArgTyIDs.push_back(ArgTyID);
5079         if (!Ops.back())
5080           return error("Invalid record");
5081       }
5082 
5083       if (!FTy->isVarArg()) {
5084         if (Record.size() != OpNum)
5085           return error("Invalid record");
5086       } else {
5087         // Read type/value pairs for varargs params.
5088         while (OpNum != Record.size()) {
5089           Value *Op;
5090           unsigned OpTypeID;
5091           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5092             return error("Invalid record");
5093           Ops.push_back(Op);
5094           ArgTyIDs.push_back(OpTypeID);
5095         }
5096       }
5097 
5098       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5099                              OperandBundles);
5100       ResTypeID = getContainedTypeID(FTyID);
5101       OperandBundles.clear();
5102       InstructionList.push_back(I);
5103       cast<InvokeInst>(I)->setCallingConv(
5104           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5105       cast<InvokeInst>(I)->setAttributes(PAL);
5106       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5107         I->deleteValue();
5108         return Err;
5109       }
5110 
5111       break;
5112     }
5113     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5114       unsigned Idx = 0;
5115       Value *Val = nullptr;
5116       unsigned ValTypeID;
5117       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
5118         return error("Invalid record");
5119       I = ResumeInst::Create(Val);
5120       InstructionList.push_back(I);
5121       break;
5122     }
5123     case bitc::FUNC_CODE_INST_CALLBR: {
5124       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5125       unsigned OpNum = 0;
5126       AttributeList PAL = getAttributes(Record[OpNum++]);
5127       unsigned CCInfo = Record[OpNum++];
5128 
5129       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5130       unsigned NumIndirectDests = Record[OpNum++];
5131       SmallVector<BasicBlock *, 16> IndirectDests;
5132       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5133         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5134 
5135       unsigned FTyID = InvalidTypeID;
5136       FunctionType *FTy = nullptr;
5137       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5138         FTyID = Record[OpNum++];
5139         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5140         if (!FTy)
5141           return error("Explicit call type is not a function type");
5142       }
5143 
5144       Value *Callee;
5145       unsigned CalleeTypeID;
5146       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5147         return error("Invalid record");
5148 
5149       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5150       if (!OpTy)
5151         return error("Callee is not a pointer type");
5152       if (!FTy) {
5153         FTyID = getContainedTypeID(CalleeTypeID);
5154         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5155         if (!FTy)
5156           return error("Callee is not of pointer to function type");
5157       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5158         return error("Explicit call type does not match pointee type of "
5159                      "callee operand");
5160       if (Record.size() < FTy->getNumParams() + OpNum)
5161         return error("Insufficient operands to call");
5162 
5163       SmallVector<Value*, 16> Args;
5164       SmallVector<unsigned, 16> ArgTyIDs;
5165       // Read the fixed params.
5166       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5167         Value *Arg;
5168         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5169         if (FTy->getParamType(i)->isLabelTy())
5170           Arg = getBasicBlock(Record[OpNum]);
5171         else
5172           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5173                          ArgTyID);
5174         if (!Arg)
5175           return error("Invalid record");
5176         Args.push_back(Arg);
5177         ArgTyIDs.push_back(ArgTyID);
5178       }
5179 
5180       // Read type/value pairs for varargs params.
5181       if (!FTy->isVarArg()) {
5182         if (OpNum != Record.size())
5183           return error("Invalid record");
5184       } else {
5185         while (OpNum != Record.size()) {
5186           Value *Op;
5187           unsigned OpTypeID;
5188           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5189             return error("Invalid record");
5190           Args.push_back(Op);
5191           ArgTyIDs.push_back(OpTypeID);
5192         }
5193       }
5194 
5195       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5196                              OperandBundles);
5197       ResTypeID = getContainedTypeID(FTyID);
5198       OperandBundles.clear();
5199       InstructionList.push_back(I);
5200       cast<CallBrInst>(I)->setCallingConv(
5201           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5202       cast<CallBrInst>(I)->setAttributes(PAL);
5203       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5204         I->deleteValue();
5205         return Err;
5206       }
5207       break;
5208     }
5209     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5210       I = new UnreachableInst(Context);
5211       InstructionList.push_back(I);
5212       break;
5213     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5214       if (Record.empty())
5215         return error("Invalid phi record");
5216       // The first record specifies the type.
5217       unsigned TyID = Record[0];
5218       Type *Ty = getTypeByID(TyID);
5219       if (!Ty)
5220         return error("Invalid phi record");
5221 
5222       // Phi arguments are pairs of records of [value, basic block].
5223       // There is an optional final record for fast-math-flags if this phi has a
5224       // floating-point type.
5225       size_t NumArgs = (Record.size() - 1) / 2;
5226       PHINode *PN = PHINode::Create(Ty, NumArgs);
5227       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5228         PN->deleteValue();
5229         return error("Invalid phi record");
5230       }
5231       InstructionList.push_back(PN);
5232 
5233       for (unsigned i = 0; i != NumArgs; i++) {
5234         Value *V;
5235         // With the new function encoding, it is possible that operands have
5236         // negative IDs (for forward references).  Use a signed VBR
5237         // representation to keep the encoding small.
5238         if (UseRelativeIDs)
5239           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5240         else
5241           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5242         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5243         if (!V || !BB) {
5244           PN->deleteValue();
5245           return error("Invalid phi record");
5246         }
5247         PN->addIncoming(V, BB);
5248       }
5249       I = PN;
5250       ResTypeID = TyID;
5251 
5252       // If there are an even number of records, the final record must be FMF.
5253       if (Record.size() % 2 == 0) {
5254         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5255         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5256         if (FMF.any())
5257           I->setFastMathFlags(FMF);
5258       }
5259 
5260       break;
5261     }
5262 
5263     case bitc::FUNC_CODE_INST_LANDINGPAD:
5264     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5265       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5266       unsigned Idx = 0;
5267       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5268         if (Record.size() < 3)
5269           return error("Invalid record");
5270       } else {
5271         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5272         if (Record.size() < 4)
5273           return error("Invalid record");
5274       }
5275       ResTypeID = Record[Idx++];
5276       Type *Ty = getTypeByID(ResTypeID);
5277       if (!Ty)
5278         return error("Invalid record");
5279       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5280         Value *PersFn = nullptr;
5281         unsigned PersFnTypeID;
5282         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID))
5283           return error("Invalid record");
5284 
5285         if (!F->hasPersonalityFn())
5286           F->setPersonalityFn(cast<Constant>(PersFn));
5287         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5288           return error("Personality function mismatch");
5289       }
5290 
5291       bool IsCleanup = !!Record[Idx++];
5292       unsigned NumClauses = Record[Idx++];
5293       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5294       LP->setCleanup(IsCleanup);
5295       for (unsigned J = 0; J != NumClauses; ++J) {
5296         LandingPadInst::ClauseType CT =
5297           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5298         Value *Val;
5299         unsigned ValTypeID;
5300 
5301         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) {
5302           delete LP;
5303           return error("Invalid record");
5304         }
5305 
5306         assert((CT != LandingPadInst::Catch ||
5307                 !isa<ArrayType>(Val->getType())) &&
5308                "Catch clause has a invalid type!");
5309         assert((CT != LandingPadInst::Filter ||
5310                 isa<ArrayType>(Val->getType())) &&
5311                "Filter clause has invalid type!");
5312         LP->addClause(cast<Constant>(Val));
5313       }
5314 
5315       I = LP;
5316       InstructionList.push_back(I);
5317       break;
5318     }
5319 
5320     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5321       if (Record.size() != 4 && Record.size() != 5)
5322         return error("Invalid record");
5323       using APV = AllocaPackedValues;
5324       const uint64_t Rec = Record[3];
5325       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5326       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5327       unsigned TyID = Record[0];
5328       Type *Ty = getTypeByID(TyID);
5329       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5330         TyID = getContainedTypeID(TyID);
5331         Ty = getTypeByID(TyID);
5332         if (!Ty)
5333           return error("Missing element type for old-style alloca");
5334       }
5335       unsigned OpTyID = Record[1];
5336       Type *OpTy = getTypeByID(OpTyID);
5337       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID);
5338       MaybeAlign Align;
5339       uint64_t AlignExp =
5340           Bitfield::get<APV::AlignLower>(Rec) |
5341           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5342       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5343         return Err;
5344       }
5345       if (!Ty || !Size)
5346         return error("Invalid record");
5347 
5348       const DataLayout &DL = TheModule->getDataLayout();
5349       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5350 
5351       SmallPtrSet<Type *, 4> Visited;
5352       if (!Align && !Ty->isSized(&Visited))
5353         return error("alloca of unsized type");
5354       if (!Align)
5355         Align = DL.getPrefTypeAlign(Ty);
5356 
5357       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5358       AI->setUsedWithInAlloca(InAlloca);
5359       AI->setSwiftError(SwiftError);
5360       I = AI;
5361       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5362       InstructionList.push_back(I);
5363       break;
5364     }
5365     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5366       unsigned OpNum = 0;
5367       Value *Op;
5368       unsigned OpTypeID;
5369       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5370           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5371         return error("Invalid record");
5372 
5373       if (!isa<PointerType>(Op->getType()))
5374         return error("Load operand is not a pointer type");
5375 
5376       Type *Ty = nullptr;
5377       if (OpNum + 3 == Record.size()) {
5378         ResTypeID = Record[OpNum++];
5379         Ty = getTypeByID(ResTypeID);
5380       } else {
5381         ResTypeID = getContainedTypeID(OpTypeID);
5382         Ty = getTypeByID(ResTypeID);
5383         if (!Ty)
5384           return error("Missing element type for old-style load");
5385       }
5386 
5387       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5388         return Err;
5389 
5390       MaybeAlign Align;
5391       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5392         return Err;
5393       SmallPtrSet<Type *, 4> Visited;
5394       if (!Align && !Ty->isSized(&Visited))
5395         return error("load of unsized type");
5396       if (!Align)
5397         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5398       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5399       InstructionList.push_back(I);
5400       break;
5401     }
5402     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5403        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5404       unsigned OpNum = 0;
5405       Value *Op;
5406       unsigned OpTypeID;
5407       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5408           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5409         return error("Invalid record");
5410 
5411       if (!isa<PointerType>(Op->getType()))
5412         return error("Load operand is not a pointer type");
5413 
5414       Type *Ty = nullptr;
5415       if (OpNum + 5 == Record.size()) {
5416         ResTypeID = Record[OpNum++];
5417         Ty = getTypeByID(ResTypeID);
5418       } else {
5419         ResTypeID = getContainedTypeID(OpTypeID);
5420         Ty = getTypeByID(ResTypeID);
5421         if (!Ty)
5422           return error("Missing element type for old style atomic load");
5423       }
5424 
5425       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5426         return Err;
5427 
5428       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5429       if (Ordering == AtomicOrdering::NotAtomic ||
5430           Ordering == AtomicOrdering::Release ||
5431           Ordering == AtomicOrdering::AcquireRelease)
5432         return error("Invalid record");
5433       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5434         return error("Invalid record");
5435       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5436 
5437       MaybeAlign Align;
5438       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5439         return Err;
5440       if (!Align)
5441         return error("Alignment missing from atomic load");
5442       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5443       InstructionList.push_back(I);
5444       break;
5445     }
5446     case bitc::FUNC_CODE_INST_STORE:
5447     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5448       unsigned OpNum = 0;
5449       Value *Val, *Ptr;
5450       unsigned PtrTypeID, ValTypeID;
5451       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5452         return error("Invalid record");
5453 
5454       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5455         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5456           return error("Invalid record");
5457       } else {
5458         ValTypeID = getContainedTypeID(PtrTypeID);
5459         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5460                      ValTypeID, Val))
5461           return error("Invalid record");
5462       }
5463 
5464       if (OpNum + 2 != Record.size())
5465         return error("Invalid record");
5466 
5467       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5468         return Err;
5469       MaybeAlign Align;
5470       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5471         return Err;
5472       SmallPtrSet<Type *, 4> Visited;
5473       if (!Align && !Val->getType()->isSized(&Visited))
5474         return error("store of unsized type");
5475       if (!Align)
5476         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5477       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5478       InstructionList.push_back(I);
5479       break;
5480     }
5481     case bitc::FUNC_CODE_INST_STOREATOMIC:
5482     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5483       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5484       unsigned OpNum = 0;
5485       Value *Val, *Ptr;
5486       unsigned PtrTypeID, ValTypeID;
5487       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) ||
5488           !isa<PointerType>(Ptr->getType()))
5489         return error("Invalid record");
5490       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5491         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5492           return error("Invalid record");
5493       } else {
5494         ValTypeID = getContainedTypeID(PtrTypeID);
5495         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5496                      ValTypeID, Val))
5497           return error("Invalid record");
5498       }
5499 
5500       if (OpNum + 4 != Record.size())
5501         return error("Invalid record");
5502 
5503       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5504         return Err;
5505       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5506       if (Ordering == AtomicOrdering::NotAtomic ||
5507           Ordering == AtomicOrdering::Acquire ||
5508           Ordering == AtomicOrdering::AcquireRelease)
5509         return error("Invalid record");
5510       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5511       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5512         return error("Invalid record");
5513 
5514       MaybeAlign Align;
5515       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5516         return Err;
5517       if (!Align)
5518         return error("Alignment missing from atomic store");
5519       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5520       InstructionList.push_back(I);
5521       break;
5522     }
5523     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5524       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5525       // failure_ordering?, weak?]
5526       const size_t NumRecords = Record.size();
5527       unsigned OpNum = 0;
5528       Value *Ptr = nullptr;
5529       unsigned PtrTypeID;
5530       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5531         return error("Invalid record");
5532 
5533       if (!isa<PointerType>(Ptr->getType()))
5534         return error("Cmpxchg operand is not a pointer type");
5535 
5536       Value *Cmp = nullptr;
5537       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5538       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5539                    CmpTypeID, Cmp))
5540         return error("Invalid record");
5541 
5542       Value *New = nullptr;
5543       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5544                    New) ||
5545           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5546         return error("Invalid record");
5547 
5548       const AtomicOrdering SuccessOrdering =
5549           getDecodedOrdering(Record[OpNum + 1]);
5550       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5551           SuccessOrdering == AtomicOrdering::Unordered)
5552         return error("Invalid record");
5553 
5554       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5555 
5556       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5557         return Err;
5558 
5559       const AtomicOrdering FailureOrdering =
5560           NumRecords < 7
5561               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5562               : getDecodedOrdering(Record[OpNum + 3]);
5563 
5564       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5565           FailureOrdering == AtomicOrdering::Unordered)
5566         return error("Invalid record");
5567 
5568       const Align Alignment(
5569           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5570 
5571       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5572                                 FailureOrdering, SSID);
5573       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5574 
5575       if (NumRecords < 8) {
5576         // Before weak cmpxchgs existed, the instruction simply returned the
5577         // value loaded from memory, so bitcode files from that era will be
5578         // expecting the first component of a modern cmpxchg.
5579         CurBB->getInstList().push_back(I);
5580         I = ExtractValueInst::Create(I, 0);
5581         ResTypeID = CmpTypeID;
5582       } else {
5583         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5584         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5585         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5586       }
5587 
5588       InstructionList.push_back(I);
5589       break;
5590     }
5591     case bitc::FUNC_CODE_INST_CMPXCHG: {
5592       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5593       // failure_ordering, weak, align?]
5594       const size_t NumRecords = Record.size();
5595       unsigned OpNum = 0;
5596       Value *Ptr = nullptr;
5597       unsigned PtrTypeID;
5598       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5599         return error("Invalid record");
5600 
5601       if (!isa<PointerType>(Ptr->getType()))
5602         return error("Cmpxchg operand is not a pointer type");
5603 
5604       Value *Cmp = nullptr;
5605       unsigned CmpTypeID;
5606       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID))
5607         return error("Invalid record");
5608 
5609       Value *Val = nullptr;
5610       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val))
5611         return error("Invalid record");
5612 
5613       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5614         return error("Invalid record");
5615 
5616       const bool IsVol = Record[OpNum];
5617 
5618       const AtomicOrdering SuccessOrdering =
5619           getDecodedOrdering(Record[OpNum + 1]);
5620       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5621         return error("Invalid cmpxchg success ordering");
5622 
5623       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5624 
5625       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5626         return Err;
5627 
5628       const AtomicOrdering FailureOrdering =
5629           getDecodedOrdering(Record[OpNum + 3]);
5630       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5631         return error("Invalid cmpxchg failure ordering");
5632 
5633       const bool IsWeak = Record[OpNum + 4];
5634 
5635       MaybeAlign Alignment;
5636 
5637       if (NumRecords == (OpNum + 6)) {
5638         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5639           return Err;
5640       }
5641       if (!Alignment)
5642         Alignment =
5643             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5644 
5645       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5646                                 FailureOrdering, SSID);
5647       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5648       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5649 
5650       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5651       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5652 
5653       InstructionList.push_back(I);
5654       break;
5655     }
5656     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5657     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5658       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5659       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5660       const size_t NumRecords = Record.size();
5661       unsigned OpNum = 0;
5662 
5663       Value *Ptr = nullptr;
5664       unsigned PtrTypeID;
5665       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5666         return error("Invalid record");
5667 
5668       if (!isa<PointerType>(Ptr->getType()))
5669         return error("Invalid record");
5670 
5671       Value *Val = nullptr;
5672       unsigned ValTypeID = InvalidTypeID;
5673       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5674         ValTypeID = getContainedTypeID(PtrTypeID);
5675         if (popValue(Record, OpNum, NextValueNo,
5676                      getTypeByID(ValTypeID), ValTypeID, Val))
5677           return error("Invalid record");
5678       } else {
5679         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5680           return error("Invalid record");
5681       }
5682 
5683       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5684         return error("Invalid record");
5685 
5686       const AtomicRMWInst::BinOp Operation =
5687           getDecodedRMWOperation(Record[OpNum]);
5688       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5689           Operation > AtomicRMWInst::LAST_BINOP)
5690         return error("Invalid record");
5691 
5692       const bool IsVol = Record[OpNum + 1];
5693 
5694       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5695       if (Ordering == AtomicOrdering::NotAtomic ||
5696           Ordering == AtomicOrdering::Unordered)
5697         return error("Invalid record");
5698 
5699       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5700 
5701       MaybeAlign Alignment;
5702 
5703       if (NumRecords == (OpNum + 5)) {
5704         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5705           return Err;
5706       }
5707 
5708       if (!Alignment)
5709         Alignment =
5710             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5711 
5712       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5713       ResTypeID = ValTypeID;
5714       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5715 
5716       InstructionList.push_back(I);
5717       break;
5718     }
5719     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5720       if (2 != Record.size())
5721         return error("Invalid record");
5722       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5723       if (Ordering == AtomicOrdering::NotAtomic ||
5724           Ordering == AtomicOrdering::Unordered ||
5725           Ordering == AtomicOrdering::Monotonic)
5726         return error("Invalid record");
5727       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5728       I = new FenceInst(Context, Ordering, SSID);
5729       InstructionList.push_back(I);
5730       break;
5731     }
5732     case bitc::FUNC_CODE_INST_CALL: {
5733       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5734       if (Record.size() < 3)
5735         return error("Invalid record");
5736 
5737       unsigned OpNum = 0;
5738       AttributeList PAL = getAttributes(Record[OpNum++]);
5739       unsigned CCInfo = Record[OpNum++];
5740 
5741       FastMathFlags FMF;
5742       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5743         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5744         if (!FMF.any())
5745           return error("Fast math flags indicator set for call with no FMF");
5746       }
5747 
5748       unsigned FTyID = InvalidTypeID;
5749       FunctionType *FTy = nullptr;
5750       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5751         FTyID = Record[OpNum++];
5752         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5753         if (!FTy)
5754           return error("Explicit call type is not a function type");
5755       }
5756 
5757       Value *Callee;
5758       unsigned CalleeTypeID;
5759       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5760         return error("Invalid record");
5761 
5762       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5763       if (!OpTy)
5764         return error("Callee is not a pointer type");
5765       if (!FTy) {
5766         FTyID = getContainedTypeID(CalleeTypeID);
5767         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5768         if (!FTy)
5769           return error("Callee is not of pointer to function type");
5770       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5771         return error("Explicit call type does not match pointee type of "
5772                      "callee operand");
5773       if (Record.size() < FTy->getNumParams() + OpNum)
5774         return error("Insufficient operands to call");
5775 
5776       SmallVector<Value*, 16> Args;
5777       SmallVector<unsigned, 16> ArgTyIDs;
5778       // Read the fixed params.
5779       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5780         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5781         if (FTy->getParamType(i)->isLabelTy())
5782           Args.push_back(getBasicBlock(Record[OpNum]));
5783         else
5784           Args.push_back(getValue(Record, OpNum, NextValueNo,
5785                                   FTy->getParamType(i), ArgTyID));
5786         ArgTyIDs.push_back(ArgTyID);
5787         if (!Args.back())
5788           return error("Invalid record");
5789       }
5790 
5791       // Read type/value pairs for varargs params.
5792       if (!FTy->isVarArg()) {
5793         if (OpNum != Record.size())
5794           return error("Invalid record");
5795       } else {
5796         while (OpNum != Record.size()) {
5797           Value *Op;
5798           unsigned OpTypeID;
5799           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5800             return error("Invalid record");
5801           Args.push_back(Op);
5802           ArgTyIDs.push_back(OpTypeID);
5803         }
5804       }
5805 
5806       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5807       ResTypeID = getContainedTypeID(FTyID);
5808       OperandBundles.clear();
5809       InstructionList.push_back(I);
5810       cast<CallInst>(I)->setCallingConv(
5811           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5812       CallInst::TailCallKind TCK = CallInst::TCK_None;
5813       if (CCInfo & 1 << bitc::CALL_TAIL)
5814         TCK = CallInst::TCK_Tail;
5815       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5816         TCK = CallInst::TCK_MustTail;
5817       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5818         TCK = CallInst::TCK_NoTail;
5819       cast<CallInst>(I)->setTailCallKind(TCK);
5820       cast<CallInst>(I)->setAttributes(PAL);
5821       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5822         I->deleteValue();
5823         return Err;
5824       }
5825       if (FMF.any()) {
5826         if (!isa<FPMathOperator>(I))
5827           return error("Fast-math-flags specified for call without "
5828                        "floating-point scalar or vector return type");
5829         I->setFastMathFlags(FMF);
5830       }
5831       break;
5832     }
5833     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5834       if (Record.size() < 3)
5835         return error("Invalid record");
5836       unsigned OpTyID = Record[0];
5837       Type *OpTy = getTypeByID(OpTyID);
5838       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5839       ResTypeID = Record[2];
5840       Type *ResTy = getTypeByID(ResTypeID);
5841       if (!OpTy || !Op || !ResTy)
5842         return error("Invalid record");
5843       I = new VAArgInst(Op, ResTy);
5844       InstructionList.push_back(I);
5845       break;
5846     }
5847 
5848     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5849       // A call or an invoke can be optionally prefixed with some variable
5850       // number of operand bundle blocks.  These blocks are read into
5851       // OperandBundles and consumed at the next call or invoke instruction.
5852 
5853       if (Record.empty() || Record[0] >= BundleTags.size())
5854         return error("Invalid record");
5855 
5856       std::vector<Value *> Inputs;
5857 
5858       unsigned OpNum = 1;
5859       while (OpNum != Record.size()) {
5860         Value *Op;
5861         unsigned OpTypeID;
5862         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5863           return error("Invalid record");
5864         Inputs.push_back(Op);
5865       }
5866 
5867       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5868       continue;
5869     }
5870 
5871     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5872       unsigned OpNum = 0;
5873       Value *Op = nullptr;
5874       unsigned OpTypeID;
5875       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5876         return error("Invalid record");
5877       if (OpNum != Record.size())
5878         return error("Invalid record");
5879 
5880       I = new FreezeInst(Op);
5881       ResTypeID = OpTypeID;
5882       InstructionList.push_back(I);
5883       break;
5884     }
5885     }
5886 
5887     // Add instruction to end of current BB.  If there is no current BB, reject
5888     // this file.
5889     if (!CurBB) {
5890       I->deleteValue();
5891       return error("Invalid instruction with no BB");
5892     }
5893     if (!OperandBundles.empty()) {
5894       I->deleteValue();
5895       return error("Operand bundles found with no consumer");
5896     }
5897     CurBB->getInstList().push_back(I);
5898 
5899     // If this was a terminator instruction, move to the next block.
5900     if (I->isTerminator()) {
5901       ++CurBBNo;
5902       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5903     }
5904 
5905     // Non-void values get registered in the value table for future use.
5906     if (!I->getType()->isVoidTy()) {
5907       assert(I->getType() == getTypeByID(ResTypeID) &&
5908              "Incorrect result type ID");
5909       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
5910         return Err;
5911     }
5912   }
5913 
5914 OutOfRecordLoop:
5915 
5916   if (!OperandBundles.empty())
5917     return error("Operand bundles found with no consumer");
5918 
5919   // Check the function list for unresolved values.
5920   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5921     if (!A->getParent()) {
5922       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5923       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5924         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5925           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5926           delete A;
5927         }
5928       }
5929       return error("Never resolved value found in function");
5930     }
5931   }
5932 
5933   // Unexpected unresolved metadata about to be dropped.
5934   if (MDLoader->hasFwdRefs())
5935     return error("Invalid function metadata: outgoing forward refs");
5936 
5937   // Trim the value list down to the size it was before we parsed this function.
5938   ValueList.shrinkTo(ModuleValueListSize);
5939   MDLoader->shrinkTo(ModuleMDLoaderSize);
5940   std::vector<BasicBlock*>().swap(FunctionBBs);
5941   return Error::success();
5942 }
5943 
5944 /// Find the function body in the bitcode stream
5945 Error BitcodeReader::findFunctionInStream(
5946     Function *F,
5947     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5948   while (DeferredFunctionInfoIterator->second == 0) {
5949     // This is the fallback handling for the old format bitcode that
5950     // didn't contain the function index in the VST, or when we have
5951     // an anonymous function which would not have a VST entry.
5952     // Assert that we have one of those two cases.
5953     assert(VSTOffset == 0 || !F->hasName());
5954     // Parse the next body in the stream and set its position in the
5955     // DeferredFunctionInfo map.
5956     if (Error Err = rememberAndSkipFunctionBodies())
5957       return Err;
5958   }
5959   return Error::success();
5960 }
5961 
5962 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5963   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5964     return SyncScope::ID(Val);
5965   if (Val >= SSIDs.size())
5966     return SyncScope::System; // Map unknown synchronization scopes to system.
5967   return SSIDs[Val];
5968 }
5969 
5970 //===----------------------------------------------------------------------===//
5971 // GVMaterializer implementation
5972 //===----------------------------------------------------------------------===//
5973 
5974 Error BitcodeReader::materialize(GlobalValue *GV) {
5975   Function *F = dyn_cast<Function>(GV);
5976   // If it's not a function or is already material, ignore the request.
5977   if (!F || !F->isMaterializable())
5978     return Error::success();
5979 
5980   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5981   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5982   // If its position is recorded as 0, its body is somewhere in the stream
5983   // but we haven't seen it yet.
5984   if (DFII->second == 0)
5985     if (Error Err = findFunctionInStream(F, DFII))
5986       return Err;
5987 
5988   // Materialize metadata before parsing any function bodies.
5989   if (Error Err = materializeMetadata())
5990     return Err;
5991 
5992   // Move the bit stream to the saved position of the deferred function body.
5993   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5994     return JumpFailed;
5995   if (Error Err = parseFunctionBody(F))
5996     return Err;
5997   F->setIsMaterializable(false);
5998 
5999   if (StripDebugInfo)
6000     stripDebugInfo(*F);
6001 
6002   // Upgrade any old intrinsic calls in the function.
6003   for (auto &I : UpgradedIntrinsics) {
6004     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6005       if (CallInst *CI = dyn_cast<CallInst>(U))
6006         UpgradeIntrinsicCall(CI, I.second);
6007   }
6008 
6009   // Update calls to the remangled intrinsics
6010   for (auto &I : RemangledIntrinsics)
6011     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6012       // Don't expect any other users than call sites
6013       cast<CallBase>(U)->setCalledFunction(I.second);
6014 
6015   // Finish fn->subprogram upgrade for materialized functions.
6016   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6017     F->setSubprogram(SP);
6018 
6019   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6020   if (!MDLoader->isStrippingTBAA()) {
6021     for (auto &I : instructions(F)) {
6022       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6023       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6024         continue;
6025       MDLoader->setStripTBAA(true);
6026       stripTBAA(F->getParent());
6027     }
6028   }
6029 
6030   for (auto &I : instructions(F)) {
6031     // "Upgrade" older incorrect branch weights by dropping them.
6032     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6033       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6034         MDString *MDS = cast<MDString>(MD->getOperand(0));
6035         StringRef ProfName = MDS->getString();
6036         // Check consistency of !prof branch_weights metadata.
6037         if (!ProfName.equals("branch_weights"))
6038           continue;
6039         unsigned ExpectedNumOperands = 0;
6040         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6041           ExpectedNumOperands = BI->getNumSuccessors();
6042         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6043           ExpectedNumOperands = SI->getNumSuccessors();
6044         else if (isa<CallInst>(&I))
6045           ExpectedNumOperands = 1;
6046         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6047           ExpectedNumOperands = IBI->getNumDestinations();
6048         else if (isa<SelectInst>(&I))
6049           ExpectedNumOperands = 2;
6050         else
6051           continue; // ignore and continue.
6052 
6053         // If branch weight doesn't match, just strip branch weight.
6054         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6055           I.setMetadata(LLVMContext::MD_prof, nullptr);
6056       }
6057     }
6058 
6059     // Remove incompatible attributes on function calls.
6060     if (auto *CI = dyn_cast<CallBase>(&I)) {
6061       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6062           CI->getFunctionType()->getReturnType()));
6063 
6064       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6065         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6066                                         CI->getArgOperand(ArgNo)->getType()));
6067     }
6068   }
6069 
6070   // Look for functions that rely on old function attribute behavior.
6071   UpgradeFunctionAttributes(*F);
6072 
6073   // Bring in any functions that this function forward-referenced via
6074   // blockaddresses.
6075   return materializeForwardReferencedFunctions();
6076 }
6077 
6078 Error BitcodeReader::materializeModule() {
6079   if (Error Err = materializeMetadata())
6080     return Err;
6081 
6082   // Promise to materialize all forward references.
6083   WillMaterializeAllForwardRefs = true;
6084 
6085   // Iterate over the module, deserializing any functions that are still on
6086   // disk.
6087   for (Function &F : *TheModule) {
6088     if (Error Err = materialize(&F))
6089       return Err;
6090   }
6091   // At this point, if there are any function bodies, parse the rest of
6092   // the bits in the module past the last function block we have recorded
6093   // through either lazy scanning or the VST.
6094   if (LastFunctionBlockBit || NextUnreadBit)
6095     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6096                                     ? LastFunctionBlockBit
6097                                     : NextUnreadBit))
6098       return Err;
6099 
6100   // Check that all block address forward references got resolved (as we
6101   // promised above).
6102   if (!BasicBlockFwdRefs.empty())
6103     return error("Never resolved function from blockaddress");
6104 
6105   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6106   // delete the old functions to clean up. We can't do this unless the entire
6107   // module is materialized because there could always be another function body
6108   // with calls to the old function.
6109   for (auto &I : UpgradedIntrinsics) {
6110     for (auto *U : I.first->users()) {
6111       if (CallInst *CI = dyn_cast<CallInst>(U))
6112         UpgradeIntrinsicCall(CI, I.second);
6113     }
6114     if (!I.first->use_empty())
6115       I.first->replaceAllUsesWith(I.second);
6116     I.first->eraseFromParent();
6117   }
6118   UpgradedIntrinsics.clear();
6119   // Do the same for remangled intrinsics
6120   for (auto &I : RemangledIntrinsics) {
6121     I.first->replaceAllUsesWith(I.second);
6122     I.first->eraseFromParent();
6123   }
6124   RemangledIntrinsics.clear();
6125 
6126   UpgradeDebugInfo(*TheModule);
6127 
6128   UpgradeModuleFlags(*TheModule);
6129 
6130   UpgradeARCRuntime(*TheModule);
6131 
6132   return Error::success();
6133 }
6134 
6135 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6136   return IdentifiedStructTypes;
6137 }
6138 
6139 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6140     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6141     StringRef ModulePath, unsigned ModuleId)
6142     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6143       ModulePath(ModulePath), ModuleId(ModuleId) {}
6144 
6145 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6146   TheIndex.addModule(ModulePath, ModuleId);
6147 }
6148 
6149 ModuleSummaryIndex::ModuleInfo *
6150 ModuleSummaryIndexBitcodeReader::getThisModule() {
6151   return TheIndex.getModule(ModulePath);
6152 }
6153 
6154 std::pair<ValueInfo, GlobalValue::GUID>
6155 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6156   auto VGI = ValueIdToValueInfoMap[ValueId];
6157   assert(VGI.first);
6158   return VGI;
6159 }
6160 
6161 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6162     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6163     StringRef SourceFileName) {
6164   std::string GlobalId =
6165       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6166   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6167   auto OriginalNameID = ValueGUID;
6168   if (GlobalValue::isLocalLinkage(Linkage))
6169     OriginalNameID = GlobalValue::getGUID(ValueName);
6170   if (PrintSummaryGUIDs)
6171     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6172            << ValueName << "\n";
6173 
6174   // UseStrtab is false for legacy summary formats and value names are
6175   // created on stack. In that case we save the name in a string saver in
6176   // the index so that the value name can be recorded.
6177   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6178       TheIndex.getOrInsertValueInfo(
6179           ValueGUID,
6180           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6181       OriginalNameID);
6182 }
6183 
6184 // Specialized value symbol table parser used when reading module index
6185 // blocks where we don't actually create global values. The parsed information
6186 // is saved in the bitcode reader for use when later parsing summaries.
6187 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6188     uint64_t Offset,
6189     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6190   // With a strtab the VST is not required to parse the summary.
6191   if (UseStrtab)
6192     return Error::success();
6193 
6194   assert(Offset > 0 && "Expected non-zero VST offset");
6195   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6196   if (!MaybeCurrentBit)
6197     return MaybeCurrentBit.takeError();
6198   uint64_t CurrentBit = MaybeCurrentBit.get();
6199 
6200   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6201     return Err;
6202 
6203   SmallVector<uint64_t, 64> Record;
6204 
6205   // Read all the records for this value table.
6206   SmallString<128> ValueName;
6207 
6208   while (true) {
6209     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6210     if (!MaybeEntry)
6211       return MaybeEntry.takeError();
6212     BitstreamEntry Entry = MaybeEntry.get();
6213 
6214     switch (Entry.Kind) {
6215     case BitstreamEntry::SubBlock: // Handled for us already.
6216     case BitstreamEntry::Error:
6217       return error("Malformed block");
6218     case BitstreamEntry::EndBlock:
6219       // Done parsing VST, jump back to wherever we came from.
6220       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6221         return JumpFailed;
6222       return Error::success();
6223     case BitstreamEntry::Record:
6224       // The interesting case.
6225       break;
6226     }
6227 
6228     // Read a record.
6229     Record.clear();
6230     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6231     if (!MaybeRecord)
6232       return MaybeRecord.takeError();
6233     switch (MaybeRecord.get()) {
6234     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6235       break;
6236     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6237       if (convertToString(Record, 1, ValueName))
6238         return error("Invalid record");
6239       unsigned ValueID = Record[0];
6240       assert(!SourceFileName.empty());
6241       auto VLI = ValueIdToLinkageMap.find(ValueID);
6242       assert(VLI != ValueIdToLinkageMap.end() &&
6243              "No linkage found for VST entry?");
6244       auto Linkage = VLI->second;
6245       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6246       ValueName.clear();
6247       break;
6248     }
6249     case bitc::VST_CODE_FNENTRY: {
6250       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6251       if (convertToString(Record, 2, ValueName))
6252         return error("Invalid record");
6253       unsigned ValueID = Record[0];
6254       assert(!SourceFileName.empty());
6255       auto VLI = ValueIdToLinkageMap.find(ValueID);
6256       assert(VLI != ValueIdToLinkageMap.end() &&
6257              "No linkage found for VST entry?");
6258       auto Linkage = VLI->second;
6259       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6260       ValueName.clear();
6261       break;
6262     }
6263     case bitc::VST_CODE_COMBINED_ENTRY: {
6264       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6265       unsigned ValueID = Record[0];
6266       GlobalValue::GUID RefGUID = Record[1];
6267       // The "original name", which is the second value of the pair will be
6268       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6269       ValueIdToValueInfoMap[ValueID] =
6270           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6271       break;
6272     }
6273     }
6274   }
6275 }
6276 
6277 // Parse just the blocks needed for building the index out of the module.
6278 // At the end of this routine the module Index is populated with a map
6279 // from global value id to GlobalValueSummary objects.
6280 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6281   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6282     return Err;
6283 
6284   SmallVector<uint64_t, 64> Record;
6285   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6286   unsigned ValueId = 0;
6287 
6288   // Read the index for this module.
6289   while (true) {
6290     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6291     if (!MaybeEntry)
6292       return MaybeEntry.takeError();
6293     llvm::BitstreamEntry Entry = MaybeEntry.get();
6294 
6295     switch (Entry.Kind) {
6296     case BitstreamEntry::Error:
6297       return error("Malformed block");
6298     case BitstreamEntry::EndBlock:
6299       return Error::success();
6300 
6301     case BitstreamEntry::SubBlock:
6302       switch (Entry.ID) {
6303       default: // Skip unknown content.
6304         if (Error Err = Stream.SkipBlock())
6305           return Err;
6306         break;
6307       case bitc::BLOCKINFO_BLOCK_ID:
6308         // Need to parse these to get abbrev ids (e.g. for VST)
6309         if (Error Err = readBlockInfo())
6310           return Err;
6311         break;
6312       case bitc::VALUE_SYMTAB_BLOCK_ID:
6313         // Should have been parsed earlier via VSTOffset, unless there
6314         // is no summary section.
6315         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6316                 !SeenGlobalValSummary) &&
6317                "Expected early VST parse via VSTOffset record");
6318         if (Error Err = Stream.SkipBlock())
6319           return Err;
6320         break;
6321       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6322       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6323         // Add the module if it is a per-module index (has a source file name).
6324         if (!SourceFileName.empty())
6325           addThisModule();
6326         assert(!SeenValueSymbolTable &&
6327                "Already read VST when parsing summary block?");
6328         // We might not have a VST if there were no values in the
6329         // summary. An empty summary block generated when we are
6330         // performing ThinLTO compiles so we don't later invoke
6331         // the regular LTO process on them.
6332         if (VSTOffset > 0) {
6333           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6334             return Err;
6335           SeenValueSymbolTable = true;
6336         }
6337         SeenGlobalValSummary = true;
6338         if (Error Err = parseEntireSummary(Entry.ID))
6339           return Err;
6340         break;
6341       case bitc::MODULE_STRTAB_BLOCK_ID:
6342         if (Error Err = parseModuleStringTable())
6343           return Err;
6344         break;
6345       }
6346       continue;
6347 
6348     case BitstreamEntry::Record: {
6349         Record.clear();
6350         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6351         if (!MaybeBitCode)
6352           return MaybeBitCode.takeError();
6353         switch (MaybeBitCode.get()) {
6354         default:
6355           break; // Default behavior, ignore unknown content.
6356         case bitc::MODULE_CODE_VERSION: {
6357           if (Error Err = parseVersionRecord(Record).takeError())
6358             return Err;
6359           break;
6360         }
6361         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6362         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6363           SmallString<128> ValueName;
6364           if (convertToString(Record, 0, ValueName))
6365             return error("Invalid record");
6366           SourceFileName = ValueName.c_str();
6367           break;
6368         }
6369         /// MODULE_CODE_HASH: [5*i32]
6370         case bitc::MODULE_CODE_HASH: {
6371           if (Record.size() != 5)
6372             return error("Invalid hash length " + Twine(Record.size()).str());
6373           auto &Hash = getThisModule()->second.second;
6374           int Pos = 0;
6375           for (auto &Val : Record) {
6376             assert(!(Val >> 32) && "Unexpected high bits set");
6377             Hash[Pos++] = Val;
6378           }
6379           break;
6380         }
6381         /// MODULE_CODE_VSTOFFSET: [offset]
6382         case bitc::MODULE_CODE_VSTOFFSET:
6383           if (Record.empty())
6384             return error("Invalid record");
6385           // Note that we subtract 1 here because the offset is relative to one
6386           // word before the start of the identification or module block, which
6387           // was historically always the start of the regular bitcode header.
6388           VSTOffset = Record[0] - 1;
6389           break;
6390         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6391         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6392         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6393         // v2: [strtab offset, strtab size, v1]
6394         case bitc::MODULE_CODE_GLOBALVAR:
6395         case bitc::MODULE_CODE_FUNCTION:
6396         case bitc::MODULE_CODE_ALIAS: {
6397           StringRef Name;
6398           ArrayRef<uint64_t> GVRecord;
6399           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6400           if (GVRecord.size() <= 3)
6401             return error("Invalid record");
6402           uint64_t RawLinkage = GVRecord[3];
6403           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6404           if (!UseStrtab) {
6405             ValueIdToLinkageMap[ValueId++] = Linkage;
6406             break;
6407           }
6408 
6409           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6410           break;
6411         }
6412         }
6413       }
6414       continue;
6415     }
6416   }
6417 }
6418 
6419 std::vector<ValueInfo>
6420 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6421   std::vector<ValueInfo> Ret;
6422   Ret.reserve(Record.size());
6423   for (uint64_t RefValueId : Record)
6424     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6425   return Ret;
6426 }
6427 
6428 std::vector<FunctionSummary::EdgeTy>
6429 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6430                                               bool IsOldProfileFormat,
6431                                               bool HasProfile, bool HasRelBF) {
6432   std::vector<FunctionSummary::EdgeTy> Ret;
6433   Ret.reserve(Record.size());
6434   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6435     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6436     uint64_t RelBF = 0;
6437     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6438     if (IsOldProfileFormat) {
6439       I += 1; // Skip old callsitecount field
6440       if (HasProfile)
6441         I += 1; // Skip old profilecount field
6442     } else if (HasProfile)
6443       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6444     else if (HasRelBF)
6445       RelBF = Record[++I];
6446     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6447   }
6448   return Ret;
6449 }
6450 
6451 static void
6452 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6453                                        WholeProgramDevirtResolution &Wpd) {
6454   uint64_t ArgNum = Record[Slot++];
6455   WholeProgramDevirtResolution::ByArg &B =
6456       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6457   Slot += ArgNum;
6458 
6459   B.TheKind =
6460       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6461   B.Info = Record[Slot++];
6462   B.Byte = Record[Slot++];
6463   B.Bit = Record[Slot++];
6464 }
6465 
6466 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6467                                               StringRef Strtab, size_t &Slot,
6468                                               TypeIdSummary &TypeId) {
6469   uint64_t Id = Record[Slot++];
6470   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6471 
6472   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6473   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6474                         static_cast<size_t>(Record[Slot + 1])};
6475   Slot += 2;
6476 
6477   uint64_t ResByArgNum = Record[Slot++];
6478   for (uint64_t I = 0; I != ResByArgNum; ++I)
6479     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6480 }
6481 
6482 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6483                                      StringRef Strtab,
6484                                      ModuleSummaryIndex &TheIndex) {
6485   size_t Slot = 0;
6486   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6487       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6488   Slot += 2;
6489 
6490   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6491   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6492   TypeId.TTRes.AlignLog2 = Record[Slot++];
6493   TypeId.TTRes.SizeM1 = Record[Slot++];
6494   TypeId.TTRes.BitMask = Record[Slot++];
6495   TypeId.TTRes.InlineBits = Record[Slot++];
6496 
6497   while (Slot < Record.size())
6498     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6499 }
6500 
6501 std::vector<FunctionSummary::ParamAccess>
6502 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6503   auto ReadRange = [&]() {
6504     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6505                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6506     Record = Record.drop_front();
6507     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6508                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6509     Record = Record.drop_front();
6510     ConstantRange Range{Lower, Upper};
6511     assert(!Range.isFullSet());
6512     assert(!Range.isUpperSignWrapped());
6513     return Range;
6514   };
6515 
6516   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6517   while (!Record.empty()) {
6518     PendingParamAccesses.emplace_back();
6519     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6520     ParamAccess.ParamNo = Record.front();
6521     Record = Record.drop_front();
6522     ParamAccess.Use = ReadRange();
6523     ParamAccess.Calls.resize(Record.front());
6524     Record = Record.drop_front();
6525     for (auto &Call : ParamAccess.Calls) {
6526       Call.ParamNo = Record.front();
6527       Record = Record.drop_front();
6528       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6529       Record = Record.drop_front();
6530       Call.Offsets = ReadRange();
6531     }
6532   }
6533   return PendingParamAccesses;
6534 }
6535 
6536 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6537     ArrayRef<uint64_t> Record, size_t &Slot,
6538     TypeIdCompatibleVtableInfo &TypeId) {
6539   uint64_t Offset = Record[Slot++];
6540   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6541   TypeId.push_back({Offset, Callee});
6542 }
6543 
6544 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6545     ArrayRef<uint64_t> Record) {
6546   size_t Slot = 0;
6547   TypeIdCompatibleVtableInfo &TypeId =
6548       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6549           {Strtab.data() + Record[Slot],
6550            static_cast<size_t>(Record[Slot + 1])});
6551   Slot += 2;
6552 
6553   while (Slot < Record.size())
6554     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6555 }
6556 
6557 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6558                            unsigned WOCnt) {
6559   // Readonly and writeonly refs are in the end of the refs list.
6560   assert(ROCnt + WOCnt <= Refs.size());
6561   unsigned FirstWORef = Refs.size() - WOCnt;
6562   unsigned RefNo = FirstWORef - ROCnt;
6563   for (; RefNo < FirstWORef; ++RefNo)
6564     Refs[RefNo].setReadOnly();
6565   for (; RefNo < Refs.size(); ++RefNo)
6566     Refs[RefNo].setWriteOnly();
6567 }
6568 
6569 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6570 // objects in the index.
6571 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6572   if (Error Err = Stream.EnterSubBlock(ID))
6573     return Err;
6574   SmallVector<uint64_t, 64> Record;
6575 
6576   // Parse version
6577   {
6578     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6579     if (!MaybeEntry)
6580       return MaybeEntry.takeError();
6581     BitstreamEntry Entry = MaybeEntry.get();
6582 
6583     if (Entry.Kind != BitstreamEntry::Record)
6584       return error("Invalid Summary Block: record for version expected");
6585     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6586     if (!MaybeRecord)
6587       return MaybeRecord.takeError();
6588     if (MaybeRecord.get() != bitc::FS_VERSION)
6589       return error("Invalid Summary Block: version expected");
6590   }
6591   const uint64_t Version = Record[0];
6592   const bool IsOldProfileFormat = Version == 1;
6593   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6594     return error("Invalid summary version " + Twine(Version) +
6595                  ". Version should be in the range [1-" +
6596                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6597                  "].");
6598   Record.clear();
6599 
6600   // Keep around the last seen summary to be used when we see an optional
6601   // "OriginalName" attachement.
6602   GlobalValueSummary *LastSeenSummary = nullptr;
6603   GlobalValue::GUID LastSeenGUID = 0;
6604 
6605   // We can expect to see any number of type ID information records before
6606   // each function summary records; these variables store the information
6607   // collected so far so that it can be used to create the summary object.
6608   std::vector<GlobalValue::GUID> PendingTypeTests;
6609   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6610       PendingTypeCheckedLoadVCalls;
6611   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6612       PendingTypeCheckedLoadConstVCalls;
6613   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6614 
6615   while (true) {
6616     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6617     if (!MaybeEntry)
6618       return MaybeEntry.takeError();
6619     BitstreamEntry Entry = MaybeEntry.get();
6620 
6621     switch (Entry.Kind) {
6622     case BitstreamEntry::SubBlock: // Handled for us already.
6623     case BitstreamEntry::Error:
6624       return error("Malformed block");
6625     case BitstreamEntry::EndBlock:
6626       return Error::success();
6627     case BitstreamEntry::Record:
6628       // The interesting case.
6629       break;
6630     }
6631 
6632     // Read a record. The record format depends on whether this
6633     // is a per-module index or a combined index file. In the per-module
6634     // case the records contain the associated value's ID for correlation
6635     // with VST entries. In the combined index the correlation is done
6636     // via the bitcode offset of the summary records (which were saved
6637     // in the combined index VST entries). The records also contain
6638     // information used for ThinLTO renaming and importing.
6639     Record.clear();
6640     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6641     if (!MaybeBitCode)
6642       return MaybeBitCode.takeError();
6643     switch (unsigned BitCode = MaybeBitCode.get()) {
6644     default: // Default behavior: ignore.
6645       break;
6646     case bitc::FS_FLAGS: {  // [flags]
6647       TheIndex.setFlags(Record[0]);
6648       break;
6649     }
6650     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6651       uint64_t ValueID = Record[0];
6652       GlobalValue::GUID RefGUID = Record[1];
6653       ValueIdToValueInfoMap[ValueID] =
6654           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6655       break;
6656     }
6657     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6658     //                numrefs x valueid, n x (valueid)]
6659     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6660     //                        numrefs x valueid,
6661     //                        n x (valueid, hotness)]
6662     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6663     //                      numrefs x valueid,
6664     //                      n x (valueid, relblockfreq)]
6665     case bitc::FS_PERMODULE:
6666     case bitc::FS_PERMODULE_RELBF:
6667     case bitc::FS_PERMODULE_PROFILE: {
6668       unsigned ValueID = Record[0];
6669       uint64_t RawFlags = Record[1];
6670       unsigned InstCount = Record[2];
6671       uint64_t RawFunFlags = 0;
6672       unsigned NumRefs = Record[3];
6673       unsigned NumRORefs = 0, NumWORefs = 0;
6674       int RefListStartIndex = 4;
6675       if (Version >= 4) {
6676         RawFunFlags = Record[3];
6677         NumRefs = Record[4];
6678         RefListStartIndex = 5;
6679         if (Version >= 5) {
6680           NumRORefs = Record[5];
6681           RefListStartIndex = 6;
6682           if (Version >= 7) {
6683             NumWORefs = Record[6];
6684             RefListStartIndex = 7;
6685           }
6686         }
6687       }
6688 
6689       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6690       // The module path string ref set in the summary must be owned by the
6691       // index's module string table. Since we don't have a module path
6692       // string table section in the per-module index, we create a single
6693       // module path string table entry with an empty (0) ID to take
6694       // ownership.
6695       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6696       assert(Record.size() >= RefListStartIndex + NumRefs &&
6697              "Record size inconsistent with number of references");
6698       std::vector<ValueInfo> Refs = makeRefList(
6699           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6700       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6701       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6702       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6703           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6704           IsOldProfileFormat, HasProfile, HasRelBF);
6705       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6706       auto FS = std::make_unique<FunctionSummary>(
6707           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6708           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6709           std::move(PendingTypeTestAssumeVCalls),
6710           std::move(PendingTypeCheckedLoadVCalls),
6711           std::move(PendingTypeTestAssumeConstVCalls),
6712           std::move(PendingTypeCheckedLoadConstVCalls),
6713           std::move(PendingParamAccesses));
6714       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6715       FS->setModulePath(getThisModule()->first());
6716       FS->setOriginalName(VIAndOriginalGUID.second);
6717       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6718       break;
6719     }
6720     // FS_ALIAS: [valueid, flags, valueid]
6721     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6722     // they expect all aliasee summaries to be available.
6723     case bitc::FS_ALIAS: {
6724       unsigned ValueID = Record[0];
6725       uint64_t RawFlags = Record[1];
6726       unsigned AliaseeID = Record[2];
6727       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6728       auto AS = std::make_unique<AliasSummary>(Flags);
6729       // The module path string ref set in the summary must be owned by the
6730       // index's module string table. Since we don't have a module path
6731       // string table section in the per-module index, we create a single
6732       // module path string table entry with an empty (0) ID to take
6733       // ownership.
6734       AS->setModulePath(getThisModule()->first());
6735 
6736       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6737       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6738       if (!AliaseeInModule)
6739         return error("Alias expects aliasee summary to be parsed");
6740       AS->setAliasee(AliaseeVI, AliaseeInModule);
6741 
6742       auto GUID = getValueInfoFromValueId(ValueID);
6743       AS->setOriginalName(GUID.second);
6744       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6745       break;
6746     }
6747     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6748     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6749       unsigned ValueID = Record[0];
6750       uint64_t RawFlags = Record[1];
6751       unsigned RefArrayStart = 2;
6752       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6753                                       /* WriteOnly */ false,
6754                                       /* Constant */ false,
6755                                       GlobalObject::VCallVisibilityPublic);
6756       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6757       if (Version >= 5) {
6758         GVF = getDecodedGVarFlags(Record[2]);
6759         RefArrayStart = 3;
6760       }
6761       std::vector<ValueInfo> Refs =
6762           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6763       auto FS =
6764           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6765       FS->setModulePath(getThisModule()->first());
6766       auto GUID = getValueInfoFromValueId(ValueID);
6767       FS->setOriginalName(GUID.second);
6768       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6769       break;
6770     }
6771     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6772     //                        numrefs, numrefs x valueid,
6773     //                        n x (valueid, offset)]
6774     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6775       unsigned ValueID = Record[0];
6776       uint64_t RawFlags = Record[1];
6777       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6778       unsigned NumRefs = Record[3];
6779       unsigned RefListStartIndex = 4;
6780       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6781       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6782       std::vector<ValueInfo> Refs = makeRefList(
6783           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6784       VTableFuncList VTableFuncs;
6785       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6786         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6787         uint64_t Offset = Record[++I];
6788         VTableFuncs.push_back({Callee, Offset});
6789       }
6790       auto VS =
6791           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6792       VS->setModulePath(getThisModule()->first());
6793       VS->setVTableFuncs(VTableFuncs);
6794       auto GUID = getValueInfoFromValueId(ValueID);
6795       VS->setOriginalName(GUID.second);
6796       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6797       break;
6798     }
6799     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6800     //               numrefs x valueid, n x (valueid)]
6801     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6802     //                       numrefs x valueid, n x (valueid, hotness)]
6803     case bitc::FS_COMBINED:
6804     case bitc::FS_COMBINED_PROFILE: {
6805       unsigned ValueID = Record[0];
6806       uint64_t ModuleId = Record[1];
6807       uint64_t RawFlags = Record[2];
6808       unsigned InstCount = Record[3];
6809       uint64_t RawFunFlags = 0;
6810       uint64_t EntryCount = 0;
6811       unsigned NumRefs = Record[4];
6812       unsigned NumRORefs = 0, NumWORefs = 0;
6813       int RefListStartIndex = 5;
6814 
6815       if (Version >= 4) {
6816         RawFunFlags = Record[4];
6817         RefListStartIndex = 6;
6818         size_t NumRefsIndex = 5;
6819         if (Version >= 5) {
6820           unsigned NumRORefsOffset = 1;
6821           RefListStartIndex = 7;
6822           if (Version >= 6) {
6823             NumRefsIndex = 6;
6824             EntryCount = Record[5];
6825             RefListStartIndex = 8;
6826             if (Version >= 7) {
6827               RefListStartIndex = 9;
6828               NumWORefs = Record[8];
6829               NumRORefsOffset = 2;
6830             }
6831           }
6832           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6833         }
6834         NumRefs = Record[NumRefsIndex];
6835       }
6836 
6837       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6838       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6839       assert(Record.size() >= RefListStartIndex + NumRefs &&
6840              "Record size inconsistent with number of references");
6841       std::vector<ValueInfo> Refs = makeRefList(
6842           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6843       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6844       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6845           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6846           IsOldProfileFormat, HasProfile, false);
6847       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6848       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6849       auto FS = std::make_unique<FunctionSummary>(
6850           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6851           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6852           std::move(PendingTypeTestAssumeVCalls),
6853           std::move(PendingTypeCheckedLoadVCalls),
6854           std::move(PendingTypeTestAssumeConstVCalls),
6855           std::move(PendingTypeCheckedLoadConstVCalls),
6856           std::move(PendingParamAccesses));
6857       LastSeenSummary = FS.get();
6858       LastSeenGUID = VI.getGUID();
6859       FS->setModulePath(ModuleIdMap[ModuleId]);
6860       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6861       break;
6862     }
6863     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6864     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6865     // they expect all aliasee summaries to be available.
6866     case bitc::FS_COMBINED_ALIAS: {
6867       unsigned ValueID = Record[0];
6868       uint64_t ModuleId = Record[1];
6869       uint64_t RawFlags = Record[2];
6870       unsigned AliaseeValueId = Record[3];
6871       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6872       auto AS = std::make_unique<AliasSummary>(Flags);
6873       LastSeenSummary = AS.get();
6874       AS->setModulePath(ModuleIdMap[ModuleId]);
6875 
6876       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6877       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6878       AS->setAliasee(AliaseeVI, AliaseeInModule);
6879 
6880       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6881       LastSeenGUID = VI.getGUID();
6882       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6883       break;
6884     }
6885     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6886     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6887       unsigned ValueID = Record[0];
6888       uint64_t ModuleId = Record[1];
6889       uint64_t RawFlags = Record[2];
6890       unsigned RefArrayStart = 3;
6891       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6892                                       /* WriteOnly */ false,
6893                                       /* Constant */ false,
6894                                       GlobalObject::VCallVisibilityPublic);
6895       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6896       if (Version >= 5) {
6897         GVF = getDecodedGVarFlags(Record[3]);
6898         RefArrayStart = 4;
6899       }
6900       std::vector<ValueInfo> Refs =
6901           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6902       auto FS =
6903           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6904       LastSeenSummary = FS.get();
6905       FS->setModulePath(ModuleIdMap[ModuleId]);
6906       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6907       LastSeenGUID = VI.getGUID();
6908       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6909       break;
6910     }
6911     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6912     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6913       uint64_t OriginalName = Record[0];
6914       if (!LastSeenSummary)
6915         return error("Name attachment that does not follow a combined record");
6916       LastSeenSummary->setOriginalName(OriginalName);
6917       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6918       // Reset the LastSeenSummary
6919       LastSeenSummary = nullptr;
6920       LastSeenGUID = 0;
6921       break;
6922     }
6923     case bitc::FS_TYPE_TESTS:
6924       assert(PendingTypeTests.empty());
6925       llvm::append_range(PendingTypeTests, Record);
6926       break;
6927 
6928     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6929       assert(PendingTypeTestAssumeVCalls.empty());
6930       for (unsigned I = 0; I != Record.size(); I += 2)
6931         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6932       break;
6933 
6934     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6935       assert(PendingTypeCheckedLoadVCalls.empty());
6936       for (unsigned I = 0; I != Record.size(); I += 2)
6937         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6938       break;
6939 
6940     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6941       PendingTypeTestAssumeConstVCalls.push_back(
6942           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6943       break;
6944 
6945     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6946       PendingTypeCheckedLoadConstVCalls.push_back(
6947           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6948       break;
6949 
6950     case bitc::FS_CFI_FUNCTION_DEFS: {
6951       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6952       for (unsigned I = 0; I != Record.size(); I += 2)
6953         CfiFunctionDefs.insert(
6954             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6955       break;
6956     }
6957 
6958     case bitc::FS_CFI_FUNCTION_DECLS: {
6959       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6960       for (unsigned I = 0; I != Record.size(); I += 2)
6961         CfiFunctionDecls.insert(
6962             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6963       break;
6964     }
6965 
6966     case bitc::FS_TYPE_ID:
6967       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6968       break;
6969 
6970     case bitc::FS_TYPE_ID_METADATA:
6971       parseTypeIdCompatibleVtableSummaryRecord(Record);
6972       break;
6973 
6974     case bitc::FS_BLOCK_COUNT:
6975       TheIndex.addBlockCount(Record[0]);
6976       break;
6977 
6978     case bitc::FS_PARAM_ACCESS: {
6979       PendingParamAccesses = parseParamAccesses(Record);
6980       break;
6981     }
6982     }
6983   }
6984   llvm_unreachable("Exit infinite loop");
6985 }
6986 
6987 // Parse the  module string table block into the Index.
6988 // This populates the ModulePathStringTable map in the index.
6989 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6990   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6991     return Err;
6992 
6993   SmallVector<uint64_t, 64> Record;
6994 
6995   SmallString<128> ModulePath;
6996   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6997 
6998   while (true) {
6999     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7000     if (!MaybeEntry)
7001       return MaybeEntry.takeError();
7002     BitstreamEntry Entry = MaybeEntry.get();
7003 
7004     switch (Entry.Kind) {
7005     case BitstreamEntry::SubBlock: // Handled for us already.
7006     case BitstreamEntry::Error:
7007       return error("Malformed block");
7008     case BitstreamEntry::EndBlock:
7009       return Error::success();
7010     case BitstreamEntry::Record:
7011       // The interesting case.
7012       break;
7013     }
7014 
7015     Record.clear();
7016     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7017     if (!MaybeRecord)
7018       return MaybeRecord.takeError();
7019     switch (MaybeRecord.get()) {
7020     default: // Default behavior: ignore.
7021       break;
7022     case bitc::MST_CODE_ENTRY: {
7023       // MST_ENTRY: [modid, namechar x N]
7024       uint64_t ModuleId = Record[0];
7025 
7026       if (convertToString(Record, 1, ModulePath))
7027         return error("Invalid record");
7028 
7029       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7030       ModuleIdMap[ModuleId] = LastSeenModule->first();
7031 
7032       ModulePath.clear();
7033       break;
7034     }
7035     /// MST_CODE_HASH: [5*i32]
7036     case bitc::MST_CODE_HASH: {
7037       if (Record.size() != 5)
7038         return error("Invalid hash length " + Twine(Record.size()).str());
7039       if (!LastSeenModule)
7040         return error("Invalid hash that does not follow a module path");
7041       int Pos = 0;
7042       for (auto &Val : Record) {
7043         assert(!(Val >> 32) && "Unexpected high bits set");
7044         LastSeenModule->second.second[Pos++] = Val;
7045       }
7046       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7047       LastSeenModule = nullptr;
7048       break;
7049     }
7050     }
7051   }
7052   llvm_unreachable("Exit infinite loop");
7053 }
7054 
7055 namespace {
7056 
7057 // FIXME: This class is only here to support the transition to llvm::Error. It
7058 // will be removed once this transition is complete. Clients should prefer to
7059 // deal with the Error value directly, rather than converting to error_code.
7060 class BitcodeErrorCategoryType : public std::error_category {
7061   const char *name() const noexcept override {
7062     return "llvm.bitcode";
7063   }
7064 
7065   std::string message(int IE) const override {
7066     BitcodeError E = static_cast<BitcodeError>(IE);
7067     switch (E) {
7068     case BitcodeError::CorruptedBitcode:
7069       return "Corrupted bitcode";
7070     }
7071     llvm_unreachable("Unknown error type!");
7072   }
7073 };
7074 
7075 } // end anonymous namespace
7076 
7077 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7078 
7079 const std::error_category &llvm::BitcodeErrorCategory() {
7080   return *ErrorCategory;
7081 }
7082 
7083 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7084                                             unsigned Block, unsigned RecordID) {
7085   if (Error Err = Stream.EnterSubBlock(Block))
7086     return std::move(Err);
7087 
7088   StringRef Strtab;
7089   while (true) {
7090     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7091     if (!MaybeEntry)
7092       return MaybeEntry.takeError();
7093     llvm::BitstreamEntry Entry = MaybeEntry.get();
7094 
7095     switch (Entry.Kind) {
7096     case BitstreamEntry::EndBlock:
7097       return Strtab;
7098 
7099     case BitstreamEntry::Error:
7100       return error("Malformed block");
7101 
7102     case BitstreamEntry::SubBlock:
7103       if (Error Err = Stream.SkipBlock())
7104         return std::move(Err);
7105       break;
7106 
7107     case BitstreamEntry::Record:
7108       StringRef Blob;
7109       SmallVector<uint64_t, 1> Record;
7110       Expected<unsigned> MaybeRecord =
7111           Stream.readRecord(Entry.ID, Record, &Blob);
7112       if (!MaybeRecord)
7113         return MaybeRecord.takeError();
7114       if (MaybeRecord.get() == RecordID)
7115         Strtab = Blob;
7116       break;
7117     }
7118   }
7119 }
7120 
7121 //===----------------------------------------------------------------------===//
7122 // External interface
7123 //===----------------------------------------------------------------------===//
7124 
7125 Expected<std::vector<BitcodeModule>>
7126 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7127   auto FOrErr = getBitcodeFileContents(Buffer);
7128   if (!FOrErr)
7129     return FOrErr.takeError();
7130   return std::move(FOrErr->Mods);
7131 }
7132 
7133 Expected<BitcodeFileContents>
7134 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7135   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7136   if (!StreamOrErr)
7137     return StreamOrErr.takeError();
7138   BitstreamCursor &Stream = *StreamOrErr;
7139 
7140   BitcodeFileContents F;
7141   while (true) {
7142     uint64_t BCBegin = Stream.getCurrentByteNo();
7143 
7144     // We may be consuming bitcode from a client that leaves garbage at the end
7145     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7146     // the end that there cannot possibly be another module, stop looking.
7147     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7148       return F;
7149 
7150     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7151     if (!MaybeEntry)
7152       return MaybeEntry.takeError();
7153     llvm::BitstreamEntry Entry = MaybeEntry.get();
7154 
7155     switch (Entry.Kind) {
7156     case BitstreamEntry::EndBlock:
7157     case BitstreamEntry::Error:
7158       return error("Malformed block");
7159 
7160     case BitstreamEntry::SubBlock: {
7161       uint64_t IdentificationBit = -1ull;
7162       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7163         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7164         if (Error Err = Stream.SkipBlock())
7165           return std::move(Err);
7166 
7167         {
7168           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7169           if (!MaybeEntry)
7170             return MaybeEntry.takeError();
7171           Entry = MaybeEntry.get();
7172         }
7173 
7174         if (Entry.Kind != BitstreamEntry::SubBlock ||
7175             Entry.ID != bitc::MODULE_BLOCK_ID)
7176           return error("Malformed block");
7177       }
7178 
7179       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7180         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7181         if (Error Err = Stream.SkipBlock())
7182           return std::move(Err);
7183 
7184         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7185                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7186                           Buffer.getBufferIdentifier(), IdentificationBit,
7187                           ModuleBit});
7188         continue;
7189       }
7190 
7191       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7192         Expected<StringRef> Strtab =
7193             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7194         if (!Strtab)
7195           return Strtab.takeError();
7196         // This string table is used by every preceding bitcode module that does
7197         // not have its own string table. A bitcode file may have multiple
7198         // string tables if it was created by binary concatenation, for example
7199         // with "llvm-cat -b".
7200         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7201           if (!I.Strtab.empty())
7202             break;
7203           I.Strtab = *Strtab;
7204         }
7205         // Similarly, the string table is used by every preceding symbol table;
7206         // normally there will be just one unless the bitcode file was created
7207         // by binary concatenation.
7208         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7209           F.StrtabForSymtab = *Strtab;
7210         continue;
7211       }
7212 
7213       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7214         Expected<StringRef> SymtabOrErr =
7215             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7216         if (!SymtabOrErr)
7217           return SymtabOrErr.takeError();
7218 
7219         // We can expect the bitcode file to have multiple symbol tables if it
7220         // was created by binary concatenation. In that case we silently
7221         // ignore any subsequent symbol tables, which is fine because this is a
7222         // low level function. The client is expected to notice that the number
7223         // of modules in the symbol table does not match the number of modules
7224         // in the input file and regenerate the symbol table.
7225         if (F.Symtab.empty())
7226           F.Symtab = *SymtabOrErr;
7227         continue;
7228       }
7229 
7230       if (Error Err = Stream.SkipBlock())
7231         return std::move(Err);
7232       continue;
7233     }
7234     case BitstreamEntry::Record:
7235       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7236         return std::move(E);
7237       continue;
7238     }
7239   }
7240 }
7241 
7242 /// Get a lazy one-at-time loading module from bitcode.
7243 ///
7244 /// This isn't always used in a lazy context.  In particular, it's also used by
7245 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7246 /// in forward-referenced functions from block address references.
7247 ///
7248 /// \param[in] MaterializeAll Set to \c true if we should materialize
7249 /// everything.
7250 Expected<std::unique_ptr<Module>>
7251 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7252                              bool ShouldLazyLoadMetadata, bool IsImporting,
7253                              DataLayoutCallbackTy DataLayoutCallback) {
7254   BitstreamCursor Stream(Buffer);
7255 
7256   std::string ProducerIdentification;
7257   if (IdentificationBit != -1ull) {
7258     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7259       return std::move(JumpFailed);
7260     if (Error E =
7261             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7262       return std::move(E);
7263   }
7264 
7265   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7266     return std::move(JumpFailed);
7267   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7268                               Context);
7269 
7270   std::unique_ptr<Module> M =
7271       std::make_unique<Module>(ModuleIdentifier, Context);
7272   M->setMaterializer(R);
7273 
7274   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7275   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7276                                       IsImporting, DataLayoutCallback))
7277     return std::move(Err);
7278 
7279   if (MaterializeAll) {
7280     // Read in the entire module, and destroy the BitcodeReader.
7281     if (Error Err = M->materializeAll())
7282       return std::move(Err);
7283   } else {
7284     // Resolve forward references from blockaddresses.
7285     if (Error Err = R->materializeForwardReferencedFunctions())
7286       return std::move(Err);
7287   }
7288   return std::move(M);
7289 }
7290 
7291 Expected<std::unique_ptr<Module>>
7292 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7293                              bool IsImporting) {
7294   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7295                        [](StringRef) { return None; });
7296 }
7297 
7298 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7299 // We don't use ModuleIdentifier here because the client may need to control the
7300 // module path used in the combined summary (e.g. when reading summaries for
7301 // regular LTO modules).
7302 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7303                                  StringRef ModulePath, uint64_t ModuleId) {
7304   BitstreamCursor Stream(Buffer);
7305   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7306     return JumpFailed;
7307 
7308   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7309                                     ModulePath, ModuleId);
7310   return R.parseModule();
7311 }
7312 
7313 // Parse the specified bitcode buffer, returning the function info index.
7314 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7315   BitstreamCursor Stream(Buffer);
7316   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7317     return std::move(JumpFailed);
7318 
7319   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7320   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7321                                     ModuleIdentifier, 0);
7322 
7323   if (Error Err = R.parseModule())
7324     return std::move(Err);
7325 
7326   return std::move(Index);
7327 }
7328 
7329 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7330                                                 unsigned ID) {
7331   if (Error Err = Stream.EnterSubBlock(ID))
7332     return std::move(Err);
7333   SmallVector<uint64_t, 64> Record;
7334 
7335   while (true) {
7336     BitstreamEntry Entry;
7337     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7338       return std::move(E);
7339 
7340     switch (Entry.Kind) {
7341     case BitstreamEntry::SubBlock: // Handled for us already.
7342     case BitstreamEntry::Error:
7343       return error("Malformed block");
7344     case BitstreamEntry::EndBlock:
7345       // If no flags record found, conservatively return true to mimic
7346       // behavior before this flag was added.
7347       return true;
7348     case BitstreamEntry::Record:
7349       // The interesting case.
7350       break;
7351     }
7352 
7353     // Look for the FS_FLAGS record.
7354     Record.clear();
7355     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7356     if (!MaybeBitCode)
7357       return MaybeBitCode.takeError();
7358     switch (MaybeBitCode.get()) {
7359     default: // Default behavior: ignore.
7360       break;
7361     case bitc::FS_FLAGS: { // [flags]
7362       uint64_t Flags = Record[0];
7363       // Scan flags.
7364       assert(Flags <= 0x7f && "Unexpected bits in flag");
7365 
7366       return Flags & 0x8;
7367     }
7368     }
7369   }
7370   llvm_unreachable("Exit infinite loop");
7371 }
7372 
7373 // Check if the given bitcode buffer contains a global value summary block.
7374 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7375   BitstreamCursor Stream(Buffer);
7376   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7377     return std::move(JumpFailed);
7378 
7379   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7380     return std::move(Err);
7381 
7382   while (true) {
7383     llvm::BitstreamEntry Entry;
7384     if (Error E = Stream.advance().moveInto(Entry))
7385       return std::move(E);
7386 
7387     switch (Entry.Kind) {
7388     case BitstreamEntry::Error:
7389       return error("Malformed block");
7390     case BitstreamEntry::EndBlock:
7391       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7392                             /*EnableSplitLTOUnit=*/false};
7393 
7394     case BitstreamEntry::SubBlock:
7395       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7396         Expected<bool> EnableSplitLTOUnit =
7397             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7398         if (!EnableSplitLTOUnit)
7399           return EnableSplitLTOUnit.takeError();
7400         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7401                               *EnableSplitLTOUnit};
7402       }
7403 
7404       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7405         Expected<bool> EnableSplitLTOUnit =
7406             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7407         if (!EnableSplitLTOUnit)
7408           return EnableSplitLTOUnit.takeError();
7409         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7410                               *EnableSplitLTOUnit};
7411       }
7412 
7413       // Ignore other sub-blocks.
7414       if (Error Err = Stream.SkipBlock())
7415         return std::move(Err);
7416       continue;
7417 
7418     case BitstreamEntry::Record:
7419       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7420         continue;
7421       else
7422         return StreamFailed.takeError();
7423     }
7424   }
7425 }
7426 
7427 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7428   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7429   if (!MsOrErr)
7430     return MsOrErr.takeError();
7431 
7432   if (MsOrErr->size() != 1)
7433     return error("Expected a single module");
7434 
7435   return (*MsOrErr)[0];
7436 }
7437 
7438 Expected<std::unique_ptr<Module>>
7439 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7440                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7441   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7442   if (!BM)
7443     return BM.takeError();
7444 
7445   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7446 }
7447 
7448 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7449     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7450     bool ShouldLazyLoadMetadata, bool IsImporting) {
7451   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7452                                      IsImporting);
7453   if (MOrErr)
7454     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7455   return MOrErr;
7456 }
7457 
7458 Expected<std::unique_ptr<Module>>
7459 BitcodeModule::parseModule(LLVMContext &Context,
7460                            DataLayoutCallbackTy DataLayoutCallback) {
7461   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7462   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7463   // written.  We must defer until the Module has been fully materialized.
7464 }
7465 
7466 Expected<std::unique_ptr<Module>>
7467 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7468                        DataLayoutCallbackTy DataLayoutCallback) {
7469   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7470   if (!BM)
7471     return BM.takeError();
7472 
7473   return BM->parseModule(Context, DataLayoutCallback);
7474 }
7475 
7476 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7477   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7478   if (!StreamOrErr)
7479     return StreamOrErr.takeError();
7480 
7481   return readTriple(*StreamOrErr);
7482 }
7483 
7484 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7485   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7486   if (!StreamOrErr)
7487     return StreamOrErr.takeError();
7488 
7489   return hasObjCCategory(*StreamOrErr);
7490 }
7491 
7492 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7493   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7494   if (!StreamOrErr)
7495     return StreamOrErr.takeError();
7496 
7497   return readIdentificationCode(*StreamOrErr);
7498 }
7499 
7500 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7501                                    ModuleSummaryIndex &CombinedIndex,
7502                                    uint64_t ModuleId) {
7503   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7504   if (!BM)
7505     return BM.takeError();
7506 
7507   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7508 }
7509 
7510 Expected<std::unique_ptr<ModuleSummaryIndex>>
7511 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7512   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7513   if (!BM)
7514     return BM.takeError();
7515 
7516   return BM->getSummary();
7517 }
7518 
7519 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7520   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7521   if (!BM)
7522     return BM.takeError();
7523 
7524   return BM->getLTOInfo();
7525 }
7526 
7527 Expected<std::unique_ptr<ModuleSummaryIndex>>
7528 llvm::getModuleSummaryIndexForFile(StringRef Path,
7529                                    bool IgnoreEmptyThinLTOIndexFile) {
7530   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7531       MemoryBuffer::getFileOrSTDIN(Path);
7532   if (!FileOrErr)
7533     return errorCodeToError(FileOrErr.getError());
7534   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7535     return nullptr;
7536   return getModuleSummaryIndex(**FileOrErr);
7537 }
7538