1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start, true), 880 APInt(BitWidth, End, true)); 881 } 882 } 883 884 Expected<ConstantRange> 885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 886 if (Record.size() - OpNum < 1) 887 return error("Too few records for range"); 888 unsigned BitWidth = Record[OpNum++]; 889 return readConstantRange(Record, OpNum, BitWidth); 890 } 891 892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 893 /// corresponding argument's pointee type. Also upgrades intrinsics that now 894 /// require an elementtype attribute. 895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 896 897 /// Converts alignment exponent (i.e. power of two (or zero)) to the 898 /// corresponding alignment to use. If alignment is too large, returns 899 /// a corresponding error code. 900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 903 ParserCallbacks Callbacks = {}); 904 905 Error parseComdatRecord(ArrayRef<uint64_t> Record); 906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 907 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 909 ArrayRef<uint64_t> Record); 910 911 Error parseAttributeBlock(); 912 Error parseAttributeGroupBlock(); 913 Error parseTypeTable(); 914 Error parseTypeTableBody(); 915 Error parseOperandBundleTags(); 916 Error parseSyncScopeNames(); 917 918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 919 unsigned NameIndex, Triple &TT); 920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 921 ArrayRef<uint64_t> Record); 922 Error parseValueSymbolTable(uint64_t Offset = 0); 923 Error parseGlobalValueSymbolTable(); 924 Error parseConstants(); 925 Error rememberAndSkipFunctionBodies(); 926 Error rememberAndSkipFunctionBody(); 927 /// Save the positions of the Metadata blocks and skip parsing the blocks. 928 Error rememberAndSkipMetadata(); 929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 930 Error parseFunctionBody(Function *F); 931 Error globalCleanup(); 932 Error resolveGlobalAndIndirectSymbolInits(); 933 Error parseUseLists(); 934 Error findFunctionInStream( 935 Function *F, 936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 937 938 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 939 }; 940 941 /// Class to manage reading and parsing function summary index bitcode 942 /// files/sections. 943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 944 /// The module index built during parsing. 945 ModuleSummaryIndex &TheIndex; 946 947 /// Indicates whether we have encountered a global value summary section 948 /// yet during parsing. 949 bool SeenGlobalValSummary = false; 950 951 /// Indicates whether we have already parsed the VST, used for error checking. 952 bool SeenValueSymbolTable = false; 953 954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 955 /// Used to enable on-demand parsing of the VST. 956 uint64_t VSTOffset = 0; 957 958 // Map to save ValueId to ValueInfo association that was recorded in the 959 // ValueSymbolTable. It is used after the VST is parsed to convert 960 // call graph edges read from the function summary from referencing 961 // callees by their ValueId to using the ValueInfo instead, which is how 962 // they are recorded in the summary index being built. 963 // We save a GUID which refers to the same global as the ValueInfo, but 964 // ignoring the linkage, i.e. for values other than local linkage they are 965 // identical (this is the second member). ValueInfo has the real GUID. 966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 967 ValueIdToValueInfoMap; 968 969 /// Map populated during module path string table parsing, from the 970 /// module ID to a string reference owned by the index's module 971 /// path string table, used to correlate with combined index 972 /// summary records. 973 DenseMap<uint64_t, StringRef> ModuleIdMap; 974 975 /// Original source file name recorded in a bitcode record. 976 std::string SourceFileName; 977 978 /// The string identifier given to this module by the client, normally the 979 /// path to the bitcode file. 980 StringRef ModulePath; 981 982 /// Callback to ask whether a symbol is the prevailing copy when invoked 983 /// during combined index building. 984 std::function<bool(GlobalValue::GUID)> IsPrevailing; 985 986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 987 /// ids from the lists in the callsite and alloc entries to the index. 988 std::vector<uint64_t> StackIds; 989 990 /// Linearized radix tree of allocation contexts. See the description above 991 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format. 992 std::vector<uint64_t> RadixArray; 993 994 public: 995 ModuleSummaryIndexBitcodeReader( 996 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 997 StringRef ModulePath, 998 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 999 1000 Error parseModule(); 1001 1002 private: 1003 void setValueGUID(uint64_t ValueID, StringRef ValueName, 1004 GlobalValue::LinkageTypes Linkage, 1005 StringRef SourceFileName); 1006 Error parseValueSymbolTable( 1007 uint64_t Offset, 1008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1009 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1010 SmallVector<FunctionSummary::EdgeTy, 0> 1011 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1012 bool HasProfile, bool HasRelBF); 1013 Error parseEntireSummary(unsigned ID); 1014 Error parseModuleStringTable(); 1015 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1016 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1017 TypeIdCompatibleVtableInfo &TypeId); 1018 std::vector<FunctionSummary::ParamAccess> 1019 parseParamAccesses(ArrayRef<uint64_t> Record); 1020 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record, 1021 unsigned &I); 1022 1023 template <bool AllowNullValueInfo = false> 1024 std::pair<ValueInfo, GlobalValue::GUID> 1025 getValueInfoFromValueId(unsigned ValueId); 1026 1027 void addThisModule(); 1028 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1029 }; 1030 1031 } // end anonymous namespace 1032 1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1034 Error Err) { 1035 if (Err) { 1036 std::error_code EC; 1037 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1038 EC = EIB.convertToErrorCode(); 1039 Ctx.emitError(EIB.message()); 1040 }); 1041 return EC; 1042 } 1043 return std::error_code(); 1044 } 1045 1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1047 StringRef ProducerIdentification, 1048 LLVMContext &Context) 1049 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1050 ValueList(this->Stream.SizeInBytes(), 1051 [this](unsigned ValID, BasicBlock *InsertBB) { 1052 return materializeValue(ValID, InsertBB); 1053 }) { 1054 this->ProducerIdentification = std::string(ProducerIdentification); 1055 } 1056 1057 Error BitcodeReader::materializeForwardReferencedFunctions() { 1058 if (WillMaterializeAllForwardRefs) 1059 return Error::success(); 1060 1061 // Prevent recursion. 1062 WillMaterializeAllForwardRefs = true; 1063 1064 while (!BasicBlockFwdRefQueue.empty()) { 1065 Function *F = BasicBlockFwdRefQueue.front(); 1066 BasicBlockFwdRefQueue.pop_front(); 1067 assert(F && "Expected valid function"); 1068 if (!BasicBlockFwdRefs.count(F)) 1069 // Already materialized. 1070 continue; 1071 1072 // Check for a function that isn't materializable to prevent an infinite 1073 // loop. When parsing a blockaddress stored in a global variable, there 1074 // isn't a trivial way to check if a function will have a body without a 1075 // linear search through FunctionsWithBodies, so just check it here. 1076 if (!F->isMaterializable()) 1077 return error("Never resolved function from blockaddress"); 1078 1079 // Try to materialize F. 1080 if (Error Err = materialize(F)) 1081 return Err; 1082 } 1083 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1084 1085 for (Function *F : BackwardRefFunctions) 1086 if (Error Err = materialize(F)) 1087 return Err; 1088 BackwardRefFunctions.clear(); 1089 1090 // Reset state. 1091 WillMaterializeAllForwardRefs = false; 1092 return Error::success(); 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // Helper functions to implement forward reference resolution, etc. 1097 //===----------------------------------------------------------------------===// 1098 1099 static bool hasImplicitComdat(size_t Val) { 1100 switch (Val) { 1101 default: 1102 return false; 1103 case 1: // Old WeakAnyLinkage 1104 case 4: // Old LinkOnceAnyLinkage 1105 case 10: // Old WeakODRLinkage 1106 case 11: // Old LinkOnceODRLinkage 1107 return true; 1108 } 1109 } 1110 1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1112 switch (Val) { 1113 default: // Map unknown/new linkages to external 1114 case 0: 1115 return GlobalValue::ExternalLinkage; 1116 case 2: 1117 return GlobalValue::AppendingLinkage; 1118 case 3: 1119 return GlobalValue::InternalLinkage; 1120 case 5: 1121 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1122 case 6: 1123 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1124 case 7: 1125 return GlobalValue::ExternalWeakLinkage; 1126 case 8: 1127 return GlobalValue::CommonLinkage; 1128 case 9: 1129 return GlobalValue::PrivateLinkage; 1130 case 12: 1131 return GlobalValue::AvailableExternallyLinkage; 1132 case 13: 1133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1134 case 14: 1135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1136 case 15: 1137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1138 case 1: // Old value with implicit comdat. 1139 case 16: 1140 return GlobalValue::WeakAnyLinkage; 1141 case 10: // Old value with implicit comdat. 1142 case 17: 1143 return GlobalValue::WeakODRLinkage; 1144 case 4: // Old value with implicit comdat. 1145 case 18: 1146 return GlobalValue::LinkOnceAnyLinkage; 1147 case 11: // Old value with implicit comdat. 1148 case 19: 1149 return GlobalValue::LinkOnceODRLinkage; 1150 } 1151 } 1152 1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1154 FunctionSummary::FFlags Flags; 1155 Flags.ReadNone = RawFlags & 0x1; 1156 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1157 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1158 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1159 Flags.NoInline = (RawFlags >> 4) & 0x1; 1160 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1161 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1162 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1163 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1164 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1165 return Flags; 1166 } 1167 1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1169 // 1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1171 // visibility: [8, 10). 1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1173 uint64_t Version) { 1174 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1175 // like getDecodedLinkage() above. Any future change to the linkage enum and 1176 // to getDecodedLinkage() will need to be taken into account here as above. 1177 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1178 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1179 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1180 RawFlags = RawFlags >> 4; 1181 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1182 // The Live flag wasn't introduced until version 3. For dead stripping 1183 // to work correctly on earlier versions, we must conservatively treat all 1184 // values as live. 1185 bool Live = (RawFlags & 0x2) || Version < 3; 1186 bool Local = (RawFlags & 0x4); 1187 bool AutoHide = (RawFlags & 0x8); 1188 1189 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1190 Live, Local, AutoHide, IK); 1191 } 1192 1193 // Decode the flags for GlobalVariable in the summary 1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1195 return GlobalVarSummary::GVarFlags( 1196 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1197 (RawFlags & 0x4) ? true : false, 1198 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1199 } 1200 1201 static std::pair<CalleeInfo::HotnessType, bool> 1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1203 CalleeInfo::HotnessType Hotness = 1204 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1205 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1206 return {Hotness, HasTailCall}; 1207 } 1208 1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1210 bool &HasTailCall) { 1211 static constexpr uint64_t RelBlockFreqMask = 1212 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1213 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1214 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1215 } 1216 1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1218 switch (Val) { 1219 default: // Map unknown visibilities to default. 1220 case 0: return GlobalValue::DefaultVisibility; 1221 case 1: return GlobalValue::HiddenVisibility; 1222 case 2: return GlobalValue::ProtectedVisibility; 1223 } 1224 } 1225 1226 static GlobalValue::DLLStorageClassTypes 1227 getDecodedDLLStorageClass(unsigned Val) { 1228 switch (Val) { 1229 default: // Map unknown values to default. 1230 case 0: return GlobalValue::DefaultStorageClass; 1231 case 1: return GlobalValue::DLLImportStorageClass; 1232 case 2: return GlobalValue::DLLExportStorageClass; 1233 } 1234 } 1235 1236 static bool getDecodedDSOLocal(unsigned Val) { 1237 switch(Val) { 1238 default: // Map unknown values to preemptable. 1239 case 0: return false; 1240 case 1: return true; 1241 } 1242 } 1243 1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1245 switch (Val) { 1246 case 1: 1247 return CodeModel::Tiny; 1248 case 2: 1249 return CodeModel::Small; 1250 case 3: 1251 return CodeModel::Kernel; 1252 case 4: 1253 return CodeModel::Medium; 1254 case 5: 1255 return CodeModel::Large; 1256 } 1257 1258 return {}; 1259 } 1260 1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1262 switch (Val) { 1263 case 0: return GlobalVariable::NotThreadLocal; 1264 default: // Map unknown non-zero value to general dynamic. 1265 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1266 case 2: return GlobalVariable::LocalDynamicTLSModel; 1267 case 3: return GlobalVariable::InitialExecTLSModel; 1268 case 4: return GlobalVariable::LocalExecTLSModel; 1269 } 1270 } 1271 1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1273 switch (Val) { 1274 default: // Map unknown to UnnamedAddr::None. 1275 case 0: return GlobalVariable::UnnamedAddr::None; 1276 case 1: return GlobalVariable::UnnamedAddr::Global; 1277 case 2: return GlobalVariable::UnnamedAddr::Local; 1278 } 1279 } 1280 1281 static int getDecodedCastOpcode(unsigned Val) { 1282 switch (Val) { 1283 default: return -1; 1284 case bitc::CAST_TRUNC : return Instruction::Trunc; 1285 case bitc::CAST_ZEXT : return Instruction::ZExt; 1286 case bitc::CAST_SEXT : return Instruction::SExt; 1287 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1288 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1289 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1290 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1291 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1292 case bitc::CAST_FPEXT : return Instruction::FPExt; 1293 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1294 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1295 case bitc::CAST_BITCAST : return Instruction::BitCast; 1296 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1297 } 1298 } 1299 1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1301 bool IsFP = Ty->isFPOrFPVectorTy(); 1302 // UnOps are only valid for int/fp or vector of int/fp types 1303 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1304 return -1; 1305 1306 switch (Val) { 1307 default: 1308 return -1; 1309 case bitc::UNOP_FNEG: 1310 return IsFP ? Instruction::FNeg : -1; 1311 } 1312 } 1313 1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1315 bool IsFP = Ty->isFPOrFPVectorTy(); 1316 // BinOps are only valid for int/fp or vector of int/fp types 1317 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1318 return -1; 1319 1320 switch (Val) { 1321 default: 1322 return -1; 1323 case bitc::BINOP_ADD: 1324 return IsFP ? Instruction::FAdd : Instruction::Add; 1325 case bitc::BINOP_SUB: 1326 return IsFP ? Instruction::FSub : Instruction::Sub; 1327 case bitc::BINOP_MUL: 1328 return IsFP ? Instruction::FMul : Instruction::Mul; 1329 case bitc::BINOP_UDIV: 1330 return IsFP ? -1 : Instruction::UDiv; 1331 case bitc::BINOP_SDIV: 1332 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1333 case bitc::BINOP_UREM: 1334 return IsFP ? -1 : Instruction::URem; 1335 case bitc::BINOP_SREM: 1336 return IsFP ? Instruction::FRem : Instruction::SRem; 1337 case bitc::BINOP_SHL: 1338 return IsFP ? -1 : Instruction::Shl; 1339 case bitc::BINOP_LSHR: 1340 return IsFP ? -1 : Instruction::LShr; 1341 case bitc::BINOP_ASHR: 1342 return IsFP ? -1 : Instruction::AShr; 1343 case bitc::BINOP_AND: 1344 return IsFP ? -1 : Instruction::And; 1345 case bitc::BINOP_OR: 1346 return IsFP ? -1 : Instruction::Or; 1347 case bitc::BINOP_XOR: 1348 return IsFP ? -1 : Instruction::Xor; 1349 } 1350 } 1351 1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1353 switch (Val) { 1354 default: return AtomicRMWInst::BAD_BINOP; 1355 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1356 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1357 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1358 case bitc::RMW_AND: return AtomicRMWInst::And; 1359 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1360 case bitc::RMW_OR: return AtomicRMWInst::Or; 1361 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1362 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1363 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1364 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1365 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1366 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1367 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1368 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1369 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1370 case bitc::RMW_UINC_WRAP: 1371 return AtomicRMWInst::UIncWrap; 1372 case bitc::RMW_UDEC_WRAP: 1373 return AtomicRMWInst::UDecWrap; 1374 case bitc::RMW_USUB_COND: 1375 return AtomicRMWInst::USubCond; 1376 case bitc::RMW_USUB_SAT: 1377 return AtomicRMWInst::USubSat; 1378 } 1379 } 1380 1381 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1382 switch (Val) { 1383 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1384 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1385 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1386 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1387 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1388 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1389 default: // Map unknown orderings to sequentially-consistent. 1390 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1391 } 1392 } 1393 1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1395 switch (Val) { 1396 default: // Map unknown selection kinds to any. 1397 case bitc::COMDAT_SELECTION_KIND_ANY: 1398 return Comdat::Any; 1399 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1400 return Comdat::ExactMatch; 1401 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1402 return Comdat::Largest; 1403 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1404 return Comdat::NoDeduplicate; 1405 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1406 return Comdat::SameSize; 1407 } 1408 } 1409 1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1411 FastMathFlags FMF; 1412 if (0 != (Val & bitc::UnsafeAlgebra)) 1413 FMF.setFast(); 1414 if (0 != (Val & bitc::AllowReassoc)) 1415 FMF.setAllowReassoc(); 1416 if (0 != (Val & bitc::NoNaNs)) 1417 FMF.setNoNaNs(); 1418 if (0 != (Val & bitc::NoInfs)) 1419 FMF.setNoInfs(); 1420 if (0 != (Val & bitc::NoSignedZeros)) 1421 FMF.setNoSignedZeros(); 1422 if (0 != (Val & bitc::AllowReciprocal)) 1423 FMF.setAllowReciprocal(); 1424 if (0 != (Val & bitc::AllowContract)) 1425 FMF.setAllowContract(true); 1426 if (0 != (Val & bitc::ApproxFunc)) 1427 FMF.setApproxFunc(); 1428 return FMF; 1429 } 1430 1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1432 // A GlobalValue with local linkage cannot have a DLL storage class. 1433 if (GV->hasLocalLinkage()) 1434 return; 1435 switch (Val) { 1436 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1437 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1438 } 1439 } 1440 1441 Type *BitcodeReader::getTypeByID(unsigned ID) { 1442 // The type table size is always specified correctly. 1443 if (ID >= TypeList.size()) 1444 return nullptr; 1445 1446 if (Type *Ty = TypeList[ID]) 1447 return Ty; 1448 1449 // If we have a forward reference, the only possible case is when it is to a 1450 // named struct. Just create a placeholder for now. 1451 return TypeList[ID] = createIdentifiedStructType(Context); 1452 } 1453 1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1455 auto It = ContainedTypeIDs.find(ID); 1456 if (It == ContainedTypeIDs.end()) 1457 return InvalidTypeID; 1458 1459 if (Idx >= It->second.size()) 1460 return InvalidTypeID; 1461 1462 return It->second[Idx]; 1463 } 1464 1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1466 if (ID >= TypeList.size()) 1467 return nullptr; 1468 1469 Type *Ty = TypeList[ID]; 1470 if (!Ty->isPointerTy()) 1471 return nullptr; 1472 1473 return getTypeByID(getContainedTypeID(ID, 0)); 1474 } 1475 1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1477 ArrayRef<unsigned> ChildTypeIDs) { 1478 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1479 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1480 auto It = VirtualTypeIDs.find(CacheKey); 1481 if (It != VirtualTypeIDs.end()) { 1482 // The cmpxchg return value is the only place we need more than one 1483 // contained type ID, however the second one will always be the same (i1), 1484 // so we don't need to include it in the cache key. This asserts that the 1485 // contained types are indeed as expected and there are no collisions. 1486 assert((ChildTypeIDs.empty() || 1487 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1488 "Incorrect cached contained type IDs"); 1489 return It->second; 1490 } 1491 1492 unsigned TypeID = TypeList.size(); 1493 TypeList.push_back(Ty); 1494 if (!ChildTypeIDs.empty()) 1495 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1496 VirtualTypeIDs.insert({CacheKey, TypeID}); 1497 return TypeID; 1498 } 1499 1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1501 GEPNoWrapFlags NW; 1502 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1503 NW |= GEPNoWrapFlags::inBounds(); 1504 if (Flags & (1 << bitc::GEP_NUSW)) 1505 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1506 if (Flags & (1 << bitc::GEP_NUW)) 1507 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1508 return NW; 1509 } 1510 1511 static bool isConstExprSupported(const BitcodeConstant *BC) { 1512 uint8_t Opcode = BC->Opcode; 1513 1514 // These are not real constant expressions, always consider them supported. 1515 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1516 return true; 1517 1518 // If -expand-constant-exprs is set, we want to consider all expressions 1519 // as unsupported. 1520 if (ExpandConstantExprs) 1521 return false; 1522 1523 if (Instruction::isBinaryOp(Opcode)) 1524 return ConstantExpr::isSupportedBinOp(Opcode); 1525 1526 if (Instruction::isCast(Opcode)) 1527 return ConstantExpr::isSupportedCastOp(Opcode); 1528 1529 if (Opcode == Instruction::GetElementPtr) 1530 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1531 1532 switch (Opcode) { 1533 case Instruction::FNeg: 1534 case Instruction::Select: 1535 case Instruction::ICmp: 1536 case Instruction::FCmp: 1537 return false; 1538 default: 1539 return true; 1540 } 1541 } 1542 1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1544 BasicBlock *InsertBB) { 1545 // Quickly handle the case where there is no BitcodeConstant to resolve. 1546 if (StartValID < ValueList.size() && ValueList[StartValID] && 1547 !isa<BitcodeConstant>(ValueList[StartValID])) 1548 return ValueList[StartValID]; 1549 1550 SmallDenseMap<unsigned, Value *> MaterializedValues; 1551 SmallVector<unsigned> Worklist; 1552 Worklist.push_back(StartValID); 1553 while (!Worklist.empty()) { 1554 unsigned ValID = Worklist.back(); 1555 if (MaterializedValues.count(ValID)) { 1556 // Duplicate expression that was already handled. 1557 Worklist.pop_back(); 1558 continue; 1559 } 1560 1561 if (ValID >= ValueList.size() || !ValueList[ValID]) 1562 return error("Invalid value ID"); 1563 1564 Value *V = ValueList[ValID]; 1565 auto *BC = dyn_cast<BitcodeConstant>(V); 1566 if (!BC) { 1567 MaterializedValues.insert({ValID, V}); 1568 Worklist.pop_back(); 1569 continue; 1570 } 1571 1572 // Iterate in reverse, so values will get popped from the worklist in 1573 // expected order. 1574 SmallVector<Value *> Ops; 1575 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1576 auto It = MaterializedValues.find(OpID); 1577 if (It != MaterializedValues.end()) 1578 Ops.push_back(It->second); 1579 else 1580 Worklist.push_back(OpID); 1581 } 1582 1583 // Some expressions have not been resolved yet, handle them first and then 1584 // revisit this one. 1585 if (Ops.size() != BC->getOperandIDs().size()) 1586 continue; 1587 std::reverse(Ops.begin(), Ops.end()); 1588 1589 SmallVector<Constant *> ConstOps; 1590 for (Value *Op : Ops) 1591 if (auto *C = dyn_cast<Constant>(Op)) 1592 ConstOps.push_back(C); 1593 1594 // Materialize as constant expression if possible. 1595 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1596 Constant *C; 1597 if (Instruction::isCast(BC->Opcode)) { 1598 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1599 if (!C) 1600 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1601 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1602 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1603 } else { 1604 switch (BC->Opcode) { 1605 case BitcodeConstant::ConstantPtrAuthOpcode: { 1606 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1607 if (!Key) 1608 return error("ptrauth key operand must be ConstantInt"); 1609 1610 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1611 if (!Disc) 1612 return error("ptrauth disc operand must be ConstantInt"); 1613 1614 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1615 break; 1616 } 1617 case BitcodeConstant::NoCFIOpcode: { 1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1619 if (!GV) 1620 return error("no_cfi operand must be GlobalValue"); 1621 C = NoCFIValue::get(GV); 1622 break; 1623 } 1624 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1625 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1626 if (!GV) 1627 return error("dso_local operand must be GlobalValue"); 1628 C = DSOLocalEquivalent::get(GV); 1629 break; 1630 } 1631 case BitcodeConstant::BlockAddressOpcode: { 1632 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1633 if (!Fn) 1634 return error("blockaddress operand must be a function"); 1635 1636 // If the function is already parsed we can insert the block address 1637 // right away. 1638 BasicBlock *BB; 1639 unsigned BBID = BC->BlockAddressBB; 1640 if (!BBID) 1641 // Invalid reference to entry block. 1642 return error("Invalid ID"); 1643 if (!Fn->empty()) { 1644 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1645 for (size_t I = 0, E = BBID; I != E; ++I) { 1646 if (BBI == BBE) 1647 return error("Invalid ID"); 1648 ++BBI; 1649 } 1650 BB = &*BBI; 1651 } else { 1652 // Otherwise insert a placeholder and remember it so it can be 1653 // inserted when the function is parsed. 1654 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1655 if (FwdBBs.empty()) 1656 BasicBlockFwdRefQueue.push_back(Fn); 1657 if (FwdBBs.size() < BBID + 1) 1658 FwdBBs.resize(BBID + 1); 1659 if (!FwdBBs[BBID]) 1660 FwdBBs[BBID] = BasicBlock::Create(Context); 1661 BB = FwdBBs[BBID]; 1662 } 1663 C = BlockAddress::get(Fn, BB); 1664 break; 1665 } 1666 case BitcodeConstant::ConstantStructOpcode: 1667 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1668 break; 1669 case BitcodeConstant::ConstantArrayOpcode: 1670 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1671 break; 1672 case BitcodeConstant::ConstantVectorOpcode: 1673 C = ConstantVector::get(ConstOps); 1674 break; 1675 case Instruction::GetElementPtr: 1676 C = ConstantExpr::getGetElementPtr( 1677 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1678 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1679 break; 1680 case Instruction::ExtractElement: 1681 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1682 break; 1683 case Instruction::InsertElement: 1684 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1685 ConstOps[2]); 1686 break; 1687 case Instruction::ShuffleVector: { 1688 SmallVector<int, 16> Mask; 1689 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1690 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1691 break; 1692 } 1693 default: 1694 llvm_unreachable("Unhandled bitcode constant"); 1695 } 1696 } 1697 1698 // Cache resolved constant. 1699 ValueList.replaceValueWithoutRAUW(ValID, C); 1700 MaterializedValues.insert({ValID, C}); 1701 Worklist.pop_back(); 1702 continue; 1703 } 1704 1705 if (!InsertBB) 1706 return error(Twine("Value referenced by initializer is an unsupported " 1707 "constant expression of type ") + 1708 BC->getOpcodeName()); 1709 1710 // Materialize as instructions if necessary. 1711 Instruction *I; 1712 if (Instruction::isCast(BC->Opcode)) { 1713 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1714 BC->getType(), "constexpr", InsertBB); 1715 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1716 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1717 "constexpr", InsertBB); 1718 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1719 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1720 Ops[1], "constexpr", InsertBB); 1721 if (isa<OverflowingBinaryOperator>(I)) { 1722 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1723 I->setHasNoSignedWrap(); 1724 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1725 I->setHasNoUnsignedWrap(); 1726 } 1727 if (isa<PossiblyExactOperator>(I) && 1728 (BC->Flags & PossiblyExactOperator::IsExact)) 1729 I->setIsExact(); 1730 } else { 1731 switch (BC->Opcode) { 1732 case BitcodeConstant::ConstantVectorOpcode: { 1733 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1734 Value *V = PoisonValue::get(BC->getType()); 1735 for (auto Pair : enumerate(Ops)) { 1736 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1737 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1738 InsertBB); 1739 } 1740 I = cast<Instruction>(V); 1741 break; 1742 } 1743 case BitcodeConstant::ConstantStructOpcode: 1744 case BitcodeConstant::ConstantArrayOpcode: { 1745 Value *V = PoisonValue::get(BC->getType()); 1746 for (auto Pair : enumerate(Ops)) 1747 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1748 "constexpr.ins", InsertBB); 1749 I = cast<Instruction>(V); 1750 break; 1751 } 1752 case Instruction::ICmp: 1753 case Instruction::FCmp: 1754 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1755 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1756 "constexpr", InsertBB); 1757 break; 1758 case Instruction::GetElementPtr: 1759 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1760 ArrayRef(Ops).drop_front(), "constexpr", 1761 InsertBB); 1762 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1763 break; 1764 case Instruction::Select: 1765 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1766 break; 1767 case Instruction::ExtractElement: 1768 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1769 break; 1770 case Instruction::InsertElement: 1771 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1772 InsertBB); 1773 break; 1774 case Instruction::ShuffleVector: 1775 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1776 InsertBB); 1777 break; 1778 default: 1779 llvm_unreachable("Unhandled bitcode constant"); 1780 } 1781 } 1782 1783 MaterializedValues.insert({ValID, I}); 1784 Worklist.pop_back(); 1785 } 1786 1787 return MaterializedValues[StartValID]; 1788 } 1789 1790 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1791 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1792 if (!MaybeV) 1793 return MaybeV.takeError(); 1794 1795 // Result must be Constant if InsertBB is nullptr. 1796 return cast<Constant>(MaybeV.get()); 1797 } 1798 1799 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1800 StringRef Name) { 1801 auto *Ret = StructType::create(Context, Name); 1802 IdentifiedStructTypes.push_back(Ret); 1803 return Ret; 1804 } 1805 1806 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1807 auto *Ret = StructType::create(Context); 1808 IdentifiedStructTypes.push_back(Ret); 1809 return Ret; 1810 } 1811 1812 //===----------------------------------------------------------------------===// 1813 // Functions for parsing blocks from the bitcode file 1814 //===----------------------------------------------------------------------===// 1815 1816 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1817 switch (Val) { 1818 case Attribute::EndAttrKinds: 1819 case Attribute::EmptyKey: 1820 case Attribute::TombstoneKey: 1821 llvm_unreachable("Synthetic enumerators which should never get here"); 1822 1823 case Attribute::None: return 0; 1824 case Attribute::ZExt: return 1 << 0; 1825 case Attribute::SExt: return 1 << 1; 1826 case Attribute::NoReturn: return 1 << 2; 1827 case Attribute::InReg: return 1 << 3; 1828 case Attribute::StructRet: return 1 << 4; 1829 case Attribute::NoUnwind: return 1 << 5; 1830 case Attribute::NoAlias: return 1 << 6; 1831 case Attribute::ByVal: return 1 << 7; 1832 case Attribute::Nest: return 1 << 8; 1833 case Attribute::ReadNone: return 1 << 9; 1834 case Attribute::ReadOnly: return 1 << 10; 1835 case Attribute::NoInline: return 1 << 11; 1836 case Attribute::AlwaysInline: return 1 << 12; 1837 case Attribute::OptimizeForSize: return 1 << 13; 1838 case Attribute::StackProtect: return 1 << 14; 1839 case Attribute::StackProtectReq: return 1 << 15; 1840 case Attribute::Alignment: return 31 << 16; 1841 case Attribute::NoCapture: return 1 << 21; 1842 case Attribute::NoRedZone: return 1 << 22; 1843 case Attribute::NoImplicitFloat: return 1 << 23; 1844 case Attribute::Naked: return 1 << 24; 1845 case Attribute::InlineHint: return 1 << 25; 1846 case Attribute::StackAlignment: return 7 << 26; 1847 case Attribute::ReturnsTwice: return 1 << 29; 1848 case Attribute::UWTable: return 1 << 30; 1849 case Attribute::NonLazyBind: return 1U << 31; 1850 case Attribute::SanitizeAddress: return 1ULL << 32; 1851 case Attribute::MinSize: return 1ULL << 33; 1852 case Attribute::NoDuplicate: return 1ULL << 34; 1853 case Attribute::StackProtectStrong: return 1ULL << 35; 1854 case Attribute::SanitizeThread: return 1ULL << 36; 1855 case Attribute::SanitizeMemory: return 1ULL << 37; 1856 case Attribute::NoBuiltin: return 1ULL << 38; 1857 case Attribute::Returned: return 1ULL << 39; 1858 case Attribute::Cold: return 1ULL << 40; 1859 case Attribute::Builtin: return 1ULL << 41; 1860 case Attribute::OptimizeNone: return 1ULL << 42; 1861 case Attribute::InAlloca: return 1ULL << 43; 1862 case Attribute::NonNull: return 1ULL << 44; 1863 case Attribute::JumpTable: return 1ULL << 45; 1864 case Attribute::Convergent: return 1ULL << 46; 1865 case Attribute::SafeStack: return 1ULL << 47; 1866 case Attribute::NoRecurse: return 1ULL << 48; 1867 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1868 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1869 case Attribute::SwiftSelf: return 1ULL << 51; 1870 case Attribute::SwiftError: return 1ULL << 52; 1871 case Attribute::WriteOnly: return 1ULL << 53; 1872 case Attribute::Speculatable: return 1ULL << 54; 1873 case Attribute::StrictFP: return 1ULL << 55; 1874 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1875 case Attribute::NoCfCheck: return 1ULL << 57; 1876 case Attribute::OptForFuzzing: return 1ULL << 58; 1877 case Attribute::ShadowCallStack: return 1ULL << 59; 1878 case Attribute::SpeculativeLoadHardening: 1879 return 1ULL << 60; 1880 case Attribute::ImmArg: 1881 return 1ULL << 61; 1882 case Attribute::WillReturn: 1883 return 1ULL << 62; 1884 case Attribute::NoFree: 1885 return 1ULL << 63; 1886 default: 1887 // Other attributes are not supported in the raw format, 1888 // as we ran out of space. 1889 return 0; 1890 } 1891 llvm_unreachable("Unsupported attribute type"); 1892 } 1893 1894 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1895 if (!Val) return; 1896 1897 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1898 I = Attribute::AttrKind(I + 1)) { 1899 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1900 if (I == Attribute::Alignment) 1901 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1902 else if (I == Attribute::StackAlignment) 1903 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1904 else if (Attribute::isTypeAttrKind(I)) 1905 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1906 else 1907 B.addAttribute(I); 1908 } 1909 } 1910 } 1911 1912 /// This fills an AttrBuilder object with the LLVM attributes that have 1913 /// been decoded from the given integer. This function must stay in sync with 1914 /// 'encodeLLVMAttributesForBitcode'. 1915 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1916 uint64_t EncodedAttrs, 1917 uint64_t AttrIdx) { 1918 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1919 // the bits above 31 down by 11 bits. 1920 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1921 assert((!Alignment || isPowerOf2_32(Alignment)) && 1922 "Alignment must be a power of two."); 1923 1924 if (Alignment) 1925 B.addAlignmentAttr(Alignment); 1926 1927 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1928 (EncodedAttrs & 0xffff); 1929 1930 if (AttrIdx == AttributeList::FunctionIndex) { 1931 // Upgrade old memory attributes. 1932 MemoryEffects ME = MemoryEffects::unknown(); 1933 if (Attrs & (1ULL << 9)) { 1934 // ReadNone 1935 Attrs &= ~(1ULL << 9); 1936 ME &= MemoryEffects::none(); 1937 } 1938 if (Attrs & (1ULL << 10)) { 1939 // ReadOnly 1940 Attrs &= ~(1ULL << 10); 1941 ME &= MemoryEffects::readOnly(); 1942 } 1943 if (Attrs & (1ULL << 49)) { 1944 // InaccessibleMemOnly 1945 Attrs &= ~(1ULL << 49); 1946 ME &= MemoryEffects::inaccessibleMemOnly(); 1947 } 1948 if (Attrs & (1ULL << 50)) { 1949 // InaccessibleMemOrArgMemOnly 1950 Attrs &= ~(1ULL << 50); 1951 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1952 } 1953 if (Attrs & (1ULL << 53)) { 1954 // WriteOnly 1955 Attrs &= ~(1ULL << 53); 1956 ME &= MemoryEffects::writeOnly(); 1957 } 1958 if (ME != MemoryEffects::unknown()) 1959 B.addMemoryAttr(ME); 1960 } 1961 1962 addRawAttributeValue(B, Attrs); 1963 } 1964 1965 Error BitcodeReader::parseAttributeBlock() { 1966 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1967 return Err; 1968 1969 if (!MAttributes.empty()) 1970 return error("Invalid multiple blocks"); 1971 1972 SmallVector<uint64_t, 64> Record; 1973 1974 SmallVector<AttributeList, 8> Attrs; 1975 1976 // Read all the records. 1977 while (true) { 1978 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1979 if (!MaybeEntry) 1980 return MaybeEntry.takeError(); 1981 BitstreamEntry Entry = MaybeEntry.get(); 1982 1983 switch (Entry.Kind) { 1984 case BitstreamEntry::SubBlock: // Handled for us already. 1985 case BitstreamEntry::Error: 1986 return error("Malformed block"); 1987 case BitstreamEntry::EndBlock: 1988 return Error::success(); 1989 case BitstreamEntry::Record: 1990 // The interesting case. 1991 break; 1992 } 1993 1994 // Read a record. 1995 Record.clear(); 1996 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1997 if (!MaybeRecord) 1998 return MaybeRecord.takeError(); 1999 switch (MaybeRecord.get()) { 2000 default: // Default behavior: ignore. 2001 break; 2002 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 2003 // Deprecated, but still needed to read old bitcode files. 2004 if (Record.size() & 1) 2005 return error("Invalid parameter attribute record"); 2006 2007 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2008 AttrBuilder B(Context); 2009 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2010 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2011 } 2012 2013 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2014 Attrs.clear(); 2015 break; 2016 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2017 for (uint64_t Val : Record) 2018 Attrs.push_back(MAttributeGroups[Val]); 2019 2020 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2021 Attrs.clear(); 2022 break; 2023 } 2024 } 2025 } 2026 2027 // Returns Attribute::None on unrecognized codes. 2028 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2029 switch (Code) { 2030 default: 2031 return Attribute::None; 2032 case bitc::ATTR_KIND_ALIGNMENT: 2033 return Attribute::Alignment; 2034 case bitc::ATTR_KIND_ALWAYS_INLINE: 2035 return Attribute::AlwaysInline; 2036 case bitc::ATTR_KIND_BUILTIN: 2037 return Attribute::Builtin; 2038 case bitc::ATTR_KIND_BY_VAL: 2039 return Attribute::ByVal; 2040 case bitc::ATTR_KIND_IN_ALLOCA: 2041 return Attribute::InAlloca; 2042 case bitc::ATTR_KIND_COLD: 2043 return Attribute::Cold; 2044 case bitc::ATTR_KIND_CONVERGENT: 2045 return Attribute::Convergent; 2046 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2047 return Attribute::DisableSanitizerInstrumentation; 2048 case bitc::ATTR_KIND_ELEMENTTYPE: 2049 return Attribute::ElementType; 2050 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2051 return Attribute::FnRetThunkExtern; 2052 case bitc::ATTR_KIND_INLINE_HINT: 2053 return Attribute::InlineHint; 2054 case bitc::ATTR_KIND_IN_REG: 2055 return Attribute::InReg; 2056 case bitc::ATTR_KIND_JUMP_TABLE: 2057 return Attribute::JumpTable; 2058 case bitc::ATTR_KIND_MEMORY: 2059 return Attribute::Memory; 2060 case bitc::ATTR_KIND_NOFPCLASS: 2061 return Attribute::NoFPClass; 2062 case bitc::ATTR_KIND_MIN_SIZE: 2063 return Attribute::MinSize; 2064 case bitc::ATTR_KIND_NAKED: 2065 return Attribute::Naked; 2066 case bitc::ATTR_KIND_NEST: 2067 return Attribute::Nest; 2068 case bitc::ATTR_KIND_NO_ALIAS: 2069 return Attribute::NoAlias; 2070 case bitc::ATTR_KIND_NO_BUILTIN: 2071 return Attribute::NoBuiltin; 2072 case bitc::ATTR_KIND_NO_CALLBACK: 2073 return Attribute::NoCallback; 2074 case bitc::ATTR_KIND_NO_CAPTURE: 2075 return Attribute::NoCapture; 2076 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE: 2077 return Attribute::NoDivergenceSource; 2078 case bitc::ATTR_KIND_NO_DUPLICATE: 2079 return Attribute::NoDuplicate; 2080 case bitc::ATTR_KIND_NOFREE: 2081 return Attribute::NoFree; 2082 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2083 return Attribute::NoImplicitFloat; 2084 case bitc::ATTR_KIND_NO_INLINE: 2085 return Attribute::NoInline; 2086 case bitc::ATTR_KIND_NO_RECURSE: 2087 return Attribute::NoRecurse; 2088 case bitc::ATTR_KIND_NO_MERGE: 2089 return Attribute::NoMerge; 2090 case bitc::ATTR_KIND_NON_LAZY_BIND: 2091 return Attribute::NonLazyBind; 2092 case bitc::ATTR_KIND_NON_NULL: 2093 return Attribute::NonNull; 2094 case bitc::ATTR_KIND_DEREFERENCEABLE: 2095 return Attribute::Dereferenceable; 2096 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2097 return Attribute::DereferenceableOrNull; 2098 case bitc::ATTR_KIND_ALLOC_ALIGN: 2099 return Attribute::AllocAlign; 2100 case bitc::ATTR_KIND_ALLOC_KIND: 2101 return Attribute::AllocKind; 2102 case bitc::ATTR_KIND_ALLOC_SIZE: 2103 return Attribute::AllocSize; 2104 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2105 return Attribute::AllocatedPointer; 2106 case bitc::ATTR_KIND_NO_RED_ZONE: 2107 return Attribute::NoRedZone; 2108 case bitc::ATTR_KIND_NO_RETURN: 2109 return Attribute::NoReturn; 2110 case bitc::ATTR_KIND_NOSYNC: 2111 return Attribute::NoSync; 2112 case bitc::ATTR_KIND_NOCF_CHECK: 2113 return Attribute::NoCfCheck; 2114 case bitc::ATTR_KIND_NO_PROFILE: 2115 return Attribute::NoProfile; 2116 case bitc::ATTR_KIND_SKIP_PROFILE: 2117 return Attribute::SkipProfile; 2118 case bitc::ATTR_KIND_NO_UNWIND: 2119 return Attribute::NoUnwind; 2120 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2121 return Attribute::NoSanitizeBounds; 2122 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2123 return Attribute::NoSanitizeCoverage; 2124 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2125 return Attribute::NullPointerIsValid; 2126 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2127 return Attribute::OptimizeForDebugging; 2128 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2129 return Attribute::OptForFuzzing; 2130 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2131 return Attribute::OptimizeForSize; 2132 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2133 return Attribute::OptimizeNone; 2134 case bitc::ATTR_KIND_READ_NONE: 2135 return Attribute::ReadNone; 2136 case bitc::ATTR_KIND_READ_ONLY: 2137 return Attribute::ReadOnly; 2138 case bitc::ATTR_KIND_RETURNED: 2139 return Attribute::Returned; 2140 case bitc::ATTR_KIND_RETURNS_TWICE: 2141 return Attribute::ReturnsTwice; 2142 case bitc::ATTR_KIND_S_EXT: 2143 return Attribute::SExt; 2144 case bitc::ATTR_KIND_SPECULATABLE: 2145 return Attribute::Speculatable; 2146 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2147 return Attribute::StackAlignment; 2148 case bitc::ATTR_KIND_STACK_PROTECT: 2149 return Attribute::StackProtect; 2150 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2151 return Attribute::StackProtectReq; 2152 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2153 return Attribute::StackProtectStrong; 2154 case bitc::ATTR_KIND_SAFESTACK: 2155 return Attribute::SafeStack; 2156 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2157 return Attribute::ShadowCallStack; 2158 case bitc::ATTR_KIND_STRICT_FP: 2159 return Attribute::StrictFP; 2160 case bitc::ATTR_KIND_STRUCT_RET: 2161 return Attribute::StructRet; 2162 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2163 return Attribute::SanitizeAddress; 2164 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2165 return Attribute::SanitizeHWAddress; 2166 case bitc::ATTR_KIND_SANITIZE_THREAD: 2167 return Attribute::SanitizeThread; 2168 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2169 return Attribute::SanitizeMemory; 2170 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2171 return Attribute::SanitizeNumericalStability; 2172 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2173 return Attribute::SanitizeRealtime; 2174 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING: 2175 return Attribute::SanitizeRealtimeBlocking; 2176 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2177 return Attribute::SpeculativeLoadHardening; 2178 case bitc::ATTR_KIND_SWIFT_ERROR: 2179 return Attribute::SwiftError; 2180 case bitc::ATTR_KIND_SWIFT_SELF: 2181 return Attribute::SwiftSelf; 2182 case bitc::ATTR_KIND_SWIFT_ASYNC: 2183 return Attribute::SwiftAsync; 2184 case bitc::ATTR_KIND_UW_TABLE: 2185 return Attribute::UWTable; 2186 case bitc::ATTR_KIND_VSCALE_RANGE: 2187 return Attribute::VScaleRange; 2188 case bitc::ATTR_KIND_WILLRETURN: 2189 return Attribute::WillReturn; 2190 case bitc::ATTR_KIND_WRITEONLY: 2191 return Attribute::WriteOnly; 2192 case bitc::ATTR_KIND_Z_EXT: 2193 return Attribute::ZExt; 2194 case bitc::ATTR_KIND_IMMARG: 2195 return Attribute::ImmArg; 2196 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2197 return Attribute::SanitizeMemTag; 2198 case bitc::ATTR_KIND_PREALLOCATED: 2199 return Attribute::Preallocated; 2200 case bitc::ATTR_KIND_NOUNDEF: 2201 return Attribute::NoUndef; 2202 case bitc::ATTR_KIND_BYREF: 2203 return Attribute::ByRef; 2204 case bitc::ATTR_KIND_MUSTPROGRESS: 2205 return Attribute::MustProgress; 2206 case bitc::ATTR_KIND_HOT: 2207 return Attribute::Hot; 2208 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2209 return Attribute::PresplitCoroutine; 2210 case bitc::ATTR_KIND_WRITABLE: 2211 return Attribute::Writable; 2212 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2213 return Attribute::CoroDestroyOnlyWhenComplete; 2214 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2215 return Attribute::DeadOnUnwind; 2216 case bitc::ATTR_KIND_RANGE: 2217 return Attribute::Range; 2218 case bitc::ATTR_KIND_INITIALIZES: 2219 return Attribute::Initializes; 2220 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2221 return Attribute::CoroElideSafe; 2222 case bitc::ATTR_KIND_NO_EXT: 2223 return Attribute::NoExt; 2224 } 2225 } 2226 2227 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2228 MaybeAlign &Alignment) { 2229 // Note: Alignment in bitcode files is incremented by 1, so that zero 2230 // can be used for default alignment. 2231 if (Exponent > Value::MaxAlignmentExponent + 1) 2232 return error("Invalid alignment value"); 2233 Alignment = decodeMaybeAlign(Exponent); 2234 return Error::success(); 2235 } 2236 2237 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2238 *Kind = getAttrFromCode(Code); 2239 if (*Kind == Attribute::None) 2240 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2241 return Error::success(); 2242 } 2243 2244 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2245 switch (EncodedKind) { 2246 case bitc::ATTR_KIND_READ_NONE: 2247 ME &= MemoryEffects::none(); 2248 return true; 2249 case bitc::ATTR_KIND_READ_ONLY: 2250 ME &= MemoryEffects::readOnly(); 2251 return true; 2252 case bitc::ATTR_KIND_WRITEONLY: 2253 ME &= MemoryEffects::writeOnly(); 2254 return true; 2255 case bitc::ATTR_KIND_ARGMEMONLY: 2256 ME &= MemoryEffects::argMemOnly(); 2257 return true; 2258 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2259 ME &= MemoryEffects::inaccessibleMemOnly(); 2260 return true; 2261 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2262 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2263 return true; 2264 default: 2265 return false; 2266 } 2267 } 2268 2269 Error BitcodeReader::parseAttributeGroupBlock() { 2270 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2271 return Err; 2272 2273 if (!MAttributeGroups.empty()) 2274 return error("Invalid multiple blocks"); 2275 2276 SmallVector<uint64_t, 64> Record; 2277 2278 // Read all the records. 2279 while (true) { 2280 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2281 if (!MaybeEntry) 2282 return MaybeEntry.takeError(); 2283 BitstreamEntry Entry = MaybeEntry.get(); 2284 2285 switch (Entry.Kind) { 2286 case BitstreamEntry::SubBlock: // Handled for us already. 2287 case BitstreamEntry::Error: 2288 return error("Malformed block"); 2289 case BitstreamEntry::EndBlock: 2290 return Error::success(); 2291 case BitstreamEntry::Record: 2292 // The interesting case. 2293 break; 2294 } 2295 2296 // Read a record. 2297 Record.clear(); 2298 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2299 if (!MaybeRecord) 2300 return MaybeRecord.takeError(); 2301 switch (MaybeRecord.get()) { 2302 default: // Default behavior: ignore. 2303 break; 2304 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2305 if (Record.size() < 3) 2306 return error("Invalid grp record"); 2307 2308 uint64_t GrpID = Record[0]; 2309 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2310 2311 AttrBuilder B(Context); 2312 MemoryEffects ME = MemoryEffects::unknown(); 2313 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2314 if (Record[i] == 0) { // Enum attribute 2315 Attribute::AttrKind Kind; 2316 uint64_t EncodedKind = Record[++i]; 2317 if (Idx == AttributeList::FunctionIndex && 2318 upgradeOldMemoryAttribute(ME, EncodedKind)) 2319 continue; 2320 2321 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2322 return Err; 2323 2324 // Upgrade old-style byval attribute to one with a type, even if it's 2325 // nullptr. We will have to insert the real type when we associate 2326 // this AttributeList with a function. 2327 if (Kind == Attribute::ByVal) 2328 B.addByValAttr(nullptr); 2329 else if (Kind == Attribute::StructRet) 2330 B.addStructRetAttr(nullptr); 2331 else if (Kind == Attribute::InAlloca) 2332 B.addInAllocaAttr(nullptr); 2333 else if (Kind == Attribute::UWTable) 2334 B.addUWTableAttr(UWTableKind::Default); 2335 else if (Attribute::isEnumAttrKind(Kind)) 2336 B.addAttribute(Kind); 2337 else 2338 return error("Not an enum attribute"); 2339 } else if (Record[i] == 1) { // Integer attribute 2340 Attribute::AttrKind Kind; 2341 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2342 return Err; 2343 if (!Attribute::isIntAttrKind(Kind)) 2344 return error("Not an int attribute"); 2345 if (Kind == Attribute::Alignment) 2346 B.addAlignmentAttr(Record[++i]); 2347 else if (Kind == Attribute::StackAlignment) 2348 B.addStackAlignmentAttr(Record[++i]); 2349 else if (Kind == Attribute::Dereferenceable) 2350 B.addDereferenceableAttr(Record[++i]); 2351 else if (Kind == Attribute::DereferenceableOrNull) 2352 B.addDereferenceableOrNullAttr(Record[++i]); 2353 else if (Kind == Attribute::AllocSize) 2354 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2355 else if (Kind == Attribute::VScaleRange) 2356 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2357 else if (Kind == Attribute::UWTable) 2358 B.addUWTableAttr(UWTableKind(Record[++i])); 2359 else if (Kind == Attribute::AllocKind) 2360 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2361 else if (Kind == Attribute::Memory) 2362 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2363 else if (Kind == Attribute::NoFPClass) 2364 B.addNoFPClassAttr( 2365 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2366 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2367 bool HasValue = (Record[i++] == 4); 2368 SmallString<64> KindStr; 2369 SmallString<64> ValStr; 2370 2371 while (Record[i] != 0 && i != e) 2372 KindStr += Record[i++]; 2373 assert(Record[i] == 0 && "Kind string not null terminated"); 2374 2375 if (HasValue) { 2376 // Has a value associated with it. 2377 ++i; // Skip the '0' that terminates the "kind" string. 2378 while (Record[i] != 0 && i != e) 2379 ValStr += Record[i++]; 2380 assert(Record[i] == 0 && "Value string not null terminated"); 2381 } 2382 2383 B.addAttribute(KindStr.str(), ValStr.str()); 2384 } else if (Record[i] == 5 || Record[i] == 6) { 2385 bool HasType = Record[i] == 6; 2386 Attribute::AttrKind Kind; 2387 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2388 return Err; 2389 if (!Attribute::isTypeAttrKind(Kind)) 2390 return error("Not a type attribute"); 2391 2392 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2393 } else if (Record[i] == 7) { 2394 Attribute::AttrKind Kind; 2395 2396 i++; 2397 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2398 return Err; 2399 if (!Attribute::isConstantRangeAttrKind(Kind)) 2400 return error("Not a ConstantRange attribute"); 2401 2402 Expected<ConstantRange> MaybeCR = 2403 readBitWidthAndConstantRange(Record, i); 2404 if (!MaybeCR) 2405 return MaybeCR.takeError(); 2406 i--; 2407 2408 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2409 } else if (Record[i] == 8) { 2410 Attribute::AttrKind Kind; 2411 2412 i++; 2413 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2414 return Err; 2415 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2416 return error("Not a constant range list attribute"); 2417 2418 SmallVector<ConstantRange, 2> Val; 2419 if (i + 2 > e) 2420 return error("Too few records for constant range list"); 2421 unsigned RangeSize = Record[i++]; 2422 unsigned BitWidth = Record[i++]; 2423 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2424 Expected<ConstantRange> MaybeCR = 2425 readConstantRange(Record, i, BitWidth); 2426 if (!MaybeCR) 2427 return MaybeCR.takeError(); 2428 Val.push_back(MaybeCR.get()); 2429 } 2430 i--; 2431 2432 if (!ConstantRangeList::isOrderedRanges(Val)) 2433 return error("Invalid (unordered or overlapping) range list"); 2434 B.addConstantRangeListAttr(Kind, Val); 2435 } else { 2436 return error("Invalid attribute group entry"); 2437 } 2438 } 2439 2440 if (ME != MemoryEffects::unknown()) 2441 B.addMemoryAttr(ME); 2442 2443 UpgradeAttributes(B); 2444 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2445 break; 2446 } 2447 } 2448 } 2449 } 2450 2451 Error BitcodeReader::parseTypeTable() { 2452 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2453 return Err; 2454 2455 return parseTypeTableBody(); 2456 } 2457 2458 Error BitcodeReader::parseTypeTableBody() { 2459 if (!TypeList.empty()) 2460 return error("Invalid multiple blocks"); 2461 2462 SmallVector<uint64_t, 64> Record; 2463 unsigned NumRecords = 0; 2464 2465 SmallString<64> TypeName; 2466 2467 // Read all the records for this type table. 2468 while (true) { 2469 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2470 if (!MaybeEntry) 2471 return MaybeEntry.takeError(); 2472 BitstreamEntry Entry = MaybeEntry.get(); 2473 2474 switch (Entry.Kind) { 2475 case BitstreamEntry::SubBlock: // Handled for us already. 2476 case BitstreamEntry::Error: 2477 return error("Malformed block"); 2478 case BitstreamEntry::EndBlock: 2479 if (NumRecords != TypeList.size()) 2480 return error("Malformed block"); 2481 return Error::success(); 2482 case BitstreamEntry::Record: 2483 // The interesting case. 2484 break; 2485 } 2486 2487 // Read a record. 2488 Record.clear(); 2489 Type *ResultTy = nullptr; 2490 SmallVector<unsigned> ContainedIDs; 2491 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2492 if (!MaybeRecord) 2493 return MaybeRecord.takeError(); 2494 switch (MaybeRecord.get()) { 2495 default: 2496 return error("Invalid value"); 2497 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2498 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2499 // type list. This allows us to reserve space. 2500 if (Record.empty()) 2501 return error("Invalid numentry record"); 2502 TypeList.resize(Record[0]); 2503 continue; 2504 case bitc::TYPE_CODE_VOID: // VOID 2505 ResultTy = Type::getVoidTy(Context); 2506 break; 2507 case bitc::TYPE_CODE_HALF: // HALF 2508 ResultTy = Type::getHalfTy(Context); 2509 break; 2510 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2511 ResultTy = Type::getBFloatTy(Context); 2512 break; 2513 case bitc::TYPE_CODE_FLOAT: // FLOAT 2514 ResultTy = Type::getFloatTy(Context); 2515 break; 2516 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2517 ResultTy = Type::getDoubleTy(Context); 2518 break; 2519 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2520 ResultTy = Type::getX86_FP80Ty(Context); 2521 break; 2522 case bitc::TYPE_CODE_FP128: // FP128 2523 ResultTy = Type::getFP128Ty(Context); 2524 break; 2525 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2526 ResultTy = Type::getPPC_FP128Ty(Context); 2527 break; 2528 case bitc::TYPE_CODE_LABEL: // LABEL 2529 ResultTy = Type::getLabelTy(Context); 2530 break; 2531 case bitc::TYPE_CODE_METADATA: // METADATA 2532 ResultTy = Type::getMetadataTy(Context); 2533 break; 2534 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2535 // Deprecated: decodes as <1 x i64> 2536 ResultTy = 2537 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2538 break; 2539 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2540 ResultTy = Type::getX86_AMXTy(Context); 2541 break; 2542 case bitc::TYPE_CODE_TOKEN: // TOKEN 2543 ResultTy = Type::getTokenTy(Context); 2544 break; 2545 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2546 if (Record.empty()) 2547 return error("Invalid integer record"); 2548 2549 uint64_t NumBits = Record[0]; 2550 if (NumBits < IntegerType::MIN_INT_BITS || 2551 NumBits > IntegerType::MAX_INT_BITS) 2552 return error("Bitwidth for integer type out of range"); 2553 ResultTy = IntegerType::get(Context, NumBits); 2554 break; 2555 } 2556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2557 // [pointee type, address space] 2558 if (Record.empty()) 2559 return error("Invalid pointer record"); 2560 unsigned AddressSpace = 0; 2561 if (Record.size() == 2) 2562 AddressSpace = Record[1]; 2563 ResultTy = getTypeByID(Record[0]); 2564 if (!ResultTy || 2565 !PointerType::isValidElementType(ResultTy)) 2566 return error("Invalid type"); 2567 ContainedIDs.push_back(Record[0]); 2568 ResultTy = PointerType::get(ResultTy, AddressSpace); 2569 break; 2570 } 2571 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2572 if (Record.size() != 1) 2573 return error("Invalid opaque pointer record"); 2574 unsigned AddressSpace = Record[0]; 2575 ResultTy = PointerType::get(Context, AddressSpace); 2576 break; 2577 } 2578 case bitc::TYPE_CODE_FUNCTION_OLD: { 2579 // Deprecated, but still needed to read old bitcode files. 2580 // FUNCTION: [vararg, attrid, retty, paramty x N] 2581 if (Record.size() < 3) 2582 return error("Invalid function record"); 2583 SmallVector<Type*, 8> ArgTys; 2584 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2585 if (Type *T = getTypeByID(Record[i])) 2586 ArgTys.push_back(T); 2587 else 2588 break; 2589 } 2590 2591 ResultTy = getTypeByID(Record[2]); 2592 if (!ResultTy || ArgTys.size() < Record.size()-3) 2593 return error("Invalid type"); 2594 2595 ContainedIDs.append(Record.begin() + 2, Record.end()); 2596 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2597 break; 2598 } 2599 case bitc::TYPE_CODE_FUNCTION: { 2600 // FUNCTION: [vararg, retty, paramty x N] 2601 if (Record.size() < 2) 2602 return error("Invalid function record"); 2603 SmallVector<Type*, 8> ArgTys; 2604 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2605 if (Type *T = getTypeByID(Record[i])) { 2606 if (!FunctionType::isValidArgumentType(T)) 2607 return error("Invalid function argument type"); 2608 ArgTys.push_back(T); 2609 } 2610 else 2611 break; 2612 } 2613 2614 ResultTy = getTypeByID(Record[1]); 2615 if (!ResultTy || ArgTys.size() < Record.size()-2) 2616 return error("Invalid type"); 2617 2618 ContainedIDs.append(Record.begin() + 1, Record.end()); 2619 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2620 break; 2621 } 2622 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2623 if (Record.empty()) 2624 return error("Invalid anon struct record"); 2625 SmallVector<Type*, 8> EltTys; 2626 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2627 if (Type *T = getTypeByID(Record[i])) 2628 EltTys.push_back(T); 2629 else 2630 break; 2631 } 2632 if (EltTys.size() != Record.size()-1) 2633 return error("Invalid type"); 2634 ContainedIDs.append(Record.begin() + 1, Record.end()); 2635 ResultTy = StructType::get(Context, EltTys, Record[0]); 2636 break; 2637 } 2638 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2639 if (convertToString(Record, 0, TypeName)) 2640 return error("Invalid struct name record"); 2641 continue; 2642 2643 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2644 if (Record.empty()) 2645 return error("Invalid named struct record"); 2646 2647 if (NumRecords >= TypeList.size()) 2648 return error("Invalid TYPE table"); 2649 2650 // Check to see if this was forward referenced, if so fill in the temp. 2651 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2652 if (Res) { 2653 Res->setName(TypeName); 2654 TypeList[NumRecords] = nullptr; 2655 } else // Otherwise, create a new struct. 2656 Res = createIdentifiedStructType(Context, TypeName); 2657 TypeName.clear(); 2658 2659 SmallVector<Type*, 8> EltTys; 2660 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2661 if (Type *T = getTypeByID(Record[i])) 2662 EltTys.push_back(T); 2663 else 2664 break; 2665 } 2666 if (EltTys.size() != Record.size()-1) 2667 return error("Invalid named struct record"); 2668 if (auto E = Res->setBodyOrError(EltTys, Record[0])) 2669 return E; 2670 ContainedIDs.append(Record.begin() + 1, Record.end()); 2671 ResultTy = Res; 2672 break; 2673 } 2674 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2675 if (Record.size() != 1) 2676 return error("Invalid opaque type record"); 2677 2678 if (NumRecords >= TypeList.size()) 2679 return error("Invalid TYPE table"); 2680 2681 // Check to see if this was forward referenced, if so fill in the temp. 2682 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2683 if (Res) { 2684 Res->setName(TypeName); 2685 TypeList[NumRecords] = nullptr; 2686 } else // Otherwise, create a new struct with no body. 2687 Res = createIdentifiedStructType(Context, TypeName); 2688 TypeName.clear(); 2689 ResultTy = Res; 2690 break; 2691 } 2692 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2693 if (Record.size() < 1) 2694 return error("Invalid target extension type record"); 2695 2696 if (NumRecords >= TypeList.size()) 2697 return error("Invalid TYPE table"); 2698 2699 if (Record[0] >= Record.size()) 2700 return error("Too many type parameters"); 2701 2702 unsigned NumTys = Record[0]; 2703 SmallVector<Type *, 4> TypeParams; 2704 SmallVector<unsigned, 8> IntParams; 2705 for (unsigned i = 0; i < NumTys; i++) { 2706 if (Type *T = getTypeByID(Record[i + 1])) 2707 TypeParams.push_back(T); 2708 else 2709 return error("Invalid type"); 2710 } 2711 2712 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2713 if (Record[i] > UINT_MAX) 2714 return error("Integer parameter too large"); 2715 IntParams.push_back(Record[i]); 2716 } 2717 auto TTy = 2718 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2719 if (auto E = TTy.takeError()) 2720 return E; 2721 ResultTy = *TTy; 2722 TypeName.clear(); 2723 break; 2724 } 2725 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2726 if (Record.size() < 2) 2727 return error("Invalid array type record"); 2728 ResultTy = getTypeByID(Record[1]); 2729 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2730 return error("Invalid type"); 2731 ContainedIDs.push_back(Record[1]); 2732 ResultTy = ArrayType::get(ResultTy, Record[0]); 2733 break; 2734 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2735 // [numelts, eltty, scalable] 2736 if (Record.size() < 2) 2737 return error("Invalid vector type record"); 2738 if (Record[0] == 0) 2739 return error("Invalid vector length"); 2740 ResultTy = getTypeByID(Record[1]); 2741 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2742 return error("Invalid type"); 2743 bool Scalable = Record.size() > 2 ? Record[2] : false; 2744 ContainedIDs.push_back(Record[1]); 2745 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2746 break; 2747 } 2748 2749 if (NumRecords >= TypeList.size()) 2750 return error("Invalid TYPE table"); 2751 if (TypeList[NumRecords]) 2752 return error( 2753 "Invalid TYPE table: Only named structs can be forward referenced"); 2754 assert(ResultTy && "Didn't read a type?"); 2755 TypeList[NumRecords] = ResultTy; 2756 if (!ContainedIDs.empty()) 2757 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2758 ++NumRecords; 2759 } 2760 } 2761 2762 Error BitcodeReader::parseOperandBundleTags() { 2763 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2764 return Err; 2765 2766 if (!BundleTags.empty()) 2767 return error("Invalid multiple blocks"); 2768 2769 SmallVector<uint64_t, 64> Record; 2770 2771 while (true) { 2772 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2773 if (!MaybeEntry) 2774 return MaybeEntry.takeError(); 2775 BitstreamEntry Entry = MaybeEntry.get(); 2776 2777 switch (Entry.Kind) { 2778 case BitstreamEntry::SubBlock: // Handled for us already. 2779 case BitstreamEntry::Error: 2780 return error("Malformed block"); 2781 case BitstreamEntry::EndBlock: 2782 return Error::success(); 2783 case BitstreamEntry::Record: 2784 // The interesting case. 2785 break; 2786 } 2787 2788 // Tags are implicitly mapped to integers by their order. 2789 2790 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2791 if (!MaybeRecord) 2792 return MaybeRecord.takeError(); 2793 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2794 return error("Invalid operand bundle record"); 2795 2796 // OPERAND_BUNDLE_TAG: [strchr x N] 2797 BundleTags.emplace_back(); 2798 if (convertToString(Record, 0, BundleTags.back())) 2799 return error("Invalid operand bundle record"); 2800 Record.clear(); 2801 } 2802 } 2803 2804 Error BitcodeReader::parseSyncScopeNames() { 2805 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2806 return Err; 2807 2808 if (!SSIDs.empty()) 2809 return error("Invalid multiple synchronization scope names blocks"); 2810 2811 SmallVector<uint64_t, 64> Record; 2812 while (true) { 2813 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2814 if (!MaybeEntry) 2815 return MaybeEntry.takeError(); 2816 BitstreamEntry Entry = MaybeEntry.get(); 2817 2818 switch (Entry.Kind) { 2819 case BitstreamEntry::SubBlock: // Handled for us already. 2820 case BitstreamEntry::Error: 2821 return error("Malformed block"); 2822 case BitstreamEntry::EndBlock: 2823 if (SSIDs.empty()) 2824 return error("Invalid empty synchronization scope names block"); 2825 return Error::success(); 2826 case BitstreamEntry::Record: 2827 // The interesting case. 2828 break; 2829 } 2830 2831 // Synchronization scope names are implicitly mapped to synchronization 2832 // scope IDs by their order. 2833 2834 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2835 if (!MaybeRecord) 2836 return MaybeRecord.takeError(); 2837 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2838 return error("Invalid sync scope record"); 2839 2840 SmallString<16> SSN; 2841 if (convertToString(Record, 0, SSN)) 2842 return error("Invalid sync scope record"); 2843 2844 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2845 Record.clear(); 2846 } 2847 } 2848 2849 /// Associate a value with its name from the given index in the provided record. 2850 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2851 unsigned NameIndex, Triple &TT) { 2852 SmallString<128> ValueName; 2853 if (convertToString(Record, NameIndex, ValueName)) 2854 return error("Invalid record"); 2855 unsigned ValueID = Record[0]; 2856 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2857 return error("Invalid record"); 2858 Value *V = ValueList[ValueID]; 2859 2860 StringRef NameStr(ValueName.data(), ValueName.size()); 2861 if (NameStr.contains(0)) 2862 return error("Invalid value name"); 2863 V->setName(NameStr); 2864 auto *GO = dyn_cast<GlobalObject>(V); 2865 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2866 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2867 return V; 2868 } 2869 2870 /// Helper to note and return the current location, and jump to the given 2871 /// offset. 2872 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2873 BitstreamCursor &Stream) { 2874 // Save the current parsing location so we can jump back at the end 2875 // of the VST read. 2876 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2877 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2878 return std::move(JumpFailed); 2879 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2880 if (!MaybeEntry) 2881 return MaybeEntry.takeError(); 2882 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2883 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2884 return error("Expected value symbol table subblock"); 2885 return CurrentBit; 2886 } 2887 2888 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2889 Function *F, 2890 ArrayRef<uint64_t> Record) { 2891 // Note that we subtract 1 here because the offset is relative to one word 2892 // before the start of the identification or module block, which was 2893 // historically always the start of the regular bitcode header. 2894 uint64_t FuncWordOffset = Record[1] - 1; 2895 uint64_t FuncBitOffset = FuncWordOffset * 32; 2896 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2897 // Set the LastFunctionBlockBit to point to the last function block. 2898 // Later when parsing is resumed after function materialization, 2899 // we can simply skip that last function block. 2900 if (FuncBitOffset > LastFunctionBlockBit) 2901 LastFunctionBlockBit = FuncBitOffset; 2902 } 2903 2904 /// Read a new-style GlobalValue symbol table. 2905 Error BitcodeReader::parseGlobalValueSymbolTable() { 2906 unsigned FuncBitcodeOffsetDelta = 2907 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2908 2909 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2910 return Err; 2911 2912 SmallVector<uint64_t, 64> Record; 2913 while (true) { 2914 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2915 if (!MaybeEntry) 2916 return MaybeEntry.takeError(); 2917 BitstreamEntry Entry = MaybeEntry.get(); 2918 2919 switch (Entry.Kind) { 2920 case BitstreamEntry::SubBlock: 2921 case BitstreamEntry::Error: 2922 return error("Malformed block"); 2923 case BitstreamEntry::EndBlock: 2924 return Error::success(); 2925 case BitstreamEntry::Record: 2926 break; 2927 } 2928 2929 Record.clear(); 2930 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2931 if (!MaybeRecord) 2932 return MaybeRecord.takeError(); 2933 switch (MaybeRecord.get()) { 2934 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2935 unsigned ValueID = Record[0]; 2936 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2937 return error("Invalid value reference in symbol table"); 2938 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2939 cast<Function>(ValueList[ValueID]), Record); 2940 break; 2941 } 2942 } 2943 } 2944 } 2945 2946 /// Parse the value symbol table at either the current parsing location or 2947 /// at the given bit offset if provided. 2948 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2949 uint64_t CurrentBit; 2950 // Pass in the Offset to distinguish between calling for the module-level 2951 // VST (where we want to jump to the VST offset) and the function-level 2952 // VST (where we don't). 2953 if (Offset > 0) { 2954 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2955 if (!MaybeCurrentBit) 2956 return MaybeCurrentBit.takeError(); 2957 CurrentBit = MaybeCurrentBit.get(); 2958 // If this module uses a string table, read this as a module-level VST. 2959 if (UseStrtab) { 2960 if (Error Err = parseGlobalValueSymbolTable()) 2961 return Err; 2962 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2963 return JumpFailed; 2964 return Error::success(); 2965 } 2966 // Otherwise, the VST will be in a similar format to a function-level VST, 2967 // and will contain symbol names. 2968 } 2969 2970 // Compute the delta between the bitcode indices in the VST (the word offset 2971 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2972 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2973 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2974 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2975 // just before entering the VST subblock because: 1) the EnterSubBlock 2976 // changes the AbbrevID width; 2) the VST block is nested within the same 2977 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2978 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2979 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2980 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2981 unsigned FuncBitcodeOffsetDelta = 2982 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2983 2984 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2985 return Err; 2986 2987 SmallVector<uint64_t, 64> Record; 2988 2989 Triple TT(TheModule->getTargetTriple()); 2990 2991 // Read all the records for this value table. 2992 SmallString<128> ValueName; 2993 2994 while (true) { 2995 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2996 if (!MaybeEntry) 2997 return MaybeEntry.takeError(); 2998 BitstreamEntry Entry = MaybeEntry.get(); 2999 3000 switch (Entry.Kind) { 3001 case BitstreamEntry::SubBlock: // Handled for us already. 3002 case BitstreamEntry::Error: 3003 return error("Malformed block"); 3004 case BitstreamEntry::EndBlock: 3005 if (Offset > 0) 3006 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3007 return JumpFailed; 3008 return Error::success(); 3009 case BitstreamEntry::Record: 3010 // The interesting case. 3011 break; 3012 } 3013 3014 // Read a record. 3015 Record.clear(); 3016 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3017 if (!MaybeRecord) 3018 return MaybeRecord.takeError(); 3019 switch (MaybeRecord.get()) { 3020 default: // Default behavior: unknown type. 3021 break; 3022 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3023 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3024 if (Error Err = ValOrErr.takeError()) 3025 return Err; 3026 ValOrErr.get(); 3027 break; 3028 } 3029 case bitc::VST_CODE_FNENTRY: { 3030 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3031 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3032 if (Error Err = ValOrErr.takeError()) 3033 return Err; 3034 Value *V = ValOrErr.get(); 3035 3036 // Ignore function offsets emitted for aliases of functions in older 3037 // versions of LLVM. 3038 if (auto *F = dyn_cast<Function>(V)) 3039 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3040 break; 3041 } 3042 case bitc::VST_CODE_BBENTRY: { 3043 if (convertToString(Record, 1, ValueName)) 3044 return error("Invalid bbentry record"); 3045 BasicBlock *BB = getBasicBlock(Record[0]); 3046 if (!BB) 3047 return error("Invalid bbentry record"); 3048 3049 BB->setName(ValueName.str()); 3050 ValueName.clear(); 3051 break; 3052 } 3053 } 3054 } 3055 } 3056 3057 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3058 /// encoding. 3059 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3060 if ((V & 1) == 0) 3061 return V >> 1; 3062 if (V != 1) 3063 return -(V >> 1); 3064 // There is no such thing as -0 with integers. "-0" really means MININT. 3065 return 1ULL << 63; 3066 } 3067 3068 /// Resolve all of the initializers for global values and aliases that we can. 3069 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3070 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3071 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3072 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3073 3074 GlobalInitWorklist.swap(GlobalInits); 3075 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3076 FunctionOperandWorklist.swap(FunctionOperands); 3077 3078 while (!GlobalInitWorklist.empty()) { 3079 unsigned ValID = GlobalInitWorklist.back().second; 3080 if (ValID >= ValueList.size()) { 3081 // Not ready to resolve this yet, it requires something later in the file. 3082 GlobalInits.push_back(GlobalInitWorklist.back()); 3083 } else { 3084 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3085 if (!MaybeC) 3086 return MaybeC.takeError(); 3087 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3088 } 3089 GlobalInitWorklist.pop_back(); 3090 } 3091 3092 while (!IndirectSymbolInitWorklist.empty()) { 3093 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3094 if (ValID >= ValueList.size()) { 3095 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3096 } else { 3097 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3098 if (!MaybeC) 3099 return MaybeC.takeError(); 3100 Constant *C = MaybeC.get(); 3101 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3102 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3103 if (C->getType() != GV->getType()) 3104 return error("Alias and aliasee types don't match"); 3105 GA->setAliasee(C); 3106 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3107 GI->setResolver(C); 3108 } else { 3109 return error("Expected an alias or an ifunc"); 3110 } 3111 } 3112 IndirectSymbolInitWorklist.pop_back(); 3113 } 3114 3115 while (!FunctionOperandWorklist.empty()) { 3116 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3117 if (Info.PersonalityFn) { 3118 unsigned ValID = Info.PersonalityFn - 1; 3119 if (ValID < ValueList.size()) { 3120 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3121 if (!MaybeC) 3122 return MaybeC.takeError(); 3123 Info.F->setPersonalityFn(MaybeC.get()); 3124 Info.PersonalityFn = 0; 3125 } 3126 } 3127 if (Info.Prefix) { 3128 unsigned ValID = Info.Prefix - 1; 3129 if (ValID < ValueList.size()) { 3130 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3131 if (!MaybeC) 3132 return MaybeC.takeError(); 3133 Info.F->setPrefixData(MaybeC.get()); 3134 Info.Prefix = 0; 3135 } 3136 } 3137 if (Info.Prologue) { 3138 unsigned ValID = Info.Prologue - 1; 3139 if (ValID < ValueList.size()) { 3140 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3141 if (!MaybeC) 3142 return MaybeC.takeError(); 3143 Info.F->setPrologueData(MaybeC.get()); 3144 Info.Prologue = 0; 3145 } 3146 } 3147 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3148 FunctionOperands.push_back(Info); 3149 FunctionOperandWorklist.pop_back(); 3150 } 3151 3152 return Error::success(); 3153 } 3154 3155 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3156 SmallVector<uint64_t, 8> Words(Vals.size()); 3157 transform(Vals, Words.begin(), 3158 BitcodeReader::decodeSignRotatedValue); 3159 3160 return APInt(TypeBits, Words); 3161 } 3162 3163 Error BitcodeReader::parseConstants() { 3164 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3165 return Err; 3166 3167 SmallVector<uint64_t, 64> Record; 3168 3169 // Read all the records for this value table. 3170 Type *CurTy = Type::getInt32Ty(Context); 3171 unsigned Int32TyID = getVirtualTypeID(CurTy); 3172 unsigned CurTyID = Int32TyID; 3173 Type *CurElemTy = nullptr; 3174 unsigned NextCstNo = ValueList.size(); 3175 3176 while (true) { 3177 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3178 if (!MaybeEntry) 3179 return MaybeEntry.takeError(); 3180 BitstreamEntry Entry = MaybeEntry.get(); 3181 3182 switch (Entry.Kind) { 3183 case BitstreamEntry::SubBlock: // Handled for us already. 3184 case BitstreamEntry::Error: 3185 return error("Malformed block"); 3186 case BitstreamEntry::EndBlock: 3187 if (NextCstNo != ValueList.size()) 3188 return error("Invalid constant reference"); 3189 return Error::success(); 3190 case BitstreamEntry::Record: 3191 // The interesting case. 3192 break; 3193 } 3194 3195 // Read a record. 3196 Record.clear(); 3197 Type *VoidType = Type::getVoidTy(Context); 3198 Value *V = nullptr; 3199 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3200 if (!MaybeBitCode) 3201 return MaybeBitCode.takeError(); 3202 switch (unsigned BitCode = MaybeBitCode.get()) { 3203 default: // Default behavior: unknown constant 3204 case bitc::CST_CODE_UNDEF: // UNDEF 3205 V = UndefValue::get(CurTy); 3206 break; 3207 case bitc::CST_CODE_POISON: // POISON 3208 V = PoisonValue::get(CurTy); 3209 break; 3210 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3211 if (Record.empty()) 3212 return error("Invalid settype record"); 3213 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3214 return error("Invalid settype record"); 3215 if (TypeList[Record[0]] == VoidType) 3216 return error("Invalid constant type"); 3217 CurTyID = Record[0]; 3218 CurTy = TypeList[CurTyID]; 3219 CurElemTy = getPtrElementTypeByID(CurTyID); 3220 continue; // Skip the ValueList manipulation. 3221 case bitc::CST_CODE_NULL: // NULL 3222 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3223 return error("Invalid type for a constant null value"); 3224 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3225 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3226 return error("Invalid type for a constant null value"); 3227 V = Constant::getNullValue(CurTy); 3228 break; 3229 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3230 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3231 return error("Invalid integer const record"); 3232 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3233 break; 3234 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3235 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3236 return error("Invalid wide integer const record"); 3237 3238 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3239 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3240 V = ConstantInt::get(CurTy, VInt); 3241 break; 3242 } 3243 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3244 if (Record.empty()) 3245 return error("Invalid float const record"); 3246 3247 auto *ScalarTy = CurTy->getScalarType(); 3248 if (ScalarTy->isHalfTy()) 3249 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3250 APInt(16, (uint16_t)Record[0]))); 3251 else if (ScalarTy->isBFloatTy()) 3252 V = ConstantFP::get( 3253 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3254 else if (ScalarTy->isFloatTy()) 3255 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3256 APInt(32, (uint32_t)Record[0]))); 3257 else if (ScalarTy->isDoubleTy()) 3258 V = ConstantFP::get( 3259 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3260 else if (ScalarTy->isX86_FP80Ty()) { 3261 // Bits are not stored the same way as a normal i80 APInt, compensate. 3262 uint64_t Rearrange[2]; 3263 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3264 Rearrange[1] = Record[0] >> 48; 3265 V = ConstantFP::get( 3266 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3267 } else if (ScalarTy->isFP128Ty()) 3268 V = ConstantFP::get(CurTy, 3269 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3270 else if (ScalarTy->isPPC_FP128Ty()) 3271 V = ConstantFP::get( 3272 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3273 else 3274 V = PoisonValue::get(CurTy); 3275 break; 3276 } 3277 3278 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3279 if (Record.empty()) 3280 return error("Invalid aggregate record"); 3281 3282 unsigned Size = Record.size(); 3283 SmallVector<unsigned, 16> Elts; 3284 for (unsigned i = 0; i != Size; ++i) 3285 Elts.push_back(Record[i]); 3286 3287 if (isa<StructType>(CurTy)) { 3288 V = BitcodeConstant::create( 3289 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3290 } else if (isa<ArrayType>(CurTy)) { 3291 V = BitcodeConstant::create(Alloc, CurTy, 3292 BitcodeConstant::ConstantArrayOpcode, Elts); 3293 } else if (isa<VectorType>(CurTy)) { 3294 V = BitcodeConstant::create( 3295 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3296 } else { 3297 V = PoisonValue::get(CurTy); 3298 } 3299 break; 3300 } 3301 case bitc::CST_CODE_STRING: // STRING: [values] 3302 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3303 if (Record.empty()) 3304 return error("Invalid string record"); 3305 3306 SmallString<16> Elts(Record.begin(), Record.end()); 3307 V = ConstantDataArray::getString(Context, Elts, 3308 BitCode == bitc::CST_CODE_CSTRING); 3309 break; 3310 } 3311 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3312 if (Record.empty()) 3313 return error("Invalid data record"); 3314 3315 Type *EltTy; 3316 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3317 EltTy = Array->getElementType(); 3318 else 3319 EltTy = cast<VectorType>(CurTy)->getElementType(); 3320 if (EltTy->isIntegerTy(8)) { 3321 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3322 if (isa<VectorType>(CurTy)) 3323 V = ConstantDataVector::get(Context, Elts); 3324 else 3325 V = ConstantDataArray::get(Context, Elts); 3326 } else if (EltTy->isIntegerTy(16)) { 3327 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3328 if (isa<VectorType>(CurTy)) 3329 V = ConstantDataVector::get(Context, Elts); 3330 else 3331 V = ConstantDataArray::get(Context, Elts); 3332 } else if (EltTy->isIntegerTy(32)) { 3333 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3334 if (isa<VectorType>(CurTy)) 3335 V = ConstantDataVector::get(Context, Elts); 3336 else 3337 V = ConstantDataArray::get(Context, Elts); 3338 } else if (EltTy->isIntegerTy(64)) { 3339 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3340 if (isa<VectorType>(CurTy)) 3341 V = ConstantDataVector::get(Context, Elts); 3342 else 3343 V = ConstantDataArray::get(Context, Elts); 3344 } else if (EltTy->isHalfTy()) { 3345 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3346 if (isa<VectorType>(CurTy)) 3347 V = ConstantDataVector::getFP(EltTy, Elts); 3348 else 3349 V = ConstantDataArray::getFP(EltTy, Elts); 3350 } else if (EltTy->isBFloatTy()) { 3351 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3352 if (isa<VectorType>(CurTy)) 3353 V = ConstantDataVector::getFP(EltTy, Elts); 3354 else 3355 V = ConstantDataArray::getFP(EltTy, Elts); 3356 } else if (EltTy->isFloatTy()) { 3357 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3358 if (isa<VectorType>(CurTy)) 3359 V = ConstantDataVector::getFP(EltTy, Elts); 3360 else 3361 V = ConstantDataArray::getFP(EltTy, Elts); 3362 } else if (EltTy->isDoubleTy()) { 3363 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3364 if (isa<VectorType>(CurTy)) 3365 V = ConstantDataVector::getFP(EltTy, Elts); 3366 else 3367 V = ConstantDataArray::getFP(EltTy, Elts); 3368 } else { 3369 return error("Invalid type for value"); 3370 } 3371 break; 3372 } 3373 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3374 if (Record.size() < 2) 3375 return error("Invalid unary op constexpr record"); 3376 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3377 if (Opc < 0) { 3378 V = PoisonValue::get(CurTy); // Unknown unop. 3379 } else { 3380 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3381 } 3382 break; 3383 } 3384 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3385 if (Record.size() < 3) 3386 return error("Invalid binary op constexpr record"); 3387 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3388 if (Opc < 0) { 3389 V = PoisonValue::get(CurTy); // Unknown binop. 3390 } else { 3391 uint8_t Flags = 0; 3392 if (Record.size() >= 4) { 3393 if (Opc == Instruction::Add || 3394 Opc == Instruction::Sub || 3395 Opc == Instruction::Mul || 3396 Opc == Instruction::Shl) { 3397 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3398 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3399 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3400 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3401 } else if (Opc == Instruction::SDiv || 3402 Opc == Instruction::UDiv || 3403 Opc == Instruction::LShr || 3404 Opc == Instruction::AShr) { 3405 if (Record[3] & (1 << bitc::PEO_EXACT)) 3406 Flags |= PossiblyExactOperator::IsExact; 3407 } 3408 } 3409 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3410 {(unsigned)Record[1], (unsigned)Record[2]}); 3411 } 3412 break; 3413 } 3414 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3415 if (Record.size() < 3) 3416 return error("Invalid cast constexpr record"); 3417 int Opc = getDecodedCastOpcode(Record[0]); 3418 if (Opc < 0) { 3419 V = PoisonValue::get(CurTy); // Unknown cast. 3420 } else { 3421 unsigned OpTyID = Record[1]; 3422 Type *OpTy = getTypeByID(OpTyID); 3423 if (!OpTy) 3424 return error("Invalid cast constexpr record"); 3425 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3426 } 3427 break; 3428 } 3429 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3430 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3431 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3432 // operands] 3433 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3434 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3435 // operands] 3436 if (Record.size() < 2) 3437 return error("Constant GEP record must have at least two elements"); 3438 unsigned OpNum = 0; 3439 Type *PointeeType = nullptr; 3440 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3441 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3442 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3443 PointeeType = getTypeByID(Record[OpNum++]); 3444 3445 uint64_t Flags = 0; 3446 std::optional<ConstantRange> InRange; 3447 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3448 uint64_t Op = Record[OpNum++]; 3449 Flags = Op & 1; // inbounds 3450 unsigned InRangeIndex = Op >> 1; 3451 // "Upgrade" inrange by dropping it. The feature is too niche to 3452 // bother. 3453 (void)InRangeIndex; 3454 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3455 Flags = Record[OpNum++]; 3456 Expected<ConstantRange> MaybeInRange = 3457 readBitWidthAndConstantRange(Record, OpNum); 3458 if (!MaybeInRange) 3459 return MaybeInRange.takeError(); 3460 InRange = MaybeInRange.get(); 3461 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3462 Flags = Record[OpNum++]; 3463 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3464 Flags = (1 << bitc::GEP_INBOUNDS); 3465 3466 SmallVector<unsigned, 16> Elts; 3467 unsigned BaseTypeID = Record[OpNum]; 3468 while (OpNum != Record.size()) { 3469 unsigned ElTyID = Record[OpNum++]; 3470 Type *ElTy = getTypeByID(ElTyID); 3471 if (!ElTy) 3472 return error("Invalid getelementptr constexpr record"); 3473 Elts.push_back(Record[OpNum++]); 3474 } 3475 3476 if (Elts.size() < 1) 3477 return error("Invalid gep with no operands"); 3478 3479 Type *BaseType = getTypeByID(BaseTypeID); 3480 if (isa<VectorType>(BaseType)) { 3481 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3482 BaseType = getTypeByID(BaseTypeID); 3483 } 3484 3485 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3486 if (!OrigPtrTy) 3487 return error("GEP base operand must be pointer or vector of pointer"); 3488 3489 if (!PointeeType) { 3490 PointeeType = getPtrElementTypeByID(BaseTypeID); 3491 if (!PointeeType) 3492 return error("Missing element type for old-style constant GEP"); 3493 } 3494 3495 V = BitcodeConstant::create( 3496 Alloc, CurTy, 3497 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3498 Elts); 3499 break; 3500 } 3501 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3502 if (Record.size() < 3) 3503 return error("Invalid select constexpr record"); 3504 3505 V = BitcodeConstant::create( 3506 Alloc, CurTy, Instruction::Select, 3507 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3508 break; 3509 } 3510 case bitc::CST_CODE_CE_EXTRACTELT 3511 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3512 if (Record.size() < 3) 3513 return error("Invalid extractelement constexpr record"); 3514 unsigned OpTyID = Record[0]; 3515 VectorType *OpTy = 3516 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3517 if (!OpTy) 3518 return error("Invalid extractelement constexpr record"); 3519 unsigned IdxRecord; 3520 if (Record.size() == 4) { 3521 unsigned IdxTyID = Record[2]; 3522 Type *IdxTy = getTypeByID(IdxTyID); 3523 if (!IdxTy) 3524 return error("Invalid extractelement constexpr record"); 3525 IdxRecord = Record[3]; 3526 } else { 3527 // Deprecated, but still needed to read old bitcode files. 3528 IdxRecord = Record[2]; 3529 } 3530 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3531 {(unsigned)Record[1], IdxRecord}); 3532 break; 3533 } 3534 case bitc::CST_CODE_CE_INSERTELT 3535 : { // CE_INSERTELT: [opval, opval, opty, opval] 3536 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3537 if (Record.size() < 3 || !OpTy) 3538 return error("Invalid insertelement constexpr record"); 3539 unsigned IdxRecord; 3540 if (Record.size() == 4) { 3541 unsigned IdxTyID = Record[2]; 3542 Type *IdxTy = getTypeByID(IdxTyID); 3543 if (!IdxTy) 3544 return error("Invalid insertelement constexpr record"); 3545 IdxRecord = Record[3]; 3546 } else { 3547 // Deprecated, but still needed to read old bitcode files. 3548 IdxRecord = Record[2]; 3549 } 3550 V = BitcodeConstant::create( 3551 Alloc, CurTy, Instruction::InsertElement, 3552 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3553 break; 3554 } 3555 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3556 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3557 if (Record.size() < 3 || !OpTy) 3558 return error("Invalid shufflevector constexpr record"); 3559 V = BitcodeConstant::create( 3560 Alloc, CurTy, Instruction::ShuffleVector, 3561 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3562 break; 3563 } 3564 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3565 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3566 VectorType *OpTy = 3567 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3568 if (Record.size() < 4 || !RTy || !OpTy) 3569 return error("Invalid shufflevector constexpr record"); 3570 V = BitcodeConstant::create( 3571 Alloc, CurTy, Instruction::ShuffleVector, 3572 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3573 break; 3574 } 3575 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3576 if (Record.size() < 4) 3577 return error("Invalid cmp constexpt record"); 3578 unsigned OpTyID = Record[0]; 3579 Type *OpTy = getTypeByID(OpTyID); 3580 if (!OpTy) 3581 return error("Invalid cmp constexpr record"); 3582 V = BitcodeConstant::create( 3583 Alloc, CurTy, 3584 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3585 : Instruction::ICmp), 3586 (uint8_t)Record[3]}, 3587 {(unsigned)Record[1], (unsigned)Record[2]}); 3588 break; 3589 } 3590 // This maintains backward compatibility, pre-asm dialect keywords. 3591 // Deprecated, but still needed to read old bitcode files. 3592 case bitc::CST_CODE_INLINEASM_OLD: { 3593 if (Record.size() < 2) 3594 return error("Invalid inlineasm record"); 3595 std::string AsmStr, ConstrStr; 3596 bool HasSideEffects = Record[0] & 1; 3597 bool IsAlignStack = Record[0] >> 1; 3598 unsigned AsmStrSize = Record[1]; 3599 if (2+AsmStrSize >= Record.size()) 3600 return error("Invalid inlineasm record"); 3601 unsigned ConstStrSize = Record[2+AsmStrSize]; 3602 if (3+AsmStrSize+ConstStrSize > Record.size()) 3603 return error("Invalid inlineasm record"); 3604 3605 for (unsigned i = 0; i != AsmStrSize; ++i) 3606 AsmStr += (char)Record[2+i]; 3607 for (unsigned i = 0; i != ConstStrSize; ++i) 3608 ConstrStr += (char)Record[3+AsmStrSize+i]; 3609 UpgradeInlineAsmString(&AsmStr); 3610 if (!CurElemTy) 3611 return error("Missing element type for old-style inlineasm"); 3612 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3613 HasSideEffects, IsAlignStack); 3614 break; 3615 } 3616 // This version adds support for the asm dialect keywords (e.g., 3617 // inteldialect). 3618 case bitc::CST_CODE_INLINEASM_OLD2: { 3619 if (Record.size() < 2) 3620 return error("Invalid inlineasm record"); 3621 std::string AsmStr, ConstrStr; 3622 bool HasSideEffects = Record[0] & 1; 3623 bool IsAlignStack = (Record[0] >> 1) & 1; 3624 unsigned AsmDialect = Record[0] >> 2; 3625 unsigned AsmStrSize = Record[1]; 3626 if (2+AsmStrSize >= Record.size()) 3627 return error("Invalid inlineasm record"); 3628 unsigned ConstStrSize = Record[2+AsmStrSize]; 3629 if (3+AsmStrSize+ConstStrSize > Record.size()) 3630 return error("Invalid inlineasm record"); 3631 3632 for (unsigned i = 0; i != AsmStrSize; ++i) 3633 AsmStr += (char)Record[2+i]; 3634 for (unsigned i = 0; i != ConstStrSize; ++i) 3635 ConstrStr += (char)Record[3+AsmStrSize+i]; 3636 UpgradeInlineAsmString(&AsmStr); 3637 if (!CurElemTy) 3638 return error("Missing element type for old-style inlineasm"); 3639 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3640 HasSideEffects, IsAlignStack, 3641 InlineAsm::AsmDialect(AsmDialect)); 3642 break; 3643 } 3644 // This version adds support for the unwind keyword. 3645 case bitc::CST_CODE_INLINEASM_OLD3: { 3646 if (Record.size() < 2) 3647 return error("Invalid inlineasm record"); 3648 unsigned OpNum = 0; 3649 std::string AsmStr, ConstrStr; 3650 bool HasSideEffects = Record[OpNum] & 1; 3651 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3652 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3653 bool CanThrow = (Record[OpNum] >> 3) & 1; 3654 ++OpNum; 3655 unsigned AsmStrSize = Record[OpNum]; 3656 ++OpNum; 3657 if (OpNum + AsmStrSize >= Record.size()) 3658 return error("Invalid inlineasm record"); 3659 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3660 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3661 return error("Invalid inlineasm record"); 3662 3663 for (unsigned i = 0; i != AsmStrSize; ++i) 3664 AsmStr += (char)Record[OpNum + i]; 3665 ++OpNum; 3666 for (unsigned i = 0; i != ConstStrSize; ++i) 3667 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3668 UpgradeInlineAsmString(&AsmStr); 3669 if (!CurElemTy) 3670 return error("Missing element type for old-style inlineasm"); 3671 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3672 HasSideEffects, IsAlignStack, 3673 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3674 break; 3675 } 3676 // This version adds explicit function type. 3677 case bitc::CST_CODE_INLINEASM: { 3678 if (Record.size() < 3) 3679 return error("Invalid inlineasm record"); 3680 unsigned OpNum = 0; 3681 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3682 ++OpNum; 3683 if (!FnTy) 3684 return error("Invalid inlineasm record"); 3685 std::string AsmStr, ConstrStr; 3686 bool HasSideEffects = Record[OpNum] & 1; 3687 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3688 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3689 bool CanThrow = (Record[OpNum] >> 3) & 1; 3690 ++OpNum; 3691 unsigned AsmStrSize = Record[OpNum]; 3692 ++OpNum; 3693 if (OpNum + AsmStrSize >= Record.size()) 3694 return error("Invalid inlineasm record"); 3695 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3696 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3697 return error("Invalid inlineasm record"); 3698 3699 for (unsigned i = 0; i != AsmStrSize; ++i) 3700 AsmStr += (char)Record[OpNum + i]; 3701 ++OpNum; 3702 for (unsigned i = 0; i != ConstStrSize; ++i) 3703 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3704 UpgradeInlineAsmString(&AsmStr); 3705 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3706 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3707 break; 3708 } 3709 case bitc::CST_CODE_BLOCKADDRESS:{ 3710 if (Record.size() < 3) 3711 return error("Invalid blockaddress record"); 3712 unsigned FnTyID = Record[0]; 3713 Type *FnTy = getTypeByID(FnTyID); 3714 if (!FnTy) 3715 return error("Invalid blockaddress record"); 3716 V = BitcodeConstant::create( 3717 Alloc, CurTy, 3718 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3719 Record[1]); 3720 break; 3721 } 3722 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3723 if (Record.size() < 2) 3724 return error("Invalid dso_local record"); 3725 unsigned GVTyID = Record[0]; 3726 Type *GVTy = getTypeByID(GVTyID); 3727 if (!GVTy) 3728 return error("Invalid dso_local record"); 3729 V = BitcodeConstant::create( 3730 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3731 break; 3732 } 3733 case bitc::CST_CODE_NO_CFI_VALUE: { 3734 if (Record.size() < 2) 3735 return error("Invalid no_cfi record"); 3736 unsigned GVTyID = Record[0]; 3737 Type *GVTy = getTypeByID(GVTyID); 3738 if (!GVTy) 3739 return error("Invalid no_cfi record"); 3740 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3741 Record[1]); 3742 break; 3743 } 3744 case bitc::CST_CODE_PTRAUTH: { 3745 if (Record.size() < 4) 3746 return error("Invalid ptrauth record"); 3747 // Ptr, Key, Disc, AddrDisc 3748 V = BitcodeConstant::create(Alloc, CurTy, 3749 BitcodeConstant::ConstantPtrAuthOpcode, 3750 {(unsigned)Record[0], (unsigned)Record[1], 3751 (unsigned)Record[2], (unsigned)Record[3]}); 3752 break; 3753 } 3754 } 3755 3756 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3757 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3758 return Err; 3759 ++NextCstNo; 3760 } 3761 } 3762 3763 Error BitcodeReader::parseUseLists() { 3764 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3765 return Err; 3766 3767 // Read all the records. 3768 SmallVector<uint64_t, 64> Record; 3769 3770 while (true) { 3771 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3772 if (!MaybeEntry) 3773 return MaybeEntry.takeError(); 3774 BitstreamEntry Entry = MaybeEntry.get(); 3775 3776 switch (Entry.Kind) { 3777 case BitstreamEntry::SubBlock: // Handled for us already. 3778 case BitstreamEntry::Error: 3779 return error("Malformed block"); 3780 case BitstreamEntry::EndBlock: 3781 return Error::success(); 3782 case BitstreamEntry::Record: 3783 // The interesting case. 3784 break; 3785 } 3786 3787 // Read a use list record. 3788 Record.clear(); 3789 bool IsBB = false; 3790 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3791 if (!MaybeRecord) 3792 return MaybeRecord.takeError(); 3793 switch (MaybeRecord.get()) { 3794 default: // Default behavior: unknown type. 3795 break; 3796 case bitc::USELIST_CODE_BB: 3797 IsBB = true; 3798 [[fallthrough]]; 3799 case bitc::USELIST_CODE_DEFAULT: { 3800 unsigned RecordLength = Record.size(); 3801 if (RecordLength < 3) 3802 // Records should have at least an ID and two indexes. 3803 return error("Invalid record"); 3804 unsigned ID = Record.pop_back_val(); 3805 3806 Value *V; 3807 if (IsBB) { 3808 assert(ID < FunctionBBs.size() && "Basic block not found"); 3809 V = FunctionBBs[ID]; 3810 } else 3811 V = ValueList[ID]; 3812 unsigned NumUses = 0; 3813 SmallDenseMap<const Use *, unsigned, 16> Order; 3814 for (const Use &U : V->materialized_uses()) { 3815 if (++NumUses > Record.size()) 3816 break; 3817 Order[&U] = Record[NumUses - 1]; 3818 } 3819 if (Order.size() != Record.size() || NumUses > Record.size()) 3820 // Mismatches can happen if the functions are being materialized lazily 3821 // (out-of-order), or a value has been upgraded. 3822 break; 3823 3824 V->sortUseList([&](const Use &L, const Use &R) { 3825 return Order.lookup(&L) < Order.lookup(&R); 3826 }); 3827 break; 3828 } 3829 } 3830 } 3831 } 3832 3833 /// When we see the block for metadata, remember where it is and then skip it. 3834 /// This lets us lazily deserialize the metadata. 3835 Error BitcodeReader::rememberAndSkipMetadata() { 3836 // Save the current stream state. 3837 uint64_t CurBit = Stream.GetCurrentBitNo(); 3838 DeferredMetadataInfo.push_back(CurBit); 3839 3840 // Skip over the block for now. 3841 if (Error Err = Stream.SkipBlock()) 3842 return Err; 3843 return Error::success(); 3844 } 3845 3846 Error BitcodeReader::materializeMetadata() { 3847 for (uint64_t BitPos : DeferredMetadataInfo) { 3848 // Move the bit stream to the saved position. 3849 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3850 return JumpFailed; 3851 if (Error Err = MDLoader->parseModuleMetadata()) 3852 return Err; 3853 } 3854 3855 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3856 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3857 // multiple times. 3858 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3859 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3860 NamedMDNode *LinkerOpts = 3861 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3862 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3863 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3864 } 3865 } 3866 3867 DeferredMetadataInfo.clear(); 3868 return Error::success(); 3869 } 3870 3871 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3872 3873 /// When we see the block for a function body, remember where it is and then 3874 /// skip it. This lets us lazily deserialize the functions. 3875 Error BitcodeReader::rememberAndSkipFunctionBody() { 3876 // Get the function we are talking about. 3877 if (FunctionsWithBodies.empty()) 3878 return error("Insufficient function protos"); 3879 3880 Function *Fn = FunctionsWithBodies.back(); 3881 FunctionsWithBodies.pop_back(); 3882 3883 // Save the current stream state. 3884 uint64_t CurBit = Stream.GetCurrentBitNo(); 3885 assert( 3886 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3887 "Mismatch between VST and scanned function offsets"); 3888 DeferredFunctionInfo[Fn] = CurBit; 3889 3890 // Skip over the function block for now. 3891 if (Error Err = Stream.SkipBlock()) 3892 return Err; 3893 return Error::success(); 3894 } 3895 3896 Error BitcodeReader::globalCleanup() { 3897 // Patch the initializers for globals and aliases up. 3898 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3899 return Err; 3900 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3901 return error("Malformed global initializer set"); 3902 3903 // Look for intrinsic functions which need to be upgraded at some point 3904 // and functions that need to have their function attributes upgraded. 3905 for (Function &F : *TheModule) { 3906 MDLoader->upgradeDebugIntrinsics(F); 3907 Function *NewFn; 3908 // If PreserveInputDbgFormat=true, then we don't know whether we want 3909 // intrinsics or records, and we won't perform any conversions in either 3910 // case, so don't upgrade intrinsics to records. 3911 if (UpgradeIntrinsicFunction( 3912 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3913 UpgradedIntrinsics[&F] = NewFn; 3914 // Look for functions that rely on old function attribute behavior. 3915 UpgradeFunctionAttributes(F); 3916 } 3917 3918 // Look for global variables which need to be renamed. 3919 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3920 for (GlobalVariable &GV : TheModule->globals()) 3921 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3922 UpgradedVariables.emplace_back(&GV, Upgraded); 3923 for (auto &Pair : UpgradedVariables) { 3924 Pair.first->eraseFromParent(); 3925 TheModule->insertGlobalVariable(Pair.second); 3926 } 3927 3928 // Force deallocation of memory for these vectors to favor the client that 3929 // want lazy deserialization. 3930 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3931 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3932 return Error::success(); 3933 } 3934 3935 /// Support for lazy parsing of function bodies. This is required if we 3936 /// either have an old bitcode file without a VST forward declaration record, 3937 /// or if we have an anonymous function being materialized, since anonymous 3938 /// functions do not have a name and are therefore not in the VST. 3939 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3940 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3941 return JumpFailed; 3942 3943 if (Stream.AtEndOfStream()) 3944 return error("Could not find function in stream"); 3945 3946 if (!SeenFirstFunctionBody) 3947 return error("Trying to materialize functions before seeing function blocks"); 3948 3949 // An old bitcode file with the symbol table at the end would have 3950 // finished the parse greedily. 3951 assert(SeenValueSymbolTable); 3952 3953 SmallVector<uint64_t, 64> Record; 3954 3955 while (true) { 3956 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3957 if (!MaybeEntry) 3958 return MaybeEntry.takeError(); 3959 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3960 3961 switch (Entry.Kind) { 3962 default: 3963 return error("Expect SubBlock"); 3964 case BitstreamEntry::SubBlock: 3965 switch (Entry.ID) { 3966 default: 3967 return error("Expect function block"); 3968 case bitc::FUNCTION_BLOCK_ID: 3969 if (Error Err = rememberAndSkipFunctionBody()) 3970 return Err; 3971 NextUnreadBit = Stream.GetCurrentBitNo(); 3972 return Error::success(); 3973 } 3974 } 3975 } 3976 } 3977 3978 Error BitcodeReaderBase::readBlockInfo() { 3979 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3980 Stream.ReadBlockInfoBlock(); 3981 if (!MaybeNewBlockInfo) 3982 return MaybeNewBlockInfo.takeError(); 3983 std::optional<BitstreamBlockInfo> NewBlockInfo = 3984 std::move(MaybeNewBlockInfo.get()); 3985 if (!NewBlockInfo) 3986 return error("Malformed block"); 3987 BlockInfo = std::move(*NewBlockInfo); 3988 return Error::success(); 3989 } 3990 3991 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3992 // v1: [selection_kind, name] 3993 // v2: [strtab_offset, strtab_size, selection_kind] 3994 StringRef Name; 3995 std::tie(Name, Record) = readNameFromStrtab(Record); 3996 3997 if (Record.empty()) 3998 return error("Invalid record"); 3999 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4000 std::string OldFormatName; 4001 if (!UseStrtab) { 4002 if (Record.size() < 2) 4003 return error("Invalid record"); 4004 unsigned ComdatNameSize = Record[1]; 4005 if (ComdatNameSize > Record.size() - 2) 4006 return error("Comdat name size too large"); 4007 OldFormatName.reserve(ComdatNameSize); 4008 for (unsigned i = 0; i != ComdatNameSize; ++i) 4009 OldFormatName += (char)Record[2 + i]; 4010 Name = OldFormatName; 4011 } 4012 Comdat *C = TheModule->getOrInsertComdat(Name); 4013 C->setSelectionKind(SK); 4014 ComdatList.push_back(C); 4015 return Error::success(); 4016 } 4017 4018 static void inferDSOLocal(GlobalValue *GV) { 4019 // infer dso_local from linkage and visibility if it is not encoded. 4020 if (GV->hasLocalLinkage() || 4021 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4022 GV->setDSOLocal(true); 4023 } 4024 4025 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4026 GlobalValue::SanitizerMetadata Meta; 4027 if (V & (1 << 0)) 4028 Meta.NoAddress = true; 4029 if (V & (1 << 1)) 4030 Meta.NoHWAddress = true; 4031 if (V & (1 << 2)) 4032 Meta.Memtag = true; 4033 if (V & (1 << 3)) 4034 Meta.IsDynInit = true; 4035 return Meta; 4036 } 4037 4038 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4039 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4040 // visibility, threadlocal, unnamed_addr, externally_initialized, 4041 // dllstorageclass, comdat, attributes, preemption specifier, 4042 // partition strtab offset, partition strtab size] (name in VST) 4043 // v2: [strtab_offset, strtab_size, v1] 4044 // v3: [v2, code_model] 4045 StringRef Name; 4046 std::tie(Name, Record) = readNameFromStrtab(Record); 4047 4048 if (Record.size() < 6) 4049 return error("Invalid record"); 4050 unsigned TyID = Record[0]; 4051 Type *Ty = getTypeByID(TyID); 4052 if (!Ty) 4053 return error("Invalid record"); 4054 bool isConstant = Record[1] & 1; 4055 bool explicitType = Record[1] & 2; 4056 unsigned AddressSpace; 4057 if (explicitType) { 4058 AddressSpace = Record[1] >> 2; 4059 } else { 4060 if (!Ty->isPointerTy()) 4061 return error("Invalid type for value"); 4062 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4063 TyID = getContainedTypeID(TyID); 4064 Ty = getTypeByID(TyID); 4065 if (!Ty) 4066 return error("Missing element type for old-style global"); 4067 } 4068 4069 uint64_t RawLinkage = Record[3]; 4070 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4071 MaybeAlign Alignment; 4072 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4073 return Err; 4074 std::string Section; 4075 if (Record[5]) { 4076 if (Record[5] - 1 >= SectionTable.size()) 4077 return error("Invalid ID"); 4078 Section = SectionTable[Record[5] - 1]; 4079 } 4080 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4081 // Local linkage must have default visibility. 4082 // auto-upgrade `hidden` and `protected` for old bitcode. 4083 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4084 Visibility = getDecodedVisibility(Record[6]); 4085 4086 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4087 if (Record.size() > 7) 4088 TLM = getDecodedThreadLocalMode(Record[7]); 4089 4090 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4091 if (Record.size() > 8) 4092 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4093 4094 bool ExternallyInitialized = false; 4095 if (Record.size() > 9) 4096 ExternallyInitialized = Record[9]; 4097 4098 GlobalVariable *NewGV = 4099 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4100 nullptr, TLM, AddressSpace, ExternallyInitialized); 4101 if (Alignment) 4102 NewGV->setAlignment(*Alignment); 4103 if (!Section.empty()) 4104 NewGV->setSection(Section); 4105 NewGV->setVisibility(Visibility); 4106 NewGV->setUnnamedAddr(UnnamedAddr); 4107 4108 if (Record.size() > 10) { 4109 // A GlobalValue with local linkage cannot have a DLL storage class. 4110 if (!NewGV->hasLocalLinkage()) { 4111 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4112 } 4113 } else { 4114 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4115 } 4116 4117 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4118 4119 // Remember which value to use for the global initializer. 4120 if (unsigned InitID = Record[2]) 4121 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4122 4123 if (Record.size() > 11) { 4124 if (unsigned ComdatID = Record[11]) { 4125 if (ComdatID > ComdatList.size()) 4126 return error("Invalid global variable comdat ID"); 4127 NewGV->setComdat(ComdatList[ComdatID - 1]); 4128 } 4129 } else if (hasImplicitComdat(RawLinkage)) { 4130 ImplicitComdatObjects.insert(NewGV); 4131 } 4132 4133 if (Record.size() > 12) { 4134 auto AS = getAttributes(Record[12]).getFnAttrs(); 4135 NewGV->setAttributes(AS); 4136 } 4137 4138 if (Record.size() > 13) { 4139 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4140 } 4141 inferDSOLocal(NewGV); 4142 4143 // Check whether we have enough values to read a partition name. 4144 if (Record.size() > 15) 4145 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4146 4147 if (Record.size() > 16 && Record[16]) { 4148 llvm::GlobalValue::SanitizerMetadata Meta = 4149 deserializeSanitizerMetadata(Record[16]); 4150 NewGV->setSanitizerMetadata(Meta); 4151 } 4152 4153 if (Record.size() > 17 && Record[17]) { 4154 if (auto CM = getDecodedCodeModel(Record[17])) 4155 NewGV->setCodeModel(*CM); 4156 else 4157 return error("Invalid global variable code model"); 4158 } 4159 4160 return Error::success(); 4161 } 4162 4163 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4164 if (ValueTypeCallback) { 4165 (*ValueTypeCallback)( 4166 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4167 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4168 } 4169 } 4170 4171 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4172 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4173 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4174 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4175 // v2: [strtab_offset, strtab_size, v1] 4176 StringRef Name; 4177 std::tie(Name, Record) = readNameFromStrtab(Record); 4178 4179 if (Record.size() < 8) 4180 return error("Invalid record"); 4181 unsigned FTyID = Record[0]; 4182 Type *FTy = getTypeByID(FTyID); 4183 if (!FTy) 4184 return error("Invalid record"); 4185 if (isa<PointerType>(FTy)) { 4186 FTyID = getContainedTypeID(FTyID, 0); 4187 FTy = getTypeByID(FTyID); 4188 if (!FTy) 4189 return error("Missing element type for old-style function"); 4190 } 4191 4192 if (!isa<FunctionType>(FTy)) 4193 return error("Invalid type for value"); 4194 auto CC = static_cast<CallingConv::ID>(Record[1]); 4195 if (CC & ~CallingConv::MaxID) 4196 return error("Invalid calling convention ID"); 4197 4198 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4199 if (Record.size() > 16) 4200 AddrSpace = Record[16]; 4201 4202 Function *Func = 4203 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4204 AddrSpace, Name, TheModule); 4205 4206 assert(Func->getFunctionType() == FTy && 4207 "Incorrect fully specified type provided for function"); 4208 FunctionTypeIDs[Func] = FTyID; 4209 4210 Func->setCallingConv(CC); 4211 bool isProto = Record[2]; 4212 uint64_t RawLinkage = Record[3]; 4213 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4214 Func->setAttributes(getAttributes(Record[4])); 4215 callValueTypeCallback(Func, FTyID); 4216 4217 // Upgrade any old-style byval or sret without a type by propagating the 4218 // argument's pointee type. There should be no opaque pointers where the byval 4219 // type is implicit. 4220 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4221 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4222 Attribute::InAlloca}) { 4223 if (!Func->hasParamAttribute(i, Kind)) 4224 continue; 4225 4226 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4227 continue; 4228 4229 Func->removeParamAttr(i, Kind); 4230 4231 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4232 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4233 if (!PtrEltTy) 4234 return error("Missing param element type for attribute upgrade"); 4235 4236 Attribute NewAttr; 4237 switch (Kind) { 4238 case Attribute::ByVal: 4239 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4240 break; 4241 case Attribute::StructRet: 4242 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4243 break; 4244 case Attribute::InAlloca: 4245 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4246 break; 4247 default: 4248 llvm_unreachable("not an upgraded type attribute"); 4249 } 4250 4251 Func->addParamAttr(i, NewAttr); 4252 } 4253 } 4254 4255 if (Func->getCallingConv() == CallingConv::X86_INTR && 4256 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4257 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4258 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4259 if (!ByValTy) 4260 return error("Missing param element type for x86_intrcc upgrade"); 4261 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4262 Func->addParamAttr(0, NewAttr); 4263 } 4264 4265 MaybeAlign Alignment; 4266 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4267 return Err; 4268 if (Alignment) 4269 Func->setAlignment(*Alignment); 4270 if (Record[6]) { 4271 if (Record[6] - 1 >= SectionTable.size()) 4272 return error("Invalid ID"); 4273 Func->setSection(SectionTable[Record[6] - 1]); 4274 } 4275 // Local linkage must have default visibility. 4276 // auto-upgrade `hidden` and `protected` for old bitcode. 4277 if (!Func->hasLocalLinkage()) 4278 Func->setVisibility(getDecodedVisibility(Record[7])); 4279 if (Record.size() > 8 && Record[8]) { 4280 if (Record[8] - 1 >= GCTable.size()) 4281 return error("Invalid ID"); 4282 Func->setGC(GCTable[Record[8] - 1]); 4283 } 4284 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4285 if (Record.size() > 9) 4286 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4287 Func->setUnnamedAddr(UnnamedAddr); 4288 4289 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4290 if (Record.size() > 10) 4291 OperandInfo.Prologue = Record[10]; 4292 4293 if (Record.size() > 11) { 4294 // A GlobalValue with local linkage cannot have a DLL storage class. 4295 if (!Func->hasLocalLinkage()) { 4296 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4297 } 4298 } else { 4299 upgradeDLLImportExportLinkage(Func, RawLinkage); 4300 } 4301 4302 if (Record.size() > 12) { 4303 if (unsigned ComdatID = Record[12]) { 4304 if (ComdatID > ComdatList.size()) 4305 return error("Invalid function comdat ID"); 4306 Func->setComdat(ComdatList[ComdatID - 1]); 4307 } 4308 } else if (hasImplicitComdat(RawLinkage)) { 4309 ImplicitComdatObjects.insert(Func); 4310 } 4311 4312 if (Record.size() > 13) 4313 OperandInfo.Prefix = Record[13]; 4314 4315 if (Record.size() > 14) 4316 OperandInfo.PersonalityFn = Record[14]; 4317 4318 if (Record.size() > 15) { 4319 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4320 } 4321 inferDSOLocal(Func); 4322 4323 // Record[16] is the address space number. 4324 4325 // Check whether we have enough values to read a partition name. Also make 4326 // sure Strtab has enough values. 4327 if (Record.size() > 18 && Strtab.data() && 4328 Record[17] + Record[18] <= Strtab.size()) { 4329 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4330 } 4331 4332 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4333 4334 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4335 FunctionOperands.push_back(OperandInfo); 4336 4337 // If this is a function with a body, remember the prototype we are 4338 // creating now, so that we can match up the body with them later. 4339 if (!isProto) { 4340 Func->setIsMaterializable(true); 4341 FunctionsWithBodies.push_back(Func); 4342 DeferredFunctionInfo[Func] = 0; 4343 } 4344 return Error::success(); 4345 } 4346 4347 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4348 unsigned BitCode, ArrayRef<uint64_t> Record) { 4349 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4350 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4351 // dllstorageclass, threadlocal, unnamed_addr, 4352 // preemption specifier] (name in VST) 4353 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4354 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4355 // preemption specifier] (name in VST) 4356 // v2: [strtab_offset, strtab_size, v1] 4357 StringRef Name; 4358 std::tie(Name, Record) = readNameFromStrtab(Record); 4359 4360 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4361 if (Record.size() < (3 + (unsigned)NewRecord)) 4362 return error("Invalid record"); 4363 unsigned OpNum = 0; 4364 unsigned TypeID = Record[OpNum++]; 4365 Type *Ty = getTypeByID(TypeID); 4366 if (!Ty) 4367 return error("Invalid record"); 4368 4369 unsigned AddrSpace; 4370 if (!NewRecord) { 4371 auto *PTy = dyn_cast<PointerType>(Ty); 4372 if (!PTy) 4373 return error("Invalid type for value"); 4374 AddrSpace = PTy->getAddressSpace(); 4375 TypeID = getContainedTypeID(TypeID); 4376 Ty = getTypeByID(TypeID); 4377 if (!Ty) 4378 return error("Missing element type for old-style indirect symbol"); 4379 } else { 4380 AddrSpace = Record[OpNum++]; 4381 } 4382 4383 auto Val = Record[OpNum++]; 4384 auto Linkage = Record[OpNum++]; 4385 GlobalValue *NewGA; 4386 if (BitCode == bitc::MODULE_CODE_ALIAS || 4387 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4388 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4389 TheModule); 4390 else 4391 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4392 nullptr, TheModule); 4393 4394 // Local linkage must have default visibility. 4395 // auto-upgrade `hidden` and `protected` for old bitcode. 4396 if (OpNum != Record.size()) { 4397 auto VisInd = OpNum++; 4398 if (!NewGA->hasLocalLinkage()) 4399 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4400 } 4401 if (BitCode == bitc::MODULE_CODE_ALIAS || 4402 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4403 if (OpNum != Record.size()) { 4404 auto S = Record[OpNum++]; 4405 // A GlobalValue with local linkage cannot have a DLL storage class. 4406 if (!NewGA->hasLocalLinkage()) 4407 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4408 } 4409 else 4410 upgradeDLLImportExportLinkage(NewGA, Linkage); 4411 if (OpNum != Record.size()) 4412 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4413 if (OpNum != Record.size()) 4414 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4415 } 4416 if (OpNum != Record.size()) 4417 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4418 inferDSOLocal(NewGA); 4419 4420 // Check whether we have enough values to read a partition name. 4421 if (OpNum + 1 < Record.size()) { 4422 // Check Strtab has enough values for the partition. 4423 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4424 return error("Malformed partition, too large."); 4425 NewGA->setPartition( 4426 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4427 } 4428 4429 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4430 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4431 return Error::success(); 4432 } 4433 4434 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4435 bool ShouldLazyLoadMetadata, 4436 ParserCallbacks Callbacks) { 4437 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4438 // has been set to true and we aren't attempting to preserve the existing 4439 // format in the bitcode (default action: load into the old debug format). 4440 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4441 TheModule->IsNewDbgInfoFormat = 4442 UseNewDbgInfoFormat && 4443 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4444 } 4445 4446 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4447 if (ResumeBit) { 4448 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4449 return JumpFailed; 4450 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4451 return Err; 4452 4453 SmallVector<uint64_t, 64> Record; 4454 4455 // Parts of bitcode parsing depend on the datalayout. Make sure we 4456 // finalize the datalayout before we run any of that code. 4457 bool ResolvedDataLayout = false; 4458 // In order to support importing modules with illegal data layout strings, 4459 // delay parsing the data layout string until after upgrades and overrides 4460 // have been applied, allowing to fix illegal data layout strings. 4461 // Initialize to the current module's layout string in case none is specified. 4462 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4463 4464 auto ResolveDataLayout = [&]() -> Error { 4465 if (ResolvedDataLayout) 4466 return Error::success(); 4467 4468 // Datalayout and triple can't be parsed after this point. 4469 ResolvedDataLayout = true; 4470 4471 // Auto-upgrade the layout string 4472 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4473 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4474 4475 // Apply override 4476 if (Callbacks.DataLayout) { 4477 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4478 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4479 TentativeDataLayoutStr = *LayoutOverride; 4480 } 4481 4482 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4483 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4484 if (!MaybeDL) 4485 return MaybeDL.takeError(); 4486 4487 TheModule->setDataLayout(MaybeDL.get()); 4488 return Error::success(); 4489 }; 4490 4491 // Read all the records for this module. 4492 while (true) { 4493 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4494 if (!MaybeEntry) 4495 return MaybeEntry.takeError(); 4496 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4497 4498 switch (Entry.Kind) { 4499 case BitstreamEntry::Error: 4500 return error("Malformed block"); 4501 case BitstreamEntry::EndBlock: 4502 if (Error Err = ResolveDataLayout()) 4503 return Err; 4504 return globalCleanup(); 4505 4506 case BitstreamEntry::SubBlock: 4507 switch (Entry.ID) { 4508 default: // Skip unknown content. 4509 if (Error Err = Stream.SkipBlock()) 4510 return Err; 4511 break; 4512 case bitc::BLOCKINFO_BLOCK_ID: 4513 if (Error Err = readBlockInfo()) 4514 return Err; 4515 break; 4516 case bitc::PARAMATTR_BLOCK_ID: 4517 if (Error Err = parseAttributeBlock()) 4518 return Err; 4519 break; 4520 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4521 if (Error Err = parseAttributeGroupBlock()) 4522 return Err; 4523 break; 4524 case bitc::TYPE_BLOCK_ID_NEW: 4525 if (Error Err = parseTypeTable()) 4526 return Err; 4527 break; 4528 case bitc::VALUE_SYMTAB_BLOCK_ID: 4529 if (!SeenValueSymbolTable) { 4530 // Either this is an old form VST without function index and an 4531 // associated VST forward declaration record (which would have caused 4532 // the VST to be jumped to and parsed before it was encountered 4533 // normally in the stream), or there were no function blocks to 4534 // trigger an earlier parsing of the VST. 4535 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4536 if (Error Err = parseValueSymbolTable()) 4537 return Err; 4538 SeenValueSymbolTable = true; 4539 } else { 4540 // We must have had a VST forward declaration record, which caused 4541 // the parser to jump to and parse the VST earlier. 4542 assert(VSTOffset > 0); 4543 if (Error Err = Stream.SkipBlock()) 4544 return Err; 4545 } 4546 break; 4547 case bitc::CONSTANTS_BLOCK_ID: 4548 if (Error Err = parseConstants()) 4549 return Err; 4550 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4551 return Err; 4552 break; 4553 case bitc::METADATA_BLOCK_ID: 4554 if (ShouldLazyLoadMetadata) { 4555 if (Error Err = rememberAndSkipMetadata()) 4556 return Err; 4557 break; 4558 } 4559 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4560 if (Error Err = MDLoader->parseModuleMetadata()) 4561 return Err; 4562 break; 4563 case bitc::METADATA_KIND_BLOCK_ID: 4564 if (Error Err = MDLoader->parseMetadataKinds()) 4565 return Err; 4566 break; 4567 case bitc::FUNCTION_BLOCK_ID: 4568 if (Error Err = ResolveDataLayout()) 4569 return Err; 4570 4571 // If this is the first function body we've seen, reverse the 4572 // FunctionsWithBodies list. 4573 if (!SeenFirstFunctionBody) { 4574 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4575 if (Error Err = globalCleanup()) 4576 return Err; 4577 SeenFirstFunctionBody = true; 4578 } 4579 4580 if (VSTOffset > 0) { 4581 // If we have a VST forward declaration record, make sure we 4582 // parse the VST now if we haven't already. It is needed to 4583 // set up the DeferredFunctionInfo vector for lazy reading. 4584 if (!SeenValueSymbolTable) { 4585 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4586 return Err; 4587 SeenValueSymbolTable = true; 4588 // Fall through so that we record the NextUnreadBit below. 4589 // This is necessary in case we have an anonymous function that 4590 // is later materialized. Since it will not have a VST entry we 4591 // need to fall back to the lazy parse to find its offset. 4592 } else { 4593 // If we have a VST forward declaration record, but have already 4594 // parsed the VST (just above, when the first function body was 4595 // encountered here), then we are resuming the parse after 4596 // materializing functions. The ResumeBit points to the 4597 // start of the last function block recorded in the 4598 // DeferredFunctionInfo map. Skip it. 4599 if (Error Err = Stream.SkipBlock()) 4600 return Err; 4601 continue; 4602 } 4603 } 4604 4605 // Support older bitcode files that did not have the function 4606 // index in the VST, nor a VST forward declaration record, as 4607 // well as anonymous functions that do not have VST entries. 4608 // Build the DeferredFunctionInfo vector on the fly. 4609 if (Error Err = rememberAndSkipFunctionBody()) 4610 return Err; 4611 4612 // Suspend parsing when we reach the function bodies. Subsequent 4613 // materialization calls will resume it when necessary. If the bitcode 4614 // file is old, the symbol table will be at the end instead and will not 4615 // have been seen yet. In this case, just finish the parse now. 4616 if (SeenValueSymbolTable) { 4617 NextUnreadBit = Stream.GetCurrentBitNo(); 4618 // After the VST has been parsed, we need to make sure intrinsic name 4619 // are auto-upgraded. 4620 return globalCleanup(); 4621 } 4622 break; 4623 case bitc::USELIST_BLOCK_ID: 4624 if (Error Err = parseUseLists()) 4625 return Err; 4626 break; 4627 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4628 if (Error Err = parseOperandBundleTags()) 4629 return Err; 4630 break; 4631 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4632 if (Error Err = parseSyncScopeNames()) 4633 return Err; 4634 break; 4635 } 4636 continue; 4637 4638 case BitstreamEntry::Record: 4639 // The interesting case. 4640 break; 4641 } 4642 4643 // Read a record. 4644 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4645 if (!MaybeBitCode) 4646 return MaybeBitCode.takeError(); 4647 switch (unsigned BitCode = MaybeBitCode.get()) { 4648 default: break; // Default behavior, ignore unknown content. 4649 case bitc::MODULE_CODE_VERSION: { 4650 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4651 if (!VersionOrErr) 4652 return VersionOrErr.takeError(); 4653 UseRelativeIDs = *VersionOrErr >= 1; 4654 break; 4655 } 4656 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4657 if (ResolvedDataLayout) 4658 return error("target triple too late in module"); 4659 std::string S; 4660 if (convertToString(Record, 0, S)) 4661 return error("Invalid record"); 4662 TheModule->setTargetTriple(S); 4663 break; 4664 } 4665 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4666 if (ResolvedDataLayout) 4667 return error("datalayout too late in module"); 4668 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4669 return error("Invalid record"); 4670 break; 4671 } 4672 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4673 std::string S; 4674 if (convertToString(Record, 0, S)) 4675 return error("Invalid record"); 4676 TheModule->setModuleInlineAsm(S); 4677 break; 4678 } 4679 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4680 // Deprecated, but still needed to read old bitcode files. 4681 std::string S; 4682 if (convertToString(Record, 0, S)) 4683 return error("Invalid record"); 4684 // Ignore value. 4685 break; 4686 } 4687 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4688 std::string S; 4689 if (convertToString(Record, 0, S)) 4690 return error("Invalid record"); 4691 SectionTable.push_back(S); 4692 break; 4693 } 4694 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4695 std::string S; 4696 if (convertToString(Record, 0, S)) 4697 return error("Invalid record"); 4698 GCTable.push_back(S); 4699 break; 4700 } 4701 case bitc::MODULE_CODE_COMDAT: 4702 if (Error Err = parseComdatRecord(Record)) 4703 return Err; 4704 break; 4705 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4706 // written by ThinLinkBitcodeWriter. See 4707 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4708 // record 4709 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4710 case bitc::MODULE_CODE_GLOBALVAR: 4711 if (Error Err = parseGlobalVarRecord(Record)) 4712 return Err; 4713 break; 4714 case bitc::MODULE_CODE_FUNCTION: 4715 if (Error Err = ResolveDataLayout()) 4716 return Err; 4717 if (Error Err = parseFunctionRecord(Record)) 4718 return Err; 4719 break; 4720 case bitc::MODULE_CODE_IFUNC: 4721 case bitc::MODULE_CODE_ALIAS: 4722 case bitc::MODULE_CODE_ALIAS_OLD: 4723 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4724 return Err; 4725 break; 4726 /// MODULE_CODE_VSTOFFSET: [offset] 4727 case bitc::MODULE_CODE_VSTOFFSET: 4728 if (Record.empty()) 4729 return error("Invalid record"); 4730 // Note that we subtract 1 here because the offset is relative to one word 4731 // before the start of the identification or module block, which was 4732 // historically always the start of the regular bitcode header. 4733 VSTOffset = Record[0] - 1; 4734 break; 4735 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4736 case bitc::MODULE_CODE_SOURCE_FILENAME: 4737 SmallString<128> ValueName; 4738 if (convertToString(Record, 0, ValueName)) 4739 return error("Invalid record"); 4740 TheModule->setSourceFileName(ValueName); 4741 break; 4742 } 4743 Record.clear(); 4744 } 4745 this->ValueTypeCallback = std::nullopt; 4746 return Error::success(); 4747 } 4748 4749 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4750 bool IsImporting, 4751 ParserCallbacks Callbacks) { 4752 TheModule = M; 4753 MetadataLoaderCallbacks MDCallbacks; 4754 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4755 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4756 return getContainedTypeID(I, J); 4757 }; 4758 MDCallbacks.MDType = Callbacks.MDType; 4759 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4760 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4761 } 4762 4763 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4764 if (!isa<PointerType>(PtrType)) 4765 return error("Load/Store operand is not a pointer type"); 4766 if (!PointerType::isLoadableOrStorableType(ValType)) 4767 return error("Cannot load/store from pointer"); 4768 return Error::success(); 4769 } 4770 4771 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4772 ArrayRef<unsigned> ArgTyIDs) { 4773 AttributeList Attrs = CB->getAttributes(); 4774 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4775 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4776 Attribute::InAlloca}) { 4777 if (!Attrs.hasParamAttr(i, Kind) || 4778 Attrs.getParamAttr(i, Kind).getValueAsType()) 4779 continue; 4780 4781 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4782 if (!PtrEltTy) 4783 return error("Missing element type for typed attribute upgrade"); 4784 4785 Attribute NewAttr; 4786 switch (Kind) { 4787 case Attribute::ByVal: 4788 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4789 break; 4790 case Attribute::StructRet: 4791 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4792 break; 4793 case Attribute::InAlloca: 4794 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4795 break; 4796 default: 4797 llvm_unreachable("not an upgraded type attribute"); 4798 } 4799 4800 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4801 } 4802 } 4803 4804 if (CB->isInlineAsm()) { 4805 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4806 unsigned ArgNo = 0; 4807 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4808 if (!CI.hasArg()) 4809 continue; 4810 4811 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4812 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4813 if (!ElemTy) 4814 return error("Missing element type for inline asm upgrade"); 4815 Attrs = Attrs.addParamAttribute( 4816 Context, ArgNo, 4817 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4818 } 4819 4820 ArgNo++; 4821 } 4822 } 4823 4824 switch (CB->getIntrinsicID()) { 4825 case Intrinsic::preserve_array_access_index: 4826 case Intrinsic::preserve_struct_access_index: 4827 case Intrinsic::aarch64_ldaxr: 4828 case Intrinsic::aarch64_ldxr: 4829 case Intrinsic::aarch64_stlxr: 4830 case Intrinsic::aarch64_stxr: 4831 case Intrinsic::arm_ldaex: 4832 case Intrinsic::arm_ldrex: 4833 case Intrinsic::arm_stlex: 4834 case Intrinsic::arm_strex: { 4835 unsigned ArgNo; 4836 switch (CB->getIntrinsicID()) { 4837 case Intrinsic::aarch64_stlxr: 4838 case Intrinsic::aarch64_stxr: 4839 case Intrinsic::arm_stlex: 4840 case Intrinsic::arm_strex: 4841 ArgNo = 1; 4842 break; 4843 default: 4844 ArgNo = 0; 4845 break; 4846 } 4847 if (!Attrs.getParamElementType(ArgNo)) { 4848 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4849 if (!ElTy) 4850 return error("Missing element type for elementtype upgrade"); 4851 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4852 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4853 } 4854 break; 4855 } 4856 default: 4857 break; 4858 } 4859 4860 CB->setAttributes(Attrs); 4861 return Error::success(); 4862 } 4863 4864 /// Lazily parse the specified function body block. 4865 Error BitcodeReader::parseFunctionBody(Function *F) { 4866 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4867 return Err; 4868 4869 // Unexpected unresolved metadata when parsing function. 4870 if (MDLoader->hasFwdRefs()) 4871 return error("Invalid function metadata: incoming forward references"); 4872 4873 InstructionList.clear(); 4874 unsigned ModuleValueListSize = ValueList.size(); 4875 unsigned ModuleMDLoaderSize = MDLoader->size(); 4876 4877 // Add all the function arguments to the value table. 4878 unsigned ArgNo = 0; 4879 unsigned FTyID = FunctionTypeIDs[F]; 4880 for (Argument &I : F->args()) { 4881 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4882 assert(I.getType() == getTypeByID(ArgTyID) && 4883 "Incorrect fully specified type for Function Argument"); 4884 ValueList.push_back(&I, ArgTyID); 4885 ++ArgNo; 4886 } 4887 unsigned NextValueNo = ValueList.size(); 4888 BasicBlock *CurBB = nullptr; 4889 unsigned CurBBNo = 0; 4890 // Block into which constant expressions from phi nodes are materialized. 4891 BasicBlock *PhiConstExprBB = nullptr; 4892 // Edge blocks for phi nodes into which constant expressions have been 4893 // expanded. 4894 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4895 ConstExprEdgeBBs; 4896 4897 DebugLoc LastLoc; 4898 auto getLastInstruction = [&]() -> Instruction * { 4899 if (CurBB && !CurBB->empty()) 4900 return &CurBB->back(); 4901 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4902 !FunctionBBs[CurBBNo - 1]->empty()) 4903 return &FunctionBBs[CurBBNo - 1]->back(); 4904 return nullptr; 4905 }; 4906 4907 std::vector<OperandBundleDef> OperandBundles; 4908 4909 // Read all the records. 4910 SmallVector<uint64_t, 64> Record; 4911 4912 while (true) { 4913 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4914 if (!MaybeEntry) 4915 return MaybeEntry.takeError(); 4916 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4917 4918 switch (Entry.Kind) { 4919 case BitstreamEntry::Error: 4920 return error("Malformed block"); 4921 case BitstreamEntry::EndBlock: 4922 goto OutOfRecordLoop; 4923 4924 case BitstreamEntry::SubBlock: 4925 switch (Entry.ID) { 4926 default: // Skip unknown content. 4927 if (Error Err = Stream.SkipBlock()) 4928 return Err; 4929 break; 4930 case bitc::CONSTANTS_BLOCK_ID: 4931 if (Error Err = parseConstants()) 4932 return Err; 4933 NextValueNo = ValueList.size(); 4934 break; 4935 case bitc::VALUE_SYMTAB_BLOCK_ID: 4936 if (Error Err = parseValueSymbolTable()) 4937 return Err; 4938 break; 4939 case bitc::METADATA_ATTACHMENT_ID: 4940 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4941 return Err; 4942 break; 4943 case bitc::METADATA_BLOCK_ID: 4944 assert(DeferredMetadataInfo.empty() && 4945 "Must read all module-level metadata before function-level"); 4946 if (Error Err = MDLoader->parseFunctionMetadata()) 4947 return Err; 4948 break; 4949 case bitc::USELIST_BLOCK_ID: 4950 if (Error Err = parseUseLists()) 4951 return Err; 4952 break; 4953 } 4954 continue; 4955 4956 case BitstreamEntry::Record: 4957 // The interesting case. 4958 break; 4959 } 4960 4961 // Read a record. 4962 Record.clear(); 4963 Instruction *I = nullptr; 4964 unsigned ResTypeID = InvalidTypeID; 4965 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4966 if (!MaybeBitCode) 4967 return MaybeBitCode.takeError(); 4968 switch (unsigned BitCode = MaybeBitCode.get()) { 4969 default: // Default behavior: reject 4970 return error("Invalid value"); 4971 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4972 if (Record.empty() || Record[0] == 0) 4973 return error("Invalid record"); 4974 // Create all the basic blocks for the function. 4975 FunctionBBs.resize(Record[0]); 4976 4977 // See if anything took the address of blocks in this function. 4978 auto BBFRI = BasicBlockFwdRefs.find(F); 4979 if (BBFRI == BasicBlockFwdRefs.end()) { 4980 for (BasicBlock *&BB : FunctionBBs) 4981 BB = BasicBlock::Create(Context, "", F); 4982 } else { 4983 auto &BBRefs = BBFRI->second; 4984 // Check for invalid basic block references. 4985 if (BBRefs.size() > FunctionBBs.size()) 4986 return error("Invalid ID"); 4987 assert(!BBRefs.empty() && "Unexpected empty array"); 4988 assert(!BBRefs.front() && "Invalid reference to entry block"); 4989 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4990 ++I) 4991 if (I < RE && BBRefs[I]) { 4992 BBRefs[I]->insertInto(F); 4993 FunctionBBs[I] = BBRefs[I]; 4994 } else { 4995 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4996 } 4997 4998 // Erase from the table. 4999 BasicBlockFwdRefs.erase(BBFRI); 5000 } 5001 5002 CurBB = FunctionBBs[0]; 5003 continue; 5004 } 5005 5006 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 5007 // The record should not be emitted if it's an empty list. 5008 if (Record.empty()) 5009 return error("Invalid record"); 5010 // When we have the RARE case of a BlockAddress Constant that is not 5011 // scoped to the Function it refers to, we need to conservatively 5012 // materialize the referred to Function, regardless of whether or not 5013 // that Function will ultimately be linked, otherwise users of 5014 // BitcodeReader might start splicing out Function bodies such that we 5015 // might no longer be able to materialize the BlockAddress since the 5016 // BasicBlock (and entire body of the Function) the BlockAddress refers 5017 // to may have been moved. In the case that the user of BitcodeReader 5018 // decides ultimately not to link the Function body, materializing here 5019 // could be considered wasteful, but it's better than a deserialization 5020 // failure as described. This keeps BitcodeReader unaware of complex 5021 // linkage policy decisions such as those use by LTO, leaving those 5022 // decisions "one layer up." 5023 for (uint64_t ValID : Record) 5024 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5025 BackwardRefFunctions.push_back(F); 5026 else 5027 return error("Invalid record"); 5028 5029 continue; 5030 5031 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5032 // This record indicates that the last instruction is at the same 5033 // location as the previous instruction with a location. 5034 I = getLastInstruction(); 5035 5036 if (!I) 5037 return error("Invalid record"); 5038 I->setDebugLoc(LastLoc); 5039 I = nullptr; 5040 continue; 5041 5042 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5043 I = getLastInstruction(); 5044 if (!I || Record.size() < 4) 5045 return error("Invalid record"); 5046 5047 unsigned Line = Record[0], Col = Record[1]; 5048 unsigned ScopeID = Record[2], IAID = Record[3]; 5049 bool isImplicitCode = Record.size() == 5 && Record[4]; 5050 5051 MDNode *Scope = nullptr, *IA = nullptr; 5052 if (ScopeID) { 5053 Scope = dyn_cast_or_null<MDNode>( 5054 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5055 if (!Scope) 5056 return error("Invalid record"); 5057 } 5058 if (IAID) { 5059 IA = dyn_cast_or_null<MDNode>( 5060 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5061 if (!IA) 5062 return error("Invalid record"); 5063 } 5064 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5065 isImplicitCode); 5066 I->setDebugLoc(LastLoc); 5067 I = nullptr; 5068 continue; 5069 } 5070 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5071 unsigned OpNum = 0; 5072 Value *LHS; 5073 unsigned TypeID; 5074 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5075 OpNum+1 > Record.size()) 5076 return error("Invalid record"); 5077 5078 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5079 if (Opc == -1) 5080 return error("Invalid record"); 5081 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5082 ResTypeID = TypeID; 5083 InstructionList.push_back(I); 5084 if (OpNum < Record.size()) { 5085 if (isa<FPMathOperator>(I)) { 5086 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5087 if (FMF.any()) 5088 I->setFastMathFlags(FMF); 5089 } 5090 } 5091 break; 5092 } 5093 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5094 unsigned OpNum = 0; 5095 Value *LHS, *RHS; 5096 unsigned TypeID; 5097 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5098 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5099 CurBB) || 5100 OpNum+1 > Record.size()) 5101 return error("Invalid record"); 5102 5103 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5104 if (Opc == -1) 5105 return error("Invalid record"); 5106 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5107 ResTypeID = TypeID; 5108 InstructionList.push_back(I); 5109 if (OpNum < Record.size()) { 5110 if (Opc == Instruction::Add || 5111 Opc == Instruction::Sub || 5112 Opc == Instruction::Mul || 5113 Opc == Instruction::Shl) { 5114 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5115 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5116 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5117 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5118 } else if (Opc == Instruction::SDiv || 5119 Opc == Instruction::UDiv || 5120 Opc == Instruction::LShr || 5121 Opc == Instruction::AShr) { 5122 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5123 cast<BinaryOperator>(I)->setIsExact(true); 5124 } else if (Opc == Instruction::Or) { 5125 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5126 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5127 } else if (isa<FPMathOperator>(I)) { 5128 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5129 if (FMF.any()) 5130 I->setFastMathFlags(FMF); 5131 } 5132 } 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5136 unsigned OpNum = 0; 5137 Value *Op; 5138 unsigned OpTypeID; 5139 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5140 OpNum + 1 > Record.size()) 5141 return error("Invalid record"); 5142 5143 ResTypeID = Record[OpNum++]; 5144 Type *ResTy = getTypeByID(ResTypeID); 5145 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5146 5147 if (Opc == -1 || !ResTy) 5148 return error("Invalid record"); 5149 Instruction *Temp = nullptr; 5150 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5151 if (Temp) { 5152 InstructionList.push_back(Temp); 5153 assert(CurBB && "No current BB?"); 5154 Temp->insertInto(CurBB, CurBB->end()); 5155 } 5156 } else { 5157 auto CastOp = (Instruction::CastOps)Opc; 5158 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5159 return error("Invalid cast"); 5160 I = CastInst::Create(CastOp, Op, ResTy); 5161 } 5162 5163 if (OpNum < Record.size()) { 5164 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5165 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5166 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5167 } else if (Opc == Instruction::Trunc) { 5168 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5169 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5170 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5171 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5172 } 5173 } 5174 5175 InstructionList.push_back(I); 5176 break; 5177 } 5178 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5179 case bitc::FUNC_CODE_INST_GEP_OLD: 5180 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5181 unsigned OpNum = 0; 5182 5183 unsigned TyID; 5184 Type *Ty; 5185 GEPNoWrapFlags NW; 5186 5187 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5188 NW = toGEPNoWrapFlags(Record[OpNum++]); 5189 TyID = Record[OpNum++]; 5190 Ty = getTypeByID(TyID); 5191 } else { 5192 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5193 NW = GEPNoWrapFlags::inBounds(); 5194 TyID = InvalidTypeID; 5195 Ty = nullptr; 5196 } 5197 5198 Value *BasePtr; 5199 unsigned BasePtrTypeID; 5200 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5201 CurBB)) 5202 return error("Invalid record"); 5203 5204 if (!Ty) { 5205 TyID = getContainedTypeID(BasePtrTypeID); 5206 if (BasePtr->getType()->isVectorTy()) 5207 TyID = getContainedTypeID(TyID); 5208 Ty = getTypeByID(TyID); 5209 } 5210 5211 SmallVector<Value*, 16> GEPIdx; 5212 while (OpNum != Record.size()) { 5213 Value *Op; 5214 unsigned OpTypeID; 5215 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5216 return error("Invalid record"); 5217 GEPIdx.push_back(Op); 5218 } 5219 5220 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5221 I = GEP; 5222 5223 ResTypeID = TyID; 5224 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5225 auto GTI = std::next(gep_type_begin(I)); 5226 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5227 unsigned SubType = 0; 5228 if (GTI.isStruct()) { 5229 ConstantInt *IdxC = 5230 Idx->getType()->isVectorTy() 5231 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5232 : cast<ConstantInt>(Idx); 5233 SubType = IdxC->getZExtValue(); 5234 } 5235 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5236 ++GTI; 5237 } 5238 } 5239 5240 // At this point ResTypeID is the result element type. We need a pointer 5241 // or vector of pointer to it. 5242 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5243 if (I->getType()->isVectorTy()) 5244 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5245 5246 InstructionList.push_back(I); 5247 GEP->setNoWrapFlags(NW); 5248 break; 5249 } 5250 5251 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5252 // EXTRACTVAL: [opty, opval, n x indices] 5253 unsigned OpNum = 0; 5254 Value *Agg; 5255 unsigned AggTypeID; 5256 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5257 return error("Invalid record"); 5258 Type *Ty = Agg->getType(); 5259 5260 unsigned RecSize = Record.size(); 5261 if (OpNum == RecSize) 5262 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5263 5264 SmallVector<unsigned, 4> EXTRACTVALIdx; 5265 ResTypeID = AggTypeID; 5266 for (; OpNum != RecSize; ++OpNum) { 5267 bool IsArray = Ty->isArrayTy(); 5268 bool IsStruct = Ty->isStructTy(); 5269 uint64_t Index = Record[OpNum]; 5270 5271 if (!IsStruct && !IsArray) 5272 return error("EXTRACTVAL: Invalid type"); 5273 if ((unsigned)Index != Index) 5274 return error("Invalid value"); 5275 if (IsStruct && Index >= Ty->getStructNumElements()) 5276 return error("EXTRACTVAL: Invalid struct index"); 5277 if (IsArray && Index >= Ty->getArrayNumElements()) 5278 return error("EXTRACTVAL: Invalid array index"); 5279 EXTRACTVALIdx.push_back((unsigned)Index); 5280 5281 if (IsStruct) { 5282 Ty = Ty->getStructElementType(Index); 5283 ResTypeID = getContainedTypeID(ResTypeID, Index); 5284 } else { 5285 Ty = Ty->getArrayElementType(); 5286 ResTypeID = getContainedTypeID(ResTypeID); 5287 } 5288 } 5289 5290 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5291 InstructionList.push_back(I); 5292 break; 5293 } 5294 5295 case bitc::FUNC_CODE_INST_INSERTVAL: { 5296 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5297 unsigned OpNum = 0; 5298 Value *Agg; 5299 unsigned AggTypeID; 5300 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5301 return error("Invalid record"); 5302 Value *Val; 5303 unsigned ValTypeID; 5304 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5305 return error("Invalid record"); 5306 5307 unsigned RecSize = Record.size(); 5308 if (OpNum == RecSize) 5309 return error("INSERTVAL: Invalid instruction with 0 indices"); 5310 5311 SmallVector<unsigned, 4> INSERTVALIdx; 5312 Type *CurTy = Agg->getType(); 5313 for (; OpNum != RecSize; ++OpNum) { 5314 bool IsArray = CurTy->isArrayTy(); 5315 bool IsStruct = CurTy->isStructTy(); 5316 uint64_t Index = Record[OpNum]; 5317 5318 if (!IsStruct && !IsArray) 5319 return error("INSERTVAL: Invalid type"); 5320 if ((unsigned)Index != Index) 5321 return error("Invalid value"); 5322 if (IsStruct && Index >= CurTy->getStructNumElements()) 5323 return error("INSERTVAL: Invalid struct index"); 5324 if (IsArray && Index >= CurTy->getArrayNumElements()) 5325 return error("INSERTVAL: Invalid array index"); 5326 5327 INSERTVALIdx.push_back((unsigned)Index); 5328 if (IsStruct) 5329 CurTy = CurTy->getStructElementType(Index); 5330 else 5331 CurTy = CurTy->getArrayElementType(); 5332 } 5333 5334 if (CurTy != Val->getType()) 5335 return error("Inserted value type doesn't match aggregate type"); 5336 5337 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5338 ResTypeID = AggTypeID; 5339 InstructionList.push_back(I); 5340 break; 5341 } 5342 5343 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5344 // obsolete form of select 5345 // handles select i1 ... in old bitcode 5346 unsigned OpNum = 0; 5347 Value *TrueVal, *FalseVal, *Cond; 5348 unsigned TypeID; 5349 Type *CondType = Type::getInt1Ty(Context); 5350 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5351 CurBB) || 5352 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5353 FalseVal, CurBB) || 5354 popValue(Record, OpNum, NextValueNo, CondType, 5355 getVirtualTypeID(CondType), Cond, CurBB)) 5356 return error("Invalid record"); 5357 5358 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5359 ResTypeID = TypeID; 5360 InstructionList.push_back(I); 5361 break; 5362 } 5363 5364 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5365 // new form of select 5366 // handles select i1 or select [N x i1] 5367 unsigned OpNum = 0; 5368 Value *TrueVal, *FalseVal, *Cond; 5369 unsigned ValTypeID, CondTypeID; 5370 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5371 CurBB) || 5372 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5373 FalseVal, CurBB) || 5374 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5375 return error("Invalid record"); 5376 5377 // select condition can be either i1 or [N x i1] 5378 if (VectorType* vector_type = 5379 dyn_cast<VectorType>(Cond->getType())) { 5380 // expect <n x i1> 5381 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5382 return error("Invalid type for value"); 5383 } else { 5384 // expect i1 5385 if (Cond->getType() != Type::getInt1Ty(Context)) 5386 return error("Invalid type for value"); 5387 } 5388 5389 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5390 ResTypeID = ValTypeID; 5391 InstructionList.push_back(I); 5392 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5393 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5394 if (FMF.any()) 5395 I->setFastMathFlags(FMF); 5396 } 5397 break; 5398 } 5399 5400 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5401 unsigned OpNum = 0; 5402 Value *Vec, *Idx; 5403 unsigned VecTypeID, IdxTypeID; 5404 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5405 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5406 return error("Invalid record"); 5407 if (!Vec->getType()->isVectorTy()) 5408 return error("Invalid type for value"); 5409 I = ExtractElementInst::Create(Vec, Idx); 5410 ResTypeID = getContainedTypeID(VecTypeID); 5411 InstructionList.push_back(I); 5412 break; 5413 } 5414 5415 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5416 unsigned OpNum = 0; 5417 Value *Vec, *Elt, *Idx; 5418 unsigned VecTypeID, IdxTypeID; 5419 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5420 return error("Invalid record"); 5421 if (!Vec->getType()->isVectorTy()) 5422 return error("Invalid type for value"); 5423 if (popValue(Record, OpNum, NextValueNo, 5424 cast<VectorType>(Vec->getType())->getElementType(), 5425 getContainedTypeID(VecTypeID), Elt, CurBB) || 5426 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5427 return error("Invalid record"); 5428 I = InsertElementInst::Create(Vec, Elt, Idx); 5429 ResTypeID = VecTypeID; 5430 InstructionList.push_back(I); 5431 break; 5432 } 5433 5434 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5435 unsigned OpNum = 0; 5436 Value *Vec1, *Vec2, *Mask; 5437 unsigned Vec1TypeID; 5438 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5439 CurBB) || 5440 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5441 Vec2, CurBB)) 5442 return error("Invalid record"); 5443 5444 unsigned MaskTypeID; 5445 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5446 return error("Invalid record"); 5447 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5448 return error("Invalid type for value"); 5449 5450 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5451 ResTypeID = 5452 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5453 InstructionList.push_back(I); 5454 break; 5455 } 5456 5457 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5458 // Old form of ICmp/FCmp returning bool 5459 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5460 // both legal on vectors but had different behaviour. 5461 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5462 // FCmp/ICmp returning bool or vector of bool 5463 5464 unsigned OpNum = 0; 5465 Value *LHS, *RHS; 5466 unsigned LHSTypeID; 5467 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5468 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5469 CurBB)) 5470 return error("Invalid record"); 5471 5472 if (OpNum >= Record.size()) 5473 return error( 5474 "Invalid record: operand number exceeded available operands"); 5475 5476 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5477 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5478 FastMathFlags FMF; 5479 if (IsFP && Record.size() > OpNum+1) 5480 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5481 5482 if (IsFP) { 5483 if (!CmpInst::isFPPredicate(PredVal)) 5484 return error("Invalid fcmp predicate"); 5485 I = new FCmpInst(PredVal, LHS, RHS); 5486 } else { 5487 if (!CmpInst::isIntPredicate(PredVal)) 5488 return error("Invalid icmp predicate"); 5489 I = new ICmpInst(PredVal, LHS, RHS); 5490 if (Record.size() > OpNum + 1 && 5491 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN))) 5492 cast<ICmpInst>(I)->setSameSign(); 5493 } 5494 5495 if (OpNum + 1 != Record.size()) 5496 return error("Invalid record"); 5497 5498 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5499 if (LHS->getType()->isVectorTy()) 5500 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5501 5502 if (FMF.any()) 5503 I->setFastMathFlags(FMF); 5504 InstructionList.push_back(I); 5505 break; 5506 } 5507 5508 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5509 { 5510 unsigned Size = Record.size(); 5511 if (Size == 0) { 5512 I = ReturnInst::Create(Context); 5513 InstructionList.push_back(I); 5514 break; 5515 } 5516 5517 unsigned OpNum = 0; 5518 Value *Op = nullptr; 5519 unsigned OpTypeID; 5520 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5521 return error("Invalid record"); 5522 if (OpNum != Record.size()) 5523 return error("Invalid record"); 5524 5525 I = ReturnInst::Create(Context, Op); 5526 InstructionList.push_back(I); 5527 break; 5528 } 5529 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5530 if (Record.size() != 1 && Record.size() != 3) 5531 return error("Invalid record"); 5532 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5533 if (!TrueDest) 5534 return error("Invalid record"); 5535 5536 if (Record.size() == 1) { 5537 I = BranchInst::Create(TrueDest); 5538 InstructionList.push_back(I); 5539 } 5540 else { 5541 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5542 Type *CondType = Type::getInt1Ty(Context); 5543 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5544 getVirtualTypeID(CondType), CurBB); 5545 if (!FalseDest || !Cond) 5546 return error("Invalid record"); 5547 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5548 InstructionList.push_back(I); 5549 } 5550 break; 5551 } 5552 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5553 if (Record.size() != 1 && Record.size() != 2) 5554 return error("Invalid record"); 5555 unsigned Idx = 0; 5556 Type *TokenTy = Type::getTokenTy(Context); 5557 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5558 getVirtualTypeID(TokenTy), CurBB); 5559 if (!CleanupPad) 5560 return error("Invalid record"); 5561 BasicBlock *UnwindDest = nullptr; 5562 if (Record.size() == 2) { 5563 UnwindDest = getBasicBlock(Record[Idx++]); 5564 if (!UnwindDest) 5565 return error("Invalid record"); 5566 } 5567 5568 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5569 InstructionList.push_back(I); 5570 break; 5571 } 5572 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5573 if (Record.size() != 2) 5574 return error("Invalid record"); 5575 unsigned Idx = 0; 5576 Type *TokenTy = Type::getTokenTy(Context); 5577 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5578 getVirtualTypeID(TokenTy), CurBB); 5579 if (!CatchPad) 5580 return error("Invalid record"); 5581 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5582 if (!BB) 5583 return error("Invalid record"); 5584 5585 I = CatchReturnInst::Create(CatchPad, BB); 5586 InstructionList.push_back(I); 5587 break; 5588 } 5589 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5590 // We must have, at minimum, the outer scope and the number of arguments. 5591 if (Record.size() < 2) 5592 return error("Invalid record"); 5593 5594 unsigned Idx = 0; 5595 5596 Type *TokenTy = Type::getTokenTy(Context); 5597 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5598 getVirtualTypeID(TokenTy), CurBB); 5599 if (!ParentPad) 5600 return error("Invalid record"); 5601 5602 unsigned NumHandlers = Record[Idx++]; 5603 5604 SmallVector<BasicBlock *, 2> Handlers; 5605 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5606 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5607 if (!BB) 5608 return error("Invalid record"); 5609 Handlers.push_back(BB); 5610 } 5611 5612 BasicBlock *UnwindDest = nullptr; 5613 if (Idx + 1 == Record.size()) { 5614 UnwindDest = getBasicBlock(Record[Idx++]); 5615 if (!UnwindDest) 5616 return error("Invalid record"); 5617 } 5618 5619 if (Record.size() != Idx) 5620 return error("Invalid record"); 5621 5622 auto *CatchSwitch = 5623 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5624 for (BasicBlock *Handler : Handlers) 5625 CatchSwitch->addHandler(Handler); 5626 I = CatchSwitch; 5627 ResTypeID = getVirtualTypeID(I->getType()); 5628 InstructionList.push_back(I); 5629 break; 5630 } 5631 case bitc::FUNC_CODE_INST_CATCHPAD: 5632 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5633 // We must have, at minimum, the outer scope and the number of arguments. 5634 if (Record.size() < 2) 5635 return error("Invalid record"); 5636 5637 unsigned Idx = 0; 5638 5639 Type *TokenTy = Type::getTokenTy(Context); 5640 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5641 getVirtualTypeID(TokenTy), CurBB); 5642 if (!ParentPad) 5643 return error("Invald record"); 5644 5645 unsigned NumArgOperands = Record[Idx++]; 5646 5647 SmallVector<Value *, 2> Args; 5648 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5649 Value *Val; 5650 unsigned ValTypeID; 5651 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5652 return error("Invalid record"); 5653 Args.push_back(Val); 5654 } 5655 5656 if (Record.size() != Idx) 5657 return error("Invalid record"); 5658 5659 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5660 I = CleanupPadInst::Create(ParentPad, Args); 5661 else 5662 I = CatchPadInst::Create(ParentPad, Args); 5663 ResTypeID = getVirtualTypeID(I->getType()); 5664 InstructionList.push_back(I); 5665 break; 5666 } 5667 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5668 // Check magic 5669 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5670 // "New" SwitchInst format with case ranges. The changes to write this 5671 // format were reverted but we still recognize bitcode that uses it. 5672 // Hopefully someday we will have support for case ranges and can use 5673 // this format again. 5674 5675 unsigned OpTyID = Record[1]; 5676 Type *OpTy = getTypeByID(OpTyID); 5677 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5678 5679 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5680 BasicBlock *Default = getBasicBlock(Record[3]); 5681 if (!OpTy || !Cond || !Default) 5682 return error("Invalid record"); 5683 5684 unsigned NumCases = Record[4]; 5685 5686 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5687 InstructionList.push_back(SI); 5688 5689 unsigned CurIdx = 5; 5690 for (unsigned i = 0; i != NumCases; ++i) { 5691 SmallVector<ConstantInt*, 1> CaseVals; 5692 unsigned NumItems = Record[CurIdx++]; 5693 for (unsigned ci = 0; ci != NumItems; ++ci) { 5694 bool isSingleNumber = Record[CurIdx++]; 5695 5696 APInt Low; 5697 unsigned ActiveWords = 1; 5698 if (ValueBitWidth > 64) 5699 ActiveWords = Record[CurIdx++]; 5700 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5701 ValueBitWidth); 5702 CurIdx += ActiveWords; 5703 5704 if (!isSingleNumber) { 5705 ActiveWords = 1; 5706 if (ValueBitWidth > 64) 5707 ActiveWords = Record[CurIdx++]; 5708 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5709 ValueBitWidth); 5710 CurIdx += ActiveWords; 5711 5712 // FIXME: It is not clear whether values in the range should be 5713 // compared as signed or unsigned values. The partially 5714 // implemented changes that used this format in the past used 5715 // unsigned comparisons. 5716 for ( ; Low.ule(High); ++Low) 5717 CaseVals.push_back(ConstantInt::get(Context, Low)); 5718 } else 5719 CaseVals.push_back(ConstantInt::get(Context, Low)); 5720 } 5721 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5722 for (ConstantInt *Cst : CaseVals) 5723 SI->addCase(Cst, DestBB); 5724 } 5725 I = SI; 5726 break; 5727 } 5728 5729 // Old SwitchInst format without case ranges. 5730 5731 if (Record.size() < 3 || (Record.size() & 1) == 0) 5732 return error("Invalid record"); 5733 unsigned OpTyID = Record[0]; 5734 Type *OpTy = getTypeByID(OpTyID); 5735 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5736 BasicBlock *Default = getBasicBlock(Record[2]); 5737 if (!OpTy || !Cond || !Default) 5738 return error("Invalid record"); 5739 unsigned NumCases = (Record.size()-3)/2; 5740 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5741 InstructionList.push_back(SI); 5742 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5743 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5744 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5745 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5746 if (!CaseVal || !DestBB) { 5747 delete SI; 5748 return error("Invalid record"); 5749 } 5750 SI->addCase(CaseVal, DestBB); 5751 } 5752 I = SI; 5753 break; 5754 } 5755 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5756 if (Record.size() < 2) 5757 return error("Invalid record"); 5758 unsigned OpTyID = Record[0]; 5759 Type *OpTy = getTypeByID(OpTyID); 5760 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5761 if (!OpTy || !Address) 5762 return error("Invalid record"); 5763 unsigned NumDests = Record.size()-2; 5764 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5765 InstructionList.push_back(IBI); 5766 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5767 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5768 IBI->addDestination(DestBB); 5769 } else { 5770 delete IBI; 5771 return error("Invalid record"); 5772 } 5773 } 5774 I = IBI; 5775 break; 5776 } 5777 5778 case bitc::FUNC_CODE_INST_INVOKE: { 5779 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5780 if (Record.size() < 4) 5781 return error("Invalid record"); 5782 unsigned OpNum = 0; 5783 AttributeList PAL = getAttributes(Record[OpNum++]); 5784 unsigned CCInfo = Record[OpNum++]; 5785 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5786 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5787 5788 unsigned FTyID = InvalidTypeID; 5789 FunctionType *FTy = nullptr; 5790 if ((CCInfo >> 13) & 1) { 5791 FTyID = Record[OpNum++]; 5792 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5793 if (!FTy) 5794 return error("Explicit invoke type is not a function type"); 5795 } 5796 5797 Value *Callee; 5798 unsigned CalleeTypeID; 5799 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5800 CurBB)) 5801 return error("Invalid record"); 5802 5803 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5804 if (!CalleeTy) 5805 return error("Callee is not a pointer"); 5806 if (!FTy) { 5807 FTyID = getContainedTypeID(CalleeTypeID); 5808 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5809 if (!FTy) 5810 return error("Callee is not of pointer to function type"); 5811 } 5812 if (Record.size() < FTy->getNumParams() + OpNum) 5813 return error("Insufficient operands to call"); 5814 5815 SmallVector<Value*, 16> Ops; 5816 SmallVector<unsigned, 16> ArgTyIDs; 5817 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5818 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5819 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5820 ArgTyID, CurBB)); 5821 ArgTyIDs.push_back(ArgTyID); 5822 if (!Ops.back()) 5823 return error("Invalid record"); 5824 } 5825 5826 if (!FTy->isVarArg()) { 5827 if (Record.size() != OpNum) 5828 return error("Invalid record"); 5829 } else { 5830 // Read type/value pairs for varargs params. 5831 while (OpNum != Record.size()) { 5832 Value *Op; 5833 unsigned OpTypeID; 5834 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5835 return error("Invalid record"); 5836 Ops.push_back(Op); 5837 ArgTyIDs.push_back(OpTypeID); 5838 } 5839 } 5840 5841 // Upgrade the bundles if needed. 5842 if (!OperandBundles.empty()) 5843 UpgradeOperandBundles(OperandBundles); 5844 5845 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5846 OperandBundles); 5847 ResTypeID = getContainedTypeID(FTyID); 5848 OperandBundles.clear(); 5849 InstructionList.push_back(I); 5850 cast<InvokeInst>(I)->setCallingConv( 5851 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5852 cast<InvokeInst>(I)->setAttributes(PAL); 5853 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5854 I->deleteValue(); 5855 return Err; 5856 } 5857 5858 break; 5859 } 5860 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5861 unsigned Idx = 0; 5862 Value *Val = nullptr; 5863 unsigned ValTypeID; 5864 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5865 return error("Invalid record"); 5866 I = ResumeInst::Create(Val); 5867 InstructionList.push_back(I); 5868 break; 5869 } 5870 case bitc::FUNC_CODE_INST_CALLBR: { 5871 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5872 unsigned OpNum = 0; 5873 AttributeList PAL = getAttributes(Record[OpNum++]); 5874 unsigned CCInfo = Record[OpNum++]; 5875 5876 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5877 unsigned NumIndirectDests = Record[OpNum++]; 5878 SmallVector<BasicBlock *, 16> IndirectDests; 5879 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5880 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5881 5882 unsigned FTyID = InvalidTypeID; 5883 FunctionType *FTy = nullptr; 5884 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5885 FTyID = Record[OpNum++]; 5886 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5887 if (!FTy) 5888 return error("Explicit call type is not a function type"); 5889 } 5890 5891 Value *Callee; 5892 unsigned CalleeTypeID; 5893 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5894 CurBB)) 5895 return error("Invalid record"); 5896 5897 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5898 if (!OpTy) 5899 return error("Callee is not a pointer type"); 5900 if (!FTy) { 5901 FTyID = getContainedTypeID(CalleeTypeID); 5902 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5903 if (!FTy) 5904 return error("Callee is not of pointer to function type"); 5905 } 5906 if (Record.size() < FTy->getNumParams() + OpNum) 5907 return error("Insufficient operands to call"); 5908 5909 SmallVector<Value*, 16> Args; 5910 SmallVector<unsigned, 16> ArgTyIDs; 5911 // Read the fixed params. 5912 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5913 Value *Arg; 5914 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5915 if (FTy->getParamType(i)->isLabelTy()) 5916 Arg = getBasicBlock(Record[OpNum]); 5917 else 5918 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5919 ArgTyID, CurBB); 5920 if (!Arg) 5921 return error("Invalid record"); 5922 Args.push_back(Arg); 5923 ArgTyIDs.push_back(ArgTyID); 5924 } 5925 5926 // Read type/value pairs for varargs params. 5927 if (!FTy->isVarArg()) { 5928 if (OpNum != Record.size()) 5929 return error("Invalid record"); 5930 } else { 5931 while (OpNum != Record.size()) { 5932 Value *Op; 5933 unsigned OpTypeID; 5934 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5935 return error("Invalid record"); 5936 Args.push_back(Op); 5937 ArgTyIDs.push_back(OpTypeID); 5938 } 5939 } 5940 5941 // Upgrade the bundles if needed. 5942 if (!OperandBundles.empty()) 5943 UpgradeOperandBundles(OperandBundles); 5944 5945 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5946 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5947 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5948 return CI.Type == InlineAsm::isLabel; 5949 }; 5950 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5951 // Upgrade explicit blockaddress arguments to label constraints. 5952 // Verify that the last arguments are blockaddress arguments that 5953 // match the indirect destinations. Clang always generates callbr 5954 // in this form. We could support reordering with more effort. 5955 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5956 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5957 unsigned LabelNo = ArgNo - FirstBlockArg; 5958 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5959 if (!BA || BA->getFunction() != F || 5960 LabelNo > IndirectDests.size() || 5961 BA->getBasicBlock() != IndirectDests[LabelNo]) 5962 return error("callbr argument does not match indirect dest"); 5963 } 5964 5965 // Remove blockaddress arguments. 5966 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5967 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5968 5969 // Recreate the function type with less arguments. 5970 SmallVector<Type *> ArgTys; 5971 for (Value *Arg : Args) 5972 ArgTys.push_back(Arg->getType()); 5973 FTy = 5974 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5975 5976 // Update constraint string to use label constraints. 5977 std::string Constraints = IA->getConstraintString(); 5978 unsigned ArgNo = 0; 5979 size_t Pos = 0; 5980 for (const auto &CI : ConstraintInfo) { 5981 if (CI.hasArg()) { 5982 if (ArgNo >= FirstBlockArg) 5983 Constraints.insert(Pos, "!"); 5984 ++ArgNo; 5985 } 5986 5987 // Go to next constraint in string. 5988 Pos = Constraints.find(',', Pos); 5989 if (Pos == std::string::npos) 5990 break; 5991 ++Pos; 5992 } 5993 5994 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5995 IA->hasSideEffects(), IA->isAlignStack(), 5996 IA->getDialect(), IA->canThrow()); 5997 } 5998 } 5999 6000 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 6001 OperandBundles); 6002 ResTypeID = getContainedTypeID(FTyID); 6003 OperandBundles.clear(); 6004 InstructionList.push_back(I); 6005 cast<CallBrInst>(I)->setCallingConv( 6006 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6007 cast<CallBrInst>(I)->setAttributes(PAL); 6008 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6009 I->deleteValue(); 6010 return Err; 6011 } 6012 break; 6013 } 6014 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6015 I = new UnreachableInst(Context); 6016 InstructionList.push_back(I); 6017 break; 6018 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6019 if (Record.empty()) 6020 return error("Invalid phi record"); 6021 // The first record specifies the type. 6022 unsigned TyID = Record[0]; 6023 Type *Ty = getTypeByID(TyID); 6024 if (!Ty) 6025 return error("Invalid phi record"); 6026 6027 // Phi arguments are pairs of records of [value, basic block]. 6028 // There is an optional final record for fast-math-flags if this phi has a 6029 // floating-point type. 6030 size_t NumArgs = (Record.size() - 1) / 2; 6031 PHINode *PN = PHINode::Create(Ty, NumArgs); 6032 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6033 PN->deleteValue(); 6034 return error("Invalid phi record"); 6035 } 6036 InstructionList.push_back(PN); 6037 6038 SmallDenseMap<BasicBlock *, Value *> Args; 6039 for (unsigned i = 0; i != NumArgs; i++) { 6040 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6041 if (!BB) { 6042 PN->deleteValue(); 6043 return error("Invalid phi BB"); 6044 } 6045 6046 // Phi nodes may contain the same predecessor multiple times, in which 6047 // case the incoming value must be identical. Directly reuse the already 6048 // seen value here, to avoid expanding a constant expression multiple 6049 // times. 6050 auto It = Args.find(BB); 6051 if (It != Args.end()) { 6052 PN->addIncoming(It->second, BB); 6053 continue; 6054 } 6055 6056 // If there already is a block for this edge (from a different phi), 6057 // use it. 6058 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6059 if (!EdgeBB) { 6060 // Otherwise, use a temporary block (that we will discard if it 6061 // turns out to be unnecessary). 6062 if (!PhiConstExprBB) 6063 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6064 EdgeBB = PhiConstExprBB; 6065 } 6066 6067 // With the new function encoding, it is possible that operands have 6068 // negative IDs (for forward references). Use a signed VBR 6069 // representation to keep the encoding small. 6070 Value *V; 6071 if (UseRelativeIDs) 6072 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6073 else 6074 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6075 if (!V) { 6076 PN->deleteValue(); 6077 PhiConstExprBB->eraseFromParent(); 6078 return error("Invalid phi record"); 6079 } 6080 6081 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6082 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6083 PhiConstExprBB = nullptr; 6084 } 6085 PN->addIncoming(V, BB); 6086 Args.insert({BB, V}); 6087 } 6088 I = PN; 6089 ResTypeID = TyID; 6090 6091 // If there are an even number of records, the final record must be FMF. 6092 if (Record.size() % 2 == 0) { 6093 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6094 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6095 if (FMF.any()) 6096 I->setFastMathFlags(FMF); 6097 } 6098 6099 break; 6100 } 6101 6102 case bitc::FUNC_CODE_INST_LANDINGPAD: 6103 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6104 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6105 unsigned Idx = 0; 6106 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6107 if (Record.size() < 3) 6108 return error("Invalid record"); 6109 } else { 6110 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6111 if (Record.size() < 4) 6112 return error("Invalid record"); 6113 } 6114 ResTypeID = Record[Idx++]; 6115 Type *Ty = getTypeByID(ResTypeID); 6116 if (!Ty) 6117 return error("Invalid record"); 6118 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6119 Value *PersFn = nullptr; 6120 unsigned PersFnTypeID; 6121 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6122 nullptr)) 6123 return error("Invalid record"); 6124 6125 if (!F->hasPersonalityFn()) 6126 F->setPersonalityFn(cast<Constant>(PersFn)); 6127 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6128 return error("Personality function mismatch"); 6129 } 6130 6131 bool IsCleanup = !!Record[Idx++]; 6132 unsigned NumClauses = Record[Idx++]; 6133 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6134 LP->setCleanup(IsCleanup); 6135 for (unsigned J = 0; J != NumClauses; ++J) { 6136 LandingPadInst::ClauseType CT = 6137 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6138 Value *Val; 6139 unsigned ValTypeID; 6140 6141 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6142 nullptr)) { 6143 delete LP; 6144 return error("Invalid record"); 6145 } 6146 6147 assert((CT != LandingPadInst::Catch || 6148 !isa<ArrayType>(Val->getType())) && 6149 "Catch clause has a invalid type!"); 6150 assert((CT != LandingPadInst::Filter || 6151 isa<ArrayType>(Val->getType())) && 6152 "Filter clause has invalid type!"); 6153 LP->addClause(cast<Constant>(Val)); 6154 } 6155 6156 I = LP; 6157 InstructionList.push_back(I); 6158 break; 6159 } 6160 6161 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6162 if (Record.size() != 4 && Record.size() != 5) 6163 return error("Invalid record"); 6164 using APV = AllocaPackedValues; 6165 const uint64_t Rec = Record[3]; 6166 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6167 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6168 unsigned TyID = Record[0]; 6169 Type *Ty = getTypeByID(TyID); 6170 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6171 TyID = getContainedTypeID(TyID); 6172 Ty = getTypeByID(TyID); 6173 if (!Ty) 6174 return error("Missing element type for old-style alloca"); 6175 } 6176 unsigned OpTyID = Record[1]; 6177 Type *OpTy = getTypeByID(OpTyID); 6178 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6179 MaybeAlign Align; 6180 uint64_t AlignExp = 6181 Bitfield::get<APV::AlignLower>(Rec) | 6182 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6183 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6184 return Err; 6185 } 6186 if (!Ty || !Size) 6187 return error("Invalid record"); 6188 6189 const DataLayout &DL = TheModule->getDataLayout(); 6190 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6191 6192 SmallPtrSet<Type *, 4> Visited; 6193 if (!Align && !Ty->isSized(&Visited)) 6194 return error("alloca of unsized type"); 6195 if (!Align) 6196 Align = DL.getPrefTypeAlign(Ty); 6197 6198 if (!Size->getType()->isIntegerTy()) 6199 return error("alloca element count must have integer type"); 6200 6201 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6202 AI->setUsedWithInAlloca(InAlloca); 6203 AI->setSwiftError(SwiftError); 6204 I = AI; 6205 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6206 InstructionList.push_back(I); 6207 break; 6208 } 6209 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6210 unsigned OpNum = 0; 6211 Value *Op; 6212 unsigned OpTypeID; 6213 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6214 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6215 return error("Invalid record"); 6216 6217 if (!isa<PointerType>(Op->getType())) 6218 return error("Load operand is not a pointer type"); 6219 6220 Type *Ty = nullptr; 6221 if (OpNum + 3 == Record.size()) { 6222 ResTypeID = Record[OpNum++]; 6223 Ty = getTypeByID(ResTypeID); 6224 } else { 6225 ResTypeID = getContainedTypeID(OpTypeID); 6226 Ty = getTypeByID(ResTypeID); 6227 } 6228 6229 if (!Ty) 6230 return error("Missing load type"); 6231 6232 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6233 return Err; 6234 6235 MaybeAlign Align; 6236 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6237 return Err; 6238 SmallPtrSet<Type *, 4> Visited; 6239 if (!Align && !Ty->isSized(&Visited)) 6240 return error("load of unsized type"); 6241 if (!Align) 6242 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6243 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6244 InstructionList.push_back(I); 6245 break; 6246 } 6247 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6248 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6249 unsigned OpNum = 0; 6250 Value *Op; 6251 unsigned OpTypeID; 6252 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6253 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6254 return error("Invalid record"); 6255 6256 if (!isa<PointerType>(Op->getType())) 6257 return error("Load operand is not a pointer type"); 6258 6259 Type *Ty = nullptr; 6260 if (OpNum + 5 == Record.size()) { 6261 ResTypeID = Record[OpNum++]; 6262 Ty = getTypeByID(ResTypeID); 6263 } else { 6264 ResTypeID = getContainedTypeID(OpTypeID); 6265 Ty = getTypeByID(ResTypeID); 6266 } 6267 6268 if (!Ty) 6269 return error("Missing atomic load type"); 6270 6271 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6272 return Err; 6273 6274 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6275 if (Ordering == AtomicOrdering::NotAtomic || 6276 Ordering == AtomicOrdering::Release || 6277 Ordering == AtomicOrdering::AcquireRelease) 6278 return error("Invalid record"); 6279 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6280 return error("Invalid record"); 6281 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6282 6283 MaybeAlign Align; 6284 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6285 return Err; 6286 if (!Align) 6287 return error("Alignment missing from atomic load"); 6288 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6289 InstructionList.push_back(I); 6290 break; 6291 } 6292 case bitc::FUNC_CODE_INST_STORE: 6293 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6294 unsigned OpNum = 0; 6295 Value *Val, *Ptr; 6296 unsigned PtrTypeID, ValTypeID; 6297 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6298 return error("Invalid record"); 6299 6300 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6301 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6302 return error("Invalid record"); 6303 } else { 6304 ValTypeID = getContainedTypeID(PtrTypeID); 6305 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6306 ValTypeID, Val, CurBB)) 6307 return error("Invalid record"); 6308 } 6309 6310 if (OpNum + 2 != Record.size()) 6311 return error("Invalid record"); 6312 6313 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6314 return Err; 6315 MaybeAlign Align; 6316 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6317 return Err; 6318 SmallPtrSet<Type *, 4> Visited; 6319 if (!Align && !Val->getType()->isSized(&Visited)) 6320 return error("store of unsized type"); 6321 if (!Align) 6322 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6323 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6324 InstructionList.push_back(I); 6325 break; 6326 } 6327 case bitc::FUNC_CODE_INST_STOREATOMIC: 6328 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6329 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6330 unsigned OpNum = 0; 6331 Value *Val, *Ptr; 6332 unsigned PtrTypeID, ValTypeID; 6333 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6334 !isa<PointerType>(Ptr->getType())) 6335 return error("Invalid record"); 6336 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6337 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6338 return error("Invalid record"); 6339 } else { 6340 ValTypeID = getContainedTypeID(PtrTypeID); 6341 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6342 ValTypeID, Val, CurBB)) 6343 return error("Invalid record"); 6344 } 6345 6346 if (OpNum + 4 != Record.size()) 6347 return error("Invalid record"); 6348 6349 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6350 return Err; 6351 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6352 if (Ordering == AtomicOrdering::NotAtomic || 6353 Ordering == AtomicOrdering::Acquire || 6354 Ordering == AtomicOrdering::AcquireRelease) 6355 return error("Invalid record"); 6356 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6357 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6358 return error("Invalid record"); 6359 6360 MaybeAlign Align; 6361 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6362 return Err; 6363 if (!Align) 6364 return error("Alignment missing from atomic store"); 6365 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6366 InstructionList.push_back(I); 6367 break; 6368 } 6369 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6370 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6371 // failure_ordering?, weak?] 6372 const size_t NumRecords = Record.size(); 6373 unsigned OpNum = 0; 6374 Value *Ptr = nullptr; 6375 unsigned PtrTypeID; 6376 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6377 return error("Invalid record"); 6378 6379 if (!isa<PointerType>(Ptr->getType())) 6380 return error("Cmpxchg operand is not a pointer type"); 6381 6382 Value *Cmp = nullptr; 6383 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6384 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6385 CmpTypeID, Cmp, CurBB)) 6386 return error("Invalid record"); 6387 6388 Value *New = nullptr; 6389 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6390 New, CurBB) || 6391 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6392 return error("Invalid record"); 6393 6394 const AtomicOrdering SuccessOrdering = 6395 getDecodedOrdering(Record[OpNum + 1]); 6396 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6397 SuccessOrdering == AtomicOrdering::Unordered) 6398 return error("Invalid record"); 6399 6400 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6401 6402 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6403 return Err; 6404 6405 const AtomicOrdering FailureOrdering = 6406 NumRecords < 7 6407 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6408 : getDecodedOrdering(Record[OpNum + 3]); 6409 6410 if (FailureOrdering == AtomicOrdering::NotAtomic || 6411 FailureOrdering == AtomicOrdering::Unordered) 6412 return error("Invalid record"); 6413 6414 const Align Alignment( 6415 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6416 6417 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6418 FailureOrdering, SSID); 6419 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6420 6421 if (NumRecords < 8) { 6422 // Before weak cmpxchgs existed, the instruction simply returned the 6423 // value loaded from memory, so bitcode files from that era will be 6424 // expecting the first component of a modern cmpxchg. 6425 I->insertInto(CurBB, CurBB->end()); 6426 I = ExtractValueInst::Create(I, 0); 6427 ResTypeID = CmpTypeID; 6428 } else { 6429 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6430 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6431 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6432 } 6433 6434 InstructionList.push_back(I); 6435 break; 6436 } 6437 case bitc::FUNC_CODE_INST_CMPXCHG: { 6438 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6439 // failure_ordering, weak, align?] 6440 const size_t NumRecords = Record.size(); 6441 unsigned OpNum = 0; 6442 Value *Ptr = nullptr; 6443 unsigned PtrTypeID; 6444 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6445 return error("Invalid record"); 6446 6447 if (!isa<PointerType>(Ptr->getType())) 6448 return error("Cmpxchg operand is not a pointer type"); 6449 6450 Value *Cmp = nullptr; 6451 unsigned CmpTypeID; 6452 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6453 return error("Invalid record"); 6454 6455 Value *Val = nullptr; 6456 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6457 CurBB)) 6458 return error("Invalid record"); 6459 6460 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6461 return error("Invalid record"); 6462 6463 const bool IsVol = Record[OpNum]; 6464 6465 const AtomicOrdering SuccessOrdering = 6466 getDecodedOrdering(Record[OpNum + 1]); 6467 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6468 return error("Invalid cmpxchg success ordering"); 6469 6470 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6471 6472 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6473 return Err; 6474 6475 const AtomicOrdering FailureOrdering = 6476 getDecodedOrdering(Record[OpNum + 3]); 6477 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6478 return error("Invalid cmpxchg failure ordering"); 6479 6480 const bool IsWeak = Record[OpNum + 4]; 6481 6482 MaybeAlign Alignment; 6483 6484 if (NumRecords == (OpNum + 6)) { 6485 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6486 return Err; 6487 } 6488 if (!Alignment) 6489 Alignment = 6490 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6491 6492 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6493 FailureOrdering, SSID); 6494 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6495 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6496 6497 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6498 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6499 6500 InstructionList.push_back(I); 6501 break; 6502 } 6503 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6504 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6505 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6506 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6507 const size_t NumRecords = Record.size(); 6508 unsigned OpNum = 0; 6509 6510 Value *Ptr = nullptr; 6511 unsigned PtrTypeID; 6512 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6513 return error("Invalid record"); 6514 6515 if (!isa<PointerType>(Ptr->getType())) 6516 return error("Invalid record"); 6517 6518 Value *Val = nullptr; 6519 unsigned ValTypeID = InvalidTypeID; 6520 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6521 ValTypeID = getContainedTypeID(PtrTypeID); 6522 if (popValue(Record, OpNum, NextValueNo, 6523 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6524 return error("Invalid record"); 6525 } else { 6526 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6527 return error("Invalid record"); 6528 } 6529 6530 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6531 return error("Invalid record"); 6532 6533 const AtomicRMWInst::BinOp Operation = 6534 getDecodedRMWOperation(Record[OpNum]); 6535 if (Operation < AtomicRMWInst::FIRST_BINOP || 6536 Operation > AtomicRMWInst::LAST_BINOP) 6537 return error("Invalid record"); 6538 6539 const bool IsVol = Record[OpNum + 1]; 6540 6541 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6542 if (Ordering == AtomicOrdering::NotAtomic || 6543 Ordering == AtomicOrdering::Unordered) 6544 return error("Invalid record"); 6545 6546 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6547 6548 MaybeAlign Alignment; 6549 6550 if (NumRecords == (OpNum + 5)) { 6551 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6552 return Err; 6553 } 6554 6555 if (!Alignment) 6556 Alignment = 6557 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6558 6559 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6560 ResTypeID = ValTypeID; 6561 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6562 6563 InstructionList.push_back(I); 6564 break; 6565 } 6566 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6567 if (2 != Record.size()) 6568 return error("Invalid record"); 6569 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6570 if (Ordering == AtomicOrdering::NotAtomic || 6571 Ordering == AtomicOrdering::Unordered || 6572 Ordering == AtomicOrdering::Monotonic) 6573 return error("Invalid record"); 6574 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6575 I = new FenceInst(Context, Ordering, SSID); 6576 InstructionList.push_back(I); 6577 break; 6578 } 6579 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6580 // DbgLabelRecords are placed after the Instructions that they are 6581 // attached to. 6582 SeenDebugRecord = true; 6583 Instruction *Inst = getLastInstruction(); 6584 if (!Inst) 6585 return error("Invalid dbg record: missing instruction"); 6586 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6587 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6588 Inst->getParent()->insertDbgRecordBefore( 6589 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6590 continue; // This isn't an instruction. 6591 } 6592 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6593 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6594 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6595 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6596 // DbgVariableRecords are placed after the Instructions that they are 6597 // attached to. 6598 SeenDebugRecord = true; 6599 Instruction *Inst = getLastInstruction(); 6600 if (!Inst) 6601 return error("Invalid dbg record: missing instruction"); 6602 6603 // First 3 fields are common to all kinds: 6604 // DILocation, DILocalVariable, DIExpression 6605 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6606 // ..., LocationMetadata 6607 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6608 // ..., Value 6609 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6610 // ..., LocationMetadata 6611 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6612 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6613 unsigned Slot = 0; 6614 // Common fields (0-2). 6615 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6616 DILocalVariable *Var = 6617 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6618 DIExpression *Expr = 6619 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6620 6621 // Union field (3: LocationMetadata | Value). 6622 Metadata *RawLocation = nullptr; 6623 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6624 Value *V = nullptr; 6625 unsigned TyID = 0; 6626 // We never expect to see a fwd reference value here because 6627 // use-before-defs are encoded with the standard non-abbrev record 6628 // type (they'd require encoding the type too, and they're rare). As a 6629 // result, getValueTypePair only ever increments Slot by one here (once 6630 // for the value, never twice for value and type). 6631 unsigned SlotBefore = Slot; 6632 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6633 return error("Invalid dbg record: invalid value"); 6634 (void)SlotBefore; 6635 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6636 RawLocation = ValueAsMetadata::get(V); 6637 } else { 6638 RawLocation = getFnMetadataByID(Record[Slot++]); 6639 } 6640 6641 DbgVariableRecord *DVR = nullptr; 6642 switch (BitCode) { 6643 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6644 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6645 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6646 DbgVariableRecord::LocationType::Value); 6647 break; 6648 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6649 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6650 DbgVariableRecord::LocationType::Declare); 6651 break; 6652 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6653 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6654 DIExpression *AddrExpr = 6655 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6656 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6657 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6658 DIL); 6659 break; 6660 } 6661 default: 6662 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6663 } 6664 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6665 continue; // This isn't an instruction. 6666 } 6667 case bitc::FUNC_CODE_INST_CALL: { 6668 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6669 if (Record.size() < 3) 6670 return error("Invalid record"); 6671 6672 unsigned OpNum = 0; 6673 AttributeList PAL = getAttributes(Record[OpNum++]); 6674 unsigned CCInfo = Record[OpNum++]; 6675 6676 FastMathFlags FMF; 6677 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6678 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6679 if (!FMF.any()) 6680 return error("Fast math flags indicator set for call with no FMF"); 6681 } 6682 6683 unsigned FTyID = InvalidTypeID; 6684 FunctionType *FTy = nullptr; 6685 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6686 FTyID = Record[OpNum++]; 6687 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6688 if (!FTy) 6689 return error("Explicit call type is not a function type"); 6690 } 6691 6692 Value *Callee; 6693 unsigned CalleeTypeID; 6694 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6695 CurBB)) 6696 return error("Invalid record"); 6697 6698 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6699 if (!OpTy) 6700 return error("Callee is not a pointer type"); 6701 if (!FTy) { 6702 FTyID = getContainedTypeID(CalleeTypeID); 6703 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6704 if (!FTy) 6705 return error("Callee is not of pointer to function type"); 6706 } 6707 if (Record.size() < FTy->getNumParams() + OpNum) 6708 return error("Insufficient operands to call"); 6709 6710 SmallVector<Value*, 16> Args; 6711 SmallVector<unsigned, 16> ArgTyIDs; 6712 // Read the fixed params. 6713 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6714 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6715 if (FTy->getParamType(i)->isLabelTy()) 6716 Args.push_back(getBasicBlock(Record[OpNum])); 6717 else 6718 Args.push_back(getValue(Record, OpNum, NextValueNo, 6719 FTy->getParamType(i), ArgTyID, CurBB)); 6720 ArgTyIDs.push_back(ArgTyID); 6721 if (!Args.back()) 6722 return error("Invalid record"); 6723 } 6724 6725 // Read type/value pairs for varargs params. 6726 if (!FTy->isVarArg()) { 6727 if (OpNum != Record.size()) 6728 return error("Invalid record"); 6729 } else { 6730 while (OpNum != Record.size()) { 6731 Value *Op; 6732 unsigned OpTypeID; 6733 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6734 return error("Invalid record"); 6735 Args.push_back(Op); 6736 ArgTyIDs.push_back(OpTypeID); 6737 } 6738 } 6739 6740 // Upgrade the bundles if needed. 6741 if (!OperandBundles.empty()) 6742 UpgradeOperandBundles(OperandBundles); 6743 6744 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6745 ResTypeID = getContainedTypeID(FTyID); 6746 OperandBundles.clear(); 6747 InstructionList.push_back(I); 6748 cast<CallInst>(I)->setCallingConv( 6749 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6750 CallInst::TailCallKind TCK = CallInst::TCK_None; 6751 if (CCInfo & (1 << bitc::CALL_TAIL)) 6752 TCK = CallInst::TCK_Tail; 6753 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6754 TCK = CallInst::TCK_MustTail; 6755 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6756 TCK = CallInst::TCK_NoTail; 6757 cast<CallInst>(I)->setTailCallKind(TCK); 6758 cast<CallInst>(I)->setAttributes(PAL); 6759 if (isa<DbgInfoIntrinsic>(I)) 6760 SeenDebugIntrinsic = true; 6761 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6762 I->deleteValue(); 6763 return Err; 6764 } 6765 if (FMF.any()) { 6766 if (!isa<FPMathOperator>(I)) 6767 return error("Fast-math-flags specified for call without " 6768 "floating-point scalar or vector return type"); 6769 I->setFastMathFlags(FMF); 6770 } 6771 break; 6772 } 6773 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6774 if (Record.size() < 3) 6775 return error("Invalid record"); 6776 unsigned OpTyID = Record[0]; 6777 Type *OpTy = getTypeByID(OpTyID); 6778 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6779 ResTypeID = Record[2]; 6780 Type *ResTy = getTypeByID(ResTypeID); 6781 if (!OpTy || !Op || !ResTy) 6782 return error("Invalid record"); 6783 I = new VAArgInst(Op, ResTy); 6784 InstructionList.push_back(I); 6785 break; 6786 } 6787 6788 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6789 // A call or an invoke can be optionally prefixed with some variable 6790 // number of operand bundle blocks. These blocks are read into 6791 // OperandBundles and consumed at the next call or invoke instruction. 6792 6793 if (Record.empty() || Record[0] >= BundleTags.size()) 6794 return error("Invalid record"); 6795 6796 std::vector<Value *> Inputs; 6797 6798 unsigned OpNum = 1; 6799 while (OpNum != Record.size()) { 6800 Value *Op; 6801 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6802 return error("Invalid record"); 6803 Inputs.push_back(Op); 6804 } 6805 6806 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6807 continue; 6808 } 6809 6810 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6811 unsigned OpNum = 0; 6812 Value *Op = nullptr; 6813 unsigned OpTypeID; 6814 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6815 return error("Invalid record"); 6816 if (OpNum != Record.size()) 6817 return error("Invalid record"); 6818 6819 I = new FreezeInst(Op); 6820 ResTypeID = OpTypeID; 6821 InstructionList.push_back(I); 6822 break; 6823 } 6824 } 6825 6826 // Add instruction to end of current BB. If there is no current BB, reject 6827 // this file. 6828 if (!CurBB) { 6829 I->deleteValue(); 6830 return error("Invalid instruction with no BB"); 6831 } 6832 if (!OperandBundles.empty()) { 6833 I->deleteValue(); 6834 return error("Operand bundles found with no consumer"); 6835 } 6836 I->insertInto(CurBB, CurBB->end()); 6837 6838 // If this was a terminator instruction, move to the next block. 6839 if (I->isTerminator()) { 6840 ++CurBBNo; 6841 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6842 } 6843 6844 // Non-void values get registered in the value table for future use. 6845 if (!I->getType()->isVoidTy()) { 6846 assert(I->getType() == getTypeByID(ResTypeID) && 6847 "Incorrect result type ID"); 6848 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6849 return Err; 6850 } 6851 } 6852 6853 OutOfRecordLoop: 6854 6855 if (!OperandBundles.empty()) 6856 return error("Operand bundles found with no consumer"); 6857 6858 // Check the function list for unresolved values. 6859 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6860 if (!A->getParent()) { 6861 // We found at least one unresolved value. Nuke them all to avoid leaks. 6862 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6863 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6864 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6865 delete A; 6866 } 6867 } 6868 return error("Never resolved value found in function"); 6869 } 6870 } 6871 6872 // Unexpected unresolved metadata about to be dropped. 6873 if (MDLoader->hasFwdRefs()) 6874 return error("Invalid function metadata: outgoing forward refs"); 6875 6876 if (PhiConstExprBB) 6877 PhiConstExprBB->eraseFromParent(); 6878 6879 for (const auto &Pair : ConstExprEdgeBBs) { 6880 BasicBlock *From = Pair.first.first; 6881 BasicBlock *To = Pair.first.second; 6882 BasicBlock *EdgeBB = Pair.second; 6883 BranchInst::Create(To, EdgeBB); 6884 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6885 To->replacePhiUsesWith(From, EdgeBB); 6886 EdgeBB->moveBefore(To); 6887 } 6888 6889 // Trim the value list down to the size it was before we parsed this function. 6890 ValueList.shrinkTo(ModuleValueListSize); 6891 MDLoader->shrinkTo(ModuleMDLoaderSize); 6892 std::vector<BasicBlock*>().swap(FunctionBBs); 6893 return Error::success(); 6894 } 6895 6896 /// Find the function body in the bitcode stream 6897 Error BitcodeReader::findFunctionInStream( 6898 Function *F, 6899 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6900 while (DeferredFunctionInfoIterator->second == 0) { 6901 // This is the fallback handling for the old format bitcode that 6902 // didn't contain the function index in the VST, or when we have 6903 // an anonymous function which would not have a VST entry. 6904 // Assert that we have one of those two cases. 6905 assert(VSTOffset == 0 || !F->hasName()); 6906 // Parse the next body in the stream and set its position in the 6907 // DeferredFunctionInfo map. 6908 if (Error Err = rememberAndSkipFunctionBodies()) 6909 return Err; 6910 } 6911 return Error::success(); 6912 } 6913 6914 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6915 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6916 return SyncScope::ID(Val); 6917 if (Val >= SSIDs.size()) 6918 return SyncScope::System; // Map unknown synchronization scopes to system. 6919 return SSIDs[Val]; 6920 } 6921 6922 //===----------------------------------------------------------------------===// 6923 // GVMaterializer implementation 6924 //===----------------------------------------------------------------------===// 6925 6926 Error BitcodeReader::materialize(GlobalValue *GV) { 6927 Function *F = dyn_cast<Function>(GV); 6928 // If it's not a function or is already material, ignore the request. 6929 if (!F || !F->isMaterializable()) 6930 return Error::success(); 6931 6932 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6933 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6934 // If its position is recorded as 0, its body is somewhere in the stream 6935 // but we haven't seen it yet. 6936 if (DFII->second == 0) 6937 if (Error Err = findFunctionInStream(F, DFII)) 6938 return Err; 6939 6940 // Materialize metadata before parsing any function bodies. 6941 if (Error Err = materializeMetadata()) 6942 return Err; 6943 6944 // Move the bit stream to the saved position of the deferred function body. 6945 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6946 return JumpFailed; 6947 6948 // Regardless of the debug info format we want to end up in, we need 6949 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6950 F->IsNewDbgInfoFormat = true; 6951 6952 if (Error Err = parseFunctionBody(F)) 6953 return Err; 6954 F->setIsMaterializable(false); 6955 6956 // All parsed Functions should load into the debug info format dictated by the 6957 // Module, unless we're attempting to preserve the input debug info format. 6958 if (SeenDebugIntrinsic && SeenDebugRecord) 6959 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6960 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6961 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6962 bool NewDbgInfoFormatDesired = 6963 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6964 if (SeenAnyDebugInfo) { 6965 UseNewDbgInfoFormat = SeenDebugRecord; 6966 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6967 WriteNewDbgInfoFormat = SeenDebugRecord; 6968 } 6969 // If the module's debug info format doesn't match the observed input 6970 // format, then set its format now; we don't need to call the conversion 6971 // function because there must be no existing intrinsics to convert. 6972 // Otherwise, just set the format on this function now. 6973 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6974 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6975 else 6976 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6977 } else { 6978 // If we aren't preserving formats, we use the Module flag to get our 6979 // desired format instead of reading flags, in case we are lazy-loading and 6980 // the format of the module has been changed since it was set by the flags. 6981 // We only need to convert debug info here if we have debug records but 6982 // desire the intrinsic format; everything else is a no-op or handled by the 6983 // autoupgrader. 6984 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6985 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6986 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6987 else 6988 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6989 } 6990 6991 if (StripDebugInfo) 6992 stripDebugInfo(*F); 6993 6994 // Upgrade any old intrinsic calls in the function. 6995 for (auto &I : UpgradedIntrinsics) { 6996 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6997 if (CallInst *CI = dyn_cast<CallInst>(U)) 6998 UpgradeIntrinsicCall(CI, I.second); 6999 } 7000 7001 // Finish fn->subprogram upgrade for materialized functions. 7002 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 7003 F->setSubprogram(SP); 7004 7005 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 7006 if (!MDLoader->isStrippingTBAA()) { 7007 for (auto &I : instructions(F)) { 7008 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 7009 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 7010 continue; 7011 MDLoader->setStripTBAA(true); 7012 stripTBAA(F->getParent()); 7013 } 7014 } 7015 7016 for (auto &I : instructions(F)) { 7017 // "Upgrade" older incorrect branch weights by dropping them. 7018 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7019 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7020 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7021 StringRef ProfName = MDS->getString(); 7022 // Check consistency of !prof branch_weights metadata. 7023 if (ProfName != "branch_weights") 7024 continue; 7025 unsigned ExpectedNumOperands = 0; 7026 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7027 ExpectedNumOperands = BI->getNumSuccessors(); 7028 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7029 ExpectedNumOperands = SI->getNumSuccessors(); 7030 else if (isa<CallInst>(&I)) 7031 ExpectedNumOperands = 1; 7032 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7033 ExpectedNumOperands = IBI->getNumDestinations(); 7034 else if (isa<SelectInst>(&I)) 7035 ExpectedNumOperands = 2; 7036 else 7037 continue; // ignore and continue. 7038 7039 unsigned Offset = getBranchWeightOffset(MD); 7040 7041 // If branch weight doesn't match, just strip branch weight. 7042 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7043 I.setMetadata(LLVMContext::MD_prof, nullptr); 7044 } 7045 } 7046 7047 // Remove incompatible attributes on function calls. 7048 if (auto *CI = dyn_cast<CallBase>(&I)) { 7049 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7050 CI->getFunctionType()->getReturnType(), CI->getRetAttributes())); 7051 7052 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7053 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7054 CI->getArgOperand(ArgNo)->getType(), 7055 CI->getParamAttributes(ArgNo))); 7056 } 7057 } 7058 7059 // Look for functions that rely on old function attribute behavior. 7060 UpgradeFunctionAttributes(*F); 7061 7062 // Bring in any functions that this function forward-referenced via 7063 // blockaddresses. 7064 return materializeForwardReferencedFunctions(); 7065 } 7066 7067 Error BitcodeReader::materializeModule() { 7068 if (Error Err = materializeMetadata()) 7069 return Err; 7070 7071 // Promise to materialize all forward references. 7072 WillMaterializeAllForwardRefs = true; 7073 7074 // Iterate over the module, deserializing any functions that are still on 7075 // disk. 7076 for (Function &F : *TheModule) { 7077 if (Error Err = materialize(&F)) 7078 return Err; 7079 } 7080 // At this point, if there are any function bodies, parse the rest of 7081 // the bits in the module past the last function block we have recorded 7082 // through either lazy scanning or the VST. 7083 if (LastFunctionBlockBit || NextUnreadBit) 7084 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7085 ? LastFunctionBlockBit 7086 : NextUnreadBit)) 7087 return Err; 7088 7089 // Check that all block address forward references got resolved (as we 7090 // promised above). 7091 if (!BasicBlockFwdRefs.empty()) 7092 return error("Never resolved function from blockaddress"); 7093 7094 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7095 // delete the old functions to clean up. We can't do this unless the entire 7096 // module is materialized because there could always be another function body 7097 // with calls to the old function. 7098 for (auto &I : UpgradedIntrinsics) { 7099 for (auto *U : I.first->users()) { 7100 if (CallInst *CI = dyn_cast<CallInst>(U)) 7101 UpgradeIntrinsicCall(CI, I.second); 7102 } 7103 if (!I.first->use_empty()) 7104 I.first->replaceAllUsesWith(I.second); 7105 I.first->eraseFromParent(); 7106 } 7107 UpgradedIntrinsics.clear(); 7108 7109 UpgradeDebugInfo(*TheModule); 7110 7111 UpgradeModuleFlags(*TheModule); 7112 7113 UpgradeARCRuntime(*TheModule); 7114 7115 return Error::success(); 7116 } 7117 7118 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7119 return IdentifiedStructTypes; 7120 } 7121 7122 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7123 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7124 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7125 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7126 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7127 7128 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7129 TheIndex.addModule(ModulePath); 7130 } 7131 7132 ModuleSummaryIndex::ModuleInfo * 7133 ModuleSummaryIndexBitcodeReader::getThisModule() { 7134 return TheIndex.getModule(ModulePath); 7135 } 7136 7137 template <bool AllowNullValueInfo> 7138 std::pair<ValueInfo, GlobalValue::GUID> 7139 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7140 auto VGI = ValueIdToValueInfoMap[ValueId]; 7141 // We can have a null value info for memprof callsite info records in 7142 // distributed ThinLTO index files when the callee function summary is not 7143 // included in the index. The bitcode writer records 0 in that case, 7144 // and the caller of this helper will set AllowNullValueInfo to true. 7145 assert(AllowNullValueInfo || std::get<0>(VGI)); 7146 return VGI; 7147 } 7148 7149 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7150 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7151 StringRef SourceFileName) { 7152 std::string GlobalId = 7153 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7154 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7155 auto OriginalNameID = ValueGUID; 7156 if (GlobalValue::isLocalLinkage(Linkage)) 7157 OriginalNameID = GlobalValue::getGUID(ValueName); 7158 if (PrintSummaryGUIDs) 7159 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7160 << ValueName << "\n"; 7161 7162 // UseStrtab is false for legacy summary formats and value names are 7163 // created on stack. In that case we save the name in a string saver in 7164 // the index so that the value name can be recorded. 7165 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7166 TheIndex.getOrInsertValueInfo( 7167 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7168 OriginalNameID); 7169 } 7170 7171 // Specialized value symbol table parser used when reading module index 7172 // blocks where we don't actually create global values. The parsed information 7173 // is saved in the bitcode reader for use when later parsing summaries. 7174 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7175 uint64_t Offset, 7176 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7177 // With a strtab the VST is not required to parse the summary. 7178 if (UseStrtab) 7179 return Error::success(); 7180 7181 assert(Offset > 0 && "Expected non-zero VST offset"); 7182 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7183 if (!MaybeCurrentBit) 7184 return MaybeCurrentBit.takeError(); 7185 uint64_t CurrentBit = MaybeCurrentBit.get(); 7186 7187 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7188 return Err; 7189 7190 SmallVector<uint64_t, 64> Record; 7191 7192 // Read all the records for this value table. 7193 SmallString<128> ValueName; 7194 7195 while (true) { 7196 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7197 if (!MaybeEntry) 7198 return MaybeEntry.takeError(); 7199 BitstreamEntry Entry = MaybeEntry.get(); 7200 7201 switch (Entry.Kind) { 7202 case BitstreamEntry::SubBlock: // Handled for us already. 7203 case BitstreamEntry::Error: 7204 return error("Malformed block"); 7205 case BitstreamEntry::EndBlock: 7206 // Done parsing VST, jump back to wherever we came from. 7207 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7208 return JumpFailed; 7209 return Error::success(); 7210 case BitstreamEntry::Record: 7211 // The interesting case. 7212 break; 7213 } 7214 7215 // Read a record. 7216 Record.clear(); 7217 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7218 if (!MaybeRecord) 7219 return MaybeRecord.takeError(); 7220 switch (MaybeRecord.get()) { 7221 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7222 break; 7223 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7224 if (convertToString(Record, 1, ValueName)) 7225 return error("Invalid record"); 7226 unsigned ValueID = Record[0]; 7227 assert(!SourceFileName.empty()); 7228 auto VLI = ValueIdToLinkageMap.find(ValueID); 7229 assert(VLI != ValueIdToLinkageMap.end() && 7230 "No linkage found for VST entry?"); 7231 auto Linkage = VLI->second; 7232 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7233 ValueName.clear(); 7234 break; 7235 } 7236 case bitc::VST_CODE_FNENTRY: { 7237 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7238 if (convertToString(Record, 2, ValueName)) 7239 return error("Invalid record"); 7240 unsigned ValueID = Record[0]; 7241 assert(!SourceFileName.empty()); 7242 auto VLI = ValueIdToLinkageMap.find(ValueID); 7243 assert(VLI != ValueIdToLinkageMap.end() && 7244 "No linkage found for VST entry?"); 7245 auto Linkage = VLI->second; 7246 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7247 ValueName.clear(); 7248 break; 7249 } 7250 case bitc::VST_CODE_COMBINED_ENTRY: { 7251 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7252 unsigned ValueID = Record[0]; 7253 GlobalValue::GUID RefGUID = Record[1]; 7254 // The "original name", which is the second value of the pair will be 7255 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7256 ValueIdToValueInfoMap[ValueID] = 7257 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7258 break; 7259 } 7260 } 7261 } 7262 } 7263 7264 // Parse just the blocks needed for building the index out of the module. 7265 // At the end of this routine the module Index is populated with a map 7266 // from global value id to GlobalValueSummary objects. 7267 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7268 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7269 return Err; 7270 7271 SmallVector<uint64_t, 64> Record; 7272 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7273 unsigned ValueId = 0; 7274 7275 // Read the index for this module. 7276 while (true) { 7277 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7278 if (!MaybeEntry) 7279 return MaybeEntry.takeError(); 7280 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7281 7282 switch (Entry.Kind) { 7283 case BitstreamEntry::Error: 7284 return error("Malformed block"); 7285 case BitstreamEntry::EndBlock: 7286 return Error::success(); 7287 7288 case BitstreamEntry::SubBlock: 7289 switch (Entry.ID) { 7290 default: // Skip unknown content. 7291 if (Error Err = Stream.SkipBlock()) 7292 return Err; 7293 break; 7294 case bitc::BLOCKINFO_BLOCK_ID: 7295 // Need to parse these to get abbrev ids (e.g. for VST) 7296 if (Error Err = readBlockInfo()) 7297 return Err; 7298 break; 7299 case bitc::VALUE_SYMTAB_BLOCK_ID: 7300 // Should have been parsed earlier via VSTOffset, unless there 7301 // is no summary section. 7302 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7303 !SeenGlobalValSummary) && 7304 "Expected early VST parse via VSTOffset record"); 7305 if (Error Err = Stream.SkipBlock()) 7306 return Err; 7307 break; 7308 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7309 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7310 // Add the module if it is a per-module index (has a source file name). 7311 if (!SourceFileName.empty()) 7312 addThisModule(); 7313 assert(!SeenValueSymbolTable && 7314 "Already read VST when parsing summary block?"); 7315 // We might not have a VST if there were no values in the 7316 // summary. An empty summary block generated when we are 7317 // performing ThinLTO compiles so we don't later invoke 7318 // the regular LTO process on them. 7319 if (VSTOffset > 0) { 7320 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7321 return Err; 7322 SeenValueSymbolTable = true; 7323 } 7324 SeenGlobalValSummary = true; 7325 if (Error Err = parseEntireSummary(Entry.ID)) 7326 return Err; 7327 break; 7328 case bitc::MODULE_STRTAB_BLOCK_ID: 7329 if (Error Err = parseModuleStringTable()) 7330 return Err; 7331 break; 7332 } 7333 continue; 7334 7335 case BitstreamEntry::Record: { 7336 Record.clear(); 7337 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7338 if (!MaybeBitCode) 7339 return MaybeBitCode.takeError(); 7340 switch (MaybeBitCode.get()) { 7341 default: 7342 break; // Default behavior, ignore unknown content. 7343 case bitc::MODULE_CODE_VERSION: { 7344 if (Error Err = parseVersionRecord(Record).takeError()) 7345 return Err; 7346 break; 7347 } 7348 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7349 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7350 SmallString<128> ValueName; 7351 if (convertToString(Record, 0, ValueName)) 7352 return error("Invalid record"); 7353 SourceFileName = ValueName.c_str(); 7354 break; 7355 } 7356 /// MODULE_CODE_HASH: [5*i32] 7357 case bitc::MODULE_CODE_HASH: { 7358 if (Record.size() != 5) 7359 return error("Invalid hash length " + Twine(Record.size()).str()); 7360 auto &Hash = getThisModule()->second; 7361 int Pos = 0; 7362 for (auto &Val : Record) { 7363 assert(!(Val >> 32) && "Unexpected high bits set"); 7364 Hash[Pos++] = Val; 7365 } 7366 break; 7367 } 7368 /// MODULE_CODE_VSTOFFSET: [offset] 7369 case bitc::MODULE_CODE_VSTOFFSET: 7370 if (Record.empty()) 7371 return error("Invalid record"); 7372 // Note that we subtract 1 here because the offset is relative to one 7373 // word before the start of the identification or module block, which 7374 // was historically always the start of the regular bitcode header. 7375 VSTOffset = Record[0] - 1; 7376 break; 7377 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7378 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7379 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7380 // v2: [strtab offset, strtab size, v1] 7381 case bitc::MODULE_CODE_GLOBALVAR: 7382 case bitc::MODULE_CODE_FUNCTION: 7383 case bitc::MODULE_CODE_ALIAS: { 7384 StringRef Name; 7385 ArrayRef<uint64_t> GVRecord; 7386 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7387 if (GVRecord.size() <= 3) 7388 return error("Invalid record"); 7389 uint64_t RawLinkage = GVRecord[3]; 7390 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7391 if (!UseStrtab) { 7392 ValueIdToLinkageMap[ValueId++] = Linkage; 7393 break; 7394 } 7395 7396 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7397 break; 7398 } 7399 } 7400 } 7401 continue; 7402 } 7403 } 7404 } 7405 7406 SmallVector<ValueInfo, 0> 7407 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7408 SmallVector<ValueInfo, 0> Ret; 7409 Ret.reserve(Record.size()); 7410 for (uint64_t RefValueId : Record) 7411 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7412 return Ret; 7413 } 7414 7415 SmallVector<FunctionSummary::EdgeTy, 0> 7416 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7417 bool IsOldProfileFormat, 7418 bool HasProfile, bool HasRelBF) { 7419 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7420 // In the case of new profile formats, there are two Record entries per 7421 // Edge. Otherwise, conservatively reserve up to Record.size. 7422 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7423 Ret.reserve(Record.size() / 2); 7424 else 7425 Ret.reserve(Record.size()); 7426 7427 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7428 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7429 bool HasTailCall = false; 7430 uint64_t RelBF = 0; 7431 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7432 if (IsOldProfileFormat) { 7433 I += 1; // Skip old callsitecount field 7434 if (HasProfile) 7435 I += 1; // Skip old profilecount field 7436 } else if (HasProfile) 7437 std::tie(Hotness, HasTailCall) = 7438 getDecodedHotnessCallEdgeInfo(Record[++I]); 7439 else if (HasRelBF) 7440 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7441 Ret.push_back(FunctionSummary::EdgeTy{ 7442 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7443 } 7444 return Ret; 7445 } 7446 7447 static void 7448 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7449 WholeProgramDevirtResolution &Wpd) { 7450 uint64_t ArgNum = Record[Slot++]; 7451 WholeProgramDevirtResolution::ByArg &B = 7452 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7453 Slot += ArgNum; 7454 7455 B.TheKind = 7456 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7457 B.Info = Record[Slot++]; 7458 B.Byte = Record[Slot++]; 7459 B.Bit = Record[Slot++]; 7460 } 7461 7462 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7463 StringRef Strtab, size_t &Slot, 7464 TypeIdSummary &TypeId) { 7465 uint64_t Id = Record[Slot++]; 7466 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7467 7468 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7469 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7470 static_cast<size_t>(Record[Slot + 1])}; 7471 Slot += 2; 7472 7473 uint64_t ResByArgNum = Record[Slot++]; 7474 for (uint64_t I = 0; I != ResByArgNum; ++I) 7475 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7476 } 7477 7478 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7479 StringRef Strtab, 7480 ModuleSummaryIndex &TheIndex) { 7481 size_t Slot = 0; 7482 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7483 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7484 Slot += 2; 7485 7486 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7487 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7488 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7489 TypeId.TTRes.SizeM1 = Record[Slot++]; 7490 TypeId.TTRes.BitMask = Record[Slot++]; 7491 TypeId.TTRes.InlineBits = Record[Slot++]; 7492 7493 while (Slot < Record.size()) 7494 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7495 } 7496 7497 std::vector<FunctionSummary::ParamAccess> 7498 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7499 auto ReadRange = [&]() { 7500 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7501 BitcodeReader::decodeSignRotatedValue(Record.front())); 7502 Record = Record.drop_front(); 7503 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7504 BitcodeReader::decodeSignRotatedValue(Record.front())); 7505 Record = Record.drop_front(); 7506 ConstantRange Range{Lower, Upper}; 7507 assert(!Range.isFullSet()); 7508 assert(!Range.isUpperSignWrapped()); 7509 return Range; 7510 }; 7511 7512 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7513 while (!Record.empty()) { 7514 PendingParamAccesses.emplace_back(); 7515 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7516 ParamAccess.ParamNo = Record.front(); 7517 Record = Record.drop_front(); 7518 ParamAccess.Use = ReadRange(); 7519 ParamAccess.Calls.resize(Record.front()); 7520 Record = Record.drop_front(); 7521 for (auto &Call : ParamAccess.Calls) { 7522 Call.ParamNo = Record.front(); 7523 Record = Record.drop_front(); 7524 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7525 Record = Record.drop_front(); 7526 Call.Offsets = ReadRange(); 7527 } 7528 } 7529 return PendingParamAccesses; 7530 } 7531 7532 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7533 ArrayRef<uint64_t> Record, size_t &Slot, 7534 TypeIdCompatibleVtableInfo &TypeId) { 7535 uint64_t Offset = Record[Slot++]; 7536 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7537 TypeId.push_back({Offset, Callee}); 7538 } 7539 7540 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7541 ArrayRef<uint64_t> Record) { 7542 size_t Slot = 0; 7543 TypeIdCompatibleVtableInfo &TypeId = 7544 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7545 {Strtab.data() + Record[Slot], 7546 static_cast<size_t>(Record[Slot + 1])}); 7547 Slot += 2; 7548 7549 while (Slot < Record.size()) 7550 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7551 } 7552 7553 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext( 7554 ArrayRef<uint64_t> Record, unsigned &I) { 7555 SmallVector<unsigned> StackIdList; 7556 // For backwards compatibility with old format before radix tree was 7557 // used, simply see if we found a radix tree array record (and thus if 7558 // the RadixArray is non-empty). 7559 if (RadixArray.empty()) { 7560 unsigned NumStackEntries = Record[I++]; 7561 assert(Record.size() - I >= NumStackEntries); 7562 StackIdList.reserve(NumStackEntries); 7563 for (unsigned J = 0; J < NumStackEntries; J++) { 7564 assert(Record[I] < StackIds.size()); 7565 StackIdList.push_back( 7566 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7567 } 7568 } else { 7569 unsigned RadixIndex = Record[I++]; 7570 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h 7571 // for a detailed description of the radix tree array format. Briefly, the 7572 // first entry will be the number of frames, any negative values are the 7573 // negative of the offset of the next frame, and otherwise the frames are in 7574 // increasing linear order. 7575 assert(RadixIndex < RadixArray.size()); 7576 unsigned NumStackIds = RadixArray[RadixIndex++]; 7577 StackIdList.reserve(NumStackIds); 7578 while (NumStackIds--) { 7579 assert(RadixIndex < RadixArray.size()); 7580 unsigned Elem = RadixArray[RadixIndex]; 7581 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) { 7582 RadixIndex = RadixIndex - Elem; 7583 assert(RadixIndex < RadixArray.size()); 7584 Elem = RadixArray[RadixIndex]; 7585 // We shouldn't encounter a second offset in a row. 7586 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0); 7587 } 7588 RadixIndex++; 7589 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem])); 7590 } 7591 } 7592 return StackIdList; 7593 } 7594 7595 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7596 unsigned WOCnt) { 7597 // Readonly and writeonly refs are in the end of the refs list. 7598 assert(ROCnt + WOCnt <= Refs.size()); 7599 unsigned FirstWORef = Refs.size() - WOCnt; 7600 unsigned RefNo = FirstWORef - ROCnt; 7601 for (; RefNo < FirstWORef; ++RefNo) 7602 Refs[RefNo].setReadOnly(); 7603 for (; RefNo < Refs.size(); ++RefNo) 7604 Refs[RefNo].setWriteOnly(); 7605 } 7606 7607 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7608 // objects in the index. 7609 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7610 if (Error Err = Stream.EnterSubBlock(ID)) 7611 return Err; 7612 SmallVector<uint64_t, 64> Record; 7613 7614 // Parse version 7615 { 7616 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7617 if (!MaybeEntry) 7618 return MaybeEntry.takeError(); 7619 BitstreamEntry Entry = MaybeEntry.get(); 7620 7621 if (Entry.Kind != BitstreamEntry::Record) 7622 return error("Invalid Summary Block: record for version expected"); 7623 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7624 if (!MaybeRecord) 7625 return MaybeRecord.takeError(); 7626 if (MaybeRecord.get() != bitc::FS_VERSION) 7627 return error("Invalid Summary Block: version expected"); 7628 } 7629 const uint64_t Version = Record[0]; 7630 const bool IsOldProfileFormat = Version == 1; 7631 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7632 return error("Invalid summary version " + Twine(Version) + 7633 ". Version should be in the range [1-" + 7634 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7635 "]."); 7636 Record.clear(); 7637 7638 // Keep around the last seen summary to be used when we see an optional 7639 // "OriginalName" attachement. 7640 GlobalValueSummary *LastSeenSummary = nullptr; 7641 GlobalValue::GUID LastSeenGUID = 0; 7642 7643 // We can expect to see any number of type ID information records before 7644 // each function summary records; these variables store the information 7645 // collected so far so that it can be used to create the summary object. 7646 std::vector<GlobalValue::GUID> PendingTypeTests; 7647 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7648 PendingTypeCheckedLoadVCalls; 7649 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7650 PendingTypeCheckedLoadConstVCalls; 7651 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7652 7653 std::vector<CallsiteInfo> PendingCallsites; 7654 std::vector<AllocInfo> PendingAllocs; 7655 std::vector<uint64_t> PendingContextIds; 7656 7657 while (true) { 7658 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7659 if (!MaybeEntry) 7660 return MaybeEntry.takeError(); 7661 BitstreamEntry Entry = MaybeEntry.get(); 7662 7663 switch (Entry.Kind) { 7664 case BitstreamEntry::SubBlock: // Handled for us already. 7665 case BitstreamEntry::Error: 7666 return error("Malformed block"); 7667 case BitstreamEntry::EndBlock: 7668 return Error::success(); 7669 case BitstreamEntry::Record: 7670 // The interesting case. 7671 break; 7672 } 7673 7674 // Read a record. The record format depends on whether this 7675 // is a per-module index or a combined index file. In the per-module 7676 // case the records contain the associated value's ID for correlation 7677 // with VST entries. In the combined index the correlation is done 7678 // via the bitcode offset of the summary records (which were saved 7679 // in the combined index VST entries). The records also contain 7680 // information used for ThinLTO renaming and importing. 7681 Record.clear(); 7682 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7683 if (!MaybeBitCode) 7684 return MaybeBitCode.takeError(); 7685 switch (unsigned BitCode = MaybeBitCode.get()) { 7686 default: // Default behavior: ignore. 7687 break; 7688 case bitc::FS_FLAGS: { // [flags] 7689 TheIndex.setFlags(Record[0]); 7690 break; 7691 } 7692 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7693 uint64_t ValueID = Record[0]; 7694 GlobalValue::GUID RefGUID; 7695 if (Version >= 11) { 7696 RefGUID = Record[1] << 32 | Record[2]; 7697 } else { 7698 RefGUID = Record[1]; 7699 } 7700 ValueIdToValueInfoMap[ValueID] = 7701 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7702 break; 7703 } 7704 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7705 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7706 // numrefs x valueid, n x (valueid)] 7707 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7708 // numrefs x valueid, 7709 // n x (valueid, hotness+tailcall flags)] 7710 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7711 // numrefs x valueid, 7712 // n x (valueid, relblockfreq+tailcall)] 7713 case bitc::FS_PERMODULE: 7714 case bitc::FS_PERMODULE_RELBF: 7715 case bitc::FS_PERMODULE_PROFILE: { 7716 unsigned ValueID = Record[0]; 7717 uint64_t RawFlags = Record[1]; 7718 unsigned InstCount = Record[2]; 7719 uint64_t RawFunFlags = 0; 7720 unsigned NumRefs = Record[3]; 7721 unsigned NumRORefs = 0, NumWORefs = 0; 7722 int RefListStartIndex = 4; 7723 if (Version >= 4) { 7724 RawFunFlags = Record[3]; 7725 NumRefs = Record[4]; 7726 RefListStartIndex = 5; 7727 if (Version >= 5) { 7728 NumRORefs = Record[5]; 7729 RefListStartIndex = 6; 7730 if (Version >= 7) { 7731 NumWORefs = Record[6]; 7732 RefListStartIndex = 7; 7733 } 7734 } 7735 } 7736 7737 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7738 // The module path string ref set in the summary must be owned by the 7739 // index's module string table. Since we don't have a module path 7740 // string table section in the per-module index, we create a single 7741 // module path string table entry with an empty (0) ID to take 7742 // ownership. 7743 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7744 assert(Record.size() >= RefListStartIndex + NumRefs && 7745 "Record size inconsistent with number of references"); 7746 SmallVector<ValueInfo, 0> Refs = makeRefList( 7747 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7748 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7749 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7750 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7751 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7752 IsOldProfileFormat, HasProfile, HasRelBF); 7753 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7754 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7755 // In order to save memory, only record the memprof summaries if this is 7756 // the prevailing copy of a symbol. The linker doesn't resolve local 7757 // linkage values so don't check whether those are prevailing. 7758 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7759 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7760 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7761 PendingCallsites.clear(); 7762 PendingAllocs.clear(); 7763 } 7764 auto FS = std::make_unique<FunctionSummary>( 7765 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7766 std::move(Calls), std::move(PendingTypeTests), 7767 std::move(PendingTypeTestAssumeVCalls), 7768 std::move(PendingTypeCheckedLoadVCalls), 7769 std::move(PendingTypeTestAssumeConstVCalls), 7770 std::move(PendingTypeCheckedLoadConstVCalls), 7771 std::move(PendingParamAccesses), std::move(PendingCallsites), 7772 std::move(PendingAllocs)); 7773 FS->setModulePath(getThisModule()->first()); 7774 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7775 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7776 std::move(FS)); 7777 break; 7778 } 7779 // FS_ALIAS: [valueid, flags, valueid] 7780 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7781 // they expect all aliasee summaries to be available. 7782 case bitc::FS_ALIAS: { 7783 unsigned ValueID = Record[0]; 7784 uint64_t RawFlags = Record[1]; 7785 unsigned AliaseeID = Record[2]; 7786 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7787 auto AS = std::make_unique<AliasSummary>(Flags); 7788 // The module path string ref set in the summary must be owned by the 7789 // index's module string table. Since we don't have a module path 7790 // string table section in the per-module index, we create a single 7791 // module path string table entry with an empty (0) ID to take 7792 // ownership. 7793 AS->setModulePath(getThisModule()->first()); 7794 7795 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7796 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7797 if (!AliaseeInModule) 7798 return error("Alias expects aliasee summary to be parsed"); 7799 AS->setAliasee(AliaseeVI, AliaseeInModule); 7800 7801 auto GUID = getValueInfoFromValueId(ValueID); 7802 AS->setOriginalName(std::get<1>(GUID)); 7803 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7804 break; 7805 } 7806 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7807 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7808 unsigned ValueID = Record[0]; 7809 uint64_t RawFlags = Record[1]; 7810 unsigned RefArrayStart = 2; 7811 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7812 /* WriteOnly */ false, 7813 /* Constant */ false, 7814 GlobalObject::VCallVisibilityPublic); 7815 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7816 if (Version >= 5) { 7817 GVF = getDecodedGVarFlags(Record[2]); 7818 RefArrayStart = 3; 7819 } 7820 SmallVector<ValueInfo, 0> Refs = 7821 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7822 auto FS = 7823 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7824 FS->setModulePath(getThisModule()->first()); 7825 auto GUID = getValueInfoFromValueId(ValueID); 7826 FS->setOriginalName(std::get<1>(GUID)); 7827 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7828 break; 7829 } 7830 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7831 // numrefs, numrefs x valueid, 7832 // n x (valueid, offset)] 7833 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7834 unsigned ValueID = Record[0]; 7835 uint64_t RawFlags = Record[1]; 7836 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7837 unsigned NumRefs = Record[3]; 7838 unsigned RefListStartIndex = 4; 7839 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7840 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7841 SmallVector<ValueInfo, 0> Refs = makeRefList( 7842 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7843 VTableFuncList VTableFuncs; 7844 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7845 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7846 uint64_t Offset = Record[++I]; 7847 VTableFuncs.push_back({Callee, Offset}); 7848 } 7849 auto VS = 7850 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7851 VS->setModulePath(getThisModule()->first()); 7852 VS->setVTableFuncs(VTableFuncs); 7853 auto GUID = getValueInfoFromValueId(ValueID); 7854 VS->setOriginalName(std::get<1>(GUID)); 7855 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7856 break; 7857 } 7858 // FS_COMBINED is legacy and does not have support for the tail call flag. 7859 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7860 // numrefs x valueid, n x (valueid)] 7861 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7862 // numrefs x valueid, 7863 // n x (valueid, hotness+tailcall flags)] 7864 case bitc::FS_COMBINED: 7865 case bitc::FS_COMBINED_PROFILE: { 7866 unsigned ValueID = Record[0]; 7867 uint64_t ModuleId = Record[1]; 7868 uint64_t RawFlags = Record[2]; 7869 unsigned InstCount = Record[3]; 7870 uint64_t RawFunFlags = 0; 7871 unsigned NumRefs = Record[4]; 7872 unsigned NumRORefs = 0, NumWORefs = 0; 7873 int RefListStartIndex = 5; 7874 7875 if (Version >= 4) { 7876 RawFunFlags = Record[4]; 7877 RefListStartIndex = 6; 7878 size_t NumRefsIndex = 5; 7879 if (Version >= 5) { 7880 unsigned NumRORefsOffset = 1; 7881 RefListStartIndex = 7; 7882 if (Version >= 6) { 7883 NumRefsIndex = 6; 7884 RefListStartIndex = 8; 7885 if (Version >= 7) { 7886 RefListStartIndex = 9; 7887 NumWORefs = Record[8]; 7888 NumRORefsOffset = 2; 7889 } 7890 } 7891 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7892 } 7893 NumRefs = Record[NumRefsIndex]; 7894 } 7895 7896 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7897 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7898 assert(Record.size() >= RefListStartIndex + NumRefs && 7899 "Record size inconsistent with number of references"); 7900 SmallVector<ValueInfo, 0> Refs = makeRefList( 7901 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7902 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7903 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7904 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7905 IsOldProfileFormat, HasProfile, false); 7906 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7907 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7908 auto FS = std::make_unique<FunctionSummary>( 7909 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7910 std::move(Edges), std::move(PendingTypeTests), 7911 std::move(PendingTypeTestAssumeVCalls), 7912 std::move(PendingTypeCheckedLoadVCalls), 7913 std::move(PendingTypeTestAssumeConstVCalls), 7914 std::move(PendingTypeCheckedLoadConstVCalls), 7915 std::move(PendingParamAccesses), std::move(PendingCallsites), 7916 std::move(PendingAllocs)); 7917 LastSeenSummary = FS.get(); 7918 LastSeenGUID = VI.getGUID(); 7919 FS->setModulePath(ModuleIdMap[ModuleId]); 7920 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7921 break; 7922 } 7923 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7924 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7925 // they expect all aliasee summaries to be available. 7926 case bitc::FS_COMBINED_ALIAS: { 7927 unsigned ValueID = Record[0]; 7928 uint64_t ModuleId = Record[1]; 7929 uint64_t RawFlags = Record[2]; 7930 unsigned AliaseeValueId = Record[3]; 7931 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7932 auto AS = std::make_unique<AliasSummary>(Flags); 7933 LastSeenSummary = AS.get(); 7934 AS->setModulePath(ModuleIdMap[ModuleId]); 7935 7936 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7937 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7938 AS->setAliasee(AliaseeVI, AliaseeInModule); 7939 7940 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7941 LastSeenGUID = VI.getGUID(); 7942 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7943 break; 7944 } 7945 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7946 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7947 unsigned ValueID = Record[0]; 7948 uint64_t ModuleId = Record[1]; 7949 uint64_t RawFlags = Record[2]; 7950 unsigned RefArrayStart = 3; 7951 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7952 /* WriteOnly */ false, 7953 /* Constant */ false, 7954 GlobalObject::VCallVisibilityPublic); 7955 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7956 if (Version >= 5) { 7957 GVF = getDecodedGVarFlags(Record[3]); 7958 RefArrayStart = 4; 7959 } 7960 SmallVector<ValueInfo, 0> Refs = 7961 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7962 auto FS = 7963 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7964 LastSeenSummary = FS.get(); 7965 FS->setModulePath(ModuleIdMap[ModuleId]); 7966 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7967 LastSeenGUID = VI.getGUID(); 7968 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7969 break; 7970 } 7971 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7972 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7973 uint64_t OriginalName = Record[0]; 7974 if (!LastSeenSummary) 7975 return error("Name attachment that does not follow a combined record"); 7976 LastSeenSummary->setOriginalName(OriginalName); 7977 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7978 // Reset the LastSeenSummary 7979 LastSeenSummary = nullptr; 7980 LastSeenGUID = 0; 7981 break; 7982 } 7983 case bitc::FS_TYPE_TESTS: 7984 assert(PendingTypeTests.empty()); 7985 llvm::append_range(PendingTypeTests, Record); 7986 break; 7987 7988 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7989 assert(PendingTypeTestAssumeVCalls.empty()); 7990 for (unsigned I = 0; I != Record.size(); I += 2) 7991 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7992 break; 7993 7994 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7995 assert(PendingTypeCheckedLoadVCalls.empty()); 7996 for (unsigned I = 0; I != Record.size(); I += 2) 7997 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7998 break; 7999 8000 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 8001 PendingTypeTestAssumeConstVCalls.push_back( 8002 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8003 break; 8004 8005 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 8006 PendingTypeCheckedLoadConstVCalls.push_back( 8007 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8008 break; 8009 8010 case bitc::FS_CFI_FUNCTION_DEFS: { 8011 std::set<std::string, std::less<>> &CfiFunctionDefs = 8012 TheIndex.cfiFunctionDefs(); 8013 for (unsigned I = 0; I != Record.size(); I += 2) 8014 CfiFunctionDefs.insert( 8015 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8016 break; 8017 } 8018 8019 case bitc::FS_CFI_FUNCTION_DECLS: { 8020 std::set<std::string, std::less<>> &CfiFunctionDecls = 8021 TheIndex.cfiFunctionDecls(); 8022 for (unsigned I = 0; I != Record.size(); I += 2) 8023 CfiFunctionDecls.insert( 8024 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8025 break; 8026 } 8027 8028 case bitc::FS_TYPE_ID: 8029 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 8030 break; 8031 8032 case bitc::FS_TYPE_ID_METADATA: 8033 parseTypeIdCompatibleVtableSummaryRecord(Record); 8034 break; 8035 8036 case bitc::FS_BLOCK_COUNT: 8037 TheIndex.addBlockCount(Record[0]); 8038 break; 8039 8040 case bitc::FS_PARAM_ACCESS: { 8041 PendingParamAccesses = parseParamAccesses(Record); 8042 break; 8043 } 8044 8045 case bitc::FS_STACK_IDS: { // [n x stackid] 8046 // Save stack ids in the reader to consult when adding stack ids from the 8047 // lists in the stack node and alloc node entries. 8048 if (Version <= 11) { 8049 StackIds = ArrayRef<uint64_t>(Record); 8050 break; 8051 } 8052 // This is an array of 32-bit fixed-width values, holding each 64-bit 8053 // context id as a pair of adjacent (most significant first) 32-bit words. 8054 assert(Record.size() % 2 == 0); 8055 StackIds.reserve(Record.size() / 2); 8056 for (auto R = Record.begin(); R != Record.end(); R += 2) 8057 StackIds.push_back(*R << 32 | *(R + 1)); 8058 break; 8059 } 8060 8061 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry] 8062 RadixArray = ArrayRef<uint64_t>(Record); 8063 break; 8064 } 8065 8066 case bitc::FS_PERMODULE_CALLSITE_INFO: { 8067 unsigned ValueID = Record[0]; 8068 SmallVector<unsigned> StackIdList; 8069 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 8070 assert(*R < StackIds.size()); 8071 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 8072 } 8073 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8074 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8075 break; 8076 } 8077 8078 case bitc::FS_COMBINED_CALLSITE_INFO: { 8079 auto RecordIter = Record.begin(); 8080 unsigned ValueID = *RecordIter++; 8081 unsigned NumStackIds = *RecordIter++; 8082 unsigned NumVersions = *RecordIter++; 8083 assert(Record.size() == 3 + NumStackIds + NumVersions); 8084 SmallVector<unsigned> StackIdList; 8085 for (unsigned J = 0; J < NumStackIds; J++) { 8086 assert(*RecordIter < StackIds.size()); 8087 StackIdList.push_back( 8088 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8089 } 8090 SmallVector<unsigned> Versions; 8091 for (unsigned J = 0; J < NumVersions; J++) 8092 Versions.push_back(*RecordIter++); 8093 ValueInfo VI = std::get<0>( 8094 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8095 PendingCallsites.push_back( 8096 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8097 break; 8098 } 8099 8100 case bitc::FS_ALLOC_CONTEXT_IDS: { 8101 // This is an array of 32-bit fixed-width values, holding each 64-bit 8102 // context id as a pair of adjacent (most significant first) 32-bit words. 8103 assert(Record.size() % 2 == 0); 8104 PendingContextIds.reserve(Record.size() / 2); 8105 for (auto R = Record.begin(); R != Record.end(); R += 2) 8106 PendingContextIds.push_back(*R << 32 | *(R + 1)); 8107 break; 8108 } 8109 8110 case bitc::FS_PERMODULE_ALLOC_INFO: { 8111 unsigned I = 0; 8112 std::vector<MIBInfo> MIBs; 8113 unsigned NumMIBs = 0; 8114 if (Version >= 10) 8115 NumMIBs = Record[I++]; 8116 unsigned MIBsRead = 0; 8117 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8118 (Version < 10 && I < Record.size())) { 8119 assert(Record.size() - I >= 2); 8120 AllocationType AllocType = (AllocationType)Record[I++]; 8121 auto StackIdList = parseAllocInfoContext(Record, I); 8122 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8123 } 8124 // We either have nothing left or at least NumMIBs context size info 8125 // indices left (for the total sizes included when reporting of hinted 8126 // bytes is enabled). 8127 assert(I == Record.size() || Record.size() - I >= NumMIBs); 8128 std::vector<std::vector<ContextTotalSize>> AllContextSizes; 8129 if (I < Record.size()) { 8130 assert(!PendingContextIds.empty() && 8131 "Missing context ids for alloc sizes"); 8132 unsigned ContextIdIndex = 0; 8133 MIBsRead = 0; 8134 // The sizes are a linearized array of sizes, where for each MIB there 8135 // is 1 or more sizes (due to context trimming, each MIB in the metadata 8136 // and summarized here can correspond to more than one original context 8137 // from the profile). 8138 while (MIBsRead++ < NumMIBs) { 8139 // First read the number of contexts recorded for this MIB. 8140 unsigned NumContextSizeInfoEntries = Record[I++]; 8141 assert(Record.size() - I >= NumContextSizeInfoEntries); 8142 std::vector<ContextTotalSize> ContextSizes; 8143 ContextSizes.reserve(NumContextSizeInfoEntries); 8144 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) { 8145 assert(ContextIdIndex < PendingContextIds.size()); 8146 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS 8147 // should be in the same order as the total sizes. 8148 ContextSizes.push_back( 8149 {PendingContextIds[ContextIdIndex++], Record[I++]}); 8150 } 8151 AllContextSizes.push_back(std::move(ContextSizes)); 8152 } 8153 PendingContextIds.clear(); 8154 } 8155 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8156 if (!AllContextSizes.empty()) { 8157 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size()); 8158 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes); 8159 } 8160 break; 8161 } 8162 8163 case bitc::FS_COMBINED_ALLOC_INFO: { 8164 unsigned I = 0; 8165 std::vector<MIBInfo> MIBs; 8166 unsigned NumMIBs = Record[I++]; 8167 unsigned NumVersions = Record[I++]; 8168 unsigned MIBsRead = 0; 8169 while (MIBsRead++ < NumMIBs) { 8170 assert(Record.size() - I >= 2); 8171 AllocationType AllocType = (AllocationType)Record[I++]; 8172 auto StackIdList = parseAllocInfoContext(Record, I); 8173 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8174 } 8175 assert(Record.size() - I >= NumVersions); 8176 SmallVector<uint8_t> Versions; 8177 for (unsigned J = 0; J < NumVersions; J++) 8178 Versions.push_back(Record[I++]); 8179 assert(I == Record.size()); 8180 PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs))); 8181 break; 8182 } 8183 } 8184 } 8185 llvm_unreachable("Exit infinite loop"); 8186 } 8187 8188 // Parse the module string table block into the Index. 8189 // This populates the ModulePathStringTable map in the index. 8190 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8191 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8192 return Err; 8193 8194 SmallVector<uint64_t, 64> Record; 8195 8196 SmallString<128> ModulePath; 8197 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8198 8199 while (true) { 8200 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8201 if (!MaybeEntry) 8202 return MaybeEntry.takeError(); 8203 BitstreamEntry Entry = MaybeEntry.get(); 8204 8205 switch (Entry.Kind) { 8206 case BitstreamEntry::SubBlock: // Handled for us already. 8207 case BitstreamEntry::Error: 8208 return error("Malformed block"); 8209 case BitstreamEntry::EndBlock: 8210 return Error::success(); 8211 case BitstreamEntry::Record: 8212 // The interesting case. 8213 break; 8214 } 8215 8216 Record.clear(); 8217 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8218 if (!MaybeRecord) 8219 return MaybeRecord.takeError(); 8220 switch (MaybeRecord.get()) { 8221 default: // Default behavior: ignore. 8222 break; 8223 case bitc::MST_CODE_ENTRY: { 8224 // MST_ENTRY: [modid, namechar x N] 8225 uint64_t ModuleId = Record[0]; 8226 8227 if (convertToString(Record, 1, ModulePath)) 8228 return error("Invalid record"); 8229 8230 LastSeenModule = TheIndex.addModule(ModulePath); 8231 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8232 8233 ModulePath.clear(); 8234 break; 8235 } 8236 /// MST_CODE_HASH: [5*i32] 8237 case bitc::MST_CODE_HASH: { 8238 if (Record.size() != 5) 8239 return error("Invalid hash length " + Twine(Record.size()).str()); 8240 if (!LastSeenModule) 8241 return error("Invalid hash that does not follow a module path"); 8242 int Pos = 0; 8243 for (auto &Val : Record) { 8244 assert(!(Val >> 32) && "Unexpected high bits set"); 8245 LastSeenModule->second[Pos++] = Val; 8246 } 8247 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8248 LastSeenModule = nullptr; 8249 break; 8250 } 8251 } 8252 } 8253 llvm_unreachable("Exit infinite loop"); 8254 } 8255 8256 namespace { 8257 8258 // FIXME: This class is only here to support the transition to llvm::Error. It 8259 // will be removed once this transition is complete. Clients should prefer to 8260 // deal with the Error value directly, rather than converting to error_code. 8261 class BitcodeErrorCategoryType : public std::error_category { 8262 const char *name() const noexcept override { 8263 return "llvm.bitcode"; 8264 } 8265 8266 std::string message(int IE) const override { 8267 BitcodeError E = static_cast<BitcodeError>(IE); 8268 switch (E) { 8269 case BitcodeError::CorruptedBitcode: 8270 return "Corrupted bitcode"; 8271 } 8272 llvm_unreachable("Unknown error type!"); 8273 } 8274 }; 8275 8276 } // end anonymous namespace 8277 8278 const std::error_category &llvm::BitcodeErrorCategory() { 8279 static BitcodeErrorCategoryType ErrorCategory; 8280 return ErrorCategory; 8281 } 8282 8283 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8284 unsigned Block, unsigned RecordID) { 8285 if (Error Err = Stream.EnterSubBlock(Block)) 8286 return std::move(Err); 8287 8288 StringRef Strtab; 8289 while (true) { 8290 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8291 if (!MaybeEntry) 8292 return MaybeEntry.takeError(); 8293 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8294 8295 switch (Entry.Kind) { 8296 case BitstreamEntry::EndBlock: 8297 return Strtab; 8298 8299 case BitstreamEntry::Error: 8300 return error("Malformed block"); 8301 8302 case BitstreamEntry::SubBlock: 8303 if (Error Err = Stream.SkipBlock()) 8304 return std::move(Err); 8305 break; 8306 8307 case BitstreamEntry::Record: 8308 StringRef Blob; 8309 SmallVector<uint64_t, 1> Record; 8310 Expected<unsigned> MaybeRecord = 8311 Stream.readRecord(Entry.ID, Record, &Blob); 8312 if (!MaybeRecord) 8313 return MaybeRecord.takeError(); 8314 if (MaybeRecord.get() == RecordID) 8315 Strtab = Blob; 8316 break; 8317 } 8318 } 8319 } 8320 8321 //===----------------------------------------------------------------------===// 8322 // External interface 8323 //===----------------------------------------------------------------------===// 8324 8325 Expected<std::vector<BitcodeModule>> 8326 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8327 auto FOrErr = getBitcodeFileContents(Buffer); 8328 if (!FOrErr) 8329 return FOrErr.takeError(); 8330 return std::move(FOrErr->Mods); 8331 } 8332 8333 Expected<BitcodeFileContents> 8334 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8335 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8336 if (!StreamOrErr) 8337 return StreamOrErr.takeError(); 8338 BitstreamCursor &Stream = *StreamOrErr; 8339 8340 BitcodeFileContents F; 8341 while (true) { 8342 uint64_t BCBegin = Stream.getCurrentByteNo(); 8343 8344 // We may be consuming bitcode from a client that leaves garbage at the end 8345 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8346 // the end that there cannot possibly be another module, stop looking. 8347 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8348 return F; 8349 8350 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8351 if (!MaybeEntry) 8352 return MaybeEntry.takeError(); 8353 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8354 8355 switch (Entry.Kind) { 8356 case BitstreamEntry::EndBlock: 8357 case BitstreamEntry::Error: 8358 return error("Malformed block"); 8359 8360 case BitstreamEntry::SubBlock: { 8361 uint64_t IdentificationBit = -1ull; 8362 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8363 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8364 if (Error Err = Stream.SkipBlock()) 8365 return std::move(Err); 8366 8367 { 8368 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8369 if (!MaybeEntry) 8370 return MaybeEntry.takeError(); 8371 Entry = MaybeEntry.get(); 8372 } 8373 8374 if (Entry.Kind != BitstreamEntry::SubBlock || 8375 Entry.ID != bitc::MODULE_BLOCK_ID) 8376 return error("Malformed block"); 8377 } 8378 8379 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8380 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8381 if (Error Err = Stream.SkipBlock()) 8382 return std::move(Err); 8383 8384 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8385 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8386 Buffer.getBufferIdentifier(), IdentificationBit, 8387 ModuleBit}); 8388 continue; 8389 } 8390 8391 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8392 Expected<StringRef> Strtab = 8393 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8394 if (!Strtab) 8395 return Strtab.takeError(); 8396 // This string table is used by every preceding bitcode module that does 8397 // not have its own string table. A bitcode file may have multiple 8398 // string tables if it was created by binary concatenation, for example 8399 // with "llvm-cat -b". 8400 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8401 if (!I.Strtab.empty()) 8402 break; 8403 I.Strtab = *Strtab; 8404 } 8405 // Similarly, the string table is used by every preceding symbol table; 8406 // normally there will be just one unless the bitcode file was created 8407 // by binary concatenation. 8408 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8409 F.StrtabForSymtab = *Strtab; 8410 continue; 8411 } 8412 8413 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8414 Expected<StringRef> SymtabOrErr = 8415 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8416 if (!SymtabOrErr) 8417 return SymtabOrErr.takeError(); 8418 8419 // We can expect the bitcode file to have multiple symbol tables if it 8420 // was created by binary concatenation. In that case we silently 8421 // ignore any subsequent symbol tables, which is fine because this is a 8422 // low level function. The client is expected to notice that the number 8423 // of modules in the symbol table does not match the number of modules 8424 // in the input file and regenerate the symbol table. 8425 if (F.Symtab.empty()) 8426 F.Symtab = *SymtabOrErr; 8427 continue; 8428 } 8429 8430 if (Error Err = Stream.SkipBlock()) 8431 return std::move(Err); 8432 continue; 8433 } 8434 case BitstreamEntry::Record: 8435 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8436 return std::move(E); 8437 continue; 8438 } 8439 } 8440 } 8441 8442 /// Get a lazy one-at-time loading module from bitcode. 8443 /// 8444 /// This isn't always used in a lazy context. In particular, it's also used by 8445 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8446 /// in forward-referenced functions from block address references. 8447 /// 8448 /// \param[in] MaterializeAll Set to \c true if we should materialize 8449 /// everything. 8450 Expected<std::unique_ptr<Module>> 8451 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8452 bool ShouldLazyLoadMetadata, bool IsImporting, 8453 ParserCallbacks Callbacks) { 8454 BitstreamCursor Stream(Buffer); 8455 8456 std::string ProducerIdentification; 8457 if (IdentificationBit != -1ull) { 8458 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8459 return std::move(JumpFailed); 8460 if (Error E = 8461 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8462 return std::move(E); 8463 } 8464 8465 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8466 return std::move(JumpFailed); 8467 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8468 Context); 8469 8470 std::unique_ptr<Module> M = 8471 std::make_unique<Module>(ModuleIdentifier, Context); 8472 M->setMaterializer(R); 8473 8474 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8475 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8476 IsImporting, Callbacks)) 8477 return std::move(Err); 8478 8479 if (MaterializeAll) { 8480 // Read in the entire module, and destroy the BitcodeReader. 8481 if (Error Err = M->materializeAll()) 8482 return std::move(Err); 8483 } else { 8484 // Resolve forward references from blockaddresses. 8485 if (Error Err = R->materializeForwardReferencedFunctions()) 8486 return std::move(Err); 8487 } 8488 8489 return std::move(M); 8490 } 8491 8492 Expected<std::unique_ptr<Module>> 8493 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8494 bool IsImporting, ParserCallbacks Callbacks) { 8495 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8496 Callbacks); 8497 } 8498 8499 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8500 // We don't use ModuleIdentifier here because the client may need to control the 8501 // module path used in the combined summary (e.g. when reading summaries for 8502 // regular LTO modules). 8503 Error BitcodeModule::readSummary( 8504 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8505 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8506 BitstreamCursor Stream(Buffer); 8507 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8508 return JumpFailed; 8509 8510 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8511 ModulePath, IsPrevailing); 8512 return R.parseModule(); 8513 } 8514 8515 // Parse the specified bitcode buffer, returning the function info index. 8516 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8517 BitstreamCursor Stream(Buffer); 8518 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8519 return std::move(JumpFailed); 8520 8521 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8522 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8523 ModuleIdentifier, 0); 8524 8525 if (Error Err = R.parseModule()) 8526 return std::move(Err); 8527 8528 return std::move(Index); 8529 } 8530 8531 static Expected<std::pair<bool, bool>> 8532 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8533 unsigned ID, 8534 BitcodeLTOInfo <OInfo) { 8535 if (Error Err = Stream.EnterSubBlock(ID)) 8536 return std::move(Err); 8537 SmallVector<uint64_t, 64> Record; 8538 8539 while (true) { 8540 BitstreamEntry Entry; 8541 std::pair<bool, bool> Result = {false,false}; 8542 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8543 return std::move(E); 8544 8545 switch (Entry.Kind) { 8546 case BitstreamEntry::SubBlock: // Handled for us already. 8547 case BitstreamEntry::Error: 8548 return error("Malformed block"); 8549 case BitstreamEntry::EndBlock: { 8550 // If no flags record found, set both flags to false. 8551 return Result; 8552 } 8553 case BitstreamEntry::Record: 8554 // The interesting case. 8555 break; 8556 } 8557 8558 // Look for the FS_FLAGS record. 8559 Record.clear(); 8560 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8561 if (!MaybeBitCode) 8562 return MaybeBitCode.takeError(); 8563 switch (MaybeBitCode.get()) { 8564 default: // Default behavior: ignore. 8565 break; 8566 case bitc::FS_FLAGS: { // [flags] 8567 uint64_t Flags = Record[0]; 8568 // Scan flags. 8569 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8570 8571 bool EnableSplitLTOUnit = Flags & 0x8; 8572 bool UnifiedLTO = Flags & 0x200; 8573 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8574 8575 return Result; 8576 } 8577 } 8578 } 8579 llvm_unreachable("Exit infinite loop"); 8580 } 8581 8582 // Check if the given bitcode buffer contains a global value summary block. 8583 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8584 BitstreamCursor Stream(Buffer); 8585 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8586 return std::move(JumpFailed); 8587 8588 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8589 return std::move(Err); 8590 8591 while (true) { 8592 llvm::BitstreamEntry Entry; 8593 if (Error E = Stream.advance().moveInto(Entry)) 8594 return std::move(E); 8595 8596 switch (Entry.Kind) { 8597 case BitstreamEntry::Error: 8598 return error("Malformed block"); 8599 case BitstreamEntry::EndBlock: 8600 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8601 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8602 8603 case BitstreamEntry::SubBlock: 8604 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8605 BitcodeLTOInfo LTOInfo; 8606 Expected<std::pair<bool, bool>> Flags = 8607 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8608 if (!Flags) 8609 return Flags.takeError(); 8610 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8611 LTOInfo.IsThinLTO = true; 8612 LTOInfo.HasSummary = true; 8613 return LTOInfo; 8614 } 8615 8616 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8617 BitcodeLTOInfo LTOInfo; 8618 Expected<std::pair<bool, bool>> Flags = 8619 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8620 if (!Flags) 8621 return Flags.takeError(); 8622 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8623 LTOInfo.IsThinLTO = false; 8624 LTOInfo.HasSummary = true; 8625 return LTOInfo; 8626 } 8627 8628 // Ignore other sub-blocks. 8629 if (Error Err = Stream.SkipBlock()) 8630 return std::move(Err); 8631 continue; 8632 8633 case BitstreamEntry::Record: 8634 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8635 continue; 8636 else 8637 return StreamFailed.takeError(); 8638 } 8639 } 8640 } 8641 8642 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8643 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8644 if (!MsOrErr) 8645 return MsOrErr.takeError(); 8646 8647 if (MsOrErr->size() != 1) 8648 return error("Expected a single module"); 8649 8650 return (*MsOrErr)[0]; 8651 } 8652 8653 Expected<std::unique_ptr<Module>> 8654 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8655 bool ShouldLazyLoadMetadata, bool IsImporting, 8656 ParserCallbacks Callbacks) { 8657 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8658 if (!BM) 8659 return BM.takeError(); 8660 8661 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8662 Callbacks); 8663 } 8664 8665 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8666 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8667 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8668 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8669 IsImporting, Callbacks); 8670 if (MOrErr) 8671 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8672 return MOrErr; 8673 } 8674 8675 Expected<std::unique_ptr<Module>> 8676 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8677 return getModuleImpl(Context, true, false, false, Callbacks); 8678 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8679 // written. We must defer until the Module has been fully materialized. 8680 } 8681 8682 Expected<std::unique_ptr<Module>> 8683 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8684 ParserCallbacks Callbacks) { 8685 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8686 if (!BM) 8687 return BM.takeError(); 8688 8689 return BM->parseModule(Context, Callbacks); 8690 } 8691 8692 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8693 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8694 if (!StreamOrErr) 8695 return StreamOrErr.takeError(); 8696 8697 return readTriple(*StreamOrErr); 8698 } 8699 8700 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8701 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8702 if (!StreamOrErr) 8703 return StreamOrErr.takeError(); 8704 8705 return hasObjCCategory(*StreamOrErr); 8706 } 8707 8708 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8709 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8710 if (!StreamOrErr) 8711 return StreamOrErr.takeError(); 8712 8713 return readIdentificationCode(*StreamOrErr); 8714 } 8715 8716 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8717 ModuleSummaryIndex &CombinedIndex) { 8718 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8719 if (!BM) 8720 return BM.takeError(); 8721 8722 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8723 } 8724 8725 Expected<std::unique_ptr<ModuleSummaryIndex>> 8726 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8727 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8728 if (!BM) 8729 return BM.takeError(); 8730 8731 return BM->getSummary(); 8732 } 8733 8734 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8735 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8736 if (!BM) 8737 return BM.takeError(); 8738 8739 return BM->getLTOInfo(); 8740 } 8741 8742 Expected<std::unique_ptr<ModuleSummaryIndex>> 8743 llvm::getModuleSummaryIndexForFile(StringRef Path, 8744 bool IgnoreEmptyThinLTOIndexFile) { 8745 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8746 MemoryBuffer::getFileOrSTDIN(Path); 8747 if (!FileOrErr) 8748 return errorCodeToError(FileOrErr.getError()); 8749 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8750 return nullptr; 8751 return getModuleSummaryIndex(**FileOrErr); 8752 } 8753