1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/MDNode.h" 21 #include "llvm/Module.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 delete Buffer; 32 Buffer = 0; 33 std::vector<PATypeHolder>().swap(TypeList); 34 ValueList.clear(); 35 36 std::vector<AttrListPtr>().swap(MAttributes); 37 std::vector<BasicBlock*>().swap(FunctionBBs); 38 std::vector<Function*>().swap(FunctionsWithBodies); 39 DeferredFunctionInfo.clear(); 40 } 41 42 //===----------------------------------------------------------------------===// 43 // Helper functions to implement forward reference resolution, etc. 44 //===----------------------------------------------------------------------===// 45 46 /// ConvertToString - Convert a string from a record into an std::string, return 47 /// true on failure. 48 template<typename StrTy> 49 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 50 StrTy &Result) { 51 if (Idx > Record.size()) 52 return true; 53 54 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 55 Result += (char)Record[i]; 56 return false; 57 } 58 59 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 60 switch (Val) { 61 default: // Map unknown/new linkages to external 62 case 0: return GlobalValue::ExternalLinkage; 63 case 1: return GlobalValue::WeakAnyLinkage; 64 case 2: return GlobalValue::AppendingLinkage; 65 case 3: return GlobalValue::InternalLinkage; 66 case 4: return GlobalValue::LinkOnceAnyLinkage; 67 case 5: return GlobalValue::DLLImportLinkage; 68 case 6: return GlobalValue::DLLExportLinkage; 69 case 7: return GlobalValue::ExternalWeakLinkage; 70 case 8: return GlobalValue::CommonLinkage; 71 case 9: return GlobalValue::PrivateLinkage; 72 case 10: return GlobalValue::WeakODRLinkage; 73 case 11: return GlobalValue::LinkOnceODRLinkage; 74 case 12: return GlobalValue::AvailableExternallyLinkage; 75 } 76 } 77 78 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 79 switch (Val) { 80 default: // Map unknown visibilities to default. 81 case 0: return GlobalValue::DefaultVisibility; 82 case 1: return GlobalValue::HiddenVisibility; 83 case 2: return GlobalValue::ProtectedVisibility; 84 } 85 } 86 87 static int GetDecodedCastOpcode(unsigned Val) { 88 switch (Val) { 89 default: return -1; 90 case bitc::CAST_TRUNC : return Instruction::Trunc; 91 case bitc::CAST_ZEXT : return Instruction::ZExt; 92 case bitc::CAST_SEXT : return Instruction::SExt; 93 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 94 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 95 case bitc::CAST_UITOFP : return Instruction::UIToFP; 96 case bitc::CAST_SITOFP : return Instruction::SIToFP; 97 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 98 case bitc::CAST_FPEXT : return Instruction::FPExt; 99 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 100 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 101 case bitc::CAST_BITCAST : return Instruction::BitCast; 102 } 103 } 104 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 105 switch (Val) { 106 default: return -1; 107 case bitc::BINOP_ADD: 108 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 109 case bitc::BINOP_SUB: 110 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 111 case bitc::BINOP_MUL: 112 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 113 case bitc::BINOP_UDIV: return Instruction::UDiv; 114 case bitc::BINOP_SDIV: 115 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 116 case bitc::BINOP_UREM: return Instruction::URem; 117 case bitc::BINOP_SREM: 118 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 119 case bitc::BINOP_SHL: return Instruction::Shl; 120 case bitc::BINOP_LSHR: return Instruction::LShr; 121 case bitc::BINOP_ASHR: return Instruction::AShr; 122 case bitc::BINOP_AND: return Instruction::And; 123 case bitc::BINOP_OR: return Instruction::Or; 124 case bitc::BINOP_XOR: return Instruction::Xor; 125 } 126 } 127 128 namespace llvm { 129 namespace { 130 /// @brief A class for maintaining the slot number definition 131 /// as a placeholder for the actual definition for forward constants defs. 132 class ConstantPlaceHolder : public ConstantExpr { 133 ConstantPlaceHolder(); // DO NOT IMPLEMENT 134 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 135 public: 136 // allocate space for exactly one operand 137 void *operator new(size_t s) { 138 return User::operator new(s, 1); 139 } 140 explicit ConstantPlaceHolder(const Type *Ty) 141 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 142 Op<0>() = UndefValue::get(Type::Int32Ty); 143 } 144 145 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 146 static inline bool classof(const ConstantPlaceHolder *) { return true; } 147 static bool classof(const Value *V) { 148 return isa<ConstantExpr>(V) && 149 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 150 } 151 152 153 /// Provide fast operand accessors 154 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 155 }; 156 } 157 158 // FIXME: can we inherit this from ConstantExpr? 159 template <> 160 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 161 }; 162 } 163 164 165 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 166 if (Idx == size()) { 167 push_back(V); 168 return; 169 } 170 171 if (Idx >= size()) 172 resize(Idx+1); 173 174 WeakVH &OldV = ValuePtrs[Idx]; 175 if (OldV == 0) { 176 OldV = V; 177 return; 178 } 179 180 // Handle constants and non-constants (e.g. instrs) differently for 181 // efficiency. 182 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 183 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 184 OldV = V; 185 } else { 186 // If there was a forward reference to this value, replace it. 187 Value *PrevVal = OldV; 188 OldV->replaceAllUsesWith(V); 189 delete PrevVal; 190 } 191 } 192 193 194 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 195 const Type *Ty) { 196 if (Idx >= size()) 197 resize(Idx + 1); 198 199 if (Value *V = ValuePtrs[Idx]) { 200 assert(Ty == V->getType() && "Type mismatch in constant table!"); 201 return cast<Constant>(V); 202 } 203 204 // Create and return a placeholder, which will later be RAUW'd. 205 Constant *C = new ConstantPlaceHolder(Ty); 206 ValuePtrs[Idx] = C; 207 return C; 208 } 209 210 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 211 if (Idx >= size()) 212 resize(Idx + 1); 213 214 if (Value *V = ValuePtrs[Idx]) { 215 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 216 return V; 217 } 218 219 // No type specified, must be invalid reference. 220 if (Ty == 0) return 0; 221 222 // Create and return a placeholder, which will later be RAUW'd. 223 Value *V = new Argument(Ty); 224 ValuePtrs[Idx] = V; 225 return V; 226 } 227 228 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 229 /// resolves any forward references. The idea behind this is that we sometimes 230 /// get constants (such as large arrays) which reference *many* forward ref 231 /// constants. Replacing each of these causes a lot of thrashing when 232 /// building/reuniquing the constant. Instead of doing this, we look at all the 233 /// uses and rewrite all the place holders at once for any constant that uses 234 /// a placeholder. 235 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 236 // Sort the values by-pointer so that they are efficient to look up with a 237 // binary search. 238 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 239 240 SmallVector<Constant*, 64> NewOps; 241 242 while (!ResolveConstants.empty()) { 243 Value *RealVal = operator[](ResolveConstants.back().second); 244 Constant *Placeholder = ResolveConstants.back().first; 245 ResolveConstants.pop_back(); 246 247 // Loop over all users of the placeholder, updating them to reference the 248 // new value. If they reference more than one placeholder, update them all 249 // at once. 250 while (!Placeholder->use_empty()) { 251 Value::use_iterator UI = Placeholder->use_begin(); 252 253 // If the using object isn't uniqued, just update the operands. This 254 // handles instructions and initializers for global variables. 255 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 256 UI.getUse().set(RealVal); 257 continue; 258 } 259 260 // Otherwise, we have a constant that uses the placeholder. Replace that 261 // constant with a new constant that has *all* placeholder uses updated. 262 Constant *UserC = cast<Constant>(*UI); 263 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 264 I != E; ++I) { 265 Value *NewOp; 266 if (!isa<ConstantPlaceHolder>(*I)) { 267 // Not a placeholder reference. 268 NewOp = *I; 269 } else if (*I == Placeholder) { 270 // Common case is that it just references this one placeholder. 271 NewOp = RealVal; 272 } else { 273 // Otherwise, look up the placeholder in ResolveConstants. 274 ResolveConstantsTy::iterator It = 275 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 276 std::pair<Constant*, unsigned>(cast<Constant>(*I), 277 0)); 278 assert(It != ResolveConstants.end() && It->first == *I); 279 NewOp = operator[](It->second); 280 } 281 282 NewOps.push_back(cast<Constant>(NewOp)); 283 } 284 285 // Make the new constant. 286 Constant *NewC; 287 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 288 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 289 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 290 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 291 UserCS->getType()->isPacked()); 292 } else if (isa<ConstantVector>(UserC)) { 293 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 294 } else { 295 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 296 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 297 NewOps.size()); 298 } 299 300 UserC->replaceAllUsesWith(NewC); 301 UserC->destroyConstant(); 302 NewOps.clear(); 303 } 304 305 // Update all ValueHandles, they should be the only users at this point. 306 Placeholder->replaceAllUsesWith(RealVal); 307 delete Placeholder; 308 } 309 } 310 311 312 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 313 // If the TypeID is in range, return it. 314 if (ID < TypeList.size()) 315 return TypeList[ID].get(); 316 if (!isTypeTable) return 0; 317 318 // The type table allows forward references. Push as many Opaque types as 319 // needed to get up to ID. 320 while (TypeList.size() <= ID) 321 TypeList.push_back(OpaqueType::get()); 322 return TypeList.back().get(); 323 } 324 325 //===----------------------------------------------------------------------===// 326 // Functions for parsing blocks from the bitcode file 327 //===----------------------------------------------------------------------===// 328 329 bool BitcodeReader::ParseAttributeBlock() { 330 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 331 return Error("Malformed block record"); 332 333 if (!MAttributes.empty()) 334 return Error("Multiple PARAMATTR blocks found!"); 335 336 SmallVector<uint64_t, 64> Record; 337 338 SmallVector<AttributeWithIndex, 8> Attrs; 339 340 // Read all the records. 341 while (1) { 342 unsigned Code = Stream.ReadCode(); 343 if (Code == bitc::END_BLOCK) { 344 if (Stream.ReadBlockEnd()) 345 return Error("Error at end of PARAMATTR block"); 346 return false; 347 } 348 349 if (Code == bitc::ENTER_SUBBLOCK) { 350 // No known subblocks, always skip them. 351 Stream.ReadSubBlockID(); 352 if (Stream.SkipBlock()) 353 return Error("Malformed block record"); 354 continue; 355 } 356 357 if (Code == bitc::DEFINE_ABBREV) { 358 Stream.ReadAbbrevRecord(); 359 continue; 360 } 361 362 // Read a record. 363 Record.clear(); 364 switch (Stream.ReadRecord(Code, Record)) { 365 default: // Default behavior: ignore. 366 break; 367 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 368 if (Record.size() & 1) 369 return Error("Invalid ENTRY record"); 370 371 // FIXME : Remove this autoupgrade code in LLVM 3.0. 372 // If Function attributes are using index 0 then transfer them 373 // to index ~0. Index 0 is used for return value attributes but used to be 374 // used for function attributes. 375 Attributes RetAttribute = Attribute::None; 376 Attributes FnAttribute = Attribute::None; 377 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 378 // FIXME: remove in LLVM 3.0 379 // The alignment is stored as a 16-bit raw value from bits 31--16. 380 // We shift the bits above 31 down by 11 bits. 381 382 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 383 if (Alignment && !isPowerOf2_32(Alignment)) 384 return Error("Alignment is not a power of two."); 385 386 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 387 if (Alignment) 388 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 389 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 390 Record[i+1] = ReconstitutedAttr; 391 392 if (Record[i] == 0) 393 RetAttribute = Record[i+1]; 394 else if (Record[i] == ~0U) 395 FnAttribute = Record[i+1]; 396 } 397 398 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 399 Attribute::ReadOnly|Attribute::ReadNone); 400 401 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 402 (RetAttribute & OldRetAttrs) != 0) { 403 if (FnAttribute == Attribute::None) { // add a slot so they get added. 404 Record.push_back(~0U); 405 Record.push_back(0); 406 } 407 408 FnAttribute |= RetAttribute & OldRetAttrs; 409 RetAttribute &= ~OldRetAttrs; 410 } 411 412 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 413 if (Record[i] == 0) { 414 if (RetAttribute != Attribute::None) 415 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 416 } else if (Record[i] == ~0U) { 417 if (FnAttribute != Attribute::None) 418 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 419 } else if (Record[i+1] != Attribute::None) 420 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 421 } 422 423 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 424 Attrs.clear(); 425 break; 426 } 427 } 428 } 429 } 430 431 432 bool BitcodeReader::ParseTypeTable() { 433 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 434 return Error("Malformed block record"); 435 436 if (!TypeList.empty()) 437 return Error("Multiple TYPE_BLOCKs found!"); 438 439 SmallVector<uint64_t, 64> Record; 440 unsigned NumRecords = 0; 441 442 // Read all the records for this type table. 443 while (1) { 444 unsigned Code = Stream.ReadCode(); 445 if (Code == bitc::END_BLOCK) { 446 if (NumRecords != TypeList.size()) 447 return Error("Invalid type forward reference in TYPE_BLOCK"); 448 if (Stream.ReadBlockEnd()) 449 return Error("Error at end of type table block"); 450 return false; 451 } 452 453 if (Code == bitc::ENTER_SUBBLOCK) { 454 // No known subblocks, always skip them. 455 Stream.ReadSubBlockID(); 456 if (Stream.SkipBlock()) 457 return Error("Malformed block record"); 458 continue; 459 } 460 461 if (Code == bitc::DEFINE_ABBREV) { 462 Stream.ReadAbbrevRecord(); 463 continue; 464 } 465 466 // Read a record. 467 Record.clear(); 468 const Type *ResultTy = 0; 469 switch (Stream.ReadRecord(Code, Record)) { 470 default: // Default behavior: unknown type. 471 ResultTy = 0; 472 break; 473 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 474 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 475 // type list. This allows us to reserve space. 476 if (Record.size() < 1) 477 return Error("Invalid TYPE_CODE_NUMENTRY record"); 478 TypeList.reserve(Record[0]); 479 continue; 480 case bitc::TYPE_CODE_VOID: // VOID 481 ResultTy = Type::VoidTy; 482 break; 483 case bitc::TYPE_CODE_FLOAT: // FLOAT 484 ResultTy = Type::FloatTy; 485 break; 486 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 487 ResultTy = Type::DoubleTy; 488 break; 489 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 490 ResultTy = Type::X86_FP80Ty; 491 break; 492 case bitc::TYPE_CODE_FP128: // FP128 493 ResultTy = Type::FP128Ty; 494 break; 495 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 496 ResultTy = Type::PPC_FP128Ty; 497 break; 498 case bitc::TYPE_CODE_LABEL: // LABEL 499 ResultTy = Type::LabelTy; 500 break; 501 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 502 ResultTy = 0; 503 break; 504 case bitc::TYPE_CODE_METADATA: // METADATA 505 ResultTy = Type::MetadataTy; 506 break; 507 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 508 if (Record.size() < 1) 509 return Error("Invalid Integer type record"); 510 511 ResultTy = IntegerType::get(Record[0]); 512 break; 513 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 514 // [pointee type, address space] 515 if (Record.size() < 1) 516 return Error("Invalid POINTER type record"); 517 unsigned AddressSpace = 0; 518 if (Record.size() == 2) 519 AddressSpace = Record[1]; 520 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 521 break; 522 } 523 case bitc::TYPE_CODE_FUNCTION: { 524 // FIXME: attrid is dead, remove it in LLVM 3.0 525 // FUNCTION: [vararg, attrid, retty, paramty x N] 526 if (Record.size() < 3) 527 return Error("Invalid FUNCTION type record"); 528 std::vector<const Type*> ArgTys; 529 for (unsigned i = 3, e = Record.size(); i != e; ++i) 530 ArgTys.push_back(getTypeByID(Record[i], true)); 531 532 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 533 Record[0]); 534 break; 535 } 536 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 537 if (Record.size() < 1) 538 return Error("Invalid STRUCT type record"); 539 std::vector<const Type*> EltTys; 540 for (unsigned i = 1, e = Record.size(); i != e; ++i) 541 EltTys.push_back(getTypeByID(Record[i], true)); 542 ResultTy = StructType::get(EltTys, Record[0]); 543 break; 544 } 545 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 546 if (Record.size() < 2) 547 return Error("Invalid ARRAY type record"); 548 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 549 break; 550 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 551 if (Record.size() < 2) 552 return Error("Invalid VECTOR type record"); 553 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 554 break; 555 } 556 557 if (NumRecords == TypeList.size()) { 558 // If this is a new type slot, just append it. 559 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 560 ++NumRecords; 561 } else if (ResultTy == 0) { 562 // Otherwise, this was forward referenced, so an opaque type was created, 563 // but the result type is actually just an opaque. Leave the one we 564 // created previously. 565 ++NumRecords; 566 } else { 567 // Otherwise, this was forward referenced, so an opaque type was created. 568 // Resolve the opaque type to the real type now. 569 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 570 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 571 572 // Don't directly push the new type on the Tab. Instead we want to replace 573 // the opaque type we previously inserted with the new concrete value. The 574 // refinement from the abstract (opaque) type to the new type causes all 575 // uses of the abstract type to use the concrete type (NewTy). This will 576 // also cause the opaque type to be deleted. 577 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 578 579 // This should have replaced the old opaque type with the new type in the 580 // value table... or with a preexisting type that was already in the 581 // system. Let's just make sure it did. 582 assert(TypeList[NumRecords-1].get() != OldTy && 583 "refineAbstractType didn't work!"); 584 } 585 } 586 } 587 588 589 bool BitcodeReader::ParseTypeSymbolTable() { 590 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 591 return Error("Malformed block record"); 592 593 SmallVector<uint64_t, 64> Record; 594 595 // Read all the records for this type table. 596 std::string TypeName; 597 while (1) { 598 unsigned Code = Stream.ReadCode(); 599 if (Code == bitc::END_BLOCK) { 600 if (Stream.ReadBlockEnd()) 601 return Error("Error at end of type symbol table block"); 602 return false; 603 } 604 605 if (Code == bitc::ENTER_SUBBLOCK) { 606 // No known subblocks, always skip them. 607 Stream.ReadSubBlockID(); 608 if (Stream.SkipBlock()) 609 return Error("Malformed block record"); 610 continue; 611 } 612 613 if (Code == bitc::DEFINE_ABBREV) { 614 Stream.ReadAbbrevRecord(); 615 continue; 616 } 617 618 // Read a record. 619 Record.clear(); 620 switch (Stream.ReadRecord(Code, Record)) { 621 default: // Default behavior: unknown type. 622 break; 623 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 624 if (ConvertToString(Record, 1, TypeName)) 625 return Error("Invalid TST_ENTRY record"); 626 unsigned TypeID = Record[0]; 627 if (TypeID >= TypeList.size()) 628 return Error("Invalid Type ID in TST_ENTRY record"); 629 630 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 631 TypeName.clear(); 632 break; 633 } 634 } 635 } 636 637 bool BitcodeReader::ParseValueSymbolTable() { 638 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 639 return Error("Malformed block record"); 640 641 SmallVector<uint64_t, 64> Record; 642 643 // Read all the records for this value table. 644 SmallString<128> ValueName; 645 while (1) { 646 unsigned Code = Stream.ReadCode(); 647 if (Code == bitc::END_BLOCK) { 648 if (Stream.ReadBlockEnd()) 649 return Error("Error at end of value symbol table block"); 650 return false; 651 } 652 if (Code == bitc::ENTER_SUBBLOCK) { 653 // No known subblocks, always skip them. 654 Stream.ReadSubBlockID(); 655 if (Stream.SkipBlock()) 656 return Error("Malformed block record"); 657 continue; 658 } 659 660 if (Code == bitc::DEFINE_ABBREV) { 661 Stream.ReadAbbrevRecord(); 662 continue; 663 } 664 665 // Read a record. 666 Record.clear(); 667 switch (Stream.ReadRecord(Code, Record)) { 668 default: // Default behavior: unknown type. 669 break; 670 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 671 if (ConvertToString(Record, 1, ValueName)) 672 return Error("Invalid VST_ENTRY record"); 673 unsigned ValueID = Record[0]; 674 if (ValueID >= ValueList.size()) 675 return Error("Invalid Value ID in VST_ENTRY record"); 676 Value *V = ValueList[ValueID]; 677 678 V->setName(&ValueName[0], ValueName.size()); 679 ValueName.clear(); 680 break; 681 } 682 case bitc::VST_CODE_BBENTRY: { 683 if (ConvertToString(Record, 1, ValueName)) 684 return Error("Invalid VST_BBENTRY record"); 685 BasicBlock *BB = getBasicBlock(Record[0]); 686 if (BB == 0) 687 return Error("Invalid BB ID in VST_BBENTRY record"); 688 689 BB->setName(&ValueName[0], ValueName.size()); 690 ValueName.clear(); 691 break; 692 } 693 } 694 } 695 } 696 697 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 698 /// the LSB for dense VBR encoding. 699 static uint64_t DecodeSignRotatedValue(uint64_t V) { 700 if ((V & 1) == 0) 701 return V >> 1; 702 if (V != 1) 703 return -(V >> 1); 704 // There is no such thing as -0 with integers. "-0" really means MININT. 705 return 1ULL << 63; 706 } 707 708 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 709 /// values and aliases that we can. 710 bool BitcodeReader::ResolveGlobalAndAliasInits() { 711 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 712 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 713 714 GlobalInitWorklist.swap(GlobalInits); 715 AliasInitWorklist.swap(AliasInits); 716 717 while (!GlobalInitWorklist.empty()) { 718 unsigned ValID = GlobalInitWorklist.back().second; 719 if (ValID >= ValueList.size()) { 720 // Not ready to resolve this yet, it requires something later in the file. 721 GlobalInits.push_back(GlobalInitWorklist.back()); 722 } else { 723 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 724 GlobalInitWorklist.back().first->setInitializer(C); 725 else 726 return Error("Global variable initializer is not a constant!"); 727 } 728 GlobalInitWorklist.pop_back(); 729 } 730 731 while (!AliasInitWorklist.empty()) { 732 unsigned ValID = AliasInitWorklist.back().second; 733 if (ValID >= ValueList.size()) { 734 AliasInits.push_back(AliasInitWorklist.back()); 735 } else { 736 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 737 AliasInitWorklist.back().first->setAliasee(C); 738 else 739 return Error("Alias initializer is not a constant!"); 740 } 741 AliasInitWorklist.pop_back(); 742 } 743 return false; 744 } 745 746 747 bool BitcodeReader::ParseConstants() { 748 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 749 return Error("Malformed block record"); 750 751 SmallVector<uint64_t, 64> Record; 752 753 // Read all the records for this value table. 754 const Type *CurTy = Type::Int32Ty; 755 unsigned NextCstNo = ValueList.size(); 756 while (1) { 757 unsigned Code = Stream.ReadCode(); 758 if (Code == bitc::END_BLOCK) 759 break; 760 761 if (Code == bitc::ENTER_SUBBLOCK) { 762 // No known subblocks, always skip them. 763 Stream.ReadSubBlockID(); 764 if (Stream.SkipBlock()) 765 return Error("Malformed block record"); 766 continue; 767 } 768 769 if (Code == bitc::DEFINE_ABBREV) { 770 Stream.ReadAbbrevRecord(); 771 continue; 772 } 773 774 // Read a record. 775 Record.clear(); 776 Value *V = 0; 777 switch (Stream.ReadRecord(Code, Record)) { 778 default: // Default behavior: unknown constant 779 case bitc::CST_CODE_UNDEF: // UNDEF 780 V = UndefValue::get(CurTy); 781 break; 782 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 783 if (Record.empty()) 784 return Error("Malformed CST_SETTYPE record"); 785 if (Record[0] >= TypeList.size()) 786 return Error("Invalid Type ID in CST_SETTYPE record"); 787 CurTy = TypeList[Record[0]]; 788 continue; // Skip the ValueList manipulation. 789 case bitc::CST_CODE_NULL: // NULL 790 V = Constant::getNullValue(CurTy); 791 break; 792 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 793 if (!isa<IntegerType>(CurTy) || Record.empty()) 794 return Error("Invalid CST_INTEGER record"); 795 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 796 break; 797 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 798 if (!isa<IntegerType>(CurTy) || Record.empty()) 799 return Error("Invalid WIDE_INTEGER record"); 800 801 unsigned NumWords = Record.size(); 802 SmallVector<uint64_t, 8> Words; 803 Words.resize(NumWords); 804 for (unsigned i = 0; i != NumWords; ++i) 805 Words[i] = DecodeSignRotatedValue(Record[i]); 806 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 807 NumWords, &Words[0])); 808 break; 809 } 810 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 811 if (Record.empty()) 812 return Error("Invalid FLOAT record"); 813 if (CurTy == Type::FloatTy) 814 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 815 else if (CurTy == Type::DoubleTy) 816 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 817 else if (CurTy == Type::X86_FP80Ty) { 818 // Bits are not stored the same way as a normal i80 APInt, compensate. 819 uint64_t Rearrange[2]; 820 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 821 Rearrange[1] = Record[0] >> 48; 822 V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange))); 823 } else if (CurTy == Type::FP128Ty) 824 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 825 else if (CurTy == Type::PPC_FP128Ty) 826 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 827 else 828 V = UndefValue::get(CurTy); 829 break; 830 } 831 832 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 833 if (Record.empty()) 834 return Error("Invalid CST_AGGREGATE record"); 835 836 unsigned Size = Record.size(); 837 std::vector<Constant*> Elts; 838 839 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 840 for (unsigned i = 0; i != Size; ++i) 841 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 842 STy->getElementType(i))); 843 V = ConstantStruct::get(STy, Elts); 844 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 845 const Type *EltTy = ATy->getElementType(); 846 for (unsigned i = 0; i != Size; ++i) 847 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 848 V = ConstantArray::get(ATy, Elts); 849 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 850 const Type *EltTy = VTy->getElementType(); 851 for (unsigned i = 0; i != Size; ++i) 852 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 853 V = ConstantVector::get(Elts); 854 } else { 855 V = UndefValue::get(CurTy); 856 } 857 break; 858 } 859 case bitc::CST_CODE_STRING: { // STRING: [values] 860 if (Record.empty()) 861 return Error("Invalid CST_AGGREGATE record"); 862 863 const ArrayType *ATy = cast<ArrayType>(CurTy); 864 const Type *EltTy = ATy->getElementType(); 865 866 unsigned Size = Record.size(); 867 std::vector<Constant*> Elts; 868 for (unsigned i = 0; i != Size; ++i) 869 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 870 V = ConstantArray::get(ATy, Elts); 871 break; 872 } 873 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 874 if (Record.empty()) 875 return Error("Invalid CST_AGGREGATE record"); 876 877 const ArrayType *ATy = cast<ArrayType>(CurTy); 878 const Type *EltTy = ATy->getElementType(); 879 880 unsigned Size = Record.size(); 881 std::vector<Constant*> Elts; 882 for (unsigned i = 0; i != Size; ++i) 883 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 884 Elts.push_back(Constant::getNullValue(EltTy)); 885 V = ConstantArray::get(ATy, Elts); 886 break; 887 } 888 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 889 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 890 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 891 if (Opc < 0) { 892 V = UndefValue::get(CurTy); // Unknown binop. 893 } else { 894 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 895 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 896 V = ConstantExpr::get(Opc, LHS, RHS); 897 } 898 break; 899 } 900 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 901 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 902 int Opc = GetDecodedCastOpcode(Record[0]); 903 if (Opc < 0) { 904 V = UndefValue::get(CurTy); // Unknown cast. 905 } else { 906 const Type *OpTy = getTypeByID(Record[1]); 907 if (!OpTy) return Error("Invalid CE_CAST record"); 908 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 909 V = ConstantExpr::getCast(Opc, Op, CurTy); 910 } 911 break; 912 } 913 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 914 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 915 SmallVector<Constant*, 16> Elts; 916 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 917 const Type *ElTy = getTypeByID(Record[i]); 918 if (!ElTy) return Error("Invalid CE_GEP record"); 919 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 920 } 921 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 922 break; 923 } 924 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 925 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 926 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 927 Type::Int1Ty), 928 ValueList.getConstantFwdRef(Record[1],CurTy), 929 ValueList.getConstantFwdRef(Record[2],CurTy)); 930 break; 931 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 932 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 933 const VectorType *OpTy = 934 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 935 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 936 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 937 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 938 V = ConstantExpr::getExtractElement(Op0, Op1); 939 break; 940 } 941 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 942 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 943 if (Record.size() < 3 || OpTy == 0) 944 return Error("Invalid CE_INSERTELT record"); 945 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 946 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 947 OpTy->getElementType()); 948 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 949 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 950 break; 951 } 952 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 953 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 954 if (Record.size() < 3 || OpTy == 0) 955 return Error("Invalid CE_SHUFFLEVEC record"); 956 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 957 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 958 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 959 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 960 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 961 break; 962 } 963 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 964 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 965 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 966 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 967 return Error("Invalid CE_SHUFVEC_EX record"); 968 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 969 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 970 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements()); 971 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 972 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 973 break; 974 } 975 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 976 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 977 const Type *OpTy = getTypeByID(Record[0]); 978 if (OpTy == 0) return Error("Invalid CE_CMP record"); 979 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 980 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 981 982 if (OpTy->isFloatingPoint()) 983 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 984 else if (!isa<VectorType>(OpTy)) 985 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 986 else if (OpTy->isFPOrFPVector()) 987 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 988 else 989 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 990 break; 991 } 992 case bitc::CST_CODE_INLINEASM: { 993 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 994 std::string AsmStr, ConstrStr; 995 bool HasSideEffects = Record[0]; 996 unsigned AsmStrSize = Record[1]; 997 if (2+AsmStrSize >= Record.size()) 998 return Error("Invalid INLINEASM record"); 999 unsigned ConstStrSize = Record[2+AsmStrSize]; 1000 if (3+AsmStrSize+ConstStrSize > Record.size()) 1001 return Error("Invalid INLINEASM record"); 1002 1003 for (unsigned i = 0; i != AsmStrSize; ++i) 1004 AsmStr += (char)Record[2+i]; 1005 for (unsigned i = 0; i != ConstStrSize; ++i) 1006 ConstrStr += (char)Record[3+AsmStrSize+i]; 1007 const PointerType *PTy = cast<PointerType>(CurTy); 1008 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1009 AsmStr, ConstrStr, HasSideEffects); 1010 break; 1011 } 1012 case bitc::CST_CODE_MDSTRING: { 1013 unsigned MDStringLength = Record.size(); 1014 SmallString<8> String; 1015 String.resize(MDStringLength); 1016 for (unsigned i = 0; i != MDStringLength; ++i) 1017 String[i] = Record[i]; 1018 V = MDString::get(String.c_str(), String.c_str() + MDStringLength); 1019 break; 1020 } 1021 case bitc::CST_CODE_MDNODE: { 1022 if (Record.empty() || Record.size() % 2 == 1) 1023 return Error("Invalid CST_MDNODE record"); 1024 1025 unsigned Size = Record.size(); 1026 SmallVector<Value*, 8> Elts; 1027 for (unsigned i = 0; i != Size; i += 2) { 1028 const Type *Ty = getTypeByID(Record[i], false); 1029 if (Ty != Type::VoidTy) 1030 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1031 else 1032 Elts.push_back(NULL); 1033 } 1034 V = MDNode::get(&Elts[0], Elts.size()); 1035 break; 1036 } 1037 } 1038 1039 ValueList.AssignValue(V, NextCstNo); 1040 ++NextCstNo; 1041 } 1042 1043 if (NextCstNo != ValueList.size()) 1044 return Error("Invalid constant reference!"); 1045 1046 if (Stream.ReadBlockEnd()) 1047 return Error("Error at end of constants block"); 1048 1049 // Once all the constants have been read, go through and resolve forward 1050 // references. 1051 ValueList.ResolveConstantForwardRefs(); 1052 return false; 1053 } 1054 1055 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1056 /// remember where it is and then skip it. This lets us lazily deserialize the 1057 /// functions. 1058 bool BitcodeReader::RememberAndSkipFunctionBody() { 1059 // Get the function we are talking about. 1060 if (FunctionsWithBodies.empty()) 1061 return Error("Insufficient function protos"); 1062 1063 Function *Fn = FunctionsWithBodies.back(); 1064 FunctionsWithBodies.pop_back(); 1065 1066 // Save the current stream state. 1067 uint64_t CurBit = Stream.GetCurrentBitNo(); 1068 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1069 1070 // Set the functions linkage to GhostLinkage so we know it is lazily 1071 // deserialized. 1072 Fn->setLinkage(GlobalValue::GhostLinkage); 1073 1074 // Skip over the function block for now. 1075 if (Stream.SkipBlock()) 1076 return Error("Malformed block record"); 1077 return false; 1078 } 1079 1080 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1081 // Reject multiple MODULE_BLOCK's in a single bitstream. 1082 if (TheModule) 1083 return Error("Multiple MODULE_BLOCKs in same stream"); 1084 1085 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1086 return Error("Malformed block record"); 1087 1088 // Otherwise, create the module. 1089 TheModule = new Module(ModuleID, Context); 1090 1091 SmallVector<uint64_t, 64> Record; 1092 std::vector<std::string> SectionTable; 1093 std::vector<std::string> GCTable; 1094 1095 // Read all the records for this module. 1096 while (!Stream.AtEndOfStream()) { 1097 unsigned Code = Stream.ReadCode(); 1098 if (Code == bitc::END_BLOCK) { 1099 if (Stream.ReadBlockEnd()) 1100 return Error("Error at end of module block"); 1101 1102 // Patch the initializers for globals and aliases up. 1103 ResolveGlobalAndAliasInits(); 1104 if (!GlobalInits.empty() || !AliasInits.empty()) 1105 return Error("Malformed global initializer set"); 1106 if (!FunctionsWithBodies.empty()) 1107 return Error("Too few function bodies found"); 1108 1109 // Look for intrinsic functions which need to be upgraded at some point 1110 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1111 FI != FE; ++FI) { 1112 Function* NewFn; 1113 if (UpgradeIntrinsicFunction(FI, NewFn)) 1114 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1115 } 1116 1117 // Force deallocation of memory for these vectors to favor the client that 1118 // want lazy deserialization. 1119 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1120 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1121 std::vector<Function*>().swap(FunctionsWithBodies); 1122 return false; 1123 } 1124 1125 if (Code == bitc::ENTER_SUBBLOCK) { 1126 switch (Stream.ReadSubBlockID()) { 1127 default: // Skip unknown content. 1128 if (Stream.SkipBlock()) 1129 return Error("Malformed block record"); 1130 break; 1131 case bitc::BLOCKINFO_BLOCK_ID: 1132 if (Stream.ReadBlockInfoBlock()) 1133 return Error("Malformed BlockInfoBlock"); 1134 break; 1135 case bitc::PARAMATTR_BLOCK_ID: 1136 if (ParseAttributeBlock()) 1137 return true; 1138 break; 1139 case bitc::TYPE_BLOCK_ID: 1140 if (ParseTypeTable()) 1141 return true; 1142 break; 1143 case bitc::TYPE_SYMTAB_BLOCK_ID: 1144 if (ParseTypeSymbolTable()) 1145 return true; 1146 break; 1147 case bitc::VALUE_SYMTAB_BLOCK_ID: 1148 if (ParseValueSymbolTable()) 1149 return true; 1150 break; 1151 case bitc::CONSTANTS_BLOCK_ID: 1152 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1153 return true; 1154 break; 1155 case bitc::FUNCTION_BLOCK_ID: 1156 // If this is the first function body we've seen, reverse the 1157 // FunctionsWithBodies list. 1158 if (!HasReversedFunctionsWithBodies) { 1159 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1160 HasReversedFunctionsWithBodies = true; 1161 } 1162 1163 if (RememberAndSkipFunctionBody()) 1164 return true; 1165 break; 1166 } 1167 continue; 1168 } 1169 1170 if (Code == bitc::DEFINE_ABBREV) { 1171 Stream.ReadAbbrevRecord(); 1172 continue; 1173 } 1174 1175 // Read a record. 1176 switch (Stream.ReadRecord(Code, Record)) { 1177 default: break; // Default behavior, ignore unknown content. 1178 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1179 if (Record.size() < 1) 1180 return Error("Malformed MODULE_CODE_VERSION"); 1181 // Only version #0 is supported so far. 1182 if (Record[0] != 0) 1183 return Error("Unknown bitstream version!"); 1184 break; 1185 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1186 std::string S; 1187 if (ConvertToString(Record, 0, S)) 1188 return Error("Invalid MODULE_CODE_TRIPLE record"); 1189 TheModule->setTargetTriple(S); 1190 break; 1191 } 1192 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1193 std::string S; 1194 if (ConvertToString(Record, 0, S)) 1195 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1196 TheModule->setDataLayout(S); 1197 break; 1198 } 1199 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1200 std::string S; 1201 if (ConvertToString(Record, 0, S)) 1202 return Error("Invalid MODULE_CODE_ASM record"); 1203 TheModule->setModuleInlineAsm(S); 1204 break; 1205 } 1206 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1207 std::string S; 1208 if (ConvertToString(Record, 0, S)) 1209 return Error("Invalid MODULE_CODE_DEPLIB record"); 1210 TheModule->addLibrary(S); 1211 break; 1212 } 1213 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1214 std::string S; 1215 if (ConvertToString(Record, 0, S)) 1216 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1217 SectionTable.push_back(S); 1218 break; 1219 } 1220 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1221 std::string S; 1222 if (ConvertToString(Record, 0, S)) 1223 return Error("Invalid MODULE_CODE_GCNAME record"); 1224 GCTable.push_back(S); 1225 break; 1226 } 1227 // GLOBALVAR: [pointer type, isconst, initid, 1228 // linkage, alignment, section, visibility, threadlocal] 1229 case bitc::MODULE_CODE_GLOBALVAR: { 1230 if (Record.size() < 6) 1231 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1232 const Type *Ty = getTypeByID(Record[0]); 1233 if (!isa<PointerType>(Ty)) 1234 return Error("Global not a pointer type!"); 1235 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1236 Ty = cast<PointerType>(Ty)->getElementType(); 1237 1238 bool isConstant = Record[1]; 1239 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1240 unsigned Alignment = (1 << Record[4]) >> 1; 1241 std::string Section; 1242 if (Record[5]) { 1243 if (Record[5]-1 >= SectionTable.size()) 1244 return Error("Invalid section ID"); 1245 Section = SectionTable[Record[5]-1]; 1246 } 1247 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1248 if (Record.size() > 6) 1249 Visibility = GetDecodedVisibility(Record[6]); 1250 bool isThreadLocal = false; 1251 if (Record.size() > 7) 1252 isThreadLocal = Record[7]; 1253 1254 GlobalVariable *NewGV = 1255 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1256 isThreadLocal, AddressSpace); 1257 NewGV->setAlignment(Alignment); 1258 if (!Section.empty()) 1259 NewGV->setSection(Section); 1260 NewGV->setVisibility(Visibility); 1261 NewGV->setThreadLocal(isThreadLocal); 1262 1263 ValueList.push_back(NewGV); 1264 1265 // Remember which value to use for the global initializer. 1266 if (unsigned InitID = Record[2]) 1267 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1268 break; 1269 } 1270 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1271 // alignment, section, visibility, gc] 1272 case bitc::MODULE_CODE_FUNCTION: { 1273 if (Record.size() < 8) 1274 return Error("Invalid MODULE_CODE_FUNCTION record"); 1275 const Type *Ty = getTypeByID(Record[0]); 1276 if (!isa<PointerType>(Ty)) 1277 return Error("Function not a pointer type!"); 1278 const FunctionType *FTy = 1279 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1280 if (!FTy) 1281 return Error("Function not a pointer to function type!"); 1282 1283 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1284 "", TheModule); 1285 1286 Func->setCallingConv(Record[1]); 1287 bool isProto = Record[2]; 1288 Func->setLinkage(GetDecodedLinkage(Record[3])); 1289 Func->setAttributes(getAttributes(Record[4])); 1290 1291 Func->setAlignment((1 << Record[5]) >> 1); 1292 if (Record[6]) { 1293 if (Record[6]-1 >= SectionTable.size()) 1294 return Error("Invalid section ID"); 1295 Func->setSection(SectionTable[Record[6]-1]); 1296 } 1297 Func->setVisibility(GetDecodedVisibility(Record[7])); 1298 if (Record.size() > 8 && Record[8]) { 1299 if (Record[8]-1 > GCTable.size()) 1300 return Error("Invalid GC ID"); 1301 Func->setGC(GCTable[Record[8]-1].c_str()); 1302 } 1303 ValueList.push_back(Func); 1304 1305 // If this is a function with a body, remember the prototype we are 1306 // creating now, so that we can match up the body with them later. 1307 if (!isProto) 1308 FunctionsWithBodies.push_back(Func); 1309 break; 1310 } 1311 // ALIAS: [alias type, aliasee val#, linkage] 1312 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1313 case bitc::MODULE_CODE_ALIAS: { 1314 if (Record.size() < 3) 1315 return Error("Invalid MODULE_ALIAS record"); 1316 const Type *Ty = getTypeByID(Record[0]); 1317 if (!isa<PointerType>(Ty)) 1318 return Error("Function not a pointer type!"); 1319 1320 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1321 "", 0, TheModule); 1322 // Old bitcode files didn't have visibility field. 1323 if (Record.size() > 3) 1324 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1325 ValueList.push_back(NewGA); 1326 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1327 break; 1328 } 1329 /// MODULE_CODE_PURGEVALS: [numvals] 1330 case bitc::MODULE_CODE_PURGEVALS: 1331 // Trim down the value list to the specified size. 1332 if (Record.size() < 1 || Record[0] > ValueList.size()) 1333 return Error("Invalid MODULE_PURGEVALS record"); 1334 ValueList.shrinkTo(Record[0]); 1335 break; 1336 } 1337 Record.clear(); 1338 } 1339 1340 return Error("Premature end of bitstream"); 1341 } 1342 1343 bool BitcodeReader::ParseBitcode() { 1344 TheModule = 0; 1345 1346 if (Buffer->getBufferSize() & 3) 1347 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1348 1349 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1350 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1351 1352 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1353 // The magic number is 0x0B17C0DE stored in little endian. 1354 if (isBitcodeWrapper(BufPtr, BufEnd)) 1355 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1356 return Error("Invalid bitcode wrapper header"); 1357 1358 StreamFile.init(BufPtr, BufEnd); 1359 Stream.init(StreamFile); 1360 1361 // Sniff for the signature. 1362 if (Stream.Read(8) != 'B' || 1363 Stream.Read(8) != 'C' || 1364 Stream.Read(4) != 0x0 || 1365 Stream.Read(4) != 0xC || 1366 Stream.Read(4) != 0xE || 1367 Stream.Read(4) != 0xD) 1368 return Error("Invalid bitcode signature"); 1369 1370 // We expect a number of well-defined blocks, though we don't necessarily 1371 // need to understand them all. 1372 while (!Stream.AtEndOfStream()) { 1373 unsigned Code = Stream.ReadCode(); 1374 1375 if (Code != bitc::ENTER_SUBBLOCK) 1376 return Error("Invalid record at top-level"); 1377 1378 unsigned BlockID = Stream.ReadSubBlockID(); 1379 1380 // We only know the MODULE subblock ID. 1381 switch (BlockID) { 1382 case bitc::BLOCKINFO_BLOCK_ID: 1383 if (Stream.ReadBlockInfoBlock()) 1384 return Error("Malformed BlockInfoBlock"); 1385 break; 1386 case bitc::MODULE_BLOCK_ID: 1387 if (ParseModule(Buffer->getBufferIdentifier())) 1388 return true; 1389 break; 1390 default: 1391 if (Stream.SkipBlock()) 1392 return Error("Malformed block record"); 1393 break; 1394 } 1395 } 1396 1397 return false; 1398 } 1399 1400 1401 /// ParseFunctionBody - Lazily parse the specified function body block. 1402 bool BitcodeReader::ParseFunctionBody(Function *F) { 1403 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1404 return Error("Malformed block record"); 1405 1406 unsigned ModuleValueListSize = ValueList.size(); 1407 1408 // Add all the function arguments to the value table. 1409 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1410 ValueList.push_back(I); 1411 1412 unsigned NextValueNo = ValueList.size(); 1413 BasicBlock *CurBB = 0; 1414 unsigned CurBBNo = 0; 1415 1416 // Read all the records. 1417 SmallVector<uint64_t, 64> Record; 1418 while (1) { 1419 unsigned Code = Stream.ReadCode(); 1420 if (Code == bitc::END_BLOCK) { 1421 if (Stream.ReadBlockEnd()) 1422 return Error("Error at end of function block"); 1423 break; 1424 } 1425 1426 if (Code == bitc::ENTER_SUBBLOCK) { 1427 switch (Stream.ReadSubBlockID()) { 1428 default: // Skip unknown content. 1429 if (Stream.SkipBlock()) 1430 return Error("Malformed block record"); 1431 break; 1432 case bitc::CONSTANTS_BLOCK_ID: 1433 if (ParseConstants()) return true; 1434 NextValueNo = ValueList.size(); 1435 break; 1436 case bitc::VALUE_SYMTAB_BLOCK_ID: 1437 if (ParseValueSymbolTable()) return true; 1438 break; 1439 } 1440 continue; 1441 } 1442 1443 if (Code == bitc::DEFINE_ABBREV) { 1444 Stream.ReadAbbrevRecord(); 1445 continue; 1446 } 1447 1448 // Read a record. 1449 Record.clear(); 1450 Instruction *I = 0; 1451 switch (Stream.ReadRecord(Code, Record)) { 1452 default: // Default behavior: reject 1453 return Error("Unknown instruction"); 1454 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1455 if (Record.size() < 1 || Record[0] == 0) 1456 return Error("Invalid DECLAREBLOCKS record"); 1457 // Create all the basic blocks for the function. 1458 FunctionBBs.resize(Record[0]); 1459 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1460 FunctionBBs[i] = BasicBlock::Create("", F); 1461 CurBB = FunctionBBs[0]; 1462 continue; 1463 1464 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1465 unsigned OpNum = 0; 1466 Value *LHS, *RHS; 1467 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1468 getValue(Record, OpNum, LHS->getType(), RHS) || 1469 OpNum+1 != Record.size()) 1470 return Error("Invalid BINOP record"); 1471 1472 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1473 if (Opc == -1) return Error("Invalid BINOP record"); 1474 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1475 break; 1476 } 1477 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1478 unsigned OpNum = 0; 1479 Value *Op; 1480 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1481 OpNum+2 != Record.size()) 1482 return Error("Invalid CAST record"); 1483 1484 const Type *ResTy = getTypeByID(Record[OpNum]); 1485 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1486 if (Opc == -1 || ResTy == 0) 1487 return Error("Invalid CAST record"); 1488 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1489 break; 1490 } 1491 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1492 unsigned OpNum = 0; 1493 Value *BasePtr; 1494 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1495 return Error("Invalid GEP record"); 1496 1497 SmallVector<Value*, 16> GEPIdx; 1498 while (OpNum != Record.size()) { 1499 Value *Op; 1500 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1501 return Error("Invalid GEP record"); 1502 GEPIdx.push_back(Op); 1503 } 1504 1505 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1506 break; 1507 } 1508 1509 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1510 // EXTRACTVAL: [opty, opval, n x indices] 1511 unsigned OpNum = 0; 1512 Value *Agg; 1513 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1514 return Error("Invalid EXTRACTVAL record"); 1515 1516 SmallVector<unsigned, 4> EXTRACTVALIdx; 1517 for (unsigned RecSize = Record.size(); 1518 OpNum != RecSize; ++OpNum) { 1519 uint64_t Index = Record[OpNum]; 1520 if ((unsigned)Index != Index) 1521 return Error("Invalid EXTRACTVAL index"); 1522 EXTRACTVALIdx.push_back((unsigned)Index); 1523 } 1524 1525 I = ExtractValueInst::Create(Agg, 1526 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1527 break; 1528 } 1529 1530 case bitc::FUNC_CODE_INST_INSERTVAL: { 1531 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1532 unsigned OpNum = 0; 1533 Value *Agg; 1534 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1535 return Error("Invalid INSERTVAL record"); 1536 Value *Val; 1537 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1538 return Error("Invalid INSERTVAL record"); 1539 1540 SmallVector<unsigned, 4> INSERTVALIdx; 1541 for (unsigned RecSize = Record.size(); 1542 OpNum != RecSize; ++OpNum) { 1543 uint64_t Index = Record[OpNum]; 1544 if ((unsigned)Index != Index) 1545 return Error("Invalid INSERTVAL index"); 1546 INSERTVALIdx.push_back((unsigned)Index); 1547 } 1548 1549 I = InsertValueInst::Create(Agg, Val, 1550 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1551 break; 1552 } 1553 1554 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1555 // obsolete form of select 1556 // handles select i1 ... in old bitcode 1557 unsigned OpNum = 0; 1558 Value *TrueVal, *FalseVal, *Cond; 1559 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1560 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1561 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1562 return Error("Invalid SELECT record"); 1563 1564 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1565 break; 1566 } 1567 1568 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1569 // new form of select 1570 // handles select i1 or select [N x i1] 1571 unsigned OpNum = 0; 1572 Value *TrueVal, *FalseVal, *Cond; 1573 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1574 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1575 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1576 return Error("Invalid SELECT record"); 1577 1578 // select condition can be either i1 or [N x i1] 1579 if (const VectorType* vector_type = 1580 dyn_cast<const VectorType>(Cond->getType())) { 1581 // expect <n x i1> 1582 if (vector_type->getElementType() != Type::Int1Ty) 1583 return Error("Invalid SELECT condition type"); 1584 } else { 1585 // expect i1 1586 if (Cond->getType() != Type::Int1Ty) 1587 return Error("Invalid SELECT condition type"); 1588 } 1589 1590 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1591 break; 1592 } 1593 1594 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1595 unsigned OpNum = 0; 1596 Value *Vec, *Idx; 1597 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1598 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1599 return Error("Invalid EXTRACTELT record"); 1600 I = new ExtractElementInst(Vec, Idx); 1601 break; 1602 } 1603 1604 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1605 unsigned OpNum = 0; 1606 Value *Vec, *Elt, *Idx; 1607 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1608 getValue(Record, OpNum, 1609 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1610 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1611 return Error("Invalid INSERTELT record"); 1612 I = InsertElementInst::Create(Vec, Elt, Idx); 1613 break; 1614 } 1615 1616 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1617 unsigned OpNum = 0; 1618 Value *Vec1, *Vec2, *Mask; 1619 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1620 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1621 return Error("Invalid SHUFFLEVEC record"); 1622 1623 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1624 return Error("Invalid SHUFFLEVEC record"); 1625 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1626 break; 1627 } 1628 1629 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1630 // VFCmp/VICmp 1631 // or old form of ICmp/FCmp returning bool 1632 unsigned OpNum = 0; 1633 Value *LHS, *RHS; 1634 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1635 getValue(Record, OpNum, LHS->getType(), RHS) || 1636 OpNum+1 != Record.size()) 1637 return Error("Invalid CMP record"); 1638 1639 if (LHS->getType()->isFloatingPoint()) 1640 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1641 else if (!isa<VectorType>(LHS->getType())) 1642 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1643 else if (LHS->getType()->isFPOrFPVector()) 1644 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1645 else 1646 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1647 break; 1648 } 1649 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1650 // Fcmp/ICmp returning bool or vector of bool 1651 unsigned OpNum = 0; 1652 Value *LHS, *RHS; 1653 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1654 getValue(Record, OpNum, LHS->getType(), RHS) || 1655 OpNum+1 != Record.size()) 1656 return Error("Invalid CMP2 record"); 1657 1658 if (LHS->getType()->isFPOrFPVector()) 1659 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1660 else 1661 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1662 break; 1663 } 1664 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1665 if (Record.size() != 2) 1666 return Error("Invalid GETRESULT record"); 1667 unsigned OpNum = 0; 1668 Value *Op; 1669 getValueTypePair(Record, OpNum, NextValueNo, Op); 1670 unsigned Index = Record[1]; 1671 I = ExtractValueInst::Create(Op, Index); 1672 break; 1673 } 1674 1675 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1676 { 1677 unsigned Size = Record.size(); 1678 if (Size == 0) { 1679 I = ReturnInst::Create(); 1680 break; 1681 } 1682 1683 unsigned OpNum = 0; 1684 SmallVector<Value *,4> Vs; 1685 do { 1686 Value *Op = NULL; 1687 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1688 return Error("Invalid RET record"); 1689 Vs.push_back(Op); 1690 } while(OpNum != Record.size()); 1691 1692 const Type *ReturnType = F->getReturnType(); 1693 if (Vs.size() > 1 || 1694 (isa<StructType>(ReturnType) && 1695 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1696 Value *RV = UndefValue::get(ReturnType); 1697 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1698 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1699 CurBB->getInstList().push_back(I); 1700 ValueList.AssignValue(I, NextValueNo++); 1701 RV = I; 1702 } 1703 I = ReturnInst::Create(RV); 1704 break; 1705 } 1706 1707 I = ReturnInst::Create(Vs[0]); 1708 break; 1709 } 1710 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1711 if (Record.size() != 1 && Record.size() != 3) 1712 return Error("Invalid BR record"); 1713 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1714 if (TrueDest == 0) 1715 return Error("Invalid BR record"); 1716 1717 if (Record.size() == 1) 1718 I = BranchInst::Create(TrueDest); 1719 else { 1720 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1721 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1722 if (FalseDest == 0 || Cond == 0) 1723 return Error("Invalid BR record"); 1724 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1725 } 1726 break; 1727 } 1728 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1729 if (Record.size() < 3 || (Record.size() & 1) == 0) 1730 return Error("Invalid SWITCH record"); 1731 const Type *OpTy = getTypeByID(Record[0]); 1732 Value *Cond = getFnValueByID(Record[1], OpTy); 1733 BasicBlock *Default = getBasicBlock(Record[2]); 1734 if (OpTy == 0 || Cond == 0 || Default == 0) 1735 return Error("Invalid SWITCH record"); 1736 unsigned NumCases = (Record.size()-3)/2; 1737 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1738 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1739 ConstantInt *CaseVal = 1740 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1741 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1742 if (CaseVal == 0 || DestBB == 0) { 1743 delete SI; 1744 return Error("Invalid SWITCH record!"); 1745 } 1746 SI->addCase(CaseVal, DestBB); 1747 } 1748 I = SI; 1749 break; 1750 } 1751 1752 case bitc::FUNC_CODE_INST_INVOKE: { 1753 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1754 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1755 AttrListPtr PAL = getAttributes(Record[0]); 1756 unsigned CCInfo = Record[1]; 1757 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1758 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1759 1760 unsigned OpNum = 4; 1761 Value *Callee; 1762 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1763 return Error("Invalid INVOKE record"); 1764 1765 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1766 const FunctionType *FTy = !CalleeTy ? 0 : 1767 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1768 1769 // Check that the right number of fixed parameters are here. 1770 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1771 Record.size() < OpNum+FTy->getNumParams()) 1772 return Error("Invalid INVOKE record"); 1773 1774 SmallVector<Value*, 16> Ops; 1775 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1776 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1777 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1778 } 1779 1780 if (!FTy->isVarArg()) { 1781 if (Record.size() != OpNum) 1782 return Error("Invalid INVOKE record"); 1783 } else { 1784 // Read type/value pairs for varargs params. 1785 while (OpNum != Record.size()) { 1786 Value *Op; 1787 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1788 return Error("Invalid INVOKE record"); 1789 Ops.push_back(Op); 1790 } 1791 } 1792 1793 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1794 Ops.begin(), Ops.end()); 1795 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1796 cast<InvokeInst>(I)->setAttributes(PAL); 1797 break; 1798 } 1799 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1800 I = new UnwindInst(); 1801 break; 1802 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1803 I = new UnreachableInst(); 1804 break; 1805 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1806 if (Record.size() < 1 || ((Record.size()-1)&1)) 1807 return Error("Invalid PHI record"); 1808 const Type *Ty = getTypeByID(Record[0]); 1809 if (!Ty) return Error("Invalid PHI record"); 1810 1811 PHINode *PN = PHINode::Create(Ty); 1812 PN->reserveOperandSpace((Record.size()-1)/2); 1813 1814 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1815 Value *V = getFnValueByID(Record[1+i], Ty); 1816 BasicBlock *BB = getBasicBlock(Record[2+i]); 1817 if (!V || !BB) return Error("Invalid PHI record"); 1818 PN->addIncoming(V, BB); 1819 } 1820 I = PN; 1821 break; 1822 } 1823 1824 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1825 if (Record.size() < 3) 1826 return Error("Invalid MALLOC record"); 1827 const PointerType *Ty = 1828 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1829 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1830 unsigned Align = Record[2]; 1831 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1832 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1833 break; 1834 } 1835 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1836 unsigned OpNum = 0; 1837 Value *Op; 1838 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1839 OpNum != Record.size()) 1840 return Error("Invalid FREE record"); 1841 I = new FreeInst(Op); 1842 break; 1843 } 1844 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1845 if (Record.size() < 3) 1846 return Error("Invalid ALLOCA record"); 1847 const PointerType *Ty = 1848 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1849 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1850 unsigned Align = Record[2]; 1851 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1852 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1853 break; 1854 } 1855 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1856 unsigned OpNum = 0; 1857 Value *Op; 1858 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1859 OpNum+2 != Record.size()) 1860 return Error("Invalid LOAD record"); 1861 1862 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1863 break; 1864 } 1865 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1866 unsigned OpNum = 0; 1867 Value *Val, *Ptr; 1868 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1869 getValue(Record, OpNum, 1870 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1871 OpNum+2 != Record.size()) 1872 return Error("Invalid STORE record"); 1873 1874 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1875 break; 1876 } 1877 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1878 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1879 unsigned OpNum = 0; 1880 Value *Val, *Ptr; 1881 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1882 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1883 OpNum+2 != Record.size()) 1884 return Error("Invalid STORE record"); 1885 1886 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1887 break; 1888 } 1889 case bitc::FUNC_CODE_INST_CALL: { 1890 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1891 if (Record.size() < 3) 1892 return Error("Invalid CALL record"); 1893 1894 AttrListPtr PAL = getAttributes(Record[0]); 1895 unsigned CCInfo = Record[1]; 1896 1897 unsigned OpNum = 2; 1898 Value *Callee; 1899 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1900 return Error("Invalid CALL record"); 1901 1902 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1903 const FunctionType *FTy = 0; 1904 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1905 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1906 return Error("Invalid CALL record"); 1907 1908 SmallVector<Value*, 16> Args; 1909 // Read the fixed params. 1910 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1911 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1912 Args.push_back(getBasicBlock(Record[OpNum])); 1913 else 1914 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1915 if (Args.back() == 0) return Error("Invalid CALL record"); 1916 } 1917 1918 // Read type/value pairs for varargs params. 1919 if (!FTy->isVarArg()) { 1920 if (OpNum != Record.size()) 1921 return Error("Invalid CALL record"); 1922 } else { 1923 while (OpNum != Record.size()) { 1924 Value *Op; 1925 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1926 return Error("Invalid CALL record"); 1927 Args.push_back(Op); 1928 } 1929 } 1930 1931 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1932 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1933 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1934 cast<CallInst>(I)->setAttributes(PAL); 1935 break; 1936 } 1937 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1938 if (Record.size() < 3) 1939 return Error("Invalid VAARG record"); 1940 const Type *OpTy = getTypeByID(Record[0]); 1941 Value *Op = getFnValueByID(Record[1], OpTy); 1942 const Type *ResTy = getTypeByID(Record[2]); 1943 if (!OpTy || !Op || !ResTy) 1944 return Error("Invalid VAARG record"); 1945 I = new VAArgInst(Op, ResTy); 1946 break; 1947 } 1948 } 1949 1950 // Add instruction to end of current BB. If there is no current BB, reject 1951 // this file. 1952 if (CurBB == 0) { 1953 delete I; 1954 return Error("Invalid instruction with no BB"); 1955 } 1956 CurBB->getInstList().push_back(I); 1957 1958 // If this was a terminator instruction, move to the next block. 1959 if (isa<TerminatorInst>(I)) { 1960 ++CurBBNo; 1961 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1962 } 1963 1964 // Non-void values get registered in the value table for future use. 1965 if (I && I->getType() != Type::VoidTy) 1966 ValueList.AssignValue(I, NextValueNo++); 1967 } 1968 1969 // Check the function list for unresolved values. 1970 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1971 if (A->getParent() == 0) { 1972 // We found at least one unresolved value. Nuke them all to avoid leaks. 1973 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1974 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1975 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1976 delete A; 1977 } 1978 } 1979 return Error("Never resolved value found in function!"); 1980 } 1981 } 1982 1983 // Trim the value list down to the size it was before we parsed this function. 1984 ValueList.shrinkTo(ModuleValueListSize); 1985 std::vector<BasicBlock*>().swap(FunctionBBs); 1986 1987 return false; 1988 } 1989 1990 //===----------------------------------------------------------------------===// 1991 // ModuleProvider implementation 1992 //===----------------------------------------------------------------------===// 1993 1994 1995 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1996 // If it already is material, ignore the request. 1997 if (!F->hasNotBeenReadFromBitcode()) return false; 1998 1999 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2000 DeferredFunctionInfo.find(F); 2001 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2002 2003 // Move the bit stream to the saved position of the deferred function body and 2004 // restore the real linkage type for the function. 2005 Stream.JumpToBit(DFII->second.first); 2006 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2007 2008 if (ParseFunctionBody(F)) { 2009 if (ErrInfo) *ErrInfo = ErrorString; 2010 return true; 2011 } 2012 2013 // Upgrade any old intrinsic calls in the function. 2014 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2015 E = UpgradedIntrinsics.end(); I != E; ++I) { 2016 if (I->first != I->second) { 2017 for (Value::use_iterator UI = I->first->use_begin(), 2018 UE = I->first->use_end(); UI != UE; ) { 2019 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2020 UpgradeIntrinsicCall(CI, I->second); 2021 } 2022 } 2023 } 2024 2025 return false; 2026 } 2027 2028 void BitcodeReader::dematerializeFunction(Function *F) { 2029 // If this function isn't materialized, or if it is a proto, this is a noop. 2030 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2031 return; 2032 2033 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2034 2035 // Just forget the function body, we can remat it later. 2036 F->deleteBody(); 2037 F->setLinkage(GlobalValue::GhostLinkage); 2038 } 2039 2040 2041 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2042 // Iterate over the module, deserializing any functions that are still on 2043 // disk. 2044 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2045 F != E; ++F) 2046 if (F->hasNotBeenReadFromBitcode() && 2047 materializeFunction(F, ErrInfo)) 2048 return 0; 2049 2050 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2051 // delete the old functions to clean up. We can't do this unless the entire 2052 // module is materialized because there could always be another function body 2053 // with calls to the old function. 2054 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2055 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2056 if (I->first != I->second) { 2057 for (Value::use_iterator UI = I->first->use_begin(), 2058 UE = I->first->use_end(); UI != UE; ) { 2059 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2060 UpgradeIntrinsicCall(CI, I->second); 2061 } 2062 if (!I->first->use_empty()) 2063 I->first->replaceAllUsesWith(I->second); 2064 I->first->eraseFromParent(); 2065 } 2066 } 2067 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2068 2069 return TheModule; 2070 } 2071 2072 2073 /// This method is provided by the parent ModuleProvde class and overriden 2074 /// here. It simply releases the module from its provided and frees up our 2075 /// state. 2076 /// @brief Release our hold on the generated module 2077 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2078 // Since we're losing control of this Module, we must hand it back complete 2079 Module *M = ModuleProvider::releaseModule(ErrInfo); 2080 FreeState(); 2081 return M; 2082 } 2083 2084 2085 //===----------------------------------------------------------------------===// 2086 // External interface 2087 //===----------------------------------------------------------------------===// 2088 2089 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2090 /// 2091 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2092 LLVMContext& Context, 2093 std::string *ErrMsg) { 2094 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2095 if (R->ParseBitcode()) { 2096 if (ErrMsg) 2097 *ErrMsg = R->getErrorString(); 2098 2099 // Don't let the BitcodeReader dtor delete 'Buffer'. 2100 R->releaseMemoryBuffer(); 2101 delete R; 2102 return 0; 2103 } 2104 return R; 2105 } 2106 2107 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2108 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2109 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2110 std::string *ErrMsg){ 2111 BitcodeReader *R; 2112 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2113 ErrMsg)); 2114 if (!R) return 0; 2115 2116 // Read in the entire module. 2117 Module *M = R->materializeModule(ErrMsg); 2118 2119 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2120 // there was an error. 2121 R->releaseMemoryBuffer(); 2122 2123 // If there was no error, tell ModuleProvider not to delete it when its dtor 2124 // is run. 2125 if (M) 2126 M = R->releaseModule(ErrMsg); 2127 2128 delete R; 2129 return M; 2130 } 2131