1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 namespace { 98 99 enum { 100 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 101 }; 102 103 } // end anonymous namespace 104 105 static Error error(const Twine &Message) { 106 return make_error<StringError>( 107 Message, make_error_code(BitcodeError::CorruptedBitcode)); 108 } 109 110 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 111 if (!Stream.canSkipToPos(4)) 112 return createStringError(std::errc::illegal_byte_sequence, 113 "file too small to contain bitcode header"); 114 for (unsigned C : {'B', 'C'}) 115 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 116 if (Res.get() != C) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file doesn't start with bitcode header"); 119 } else 120 return Res.takeError(); 121 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 122 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 123 if (Res.get() != C) 124 return createStringError(std::errc::illegal_byte_sequence, 125 "file doesn't start with bitcode header"); 126 } else 127 return Res.takeError(); 128 return Error::success(); 129 } 130 131 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 132 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 133 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 134 135 if (Buffer.getBufferSize() & 3) 136 return error("Invalid bitcode signature"); 137 138 // If we have a wrapper header, parse it and ignore the non-bc file contents. 139 // The magic number is 0x0B17C0DE stored in little endian. 140 if (isBitcodeWrapper(BufPtr, BufEnd)) 141 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 142 return error("Invalid bitcode wrapper header"); 143 144 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 145 if (Error Err = hasInvalidBitcodeHeader(Stream)) 146 return std::move(Err); 147 148 return std::move(Stream); 149 } 150 151 /// Convert a string from a record into an std::string, return true on failure. 152 template <typename StrTy> 153 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 154 StrTy &Result) { 155 if (Idx > Record.size()) 156 return true; 157 158 Result.append(Record.begin() + Idx, Record.end()); 159 return false; 160 } 161 162 // Strip all the TBAA attachment for the module. 163 static void stripTBAA(Module *M) { 164 for (auto &F : *M) { 165 if (F.isMaterializable()) 166 continue; 167 for (auto &I : instructions(F)) 168 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 169 } 170 } 171 172 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 173 /// "epoch" encoded in the bitcode, and return the producer name if any. 174 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 175 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 176 return std::move(Err); 177 178 // Read all the records. 179 SmallVector<uint64_t, 64> Record; 180 181 std::string ProducerIdentification; 182 183 while (true) { 184 BitstreamEntry Entry; 185 if (Error E = Stream.advance().moveInto(Entry)) 186 return std::move(E); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Error E = Stream.advance().moveInto(Entry)) 231 return std::move(E); 232 233 switch (Entry.Kind) { 234 case BitstreamEntry::EndBlock: 235 case BitstreamEntry::Error: 236 return error("Malformed block"); 237 238 case BitstreamEntry::SubBlock: 239 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 240 return readIdentificationBlock(Stream); 241 242 // Ignore other sub-blocks. 243 if (Error Err = Stream.SkipBlock()) 244 return std::move(Err); 245 continue; 246 case BitstreamEntry::Record: 247 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 248 return std::move(E); 249 continue; 250 } 251 } 252 } 253 254 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 255 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 256 return std::move(Err); 257 258 SmallVector<uint64_t, 64> Record; 259 // Read all the records for this module. 260 261 while (true) { 262 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 263 if (!MaybeEntry) 264 return MaybeEntry.takeError(); 265 BitstreamEntry Entry = MaybeEntry.get(); 266 267 switch (Entry.Kind) { 268 case BitstreamEntry::SubBlock: // Handled for us already. 269 case BitstreamEntry::Error: 270 return error("Malformed block"); 271 case BitstreamEntry::EndBlock: 272 return false; 273 case BitstreamEntry::Record: 274 // The interesting case. 275 break; 276 } 277 278 // Read a record. 279 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 280 if (!MaybeRecord) 281 return MaybeRecord.takeError(); 282 switch (MaybeRecord.get()) { 283 default: 284 break; // Default behavior, ignore unknown content. 285 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 286 std::string S; 287 if (convertToString(Record, 0, S)) 288 return error("Invalid section name record"); 289 // Check for the i386 and other (x86_64, ARM) conventions 290 if (S.find("__DATA,__objc_catlist") != std::string::npos || 291 S.find("__OBJC,__category") != std::string::npos) 292 return true; 293 break; 294 } 295 } 296 Record.clear(); 297 } 298 llvm_unreachable("Exit infinite loop"); 299 } 300 301 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 302 // We expect a number of well-defined blocks, though we don't necessarily 303 // need to understand them all. 304 while (true) { 305 BitstreamEntry Entry; 306 if (Error E = Stream.advance().moveInto(Entry)) 307 return std::move(E); 308 309 switch (Entry.Kind) { 310 case BitstreamEntry::Error: 311 return error("Malformed block"); 312 case BitstreamEntry::EndBlock: 313 return false; 314 315 case BitstreamEntry::SubBlock: 316 if (Entry.ID == bitc::MODULE_BLOCK_ID) 317 return hasObjCCategoryInModule(Stream); 318 319 // Ignore other sub-blocks. 320 if (Error Err = Stream.SkipBlock()) 321 return std::move(Err); 322 continue; 323 324 case BitstreamEntry::Record: 325 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 326 return std::move(E); 327 continue; 328 } 329 } 330 } 331 332 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 333 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 334 return std::move(Err); 335 336 SmallVector<uint64_t, 64> Record; 337 338 std::string Triple; 339 340 // Read all the records for this module. 341 while (true) { 342 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 343 if (!MaybeEntry) 344 return MaybeEntry.takeError(); 345 BitstreamEntry Entry = MaybeEntry.get(); 346 347 switch (Entry.Kind) { 348 case BitstreamEntry::SubBlock: // Handled for us already. 349 case BitstreamEntry::Error: 350 return error("Malformed block"); 351 case BitstreamEntry::EndBlock: 352 return Triple; 353 case BitstreamEntry::Record: 354 // The interesting case. 355 break; 356 } 357 358 // Read a record. 359 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 360 if (!MaybeRecord) 361 return MaybeRecord.takeError(); 362 switch (MaybeRecord.get()) { 363 default: break; // Default behavior, ignore unknown content. 364 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 365 std::string S; 366 if (convertToString(Record, 0, S)) 367 return error("Invalid triple record"); 368 Triple = S; 369 break; 370 } 371 } 372 Record.clear(); 373 } 374 llvm_unreachable("Exit infinite loop"); 375 } 376 377 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 378 // We expect a number of well-defined blocks, though we don't necessarily 379 // need to understand them all. 380 while (true) { 381 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 382 if (!MaybeEntry) 383 return MaybeEntry.takeError(); 384 BitstreamEntry Entry = MaybeEntry.get(); 385 386 switch (Entry.Kind) { 387 case BitstreamEntry::Error: 388 return error("Malformed block"); 389 case BitstreamEntry::EndBlock: 390 return ""; 391 392 case BitstreamEntry::SubBlock: 393 if (Entry.ID == bitc::MODULE_BLOCK_ID) 394 return readModuleTriple(Stream); 395 396 // Ignore other sub-blocks. 397 if (Error Err = Stream.SkipBlock()) 398 return std::move(Err); 399 continue; 400 401 case BitstreamEntry::Record: 402 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 403 continue; 404 else 405 return Skipped.takeError(); 406 } 407 } 408 } 409 410 namespace { 411 412 class BitcodeReaderBase { 413 protected: 414 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 415 : Stream(std::move(Stream)), Strtab(Strtab) { 416 this->Stream.setBlockInfo(&BlockInfo); 417 } 418 419 BitstreamBlockInfo BlockInfo; 420 BitstreamCursor Stream; 421 StringRef Strtab; 422 423 /// In version 2 of the bitcode we store names of global values and comdats in 424 /// a string table rather than in the VST. 425 bool UseStrtab = false; 426 427 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 428 429 /// If this module uses a string table, pop the reference to the string table 430 /// and return the referenced string and the rest of the record. Otherwise 431 /// just return the record itself. 432 std::pair<StringRef, ArrayRef<uint64_t>> 433 readNameFromStrtab(ArrayRef<uint64_t> Record); 434 435 Error readBlockInfo(); 436 437 // Contains an arbitrary and optional string identifying the bitcode producer 438 std::string ProducerIdentification; 439 440 Error error(const Twine &Message); 441 }; 442 443 } // end anonymous namespace 444 445 Error BitcodeReaderBase::error(const Twine &Message) { 446 std::string FullMsg = Message.str(); 447 if (!ProducerIdentification.empty()) 448 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 449 LLVM_VERSION_STRING "')"; 450 return ::error(FullMsg); 451 } 452 453 Expected<unsigned> 454 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 455 if (Record.empty()) 456 return error("Invalid version record"); 457 unsigned ModuleVersion = Record[0]; 458 if (ModuleVersion > 2) 459 return error("Invalid value"); 460 UseStrtab = ModuleVersion >= 2; 461 return ModuleVersion; 462 } 463 464 std::pair<StringRef, ArrayRef<uint64_t>> 465 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 466 if (!UseStrtab) 467 return {"", Record}; 468 // Invalid reference. Let the caller complain about the record being empty. 469 if (Record[0] + Record[1] > Strtab.size()) 470 return {"", {}}; 471 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 472 } 473 474 namespace { 475 476 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 477 LLVMContext &Context; 478 Module *TheModule = nullptr; 479 // Next offset to start scanning for lazy parsing of function bodies. 480 uint64_t NextUnreadBit = 0; 481 // Last function offset found in the VST. 482 uint64_t LastFunctionBlockBit = 0; 483 bool SeenValueSymbolTable = false; 484 uint64_t VSTOffset = 0; 485 486 std::vector<std::string> SectionTable; 487 std::vector<std::string> GCTable; 488 489 std::vector<Type *> TypeList; 490 /// Track type IDs of contained types. Order is the same as the contained 491 /// types of a Type*. This is used during upgrades of typed pointer IR in 492 /// opaque pointer mode. 493 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 494 /// In some cases, we need to create a type ID for a type that was not 495 /// explicitly encoded in the bitcode, or we don't know about at the current 496 /// point. For example, a global may explicitly encode the value type ID, but 497 /// not have a type ID for the pointer to value type, for which we create a 498 /// virtual type ID instead. This map stores the new type ID that was created 499 /// for the given pair of Type and contained type ID. 500 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 501 DenseMap<Function *, unsigned> FunctionTypeIDs; 502 BitcodeReaderValueList ValueList; 503 Optional<MetadataLoader> MDLoader; 504 std::vector<Comdat *> ComdatList; 505 DenseSet<GlobalObject *> ImplicitComdatObjects; 506 SmallVector<Instruction *, 64> InstructionList; 507 508 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 509 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 510 511 struct FunctionOperandInfo { 512 Function *F; 513 unsigned PersonalityFn; 514 unsigned Prefix; 515 unsigned Prologue; 516 }; 517 std::vector<FunctionOperandInfo> FunctionOperands; 518 519 /// The set of attributes by index. Index zero in the file is for null, and 520 /// is thus not represented here. As such all indices are off by one. 521 std::vector<AttributeList> MAttributes; 522 523 /// The set of attribute groups. 524 std::map<unsigned, AttributeList> MAttributeGroups; 525 526 /// While parsing a function body, this is a list of the basic blocks for the 527 /// function. 528 std::vector<BasicBlock*> FunctionBBs; 529 530 // When reading the module header, this list is populated with functions that 531 // have bodies later in the file. 532 std::vector<Function*> FunctionsWithBodies; 533 534 // When intrinsic functions are encountered which require upgrading they are 535 // stored here with their replacement function. 536 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 537 UpdatedIntrinsicMap UpgradedIntrinsics; 538 // Intrinsics which were remangled because of types rename 539 UpdatedIntrinsicMap RemangledIntrinsics; 540 541 // Several operations happen after the module header has been read, but 542 // before function bodies are processed. This keeps track of whether 543 // we've done this yet. 544 bool SeenFirstFunctionBody = false; 545 546 /// When function bodies are initially scanned, this map contains info about 547 /// where to find deferred function body in the stream. 548 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 549 550 /// When Metadata block is initially scanned when parsing the module, we may 551 /// choose to defer parsing of the metadata. This vector contains info about 552 /// which Metadata blocks are deferred. 553 std::vector<uint64_t> DeferredMetadataInfo; 554 555 /// These are basic blocks forward-referenced by block addresses. They are 556 /// inserted lazily into functions when they're loaded. The basic block ID is 557 /// its index into the vector. 558 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 559 std::deque<Function *> BasicBlockFwdRefQueue; 560 561 /// These are Functions that contain BlockAddresses which refer a different 562 /// Function. When parsing the different Function, queue Functions that refer 563 /// to the different Function. Those Functions must be materialized in order 564 /// to resolve their BlockAddress constants before the different Function 565 /// gets moved into another Module. 566 std::vector<Function *> BackwardRefFunctions; 567 568 /// Indicates that we are using a new encoding for instruction operands where 569 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 570 /// instruction number, for a more compact encoding. Some instruction 571 /// operands are not relative to the instruction ID: basic block numbers, and 572 /// types. Once the old style function blocks have been phased out, we would 573 /// not need this flag. 574 bool UseRelativeIDs = false; 575 576 /// True if all functions will be materialized, negating the need to process 577 /// (e.g.) blockaddress forward references. 578 bool WillMaterializeAllForwardRefs = false; 579 580 bool StripDebugInfo = false; 581 TBAAVerifier TBAAVerifyHelper; 582 583 std::vector<std::string> BundleTags; 584 SmallVector<SyncScope::ID, 8> SSIDs; 585 586 public: 587 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 588 StringRef ProducerIdentification, LLVMContext &Context); 589 590 Error materializeForwardReferencedFunctions(); 591 592 Error materialize(GlobalValue *GV) override; 593 Error materializeModule() override; 594 std::vector<StructType *> getIdentifiedStructTypes() const override; 595 596 /// Main interface to parsing a bitcode buffer. 597 /// \returns true if an error occurred. 598 Error parseBitcodeInto( 599 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting, 600 DataLayoutCallbackTy DataLayoutCallback); 601 602 static uint64_t decodeSignRotatedValue(uint64_t V); 603 604 /// Materialize any deferred Metadata block. 605 Error materializeMetadata() override; 606 607 void setStripDebugInfo() override; 608 609 private: 610 std::vector<StructType *> IdentifiedStructTypes; 611 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 612 StructType *createIdentifiedStructType(LLVMContext &Context); 613 614 static constexpr unsigned InvalidTypeID = ~0u; 615 616 Type *getTypeByID(unsigned ID); 617 Type *getPtrElementTypeByID(unsigned ID); 618 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 619 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 620 621 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) { 622 if (Ty && Ty->isMetadataTy()) 623 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 624 return ValueList.getValueFwdRef(ID, Ty, TyID); 625 } 626 627 Metadata *getFnMetadataByID(unsigned ID) { 628 return MDLoader->getMetadataFwdRefOrLoad(ID); 629 } 630 631 BasicBlock *getBasicBlock(unsigned ID) const { 632 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 633 return FunctionBBs[ID]; 634 } 635 636 AttributeList getAttributes(unsigned i) const { 637 if (i-1 < MAttributes.size()) 638 return MAttributes[i-1]; 639 return AttributeList(); 640 } 641 642 /// Read a value/type pair out of the specified record from slot 'Slot'. 643 /// Increment Slot past the number of slots used in the record. Return true on 644 /// failure. 645 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 646 unsigned InstNum, Value *&ResVal, unsigned &TypeID) { 647 if (Slot == Record.size()) return true; 648 unsigned ValNo = (unsigned)Record[Slot++]; 649 // Adjust the ValNo, if it was encoded relative to the InstNum. 650 if (UseRelativeIDs) 651 ValNo = InstNum - ValNo; 652 if (ValNo < InstNum) { 653 // If this is not a forward reference, just return the value we already 654 // have. 655 TypeID = ValueList.getTypeID(ValNo); 656 ResVal = getFnValueByID(ValNo, nullptr, TypeID); 657 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 658 "Incorrect type ID stored for value"); 659 return ResVal == nullptr; 660 } 661 if (Slot == Record.size()) 662 return true; 663 664 TypeID = (unsigned)Record[Slot++]; 665 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID); 666 return ResVal == nullptr; 667 } 668 669 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 670 /// past the number of slots used by the value in the record. Return true if 671 /// there is an error. 672 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 673 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 674 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal)) 675 return true; 676 // All values currently take a single record slot. 677 ++Slot; 678 return false; 679 } 680 681 /// Like popValue, but does not increment the Slot number. 682 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 683 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 684 ResVal = getValue(Record, Slot, InstNum, Ty, TyID); 685 return ResVal == nullptr; 686 } 687 688 /// Version of getValue that returns ResVal directly, or 0 if there is an 689 /// error. 690 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 691 unsigned InstNum, Type *Ty, unsigned TyID) { 692 if (Slot == Record.size()) return nullptr; 693 unsigned ValNo = (unsigned)Record[Slot]; 694 // Adjust the ValNo, if it was encoded relative to the InstNum. 695 if (UseRelativeIDs) 696 ValNo = InstNum - ValNo; 697 return getFnValueByID(ValNo, Ty, TyID); 698 } 699 700 /// Like getValue, but decodes signed VBRs. 701 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 702 unsigned InstNum, Type *Ty, unsigned TyID) { 703 if (Slot == Record.size()) return nullptr; 704 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 705 // Adjust the ValNo, if it was encoded relative to the InstNum. 706 if (UseRelativeIDs) 707 ValNo = InstNum - ValNo; 708 return getFnValueByID(ValNo, Ty, TyID); 709 } 710 711 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 712 /// corresponding argument's pointee type. Also upgrades intrinsics that now 713 /// require an elementtype attribute. 714 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 715 716 /// Converts alignment exponent (i.e. power of two (or zero)) to the 717 /// corresponding alignment to use. If alignment is too large, returns 718 /// a corresponding error code. 719 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 720 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 721 Error parseModule( 722 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 723 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 724 725 Error parseComdatRecord(ArrayRef<uint64_t> Record); 726 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 727 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 728 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 729 ArrayRef<uint64_t> Record); 730 731 Error parseAttributeBlock(); 732 Error parseAttributeGroupBlock(); 733 Error parseTypeTable(); 734 Error parseTypeTableBody(); 735 Error parseOperandBundleTags(); 736 Error parseSyncScopeNames(); 737 738 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 739 unsigned NameIndex, Triple &TT); 740 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 741 ArrayRef<uint64_t> Record); 742 Error parseValueSymbolTable(uint64_t Offset = 0); 743 Error parseGlobalValueSymbolTable(); 744 Error parseConstants(); 745 Error rememberAndSkipFunctionBodies(); 746 Error rememberAndSkipFunctionBody(); 747 /// Save the positions of the Metadata blocks and skip parsing the blocks. 748 Error rememberAndSkipMetadata(); 749 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 750 Error parseFunctionBody(Function *F); 751 Error globalCleanup(); 752 Error resolveGlobalAndIndirectSymbolInits(); 753 Error parseUseLists(); 754 Error findFunctionInStream( 755 Function *F, 756 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 757 758 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 759 }; 760 761 /// Class to manage reading and parsing function summary index bitcode 762 /// files/sections. 763 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 764 /// The module index built during parsing. 765 ModuleSummaryIndex &TheIndex; 766 767 /// Indicates whether we have encountered a global value summary section 768 /// yet during parsing. 769 bool SeenGlobalValSummary = false; 770 771 /// Indicates whether we have already parsed the VST, used for error checking. 772 bool SeenValueSymbolTable = false; 773 774 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 775 /// Used to enable on-demand parsing of the VST. 776 uint64_t VSTOffset = 0; 777 778 // Map to save ValueId to ValueInfo association that was recorded in the 779 // ValueSymbolTable. It is used after the VST is parsed to convert 780 // call graph edges read from the function summary from referencing 781 // callees by their ValueId to using the ValueInfo instead, which is how 782 // they are recorded in the summary index being built. 783 // We save a GUID which refers to the same global as the ValueInfo, but 784 // ignoring the linkage, i.e. for values other than local linkage they are 785 // identical. 786 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 787 ValueIdToValueInfoMap; 788 789 /// Map populated during module path string table parsing, from the 790 /// module ID to a string reference owned by the index's module 791 /// path string table, used to correlate with combined index 792 /// summary records. 793 DenseMap<uint64_t, StringRef> ModuleIdMap; 794 795 /// Original source file name recorded in a bitcode record. 796 std::string SourceFileName; 797 798 /// The string identifier given to this module by the client, normally the 799 /// path to the bitcode file. 800 StringRef ModulePath; 801 802 /// For per-module summary indexes, the unique numerical identifier given to 803 /// this module by the client. 804 unsigned ModuleId; 805 806 public: 807 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 808 ModuleSummaryIndex &TheIndex, 809 StringRef ModulePath, unsigned ModuleId); 810 811 Error parseModule(); 812 813 private: 814 void setValueGUID(uint64_t ValueID, StringRef ValueName, 815 GlobalValue::LinkageTypes Linkage, 816 StringRef SourceFileName); 817 Error parseValueSymbolTable( 818 uint64_t Offset, 819 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 820 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 821 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 822 bool IsOldProfileFormat, 823 bool HasProfile, 824 bool HasRelBF); 825 Error parseEntireSummary(unsigned ID); 826 Error parseModuleStringTable(); 827 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 828 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 829 TypeIdCompatibleVtableInfo &TypeId); 830 std::vector<FunctionSummary::ParamAccess> 831 parseParamAccesses(ArrayRef<uint64_t> Record); 832 833 std::pair<ValueInfo, GlobalValue::GUID> 834 getValueInfoFromValueId(unsigned ValueId); 835 836 void addThisModule(); 837 ModuleSummaryIndex::ModuleInfo *getThisModule(); 838 }; 839 840 } // end anonymous namespace 841 842 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 843 Error Err) { 844 if (Err) { 845 std::error_code EC; 846 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 847 EC = EIB.convertToErrorCode(); 848 Ctx.emitError(EIB.message()); 849 }); 850 return EC; 851 } 852 return std::error_code(); 853 } 854 855 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 856 StringRef ProducerIdentification, 857 LLVMContext &Context) 858 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 859 ValueList(Context, this->Stream.SizeInBytes()) { 860 this->ProducerIdentification = std::string(ProducerIdentification); 861 } 862 863 Error BitcodeReader::materializeForwardReferencedFunctions() { 864 if (WillMaterializeAllForwardRefs) 865 return Error::success(); 866 867 // Prevent recursion. 868 WillMaterializeAllForwardRefs = true; 869 870 while (!BasicBlockFwdRefQueue.empty()) { 871 Function *F = BasicBlockFwdRefQueue.front(); 872 BasicBlockFwdRefQueue.pop_front(); 873 assert(F && "Expected valid function"); 874 if (!BasicBlockFwdRefs.count(F)) 875 // Already materialized. 876 continue; 877 878 // Check for a function that isn't materializable to prevent an infinite 879 // loop. When parsing a blockaddress stored in a global variable, there 880 // isn't a trivial way to check if a function will have a body without a 881 // linear search through FunctionsWithBodies, so just check it here. 882 if (!F->isMaterializable()) 883 return error("Never resolved function from blockaddress"); 884 885 // Try to materialize F. 886 if (Error Err = materialize(F)) 887 return Err; 888 } 889 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 890 891 for (Function *F : BackwardRefFunctions) 892 if (Error Err = materialize(F)) 893 return Err; 894 BackwardRefFunctions.clear(); 895 896 // Reset state. 897 WillMaterializeAllForwardRefs = false; 898 return Error::success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Helper functions to implement forward reference resolution, etc. 903 //===----------------------------------------------------------------------===// 904 905 static bool hasImplicitComdat(size_t Val) { 906 switch (Val) { 907 default: 908 return false; 909 case 1: // Old WeakAnyLinkage 910 case 4: // Old LinkOnceAnyLinkage 911 case 10: // Old WeakODRLinkage 912 case 11: // Old LinkOnceODRLinkage 913 return true; 914 } 915 } 916 917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 918 switch (Val) { 919 default: // Map unknown/new linkages to external 920 case 0: 921 return GlobalValue::ExternalLinkage; 922 case 2: 923 return GlobalValue::AppendingLinkage; 924 case 3: 925 return GlobalValue::InternalLinkage; 926 case 5: 927 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 928 case 6: 929 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 930 case 7: 931 return GlobalValue::ExternalWeakLinkage; 932 case 8: 933 return GlobalValue::CommonLinkage; 934 case 9: 935 return GlobalValue::PrivateLinkage; 936 case 12: 937 return GlobalValue::AvailableExternallyLinkage; 938 case 13: 939 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 940 case 14: 941 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 942 case 15: 943 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 944 case 1: // Old value with implicit comdat. 945 case 16: 946 return GlobalValue::WeakAnyLinkage; 947 case 10: // Old value with implicit comdat. 948 case 17: 949 return GlobalValue::WeakODRLinkage; 950 case 4: // Old value with implicit comdat. 951 case 18: 952 return GlobalValue::LinkOnceAnyLinkage; 953 case 11: // Old value with implicit comdat. 954 case 19: 955 return GlobalValue::LinkOnceODRLinkage; 956 } 957 } 958 959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 960 FunctionSummary::FFlags Flags; 961 Flags.ReadNone = RawFlags & 0x1; 962 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 963 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 964 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 965 Flags.NoInline = (RawFlags >> 4) & 0x1; 966 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 967 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 968 Flags.MayThrow = (RawFlags >> 7) & 0x1; 969 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 970 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 971 return Flags; 972 } 973 974 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 975 // 976 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 977 // visibility: [8, 10). 978 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 979 uint64_t Version) { 980 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 981 // like getDecodedLinkage() above. Any future change to the linkage enum and 982 // to getDecodedLinkage() will need to be taken into account here as above. 983 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 984 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 985 RawFlags = RawFlags >> 4; 986 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 987 // The Live flag wasn't introduced until version 3. For dead stripping 988 // to work correctly on earlier versions, we must conservatively treat all 989 // values as live. 990 bool Live = (RawFlags & 0x2) || Version < 3; 991 bool Local = (RawFlags & 0x4); 992 bool AutoHide = (RawFlags & 0x8); 993 994 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 995 Live, Local, AutoHide); 996 } 997 998 // Decode the flags for GlobalVariable in the summary 999 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1000 return GlobalVarSummary::GVarFlags( 1001 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1002 (RawFlags & 0x4) ? true : false, 1003 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1004 } 1005 1006 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1007 switch (Val) { 1008 default: // Map unknown visibilities to default. 1009 case 0: return GlobalValue::DefaultVisibility; 1010 case 1: return GlobalValue::HiddenVisibility; 1011 case 2: return GlobalValue::ProtectedVisibility; 1012 } 1013 } 1014 1015 static GlobalValue::DLLStorageClassTypes 1016 getDecodedDLLStorageClass(unsigned Val) { 1017 switch (Val) { 1018 default: // Map unknown values to default. 1019 case 0: return GlobalValue::DefaultStorageClass; 1020 case 1: return GlobalValue::DLLImportStorageClass; 1021 case 2: return GlobalValue::DLLExportStorageClass; 1022 } 1023 } 1024 1025 static bool getDecodedDSOLocal(unsigned Val) { 1026 switch(Val) { 1027 default: // Map unknown values to preemptable. 1028 case 0: return false; 1029 case 1: return true; 1030 } 1031 } 1032 1033 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1034 switch (Val) { 1035 case 0: return GlobalVariable::NotThreadLocal; 1036 default: // Map unknown non-zero value to general dynamic. 1037 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1038 case 2: return GlobalVariable::LocalDynamicTLSModel; 1039 case 3: return GlobalVariable::InitialExecTLSModel; 1040 case 4: return GlobalVariable::LocalExecTLSModel; 1041 } 1042 } 1043 1044 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1045 switch (Val) { 1046 default: // Map unknown to UnnamedAddr::None. 1047 case 0: return GlobalVariable::UnnamedAddr::None; 1048 case 1: return GlobalVariable::UnnamedAddr::Global; 1049 case 2: return GlobalVariable::UnnamedAddr::Local; 1050 } 1051 } 1052 1053 static int getDecodedCastOpcode(unsigned Val) { 1054 switch (Val) { 1055 default: return -1; 1056 case bitc::CAST_TRUNC : return Instruction::Trunc; 1057 case bitc::CAST_ZEXT : return Instruction::ZExt; 1058 case bitc::CAST_SEXT : return Instruction::SExt; 1059 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1060 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1061 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1062 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1063 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1064 case bitc::CAST_FPEXT : return Instruction::FPExt; 1065 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1066 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1067 case bitc::CAST_BITCAST : return Instruction::BitCast; 1068 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1069 } 1070 } 1071 1072 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1073 bool IsFP = Ty->isFPOrFPVectorTy(); 1074 // UnOps are only valid for int/fp or vector of int/fp types 1075 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1076 return -1; 1077 1078 switch (Val) { 1079 default: 1080 return -1; 1081 case bitc::UNOP_FNEG: 1082 return IsFP ? Instruction::FNeg : -1; 1083 } 1084 } 1085 1086 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1087 bool IsFP = Ty->isFPOrFPVectorTy(); 1088 // BinOps are only valid for int/fp or vector of int/fp types 1089 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1090 return -1; 1091 1092 switch (Val) { 1093 default: 1094 return -1; 1095 case bitc::BINOP_ADD: 1096 return IsFP ? Instruction::FAdd : Instruction::Add; 1097 case bitc::BINOP_SUB: 1098 return IsFP ? Instruction::FSub : Instruction::Sub; 1099 case bitc::BINOP_MUL: 1100 return IsFP ? Instruction::FMul : Instruction::Mul; 1101 case bitc::BINOP_UDIV: 1102 return IsFP ? -1 : Instruction::UDiv; 1103 case bitc::BINOP_SDIV: 1104 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1105 case bitc::BINOP_UREM: 1106 return IsFP ? -1 : Instruction::URem; 1107 case bitc::BINOP_SREM: 1108 return IsFP ? Instruction::FRem : Instruction::SRem; 1109 case bitc::BINOP_SHL: 1110 return IsFP ? -1 : Instruction::Shl; 1111 case bitc::BINOP_LSHR: 1112 return IsFP ? -1 : Instruction::LShr; 1113 case bitc::BINOP_ASHR: 1114 return IsFP ? -1 : Instruction::AShr; 1115 case bitc::BINOP_AND: 1116 return IsFP ? -1 : Instruction::And; 1117 case bitc::BINOP_OR: 1118 return IsFP ? -1 : Instruction::Or; 1119 case bitc::BINOP_XOR: 1120 return IsFP ? -1 : Instruction::Xor; 1121 } 1122 } 1123 1124 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1125 switch (Val) { 1126 default: return AtomicRMWInst::BAD_BINOP; 1127 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1128 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1129 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1130 case bitc::RMW_AND: return AtomicRMWInst::And; 1131 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1132 case bitc::RMW_OR: return AtomicRMWInst::Or; 1133 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1134 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1135 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1136 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1137 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1138 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1139 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1140 } 1141 } 1142 1143 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1144 switch (Val) { 1145 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1146 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1147 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1148 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1149 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1150 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1151 default: // Map unknown orderings to sequentially-consistent. 1152 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1153 } 1154 } 1155 1156 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1157 switch (Val) { 1158 default: // Map unknown selection kinds to any. 1159 case bitc::COMDAT_SELECTION_KIND_ANY: 1160 return Comdat::Any; 1161 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1162 return Comdat::ExactMatch; 1163 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1164 return Comdat::Largest; 1165 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1166 return Comdat::NoDeduplicate; 1167 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1168 return Comdat::SameSize; 1169 } 1170 } 1171 1172 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1173 FastMathFlags FMF; 1174 if (0 != (Val & bitc::UnsafeAlgebra)) 1175 FMF.setFast(); 1176 if (0 != (Val & bitc::AllowReassoc)) 1177 FMF.setAllowReassoc(); 1178 if (0 != (Val & bitc::NoNaNs)) 1179 FMF.setNoNaNs(); 1180 if (0 != (Val & bitc::NoInfs)) 1181 FMF.setNoInfs(); 1182 if (0 != (Val & bitc::NoSignedZeros)) 1183 FMF.setNoSignedZeros(); 1184 if (0 != (Val & bitc::AllowReciprocal)) 1185 FMF.setAllowReciprocal(); 1186 if (0 != (Val & bitc::AllowContract)) 1187 FMF.setAllowContract(true); 1188 if (0 != (Val & bitc::ApproxFunc)) 1189 FMF.setApproxFunc(); 1190 return FMF; 1191 } 1192 1193 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1194 switch (Val) { 1195 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1196 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1197 } 1198 } 1199 1200 Type *BitcodeReader::getTypeByID(unsigned ID) { 1201 // The type table size is always specified correctly. 1202 if (ID >= TypeList.size()) 1203 return nullptr; 1204 1205 if (Type *Ty = TypeList[ID]) 1206 return Ty; 1207 1208 // If we have a forward reference, the only possible case is when it is to a 1209 // named struct. Just create a placeholder for now. 1210 return TypeList[ID] = createIdentifiedStructType(Context); 1211 } 1212 1213 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1214 auto It = ContainedTypeIDs.find(ID); 1215 if (It == ContainedTypeIDs.end()) 1216 return InvalidTypeID; 1217 1218 if (Idx >= It->second.size()) 1219 return InvalidTypeID; 1220 1221 return It->second[Idx]; 1222 } 1223 1224 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1225 if (ID >= TypeList.size()) 1226 return nullptr; 1227 1228 Type *Ty = TypeList[ID]; 1229 if (!Ty->isPointerTy()) 1230 return nullptr; 1231 1232 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1233 if (!ElemTy) 1234 return nullptr; 1235 1236 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1237 "Incorrect element type"); 1238 return ElemTy; 1239 } 1240 1241 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1242 ArrayRef<unsigned> ChildTypeIDs) { 1243 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1244 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1245 auto It = VirtualTypeIDs.find(CacheKey); 1246 if (It != VirtualTypeIDs.end()) { 1247 // The cmpxchg return value is the only place we need more than one 1248 // contained type ID, however the second one will always be the same (i1), 1249 // so we don't need to include it in the cache key. This asserts that the 1250 // contained types are indeed as expected and there are no collisions. 1251 assert((ChildTypeIDs.empty() || 1252 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1253 "Incorrect cached contained type IDs"); 1254 return It->second; 1255 } 1256 1257 #ifndef NDEBUG 1258 if (!Ty->isOpaquePointerTy()) { 1259 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1260 "Wrong number of contained types"); 1261 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1262 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1263 "Incorrect contained type ID"); 1264 } 1265 } 1266 #endif 1267 1268 unsigned TypeID = TypeList.size(); 1269 TypeList.push_back(Ty); 1270 if (!ChildTypeIDs.empty()) 1271 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1272 VirtualTypeIDs.insert({CacheKey, TypeID}); 1273 return TypeID; 1274 } 1275 1276 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1277 StringRef Name) { 1278 auto *Ret = StructType::create(Context, Name); 1279 IdentifiedStructTypes.push_back(Ret); 1280 return Ret; 1281 } 1282 1283 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1284 auto *Ret = StructType::create(Context); 1285 IdentifiedStructTypes.push_back(Ret); 1286 return Ret; 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // Functions for parsing blocks from the bitcode file 1291 //===----------------------------------------------------------------------===// 1292 1293 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1294 switch (Val) { 1295 case Attribute::EndAttrKinds: 1296 case Attribute::EmptyKey: 1297 case Attribute::TombstoneKey: 1298 llvm_unreachable("Synthetic enumerators which should never get here"); 1299 1300 case Attribute::None: return 0; 1301 case Attribute::ZExt: return 1 << 0; 1302 case Attribute::SExt: return 1 << 1; 1303 case Attribute::NoReturn: return 1 << 2; 1304 case Attribute::InReg: return 1 << 3; 1305 case Attribute::StructRet: return 1 << 4; 1306 case Attribute::NoUnwind: return 1 << 5; 1307 case Attribute::NoAlias: return 1 << 6; 1308 case Attribute::ByVal: return 1 << 7; 1309 case Attribute::Nest: return 1 << 8; 1310 case Attribute::ReadNone: return 1 << 9; 1311 case Attribute::ReadOnly: return 1 << 10; 1312 case Attribute::NoInline: return 1 << 11; 1313 case Attribute::AlwaysInline: return 1 << 12; 1314 case Attribute::OptimizeForSize: return 1 << 13; 1315 case Attribute::StackProtect: return 1 << 14; 1316 case Attribute::StackProtectReq: return 1 << 15; 1317 case Attribute::Alignment: return 31 << 16; 1318 case Attribute::NoCapture: return 1 << 21; 1319 case Attribute::NoRedZone: return 1 << 22; 1320 case Attribute::NoImplicitFloat: return 1 << 23; 1321 case Attribute::Naked: return 1 << 24; 1322 case Attribute::InlineHint: return 1 << 25; 1323 case Attribute::StackAlignment: return 7 << 26; 1324 case Attribute::ReturnsTwice: return 1 << 29; 1325 case Attribute::UWTable: return 1 << 30; 1326 case Attribute::NonLazyBind: return 1U << 31; 1327 case Attribute::SanitizeAddress: return 1ULL << 32; 1328 case Attribute::MinSize: return 1ULL << 33; 1329 case Attribute::NoDuplicate: return 1ULL << 34; 1330 case Attribute::StackProtectStrong: return 1ULL << 35; 1331 case Attribute::SanitizeThread: return 1ULL << 36; 1332 case Attribute::SanitizeMemory: return 1ULL << 37; 1333 case Attribute::NoBuiltin: return 1ULL << 38; 1334 case Attribute::Returned: return 1ULL << 39; 1335 case Attribute::Cold: return 1ULL << 40; 1336 case Attribute::Builtin: return 1ULL << 41; 1337 case Attribute::OptimizeNone: return 1ULL << 42; 1338 case Attribute::InAlloca: return 1ULL << 43; 1339 case Attribute::NonNull: return 1ULL << 44; 1340 case Attribute::JumpTable: return 1ULL << 45; 1341 case Attribute::Convergent: return 1ULL << 46; 1342 case Attribute::SafeStack: return 1ULL << 47; 1343 case Attribute::NoRecurse: return 1ULL << 48; 1344 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1345 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1346 case Attribute::SwiftSelf: return 1ULL << 51; 1347 case Attribute::SwiftError: return 1ULL << 52; 1348 case Attribute::WriteOnly: return 1ULL << 53; 1349 case Attribute::Speculatable: return 1ULL << 54; 1350 case Attribute::StrictFP: return 1ULL << 55; 1351 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1352 case Attribute::NoCfCheck: return 1ULL << 57; 1353 case Attribute::OptForFuzzing: return 1ULL << 58; 1354 case Attribute::ShadowCallStack: return 1ULL << 59; 1355 case Attribute::SpeculativeLoadHardening: 1356 return 1ULL << 60; 1357 case Attribute::ImmArg: 1358 return 1ULL << 61; 1359 case Attribute::WillReturn: 1360 return 1ULL << 62; 1361 case Attribute::NoFree: 1362 return 1ULL << 63; 1363 default: 1364 // Other attributes are not supported in the raw format, 1365 // as we ran out of space. 1366 return 0; 1367 } 1368 llvm_unreachable("Unsupported attribute type"); 1369 } 1370 1371 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1372 if (!Val) return; 1373 1374 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1375 I = Attribute::AttrKind(I + 1)) { 1376 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1377 if (I == Attribute::Alignment) 1378 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1379 else if (I == Attribute::StackAlignment) 1380 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1381 else if (Attribute::isTypeAttrKind(I)) 1382 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1383 else 1384 B.addAttribute(I); 1385 } 1386 } 1387 } 1388 1389 /// This fills an AttrBuilder object with the LLVM attributes that have 1390 /// been decoded from the given integer. This function must stay in sync with 1391 /// 'encodeLLVMAttributesForBitcode'. 1392 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1393 uint64_t EncodedAttrs) { 1394 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1395 // the bits above 31 down by 11 bits. 1396 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1397 assert((!Alignment || isPowerOf2_32(Alignment)) && 1398 "Alignment must be a power of two."); 1399 1400 if (Alignment) 1401 B.addAlignmentAttr(Alignment); 1402 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1403 (EncodedAttrs & 0xffff)); 1404 } 1405 1406 Error BitcodeReader::parseAttributeBlock() { 1407 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1408 return Err; 1409 1410 if (!MAttributes.empty()) 1411 return error("Invalid multiple blocks"); 1412 1413 SmallVector<uint64_t, 64> Record; 1414 1415 SmallVector<AttributeList, 8> Attrs; 1416 1417 // Read all the records. 1418 while (true) { 1419 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1420 if (!MaybeEntry) 1421 return MaybeEntry.takeError(); 1422 BitstreamEntry Entry = MaybeEntry.get(); 1423 1424 switch (Entry.Kind) { 1425 case BitstreamEntry::SubBlock: // Handled for us already. 1426 case BitstreamEntry::Error: 1427 return error("Malformed block"); 1428 case BitstreamEntry::EndBlock: 1429 return Error::success(); 1430 case BitstreamEntry::Record: 1431 // The interesting case. 1432 break; 1433 } 1434 1435 // Read a record. 1436 Record.clear(); 1437 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1438 if (!MaybeRecord) 1439 return MaybeRecord.takeError(); 1440 switch (MaybeRecord.get()) { 1441 default: // Default behavior: ignore. 1442 break; 1443 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1444 // Deprecated, but still needed to read old bitcode files. 1445 if (Record.size() & 1) 1446 return error("Invalid parameter attribute record"); 1447 1448 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1449 AttrBuilder B(Context); 1450 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1451 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1452 } 1453 1454 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1455 Attrs.clear(); 1456 break; 1457 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1458 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1459 Attrs.push_back(MAttributeGroups[Record[i]]); 1460 1461 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1462 Attrs.clear(); 1463 break; 1464 } 1465 } 1466 } 1467 1468 // Returns Attribute::None on unrecognized codes. 1469 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1470 switch (Code) { 1471 default: 1472 return Attribute::None; 1473 case bitc::ATTR_KIND_ALIGNMENT: 1474 return Attribute::Alignment; 1475 case bitc::ATTR_KIND_ALWAYS_INLINE: 1476 return Attribute::AlwaysInline; 1477 case bitc::ATTR_KIND_ARGMEMONLY: 1478 return Attribute::ArgMemOnly; 1479 case bitc::ATTR_KIND_BUILTIN: 1480 return Attribute::Builtin; 1481 case bitc::ATTR_KIND_BY_VAL: 1482 return Attribute::ByVal; 1483 case bitc::ATTR_KIND_IN_ALLOCA: 1484 return Attribute::InAlloca; 1485 case bitc::ATTR_KIND_COLD: 1486 return Attribute::Cold; 1487 case bitc::ATTR_KIND_CONVERGENT: 1488 return Attribute::Convergent; 1489 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1490 return Attribute::DisableSanitizerInstrumentation; 1491 case bitc::ATTR_KIND_ELEMENTTYPE: 1492 return Attribute::ElementType; 1493 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1494 return Attribute::InaccessibleMemOnly; 1495 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1496 return Attribute::InaccessibleMemOrArgMemOnly; 1497 case bitc::ATTR_KIND_INLINE_HINT: 1498 return Attribute::InlineHint; 1499 case bitc::ATTR_KIND_IN_REG: 1500 return Attribute::InReg; 1501 case bitc::ATTR_KIND_JUMP_TABLE: 1502 return Attribute::JumpTable; 1503 case bitc::ATTR_KIND_MIN_SIZE: 1504 return Attribute::MinSize; 1505 case bitc::ATTR_KIND_NAKED: 1506 return Attribute::Naked; 1507 case bitc::ATTR_KIND_NEST: 1508 return Attribute::Nest; 1509 case bitc::ATTR_KIND_NO_ALIAS: 1510 return Attribute::NoAlias; 1511 case bitc::ATTR_KIND_NO_BUILTIN: 1512 return Attribute::NoBuiltin; 1513 case bitc::ATTR_KIND_NO_CALLBACK: 1514 return Attribute::NoCallback; 1515 case bitc::ATTR_KIND_NO_CAPTURE: 1516 return Attribute::NoCapture; 1517 case bitc::ATTR_KIND_NO_DUPLICATE: 1518 return Attribute::NoDuplicate; 1519 case bitc::ATTR_KIND_NOFREE: 1520 return Attribute::NoFree; 1521 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1522 return Attribute::NoImplicitFloat; 1523 case bitc::ATTR_KIND_NO_INLINE: 1524 return Attribute::NoInline; 1525 case bitc::ATTR_KIND_NO_RECURSE: 1526 return Attribute::NoRecurse; 1527 case bitc::ATTR_KIND_NO_MERGE: 1528 return Attribute::NoMerge; 1529 case bitc::ATTR_KIND_NON_LAZY_BIND: 1530 return Attribute::NonLazyBind; 1531 case bitc::ATTR_KIND_NON_NULL: 1532 return Attribute::NonNull; 1533 case bitc::ATTR_KIND_DEREFERENCEABLE: 1534 return Attribute::Dereferenceable; 1535 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1536 return Attribute::DereferenceableOrNull; 1537 case bitc::ATTR_KIND_ALLOC_ALIGN: 1538 return Attribute::AllocAlign; 1539 case bitc::ATTR_KIND_ALLOC_KIND: 1540 return Attribute::AllocKind; 1541 case bitc::ATTR_KIND_ALLOC_SIZE: 1542 return Attribute::AllocSize; 1543 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1544 return Attribute::AllocatedPointer; 1545 case bitc::ATTR_KIND_NO_RED_ZONE: 1546 return Attribute::NoRedZone; 1547 case bitc::ATTR_KIND_NO_RETURN: 1548 return Attribute::NoReturn; 1549 case bitc::ATTR_KIND_NOSYNC: 1550 return Attribute::NoSync; 1551 case bitc::ATTR_KIND_NOCF_CHECK: 1552 return Attribute::NoCfCheck; 1553 case bitc::ATTR_KIND_NO_PROFILE: 1554 return Attribute::NoProfile; 1555 case bitc::ATTR_KIND_NO_UNWIND: 1556 return Attribute::NoUnwind; 1557 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1558 return Attribute::NoSanitizeBounds; 1559 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1560 return Attribute::NoSanitizeCoverage; 1561 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1562 return Attribute::NullPointerIsValid; 1563 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1564 return Attribute::OptForFuzzing; 1565 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1566 return Attribute::OptimizeForSize; 1567 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1568 return Attribute::OptimizeNone; 1569 case bitc::ATTR_KIND_READ_NONE: 1570 return Attribute::ReadNone; 1571 case bitc::ATTR_KIND_READ_ONLY: 1572 return Attribute::ReadOnly; 1573 case bitc::ATTR_KIND_RETURNED: 1574 return Attribute::Returned; 1575 case bitc::ATTR_KIND_RETURNS_TWICE: 1576 return Attribute::ReturnsTwice; 1577 case bitc::ATTR_KIND_S_EXT: 1578 return Attribute::SExt; 1579 case bitc::ATTR_KIND_SPECULATABLE: 1580 return Attribute::Speculatable; 1581 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1582 return Attribute::StackAlignment; 1583 case bitc::ATTR_KIND_STACK_PROTECT: 1584 return Attribute::StackProtect; 1585 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1586 return Attribute::StackProtectReq; 1587 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1588 return Attribute::StackProtectStrong; 1589 case bitc::ATTR_KIND_SAFESTACK: 1590 return Attribute::SafeStack; 1591 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1592 return Attribute::ShadowCallStack; 1593 case bitc::ATTR_KIND_STRICT_FP: 1594 return Attribute::StrictFP; 1595 case bitc::ATTR_KIND_STRUCT_RET: 1596 return Attribute::StructRet; 1597 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1598 return Attribute::SanitizeAddress; 1599 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1600 return Attribute::SanitizeHWAddress; 1601 case bitc::ATTR_KIND_SANITIZE_THREAD: 1602 return Attribute::SanitizeThread; 1603 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1604 return Attribute::SanitizeMemory; 1605 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1606 return Attribute::SpeculativeLoadHardening; 1607 case bitc::ATTR_KIND_SWIFT_ERROR: 1608 return Attribute::SwiftError; 1609 case bitc::ATTR_KIND_SWIFT_SELF: 1610 return Attribute::SwiftSelf; 1611 case bitc::ATTR_KIND_SWIFT_ASYNC: 1612 return Attribute::SwiftAsync; 1613 case bitc::ATTR_KIND_UW_TABLE: 1614 return Attribute::UWTable; 1615 case bitc::ATTR_KIND_VSCALE_RANGE: 1616 return Attribute::VScaleRange; 1617 case bitc::ATTR_KIND_WILLRETURN: 1618 return Attribute::WillReturn; 1619 case bitc::ATTR_KIND_WRITEONLY: 1620 return Attribute::WriteOnly; 1621 case bitc::ATTR_KIND_Z_EXT: 1622 return Attribute::ZExt; 1623 case bitc::ATTR_KIND_IMMARG: 1624 return Attribute::ImmArg; 1625 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1626 return Attribute::SanitizeMemTag; 1627 case bitc::ATTR_KIND_PREALLOCATED: 1628 return Attribute::Preallocated; 1629 case bitc::ATTR_KIND_NOUNDEF: 1630 return Attribute::NoUndef; 1631 case bitc::ATTR_KIND_BYREF: 1632 return Attribute::ByRef; 1633 case bitc::ATTR_KIND_MUSTPROGRESS: 1634 return Attribute::MustProgress; 1635 case bitc::ATTR_KIND_HOT: 1636 return Attribute::Hot; 1637 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 1638 return Attribute::PresplitCoroutine; 1639 } 1640 } 1641 1642 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1643 MaybeAlign &Alignment) { 1644 // Note: Alignment in bitcode files is incremented by 1, so that zero 1645 // can be used for default alignment. 1646 if (Exponent > Value::MaxAlignmentExponent + 1) 1647 return error("Invalid alignment value"); 1648 Alignment = decodeMaybeAlign(Exponent); 1649 return Error::success(); 1650 } 1651 1652 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1653 *Kind = getAttrFromCode(Code); 1654 if (*Kind == Attribute::None) 1655 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1656 return Error::success(); 1657 } 1658 1659 Error BitcodeReader::parseAttributeGroupBlock() { 1660 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1661 return Err; 1662 1663 if (!MAttributeGroups.empty()) 1664 return error("Invalid multiple blocks"); 1665 1666 SmallVector<uint64_t, 64> Record; 1667 1668 // Read all the records. 1669 while (true) { 1670 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1671 if (!MaybeEntry) 1672 return MaybeEntry.takeError(); 1673 BitstreamEntry Entry = MaybeEntry.get(); 1674 1675 switch (Entry.Kind) { 1676 case BitstreamEntry::SubBlock: // Handled for us already. 1677 case BitstreamEntry::Error: 1678 return error("Malformed block"); 1679 case BitstreamEntry::EndBlock: 1680 return Error::success(); 1681 case BitstreamEntry::Record: 1682 // The interesting case. 1683 break; 1684 } 1685 1686 // Read a record. 1687 Record.clear(); 1688 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1689 if (!MaybeRecord) 1690 return MaybeRecord.takeError(); 1691 switch (MaybeRecord.get()) { 1692 default: // Default behavior: ignore. 1693 break; 1694 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1695 if (Record.size() < 3) 1696 return error("Invalid grp record"); 1697 1698 uint64_t GrpID = Record[0]; 1699 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1700 1701 AttrBuilder B(Context); 1702 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1703 if (Record[i] == 0) { // Enum attribute 1704 Attribute::AttrKind Kind; 1705 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1706 return Err; 1707 1708 // Upgrade old-style byval attribute to one with a type, even if it's 1709 // nullptr. We will have to insert the real type when we associate 1710 // this AttributeList with a function. 1711 if (Kind == Attribute::ByVal) 1712 B.addByValAttr(nullptr); 1713 else if (Kind == Attribute::StructRet) 1714 B.addStructRetAttr(nullptr); 1715 else if (Kind == Attribute::InAlloca) 1716 B.addInAllocaAttr(nullptr); 1717 else if (Kind == Attribute::UWTable) 1718 B.addUWTableAttr(UWTableKind::Default); 1719 else if (Attribute::isEnumAttrKind(Kind)) 1720 B.addAttribute(Kind); 1721 else 1722 return error("Not an enum attribute"); 1723 } else if (Record[i] == 1) { // Integer attribute 1724 Attribute::AttrKind Kind; 1725 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1726 return Err; 1727 if (!Attribute::isIntAttrKind(Kind)) 1728 return error("Not an int attribute"); 1729 if (Kind == Attribute::Alignment) 1730 B.addAlignmentAttr(Record[++i]); 1731 else if (Kind == Attribute::StackAlignment) 1732 B.addStackAlignmentAttr(Record[++i]); 1733 else if (Kind == Attribute::Dereferenceable) 1734 B.addDereferenceableAttr(Record[++i]); 1735 else if (Kind == Attribute::DereferenceableOrNull) 1736 B.addDereferenceableOrNullAttr(Record[++i]); 1737 else if (Kind == Attribute::AllocSize) 1738 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1739 else if (Kind == Attribute::VScaleRange) 1740 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1741 else if (Kind == Attribute::UWTable) 1742 B.addUWTableAttr(UWTableKind(Record[++i])); 1743 else if (Kind == Attribute::AllocKind) 1744 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 1745 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1746 bool HasValue = (Record[i++] == 4); 1747 SmallString<64> KindStr; 1748 SmallString<64> ValStr; 1749 1750 while (Record[i] != 0 && i != e) 1751 KindStr += Record[i++]; 1752 assert(Record[i] == 0 && "Kind string not null terminated"); 1753 1754 if (HasValue) { 1755 // Has a value associated with it. 1756 ++i; // Skip the '0' that terminates the "kind" string. 1757 while (Record[i] != 0 && i != e) 1758 ValStr += Record[i++]; 1759 assert(Record[i] == 0 && "Value string not null terminated"); 1760 } 1761 1762 B.addAttribute(KindStr.str(), ValStr.str()); 1763 } else if (Record[i] == 5 || Record[i] == 6) { 1764 bool HasType = Record[i] == 6; 1765 Attribute::AttrKind Kind; 1766 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1767 return Err; 1768 if (!Attribute::isTypeAttrKind(Kind)) 1769 return error("Not a type attribute"); 1770 1771 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1772 } else { 1773 return error("Invalid attribute group entry"); 1774 } 1775 } 1776 1777 UpgradeAttributes(B); 1778 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1779 break; 1780 } 1781 } 1782 } 1783 } 1784 1785 Error BitcodeReader::parseTypeTable() { 1786 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1787 return Err; 1788 1789 return parseTypeTableBody(); 1790 } 1791 1792 Error BitcodeReader::parseTypeTableBody() { 1793 if (!TypeList.empty()) 1794 return error("Invalid multiple blocks"); 1795 1796 SmallVector<uint64_t, 64> Record; 1797 unsigned NumRecords = 0; 1798 1799 SmallString<64> TypeName; 1800 1801 // Read all the records for this type table. 1802 while (true) { 1803 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1804 if (!MaybeEntry) 1805 return MaybeEntry.takeError(); 1806 BitstreamEntry Entry = MaybeEntry.get(); 1807 1808 switch (Entry.Kind) { 1809 case BitstreamEntry::SubBlock: // Handled for us already. 1810 case BitstreamEntry::Error: 1811 return error("Malformed block"); 1812 case BitstreamEntry::EndBlock: 1813 if (NumRecords != TypeList.size()) 1814 return error("Malformed block"); 1815 return Error::success(); 1816 case BitstreamEntry::Record: 1817 // The interesting case. 1818 break; 1819 } 1820 1821 // Read a record. 1822 Record.clear(); 1823 Type *ResultTy = nullptr; 1824 SmallVector<unsigned> ContainedIDs; 1825 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1826 if (!MaybeRecord) 1827 return MaybeRecord.takeError(); 1828 switch (MaybeRecord.get()) { 1829 default: 1830 return error("Invalid value"); 1831 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1832 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1833 // type list. This allows us to reserve space. 1834 if (Record.empty()) 1835 return error("Invalid numentry record"); 1836 TypeList.resize(Record[0]); 1837 continue; 1838 case bitc::TYPE_CODE_VOID: // VOID 1839 ResultTy = Type::getVoidTy(Context); 1840 break; 1841 case bitc::TYPE_CODE_HALF: // HALF 1842 ResultTy = Type::getHalfTy(Context); 1843 break; 1844 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1845 ResultTy = Type::getBFloatTy(Context); 1846 break; 1847 case bitc::TYPE_CODE_FLOAT: // FLOAT 1848 ResultTy = Type::getFloatTy(Context); 1849 break; 1850 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1851 ResultTy = Type::getDoubleTy(Context); 1852 break; 1853 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1854 ResultTy = Type::getX86_FP80Ty(Context); 1855 break; 1856 case bitc::TYPE_CODE_FP128: // FP128 1857 ResultTy = Type::getFP128Ty(Context); 1858 break; 1859 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1860 ResultTy = Type::getPPC_FP128Ty(Context); 1861 break; 1862 case bitc::TYPE_CODE_LABEL: // LABEL 1863 ResultTy = Type::getLabelTy(Context); 1864 break; 1865 case bitc::TYPE_CODE_METADATA: // METADATA 1866 ResultTy = Type::getMetadataTy(Context); 1867 break; 1868 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1869 ResultTy = Type::getX86_MMXTy(Context); 1870 break; 1871 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1872 ResultTy = Type::getX86_AMXTy(Context); 1873 break; 1874 case bitc::TYPE_CODE_TOKEN: // TOKEN 1875 ResultTy = Type::getTokenTy(Context); 1876 break; 1877 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1878 if (Record.empty()) 1879 return error("Invalid integer record"); 1880 1881 uint64_t NumBits = Record[0]; 1882 if (NumBits < IntegerType::MIN_INT_BITS || 1883 NumBits > IntegerType::MAX_INT_BITS) 1884 return error("Bitwidth for integer type out of range"); 1885 ResultTy = IntegerType::get(Context, NumBits); 1886 break; 1887 } 1888 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1889 // [pointee type, address space] 1890 if (Record.empty()) 1891 return error("Invalid pointer record"); 1892 unsigned AddressSpace = 0; 1893 if (Record.size() == 2) 1894 AddressSpace = Record[1]; 1895 ResultTy = getTypeByID(Record[0]); 1896 if (!ResultTy || 1897 !PointerType::isValidElementType(ResultTy)) 1898 return error("Invalid type"); 1899 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) 1900 Context.setOpaquePointers(false); 1901 ContainedIDs.push_back(Record[0]); 1902 ResultTy = PointerType::get(ResultTy, AddressSpace); 1903 break; 1904 } 1905 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1906 if (Record.size() != 1) 1907 return error("Invalid opaque pointer record"); 1908 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) { 1909 Context.setOpaquePointers(true); 1910 } else if (Context.supportsTypedPointers()) 1911 return error( 1912 "Opaque pointers are only supported in -opaque-pointers mode"); 1913 unsigned AddressSpace = Record[0]; 1914 ResultTy = PointerType::get(Context, AddressSpace); 1915 break; 1916 } 1917 case bitc::TYPE_CODE_FUNCTION_OLD: { 1918 // Deprecated, but still needed to read old bitcode files. 1919 // FUNCTION: [vararg, attrid, retty, paramty x N] 1920 if (Record.size() < 3) 1921 return error("Invalid function record"); 1922 SmallVector<Type*, 8> ArgTys; 1923 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1924 if (Type *T = getTypeByID(Record[i])) 1925 ArgTys.push_back(T); 1926 else 1927 break; 1928 } 1929 1930 ResultTy = getTypeByID(Record[2]); 1931 if (!ResultTy || ArgTys.size() < Record.size()-3) 1932 return error("Invalid type"); 1933 1934 ContainedIDs.append(Record.begin() + 2, Record.end()); 1935 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1936 break; 1937 } 1938 case bitc::TYPE_CODE_FUNCTION: { 1939 // FUNCTION: [vararg, retty, paramty x N] 1940 if (Record.size() < 2) 1941 return error("Invalid function record"); 1942 SmallVector<Type*, 8> ArgTys; 1943 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1944 if (Type *T = getTypeByID(Record[i])) { 1945 if (!FunctionType::isValidArgumentType(T)) 1946 return error("Invalid function argument type"); 1947 ArgTys.push_back(T); 1948 } 1949 else 1950 break; 1951 } 1952 1953 ResultTy = getTypeByID(Record[1]); 1954 if (!ResultTy || ArgTys.size() < Record.size()-2) 1955 return error("Invalid type"); 1956 1957 ContainedIDs.append(Record.begin() + 1, Record.end()); 1958 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1959 break; 1960 } 1961 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1962 if (Record.empty()) 1963 return error("Invalid anon struct record"); 1964 SmallVector<Type*, 8> EltTys; 1965 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1966 if (Type *T = getTypeByID(Record[i])) 1967 EltTys.push_back(T); 1968 else 1969 break; 1970 } 1971 if (EltTys.size() != Record.size()-1) 1972 return error("Invalid type"); 1973 ContainedIDs.append(Record.begin() + 1, Record.end()); 1974 ResultTy = StructType::get(Context, EltTys, Record[0]); 1975 break; 1976 } 1977 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1978 if (convertToString(Record, 0, TypeName)) 1979 return error("Invalid struct name record"); 1980 continue; 1981 1982 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1983 if (Record.empty()) 1984 return error("Invalid named struct record"); 1985 1986 if (NumRecords >= TypeList.size()) 1987 return error("Invalid TYPE table"); 1988 1989 // Check to see if this was forward referenced, if so fill in the temp. 1990 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1991 if (Res) { 1992 Res->setName(TypeName); 1993 TypeList[NumRecords] = nullptr; 1994 } else // Otherwise, create a new struct. 1995 Res = createIdentifiedStructType(Context, TypeName); 1996 TypeName.clear(); 1997 1998 SmallVector<Type*, 8> EltTys; 1999 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2000 if (Type *T = getTypeByID(Record[i])) 2001 EltTys.push_back(T); 2002 else 2003 break; 2004 } 2005 if (EltTys.size() != Record.size()-1) 2006 return error("Invalid named struct record"); 2007 Res->setBody(EltTys, Record[0]); 2008 ContainedIDs.append(Record.begin() + 1, Record.end()); 2009 ResultTy = Res; 2010 break; 2011 } 2012 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2013 if (Record.size() != 1) 2014 return error("Invalid opaque type record"); 2015 2016 if (NumRecords >= TypeList.size()) 2017 return error("Invalid TYPE table"); 2018 2019 // Check to see if this was forward referenced, if so fill in the temp. 2020 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2021 if (Res) { 2022 Res->setName(TypeName); 2023 TypeList[NumRecords] = nullptr; 2024 } else // Otherwise, create a new struct with no body. 2025 Res = createIdentifiedStructType(Context, TypeName); 2026 TypeName.clear(); 2027 ResultTy = Res; 2028 break; 2029 } 2030 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2031 if (Record.size() < 2) 2032 return error("Invalid array type record"); 2033 ResultTy = getTypeByID(Record[1]); 2034 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2035 return error("Invalid type"); 2036 ContainedIDs.push_back(Record[1]); 2037 ResultTy = ArrayType::get(ResultTy, Record[0]); 2038 break; 2039 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2040 // [numelts, eltty, scalable] 2041 if (Record.size() < 2) 2042 return error("Invalid vector type record"); 2043 if (Record[0] == 0) 2044 return error("Invalid vector length"); 2045 ResultTy = getTypeByID(Record[1]); 2046 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2047 return error("Invalid type"); 2048 bool Scalable = Record.size() > 2 ? Record[2] : false; 2049 ContainedIDs.push_back(Record[1]); 2050 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2051 break; 2052 } 2053 2054 if (NumRecords >= TypeList.size()) 2055 return error("Invalid TYPE table"); 2056 if (TypeList[NumRecords]) 2057 return error( 2058 "Invalid TYPE table: Only named structs can be forward referenced"); 2059 assert(ResultTy && "Didn't read a type?"); 2060 TypeList[NumRecords] = ResultTy; 2061 if (!ContainedIDs.empty()) 2062 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2063 ++NumRecords; 2064 } 2065 } 2066 2067 Error BitcodeReader::parseOperandBundleTags() { 2068 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2069 return Err; 2070 2071 if (!BundleTags.empty()) 2072 return error("Invalid multiple blocks"); 2073 2074 SmallVector<uint64_t, 64> Record; 2075 2076 while (true) { 2077 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2078 if (!MaybeEntry) 2079 return MaybeEntry.takeError(); 2080 BitstreamEntry Entry = MaybeEntry.get(); 2081 2082 switch (Entry.Kind) { 2083 case BitstreamEntry::SubBlock: // Handled for us already. 2084 case BitstreamEntry::Error: 2085 return error("Malformed block"); 2086 case BitstreamEntry::EndBlock: 2087 return Error::success(); 2088 case BitstreamEntry::Record: 2089 // The interesting case. 2090 break; 2091 } 2092 2093 // Tags are implicitly mapped to integers by their order. 2094 2095 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2096 if (!MaybeRecord) 2097 return MaybeRecord.takeError(); 2098 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2099 return error("Invalid operand bundle record"); 2100 2101 // OPERAND_BUNDLE_TAG: [strchr x N] 2102 BundleTags.emplace_back(); 2103 if (convertToString(Record, 0, BundleTags.back())) 2104 return error("Invalid operand bundle record"); 2105 Record.clear(); 2106 } 2107 } 2108 2109 Error BitcodeReader::parseSyncScopeNames() { 2110 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2111 return Err; 2112 2113 if (!SSIDs.empty()) 2114 return error("Invalid multiple synchronization scope names blocks"); 2115 2116 SmallVector<uint64_t, 64> Record; 2117 while (true) { 2118 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2119 if (!MaybeEntry) 2120 return MaybeEntry.takeError(); 2121 BitstreamEntry Entry = MaybeEntry.get(); 2122 2123 switch (Entry.Kind) { 2124 case BitstreamEntry::SubBlock: // Handled for us already. 2125 case BitstreamEntry::Error: 2126 return error("Malformed block"); 2127 case BitstreamEntry::EndBlock: 2128 if (SSIDs.empty()) 2129 return error("Invalid empty synchronization scope names block"); 2130 return Error::success(); 2131 case BitstreamEntry::Record: 2132 // The interesting case. 2133 break; 2134 } 2135 2136 // Synchronization scope names are implicitly mapped to synchronization 2137 // scope IDs by their order. 2138 2139 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2140 if (!MaybeRecord) 2141 return MaybeRecord.takeError(); 2142 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2143 return error("Invalid sync scope record"); 2144 2145 SmallString<16> SSN; 2146 if (convertToString(Record, 0, SSN)) 2147 return error("Invalid sync scope record"); 2148 2149 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2150 Record.clear(); 2151 } 2152 } 2153 2154 /// Associate a value with its name from the given index in the provided record. 2155 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2156 unsigned NameIndex, Triple &TT) { 2157 SmallString<128> ValueName; 2158 if (convertToString(Record, NameIndex, ValueName)) 2159 return error("Invalid record"); 2160 unsigned ValueID = Record[0]; 2161 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2162 return error("Invalid record"); 2163 Value *V = ValueList[ValueID]; 2164 2165 StringRef NameStr(ValueName.data(), ValueName.size()); 2166 if (NameStr.find_first_of(0) != StringRef::npos) 2167 return error("Invalid value name"); 2168 V->setName(NameStr); 2169 auto *GO = dyn_cast<GlobalObject>(V); 2170 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2171 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2172 return V; 2173 } 2174 2175 /// Helper to note and return the current location, and jump to the given 2176 /// offset. 2177 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2178 BitstreamCursor &Stream) { 2179 // Save the current parsing location so we can jump back at the end 2180 // of the VST read. 2181 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2182 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2183 return std::move(JumpFailed); 2184 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2185 if (!MaybeEntry) 2186 return MaybeEntry.takeError(); 2187 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2188 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2189 return error("Expected value symbol table subblock"); 2190 return CurrentBit; 2191 } 2192 2193 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2194 Function *F, 2195 ArrayRef<uint64_t> Record) { 2196 // Note that we subtract 1 here because the offset is relative to one word 2197 // before the start of the identification or module block, which was 2198 // historically always the start of the regular bitcode header. 2199 uint64_t FuncWordOffset = Record[1] - 1; 2200 uint64_t FuncBitOffset = FuncWordOffset * 32; 2201 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2202 // Set the LastFunctionBlockBit to point to the last function block. 2203 // Later when parsing is resumed after function materialization, 2204 // we can simply skip that last function block. 2205 if (FuncBitOffset > LastFunctionBlockBit) 2206 LastFunctionBlockBit = FuncBitOffset; 2207 } 2208 2209 /// Read a new-style GlobalValue symbol table. 2210 Error BitcodeReader::parseGlobalValueSymbolTable() { 2211 unsigned FuncBitcodeOffsetDelta = 2212 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2213 2214 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2215 return Err; 2216 2217 SmallVector<uint64_t, 64> Record; 2218 while (true) { 2219 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2220 if (!MaybeEntry) 2221 return MaybeEntry.takeError(); 2222 BitstreamEntry Entry = MaybeEntry.get(); 2223 2224 switch (Entry.Kind) { 2225 case BitstreamEntry::SubBlock: 2226 case BitstreamEntry::Error: 2227 return error("Malformed block"); 2228 case BitstreamEntry::EndBlock: 2229 return Error::success(); 2230 case BitstreamEntry::Record: 2231 break; 2232 } 2233 2234 Record.clear(); 2235 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2236 if (!MaybeRecord) 2237 return MaybeRecord.takeError(); 2238 switch (MaybeRecord.get()) { 2239 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2240 unsigned ValueID = Record[0]; 2241 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2242 return error("Invalid value reference in symbol table"); 2243 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2244 cast<Function>(ValueList[ValueID]), Record); 2245 break; 2246 } 2247 } 2248 } 2249 } 2250 2251 /// Parse the value symbol table at either the current parsing location or 2252 /// at the given bit offset if provided. 2253 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2254 uint64_t CurrentBit; 2255 // Pass in the Offset to distinguish between calling for the module-level 2256 // VST (where we want to jump to the VST offset) and the function-level 2257 // VST (where we don't). 2258 if (Offset > 0) { 2259 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2260 if (!MaybeCurrentBit) 2261 return MaybeCurrentBit.takeError(); 2262 CurrentBit = MaybeCurrentBit.get(); 2263 // If this module uses a string table, read this as a module-level VST. 2264 if (UseStrtab) { 2265 if (Error Err = parseGlobalValueSymbolTable()) 2266 return Err; 2267 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2268 return JumpFailed; 2269 return Error::success(); 2270 } 2271 // Otherwise, the VST will be in a similar format to a function-level VST, 2272 // and will contain symbol names. 2273 } 2274 2275 // Compute the delta between the bitcode indices in the VST (the word offset 2276 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2277 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2278 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2279 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2280 // just before entering the VST subblock because: 1) the EnterSubBlock 2281 // changes the AbbrevID width; 2) the VST block is nested within the same 2282 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2283 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2284 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2285 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2286 unsigned FuncBitcodeOffsetDelta = 2287 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2288 2289 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2290 return Err; 2291 2292 SmallVector<uint64_t, 64> Record; 2293 2294 Triple TT(TheModule->getTargetTriple()); 2295 2296 // Read all the records for this value table. 2297 SmallString<128> ValueName; 2298 2299 while (true) { 2300 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2301 if (!MaybeEntry) 2302 return MaybeEntry.takeError(); 2303 BitstreamEntry Entry = MaybeEntry.get(); 2304 2305 switch (Entry.Kind) { 2306 case BitstreamEntry::SubBlock: // Handled for us already. 2307 case BitstreamEntry::Error: 2308 return error("Malformed block"); 2309 case BitstreamEntry::EndBlock: 2310 if (Offset > 0) 2311 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2312 return JumpFailed; 2313 return Error::success(); 2314 case BitstreamEntry::Record: 2315 // The interesting case. 2316 break; 2317 } 2318 2319 // Read a record. 2320 Record.clear(); 2321 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2322 if (!MaybeRecord) 2323 return MaybeRecord.takeError(); 2324 switch (MaybeRecord.get()) { 2325 default: // Default behavior: unknown type. 2326 break; 2327 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2328 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2329 if (Error Err = ValOrErr.takeError()) 2330 return Err; 2331 ValOrErr.get(); 2332 break; 2333 } 2334 case bitc::VST_CODE_FNENTRY: { 2335 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2336 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2337 if (Error Err = ValOrErr.takeError()) 2338 return Err; 2339 Value *V = ValOrErr.get(); 2340 2341 // Ignore function offsets emitted for aliases of functions in older 2342 // versions of LLVM. 2343 if (auto *F = dyn_cast<Function>(V)) 2344 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2345 break; 2346 } 2347 case bitc::VST_CODE_BBENTRY: { 2348 if (convertToString(Record, 1, ValueName)) 2349 return error("Invalid bbentry record"); 2350 BasicBlock *BB = getBasicBlock(Record[0]); 2351 if (!BB) 2352 return error("Invalid bbentry record"); 2353 2354 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2355 ValueName.clear(); 2356 break; 2357 } 2358 } 2359 } 2360 } 2361 2362 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2363 /// encoding. 2364 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2365 if ((V & 1) == 0) 2366 return V >> 1; 2367 if (V != 1) 2368 return -(V >> 1); 2369 // There is no such thing as -0 with integers. "-0" really means MININT. 2370 return 1ULL << 63; 2371 } 2372 2373 /// Resolve all of the initializers for global values and aliases that we can. 2374 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2375 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2376 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2377 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2378 2379 GlobalInitWorklist.swap(GlobalInits); 2380 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2381 FunctionOperandWorklist.swap(FunctionOperands); 2382 2383 while (!GlobalInitWorklist.empty()) { 2384 unsigned ValID = GlobalInitWorklist.back().second; 2385 if (ValID >= ValueList.size()) { 2386 // Not ready to resolve this yet, it requires something later in the file. 2387 GlobalInits.push_back(GlobalInitWorklist.back()); 2388 } else { 2389 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2390 GlobalInitWorklist.back().first->setInitializer(C); 2391 else 2392 return error("Expected a constant"); 2393 } 2394 GlobalInitWorklist.pop_back(); 2395 } 2396 2397 while (!IndirectSymbolInitWorklist.empty()) { 2398 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2399 if (ValID >= ValueList.size()) { 2400 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2401 } else { 2402 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2403 if (!C) 2404 return error("Expected a constant"); 2405 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2406 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2407 if (C->getType() != GV->getType()) 2408 return error("Alias and aliasee types don't match"); 2409 GA->setAliasee(C); 2410 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2411 Type *ResolverFTy = 2412 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2413 // Transparently fix up the type for compatiblity with older bitcode 2414 GI->setResolver( 2415 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2416 } else { 2417 return error("Expected an alias or an ifunc"); 2418 } 2419 } 2420 IndirectSymbolInitWorklist.pop_back(); 2421 } 2422 2423 while (!FunctionOperandWorklist.empty()) { 2424 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2425 if (Info.PersonalityFn) { 2426 unsigned ValID = Info.PersonalityFn - 1; 2427 if (ValID < ValueList.size()) { 2428 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2429 Info.F->setPersonalityFn(C); 2430 else 2431 return error("Expected a constant"); 2432 Info.PersonalityFn = 0; 2433 } 2434 } 2435 if (Info.Prefix) { 2436 unsigned ValID = Info.Prefix - 1; 2437 if (ValID < ValueList.size()) { 2438 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2439 Info.F->setPrefixData(C); 2440 else 2441 return error("Expected a constant"); 2442 Info.Prefix = 0; 2443 } 2444 } 2445 if (Info.Prologue) { 2446 unsigned ValID = Info.Prologue - 1; 2447 if (ValID < ValueList.size()) { 2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2449 Info.F->setPrologueData(C); 2450 else 2451 return error("Expected a constant"); 2452 Info.Prologue = 0; 2453 } 2454 } 2455 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2456 FunctionOperands.push_back(Info); 2457 FunctionOperandWorklist.pop_back(); 2458 } 2459 2460 return Error::success(); 2461 } 2462 2463 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2464 SmallVector<uint64_t, 8> Words(Vals.size()); 2465 transform(Vals, Words.begin(), 2466 BitcodeReader::decodeSignRotatedValue); 2467 2468 return APInt(TypeBits, Words); 2469 } 2470 2471 Error BitcodeReader::parseConstants() { 2472 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2473 return Err; 2474 2475 SmallVector<uint64_t, 64> Record; 2476 2477 // Read all the records for this value table. 2478 Type *CurTy = Type::getInt32Ty(Context); 2479 unsigned Int32TyID = getVirtualTypeID(CurTy); 2480 unsigned CurTyID = Int32TyID; 2481 Type *CurElemTy = nullptr; 2482 unsigned NextCstNo = ValueList.size(); 2483 2484 struct DelayedShufTy { 2485 VectorType *OpTy; 2486 unsigned OpTyID; 2487 VectorType *RTy; 2488 uint64_t Op0Idx; 2489 uint64_t Op1Idx; 2490 uint64_t Op2Idx; 2491 unsigned CstNo; 2492 }; 2493 std::vector<DelayedShufTy> DelayedShuffles; 2494 struct DelayedSelTy { 2495 Type *OpTy; 2496 unsigned OpTyID; 2497 uint64_t Op0Idx; 2498 uint64_t Op1Idx; 2499 uint64_t Op2Idx; 2500 unsigned CstNo; 2501 }; 2502 std::vector<DelayedSelTy> DelayedSelectors; 2503 2504 while (true) { 2505 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2506 if (!MaybeEntry) 2507 return MaybeEntry.takeError(); 2508 BitstreamEntry Entry = MaybeEntry.get(); 2509 2510 switch (Entry.Kind) { 2511 case BitstreamEntry::SubBlock: // Handled for us already. 2512 case BitstreamEntry::Error: 2513 return error("Malformed block"); 2514 case BitstreamEntry::EndBlock: 2515 // Once all the constants have been read, go through and resolve forward 2516 // references. 2517 // 2518 // We have to treat shuffles specially because they don't have three 2519 // operands anymore. We need to convert the shuffle mask into an array, 2520 // and we can't convert a forward reference. 2521 for (auto &DelayedShuffle : DelayedShuffles) { 2522 VectorType *OpTy = DelayedShuffle.OpTy; 2523 unsigned OpTyID = DelayedShuffle.OpTyID; 2524 VectorType *RTy = DelayedShuffle.RTy; 2525 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2526 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2527 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2528 uint64_t CstNo = DelayedShuffle.CstNo; 2529 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID); 2530 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2531 Type *ShufTy = 2532 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2533 Constant *Op2 = ValueList.getConstantFwdRef( 2534 Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID)); 2535 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2536 return error("Invalid shufflevector operands"); 2537 SmallVector<int, 16> Mask; 2538 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2539 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2540 if (Error Err = ValueList.assignValue( 2541 CstNo, V, 2542 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID)))) 2543 return Err; 2544 } 2545 for (auto &DelayedSelector : DelayedSelectors) { 2546 Type *OpTy = DelayedSelector.OpTy; 2547 unsigned OpTyID = DelayedSelector.OpTyID; 2548 Type *SelectorTy = Type::getInt1Ty(Context); 2549 unsigned SelectorTyID = getVirtualTypeID(SelectorTy); 2550 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2551 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2552 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2553 uint64_t CstNo = DelayedSelector.CstNo; 2554 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2555 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID); 2556 // The selector might be an i1 or an <n x i1> 2557 // Get the type from the ValueList before getting a forward ref. 2558 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2559 Value *V = ValueList[Op0Idx]; 2560 assert(V); 2561 if (SelectorTy != V->getType()) { 2562 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2563 SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID); 2564 } 2565 } 2566 Constant *Op0 = 2567 ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID); 2568 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2569 if (Error Err = ValueList.assignValue(CstNo, V, OpTyID)) 2570 return Err; 2571 } 2572 2573 if (NextCstNo != ValueList.size()) 2574 return error("Invalid constant reference"); 2575 2576 ValueList.resolveConstantForwardRefs(); 2577 return Error::success(); 2578 case BitstreamEntry::Record: 2579 // The interesting case. 2580 break; 2581 } 2582 2583 // Read a record. 2584 Record.clear(); 2585 Type *VoidType = Type::getVoidTy(Context); 2586 Value *V = nullptr; 2587 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2588 if (!MaybeBitCode) 2589 return MaybeBitCode.takeError(); 2590 switch (unsigned BitCode = MaybeBitCode.get()) { 2591 default: // Default behavior: unknown constant 2592 case bitc::CST_CODE_UNDEF: // UNDEF 2593 V = UndefValue::get(CurTy); 2594 break; 2595 case bitc::CST_CODE_POISON: // POISON 2596 V = PoisonValue::get(CurTy); 2597 break; 2598 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2599 if (Record.empty()) 2600 return error("Invalid settype record"); 2601 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2602 return error("Invalid settype record"); 2603 if (TypeList[Record[0]] == VoidType) 2604 return error("Invalid constant type"); 2605 CurTyID = Record[0]; 2606 CurTy = TypeList[CurTyID]; 2607 CurElemTy = getPtrElementTypeByID(CurTyID); 2608 continue; // Skip the ValueList manipulation. 2609 case bitc::CST_CODE_NULL: // NULL 2610 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2611 return error("Invalid type for a constant null value"); 2612 V = Constant::getNullValue(CurTy); 2613 break; 2614 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2615 if (!CurTy->isIntegerTy() || Record.empty()) 2616 return error("Invalid integer const record"); 2617 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2618 break; 2619 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2620 if (!CurTy->isIntegerTy() || Record.empty()) 2621 return error("Invalid wide integer const record"); 2622 2623 APInt VInt = 2624 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2625 V = ConstantInt::get(Context, VInt); 2626 2627 break; 2628 } 2629 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2630 if (Record.empty()) 2631 return error("Invalid float const record"); 2632 if (CurTy->isHalfTy()) 2633 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2634 APInt(16, (uint16_t)Record[0]))); 2635 else if (CurTy->isBFloatTy()) 2636 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2637 APInt(16, (uint32_t)Record[0]))); 2638 else if (CurTy->isFloatTy()) 2639 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2640 APInt(32, (uint32_t)Record[0]))); 2641 else if (CurTy->isDoubleTy()) 2642 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2643 APInt(64, Record[0]))); 2644 else if (CurTy->isX86_FP80Ty()) { 2645 // Bits are not stored the same way as a normal i80 APInt, compensate. 2646 uint64_t Rearrange[2]; 2647 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2648 Rearrange[1] = Record[0] >> 48; 2649 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2650 APInt(80, Rearrange))); 2651 } else if (CurTy->isFP128Ty()) 2652 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2653 APInt(128, Record))); 2654 else if (CurTy->isPPC_FP128Ty()) 2655 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2656 APInt(128, Record))); 2657 else 2658 V = UndefValue::get(CurTy); 2659 break; 2660 } 2661 2662 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2663 if (Record.empty()) 2664 return error("Invalid aggregate record"); 2665 2666 unsigned Size = Record.size(); 2667 SmallVector<Constant*, 16> Elts; 2668 2669 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2670 for (unsigned i = 0; i != Size; ++i) 2671 Elts.push_back(ValueList.getConstantFwdRef( 2672 Record[i], STy->getElementType(i), 2673 getContainedTypeID(CurTyID, i))); 2674 V = ConstantStruct::get(STy, Elts); 2675 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2676 Type *EltTy = ATy->getElementType(); 2677 unsigned EltTyID = getContainedTypeID(CurTyID); 2678 for (unsigned i = 0; i != Size; ++i) 2679 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2680 EltTyID)); 2681 V = ConstantArray::get(ATy, Elts); 2682 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2683 Type *EltTy = VTy->getElementType(); 2684 unsigned EltTyID = getContainedTypeID(CurTyID); 2685 for (unsigned i = 0; i != Size; ++i) 2686 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2687 EltTyID)); 2688 V = ConstantVector::get(Elts); 2689 } else { 2690 V = UndefValue::get(CurTy); 2691 } 2692 break; 2693 } 2694 case bitc::CST_CODE_STRING: // STRING: [values] 2695 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2696 if (Record.empty()) 2697 return error("Invalid string record"); 2698 2699 SmallString<16> Elts(Record.begin(), Record.end()); 2700 V = ConstantDataArray::getString(Context, Elts, 2701 BitCode == bitc::CST_CODE_CSTRING); 2702 break; 2703 } 2704 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2705 if (Record.empty()) 2706 return error("Invalid data record"); 2707 2708 Type *EltTy; 2709 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2710 EltTy = Array->getElementType(); 2711 else 2712 EltTy = cast<VectorType>(CurTy)->getElementType(); 2713 if (EltTy->isIntegerTy(8)) { 2714 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2715 if (isa<VectorType>(CurTy)) 2716 V = ConstantDataVector::get(Context, Elts); 2717 else 2718 V = ConstantDataArray::get(Context, Elts); 2719 } else if (EltTy->isIntegerTy(16)) { 2720 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2721 if (isa<VectorType>(CurTy)) 2722 V = ConstantDataVector::get(Context, Elts); 2723 else 2724 V = ConstantDataArray::get(Context, Elts); 2725 } else if (EltTy->isIntegerTy(32)) { 2726 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2727 if (isa<VectorType>(CurTy)) 2728 V = ConstantDataVector::get(Context, Elts); 2729 else 2730 V = ConstantDataArray::get(Context, Elts); 2731 } else if (EltTy->isIntegerTy(64)) { 2732 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2733 if (isa<VectorType>(CurTy)) 2734 V = ConstantDataVector::get(Context, Elts); 2735 else 2736 V = ConstantDataArray::get(Context, Elts); 2737 } else if (EltTy->isHalfTy()) { 2738 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2739 if (isa<VectorType>(CurTy)) 2740 V = ConstantDataVector::getFP(EltTy, Elts); 2741 else 2742 V = ConstantDataArray::getFP(EltTy, Elts); 2743 } else if (EltTy->isBFloatTy()) { 2744 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2745 if (isa<VectorType>(CurTy)) 2746 V = ConstantDataVector::getFP(EltTy, Elts); 2747 else 2748 V = ConstantDataArray::getFP(EltTy, Elts); 2749 } else if (EltTy->isFloatTy()) { 2750 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2751 if (isa<VectorType>(CurTy)) 2752 V = ConstantDataVector::getFP(EltTy, Elts); 2753 else 2754 V = ConstantDataArray::getFP(EltTy, Elts); 2755 } else if (EltTy->isDoubleTy()) { 2756 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2757 if (isa<VectorType>(CurTy)) 2758 V = ConstantDataVector::getFP(EltTy, Elts); 2759 else 2760 V = ConstantDataArray::getFP(EltTy, Elts); 2761 } else { 2762 return error("Invalid type for value"); 2763 } 2764 break; 2765 } 2766 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2767 if (Record.size() < 2) 2768 return error("Invalid unary op constexpr record"); 2769 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2770 if (Opc < 0) { 2771 V = UndefValue::get(CurTy); // Unknown unop. 2772 } else { 2773 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2774 unsigned Flags = 0; 2775 V = ConstantExpr::get(Opc, LHS, Flags); 2776 } 2777 break; 2778 } 2779 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2780 if (Record.size() < 3) 2781 return error("Invalid binary op constexpr record"); 2782 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2783 if (Opc < 0) { 2784 V = UndefValue::get(CurTy); // Unknown binop. 2785 } else { 2786 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2787 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID); 2788 unsigned Flags = 0; 2789 if (Record.size() >= 4) { 2790 if (Opc == Instruction::Add || 2791 Opc == Instruction::Sub || 2792 Opc == Instruction::Mul || 2793 Opc == Instruction::Shl) { 2794 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2795 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2796 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2797 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2798 } else if (Opc == Instruction::SDiv || 2799 Opc == Instruction::UDiv || 2800 Opc == Instruction::LShr || 2801 Opc == Instruction::AShr) { 2802 if (Record[3] & (1 << bitc::PEO_EXACT)) 2803 Flags |= SDivOperator::IsExact; 2804 } 2805 } 2806 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2807 } 2808 break; 2809 } 2810 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2811 if (Record.size() < 3) 2812 return error("Invalid cast constexpr record"); 2813 int Opc = getDecodedCastOpcode(Record[0]); 2814 if (Opc < 0) { 2815 V = UndefValue::get(CurTy); // Unknown cast. 2816 } else { 2817 unsigned OpTyID = Record[1]; 2818 Type *OpTy = getTypeByID(OpTyID); 2819 if (!OpTy) 2820 return error("Invalid cast constexpr record"); 2821 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2822 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2823 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2824 } 2825 break; 2826 } 2827 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2828 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2829 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2830 // operands] 2831 if (Record.size() < 2) 2832 return error("Constant GEP record must have at least two elements"); 2833 unsigned OpNum = 0; 2834 Type *PointeeType = nullptr; 2835 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2836 Record.size() % 2) 2837 PointeeType = getTypeByID(Record[OpNum++]); 2838 2839 bool InBounds = false; 2840 Optional<unsigned> InRangeIndex; 2841 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2842 uint64_t Op = Record[OpNum++]; 2843 InBounds = Op & 1; 2844 InRangeIndex = Op >> 1; 2845 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2846 InBounds = true; 2847 2848 SmallVector<Constant*, 16> Elts; 2849 unsigned BaseTypeID = Record[OpNum]; 2850 while (OpNum != Record.size()) { 2851 unsigned ElTyID = Record[OpNum++]; 2852 Type *ElTy = getTypeByID(ElTyID); 2853 if (!ElTy) 2854 return error("Invalid getelementptr constexpr record"); 2855 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy, 2856 ElTyID)); 2857 } 2858 2859 if (Elts.size() < 1) 2860 return error("Invalid gep with no operands"); 2861 2862 Type *BaseType = getTypeByID(BaseTypeID); 2863 if (isa<VectorType>(BaseType)) { 2864 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 2865 BaseType = getTypeByID(BaseTypeID); 2866 } 2867 2868 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 2869 if (!OrigPtrTy) 2870 return error("GEP base operand must be pointer or vector of pointer"); 2871 2872 if (!PointeeType) { 2873 PointeeType = getPtrElementTypeByID(BaseTypeID); 2874 if (!PointeeType) 2875 return error("Missing element type for old-style constant GEP"); 2876 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2877 return error("Explicit gep operator type does not match pointee type " 2878 "of pointer operand"); 2879 2880 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2881 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2882 InBounds, InRangeIndex); 2883 break; 2884 } 2885 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2886 if (Record.size() < 3) 2887 return error("Invalid select constexpr record"); 2888 2889 DelayedSelectors.push_back( 2890 {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo}); 2891 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID); 2892 ++NextCstNo; 2893 continue; 2894 } 2895 case bitc::CST_CODE_CE_EXTRACTELT 2896 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2897 if (Record.size() < 3) 2898 return error("Invalid extractelement constexpr record"); 2899 unsigned OpTyID = Record[0]; 2900 VectorType *OpTy = 2901 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 2902 if (!OpTy) 2903 return error("Invalid extractelement constexpr record"); 2904 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2905 Constant *Op1 = nullptr; 2906 if (Record.size() == 4) { 2907 unsigned IdxTyID = Record[2]; 2908 Type *IdxTy = getTypeByID(IdxTyID); 2909 if (!IdxTy) 2910 return error("Invalid extractelement constexpr record"); 2911 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2912 } else { 2913 // Deprecated, but still needed to read old bitcode files. 2914 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2915 Int32TyID); 2916 } 2917 if (!Op1) 2918 return error("Invalid extractelement constexpr record"); 2919 V = ConstantExpr::getExtractElement(Op0, Op1); 2920 break; 2921 } 2922 case bitc::CST_CODE_CE_INSERTELT 2923 : { // CE_INSERTELT: [opval, opval, opty, opval] 2924 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2925 if (Record.size() < 3 || !OpTy) 2926 return error("Invalid insertelement constexpr record"); 2927 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID); 2928 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2929 OpTy->getElementType(), 2930 getContainedTypeID(CurTyID)); 2931 Constant *Op2 = nullptr; 2932 if (Record.size() == 4) { 2933 unsigned IdxTyID = Record[2]; 2934 Type *IdxTy = getTypeByID(IdxTyID); 2935 if (!IdxTy) 2936 return error("Invalid insertelement constexpr record"); 2937 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2938 } else { 2939 // Deprecated, but still needed to read old bitcode files. 2940 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2941 Int32TyID); 2942 } 2943 if (!Op2) 2944 return error("Invalid insertelement constexpr record"); 2945 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2946 break; 2947 } 2948 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2949 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2950 if (Record.size() < 3 || !OpTy) 2951 return error("Invalid shufflevector constexpr record"); 2952 DelayedShuffles.push_back( 2953 {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2954 ++NextCstNo; 2955 continue; 2956 } 2957 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2958 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2959 VectorType *OpTy = 2960 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2961 if (Record.size() < 4 || !RTy || !OpTy) 2962 return error("Invalid shufflevector constexpr record"); 2963 DelayedShuffles.push_back( 2964 {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2965 ++NextCstNo; 2966 continue; 2967 } 2968 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2969 if (Record.size() < 4) 2970 return error("Invalid cmp constexpt record"); 2971 unsigned OpTyID = Record[0]; 2972 Type *OpTy = getTypeByID(OpTyID); 2973 if (!OpTy) 2974 return error("Invalid cmp constexpr record"); 2975 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2976 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2977 2978 if (OpTy->isFPOrFPVectorTy()) 2979 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2980 else 2981 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2982 break; 2983 } 2984 // This maintains backward compatibility, pre-asm dialect keywords. 2985 // Deprecated, but still needed to read old bitcode files. 2986 case bitc::CST_CODE_INLINEASM_OLD: { 2987 if (Record.size() < 2) 2988 return error("Invalid inlineasm record"); 2989 std::string AsmStr, ConstrStr; 2990 bool HasSideEffects = Record[0] & 1; 2991 bool IsAlignStack = Record[0] >> 1; 2992 unsigned AsmStrSize = Record[1]; 2993 if (2+AsmStrSize >= Record.size()) 2994 return error("Invalid inlineasm record"); 2995 unsigned ConstStrSize = Record[2+AsmStrSize]; 2996 if (3+AsmStrSize+ConstStrSize > Record.size()) 2997 return error("Invalid inlineasm record"); 2998 2999 for (unsigned i = 0; i != AsmStrSize; ++i) 3000 AsmStr += (char)Record[2+i]; 3001 for (unsigned i = 0; i != ConstStrSize; ++i) 3002 ConstrStr += (char)Record[3+AsmStrSize+i]; 3003 UpgradeInlineAsmString(&AsmStr); 3004 if (!CurElemTy) 3005 return error("Missing element type for old-style inlineasm"); 3006 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3007 HasSideEffects, IsAlignStack); 3008 break; 3009 } 3010 // This version adds support for the asm dialect keywords (e.g., 3011 // inteldialect). 3012 case bitc::CST_CODE_INLINEASM_OLD2: { 3013 if (Record.size() < 2) 3014 return error("Invalid inlineasm record"); 3015 std::string AsmStr, ConstrStr; 3016 bool HasSideEffects = Record[0] & 1; 3017 bool IsAlignStack = (Record[0] >> 1) & 1; 3018 unsigned AsmDialect = Record[0] >> 2; 3019 unsigned AsmStrSize = Record[1]; 3020 if (2+AsmStrSize >= Record.size()) 3021 return error("Invalid inlineasm record"); 3022 unsigned ConstStrSize = Record[2+AsmStrSize]; 3023 if (3+AsmStrSize+ConstStrSize > Record.size()) 3024 return error("Invalid inlineasm record"); 3025 3026 for (unsigned i = 0; i != AsmStrSize; ++i) 3027 AsmStr += (char)Record[2+i]; 3028 for (unsigned i = 0; i != ConstStrSize; ++i) 3029 ConstrStr += (char)Record[3+AsmStrSize+i]; 3030 UpgradeInlineAsmString(&AsmStr); 3031 if (!CurElemTy) 3032 return error("Missing element type for old-style inlineasm"); 3033 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3034 HasSideEffects, IsAlignStack, 3035 InlineAsm::AsmDialect(AsmDialect)); 3036 break; 3037 } 3038 // This version adds support for the unwind keyword. 3039 case bitc::CST_CODE_INLINEASM_OLD3: { 3040 if (Record.size() < 2) 3041 return error("Invalid inlineasm record"); 3042 unsigned OpNum = 0; 3043 std::string AsmStr, ConstrStr; 3044 bool HasSideEffects = Record[OpNum] & 1; 3045 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3046 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3047 bool CanThrow = (Record[OpNum] >> 3) & 1; 3048 ++OpNum; 3049 unsigned AsmStrSize = Record[OpNum]; 3050 ++OpNum; 3051 if (OpNum + AsmStrSize >= Record.size()) 3052 return error("Invalid inlineasm record"); 3053 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3054 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3055 return error("Invalid inlineasm record"); 3056 3057 for (unsigned i = 0; i != AsmStrSize; ++i) 3058 AsmStr += (char)Record[OpNum + i]; 3059 ++OpNum; 3060 for (unsigned i = 0; i != ConstStrSize; ++i) 3061 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3062 UpgradeInlineAsmString(&AsmStr); 3063 if (!CurElemTy) 3064 return error("Missing element type for old-style inlineasm"); 3065 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3066 HasSideEffects, IsAlignStack, 3067 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3068 break; 3069 } 3070 // This version adds explicit function type. 3071 case bitc::CST_CODE_INLINEASM: { 3072 if (Record.size() < 3) 3073 return error("Invalid inlineasm record"); 3074 unsigned OpNum = 0; 3075 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3076 ++OpNum; 3077 if (!FnTy) 3078 return error("Invalid inlineasm record"); 3079 std::string AsmStr, ConstrStr; 3080 bool HasSideEffects = Record[OpNum] & 1; 3081 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3082 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3083 bool CanThrow = (Record[OpNum] >> 3) & 1; 3084 ++OpNum; 3085 unsigned AsmStrSize = Record[OpNum]; 3086 ++OpNum; 3087 if (OpNum + AsmStrSize >= Record.size()) 3088 return error("Invalid inlineasm record"); 3089 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3090 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3091 return error("Invalid inlineasm record"); 3092 3093 for (unsigned i = 0; i != AsmStrSize; ++i) 3094 AsmStr += (char)Record[OpNum + i]; 3095 ++OpNum; 3096 for (unsigned i = 0; i != ConstStrSize; ++i) 3097 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3098 UpgradeInlineAsmString(&AsmStr); 3099 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3100 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3101 break; 3102 } 3103 case bitc::CST_CODE_BLOCKADDRESS:{ 3104 if (Record.size() < 3) 3105 return error("Invalid blockaddress record"); 3106 unsigned FnTyID = Record[0]; 3107 Type *FnTy = getTypeByID(FnTyID); 3108 if (!FnTy) 3109 return error("Invalid blockaddress record"); 3110 Function *Fn = dyn_cast_or_null<Function>( 3111 ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID)); 3112 if (!Fn) 3113 return error("Invalid blockaddress record"); 3114 3115 // If the function is already parsed we can insert the block address right 3116 // away. 3117 BasicBlock *BB; 3118 unsigned BBID = Record[2]; 3119 if (!BBID) 3120 // Invalid reference to entry block. 3121 return error("Invalid ID"); 3122 if (!Fn->empty()) { 3123 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3124 for (size_t I = 0, E = BBID; I != E; ++I) { 3125 if (BBI == BBE) 3126 return error("Invalid ID"); 3127 ++BBI; 3128 } 3129 BB = &*BBI; 3130 } else { 3131 // Otherwise insert a placeholder and remember it so it can be inserted 3132 // when the function is parsed. 3133 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3134 if (FwdBBs.empty()) 3135 BasicBlockFwdRefQueue.push_back(Fn); 3136 if (FwdBBs.size() < BBID + 1) 3137 FwdBBs.resize(BBID + 1); 3138 if (!FwdBBs[BBID]) 3139 FwdBBs[BBID] = BasicBlock::Create(Context); 3140 BB = FwdBBs[BBID]; 3141 } 3142 V = BlockAddress::get(Fn, BB); 3143 break; 3144 } 3145 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3146 if (Record.size() < 2) 3147 return error("Invalid dso_local record"); 3148 unsigned GVTyID = Record[0]; 3149 Type *GVTy = getTypeByID(GVTyID); 3150 if (!GVTy) 3151 return error("Invalid dso_local record"); 3152 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3153 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3154 if (!GV) 3155 return error("Invalid dso_local record"); 3156 3157 V = DSOLocalEquivalent::get(GV); 3158 break; 3159 } 3160 case bitc::CST_CODE_NO_CFI_VALUE: { 3161 if (Record.size() < 2) 3162 return error("Invalid no_cfi record"); 3163 unsigned GVTyID = Record[0]; 3164 Type *GVTy = getTypeByID(GVTyID); 3165 if (!GVTy) 3166 return error("Invalid no_cfi record"); 3167 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3168 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3169 if (!GV) 3170 return error("Invalid no_cfi record"); 3171 V = NoCFIValue::get(GV); 3172 break; 3173 } 3174 } 3175 3176 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3177 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3178 return Err; 3179 ++NextCstNo; 3180 } 3181 } 3182 3183 Error BitcodeReader::parseUseLists() { 3184 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3185 return Err; 3186 3187 // Read all the records. 3188 SmallVector<uint64_t, 64> Record; 3189 3190 while (true) { 3191 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3192 if (!MaybeEntry) 3193 return MaybeEntry.takeError(); 3194 BitstreamEntry Entry = MaybeEntry.get(); 3195 3196 switch (Entry.Kind) { 3197 case BitstreamEntry::SubBlock: // Handled for us already. 3198 case BitstreamEntry::Error: 3199 return error("Malformed block"); 3200 case BitstreamEntry::EndBlock: 3201 return Error::success(); 3202 case BitstreamEntry::Record: 3203 // The interesting case. 3204 break; 3205 } 3206 3207 // Read a use list record. 3208 Record.clear(); 3209 bool IsBB = false; 3210 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3211 if (!MaybeRecord) 3212 return MaybeRecord.takeError(); 3213 switch (MaybeRecord.get()) { 3214 default: // Default behavior: unknown type. 3215 break; 3216 case bitc::USELIST_CODE_BB: 3217 IsBB = true; 3218 LLVM_FALLTHROUGH; 3219 case bitc::USELIST_CODE_DEFAULT: { 3220 unsigned RecordLength = Record.size(); 3221 if (RecordLength < 3) 3222 // Records should have at least an ID and two indexes. 3223 return error("Invalid record"); 3224 unsigned ID = Record.pop_back_val(); 3225 3226 Value *V; 3227 if (IsBB) { 3228 assert(ID < FunctionBBs.size() && "Basic block not found"); 3229 V = FunctionBBs[ID]; 3230 } else 3231 V = ValueList[ID]; 3232 unsigned NumUses = 0; 3233 SmallDenseMap<const Use *, unsigned, 16> Order; 3234 for (const Use &U : V->materialized_uses()) { 3235 if (++NumUses > Record.size()) 3236 break; 3237 Order[&U] = Record[NumUses - 1]; 3238 } 3239 if (Order.size() != Record.size() || NumUses > Record.size()) 3240 // Mismatches can happen if the functions are being materialized lazily 3241 // (out-of-order), or a value has been upgraded. 3242 break; 3243 3244 V->sortUseList([&](const Use &L, const Use &R) { 3245 return Order.lookup(&L) < Order.lookup(&R); 3246 }); 3247 break; 3248 } 3249 } 3250 } 3251 } 3252 3253 /// When we see the block for metadata, remember where it is and then skip it. 3254 /// This lets us lazily deserialize the metadata. 3255 Error BitcodeReader::rememberAndSkipMetadata() { 3256 // Save the current stream state. 3257 uint64_t CurBit = Stream.GetCurrentBitNo(); 3258 DeferredMetadataInfo.push_back(CurBit); 3259 3260 // Skip over the block for now. 3261 if (Error Err = Stream.SkipBlock()) 3262 return Err; 3263 return Error::success(); 3264 } 3265 3266 Error BitcodeReader::materializeMetadata() { 3267 for (uint64_t BitPos : DeferredMetadataInfo) { 3268 // Move the bit stream to the saved position. 3269 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3270 return JumpFailed; 3271 if (Error Err = MDLoader->parseModuleMetadata()) 3272 return Err; 3273 } 3274 3275 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3276 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3277 // multiple times. 3278 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3279 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3280 NamedMDNode *LinkerOpts = 3281 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3282 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3283 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3284 } 3285 } 3286 3287 DeferredMetadataInfo.clear(); 3288 return Error::success(); 3289 } 3290 3291 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3292 3293 /// When we see the block for a function body, remember where it is and then 3294 /// skip it. This lets us lazily deserialize the functions. 3295 Error BitcodeReader::rememberAndSkipFunctionBody() { 3296 // Get the function we are talking about. 3297 if (FunctionsWithBodies.empty()) 3298 return error("Insufficient function protos"); 3299 3300 Function *Fn = FunctionsWithBodies.back(); 3301 FunctionsWithBodies.pop_back(); 3302 3303 // Save the current stream state. 3304 uint64_t CurBit = Stream.GetCurrentBitNo(); 3305 assert( 3306 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3307 "Mismatch between VST and scanned function offsets"); 3308 DeferredFunctionInfo[Fn] = CurBit; 3309 3310 // Skip over the function block for now. 3311 if (Error Err = Stream.SkipBlock()) 3312 return Err; 3313 return Error::success(); 3314 } 3315 3316 Error BitcodeReader::globalCleanup() { 3317 // Patch the initializers for globals and aliases up. 3318 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3319 return Err; 3320 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3321 return error("Malformed global initializer set"); 3322 3323 // Look for intrinsic functions which need to be upgraded at some point 3324 // and functions that need to have their function attributes upgraded. 3325 for (Function &F : *TheModule) { 3326 MDLoader->upgradeDebugIntrinsics(F); 3327 Function *NewFn; 3328 if (UpgradeIntrinsicFunction(&F, NewFn)) 3329 UpgradedIntrinsics[&F] = NewFn; 3330 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3331 // Some types could be renamed during loading if several modules are 3332 // loaded in the same LLVMContext (LTO scenario). In this case we should 3333 // remangle intrinsics names as well. 3334 RemangledIntrinsics[&F] = *Remangled; 3335 // Look for functions that rely on old function attribute behavior. 3336 UpgradeFunctionAttributes(F); 3337 } 3338 3339 // Look for global variables which need to be renamed. 3340 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3341 for (GlobalVariable &GV : TheModule->globals()) 3342 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3343 UpgradedVariables.emplace_back(&GV, Upgraded); 3344 for (auto &Pair : UpgradedVariables) { 3345 Pair.first->eraseFromParent(); 3346 TheModule->getGlobalList().push_back(Pair.second); 3347 } 3348 3349 // Force deallocation of memory for these vectors to favor the client that 3350 // want lazy deserialization. 3351 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3352 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3353 return Error::success(); 3354 } 3355 3356 /// Support for lazy parsing of function bodies. This is required if we 3357 /// either have an old bitcode file without a VST forward declaration record, 3358 /// or if we have an anonymous function being materialized, since anonymous 3359 /// functions do not have a name and are therefore not in the VST. 3360 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3361 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3362 return JumpFailed; 3363 3364 if (Stream.AtEndOfStream()) 3365 return error("Could not find function in stream"); 3366 3367 if (!SeenFirstFunctionBody) 3368 return error("Trying to materialize functions before seeing function blocks"); 3369 3370 // An old bitcode file with the symbol table at the end would have 3371 // finished the parse greedily. 3372 assert(SeenValueSymbolTable); 3373 3374 SmallVector<uint64_t, 64> Record; 3375 3376 while (true) { 3377 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3378 if (!MaybeEntry) 3379 return MaybeEntry.takeError(); 3380 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3381 3382 switch (Entry.Kind) { 3383 default: 3384 return error("Expect SubBlock"); 3385 case BitstreamEntry::SubBlock: 3386 switch (Entry.ID) { 3387 default: 3388 return error("Expect function block"); 3389 case bitc::FUNCTION_BLOCK_ID: 3390 if (Error Err = rememberAndSkipFunctionBody()) 3391 return Err; 3392 NextUnreadBit = Stream.GetCurrentBitNo(); 3393 return Error::success(); 3394 } 3395 } 3396 } 3397 } 3398 3399 Error BitcodeReaderBase::readBlockInfo() { 3400 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3401 Stream.ReadBlockInfoBlock(); 3402 if (!MaybeNewBlockInfo) 3403 return MaybeNewBlockInfo.takeError(); 3404 Optional<BitstreamBlockInfo> NewBlockInfo = 3405 std::move(MaybeNewBlockInfo.get()); 3406 if (!NewBlockInfo) 3407 return error("Malformed block"); 3408 BlockInfo = std::move(*NewBlockInfo); 3409 return Error::success(); 3410 } 3411 3412 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3413 // v1: [selection_kind, name] 3414 // v2: [strtab_offset, strtab_size, selection_kind] 3415 StringRef Name; 3416 std::tie(Name, Record) = readNameFromStrtab(Record); 3417 3418 if (Record.empty()) 3419 return error("Invalid record"); 3420 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3421 std::string OldFormatName; 3422 if (!UseStrtab) { 3423 if (Record.size() < 2) 3424 return error("Invalid record"); 3425 unsigned ComdatNameSize = Record[1]; 3426 if (ComdatNameSize > Record.size() - 2) 3427 return error("Comdat name size too large"); 3428 OldFormatName.reserve(ComdatNameSize); 3429 for (unsigned i = 0; i != ComdatNameSize; ++i) 3430 OldFormatName += (char)Record[2 + i]; 3431 Name = OldFormatName; 3432 } 3433 Comdat *C = TheModule->getOrInsertComdat(Name); 3434 C->setSelectionKind(SK); 3435 ComdatList.push_back(C); 3436 return Error::success(); 3437 } 3438 3439 static void inferDSOLocal(GlobalValue *GV) { 3440 // infer dso_local from linkage and visibility if it is not encoded. 3441 if (GV->hasLocalLinkage() || 3442 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3443 GV->setDSOLocal(true); 3444 } 3445 3446 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3447 GlobalValue::SanitizerMetadata Meta; 3448 if (V & (1 << 0)) 3449 Meta.NoAddress = true; 3450 if (V & (1 << 1)) 3451 Meta.NoHWAddress = true; 3452 if (V & (1 << 2)) 3453 Meta.NoMemtag = true; 3454 if (V & (1 << 3)) 3455 Meta.IsDynInit = true; 3456 return Meta; 3457 } 3458 3459 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3460 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3461 // visibility, threadlocal, unnamed_addr, externally_initialized, 3462 // dllstorageclass, comdat, attributes, preemption specifier, 3463 // partition strtab offset, partition strtab size] (name in VST) 3464 // v2: [strtab_offset, strtab_size, v1] 3465 StringRef Name; 3466 std::tie(Name, Record) = readNameFromStrtab(Record); 3467 3468 if (Record.size() < 6) 3469 return error("Invalid record"); 3470 unsigned TyID = Record[0]; 3471 Type *Ty = getTypeByID(TyID); 3472 if (!Ty) 3473 return error("Invalid record"); 3474 bool isConstant = Record[1] & 1; 3475 bool explicitType = Record[1] & 2; 3476 unsigned AddressSpace; 3477 if (explicitType) { 3478 AddressSpace = Record[1] >> 2; 3479 } else { 3480 if (!Ty->isPointerTy()) 3481 return error("Invalid type for value"); 3482 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3483 TyID = getContainedTypeID(TyID); 3484 Ty = getTypeByID(TyID); 3485 if (!Ty) 3486 return error("Missing element type for old-style global"); 3487 } 3488 3489 uint64_t RawLinkage = Record[3]; 3490 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3491 MaybeAlign Alignment; 3492 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3493 return Err; 3494 std::string Section; 3495 if (Record[5]) { 3496 if (Record[5] - 1 >= SectionTable.size()) 3497 return error("Invalid ID"); 3498 Section = SectionTable[Record[5] - 1]; 3499 } 3500 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3501 // Local linkage must have default visibility. 3502 // auto-upgrade `hidden` and `protected` for old bitcode. 3503 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3504 Visibility = getDecodedVisibility(Record[6]); 3505 3506 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3507 if (Record.size() > 7) 3508 TLM = getDecodedThreadLocalMode(Record[7]); 3509 3510 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3511 if (Record.size() > 8) 3512 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3513 3514 bool ExternallyInitialized = false; 3515 if (Record.size() > 9) 3516 ExternallyInitialized = Record[9]; 3517 3518 GlobalVariable *NewGV = 3519 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3520 nullptr, TLM, AddressSpace, ExternallyInitialized); 3521 NewGV->setAlignment(Alignment); 3522 if (!Section.empty()) 3523 NewGV->setSection(Section); 3524 NewGV->setVisibility(Visibility); 3525 NewGV->setUnnamedAddr(UnnamedAddr); 3526 3527 if (Record.size() > 10) 3528 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3529 else 3530 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3531 3532 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3533 3534 // Remember which value to use for the global initializer. 3535 if (unsigned InitID = Record[2]) 3536 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3537 3538 if (Record.size() > 11) { 3539 if (unsigned ComdatID = Record[11]) { 3540 if (ComdatID > ComdatList.size()) 3541 return error("Invalid global variable comdat ID"); 3542 NewGV->setComdat(ComdatList[ComdatID - 1]); 3543 } 3544 } else if (hasImplicitComdat(RawLinkage)) { 3545 ImplicitComdatObjects.insert(NewGV); 3546 } 3547 3548 if (Record.size() > 12) { 3549 auto AS = getAttributes(Record[12]).getFnAttrs(); 3550 NewGV->setAttributes(AS); 3551 } 3552 3553 if (Record.size() > 13) { 3554 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3555 } 3556 inferDSOLocal(NewGV); 3557 3558 // Check whether we have enough values to read a partition name. 3559 if (Record.size() > 15) 3560 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3561 3562 if (Record.size() > 16 && Record[16]) { 3563 llvm::GlobalValue::SanitizerMetadata Meta = 3564 deserializeSanitizerMetadata(Record[16]); 3565 NewGV->setSanitizerMetadata(Meta); 3566 } 3567 3568 return Error::success(); 3569 } 3570 3571 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3572 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3573 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3574 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3575 // v2: [strtab_offset, strtab_size, v1] 3576 StringRef Name; 3577 std::tie(Name, Record) = readNameFromStrtab(Record); 3578 3579 if (Record.size() < 8) 3580 return error("Invalid record"); 3581 unsigned FTyID = Record[0]; 3582 Type *FTy = getTypeByID(FTyID); 3583 if (!FTy) 3584 return error("Invalid record"); 3585 if (isa<PointerType>(FTy)) { 3586 FTyID = getContainedTypeID(FTyID, 0); 3587 FTy = getTypeByID(FTyID); 3588 if (!FTy) 3589 return error("Missing element type for old-style function"); 3590 } 3591 3592 if (!isa<FunctionType>(FTy)) 3593 return error("Invalid type for value"); 3594 auto CC = static_cast<CallingConv::ID>(Record[1]); 3595 if (CC & ~CallingConv::MaxID) 3596 return error("Invalid calling convention ID"); 3597 3598 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3599 if (Record.size() > 16) 3600 AddrSpace = Record[16]; 3601 3602 Function *Func = 3603 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3604 AddrSpace, Name, TheModule); 3605 3606 assert(Func->getFunctionType() == FTy && 3607 "Incorrect fully specified type provided for function"); 3608 FunctionTypeIDs[Func] = FTyID; 3609 3610 Func->setCallingConv(CC); 3611 bool isProto = Record[2]; 3612 uint64_t RawLinkage = Record[3]; 3613 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3614 Func->setAttributes(getAttributes(Record[4])); 3615 3616 // Upgrade any old-style byval or sret without a type by propagating the 3617 // argument's pointee type. There should be no opaque pointers where the byval 3618 // type is implicit. 3619 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3620 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3621 Attribute::InAlloca}) { 3622 if (!Func->hasParamAttribute(i, Kind)) 3623 continue; 3624 3625 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3626 continue; 3627 3628 Func->removeParamAttr(i, Kind); 3629 3630 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3631 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3632 if (!PtrEltTy) 3633 return error("Missing param element type for attribute upgrade"); 3634 3635 Attribute NewAttr; 3636 switch (Kind) { 3637 case Attribute::ByVal: 3638 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3639 break; 3640 case Attribute::StructRet: 3641 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3642 break; 3643 case Attribute::InAlloca: 3644 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3645 break; 3646 default: 3647 llvm_unreachable("not an upgraded type attribute"); 3648 } 3649 3650 Func->addParamAttr(i, NewAttr); 3651 } 3652 } 3653 3654 if (Func->getCallingConv() == CallingConv::X86_INTR && 3655 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3656 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3657 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3658 if (!ByValTy) 3659 return error("Missing param element type for x86_intrcc upgrade"); 3660 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3661 Func->addParamAttr(0, NewAttr); 3662 } 3663 3664 MaybeAlign Alignment; 3665 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3666 return Err; 3667 Func->setAlignment(Alignment); 3668 if (Record[6]) { 3669 if (Record[6] - 1 >= SectionTable.size()) 3670 return error("Invalid ID"); 3671 Func->setSection(SectionTable[Record[6] - 1]); 3672 } 3673 // Local linkage must have default visibility. 3674 // auto-upgrade `hidden` and `protected` for old bitcode. 3675 if (!Func->hasLocalLinkage()) 3676 Func->setVisibility(getDecodedVisibility(Record[7])); 3677 if (Record.size() > 8 && Record[8]) { 3678 if (Record[8] - 1 >= GCTable.size()) 3679 return error("Invalid ID"); 3680 Func->setGC(GCTable[Record[8] - 1]); 3681 } 3682 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3683 if (Record.size() > 9) 3684 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3685 Func->setUnnamedAddr(UnnamedAddr); 3686 3687 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3688 if (Record.size() > 10) 3689 OperandInfo.Prologue = Record[10]; 3690 3691 if (Record.size() > 11) 3692 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3693 else 3694 upgradeDLLImportExportLinkage(Func, RawLinkage); 3695 3696 if (Record.size() > 12) { 3697 if (unsigned ComdatID = Record[12]) { 3698 if (ComdatID > ComdatList.size()) 3699 return error("Invalid function comdat ID"); 3700 Func->setComdat(ComdatList[ComdatID - 1]); 3701 } 3702 } else if (hasImplicitComdat(RawLinkage)) { 3703 ImplicitComdatObjects.insert(Func); 3704 } 3705 3706 if (Record.size() > 13) 3707 OperandInfo.Prefix = Record[13]; 3708 3709 if (Record.size() > 14) 3710 OperandInfo.PersonalityFn = Record[14]; 3711 3712 if (Record.size() > 15) { 3713 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3714 } 3715 inferDSOLocal(Func); 3716 3717 // Record[16] is the address space number. 3718 3719 // Check whether we have enough values to read a partition name. Also make 3720 // sure Strtab has enough values. 3721 if (Record.size() > 18 && Strtab.data() && 3722 Record[17] + Record[18] <= Strtab.size()) { 3723 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3724 } 3725 3726 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3727 3728 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3729 FunctionOperands.push_back(OperandInfo); 3730 3731 // If this is a function with a body, remember the prototype we are 3732 // creating now, so that we can match up the body with them later. 3733 if (!isProto) { 3734 Func->setIsMaterializable(true); 3735 FunctionsWithBodies.push_back(Func); 3736 DeferredFunctionInfo[Func] = 0; 3737 } 3738 return Error::success(); 3739 } 3740 3741 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3742 unsigned BitCode, ArrayRef<uint64_t> Record) { 3743 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3744 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3745 // dllstorageclass, threadlocal, unnamed_addr, 3746 // preemption specifier] (name in VST) 3747 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3748 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3749 // preemption specifier] (name in VST) 3750 // v2: [strtab_offset, strtab_size, v1] 3751 StringRef Name; 3752 std::tie(Name, Record) = readNameFromStrtab(Record); 3753 3754 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3755 if (Record.size() < (3 + (unsigned)NewRecord)) 3756 return error("Invalid record"); 3757 unsigned OpNum = 0; 3758 unsigned TypeID = Record[OpNum++]; 3759 Type *Ty = getTypeByID(TypeID); 3760 if (!Ty) 3761 return error("Invalid record"); 3762 3763 unsigned AddrSpace; 3764 if (!NewRecord) { 3765 auto *PTy = dyn_cast<PointerType>(Ty); 3766 if (!PTy) 3767 return error("Invalid type for value"); 3768 AddrSpace = PTy->getAddressSpace(); 3769 TypeID = getContainedTypeID(TypeID); 3770 Ty = getTypeByID(TypeID); 3771 if (!Ty) 3772 return error("Missing element type for old-style indirect symbol"); 3773 } else { 3774 AddrSpace = Record[OpNum++]; 3775 } 3776 3777 auto Val = Record[OpNum++]; 3778 auto Linkage = Record[OpNum++]; 3779 GlobalValue *NewGA; 3780 if (BitCode == bitc::MODULE_CODE_ALIAS || 3781 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3782 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3783 TheModule); 3784 else 3785 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3786 nullptr, TheModule); 3787 3788 // Local linkage must have default visibility. 3789 // auto-upgrade `hidden` and `protected` for old bitcode. 3790 if (OpNum != Record.size()) { 3791 auto VisInd = OpNum++; 3792 if (!NewGA->hasLocalLinkage()) 3793 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3794 } 3795 if (BitCode == bitc::MODULE_CODE_ALIAS || 3796 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3797 if (OpNum != Record.size()) 3798 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3799 else 3800 upgradeDLLImportExportLinkage(NewGA, Linkage); 3801 if (OpNum != Record.size()) 3802 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3803 if (OpNum != Record.size()) 3804 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3805 } 3806 if (OpNum != Record.size()) 3807 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3808 inferDSOLocal(NewGA); 3809 3810 // Check whether we have enough values to read a partition name. 3811 if (OpNum + 1 < Record.size()) { 3812 NewGA->setPartition( 3813 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3814 OpNum += 2; 3815 } 3816 3817 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 3818 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3819 return Error::success(); 3820 } 3821 3822 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3823 bool ShouldLazyLoadMetadata, 3824 DataLayoutCallbackTy DataLayoutCallback) { 3825 if (ResumeBit) { 3826 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3827 return JumpFailed; 3828 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3829 return Err; 3830 3831 SmallVector<uint64_t, 64> Record; 3832 3833 // Parts of bitcode parsing depend on the datalayout. Make sure we 3834 // finalize the datalayout before we run any of that code. 3835 bool ResolvedDataLayout = false; 3836 auto ResolveDataLayout = [&] { 3837 if (ResolvedDataLayout) 3838 return; 3839 3840 // datalayout and triple can't be parsed after this point. 3841 ResolvedDataLayout = true; 3842 3843 // Upgrade data layout string. 3844 std::string DL = llvm::UpgradeDataLayoutString( 3845 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3846 TheModule->setDataLayout(DL); 3847 3848 if (auto LayoutOverride = 3849 DataLayoutCallback(TheModule->getTargetTriple())) 3850 TheModule->setDataLayout(*LayoutOverride); 3851 }; 3852 3853 // Read all the records for this module. 3854 while (true) { 3855 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3856 if (!MaybeEntry) 3857 return MaybeEntry.takeError(); 3858 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3859 3860 switch (Entry.Kind) { 3861 case BitstreamEntry::Error: 3862 return error("Malformed block"); 3863 case BitstreamEntry::EndBlock: 3864 ResolveDataLayout(); 3865 return globalCleanup(); 3866 3867 case BitstreamEntry::SubBlock: 3868 switch (Entry.ID) { 3869 default: // Skip unknown content. 3870 if (Error Err = Stream.SkipBlock()) 3871 return Err; 3872 break; 3873 case bitc::BLOCKINFO_BLOCK_ID: 3874 if (Error Err = readBlockInfo()) 3875 return Err; 3876 break; 3877 case bitc::PARAMATTR_BLOCK_ID: 3878 if (Error Err = parseAttributeBlock()) 3879 return Err; 3880 break; 3881 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3882 if (Error Err = parseAttributeGroupBlock()) 3883 return Err; 3884 break; 3885 case bitc::TYPE_BLOCK_ID_NEW: 3886 if (Error Err = parseTypeTable()) 3887 return Err; 3888 break; 3889 case bitc::VALUE_SYMTAB_BLOCK_ID: 3890 if (!SeenValueSymbolTable) { 3891 // Either this is an old form VST without function index and an 3892 // associated VST forward declaration record (which would have caused 3893 // the VST to be jumped to and parsed before it was encountered 3894 // normally in the stream), or there were no function blocks to 3895 // trigger an earlier parsing of the VST. 3896 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3897 if (Error Err = parseValueSymbolTable()) 3898 return Err; 3899 SeenValueSymbolTable = true; 3900 } else { 3901 // We must have had a VST forward declaration record, which caused 3902 // the parser to jump to and parse the VST earlier. 3903 assert(VSTOffset > 0); 3904 if (Error Err = Stream.SkipBlock()) 3905 return Err; 3906 } 3907 break; 3908 case bitc::CONSTANTS_BLOCK_ID: 3909 if (Error Err = parseConstants()) 3910 return Err; 3911 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3912 return Err; 3913 break; 3914 case bitc::METADATA_BLOCK_ID: 3915 if (ShouldLazyLoadMetadata) { 3916 if (Error Err = rememberAndSkipMetadata()) 3917 return Err; 3918 break; 3919 } 3920 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3921 if (Error Err = MDLoader->parseModuleMetadata()) 3922 return Err; 3923 break; 3924 case bitc::METADATA_KIND_BLOCK_ID: 3925 if (Error Err = MDLoader->parseMetadataKinds()) 3926 return Err; 3927 break; 3928 case bitc::FUNCTION_BLOCK_ID: 3929 ResolveDataLayout(); 3930 3931 // If this is the first function body we've seen, reverse the 3932 // FunctionsWithBodies list. 3933 if (!SeenFirstFunctionBody) { 3934 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3935 if (Error Err = globalCleanup()) 3936 return Err; 3937 SeenFirstFunctionBody = true; 3938 } 3939 3940 if (VSTOffset > 0) { 3941 // If we have a VST forward declaration record, make sure we 3942 // parse the VST now if we haven't already. It is needed to 3943 // set up the DeferredFunctionInfo vector for lazy reading. 3944 if (!SeenValueSymbolTable) { 3945 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3946 return Err; 3947 SeenValueSymbolTable = true; 3948 // Fall through so that we record the NextUnreadBit below. 3949 // This is necessary in case we have an anonymous function that 3950 // is later materialized. Since it will not have a VST entry we 3951 // need to fall back to the lazy parse to find its offset. 3952 } else { 3953 // If we have a VST forward declaration record, but have already 3954 // parsed the VST (just above, when the first function body was 3955 // encountered here), then we are resuming the parse after 3956 // materializing functions. The ResumeBit points to the 3957 // start of the last function block recorded in the 3958 // DeferredFunctionInfo map. Skip it. 3959 if (Error Err = Stream.SkipBlock()) 3960 return Err; 3961 continue; 3962 } 3963 } 3964 3965 // Support older bitcode files that did not have the function 3966 // index in the VST, nor a VST forward declaration record, as 3967 // well as anonymous functions that do not have VST entries. 3968 // Build the DeferredFunctionInfo vector on the fly. 3969 if (Error Err = rememberAndSkipFunctionBody()) 3970 return Err; 3971 3972 // Suspend parsing when we reach the function bodies. Subsequent 3973 // materialization calls will resume it when necessary. If the bitcode 3974 // file is old, the symbol table will be at the end instead and will not 3975 // have been seen yet. In this case, just finish the parse now. 3976 if (SeenValueSymbolTable) { 3977 NextUnreadBit = Stream.GetCurrentBitNo(); 3978 // After the VST has been parsed, we need to make sure intrinsic name 3979 // are auto-upgraded. 3980 return globalCleanup(); 3981 } 3982 break; 3983 case bitc::USELIST_BLOCK_ID: 3984 if (Error Err = parseUseLists()) 3985 return Err; 3986 break; 3987 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3988 if (Error Err = parseOperandBundleTags()) 3989 return Err; 3990 break; 3991 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3992 if (Error Err = parseSyncScopeNames()) 3993 return Err; 3994 break; 3995 } 3996 continue; 3997 3998 case BitstreamEntry::Record: 3999 // The interesting case. 4000 break; 4001 } 4002 4003 // Read a record. 4004 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4005 if (!MaybeBitCode) 4006 return MaybeBitCode.takeError(); 4007 switch (unsigned BitCode = MaybeBitCode.get()) { 4008 default: break; // Default behavior, ignore unknown content. 4009 case bitc::MODULE_CODE_VERSION: { 4010 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4011 if (!VersionOrErr) 4012 return VersionOrErr.takeError(); 4013 UseRelativeIDs = *VersionOrErr >= 1; 4014 break; 4015 } 4016 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4017 if (ResolvedDataLayout) 4018 return error("target triple too late in module"); 4019 std::string S; 4020 if (convertToString(Record, 0, S)) 4021 return error("Invalid record"); 4022 TheModule->setTargetTriple(S); 4023 break; 4024 } 4025 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4026 if (ResolvedDataLayout) 4027 return error("datalayout too late in module"); 4028 std::string S; 4029 if (convertToString(Record, 0, S)) 4030 return error("Invalid record"); 4031 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 4032 if (!MaybeDL) 4033 return MaybeDL.takeError(); 4034 TheModule->setDataLayout(MaybeDL.get()); 4035 break; 4036 } 4037 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4038 std::string S; 4039 if (convertToString(Record, 0, S)) 4040 return error("Invalid record"); 4041 TheModule->setModuleInlineAsm(S); 4042 break; 4043 } 4044 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4045 // Deprecated, but still needed to read old bitcode files. 4046 std::string S; 4047 if (convertToString(Record, 0, S)) 4048 return error("Invalid record"); 4049 // Ignore value. 4050 break; 4051 } 4052 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4053 std::string S; 4054 if (convertToString(Record, 0, S)) 4055 return error("Invalid record"); 4056 SectionTable.push_back(S); 4057 break; 4058 } 4059 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4060 std::string S; 4061 if (convertToString(Record, 0, S)) 4062 return error("Invalid record"); 4063 GCTable.push_back(S); 4064 break; 4065 } 4066 case bitc::MODULE_CODE_COMDAT: 4067 if (Error Err = parseComdatRecord(Record)) 4068 return Err; 4069 break; 4070 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4071 // written by ThinLinkBitcodeWriter. See 4072 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4073 // record 4074 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4075 case bitc::MODULE_CODE_GLOBALVAR: 4076 if (Error Err = parseGlobalVarRecord(Record)) 4077 return Err; 4078 break; 4079 case bitc::MODULE_CODE_FUNCTION: 4080 ResolveDataLayout(); 4081 if (Error Err = parseFunctionRecord(Record)) 4082 return Err; 4083 break; 4084 case bitc::MODULE_CODE_IFUNC: 4085 case bitc::MODULE_CODE_ALIAS: 4086 case bitc::MODULE_CODE_ALIAS_OLD: 4087 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4088 return Err; 4089 break; 4090 /// MODULE_CODE_VSTOFFSET: [offset] 4091 case bitc::MODULE_CODE_VSTOFFSET: 4092 if (Record.empty()) 4093 return error("Invalid record"); 4094 // Note that we subtract 1 here because the offset is relative to one word 4095 // before the start of the identification or module block, which was 4096 // historically always the start of the regular bitcode header. 4097 VSTOffset = Record[0] - 1; 4098 break; 4099 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4100 case bitc::MODULE_CODE_SOURCE_FILENAME: 4101 SmallString<128> ValueName; 4102 if (convertToString(Record, 0, ValueName)) 4103 return error("Invalid record"); 4104 TheModule->setSourceFileName(ValueName); 4105 break; 4106 } 4107 Record.clear(); 4108 } 4109 } 4110 4111 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4112 bool IsImporting, 4113 DataLayoutCallbackTy DataLayoutCallback) { 4114 TheModule = M; 4115 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4116 [&](unsigned ID) { return getTypeByID(ID); }); 4117 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4118 } 4119 4120 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4121 if (!isa<PointerType>(PtrType)) 4122 return error("Load/Store operand is not a pointer type"); 4123 4124 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4125 return error("Explicit load/store type does not match pointee " 4126 "type of pointer operand"); 4127 if (!PointerType::isLoadableOrStorableType(ValType)) 4128 return error("Cannot load/store from pointer"); 4129 return Error::success(); 4130 } 4131 4132 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4133 ArrayRef<unsigned> ArgTyIDs) { 4134 AttributeList Attrs = CB->getAttributes(); 4135 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4136 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4137 Attribute::InAlloca}) { 4138 if (!Attrs.hasParamAttr(i, Kind) || 4139 Attrs.getParamAttr(i, Kind).getValueAsType()) 4140 continue; 4141 4142 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4143 if (!PtrEltTy) 4144 return error("Missing element type for typed attribute upgrade"); 4145 4146 Attribute NewAttr; 4147 switch (Kind) { 4148 case Attribute::ByVal: 4149 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4150 break; 4151 case Attribute::StructRet: 4152 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4153 break; 4154 case Attribute::InAlloca: 4155 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4156 break; 4157 default: 4158 llvm_unreachable("not an upgraded type attribute"); 4159 } 4160 4161 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4162 } 4163 } 4164 4165 if (CB->isInlineAsm()) { 4166 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4167 unsigned ArgNo = 0; 4168 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4169 if (!CI.hasArg()) 4170 continue; 4171 4172 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4173 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4174 if (!ElemTy) 4175 return error("Missing element type for inline asm upgrade"); 4176 Attrs = Attrs.addParamAttribute( 4177 Context, ArgNo, 4178 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4179 } 4180 4181 ArgNo++; 4182 } 4183 } 4184 4185 switch (CB->getIntrinsicID()) { 4186 case Intrinsic::preserve_array_access_index: 4187 case Intrinsic::preserve_struct_access_index: 4188 case Intrinsic::aarch64_ldaxr: 4189 case Intrinsic::aarch64_ldxr: 4190 case Intrinsic::aarch64_stlxr: 4191 case Intrinsic::aarch64_stxr: 4192 case Intrinsic::arm_ldaex: 4193 case Intrinsic::arm_ldrex: 4194 case Intrinsic::arm_stlex: 4195 case Intrinsic::arm_strex: { 4196 unsigned ArgNo; 4197 switch (CB->getIntrinsicID()) { 4198 case Intrinsic::aarch64_stlxr: 4199 case Intrinsic::aarch64_stxr: 4200 case Intrinsic::arm_stlex: 4201 case Intrinsic::arm_strex: 4202 ArgNo = 1; 4203 break; 4204 default: 4205 ArgNo = 0; 4206 break; 4207 } 4208 if (!Attrs.getParamElementType(ArgNo)) { 4209 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4210 if (!ElTy) 4211 return error("Missing element type for elementtype upgrade"); 4212 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4213 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4214 } 4215 break; 4216 } 4217 default: 4218 break; 4219 } 4220 4221 CB->setAttributes(Attrs); 4222 return Error::success(); 4223 } 4224 4225 /// Lazily parse the specified function body block. 4226 Error BitcodeReader::parseFunctionBody(Function *F) { 4227 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4228 return Err; 4229 4230 // Unexpected unresolved metadata when parsing function. 4231 if (MDLoader->hasFwdRefs()) 4232 return error("Invalid function metadata: incoming forward references"); 4233 4234 InstructionList.clear(); 4235 unsigned ModuleValueListSize = ValueList.size(); 4236 unsigned ModuleMDLoaderSize = MDLoader->size(); 4237 4238 // Add all the function arguments to the value table. 4239 unsigned ArgNo = 0; 4240 unsigned FTyID = FunctionTypeIDs[F]; 4241 for (Argument &I : F->args()) { 4242 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4243 assert(I.getType() == getTypeByID(ArgTyID) && 4244 "Incorrect fully specified type for Function Argument"); 4245 ValueList.push_back(&I, ArgTyID); 4246 ++ArgNo; 4247 } 4248 unsigned NextValueNo = ValueList.size(); 4249 BasicBlock *CurBB = nullptr; 4250 unsigned CurBBNo = 0; 4251 4252 DebugLoc LastLoc; 4253 auto getLastInstruction = [&]() -> Instruction * { 4254 if (CurBB && !CurBB->empty()) 4255 return &CurBB->back(); 4256 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4257 !FunctionBBs[CurBBNo - 1]->empty()) 4258 return &FunctionBBs[CurBBNo - 1]->back(); 4259 return nullptr; 4260 }; 4261 4262 std::vector<OperandBundleDef> OperandBundles; 4263 4264 // Read all the records. 4265 SmallVector<uint64_t, 64> Record; 4266 4267 while (true) { 4268 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4269 if (!MaybeEntry) 4270 return MaybeEntry.takeError(); 4271 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4272 4273 switch (Entry.Kind) { 4274 case BitstreamEntry::Error: 4275 return error("Malformed block"); 4276 case BitstreamEntry::EndBlock: 4277 goto OutOfRecordLoop; 4278 4279 case BitstreamEntry::SubBlock: 4280 switch (Entry.ID) { 4281 default: // Skip unknown content. 4282 if (Error Err = Stream.SkipBlock()) 4283 return Err; 4284 break; 4285 case bitc::CONSTANTS_BLOCK_ID: 4286 if (Error Err = parseConstants()) 4287 return Err; 4288 NextValueNo = ValueList.size(); 4289 break; 4290 case bitc::VALUE_SYMTAB_BLOCK_ID: 4291 if (Error Err = parseValueSymbolTable()) 4292 return Err; 4293 break; 4294 case bitc::METADATA_ATTACHMENT_ID: 4295 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4296 return Err; 4297 break; 4298 case bitc::METADATA_BLOCK_ID: 4299 assert(DeferredMetadataInfo.empty() && 4300 "Must read all module-level metadata before function-level"); 4301 if (Error Err = MDLoader->parseFunctionMetadata()) 4302 return Err; 4303 break; 4304 case bitc::USELIST_BLOCK_ID: 4305 if (Error Err = parseUseLists()) 4306 return Err; 4307 break; 4308 } 4309 continue; 4310 4311 case BitstreamEntry::Record: 4312 // The interesting case. 4313 break; 4314 } 4315 4316 // Read a record. 4317 Record.clear(); 4318 Instruction *I = nullptr; 4319 unsigned ResTypeID = InvalidTypeID; 4320 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4321 if (!MaybeBitCode) 4322 return MaybeBitCode.takeError(); 4323 switch (unsigned BitCode = MaybeBitCode.get()) { 4324 default: // Default behavior: reject 4325 return error("Invalid value"); 4326 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4327 if (Record.empty() || Record[0] == 0) 4328 return error("Invalid record"); 4329 // Create all the basic blocks for the function. 4330 FunctionBBs.resize(Record[0]); 4331 4332 // See if anything took the address of blocks in this function. 4333 auto BBFRI = BasicBlockFwdRefs.find(F); 4334 if (BBFRI == BasicBlockFwdRefs.end()) { 4335 for (BasicBlock *&BB : FunctionBBs) 4336 BB = BasicBlock::Create(Context, "", F); 4337 } else { 4338 auto &BBRefs = BBFRI->second; 4339 // Check for invalid basic block references. 4340 if (BBRefs.size() > FunctionBBs.size()) 4341 return error("Invalid ID"); 4342 assert(!BBRefs.empty() && "Unexpected empty array"); 4343 assert(!BBRefs.front() && "Invalid reference to entry block"); 4344 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4345 ++I) 4346 if (I < RE && BBRefs[I]) { 4347 BBRefs[I]->insertInto(F); 4348 FunctionBBs[I] = BBRefs[I]; 4349 } else { 4350 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4351 } 4352 4353 // Erase from the table. 4354 BasicBlockFwdRefs.erase(BBFRI); 4355 } 4356 4357 CurBB = FunctionBBs[0]; 4358 continue; 4359 } 4360 4361 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4362 // The record should not be emitted if it's an empty list. 4363 if (Record.empty()) 4364 return error("Invalid record"); 4365 // When we have the RARE case of a BlockAddress Constant that is not 4366 // scoped to the Function it refers to, we need to conservatively 4367 // materialize the referred to Function, regardless of whether or not 4368 // that Function will ultimately be linked, otherwise users of 4369 // BitcodeReader might start splicing out Function bodies such that we 4370 // might no longer be able to materialize the BlockAddress since the 4371 // BasicBlock (and entire body of the Function) the BlockAddress refers 4372 // to may have been moved. In the case that the user of BitcodeReader 4373 // decides ultimately not to link the Function body, materializing here 4374 // could be considered wasteful, but it's better than a deserialization 4375 // failure as described. This keeps BitcodeReader unaware of complex 4376 // linkage policy decisions such as those use by LTO, leaving those 4377 // decisions "one layer up." 4378 for (uint64_t ValID : Record) 4379 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4380 BackwardRefFunctions.push_back(F); 4381 else 4382 return error("Invalid record"); 4383 4384 continue; 4385 4386 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4387 // This record indicates that the last instruction is at the same 4388 // location as the previous instruction with a location. 4389 I = getLastInstruction(); 4390 4391 if (!I) 4392 return error("Invalid record"); 4393 I->setDebugLoc(LastLoc); 4394 I = nullptr; 4395 continue; 4396 4397 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4398 I = getLastInstruction(); 4399 if (!I || Record.size() < 4) 4400 return error("Invalid record"); 4401 4402 unsigned Line = Record[0], Col = Record[1]; 4403 unsigned ScopeID = Record[2], IAID = Record[3]; 4404 bool isImplicitCode = Record.size() == 5 && Record[4]; 4405 4406 MDNode *Scope = nullptr, *IA = nullptr; 4407 if (ScopeID) { 4408 Scope = dyn_cast_or_null<MDNode>( 4409 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4410 if (!Scope) 4411 return error("Invalid record"); 4412 } 4413 if (IAID) { 4414 IA = dyn_cast_or_null<MDNode>( 4415 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4416 if (!IA) 4417 return error("Invalid record"); 4418 } 4419 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4420 isImplicitCode); 4421 I->setDebugLoc(LastLoc); 4422 I = nullptr; 4423 continue; 4424 } 4425 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4426 unsigned OpNum = 0; 4427 Value *LHS; 4428 unsigned TypeID; 4429 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4430 OpNum+1 > Record.size()) 4431 return error("Invalid record"); 4432 4433 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4434 if (Opc == -1) 4435 return error("Invalid record"); 4436 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4437 ResTypeID = TypeID; 4438 InstructionList.push_back(I); 4439 if (OpNum < Record.size()) { 4440 if (isa<FPMathOperator>(I)) { 4441 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4442 if (FMF.any()) 4443 I->setFastMathFlags(FMF); 4444 } 4445 } 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4449 unsigned OpNum = 0; 4450 Value *LHS, *RHS; 4451 unsigned TypeID; 4452 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4453 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) || 4454 OpNum+1 > Record.size()) 4455 return error("Invalid record"); 4456 4457 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4458 if (Opc == -1) 4459 return error("Invalid record"); 4460 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4461 ResTypeID = TypeID; 4462 InstructionList.push_back(I); 4463 if (OpNum < Record.size()) { 4464 if (Opc == Instruction::Add || 4465 Opc == Instruction::Sub || 4466 Opc == Instruction::Mul || 4467 Opc == Instruction::Shl) { 4468 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4469 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4470 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4471 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4472 } else if (Opc == Instruction::SDiv || 4473 Opc == Instruction::UDiv || 4474 Opc == Instruction::LShr || 4475 Opc == Instruction::AShr) { 4476 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4477 cast<BinaryOperator>(I)->setIsExact(true); 4478 } else if (isa<FPMathOperator>(I)) { 4479 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4480 if (FMF.any()) 4481 I->setFastMathFlags(FMF); 4482 } 4483 4484 } 4485 break; 4486 } 4487 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4488 unsigned OpNum = 0; 4489 Value *Op; 4490 unsigned OpTypeID; 4491 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 4492 OpNum+2 != Record.size()) 4493 return error("Invalid record"); 4494 4495 ResTypeID = Record[OpNum]; 4496 Type *ResTy = getTypeByID(ResTypeID); 4497 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4498 if (Opc == -1 || !ResTy) 4499 return error("Invalid record"); 4500 Instruction *Temp = nullptr; 4501 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4502 if (Temp) { 4503 InstructionList.push_back(Temp); 4504 assert(CurBB && "No current BB?"); 4505 CurBB->getInstList().push_back(Temp); 4506 } 4507 } else { 4508 auto CastOp = (Instruction::CastOps)Opc; 4509 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4510 return error("Invalid cast"); 4511 I = CastInst::Create(CastOp, Op, ResTy); 4512 } 4513 InstructionList.push_back(I); 4514 break; 4515 } 4516 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4517 case bitc::FUNC_CODE_INST_GEP_OLD: 4518 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4519 unsigned OpNum = 0; 4520 4521 unsigned TyID; 4522 Type *Ty; 4523 bool InBounds; 4524 4525 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4526 InBounds = Record[OpNum++]; 4527 TyID = Record[OpNum++]; 4528 Ty = getTypeByID(TyID); 4529 } else { 4530 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4531 TyID = InvalidTypeID; 4532 Ty = nullptr; 4533 } 4534 4535 Value *BasePtr; 4536 unsigned BasePtrTypeID; 4537 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID)) 4538 return error("Invalid record"); 4539 4540 if (!Ty) { 4541 TyID = getContainedTypeID(BasePtrTypeID); 4542 if (BasePtr->getType()->isVectorTy()) 4543 TyID = getContainedTypeID(TyID); 4544 Ty = getTypeByID(TyID); 4545 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4546 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4547 return error( 4548 "Explicit gep type does not match pointee type of pointer operand"); 4549 } 4550 4551 SmallVector<Value*, 16> GEPIdx; 4552 while (OpNum != Record.size()) { 4553 Value *Op; 4554 unsigned OpTypeID; 4555 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4556 return error("Invalid record"); 4557 GEPIdx.push_back(Op); 4558 } 4559 4560 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4561 4562 ResTypeID = TyID; 4563 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4564 auto GTI = std::next(gep_type_begin(I)); 4565 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4566 unsigned SubType = 0; 4567 if (GTI.isStruct()) { 4568 ConstantInt *IdxC = 4569 Idx->getType()->isVectorTy() 4570 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4571 : cast<ConstantInt>(Idx); 4572 SubType = IdxC->getZExtValue(); 4573 } 4574 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4575 ++GTI; 4576 } 4577 } 4578 4579 // At this point ResTypeID is the result element type. We need a pointer 4580 // or vector of pointer to it. 4581 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4582 if (I->getType()->isVectorTy()) 4583 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4584 4585 InstructionList.push_back(I); 4586 if (InBounds) 4587 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4588 break; 4589 } 4590 4591 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4592 // EXTRACTVAL: [opty, opval, n x indices] 4593 unsigned OpNum = 0; 4594 Value *Agg; 4595 unsigned AggTypeID; 4596 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4597 return error("Invalid record"); 4598 Type *Ty = Agg->getType(); 4599 4600 unsigned RecSize = Record.size(); 4601 if (OpNum == RecSize) 4602 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4603 4604 SmallVector<unsigned, 4> EXTRACTVALIdx; 4605 ResTypeID = AggTypeID; 4606 for (; OpNum != RecSize; ++OpNum) { 4607 bool IsArray = Ty->isArrayTy(); 4608 bool IsStruct = Ty->isStructTy(); 4609 uint64_t Index = Record[OpNum]; 4610 4611 if (!IsStruct && !IsArray) 4612 return error("EXTRACTVAL: Invalid type"); 4613 if ((unsigned)Index != Index) 4614 return error("Invalid value"); 4615 if (IsStruct && Index >= Ty->getStructNumElements()) 4616 return error("EXTRACTVAL: Invalid struct index"); 4617 if (IsArray && Index >= Ty->getArrayNumElements()) 4618 return error("EXTRACTVAL: Invalid array index"); 4619 EXTRACTVALIdx.push_back((unsigned)Index); 4620 4621 if (IsStruct) { 4622 Ty = Ty->getStructElementType(Index); 4623 ResTypeID = getContainedTypeID(ResTypeID, Index); 4624 } else { 4625 Ty = Ty->getArrayElementType(); 4626 ResTypeID = getContainedTypeID(ResTypeID); 4627 } 4628 } 4629 4630 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4631 InstructionList.push_back(I); 4632 break; 4633 } 4634 4635 case bitc::FUNC_CODE_INST_INSERTVAL: { 4636 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4637 unsigned OpNum = 0; 4638 Value *Agg; 4639 unsigned AggTypeID; 4640 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4641 return error("Invalid record"); 4642 Value *Val; 4643 unsigned ValTypeID; 4644 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 4645 return error("Invalid record"); 4646 4647 unsigned RecSize = Record.size(); 4648 if (OpNum == RecSize) 4649 return error("INSERTVAL: Invalid instruction with 0 indices"); 4650 4651 SmallVector<unsigned, 4> INSERTVALIdx; 4652 Type *CurTy = Agg->getType(); 4653 for (; OpNum != RecSize; ++OpNum) { 4654 bool IsArray = CurTy->isArrayTy(); 4655 bool IsStruct = CurTy->isStructTy(); 4656 uint64_t Index = Record[OpNum]; 4657 4658 if (!IsStruct && !IsArray) 4659 return error("INSERTVAL: Invalid type"); 4660 if ((unsigned)Index != Index) 4661 return error("Invalid value"); 4662 if (IsStruct && Index >= CurTy->getStructNumElements()) 4663 return error("INSERTVAL: Invalid struct index"); 4664 if (IsArray && Index >= CurTy->getArrayNumElements()) 4665 return error("INSERTVAL: Invalid array index"); 4666 4667 INSERTVALIdx.push_back((unsigned)Index); 4668 if (IsStruct) 4669 CurTy = CurTy->getStructElementType(Index); 4670 else 4671 CurTy = CurTy->getArrayElementType(); 4672 } 4673 4674 if (CurTy != Val->getType()) 4675 return error("Inserted value type doesn't match aggregate type"); 4676 4677 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4678 ResTypeID = AggTypeID; 4679 InstructionList.push_back(I); 4680 break; 4681 } 4682 4683 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4684 // obsolete form of select 4685 // handles select i1 ... in old bitcode 4686 unsigned OpNum = 0; 4687 Value *TrueVal, *FalseVal, *Cond; 4688 unsigned TypeID; 4689 Type *CondType = Type::getInt1Ty(Context); 4690 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) || 4691 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4692 FalseVal) || 4693 popValue(Record, OpNum, NextValueNo, CondType, 4694 getVirtualTypeID(CondType), Cond)) 4695 return error("Invalid record"); 4696 4697 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4698 ResTypeID = TypeID; 4699 InstructionList.push_back(I); 4700 break; 4701 } 4702 4703 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4704 // new form of select 4705 // handles select i1 or select [N x i1] 4706 unsigned OpNum = 0; 4707 Value *TrueVal, *FalseVal, *Cond; 4708 unsigned ValTypeID, CondTypeID; 4709 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) || 4710 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4711 FalseVal) || 4712 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID)) 4713 return error("Invalid record"); 4714 4715 // select condition can be either i1 or [N x i1] 4716 if (VectorType* vector_type = 4717 dyn_cast<VectorType>(Cond->getType())) { 4718 // expect <n x i1> 4719 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4720 return error("Invalid type for value"); 4721 } else { 4722 // expect i1 4723 if (Cond->getType() != Type::getInt1Ty(Context)) 4724 return error("Invalid type for value"); 4725 } 4726 4727 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4728 ResTypeID = ValTypeID; 4729 InstructionList.push_back(I); 4730 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4731 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4732 if (FMF.any()) 4733 I->setFastMathFlags(FMF); 4734 } 4735 break; 4736 } 4737 4738 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4739 unsigned OpNum = 0; 4740 Value *Vec, *Idx; 4741 unsigned VecTypeID, IdxTypeID; 4742 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) || 4743 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4744 return error("Invalid record"); 4745 if (!Vec->getType()->isVectorTy()) 4746 return error("Invalid type for value"); 4747 I = ExtractElementInst::Create(Vec, Idx); 4748 ResTypeID = getContainedTypeID(VecTypeID); 4749 InstructionList.push_back(I); 4750 break; 4751 } 4752 4753 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4754 unsigned OpNum = 0; 4755 Value *Vec, *Elt, *Idx; 4756 unsigned VecTypeID, IdxTypeID; 4757 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID)) 4758 return error("Invalid record"); 4759 if (!Vec->getType()->isVectorTy()) 4760 return error("Invalid type for value"); 4761 if (popValue(Record, OpNum, NextValueNo, 4762 cast<VectorType>(Vec->getType())->getElementType(), 4763 getContainedTypeID(VecTypeID), Elt) || 4764 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4765 return error("Invalid record"); 4766 I = InsertElementInst::Create(Vec, Elt, Idx); 4767 ResTypeID = VecTypeID; 4768 InstructionList.push_back(I); 4769 break; 4770 } 4771 4772 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4773 unsigned OpNum = 0; 4774 Value *Vec1, *Vec2, *Mask; 4775 unsigned Vec1TypeID; 4776 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) || 4777 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 4778 Vec2)) 4779 return error("Invalid record"); 4780 4781 unsigned MaskTypeID; 4782 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID)) 4783 return error("Invalid record"); 4784 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4785 return error("Invalid type for value"); 4786 4787 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4788 ResTypeID = 4789 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 4790 InstructionList.push_back(I); 4791 break; 4792 } 4793 4794 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4795 // Old form of ICmp/FCmp returning bool 4796 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4797 // both legal on vectors but had different behaviour. 4798 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4799 // FCmp/ICmp returning bool or vector of bool 4800 4801 unsigned OpNum = 0; 4802 Value *LHS, *RHS; 4803 unsigned LHSTypeID; 4804 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) || 4805 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS)) 4806 return error("Invalid record"); 4807 4808 if (OpNum >= Record.size()) 4809 return error( 4810 "Invalid record: operand number exceeded available operands"); 4811 4812 unsigned PredVal = Record[OpNum]; 4813 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4814 FastMathFlags FMF; 4815 if (IsFP && Record.size() > OpNum+1) 4816 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4817 4818 if (OpNum+1 != Record.size()) 4819 return error("Invalid record"); 4820 4821 if (LHS->getType()->isFPOrFPVectorTy()) 4822 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4823 else 4824 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4825 4826 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 4827 if (LHS->getType()->isVectorTy()) 4828 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4829 4830 if (FMF.any()) 4831 I->setFastMathFlags(FMF); 4832 InstructionList.push_back(I); 4833 break; 4834 } 4835 4836 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4837 { 4838 unsigned Size = Record.size(); 4839 if (Size == 0) { 4840 I = ReturnInst::Create(Context); 4841 InstructionList.push_back(I); 4842 break; 4843 } 4844 4845 unsigned OpNum = 0; 4846 Value *Op = nullptr; 4847 unsigned OpTypeID; 4848 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4849 return error("Invalid record"); 4850 if (OpNum != Record.size()) 4851 return error("Invalid record"); 4852 4853 I = ReturnInst::Create(Context, Op); 4854 InstructionList.push_back(I); 4855 break; 4856 } 4857 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4858 if (Record.size() != 1 && Record.size() != 3) 4859 return error("Invalid record"); 4860 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4861 if (!TrueDest) 4862 return error("Invalid record"); 4863 4864 if (Record.size() == 1) { 4865 I = BranchInst::Create(TrueDest); 4866 InstructionList.push_back(I); 4867 } 4868 else { 4869 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4870 Type *CondType = Type::getInt1Ty(Context); 4871 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 4872 getVirtualTypeID(CondType)); 4873 if (!FalseDest || !Cond) 4874 return error("Invalid record"); 4875 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4876 InstructionList.push_back(I); 4877 } 4878 break; 4879 } 4880 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4881 if (Record.size() != 1 && Record.size() != 2) 4882 return error("Invalid record"); 4883 unsigned Idx = 0; 4884 Type *TokenTy = Type::getTokenTy(Context); 4885 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4886 getVirtualTypeID(TokenTy)); 4887 if (!CleanupPad) 4888 return error("Invalid record"); 4889 BasicBlock *UnwindDest = nullptr; 4890 if (Record.size() == 2) { 4891 UnwindDest = getBasicBlock(Record[Idx++]); 4892 if (!UnwindDest) 4893 return error("Invalid record"); 4894 } 4895 4896 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4897 InstructionList.push_back(I); 4898 break; 4899 } 4900 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4901 if (Record.size() != 2) 4902 return error("Invalid record"); 4903 unsigned Idx = 0; 4904 Type *TokenTy = Type::getTokenTy(Context); 4905 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4906 getVirtualTypeID(TokenTy)); 4907 if (!CatchPad) 4908 return error("Invalid record"); 4909 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4910 if (!BB) 4911 return error("Invalid record"); 4912 4913 I = CatchReturnInst::Create(CatchPad, BB); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4918 // We must have, at minimum, the outer scope and the number of arguments. 4919 if (Record.size() < 2) 4920 return error("Invalid record"); 4921 4922 unsigned Idx = 0; 4923 4924 Type *TokenTy = Type::getTokenTy(Context); 4925 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4926 getVirtualTypeID(TokenTy)); 4927 4928 unsigned NumHandlers = Record[Idx++]; 4929 4930 SmallVector<BasicBlock *, 2> Handlers; 4931 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4932 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4933 if (!BB) 4934 return error("Invalid record"); 4935 Handlers.push_back(BB); 4936 } 4937 4938 BasicBlock *UnwindDest = nullptr; 4939 if (Idx + 1 == Record.size()) { 4940 UnwindDest = getBasicBlock(Record[Idx++]); 4941 if (!UnwindDest) 4942 return error("Invalid record"); 4943 } 4944 4945 if (Record.size() != Idx) 4946 return error("Invalid record"); 4947 4948 auto *CatchSwitch = 4949 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4950 for (BasicBlock *Handler : Handlers) 4951 CatchSwitch->addHandler(Handler); 4952 I = CatchSwitch; 4953 ResTypeID = getVirtualTypeID(I->getType()); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_CATCHPAD: 4958 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4959 // We must have, at minimum, the outer scope and the number of arguments. 4960 if (Record.size() < 2) 4961 return error("Invalid record"); 4962 4963 unsigned Idx = 0; 4964 4965 Type *TokenTy = Type::getTokenTy(Context); 4966 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4967 getVirtualTypeID(TokenTy)); 4968 4969 unsigned NumArgOperands = Record[Idx++]; 4970 4971 SmallVector<Value *, 2> Args; 4972 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4973 Value *Val; 4974 unsigned ValTypeID; 4975 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4976 return error("Invalid record"); 4977 Args.push_back(Val); 4978 } 4979 4980 if (Record.size() != Idx) 4981 return error("Invalid record"); 4982 4983 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4984 I = CleanupPadInst::Create(ParentPad, Args); 4985 else 4986 I = CatchPadInst::Create(ParentPad, Args); 4987 ResTypeID = getVirtualTypeID(I->getType()); 4988 InstructionList.push_back(I); 4989 break; 4990 } 4991 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4992 // Check magic 4993 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4994 // "New" SwitchInst format with case ranges. The changes to write this 4995 // format were reverted but we still recognize bitcode that uses it. 4996 // Hopefully someday we will have support for case ranges and can use 4997 // this format again. 4998 4999 unsigned OpTyID = Record[1]; 5000 Type *OpTy = getTypeByID(OpTyID); 5001 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5002 5003 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID); 5004 BasicBlock *Default = getBasicBlock(Record[3]); 5005 if (!OpTy || !Cond || !Default) 5006 return error("Invalid record"); 5007 5008 unsigned NumCases = Record[4]; 5009 5010 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5011 InstructionList.push_back(SI); 5012 5013 unsigned CurIdx = 5; 5014 for (unsigned i = 0; i != NumCases; ++i) { 5015 SmallVector<ConstantInt*, 1> CaseVals; 5016 unsigned NumItems = Record[CurIdx++]; 5017 for (unsigned ci = 0; ci != NumItems; ++ci) { 5018 bool isSingleNumber = Record[CurIdx++]; 5019 5020 APInt Low; 5021 unsigned ActiveWords = 1; 5022 if (ValueBitWidth > 64) 5023 ActiveWords = Record[CurIdx++]; 5024 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5025 ValueBitWidth); 5026 CurIdx += ActiveWords; 5027 5028 if (!isSingleNumber) { 5029 ActiveWords = 1; 5030 if (ValueBitWidth > 64) 5031 ActiveWords = Record[CurIdx++]; 5032 APInt High = readWideAPInt( 5033 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5034 CurIdx += ActiveWords; 5035 5036 // FIXME: It is not clear whether values in the range should be 5037 // compared as signed or unsigned values. The partially 5038 // implemented changes that used this format in the past used 5039 // unsigned comparisons. 5040 for ( ; Low.ule(High); ++Low) 5041 CaseVals.push_back(ConstantInt::get(Context, Low)); 5042 } else 5043 CaseVals.push_back(ConstantInt::get(Context, Low)); 5044 } 5045 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5046 for (ConstantInt *Cst : CaseVals) 5047 SI->addCase(Cst, DestBB); 5048 } 5049 I = SI; 5050 break; 5051 } 5052 5053 // Old SwitchInst format without case ranges. 5054 5055 if (Record.size() < 3 || (Record.size() & 1) == 0) 5056 return error("Invalid record"); 5057 unsigned OpTyID = Record[0]; 5058 Type *OpTy = getTypeByID(OpTyID); 5059 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5060 BasicBlock *Default = getBasicBlock(Record[2]); 5061 if (!OpTy || !Cond || !Default) 5062 return error("Invalid record"); 5063 unsigned NumCases = (Record.size()-3)/2; 5064 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5065 InstructionList.push_back(SI); 5066 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5067 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5068 getFnValueByID(Record[3+i*2], OpTy, OpTyID)); 5069 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5070 if (!CaseVal || !DestBB) { 5071 delete SI; 5072 return error("Invalid record"); 5073 } 5074 SI->addCase(CaseVal, DestBB); 5075 } 5076 I = SI; 5077 break; 5078 } 5079 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5080 if (Record.size() < 2) 5081 return error("Invalid record"); 5082 unsigned OpTyID = Record[0]; 5083 Type *OpTy = getTypeByID(OpTyID); 5084 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5085 if (!OpTy || !Address) 5086 return error("Invalid record"); 5087 unsigned NumDests = Record.size()-2; 5088 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5089 InstructionList.push_back(IBI); 5090 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5091 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5092 IBI->addDestination(DestBB); 5093 } else { 5094 delete IBI; 5095 return error("Invalid record"); 5096 } 5097 } 5098 I = IBI; 5099 break; 5100 } 5101 5102 case bitc::FUNC_CODE_INST_INVOKE: { 5103 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5104 if (Record.size() < 4) 5105 return error("Invalid record"); 5106 unsigned OpNum = 0; 5107 AttributeList PAL = getAttributes(Record[OpNum++]); 5108 unsigned CCInfo = Record[OpNum++]; 5109 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5110 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5111 5112 unsigned FTyID = InvalidTypeID; 5113 FunctionType *FTy = nullptr; 5114 if ((CCInfo >> 13) & 1) { 5115 FTyID = Record[OpNum++]; 5116 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5117 if (!FTy) 5118 return error("Explicit invoke type is not a function type"); 5119 } 5120 5121 Value *Callee; 5122 unsigned CalleeTypeID; 5123 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5124 return error("Invalid record"); 5125 5126 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5127 if (!CalleeTy) 5128 return error("Callee is not a pointer"); 5129 if (!FTy) { 5130 FTyID = getContainedTypeID(CalleeTypeID); 5131 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5132 if (!FTy) 5133 return error("Callee is not of pointer to function type"); 5134 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5135 return error("Explicit invoke type does not match pointee type of " 5136 "callee operand"); 5137 if (Record.size() < FTy->getNumParams() + OpNum) 5138 return error("Insufficient operands to call"); 5139 5140 SmallVector<Value*, 16> Ops; 5141 SmallVector<unsigned, 16> ArgTyIDs; 5142 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5143 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5144 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5145 ArgTyID)); 5146 ArgTyIDs.push_back(ArgTyID); 5147 if (!Ops.back()) 5148 return error("Invalid record"); 5149 } 5150 5151 if (!FTy->isVarArg()) { 5152 if (Record.size() != OpNum) 5153 return error("Invalid record"); 5154 } else { 5155 // Read type/value pairs for varargs params. 5156 while (OpNum != Record.size()) { 5157 Value *Op; 5158 unsigned OpTypeID; 5159 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5160 return error("Invalid record"); 5161 Ops.push_back(Op); 5162 ArgTyIDs.push_back(OpTypeID); 5163 } 5164 } 5165 5166 // Upgrade the bundles if needed. 5167 if (!OperandBundles.empty()) 5168 UpgradeOperandBundles(OperandBundles); 5169 5170 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5171 OperandBundles); 5172 ResTypeID = getContainedTypeID(FTyID); 5173 OperandBundles.clear(); 5174 InstructionList.push_back(I); 5175 cast<InvokeInst>(I)->setCallingConv( 5176 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5177 cast<InvokeInst>(I)->setAttributes(PAL); 5178 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5179 I->deleteValue(); 5180 return Err; 5181 } 5182 5183 break; 5184 } 5185 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5186 unsigned Idx = 0; 5187 Value *Val = nullptr; 5188 unsigned ValTypeID; 5189 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 5190 return error("Invalid record"); 5191 I = ResumeInst::Create(Val); 5192 InstructionList.push_back(I); 5193 break; 5194 } 5195 case bitc::FUNC_CODE_INST_CALLBR: { 5196 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5197 unsigned OpNum = 0; 5198 AttributeList PAL = getAttributes(Record[OpNum++]); 5199 unsigned CCInfo = Record[OpNum++]; 5200 5201 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5202 unsigned NumIndirectDests = Record[OpNum++]; 5203 SmallVector<BasicBlock *, 16> IndirectDests; 5204 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5205 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5206 5207 unsigned FTyID = InvalidTypeID; 5208 FunctionType *FTy = nullptr; 5209 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5210 FTyID = Record[OpNum++]; 5211 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5212 if (!FTy) 5213 return error("Explicit call type is not a function type"); 5214 } 5215 5216 Value *Callee; 5217 unsigned CalleeTypeID; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5219 return error("Invalid record"); 5220 5221 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5222 if (!OpTy) 5223 return error("Callee is not a pointer type"); 5224 if (!FTy) { 5225 FTyID = getContainedTypeID(CalleeTypeID); 5226 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5227 if (!FTy) 5228 return error("Callee is not of pointer to function type"); 5229 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5230 return error("Explicit call type does not match pointee type of " 5231 "callee operand"); 5232 if (Record.size() < FTy->getNumParams() + OpNum) 5233 return error("Insufficient operands to call"); 5234 5235 SmallVector<Value*, 16> Args; 5236 SmallVector<unsigned, 16> ArgTyIDs; 5237 // Read the fixed params. 5238 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5239 Value *Arg; 5240 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5241 if (FTy->getParamType(i)->isLabelTy()) 5242 Arg = getBasicBlock(Record[OpNum]); 5243 else 5244 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5245 ArgTyID); 5246 if (!Arg) 5247 return error("Invalid record"); 5248 Args.push_back(Arg); 5249 ArgTyIDs.push_back(ArgTyID); 5250 } 5251 5252 // Read type/value pairs for varargs params. 5253 if (!FTy->isVarArg()) { 5254 if (OpNum != Record.size()) 5255 return error("Invalid record"); 5256 } else { 5257 while (OpNum != Record.size()) { 5258 Value *Op; 5259 unsigned OpTypeID; 5260 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5261 return error("Invalid record"); 5262 Args.push_back(Op); 5263 ArgTyIDs.push_back(OpTypeID); 5264 } 5265 } 5266 5267 // Upgrade the bundles if needed. 5268 if (!OperandBundles.empty()) 5269 UpgradeOperandBundles(OperandBundles); 5270 5271 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5272 OperandBundles); 5273 ResTypeID = getContainedTypeID(FTyID); 5274 OperandBundles.clear(); 5275 InstructionList.push_back(I); 5276 cast<CallBrInst>(I)->setCallingConv( 5277 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5278 cast<CallBrInst>(I)->setAttributes(PAL); 5279 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5280 I->deleteValue(); 5281 return Err; 5282 } 5283 break; 5284 } 5285 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5286 I = new UnreachableInst(Context); 5287 InstructionList.push_back(I); 5288 break; 5289 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5290 if (Record.empty()) 5291 return error("Invalid phi record"); 5292 // The first record specifies the type. 5293 unsigned TyID = Record[0]; 5294 Type *Ty = getTypeByID(TyID); 5295 if (!Ty) 5296 return error("Invalid phi record"); 5297 5298 // Phi arguments are pairs of records of [value, basic block]. 5299 // There is an optional final record for fast-math-flags if this phi has a 5300 // floating-point type. 5301 size_t NumArgs = (Record.size() - 1) / 2; 5302 PHINode *PN = PHINode::Create(Ty, NumArgs); 5303 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5304 PN->deleteValue(); 5305 return error("Invalid phi record"); 5306 } 5307 InstructionList.push_back(PN); 5308 5309 for (unsigned i = 0; i != NumArgs; i++) { 5310 Value *V; 5311 // With the new function encoding, it is possible that operands have 5312 // negative IDs (for forward references). Use a signed VBR 5313 // representation to keep the encoding small. 5314 if (UseRelativeIDs) 5315 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5316 else 5317 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5318 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5319 if (!V || !BB) { 5320 PN->deleteValue(); 5321 return error("Invalid phi record"); 5322 } 5323 PN->addIncoming(V, BB); 5324 } 5325 I = PN; 5326 ResTypeID = TyID; 5327 5328 // If there are an even number of records, the final record must be FMF. 5329 if (Record.size() % 2 == 0) { 5330 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5331 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5332 if (FMF.any()) 5333 I->setFastMathFlags(FMF); 5334 } 5335 5336 break; 5337 } 5338 5339 case bitc::FUNC_CODE_INST_LANDINGPAD: 5340 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5341 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5342 unsigned Idx = 0; 5343 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5344 if (Record.size() < 3) 5345 return error("Invalid record"); 5346 } else { 5347 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5348 if (Record.size() < 4) 5349 return error("Invalid record"); 5350 } 5351 ResTypeID = Record[Idx++]; 5352 Type *Ty = getTypeByID(ResTypeID); 5353 if (!Ty) 5354 return error("Invalid record"); 5355 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5356 Value *PersFn = nullptr; 5357 unsigned PersFnTypeID; 5358 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID)) 5359 return error("Invalid record"); 5360 5361 if (!F->hasPersonalityFn()) 5362 F->setPersonalityFn(cast<Constant>(PersFn)); 5363 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5364 return error("Personality function mismatch"); 5365 } 5366 5367 bool IsCleanup = !!Record[Idx++]; 5368 unsigned NumClauses = Record[Idx++]; 5369 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5370 LP->setCleanup(IsCleanup); 5371 for (unsigned J = 0; J != NumClauses; ++J) { 5372 LandingPadInst::ClauseType CT = 5373 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5374 Value *Val; 5375 unsigned ValTypeID; 5376 5377 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) { 5378 delete LP; 5379 return error("Invalid record"); 5380 } 5381 5382 assert((CT != LandingPadInst::Catch || 5383 !isa<ArrayType>(Val->getType())) && 5384 "Catch clause has a invalid type!"); 5385 assert((CT != LandingPadInst::Filter || 5386 isa<ArrayType>(Val->getType())) && 5387 "Filter clause has invalid type!"); 5388 LP->addClause(cast<Constant>(Val)); 5389 } 5390 5391 I = LP; 5392 InstructionList.push_back(I); 5393 break; 5394 } 5395 5396 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5397 if (Record.size() != 4 && Record.size() != 5) 5398 return error("Invalid record"); 5399 using APV = AllocaPackedValues; 5400 const uint64_t Rec = Record[3]; 5401 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5402 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5403 unsigned TyID = Record[0]; 5404 Type *Ty = getTypeByID(TyID); 5405 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5406 TyID = getContainedTypeID(TyID); 5407 Ty = getTypeByID(TyID); 5408 if (!Ty) 5409 return error("Missing element type for old-style alloca"); 5410 } 5411 unsigned OpTyID = Record[1]; 5412 Type *OpTy = getTypeByID(OpTyID); 5413 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID); 5414 MaybeAlign Align; 5415 uint64_t AlignExp = 5416 Bitfield::get<APV::AlignLower>(Rec) | 5417 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5418 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5419 return Err; 5420 } 5421 if (!Ty || !Size) 5422 return error("Invalid record"); 5423 5424 const DataLayout &DL = TheModule->getDataLayout(); 5425 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5426 5427 SmallPtrSet<Type *, 4> Visited; 5428 if (!Align && !Ty->isSized(&Visited)) 5429 return error("alloca of unsized type"); 5430 if (!Align) 5431 Align = DL.getPrefTypeAlign(Ty); 5432 5433 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5434 AI->setUsedWithInAlloca(InAlloca); 5435 AI->setSwiftError(SwiftError); 5436 I = AI; 5437 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5438 InstructionList.push_back(I); 5439 break; 5440 } 5441 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5442 unsigned OpNum = 0; 5443 Value *Op; 5444 unsigned OpTypeID; 5445 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5446 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5447 return error("Invalid record"); 5448 5449 if (!isa<PointerType>(Op->getType())) 5450 return error("Load operand is not a pointer type"); 5451 5452 Type *Ty = nullptr; 5453 if (OpNum + 3 == Record.size()) { 5454 ResTypeID = Record[OpNum++]; 5455 Ty = getTypeByID(ResTypeID); 5456 } else { 5457 ResTypeID = getContainedTypeID(OpTypeID); 5458 Ty = getTypeByID(ResTypeID); 5459 if (!Ty) 5460 return error("Missing element type for old-style load"); 5461 } 5462 5463 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5464 return Err; 5465 5466 MaybeAlign Align; 5467 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5468 return Err; 5469 SmallPtrSet<Type *, 4> Visited; 5470 if (!Align && !Ty->isSized(&Visited)) 5471 return error("load of unsized type"); 5472 if (!Align) 5473 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5474 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5475 InstructionList.push_back(I); 5476 break; 5477 } 5478 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5479 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5480 unsigned OpNum = 0; 5481 Value *Op; 5482 unsigned OpTypeID; 5483 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5484 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5485 return error("Invalid record"); 5486 5487 if (!isa<PointerType>(Op->getType())) 5488 return error("Load operand is not a pointer type"); 5489 5490 Type *Ty = nullptr; 5491 if (OpNum + 5 == Record.size()) { 5492 ResTypeID = Record[OpNum++]; 5493 Ty = getTypeByID(ResTypeID); 5494 } else { 5495 ResTypeID = getContainedTypeID(OpTypeID); 5496 Ty = getTypeByID(ResTypeID); 5497 if (!Ty) 5498 return error("Missing element type for old style atomic load"); 5499 } 5500 5501 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5502 return Err; 5503 5504 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5505 if (Ordering == AtomicOrdering::NotAtomic || 5506 Ordering == AtomicOrdering::Release || 5507 Ordering == AtomicOrdering::AcquireRelease) 5508 return error("Invalid record"); 5509 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5510 return error("Invalid record"); 5511 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5512 5513 MaybeAlign Align; 5514 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5515 return Err; 5516 if (!Align) 5517 return error("Alignment missing from atomic load"); 5518 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5519 InstructionList.push_back(I); 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_STORE: 5523 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5524 unsigned OpNum = 0; 5525 Value *Val, *Ptr; 5526 unsigned PtrTypeID, ValTypeID; 5527 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5528 return error("Invalid record"); 5529 5530 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5531 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5532 return error("Invalid record"); 5533 } else { 5534 ValTypeID = getContainedTypeID(PtrTypeID); 5535 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5536 ValTypeID, Val)) 5537 return error("Invalid record"); 5538 } 5539 5540 if (OpNum + 2 != Record.size()) 5541 return error("Invalid record"); 5542 5543 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5544 return Err; 5545 MaybeAlign Align; 5546 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5547 return Err; 5548 SmallPtrSet<Type *, 4> Visited; 5549 if (!Align && !Val->getType()->isSized(&Visited)) 5550 return error("store of unsized type"); 5551 if (!Align) 5552 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5553 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5554 InstructionList.push_back(I); 5555 break; 5556 } 5557 case bitc::FUNC_CODE_INST_STOREATOMIC: 5558 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5559 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5560 unsigned OpNum = 0; 5561 Value *Val, *Ptr; 5562 unsigned PtrTypeID, ValTypeID; 5563 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5564 !isa<PointerType>(Ptr->getType())) 5565 return error("Invalid record"); 5566 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5567 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5568 return error("Invalid record"); 5569 } else { 5570 ValTypeID = getContainedTypeID(PtrTypeID); 5571 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5572 ValTypeID, Val)) 5573 return error("Invalid record"); 5574 } 5575 5576 if (OpNum + 4 != Record.size()) 5577 return error("Invalid record"); 5578 5579 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5580 return Err; 5581 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5582 if (Ordering == AtomicOrdering::NotAtomic || 5583 Ordering == AtomicOrdering::Acquire || 5584 Ordering == AtomicOrdering::AcquireRelease) 5585 return error("Invalid record"); 5586 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5587 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5588 return error("Invalid record"); 5589 5590 MaybeAlign Align; 5591 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5592 return Err; 5593 if (!Align) 5594 return error("Alignment missing from atomic store"); 5595 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5596 InstructionList.push_back(I); 5597 break; 5598 } 5599 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5600 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5601 // failure_ordering?, weak?] 5602 const size_t NumRecords = Record.size(); 5603 unsigned OpNum = 0; 5604 Value *Ptr = nullptr; 5605 unsigned PtrTypeID; 5606 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5607 return error("Invalid record"); 5608 5609 if (!isa<PointerType>(Ptr->getType())) 5610 return error("Cmpxchg operand is not a pointer type"); 5611 5612 Value *Cmp = nullptr; 5613 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5614 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5615 CmpTypeID, Cmp)) 5616 return error("Invalid record"); 5617 5618 Value *New = nullptr; 5619 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5620 New) || 5621 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5622 return error("Invalid record"); 5623 5624 const AtomicOrdering SuccessOrdering = 5625 getDecodedOrdering(Record[OpNum + 1]); 5626 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5627 SuccessOrdering == AtomicOrdering::Unordered) 5628 return error("Invalid record"); 5629 5630 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5631 5632 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5633 return Err; 5634 5635 const AtomicOrdering FailureOrdering = 5636 NumRecords < 7 5637 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5638 : getDecodedOrdering(Record[OpNum + 3]); 5639 5640 if (FailureOrdering == AtomicOrdering::NotAtomic || 5641 FailureOrdering == AtomicOrdering::Unordered) 5642 return error("Invalid record"); 5643 5644 const Align Alignment( 5645 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5646 5647 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5648 FailureOrdering, SSID); 5649 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5650 5651 if (NumRecords < 8) { 5652 // Before weak cmpxchgs existed, the instruction simply returned the 5653 // value loaded from memory, so bitcode files from that era will be 5654 // expecting the first component of a modern cmpxchg. 5655 CurBB->getInstList().push_back(I); 5656 I = ExtractValueInst::Create(I, 0); 5657 ResTypeID = CmpTypeID; 5658 } else { 5659 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5660 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5661 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5662 } 5663 5664 InstructionList.push_back(I); 5665 break; 5666 } 5667 case bitc::FUNC_CODE_INST_CMPXCHG: { 5668 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5669 // failure_ordering, weak, align?] 5670 const size_t NumRecords = Record.size(); 5671 unsigned OpNum = 0; 5672 Value *Ptr = nullptr; 5673 unsigned PtrTypeID; 5674 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5675 return error("Invalid record"); 5676 5677 if (!isa<PointerType>(Ptr->getType())) 5678 return error("Cmpxchg operand is not a pointer type"); 5679 5680 Value *Cmp = nullptr; 5681 unsigned CmpTypeID; 5682 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID)) 5683 return error("Invalid record"); 5684 5685 Value *Val = nullptr; 5686 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val)) 5687 return error("Invalid record"); 5688 5689 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5690 return error("Invalid record"); 5691 5692 const bool IsVol = Record[OpNum]; 5693 5694 const AtomicOrdering SuccessOrdering = 5695 getDecodedOrdering(Record[OpNum + 1]); 5696 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5697 return error("Invalid cmpxchg success ordering"); 5698 5699 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5700 5701 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5702 return Err; 5703 5704 const AtomicOrdering FailureOrdering = 5705 getDecodedOrdering(Record[OpNum + 3]); 5706 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5707 return error("Invalid cmpxchg failure ordering"); 5708 5709 const bool IsWeak = Record[OpNum + 4]; 5710 5711 MaybeAlign Alignment; 5712 5713 if (NumRecords == (OpNum + 6)) { 5714 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5715 return Err; 5716 } 5717 if (!Alignment) 5718 Alignment = 5719 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5720 5721 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5722 FailureOrdering, SSID); 5723 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5724 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5725 5726 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5727 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5728 5729 InstructionList.push_back(I); 5730 break; 5731 } 5732 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5733 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5734 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5735 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5736 const size_t NumRecords = Record.size(); 5737 unsigned OpNum = 0; 5738 5739 Value *Ptr = nullptr; 5740 unsigned PtrTypeID; 5741 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5742 return error("Invalid record"); 5743 5744 if (!isa<PointerType>(Ptr->getType())) 5745 return error("Invalid record"); 5746 5747 Value *Val = nullptr; 5748 unsigned ValTypeID = InvalidTypeID; 5749 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5750 ValTypeID = getContainedTypeID(PtrTypeID); 5751 if (popValue(Record, OpNum, NextValueNo, 5752 getTypeByID(ValTypeID), ValTypeID, Val)) 5753 return error("Invalid record"); 5754 } else { 5755 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5756 return error("Invalid record"); 5757 } 5758 5759 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5760 return error("Invalid record"); 5761 5762 const AtomicRMWInst::BinOp Operation = 5763 getDecodedRMWOperation(Record[OpNum]); 5764 if (Operation < AtomicRMWInst::FIRST_BINOP || 5765 Operation > AtomicRMWInst::LAST_BINOP) 5766 return error("Invalid record"); 5767 5768 const bool IsVol = Record[OpNum + 1]; 5769 5770 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5771 if (Ordering == AtomicOrdering::NotAtomic || 5772 Ordering == AtomicOrdering::Unordered) 5773 return error("Invalid record"); 5774 5775 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5776 5777 MaybeAlign Alignment; 5778 5779 if (NumRecords == (OpNum + 5)) { 5780 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5781 return Err; 5782 } 5783 5784 if (!Alignment) 5785 Alignment = 5786 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5787 5788 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5789 ResTypeID = ValTypeID; 5790 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5791 5792 InstructionList.push_back(I); 5793 break; 5794 } 5795 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5796 if (2 != Record.size()) 5797 return error("Invalid record"); 5798 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5799 if (Ordering == AtomicOrdering::NotAtomic || 5800 Ordering == AtomicOrdering::Unordered || 5801 Ordering == AtomicOrdering::Monotonic) 5802 return error("Invalid record"); 5803 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5804 I = new FenceInst(Context, Ordering, SSID); 5805 InstructionList.push_back(I); 5806 break; 5807 } 5808 case bitc::FUNC_CODE_INST_CALL: { 5809 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5810 if (Record.size() < 3) 5811 return error("Invalid record"); 5812 5813 unsigned OpNum = 0; 5814 AttributeList PAL = getAttributes(Record[OpNum++]); 5815 unsigned CCInfo = Record[OpNum++]; 5816 5817 FastMathFlags FMF; 5818 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5819 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5820 if (!FMF.any()) 5821 return error("Fast math flags indicator set for call with no FMF"); 5822 } 5823 5824 unsigned FTyID = InvalidTypeID; 5825 FunctionType *FTy = nullptr; 5826 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5827 FTyID = Record[OpNum++]; 5828 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5829 if (!FTy) 5830 return error("Explicit call type is not a function type"); 5831 } 5832 5833 Value *Callee; 5834 unsigned CalleeTypeID; 5835 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5836 return error("Invalid record"); 5837 5838 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5839 if (!OpTy) 5840 return error("Callee is not a pointer type"); 5841 if (!FTy) { 5842 FTyID = getContainedTypeID(CalleeTypeID); 5843 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5844 if (!FTy) 5845 return error("Callee is not of pointer to function type"); 5846 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5847 return error("Explicit call type does not match pointee type of " 5848 "callee operand"); 5849 if (Record.size() < FTy->getNumParams() + OpNum) 5850 return error("Insufficient operands to call"); 5851 5852 SmallVector<Value*, 16> Args; 5853 SmallVector<unsigned, 16> ArgTyIDs; 5854 // Read the fixed params. 5855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5856 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5857 if (FTy->getParamType(i)->isLabelTy()) 5858 Args.push_back(getBasicBlock(Record[OpNum])); 5859 else 5860 Args.push_back(getValue(Record, OpNum, NextValueNo, 5861 FTy->getParamType(i), ArgTyID)); 5862 ArgTyIDs.push_back(ArgTyID); 5863 if (!Args.back()) 5864 return error("Invalid record"); 5865 } 5866 5867 // Read type/value pairs for varargs params. 5868 if (!FTy->isVarArg()) { 5869 if (OpNum != Record.size()) 5870 return error("Invalid record"); 5871 } else { 5872 while (OpNum != Record.size()) { 5873 Value *Op; 5874 unsigned OpTypeID; 5875 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5876 return error("Invalid record"); 5877 Args.push_back(Op); 5878 ArgTyIDs.push_back(OpTypeID); 5879 } 5880 } 5881 5882 // Upgrade the bundles if needed. 5883 if (!OperandBundles.empty()) 5884 UpgradeOperandBundles(OperandBundles); 5885 5886 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5887 ResTypeID = getContainedTypeID(FTyID); 5888 OperandBundles.clear(); 5889 InstructionList.push_back(I); 5890 cast<CallInst>(I)->setCallingConv( 5891 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5892 CallInst::TailCallKind TCK = CallInst::TCK_None; 5893 if (CCInfo & 1 << bitc::CALL_TAIL) 5894 TCK = CallInst::TCK_Tail; 5895 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5896 TCK = CallInst::TCK_MustTail; 5897 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5898 TCK = CallInst::TCK_NoTail; 5899 cast<CallInst>(I)->setTailCallKind(TCK); 5900 cast<CallInst>(I)->setAttributes(PAL); 5901 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5902 I->deleteValue(); 5903 return Err; 5904 } 5905 if (FMF.any()) { 5906 if (!isa<FPMathOperator>(I)) 5907 return error("Fast-math-flags specified for call without " 5908 "floating-point scalar or vector return type"); 5909 I->setFastMathFlags(FMF); 5910 } 5911 break; 5912 } 5913 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5914 if (Record.size() < 3) 5915 return error("Invalid record"); 5916 unsigned OpTyID = Record[0]; 5917 Type *OpTy = getTypeByID(OpTyID); 5918 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5919 ResTypeID = Record[2]; 5920 Type *ResTy = getTypeByID(ResTypeID); 5921 if (!OpTy || !Op || !ResTy) 5922 return error("Invalid record"); 5923 I = new VAArgInst(Op, ResTy); 5924 InstructionList.push_back(I); 5925 break; 5926 } 5927 5928 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5929 // A call or an invoke can be optionally prefixed with some variable 5930 // number of operand bundle blocks. These blocks are read into 5931 // OperandBundles and consumed at the next call or invoke instruction. 5932 5933 if (Record.empty() || Record[0] >= BundleTags.size()) 5934 return error("Invalid record"); 5935 5936 std::vector<Value *> Inputs; 5937 5938 unsigned OpNum = 1; 5939 while (OpNum != Record.size()) { 5940 Value *Op; 5941 unsigned OpTypeID; 5942 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5943 return error("Invalid record"); 5944 Inputs.push_back(Op); 5945 } 5946 5947 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5948 continue; 5949 } 5950 5951 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5952 unsigned OpNum = 0; 5953 Value *Op = nullptr; 5954 unsigned OpTypeID; 5955 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5956 return error("Invalid record"); 5957 if (OpNum != Record.size()) 5958 return error("Invalid record"); 5959 5960 I = new FreezeInst(Op); 5961 ResTypeID = OpTypeID; 5962 InstructionList.push_back(I); 5963 break; 5964 } 5965 } 5966 5967 // Add instruction to end of current BB. If there is no current BB, reject 5968 // this file. 5969 if (!CurBB) { 5970 I->deleteValue(); 5971 return error("Invalid instruction with no BB"); 5972 } 5973 if (!OperandBundles.empty()) { 5974 I->deleteValue(); 5975 return error("Operand bundles found with no consumer"); 5976 } 5977 CurBB->getInstList().push_back(I); 5978 5979 // If this was a terminator instruction, move to the next block. 5980 if (I->isTerminator()) { 5981 ++CurBBNo; 5982 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5983 } 5984 5985 // Non-void values get registered in the value table for future use. 5986 if (!I->getType()->isVoidTy()) { 5987 assert(I->getType() == getTypeByID(ResTypeID) && 5988 "Incorrect result type ID"); 5989 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 5990 return Err; 5991 } 5992 } 5993 5994 OutOfRecordLoop: 5995 5996 if (!OperandBundles.empty()) 5997 return error("Operand bundles found with no consumer"); 5998 5999 // Check the function list for unresolved values. 6000 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6001 if (!A->getParent()) { 6002 // We found at least one unresolved value. Nuke them all to avoid leaks. 6003 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6004 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6005 A->replaceAllUsesWith(UndefValue::get(A->getType())); 6006 delete A; 6007 } 6008 } 6009 return error("Never resolved value found in function"); 6010 } 6011 } 6012 6013 // Unexpected unresolved metadata about to be dropped. 6014 if (MDLoader->hasFwdRefs()) 6015 return error("Invalid function metadata: outgoing forward refs"); 6016 6017 // Trim the value list down to the size it was before we parsed this function. 6018 ValueList.shrinkTo(ModuleValueListSize); 6019 MDLoader->shrinkTo(ModuleMDLoaderSize); 6020 std::vector<BasicBlock*>().swap(FunctionBBs); 6021 return Error::success(); 6022 } 6023 6024 /// Find the function body in the bitcode stream 6025 Error BitcodeReader::findFunctionInStream( 6026 Function *F, 6027 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6028 while (DeferredFunctionInfoIterator->second == 0) { 6029 // This is the fallback handling for the old format bitcode that 6030 // didn't contain the function index in the VST, or when we have 6031 // an anonymous function which would not have a VST entry. 6032 // Assert that we have one of those two cases. 6033 assert(VSTOffset == 0 || !F->hasName()); 6034 // Parse the next body in the stream and set its position in the 6035 // DeferredFunctionInfo map. 6036 if (Error Err = rememberAndSkipFunctionBodies()) 6037 return Err; 6038 } 6039 return Error::success(); 6040 } 6041 6042 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6043 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6044 return SyncScope::ID(Val); 6045 if (Val >= SSIDs.size()) 6046 return SyncScope::System; // Map unknown synchronization scopes to system. 6047 return SSIDs[Val]; 6048 } 6049 6050 //===----------------------------------------------------------------------===// 6051 // GVMaterializer implementation 6052 //===----------------------------------------------------------------------===// 6053 6054 Error BitcodeReader::materialize(GlobalValue *GV) { 6055 Function *F = dyn_cast<Function>(GV); 6056 // If it's not a function or is already material, ignore the request. 6057 if (!F || !F->isMaterializable()) 6058 return Error::success(); 6059 6060 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6061 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6062 // If its position is recorded as 0, its body is somewhere in the stream 6063 // but we haven't seen it yet. 6064 if (DFII->second == 0) 6065 if (Error Err = findFunctionInStream(F, DFII)) 6066 return Err; 6067 6068 // Materialize metadata before parsing any function bodies. 6069 if (Error Err = materializeMetadata()) 6070 return Err; 6071 6072 // Move the bit stream to the saved position of the deferred function body. 6073 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6074 return JumpFailed; 6075 if (Error Err = parseFunctionBody(F)) 6076 return Err; 6077 F->setIsMaterializable(false); 6078 6079 if (StripDebugInfo) 6080 stripDebugInfo(*F); 6081 6082 // Upgrade any old intrinsic calls in the function. 6083 for (auto &I : UpgradedIntrinsics) { 6084 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6085 if (CallInst *CI = dyn_cast<CallInst>(U)) 6086 UpgradeIntrinsicCall(CI, I.second); 6087 } 6088 6089 // Update calls to the remangled intrinsics 6090 for (auto &I : RemangledIntrinsics) 6091 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6092 // Don't expect any other users than call sites 6093 cast<CallBase>(U)->setCalledFunction(I.second); 6094 6095 // Finish fn->subprogram upgrade for materialized functions. 6096 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6097 F->setSubprogram(SP); 6098 6099 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6100 if (!MDLoader->isStrippingTBAA()) { 6101 for (auto &I : instructions(F)) { 6102 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6103 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6104 continue; 6105 MDLoader->setStripTBAA(true); 6106 stripTBAA(F->getParent()); 6107 } 6108 } 6109 6110 for (auto &I : instructions(F)) { 6111 // "Upgrade" older incorrect branch weights by dropping them. 6112 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6113 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6114 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6115 StringRef ProfName = MDS->getString(); 6116 // Check consistency of !prof branch_weights metadata. 6117 if (!ProfName.equals("branch_weights")) 6118 continue; 6119 unsigned ExpectedNumOperands = 0; 6120 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6121 ExpectedNumOperands = BI->getNumSuccessors(); 6122 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6123 ExpectedNumOperands = SI->getNumSuccessors(); 6124 else if (isa<CallInst>(&I)) 6125 ExpectedNumOperands = 1; 6126 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6127 ExpectedNumOperands = IBI->getNumDestinations(); 6128 else if (isa<SelectInst>(&I)) 6129 ExpectedNumOperands = 2; 6130 else 6131 continue; // ignore and continue. 6132 6133 // If branch weight doesn't match, just strip branch weight. 6134 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6135 I.setMetadata(LLVMContext::MD_prof, nullptr); 6136 } 6137 } 6138 6139 // Remove incompatible attributes on function calls. 6140 if (auto *CI = dyn_cast<CallBase>(&I)) { 6141 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6142 CI->getFunctionType()->getReturnType())); 6143 6144 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6145 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6146 CI->getArgOperand(ArgNo)->getType())); 6147 } 6148 } 6149 6150 // Look for functions that rely on old function attribute behavior. 6151 UpgradeFunctionAttributes(*F); 6152 6153 // Bring in any functions that this function forward-referenced via 6154 // blockaddresses. 6155 return materializeForwardReferencedFunctions(); 6156 } 6157 6158 Error BitcodeReader::materializeModule() { 6159 if (Error Err = materializeMetadata()) 6160 return Err; 6161 6162 // Promise to materialize all forward references. 6163 WillMaterializeAllForwardRefs = true; 6164 6165 // Iterate over the module, deserializing any functions that are still on 6166 // disk. 6167 for (Function &F : *TheModule) { 6168 if (Error Err = materialize(&F)) 6169 return Err; 6170 } 6171 // At this point, if there are any function bodies, parse the rest of 6172 // the bits in the module past the last function block we have recorded 6173 // through either lazy scanning or the VST. 6174 if (LastFunctionBlockBit || NextUnreadBit) 6175 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6176 ? LastFunctionBlockBit 6177 : NextUnreadBit)) 6178 return Err; 6179 6180 // Check that all block address forward references got resolved (as we 6181 // promised above). 6182 if (!BasicBlockFwdRefs.empty()) 6183 return error("Never resolved function from blockaddress"); 6184 6185 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6186 // delete the old functions to clean up. We can't do this unless the entire 6187 // module is materialized because there could always be another function body 6188 // with calls to the old function. 6189 for (auto &I : UpgradedIntrinsics) { 6190 for (auto *U : I.first->users()) { 6191 if (CallInst *CI = dyn_cast<CallInst>(U)) 6192 UpgradeIntrinsicCall(CI, I.second); 6193 } 6194 if (!I.first->use_empty()) 6195 I.first->replaceAllUsesWith(I.second); 6196 I.first->eraseFromParent(); 6197 } 6198 UpgradedIntrinsics.clear(); 6199 // Do the same for remangled intrinsics 6200 for (auto &I : RemangledIntrinsics) { 6201 I.first->replaceAllUsesWith(I.second); 6202 I.first->eraseFromParent(); 6203 } 6204 RemangledIntrinsics.clear(); 6205 6206 UpgradeDebugInfo(*TheModule); 6207 6208 UpgradeModuleFlags(*TheModule); 6209 6210 UpgradeARCRuntime(*TheModule); 6211 6212 return Error::success(); 6213 } 6214 6215 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6216 return IdentifiedStructTypes; 6217 } 6218 6219 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6220 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6221 StringRef ModulePath, unsigned ModuleId) 6222 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6223 ModulePath(ModulePath), ModuleId(ModuleId) {} 6224 6225 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6226 TheIndex.addModule(ModulePath, ModuleId); 6227 } 6228 6229 ModuleSummaryIndex::ModuleInfo * 6230 ModuleSummaryIndexBitcodeReader::getThisModule() { 6231 return TheIndex.getModule(ModulePath); 6232 } 6233 6234 std::pair<ValueInfo, GlobalValue::GUID> 6235 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6236 auto VGI = ValueIdToValueInfoMap[ValueId]; 6237 assert(VGI.first); 6238 return VGI; 6239 } 6240 6241 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6242 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6243 StringRef SourceFileName) { 6244 std::string GlobalId = 6245 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6246 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6247 auto OriginalNameID = ValueGUID; 6248 if (GlobalValue::isLocalLinkage(Linkage)) 6249 OriginalNameID = GlobalValue::getGUID(ValueName); 6250 if (PrintSummaryGUIDs) 6251 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6252 << ValueName << "\n"; 6253 6254 // UseStrtab is false for legacy summary formats and value names are 6255 // created on stack. In that case we save the name in a string saver in 6256 // the index so that the value name can be recorded. 6257 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6258 TheIndex.getOrInsertValueInfo( 6259 ValueGUID, 6260 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6261 OriginalNameID); 6262 } 6263 6264 // Specialized value symbol table parser used when reading module index 6265 // blocks where we don't actually create global values. The parsed information 6266 // is saved in the bitcode reader for use when later parsing summaries. 6267 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6268 uint64_t Offset, 6269 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6270 // With a strtab the VST is not required to parse the summary. 6271 if (UseStrtab) 6272 return Error::success(); 6273 6274 assert(Offset > 0 && "Expected non-zero VST offset"); 6275 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6276 if (!MaybeCurrentBit) 6277 return MaybeCurrentBit.takeError(); 6278 uint64_t CurrentBit = MaybeCurrentBit.get(); 6279 6280 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6281 return Err; 6282 6283 SmallVector<uint64_t, 64> Record; 6284 6285 // Read all the records for this value table. 6286 SmallString<128> ValueName; 6287 6288 while (true) { 6289 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6290 if (!MaybeEntry) 6291 return MaybeEntry.takeError(); 6292 BitstreamEntry Entry = MaybeEntry.get(); 6293 6294 switch (Entry.Kind) { 6295 case BitstreamEntry::SubBlock: // Handled for us already. 6296 case BitstreamEntry::Error: 6297 return error("Malformed block"); 6298 case BitstreamEntry::EndBlock: 6299 // Done parsing VST, jump back to wherever we came from. 6300 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6301 return JumpFailed; 6302 return Error::success(); 6303 case BitstreamEntry::Record: 6304 // The interesting case. 6305 break; 6306 } 6307 6308 // Read a record. 6309 Record.clear(); 6310 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6311 if (!MaybeRecord) 6312 return MaybeRecord.takeError(); 6313 switch (MaybeRecord.get()) { 6314 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6315 break; 6316 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6317 if (convertToString(Record, 1, ValueName)) 6318 return error("Invalid record"); 6319 unsigned ValueID = Record[0]; 6320 assert(!SourceFileName.empty()); 6321 auto VLI = ValueIdToLinkageMap.find(ValueID); 6322 assert(VLI != ValueIdToLinkageMap.end() && 6323 "No linkage found for VST entry?"); 6324 auto Linkage = VLI->second; 6325 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6326 ValueName.clear(); 6327 break; 6328 } 6329 case bitc::VST_CODE_FNENTRY: { 6330 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6331 if (convertToString(Record, 2, ValueName)) 6332 return error("Invalid record"); 6333 unsigned ValueID = Record[0]; 6334 assert(!SourceFileName.empty()); 6335 auto VLI = ValueIdToLinkageMap.find(ValueID); 6336 assert(VLI != ValueIdToLinkageMap.end() && 6337 "No linkage found for VST entry?"); 6338 auto Linkage = VLI->second; 6339 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6340 ValueName.clear(); 6341 break; 6342 } 6343 case bitc::VST_CODE_COMBINED_ENTRY: { 6344 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6345 unsigned ValueID = Record[0]; 6346 GlobalValue::GUID RefGUID = Record[1]; 6347 // The "original name", which is the second value of the pair will be 6348 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6349 ValueIdToValueInfoMap[ValueID] = 6350 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6351 break; 6352 } 6353 } 6354 } 6355 } 6356 6357 // Parse just the blocks needed for building the index out of the module. 6358 // At the end of this routine the module Index is populated with a map 6359 // from global value id to GlobalValueSummary objects. 6360 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6361 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6362 return Err; 6363 6364 SmallVector<uint64_t, 64> Record; 6365 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6366 unsigned ValueId = 0; 6367 6368 // Read the index for this module. 6369 while (true) { 6370 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6371 if (!MaybeEntry) 6372 return MaybeEntry.takeError(); 6373 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6374 6375 switch (Entry.Kind) { 6376 case BitstreamEntry::Error: 6377 return error("Malformed block"); 6378 case BitstreamEntry::EndBlock: 6379 return Error::success(); 6380 6381 case BitstreamEntry::SubBlock: 6382 switch (Entry.ID) { 6383 default: // Skip unknown content. 6384 if (Error Err = Stream.SkipBlock()) 6385 return Err; 6386 break; 6387 case bitc::BLOCKINFO_BLOCK_ID: 6388 // Need to parse these to get abbrev ids (e.g. for VST) 6389 if (Error Err = readBlockInfo()) 6390 return Err; 6391 break; 6392 case bitc::VALUE_SYMTAB_BLOCK_ID: 6393 // Should have been parsed earlier via VSTOffset, unless there 6394 // is no summary section. 6395 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6396 !SeenGlobalValSummary) && 6397 "Expected early VST parse via VSTOffset record"); 6398 if (Error Err = Stream.SkipBlock()) 6399 return Err; 6400 break; 6401 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6402 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6403 // Add the module if it is a per-module index (has a source file name). 6404 if (!SourceFileName.empty()) 6405 addThisModule(); 6406 assert(!SeenValueSymbolTable && 6407 "Already read VST when parsing summary block?"); 6408 // We might not have a VST if there were no values in the 6409 // summary. An empty summary block generated when we are 6410 // performing ThinLTO compiles so we don't later invoke 6411 // the regular LTO process on them. 6412 if (VSTOffset > 0) { 6413 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6414 return Err; 6415 SeenValueSymbolTable = true; 6416 } 6417 SeenGlobalValSummary = true; 6418 if (Error Err = parseEntireSummary(Entry.ID)) 6419 return Err; 6420 break; 6421 case bitc::MODULE_STRTAB_BLOCK_ID: 6422 if (Error Err = parseModuleStringTable()) 6423 return Err; 6424 break; 6425 } 6426 continue; 6427 6428 case BitstreamEntry::Record: { 6429 Record.clear(); 6430 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6431 if (!MaybeBitCode) 6432 return MaybeBitCode.takeError(); 6433 switch (MaybeBitCode.get()) { 6434 default: 6435 break; // Default behavior, ignore unknown content. 6436 case bitc::MODULE_CODE_VERSION: { 6437 if (Error Err = parseVersionRecord(Record).takeError()) 6438 return Err; 6439 break; 6440 } 6441 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6442 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6443 SmallString<128> ValueName; 6444 if (convertToString(Record, 0, ValueName)) 6445 return error("Invalid record"); 6446 SourceFileName = ValueName.c_str(); 6447 break; 6448 } 6449 /// MODULE_CODE_HASH: [5*i32] 6450 case bitc::MODULE_CODE_HASH: { 6451 if (Record.size() != 5) 6452 return error("Invalid hash length " + Twine(Record.size()).str()); 6453 auto &Hash = getThisModule()->second.second; 6454 int Pos = 0; 6455 for (auto &Val : Record) { 6456 assert(!(Val >> 32) && "Unexpected high bits set"); 6457 Hash[Pos++] = Val; 6458 } 6459 break; 6460 } 6461 /// MODULE_CODE_VSTOFFSET: [offset] 6462 case bitc::MODULE_CODE_VSTOFFSET: 6463 if (Record.empty()) 6464 return error("Invalid record"); 6465 // Note that we subtract 1 here because the offset is relative to one 6466 // word before the start of the identification or module block, which 6467 // was historically always the start of the regular bitcode header. 6468 VSTOffset = Record[0] - 1; 6469 break; 6470 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6471 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6472 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6473 // v2: [strtab offset, strtab size, v1] 6474 case bitc::MODULE_CODE_GLOBALVAR: 6475 case bitc::MODULE_CODE_FUNCTION: 6476 case bitc::MODULE_CODE_ALIAS: { 6477 StringRef Name; 6478 ArrayRef<uint64_t> GVRecord; 6479 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6480 if (GVRecord.size() <= 3) 6481 return error("Invalid record"); 6482 uint64_t RawLinkage = GVRecord[3]; 6483 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6484 if (!UseStrtab) { 6485 ValueIdToLinkageMap[ValueId++] = Linkage; 6486 break; 6487 } 6488 6489 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6490 break; 6491 } 6492 } 6493 } 6494 continue; 6495 } 6496 } 6497 } 6498 6499 std::vector<ValueInfo> 6500 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6501 std::vector<ValueInfo> Ret; 6502 Ret.reserve(Record.size()); 6503 for (uint64_t RefValueId : Record) 6504 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6505 return Ret; 6506 } 6507 6508 std::vector<FunctionSummary::EdgeTy> 6509 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6510 bool IsOldProfileFormat, 6511 bool HasProfile, bool HasRelBF) { 6512 std::vector<FunctionSummary::EdgeTy> Ret; 6513 Ret.reserve(Record.size()); 6514 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6515 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6516 uint64_t RelBF = 0; 6517 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6518 if (IsOldProfileFormat) { 6519 I += 1; // Skip old callsitecount field 6520 if (HasProfile) 6521 I += 1; // Skip old profilecount field 6522 } else if (HasProfile) 6523 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6524 else if (HasRelBF) 6525 RelBF = Record[++I]; 6526 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6527 } 6528 return Ret; 6529 } 6530 6531 static void 6532 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6533 WholeProgramDevirtResolution &Wpd) { 6534 uint64_t ArgNum = Record[Slot++]; 6535 WholeProgramDevirtResolution::ByArg &B = 6536 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6537 Slot += ArgNum; 6538 6539 B.TheKind = 6540 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6541 B.Info = Record[Slot++]; 6542 B.Byte = Record[Slot++]; 6543 B.Bit = Record[Slot++]; 6544 } 6545 6546 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6547 StringRef Strtab, size_t &Slot, 6548 TypeIdSummary &TypeId) { 6549 uint64_t Id = Record[Slot++]; 6550 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6551 6552 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6553 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6554 static_cast<size_t>(Record[Slot + 1])}; 6555 Slot += 2; 6556 6557 uint64_t ResByArgNum = Record[Slot++]; 6558 for (uint64_t I = 0; I != ResByArgNum; ++I) 6559 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6560 } 6561 6562 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6563 StringRef Strtab, 6564 ModuleSummaryIndex &TheIndex) { 6565 size_t Slot = 0; 6566 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6567 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6568 Slot += 2; 6569 6570 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6571 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6572 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6573 TypeId.TTRes.SizeM1 = Record[Slot++]; 6574 TypeId.TTRes.BitMask = Record[Slot++]; 6575 TypeId.TTRes.InlineBits = Record[Slot++]; 6576 6577 while (Slot < Record.size()) 6578 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6579 } 6580 6581 std::vector<FunctionSummary::ParamAccess> 6582 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6583 auto ReadRange = [&]() { 6584 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6585 BitcodeReader::decodeSignRotatedValue(Record.front())); 6586 Record = Record.drop_front(); 6587 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6588 BitcodeReader::decodeSignRotatedValue(Record.front())); 6589 Record = Record.drop_front(); 6590 ConstantRange Range{Lower, Upper}; 6591 assert(!Range.isFullSet()); 6592 assert(!Range.isUpperSignWrapped()); 6593 return Range; 6594 }; 6595 6596 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6597 while (!Record.empty()) { 6598 PendingParamAccesses.emplace_back(); 6599 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6600 ParamAccess.ParamNo = Record.front(); 6601 Record = Record.drop_front(); 6602 ParamAccess.Use = ReadRange(); 6603 ParamAccess.Calls.resize(Record.front()); 6604 Record = Record.drop_front(); 6605 for (auto &Call : ParamAccess.Calls) { 6606 Call.ParamNo = Record.front(); 6607 Record = Record.drop_front(); 6608 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6609 Record = Record.drop_front(); 6610 Call.Offsets = ReadRange(); 6611 } 6612 } 6613 return PendingParamAccesses; 6614 } 6615 6616 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6617 ArrayRef<uint64_t> Record, size_t &Slot, 6618 TypeIdCompatibleVtableInfo &TypeId) { 6619 uint64_t Offset = Record[Slot++]; 6620 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6621 TypeId.push_back({Offset, Callee}); 6622 } 6623 6624 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6625 ArrayRef<uint64_t> Record) { 6626 size_t Slot = 0; 6627 TypeIdCompatibleVtableInfo &TypeId = 6628 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6629 {Strtab.data() + Record[Slot], 6630 static_cast<size_t>(Record[Slot + 1])}); 6631 Slot += 2; 6632 6633 while (Slot < Record.size()) 6634 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6635 } 6636 6637 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6638 unsigned WOCnt) { 6639 // Readonly and writeonly refs are in the end of the refs list. 6640 assert(ROCnt + WOCnt <= Refs.size()); 6641 unsigned FirstWORef = Refs.size() - WOCnt; 6642 unsigned RefNo = FirstWORef - ROCnt; 6643 for (; RefNo < FirstWORef; ++RefNo) 6644 Refs[RefNo].setReadOnly(); 6645 for (; RefNo < Refs.size(); ++RefNo) 6646 Refs[RefNo].setWriteOnly(); 6647 } 6648 6649 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6650 // objects in the index. 6651 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6652 if (Error Err = Stream.EnterSubBlock(ID)) 6653 return Err; 6654 SmallVector<uint64_t, 64> Record; 6655 6656 // Parse version 6657 { 6658 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6659 if (!MaybeEntry) 6660 return MaybeEntry.takeError(); 6661 BitstreamEntry Entry = MaybeEntry.get(); 6662 6663 if (Entry.Kind != BitstreamEntry::Record) 6664 return error("Invalid Summary Block: record for version expected"); 6665 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6666 if (!MaybeRecord) 6667 return MaybeRecord.takeError(); 6668 if (MaybeRecord.get() != bitc::FS_VERSION) 6669 return error("Invalid Summary Block: version expected"); 6670 } 6671 const uint64_t Version = Record[0]; 6672 const bool IsOldProfileFormat = Version == 1; 6673 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6674 return error("Invalid summary version " + Twine(Version) + 6675 ". Version should be in the range [1-" + 6676 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6677 "]."); 6678 Record.clear(); 6679 6680 // Keep around the last seen summary to be used when we see an optional 6681 // "OriginalName" attachement. 6682 GlobalValueSummary *LastSeenSummary = nullptr; 6683 GlobalValue::GUID LastSeenGUID = 0; 6684 6685 // We can expect to see any number of type ID information records before 6686 // each function summary records; these variables store the information 6687 // collected so far so that it can be used to create the summary object. 6688 std::vector<GlobalValue::GUID> PendingTypeTests; 6689 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6690 PendingTypeCheckedLoadVCalls; 6691 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6692 PendingTypeCheckedLoadConstVCalls; 6693 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6694 6695 while (true) { 6696 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6697 if (!MaybeEntry) 6698 return MaybeEntry.takeError(); 6699 BitstreamEntry Entry = MaybeEntry.get(); 6700 6701 switch (Entry.Kind) { 6702 case BitstreamEntry::SubBlock: // Handled for us already. 6703 case BitstreamEntry::Error: 6704 return error("Malformed block"); 6705 case BitstreamEntry::EndBlock: 6706 return Error::success(); 6707 case BitstreamEntry::Record: 6708 // The interesting case. 6709 break; 6710 } 6711 6712 // Read a record. The record format depends on whether this 6713 // is a per-module index or a combined index file. In the per-module 6714 // case the records contain the associated value's ID for correlation 6715 // with VST entries. In the combined index the correlation is done 6716 // via the bitcode offset of the summary records (which were saved 6717 // in the combined index VST entries). The records also contain 6718 // information used for ThinLTO renaming and importing. 6719 Record.clear(); 6720 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6721 if (!MaybeBitCode) 6722 return MaybeBitCode.takeError(); 6723 switch (unsigned BitCode = MaybeBitCode.get()) { 6724 default: // Default behavior: ignore. 6725 break; 6726 case bitc::FS_FLAGS: { // [flags] 6727 TheIndex.setFlags(Record[0]); 6728 break; 6729 } 6730 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6731 uint64_t ValueID = Record[0]; 6732 GlobalValue::GUID RefGUID = Record[1]; 6733 ValueIdToValueInfoMap[ValueID] = 6734 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6735 break; 6736 } 6737 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6738 // numrefs x valueid, n x (valueid)] 6739 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6740 // numrefs x valueid, 6741 // n x (valueid, hotness)] 6742 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6743 // numrefs x valueid, 6744 // n x (valueid, relblockfreq)] 6745 case bitc::FS_PERMODULE: 6746 case bitc::FS_PERMODULE_RELBF: 6747 case bitc::FS_PERMODULE_PROFILE: { 6748 unsigned ValueID = Record[0]; 6749 uint64_t RawFlags = Record[1]; 6750 unsigned InstCount = Record[2]; 6751 uint64_t RawFunFlags = 0; 6752 unsigned NumRefs = Record[3]; 6753 unsigned NumRORefs = 0, NumWORefs = 0; 6754 int RefListStartIndex = 4; 6755 if (Version >= 4) { 6756 RawFunFlags = Record[3]; 6757 NumRefs = Record[4]; 6758 RefListStartIndex = 5; 6759 if (Version >= 5) { 6760 NumRORefs = Record[5]; 6761 RefListStartIndex = 6; 6762 if (Version >= 7) { 6763 NumWORefs = Record[6]; 6764 RefListStartIndex = 7; 6765 } 6766 } 6767 } 6768 6769 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6770 // The module path string ref set in the summary must be owned by the 6771 // index's module string table. Since we don't have a module path 6772 // string table section in the per-module index, we create a single 6773 // module path string table entry with an empty (0) ID to take 6774 // ownership. 6775 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6776 assert(Record.size() >= RefListStartIndex + NumRefs && 6777 "Record size inconsistent with number of references"); 6778 std::vector<ValueInfo> Refs = makeRefList( 6779 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6780 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6781 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6782 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6783 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6784 IsOldProfileFormat, HasProfile, HasRelBF); 6785 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6786 auto FS = std::make_unique<FunctionSummary>( 6787 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6788 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6789 std::move(PendingTypeTestAssumeVCalls), 6790 std::move(PendingTypeCheckedLoadVCalls), 6791 std::move(PendingTypeTestAssumeConstVCalls), 6792 std::move(PendingTypeCheckedLoadConstVCalls), 6793 std::move(PendingParamAccesses)); 6794 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6795 FS->setModulePath(getThisModule()->first()); 6796 FS->setOriginalName(VIAndOriginalGUID.second); 6797 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6798 break; 6799 } 6800 // FS_ALIAS: [valueid, flags, valueid] 6801 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6802 // they expect all aliasee summaries to be available. 6803 case bitc::FS_ALIAS: { 6804 unsigned ValueID = Record[0]; 6805 uint64_t RawFlags = Record[1]; 6806 unsigned AliaseeID = Record[2]; 6807 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6808 auto AS = std::make_unique<AliasSummary>(Flags); 6809 // The module path string ref set in the summary must be owned by the 6810 // index's module string table. Since we don't have a module path 6811 // string table section in the per-module index, we create a single 6812 // module path string table entry with an empty (0) ID to take 6813 // ownership. 6814 AS->setModulePath(getThisModule()->first()); 6815 6816 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6817 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6818 if (!AliaseeInModule) 6819 return error("Alias expects aliasee summary to be parsed"); 6820 AS->setAliasee(AliaseeVI, AliaseeInModule); 6821 6822 auto GUID = getValueInfoFromValueId(ValueID); 6823 AS->setOriginalName(GUID.second); 6824 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6825 break; 6826 } 6827 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6828 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6829 unsigned ValueID = Record[0]; 6830 uint64_t RawFlags = Record[1]; 6831 unsigned RefArrayStart = 2; 6832 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6833 /* WriteOnly */ false, 6834 /* Constant */ false, 6835 GlobalObject::VCallVisibilityPublic); 6836 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6837 if (Version >= 5) { 6838 GVF = getDecodedGVarFlags(Record[2]); 6839 RefArrayStart = 3; 6840 } 6841 std::vector<ValueInfo> Refs = 6842 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6843 auto FS = 6844 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6845 FS->setModulePath(getThisModule()->first()); 6846 auto GUID = getValueInfoFromValueId(ValueID); 6847 FS->setOriginalName(GUID.second); 6848 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6849 break; 6850 } 6851 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6852 // numrefs, numrefs x valueid, 6853 // n x (valueid, offset)] 6854 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6855 unsigned ValueID = Record[0]; 6856 uint64_t RawFlags = Record[1]; 6857 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6858 unsigned NumRefs = Record[3]; 6859 unsigned RefListStartIndex = 4; 6860 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6861 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6862 std::vector<ValueInfo> Refs = makeRefList( 6863 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6864 VTableFuncList VTableFuncs; 6865 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6866 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6867 uint64_t Offset = Record[++I]; 6868 VTableFuncs.push_back({Callee, Offset}); 6869 } 6870 auto VS = 6871 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6872 VS->setModulePath(getThisModule()->first()); 6873 VS->setVTableFuncs(VTableFuncs); 6874 auto GUID = getValueInfoFromValueId(ValueID); 6875 VS->setOriginalName(GUID.second); 6876 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6877 break; 6878 } 6879 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6880 // numrefs x valueid, n x (valueid)] 6881 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6882 // numrefs x valueid, n x (valueid, hotness)] 6883 case bitc::FS_COMBINED: 6884 case bitc::FS_COMBINED_PROFILE: { 6885 unsigned ValueID = Record[0]; 6886 uint64_t ModuleId = Record[1]; 6887 uint64_t RawFlags = Record[2]; 6888 unsigned InstCount = Record[3]; 6889 uint64_t RawFunFlags = 0; 6890 uint64_t EntryCount = 0; 6891 unsigned NumRefs = Record[4]; 6892 unsigned NumRORefs = 0, NumWORefs = 0; 6893 int RefListStartIndex = 5; 6894 6895 if (Version >= 4) { 6896 RawFunFlags = Record[4]; 6897 RefListStartIndex = 6; 6898 size_t NumRefsIndex = 5; 6899 if (Version >= 5) { 6900 unsigned NumRORefsOffset = 1; 6901 RefListStartIndex = 7; 6902 if (Version >= 6) { 6903 NumRefsIndex = 6; 6904 EntryCount = Record[5]; 6905 RefListStartIndex = 8; 6906 if (Version >= 7) { 6907 RefListStartIndex = 9; 6908 NumWORefs = Record[8]; 6909 NumRORefsOffset = 2; 6910 } 6911 } 6912 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6913 } 6914 NumRefs = Record[NumRefsIndex]; 6915 } 6916 6917 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6918 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6919 assert(Record.size() >= RefListStartIndex + NumRefs && 6920 "Record size inconsistent with number of references"); 6921 std::vector<ValueInfo> Refs = makeRefList( 6922 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6923 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6924 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6925 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6926 IsOldProfileFormat, HasProfile, false); 6927 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6928 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6929 auto FS = std::make_unique<FunctionSummary>( 6930 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6931 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6932 std::move(PendingTypeTestAssumeVCalls), 6933 std::move(PendingTypeCheckedLoadVCalls), 6934 std::move(PendingTypeTestAssumeConstVCalls), 6935 std::move(PendingTypeCheckedLoadConstVCalls), 6936 std::move(PendingParamAccesses)); 6937 LastSeenSummary = FS.get(); 6938 LastSeenGUID = VI.getGUID(); 6939 FS->setModulePath(ModuleIdMap[ModuleId]); 6940 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6941 break; 6942 } 6943 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6944 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6945 // they expect all aliasee summaries to be available. 6946 case bitc::FS_COMBINED_ALIAS: { 6947 unsigned ValueID = Record[0]; 6948 uint64_t ModuleId = Record[1]; 6949 uint64_t RawFlags = Record[2]; 6950 unsigned AliaseeValueId = Record[3]; 6951 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6952 auto AS = std::make_unique<AliasSummary>(Flags); 6953 LastSeenSummary = AS.get(); 6954 AS->setModulePath(ModuleIdMap[ModuleId]); 6955 6956 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6957 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6958 AS->setAliasee(AliaseeVI, AliaseeInModule); 6959 6960 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6961 LastSeenGUID = VI.getGUID(); 6962 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6963 break; 6964 } 6965 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6966 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6967 unsigned ValueID = Record[0]; 6968 uint64_t ModuleId = Record[1]; 6969 uint64_t RawFlags = Record[2]; 6970 unsigned RefArrayStart = 3; 6971 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6972 /* WriteOnly */ false, 6973 /* Constant */ false, 6974 GlobalObject::VCallVisibilityPublic); 6975 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6976 if (Version >= 5) { 6977 GVF = getDecodedGVarFlags(Record[3]); 6978 RefArrayStart = 4; 6979 } 6980 std::vector<ValueInfo> Refs = 6981 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6982 auto FS = 6983 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6984 LastSeenSummary = FS.get(); 6985 FS->setModulePath(ModuleIdMap[ModuleId]); 6986 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6987 LastSeenGUID = VI.getGUID(); 6988 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6989 break; 6990 } 6991 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6992 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6993 uint64_t OriginalName = Record[0]; 6994 if (!LastSeenSummary) 6995 return error("Name attachment that does not follow a combined record"); 6996 LastSeenSummary->setOriginalName(OriginalName); 6997 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6998 // Reset the LastSeenSummary 6999 LastSeenSummary = nullptr; 7000 LastSeenGUID = 0; 7001 break; 7002 } 7003 case bitc::FS_TYPE_TESTS: 7004 assert(PendingTypeTests.empty()); 7005 llvm::append_range(PendingTypeTests, Record); 7006 break; 7007 7008 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7009 assert(PendingTypeTestAssumeVCalls.empty()); 7010 for (unsigned I = 0; I != Record.size(); I += 2) 7011 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7012 break; 7013 7014 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7015 assert(PendingTypeCheckedLoadVCalls.empty()); 7016 for (unsigned I = 0; I != Record.size(); I += 2) 7017 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7018 break; 7019 7020 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7021 PendingTypeTestAssumeConstVCalls.push_back( 7022 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7023 break; 7024 7025 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7026 PendingTypeCheckedLoadConstVCalls.push_back( 7027 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7028 break; 7029 7030 case bitc::FS_CFI_FUNCTION_DEFS: { 7031 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7032 for (unsigned I = 0; I != Record.size(); I += 2) 7033 CfiFunctionDefs.insert( 7034 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7035 break; 7036 } 7037 7038 case bitc::FS_CFI_FUNCTION_DECLS: { 7039 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7040 for (unsigned I = 0; I != Record.size(); I += 2) 7041 CfiFunctionDecls.insert( 7042 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7043 break; 7044 } 7045 7046 case bitc::FS_TYPE_ID: 7047 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7048 break; 7049 7050 case bitc::FS_TYPE_ID_METADATA: 7051 parseTypeIdCompatibleVtableSummaryRecord(Record); 7052 break; 7053 7054 case bitc::FS_BLOCK_COUNT: 7055 TheIndex.addBlockCount(Record[0]); 7056 break; 7057 7058 case bitc::FS_PARAM_ACCESS: { 7059 PendingParamAccesses = parseParamAccesses(Record); 7060 break; 7061 } 7062 } 7063 } 7064 llvm_unreachable("Exit infinite loop"); 7065 } 7066 7067 // Parse the module string table block into the Index. 7068 // This populates the ModulePathStringTable map in the index. 7069 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7070 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7071 return Err; 7072 7073 SmallVector<uint64_t, 64> Record; 7074 7075 SmallString<128> ModulePath; 7076 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7077 7078 while (true) { 7079 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7080 if (!MaybeEntry) 7081 return MaybeEntry.takeError(); 7082 BitstreamEntry Entry = MaybeEntry.get(); 7083 7084 switch (Entry.Kind) { 7085 case BitstreamEntry::SubBlock: // Handled for us already. 7086 case BitstreamEntry::Error: 7087 return error("Malformed block"); 7088 case BitstreamEntry::EndBlock: 7089 return Error::success(); 7090 case BitstreamEntry::Record: 7091 // The interesting case. 7092 break; 7093 } 7094 7095 Record.clear(); 7096 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7097 if (!MaybeRecord) 7098 return MaybeRecord.takeError(); 7099 switch (MaybeRecord.get()) { 7100 default: // Default behavior: ignore. 7101 break; 7102 case bitc::MST_CODE_ENTRY: { 7103 // MST_ENTRY: [modid, namechar x N] 7104 uint64_t ModuleId = Record[0]; 7105 7106 if (convertToString(Record, 1, ModulePath)) 7107 return error("Invalid record"); 7108 7109 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7110 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7111 7112 ModulePath.clear(); 7113 break; 7114 } 7115 /// MST_CODE_HASH: [5*i32] 7116 case bitc::MST_CODE_HASH: { 7117 if (Record.size() != 5) 7118 return error("Invalid hash length " + Twine(Record.size()).str()); 7119 if (!LastSeenModule) 7120 return error("Invalid hash that does not follow a module path"); 7121 int Pos = 0; 7122 for (auto &Val : Record) { 7123 assert(!(Val >> 32) && "Unexpected high bits set"); 7124 LastSeenModule->second.second[Pos++] = Val; 7125 } 7126 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7127 LastSeenModule = nullptr; 7128 break; 7129 } 7130 } 7131 } 7132 llvm_unreachable("Exit infinite loop"); 7133 } 7134 7135 namespace { 7136 7137 // FIXME: This class is only here to support the transition to llvm::Error. It 7138 // will be removed once this transition is complete. Clients should prefer to 7139 // deal with the Error value directly, rather than converting to error_code. 7140 class BitcodeErrorCategoryType : public std::error_category { 7141 const char *name() const noexcept override { 7142 return "llvm.bitcode"; 7143 } 7144 7145 std::string message(int IE) const override { 7146 BitcodeError E = static_cast<BitcodeError>(IE); 7147 switch (E) { 7148 case BitcodeError::CorruptedBitcode: 7149 return "Corrupted bitcode"; 7150 } 7151 llvm_unreachable("Unknown error type!"); 7152 } 7153 }; 7154 7155 } // end anonymous namespace 7156 7157 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7158 7159 const std::error_category &llvm::BitcodeErrorCategory() { 7160 return *ErrorCategory; 7161 } 7162 7163 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7164 unsigned Block, unsigned RecordID) { 7165 if (Error Err = Stream.EnterSubBlock(Block)) 7166 return std::move(Err); 7167 7168 StringRef Strtab; 7169 while (true) { 7170 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7171 if (!MaybeEntry) 7172 return MaybeEntry.takeError(); 7173 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7174 7175 switch (Entry.Kind) { 7176 case BitstreamEntry::EndBlock: 7177 return Strtab; 7178 7179 case BitstreamEntry::Error: 7180 return error("Malformed block"); 7181 7182 case BitstreamEntry::SubBlock: 7183 if (Error Err = Stream.SkipBlock()) 7184 return std::move(Err); 7185 break; 7186 7187 case BitstreamEntry::Record: 7188 StringRef Blob; 7189 SmallVector<uint64_t, 1> Record; 7190 Expected<unsigned> MaybeRecord = 7191 Stream.readRecord(Entry.ID, Record, &Blob); 7192 if (!MaybeRecord) 7193 return MaybeRecord.takeError(); 7194 if (MaybeRecord.get() == RecordID) 7195 Strtab = Blob; 7196 break; 7197 } 7198 } 7199 } 7200 7201 //===----------------------------------------------------------------------===// 7202 // External interface 7203 //===----------------------------------------------------------------------===// 7204 7205 Expected<std::vector<BitcodeModule>> 7206 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7207 auto FOrErr = getBitcodeFileContents(Buffer); 7208 if (!FOrErr) 7209 return FOrErr.takeError(); 7210 return std::move(FOrErr->Mods); 7211 } 7212 7213 Expected<BitcodeFileContents> 7214 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7215 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7216 if (!StreamOrErr) 7217 return StreamOrErr.takeError(); 7218 BitstreamCursor &Stream = *StreamOrErr; 7219 7220 BitcodeFileContents F; 7221 while (true) { 7222 uint64_t BCBegin = Stream.getCurrentByteNo(); 7223 7224 // We may be consuming bitcode from a client that leaves garbage at the end 7225 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7226 // the end that there cannot possibly be another module, stop looking. 7227 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7228 return F; 7229 7230 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7231 if (!MaybeEntry) 7232 return MaybeEntry.takeError(); 7233 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7234 7235 switch (Entry.Kind) { 7236 case BitstreamEntry::EndBlock: 7237 case BitstreamEntry::Error: 7238 return error("Malformed block"); 7239 7240 case BitstreamEntry::SubBlock: { 7241 uint64_t IdentificationBit = -1ull; 7242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7243 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7244 if (Error Err = Stream.SkipBlock()) 7245 return std::move(Err); 7246 7247 { 7248 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7249 if (!MaybeEntry) 7250 return MaybeEntry.takeError(); 7251 Entry = MaybeEntry.get(); 7252 } 7253 7254 if (Entry.Kind != BitstreamEntry::SubBlock || 7255 Entry.ID != bitc::MODULE_BLOCK_ID) 7256 return error("Malformed block"); 7257 } 7258 7259 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7260 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7261 if (Error Err = Stream.SkipBlock()) 7262 return std::move(Err); 7263 7264 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7265 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7266 Buffer.getBufferIdentifier(), IdentificationBit, 7267 ModuleBit}); 7268 continue; 7269 } 7270 7271 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7272 Expected<StringRef> Strtab = 7273 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7274 if (!Strtab) 7275 return Strtab.takeError(); 7276 // This string table is used by every preceding bitcode module that does 7277 // not have its own string table. A bitcode file may have multiple 7278 // string tables if it was created by binary concatenation, for example 7279 // with "llvm-cat -b". 7280 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7281 if (!I.Strtab.empty()) 7282 break; 7283 I.Strtab = *Strtab; 7284 } 7285 // Similarly, the string table is used by every preceding symbol table; 7286 // normally there will be just one unless the bitcode file was created 7287 // by binary concatenation. 7288 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7289 F.StrtabForSymtab = *Strtab; 7290 continue; 7291 } 7292 7293 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7294 Expected<StringRef> SymtabOrErr = 7295 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7296 if (!SymtabOrErr) 7297 return SymtabOrErr.takeError(); 7298 7299 // We can expect the bitcode file to have multiple symbol tables if it 7300 // was created by binary concatenation. In that case we silently 7301 // ignore any subsequent symbol tables, which is fine because this is a 7302 // low level function. The client is expected to notice that the number 7303 // of modules in the symbol table does not match the number of modules 7304 // in the input file and regenerate the symbol table. 7305 if (F.Symtab.empty()) 7306 F.Symtab = *SymtabOrErr; 7307 continue; 7308 } 7309 7310 if (Error Err = Stream.SkipBlock()) 7311 return std::move(Err); 7312 continue; 7313 } 7314 case BitstreamEntry::Record: 7315 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7316 return std::move(E); 7317 continue; 7318 } 7319 } 7320 } 7321 7322 /// Get a lazy one-at-time loading module from bitcode. 7323 /// 7324 /// This isn't always used in a lazy context. In particular, it's also used by 7325 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7326 /// in forward-referenced functions from block address references. 7327 /// 7328 /// \param[in] MaterializeAll Set to \c true if we should materialize 7329 /// everything. 7330 Expected<std::unique_ptr<Module>> 7331 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7332 bool ShouldLazyLoadMetadata, bool IsImporting, 7333 DataLayoutCallbackTy DataLayoutCallback) { 7334 BitstreamCursor Stream(Buffer); 7335 7336 std::string ProducerIdentification; 7337 if (IdentificationBit != -1ull) { 7338 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7339 return std::move(JumpFailed); 7340 if (Error E = 7341 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7342 return std::move(E); 7343 } 7344 7345 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7346 return std::move(JumpFailed); 7347 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7348 Context); 7349 7350 std::unique_ptr<Module> M = 7351 std::make_unique<Module>(ModuleIdentifier, Context); 7352 M->setMaterializer(R); 7353 7354 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7355 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7356 IsImporting, DataLayoutCallback)) 7357 return std::move(Err); 7358 7359 if (MaterializeAll) { 7360 // Read in the entire module, and destroy the BitcodeReader. 7361 if (Error Err = M->materializeAll()) 7362 return std::move(Err); 7363 } else { 7364 // Resolve forward references from blockaddresses. 7365 if (Error Err = R->materializeForwardReferencedFunctions()) 7366 return std::move(Err); 7367 } 7368 return std::move(M); 7369 } 7370 7371 Expected<std::unique_ptr<Module>> 7372 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7373 bool IsImporting) { 7374 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7375 [](StringRef) { return None; }); 7376 } 7377 7378 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7379 // We don't use ModuleIdentifier here because the client may need to control the 7380 // module path used in the combined summary (e.g. when reading summaries for 7381 // regular LTO modules). 7382 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7383 StringRef ModulePath, uint64_t ModuleId) { 7384 BitstreamCursor Stream(Buffer); 7385 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7386 return JumpFailed; 7387 7388 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7389 ModulePath, ModuleId); 7390 return R.parseModule(); 7391 } 7392 7393 // Parse the specified bitcode buffer, returning the function info index. 7394 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7395 BitstreamCursor Stream(Buffer); 7396 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7397 return std::move(JumpFailed); 7398 7399 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7400 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7401 ModuleIdentifier, 0); 7402 7403 if (Error Err = R.parseModule()) 7404 return std::move(Err); 7405 7406 return std::move(Index); 7407 } 7408 7409 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7410 unsigned ID) { 7411 if (Error Err = Stream.EnterSubBlock(ID)) 7412 return std::move(Err); 7413 SmallVector<uint64_t, 64> Record; 7414 7415 while (true) { 7416 BitstreamEntry Entry; 7417 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7418 return std::move(E); 7419 7420 switch (Entry.Kind) { 7421 case BitstreamEntry::SubBlock: // Handled for us already. 7422 case BitstreamEntry::Error: 7423 return error("Malformed block"); 7424 case BitstreamEntry::EndBlock: 7425 // If no flags record found, conservatively return true to mimic 7426 // behavior before this flag was added. 7427 return true; 7428 case BitstreamEntry::Record: 7429 // The interesting case. 7430 break; 7431 } 7432 7433 // Look for the FS_FLAGS record. 7434 Record.clear(); 7435 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7436 if (!MaybeBitCode) 7437 return MaybeBitCode.takeError(); 7438 switch (MaybeBitCode.get()) { 7439 default: // Default behavior: ignore. 7440 break; 7441 case bitc::FS_FLAGS: { // [flags] 7442 uint64_t Flags = Record[0]; 7443 // Scan flags. 7444 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7445 7446 return Flags & 0x8; 7447 } 7448 } 7449 } 7450 llvm_unreachable("Exit infinite loop"); 7451 } 7452 7453 // Check if the given bitcode buffer contains a global value summary block. 7454 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7455 BitstreamCursor Stream(Buffer); 7456 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7457 return std::move(JumpFailed); 7458 7459 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7460 return std::move(Err); 7461 7462 while (true) { 7463 llvm::BitstreamEntry Entry; 7464 if (Error E = Stream.advance().moveInto(Entry)) 7465 return std::move(E); 7466 7467 switch (Entry.Kind) { 7468 case BitstreamEntry::Error: 7469 return error("Malformed block"); 7470 case BitstreamEntry::EndBlock: 7471 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7472 /*EnableSplitLTOUnit=*/false}; 7473 7474 case BitstreamEntry::SubBlock: 7475 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7476 Expected<bool> EnableSplitLTOUnit = 7477 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7478 if (!EnableSplitLTOUnit) 7479 return EnableSplitLTOUnit.takeError(); 7480 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7481 *EnableSplitLTOUnit}; 7482 } 7483 7484 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7485 Expected<bool> EnableSplitLTOUnit = 7486 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7487 if (!EnableSplitLTOUnit) 7488 return EnableSplitLTOUnit.takeError(); 7489 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7490 *EnableSplitLTOUnit}; 7491 } 7492 7493 // Ignore other sub-blocks. 7494 if (Error Err = Stream.SkipBlock()) 7495 return std::move(Err); 7496 continue; 7497 7498 case BitstreamEntry::Record: 7499 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7500 continue; 7501 else 7502 return StreamFailed.takeError(); 7503 } 7504 } 7505 } 7506 7507 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7508 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7509 if (!MsOrErr) 7510 return MsOrErr.takeError(); 7511 7512 if (MsOrErr->size() != 1) 7513 return error("Expected a single module"); 7514 7515 return (*MsOrErr)[0]; 7516 } 7517 7518 Expected<std::unique_ptr<Module>> 7519 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7520 bool ShouldLazyLoadMetadata, bool IsImporting) { 7521 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7522 if (!BM) 7523 return BM.takeError(); 7524 7525 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7526 } 7527 7528 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7529 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7530 bool ShouldLazyLoadMetadata, bool IsImporting) { 7531 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7532 IsImporting); 7533 if (MOrErr) 7534 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7535 return MOrErr; 7536 } 7537 7538 Expected<std::unique_ptr<Module>> 7539 BitcodeModule::parseModule(LLVMContext &Context, 7540 DataLayoutCallbackTy DataLayoutCallback) { 7541 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7542 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7543 // written. We must defer until the Module has been fully materialized. 7544 } 7545 7546 Expected<std::unique_ptr<Module>> 7547 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7548 DataLayoutCallbackTy DataLayoutCallback) { 7549 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7550 if (!BM) 7551 return BM.takeError(); 7552 7553 return BM->parseModule(Context, DataLayoutCallback); 7554 } 7555 7556 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7557 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7558 if (!StreamOrErr) 7559 return StreamOrErr.takeError(); 7560 7561 return readTriple(*StreamOrErr); 7562 } 7563 7564 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7565 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7566 if (!StreamOrErr) 7567 return StreamOrErr.takeError(); 7568 7569 return hasObjCCategory(*StreamOrErr); 7570 } 7571 7572 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7573 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7574 if (!StreamOrErr) 7575 return StreamOrErr.takeError(); 7576 7577 return readIdentificationCode(*StreamOrErr); 7578 } 7579 7580 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7581 ModuleSummaryIndex &CombinedIndex, 7582 uint64_t ModuleId) { 7583 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7584 if (!BM) 7585 return BM.takeError(); 7586 7587 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7588 } 7589 7590 Expected<std::unique_ptr<ModuleSummaryIndex>> 7591 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7592 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7593 if (!BM) 7594 return BM.takeError(); 7595 7596 return BM->getSummary(); 7597 } 7598 7599 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7600 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7601 if (!BM) 7602 return BM.takeError(); 7603 7604 return BM->getLTOInfo(); 7605 } 7606 7607 Expected<std::unique_ptr<ModuleSummaryIndex>> 7608 llvm::getModuleSummaryIndexForFile(StringRef Path, 7609 bool IgnoreEmptyThinLTOIndexFile) { 7610 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7611 MemoryBuffer::getFileOrSTDIN(Path); 7612 if (!FileOrErr) 7613 return errorCodeToError(FileOrErr.getError()); 7614 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7615 return nullptr; 7616 return getModuleSummaryIndex(**FileOrErr); 7617 } 7618