xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 7d371725cdf993d16f6debf74cf740c3aea84f9b)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
796   /// past the number of slots used by the value in the record. Return true if
797   /// there is an error.
798   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
799                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
800                 BasicBlock *ConstExprInsertBB) {
801     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
802       return true;
803     // All values currently take a single record slot.
804     ++Slot;
805     return false;
806   }
807 
808   /// Like popValue, but does not increment the Slot number.
809   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
810                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
811                 BasicBlock *ConstExprInsertBB) {
812     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
813     return ResVal == nullptr;
814   }
815 
816   /// Version of getValue that returns ResVal directly, or 0 if there is an
817   /// error.
818   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
819                   unsigned InstNum, Type *Ty, unsigned TyID,
820                   BasicBlock *ConstExprInsertBB) {
821     if (Slot == Record.size()) return nullptr;
822     unsigned ValNo = (unsigned)Record[Slot];
823     // Adjust the ValNo, if it was encoded relative to the InstNum.
824     if (UseRelativeIDs)
825       ValNo = InstNum - ValNo;
826     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
827   }
828 
829   /// Like getValue, but decodes signed VBRs.
830   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
831                         unsigned InstNum, Type *Ty, unsigned TyID,
832                         BasicBlock *ConstExprInsertBB) {
833     if (Slot == Record.size()) return nullptr;
834     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
835     // Adjust the ValNo, if it was encoded relative to the InstNum.
836     if (UseRelativeIDs)
837       ValNo = InstNum - ValNo;
838     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
839   }
840 
841   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
842                                             unsigned &OpNum,
843                                             unsigned BitWidth) {
844     if (Record.size() - OpNum < 2)
845       return error("Too few records for range");
846     if (BitWidth > 64) {
847       unsigned LowerActiveWords = Record[OpNum];
848       unsigned UpperActiveWords = Record[OpNum++] >> 32;
849       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
850         return error("Too few records for range");
851       APInt Lower =
852           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
853       OpNum += LowerActiveWords;
854       APInt Upper =
855           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
856       OpNum += UpperActiveWords;
857       return ConstantRange(Lower, Upper);
858     } else {
859       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
861       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
862     }
863   }
864 
865   Expected<ConstantRange>
866   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
867     if (Record.size() - OpNum < 1)
868       return error("Too few records for range");
869     unsigned BitWidth = Record[OpNum++];
870     return readConstantRange(Record, OpNum, BitWidth);
871   }
872 
873   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
874   /// corresponding argument's pointee type. Also upgrades intrinsics that now
875   /// require an elementtype attribute.
876   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
877 
878   /// Converts alignment exponent (i.e. power of two (or zero)) to the
879   /// corresponding alignment to use. If alignment is too large, returns
880   /// a corresponding error code.
881   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
882   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
883   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
884                     ParserCallbacks Callbacks = {});
885 
886   Error parseComdatRecord(ArrayRef<uint64_t> Record);
887   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
888   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
889   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
890                                         ArrayRef<uint64_t> Record);
891 
892   Error parseAttributeBlock();
893   Error parseAttributeGroupBlock();
894   Error parseTypeTable();
895   Error parseTypeTableBody();
896   Error parseOperandBundleTags();
897   Error parseSyncScopeNames();
898 
899   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
900                                 unsigned NameIndex, Triple &TT);
901   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
902                                ArrayRef<uint64_t> Record);
903   Error parseValueSymbolTable(uint64_t Offset = 0);
904   Error parseGlobalValueSymbolTable();
905   Error parseConstants();
906   Error rememberAndSkipFunctionBodies();
907   Error rememberAndSkipFunctionBody();
908   /// Save the positions of the Metadata blocks and skip parsing the blocks.
909   Error rememberAndSkipMetadata();
910   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
911   Error parseFunctionBody(Function *F);
912   Error globalCleanup();
913   Error resolveGlobalAndIndirectSymbolInits();
914   Error parseUseLists();
915   Error findFunctionInStream(
916       Function *F,
917       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
918 
919   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
920 };
921 
922 /// Class to manage reading and parsing function summary index bitcode
923 /// files/sections.
924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
925   /// The module index built during parsing.
926   ModuleSummaryIndex &TheIndex;
927 
928   /// Indicates whether we have encountered a global value summary section
929   /// yet during parsing.
930   bool SeenGlobalValSummary = false;
931 
932   /// Indicates whether we have already parsed the VST, used for error checking.
933   bool SeenValueSymbolTable = false;
934 
935   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
936   /// Used to enable on-demand parsing of the VST.
937   uint64_t VSTOffset = 0;
938 
939   // Map to save ValueId to ValueInfo association that was recorded in the
940   // ValueSymbolTable. It is used after the VST is parsed to convert
941   // call graph edges read from the function summary from referencing
942   // callees by their ValueId to using the ValueInfo instead, which is how
943   // they are recorded in the summary index being built.
944   // We save a GUID which refers to the same global as the ValueInfo, but
945   // ignoring the linkage, i.e. for values other than local linkage they are
946   // identical (this is the second member). ValueInfo has the real GUID.
947   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
948       ValueIdToValueInfoMap;
949 
950   /// Map populated during module path string table parsing, from the
951   /// module ID to a string reference owned by the index's module
952   /// path string table, used to correlate with combined index
953   /// summary records.
954   DenseMap<uint64_t, StringRef> ModuleIdMap;
955 
956   /// Original source file name recorded in a bitcode record.
957   std::string SourceFileName;
958 
959   /// The string identifier given to this module by the client, normally the
960   /// path to the bitcode file.
961   StringRef ModulePath;
962 
963   /// Callback to ask whether a symbol is the prevailing copy when invoked
964   /// during combined index building.
965   std::function<bool(GlobalValue::GUID)> IsPrevailing;
966 
967   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
968   /// ids from the lists in the callsite and alloc entries to the index.
969   std::vector<uint64_t> StackIds;
970 
971 public:
972   ModuleSummaryIndexBitcodeReader(
973       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
974       StringRef ModulePath,
975       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
976 
977   Error parseModule();
978 
979 private:
980   void setValueGUID(uint64_t ValueID, StringRef ValueName,
981                     GlobalValue::LinkageTypes Linkage,
982                     StringRef SourceFileName);
983   Error parseValueSymbolTable(
984       uint64_t Offset,
985       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
986   SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
987   SmallVector<FunctionSummary::EdgeTy, 0>
988   makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
989                bool HasProfile, bool HasRelBF);
990   Error parseEntireSummary(unsigned ID);
991   Error parseModuleStringTable();
992   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
993   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
994                                        TypeIdCompatibleVtableInfo &TypeId);
995   std::vector<FunctionSummary::ParamAccess>
996   parseParamAccesses(ArrayRef<uint64_t> Record);
997 
998   template <bool AllowNullValueInfo = false>
999   std::pair<ValueInfo, GlobalValue::GUID>
1000   getValueInfoFromValueId(unsigned ValueId);
1001 
1002   void addThisModule();
1003   ModuleSummaryIndex::ModuleInfo *getThisModule();
1004 };
1005 
1006 } // end anonymous namespace
1007 
1008 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1009                                                     Error Err) {
1010   if (Err) {
1011     std::error_code EC;
1012     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1013       EC = EIB.convertToErrorCode();
1014       Ctx.emitError(EIB.message());
1015     });
1016     return EC;
1017   }
1018   return std::error_code();
1019 }
1020 
1021 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1022                              StringRef ProducerIdentification,
1023                              LLVMContext &Context)
1024     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1025       ValueList(this->Stream.SizeInBytes(),
1026                 [this](unsigned ValID, BasicBlock *InsertBB) {
1027                   return materializeValue(ValID, InsertBB);
1028                 }) {
1029   this->ProducerIdentification = std::string(ProducerIdentification);
1030 }
1031 
1032 Error BitcodeReader::materializeForwardReferencedFunctions() {
1033   if (WillMaterializeAllForwardRefs)
1034     return Error::success();
1035 
1036   // Prevent recursion.
1037   WillMaterializeAllForwardRefs = true;
1038 
1039   while (!BasicBlockFwdRefQueue.empty()) {
1040     Function *F = BasicBlockFwdRefQueue.front();
1041     BasicBlockFwdRefQueue.pop_front();
1042     assert(F && "Expected valid function");
1043     if (!BasicBlockFwdRefs.count(F))
1044       // Already materialized.
1045       continue;
1046 
1047     // Check for a function that isn't materializable to prevent an infinite
1048     // loop.  When parsing a blockaddress stored in a global variable, there
1049     // isn't a trivial way to check if a function will have a body without a
1050     // linear search through FunctionsWithBodies, so just check it here.
1051     if (!F->isMaterializable())
1052       return error("Never resolved function from blockaddress");
1053 
1054     // Try to materialize F.
1055     if (Error Err = materialize(F))
1056       return Err;
1057   }
1058   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1059 
1060   for (Function *F : BackwardRefFunctions)
1061     if (Error Err = materialize(F))
1062       return Err;
1063   BackwardRefFunctions.clear();
1064 
1065   // Reset state.
1066   WillMaterializeAllForwardRefs = false;
1067   return Error::success();
1068 }
1069 
1070 //===----------------------------------------------------------------------===//
1071 //  Helper functions to implement forward reference resolution, etc.
1072 //===----------------------------------------------------------------------===//
1073 
1074 static bool hasImplicitComdat(size_t Val) {
1075   switch (Val) {
1076   default:
1077     return false;
1078   case 1:  // Old WeakAnyLinkage
1079   case 4:  // Old LinkOnceAnyLinkage
1080   case 10: // Old WeakODRLinkage
1081   case 11: // Old LinkOnceODRLinkage
1082     return true;
1083   }
1084 }
1085 
1086 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1087   switch (Val) {
1088   default: // Map unknown/new linkages to external
1089   case 0:
1090     return GlobalValue::ExternalLinkage;
1091   case 2:
1092     return GlobalValue::AppendingLinkage;
1093   case 3:
1094     return GlobalValue::InternalLinkage;
1095   case 5:
1096     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1097   case 6:
1098     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1099   case 7:
1100     return GlobalValue::ExternalWeakLinkage;
1101   case 8:
1102     return GlobalValue::CommonLinkage;
1103   case 9:
1104     return GlobalValue::PrivateLinkage;
1105   case 12:
1106     return GlobalValue::AvailableExternallyLinkage;
1107   case 13:
1108     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1109   case 14:
1110     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1111   case 15:
1112     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1113   case 1: // Old value with implicit comdat.
1114   case 16:
1115     return GlobalValue::WeakAnyLinkage;
1116   case 10: // Old value with implicit comdat.
1117   case 17:
1118     return GlobalValue::WeakODRLinkage;
1119   case 4: // Old value with implicit comdat.
1120   case 18:
1121     return GlobalValue::LinkOnceAnyLinkage;
1122   case 11: // Old value with implicit comdat.
1123   case 19:
1124     return GlobalValue::LinkOnceODRLinkage;
1125   }
1126 }
1127 
1128 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1129   FunctionSummary::FFlags Flags;
1130   Flags.ReadNone = RawFlags & 0x1;
1131   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1132   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1133   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1134   Flags.NoInline = (RawFlags >> 4) & 0x1;
1135   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1136   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1137   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1138   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1139   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1140   return Flags;
1141 }
1142 
1143 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1144 //
1145 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1146 // visibility: [8, 10).
1147 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1148                                                             uint64_t Version) {
1149   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1150   // like getDecodedLinkage() above. Any future change to the linkage enum and
1151   // to getDecodedLinkage() will need to be taken into account here as above.
1152   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1153   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1154   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1155   RawFlags = RawFlags >> 4;
1156   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1157   // The Live flag wasn't introduced until version 3. For dead stripping
1158   // to work correctly on earlier versions, we must conservatively treat all
1159   // values as live.
1160   bool Live = (RawFlags & 0x2) || Version < 3;
1161   bool Local = (RawFlags & 0x4);
1162   bool AutoHide = (RawFlags & 0x8);
1163 
1164   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1165                                      Live, Local, AutoHide, IK);
1166 }
1167 
1168 // Decode the flags for GlobalVariable in the summary
1169 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1170   return GlobalVarSummary::GVarFlags(
1171       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1172       (RawFlags & 0x4) ? true : false,
1173       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1174 }
1175 
1176 static std::pair<CalleeInfo::HotnessType, bool>
1177 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1178   CalleeInfo::HotnessType Hotness =
1179       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1180   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1181   return {Hotness, HasTailCall};
1182 }
1183 
1184 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1185                                         bool &HasTailCall) {
1186   static constexpr uint64_t RelBlockFreqMask =
1187       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1188   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1189   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1190 }
1191 
1192 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1193   switch (Val) {
1194   default: // Map unknown visibilities to default.
1195   case 0: return GlobalValue::DefaultVisibility;
1196   case 1: return GlobalValue::HiddenVisibility;
1197   case 2: return GlobalValue::ProtectedVisibility;
1198   }
1199 }
1200 
1201 static GlobalValue::DLLStorageClassTypes
1202 getDecodedDLLStorageClass(unsigned Val) {
1203   switch (Val) {
1204   default: // Map unknown values to default.
1205   case 0: return GlobalValue::DefaultStorageClass;
1206   case 1: return GlobalValue::DLLImportStorageClass;
1207   case 2: return GlobalValue::DLLExportStorageClass;
1208   }
1209 }
1210 
1211 static bool getDecodedDSOLocal(unsigned Val) {
1212   switch(Val) {
1213   default: // Map unknown values to preemptable.
1214   case 0:  return false;
1215   case 1:  return true;
1216   }
1217 }
1218 
1219 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1220   switch (Val) {
1221   case 1:
1222     return CodeModel::Tiny;
1223   case 2:
1224     return CodeModel::Small;
1225   case 3:
1226     return CodeModel::Kernel;
1227   case 4:
1228     return CodeModel::Medium;
1229   case 5:
1230     return CodeModel::Large;
1231   }
1232 
1233   return {};
1234 }
1235 
1236 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1237   switch (Val) {
1238     case 0: return GlobalVariable::NotThreadLocal;
1239     default: // Map unknown non-zero value to general dynamic.
1240     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1241     case 2: return GlobalVariable::LocalDynamicTLSModel;
1242     case 3: return GlobalVariable::InitialExecTLSModel;
1243     case 4: return GlobalVariable::LocalExecTLSModel;
1244   }
1245 }
1246 
1247 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1248   switch (Val) {
1249     default: // Map unknown to UnnamedAddr::None.
1250     case 0: return GlobalVariable::UnnamedAddr::None;
1251     case 1: return GlobalVariable::UnnamedAddr::Global;
1252     case 2: return GlobalVariable::UnnamedAddr::Local;
1253   }
1254 }
1255 
1256 static int getDecodedCastOpcode(unsigned Val) {
1257   switch (Val) {
1258   default: return -1;
1259   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1260   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1261   case bitc::CAST_SEXT    : return Instruction::SExt;
1262   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1263   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1264   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1265   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1266   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1267   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1268   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1269   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1270   case bitc::CAST_BITCAST : return Instruction::BitCast;
1271   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1272   }
1273 }
1274 
1275 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1276   bool IsFP = Ty->isFPOrFPVectorTy();
1277   // UnOps are only valid for int/fp or vector of int/fp types
1278   if (!IsFP && !Ty->isIntOrIntVectorTy())
1279     return -1;
1280 
1281   switch (Val) {
1282   default:
1283     return -1;
1284   case bitc::UNOP_FNEG:
1285     return IsFP ? Instruction::FNeg : -1;
1286   }
1287 }
1288 
1289 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1290   bool IsFP = Ty->isFPOrFPVectorTy();
1291   // BinOps are only valid for int/fp or vector of int/fp types
1292   if (!IsFP && !Ty->isIntOrIntVectorTy())
1293     return -1;
1294 
1295   switch (Val) {
1296   default:
1297     return -1;
1298   case bitc::BINOP_ADD:
1299     return IsFP ? Instruction::FAdd : Instruction::Add;
1300   case bitc::BINOP_SUB:
1301     return IsFP ? Instruction::FSub : Instruction::Sub;
1302   case bitc::BINOP_MUL:
1303     return IsFP ? Instruction::FMul : Instruction::Mul;
1304   case bitc::BINOP_UDIV:
1305     return IsFP ? -1 : Instruction::UDiv;
1306   case bitc::BINOP_SDIV:
1307     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1308   case bitc::BINOP_UREM:
1309     return IsFP ? -1 : Instruction::URem;
1310   case bitc::BINOP_SREM:
1311     return IsFP ? Instruction::FRem : Instruction::SRem;
1312   case bitc::BINOP_SHL:
1313     return IsFP ? -1 : Instruction::Shl;
1314   case bitc::BINOP_LSHR:
1315     return IsFP ? -1 : Instruction::LShr;
1316   case bitc::BINOP_ASHR:
1317     return IsFP ? -1 : Instruction::AShr;
1318   case bitc::BINOP_AND:
1319     return IsFP ? -1 : Instruction::And;
1320   case bitc::BINOP_OR:
1321     return IsFP ? -1 : Instruction::Or;
1322   case bitc::BINOP_XOR:
1323     return IsFP ? -1 : Instruction::Xor;
1324   }
1325 }
1326 
1327 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1328   switch (Val) {
1329   default: return AtomicRMWInst::BAD_BINOP;
1330   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1331   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1332   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1333   case bitc::RMW_AND: return AtomicRMWInst::And;
1334   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1335   case bitc::RMW_OR: return AtomicRMWInst::Or;
1336   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1337   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1338   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1339   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1340   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1341   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1342   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1343   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1344   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1345   case bitc::RMW_UINC_WRAP:
1346     return AtomicRMWInst::UIncWrap;
1347   case bitc::RMW_UDEC_WRAP:
1348     return AtomicRMWInst::UDecWrap;
1349   case bitc::RMW_USUB_COND:
1350     return AtomicRMWInst::USubCond;
1351   case bitc::RMW_USUB_SAT:
1352     return AtomicRMWInst::USubSat;
1353   }
1354 }
1355 
1356 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1357   switch (Val) {
1358   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1359   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1360   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1361   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1362   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1363   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1364   default: // Map unknown orderings to sequentially-consistent.
1365   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1366   }
1367 }
1368 
1369 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1370   switch (Val) {
1371   default: // Map unknown selection kinds to any.
1372   case bitc::COMDAT_SELECTION_KIND_ANY:
1373     return Comdat::Any;
1374   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1375     return Comdat::ExactMatch;
1376   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1377     return Comdat::Largest;
1378   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1379     return Comdat::NoDeduplicate;
1380   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1381     return Comdat::SameSize;
1382   }
1383 }
1384 
1385 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1386   FastMathFlags FMF;
1387   if (0 != (Val & bitc::UnsafeAlgebra))
1388     FMF.setFast();
1389   if (0 != (Val & bitc::AllowReassoc))
1390     FMF.setAllowReassoc();
1391   if (0 != (Val & bitc::NoNaNs))
1392     FMF.setNoNaNs();
1393   if (0 != (Val & bitc::NoInfs))
1394     FMF.setNoInfs();
1395   if (0 != (Val & bitc::NoSignedZeros))
1396     FMF.setNoSignedZeros();
1397   if (0 != (Val & bitc::AllowReciprocal))
1398     FMF.setAllowReciprocal();
1399   if (0 != (Val & bitc::AllowContract))
1400     FMF.setAllowContract(true);
1401   if (0 != (Val & bitc::ApproxFunc))
1402     FMF.setApproxFunc();
1403   return FMF;
1404 }
1405 
1406 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1407   // A GlobalValue with local linkage cannot have a DLL storage class.
1408   if (GV->hasLocalLinkage())
1409     return;
1410   switch (Val) {
1411   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1412   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1413   }
1414 }
1415 
1416 Type *BitcodeReader::getTypeByID(unsigned ID) {
1417   // The type table size is always specified correctly.
1418   if (ID >= TypeList.size())
1419     return nullptr;
1420 
1421   if (Type *Ty = TypeList[ID])
1422     return Ty;
1423 
1424   // If we have a forward reference, the only possible case is when it is to a
1425   // named struct.  Just create a placeholder for now.
1426   return TypeList[ID] = createIdentifiedStructType(Context);
1427 }
1428 
1429 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1430   auto It = ContainedTypeIDs.find(ID);
1431   if (It == ContainedTypeIDs.end())
1432     return InvalidTypeID;
1433 
1434   if (Idx >= It->second.size())
1435     return InvalidTypeID;
1436 
1437   return It->second[Idx];
1438 }
1439 
1440 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1441   if (ID >= TypeList.size())
1442     return nullptr;
1443 
1444   Type *Ty = TypeList[ID];
1445   if (!Ty->isPointerTy())
1446     return nullptr;
1447 
1448   return getTypeByID(getContainedTypeID(ID, 0));
1449 }
1450 
1451 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1452                                          ArrayRef<unsigned> ChildTypeIDs) {
1453   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1454   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1455   auto It = VirtualTypeIDs.find(CacheKey);
1456   if (It != VirtualTypeIDs.end()) {
1457     // The cmpxchg return value is the only place we need more than one
1458     // contained type ID, however the second one will always be the same (i1),
1459     // so we don't need to include it in the cache key. This asserts that the
1460     // contained types are indeed as expected and there are no collisions.
1461     assert((ChildTypeIDs.empty() ||
1462             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1463            "Incorrect cached contained type IDs");
1464     return It->second;
1465   }
1466 
1467   unsigned TypeID = TypeList.size();
1468   TypeList.push_back(Ty);
1469   if (!ChildTypeIDs.empty())
1470     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1471   VirtualTypeIDs.insert({CacheKey, TypeID});
1472   return TypeID;
1473 }
1474 
1475 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1476   GEPNoWrapFlags NW;
1477   if (Flags & (1 << bitc::GEP_INBOUNDS))
1478     NW |= GEPNoWrapFlags::inBounds();
1479   if (Flags & (1 << bitc::GEP_NUSW))
1480     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1481   if (Flags & (1 << bitc::GEP_NUW))
1482     NW |= GEPNoWrapFlags::noUnsignedWrap();
1483   return NW;
1484 }
1485 
1486 static bool isConstExprSupported(const BitcodeConstant *BC) {
1487   uint8_t Opcode = BC->Opcode;
1488 
1489   // These are not real constant expressions, always consider them supported.
1490   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1491     return true;
1492 
1493   // If -expand-constant-exprs is set, we want to consider all expressions
1494   // as unsupported.
1495   if (ExpandConstantExprs)
1496     return false;
1497 
1498   if (Instruction::isBinaryOp(Opcode))
1499     return ConstantExpr::isSupportedBinOp(Opcode);
1500 
1501   if (Instruction::isCast(Opcode))
1502     return ConstantExpr::isSupportedCastOp(Opcode);
1503 
1504   if (Opcode == Instruction::GetElementPtr)
1505     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1506 
1507   switch (Opcode) {
1508   case Instruction::FNeg:
1509   case Instruction::Select:
1510   case Instruction::ICmp:
1511   case Instruction::FCmp:
1512     return false;
1513   default:
1514     return true;
1515   }
1516 }
1517 
1518 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1519                                                   BasicBlock *InsertBB) {
1520   // Quickly handle the case where there is no BitcodeConstant to resolve.
1521   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1522       !isa<BitcodeConstant>(ValueList[StartValID]))
1523     return ValueList[StartValID];
1524 
1525   SmallDenseMap<unsigned, Value *> MaterializedValues;
1526   SmallVector<unsigned> Worklist;
1527   Worklist.push_back(StartValID);
1528   while (!Worklist.empty()) {
1529     unsigned ValID = Worklist.back();
1530     if (MaterializedValues.count(ValID)) {
1531       // Duplicate expression that was already handled.
1532       Worklist.pop_back();
1533       continue;
1534     }
1535 
1536     if (ValID >= ValueList.size() || !ValueList[ValID])
1537       return error("Invalid value ID");
1538 
1539     Value *V = ValueList[ValID];
1540     auto *BC = dyn_cast<BitcodeConstant>(V);
1541     if (!BC) {
1542       MaterializedValues.insert({ValID, V});
1543       Worklist.pop_back();
1544       continue;
1545     }
1546 
1547     // Iterate in reverse, so values will get popped from the worklist in
1548     // expected order.
1549     SmallVector<Value *> Ops;
1550     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1551       auto It = MaterializedValues.find(OpID);
1552       if (It != MaterializedValues.end())
1553         Ops.push_back(It->second);
1554       else
1555         Worklist.push_back(OpID);
1556     }
1557 
1558     // Some expressions have not been resolved yet, handle them first and then
1559     // revisit this one.
1560     if (Ops.size() != BC->getOperandIDs().size())
1561       continue;
1562     std::reverse(Ops.begin(), Ops.end());
1563 
1564     SmallVector<Constant *> ConstOps;
1565     for (Value *Op : Ops)
1566       if (auto *C = dyn_cast<Constant>(Op))
1567         ConstOps.push_back(C);
1568 
1569     // Materialize as constant expression if possible.
1570     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1571       Constant *C;
1572       if (Instruction::isCast(BC->Opcode)) {
1573         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1574         if (!C)
1575           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1576       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1577         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1578       } else {
1579         switch (BC->Opcode) {
1580         case BitcodeConstant::ConstantPtrAuthOpcode: {
1581           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1582           if (!Key)
1583             return error("ptrauth key operand must be ConstantInt");
1584 
1585           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1586           if (!Disc)
1587             return error("ptrauth disc operand must be ConstantInt");
1588 
1589           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1590           break;
1591         }
1592         case BitcodeConstant::NoCFIOpcode: {
1593           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1594           if (!GV)
1595             return error("no_cfi operand must be GlobalValue");
1596           C = NoCFIValue::get(GV);
1597           break;
1598         }
1599         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1600           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1601           if (!GV)
1602             return error("dso_local operand must be GlobalValue");
1603           C = DSOLocalEquivalent::get(GV);
1604           break;
1605         }
1606         case BitcodeConstant::BlockAddressOpcode: {
1607           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1608           if (!Fn)
1609             return error("blockaddress operand must be a function");
1610 
1611           // If the function is already parsed we can insert the block address
1612           // right away.
1613           BasicBlock *BB;
1614           unsigned BBID = BC->BlockAddressBB;
1615           if (!BBID)
1616             // Invalid reference to entry block.
1617             return error("Invalid ID");
1618           if (!Fn->empty()) {
1619             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1620             for (size_t I = 0, E = BBID; I != E; ++I) {
1621               if (BBI == BBE)
1622                 return error("Invalid ID");
1623               ++BBI;
1624             }
1625             BB = &*BBI;
1626           } else {
1627             // Otherwise insert a placeholder and remember it so it can be
1628             // inserted when the function is parsed.
1629             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1630             if (FwdBBs.empty())
1631               BasicBlockFwdRefQueue.push_back(Fn);
1632             if (FwdBBs.size() < BBID + 1)
1633               FwdBBs.resize(BBID + 1);
1634             if (!FwdBBs[BBID])
1635               FwdBBs[BBID] = BasicBlock::Create(Context);
1636             BB = FwdBBs[BBID];
1637           }
1638           C = BlockAddress::get(Fn, BB);
1639           break;
1640         }
1641         case BitcodeConstant::ConstantStructOpcode:
1642           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1643           break;
1644         case BitcodeConstant::ConstantArrayOpcode:
1645           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1646           break;
1647         case BitcodeConstant::ConstantVectorOpcode:
1648           C = ConstantVector::get(ConstOps);
1649           break;
1650         case Instruction::GetElementPtr:
1651           C = ConstantExpr::getGetElementPtr(
1652               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1653               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1654           break;
1655         case Instruction::ExtractElement:
1656           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1657           break;
1658         case Instruction::InsertElement:
1659           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1660                                              ConstOps[2]);
1661           break;
1662         case Instruction::ShuffleVector: {
1663           SmallVector<int, 16> Mask;
1664           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1665           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1666           break;
1667         }
1668         default:
1669           llvm_unreachable("Unhandled bitcode constant");
1670         }
1671       }
1672 
1673       // Cache resolved constant.
1674       ValueList.replaceValueWithoutRAUW(ValID, C);
1675       MaterializedValues.insert({ValID, C});
1676       Worklist.pop_back();
1677       continue;
1678     }
1679 
1680     if (!InsertBB)
1681       return error(Twine("Value referenced by initializer is an unsupported "
1682                          "constant expression of type ") +
1683                    BC->getOpcodeName());
1684 
1685     // Materialize as instructions if necessary.
1686     Instruction *I;
1687     if (Instruction::isCast(BC->Opcode)) {
1688       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1689                            BC->getType(), "constexpr", InsertBB);
1690     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1691       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1692                                 "constexpr", InsertBB);
1693     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1694       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1695                                  Ops[1], "constexpr", InsertBB);
1696       if (isa<OverflowingBinaryOperator>(I)) {
1697         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1698           I->setHasNoSignedWrap();
1699         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1700           I->setHasNoUnsignedWrap();
1701       }
1702       if (isa<PossiblyExactOperator>(I) &&
1703           (BC->Flags & PossiblyExactOperator::IsExact))
1704         I->setIsExact();
1705     } else {
1706       switch (BC->Opcode) {
1707       case BitcodeConstant::ConstantVectorOpcode: {
1708         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1709         Value *V = PoisonValue::get(BC->getType());
1710         for (auto Pair : enumerate(Ops)) {
1711           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1712           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1713                                         InsertBB);
1714         }
1715         I = cast<Instruction>(V);
1716         break;
1717       }
1718       case BitcodeConstant::ConstantStructOpcode:
1719       case BitcodeConstant::ConstantArrayOpcode: {
1720         Value *V = PoisonValue::get(BC->getType());
1721         for (auto Pair : enumerate(Ops))
1722           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1723                                       "constexpr.ins", InsertBB);
1724         I = cast<Instruction>(V);
1725         break;
1726       }
1727       case Instruction::ICmp:
1728       case Instruction::FCmp:
1729         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1730                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1731                             "constexpr", InsertBB);
1732         break;
1733       case Instruction::GetElementPtr:
1734         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1735                                       ArrayRef(Ops).drop_front(), "constexpr",
1736                                       InsertBB);
1737         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1738         break;
1739       case Instruction::Select:
1740         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1741         break;
1742       case Instruction::ExtractElement:
1743         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1744         break;
1745       case Instruction::InsertElement:
1746         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1747                                       InsertBB);
1748         break;
1749       case Instruction::ShuffleVector:
1750         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1751                                   InsertBB);
1752         break;
1753       default:
1754         llvm_unreachable("Unhandled bitcode constant");
1755       }
1756     }
1757 
1758     MaterializedValues.insert({ValID, I});
1759     Worklist.pop_back();
1760   }
1761 
1762   return MaterializedValues[StartValID];
1763 }
1764 
1765 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1766   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1767   if (!MaybeV)
1768     return MaybeV.takeError();
1769 
1770   // Result must be Constant if InsertBB is nullptr.
1771   return cast<Constant>(MaybeV.get());
1772 }
1773 
1774 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1775                                                       StringRef Name) {
1776   auto *Ret = StructType::create(Context, Name);
1777   IdentifiedStructTypes.push_back(Ret);
1778   return Ret;
1779 }
1780 
1781 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1782   auto *Ret = StructType::create(Context);
1783   IdentifiedStructTypes.push_back(Ret);
1784   return Ret;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 //  Functions for parsing blocks from the bitcode file
1789 //===----------------------------------------------------------------------===//
1790 
1791 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1792   switch (Val) {
1793   case Attribute::EndAttrKinds:
1794   case Attribute::EmptyKey:
1795   case Attribute::TombstoneKey:
1796     llvm_unreachable("Synthetic enumerators which should never get here");
1797 
1798   case Attribute::None:            return 0;
1799   case Attribute::ZExt:            return 1 << 0;
1800   case Attribute::SExt:            return 1 << 1;
1801   case Attribute::NoReturn:        return 1 << 2;
1802   case Attribute::InReg:           return 1 << 3;
1803   case Attribute::StructRet:       return 1 << 4;
1804   case Attribute::NoUnwind:        return 1 << 5;
1805   case Attribute::NoAlias:         return 1 << 6;
1806   case Attribute::ByVal:           return 1 << 7;
1807   case Attribute::Nest:            return 1 << 8;
1808   case Attribute::ReadNone:        return 1 << 9;
1809   case Attribute::ReadOnly:        return 1 << 10;
1810   case Attribute::NoInline:        return 1 << 11;
1811   case Attribute::AlwaysInline:    return 1 << 12;
1812   case Attribute::OptimizeForSize: return 1 << 13;
1813   case Attribute::StackProtect:    return 1 << 14;
1814   case Attribute::StackProtectReq: return 1 << 15;
1815   case Attribute::Alignment:       return 31 << 16;
1816   case Attribute::NoCapture:       return 1 << 21;
1817   case Attribute::NoRedZone:       return 1 << 22;
1818   case Attribute::NoImplicitFloat: return 1 << 23;
1819   case Attribute::Naked:           return 1 << 24;
1820   case Attribute::InlineHint:      return 1 << 25;
1821   case Attribute::StackAlignment:  return 7 << 26;
1822   case Attribute::ReturnsTwice:    return 1 << 29;
1823   case Attribute::UWTable:         return 1 << 30;
1824   case Attribute::NonLazyBind:     return 1U << 31;
1825   case Attribute::SanitizeAddress: return 1ULL << 32;
1826   case Attribute::MinSize:         return 1ULL << 33;
1827   case Attribute::NoDuplicate:     return 1ULL << 34;
1828   case Attribute::StackProtectStrong: return 1ULL << 35;
1829   case Attribute::SanitizeThread:  return 1ULL << 36;
1830   case Attribute::SanitizeMemory:  return 1ULL << 37;
1831   case Attribute::NoBuiltin:       return 1ULL << 38;
1832   case Attribute::Returned:        return 1ULL << 39;
1833   case Attribute::Cold:            return 1ULL << 40;
1834   case Attribute::Builtin:         return 1ULL << 41;
1835   case Attribute::OptimizeNone:    return 1ULL << 42;
1836   case Attribute::InAlloca:        return 1ULL << 43;
1837   case Attribute::NonNull:         return 1ULL << 44;
1838   case Attribute::JumpTable:       return 1ULL << 45;
1839   case Attribute::Convergent:      return 1ULL << 46;
1840   case Attribute::SafeStack:       return 1ULL << 47;
1841   case Attribute::NoRecurse:       return 1ULL << 48;
1842   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1843   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1844   case Attribute::SwiftSelf:       return 1ULL << 51;
1845   case Attribute::SwiftError:      return 1ULL << 52;
1846   case Attribute::WriteOnly:       return 1ULL << 53;
1847   case Attribute::Speculatable:    return 1ULL << 54;
1848   case Attribute::StrictFP:        return 1ULL << 55;
1849   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1850   case Attribute::NoCfCheck:       return 1ULL << 57;
1851   case Attribute::OptForFuzzing:   return 1ULL << 58;
1852   case Attribute::ShadowCallStack: return 1ULL << 59;
1853   case Attribute::SpeculativeLoadHardening:
1854     return 1ULL << 60;
1855   case Attribute::ImmArg:
1856     return 1ULL << 61;
1857   case Attribute::WillReturn:
1858     return 1ULL << 62;
1859   case Attribute::NoFree:
1860     return 1ULL << 63;
1861   default:
1862     // Other attributes are not supported in the raw format,
1863     // as we ran out of space.
1864     return 0;
1865   }
1866   llvm_unreachable("Unsupported attribute type");
1867 }
1868 
1869 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1870   if (!Val) return;
1871 
1872   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1873        I = Attribute::AttrKind(I + 1)) {
1874     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1875       if (I == Attribute::Alignment)
1876         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1877       else if (I == Attribute::StackAlignment)
1878         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1879       else if (Attribute::isTypeAttrKind(I))
1880         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1881       else
1882         B.addAttribute(I);
1883     }
1884   }
1885 }
1886 
1887 /// This fills an AttrBuilder object with the LLVM attributes that have
1888 /// been decoded from the given integer. This function must stay in sync with
1889 /// 'encodeLLVMAttributesForBitcode'.
1890 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1891                                            uint64_t EncodedAttrs,
1892                                            uint64_t AttrIdx) {
1893   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1894   // the bits above 31 down by 11 bits.
1895   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1896   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1897          "Alignment must be a power of two.");
1898 
1899   if (Alignment)
1900     B.addAlignmentAttr(Alignment);
1901 
1902   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1903                    (EncodedAttrs & 0xffff);
1904 
1905   if (AttrIdx == AttributeList::FunctionIndex) {
1906     // Upgrade old memory attributes.
1907     MemoryEffects ME = MemoryEffects::unknown();
1908     if (Attrs & (1ULL << 9)) {
1909       // ReadNone
1910       Attrs &= ~(1ULL << 9);
1911       ME &= MemoryEffects::none();
1912     }
1913     if (Attrs & (1ULL << 10)) {
1914       // ReadOnly
1915       Attrs &= ~(1ULL << 10);
1916       ME &= MemoryEffects::readOnly();
1917     }
1918     if (Attrs & (1ULL << 49)) {
1919       // InaccessibleMemOnly
1920       Attrs &= ~(1ULL << 49);
1921       ME &= MemoryEffects::inaccessibleMemOnly();
1922     }
1923     if (Attrs & (1ULL << 50)) {
1924       // InaccessibleMemOrArgMemOnly
1925       Attrs &= ~(1ULL << 50);
1926       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1927     }
1928     if (Attrs & (1ULL << 53)) {
1929       // WriteOnly
1930       Attrs &= ~(1ULL << 53);
1931       ME &= MemoryEffects::writeOnly();
1932     }
1933     if (ME != MemoryEffects::unknown())
1934       B.addMemoryAttr(ME);
1935   }
1936 
1937   addRawAttributeValue(B, Attrs);
1938 }
1939 
1940 Error BitcodeReader::parseAttributeBlock() {
1941   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1942     return Err;
1943 
1944   if (!MAttributes.empty())
1945     return error("Invalid multiple blocks");
1946 
1947   SmallVector<uint64_t, 64> Record;
1948 
1949   SmallVector<AttributeList, 8> Attrs;
1950 
1951   // Read all the records.
1952   while (true) {
1953     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1954     if (!MaybeEntry)
1955       return MaybeEntry.takeError();
1956     BitstreamEntry Entry = MaybeEntry.get();
1957 
1958     switch (Entry.Kind) {
1959     case BitstreamEntry::SubBlock: // Handled for us already.
1960     case BitstreamEntry::Error:
1961       return error("Malformed block");
1962     case BitstreamEntry::EndBlock:
1963       return Error::success();
1964     case BitstreamEntry::Record:
1965       // The interesting case.
1966       break;
1967     }
1968 
1969     // Read a record.
1970     Record.clear();
1971     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1972     if (!MaybeRecord)
1973       return MaybeRecord.takeError();
1974     switch (MaybeRecord.get()) {
1975     default:  // Default behavior: ignore.
1976       break;
1977     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1978       // Deprecated, but still needed to read old bitcode files.
1979       if (Record.size() & 1)
1980         return error("Invalid parameter attribute record");
1981 
1982       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1983         AttrBuilder B(Context);
1984         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1985         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1986       }
1987 
1988       MAttributes.push_back(AttributeList::get(Context, Attrs));
1989       Attrs.clear();
1990       break;
1991     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1992       for (uint64_t Val : Record)
1993         Attrs.push_back(MAttributeGroups[Val]);
1994 
1995       MAttributes.push_back(AttributeList::get(Context, Attrs));
1996       Attrs.clear();
1997       break;
1998     }
1999   }
2000 }
2001 
2002 // Returns Attribute::None on unrecognized codes.
2003 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2004   switch (Code) {
2005   default:
2006     return Attribute::None;
2007   case bitc::ATTR_KIND_ALIGNMENT:
2008     return Attribute::Alignment;
2009   case bitc::ATTR_KIND_ALWAYS_INLINE:
2010     return Attribute::AlwaysInline;
2011   case bitc::ATTR_KIND_BUILTIN:
2012     return Attribute::Builtin;
2013   case bitc::ATTR_KIND_BY_VAL:
2014     return Attribute::ByVal;
2015   case bitc::ATTR_KIND_IN_ALLOCA:
2016     return Attribute::InAlloca;
2017   case bitc::ATTR_KIND_COLD:
2018     return Attribute::Cold;
2019   case bitc::ATTR_KIND_CONVERGENT:
2020     return Attribute::Convergent;
2021   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2022     return Attribute::DisableSanitizerInstrumentation;
2023   case bitc::ATTR_KIND_ELEMENTTYPE:
2024     return Attribute::ElementType;
2025   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2026     return Attribute::FnRetThunkExtern;
2027   case bitc::ATTR_KIND_INLINE_HINT:
2028     return Attribute::InlineHint;
2029   case bitc::ATTR_KIND_IN_REG:
2030     return Attribute::InReg;
2031   case bitc::ATTR_KIND_JUMP_TABLE:
2032     return Attribute::JumpTable;
2033   case bitc::ATTR_KIND_MEMORY:
2034     return Attribute::Memory;
2035   case bitc::ATTR_KIND_NOFPCLASS:
2036     return Attribute::NoFPClass;
2037   case bitc::ATTR_KIND_MIN_SIZE:
2038     return Attribute::MinSize;
2039   case bitc::ATTR_KIND_NAKED:
2040     return Attribute::Naked;
2041   case bitc::ATTR_KIND_NEST:
2042     return Attribute::Nest;
2043   case bitc::ATTR_KIND_NO_ALIAS:
2044     return Attribute::NoAlias;
2045   case bitc::ATTR_KIND_NO_BUILTIN:
2046     return Attribute::NoBuiltin;
2047   case bitc::ATTR_KIND_NO_CALLBACK:
2048     return Attribute::NoCallback;
2049   case bitc::ATTR_KIND_NO_CAPTURE:
2050     return Attribute::NoCapture;
2051   case bitc::ATTR_KIND_NO_DUPLICATE:
2052     return Attribute::NoDuplicate;
2053   case bitc::ATTR_KIND_NOFREE:
2054     return Attribute::NoFree;
2055   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2056     return Attribute::NoImplicitFloat;
2057   case bitc::ATTR_KIND_NO_INLINE:
2058     return Attribute::NoInline;
2059   case bitc::ATTR_KIND_NO_RECURSE:
2060     return Attribute::NoRecurse;
2061   case bitc::ATTR_KIND_NO_MERGE:
2062     return Attribute::NoMerge;
2063   case bitc::ATTR_KIND_NON_LAZY_BIND:
2064     return Attribute::NonLazyBind;
2065   case bitc::ATTR_KIND_NON_NULL:
2066     return Attribute::NonNull;
2067   case bitc::ATTR_KIND_DEREFERENCEABLE:
2068     return Attribute::Dereferenceable;
2069   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2070     return Attribute::DereferenceableOrNull;
2071   case bitc::ATTR_KIND_ALLOC_ALIGN:
2072     return Attribute::AllocAlign;
2073   case bitc::ATTR_KIND_ALLOC_KIND:
2074     return Attribute::AllocKind;
2075   case bitc::ATTR_KIND_ALLOC_SIZE:
2076     return Attribute::AllocSize;
2077   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2078     return Attribute::AllocatedPointer;
2079   case bitc::ATTR_KIND_NO_RED_ZONE:
2080     return Attribute::NoRedZone;
2081   case bitc::ATTR_KIND_NO_RETURN:
2082     return Attribute::NoReturn;
2083   case bitc::ATTR_KIND_NOSYNC:
2084     return Attribute::NoSync;
2085   case bitc::ATTR_KIND_NOCF_CHECK:
2086     return Attribute::NoCfCheck;
2087   case bitc::ATTR_KIND_NO_PROFILE:
2088     return Attribute::NoProfile;
2089   case bitc::ATTR_KIND_SKIP_PROFILE:
2090     return Attribute::SkipProfile;
2091   case bitc::ATTR_KIND_NO_UNWIND:
2092     return Attribute::NoUnwind;
2093   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2094     return Attribute::NoSanitizeBounds;
2095   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2096     return Attribute::NoSanitizeCoverage;
2097   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2098     return Attribute::NullPointerIsValid;
2099   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2100     return Attribute::OptimizeForDebugging;
2101   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2102     return Attribute::OptForFuzzing;
2103   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2104     return Attribute::OptimizeForSize;
2105   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2106     return Attribute::OptimizeNone;
2107   case bitc::ATTR_KIND_READ_NONE:
2108     return Attribute::ReadNone;
2109   case bitc::ATTR_KIND_READ_ONLY:
2110     return Attribute::ReadOnly;
2111   case bitc::ATTR_KIND_RETURNED:
2112     return Attribute::Returned;
2113   case bitc::ATTR_KIND_RETURNS_TWICE:
2114     return Attribute::ReturnsTwice;
2115   case bitc::ATTR_KIND_S_EXT:
2116     return Attribute::SExt;
2117   case bitc::ATTR_KIND_SPECULATABLE:
2118     return Attribute::Speculatable;
2119   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2120     return Attribute::StackAlignment;
2121   case bitc::ATTR_KIND_STACK_PROTECT:
2122     return Attribute::StackProtect;
2123   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2124     return Attribute::StackProtectReq;
2125   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2126     return Attribute::StackProtectStrong;
2127   case bitc::ATTR_KIND_SAFESTACK:
2128     return Attribute::SafeStack;
2129   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2130     return Attribute::ShadowCallStack;
2131   case bitc::ATTR_KIND_STRICT_FP:
2132     return Attribute::StrictFP;
2133   case bitc::ATTR_KIND_STRUCT_RET:
2134     return Attribute::StructRet;
2135   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2136     return Attribute::SanitizeAddress;
2137   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2138     return Attribute::SanitizeHWAddress;
2139   case bitc::ATTR_KIND_SANITIZE_THREAD:
2140     return Attribute::SanitizeThread;
2141   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2142     return Attribute::SanitizeMemory;
2143   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2144     return Attribute::SanitizeNumericalStability;
2145   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2146     return Attribute::SanitizeRealtime;
2147   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2148     return Attribute::SpeculativeLoadHardening;
2149   case bitc::ATTR_KIND_SWIFT_ERROR:
2150     return Attribute::SwiftError;
2151   case bitc::ATTR_KIND_SWIFT_SELF:
2152     return Attribute::SwiftSelf;
2153   case bitc::ATTR_KIND_SWIFT_ASYNC:
2154     return Attribute::SwiftAsync;
2155   case bitc::ATTR_KIND_UW_TABLE:
2156     return Attribute::UWTable;
2157   case bitc::ATTR_KIND_VSCALE_RANGE:
2158     return Attribute::VScaleRange;
2159   case bitc::ATTR_KIND_WILLRETURN:
2160     return Attribute::WillReturn;
2161   case bitc::ATTR_KIND_WRITEONLY:
2162     return Attribute::WriteOnly;
2163   case bitc::ATTR_KIND_Z_EXT:
2164     return Attribute::ZExt;
2165   case bitc::ATTR_KIND_IMMARG:
2166     return Attribute::ImmArg;
2167   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2168     return Attribute::SanitizeMemTag;
2169   case bitc::ATTR_KIND_PREALLOCATED:
2170     return Attribute::Preallocated;
2171   case bitc::ATTR_KIND_NOUNDEF:
2172     return Attribute::NoUndef;
2173   case bitc::ATTR_KIND_BYREF:
2174     return Attribute::ByRef;
2175   case bitc::ATTR_KIND_MUSTPROGRESS:
2176     return Attribute::MustProgress;
2177   case bitc::ATTR_KIND_HOT:
2178     return Attribute::Hot;
2179   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2180     return Attribute::PresplitCoroutine;
2181   case bitc::ATTR_KIND_WRITABLE:
2182     return Attribute::Writable;
2183   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2184     return Attribute::CoroDestroyOnlyWhenComplete;
2185   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2186     return Attribute::DeadOnUnwind;
2187   case bitc::ATTR_KIND_RANGE:
2188     return Attribute::Range;
2189   case bitc::ATTR_KIND_INITIALIZES:
2190     return Attribute::Initializes;
2191   case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2192     return Attribute::CoroElideSafe;
2193   }
2194 }
2195 
2196 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2197                                          MaybeAlign &Alignment) {
2198   // Note: Alignment in bitcode files is incremented by 1, so that zero
2199   // can be used for default alignment.
2200   if (Exponent > Value::MaxAlignmentExponent + 1)
2201     return error("Invalid alignment value");
2202   Alignment = decodeMaybeAlign(Exponent);
2203   return Error::success();
2204 }
2205 
2206 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2207   *Kind = getAttrFromCode(Code);
2208   if (*Kind == Attribute::None)
2209     return error("Unknown attribute kind (" + Twine(Code) + ")");
2210   return Error::success();
2211 }
2212 
2213 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2214   switch (EncodedKind) {
2215   case bitc::ATTR_KIND_READ_NONE:
2216     ME &= MemoryEffects::none();
2217     return true;
2218   case bitc::ATTR_KIND_READ_ONLY:
2219     ME &= MemoryEffects::readOnly();
2220     return true;
2221   case bitc::ATTR_KIND_WRITEONLY:
2222     ME &= MemoryEffects::writeOnly();
2223     return true;
2224   case bitc::ATTR_KIND_ARGMEMONLY:
2225     ME &= MemoryEffects::argMemOnly();
2226     return true;
2227   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2228     ME &= MemoryEffects::inaccessibleMemOnly();
2229     return true;
2230   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2231     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2232     return true;
2233   default:
2234     return false;
2235   }
2236 }
2237 
2238 Error BitcodeReader::parseAttributeGroupBlock() {
2239   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2240     return Err;
2241 
2242   if (!MAttributeGroups.empty())
2243     return error("Invalid multiple blocks");
2244 
2245   SmallVector<uint64_t, 64> Record;
2246 
2247   // Read all the records.
2248   while (true) {
2249     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2250     if (!MaybeEntry)
2251       return MaybeEntry.takeError();
2252     BitstreamEntry Entry = MaybeEntry.get();
2253 
2254     switch (Entry.Kind) {
2255     case BitstreamEntry::SubBlock: // Handled for us already.
2256     case BitstreamEntry::Error:
2257       return error("Malformed block");
2258     case BitstreamEntry::EndBlock:
2259       return Error::success();
2260     case BitstreamEntry::Record:
2261       // The interesting case.
2262       break;
2263     }
2264 
2265     // Read a record.
2266     Record.clear();
2267     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2268     if (!MaybeRecord)
2269       return MaybeRecord.takeError();
2270     switch (MaybeRecord.get()) {
2271     default:  // Default behavior: ignore.
2272       break;
2273     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2274       if (Record.size() < 3)
2275         return error("Invalid grp record");
2276 
2277       uint64_t GrpID = Record[0];
2278       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2279 
2280       AttrBuilder B(Context);
2281       MemoryEffects ME = MemoryEffects::unknown();
2282       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2283         if (Record[i] == 0) {        // Enum attribute
2284           Attribute::AttrKind Kind;
2285           uint64_t EncodedKind = Record[++i];
2286           if (Idx == AttributeList::FunctionIndex &&
2287               upgradeOldMemoryAttribute(ME, EncodedKind))
2288             continue;
2289 
2290           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2291             return Err;
2292 
2293           // Upgrade old-style byval attribute to one with a type, even if it's
2294           // nullptr. We will have to insert the real type when we associate
2295           // this AttributeList with a function.
2296           if (Kind == Attribute::ByVal)
2297             B.addByValAttr(nullptr);
2298           else if (Kind == Attribute::StructRet)
2299             B.addStructRetAttr(nullptr);
2300           else if (Kind == Attribute::InAlloca)
2301             B.addInAllocaAttr(nullptr);
2302           else if (Kind == Attribute::UWTable)
2303             B.addUWTableAttr(UWTableKind::Default);
2304           else if (Attribute::isEnumAttrKind(Kind))
2305             B.addAttribute(Kind);
2306           else
2307             return error("Not an enum attribute");
2308         } else if (Record[i] == 1) { // Integer attribute
2309           Attribute::AttrKind Kind;
2310           if (Error Err = parseAttrKind(Record[++i], &Kind))
2311             return Err;
2312           if (!Attribute::isIntAttrKind(Kind))
2313             return error("Not an int attribute");
2314           if (Kind == Attribute::Alignment)
2315             B.addAlignmentAttr(Record[++i]);
2316           else if (Kind == Attribute::StackAlignment)
2317             B.addStackAlignmentAttr(Record[++i]);
2318           else if (Kind == Attribute::Dereferenceable)
2319             B.addDereferenceableAttr(Record[++i]);
2320           else if (Kind == Attribute::DereferenceableOrNull)
2321             B.addDereferenceableOrNullAttr(Record[++i]);
2322           else if (Kind == Attribute::AllocSize)
2323             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2324           else if (Kind == Attribute::VScaleRange)
2325             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2326           else if (Kind == Attribute::UWTable)
2327             B.addUWTableAttr(UWTableKind(Record[++i]));
2328           else if (Kind == Attribute::AllocKind)
2329             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2330           else if (Kind == Attribute::Memory)
2331             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2332           else if (Kind == Attribute::NoFPClass)
2333             B.addNoFPClassAttr(
2334                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2335         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2336           bool HasValue = (Record[i++] == 4);
2337           SmallString<64> KindStr;
2338           SmallString<64> ValStr;
2339 
2340           while (Record[i] != 0 && i != e)
2341             KindStr += Record[i++];
2342           assert(Record[i] == 0 && "Kind string not null terminated");
2343 
2344           if (HasValue) {
2345             // Has a value associated with it.
2346             ++i; // Skip the '0' that terminates the "kind" string.
2347             while (Record[i] != 0 && i != e)
2348               ValStr += Record[i++];
2349             assert(Record[i] == 0 && "Value string not null terminated");
2350           }
2351 
2352           B.addAttribute(KindStr.str(), ValStr.str());
2353         } else if (Record[i] == 5 || Record[i] == 6) {
2354           bool HasType = Record[i] == 6;
2355           Attribute::AttrKind Kind;
2356           if (Error Err = parseAttrKind(Record[++i], &Kind))
2357             return Err;
2358           if (!Attribute::isTypeAttrKind(Kind))
2359             return error("Not a type attribute");
2360 
2361           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2362         } else if (Record[i] == 7) {
2363           Attribute::AttrKind Kind;
2364 
2365           i++;
2366           if (Error Err = parseAttrKind(Record[i++], &Kind))
2367             return Err;
2368           if (!Attribute::isConstantRangeAttrKind(Kind))
2369             return error("Not a ConstantRange attribute");
2370 
2371           Expected<ConstantRange> MaybeCR =
2372               readBitWidthAndConstantRange(Record, i);
2373           if (!MaybeCR)
2374             return MaybeCR.takeError();
2375           i--;
2376 
2377           B.addConstantRangeAttr(Kind, MaybeCR.get());
2378         } else if (Record[i] == 8) {
2379           Attribute::AttrKind Kind;
2380 
2381           i++;
2382           if (Error Err = parseAttrKind(Record[i++], &Kind))
2383             return Err;
2384           if (!Attribute::isConstantRangeListAttrKind(Kind))
2385             return error("Not a constant range list attribute");
2386 
2387           SmallVector<ConstantRange, 2> Val;
2388           if (i + 2 > e)
2389             return error("Too few records for constant range list");
2390           unsigned RangeSize = Record[i++];
2391           unsigned BitWidth = Record[i++];
2392           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2393             Expected<ConstantRange> MaybeCR =
2394                 readConstantRange(Record, i, BitWidth);
2395             if (!MaybeCR)
2396               return MaybeCR.takeError();
2397             Val.push_back(MaybeCR.get());
2398           }
2399           i--;
2400 
2401           if (!ConstantRangeList::isOrderedRanges(Val))
2402             return error("Invalid (unordered or overlapping) range list");
2403           B.addConstantRangeListAttr(Kind, Val);
2404         } else {
2405           return error("Invalid attribute group entry");
2406         }
2407       }
2408 
2409       if (ME != MemoryEffects::unknown())
2410         B.addMemoryAttr(ME);
2411 
2412       UpgradeAttributes(B);
2413       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2414       break;
2415     }
2416     }
2417   }
2418 }
2419 
2420 Error BitcodeReader::parseTypeTable() {
2421   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2422     return Err;
2423 
2424   return parseTypeTableBody();
2425 }
2426 
2427 Error BitcodeReader::parseTypeTableBody() {
2428   if (!TypeList.empty())
2429     return error("Invalid multiple blocks");
2430 
2431   SmallVector<uint64_t, 64> Record;
2432   unsigned NumRecords = 0;
2433 
2434   SmallString<64> TypeName;
2435 
2436   // Read all the records for this type table.
2437   while (true) {
2438     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2439     if (!MaybeEntry)
2440       return MaybeEntry.takeError();
2441     BitstreamEntry Entry = MaybeEntry.get();
2442 
2443     switch (Entry.Kind) {
2444     case BitstreamEntry::SubBlock: // Handled for us already.
2445     case BitstreamEntry::Error:
2446       return error("Malformed block");
2447     case BitstreamEntry::EndBlock:
2448       if (NumRecords != TypeList.size())
2449         return error("Malformed block");
2450       return Error::success();
2451     case BitstreamEntry::Record:
2452       // The interesting case.
2453       break;
2454     }
2455 
2456     // Read a record.
2457     Record.clear();
2458     Type *ResultTy = nullptr;
2459     SmallVector<unsigned> ContainedIDs;
2460     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2461     if (!MaybeRecord)
2462       return MaybeRecord.takeError();
2463     switch (MaybeRecord.get()) {
2464     default:
2465       return error("Invalid value");
2466     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2467       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2468       // type list.  This allows us to reserve space.
2469       if (Record.empty())
2470         return error("Invalid numentry record");
2471       TypeList.resize(Record[0]);
2472       continue;
2473     case bitc::TYPE_CODE_VOID:      // VOID
2474       ResultTy = Type::getVoidTy(Context);
2475       break;
2476     case bitc::TYPE_CODE_HALF:     // HALF
2477       ResultTy = Type::getHalfTy(Context);
2478       break;
2479     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2480       ResultTy = Type::getBFloatTy(Context);
2481       break;
2482     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2483       ResultTy = Type::getFloatTy(Context);
2484       break;
2485     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2486       ResultTy = Type::getDoubleTy(Context);
2487       break;
2488     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2489       ResultTy = Type::getX86_FP80Ty(Context);
2490       break;
2491     case bitc::TYPE_CODE_FP128:     // FP128
2492       ResultTy = Type::getFP128Ty(Context);
2493       break;
2494     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2495       ResultTy = Type::getPPC_FP128Ty(Context);
2496       break;
2497     case bitc::TYPE_CODE_LABEL:     // LABEL
2498       ResultTy = Type::getLabelTy(Context);
2499       break;
2500     case bitc::TYPE_CODE_METADATA:  // METADATA
2501       ResultTy = Type::getMetadataTy(Context);
2502       break;
2503     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2504       // Deprecated: decodes as <1 x i64>
2505       ResultTy =
2506           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2507       break;
2508     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2509       ResultTy = Type::getX86_AMXTy(Context);
2510       break;
2511     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2512       ResultTy = Type::getTokenTy(Context);
2513       break;
2514     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2515       if (Record.empty())
2516         return error("Invalid integer record");
2517 
2518       uint64_t NumBits = Record[0];
2519       if (NumBits < IntegerType::MIN_INT_BITS ||
2520           NumBits > IntegerType::MAX_INT_BITS)
2521         return error("Bitwidth for integer type out of range");
2522       ResultTy = IntegerType::get(Context, NumBits);
2523       break;
2524     }
2525     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2526                                     //          [pointee type, address space]
2527       if (Record.empty())
2528         return error("Invalid pointer record");
2529       unsigned AddressSpace = 0;
2530       if (Record.size() == 2)
2531         AddressSpace = Record[1];
2532       ResultTy = getTypeByID(Record[0]);
2533       if (!ResultTy ||
2534           !PointerType::isValidElementType(ResultTy))
2535         return error("Invalid type");
2536       ContainedIDs.push_back(Record[0]);
2537       ResultTy = PointerType::get(ResultTy, AddressSpace);
2538       break;
2539     }
2540     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2541       if (Record.size() != 1)
2542         return error("Invalid opaque pointer record");
2543       unsigned AddressSpace = Record[0];
2544       ResultTy = PointerType::get(Context, AddressSpace);
2545       break;
2546     }
2547     case bitc::TYPE_CODE_FUNCTION_OLD: {
2548       // Deprecated, but still needed to read old bitcode files.
2549       // FUNCTION: [vararg, attrid, retty, paramty x N]
2550       if (Record.size() < 3)
2551         return error("Invalid function record");
2552       SmallVector<Type*, 8> ArgTys;
2553       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2554         if (Type *T = getTypeByID(Record[i]))
2555           ArgTys.push_back(T);
2556         else
2557           break;
2558       }
2559 
2560       ResultTy = getTypeByID(Record[2]);
2561       if (!ResultTy || ArgTys.size() < Record.size()-3)
2562         return error("Invalid type");
2563 
2564       ContainedIDs.append(Record.begin() + 2, Record.end());
2565       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2566       break;
2567     }
2568     case bitc::TYPE_CODE_FUNCTION: {
2569       // FUNCTION: [vararg, retty, paramty x N]
2570       if (Record.size() < 2)
2571         return error("Invalid function record");
2572       SmallVector<Type*, 8> ArgTys;
2573       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2574         if (Type *T = getTypeByID(Record[i])) {
2575           if (!FunctionType::isValidArgumentType(T))
2576             return error("Invalid function argument type");
2577           ArgTys.push_back(T);
2578         }
2579         else
2580           break;
2581       }
2582 
2583       ResultTy = getTypeByID(Record[1]);
2584       if (!ResultTy || ArgTys.size() < Record.size()-2)
2585         return error("Invalid type");
2586 
2587       ContainedIDs.append(Record.begin() + 1, Record.end());
2588       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2589       break;
2590     }
2591     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2592       if (Record.empty())
2593         return error("Invalid anon struct record");
2594       SmallVector<Type*, 8> EltTys;
2595       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2596         if (Type *T = getTypeByID(Record[i]))
2597           EltTys.push_back(T);
2598         else
2599           break;
2600       }
2601       if (EltTys.size() != Record.size()-1)
2602         return error("Invalid type");
2603       ContainedIDs.append(Record.begin() + 1, Record.end());
2604       ResultTy = StructType::get(Context, EltTys, Record[0]);
2605       break;
2606     }
2607     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2608       if (convertToString(Record, 0, TypeName))
2609         return error("Invalid struct name record");
2610       continue;
2611 
2612     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2613       if (Record.empty())
2614         return error("Invalid named struct record");
2615 
2616       if (NumRecords >= TypeList.size())
2617         return error("Invalid TYPE table");
2618 
2619       // Check to see if this was forward referenced, if so fill in the temp.
2620       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2621       if (Res) {
2622         Res->setName(TypeName);
2623         TypeList[NumRecords] = nullptr;
2624       } else  // Otherwise, create a new struct.
2625         Res = createIdentifiedStructType(Context, TypeName);
2626       TypeName.clear();
2627 
2628       SmallVector<Type*, 8> EltTys;
2629       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2630         if (Type *T = getTypeByID(Record[i]))
2631           EltTys.push_back(T);
2632         else
2633           break;
2634       }
2635       if (EltTys.size() != Record.size()-1)
2636         return error("Invalid named struct record");
2637       Res->setBody(EltTys, Record[0]);
2638       ContainedIDs.append(Record.begin() + 1, Record.end());
2639       ResultTy = Res;
2640       break;
2641     }
2642     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2643       if (Record.size() != 1)
2644         return error("Invalid opaque type record");
2645 
2646       if (NumRecords >= TypeList.size())
2647         return error("Invalid TYPE table");
2648 
2649       // Check to see if this was forward referenced, if so fill in the temp.
2650       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2651       if (Res) {
2652         Res->setName(TypeName);
2653         TypeList[NumRecords] = nullptr;
2654       } else  // Otherwise, create a new struct with no body.
2655         Res = createIdentifiedStructType(Context, TypeName);
2656       TypeName.clear();
2657       ResultTy = Res;
2658       break;
2659     }
2660     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2661       if (Record.size() < 1)
2662         return error("Invalid target extension type record");
2663 
2664       if (NumRecords >= TypeList.size())
2665         return error("Invalid TYPE table");
2666 
2667       if (Record[0] >= Record.size())
2668         return error("Too many type parameters");
2669 
2670       unsigned NumTys = Record[0];
2671       SmallVector<Type *, 4> TypeParams;
2672       SmallVector<unsigned, 8> IntParams;
2673       for (unsigned i = 0; i < NumTys; i++) {
2674         if (Type *T = getTypeByID(Record[i + 1]))
2675           TypeParams.push_back(T);
2676         else
2677           return error("Invalid type");
2678       }
2679 
2680       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2681         if (Record[i] > UINT_MAX)
2682           return error("Integer parameter too large");
2683         IntParams.push_back(Record[i]);
2684       }
2685       auto TTy =
2686           TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
2687       if (auto E = TTy.takeError())
2688         return E;
2689       ResultTy = *TTy;
2690       TypeName.clear();
2691       break;
2692     }
2693     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2694       if (Record.size() < 2)
2695         return error("Invalid array type record");
2696       ResultTy = getTypeByID(Record[1]);
2697       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2698         return error("Invalid type");
2699       ContainedIDs.push_back(Record[1]);
2700       ResultTy = ArrayType::get(ResultTy, Record[0]);
2701       break;
2702     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2703                                     //         [numelts, eltty, scalable]
2704       if (Record.size() < 2)
2705         return error("Invalid vector type record");
2706       if (Record[0] == 0)
2707         return error("Invalid vector length");
2708       ResultTy = getTypeByID(Record[1]);
2709       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2710         return error("Invalid type");
2711       bool Scalable = Record.size() > 2 ? Record[2] : false;
2712       ContainedIDs.push_back(Record[1]);
2713       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2714       break;
2715     }
2716 
2717     if (NumRecords >= TypeList.size())
2718       return error("Invalid TYPE table");
2719     if (TypeList[NumRecords])
2720       return error(
2721           "Invalid TYPE table: Only named structs can be forward referenced");
2722     assert(ResultTy && "Didn't read a type?");
2723     TypeList[NumRecords] = ResultTy;
2724     if (!ContainedIDs.empty())
2725       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2726     ++NumRecords;
2727   }
2728 }
2729 
2730 Error BitcodeReader::parseOperandBundleTags() {
2731   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2732     return Err;
2733 
2734   if (!BundleTags.empty())
2735     return error("Invalid multiple blocks");
2736 
2737   SmallVector<uint64_t, 64> Record;
2738 
2739   while (true) {
2740     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2741     if (!MaybeEntry)
2742       return MaybeEntry.takeError();
2743     BitstreamEntry Entry = MaybeEntry.get();
2744 
2745     switch (Entry.Kind) {
2746     case BitstreamEntry::SubBlock: // Handled for us already.
2747     case BitstreamEntry::Error:
2748       return error("Malformed block");
2749     case BitstreamEntry::EndBlock:
2750       return Error::success();
2751     case BitstreamEntry::Record:
2752       // The interesting case.
2753       break;
2754     }
2755 
2756     // Tags are implicitly mapped to integers by their order.
2757 
2758     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2759     if (!MaybeRecord)
2760       return MaybeRecord.takeError();
2761     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2762       return error("Invalid operand bundle record");
2763 
2764     // OPERAND_BUNDLE_TAG: [strchr x N]
2765     BundleTags.emplace_back();
2766     if (convertToString(Record, 0, BundleTags.back()))
2767       return error("Invalid operand bundle record");
2768     Record.clear();
2769   }
2770 }
2771 
2772 Error BitcodeReader::parseSyncScopeNames() {
2773   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2774     return Err;
2775 
2776   if (!SSIDs.empty())
2777     return error("Invalid multiple synchronization scope names blocks");
2778 
2779   SmallVector<uint64_t, 64> Record;
2780   while (true) {
2781     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2782     if (!MaybeEntry)
2783       return MaybeEntry.takeError();
2784     BitstreamEntry Entry = MaybeEntry.get();
2785 
2786     switch (Entry.Kind) {
2787     case BitstreamEntry::SubBlock: // Handled for us already.
2788     case BitstreamEntry::Error:
2789       return error("Malformed block");
2790     case BitstreamEntry::EndBlock:
2791       if (SSIDs.empty())
2792         return error("Invalid empty synchronization scope names block");
2793       return Error::success();
2794     case BitstreamEntry::Record:
2795       // The interesting case.
2796       break;
2797     }
2798 
2799     // Synchronization scope names are implicitly mapped to synchronization
2800     // scope IDs by their order.
2801 
2802     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2803     if (!MaybeRecord)
2804       return MaybeRecord.takeError();
2805     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2806       return error("Invalid sync scope record");
2807 
2808     SmallString<16> SSN;
2809     if (convertToString(Record, 0, SSN))
2810       return error("Invalid sync scope record");
2811 
2812     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2813     Record.clear();
2814   }
2815 }
2816 
2817 /// Associate a value with its name from the given index in the provided record.
2818 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2819                                              unsigned NameIndex, Triple &TT) {
2820   SmallString<128> ValueName;
2821   if (convertToString(Record, NameIndex, ValueName))
2822     return error("Invalid record");
2823   unsigned ValueID = Record[0];
2824   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2825     return error("Invalid record");
2826   Value *V = ValueList[ValueID];
2827 
2828   StringRef NameStr(ValueName.data(), ValueName.size());
2829   if (NameStr.contains(0))
2830     return error("Invalid value name");
2831   V->setName(NameStr);
2832   auto *GO = dyn_cast<GlobalObject>(V);
2833   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2834     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2835   return V;
2836 }
2837 
2838 /// Helper to note and return the current location, and jump to the given
2839 /// offset.
2840 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2841                                                  BitstreamCursor &Stream) {
2842   // Save the current parsing location so we can jump back at the end
2843   // of the VST read.
2844   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2845   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2846     return std::move(JumpFailed);
2847   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2848   if (!MaybeEntry)
2849     return MaybeEntry.takeError();
2850   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2851       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2852     return error("Expected value symbol table subblock");
2853   return CurrentBit;
2854 }
2855 
2856 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2857                                             Function *F,
2858                                             ArrayRef<uint64_t> Record) {
2859   // Note that we subtract 1 here because the offset is relative to one word
2860   // before the start of the identification or module block, which was
2861   // historically always the start of the regular bitcode header.
2862   uint64_t FuncWordOffset = Record[1] - 1;
2863   uint64_t FuncBitOffset = FuncWordOffset * 32;
2864   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2865   // Set the LastFunctionBlockBit to point to the last function block.
2866   // Later when parsing is resumed after function materialization,
2867   // we can simply skip that last function block.
2868   if (FuncBitOffset > LastFunctionBlockBit)
2869     LastFunctionBlockBit = FuncBitOffset;
2870 }
2871 
2872 /// Read a new-style GlobalValue symbol table.
2873 Error BitcodeReader::parseGlobalValueSymbolTable() {
2874   unsigned FuncBitcodeOffsetDelta =
2875       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2876 
2877   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2878     return Err;
2879 
2880   SmallVector<uint64_t, 64> Record;
2881   while (true) {
2882     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2883     if (!MaybeEntry)
2884       return MaybeEntry.takeError();
2885     BitstreamEntry Entry = MaybeEntry.get();
2886 
2887     switch (Entry.Kind) {
2888     case BitstreamEntry::SubBlock:
2889     case BitstreamEntry::Error:
2890       return error("Malformed block");
2891     case BitstreamEntry::EndBlock:
2892       return Error::success();
2893     case BitstreamEntry::Record:
2894       break;
2895     }
2896 
2897     Record.clear();
2898     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2899     if (!MaybeRecord)
2900       return MaybeRecord.takeError();
2901     switch (MaybeRecord.get()) {
2902     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2903       unsigned ValueID = Record[0];
2904       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2905         return error("Invalid value reference in symbol table");
2906       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2907                               cast<Function>(ValueList[ValueID]), Record);
2908       break;
2909     }
2910     }
2911   }
2912 }
2913 
2914 /// Parse the value symbol table at either the current parsing location or
2915 /// at the given bit offset if provided.
2916 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2917   uint64_t CurrentBit;
2918   // Pass in the Offset to distinguish between calling for the module-level
2919   // VST (where we want to jump to the VST offset) and the function-level
2920   // VST (where we don't).
2921   if (Offset > 0) {
2922     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2923     if (!MaybeCurrentBit)
2924       return MaybeCurrentBit.takeError();
2925     CurrentBit = MaybeCurrentBit.get();
2926     // If this module uses a string table, read this as a module-level VST.
2927     if (UseStrtab) {
2928       if (Error Err = parseGlobalValueSymbolTable())
2929         return Err;
2930       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2931         return JumpFailed;
2932       return Error::success();
2933     }
2934     // Otherwise, the VST will be in a similar format to a function-level VST,
2935     // and will contain symbol names.
2936   }
2937 
2938   // Compute the delta between the bitcode indices in the VST (the word offset
2939   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2940   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2941   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2942   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2943   // just before entering the VST subblock because: 1) the EnterSubBlock
2944   // changes the AbbrevID width; 2) the VST block is nested within the same
2945   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2946   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2947   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2948   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2949   unsigned FuncBitcodeOffsetDelta =
2950       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2951 
2952   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2953     return Err;
2954 
2955   SmallVector<uint64_t, 64> Record;
2956 
2957   Triple TT(TheModule->getTargetTriple());
2958 
2959   // Read all the records for this value table.
2960   SmallString<128> ValueName;
2961 
2962   while (true) {
2963     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2964     if (!MaybeEntry)
2965       return MaybeEntry.takeError();
2966     BitstreamEntry Entry = MaybeEntry.get();
2967 
2968     switch (Entry.Kind) {
2969     case BitstreamEntry::SubBlock: // Handled for us already.
2970     case BitstreamEntry::Error:
2971       return error("Malformed block");
2972     case BitstreamEntry::EndBlock:
2973       if (Offset > 0)
2974         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2975           return JumpFailed;
2976       return Error::success();
2977     case BitstreamEntry::Record:
2978       // The interesting case.
2979       break;
2980     }
2981 
2982     // Read a record.
2983     Record.clear();
2984     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2985     if (!MaybeRecord)
2986       return MaybeRecord.takeError();
2987     switch (MaybeRecord.get()) {
2988     default:  // Default behavior: unknown type.
2989       break;
2990     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2991       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2992       if (Error Err = ValOrErr.takeError())
2993         return Err;
2994       ValOrErr.get();
2995       break;
2996     }
2997     case bitc::VST_CODE_FNENTRY: {
2998       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2999       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
3000       if (Error Err = ValOrErr.takeError())
3001         return Err;
3002       Value *V = ValOrErr.get();
3003 
3004       // Ignore function offsets emitted for aliases of functions in older
3005       // versions of LLVM.
3006       if (auto *F = dyn_cast<Function>(V))
3007         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3008       break;
3009     }
3010     case bitc::VST_CODE_BBENTRY: {
3011       if (convertToString(Record, 1, ValueName))
3012         return error("Invalid bbentry record");
3013       BasicBlock *BB = getBasicBlock(Record[0]);
3014       if (!BB)
3015         return error("Invalid bbentry record");
3016 
3017       BB->setName(ValueName.str());
3018       ValueName.clear();
3019       break;
3020     }
3021     }
3022   }
3023 }
3024 
3025 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3026 /// encoding.
3027 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3028   if ((V & 1) == 0)
3029     return V >> 1;
3030   if (V != 1)
3031     return -(V >> 1);
3032   // There is no such thing as -0 with integers.  "-0" really means MININT.
3033   return 1ULL << 63;
3034 }
3035 
3036 /// Resolve all of the initializers for global values and aliases that we can.
3037 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3038   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3039   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3040   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3041 
3042   GlobalInitWorklist.swap(GlobalInits);
3043   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3044   FunctionOperandWorklist.swap(FunctionOperands);
3045 
3046   while (!GlobalInitWorklist.empty()) {
3047     unsigned ValID = GlobalInitWorklist.back().second;
3048     if (ValID >= ValueList.size()) {
3049       // Not ready to resolve this yet, it requires something later in the file.
3050       GlobalInits.push_back(GlobalInitWorklist.back());
3051     } else {
3052       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3053       if (!MaybeC)
3054         return MaybeC.takeError();
3055       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3056     }
3057     GlobalInitWorklist.pop_back();
3058   }
3059 
3060   while (!IndirectSymbolInitWorklist.empty()) {
3061     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3062     if (ValID >= ValueList.size()) {
3063       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3064     } else {
3065       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3066       if (!MaybeC)
3067         return MaybeC.takeError();
3068       Constant *C = MaybeC.get();
3069       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3070       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3071         if (C->getType() != GV->getType())
3072           return error("Alias and aliasee types don't match");
3073         GA->setAliasee(C);
3074       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3075         GI->setResolver(C);
3076       } else {
3077         return error("Expected an alias or an ifunc");
3078       }
3079     }
3080     IndirectSymbolInitWorklist.pop_back();
3081   }
3082 
3083   while (!FunctionOperandWorklist.empty()) {
3084     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3085     if (Info.PersonalityFn) {
3086       unsigned ValID = Info.PersonalityFn - 1;
3087       if (ValID < ValueList.size()) {
3088         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3089         if (!MaybeC)
3090           return MaybeC.takeError();
3091         Info.F->setPersonalityFn(MaybeC.get());
3092         Info.PersonalityFn = 0;
3093       }
3094     }
3095     if (Info.Prefix) {
3096       unsigned ValID = Info.Prefix - 1;
3097       if (ValID < ValueList.size()) {
3098         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3099         if (!MaybeC)
3100           return MaybeC.takeError();
3101         Info.F->setPrefixData(MaybeC.get());
3102         Info.Prefix = 0;
3103       }
3104     }
3105     if (Info.Prologue) {
3106       unsigned ValID = Info.Prologue - 1;
3107       if (ValID < ValueList.size()) {
3108         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3109         if (!MaybeC)
3110           return MaybeC.takeError();
3111         Info.F->setPrologueData(MaybeC.get());
3112         Info.Prologue = 0;
3113       }
3114     }
3115     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3116       FunctionOperands.push_back(Info);
3117     FunctionOperandWorklist.pop_back();
3118   }
3119 
3120   return Error::success();
3121 }
3122 
3123 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3124   SmallVector<uint64_t, 8> Words(Vals.size());
3125   transform(Vals, Words.begin(),
3126                  BitcodeReader::decodeSignRotatedValue);
3127 
3128   return APInt(TypeBits, Words);
3129 }
3130 
3131 Error BitcodeReader::parseConstants() {
3132   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3133     return Err;
3134 
3135   SmallVector<uint64_t, 64> Record;
3136 
3137   // Read all the records for this value table.
3138   Type *CurTy = Type::getInt32Ty(Context);
3139   unsigned Int32TyID = getVirtualTypeID(CurTy);
3140   unsigned CurTyID = Int32TyID;
3141   Type *CurElemTy = nullptr;
3142   unsigned NextCstNo = ValueList.size();
3143 
3144   while (true) {
3145     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3146     if (!MaybeEntry)
3147       return MaybeEntry.takeError();
3148     BitstreamEntry Entry = MaybeEntry.get();
3149 
3150     switch (Entry.Kind) {
3151     case BitstreamEntry::SubBlock: // Handled for us already.
3152     case BitstreamEntry::Error:
3153       return error("Malformed block");
3154     case BitstreamEntry::EndBlock:
3155       if (NextCstNo != ValueList.size())
3156         return error("Invalid constant reference");
3157       return Error::success();
3158     case BitstreamEntry::Record:
3159       // The interesting case.
3160       break;
3161     }
3162 
3163     // Read a record.
3164     Record.clear();
3165     Type *VoidType = Type::getVoidTy(Context);
3166     Value *V = nullptr;
3167     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3168     if (!MaybeBitCode)
3169       return MaybeBitCode.takeError();
3170     switch (unsigned BitCode = MaybeBitCode.get()) {
3171     default:  // Default behavior: unknown constant
3172     case bitc::CST_CODE_UNDEF:     // UNDEF
3173       V = UndefValue::get(CurTy);
3174       break;
3175     case bitc::CST_CODE_POISON:    // POISON
3176       V = PoisonValue::get(CurTy);
3177       break;
3178     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3179       if (Record.empty())
3180         return error("Invalid settype record");
3181       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3182         return error("Invalid settype record");
3183       if (TypeList[Record[0]] == VoidType)
3184         return error("Invalid constant type");
3185       CurTyID = Record[0];
3186       CurTy = TypeList[CurTyID];
3187       CurElemTy = getPtrElementTypeByID(CurTyID);
3188       continue;  // Skip the ValueList manipulation.
3189     case bitc::CST_CODE_NULL:      // NULL
3190       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3191         return error("Invalid type for a constant null value");
3192       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3193         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3194           return error("Invalid type for a constant null value");
3195       V = Constant::getNullValue(CurTy);
3196       break;
3197     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3198       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3199         return error("Invalid integer const record");
3200       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3201       break;
3202     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3203       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3204         return error("Invalid wide integer const record");
3205 
3206       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3207       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3208       V = ConstantInt::get(CurTy, VInt);
3209       break;
3210     }
3211     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3212       if (Record.empty())
3213         return error("Invalid float const record");
3214 
3215       auto *ScalarTy = CurTy->getScalarType();
3216       if (ScalarTy->isHalfTy())
3217         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3218                                            APInt(16, (uint16_t)Record[0])));
3219       else if (ScalarTy->isBFloatTy())
3220         V = ConstantFP::get(
3221             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3222       else if (ScalarTy->isFloatTy())
3223         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3224                                            APInt(32, (uint32_t)Record[0])));
3225       else if (ScalarTy->isDoubleTy())
3226         V = ConstantFP::get(
3227             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3228       else if (ScalarTy->isX86_FP80Ty()) {
3229         // Bits are not stored the same way as a normal i80 APInt, compensate.
3230         uint64_t Rearrange[2];
3231         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3232         Rearrange[1] = Record[0] >> 48;
3233         V = ConstantFP::get(
3234             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3235       } else if (ScalarTy->isFP128Ty())
3236         V = ConstantFP::get(CurTy,
3237                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3238       else if (ScalarTy->isPPC_FP128Ty())
3239         V = ConstantFP::get(
3240             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3241       else
3242         V = PoisonValue::get(CurTy);
3243       break;
3244     }
3245 
3246     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3247       if (Record.empty())
3248         return error("Invalid aggregate record");
3249 
3250       unsigned Size = Record.size();
3251       SmallVector<unsigned, 16> Elts;
3252       for (unsigned i = 0; i != Size; ++i)
3253         Elts.push_back(Record[i]);
3254 
3255       if (isa<StructType>(CurTy)) {
3256         V = BitcodeConstant::create(
3257             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3258       } else if (isa<ArrayType>(CurTy)) {
3259         V = BitcodeConstant::create(Alloc, CurTy,
3260                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3261       } else if (isa<VectorType>(CurTy)) {
3262         V = BitcodeConstant::create(
3263             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3264       } else {
3265         V = PoisonValue::get(CurTy);
3266       }
3267       break;
3268     }
3269     case bitc::CST_CODE_STRING:    // STRING: [values]
3270     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3271       if (Record.empty())
3272         return error("Invalid string record");
3273 
3274       SmallString<16> Elts(Record.begin(), Record.end());
3275       V = ConstantDataArray::getString(Context, Elts,
3276                                        BitCode == bitc::CST_CODE_CSTRING);
3277       break;
3278     }
3279     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3280       if (Record.empty())
3281         return error("Invalid data record");
3282 
3283       Type *EltTy;
3284       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3285         EltTy = Array->getElementType();
3286       else
3287         EltTy = cast<VectorType>(CurTy)->getElementType();
3288       if (EltTy->isIntegerTy(8)) {
3289         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3290         if (isa<VectorType>(CurTy))
3291           V = ConstantDataVector::get(Context, Elts);
3292         else
3293           V = ConstantDataArray::get(Context, Elts);
3294       } else if (EltTy->isIntegerTy(16)) {
3295         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3296         if (isa<VectorType>(CurTy))
3297           V = ConstantDataVector::get(Context, Elts);
3298         else
3299           V = ConstantDataArray::get(Context, Elts);
3300       } else if (EltTy->isIntegerTy(32)) {
3301         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3302         if (isa<VectorType>(CurTy))
3303           V = ConstantDataVector::get(Context, Elts);
3304         else
3305           V = ConstantDataArray::get(Context, Elts);
3306       } else if (EltTy->isIntegerTy(64)) {
3307         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3308         if (isa<VectorType>(CurTy))
3309           V = ConstantDataVector::get(Context, Elts);
3310         else
3311           V = ConstantDataArray::get(Context, Elts);
3312       } else if (EltTy->isHalfTy()) {
3313         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3314         if (isa<VectorType>(CurTy))
3315           V = ConstantDataVector::getFP(EltTy, Elts);
3316         else
3317           V = ConstantDataArray::getFP(EltTy, Elts);
3318       } else if (EltTy->isBFloatTy()) {
3319         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3320         if (isa<VectorType>(CurTy))
3321           V = ConstantDataVector::getFP(EltTy, Elts);
3322         else
3323           V = ConstantDataArray::getFP(EltTy, Elts);
3324       } else if (EltTy->isFloatTy()) {
3325         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3326         if (isa<VectorType>(CurTy))
3327           V = ConstantDataVector::getFP(EltTy, Elts);
3328         else
3329           V = ConstantDataArray::getFP(EltTy, Elts);
3330       } else if (EltTy->isDoubleTy()) {
3331         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3332         if (isa<VectorType>(CurTy))
3333           V = ConstantDataVector::getFP(EltTy, Elts);
3334         else
3335           V = ConstantDataArray::getFP(EltTy, Elts);
3336       } else {
3337         return error("Invalid type for value");
3338       }
3339       break;
3340     }
3341     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3342       if (Record.size() < 2)
3343         return error("Invalid unary op constexpr record");
3344       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3345       if (Opc < 0) {
3346         V = PoisonValue::get(CurTy);  // Unknown unop.
3347       } else {
3348         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3349       }
3350       break;
3351     }
3352     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3353       if (Record.size() < 3)
3354         return error("Invalid binary op constexpr record");
3355       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3356       if (Opc < 0) {
3357         V = PoisonValue::get(CurTy);  // Unknown binop.
3358       } else {
3359         uint8_t Flags = 0;
3360         if (Record.size() >= 4) {
3361           if (Opc == Instruction::Add ||
3362               Opc == Instruction::Sub ||
3363               Opc == Instruction::Mul ||
3364               Opc == Instruction::Shl) {
3365             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3366               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3367             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3368               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3369           } else if (Opc == Instruction::SDiv ||
3370                      Opc == Instruction::UDiv ||
3371                      Opc == Instruction::LShr ||
3372                      Opc == Instruction::AShr) {
3373             if (Record[3] & (1 << bitc::PEO_EXACT))
3374               Flags |= PossiblyExactOperator::IsExact;
3375           }
3376         }
3377         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3378                                     {(unsigned)Record[1], (unsigned)Record[2]});
3379       }
3380       break;
3381     }
3382     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3383       if (Record.size() < 3)
3384         return error("Invalid cast constexpr record");
3385       int Opc = getDecodedCastOpcode(Record[0]);
3386       if (Opc < 0) {
3387         V = PoisonValue::get(CurTy);  // Unknown cast.
3388       } else {
3389         unsigned OpTyID = Record[1];
3390         Type *OpTy = getTypeByID(OpTyID);
3391         if (!OpTy)
3392           return error("Invalid cast constexpr record");
3393         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3394       }
3395       break;
3396     }
3397     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3398     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3399     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3400                                                        // operands]
3401     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3402     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3403                                                // operands]
3404       if (Record.size() < 2)
3405         return error("Constant GEP record must have at least two elements");
3406       unsigned OpNum = 0;
3407       Type *PointeeType = nullptr;
3408       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3409           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3410           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3411         PointeeType = getTypeByID(Record[OpNum++]);
3412 
3413       uint64_t Flags = 0;
3414       std::optional<ConstantRange> InRange;
3415       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3416         uint64_t Op = Record[OpNum++];
3417         Flags = Op & 1; // inbounds
3418         unsigned InRangeIndex = Op >> 1;
3419         // "Upgrade" inrange by dropping it. The feature is too niche to
3420         // bother.
3421         (void)InRangeIndex;
3422       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3423         Flags = Record[OpNum++];
3424         Expected<ConstantRange> MaybeInRange =
3425             readBitWidthAndConstantRange(Record, OpNum);
3426         if (!MaybeInRange)
3427           return MaybeInRange.takeError();
3428         InRange = MaybeInRange.get();
3429       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3430         Flags = Record[OpNum++];
3431       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3432         Flags = (1 << bitc::GEP_INBOUNDS);
3433 
3434       SmallVector<unsigned, 16> Elts;
3435       unsigned BaseTypeID = Record[OpNum];
3436       while (OpNum != Record.size()) {
3437         unsigned ElTyID = Record[OpNum++];
3438         Type *ElTy = getTypeByID(ElTyID);
3439         if (!ElTy)
3440           return error("Invalid getelementptr constexpr record");
3441         Elts.push_back(Record[OpNum++]);
3442       }
3443 
3444       if (Elts.size() < 1)
3445         return error("Invalid gep with no operands");
3446 
3447       Type *BaseType = getTypeByID(BaseTypeID);
3448       if (isa<VectorType>(BaseType)) {
3449         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3450         BaseType = getTypeByID(BaseTypeID);
3451       }
3452 
3453       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3454       if (!OrigPtrTy)
3455         return error("GEP base operand must be pointer or vector of pointer");
3456 
3457       if (!PointeeType) {
3458         PointeeType = getPtrElementTypeByID(BaseTypeID);
3459         if (!PointeeType)
3460           return error("Missing element type for old-style constant GEP");
3461       }
3462 
3463       V = BitcodeConstant::create(
3464           Alloc, CurTy,
3465           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3466           Elts);
3467       break;
3468     }
3469     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3470       if (Record.size() < 3)
3471         return error("Invalid select constexpr record");
3472 
3473       V = BitcodeConstant::create(
3474           Alloc, CurTy, Instruction::Select,
3475           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3476       break;
3477     }
3478     case bitc::CST_CODE_CE_EXTRACTELT
3479         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3480       if (Record.size() < 3)
3481         return error("Invalid extractelement constexpr record");
3482       unsigned OpTyID = Record[0];
3483       VectorType *OpTy =
3484         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3485       if (!OpTy)
3486         return error("Invalid extractelement constexpr record");
3487       unsigned IdxRecord;
3488       if (Record.size() == 4) {
3489         unsigned IdxTyID = Record[2];
3490         Type *IdxTy = getTypeByID(IdxTyID);
3491         if (!IdxTy)
3492           return error("Invalid extractelement constexpr record");
3493         IdxRecord = Record[3];
3494       } else {
3495         // Deprecated, but still needed to read old bitcode files.
3496         IdxRecord = Record[2];
3497       }
3498       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3499                                   {(unsigned)Record[1], IdxRecord});
3500       break;
3501     }
3502     case bitc::CST_CODE_CE_INSERTELT
3503         : { // CE_INSERTELT: [opval, opval, opty, opval]
3504       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3505       if (Record.size() < 3 || !OpTy)
3506         return error("Invalid insertelement constexpr record");
3507       unsigned IdxRecord;
3508       if (Record.size() == 4) {
3509         unsigned IdxTyID = Record[2];
3510         Type *IdxTy = getTypeByID(IdxTyID);
3511         if (!IdxTy)
3512           return error("Invalid insertelement constexpr record");
3513         IdxRecord = Record[3];
3514       } else {
3515         // Deprecated, but still needed to read old bitcode files.
3516         IdxRecord = Record[2];
3517       }
3518       V = BitcodeConstant::create(
3519           Alloc, CurTy, Instruction::InsertElement,
3520           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3521       break;
3522     }
3523     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3524       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3525       if (Record.size() < 3 || !OpTy)
3526         return error("Invalid shufflevector constexpr record");
3527       V = BitcodeConstant::create(
3528           Alloc, CurTy, Instruction::ShuffleVector,
3529           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3530       break;
3531     }
3532     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3533       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3534       VectorType *OpTy =
3535         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3536       if (Record.size() < 4 || !RTy || !OpTy)
3537         return error("Invalid shufflevector constexpr record");
3538       V = BitcodeConstant::create(
3539           Alloc, CurTy, Instruction::ShuffleVector,
3540           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3541       break;
3542     }
3543     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3544       if (Record.size() < 4)
3545         return error("Invalid cmp constexpt record");
3546       unsigned OpTyID = Record[0];
3547       Type *OpTy = getTypeByID(OpTyID);
3548       if (!OpTy)
3549         return error("Invalid cmp constexpr record");
3550       V = BitcodeConstant::create(
3551           Alloc, CurTy,
3552           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3553                                               : Instruction::ICmp),
3554            (uint8_t)Record[3]},
3555           {(unsigned)Record[1], (unsigned)Record[2]});
3556       break;
3557     }
3558     // This maintains backward compatibility, pre-asm dialect keywords.
3559     // Deprecated, but still needed to read old bitcode files.
3560     case bitc::CST_CODE_INLINEASM_OLD: {
3561       if (Record.size() < 2)
3562         return error("Invalid inlineasm record");
3563       std::string AsmStr, ConstrStr;
3564       bool HasSideEffects = Record[0] & 1;
3565       bool IsAlignStack = Record[0] >> 1;
3566       unsigned AsmStrSize = Record[1];
3567       if (2+AsmStrSize >= Record.size())
3568         return error("Invalid inlineasm record");
3569       unsigned ConstStrSize = Record[2+AsmStrSize];
3570       if (3+AsmStrSize+ConstStrSize > Record.size())
3571         return error("Invalid inlineasm record");
3572 
3573       for (unsigned i = 0; i != AsmStrSize; ++i)
3574         AsmStr += (char)Record[2+i];
3575       for (unsigned i = 0; i != ConstStrSize; ++i)
3576         ConstrStr += (char)Record[3+AsmStrSize+i];
3577       UpgradeInlineAsmString(&AsmStr);
3578       if (!CurElemTy)
3579         return error("Missing element type for old-style inlineasm");
3580       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3581                          HasSideEffects, IsAlignStack);
3582       break;
3583     }
3584     // This version adds support for the asm dialect keywords (e.g.,
3585     // inteldialect).
3586     case bitc::CST_CODE_INLINEASM_OLD2: {
3587       if (Record.size() < 2)
3588         return error("Invalid inlineasm record");
3589       std::string AsmStr, ConstrStr;
3590       bool HasSideEffects = Record[0] & 1;
3591       bool IsAlignStack = (Record[0] >> 1) & 1;
3592       unsigned AsmDialect = Record[0] >> 2;
3593       unsigned AsmStrSize = Record[1];
3594       if (2+AsmStrSize >= Record.size())
3595         return error("Invalid inlineasm record");
3596       unsigned ConstStrSize = Record[2+AsmStrSize];
3597       if (3+AsmStrSize+ConstStrSize > Record.size())
3598         return error("Invalid inlineasm record");
3599 
3600       for (unsigned i = 0; i != AsmStrSize; ++i)
3601         AsmStr += (char)Record[2+i];
3602       for (unsigned i = 0; i != ConstStrSize; ++i)
3603         ConstrStr += (char)Record[3+AsmStrSize+i];
3604       UpgradeInlineAsmString(&AsmStr);
3605       if (!CurElemTy)
3606         return error("Missing element type for old-style inlineasm");
3607       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3608                          HasSideEffects, IsAlignStack,
3609                          InlineAsm::AsmDialect(AsmDialect));
3610       break;
3611     }
3612     // This version adds support for the unwind keyword.
3613     case bitc::CST_CODE_INLINEASM_OLD3: {
3614       if (Record.size() < 2)
3615         return error("Invalid inlineasm record");
3616       unsigned OpNum = 0;
3617       std::string AsmStr, ConstrStr;
3618       bool HasSideEffects = Record[OpNum] & 1;
3619       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3620       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3621       bool CanThrow = (Record[OpNum] >> 3) & 1;
3622       ++OpNum;
3623       unsigned AsmStrSize = Record[OpNum];
3624       ++OpNum;
3625       if (OpNum + AsmStrSize >= Record.size())
3626         return error("Invalid inlineasm record");
3627       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3628       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3629         return error("Invalid inlineasm record");
3630 
3631       for (unsigned i = 0; i != AsmStrSize; ++i)
3632         AsmStr += (char)Record[OpNum + i];
3633       ++OpNum;
3634       for (unsigned i = 0; i != ConstStrSize; ++i)
3635         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3636       UpgradeInlineAsmString(&AsmStr);
3637       if (!CurElemTy)
3638         return error("Missing element type for old-style inlineasm");
3639       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3640                          HasSideEffects, IsAlignStack,
3641                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3642       break;
3643     }
3644     // This version adds explicit function type.
3645     case bitc::CST_CODE_INLINEASM: {
3646       if (Record.size() < 3)
3647         return error("Invalid inlineasm record");
3648       unsigned OpNum = 0;
3649       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3650       ++OpNum;
3651       if (!FnTy)
3652         return error("Invalid inlineasm record");
3653       std::string AsmStr, ConstrStr;
3654       bool HasSideEffects = Record[OpNum] & 1;
3655       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3656       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3657       bool CanThrow = (Record[OpNum] >> 3) & 1;
3658       ++OpNum;
3659       unsigned AsmStrSize = Record[OpNum];
3660       ++OpNum;
3661       if (OpNum + AsmStrSize >= Record.size())
3662         return error("Invalid inlineasm record");
3663       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3664       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3665         return error("Invalid inlineasm record");
3666 
3667       for (unsigned i = 0; i != AsmStrSize; ++i)
3668         AsmStr += (char)Record[OpNum + i];
3669       ++OpNum;
3670       for (unsigned i = 0; i != ConstStrSize; ++i)
3671         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3672       UpgradeInlineAsmString(&AsmStr);
3673       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3674                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3675       break;
3676     }
3677     case bitc::CST_CODE_BLOCKADDRESS:{
3678       if (Record.size() < 3)
3679         return error("Invalid blockaddress record");
3680       unsigned FnTyID = Record[0];
3681       Type *FnTy = getTypeByID(FnTyID);
3682       if (!FnTy)
3683         return error("Invalid blockaddress record");
3684       V = BitcodeConstant::create(
3685           Alloc, CurTy,
3686           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3687           Record[1]);
3688       break;
3689     }
3690     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3691       if (Record.size() < 2)
3692         return error("Invalid dso_local record");
3693       unsigned GVTyID = Record[0];
3694       Type *GVTy = getTypeByID(GVTyID);
3695       if (!GVTy)
3696         return error("Invalid dso_local record");
3697       V = BitcodeConstant::create(
3698           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3699       break;
3700     }
3701     case bitc::CST_CODE_NO_CFI_VALUE: {
3702       if (Record.size() < 2)
3703         return error("Invalid no_cfi record");
3704       unsigned GVTyID = Record[0];
3705       Type *GVTy = getTypeByID(GVTyID);
3706       if (!GVTy)
3707         return error("Invalid no_cfi record");
3708       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3709                                   Record[1]);
3710       break;
3711     }
3712     case bitc::CST_CODE_PTRAUTH: {
3713       if (Record.size() < 4)
3714         return error("Invalid ptrauth record");
3715       // Ptr, Key, Disc, AddrDisc
3716       V = BitcodeConstant::create(Alloc, CurTy,
3717                                   BitcodeConstant::ConstantPtrAuthOpcode,
3718                                   {(unsigned)Record[0], (unsigned)Record[1],
3719                                    (unsigned)Record[2], (unsigned)Record[3]});
3720       break;
3721     }
3722     }
3723 
3724     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3725     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3726       return Err;
3727     ++NextCstNo;
3728   }
3729 }
3730 
3731 Error BitcodeReader::parseUseLists() {
3732   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3733     return Err;
3734 
3735   // Read all the records.
3736   SmallVector<uint64_t, 64> Record;
3737 
3738   while (true) {
3739     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3740     if (!MaybeEntry)
3741       return MaybeEntry.takeError();
3742     BitstreamEntry Entry = MaybeEntry.get();
3743 
3744     switch (Entry.Kind) {
3745     case BitstreamEntry::SubBlock: // Handled for us already.
3746     case BitstreamEntry::Error:
3747       return error("Malformed block");
3748     case BitstreamEntry::EndBlock:
3749       return Error::success();
3750     case BitstreamEntry::Record:
3751       // The interesting case.
3752       break;
3753     }
3754 
3755     // Read a use list record.
3756     Record.clear();
3757     bool IsBB = false;
3758     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3759     if (!MaybeRecord)
3760       return MaybeRecord.takeError();
3761     switch (MaybeRecord.get()) {
3762     default:  // Default behavior: unknown type.
3763       break;
3764     case bitc::USELIST_CODE_BB:
3765       IsBB = true;
3766       [[fallthrough]];
3767     case bitc::USELIST_CODE_DEFAULT: {
3768       unsigned RecordLength = Record.size();
3769       if (RecordLength < 3)
3770         // Records should have at least an ID and two indexes.
3771         return error("Invalid record");
3772       unsigned ID = Record.pop_back_val();
3773 
3774       Value *V;
3775       if (IsBB) {
3776         assert(ID < FunctionBBs.size() && "Basic block not found");
3777         V = FunctionBBs[ID];
3778       } else
3779         V = ValueList[ID];
3780       unsigned NumUses = 0;
3781       SmallDenseMap<const Use *, unsigned, 16> Order;
3782       for (const Use &U : V->materialized_uses()) {
3783         if (++NumUses > Record.size())
3784           break;
3785         Order[&U] = Record[NumUses - 1];
3786       }
3787       if (Order.size() != Record.size() || NumUses > Record.size())
3788         // Mismatches can happen if the functions are being materialized lazily
3789         // (out-of-order), or a value has been upgraded.
3790         break;
3791 
3792       V->sortUseList([&](const Use &L, const Use &R) {
3793         return Order.lookup(&L) < Order.lookup(&R);
3794       });
3795       break;
3796     }
3797     }
3798   }
3799 }
3800 
3801 /// When we see the block for metadata, remember where it is and then skip it.
3802 /// This lets us lazily deserialize the metadata.
3803 Error BitcodeReader::rememberAndSkipMetadata() {
3804   // Save the current stream state.
3805   uint64_t CurBit = Stream.GetCurrentBitNo();
3806   DeferredMetadataInfo.push_back(CurBit);
3807 
3808   // Skip over the block for now.
3809   if (Error Err = Stream.SkipBlock())
3810     return Err;
3811   return Error::success();
3812 }
3813 
3814 Error BitcodeReader::materializeMetadata() {
3815   for (uint64_t BitPos : DeferredMetadataInfo) {
3816     // Move the bit stream to the saved position.
3817     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3818       return JumpFailed;
3819     if (Error Err = MDLoader->parseModuleMetadata())
3820       return Err;
3821   }
3822 
3823   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3824   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3825   // multiple times.
3826   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3827     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3828       NamedMDNode *LinkerOpts =
3829           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3830       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3831         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3832     }
3833   }
3834 
3835   DeferredMetadataInfo.clear();
3836   return Error::success();
3837 }
3838 
3839 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3840 
3841 /// When we see the block for a function body, remember where it is and then
3842 /// skip it.  This lets us lazily deserialize the functions.
3843 Error BitcodeReader::rememberAndSkipFunctionBody() {
3844   // Get the function we are talking about.
3845   if (FunctionsWithBodies.empty())
3846     return error("Insufficient function protos");
3847 
3848   Function *Fn = FunctionsWithBodies.back();
3849   FunctionsWithBodies.pop_back();
3850 
3851   // Save the current stream state.
3852   uint64_t CurBit = Stream.GetCurrentBitNo();
3853   assert(
3854       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3855       "Mismatch between VST and scanned function offsets");
3856   DeferredFunctionInfo[Fn] = CurBit;
3857 
3858   // Skip over the function block for now.
3859   if (Error Err = Stream.SkipBlock())
3860     return Err;
3861   return Error::success();
3862 }
3863 
3864 Error BitcodeReader::globalCleanup() {
3865   // Patch the initializers for globals and aliases up.
3866   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3867     return Err;
3868   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3869     return error("Malformed global initializer set");
3870 
3871   // Look for intrinsic functions which need to be upgraded at some point
3872   // and functions that need to have their function attributes upgraded.
3873   for (Function &F : *TheModule) {
3874     MDLoader->upgradeDebugIntrinsics(F);
3875     Function *NewFn;
3876     // If PreserveInputDbgFormat=true, then we don't know whether we want
3877     // intrinsics or records, and we won't perform any conversions in either
3878     // case, so don't upgrade intrinsics to records.
3879     if (UpgradeIntrinsicFunction(
3880             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3881       UpgradedIntrinsics[&F] = NewFn;
3882     // Look for functions that rely on old function attribute behavior.
3883     UpgradeFunctionAttributes(F);
3884   }
3885 
3886   // Look for global variables which need to be renamed.
3887   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3888   for (GlobalVariable &GV : TheModule->globals())
3889     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3890       UpgradedVariables.emplace_back(&GV, Upgraded);
3891   for (auto &Pair : UpgradedVariables) {
3892     Pair.first->eraseFromParent();
3893     TheModule->insertGlobalVariable(Pair.second);
3894   }
3895 
3896   // Force deallocation of memory for these vectors to favor the client that
3897   // want lazy deserialization.
3898   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3899   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3900   return Error::success();
3901 }
3902 
3903 /// Support for lazy parsing of function bodies. This is required if we
3904 /// either have an old bitcode file without a VST forward declaration record,
3905 /// or if we have an anonymous function being materialized, since anonymous
3906 /// functions do not have a name and are therefore not in the VST.
3907 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3908   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3909     return JumpFailed;
3910 
3911   if (Stream.AtEndOfStream())
3912     return error("Could not find function in stream");
3913 
3914   if (!SeenFirstFunctionBody)
3915     return error("Trying to materialize functions before seeing function blocks");
3916 
3917   // An old bitcode file with the symbol table at the end would have
3918   // finished the parse greedily.
3919   assert(SeenValueSymbolTable);
3920 
3921   SmallVector<uint64_t, 64> Record;
3922 
3923   while (true) {
3924     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3925     if (!MaybeEntry)
3926       return MaybeEntry.takeError();
3927     llvm::BitstreamEntry Entry = MaybeEntry.get();
3928 
3929     switch (Entry.Kind) {
3930     default:
3931       return error("Expect SubBlock");
3932     case BitstreamEntry::SubBlock:
3933       switch (Entry.ID) {
3934       default:
3935         return error("Expect function block");
3936       case bitc::FUNCTION_BLOCK_ID:
3937         if (Error Err = rememberAndSkipFunctionBody())
3938           return Err;
3939         NextUnreadBit = Stream.GetCurrentBitNo();
3940         return Error::success();
3941       }
3942     }
3943   }
3944 }
3945 
3946 Error BitcodeReaderBase::readBlockInfo() {
3947   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3948       Stream.ReadBlockInfoBlock();
3949   if (!MaybeNewBlockInfo)
3950     return MaybeNewBlockInfo.takeError();
3951   std::optional<BitstreamBlockInfo> NewBlockInfo =
3952       std::move(MaybeNewBlockInfo.get());
3953   if (!NewBlockInfo)
3954     return error("Malformed block");
3955   BlockInfo = std::move(*NewBlockInfo);
3956   return Error::success();
3957 }
3958 
3959 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3960   // v1: [selection_kind, name]
3961   // v2: [strtab_offset, strtab_size, selection_kind]
3962   StringRef Name;
3963   std::tie(Name, Record) = readNameFromStrtab(Record);
3964 
3965   if (Record.empty())
3966     return error("Invalid record");
3967   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3968   std::string OldFormatName;
3969   if (!UseStrtab) {
3970     if (Record.size() < 2)
3971       return error("Invalid record");
3972     unsigned ComdatNameSize = Record[1];
3973     if (ComdatNameSize > Record.size() - 2)
3974       return error("Comdat name size too large");
3975     OldFormatName.reserve(ComdatNameSize);
3976     for (unsigned i = 0; i != ComdatNameSize; ++i)
3977       OldFormatName += (char)Record[2 + i];
3978     Name = OldFormatName;
3979   }
3980   Comdat *C = TheModule->getOrInsertComdat(Name);
3981   C->setSelectionKind(SK);
3982   ComdatList.push_back(C);
3983   return Error::success();
3984 }
3985 
3986 static void inferDSOLocal(GlobalValue *GV) {
3987   // infer dso_local from linkage and visibility if it is not encoded.
3988   if (GV->hasLocalLinkage() ||
3989       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3990     GV->setDSOLocal(true);
3991 }
3992 
3993 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3994   GlobalValue::SanitizerMetadata Meta;
3995   if (V & (1 << 0))
3996     Meta.NoAddress = true;
3997   if (V & (1 << 1))
3998     Meta.NoHWAddress = true;
3999   if (V & (1 << 2))
4000     Meta.Memtag = true;
4001   if (V & (1 << 3))
4002     Meta.IsDynInit = true;
4003   return Meta;
4004 }
4005 
4006 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4007   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4008   // visibility, threadlocal, unnamed_addr, externally_initialized,
4009   // dllstorageclass, comdat, attributes, preemption specifier,
4010   // partition strtab offset, partition strtab size] (name in VST)
4011   // v2: [strtab_offset, strtab_size, v1]
4012   // v3: [v2, code_model]
4013   StringRef Name;
4014   std::tie(Name, Record) = readNameFromStrtab(Record);
4015 
4016   if (Record.size() < 6)
4017     return error("Invalid record");
4018   unsigned TyID = Record[0];
4019   Type *Ty = getTypeByID(TyID);
4020   if (!Ty)
4021     return error("Invalid record");
4022   bool isConstant = Record[1] & 1;
4023   bool explicitType = Record[1] & 2;
4024   unsigned AddressSpace;
4025   if (explicitType) {
4026     AddressSpace = Record[1] >> 2;
4027   } else {
4028     if (!Ty->isPointerTy())
4029       return error("Invalid type for value");
4030     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4031     TyID = getContainedTypeID(TyID);
4032     Ty = getTypeByID(TyID);
4033     if (!Ty)
4034       return error("Missing element type for old-style global");
4035   }
4036 
4037   uint64_t RawLinkage = Record[3];
4038   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4039   MaybeAlign Alignment;
4040   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4041     return Err;
4042   std::string Section;
4043   if (Record[5]) {
4044     if (Record[5] - 1 >= SectionTable.size())
4045       return error("Invalid ID");
4046     Section = SectionTable[Record[5] - 1];
4047   }
4048   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4049   // Local linkage must have default visibility.
4050   // auto-upgrade `hidden` and `protected` for old bitcode.
4051   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4052     Visibility = getDecodedVisibility(Record[6]);
4053 
4054   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4055   if (Record.size() > 7)
4056     TLM = getDecodedThreadLocalMode(Record[7]);
4057 
4058   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4059   if (Record.size() > 8)
4060     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4061 
4062   bool ExternallyInitialized = false;
4063   if (Record.size() > 9)
4064     ExternallyInitialized = Record[9];
4065 
4066   GlobalVariable *NewGV =
4067       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4068                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4069   if (Alignment)
4070     NewGV->setAlignment(*Alignment);
4071   if (!Section.empty())
4072     NewGV->setSection(Section);
4073   NewGV->setVisibility(Visibility);
4074   NewGV->setUnnamedAddr(UnnamedAddr);
4075 
4076   if (Record.size() > 10) {
4077     // A GlobalValue with local linkage cannot have a DLL storage class.
4078     if (!NewGV->hasLocalLinkage()) {
4079       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4080     }
4081   } else {
4082     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4083   }
4084 
4085   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4086 
4087   // Remember which value to use for the global initializer.
4088   if (unsigned InitID = Record[2])
4089     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4090 
4091   if (Record.size() > 11) {
4092     if (unsigned ComdatID = Record[11]) {
4093       if (ComdatID > ComdatList.size())
4094         return error("Invalid global variable comdat ID");
4095       NewGV->setComdat(ComdatList[ComdatID - 1]);
4096     }
4097   } else if (hasImplicitComdat(RawLinkage)) {
4098     ImplicitComdatObjects.insert(NewGV);
4099   }
4100 
4101   if (Record.size() > 12) {
4102     auto AS = getAttributes(Record[12]).getFnAttrs();
4103     NewGV->setAttributes(AS);
4104   }
4105 
4106   if (Record.size() > 13) {
4107     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4108   }
4109   inferDSOLocal(NewGV);
4110 
4111   // Check whether we have enough values to read a partition name.
4112   if (Record.size() > 15)
4113     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4114 
4115   if (Record.size() > 16 && Record[16]) {
4116     llvm::GlobalValue::SanitizerMetadata Meta =
4117         deserializeSanitizerMetadata(Record[16]);
4118     NewGV->setSanitizerMetadata(Meta);
4119   }
4120 
4121   if (Record.size() > 17 && Record[17]) {
4122     if (auto CM = getDecodedCodeModel(Record[17]))
4123       NewGV->setCodeModel(*CM);
4124     else
4125       return error("Invalid global variable code model");
4126   }
4127 
4128   return Error::success();
4129 }
4130 
4131 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4132   if (ValueTypeCallback) {
4133     (*ValueTypeCallback)(
4134         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4135         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4136   }
4137 }
4138 
4139 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4140   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4141   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4142   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4143   // v2: [strtab_offset, strtab_size, v1]
4144   StringRef Name;
4145   std::tie(Name, Record) = readNameFromStrtab(Record);
4146 
4147   if (Record.size() < 8)
4148     return error("Invalid record");
4149   unsigned FTyID = Record[0];
4150   Type *FTy = getTypeByID(FTyID);
4151   if (!FTy)
4152     return error("Invalid record");
4153   if (isa<PointerType>(FTy)) {
4154     FTyID = getContainedTypeID(FTyID, 0);
4155     FTy = getTypeByID(FTyID);
4156     if (!FTy)
4157       return error("Missing element type for old-style function");
4158   }
4159 
4160   if (!isa<FunctionType>(FTy))
4161     return error("Invalid type for value");
4162   auto CC = static_cast<CallingConv::ID>(Record[1]);
4163   if (CC & ~CallingConv::MaxID)
4164     return error("Invalid calling convention ID");
4165 
4166   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4167   if (Record.size() > 16)
4168     AddrSpace = Record[16];
4169 
4170   Function *Func =
4171       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4172                        AddrSpace, Name, TheModule);
4173 
4174   assert(Func->getFunctionType() == FTy &&
4175          "Incorrect fully specified type provided for function");
4176   FunctionTypeIDs[Func] = FTyID;
4177 
4178   Func->setCallingConv(CC);
4179   bool isProto = Record[2];
4180   uint64_t RawLinkage = Record[3];
4181   Func->setLinkage(getDecodedLinkage(RawLinkage));
4182   Func->setAttributes(getAttributes(Record[4]));
4183   callValueTypeCallback(Func, FTyID);
4184 
4185   // Upgrade any old-style byval or sret without a type by propagating the
4186   // argument's pointee type. There should be no opaque pointers where the byval
4187   // type is implicit.
4188   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4189     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4190                                      Attribute::InAlloca}) {
4191       if (!Func->hasParamAttribute(i, Kind))
4192         continue;
4193 
4194       if (Func->getParamAttribute(i, Kind).getValueAsType())
4195         continue;
4196 
4197       Func->removeParamAttr(i, Kind);
4198 
4199       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4200       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4201       if (!PtrEltTy)
4202         return error("Missing param element type for attribute upgrade");
4203 
4204       Attribute NewAttr;
4205       switch (Kind) {
4206       case Attribute::ByVal:
4207         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4208         break;
4209       case Attribute::StructRet:
4210         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4211         break;
4212       case Attribute::InAlloca:
4213         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4214         break;
4215       default:
4216         llvm_unreachable("not an upgraded type attribute");
4217       }
4218 
4219       Func->addParamAttr(i, NewAttr);
4220     }
4221   }
4222 
4223   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4224       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4225     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4226     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4227     if (!ByValTy)
4228       return error("Missing param element type for x86_intrcc upgrade");
4229     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4230     Func->addParamAttr(0, NewAttr);
4231   }
4232 
4233   MaybeAlign Alignment;
4234   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4235     return Err;
4236   if (Alignment)
4237     Func->setAlignment(*Alignment);
4238   if (Record[6]) {
4239     if (Record[6] - 1 >= SectionTable.size())
4240       return error("Invalid ID");
4241     Func->setSection(SectionTable[Record[6] - 1]);
4242   }
4243   // Local linkage must have default visibility.
4244   // auto-upgrade `hidden` and `protected` for old bitcode.
4245   if (!Func->hasLocalLinkage())
4246     Func->setVisibility(getDecodedVisibility(Record[7]));
4247   if (Record.size() > 8 && Record[8]) {
4248     if (Record[8] - 1 >= GCTable.size())
4249       return error("Invalid ID");
4250     Func->setGC(GCTable[Record[8] - 1]);
4251   }
4252   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4253   if (Record.size() > 9)
4254     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4255   Func->setUnnamedAddr(UnnamedAddr);
4256 
4257   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4258   if (Record.size() > 10)
4259     OperandInfo.Prologue = Record[10];
4260 
4261   if (Record.size() > 11) {
4262     // A GlobalValue with local linkage cannot have a DLL storage class.
4263     if (!Func->hasLocalLinkage()) {
4264       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4265     }
4266   } else {
4267     upgradeDLLImportExportLinkage(Func, RawLinkage);
4268   }
4269 
4270   if (Record.size() > 12) {
4271     if (unsigned ComdatID = Record[12]) {
4272       if (ComdatID > ComdatList.size())
4273         return error("Invalid function comdat ID");
4274       Func->setComdat(ComdatList[ComdatID - 1]);
4275     }
4276   } else if (hasImplicitComdat(RawLinkage)) {
4277     ImplicitComdatObjects.insert(Func);
4278   }
4279 
4280   if (Record.size() > 13)
4281     OperandInfo.Prefix = Record[13];
4282 
4283   if (Record.size() > 14)
4284     OperandInfo.PersonalityFn = Record[14];
4285 
4286   if (Record.size() > 15) {
4287     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4288   }
4289   inferDSOLocal(Func);
4290 
4291   // Record[16] is the address space number.
4292 
4293   // Check whether we have enough values to read a partition name. Also make
4294   // sure Strtab has enough values.
4295   if (Record.size() > 18 && Strtab.data() &&
4296       Record[17] + Record[18] <= Strtab.size()) {
4297     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4298   }
4299 
4300   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4301 
4302   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4303     FunctionOperands.push_back(OperandInfo);
4304 
4305   // If this is a function with a body, remember the prototype we are
4306   // creating now, so that we can match up the body with them later.
4307   if (!isProto) {
4308     Func->setIsMaterializable(true);
4309     FunctionsWithBodies.push_back(Func);
4310     DeferredFunctionInfo[Func] = 0;
4311   }
4312   return Error::success();
4313 }
4314 
4315 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4316     unsigned BitCode, ArrayRef<uint64_t> Record) {
4317   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4318   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4319   // dllstorageclass, threadlocal, unnamed_addr,
4320   // preemption specifier] (name in VST)
4321   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4322   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4323   // preemption specifier] (name in VST)
4324   // v2: [strtab_offset, strtab_size, v1]
4325   StringRef Name;
4326   std::tie(Name, Record) = readNameFromStrtab(Record);
4327 
4328   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4329   if (Record.size() < (3 + (unsigned)NewRecord))
4330     return error("Invalid record");
4331   unsigned OpNum = 0;
4332   unsigned TypeID = Record[OpNum++];
4333   Type *Ty = getTypeByID(TypeID);
4334   if (!Ty)
4335     return error("Invalid record");
4336 
4337   unsigned AddrSpace;
4338   if (!NewRecord) {
4339     auto *PTy = dyn_cast<PointerType>(Ty);
4340     if (!PTy)
4341       return error("Invalid type for value");
4342     AddrSpace = PTy->getAddressSpace();
4343     TypeID = getContainedTypeID(TypeID);
4344     Ty = getTypeByID(TypeID);
4345     if (!Ty)
4346       return error("Missing element type for old-style indirect symbol");
4347   } else {
4348     AddrSpace = Record[OpNum++];
4349   }
4350 
4351   auto Val = Record[OpNum++];
4352   auto Linkage = Record[OpNum++];
4353   GlobalValue *NewGA;
4354   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4355       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4356     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4357                                 TheModule);
4358   else
4359     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4360                                 nullptr, TheModule);
4361 
4362   // Local linkage must have default visibility.
4363   // auto-upgrade `hidden` and `protected` for old bitcode.
4364   if (OpNum != Record.size()) {
4365     auto VisInd = OpNum++;
4366     if (!NewGA->hasLocalLinkage())
4367       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4368   }
4369   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4370       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4371     if (OpNum != Record.size()) {
4372       auto S = Record[OpNum++];
4373       // A GlobalValue with local linkage cannot have a DLL storage class.
4374       if (!NewGA->hasLocalLinkage())
4375         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4376     }
4377     else
4378       upgradeDLLImportExportLinkage(NewGA, Linkage);
4379     if (OpNum != Record.size())
4380       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4381     if (OpNum != Record.size())
4382       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4383   }
4384   if (OpNum != Record.size())
4385     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4386   inferDSOLocal(NewGA);
4387 
4388   // Check whether we have enough values to read a partition name.
4389   if (OpNum + 1 < Record.size()) {
4390     // Check Strtab has enough values for the partition.
4391     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4392       return error("Malformed partition, too large.");
4393     NewGA->setPartition(
4394         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4395   }
4396 
4397   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4398   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4399   return Error::success();
4400 }
4401 
4402 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4403                                  bool ShouldLazyLoadMetadata,
4404                                  ParserCallbacks Callbacks) {
4405   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4406   // has been set to true and we aren't attempting to preserve the existing
4407   // format in the bitcode (default action: load into the old debug format).
4408   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4409     TheModule->IsNewDbgInfoFormat =
4410         UseNewDbgInfoFormat &&
4411         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4412   }
4413 
4414   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4415   if (ResumeBit) {
4416     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4417       return JumpFailed;
4418   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4419     return Err;
4420 
4421   SmallVector<uint64_t, 64> Record;
4422 
4423   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4424   // finalize the datalayout before we run any of that code.
4425   bool ResolvedDataLayout = false;
4426   // In order to support importing modules with illegal data layout strings,
4427   // delay parsing the data layout string until after upgrades and overrides
4428   // have been applied, allowing to fix illegal data layout strings.
4429   // Initialize to the current module's layout string in case none is specified.
4430   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4431 
4432   auto ResolveDataLayout = [&]() -> Error {
4433     if (ResolvedDataLayout)
4434       return Error::success();
4435 
4436     // Datalayout and triple can't be parsed after this point.
4437     ResolvedDataLayout = true;
4438 
4439     // Auto-upgrade the layout string
4440     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4441         TentativeDataLayoutStr, TheModule->getTargetTriple());
4442 
4443     // Apply override
4444     if (Callbacks.DataLayout) {
4445       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4446               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4447         TentativeDataLayoutStr = *LayoutOverride;
4448     }
4449 
4450     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4451     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4452     if (!MaybeDL)
4453       return MaybeDL.takeError();
4454 
4455     TheModule->setDataLayout(MaybeDL.get());
4456     return Error::success();
4457   };
4458 
4459   // Read all the records for this module.
4460   while (true) {
4461     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4462     if (!MaybeEntry)
4463       return MaybeEntry.takeError();
4464     llvm::BitstreamEntry Entry = MaybeEntry.get();
4465 
4466     switch (Entry.Kind) {
4467     case BitstreamEntry::Error:
4468       return error("Malformed block");
4469     case BitstreamEntry::EndBlock:
4470       if (Error Err = ResolveDataLayout())
4471         return Err;
4472       return globalCleanup();
4473 
4474     case BitstreamEntry::SubBlock:
4475       switch (Entry.ID) {
4476       default:  // Skip unknown content.
4477         if (Error Err = Stream.SkipBlock())
4478           return Err;
4479         break;
4480       case bitc::BLOCKINFO_BLOCK_ID:
4481         if (Error Err = readBlockInfo())
4482           return Err;
4483         break;
4484       case bitc::PARAMATTR_BLOCK_ID:
4485         if (Error Err = parseAttributeBlock())
4486           return Err;
4487         break;
4488       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4489         if (Error Err = parseAttributeGroupBlock())
4490           return Err;
4491         break;
4492       case bitc::TYPE_BLOCK_ID_NEW:
4493         if (Error Err = parseTypeTable())
4494           return Err;
4495         break;
4496       case bitc::VALUE_SYMTAB_BLOCK_ID:
4497         if (!SeenValueSymbolTable) {
4498           // Either this is an old form VST without function index and an
4499           // associated VST forward declaration record (which would have caused
4500           // the VST to be jumped to and parsed before it was encountered
4501           // normally in the stream), or there were no function blocks to
4502           // trigger an earlier parsing of the VST.
4503           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4504           if (Error Err = parseValueSymbolTable())
4505             return Err;
4506           SeenValueSymbolTable = true;
4507         } else {
4508           // We must have had a VST forward declaration record, which caused
4509           // the parser to jump to and parse the VST earlier.
4510           assert(VSTOffset > 0);
4511           if (Error Err = Stream.SkipBlock())
4512             return Err;
4513         }
4514         break;
4515       case bitc::CONSTANTS_BLOCK_ID:
4516         if (Error Err = parseConstants())
4517           return Err;
4518         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4519           return Err;
4520         break;
4521       case bitc::METADATA_BLOCK_ID:
4522         if (ShouldLazyLoadMetadata) {
4523           if (Error Err = rememberAndSkipMetadata())
4524             return Err;
4525           break;
4526         }
4527         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4528         if (Error Err = MDLoader->parseModuleMetadata())
4529           return Err;
4530         break;
4531       case bitc::METADATA_KIND_BLOCK_ID:
4532         if (Error Err = MDLoader->parseMetadataKinds())
4533           return Err;
4534         break;
4535       case bitc::FUNCTION_BLOCK_ID:
4536         if (Error Err = ResolveDataLayout())
4537           return Err;
4538 
4539         // If this is the first function body we've seen, reverse the
4540         // FunctionsWithBodies list.
4541         if (!SeenFirstFunctionBody) {
4542           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4543           if (Error Err = globalCleanup())
4544             return Err;
4545           SeenFirstFunctionBody = true;
4546         }
4547 
4548         if (VSTOffset > 0) {
4549           // If we have a VST forward declaration record, make sure we
4550           // parse the VST now if we haven't already. It is needed to
4551           // set up the DeferredFunctionInfo vector for lazy reading.
4552           if (!SeenValueSymbolTable) {
4553             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4554               return Err;
4555             SeenValueSymbolTable = true;
4556             // Fall through so that we record the NextUnreadBit below.
4557             // This is necessary in case we have an anonymous function that
4558             // is later materialized. Since it will not have a VST entry we
4559             // need to fall back to the lazy parse to find its offset.
4560           } else {
4561             // If we have a VST forward declaration record, but have already
4562             // parsed the VST (just above, when the first function body was
4563             // encountered here), then we are resuming the parse after
4564             // materializing functions. The ResumeBit points to the
4565             // start of the last function block recorded in the
4566             // DeferredFunctionInfo map. Skip it.
4567             if (Error Err = Stream.SkipBlock())
4568               return Err;
4569             continue;
4570           }
4571         }
4572 
4573         // Support older bitcode files that did not have the function
4574         // index in the VST, nor a VST forward declaration record, as
4575         // well as anonymous functions that do not have VST entries.
4576         // Build the DeferredFunctionInfo vector on the fly.
4577         if (Error Err = rememberAndSkipFunctionBody())
4578           return Err;
4579 
4580         // Suspend parsing when we reach the function bodies. Subsequent
4581         // materialization calls will resume it when necessary. If the bitcode
4582         // file is old, the symbol table will be at the end instead and will not
4583         // have been seen yet. In this case, just finish the parse now.
4584         if (SeenValueSymbolTable) {
4585           NextUnreadBit = Stream.GetCurrentBitNo();
4586           // After the VST has been parsed, we need to make sure intrinsic name
4587           // are auto-upgraded.
4588           return globalCleanup();
4589         }
4590         break;
4591       case bitc::USELIST_BLOCK_ID:
4592         if (Error Err = parseUseLists())
4593           return Err;
4594         break;
4595       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4596         if (Error Err = parseOperandBundleTags())
4597           return Err;
4598         break;
4599       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4600         if (Error Err = parseSyncScopeNames())
4601           return Err;
4602         break;
4603       }
4604       continue;
4605 
4606     case BitstreamEntry::Record:
4607       // The interesting case.
4608       break;
4609     }
4610 
4611     // Read a record.
4612     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4613     if (!MaybeBitCode)
4614       return MaybeBitCode.takeError();
4615     switch (unsigned BitCode = MaybeBitCode.get()) {
4616     default: break;  // Default behavior, ignore unknown content.
4617     case bitc::MODULE_CODE_VERSION: {
4618       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4619       if (!VersionOrErr)
4620         return VersionOrErr.takeError();
4621       UseRelativeIDs = *VersionOrErr >= 1;
4622       break;
4623     }
4624     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4625       if (ResolvedDataLayout)
4626         return error("target triple too late in module");
4627       std::string S;
4628       if (convertToString(Record, 0, S))
4629         return error("Invalid record");
4630       TheModule->setTargetTriple(S);
4631       break;
4632     }
4633     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4634       if (ResolvedDataLayout)
4635         return error("datalayout too late in module");
4636       if (convertToString(Record, 0, TentativeDataLayoutStr))
4637         return error("Invalid record");
4638       break;
4639     }
4640     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4641       std::string S;
4642       if (convertToString(Record, 0, S))
4643         return error("Invalid record");
4644       TheModule->setModuleInlineAsm(S);
4645       break;
4646     }
4647     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4648       // Deprecated, but still needed to read old bitcode files.
4649       std::string S;
4650       if (convertToString(Record, 0, S))
4651         return error("Invalid record");
4652       // Ignore value.
4653       break;
4654     }
4655     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4656       std::string S;
4657       if (convertToString(Record, 0, S))
4658         return error("Invalid record");
4659       SectionTable.push_back(S);
4660       break;
4661     }
4662     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4663       std::string S;
4664       if (convertToString(Record, 0, S))
4665         return error("Invalid record");
4666       GCTable.push_back(S);
4667       break;
4668     }
4669     case bitc::MODULE_CODE_COMDAT:
4670       if (Error Err = parseComdatRecord(Record))
4671         return Err;
4672       break;
4673     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4674     // written by ThinLinkBitcodeWriter. See
4675     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4676     // record
4677     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4678     case bitc::MODULE_CODE_GLOBALVAR:
4679       if (Error Err = parseGlobalVarRecord(Record))
4680         return Err;
4681       break;
4682     case bitc::MODULE_CODE_FUNCTION:
4683       if (Error Err = ResolveDataLayout())
4684         return Err;
4685       if (Error Err = parseFunctionRecord(Record))
4686         return Err;
4687       break;
4688     case bitc::MODULE_CODE_IFUNC:
4689     case bitc::MODULE_CODE_ALIAS:
4690     case bitc::MODULE_CODE_ALIAS_OLD:
4691       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4692         return Err;
4693       break;
4694     /// MODULE_CODE_VSTOFFSET: [offset]
4695     case bitc::MODULE_CODE_VSTOFFSET:
4696       if (Record.empty())
4697         return error("Invalid record");
4698       // Note that we subtract 1 here because the offset is relative to one word
4699       // before the start of the identification or module block, which was
4700       // historically always the start of the regular bitcode header.
4701       VSTOffset = Record[0] - 1;
4702       break;
4703     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4704     case bitc::MODULE_CODE_SOURCE_FILENAME:
4705       SmallString<128> ValueName;
4706       if (convertToString(Record, 0, ValueName))
4707         return error("Invalid record");
4708       TheModule->setSourceFileName(ValueName);
4709       break;
4710     }
4711     Record.clear();
4712   }
4713   this->ValueTypeCallback = std::nullopt;
4714   return Error::success();
4715 }
4716 
4717 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4718                                       bool IsImporting,
4719                                       ParserCallbacks Callbacks) {
4720   TheModule = M;
4721   MetadataLoaderCallbacks MDCallbacks;
4722   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4723   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4724     return getContainedTypeID(I, J);
4725   };
4726   MDCallbacks.MDType = Callbacks.MDType;
4727   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4728   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4729 }
4730 
4731 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4732   if (!isa<PointerType>(PtrType))
4733     return error("Load/Store operand is not a pointer type");
4734   if (!PointerType::isLoadableOrStorableType(ValType))
4735     return error("Cannot load/store from pointer");
4736   return Error::success();
4737 }
4738 
4739 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4740                                              ArrayRef<unsigned> ArgTyIDs) {
4741   AttributeList Attrs = CB->getAttributes();
4742   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4743     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4744                                      Attribute::InAlloca}) {
4745       if (!Attrs.hasParamAttr(i, Kind) ||
4746           Attrs.getParamAttr(i, Kind).getValueAsType())
4747         continue;
4748 
4749       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4750       if (!PtrEltTy)
4751         return error("Missing element type for typed attribute upgrade");
4752 
4753       Attribute NewAttr;
4754       switch (Kind) {
4755       case Attribute::ByVal:
4756         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4757         break;
4758       case Attribute::StructRet:
4759         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4760         break;
4761       case Attribute::InAlloca:
4762         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4763         break;
4764       default:
4765         llvm_unreachable("not an upgraded type attribute");
4766       }
4767 
4768       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4769     }
4770   }
4771 
4772   if (CB->isInlineAsm()) {
4773     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4774     unsigned ArgNo = 0;
4775     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4776       if (!CI.hasArg())
4777         continue;
4778 
4779       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4780         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4781         if (!ElemTy)
4782           return error("Missing element type for inline asm upgrade");
4783         Attrs = Attrs.addParamAttribute(
4784             Context, ArgNo,
4785             Attribute::get(Context, Attribute::ElementType, ElemTy));
4786       }
4787 
4788       ArgNo++;
4789     }
4790   }
4791 
4792   switch (CB->getIntrinsicID()) {
4793   case Intrinsic::preserve_array_access_index:
4794   case Intrinsic::preserve_struct_access_index:
4795   case Intrinsic::aarch64_ldaxr:
4796   case Intrinsic::aarch64_ldxr:
4797   case Intrinsic::aarch64_stlxr:
4798   case Intrinsic::aarch64_stxr:
4799   case Intrinsic::arm_ldaex:
4800   case Intrinsic::arm_ldrex:
4801   case Intrinsic::arm_stlex:
4802   case Intrinsic::arm_strex: {
4803     unsigned ArgNo;
4804     switch (CB->getIntrinsicID()) {
4805     case Intrinsic::aarch64_stlxr:
4806     case Intrinsic::aarch64_stxr:
4807     case Intrinsic::arm_stlex:
4808     case Intrinsic::arm_strex:
4809       ArgNo = 1;
4810       break;
4811     default:
4812       ArgNo = 0;
4813       break;
4814     }
4815     if (!Attrs.getParamElementType(ArgNo)) {
4816       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4817       if (!ElTy)
4818         return error("Missing element type for elementtype upgrade");
4819       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4820       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4821     }
4822     break;
4823   }
4824   default:
4825     break;
4826   }
4827 
4828   CB->setAttributes(Attrs);
4829   return Error::success();
4830 }
4831 
4832 /// Lazily parse the specified function body block.
4833 Error BitcodeReader::parseFunctionBody(Function *F) {
4834   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4835     return Err;
4836 
4837   // Unexpected unresolved metadata when parsing function.
4838   if (MDLoader->hasFwdRefs())
4839     return error("Invalid function metadata: incoming forward references");
4840 
4841   InstructionList.clear();
4842   unsigned ModuleValueListSize = ValueList.size();
4843   unsigned ModuleMDLoaderSize = MDLoader->size();
4844 
4845   // Add all the function arguments to the value table.
4846   unsigned ArgNo = 0;
4847   unsigned FTyID = FunctionTypeIDs[F];
4848   for (Argument &I : F->args()) {
4849     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4850     assert(I.getType() == getTypeByID(ArgTyID) &&
4851            "Incorrect fully specified type for Function Argument");
4852     ValueList.push_back(&I, ArgTyID);
4853     ++ArgNo;
4854   }
4855   unsigned NextValueNo = ValueList.size();
4856   BasicBlock *CurBB = nullptr;
4857   unsigned CurBBNo = 0;
4858   // Block into which constant expressions from phi nodes are materialized.
4859   BasicBlock *PhiConstExprBB = nullptr;
4860   // Edge blocks for phi nodes into which constant expressions have been
4861   // expanded.
4862   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4863     ConstExprEdgeBBs;
4864 
4865   DebugLoc LastLoc;
4866   auto getLastInstruction = [&]() -> Instruction * {
4867     if (CurBB && !CurBB->empty())
4868       return &CurBB->back();
4869     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4870              !FunctionBBs[CurBBNo - 1]->empty())
4871       return &FunctionBBs[CurBBNo - 1]->back();
4872     return nullptr;
4873   };
4874 
4875   std::vector<OperandBundleDef> OperandBundles;
4876 
4877   // Read all the records.
4878   SmallVector<uint64_t, 64> Record;
4879 
4880   while (true) {
4881     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4882     if (!MaybeEntry)
4883       return MaybeEntry.takeError();
4884     llvm::BitstreamEntry Entry = MaybeEntry.get();
4885 
4886     switch (Entry.Kind) {
4887     case BitstreamEntry::Error:
4888       return error("Malformed block");
4889     case BitstreamEntry::EndBlock:
4890       goto OutOfRecordLoop;
4891 
4892     case BitstreamEntry::SubBlock:
4893       switch (Entry.ID) {
4894       default:  // Skip unknown content.
4895         if (Error Err = Stream.SkipBlock())
4896           return Err;
4897         break;
4898       case bitc::CONSTANTS_BLOCK_ID:
4899         if (Error Err = parseConstants())
4900           return Err;
4901         NextValueNo = ValueList.size();
4902         break;
4903       case bitc::VALUE_SYMTAB_BLOCK_ID:
4904         if (Error Err = parseValueSymbolTable())
4905           return Err;
4906         break;
4907       case bitc::METADATA_ATTACHMENT_ID:
4908         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4909           return Err;
4910         break;
4911       case bitc::METADATA_BLOCK_ID:
4912         assert(DeferredMetadataInfo.empty() &&
4913                "Must read all module-level metadata before function-level");
4914         if (Error Err = MDLoader->parseFunctionMetadata())
4915           return Err;
4916         break;
4917       case bitc::USELIST_BLOCK_ID:
4918         if (Error Err = parseUseLists())
4919           return Err;
4920         break;
4921       }
4922       continue;
4923 
4924     case BitstreamEntry::Record:
4925       // The interesting case.
4926       break;
4927     }
4928 
4929     // Read a record.
4930     Record.clear();
4931     Instruction *I = nullptr;
4932     unsigned ResTypeID = InvalidTypeID;
4933     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4934     if (!MaybeBitCode)
4935       return MaybeBitCode.takeError();
4936     switch (unsigned BitCode = MaybeBitCode.get()) {
4937     default: // Default behavior: reject
4938       return error("Invalid value");
4939     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4940       if (Record.empty() || Record[0] == 0)
4941         return error("Invalid record");
4942       // Create all the basic blocks for the function.
4943       FunctionBBs.resize(Record[0]);
4944 
4945       // See if anything took the address of blocks in this function.
4946       auto BBFRI = BasicBlockFwdRefs.find(F);
4947       if (BBFRI == BasicBlockFwdRefs.end()) {
4948         for (BasicBlock *&BB : FunctionBBs)
4949           BB = BasicBlock::Create(Context, "", F);
4950       } else {
4951         auto &BBRefs = BBFRI->second;
4952         // Check for invalid basic block references.
4953         if (BBRefs.size() > FunctionBBs.size())
4954           return error("Invalid ID");
4955         assert(!BBRefs.empty() && "Unexpected empty array");
4956         assert(!BBRefs.front() && "Invalid reference to entry block");
4957         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4958              ++I)
4959           if (I < RE && BBRefs[I]) {
4960             BBRefs[I]->insertInto(F);
4961             FunctionBBs[I] = BBRefs[I];
4962           } else {
4963             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4964           }
4965 
4966         // Erase from the table.
4967         BasicBlockFwdRefs.erase(BBFRI);
4968       }
4969 
4970       CurBB = FunctionBBs[0];
4971       continue;
4972     }
4973 
4974     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4975       // The record should not be emitted if it's an empty list.
4976       if (Record.empty())
4977         return error("Invalid record");
4978       // When we have the RARE case of a BlockAddress Constant that is not
4979       // scoped to the Function it refers to, we need to conservatively
4980       // materialize the referred to Function, regardless of whether or not
4981       // that Function will ultimately be linked, otherwise users of
4982       // BitcodeReader might start splicing out Function bodies such that we
4983       // might no longer be able to materialize the BlockAddress since the
4984       // BasicBlock (and entire body of the Function) the BlockAddress refers
4985       // to may have been moved. In the case that the user of BitcodeReader
4986       // decides ultimately not to link the Function body, materializing here
4987       // could be considered wasteful, but it's better than a deserialization
4988       // failure as described. This keeps BitcodeReader unaware of complex
4989       // linkage policy decisions such as those use by LTO, leaving those
4990       // decisions "one layer up."
4991       for (uint64_t ValID : Record)
4992         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4993           BackwardRefFunctions.push_back(F);
4994         else
4995           return error("Invalid record");
4996 
4997       continue;
4998 
4999     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
5000       // This record indicates that the last instruction is at the same
5001       // location as the previous instruction with a location.
5002       I = getLastInstruction();
5003 
5004       if (!I)
5005         return error("Invalid record");
5006       I->setDebugLoc(LastLoc);
5007       I = nullptr;
5008       continue;
5009 
5010     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5011       I = getLastInstruction();
5012       if (!I || Record.size() < 4)
5013         return error("Invalid record");
5014 
5015       unsigned Line = Record[0], Col = Record[1];
5016       unsigned ScopeID = Record[2], IAID = Record[3];
5017       bool isImplicitCode = Record.size() == 5 && Record[4];
5018 
5019       MDNode *Scope = nullptr, *IA = nullptr;
5020       if (ScopeID) {
5021         Scope = dyn_cast_or_null<MDNode>(
5022             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5023         if (!Scope)
5024           return error("Invalid record");
5025       }
5026       if (IAID) {
5027         IA = dyn_cast_or_null<MDNode>(
5028             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5029         if (!IA)
5030           return error("Invalid record");
5031       }
5032       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5033                                 isImplicitCode);
5034       I->setDebugLoc(LastLoc);
5035       I = nullptr;
5036       continue;
5037     }
5038     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5039       unsigned OpNum = 0;
5040       Value *LHS;
5041       unsigned TypeID;
5042       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5043           OpNum+1 > Record.size())
5044         return error("Invalid record");
5045 
5046       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5047       if (Opc == -1)
5048         return error("Invalid record");
5049       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5050       ResTypeID = TypeID;
5051       InstructionList.push_back(I);
5052       if (OpNum < Record.size()) {
5053         if (isa<FPMathOperator>(I)) {
5054           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5055           if (FMF.any())
5056             I->setFastMathFlags(FMF);
5057         }
5058       }
5059       break;
5060     }
5061     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5062       unsigned OpNum = 0;
5063       Value *LHS, *RHS;
5064       unsigned TypeID;
5065       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5066           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5067                    CurBB) ||
5068           OpNum+1 > Record.size())
5069         return error("Invalid record");
5070 
5071       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5072       if (Opc == -1)
5073         return error("Invalid record");
5074       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5075       ResTypeID = TypeID;
5076       InstructionList.push_back(I);
5077       if (OpNum < Record.size()) {
5078         if (Opc == Instruction::Add ||
5079             Opc == Instruction::Sub ||
5080             Opc == Instruction::Mul ||
5081             Opc == Instruction::Shl) {
5082           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5083             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5084           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5085             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5086         } else if (Opc == Instruction::SDiv ||
5087                    Opc == Instruction::UDiv ||
5088                    Opc == Instruction::LShr ||
5089                    Opc == Instruction::AShr) {
5090           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5091             cast<BinaryOperator>(I)->setIsExact(true);
5092         } else if (Opc == Instruction::Or) {
5093           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5094             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5095         } else if (isa<FPMathOperator>(I)) {
5096           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5097           if (FMF.any())
5098             I->setFastMathFlags(FMF);
5099         }
5100       }
5101       break;
5102     }
5103     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5104       unsigned OpNum = 0;
5105       Value *Op;
5106       unsigned OpTypeID;
5107       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5108           OpNum + 1 > Record.size())
5109         return error("Invalid record");
5110 
5111       ResTypeID = Record[OpNum++];
5112       Type *ResTy = getTypeByID(ResTypeID);
5113       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5114 
5115       if (Opc == -1 || !ResTy)
5116         return error("Invalid record");
5117       Instruction *Temp = nullptr;
5118       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5119         if (Temp) {
5120           InstructionList.push_back(Temp);
5121           assert(CurBB && "No current BB?");
5122           Temp->insertInto(CurBB, CurBB->end());
5123         }
5124       } else {
5125         auto CastOp = (Instruction::CastOps)Opc;
5126         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5127           return error("Invalid cast");
5128         I = CastInst::Create(CastOp, Op, ResTy);
5129       }
5130 
5131       if (OpNum < Record.size()) {
5132         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5133           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5134             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5135         } else if (Opc == Instruction::Trunc) {
5136           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5137             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5138           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5139             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5140         }
5141       }
5142 
5143       InstructionList.push_back(I);
5144       break;
5145     }
5146     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5147     case bitc::FUNC_CODE_INST_GEP_OLD:
5148     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5149       unsigned OpNum = 0;
5150 
5151       unsigned TyID;
5152       Type *Ty;
5153       GEPNoWrapFlags NW;
5154 
5155       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5156         NW = toGEPNoWrapFlags(Record[OpNum++]);
5157         TyID = Record[OpNum++];
5158         Ty = getTypeByID(TyID);
5159       } else {
5160         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5161           NW = GEPNoWrapFlags::inBounds();
5162         TyID = InvalidTypeID;
5163         Ty = nullptr;
5164       }
5165 
5166       Value *BasePtr;
5167       unsigned BasePtrTypeID;
5168       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5169                            CurBB))
5170         return error("Invalid record");
5171 
5172       if (!Ty) {
5173         TyID = getContainedTypeID(BasePtrTypeID);
5174         if (BasePtr->getType()->isVectorTy())
5175           TyID = getContainedTypeID(TyID);
5176         Ty = getTypeByID(TyID);
5177       }
5178 
5179       SmallVector<Value*, 16> GEPIdx;
5180       while (OpNum != Record.size()) {
5181         Value *Op;
5182         unsigned OpTypeID;
5183         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5184           return error("Invalid record");
5185         GEPIdx.push_back(Op);
5186       }
5187 
5188       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5189       I = GEP;
5190 
5191       ResTypeID = TyID;
5192       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5193         auto GTI = std::next(gep_type_begin(I));
5194         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5195           unsigned SubType = 0;
5196           if (GTI.isStruct()) {
5197             ConstantInt *IdxC =
5198                 Idx->getType()->isVectorTy()
5199                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5200                     : cast<ConstantInt>(Idx);
5201             SubType = IdxC->getZExtValue();
5202           }
5203           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5204           ++GTI;
5205         }
5206       }
5207 
5208       // At this point ResTypeID is the result element type. We need a pointer
5209       // or vector of pointer to it.
5210       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5211       if (I->getType()->isVectorTy())
5212         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5213 
5214       InstructionList.push_back(I);
5215       GEP->setNoWrapFlags(NW);
5216       break;
5217     }
5218 
5219     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5220                                        // EXTRACTVAL: [opty, opval, n x indices]
5221       unsigned OpNum = 0;
5222       Value *Agg;
5223       unsigned AggTypeID;
5224       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5225         return error("Invalid record");
5226       Type *Ty = Agg->getType();
5227 
5228       unsigned RecSize = Record.size();
5229       if (OpNum == RecSize)
5230         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5231 
5232       SmallVector<unsigned, 4> EXTRACTVALIdx;
5233       ResTypeID = AggTypeID;
5234       for (; OpNum != RecSize; ++OpNum) {
5235         bool IsArray = Ty->isArrayTy();
5236         bool IsStruct = Ty->isStructTy();
5237         uint64_t Index = Record[OpNum];
5238 
5239         if (!IsStruct && !IsArray)
5240           return error("EXTRACTVAL: Invalid type");
5241         if ((unsigned)Index != Index)
5242           return error("Invalid value");
5243         if (IsStruct && Index >= Ty->getStructNumElements())
5244           return error("EXTRACTVAL: Invalid struct index");
5245         if (IsArray && Index >= Ty->getArrayNumElements())
5246           return error("EXTRACTVAL: Invalid array index");
5247         EXTRACTVALIdx.push_back((unsigned)Index);
5248 
5249         if (IsStruct) {
5250           Ty = Ty->getStructElementType(Index);
5251           ResTypeID = getContainedTypeID(ResTypeID, Index);
5252         } else {
5253           Ty = Ty->getArrayElementType();
5254           ResTypeID = getContainedTypeID(ResTypeID);
5255         }
5256       }
5257 
5258       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5259       InstructionList.push_back(I);
5260       break;
5261     }
5262 
5263     case bitc::FUNC_CODE_INST_INSERTVAL: {
5264                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5265       unsigned OpNum = 0;
5266       Value *Agg;
5267       unsigned AggTypeID;
5268       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5269         return error("Invalid record");
5270       Value *Val;
5271       unsigned ValTypeID;
5272       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5273         return error("Invalid record");
5274 
5275       unsigned RecSize = Record.size();
5276       if (OpNum == RecSize)
5277         return error("INSERTVAL: Invalid instruction with 0 indices");
5278 
5279       SmallVector<unsigned, 4> INSERTVALIdx;
5280       Type *CurTy = Agg->getType();
5281       for (; OpNum != RecSize; ++OpNum) {
5282         bool IsArray = CurTy->isArrayTy();
5283         bool IsStruct = CurTy->isStructTy();
5284         uint64_t Index = Record[OpNum];
5285 
5286         if (!IsStruct && !IsArray)
5287           return error("INSERTVAL: Invalid type");
5288         if ((unsigned)Index != Index)
5289           return error("Invalid value");
5290         if (IsStruct && Index >= CurTy->getStructNumElements())
5291           return error("INSERTVAL: Invalid struct index");
5292         if (IsArray && Index >= CurTy->getArrayNumElements())
5293           return error("INSERTVAL: Invalid array index");
5294 
5295         INSERTVALIdx.push_back((unsigned)Index);
5296         if (IsStruct)
5297           CurTy = CurTy->getStructElementType(Index);
5298         else
5299           CurTy = CurTy->getArrayElementType();
5300       }
5301 
5302       if (CurTy != Val->getType())
5303         return error("Inserted value type doesn't match aggregate type");
5304 
5305       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5306       ResTypeID = AggTypeID;
5307       InstructionList.push_back(I);
5308       break;
5309     }
5310 
5311     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5312       // obsolete form of select
5313       // handles select i1 ... in old bitcode
5314       unsigned OpNum = 0;
5315       Value *TrueVal, *FalseVal, *Cond;
5316       unsigned TypeID;
5317       Type *CondType = Type::getInt1Ty(Context);
5318       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5319                            CurBB) ||
5320           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5321                    FalseVal, CurBB) ||
5322           popValue(Record, OpNum, NextValueNo, CondType,
5323                    getVirtualTypeID(CondType), Cond, CurBB))
5324         return error("Invalid record");
5325 
5326       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5327       ResTypeID = TypeID;
5328       InstructionList.push_back(I);
5329       break;
5330     }
5331 
5332     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5333       // new form of select
5334       // handles select i1 or select [N x i1]
5335       unsigned OpNum = 0;
5336       Value *TrueVal, *FalseVal, *Cond;
5337       unsigned ValTypeID, CondTypeID;
5338       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5339                            CurBB) ||
5340           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5341                    FalseVal, CurBB) ||
5342           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5343         return error("Invalid record");
5344 
5345       // select condition can be either i1 or [N x i1]
5346       if (VectorType* vector_type =
5347           dyn_cast<VectorType>(Cond->getType())) {
5348         // expect <n x i1>
5349         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5350           return error("Invalid type for value");
5351       } else {
5352         // expect i1
5353         if (Cond->getType() != Type::getInt1Ty(Context))
5354           return error("Invalid type for value");
5355       }
5356 
5357       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5358       ResTypeID = ValTypeID;
5359       InstructionList.push_back(I);
5360       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5361         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5362         if (FMF.any())
5363           I->setFastMathFlags(FMF);
5364       }
5365       break;
5366     }
5367 
5368     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5369       unsigned OpNum = 0;
5370       Value *Vec, *Idx;
5371       unsigned VecTypeID, IdxTypeID;
5372       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5373           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5374         return error("Invalid record");
5375       if (!Vec->getType()->isVectorTy())
5376         return error("Invalid type for value");
5377       I = ExtractElementInst::Create(Vec, Idx);
5378       ResTypeID = getContainedTypeID(VecTypeID);
5379       InstructionList.push_back(I);
5380       break;
5381     }
5382 
5383     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5384       unsigned OpNum = 0;
5385       Value *Vec, *Elt, *Idx;
5386       unsigned VecTypeID, IdxTypeID;
5387       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5388         return error("Invalid record");
5389       if (!Vec->getType()->isVectorTy())
5390         return error("Invalid type for value");
5391       if (popValue(Record, OpNum, NextValueNo,
5392                    cast<VectorType>(Vec->getType())->getElementType(),
5393                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5394           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5395         return error("Invalid record");
5396       I = InsertElementInst::Create(Vec, Elt, Idx);
5397       ResTypeID = VecTypeID;
5398       InstructionList.push_back(I);
5399       break;
5400     }
5401 
5402     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5403       unsigned OpNum = 0;
5404       Value *Vec1, *Vec2, *Mask;
5405       unsigned Vec1TypeID;
5406       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5407                            CurBB) ||
5408           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5409                    Vec2, CurBB))
5410         return error("Invalid record");
5411 
5412       unsigned MaskTypeID;
5413       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5414         return error("Invalid record");
5415       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5416         return error("Invalid type for value");
5417 
5418       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5419       ResTypeID =
5420           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5421       InstructionList.push_back(I);
5422       break;
5423     }
5424 
5425     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5426       // Old form of ICmp/FCmp returning bool
5427       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5428       // both legal on vectors but had different behaviour.
5429     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5430       // FCmp/ICmp returning bool or vector of bool
5431 
5432       unsigned OpNum = 0;
5433       Value *LHS, *RHS;
5434       unsigned LHSTypeID;
5435       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5436           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5437                    CurBB))
5438         return error("Invalid record");
5439 
5440       if (OpNum >= Record.size())
5441         return error(
5442             "Invalid record: operand number exceeded available operands");
5443 
5444       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5445       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5446       FastMathFlags FMF;
5447       if (IsFP && Record.size() > OpNum+1)
5448         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5449 
5450       if (OpNum+1 != Record.size())
5451         return error("Invalid record");
5452 
5453       if (IsFP) {
5454         if (!CmpInst::isFPPredicate(PredVal))
5455           return error("Invalid fcmp predicate");
5456         I = new FCmpInst(PredVal, LHS, RHS);
5457       } else {
5458         if (!CmpInst::isIntPredicate(PredVal))
5459           return error("Invalid icmp predicate");
5460         I = new ICmpInst(PredVal, LHS, RHS);
5461       }
5462 
5463       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5464       if (LHS->getType()->isVectorTy())
5465         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5466 
5467       if (FMF.any())
5468         I->setFastMathFlags(FMF);
5469       InstructionList.push_back(I);
5470       break;
5471     }
5472 
5473     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5474       {
5475         unsigned Size = Record.size();
5476         if (Size == 0) {
5477           I = ReturnInst::Create(Context);
5478           InstructionList.push_back(I);
5479           break;
5480         }
5481 
5482         unsigned OpNum = 0;
5483         Value *Op = nullptr;
5484         unsigned OpTypeID;
5485         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5486           return error("Invalid record");
5487         if (OpNum != Record.size())
5488           return error("Invalid record");
5489 
5490         I = ReturnInst::Create(Context, Op);
5491         InstructionList.push_back(I);
5492         break;
5493       }
5494     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5495       if (Record.size() != 1 && Record.size() != 3)
5496         return error("Invalid record");
5497       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5498       if (!TrueDest)
5499         return error("Invalid record");
5500 
5501       if (Record.size() == 1) {
5502         I = BranchInst::Create(TrueDest);
5503         InstructionList.push_back(I);
5504       }
5505       else {
5506         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5507         Type *CondType = Type::getInt1Ty(Context);
5508         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5509                                getVirtualTypeID(CondType), CurBB);
5510         if (!FalseDest || !Cond)
5511           return error("Invalid record");
5512         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5513         InstructionList.push_back(I);
5514       }
5515       break;
5516     }
5517     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5518       if (Record.size() != 1 && Record.size() != 2)
5519         return error("Invalid record");
5520       unsigned Idx = 0;
5521       Type *TokenTy = Type::getTokenTy(Context);
5522       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5523                                    getVirtualTypeID(TokenTy), CurBB);
5524       if (!CleanupPad)
5525         return error("Invalid record");
5526       BasicBlock *UnwindDest = nullptr;
5527       if (Record.size() == 2) {
5528         UnwindDest = getBasicBlock(Record[Idx++]);
5529         if (!UnwindDest)
5530           return error("Invalid record");
5531       }
5532 
5533       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5534       InstructionList.push_back(I);
5535       break;
5536     }
5537     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5538       if (Record.size() != 2)
5539         return error("Invalid record");
5540       unsigned Idx = 0;
5541       Type *TokenTy = Type::getTokenTy(Context);
5542       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5543                                  getVirtualTypeID(TokenTy), CurBB);
5544       if (!CatchPad)
5545         return error("Invalid record");
5546       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5547       if (!BB)
5548         return error("Invalid record");
5549 
5550       I = CatchReturnInst::Create(CatchPad, BB);
5551       InstructionList.push_back(I);
5552       break;
5553     }
5554     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5555       // We must have, at minimum, the outer scope and the number of arguments.
5556       if (Record.size() < 2)
5557         return error("Invalid record");
5558 
5559       unsigned Idx = 0;
5560 
5561       Type *TokenTy = Type::getTokenTy(Context);
5562       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5563                                   getVirtualTypeID(TokenTy), CurBB);
5564       if (!ParentPad)
5565         return error("Invalid record");
5566 
5567       unsigned NumHandlers = Record[Idx++];
5568 
5569       SmallVector<BasicBlock *, 2> Handlers;
5570       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5571         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5572         if (!BB)
5573           return error("Invalid record");
5574         Handlers.push_back(BB);
5575       }
5576 
5577       BasicBlock *UnwindDest = nullptr;
5578       if (Idx + 1 == Record.size()) {
5579         UnwindDest = getBasicBlock(Record[Idx++]);
5580         if (!UnwindDest)
5581           return error("Invalid record");
5582       }
5583 
5584       if (Record.size() != Idx)
5585         return error("Invalid record");
5586 
5587       auto *CatchSwitch =
5588           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5589       for (BasicBlock *Handler : Handlers)
5590         CatchSwitch->addHandler(Handler);
5591       I = CatchSwitch;
5592       ResTypeID = getVirtualTypeID(I->getType());
5593       InstructionList.push_back(I);
5594       break;
5595     }
5596     case bitc::FUNC_CODE_INST_CATCHPAD:
5597     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5598       // We must have, at minimum, the outer scope and the number of arguments.
5599       if (Record.size() < 2)
5600         return error("Invalid record");
5601 
5602       unsigned Idx = 0;
5603 
5604       Type *TokenTy = Type::getTokenTy(Context);
5605       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5606                                   getVirtualTypeID(TokenTy), CurBB);
5607       if (!ParentPad)
5608         return error("Invald record");
5609 
5610       unsigned NumArgOperands = Record[Idx++];
5611 
5612       SmallVector<Value *, 2> Args;
5613       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5614         Value *Val;
5615         unsigned ValTypeID;
5616         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5617           return error("Invalid record");
5618         Args.push_back(Val);
5619       }
5620 
5621       if (Record.size() != Idx)
5622         return error("Invalid record");
5623 
5624       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5625         I = CleanupPadInst::Create(ParentPad, Args);
5626       else
5627         I = CatchPadInst::Create(ParentPad, Args);
5628       ResTypeID = getVirtualTypeID(I->getType());
5629       InstructionList.push_back(I);
5630       break;
5631     }
5632     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5633       // Check magic
5634       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5635         // "New" SwitchInst format with case ranges. The changes to write this
5636         // format were reverted but we still recognize bitcode that uses it.
5637         // Hopefully someday we will have support for case ranges and can use
5638         // this format again.
5639 
5640         unsigned OpTyID = Record[1];
5641         Type *OpTy = getTypeByID(OpTyID);
5642         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5643 
5644         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5645         BasicBlock *Default = getBasicBlock(Record[3]);
5646         if (!OpTy || !Cond || !Default)
5647           return error("Invalid record");
5648 
5649         unsigned NumCases = Record[4];
5650 
5651         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5652         InstructionList.push_back(SI);
5653 
5654         unsigned CurIdx = 5;
5655         for (unsigned i = 0; i != NumCases; ++i) {
5656           SmallVector<ConstantInt*, 1> CaseVals;
5657           unsigned NumItems = Record[CurIdx++];
5658           for (unsigned ci = 0; ci != NumItems; ++ci) {
5659             bool isSingleNumber = Record[CurIdx++];
5660 
5661             APInt Low;
5662             unsigned ActiveWords = 1;
5663             if (ValueBitWidth > 64)
5664               ActiveWords = Record[CurIdx++];
5665             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5666                                 ValueBitWidth);
5667             CurIdx += ActiveWords;
5668 
5669             if (!isSingleNumber) {
5670               ActiveWords = 1;
5671               if (ValueBitWidth > 64)
5672                 ActiveWords = Record[CurIdx++];
5673               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5674                                          ValueBitWidth);
5675               CurIdx += ActiveWords;
5676 
5677               // FIXME: It is not clear whether values in the range should be
5678               // compared as signed or unsigned values. The partially
5679               // implemented changes that used this format in the past used
5680               // unsigned comparisons.
5681               for ( ; Low.ule(High); ++Low)
5682                 CaseVals.push_back(ConstantInt::get(Context, Low));
5683             } else
5684               CaseVals.push_back(ConstantInt::get(Context, Low));
5685           }
5686           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5687           for (ConstantInt *Cst : CaseVals)
5688             SI->addCase(Cst, DestBB);
5689         }
5690         I = SI;
5691         break;
5692       }
5693 
5694       // Old SwitchInst format without case ranges.
5695 
5696       if (Record.size() < 3 || (Record.size() & 1) == 0)
5697         return error("Invalid record");
5698       unsigned OpTyID = Record[0];
5699       Type *OpTy = getTypeByID(OpTyID);
5700       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5701       BasicBlock *Default = getBasicBlock(Record[2]);
5702       if (!OpTy || !Cond || !Default)
5703         return error("Invalid record");
5704       unsigned NumCases = (Record.size()-3)/2;
5705       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5706       InstructionList.push_back(SI);
5707       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5708         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5709             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5710         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5711         if (!CaseVal || !DestBB) {
5712           delete SI;
5713           return error("Invalid record");
5714         }
5715         SI->addCase(CaseVal, DestBB);
5716       }
5717       I = SI;
5718       break;
5719     }
5720     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5721       if (Record.size() < 2)
5722         return error("Invalid record");
5723       unsigned OpTyID = Record[0];
5724       Type *OpTy = getTypeByID(OpTyID);
5725       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5726       if (!OpTy || !Address)
5727         return error("Invalid record");
5728       unsigned NumDests = Record.size()-2;
5729       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5730       InstructionList.push_back(IBI);
5731       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5732         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5733           IBI->addDestination(DestBB);
5734         } else {
5735           delete IBI;
5736           return error("Invalid record");
5737         }
5738       }
5739       I = IBI;
5740       break;
5741     }
5742 
5743     case bitc::FUNC_CODE_INST_INVOKE: {
5744       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5745       if (Record.size() < 4)
5746         return error("Invalid record");
5747       unsigned OpNum = 0;
5748       AttributeList PAL = getAttributes(Record[OpNum++]);
5749       unsigned CCInfo = Record[OpNum++];
5750       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5751       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5752 
5753       unsigned FTyID = InvalidTypeID;
5754       FunctionType *FTy = nullptr;
5755       if ((CCInfo >> 13) & 1) {
5756         FTyID = Record[OpNum++];
5757         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5758         if (!FTy)
5759           return error("Explicit invoke type is not a function type");
5760       }
5761 
5762       Value *Callee;
5763       unsigned CalleeTypeID;
5764       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5765                            CurBB))
5766         return error("Invalid record");
5767 
5768       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5769       if (!CalleeTy)
5770         return error("Callee is not a pointer");
5771       if (!FTy) {
5772         FTyID = getContainedTypeID(CalleeTypeID);
5773         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5774         if (!FTy)
5775           return error("Callee is not of pointer to function type");
5776       }
5777       if (Record.size() < FTy->getNumParams() + OpNum)
5778         return error("Insufficient operands to call");
5779 
5780       SmallVector<Value*, 16> Ops;
5781       SmallVector<unsigned, 16> ArgTyIDs;
5782       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5783         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5784         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5785                                ArgTyID, CurBB));
5786         ArgTyIDs.push_back(ArgTyID);
5787         if (!Ops.back())
5788           return error("Invalid record");
5789       }
5790 
5791       if (!FTy->isVarArg()) {
5792         if (Record.size() != OpNum)
5793           return error("Invalid record");
5794       } else {
5795         // Read type/value pairs for varargs params.
5796         while (OpNum != Record.size()) {
5797           Value *Op;
5798           unsigned OpTypeID;
5799           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5800             return error("Invalid record");
5801           Ops.push_back(Op);
5802           ArgTyIDs.push_back(OpTypeID);
5803         }
5804       }
5805 
5806       // Upgrade the bundles if needed.
5807       if (!OperandBundles.empty())
5808         UpgradeOperandBundles(OperandBundles);
5809 
5810       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5811                              OperandBundles);
5812       ResTypeID = getContainedTypeID(FTyID);
5813       OperandBundles.clear();
5814       InstructionList.push_back(I);
5815       cast<InvokeInst>(I)->setCallingConv(
5816           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5817       cast<InvokeInst>(I)->setAttributes(PAL);
5818       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5819         I->deleteValue();
5820         return Err;
5821       }
5822 
5823       break;
5824     }
5825     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5826       unsigned Idx = 0;
5827       Value *Val = nullptr;
5828       unsigned ValTypeID;
5829       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5830         return error("Invalid record");
5831       I = ResumeInst::Create(Val);
5832       InstructionList.push_back(I);
5833       break;
5834     }
5835     case bitc::FUNC_CODE_INST_CALLBR: {
5836       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5837       unsigned OpNum = 0;
5838       AttributeList PAL = getAttributes(Record[OpNum++]);
5839       unsigned CCInfo = Record[OpNum++];
5840 
5841       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5842       unsigned NumIndirectDests = Record[OpNum++];
5843       SmallVector<BasicBlock *, 16> IndirectDests;
5844       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5845         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5846 
5847       unsigned FTyID = InvalidTypeID;
5848       FunctionType *FTy = nullptr;
5849       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5850         FTyID = Record[OpNum++];
5851         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5852         if (!FTy)
5853           return error("Explicit call type is not a function type");
5854       }
5855 
5856       Value *Callee;
5857       unsigned CalleeTypeID;
5858       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5859                            CurBB))
5860         return error("Invalid record");
5861 
5862       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5863       if (!OpTy)
5864         return error("Callee is not a pointer type");
5865       if (!FTy) {
5866         FTyID = getContainedTypeID(CalleeTypeID);
5867         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5868         if (!FTy)
5869           return error("Callee is not of pointer to function type");
5870       }
5871       if (Record.size() < FTy->getNumParams() + OpNum)
5872         return error("Insufficient operands to call");
5873 
5874       SmallVector<Value*, 16> Args;
5875       SmallVector<unsigned, 16> ArgTyIDs;
5876       // Read the fixed params.
5877       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5878         Value *Arg;
5879         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5880         if (FTy->getParamType(i)->isLabelTy())
5881           Arg = getBasicBlock(Record[OpNum]);
5882         else
5883           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5884                          ArgTyID, CurBB);
5885         if (!Arg)
5886           return error("Invalid record");
5887         Args.push_back(Arg);
5888         ArgTyIDs.push_back(ArgTyID);
5889       }
5890 
5891       // Read type/value pairs for varargs params.
5892       if (!FTy->isVarArg()) {
5893         if (OpNum != Record.size())
5894           return error("Invalid record");
5895       } else {
5896         while (OpNum != Record.size()) {
5897           Value *Op;
5898           unsigned OpTypeID;
5899           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5900             return error("Invalid record");
5901           Args.push_back(Op);
5902           ArgTyIDs.push_back(OpTypeID);
5903         }
5904       }
5905 
5906       // Upgrade the bundles if needed.
5907       if (!OperandBundles.empty())
5908         UpgradeOperandBundles(OperandBundles);
5909 
5910       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5911         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5912         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5913           return CI.Type == InlineAsm::isLabel;
5914         };
5915         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5916           // Upgrade explicit blockaddress arguments to label constraints.
5917           // Verify that the last arguments are blockaddress arguments that
5918           // match the indirect destinations. Clang always generates callbr
5919           // in this form. We could support reordering with more effort.
5920           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5921           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5922             unsigned LabelNo = ArgNo - FirstBlockArg;
5923             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5924             if (!BA || BA->getFunction() != F ||
5925                 LabelNo > IndirectDests.size() ||
5926                 BA->getBasicBlock() != IndirectDests[LabelNo])
5927               return error("callbr argument does not match indirect dest");
5928           }
5929 
5930           // Remove blockaddress arguments.
5931           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5932           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5933 
5934           // Recreate the function type with less arguments.
5935           SmallVector<Type *> ArgTys;
5936           for (Value *Arg : Args)
5937             ArgTys.push_back(Arg->getType());
5938           FTy =
5939               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5940 
5941           // Update constraint string to use label constraints.
5942           std::string Constraints = IA->getConstraintString();
5943           unsigned ArgNo = 0;
5944           size_t Pos = 0;
5945           for (const auto &CI : ConstraintInfo) {
5946             if (CI.hasArg()) {
5947               if (ArgNo >= FirstBlockArg)
5948                 Constraints.insert(Pos, "!");
5949               ++ArgNo;
5950             }
5951 
5952             // Go to next constraint in string.
5953             Pos = Constraints.find(',', Pos);
5954             if (Pos == std::string::npos)
5955               break;
5956             ++Pos;
5957           }
5958 
5959           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5960                                   IA->hasSideEffects(), IA->isAlignStack(),
5961                                   IA->getDialect(), IA->canThrow());
5962         }
5963       }
5964 
5965       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5966                              OperandBundles);
5967       ResTypeID = getContainedTypeID(FTyID);
5968       OperandBundles.clear();
5969       InstructionList.push_back(I);
5970       cast<CallBrInst>(I)->setCallingConv(
5971           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5972       cast<CallBrInst>(I)->setAttributes(PAL);
5973       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5974         I->deleteValue();
5975         return Err;
5976       }
5977       break;
5978     }
5979     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5980       I = new UnreachableInst(Context);
5981       InstructionList.push_back(I);
5982       break;
5983     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5984       if (Record.empty())
5985         return error("Invalid phi record");
5986       // The first record specifies the type.
5987       unsigned TyID = Record[0];
5988       Type *Ty = getTypeByID(TyID);
5989       if (!Ty)
5990         return error("Invalid phi record");
5991 
5992       // Phi arguments are pairs of records of [value, basic block].
5993       // There is an optional final record for fast-math-flags if this phi has a
5994       // floating-point type.
5995       size_t NumArgs = (Record.size() - 1) / 2;
5996       PHINode *PN = PHINode::Create(Ty, NumArgs);
5997       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5998         PN->deleteValue();
5999         return error("Invalid phi record");
6000       }
6001       InstructionList.push_back(PN);
6002 
6003       SmallDenseMap<BasicBlock *, Value *> Args;
6004       for (unsigned i = 0; i != NumArgs; i++) {
6005         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6006         if (!BB) {
6007           PN->deleteValue();
6008           return error("Invalid phi BB");
6009         }
6010 
6011         // Phi nodes may contain the same predecessor multiple times, in which
6012         // case the incoming value must be identical. Directly reuse the already
6013         // seen value here, to avoid expanding a constant expression multiple
6014         // times.
6015         auto It = Args.find(BB);
6016         if (It != Args.end()) {
6017           PN->addIncoming(It->second, BB);
6018           continue;
6019         }
6020 
6021         // If there already is a block for this edge (from a different phi),
6022         // use it.
6023         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6024         if (!EdgeBB) {
6025           // Otherwise, use a temporary block (that we will discard if it
6026           // turns out to be unnecessary).
6027           if (!PhiConstExprBB)
6028             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6029           EdgeBB = PhiConstExprBB;
6030         }
6031 
6032         // With the new function encoding, it is possible that operands have
6033         // negative IDs (for forward references).  Use a signed VBR
6034         // representation to keep the encoding small.
6035         Value *V;
6036         if (UseRelativeIDs)
6037           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6038         else
6039           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6040         if (!V) {
6041           PN->deleteValue();
6042           PhiConstExprBB->eraseFromParent();
6043           return error("Invalid phi record");
6044         }
6045 
6046         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6047           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6048           PhiConstExprBB = nullptr;
6049         }
6050         PN->addIncoming(V, BB);
6051         Args.insert({BB, V});
6052       }
6053       I = PN;
6054       ResTypeID = TyID;
6055 
6056       // If there are an even number of records, the final record must be FMF.
6057       if (Record.size() % 2 == 0) {
6058         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6059         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6060         if (FMF.any())
6061           I->setFastMathFlags(FMF);
6062       }
6063 
6064       break;
6065     }
6066 
6067     case bitc::FUNC_CODE_INST_LANDINGPAD:
6068     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6069       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6070       unsigned Idx = 0;
6071       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6072         if (Record.size() < 3)
6073           return error("Invalid record");
6074       } else {
6075         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6076         if (Record.size() < 4)
6077           return error("Invalid record");
6078       }
6079       ResTypeID = Record[Idx++];
6080       Type *Ty = getTypeByID(ResTypeID);
6081       if (!Ty)
6082         return error("Invalid record");
6083       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6084         Value *PersFn = nullptr;
6085         unsigned PersFnTypeID;
6086         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6087                              nullptr))
6088           return error("Invalid record");
6089 
6090         if (!F->hasPersonalityFn())
6091           F->setPersonalityFn(cast<Constant>(PersFn));
6092         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6093           return error("Personality function mismatch");
6094       }
6095 
6096       bool IsCleanup = !!Record[Idx++];
6097       unsigned NumClauses = Record[Idx++];
6098       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6099       LP->setCleanup(IsCleanup);
6100       for (unsigned J = 0; J != NumClauses; ++J) {
6101         LandingPadInst::ClauseType CT =
6102           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6103         Value *Val;
6104         unsigned ValTypeID;
6105 
6106         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6107                              nullptr)) {
6108           delete LP;
6109           return error("Invalid record");
6110         }
6111 
6112         assert((CT != LandingPadInst::Catch ||
6113                 !isa<ArrayType>(Val->getType())) &&
6114                "Catch clause has a invalid type!");
6115         assert((CT != LandingPadInst::Filter ||
6116                 isa<ArrayType>(Val->getType())) &&
6117                "Filter clause has invalid type!");
6118         LP->addClause(cast<Constant>(Val));
6119       }
6120 
6121       I = LP;
6122       InstructionList.push_back(I);
6123       break;
6124     }
6125 
6126     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6127       if (Record.size() != 4 && Record.size() != 5)
6128         return error("Invalid record");
6129       using APV = AllocaPackedValues;
6130       const uint64_t Rec = Record[3];
6131       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6132       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6133       unsigned TyID = Record[0];
6134       Type *Ty = getTypeByID(TyID);
6135       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6136         TyID = getContainedTypeID(TyID);
6137         Ty = getTypeByID(TyID);
6138         if (!Ty)
6139           return error("Missing element type for old-style alloca");
6140       }
6141       unsigned OpTyID = Record[1];
6142       Type *OpTy = getTypeByID(OpTyID);
6143       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6144       MaybeAlign Align;
6145       uint64_t AlignExp =
6146           Bitfield::get<APV::AlignLower>(Rec) |
6147           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6148       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6149         return Err;
6150       }
6151       if (!Ty || !Size)
6152         return error("Invalid record");
6153 
6154       const DataLayout &DL = TheModule->getDataLayout();
6155       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6156 
6157       SmallPtrSet<Type *, 4> Visited;
6158       if (!Align && !Ty->isSized(&Visited))
6159         return error("alloca of unsized type");
6160       if (!Align)
6161         Align = DL.getPrefTypeAlign(Ty);
6162 
6163       if (!Size->getType()->isIntegerTy())
6164         return error("alloca element count must have integer type");
6165 
6166       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6167       AI->setUsedWithInAlloca(InAlloca);
6168       AI->setSwiftError(SwiftError);
6169       I = AI;
6170       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6171       InstructionList.push_back(I);
6172       break;
6173     }
6174     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6175       unsigned OpNum = 0;
6176       Value *Op;
6177       unsigned OpTypeID;
6178       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6179           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6180         return error("Invalid record");
6181 
6182       if (!isa<PointerType>(Op->getType()))
6183         return error("Load operand is not a pointer type");
6184 
6185       Type *Ty = nullptr;
6186       if (OpNum + 3 == Record.size()) {
6187         ResTypeID = Record[OpNum++];
6188         Ty = getTypeByID(ResTypeID);
6189       } else {
6190         ResTypeID = getContainedTypeID(OpTypeID);
6191         Ty = getTypeByID(ResTypeID);
6192       }
6193 
6194       if (!Ty)
6195         return error("Missing load type");
6196 
6197       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6198         return Err;
6199 
6200       MaybeAlign Align;
6201       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6202         return Err;
6203       SmallPtrSet<Type *, 4> Visited;
6204       if (!Align && !Ty->isSized(&Visited))
6205         return error("load of unsized type");
6206       if (!Align)
6207         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6208       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6209       InstructionList.push_back(I);
6210       break;
6211     }
6212     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6213        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6214       unsigned OpNum = 0;
6215       Value *Op;
6216       unsigned OpTypeID;
6217       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6218           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6219         return error("Invalid record");
6220 
6221       if (!isa<PointerType>(Op->getType()))
6222         return error("Load operand is not a pointer type");
6223 
6224       Type *Ty = nullptr;
6225       if (OpNum + 5 == Record.size()) {
6226         ResTypeID = Record[OpNum++];
6227         Ty = getTypeByID(ResTypeID);
6228       } else {
6229         ResTypeID = getContainedTypeID(OpTypeID);
6230         Ty = getTypeByID(ResTypeID);
6231       }
6232 
6233       if (!Ty)
6234         return error("Missing atomic load type");
6235 
6236       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6237         return Err;
6238 
6239       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6240       if (Ordering == AtomicOrdering::NotAtomic ||
6241           Ordering == AtomicOrdering::Release ||
6242           Ordering == AtomicOrdering::AcquireRelease)
6243         return error("Invalid record");
6244       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6245         return error("Invalid record");
6246       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6247 
6248       MaybeAlign Align;
6249       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6250         return Err;
6251       if (!Align)
6252         return error("Alignment missing from atomic load");
6253       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6254       InstructionList.push_back(I);
6255       break;
6256     }
6257     case bitc::FUNC_CODE_INST_STORE:
6258     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6259       unsigned OpNum = 0;
6260       Value *Val, *Ptr;
6261       unsigned PtrTypeID, ValTypeID;
6262       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6263         return error("Invalid record");
6264 
6265       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6266         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6267           return error("Invalid record");
6268       } else {
6269         ValTypeID = getContainedTypeID(PtrTypeID);
6270         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6271                      ValTypeID, Val, CurBB))
6272           return error("Invalid record");
6273       }
6274 
6275       if (OpNum + 2 != Record.size())
6276         return error("Invalid record");
6277 
6278       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6279         return Err;
6280       MaybeAlign Align;
6281       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6282         return Err;
6283       SmallPtrSet<Type *, 4> Visited;
6284       if (!Align && !Val->getType()->isSized(&Visited))
6285         return error("store of unsized type");
6286       if (!Align)
6287         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6288       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6289       InstructionList.push_back(I);
6290       break;
6291     }
6292     case bitc::FUNC_CODE_INST_STOREATOMIC:
6293     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6294       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6295       unsigned OpNum = 0;
6296       Value *Val, *Ptr;
6297       unsigned PtrTypeID, ValTypeID;
6298       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6299           !isa<PointerType>(Ptr->getType()))
6300         return error("Invalid record");
6301       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6302         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6303           return error("Invalid record");
6304       } else {
6305         ValTypeID = getContainedTypeID(PtrTypeID);
6306         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6307                      ValTypeID, Val, CurBB))
6308           return error("Invalid record");
6309       }
6310 
6311       if (OpNum + 4 != Record.size())
6312         return error("Invalid record");
6313 
6314       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6315         return Err;
6316       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6317       if (Ordering == AtomicOrdering::NotAtomic ||
6318           Ordering == AtomicOrdering::Acquire ||
6319           Ordering == AtomicOrdering::AcquireRelease)
6320         return error("Invalid record");
6321       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6322       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6323         return error("Invalid record");
6324 
6325       MaybeAlign Align;
6326       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6327         return Err;
6328       if (!Align)
6329         return error("Alignment missing from atomic store");
6330       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6331       InstructionList.push_back(I);
6332       break;
6333     }
6334     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6335       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6336       // failure_ordering?, weak?]
6337       const size_t NumRecords = Record.size();
6338       unsigned OpNum = 0;
6339       Value *Ptr = nullptr;
6340       unsigned PtrTypeID;
6341       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6342         return error("Invalid record");
6343 
6344       if (!isa<PointerType>(Ptr->getType()))
6345         return error("Cmpxchg operand is not a pointer type");
6346 
6347       Value *Cmp = nullptr;
6348       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6349       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6350                    CmpTypeID, Cmp, CurBB))
6351         return error("Invalid record");
6352 
6353       Value *New = nullptr;
6354       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6355                    New, CurBB) ||
6356           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6357         return error("Invalid record");
6358 
6359       const AtomicOrdering SuccessOrdering =
6360           getDecodedOrdering(Record[OpNum + 1]);
6361       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6362           SuccessOrdering == AtomicOrdering::Unordered)
6363         return error("Invalid record");
6364 
6365       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6366 
6367       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6368         return Err;
6369 
6370       const AtomicOrdering FailureOrdering =
6371           NumRecords < 7
6372               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6373               : getDecodedOrdering(Record[OpNum + 3]);
6374 
6375       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6376           FailureOrdering == AtomicOrdering::Unordered)
6377         return error("Invalid record");
6378 
6379       const Align Alignment(
6380           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6381 
6382       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6383                                 FailureOrdering, SSID);
6384       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6385 
6386       if (NumRecords < 8) {
6387         // Before weak cmpxchgs existed, the instruction simply returned the
6388         // value loaded from memory, so bitcode files from that era will be
6389         // expecting the first component of a modern cmpxchg.
6390         I->insertInto(CurBB, CurBB->end());
6391         I = ExtractValueInst::Create(I, 0);
6392         ResTypeID = CmpTypeID;
6393       } else {
6394         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6395         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6396         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6397       }
6398 
6399       InstructionList.push_back(I);
6400       break;
6401     }
6402     case bitc::FUNC_CODE_INST_CMPXCHG: {
6403       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6404       // failure_ordering, weak, align?]
6405       const size_t NumRecords = Record.size();
6406       unsigned OpNum = 0;
6407       Value *Ptr = nullptr;
6408       unsigned PtrTypeID;
6409       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6410         return error("Invalid record");
6411 
6412       if (!isa<PointerType>(Ptr->getType()))
6413         return error("Cmpxchg operand is not a pointer type");
6414 
6415       Value *Cmp = nullptr;
6416       unsigned CmpTypeID;
6417       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6418         return error("Invalid record");
6419 
6420       Value *Val = nullptr;
6421       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6422                    CurBB))
6423         return error("Invalid record");
6424 
6425       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6426         return error("Invalid record");
6427 
6428       const bool IsVol = Record[OpNum];
6429 
6430       const AtomicOrdering SuccessOrdering =
6431           getDecodedOrdering(Record[OpNum + 1]);
6432       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6433         return error("Invalid cmpxchg success ordering");
6434 
6435       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6436 
6437       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6438         return Err;
6439 
6440       const AtomicOrdering FailureOrdering =
6441           getDecodedOrdering(Record[OpNum + 3]);
6442       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6443         return error("Invalid cmpxchg failure ordering");
6444 
6445       const bool IsWeak = Record[OpNum + 4];
6446 
6447       MaybeAlign Alignment;
6448 
6449       if (NumRecords == (OpNum + 6)) {
6450         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6451           return Err;
6452       }
6453       if (!Alignment)
6454         Alignment =
6455             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6456 
6457       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6458                                 FailureOrdering, SSID);
6459       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6460       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6461 
6462       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6463       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6464 
6465       InstructionList.push_back(I);
6466       break;
6467     }
6468     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6469     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6470       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6471       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6472       const size_t NumRecords = Record.size();
6473       unsigned OpNum = 0;
6474 
6475       Value *Ptr = nullptr;
6476       unsigned PtrTypeID;
6477       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6478         return error("Invalid record");
6479 
6480       if (!isa<PointerType>(Ptr->getType()))
6481         return error("Invalid record");
6482 
6483       Value *Val = nullptr;
6484       unsigned ValTypeID = InvalidTypeID;
6485       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6486         ValTypeID = getContainedTypeID(PtrTypeID);
6487         if (popValue(Record, OpNum, NextValueNo,
6488                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6489           return error("Invalid record");
6490       } else {
6491         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6492           return error("Invalid record");
6493       }
6494 
6495       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6496         return error("Invalid record");
6497 
6498       const AtomicRMWInst::BinOp Operation =
6499           getDecodedRMWOperation(Record[OpNum]);
6500       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6501           Operation > AtomicRMWInst::LAST_BINOP)
6502         return error("Invalid record");
6503 
6504       const bool IsVol = Record[OpNum + 1];
6505 
6506       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6507       if (Ordering == AtomicOrdering::NotAtomic ||
6508           Ordering == AtomicOrdering::Unordered)
6509         return error("Invalid record");
6510 
6511       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6512 
6513       MaybeAlign Alignment;
6514 
6515       if (NumRecords == (OpNum + 5)) {
6516         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6517           return Err;
6518       }
6519 
6520       if (!Alignment)
6521         Alignment =
6522             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6523 
6524       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6525       ResTypeID = ValTypeID;
6526       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6527 
6528       InstructionList.push_back(I);
6529       break;
6530     }
6531     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6532       if (2 != Record.size())
6533         return error("Invalid record");
6534       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6535       if (Ordering == AtomicOrdering::NotAtomic ||
6536           Ordering == AtomicOrdering::Unordered ||
6537           Ordering == AtomicOrdering::Monotonic)
6538         return error("Invalid record");
6539       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6540       I = new FenceInst(Context, Ordering, SSID);
6541       InstructionList.push_back(I);
6542       break;
6543     }
6544     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6545       // DbgLabelRecords are placed after the Instructions that they are
6546       // attached to.
6547       SeenDebugRecord = true;
6548       Instruction *Inst = getLastInstruction();
6549       if (!Inst)
6550         return error("Invalid dbg record: missing instruction");
6551       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6552       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6553       Inst->getParent()->insertDbgRecordBefore(
6554           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6555       continue; // This isn't an instruction.
6556     }
6557     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6558     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6559     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6560     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6561       // DbgVariableRecords are placed after the Instructions that they are
6562       // attached to.
6563       SeenDebugRecord = true;
6564       Instruction *Inst = getLastInstruction();
6565       if (!Inst)
6566         return error("Invalid dbg record: missing instruction");
6567 
6568       // First 3 fields are common to all kinds:
6569       //   DILocation, DILocalVariable, DIExpression
6570       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6571       //   ..., LocationMetadata
6572       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6573       //   ..., Value
6574       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6575       //   ..., LocationMetadata
6576       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6577       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6578       unsigned Slot = 0;
6579       // Common fields (0-2).
6580       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6581       DILocalVariable *Var =
6582           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6583       DIExpression *Expr =
6584           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6585 
6586       // Union field (3: LocationMetadata | Value).
6587       Metadata *RawLocation = nullptr;
6588       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6589         Value *V = nullptr;
6590         unsigned TyID = 0;
6591         // We never expect to see a fwd reference value here because
6592         // use-before-defs are encoded with the standard non-abbrev record
6593         // type (they'd require encoding the type too, and they're rare). As a
6594         // result, getValueTypePair only ever increments Slot by one here (once
6595         // for the value, never twice for value and type).
6596         unsigned SlotBefore = Slot;
6597         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6598           return error("Invalid dbg record: invalid value");
6599         (void)SlotBefore;
6600         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6601         RawLocation = ValueAsMetadata::get(V);
6602       } else {
6603         RawLocation = getFnMetadataByID(Record[Slot++]);
6604       }
6605 
6606       DbgVariableRecord *DVR = nullptr;
6607       switch (BitCode) {
6608       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6609       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6610         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6611                                     DbgVariableRecord::LocationType::Value);
6612         break;
6613       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6614         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6615                                     DbgVariableRecord::LocationType::Declare);
6616         break;
6617       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6618         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6619         DIExpression *AddrExpr =
6620             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6621         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6622         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6623                                     DIL);
6624         break;
6625       }
6626       default:
6627         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6628       }
6629       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6630       continue; // This isn't an instruction.
6631     }
6632     case bitc::FUNC_CODE_INST_CALL: {
6633       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6634       if (Record.size() < 3)
6635         return error("Invalid record");
6636 
6637       unsigned OpNum = 0;
6638       AttributeList PAL = getAttributes(Record[OpNum++]);
6639       unsigned CCInfo = Record[OpNum++];
6640 
6641       FastMathFlags FMF;
6642       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6643         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6644         if (!FMF.any())
6645           return error("Fast math flags indicator set for call with no FMF");
6646       }
6647 
6648       unsigned FTyID = InvalidTypeID;
6649       FunctionType *FTy = nullptr;
6650       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6651         FTyID = Record[OpNum++];
6652         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6653         if (!FTy)
6654           return error("Explicit call type is not a function type");
6655       }
6656 
6657       Value *Callee;
6658       unsigned CalleeTypeID;
6659       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6660                            CurBB))
6661         return error("Invalid record");
6662 
6663       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6664       if (!OpTy)
6665         return error("Callee is not a pointer type");
6666       if (!FTy) {
6667         FTyID = getContainedTypeID(CalleeTypeID);
6668         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6669         if (!FTy)
6670           return error("Callee is not of pointer to function type");
6671       }
6672       if (Record.size() < FTy->getNumParams() + OpNum)
6673         return error("Insufficient operands to call");
6674 
6675       SmallVector<Value*, 16> Args;
6676       SmallVector<unsigned, 16> ArgTyIDs;
6677       // Read the fixed params.
6678       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6679         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6680         if (FTy->getParamType(i)->isLabelTy())
6681           Args.push_back(getBasicBlock(Record[OpNum]));
6682         else
6683           Args.push_back(getValue(Record, OpNum, NextValueNo,
6684                                   FTy->getParamType(i), ArgTyID, CurBB));
6685         ArgTyIDs.push_back(ArgTyID);
6686         if (!Args.back())
6687           return error("Invalid record");
6688       }
6689 
6690       // Read type/value pairs for varargs params.
6691       if (!FTy->isVarArg()) {
6692         if (OpNum != Record.size())
6693           return error("Invalid record");
6694       } else {
6695         while (OpNum != Record.size()) {
6696           Value *Op;
6697           unsigned OpTypeID;
6698           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6699             return error("Invalid record");
6700           Args.push_back(Op);
6701           ArgTyIDs.push_back(OpTypeID);
6702         }
6703       }
6704 
6705       // Upgrade the bundles if needed.
6706       if (!OperandBundles.empty())
6707         UpgradeOperandBundles(OperandBundles);
6708 
6709       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6710       ResTypeID = getContainedTypeID(FTyID);
6711       OperandBundles.clear();
6712       InstructionList.push_back(I);
6713       cast<CallInst>(I)->setCallingConv(
6714           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6715       CallInst::TailCallKind TCK = CallInst::TCK_None;
6716       if (CCInfo & (1 << bitc::CALL_TAIL))
6717         TCK = CallInst::TCK_Tail;
6718       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6719         TCK = CallInst::TCK_MustTail;
6720       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6721         TCK = CallInst::TCK_NoTail;
6722       cast<CallInst>(I)->setTailCallKind(TCK);
6723       cast<CallInst>(I)->setAttributes(PAL);
6724       if (isa<DbgInfoIntrinsic>(I))
6725         SeenDebugIntrinsic = true;
6726       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6727         I->deleteValue();
6728         return Err;
6729       }
6730       if (FMF.any()) {
6731         if (!isa<FPMathOperator>(I))
6732           return error("Fast-math-flags specified for call without "
6733                        "floating-point scalar or vector return type");
6734         I->setFastMathFlags(FMF);
6735       }
6736       break;
6737     }
6738     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6739       if (Record.size() < 3)
6740         return error("Invalid record");
6741       unsigned OpTyID = Record[0];
6742       Type *OpTy = getTypeByID(OpTyID);
6743       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6744       ResTypeID = Record[2];
6745       Type *ResTy = getTypeByID(ResTypeID);
6746       if (!OpTy || !Op || !ResTy)
6747         return error("Invalid record");
6748       I = new VAArgInst(Op, ResTy);
6749       InstructionList.push_back(I);
6750       break;
6751     }
6752 
6753     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6754       // A call or an invoke can be optionally prefixed with some variable
6755       // number of operand bundle blocks.  These blocks are read into
6756       // OperandBundles and consumed at the next call or invoke instruction.
6757 
6758       if (Record.empty() || Record[0] >= BundleTags.size())
6759         return error("Invalid record");
6760 
6761       std::vector<Value *> Inputs;
6762 
6763       unsigned OpNum = 1;
6764       while (OpNum != Record.size()) {
6765         Value *Op;
6766         unsigned OpTypeID;
6767         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6768           return error("Invalid record");
6769         Inputs.push_back(Op);
6770       }
6771 
6772       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6773       continue;
6774     }
6775 
6776     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6777       unsigned OpNum = 0;
6778       Value *Op = nullptr;
6779       unsigned OpTypeID;
6780       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6781         return error("Invalid record");
6782       if (OpNum != Record.size())
6783         return error("Invalid record");
6784 
6785       I = new FreezeInst(Op);
6786       ResTypeID = OpTypeID;
6787       InstructionList.push_back(I);
6788       break;
6789     }
6790     }
6791 
6792     // Add instruction to end of current BB.  If there is no current BB, reject
6793     // this file.
6794     if (!CurBB) {
6795       I->deleteValue();
6796       return error("Invalid instruction with no BB");
6797     }
6798     if (!OperandBundles.empty()) {
6799       I->deleteValue();
6800       return error("Operand bundles found with no consumer");
6801     }
6802     I->insertInto(CurBB, CurBB->end());
6803 
6804     // If this was a terminator instruction, move to the next block.
6805     if (I->isTerminator()) {
6806       ++CurBBNo;
6807       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6808     }
6809 
6810     // Non-void values get registered in the value table for future use.
6811     if (!I->getType()->isVoidTy()) {
6812       assert(I->getType() == getTypeByID(ResTypeID) &&
6813              "Incorrect result type ID");
6814       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6815         return Err;
6816     }
6817   }
6818 
6819 OutOfRecordLoop:
6820 
6821   if (!OperandBundles.empty())
6822     return error("Operand bundles found with no consumer");
6823 
6824   // Check the function list for unresolved values.
6825   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6826     if (!A->getParent()) {
6827       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6828       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6829         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6830           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6831           delete A;
6832         }
6833       }
6834       return error("Never resolved value found in function");
6835     }
6836   }
6837 
6838   // Unexpected unresolved metadata about to be dropped.
6839   if (MDLoader->hasFwdRefs())
6840     return error("Invalid function metadata: outgoing forward refs");
6841 
6842   if (PhiConstExprBB)
6843     PhiConstExprBB->eraseFromParent();
6844 
6845   for (const auto &Pair : ConstExprEdgeBBs) {
6846     BasicBlock *From = Pair.first.first;
6847     BasicBlock *To = Pair.first.second;
6848     BasicBlock *EdgeBB = Pair.second;
6849     BranchInst::Create(To, EdgeBB);
6850     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6851     To->replacePhiUsesWith(From, EdgeBB);
6852     EdgeBB->moveBefore(To);
6853   }
6854 
6855   // Trim the value list down to the size it was before we parsed this function.
6856   ValueList.shrinkTo(ModuleValueListSize);
6857   MDLoader->shrinkTo(ModuleMDLoaderSize);
6858   std::vector<BasicBlock*>().swap(FunctionBBs);
6859   return Error::success();
6860 }
6861 
6862 /// Find the function body in the bitcode stream
6863 Error BitcodeReader::findFunctionInStream(
6864     Function *F,
6865     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6866   while (DeferredFunctionInfoIterator->second == 0) {
6867     // This is the fallback handling for the old format bitcode that
6868     // didn't contain the function index in the VST, or when we have
6869     // an anonymous function which would not have a VST entry.
6870     // Assert that we have one of those two cases.
6871     assert(VSTOffset == 0 || !F->hasName());
6872     // Parse the next body in the stream and set its position in the
6873     // DeferredFunctionInfo map.
6874     if (Error Err = rememberAndSkipFunctionBodies())
6875       return Err;
6876   }
6877   return Error::success();
6878 }
6879 
6880 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6881   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6882     return SyncScope::ID(Val);
6883   if (Val >= SSIDs.size())
6884     return SyncScope::System; // Map unknown synchronization scopes to system.
6885   return SSIDs[Val];
6886 }
6887 
6888 //===----------------------------------------------------------------------===//
6889 // GVMaterializer implementation
6890 //===----------------------------------------------------------------------===//
6891 
6892 Error BitcodeReader::materialize(GlobalValue *GV) {
6893   Function *F = dyn_cast<Function>(GV);
6894   // If it's not a function or is already material, ignore the request.
6895   if (!F || !F->isMaterializable())
6896     return Error::success();
6897 
6898   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6899   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6900   // If its position is recorded as 0, its body is somewhere in the stream
6901   // but we haven't seen it yet.
6902   if (DFII->second == 0)
6903     if (Error Err = findFunctionInStream(F, DFII))
6904       return Err;
6905 
6906   // Materialize metadata before parsing any function bodies.
6907   if (Error Err = materializeMetadata())
6908     return Err;
6909 
6910   // Move the bit stream to the saved position of the deferred function body.
6911   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6912     return JumpFailed;
6913 
6914   // Regardless of the debug info format we want to end up in, we need
6915   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6916   F->IsNewDbgInfoFormat = true;
6917 
6918   if (Error Err = parseFunctionBody(F))
6919     return Err;
6920   F->setIsMaterializable(false);
6921 
6922   // All parsed Functions should load into the debug info format dictated by the
6923   // Module, unless we're attempting to preserve the input debug info format.
6924   if (SeenDebugIntrinsic && SeenDebugRecord)
6925     return error("Mixed debug intrinsics and debug records in bitcode module!");
6926   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6927     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6928     bool NewDbgInfoFormatDesired =
6929         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6930     if (SeenAnyDebugInfo) {
6931       UseNewDbgInfoFormat = SeenDebugRecord;
6932       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6933       WriteNewDbgInfoFormat = SeenDebugRecord;
6934     }
6935     // If the module's debug info format doesn't match the observed input
6936     // format, then set its format now; we don't need to call the conversion
6937     // function because there must be no existing intrinsics to convert.
6938     // Otherwise, just set the format on this function now.
6939     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6940       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6941     else
6942       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6943   } else {
6944     // If we aren't preserving formats, we use the Module flag to get our
6945     // desired format instead of reading flags, in case we are lazy-loading and
6946     // the format of the module has been changed since it was set by the flags.
6947     // We only need to convert debug info here if we have debug records but
6948     // desire the intrinsic format; everything else is a no-op or handled by the
6949     // autoupgrader.
6950     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6951     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6952       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6953     else
6954       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6955   }
6956 
6957   if (StripDebugInfo)
6958     stripDebugInfo(*F);
6959 
6960   // Upgrade any old intrinsic calls in the function.
6961   for (auto &I : UpgradedIntrinsics) {
6962     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6963       if (CallInst *CI = dyn_cast<CallInst>(U))
6964         UpgradeIntrinsicCall(CI, I.second);
6965   }
6966 
6967   // Finish fn->subprogram upgrade for materialized functions.
6968   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6969     F->setSubprogram(SP);
6970 
6971   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6972   if (!MDLoader->isStrippingTBAA()) {
6973     for (auto &I : instructions(F)) {
6974       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6975       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6976         continue;
6977       MDLoader->setStripTBAA(true);
6978       stripTBAA(F->getParent());
6979     }
6980   }
6981 
6982   for (auto &I : instructions(F)) {
6983     // "Upgrade" older incorrect branch weights by dropping them.
6984     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6985       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6986         MDString *MDS = cast<MDString>(MD->getOperand(0));
6987         StringRef ProfName = MDS->getString();
6988         // Check consistency of !prof branch_weights metadata.
6989         if (ProfName != "branch_weights")
6990           continue;
6991         unsigned ExpectedNumOperands = 0;
6992         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6993           ExpectedNumOperands = BI->getNumSuccessors();
6994         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6995           ExpectedNumOperands = SI->getNumSuccessors();
6996         else if (isa<CallInst>(&I))
6997           ExpectedNumOperands = 1;
6998         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6999           ExpectedNumOperands = IBI->getNumDestinations();
7000         else if (isa<SelectInst>(&I))
7001           ExpectedNumOperands = 2;
7002         else
7003           continue; // ignore and continue.
7004 
7005         unsigned Offset = getBranchWeightOffset(MD);
7006 
7007         // If branch weight doesn't match, just strip branch weight.
7008         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7009           I.setMetadata(LLVMContext::MD_prof, nullptr);
7010       }
7011     }
7012 
7013     // Remove incompatible attributes on function calls.
7014     if (auto *CI = dyn_cast<CallBase>(&I)) {
7015       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7016           CI->getFunctionType()->getReturnType()));
7017 
7018       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7019         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7020                                         CI->getArgOperand(ArgNo)->getType()));
7021     }
7022   }
7023 
7024   // Look for functions that rely on old function attribute behavior.
7025   UpgradeFunctionAttributes(*F);
7026 
7027   // Bring in any functions that this function forward-referenced via
7028   // blockaddresses.
7029   return materializeForwardReferencedFunctions();
7030 }
7031 
7032 Error BitcodeReader::materializeModule() {
7033   if (Error Err = materializeMetadata())
7034     return Err;
7035 
7036   // Promise to materialize all forward references.
7037   WillMaterializeAllForwardRefs = true;
7038 
7039   // Iterate over the module, deserializing any functions that are still on
7040   // disk.
7041   for (Function &F : *TheModule) {
7042     if (Error Err = materialize(&F))
7043       return Err;
7044   }
7045   // At this point, if there are any function bodies, parse the rest of
7046   // the bits in the module past the last function block we have recorded
7047   // through either lazy scanning or the VST.
7048   if (LastFunctionBlockBit || NextUnreadBit)
7049     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7050                                     ? LastFunctionBlockBit
7051                                     : NextUnreadBit))
7052       return Err;
7053 
7054   // Check that all block address forward references got resolved (as we
7055   // promised above).
7056   if (!BasicBlockFwdRefs.empty())
7057     return error("Never resolved function from blockaddress");
7058 
7059   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7060   // delete the old functions to clean up. We can't do this unless the entire
7061   // module is materialized because there could always be another function body
7062   // with calls to the old function.
7063   for (auto &I : UpgradedIntrinsics) {
7064     for (auto *U : I.first->users()) {
7065       if (CallInst *CI = dyn_cast<CallInst>(U))
7066         UpgradeIntrinsicCall(CI, I.second);
7067     }
7068     if (!I.first->use_empty())
7069       I.first->replaceAllUsesWith(I.second);
7070     I.first->eraseFromParent();
7071   }
7072   UpgradedIntrinsics.clear();
7073 
7074   UpgradeDebugInfo(*TheModule);
7075 
7076   UpgradeModuleFlags(*TheModule);
7077 
7078   UpgradeARCRuntime(*TheModule);
7079 
7080   return Error::success();
7081 }
7082 
7083 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7084   return IdentifiedStructTypes;
7085 }
7086 
7087 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7088     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7089     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7090     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7091       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7092 
7093 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7094   TheIndex.addModule(ModulePath);
7095 }
7096 
7097 ModuleSummaryIndex::ModuleInfo *
7098 ModuleSummaryIndexBitcodeReader::getThisModule() {
7099   return TheIndex.getModule(ModulePath);
7100 }
7101 
7102 template <bool AllowNullValueInfo>
7103 std::pair<ValueInfo, GlobalValue::GUID>
7104 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7105   auto VGI = ValueIdToValueInfoMap[ValueId];
7106   // We can have a null value info for memprof callsite info records in
7107   // distributed ThinLTO index files when the callee function summary is not
7108   // included in the index. The bitcode writer records 0 in that case,
7109   // and the caller of this helper will set AllowNullValueInfo to true.
7110   assert(AllowNullValueInfo || std::get<0>(VGI));
7111   return VGI;
7112 }
7113 
7114 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7115     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7116     StringRef SourceFileName) {
7117   std::string GlobalId =
7118       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7119   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7120   auto OriginalNameID = ValueGUID;
7121   if (GlobalValue::isLocalLinkage(Linkage))
7122     OriginalNameID = GlobalValue::getGUID(ValueName);
7123   if (PrintSummaryGUIDs)
7124     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7125            << ValueName << "\n";
7126 
7127   // UseStrtab is false for legacy summary formats and value names are
7128   // created on stack. In that case we save the name in a string saver in
7129   // the index so that the value name can be recorded.
7130   ValueIdToValueInfoMap[ValueID] = std::make_pair(
7131       TheIndex.getOrInsertValueInfo(
7132           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7133       OriginalNameID);
7134 }
7135 
7136 // Specialized value symbol table parser used when reading module index
7137 // blocks where we don't actually create global values. The parsed information
7138 // is saved in the bitcode reader for use when later parsing summaries.
7139 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7140     uint64_t Offset,
7141     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7142   // With a strtab the VST is not required to parse the summary.
7143   if (UseStrtab)
7144     return Error::success();
7145 
7146   assert(Offset > 0 && "Expected non-zero VST offset");
7147   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7148   if (!MaybeCurrentBit)
7149     return MaybeCurrentBit.takeError();
7150   uint64_t CurrentBit = MaybeCurrentBit.get();
7151 
7152   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7153     return Err;
7154 
7155   SmallVector<uint64_t, 64> Record;
7156 
7157   // Read all the records for this value table.
7158   SmallString<128> ValueName;
7159 
7160   while (true) {
7161     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7162     if (!MaybeEntry)
7163       return MaybeEntry.takeError();
7164     BitstreamEntry Entry = MaybeEntry.get();
7165 
7166     switch (Entry.Kind) {
7167     case BitstreamEntry::SubBlock: // Handled for us already.
7168     case BitstreamEntry::Error:
7169       return error("Malformed block");
7170     case BitstreamEntry::EndBlock:
7171       // Done parsing VST, jump back to wherever we came from.
7172       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7173         return JumpFailed;
7174       return Error::success();
7175     case BitstreamEntry::Record:
7176       // The interesting case.
7177       break;
7178     }
7179 
7180     // Read a record.
7181     Record.clear();
7182     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7183     if (!MaybeRecord)
7184       return MaybeRecord.takeError();
7185     switch (MaybeRecord.get()) {
7186     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7187       break;
7188     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7189       if (convertToString(Record, 1, ValueName))
7190         return error("Invalid record");
7191       unsigned ValueID = Record[0];
7192       assert(!SourceFileName.empty());
7193       auto VLI = ValueIdToLinkageMap.find(ValueID);
7194       assert(VLI != ValueIdToLinkageMap.end() &&
7195              "No linkage found for VST entry?");
7196       auto Linkage = VLI->second;
7197       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7198       ValueName.clear();
7199       break;
7200     }
7201     case bitc::VST_CODE_FNENTRY: {
7202       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7203       if (convertToString(Record, 2, ValueName))
7204         return error("Invalid record");
7205       unsigned ValueID = Record[0];
7206       assert(!SourceFileName.empty());
7207       auto VLI = ValueIdToLinkageMap.find(ValueID);
7208       assert(VLI != ValueIdToLinkageMap.end() &&
7209              "No linkage found for VST entry?");
7210       auto Linkage = VLI->second;
7211       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7212       ValueName.clear();
7213       break;
7214     }
7215     case bitc::VST_CODE_COMBINED_ENTRY: {
7216       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7217       unsigned ValueID = Record[0];
7218       GlobalValue::GUID RefGUID = Record[1];
7219       // The "original name", which is the second value of the pair will be
7220       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7221       ValueIdToValueInfoMap[ValueID] =
7222           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7223       break;
7224     }
7225     }
7226   }
7227 }
7228 
7229 // Parse just the blocks needed for building the index out of the module.
7230 // At the end of this routine the module Index is populated with a map
7231 // from global value id to GlobalValueSummary objects.
7232 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7233   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7234     return Err;
7235 
7236   SmallVector<uint64_t, 64> Record;
7237   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7238   unsigned ValueId = 0;
7239 
7240   // Read the index for this module.
7241   while (true) {
7242     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7243     if (!MaybeEntry)
7244       return MaybeEntry.takeError();
7245     llvm::BitstreamEntry Entry = MaybeEntry.get();
7246 
7247     switch (Entry.Kind) {
7248     case BitstreamEntry::Error:
7249       return error("Malformed block");
7250     case BitstreamEntry::EndBlock:
7251       return Error::success();
7252 
7253     case BitstreamEntry::SubBlock:
7254       switch (Entry.ID) {
7255       default: // Skip unknown content.
7256         if (Error Err = Stream.SkipBlock())
7257           return Err;
7258         break;
7259       case bitc::BLOCKINFO_BLOCK_ID:
7260         // Need to parse these to get abbrev ids (e.g. for VST)
7261         if (Error Err = readBlockInfo())
7262           return Err;
7263         break;
7264       case bitc::VALUE_SYMTAB_BLOCK_ID:
7265         // Should have been parsed earlier via VSTOffset, unless there
7266         // is no summary section.
7267         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7268                 !SeenGlobalValSummary) &&
7269                "Expected early VST parse via VSTOffset record");
7270         if (Error Err = Stream.SkipBlock())
7271           return Err;
7272         break;
7273       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7274       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7275         // Add the module if it is a per-module index (has a source file name).
7276         if (!SourceFileName.empty())
7277           addThisModule();
7278         assert(!SeenValueSymbolTable &&
7279                "Already read VST when parsing summary block?");
7280         // We might not have a VST if there were no values in the
7281         // summary. An empty summary block generated when we are
7282         // performing ThinLTO compiles so we don't later invoke
7283         // the regular LTO process on them.
7284         if (VSTOffset > 0) {
7285           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7286             return Err;
7287           SeenValueSymbolTable = true;
7288         }
7289         SeenGlobalValSummary = true;
7290         if (Error Err = parseEntireSummary(Entry.ID))
7291           return Err;
7292         break;
7293       case bitc::MODULE_STRTAB_BLOCK_ID:
7294         if (Error Err = parseModuleStringTable())
7295           return Err;
7296         break;
7297       }
7298       continue;
7299 
7300     case BitstreamEntry::Record: {
7301         Record.clear();
7302         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7303         if (!MaybeBitCode)
7304           return MaybeBitCode.takeError();
7305         switch (MaybeBitCode.get()) {
7306         default:
7307           break; // Default behavior, ignore unknown content.
7308         case bitc::MODULE_CODE_VERSION: {
7309           if (Error Err = parseVersionRecord(Record).takeError())
7310             return Err;
7311           break;
7312         }
7313         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7314         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7315           SmallString<128> ValueName;
7316           if (convertToString(Record, 0, ValueName))
7317             return error("Invalid record");
7318           SourceFileName = ValueName.c_str();
7319           break;
7320         }
7321         /// MODULE_CODE_HASH: [5*i32]
7322         case bitc::MODULE_CODE_HASH: {
7323           if (Record.size() != 5)
7324             return error("Invalid hash length " + Twine(Record.size()).str());
7325           auto &Hash = getThisModule()->second;
7326           int Pos = 0;
7327           for (auto &Val : Record) {
7328             assert(!(Val >> 32) && "Unexpected high bits set");
7329             Hash[Pos++] = Val;
7330           }
7331           break;
7332         }
7333         /// MODULE_CODE_VSTOFFSET: [offset]
7334         case bitc::MODULE_CODE_VSTOFFSET:
7335           if (Record.empty())
7336             return error("Invalid record");
7337           // Note that we subtract 1 here because the offset is relative to one
7338           // word before the start of the identification or module block, which
7339           // was historically always the start of the regular bitcode header.
7340           VSTOffset = Record[0] - 1;
7341           break;
7342         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7343         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7344         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7345         // v2: [strtab offset, strtab size, v1]
7346         case bitc::MODULE_CODE_GLOBALVAR:
7347         case bitc::MODULE_CODE_FUNCTION:
7348         case bitc::MODULE_CODE_ALIAS: {
7349           StringRef Name;
7350           ArrayRef<uint64_t> GVRecord;
7351           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7352           if (GVRecord.size() <= 3)
7353             return error("Invalid record");
7354           uint64_t RawLinkage = GVRecord[3];
7355           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7356           if (!UseStrtab) {
7357             ValueIdToLinkageMap[ValueId++] = Linkage;
7358             break;
7359           }
7360 
7361           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7362           break;
7363         }
7364         }
7365       }
7366       continue;
7367     }
7368   }
7369 }
7370 
7371 SmallVector<ValueInfo, 0>
7372 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7373   SmallVector<ValueInfo, 0> Ret;
7374   Ret.reserve(Record.size());
7375   for (uint64_t RefValueId : Record)
7376     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7377   return Ret;
7378 }
7379 
7380 SmallVector<FunctionSummary::EdgeTy, 0>
7381 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7382                                               bool IsOldProfileFormat,
7383                                               bool HasProfile, bool HasRelBF) {
7384   SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7385   // In the case of new profile formats, there are two Record entries per
7386   // Edge. Otherwise, conservatively reserve up to Record.size.
7387   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7388     Ret.reserve(Record.size() / 2);
7389   else
7390     Ret.reserve(Record.size());
7391 
7392   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7393     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7394     bool HasTailCall = false;
7395     uint64_t RelBF = 0;
7396     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7397     if (IsOldProfileFormat) {
7398       I += 1; // Skip old callsitecount field
7399       if (HasProfile)
7400         I += 1; // Skip old profilecount field
7401     } else if (HasProfile)
7402       std::tie(Hotness, HasTailCall) =
7403           getDecodedHotnessCallEdgeInfo(Record[++I]);
7404     else if (HasRelBF)
7405       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7406     Ret.push_back(FunctionSummary::EdgeTy{
7407         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7408   }
7409   return Ret;
7410 }
7411 
7412 static void
7413 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7414                                        WholeProgramDevirtResolution &Wpd) {
7415   uint64_t ArgNum = Record[Slot++];
7416   WholeProgramDevirtResolution::ByArg &B =
7417       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7418   Slot += ArgNum;
7419 
7420   B.TheKind =
7421       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7422   B.Info = Record[Slot++];
7423   B.Byte = Record[Slot++];
7424   B.Bit = Record[Slot++];
7425 }
7426 
7427 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7428                                               StringRef Strtab, size_t &Slot,
7429                                               TypeIdSummary &TypeId) {
7430   uint64_t Id = Record[Slot++];
7431   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7432 
7433   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7434   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7435                         static_cast<size_t>(Record[Slot + 1])};
7436   Slot += 2;
7437 
7438   uint64_t ResByArgNum = Record[Slot++];
7439   for (uint64_t I = 0; I != ResByArgNum; ++I)
7440     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7441 }
7442 
7443 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7444                                      StringRef Strtab,
7445                                      ModuleSummaryIndex &TheIndex) {
7446   size_t Slot = 0;
7447   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7448       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7449   Slot += 2;
7450 
7451   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7452   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7453   TypeId.TTRes.AlignLog2 = Record[Slot++];
7454   TypeId.TTRes.SizeM1 = Record[Slot++];
7455   TypeId.TTRes.BitMask = Record[Slot++];
7456   TypeId.TTRes.InlineBits = Record[Slot++];
7457 
7458   while (Slot < Record.size())
7459     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7460 }
7461 
7462 std::vector<FunctionSummary::ParamAccess>
7463 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7464   auto ReadRange = [&]() {
7465     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7466                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7467     Record = Record.drop_front();
7468     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7469                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7470     Record = Record.drop_front();
7471     ConstantRange Range{Lower, Upper};
7472     assert(!Range.isFullSet());
7473     assert(!Range.isUpperSignWrapped());
7474     return Range;
7475   };
7476 
7477   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7478   while (!Record.empty()) {
7479     PendingParamAccesses.emplace_back();
7480     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7481     ParamAccess.ParamNo = Record.front();
7482     Record = Record.drop_front();
7483     ParamAccess.Use = ReadRange();
7484     ParamAccess.Calls.resize(Record.front());
7485     Record = Record.drop_front();
7486     for (auto &Call : ParamAccess.Calls) {
7487       Call.ParamNo = Record.front();
7488       Record = Record.drop_front();
7489       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7490       Record = Record.drop_front();
7491       Call.Offsets = ReadRange();
7492     }
7493   }
7494   return PendingParamAccesses;
7495 }
7496 
7497 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7498     ArrayRef<uint64_t> Record, size_t &Slot,
7499     TypeIdCompatibleVtableInfo &TypeId) {
7500   uint64_t Offset = Record[Slot++];
7501   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7502   TypeId.push_back({Offset, Callee});
7503 }
7504 
7505 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7506     ArrayRef<uint64_t> Record) {
7507   size_t Slot = 0;
7508   TypeIdCompatibleVtableInfo &TypeId =
7509       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7510           {Strtab.data() + Record[Slot],
7511            static_cast<size_t>(Record[Slot + 1])});
7512   Slot += 2;
7513 
7514   while (Slot < Record.size())
7515     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7516 }
7517 
7518 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7519                            unsigned WOCnt) {
7520   // Readonly and writeonly refs are in the end of the refs list.
7521   assert(ROCnt + WOCnt <= Refs.size());
7522   unsigned FirstWORef = Refs.size() - WOCnt;
7523   unsigned RefNo = FirstWORef - ROCnt;
7524   for (; RefNo < FirstWORef; ++RefNo)
7525     Refs[RefNo].setReadOnly();
7526   for (; RefNo < Refs.size(); ++RefNo)
7527     Refs[RefNo].setWriteOnly();
7528 }
7529 
7530 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7531 // objects in the index.
7532 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7533   if (Error Err = Stream.EnterSubBlock(ID))
7534     return Err;
7535   SmallVector<uint64_t, 64> Record;
7536 
7537   // Parse version
7538   {
7539     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7540     if (!MaybeEntry)
7541       return MaybeEntry.takeError();
7542     BitstreamEntry Entry = MaybeEntry.get();
7543 
7544     if (Entry.Kind != BitstreamEntry::Record)
7545       return error("Invalid Summary Block: record for version expected");
7546     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7547     if (!MaybeRecord)
7548       return MaybeRecord.takeError();
7549     if (MaybeRecord.get() != bitc::FS_VERSION)
7550       return error("Invalid Summary Block: version expected");
7551   }
7552   const uint64_t Version = Record[0];
7553   const bool IsOldProfileFormat = Version == 1;
7554   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7555     return error("Invalid summary version " + Twine(Version) +
7556                  ". Version should be in the range [1-" +
7557                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7558                  "].");
7559   Record.clear();
7560 
7561   // Keep around the last seen summary to be used when we see an optional
7562   // "OriginalName" attachement.
7563   GlobalValueSummary *LastSeenSummary = nullptr;
7564   GlobalValue::GUID LastSeenGUID = 0;
7565 
7566   // We can expect to see any number of type ID information records before
7567   // each function summary records; these variables store the information
7568   // collected so far so that it can be used to create the summary object.
7569   std::vector<GlobalValue::GUID> PendingTypeTests;
7570   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7571       PendingTypeCheckedLoadVCalls;
7572   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7573       PendingTypeCheckedLoadConstVCalls;
7574   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7575 
7576   std::vector<CallsiteInfo> PendingCallsites;
7577   std::vector<AllocInfo> PendingAllocs;
7578 
7579   while (true) {
7580     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7581     if (!MaybeEntry)
7582       return MaybeEntry.takeError();
7583     BitstreamEntry Entry = MaybeEntry.get();
7584 
7585     switch (Entry.Kind) {
7586     case BitstreamEntry::SubBlock: // Handled for us already.
7587     case BitstreamEntry::Error:
7588       return error("Malformed block");
7589     case BitstreamEntry::EndBlock:
7590       return Error::success();
7591     case BitstreamEntry::Record:
7592       // The interesting case.
7593       break;
7594     }
7595 
7596     // Read a record. The record format depends on whether this
7597     // is a per-module index or a combined index file. In the per-module
7598     // case the records contain the associated value's ID for correlation
7599     // with VST entries. In the combined index the correlation is done
7600     // via the bitcode offset of the summary records (which were saved
7601     // in the combined index VST entries). The records also contain
7602     // information used for ThinLTO renaming and importing.
7603     Record.clear();
7604     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7605     if (!MaybeBitCode)
7606       return MaybeBitCode.takeError();
7607     switch (unsigned BitCode = MaybeBitCode.get()) {
7608     default: // Default behavior: ignore.
7609       break;
7610     case bitc::FS_FLAGS: {  // [flags]
7611       TheIndex.setFlags(Record[0]);
7612       break;
7613     }
7614     case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7615       uint64_t ValueID = Record[0];
7616       GlobalValue::GUID RefGUID;
7617       if (Version >= 11) {
7618         RefGUID = Record[1] << 32 | Record[2];
7619       } else {
7620         RefGUID = Record[1];
7621       }
7622       ValueIdToValueInfoMap[ValueID] =
7623           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7624       break;
7625     }
7626     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7627     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7628     //                numrefs x valueid, n x (valueid)]
7629     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7630     //                        numrefs x valueid,
7631     //                        n x (valueid, hotness+tailcall flags)]
7632     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7633     //                      numrefs x valueid,
7634     //                      n x (valueid, relblockfreq+tailcall)]
7635     case bitc::FS_PERMODULE:
7636     case bitc::FS_PERMODULE_RELBF:
7637     case bitc::FS_PERMODULE_PROFILE: {
7638       unsigned ValueID = Record[0];
7639       uint64_t RawFlags = Record[1];
7640       unsigned InstCount = Record[2];
7641       uint64_t RawFunFlags = 0;
7642       unsigned NumRefs = Record[3];
7643       unsigned NumRORefs = 0, NumWORefs = 0;
7644       int RefListStartIndex = 4;
7645       if (Version >= 4) {
7646         RawFunFlags = Record[3];
7647         NumRefs = Record[4];
7648         RefListStartIndex = 5;
7649         if (Version >= 5) {
7650           NumRORefs = Record[5];
7651           RefListStartIndex = 6;
7652           if (Version >= 7) {
7653             NumWORefs = Record[6];
7654             RefListStartIndex = 7;
7655           }
7656         }
7657       }
7658 
7659       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7660       // The module path string ref set in the summary must be owned by the
7661       // index's module string table. Since we don't have a module path
7662       // string table section in the per-module index, we create a single
7663       // module path string table entry with an empty (0) ID to take
7664       // ownership.
7665       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7666       assert(Record.size() >= RefListStartIndex + NumRefs &&
7667              "Record size inconsistent with number of references");
7668       SmallVector<ValueInfo, 0> Refs = makeRefList(
7669           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7670       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7671       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7672       SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7673           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7674           IsOldProfileFormat, HasProfile, HasRelBF);
7675       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7676       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7677       // In order to save memory, only record the memprof summaries if this is
7678       // the prevailing copy of a symbol. The linker doesn't resolve local
7679       // linkage values so don't check whether those are prevailing.
7680       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7681       if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
7682           !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7683         PendingCallsites.clear();
7684         PendingAllocs.clear();
7685       }
7686       auto FS = std::make_unique<FunctionSummary>(
7687           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7688           std::move(Calls), std::move(PendingTypeTests),
7689           std::move(PendingTypeTestAssumeVCalls),
7690           std::move(PendingTypeCheckedLoadVCalls),
7691           std::move(PendingTypeTestAssumeConstVCalls),
7692           std::move(PendingTypeCheckedLoadConstVCalls),
7693           std::move(PendingParamAccesses), std::move(PendingCallsites),
7694           std::move(PendingAllocs));
7695       FS->setModulePath(getThisModule()->first());
7696       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7697       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7698                                      std::move(FS));
7699       break;
7700     }
7701     // FS_ALIAS: [valueid, flags, valueid]
7702     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7703     // they expect all aliasee summaries to be available.
7704     case bitc::FS_ALIAS: {
7705       unsigned ValueID = Record[0];
7706       uint64_t RawFlags = Record[1];
7707       unsigned AliaseeID = Record[2];
7708       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7709       auto AS = std::make_unique<AliasSummary>(Flags);
7710       // The module path string ref set in the summary must be owned by the
7711       // index's module string table. Since we don't have a module path
7712       // string table section in the per-module index, we create a single
7713       // module path string table entry with an empty (0) ID to take
7714       // ownership.
7715       AS->setModulePath(getThisModule()->first());
7716 
7717       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7718       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7719       if (!AliaseeInModule)
7720         return error("Alias expects aliasee summary to be parsed");
7721       AS->setAliasee(AliaseeVI, AliaseeInModule);
7722 
7723       auto GUID = getValueInfoFromValueId(ValueID);
7724       AS->setOriginalName(std::get<1>(GUID));
7725       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7726       break;
7727     }
7728     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7729     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7730       unsigned ValueID = Record[0];
7731       uint64_t RawFlags = Record[1];
7732       unsigned RefArrayStart = 2;
7733       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7734                                       /* WriteOnly */ false,
7735                                       /* Constant */ false,
7736                                       GlobalObject::VCallVisibilityPublic);
7737       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7738       if (Version >= 5) {
7739         GVF = getDecodedGVarFlags(Record[2]);
7740         RefArrayStart = 3;
7741       }
7742       SmallVector<ValueInfo, 0> Refs =
7743           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7744       auto FS =
7745           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7746       FS->setModulePath(getThisModule()->first());
7747       auto GUID = getValueInfoFromValueId(ValueID);
7748       FS->setOriginalName(std::get<1>(GUID));
7749       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7750       break;
7751     }
7752     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7753     //                        numrefs, numrefs x valueid,
7754     //                        n x (valueid, offset)]
7755     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7756       unsigned ValueID = Record[0];
7757       uint64_t RawFlags = Record[1];
7758       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7759       unsigned NumRefs = Record[3];
7760       unsigned RefListStartIndex = 4;
7761       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7762       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7763       SmallVector<ValueInfo, 0> Refs = makeRefList(
7764           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7765       VTableFuncList VTableFuncs;
7766       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7767         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7768         uint64_t Offset = Record[++I];
7769         VTableFuncs.push_back({Callee, Offset});
7770       }
7771       auto VS =
7772           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7773       VS->setModulePath(getThisModule()->first());
7774       VS->setVTableFuncs(VTableFuncs);
7775       auto GUID = getValueInfoFromValueId(ValueID);
7776       VS->setOriginalName(std::get<1>(GUID));
7777       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7778       break;
7779     }
7780     // FS_COMBINED is legacy and does not have support for the tail call flag.
7781     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7782     //               numrefs x valueid, n x (valueid)]
7783     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7784     //                       numrefs x valueid,
7785     //                       n x (valueid, hotness+tailcall flags)]
7786     case bitc::FS_COMBINED:
7787     case bitc::FS_COMBINED_PROFILE: {
7788       unsigned ValueID = Record[0];
7789       uint64_t ModuleId = Record[1];
7790       uint64_t RawFlags = Record[2];
7791       unsigned InstCount = Record[3];
7792       uint64_t RawFunFlags = 0;
7793       unsigned NumRefs = Record[4];
7794       unsigned NumRORefs = 0, NumWORefs = 0;
7795       int RefListStartIndex = 5;
7796 
7797       if (Version >= 4) {
7798         RawFunFlags = Record[4];
7799         RefListStartIndex = 6;
7800         size_t NumRefsIndex = 5;
7801         if (Version >= 5) {
7802           unsigned NumRORefsOffset = 1;
7803           RefListStartIndex = 7;
7804           if (Version >= 6) {
7805             NumRefsIndex = 6;
7806             RefListStartIndex = 8;
7807             if (Version >= 7) {
7808               RefListStartIndex = 9;
7809               NumWORefs = Record[8];
7810               NumRORefsOffset = 2;
7811             }
7812           }
7813           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7814         }
7815         NumRefs = Record[NumRefsIndex];
7816       }
7817 
7818       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7819       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7820       assert(Record.size() >= RefListStartIndex + NumRefs &&
7821              "Record size inconsistent with number of references");
7822       SmallVector<ValueInfo, 0> Refs = makeRefList(
7823           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7824       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7825       SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7826           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7827           IsOldProfileFormat, HasProfile, false);
7828       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7829       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7830       auto FS = std::make_unique<FunctionSummary>(
7831           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7832           std::move(Edges), std::move(PendingTypeTests),
7833           std::move(PendingTypeTestAssumeVCalls),
7834           std::move(PendingTypeCheckedLoadVCalls),
7835           std::move(PendingTypeTestAssumeConstVCalls),
7836           std::move(PendingTypeCheckedLoadConstVCalls),
7837           std::move(PendingParamAccesses), std::move(PendingCallsites),
7838           std::move(PendingAllocs));
7839       LastSeenSummary = FS.get();
7840       LastSeenGUID = VI.getGUID();
7841       FS->setModulePath(ModuleIdMap[ModuleId]);
7842       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7843       break;
7844     }
7845     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7846     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7847     // they expect all aliasee summaries to be available.
7848     case bitc::FS_COMBINED_ALIAS: {
7849       unsigned ValueID = Record[0];
7850       uint64_t ModuleId = Record[1];
7851       uint64_t RawFlags = Record[2];
7852       unsigned AliaseeValueId = Record[3];
7853       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7854       auto AS = std::make_unique<AliasSummary>(Flags);
7855       LastSeenSummary = AS.get();
7856       AS->setModulePath(ModuleIdMap[ModuleId]);
7857 
7858       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7859       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7860       AS->setAliasee(AliaseeVI, AliaseeInModule);
7861 
7862       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7863       LastSeenGUID = VI.getGUID();
7864       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7865       break;
7866     }
7867     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7868     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7869       unsigned ValueID = Record[0];
7870       uint64_t ModuleId = Record[1];
7871       uint64_t RawFlags = Record[2];
7872       unsigned RefArrayStart = 3;
7873       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7874                                       /* WriteOnly */ false,
7875                                       /* Constant */ false,
7876                                       GlobalObject::VCallVisibilityPublic);
7877       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7878       if (Version >= 5) {
7879         GVF = getDecodedGVarFlags(Record[3]);
7880         RefArrayStart = 4;
7881       }
7882       SmallVector<ValueInfo, 0> Refs =
7883           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7884       auto FS =
7885           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7886       LastSeenSummary = FS.get();
7887       FS->setModulePath(ModuleIdMap[ModuleId]);
7888       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7889       LastSeenGUID = VI.getGUID();
7890       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7891       break;
7892     }
7893     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7894     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7895       uint64_t OriginalName = Record[0];
7896       if (!LastSeenSummary)
7897         return error("Name attachment that does not follow a combined record");
7898       LastSeenSummary->setOriginalName(OriginalName);
7899       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7900       // Reset the LastSeenSummary
7901       LastSeenSummary = nullptr;
7902       LastSeenGUID = 0;
7903       break;
7904     }
7905     case bitc::FS_TYPE_TESTS:
7906       assert(PendingTypeTests.empty());
7907       llvm::append_range(PendingTypeTests, Record);
7908       break;
7909 
7910     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7911       assert(PendingTypeTestAssumeVCalls.empty());
7912       for (unsigned I = 0; I != Record.size(); I += 2)
7913         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7914       break;
7915 
7916     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7917       assert(PendingTypeCheckedLoadVCalls.empty());
7918       for (unsigned I = 0; I != Record.size(); I += 2)
7919         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7920       break;
7921 
7922     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7923       PendingTypeTestAssumeConstVCalls.push_back(
7924           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7925       break;
7926 
7927     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7928       PendingTypeCheckedLoadConstVCalls.push_back(
7929           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7930       break;
7931 
7932     case bitc::FS_CFI_FUNCTION_DEFS: {
7933       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7934       for (unsigned I = 0; I != Record.size(); I += 2)
7935         CfiFunctionDefs.insert(
7936             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7937       break;
7938     }
7939 
7940     case bitc::FS_CFI_FUNCTION_DECLS: {
7941       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7942       for (unsigned I = 0; I != Record.size(); I += 2)
7943         CfiFunctionDecls.insert(
7944             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7945       break;
7946     }
7947 
7948     case bitc::FS_TYPE_ID:
7949       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7950       break;
7951 
7952     case bitc::FS_TYPE_ID_METADATA:
7953       parseTypeIdCompatibleVtableSummaryRecord(Record);
7954       break;
7955 
7956     case bitc::FS_BLOCK_COUNT:
7957       TheIndex.addBlockCount(Record[0]);
7958       break;
7959 
7960     case bitc::FS_PARAM_ACCESS: {
7961       PendingParamAccesses = parseParamAccesses(Record);
7962       break;
7963     }
7964 
7965     case bitc::FS_STACK_IDS: { // [n x stackid]
7966       // Save stack ids in the reader to consult when adding stack ids from the
7967       // lists in the stack node and alloc node entries.
7968       StackIds = ArrayRef<uint64_t>(Record);
7969       break;
7970     }
7971 
7972     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7973       unsigned ValueID = Record[0];
7974       SmallVector<unsigned> StackIdList;
7975       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7976         assert(*R < StackIds.size());
7977         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7978       }
7979       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7980       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7981       break;
7982     }
7983 
7984     case bitc::FS_COMBINED_CALLSITE_INFO: {
7985       auto RecordIter = Record.begin();
7986       unsigned ValueID = *RecordIter++;
7987       unsigned NumStackIds = *RecordIter++;
7988       unsigned NumVersions = *RecordIter++;
7989       assert(Record.size() == 3 + NumStackIds + NumVersions);
7990       SmallVector<unsigned> StackIdList;
7991       for (unsigned J = 0; J < NumStackIds; J++) {
7992         assert(*RecordIter < StackIds.size());
7993         StackIdList.push_back(
7994             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7995       }
7996       SmallVector<unsigned> Versions;
7997       for (unsigned J = 0; J < NumVersions; J++)
7998         Versions.push_back(*RecordIter++);
7999       ValueInfo VI = std::get<0>(
8000           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
8001       PendingCallsites.push_back(
8002           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8003       break;
8004     }
8005 
8006     case bitc::FS_PERMODULE_ALLOC_INFO: {
8007       unsigned I = 0;
8008       std::vector<MIBInfo> MIBs;
8009       unsigned NumMIBs = 0;
8010       if (Version >= 10)
8011         NumMIBs = Record[I++];
8012       unsigned MIBsRead = 0;
8013       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8014              (Version < 10 && I < Record.size())) {
8015         assert(Record.size() - I >= 2);
8016         AllocationType AllocType = (AllocationType)Record[I++];
8017         unsigned NumStackEntries = Record[I++];
8018         assert(Record.size() - I >= NumStackEntries);
8019         SmallVector<unsigned> StackIdList;
8020         for (unsigned J = 0; J < NumStackEntries; J++) {
8021           assert(Record[I] < StackIds.size());
8022           StackIdList.push_back(
8023               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8024         }
8025         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8026       }
8027       std::vector<uint64_t> TotalSizes;
8028       // We either have no sizes or NumMIBs of them.
8029       assert(I == Record.size() || Record.size() - I == NumMIBs);
8030       if (I < Record.size()) {
8031         MIBsRead = 0;
8032         while (MIBsRead++ < NumMIBs)
8033           TotalSizes.push_back(Record[I++]);
8034       }
8035       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8036       if (!TotalSizes.empty()) {
8037         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8038         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8039       }
8040       break;
8041     }
8042 
8043     case bitc::FS_COMBINED_ALLOC_INFO: {
8044       unsigned I = 0;
8045       std::vector<MIBInfo> MIBs;
8046       unsigned NumMIBs = Record[I++];
8047       unsigned NumVersions = Record[I++];
8048       unsigned MIBsRead = 0;
8049       while (MIBsRead++ < NumMIBs) {
8050         assert(Record.size() - I >= 2);
8051         AllocationType AllocType = (AllocationType)Record[I++];
8052         unsigned NumStackEntries = Record[I++];
8053         assert(Record.size() - I >= NumStackEntries);
8054         SmallVector<unsigned> StackIdList;
8055         for (unsigned J = 0; J < NumStackEntries; J++) {
8056           assert(Record[I] < StackIds.size());
8057           StackIdList.push_back(
8058               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8059         }
8060         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8061       }
8062       assert(Record.size() - I >= NumVersions);
8063       SmallVector<uint8_t> Versions;
8064       for (unsigned J = 0; J < NumVersions; J++)
8065         Versions.push_back(Record[I++]);
8066       std::vector<uint64_t> TotalSizes;
8067       // We either have no sizes or NumMIBs of them.
8068       assert(I == Record.size() || Record.size() - I == NumMIBs);
8069       if (I < Record.size()) {
8070         MIBsRead = 0;
8071         while (MIBsRead++ < NumMIBs) {
8072           TotalSizes.push_back(Record[I++]);
8073         }
8074       }
8075       PendingAllocs.push_back(
8076           AllocInfo(std::move(Versions), std::move(MIBs)));
8077       if (!TotalSizes.empty()) {
8078         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8079         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8080       }
8081       break;
8082     }
8083     }
8084   }
8085   llvm_unreachable("Exit infinite loop");
8086 }
8087 
8088 // Parse the  module string table block into the Index.
8089 // This populates the ModulePathStringTable map in the index.
8090 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8091   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8092     return Err;
8093 
8094   SmallVector<uint64_t, 64> Record;
8095 
8096   SmallString<128> ModulePath;
8097   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8098 
8099   while (true) {
8100     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8101     if (!MaybeEntry)
8102       return MaybeEntry.takeError();
8103     BitstreamEntry Entry = MaybeEntry.get();
8104 
8105     switch (Entry.Kind) {
8106     case BitstreamEntry::SubBlock: // Handled for us already.
8107     case BitstreamEntry::Error:
8108       return error("Malformed block");
8109     case BitstreamEntry::EndBlock:
8110       return Error::success();
8111     case BitstreamEntry::Record:
8112       // The interesting case.
8113       break;
8114     }
8115 
8116     Record.clear();
8117     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8118     if (!MaybeRecord)
8119       return MaybeRecord.takeError();
8120     switch (MaybeRecord.get()) {
8121     default: // Default behavior: ignore.
8122       break;
8123     case bitc::MST_CODE_ENTRY: {
8124       // MST_ENTRY: [modid, namechar x N]
8125       uint64_t ModuleId = Record[0];
8126 
8127       if (convertToString(Record, 1, ModulePath))
8128         return error("Invalid record");
8129 
8130       LastSeenModule = TheIndex.addModule(ModulePath);
8131       ModuleIdMap[ModuleId] = LastSeenModule->first();
8132 
8133       ModulePath.clear();
8134       break;
8135     }
8136     /// MST_CODE_HASH: [5*i32]
8137     case bitc::MST_CODE_HASH: {
8138       if (Record.size() != 5)
8139         return error("Invalid hash length " + Twine(Record.size()).str());
8140       if (!LastSeenModule)
8141         return error("Invalid hash that does not follow a module path");
8142       int Pos = 0;
8143       for (auto &Val : Record) {
8144         assert(!(Val >> 32) && "Unexpected high bits set");
8145         LastSeenModule->second[Pos++] = Val;
8146       }
8147       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8148       LastSeenModule = nullptr;
8149       break;
8150     }
8151     }
8152   }
8153   llvm_unreachable("Exit infinite loop");
8154 }
8155 
8156 namespace {
8157 
8158 // FIXME: This class is only here to support the transition to llvm::Error. It
8159 // will be removed once this transition is complete. Clients should prefer to
8160 // deal with the Error value directly, rather than converting to error_code.
8161 class BitcodeErrorCategoryType : public std::error_category {
8162   const char *name() const noexcept override {
8163     return "llvm.bitcode";
8164   }
8165 
8166   std::string message(int IE) const override {
8167     BitcodeError E = static_cast<BitcodeError>(IE);
8168     switch (E) {
8169     case BitcodeError::CorruptedBitcode:
8170       return "Corrupted bitcode";
8171     }
8172     llvm_unreachable("Unknown error type!");
8173   }
8174 };
8175 
8176 } // end anonymous namespace
8177 
8178 const std::error_category &llvm::BitcodeErrorCategory() {
8179   static BitcodeErrorCategoryType ErrorCategory;
8180   return ErrorCategory;
8181 }
8182 
8183 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8184                                             unsigned Block, unsigned RecordID) {
8185   if (Error Err = Stream.EnterSubBlock(Block))
8186     return std::move(Err);
8187 
8188   StringRef Strtab;
8189   while (true) {
8190     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8191     if (!MaybeEntry)
8192       return MaybeEntry.takeError();
8193     llvm::BitstreamEntry Entry = MaybeEntry.get();
8194 
8195     switch (Entry.Kind) {
8196     case BitstreamEntry::EndBlock:
8197       return Strtab;
8198 
8199     case BitstreamEntry::Error:
8200       return error("Malformed block");
8201 
8202     case BitstreamEntry::SubBlock:
8203       if (Error Err = Stream.SkipBlock())
8204         return std::move(Err);
8205       break;
8206 
8207     case BitstreamEntry::Record:
8208       StringRef Blob;
8209       SmallVector<uint64_t, 1> Record;
8210       Expected<unsigned> MaybeRecord =
8211           Stream.readRecord(Entry.ID, Record, &Blob);
8212       if (!MaybeRecord)
8213         return MaybeRecord.takeError();
8214       if (MaybeRecord.get() == RecordID)
8215         Strtab = Blob;
8216       break;
8217     }
8218   }
8219 }
8220 
8221 //===----------------------------------------------------------------------===//
8222 // External interface
8223 //===----------------------------------------------------------------------===//
8224 
8225 Expected<std::vector<BitcodeModule>>
8226 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8227   auto FOrErr = getBitcodeFileContents(Buffer);
8228   if (!FOrErr)
8229     return FOrErr.takeError();
8230   return std::move(FOrErr->Mods);
8231 }
8232 
8233 Expected<BitcodeFileContents>
8234 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8235   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8236   if (!StreamOrErr)
8237     return StreamOrErr.takeError();
8238   BitstreamCursor &Stream = *StreamOrErr;
8239 
8240   BitcodeFileContents F;
8241   while (true) {
8242     uint64_t BCBegin = Stream.getCurrentByteNo();
8243 
8244     // We may be consuming bitcode from a client that leaves garbage at the end
8245     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8246     // the end that there cannot possibly be another module, stop looking.
8247     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8248       return F;
8249 
8250     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8251     if (!MaybeEntry)
8252       return MaybeEntry.takeError();
8253     llvm::BitstreamEntry Entry = MaybeEntry.get();
8254 
8255     switch (Entry.Kind) {
8256     case BitstreamEntry::EndBlock:
8257     case BitstreamEntry::Error:
8258       return error("Malformed block");
8259 
8260     case BitstreamEntry::SubBlock: {
8261       uint64_t IdentificationBit = -1ull;
8262       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8263         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8264         if (Error Err = Stream.SkipBlock())
8265           return std::move(Err);
8266 
8267         {
8268           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8269           if (!MaybeEntry)
8270             return MaybeEntry.takeError();
8271           Entry = MaybeEntry.get();
8272         }
8273 
8274         if (Entry.Kind != BitstreamEntry::SubBlock ||
8275             Entry.ID != bitc::MODULE_BLOCK_ID)
8276           return error("Malformed block");
8277       }
8278 
8279       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8280         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8281         if (Error Err = Stream.SkipBlock())
8282           return std::move(Err);
8283 
8284         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8285                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8286                           Buffer.getBufferIdentifier(), IdentificationBit,
8287                           ModuleBit});
8288         continue;
8289       }
8290 
8291       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8292         Expected<StringRef> Strtab =
8293             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8294         if (!Strtab)
8295           return Strtab.takeError();
8296         // This string table is used by every preceding bitcode module that does
8297         // not have its own string table. A bitcode file may have multiple
8298         // string tables if it was created by binary concatenation, for example
8299         // with "llvm-cat -b".
8300         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8301           if (!I.Strtab.empty())
8302             break;
8303           I.Strtab = *Strtab;
8304         }
8305         // Similarly, the string table is used by every preceding symbol table;
8306         // normally there will be just one unless the bitcode file was created
8307         // by binary concatenation.
8308         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8309           F.StrtabForSymtab = *Strtab;
8310         continue;
8311       }
8312 
8313       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8314         Expected<StringRef> SymtabOrErr =
8315             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8316         if (!SymtabOrErr)
8317           return SymtabOrErr.takeError();
8318 
8319         // We can expect the bitcode file to have multiple symbol tables if it
8320         // was created by binary concatenation. In that case we silently
8321         // ignore any subsequent symbol tables, which is fine because this is a
8322         // low level function. The client is expected to notice that the number
8323         // of modules in the symbol table does not match the number of modules
8324         // in the input file and regenerate the symbol table.
8325         if (F.Symtab.empty())
8326           F.Symtab = *SymtabOrErr;
8327         continue;
8328       }
8329 
8330       if (Error Err = Stream.SkipBlock())
8331         return std::move(Err);
8332       continue;
8333     }
8334     case BitstreamEntry::Record:
8335       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8336         return std::move(E);
8337       continue;
8338     }
8339   }
8340 }
8341 
8342 /// Get a lazy one-at-time loading module from bitcode.
8343 ///
8344 /// This isn't always used in a lazy context.  In particular, it's also used by
8345 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8346 /// in forward-referenced functions from block address references.
8347 ///
8348 /// \param[in] MaterializeAll Set to \c true if we should materialize
8349 /// everything.
8350 Expected<std::unique_ptr<Module>>
8351 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8352                              bool ShouldLazyLoadMetadata, bool IsImporting,
8353                              ParserCallbacks Callbacks) {
8354   BitstreamCursor Stream(Buffer);
8355 
8356   std::string ProducerIdentification;
8357   if (IdentificationBit != -1ull) {
8358     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8359       return std::move(JumpFailed);
8360     if (Error E =
8361             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8362       return std::move(E);
8363   }
8364 
8365   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8366     return std::move(JumpFailed);
8367   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8368                               Context);
8369 
8370   std::unique_ptr<Module> M =
8371       std::make_unique<Module>(ModuleIdentifier, Context);
8372   M->setMaterializer(R);
8373 
8374   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8375   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8376                                       IsImporting, Callbacks))
8377     return std::move(Err);
8378 
8379   if (MaterializeAll) {
8380     // Read in the entire module, and destroy the BitcodeReader.
8381     if (Error Err = M->materializeAll())
8382       return std::move(Err);
8383   } else {
8384     // Resolve forward references from blockaddresses.
8385     if (Error Err = R->materializeForwardReferencedFunctions())
8386       return std::move(Err);
8387   }
8388 
8389   return std::move(M);
8390 }
8391 
8392 Expected<std::unique_ptr<Module>>
8393 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8394                              bool IsImporting, ParserCallbacks Callbacks) {
8395   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8396                        Callbacks);
8397 }
8398 
8399 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8400 // We don't use ModuleIdentifier here because the client may need to control the
8401 // module path used in the combined summary (e.g. when reading summaries for
8402 // regular LTO modules).
8403 Error BitcodeModule::readSummary(
8404     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8405     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8406   BitstreamCursor Stream(Buffer);
8407   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8408     return JumpFailed;
8409 
8410   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8411                                     ModulePath, IsPrevailing);
8412   return R.parseModule();
8413 }
8414 
8415 // Parse the specified bitcode buffer, returning the function info index.
8416 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8417   BitstreamCursor Stream(Buffer);
8418   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8419     return std::move(JumpFailed);
8420 
8421   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8422   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8423                                     ModuleIdentifier, 0);
8424 
8425   if (Error Err = R.parseModule())
8426     return std::move(Err);
8427 
8428   return std::move(Index);
8429 }
8430 
8431 static Expected<std::pair<bool, bool>>
8432 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8433                                                  unsigned ID,
8434                                                  BitcodeLTOInfo &LTOInfo) {
8435   if (Error Err = Stream.EnterSubBlock(ID))
8436     return std::move(Err);
8437   SmallVector<uint64_t, 64> Record;
8438 
8439   while (true) {
8440     BitstreamEntry Entry;
8441     std::pair<bool, bool> Result = {false,false};
8442     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8443       return std::move(E);
8444 
8445     switch (Entry.Kind) {
8446     case BitstreamEntry::SubBlock: // Handled for us already.
8447     case BitstreamEntry::Error:
8448       return error("Malformed block");
8449     case BitstreamEntry::EndBlock: {
8450       // If no flags record found, set both flags to false.
8451       return Result;
8452     }
8453     case BitstreamEntry::Record:
8454       // The interesting case.
8455       break;
8456     }
8457 
8458     // Look for the FS_FLAGS record.
8459     Record.clear();
8460     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8461     if (!MaybeBitCode)
8462       return MaybeBitCode.takeError();
8463     switch (MaybeBitCode.get()) {
8464     default: // Default behavior: ignore.
8465       break;
8466     case bitc::FS_FLAGS: { // [flags]
8467       uint64_t Flags = Record[0];
8468       // Scan flags.
8469       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8470 
8471       bool EnableSplitLTOUnit = Flags & 0x8;
8472       bool UnifiedLTO = Flags & 0x200;
8473       Result = {EnableSplitLTOUnit, UnifiedLTO};
8474 
8475       return Result;
8476     }
8477     }
8478   }
8479   llvm_unreachable("Exit infinite loop");
8480 }
8481 
8482 // Check if the given bitcode buffer contains a global value summary block.
8483 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8484   BitstreamCursor Stream(Buffer);
8485   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8486     return std::move(JumpFailed);
8487 
8488   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8489     return std::move(Err);
8490 
8491   while (true) {
8492     llvm::BitstreamEntry Entry;
8493     if (Error E = Stream.advance().moveInto(Entry))
8494       return std::move(E);
8495 
8496     switch (Entry.Kind) {
8497     case BitstreamEntry::Error:
8498       return error("Malformed block");
8499     case BitstreamEntry::EndBlock:
8500       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8501                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8502 
8503     case BitstreamEntry::SubBlock:
8504       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8505         BitcodeLTOInfo LTOInfo;
8506         Expected<std::pair<bool, bool>> Flags =
8507             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8508         if (!Flags)
8509           return Flags.takeError();
8510         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8511         LTOInfo.IsThinLTO = true;
8512         LTOInfo.HasSummary = true;
8513         return LTOInfo;
8514       }
8515 
8516       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8517         BitcodeLTOInfo LTOInfo;
8518         Expected<std::pair<bool, bool>> Flags =
8519             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8520         if (!Flags)
8521           return Flags.takeError();
8522         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8523         LTOInfo.IsThinLTO = false;
8524         LTOInfo.HasSummary = true;
8525         return LTOInfo;
8526       }
8527 
8528       // Ignore other sub-blocks.
8529       if (Error Err = Stream.SkipBlock())
8530         return std::move(Err);
8531       continue;
8532 
8533     case BitstreamEntry::Record:
8534       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8535         continue;
8536       else
8537         return StreamFailed.takeError();
8538     }
8539   }
8540 }
8541 
8542 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8543   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8544   if (!MsOrErr)
8545     return MsOrErr.takeError();
8546 
8547   if (MsOrErr->size() != 1)
8548     return error("Expected a single module");
8549 
8550   return (*MsOrErr)[0];
8551 }
8552 
8553 Expected<std::unique_ptr<Module>>
8554 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8555                            bool ShouldLazyLoadMetadata, bool IsImporting,
8556                            ParserCallbacks Callbacks) {
8557   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8558   if (!BM)
8559     return BM.takeError();
8560 
8561   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8562                            Callbacks);
8563 }
8564 
8565 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8566     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8567     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8568   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8569                                      IsImporting, Callbacks);
8570   if (MOrErr)
8571     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8572   return MOrErr;
8573 }
8574 
8575 Expected<std::unique_ptr<Module>>
8576 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8577   return getModuleImpl(Context, true, false, false, Callbacks);
8578   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8579   // written.  We must defer until the Module has been fully materialized.
8580 }
8581 
8582 Expected<std::unique_ptr<Module>>
8583 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8584                        ParserCallbacks Callbacks) {
8585   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8586   if (!BM)
8587     return BM.takeError();
8588 
8589   return BM->parseModule(Context, Callbacks);
8590 }
8591 
8592 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8593   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8594   if (!StreamOrErr)
8595     return StreamOrErr.takeError();
8596 
8597   return readTriple(*StreamOrErr);
8598 }
8599 
8600 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8601   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8602   if (!StreamOrErr)
8603     return StreamOrErr.takeError();
8604 
8605   return hasObjCCategory(*StreamOrErr);
8606 }
8607 
8608 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8609   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8610   if (!StreamOrErr)
8611     return StreamOrErr.takeError();
8612 
8613   return readIdentificationCode(*StreamOrErr);
8614 }
8615 
8616 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8617                                    ModuleSummaryIndex &CombinedIndex) {
8618   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8619   if (!BM)
8620     return BM.takeError();
8621 
8622   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8623 }
8624 
8625 Expected<std::unique_ptr<ModuleSummaryIndex>>
8626 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8627   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8628   if (!BM)
8629     return BM.takeError();
8630 
8631   return BM->getSummary();
8632 }
8633 
8634 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8635   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8636   if (!BM)
8637     return BM.takeError();
8638 
8639   return BM->getLTOInfo();
8640 }
8641 
8642 Expected<std::unique_ptr<ModuleSummaryIndex>>
8643 llvm::getModuleSummaryIndexForFile(StringRef Path,
8644                                    bool IgnoreEmptyThinLTOIndexFile) {
8645   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8646       MemoryBuffer::getFileOrSTDIN(Path);
8647   if (!FileOrErr)
8648     return errorCodeToError(FileOrErr.getError());
8649   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8650     return nullptr;
8651   return getModuleSummaryIndex(**FileOrErr);
8652 }
8653