xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 76007138f4ffd4e0f510d12b5e8cad529c21f24d)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
796                           unsigned &Slot, unsigned InstNum, Value *&ResVal,
797                           BasicBlock *ConstExprInsertBB) {
798     if (Slot == Record.size())
799       return true;
800     unsigned ValID = Record[Slot++];
801     if (ValID != bitc::OB_METADATA) {
802       unsigned TypeId;
803       return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId,
804                               ConstExprInsertBB);
805     }
806     if (Slot == Record.size())
807       return true;
808     unsigned ValNo = InstNum - (unsigned)Record[Slot++];
809     ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo));
810     return false;
811   }
812 
813   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
814   /// past the number of slots used by the value in the record. Return true if
815   /// there is an error.
816   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
817                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
818                 BasicBlock *ConstExprInsertBB) {
819     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
820       return true;
821     // All values currently take a single record slot.
822     ++Slot;
823     return false;
824   }
825 
826   /// Like popValue, but does not increment the Slot number.
827   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
829                 BasicBlock *ConstExprInsertBB) {
830     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
831     return ResVal == nullptr;
832   }
833 
834   /// Version of getValue that returns ResVal directly, or 0 if there is an
835   /// error.
836   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
837                   unsigned InstNum, Type *Ty, unsigned TyID,
838                   BasicBlock *ConstExprInsertBB) {
839     if (Slot == Record.size()) return nullptr;
840     unsigned ValNo = (unsigned)Record[Slot];
841     // Adjust the ValNo, if it was encoded relative to the InstNum.
842     if (UseRelativeIDs)
843       ValNo = InstNum - ValNo;
844     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
845   }
846 
847   /// Like getValue, but decodes signed VBRs.
848   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
849                         unsigned InstNum, Type *Ty, unsigned TyID,
850                         BasicBlock *ConstExprInsertBB) {
851     if (Slot == Record.size()) return nullptr;
852     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
853     // Adjust the ValNo, if it was encoded relative to the InstNum.
854     if (UseRelativeIDs)
855       ValNo = InstNum - ValNo;
856     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
857   }
858 
859   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
860                                             unsigned &OpNum,
861                                             unsigned BitWidth) {
862     if (Record.size() - OpNum < 2)
863       return error("Too few records for range");
864     if (BitWidth > 64) {
865       unsigned LowerActiveWords = Record[OpNum];
866       unsigned UpperActiveWords = Record[OpNum++] >> 32;
867       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
868         return error("Too few records for range");
869       APInt Lower =
870           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
871       OpNum += LowerActiveWords;
872       APInt Upper =
873           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
874       OpNum += UpperActiveWords;
875       return ConstantRange(Lower, Upper);
876     } else {
877       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
878       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
879       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
880     }
881   }
882 
883   Expected<ConstantRange>
884   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
885     if (Record.size() - OpNum < 1)
886       return error("Too few records for range");
887     unsigned BitWidth = Record[OpNum++];
888     return readConstantRange(Record, OpNum, BitWidth);
889   }
890 
891   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
892   /// corresponding argument's pointee type. Also upgrades intrinsics that now
893   /// require an elementtype attribute.
894   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
895 
896   /// Converts alignment exponent (i.e. power of two (or zero)) to the
897   /// corresponding alignment to use. If alignment is too large, returns
898   /// a corresponding error code.
899   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
900   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
901   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
902                     ParserCallbacks Callbacks = {});
903 
904   Error parseComdatRecord(ArrayRef<uint64_t> Record);
905   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
906   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
907   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
908                                         ArrayRef<uint64_t> Record);
909 
910   Error parseAttributeBlock();
911   Error parseAttributeGroupBlock();
912   Error parseTypeTable();
913   Error parseTypeTableBody();
914   Error parseOperandBundleTags();
915   Error parseSyncScopeNames();
916 
917   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
918                                 unsigned NameIndex, Triple &TT);
919   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
920                                ArrayRef<uint64_t> Record);
921   Error parseValueSymbolTable(uint64_t Offset = 0);
922   Error parseGlobalValueSymbolTable();
923   Error parseConstants();
924   Error rememberAndSkipFunctionBodies();
925   Error rememberAndSkipFunctionBody();
926   /// Save the positions of the Metadata blocks and skip parsing the blocks.
927   Error rememberAndSkipMetadata();
928   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
929   Error parseFunctionBody(Function *F);
930   Error globalCleanup();
931   Error resolveGlobalAndIndirectSymbolInits();
932   Error parseUseLists();
933   Error findFunctionInStream(
934       Function *F,
935       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
936 
937   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
938 };
939 
940 /// Class to manage reading and parsing function summary index bitcode
941 /// files/sections.
942 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
943   /// The module index built during parsing.
944   ModuleSummaryIndex &TheIndex;
945 
946   /// Indicates whether we have encountered a global value summary section
947   /// yet during parsing.
948   bool SeenGlobalValSummary = false;
949 
950   /// Indicates whether we have already parsed the VST, used for error checking.
951   bool SeenValueSymbolTable = false;
952 
953   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
954   /// Used to enable on-demand parsing of the VST.
955   uint64_t VSTOffset = 0;
956 
957   // Map to save ValueId to ValueInfo association that was recorded in the
958   // ValueSymbolTable. It is used after the VST is parsed to convert
959   // call graph edges read from the function summary from referencing
960   // callees by their ValueId to using the ValueInfo instead, which is how
961   // they are recorded in the summary index being built.
962   // We save a GUID which refers to the same global as the ValueInfo, but
963   // ignoring the linkage, i.e. for values other than local linkage they are
964   // identical (this is the second member). ValueInfo has the real GUID.
965   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
966       ValueIdToValueInfoMap;
967 
968   /// Map populated during module path string table parsing, from the
969   /// module ID to a string reference owned by the index's module
970   /// path string table, used to correlate with combined index
971   /// summary records.
972   DenseMap<uint64_t, StringRef> ModuleIdMap;
973 
974   /// Original source file name recorded in a bitcode record.
975   std::string SourceFileName;
976 
977   /// The string identifier given to this module by the client, normally the
978   /// path to the bitcode file.
979   StringRef ModulePath;
980 
981   /// Callback to ask whether a symbol is the prevailing copy when invoked
982   /// during combined index building.
983   std::function<bool(GlobalValue::GUID)> IsPrevailing;
984 
985   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
986   /// ids from the lists in the callsite and alloc entries to the index.
987   std::vector<uint64_t> StackIds;
988 
989 public:
990   ModuleSummaryIndexBitcodeReader(
991       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
992       StringRef ModulePath,
993       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
994 
995   Error parseModule();
996 
997 private:
998   void setValueGUID(uint64_t ValueID, StringRef ValueName,
999                     GlobalValue::LinkageTypes Linkage,
1000                     StringRef SourceFileName);
1001   Error parseValueSymbolTable(
1002       uint64_t Offset,
1003       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
1004   SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
1005   SmallVector<FunctionSummary::EdgeTy, 0>
1006   makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
1007                bool HasProfile, bool HasRelBF);
1008   Error parseEntireSummary(unsigned ID);
1009   Error parseModuleStringTable();
1010   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
1011   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
1012                                        TypeIdCompatibleVtableInfo &TypeId);
1013   std::vector<FunctionSummary::ParamAccess>
1014   parseParamAccesses(ArrayRef<uint64_t> Record);
1015 
1016   template <bool AllowNullValueInfo = false>
1017   std::pair<ValueInfo, GlobalValue::GUID>
1018   getValueInfoFromValueId(unsigned ValueId);
1019 
1020   void addThisModule();
1021   ModuleSummaryIndex::ModuleInfo *getThisModule();
1022 };
1023 
1024 } // end anonymous namespace
1025 
1026 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1027                                                     Error Err) {
1028   if (Err) {
1029     std::error_code EC;
1030     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1031       EC = EIB.convertToErrorCode();
1032       Ctx.emitError(EIB.message());
1033     });
1034     return EC;
1035   }
1036   return std::error_code();
1037 }
1038 
1039 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1040                              StringRef ProducerIdentification,
1041                              LLVMContext &Context)
1042     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1043       ValueList(this->Stream.SizeInBytes(),
1044                 [this](unsigned ValID, BasicBlock *InsertBB) {
1045                   return materializeValue(ValID, InsertBB);
1046                 }) {
1047   this->ProducerIdentification = std::string(ProducerIdentification);
1048 }
1049 
1050 Error BitcodeReader::materializeForwardReferencedFunctions() {
1051   if (WillMaterializeAllForwardRefs)
1052     return Error::success();
1053 
1054   // Prevent recursion.
1055   WillMaterializeAllForwardRefs = true;
1056 
1057   while (!BasicBlockFwdRefQueue.empty()) {
1058     Function *F = BasicBlockFwdRefQueue.front();
1059     BasicBlockFwdRefQueue.pop_front();
1060     assert(F && "Expected valid function");
1061     if (!BasicBlockFwdRefs.count(F))
1062       // Already materialized.
1063       continue;
1064 
1065     // Check for a function that isn't materializable to prevent an infinite
1066     // loop.  When parsing a blockaddress stored in a global variable, there
1067     // isn't a trivial way to check if a function will have a body without a
1068     // linear search through FunctionsWithBodies, so just check it here.
1069     if (!F->isMaterializable())
1070       return error("Never resolved function from blockaddress");
1071 
1072     // Try to materialize F.
1073     if (Error Err = materialize(F))
1074       return Err;
1075   }
1076   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1077 
1078   for (Function *F : BackwardRefFunctions)
1079     if (Error Err = materialize(F))
1080       return Err;
1081   BackwardRefFunctions.clear();
1082 
1083   // Reset state.
1084   WillMaterializeAllForwardRefs = false;
1085   return Error::success();
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //  Helper functions to implement forward reference resolution, etc.
1090 //===----------------------------------------------------------------------===//
1091 
1092 static bool hasImplicitComdat(size_t Val) {
1093   switch (Val) {
1094   default:
1095     return false;
1096   case 1:  // Old WeakAnyLinkage
1097   case 4:  // Old LinkOnceAnyLinkage
1098   case 10: // Old WeakODRLinkage
1099   case 11: // Old LinkOnceODRLinkage
1100     return true;
1101   }
1102 }
1103 
1104 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1105   switch (Val) {
1106   default: // Map unknown/new linkages to external
1107   case 0:
1108     return GlobalValue::ExternalLinkage;
1109   case 2:
1110     return GlobalValue::AppendingLinkage;
1111   case 3:
1112     return GlobalValue::InternalLinkage;
1113   case 5:
1114     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1115   case 6:
1116     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1117   case 7:
1118     return GlobalValue::ExternalWeakLinkage;
1119   case 8:
1120     return GlobalValue::CommonLinkage;
1121   case 9:
1122     return GlobalValue::PrivateLinkage;
1123   case 12:
1124     return GlobalValue::AvailableExternallyLinkage;
1125   case 13:
1126     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1127   case 14:
1128     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1129   case 15:
1130     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1131   case 1: // Old value with implicit comdat.
1132   case 16:
1133     return GlobalValue::WeakAnyLinkage;
1134   case 10: // Old value with implicit comdat.
1135   case 17:
1136     return GlobalValue::WeakODRLinkage;
1137   case 4: // Old value with implicit comdat.
1138   case 18:
1139     return GlobalValue::LinkOnceAnyLinkage;
1140   case 11: // Old value with implicit comdat.
1141   case 19:
1142     return GlobalValue::LinkOnceODRLinkage;
1143   }
1144 }
1145 
1146 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1147   FunctionSummary::FFlags Flags;
1148   Flags.ReadNone = RawFlags & 0x1;
1149   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1150   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1151   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1152   Flags.NoInline = (RawFlags >> 4) & 0x1;
1153   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1154   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1155   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1156   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1157   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1158   return Flags;
1159 }
1160 
1161 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1162 //
1163 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1164 // visibility: [8, 10).
1165 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1166                                                             uint64_t Version) {
1167   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1168   // like getDecodedLinkage() above. Any future change to the linkage enum and
1169   // to getDecodedLinkage() will need to be taken into account here as above.
1170   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1171   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1172   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1173   RawFlags = RawFlags >> 4;
1174   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1175   // The Live flag wasn't introduced until version 3. For dead stripping
1176   // to work correctly on earlier versions, we must conservatively treat all
1177   // values as live.
1178   bool Live = (RawFlags & 0x2) || Version < 3;
1179   bool Local = (RawFlags & 0x4);
1180   bool AutoHide = (RawFlags & 0x8);
1181 
1182   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1183                                      Live, Local, AutoHide, IK);
1184 }
1185 
1186 // Decode the flags for GlobalVariable in the summary
1187 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1188   return GlobalVarSummary::GVarFlags(
1189       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1190       (RawFlags & 0x4) ? true : false,
1191       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1192 }
1193 
1194 static std::pair<CalleeInfo::HotnessType, bool>
1195 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1196   CalleeInfo::HotnessType Hotness =
1197       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1198   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1199   return {Hotness, HasTailCall};
1200 }
1201 
1202 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1203                                         bool &HasTailCall) {
1204   static constexpr uint64_t RelBlockFreqMask =
1205       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1206   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1207   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1208 }
1209 
1210 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1211   switch (Val) {
1212   default: // Map unknown visibilities to default.
1213   case 0: return GlobalValue::DefaultVisibility;
1214   case 1: return GlobalValue::HiddenVisibility;
1215   case 2: return GlobalValue::ProtectedVisibility;
1216   }
1217 }
1218 
1219 static GlobalValue::DLLStorageClassTypes
1220 getDecodedDLLStorageClass(unsigned Val) {
1221   switch (Val) {
1222   default: // Map unknown values to default.
1223   case 0: return GlobalValue::DefaultStorageClass;
1224   case 1: return GlobalValue::DLLImportStorageClass;
1225   case 2: return GlobalValue::DLLExportStorageClass;
1226   }
1227 }
1228 
1229 static bool getDecodedDSOLocal(unsigned Val) {
1230   switch(Val) {
1231   default: // Map unknown values to preemptable.
1232   case 0:  return false;
1233   case 1:  return true;
1234   }
1235 }
1236 
1237 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1238   switch (Val) {
1239   case 1:
1240     return CodeModel::Tiny;
1241   case 2:
1242     return CodeModel::Small;
1243   case 3:
1244     return CodeModel::Kernel;
1245   case 4:
1246     return CodeModel::Medium;
1247   case 5:
1248     return CodeModel::Large;
1249   }
1250 
1251   return {};
1252 }
1253 
1254 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1255   switch (Val) {
1256     case 0: return GlobalVariable::NotThreadLocal;
1257     default: // Map unknown non-zero value to general dynamic.
1258     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1259     case 2: return GlobalVariable::LocalDynamicTLSModel;
1260     case 3: return GlobalVariable::InitialExecTLSModel;
1261     case 4: return GlobalVariable::LocalExecTLSModel;
1262   }
1263 }
1264 
1265 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1266   switch (Val) {
1267     default: // Map unknown to UnnamedAddr::None.
1268     case 0: return GlobalVariable::UnnamedAddr::None;
1269     case 1: return GlobalVariable::UnnamedAddr::Global;
1270     case 2: return GlobalVariable::UnnamedAddr::Local;
1271   }
1272 }
1273 
1274 static int getDecodedCastOpcode(unsigned Val) {
1275   switch (Val) {
1276   default: return -1;
1277   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1278   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1279   case bitc::CAST_SEXT    : return Instruction::SExt;
1280   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1281   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1282   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1283   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1284   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1285   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1286   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1287   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1288   case bitc::CAST_BITCAST : return Instruction::BitCast;
1289   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1290   }
1291 }
1292 
1293 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1294   bool IsFP = Ty->isFPOrFPVectorTy();
1295   // UnOps are only valid for int/fp or vector of int/fp types
1296   if (!IsFP && !Ty->isIntOrIntVectorTy())
1297     return -1;
1298 
1299   switch (Val) {
1300   default:
1301     return -1;
1302   case bitc::UNOP_FNEG:
1303     return IsFP ? Instruction::FNeg : -1;
1304   }
1305 }
1306 
1307 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1308   bool IsFP = Ty->isFPOrFPVectorTy();
1309   // BinOps are only valid for int/fp or vector of int/fp types
1310   if (!IsFP && !Ty->isIntOrIntVectorTy())
1311     return -1;
1312 
1313   switch (Val) {
1314   default:
1315     return -1;
1316   case bitc::BINOP_ADD:
1317     return IsFP ? Instruction::FAdd : Instruction::Add;
1318   case bitc::BINOP_SUB:
1319     return IsFP ? Instruction::FSub : Instruction::Sub;
1320   case bitc::BINOP_MUL:
1321     return IsFP ? Instruction::FMul : Instruction::Mul;
1322   case bitc::BINOP_UDIV:
1323     return IsFP ? -1 : Instruction::UDiv;
1324   case bitc::BINOP_SDIV:
1325     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1326   case bitc::BINOP_UREM:
1327     return IsFP ? -1 : Instruction::URem;
1328   case bitc::BINOP_SREM:
1329     return IsFP ? Instruction::FRem : Instruction::SRem;
1330   case bitc::BINOP_SHL:
1331     return IsFP ? -1 : Instruction::Shl;
1332   case bitc::BINOP_LSHR:
1333     return IsFP ? -1 : Instruction::LShr;
1334   case bitc::BINOP_ASHR:
1335     return IsFP ? -1 : Instruction::AShr;
1336   case bitc::BINOP_AND:
1337     return IsFP ? -1 : Instruction::And;
1338   case bitc::BINOP_OR:
1339     return IsFP ? -1 : Instruction::Or;
1340   case bitc::BINOP_XOR:
1341     return IsFP ? -1 : Instruction::Xor;
1342   }
1343 }
1344 
1345 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1346   switch (Val) {
1347   default: return AtomicRMWInst::BAD_BINOP;
1348   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1349   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1350   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1351   case bitc::RMW_AND: return AtomicRMWInst::And;
1352   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1353   case bitc::RMW_OR: return AtomicRMWInst::Or;
1354   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1355   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1356   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1357   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1358   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1359   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1360   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1361   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1362   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1363   case bitc::RMW_UINC_WRAP:
1364     return AtomicRMWInst::UIncWrap;
1365   case bitc::RMW_UDEC_WRAP:
1366     return AtomicRMWInst::UDecWrap;
1367   case bitc::RMW_USUB_COND:
1368     return AtomicRMWInst::USubCond;
1369   case bitc::RMW_USUB_SAT:
1370     return AtomicRMWInst::USubSat;
1371   }
1372 }
1373 
1374 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1375   switch (Val) {
1376   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1377   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1378   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1379   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1380   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1381   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1382   default: // Map unknown orderings to sequentially-consistent.
1383   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1384   }
1385 }
1386 
1387 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1388   switch (Val) {
1389   default: // Map unknown selection kinds to any.
1390   case bitc::COMDAT_SELECTION_KIND_ANY:
1391     return Comdat::Any;
1392   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1393     return Comdat::ExactMatch;
1394   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1395     return Comdat::Largest;
1396   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1397     return Comdat::NoDeduplicate;
1398   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1399     return Comdat::SameSize;
1400   }
1401 }
1402 
1403 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1404   FastMathFlags FMF;
1405   if (0 != (Val & bitc::UnsafeAlgebra))
1406     FMF.setFast();
1407   if (0 != (Val & bitc::AllowReassoc))
1408     FMF.setAllowReassoc();
1409   if (0 != (Val & bitc::NoNaNs))
1410     FMF.setNoNaNs();
1411   if (0 != (Val & bitc::NoInfs))
1412     FMF.setNoInfs();
1413   if (0 != (Val & bitc::NoSignedZeros))
1414     FMF.setNoSignedZeros();
1415   if (0 != (Val & bitc::AllowReciprocal))
1416     FMF.setAllowReciprocal();
1417   if (0 != (Val & bitc::AllowContract))
1418     FMF.setAllowContract(true);
1419   if (0 != (Val & bitc::ApproxFunc))
1420     FMF.setApproxFunc();
1421   return FMF;
1422 }
1423 
1424 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1425   // A GlobalValue with local linkage cannot have a DLL storage class.
1426   if (GV->hasLocalLinkage())
1427     return;
1428   switch (Val) {
1429   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1430   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1431   }
1432 }
1433 
1434 Type *BitcodeReader::getTypeByID(unsigned ID) {
1435   // The type table size is always specified correctly.
1436   if (ID >= TypeList.size())
1437     return nullptr;
1438 
1439   if (Type *Ty = TypeList[ID])
1440     return Ty;
1441 
1442   // If we have a forward reference, the only possible case is when it is to a
1443   // named struct.  Just create a placeholder for now.
1444   return TypeList[ID] = createIdentifiedStructType(Context);
1445 }
1446 
1447 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1448   auto It = ContainedTypeIDs.find(ID);
1449   if (It == ContainedTypeIDs.end())
1450     return InvalidTypeID;
1451 
1452   if (Idx >= It->second.size())
1453     return InvalidTypeID;
1454 
1455   return It->second[Idx];
1456 }
1457 
1458 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1459   if (ID >= TypeList.size())
1460     return nullptr;
1461 
1462   Type *Ty = TypeList[ID];
1463   if (!Ty->isPointerTy())
1464     return nullptr;
1465 
1466   return getTypeByID(getContainedTypeID(ID, 0));
1467 }
1468 
1469 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1470                                          ArrayRef<unsigned> ChildTypeIDs) {
1471   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1472   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1473   auto It = VirtualTypeIDs.find(CacheKey);
1474   if (It != VirtualTypeIDs.end()) {
1475     // The cmpxchg return value is the only place we need more than one
1476     // contained type ID, however the second one will always be the same (i1),
1477     // so we don't need to include it in the cache key. This asserts that the
1478     // contained types are indeed as expected and there are no collisions.
1479     assert((ChildTypeIDs.empty() ||
1480             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1481            "Incorrect cached contained type IDs");
1482     return It->second;
1483   }
1484 
1485   unsigned TypeID = TypeList.size();
1486   TypeList.push_back(Ty);
1487   if (!ChildTypeIDs.empty())
1488     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1489   VirtualTypeIDs.insert({CacheKey, TypeID});
1490   return TypeID;
1491 }
1492 
1493 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1494   GEPNoWrapFlags NW;
1495   if (Flags & (1 << bitc::GEP_INBOUNDS))
1496     NW |= GEPNoWrapFlags::inBounds();
1497   if (Flags & (1 << bitc::GEP_NUSW))
1498     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1499   if (Flags & (1 << bitc::GEP_NUW))
1500     NW |= GEPNoWrapFlags::noUnsignedWrap();
1501   return NW;
1502 }
1503 
1504 static bool isConstExprSupported(const BitcodeConstant *BC) {
1505   uint8_t Opcode = BC->Opcode;
1506 
1507   // These are not real constant expressions, always consider them supported.
1508   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1509     return true;
1510 
1511   // If -expand-constant-exprs is set, we want to consider all expressions
1512   // as unsupported.
1513   if (ExpandConstantExprs)
1514     return false;
1515 
1516   if (Instruction::isBinaryOp(Opcode))
1517     return ConstantExpr::isSupportedBinOp(Opcode);
1518 
1519   if (Instruction::isCast(Opcode))
1520     return ConstantExpr::isSupportedCastOp(Opcode);
1521 
1522   if (Opcode == Instruction::GetElementPtr)
1523     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1524 
1525   switch (Opcode) {
1526   case Instruction::FNeg:
1527   case Instruction::Select:
1528   case Instruction::ICmp:
1529   case Instruction::FCmp:
1530     return false;
1531   default:
1532     return true;
1533   }
1534 }
1535 
1536 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1537                                                   BasicBlock *InsertBB) {
1538   // Quickly handle the case where there is no BitcodeConstant to resolve.
1539   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1540       !isa<BitcodeConstant>(ValueList[StartValID]))
1541     return ValueList[StartValID];
1542 
1543   SmallDenseMap<unsigned, Value *> MaterializedValues;
1544   SmallVector<unsigned> Worklist;
1545   Worklist.push_back(StartValID);
1546   while (!Worklist.empty()) {
1547     unsigned ValID = Worklist.back();
1548     if (MaterializedValues.count(ValID)) {
1549       // Duplicate expression that was already handled.
1550       Worklist.pop_back();
1551       continue;
1552     }
1553 
1554     if (ValID >= ValueList.size() || !ValueList[ValID])
1555       return error("Invalid value ID");
1556 
1557     Value *V = ValueList[ValID];
1558     auto *BC = dyn_cast<BitcodeConstant>(V);
1559     if (!BC) {
1560       MaterializedValues.insert({ValID, V});
1561       Worklist.pop_back();
1562       continue;
1563     }
1564 
1565     // Iterate in reverse, so values will get popped from the worklist in
1566     // expected order.
1567     SmallVector<Value *> Ops;
1568     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1569       auto It = MaterializedValues.find(OpID);
1570       if (It != MaterializedValues.end())
1571         Ops.push_back(It->second);
1572       else
1573         Worklist.push_back(OpID);
1574     }
1575 
1576     // Some expressions have not been resolved yet, handle them first and then
1577     // revisit this one.
1578     if (Ops.size() != BC->getOperandIDs().size())
1579       continue;
1580     std::reverse(Ops.begin(), Ops.end());
1581 
1582     SmallVector<Constant *> ConstOps;
1583     for (Value *Op : Ops)
1584       if (auto *C = dyn_cast<Constant>(Op))
1585         ConstOps.push_back(C);
1586 
1587     // Materialize as constant expression if possible.
1588     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1589       Constant *C;
1590       if (Instruction::isCast(BC->Opcode)) {
1591         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1592         if (!C)
1593           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1594       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1595         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1596       } else {
1597         switch (BC->Opcode) {
1598         case BitcodeConstant::ConstantPtrAuthOpcode: {
1599           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1600           if (!Key)
1601             return error("ptrauth key operand must be ConstantInt");
1602 
1603           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1604           if (!Disc)
1605             return error("ptrauth disc operand must be ConstantInt");
1606 
1607           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1608           break;
1609         }
1610         case BitcodeConstant::NoCFIOpcode: {
1611           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1612           if (!GV)
1613             return error("no_cfi operand must be GlobalValue");
1614           C = NoCFIValue::get(GV);
1615           break;
1616         }
1617         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1618           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1619           if (!GV)
1620             return error("dso_local operand must be GlobalValue");
1621           C = DSOLocalEquivalent::get(GV);
1622           break;
1623         }
1624         case BitcodeConstant::BlockAddressOpcode: {
1625           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1626           if (!Fn)
1627             return error("blockaddress operand must be a function");
1628 
1629           // If the function is already parsed we can insert the block address
1630           // right away.
1631           BasicBlock *BB;
1632           unsigned BBID = BC->BlockAddressBB;
1633           if (!BBID)
1634             // Invalid reference to entry block.
1635             return error("Invalid ID");
1636           if (!Fn->empty()) {
1637             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1638             for (size_t I = 0, E = BBID; I != E; ++I) {
1639               if (BBI == BBE)
1640                 return error("Invalid ID");
1641               ++BBI;
1642             }
1643             BB = &*BBI;
1644           } else {
1645             // Otherwise insert a placeholder and remember it so it can be
1646             // inserted when the function is parsed.
1647             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1648             if (FwdBBs.empty())
1649               BasicBlockFwdRefQueue.push_back(Fn);
1650             if (FwdBBs.size() < BBID + 1)
1651               FwdBBs.resize(BBID + 1);
1652             if (!FwdBBs[BBID])
1653               FwdBBs[BBID] = BasicBlock::Create(Context);
1654             BB = FwdBBs[BBID];
1655           }
1656           C = BlockAddress::get(Fn, BB);
1657           break;
1658         }
1659         case BitcodeConstant::ConstantStructOpcode:
1660           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1661           break;
1662         case BitcodeConstant::ConstantArrayOpcode:
1663           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1664           break;
1665         case BitcodeConstant::ConstantVectorOpcode:
1666           C = ConstantVector::get(ConstOps);
1667           break;
1668         case Instruction::GetElementPtr:
1669           C = ConstantExpr::getGetElementPtr(
1670               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1671               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1672           break;
1673         case Instruction::ExtractElement:
1674           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1675           break;
1676         case Instruction::InsertElement:
1677           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1678                                              ConstOps[2]);
1679           break;
1680         case Instruction::ShuffleVector: {
1681           SmallVector<int, 16> Mask;
1682           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1683           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1684           break;
1685         }
1686         default:
1687           llvm_unreachable("Unhandled bitcode constant");
1688         }
1689       }
1690 
1691       // Cache resolved constant.
1692       ValueList.replaceValueWithoutRAUW(ValID, C);
1693       MaterializedValues.insert({ValID, C});
1694       Worklist.pop_back();
1695       continue;
1696     }
1697 
1698     if (!InsertBB)
1699       return error(Twine("Value referenced by initializer is an unsupported "
1700                          "constant expression of type ") +
1701                    BC->getOpcodeName());
1702 
1703     // Materialize as instructions if necessary.
1704     Instruction *I;
1705     if (Instruction::isCast(BC->Opcode)) {
1706       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1707                            BC->getType(), "constexpr", InsertBB);
1708     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1709       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1710                                 "constexpr", InsertBB);
1711     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1712       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1713                                  Ops[1], "constexpr", InsertBB);
1714       if (isa<OverflowingBinaryOperator>(I)) {
1715         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1716           I->setHasNoSignedWrap();
1717         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1718           I->setHasNoUnsignedWrap();
1719       }
1720       if (isa<PossiblyExactOperator>(I) &&
1721           (BC->Flags & PossiblyExactOperator::IsExact))
1722         I->setIsExact();
1723     } else {
1724       switch (BC->Opcode) {
1725       case BitcodeConstant::ConstantVectorOpcode: {
1726         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1727         Value *V = PoisonValue::get(BC->getType());
1728         for (auto Pair : enumerate(Ops)) {
1729           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1730           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1731                                         InsertBB);
1732         }
1733         I = cast<Instruction>(V);
1734         break;
1735       }
1736       case BitcodeConstant::ConstantStructOpcode:
1737       case BitcodeConstant::ConstantArrayOpcode: {
1738         Value *V = PoisonValue::get(BC->getType());
1739         for (auto Pair : enumerate(Ops))
1740           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1741                                       "constexpr.ins", InsertBB);
1742         I = cast<Instruction>(V);
1743         break;
1744       }
1745       case Instruction::ICmp:
1746       case Instruction::FCmp:
1747         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1748                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1749                             "constexpr", InsertBB);
1750         break;
1751       case Instruction::GetElementPtr:
1752         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1753                                       ArrayRef(Ops).drop_front(), "constexpr",
1754                                       InsertBB);
1755         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1756         break;
1757       case Instruction::Select:
1758         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1759         break;
1760       case Instruction::ExtractElement:
1761         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1762         break;
1763       case Instruction::InsertElement:
1764         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1765                                       InsertBB);
1766         break;
1767       case Instruction::ShuffleVector:
1768         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1769                                   InsertBB);
1770         break;
1771       default:
1772         llvm_unreachable("Unhandled bitcode constant");
1773       }
1774     }
1775 
1776     MaterializedValues.insert({ValID, I});
1777     Worklist.pop_back();
1778   }
1779 
1780   return MaterializedValues[StartValID];
1781 }
1782 
1783 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1784   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1785   if (!MaybeV)
1786     return MaybeV.takeError();
1787 
1788   // Result must be Constant if InsertBB is nullptr.
1789   return cast<Constant>(MaybeV.get());
1790 }
1791 
1792 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1793                                                       StringRef Name) {
1794   auto *Ret = StructType::create(Context, Name);
1795   IdentifiedStructTypes.push_back(Ret);
1796   return Ret;
1797 }
1798 
1799 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1800   auto *Ret = StructType::create(Context);
1801   IdentifiedStructTypes.push_back(Ret);
1802   return Ret;
1803 }
1804 
1805 //===----------------------------------------------------------------------===//
1806 //  Functions for parsing blocks from the bitcode file
1807 //===----------------------------------------------------------------------===//
1808 
1809 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1810   switch (Val) {
1811   case Attribute::EndAttrKinds:
1812   case Attribute::EmptyKey:
1813   case Attribute::TombstoneKey:
1814     llvm_unreachable("Synthetic enumerators which should never get here");
1815 
1816   case Attribute::None:            return 0;
1817   case Attribute::ZExt:            return 1 << 0;
1818   case Attribute::SExt:            return 1 << 1;
1819   case Attribute::NoReturn:        return 1 << 2;
1820   case Attribute::InReg:           return 1 << 3;
1821   case Attribute::StructRet:       return 1 << 4;
1822   case Attribute::NoUnwind:        return 1 << 5;
1823   case Attribute::NoAlias:         return 1 << 6;
1824   case Attribute::ByVal:           return 1 << 7;
1825   case Attribute::Nest:            return 1 << 8;
1826   case Attribute::ReadNone:        return 1 << 9;
1827   case Attribute::ReadOnly:        return 1 << 10;
1828   case Attribute::NoInline:        return 1 << 11;
1829   case Attribute::AlwaysInline:    return 1 << 12;
1830   case Attribute::OptimizeForSize: return 1 << 13;
1831   case Attribute::StackProtect:    return 1 << 14;
1832   case Attribute::StackProtectReq: return 1 << 15;
1833   case Attribute::Alignment:       return 31 << 16;
1834   case Attribute::NoCapture:       return 1 << 21;
1835   case Attribute::NoRedZone:       return 1 << 22;
1836   case Attribute::NoImplicitFloat: return 1 << 23;
1837   case Attribute::Naked:           return 1 << 24;
1838   case Attribute::InlineHint:      return 1 << 25;
1839   case Attribute::StackAlignment:  return 7 << 26;
1840   case Attribute::ReturnsTwice:    return 1 << 29;
1841   case Attribute::UWTable:         return 1 << 30;
1842   case Attribute::NonLazyBind:     return 1U << 31;
1843   case Attribute::SanitizeAddress: return 1ULL << 32;
1844   case Attribute::MinSize:         return 1ULL << 33;
1845   case Attribute::NoDuplicate:     return 1ULL << 34;
1846   case Attribute::StackProtectStrong: return 1ULL << 35;
1847   case Attribute::SanitizeThread:  return 1ULL << 36;
1848   case Attribute::SanitizeMemory:  return 1ULL << 37;
1849   case Attribute::NoBuiltin:       return 1ULL << 38;
1850   case Attribute::Returned:        return 1ULL << 39;
1851   case Attribute::Cold:            return 1ULL << 40;
1852   case Attribute::Builtin:         return 1ULL << 41;
1853   case Attribute::OptimizeNone:    return 1ULL << 42;
1854   case Attribute::InAlloca:        return 1ULL << 43;
1855   case Attribute::NonNull:         return 1ULL << 44;
1856   case Attribute::JumpTable:       return 1ULL << 45;
1857   case Attribute::Convergent:      return 1ULL << 46;
1858   case Attribute::SafeStack:       return 1ULL << 47;
1859   case Attribute::NoRecurse:       return 1ULL << 48;
1860   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1861   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1862   case Attribute::SwiftSelf:       return 1ULL << 51;
1863   case Attribute::SwiftError:      return 1ULL << 52;
1864   case Attribute::WriteOnly:       return 1ULL << 53;
1865   case Attribute::Speculatable:    return 1ULL << 54;
1866   case Attribute::StrictFP:        return 1ULL << 55;
1867   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1868   case Attribute::NoCfCheck:       return 1ULL << 57;
1869   case Attribute::OptForFuzzing:   return 1ULL << 58;
1870   case Attribute::ShadowCallStack: return 1ULL << 59;
1871   case Attribute::SpeculativeLoadHardening:
1872     return 1ULL << 60;
1873   case Attribute::ImmArg:
1874     return 1ULL << 61;
1875   case Attribute::WillReturn:
1876     return 1ULL << 62;
1877   case Attribute::NoFree:
1878     return 1ULL << 63;
1879   default:
1880     // Other attributes are not supported in the raw format,
1881     // as we ran out of space.
1882     return 0;
1883   }
1884   llvm_unreachable("Unsupported attribute type");
1885 }
1886 
1887 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1888   if (!Val) return;
1889 
1890   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1891        I = Attribute::AttrKind(I + 1)) {
1892     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1893       if (I == Attribute::Alignment)
1894         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1895       else if (I == Attribute::StackAlignment)
1896         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1897       else if (Attribute::isTypeAttrKind(I))
1898         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1899       else
1900         B.addAttribute(I);
1901     }
1902   }
1903 }
1904 
1905 /// This fills an AttrBuilder object with the LLVM attributes that have
1906 /// been decoded from the given integer. This function must stay in sync with
1907 /// 'encodeLLVMAttributesForBitcode'.
1908 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1909                                            uint64_t EncodedAttrs,
1910                                            uint64_t AttrIdx) {
1911   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1912   // the bits above 31 down by 11 bits.
1913   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1914   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1915          "Alignment must be a power of two.");
1916 
1917   if (Alignment)
1918     B.addAlignmentAttr(Alignment);
1919 
1920   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1921                    (EncodedAttrs & 0xffff);
1922 
1923   if (AttrIdx == AttributeList::FunctionIndex) {
1924     // Upgrade old memory attributes.
1925     MemoryEffects ME = MemoryEffects::unknown();
1926     if (Attrs & (1ULL << 9)) {
1927       // ReadNone
1928       Attrs &= ~(1ULL << 9);
1929       ME &= MemoryEffects::none();
1930     }
1931     if (Attrs & (1ULL << 10)) {
1932       // ReadOnly
1933       Attrs &= ~(1ULL << 10);
1934       ME &= MemoryEffects::readOnly();
1935     }
1936     if (Attrs & (1ULL << 49)) {
1937       // InaccessibleMemOnly
1938       Attrs &= ~(1ULL << 49);
1939       ME &= MemoryEffects::inaccessibleMemOnly();
1940     }
1941     if (Attrs & (1ULL << 50)) {
1942       // InaccessibleMemOrArgMemOnly
1943       Attrs &= ~(1ULL << 50);
1944       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1945     }
1946     if (Attrs & (1ULL << 53)) {
1947       // WriteOnly
1948       Attrs &= ~(1ULL << 53);
1949       ME &= MemoryEffects::writeOnly();
1950     }
1951     if (ME != MemoryEffects::unknown())
1952       B.addMemoryAttr(ME);
1953   }
1954 
1955   addRawAttributeValue(B, Attrs);
1956 }
1957 
1958 Error BitcodeReader::parseAttributeBlock() {
1959   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1960     return Err;
1961 
1962   if (!MAttributes.empty())
1963     return error("Invalid multiple blocks");
1964 
1965   SmallVector<uint64_t, 64> Record;
1966 
1967   SmallVector<AttributeList, 8> Attrs;
1968 
1969   // Read all the records.
1970   while (true) {
1971     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1972     if (!MaybeEntry)
1973       return MaybeEntry.takeError();
1974     BitstreamEntry Entry = MaybeEntry.get();
1975 
1976     switch (Entry.Kind) {
1977     case BitstreamEntry::SubBlock: // Handled for us already.
1978     case BitstreamEntry::Error:
1979       return error("Malformed block");
1980     case BitstreamEntry::EndBlock:
1981       return Error::success();
1982     case BitstreamEntry::Record:
1983       // The interesting case.
1984       break;
1985     }
1986 
1987     // Read a record.
1988     Record.clear();
1989     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1990     if (!MaybeRecord)
1991       return MaybeRecord.takeError();
1992     switch (MaybeRecord.get()) {
1993     default:  // Default behavior: ignore.
1994       break;
1995     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1996       // Deprecated, but still needed to read old bitcode files.
1997       if (Record.size() & 1)
1998         return error("Invalid parameter attribute record");
1999 
2000       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2001         AttrBuilder B(Context);
2002         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
2003         Attrs.push_back(AttributeList::get(Context, Record[i], B));
2004       }
2005 
2006       MAttributes.push_back(AttributeList::get(Context, Attrs));
2007       Attrs.clear();
2008       break;
2009     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
2010       for (uint64_t Val : Record)
2011         Attrs.push_back(MAttributeGroups[Val]);
2012 
2013       MAttributes.push_back(AttributeList::get(Context, Attrs));
2014       Attrs.clear();
2015       break;
2016     }
2017   }
2018 }
2019 
2020 // Returns Attribute::None on unrecognized codes.
2021 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2022   switch (Code) {
2023   default:
2024     return Attribute::None;
2025   case bitc::ATTR_KIND_ALIGNMENT:
2026     return Attribute::Alignment;
2027   case bitc::ATTR_KIND_ALWAYS_INLINE:
2028     return Attribute::AlwaysInline;
2029   case bitc::ATTR_KIND_BUILTIN:
2030     return Attribute::Builtin;
2031   case bitc::ATTR_KIND_BY_VAL:
2032     return Attribute::ByVal;
2033   case bitc::ATTR_KIND_IN_ALLOCA:
2034     return Attribute::InAlloca;
2035   case bitc::ATTR_KIND_COLD:
2036     return Attribute::Cold;
2037   case bitc::ATTR_KIND_CONVERGENT:
2038     return Attribute::Convergent;
2039   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2040     return Attribute::DisableSanitizerInstrumentation;
2041   case bitc::ATTR_KIND_ELEMENTTYPE:
2042     return Attribute::ElementType;
2043   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2044     return Attribute::FnRetThunkExtern;
2045   case bitc::ATTR_KIND_INLINE_HINT:
2046     return Attribute::InlineHint;
2047   case bitc::ATTR_KIND_IN_REG:
2048     return Attribute::InReg;
2049   case bitc::ATTR_KIND_JUMP_TABLE:
2050     return Attribute::JumpTable;
2051   case bitc::ATTR_KIND_MEMORY:
2052     return Attribute::Memory;
2053   case bitc::ATTR_KIND_NOFPCLASS:
2054     return Attribute::NoFPClass;
2055   case bitc::ATTR_KIND_MIN_SIZE:
2056     return Attribute::MinSize;
2057   case bitc::ATTR_KIND_NAKED:
2058     return Attribute::Naked;
2059   case bitc::ATTR_KIND_NEST:
2060     return Attribute::Nest;
2061   case bitc::ATTR_KIND_NO_ALIAS:
2062     return Attribute::NoAlias;
2063   case bitc::ATTR_KIND_NO_BUILTIN:
2064     return Attribute::NoBuiltin;
2065   case bitc::ATTR_KIND_NO_CALLBACK:
2066     return Attribute::NoCallback;
2067   case bitc::ATTR_KIND_NO_CAPTURE:
2068     return Attribute::NoCapture;
2069   case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
2070     return Attribute::NoDivergenceSource;
2071   case bitc::ATTR_KIND_NO_DUPLICATE:
2072     return Attribute::NoDuplicate;
2073   case bitc::ATTR_KIND_NOFREE:
2074     return Attribute::NoFree;
2075   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2076     return Attribute::NoImplicitFloat;
2077   case bitc::ATTR_KIND_NO_INLINE:
2078     return Attribute::NoInline;
2079   case bitc::ATTR_KIND_NO_RECURSE:
2080     return Attribute::NoRecurse;
2081   case bitc::ATTR_KIND_NO_MERGE:
2082     return Attribute::NoMerge;
2083   case bitc::ATTR_KIND_NON_LAZY_BIND:
2084     return Attribute::NonLazyBind;
2085   case bitc::ATTR_KIND_NON_NULL:
2086     return Attribute::NonNull;
2087   case bitc::ATTR_KIND_DEREFERENCEABLE:
2088     return Attribute::Dereferenceable;
2089   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2090     return Attribute::DereferenceableOrNull;
2091   case bitc::ATTR_KIND_ALLOC_ALIGN:
2092     return Attribute::AllocAlign;
2093   case bitc::ATTR_KIND_ALLOC_KIND:
2094     return Attribute::AllocKind;
2095   case bitc::ATTR_KIND_ALLOC_SIZE:
2096     return Attribute::AllocSize;
2097   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2098     return Attribute::AllocatedPointer;
2099   case bitc::ATTR_KIND_NO_RED_ZONE:
2100     return Attribute::NoRedZone;
2101   case bitc::ATTR_KIND_NO_RETURN:
2102     return Attribute::NoReturn;
2103   case bitc::ATTR_KIND_NOSYNC:
2104     return Attribute::NoSync;
2105   case bitc::ATTR_KIND_NOCF_CHECK:
2106     return Attribute::NoCfCheck;
2107   case bitc::ATTR_KIND_NO_PROFILE:
2108     return Attribute::NoProfile;
2109   case bitc::ATTR_KIND_SKIP_PROFILE:
2110     return Attribute::SkipProfile;
2111   case bitc::ATTR_KIND_NO_UNWIND:
2112     return Attribute::NoUnwind;
2113   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2114     return Attribute::NoSanitizeBounds;
2115   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2116     return Attribute::NoSanitizeCoverage;
2117   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2118     return Attribute::NullPointerIsValid;
2119   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2120     return Attribute::OptimizeForDebugging;
2121   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2122     return Attribute::OptForFuzzing;
2123   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2124     return Attribute::OptimizeForSize;
2125   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2126     return Attribute::OptimizeNone;
2127   case bitc::ATTR_KIND_READ_NONE:
2128     return Attribute::ReadNone;
2129   case bitc::ATTR_KIND_READ_ONLY:
2130     return Attribute::ReadOnly;
2131   case bitc::ATTR_KIND_RETURNED:
2132     return Attribute::Returned;
2133   case bitc::ATTR_KIND_RETURNS_TWICE:
2134     return Attribute::ReturnsTwice;
2135   case bitc::ATTR_KIND_S_EXT:
2136     return Attribute::SExt;
2137   case bitc::ATTR_KIND_SPECULATABLE:
2138     return Attribute::Speculatable;
2139   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2140     return Attribute::StackAlignment;
2141   case bitc::ATTR_KIND_STACK_PROTECT:
2142     return Attribute::StackProtect;
2143   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2144     return Attribute::StackProtectReq;
2145   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2146     return Attribute::StackProtectStrong;
2147   case bitc::ATTR_KIND_SAFESTACK:
2148     return Attribute::SafeStack;
2149   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2150     return Attribute::ShadowCallStack;
2151   case bitc::ATTR_KIND_STRICT_FP:
2152     return Attribute::StrictFP;
2153   case bitc::ATTR_KIND_STRUCT_RET:
2154     return Attribute::StructRet;
2155   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2156     return Attribute::SanitizeAddress;
2157   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2158     return Attribute::SanitizeHWAddress;
2159   case bitc::ATTR_KIND_SANITIZE_THREAD:
2160     return Attribute::SanitizeThread;
2161   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2162     return Attribute::SanitizeMemory;
2163   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2164     return Attribute::SanitizeNumericalStability;
2165   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2166     return Attribute::SanitizeRealtime;
2167   case bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE:
2168     return Attribute::SanitizeRealtimeUnsafe;
2169   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2170     return Attribute::SpeculativeLoadHardening;
2171   case bitc::ATTR_KIND_SWIFT_ERROR:
2172     return Attribute::SwiftError;
2173   case bitc::ATTR_KIND_SWIFT_SELF:
2174     return Attribute::SwiftSelf;
2175   case bitc::ATTR_KIND_SWIFT_ASYNC:
2176     return Attribute::SwiftAsync;
2177   case bitc::ATTR_KIND_UW_TABLE:
2178     return Attribute::UWTable;
2179   case bitc::ATTR_KIND_VSCALE_RANGE:
2180     return Attribute::VScaleRange;
2181   case bitc::ATTR_KIND_WILLRETURN:
2182     return Attribute::WillReturn;
2183   case bitc::ATTR_KIND_WRITEONLY:
2184     return Attribute::WriteOnly;
2185   case bitc::ATTR_KIND_Z_EXT:
2186     return Attribute::ZExt;
2187   case bitc::ATTR_KIND_IMMARG:
2188     return Attribute::ImmArg;
2189   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2190     return Attribute::SanitizeMemTag;
2191   case bitc::ATTR_KIND_PREALLOCATED:
2192     return Attribute::Preallocated;
2193   case bitc::ATTR_KIND_NOUNDEF:
2194     return Attribute::NoUndef;
2195   case bitc::ATTR_KIND_BYREF:
2196     return Attribute::ByRef;
2197   case bitc::ATTR_KIND_MUSTPROGRESS:
2198     return Attribute::MustProgress;
2199   case bitc::ATTR_KIND_HOT:
2200     return Attribute::Hot;
2201   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2202     return Attribute::PresplitCoroutine;
2203   case bitc::ATTR_KIND_WRITABLE:
2204     return Attribute::Writable;
2205   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2206     return Attribute::CoroDestroyOnlyWhenComplete;
2207   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2208     return Attribute::DeadOnUnwind;
2209   case bitc::ATTR_KIND_RANGE:
2210     return Attribute::Range;
2211   case bitc::ATTR_KIND_INITIALIZES:
2212     return Attribute::Initializes;
2213   case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2214     return Attribute::CoroElideSafe;
2215   case bitc::ATTR_KIND_NO_EXT:
2216     return Attribute::NoExt;
2217   }
2218 }
2219 
2220 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2221                                          MaybeAlign &Alignment) {
2222   // Note: Alignment in bitcode files is incremented by 1, so that zero
2223   // can be used for default alignment.
2224   if (Exponent > Value::MaxAlignmentExponent + 1)
2225     return error("Invalid alignment value");
2226   Alignment = decodeMaybeAlign(Exponent);
2227   return Error::success();
2228 }
2229 
2230 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2231   *Kind = getAttrFromCode(Code);
2232   if (*Kind == Attribute::None)
2233     return error("Unknown attribute kind (" + Twine(Code) + ")");
2234   return Error::success();
2235 }
2236 
2237 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2238   switch (EncodedKind) {
2239   case bitc::ATTR_KIND_READ_NONE:
2240     ME &= MemoryEffects::none();
2241     return true;
2242   case bitc::ATTR_KIND_READ_ONLY:
2243     ME &= MemoryEffects::readOnly();
2244     return true;
2245   case bitc::ATTR_KIND_WRITEONLY:
2246     ME &= MemoryEffects::writeOnly();
2247     return true;
2248   case bitc::ATTR_KIND_ARGMEMONLY:
2249     ME &= MemoryEffects::argMemOnly();
2250     return true;
2251   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2252     ME &= MemoryEffects::inaccessibleMemOnly();
2253     return true;
2254   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2255     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2256     return true;
2257   default:
2258     return false;
2259   }
2260 }
2261 
2262 Error BitcodeReader::parseAttributeGroupBlock() {
2263   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2264     return Err;
2265 
2266   if (!MAttributeGroups.empty())
2267     return error("Invalid multiple blocks");
2268 
2269   SmallVector<uint64_t, 64> Record;
2270 
2271   // Read all the records.
2272   while (true) {
2273     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2274     if (!MaybeEntry)
2275       return MaybeEntry.takeError();
2276     BitstreamEntry Entry = MaybeEntry.get();
2277 
2278     switch (Entry.Kind) {
2279     case BitstreamEntry::SubBlock: // Handled for us already.
2280     case BitstreamEntry::Error:
2281       return error("Malformed block");
2282     case BitstreamEntry::EndBlock:
2283       return Error::success();
2284     case BitstreamEntry::Record:
2285       // The interesting case.
2286       break;
2287     }
2288 
2289     // Read a record.
2290     Record.clear();
2291     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2292     if (!MaybeRecord)
2293       return MaybeRecord.takeError();
2294     switch (MaybeRecord.get()) {
2295     default:  // Default behavior: ignore.
2296       break;
2297     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2298       if (Record.size() < 3)
2299         return error("Invalid grp record");
2300 
2301       uint64_t GrpID = Record[0];
2302       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2303 
2304       AttrBuilder B(Context);
2305       MemoryEffects ME = MemoryEffects::unknown();
2306       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2307         if (Record[i] == 0) {        // Enum attribute
2308           Attribute::AttrKind Kind;
2309           uint64_t EncodedKind = Record[++i];
2310           if (Idx == AttributeList::FunctionIndex &&
2311               upgradeOldMemoryAttribute(ME, EncodedKind))
2312             continue;
2313 
2314           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2315             return Err;
2316 
2317           // Upgrade old-style byval attribute to one with a type, even if it's
2318           // nullptr. We will have to insert the real type when we associate
2319           // this AttributeList with a function.
2320           if (Kind == Attribute::ByVal)
2321             B.addByValAttr(nullptr);
2322           else if (Kind == Attribute::StructRet)
2323             B.addStructRetAttr(nullptr);
2324           else if (Kind == Attribute::InAlloca)
2325             B.addInAllocaAttr(nullptr);
2326           else if (Kind == Attribute::UWTable)
2327             B.addUWTableAttr(UWTableKind::Default);
2328           else if (Attribute::isEnumAttrKind(Kind))
2329             B.addAttribute(Kind);
2330           else
2331             return error("Not an enum attribute");
2332         } else if (Record[i] == 1) { // Integer attribute
2333           Attribute::AttrKind Kind;
2334           if (Error Err = parseAttrKind(Record[++i], &Kind))
2335             return Err;
2336           if (!Attribute::isIntAttrKind(Kind))
2337             return error("Not an int attribute");
2338           if (Kind == Attribute::Alignment)
2339             B.addAlignmentAttr(Record[++i]);
2340           else if (Kind == Attribute::StackAlignment)
2341             B.addStackAlignmentAttr(Record[++i]);
2342           else if (Kind == Attribute::Dereferenceable)
2343             B.addDereferenceableAttr(Record[++i]);
2344           else if (Kind == Attribute::DereferenceableOrNull)
2345             B.addDereferenceableOrNullAttr(Record[++i]);
2346           else if (Kind == Attribute::AllocSize)
2347             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2348           else if (Kind == Attribute::VScaleRange)
2349             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2350           else if (Kind == Attribute::UWTable)
2351             B.addUWTableAttr(UWTableKind(Record[++i]));
2352           else if (Kind == Attribute::AllocKind)
2353             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2354           else if (Kind == Attribute::Memory)
2355             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2356           else if (Kind == Attribute::NoFPClass)
2357             B.addNoFPClassAttr(
2358                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2359         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2360           bool HasValue = (Record[i++] == 4);
2361           SmallString<64> KindStr;
2362           SmallString<64> ValStr;
2363 
2364           while (Record[i] != 0 && i != e)
2365             KindStr += Record[i++];
2366           assert(Record[i] == 0 && "Kind string not null terminated");
2367 
2368           if (HasValue) {
2369             // Has a value associated with it.
2370             ++i; // Skip the '0' that terminates the "kind" string.
2371             while (Record[i] != 0 && i != e)
2372               ValStr += Record[i++];
2373             assert(Record[i] == 0 && "Value string not null terminated");
2374           }
2375 
2376           B.addAttribute(KindStr.str(), ValStr.str());
2377         } else if (Record[i] == 5 || Record[i] == 6) {
2378           bool HasType = Record[i] == 6;
2379           Attribute::AttrKind Kind;
2380           if (Error Err = parseAttrKind(Record[++i], &Kind))
2381             return Err;
2382           if (!Attribute::isTypeAttrKind(Kind))
2383             return error("Not a type attribute");
2384 
2385           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2386         } else if (Record[i] == 7) {
2387           Attribute::AttrKind Kind;
2388 
2389           i++;
2390           if (Error Err = parseAttrKind(Record[i++], &Kind))
2391             return Err;
2392           if (!Attribute::isConstantRangeAttrKind(Kind))
2393             return error("Not a ConstantRange attribute");
2394 
2395           Expected<ConstantRange> MaybeCR =
2396               readBitWidthAndConstantRange(Record, i);
2397           if (!MaybeCR)
2398             return MaybeCR.takeError();
2399           i--;
2400 
2401           B.addConstantRangeAttr(Kind, MaybeCR.get());
2402         } else if (Record[i] == 8) {
2403           Attribute::AttrKind Kind;
2404 
2405           i++;
2406           if (Error Err = parseAttrKind(Record[i++], &Kind))
2407             return Err;
2408           if (!Attribute::isConstantRangeListAttrKind(Kind))
2409             return error("Not a constant range list attribute");
2410 
2411           SmallVector<ConstantRange, 2> Val;
2412           if (i + 2 > e)
2413             return error("Too few records for constant range list");
2414           unsigned RangeSize = Record[i++];
2415           unsigned BitWidth = Record[i++];
2416           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2417             Expected<ConstantRange> MaybeCR =
2418                 readConstantRange(Record, i, BitWidth);
2419             if (!MaybeCR)
2420               return MaybeCR.takeError();
2421             Val.push_back(MaybeCR.get());
2422           }
2423           i--;
2424 
2425           if (!ConstantRangeList::isOrderedRanges(Val))
2426             return error("Invalid (unordered or overlapping) range list");
2427           B.addConstantRangeListAttr(Kind, Val);
2428         } else {
2429           return error("Invalid attribute group entry");
2430         }
2431       }
2432 
2433       if (ME != MemoryEffects::unknown())
2434         B.addMemoryAttr(ME);
2435 
2436       UpgradeAttributes(B);
2437       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2438       break;
2439     }
2440     }
2441   }
2442 }
2443 
2444 Error BitcodeReader::parseTypeTable() {
2445   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2446     return Err;
2447 
2448   return parseTypeTableBody();
2449 }
2450 
2451 Error BitcodeReader::parseTypeTableBody() {
2452   if (!TypeList.empty())
2453     return error("Invalid multiple blocks");
2454 
2455   SmallVector<uint64_t, 64> Record;
2456   unsigned NumRecords = 0;
2457 
2458   SmallString<64> TypeName;
2459 
2460   // Read all the records for this type table.
2461   while (true) {
2462     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2463     if (!MaybeEntry)
2464       return MaybeEntry.takeError();
2465     BitstreamEntry Entry = MaybeEntry.get();
2466 
2467     switch (Entry.Kind) {
2468     case BitstreamEntry::SubBlock: // Handled for us already.
2469     case BitstreamEntry::Error:
2470       return error("Malformed block");
2471     case BitstreamEntry::EndBlock:
2472       if (NumRecords != TypeList.size())
2473         return error("Malformed block");
2474       return Error::success();
2475     case BitstreamEntry::Record:
2476       // The interesting case.
2477       break;
2478     }
2479 
2480     // Read a record.
2481     Record.clear();
2482     Type *ResultTy = nullptr;
2483     SmallVector<unsigned> ContainedIDs;
2484     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2485     if (!MaybeRecord)
2486       return MaybeRecord.takeError();
2487     switch (MaybeRecord.get()) {
2488     default:
2489       return error("Invalid value");
2490     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2491       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2492       // type list.  This allows us to reserve space.
2493       if (Record.empty())
2494         return error("Invalid numentry record");
2495       TypeList.resize(Record[0]);
2496       continue;
2497     case bitc::TYPE_CODE_VOID:      // VOID
2498       ResultTy = Type::getVoidTy(Context);
2499       break;
2500     case bitc::TYPE_CODE_HALF:     // HALF
2501       ResultTy = Type::getHalfTy(Context);
2502       break;
2503     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2504       ResultTy = Type::getBFloatTy(Context);
2505       break;
2506     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2507       ResultTy = Type::getFloatTy(Context);
2508       break;
2509     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2510       ResultTy = Type::getDoubleTy(Context);
2511       break;
2512     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2513       ResultTy = Type::getX86_FP80Ty(Context);
2514       break;
2515     case bitc::TYPE_CODE_FP128:     // FP128
2516       ResultTy = Type::getFP128Ty(Context);
2517       break;
2518     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2519       ResultTy = Type::getPPC_FP128Ty(Context);
2520       break;
2521     case bitc::TYPE_CODE_LABEL:     // LABEL
2522       ResultTy = Type::getLabelTy(Context);
2523       break;
2524     case bitc::TYPE_CODE_METADATA:  // METADATA
2525       ResultTy = Type::getMetadataTy(Context);
2526       break;
2527     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2528       // Deprecated: decodes as <1 x i64>
2529       ResultTy =
2530           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2531       break;
2532     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2533       ResultTy = Type::getX86_AMXTy(Context);
2534       break;
2535     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2536       ResultTy = Type::getTokenTy(Context);
2537       break;
2538     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2539       if (Record.empty())
2540         return error("Invalid integer record");
2541 
2542       uint64_t NumBits = Record[0];
2543       if (NumBits < IntegerType::MIN_INT_BITS ||
2544           NumBits > IntegerType::MAX_INT_BITS)
2545         return error("Bitwidth for integer type out of range");
2546       ResultTy = IntegerType::get(Context, NumBits);
2547       break;
2548     }
2549     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2550                                     //          [pointee type, address space]
2551       if (Record.empty())
2552         return error("Invalid pointer record");
2553       unsigned AddressSpace = 0;
2554       if (Record.size() == 2)
2555         AddressSpace = Record[1];
2556       ResultTy = getTypeByID(Record[0]);
2557       if (!ResultTy ||
2558           !PointerType::isValidElementType(ResultTy))
2559         return error("Invalid type");
2560       ContainedIDs.push_back(Record[0]);
2561       ResultTy = PointerType::get(ResultTy, AddressSpace);
2562       break;
2563     }
2564     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2565       if (Record.size() != 1)
2566         return error("Invalid opaque pointer record");
2567       unsigned AddressSpace = Record[0];
2568       ResultTy = PointerType::get(Context, AddressSpace);
2569       break;
2570     }
2571     case bitc::TYPE_CODE_FUNCTION_OLD: {
2572       // Deprecated, but still needed to read old bitcode files.
2573       // FUNCTION: [vararg, attrid, retty, paramty x N]
2574       if (Record.size() < 3)
2575         return error("Invalid function record");
2576       SmallVector<Type*, 8> ArgTys;
2577       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2578         if (Type *T = getTypeByID(Record[i]))
2579           ArgTys.push_back(T);
2580         else
2581           break;
2582       }
2583 
2584       ResultTy = getTypeByID(Record[2]);
2585       if (!ResultTy || ArgTys.size() < Record.size()-3)
2586         return error("Invalid type");
2587 
2588       ContainedIDs.append(Record.begin() + 2, Record.end());
2589       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2590       break;
2591     }
2592     case bitc::TYPE_CODE_FUNCTION: {
2593       // FUNCTION: [vararg, retty, paramty x N]
2594       if (Record.size() < 2)
2595         return error("Invalid function record");
2596       SmallVector<Type*, 8> ArgTys;
2597       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2598         if (Type *T = getTypeByID(Record[i])) {
2599           if (!FunctionType::isValidArgumentType(T))
2600             return error("Invalid function argument type");
2601           ArgTys.push_back(T);
2602         }
2603         else
2604           break;
2605       }
2606 
2607       ResultTy = getTypeByID(Record[1]);
2608       if (!ResultTy || ArgTys.size() < Record.size()-2)
2609         return error("Invalid type");
2610 
2611       ContainedIDs.append(Record.begin() + 1, Record.end());
2612       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2613       break;
2614     }
2615     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2616       if (Record.empty())
2617         return error("Invalid anon struct record");
2618       SmallVector<Type*, 8> EltTys;
2619       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2620         if (Type *T = getTypeByID(Record[i]))
2621           EltTys.push_back(T);
2622         else
2623           break;
2624       }
2625       if (EltTys.size() != Record.size()-1)
2626         return error("Invalid type");
2627       ContainedIDs.append(Record.begin() + 1, Record.end());
2628       ResultTy = StructType::get(Context, EltTys, Record[0]);
2629       break;
2630     }
2631     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2632       if (convertToString(Record, 0, TypeName))
2633         return error("Invalid struct name record");
2634       continue;
2635 
2636     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2637       if (Record.empty())
2638         return error("Invalid named struct record");
2639 
2640       if (NumRecords >= TypeList.size())
2641         return error("Invalid TYPE table");
2642 
2643       // Check to see if this was forward referenced, if so fill in the temp.
2644       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2645       if (Res) {
2646         Res->setName(TypeName);
2647         TypeList[NumRecords] = nullptr;
2648       } else  // Otherwise, create a new struct.
2649         Res = createIdentifiedStructType(Context, TypeName);
2650       TypeName.clear();
2651 
2652       SmallVector<Type*, 8> EltTys;
2653       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2654         if (Type *T = getTypeByID(Record[i]))
2655           EltTys.push_back(T);
2656         else
2657           break;
2658       }
2659       if (EltTys.size() != Record.size()-1)
2660         return error("Invalid named struct record");
2661       Res->setBody(EltTys, Record[0]);
2662       ContainedIDs.append(Record.begin() + 1, Record.end());
2663       ResultTy = Res;
2664       break;
2665     }
2666     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2667       if (Record.size() != 1)
2668         return error("Invalid opaque type record");
2669 
2670       if (NumRecords >= TypeList.size())
2671         return error("Invalid TYPE table");
2672 
2673       // Check to see if this was forward referenced, if so fill in the temp.
2674       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2675       if (Res) {
2676         Res->setName(TypeName);
2677         TypeList[NumRecords] = nullptr;
2678       } else  // Otherwise, create a new struct with no body.
2679         Res = createIdentifiedStructType(Context, TypeName);
2680       TypeName.clear();
2681       ResultTy = Res;
2682       break;
2683     }
2684     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2685       if (Record.size() < 1)
2686         return error("Invalid target extension type record");
2687 
2688       if (NumRecords >= TypeList.size())
2689         return error("Invalid TYPE table");
2690 
2691       if (Record[0] >= Record.size())
2692         return error("Too many type parameters");
2693 
2694       unsigned NumTys = Record[0];
2695       SmallVector<Type *, 4> TypeParams;
2696       SmallVector<unsigned, 8> IntParams;
2697       for (unsigned i = 0; i < NumTys; i++) {
2698         if (Type *T = getTypeByID(Record[i + 1]))
2699           TypeParams.push_back(T);
2700         else
2701           return error("Invalid type");
2702       }
2703 
2704       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2705         if (Record[i] > UINT_MAX)
2706           return error("Integer parameter too large");
2707         IntParams.push_back(Record[i]);
2708       }
2709       auto TTy =
2710           TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
2711       if (auto E = TTy.takeError())
2712         return E;
2713       ResultTy = *TTy;
2714       TypeName.clear();
2715       break;
2716     }
2717     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2718       if (Record.size() < 2)
2719         return error("Invalid array type record");
2720       ResultTy = getTypeByID(Record[1]);
2721       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2722         return error("Invalid type");
2723       ContainedIDs.push_back(Record[1]);
2724       ResultTy = ArrayType::get(ResultTy, Record[0]);
2725       break;
2726     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2727                                     //         [numelts, eltty, scalable]
2728       if (Record.size() < 2)
2729         return error("Invalid vector type record");
2730       if (Record[0] == 0)
2731         return error("Invalid vector length");
2732       ResultTy = getTypeByID(Record[1]);
2733       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2734         return error("Invalid type");
2735       bool Scalable = Record.size() > 2 ? Record[2] : false;
2736       ContainedIDs.push_back(Record[1]);
2737       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2738       break;
2739     }
2740 
2741     if (NumRecords >= TypeList.size())
2742       return error("Invalid TYPE table");
2743     if (TypeList[NumRecords])
2744       return error(
2745           "Invalid TYPE table: Only named structs can be forward referenced");
2746     assert(ResultTy && "Didn't read a type?");
2747     TypeList[NumRecords] = ResultTy;
2748     if (!ContainedIDs.empty())
2749       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2750     ++NumRecords;
2751   }
2752 }
2753 
2754 Error BitcodeReader::parseOperandBundleTags() {
2755   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2756     return Err;
2757 
2758   if (!BundleTags.empty())
2759     return error("Invalid multiple blocks");
2760 
2761   SmallVector<uint64_t, 64> Record;
2762 
2763   while (true) {
2764     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2765     if (!MaybeEntry)
2766       return MaybeEntry.takeError();
2767     BitstreamEntry Entry = MaybeEntry.get();
2768 
2769     switch (Entry.Kind) {
2770     case BitstreamEntry::SubBlock: // Handled for us already.
2771     case BitstreamEntry::Error:
2772       return error("Malformed block");
2773     case BitstreamEntry::EndBlock:
2774       return Error::success();
2775     case BitstreamEntry::Record:
2776       // The interesting case.
2777       break;
2778     }
2779 
2780     // Tags are implicitly mapped to integers by their order.
2781 
2782     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2783     if (!MaybeRecord)
2784       return MaybeRecord.takeError();
2785     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2786       return error("Invalid operand bundle record");
2787 
2788     // OPERAND_BUNDLE_TAG: [strchr x N]
2789     BundleTags.emplace_back();
2790     if (convertToString(Record, 0, BundleTags.back()))
2791       return error("Invalid operand bundle record");
2792     Record.clear();
2793   }
2794 }
2795 
2796 Error BitcodeReader::parseSyncScopeNames() {
2797   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2798     return Err;
2799 
2800   if (!SSIDs.empty())
2801     return error("Invalid multiple synchronization scope names blocks");
2802 
2803   SmallVector<uint64_t, 64> Record;
2804   while (true) {
2805     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2806     if (!MaybeEntry)
2807       return MaybeEntry.takeError();
2808     BitstreamEntry Entry = MaybeEntry.get();
2809 
2810     switch (Entry.Kind) {
2811     case BitstreamEntry::SubBlock: // Handled for us already.
2812     case BitstreamEntry::Error:
2813       return error("Malformed block");
2814     case BitstreamEntry::EndBlock:
2815       if (SSIDs.empty())
2816         return error("Invalid empty synchronization scope names block");
2817       return Error::success();
2818     case BitstreamEntry::Record:
2819       // The interesting case.
2820       break;
2821     }
2822 
2823     // Synchronization scope names are implicitly mapped to synchronization
2824     // scope IDs by their order.
2825 
2826     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2827     if (!MaybeRecord)
2828       return MaybeRecord.takeError();
2829     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2830       return error("Invalid sync scope record");
2831 
2832     SmallString<16> SSN;
2833     if (convertToString(Record, 0, SSN))
2834       return error("Invalid sync scope record");
2835 
2836     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2837     Record.clear();
2838   }
2839 }
2840 
2841 /// Associate a value with its name from the given index in the provided record.
2842 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2843                                              unsigned NameIndex, Triple &TT) {
2844   SmallString<128> ValueName;
2845   if (convertToString(Record, NameIndex, ValueName))
2846     return error("Invalid record");
2847   unsigned ValueID = Record[0];
2848   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2849     return error("Invalid record");
2850   Value *V = ValueList[ValueID];
2851 
2852   StringRef NameStr(ValueName.data(), ValueName.size());
2853   if (NameStr.contains(0))
2854     return error("Invalid value name");
2855   V->setName(NameStr);
2856   auto *GO = dyn_cast<GlobalObject>(V);
2857   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2858     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2859   return V;
2860 }
2861 
2862 /// Helper to note and return the current location, and jump to the given
2863 /// offset.
2864 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2865                                                  BitstreamCursor &Stream) {
2866   // Save the current parsing location so we can jump back at the end
2867   // of the VST read.
2868   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2869   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2870     return std::move(JumpFailed);
2871   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2872   if (!MaybeEntry)
2873     return MaybeEntry.takeError();
2874   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2875       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2876     return error("Expected value symbol table subblock");
2877   return CurrentBit;
2878 }
2879 
2880 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2881                                             Function *F,
2882                                             ArrayRef<uint64_t> Record) {
2883   // Note that we subtract 1 here because the offset is relative to one word
2884   // before the start of the identification or module block, which was
2885   // historically always the start of the regular bitcode header.
2886   uint64_t FuncWordOffset = Record[1] - 1;
2887   uint64_t FuncBitOffset = FuncWordOffset * 32;
2888   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2889   // Set the LastFunctionBlockBit to point to the last function block.
2890   // Later when parsing is resumed after function materialization,
2891   // we can simply skip that last function block.
2892   if (FuncBitOffset > LastFunctionBlockBit)
2893     LastFunctionBlockBit = FuncBitOffset;
2894 }
2895 
2896 /// Read a new-style GlobalValue symbol table.
2897 Error BitcodeReader::parseGlobalValueSymbolTable() {
2898   unsigned FuncBitcodeOffsetDelta =
2899       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2900 
2901   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2902     return Err;
2903 
2904   SmallVector<uint64_t, 64> Record;
2905   while (true) {
2906     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2907     if (!MaybeEntry)
2908       return MaybeEntry.takeError();
2909     BitstreamEntry Entry = MaybeEntry.get();
2910 
2911     switch (Entry.Kind) {
2912     case BitstreamEntry::SubBlock:
2913     case BitstreamEntry::Error:
2914       return error("Malformed block");
2915     case BitstreamEntry::EndBlock:
2916       return Error::success();
2917     case BitstreamEntry::Record:
2918       break;
2919     }
2920 
2921     Record.clear();
2922     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2923     if (!MaybeRecord)
2924       return MaybeRecord.takeError();
2925     switch (MaybeRecord.get()) {
2926     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2927       unsigned ValueID = Record[0];
2928       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2929         return error("Invalid value reference in symbol table");
2930       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2931                               cast<Function>(ValueList[ValueID]), Record);
2932       break;
2933     }
2934     }
2935   }
2936 }
2937 
2938 /// Parse the value symbol table at either the current parsing location or
2939 /// at the given bit offset if provided.
2940 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2941   uint64_t CurrentBit;
2942   // Pass in the Offset to distinguish between calling for the module-level
2943   // VST (where we want to jump to the VST offset) and the function-level
2944   // VST (where we don't).
2945   if (Offset > 0) {
2946     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2947     if (!MaybeCurrentBit)
2948       return MaybeCurrentBit.takeError();
2949     CurrentBit = MaybeCurrentBit.get();
2950     // If this module uses a string table, read this as a module-level VST.
2951     if (UseStrtab) {
2952       if (Error Err = parseGlobalValueSymbolTable())
2953         return Err;
2954       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2955         return JumpFailed;
2956       return Error::success();
2957     }
2958     // Otherwise, the VST will be in a similar format to a function-level VST,
2959     // and will contain symbol names.
2960   }
2961 
2962   // Compute the delta between the bitcode indices in the VST (the word offset
2963   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2964   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2965   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2966   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2967   // just before entering the VST subblock because: 1) the EnterSubBlock
2968   // changes the AbbrevID width; 2) the VST block is nested within the same
2969   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2970   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2971   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2972   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2973   unsigned FuncBitcodeOffsetDelta =
2974       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2975 
2976   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2977     return Err;
2978 
2979   SmallVector<uint64_t, 64> Record;
2980 
2981   Triple TT(TheModule->getTargetTriple());
2982 
2983   // Read all the records for this value table.
2984   SmallString<128> ValueName;
2985 
2986   while (true) {
2987     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2988     if (!MaybeEntry)
2989       return MaybeEntry.takeError();
2990     BitstreamEntry Entry = MaybeEntry.get();
2991 
2992     switch (Entry.Kind) {
2993     case BitstreamEntry::SubBlock: // Handled for us already.
2994     case BitstreamEntry::Error:
2995       return error("Malformed block");
2996     case BitstreamEntry::EndBlock:
2997       if (Offset > 0)
2998         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2999           return JumpFailed;
3000       return Error::success();
3001     case BitstreamEntry::Record:
3002       // The interesting case.
3003       break;
3004     }
3005 
3006     // Read a record.
3007     Record.clear();
3008     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3009     if (!MaybeRecord)
3010       return MaybeRecord.takeError();
3011     switch (MaybeRecord.get()) {
3012     default:  // Default behavior: unknown type.
3013       break;
3014     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
3015       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
3016       if (Error Err = ValOrErr.takeError())
3017         return Err;
3018       ValOrErr.get();
3019       break;
3020     }
3021     case bitc::VST_CODE_FNENTRY: {
3022       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
3023       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
3024       if (Error Err = ValOrErr.takeError())
3025         return Err;
3026       Value *V = ValOrErr.get();
3027 
3028       // Ignore function offsets emitted for aliases of functions in older
3029       // versions of LLVM.
3030       if (auto *F = dyn_cast<Function>(V))
3031         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3032       break;
3033     }
3034     case bitc::VST_CODE_BBENTRY: {
3035       if (convertToString(Record, 1, ValueName))
3036         return error("Invalid bbentry record");
3037       BasicBlock *BB = getBasicBlock(Record[0]);
3038       if (!BB)
3039         return error("Invalid bbentry record");
3040 
3041       BB->setName(ValueName.str());
3042       ValueName.clear();
3043       break;
3044     }
3045     }
3046   }
3047 }
3048 
3049 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3050 /// encoding.
3051 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3052   if ((V & 1) == 0)
3053     return V >> 1;
3054   if (V != 1)
3055     return -(V >> 1);
3056   // There is no such thing as -0 with integers.  "-0" really means MININT.
3057   return 1ULL << 63;
3058 }
3059 
3060 /// Resolve all of the initializers for global values and aliases that we can.
3061 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3062   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3063   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3064   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3065 
3066   GlobalInitWorklist.swap(GlobalInits);
3067   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3068   FunctionOperandWorklist.swap(FunctionOperands);
3069 
3070   while (!GlobalInitWorklist.empty()) {
3071     unsigned ValID = GlobalInitWorklist.back().second;
3072     if (ValID >= ValueList.size()) {
3073       // Not ready to resolve this yet, it requires something later in the file.
3074       GlobalInits.push_back(GlobalInitWorklist.back());
3075     } else {
3076       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3077       if (!MaybeC)
3078         return MaybeC.takeError();
3079       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3080     }
3081     GlobalInitWorklist.pop_back();
3082   }
3083 
3084   while (!IndirectSymbolInitWorklist.empty()) {
3085     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3086     if (ValID >= ValueList.size()) {
3087       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3088     } else {
3089       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3090       if (!MaybeC)
3091         return MaybeC.takeError();
3092       Constant *C = MaybeC.get();
3093       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3094       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3095         if (C->getType() != GV->getType())
3096           return error("Alias and aliasee types don't match");
3097         GA->setAliasee(C);
3098       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3099         GI->setResolver(C);
3100       } else {
3101         return error("Expected an alias or an ifunc");
3102       }
3103     }
3104     IndirectSymbolInitWorklist.pop_back();
3105   }
3106 
3107   while (!FunctionOperandWorklist.empty()) {
3108     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3109     if (Info.PersonalityFn) {
3110       unsigned ValID = Info.PersonalityFn - 1;
3111       if (ValID < ValueList.size()) {
3112         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3113         if (!MaybeC)
3114           return MaybeC.takeError();
3115         Info.F->setPersonalityFn(MaybeC.get());
3116         Info.PersonalityFn = 0;
3117       }
3118     }
3119     if (Info.Prefix) {
3120       unsigned ValID = Info.Prefix - 1;
3121       if (ValID < ValueList.size()) {
3122         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3123         if (!MaybeC)
3124           return MaybeC.takeError();
3125         Info.F->setPrefixData(MaybeC.get());
3126         Info.Prefix = 0;
3127       }
3128     }
3129     if (Info.Prologue) {
3130       unsigned ValID = Info.Prologue - 1;
3131       if (ValID < ValueList.size()) {
3132         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3133         if (!MaybeC)
3134           return MaybeC.takeError();
3135         Info.F->setPrologueData(MaybeC.get());
3136         Info.Prologue = 0;
3137       }
3138     }
3139     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3140       FunctionOperands.push_back(Info);
3141     FunctionOperandWorklist.pop_back();
3142   }
3143 
3144   return Error::success();
3145 }
3146 
3147 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3148   SmallVector<uint64_t, 8> Words(Vals.size());
3149   transform(Vals, Words.begin(),
3150                  BitcodeReader::decodeSignRotatedValue);
3151 
3152   return APInt(TypeBits, Words);
3153 }
3154 
3155 Error BitcodeReader::parseConstants() {
3156   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3157     return Err;
3158 
3159   SmallVector<uint64_t, 64> Record;
3160 
3161   // Read all the records for this value table.
3162   Type *CurTy = Type::getInt32Ty(Context);
3163   unsigned Int32TyID = getVirtualTypeID(CurTy);
3164   unsigned CurTyID = Int32TyID;
3165   Type *CurElemTy = nullptr;
3166   unsigned NextCstNo = ValueList.size();
3167 
3168   while (true) {
3169     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3170     if (!MaybeEntry)
3171       return MaybeEntry.takeError();
3172     BitstreamEntry Entry = MaybeEntry.get();
3173 
3174     switch (Entry.Kind) {
3175     case BitstreamEntry::SubBlock: // Handled for us already.
3176     case BitstreamEntry::Error:
3177       return error("Malformed block");
3178     case BitstreamEntry::EndBlock:
3179       if (NextCstNo != ValueList.size())
3180         return error("Invalid constant reference");
3181       return Error::success();
3182     case BitstreamEntry::Record:
3183       // The interesting case.
3184       break;
3185     }
3186 
3187     // Read a record.
3188     Record.clear();
3189     Type *VoidType = Type::getVoidTy(Context);
3190     Value *V = nullptr;
3191     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3192     if (!MaybeBitCode)
3193       return MaybeBitCode.takeError();
3194     switch (unsigned BitCode = MaybeBitCode.get()) {
3195     default:  // Default behavior: unknown constant
3196     case bitc::CST_CODE_UNDEF:     // UNDEF
3197       V = UndefValue::get(CurTy);
3198       break;
3199     case bitc::CST_CODE_POISON:    // POISON
3200       V = PoisonValue::get(CurTy);
3201       break;
3202     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3203       if (Record.empty())
3204         return error("Invalid settype record");
3205       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3206         return error("Invalid settype record");
3207       if (TypeList[Record[0]] == VoidType)
3208         return error("Invalid constant type");
3209       CurTyID = Record[0];
3210       CurTy = TypeList[CurTyID];
3211       CurElemTy = getPtrElementTypeByID(CurTyID);
3212       continue;  // Skip the ValueList manipulation.
3213     case bitc::CST_CODE_NULL:      // NULL
3214       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3215         return error("Invalid type for a constant null value");
3216       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3217         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3218           return error("Invalid type for a constant null value");
3219       V = Constant::getNullValue(CurTy);
3220       break;
3221     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3222       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3223         return error("Invalid integer const record");
3224       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3225       break;
3226     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3227       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3228         return error("Invalid wide integer const record");
3229 
3230       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3231       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3232       V = ConstantInt::get(CurTy, VInt);
3233       break;
3234     }
3235     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3236       if (Record.empty())
3237         return error("Invalid float const record");
3238 
3239       auto *ScalarTy = CurTy->getScalarType();
3240       if (ScalarTy->isHalfTy())
3241         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3242                                            APInt(16, (uint16_t)Record[0])));
3243       else if (ScalarTy->isBFloatTy())
3244         V = ConstantFP::get(
3245             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3246       else if (ScalarTy->isFloatTy())
3247         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3248                                            APInt(32, (uint32_t)Record[0])));
3249       else if (ScalarTy->isDoubleTy())
3250         V = ConstantFP::get(
3251             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3252       else if (ScalarTy->isX86_FP80Ty()) {
3253         // Bits are not stored the same way as a normal i80 APInt, compensate.
3254         uint64_t Rearrange[2];
3255         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3256         Rearrange[1] = Record[0] >> 48;
3257         V = ConstantFP::get(
3258             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3259       } else if (ScalarTy->isFP128Ty())
3260         V = ConstantFP::get(CurTy,
3261                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3262       else if (ScalarTy->isPPC_FP128Ty())
3263         V = ConstantFP::get(
3264             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3265       else
3266         V = PoisonValue::get(CurTy);
3267       break;
3268     }
3269 
3270     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3271       if (Record.empty())
3272         return error("Invalid aggregate record");
3273 
3274       unsigned Size = Record.size();
3275       SmallVector<unsigned, 16> Elts;
3276       for (unsigned i = 0; i != Size; ++i)
3277         Elts.push_back(Record[i]);
3278 
3279       if (isa<StructType>(CurTy)) {
3280         V = BitcodeConstant::create(
3281             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3282       } else if (isa<ArrayType>(CurTy)) {
3283         V = BitcodeConstant::create(Alloc, CurTy,
3284                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3285       } else if (isa<VectorType>(CurTy)) {
3286         V = BitcodeConstant::create(
3287             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3288       } else {
3289         V = PoisonValue::get(CurTy);
3290       }
3291       break;
3292     }
3293     case bitc::CST_CODE_STRING:    // STRING: [values]
3294     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3295       if (Record.empty())
3296         return error("Invalid string record");
3297 
3298       SmallString<16> Elts(Record.begin(), Record.end());
3299       V = ConstantDataArray::getString(Context, Elts,
3300                                        BitCode == bitc::CST_CODE_CSTRING);
3301       break;
3302     }
3303     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3304       if (Record.empty())
3305         return error("Invalid data record");
3306 
3307       Type *EltTy;
3308       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3309         EltTy = Array->getElementType();
3310       else
3311         EltTy = cast<VectorType>(CurTy)->getElementType();
3312       if (EltTy->isIntegerTy(8)) {
3313         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3314         if (isa<VectorType>(CurTy))
3315           V = ConstantDataVector::get(Context, Elts);
3316         else
3317           V = ConstantDataArray::get(Context, Elts);
3318       } else if (EltTy->isIntegerTy(16)) {
3319         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3320         if (isa<VectorType>(CurTy))
3321           V = ConstantDataVector::get(Context, Elts);
3322         else
3323           V = ConstantDataArray::get(Context, Elts);
3324       } else if (EltTy->isIntegerTy(32)) {
3325         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3326         if (isa<VectorType>(CurTy))
3327           V = ConstantDataVector::get(Context, Elts);
3328         else
3329           V = ConstantDataArray::get(Context, Elts);
3330       } else if (EltTy->isIntegerTy(64)) {
3331         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3332         if (isa<VectorType>(CurTy))
3333           V = ConstantDataVector::get(Context, Elts);
3334         else
3335           V = ConstantDataArray::get(Context, Elts);
3336       } else if (EltTy->isHalfTy()) {
3337         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3338         if (isa<VectorType>(CurTy))
3339           V = ConstantDataVector::getFP(EltTy, Elts);
3340         else
3341           V = ConstantDataArray::getFP(EltTy, Elts);
3342       } else if (EltTy->isBFloatTy()) {
3343         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3344         if (isa<VectorType>(CurTy))
3345           V = ConstantDataVector::getFP(EltTy, Elts);
3346         else
3347           V = ConstantDataArray::getFP(EltTy, Elts);
3348       } else if (EltTy->isFloatTy()) {
3349         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3350         if (isa<VectorType>(CurTy))
3351           V = ConstantDataVector::getFP(EltTy, Elts);
3352         else
3353           V = ConstantDataArray::getFP(EltTy, Elts);
3354       } else if (EltTy->isDoubleTy()) {
3355         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3356         if (isa<VectorType>(CurTy))
3357           V = ConstantDataVector::getFP(EltTy, Elts);
3358         else
3359           V = ConstantDataArray::getFP(EltTy, Elts);
3360       } else {
3361         return error("Invalid type for value");
3362       }
3363       break;
3364     }
3365     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3366       if (Record.size() < 2)
3367         return error("Invalid unary op constexpr record");
3368       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3369       if (Opc < 0) {
3370         V = PoisonValue::get(CurTy);  // Unknown unop.
3371       } else {
3372         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3373       }
3374       break;
3375     }
3376     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3377       if (Record.size() < 3)
3378         return error("Invalid binary op constexpr record");
3379       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3380       if (Opc < 0) {
3381         V = PoisonValue::get(CurTy);  // Unknown binop.
3382       } else {
3383         uint8_t Flags = 0;
3384         if (Record.size() >= 4) {
3385           if (Opc == Instruction::Add ||
3386               Opc == Instruction::Sub ||
3387               Opc == Instruction::Mul ||
3388               Opc == Instruction::Shl) {
3389             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3390               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3391             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3392               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3393           } else if (Opc == Instruction::SDiv ||
3394                      Opc == Instruction::UDiv ||
3395                      Opc == Instruction::LShr ||
3396                      Opc == Instruction::AShr) {
3397             if (Record[3] & (1 << bitc::PEO_EXACT))
3398               Flags |= PossiblyExactOperator::IsExact;
3399           }
3400         }
3401         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3402                                     {(unsigned)Record[1], (unsigned)Record[2]});
3403       }
3404       break;
3405     }
3406     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3407       if (Record.size() < 3)
3408         return error("Invalid cast constexpr record");
3409       int Opc = getDecodedCastOpcode(Record[0]);
3410       if (Opc < 0) {
3411         V = PoisonValue::get(CurTy);  // Unknown cast.
3412       } else {
3413         unsigned OpTyID = Record[1];
3414         Type *OpTy = getTypeByID(OpTyID);
3415         if (!OpTy)
3416           return error("Invalid cast constexpr record");
3417         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3418       }
3419       break;
3420     }
3421     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3422     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3423     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3424                                                        // operands]
3425     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3426     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3427                                                // operands]
3428       if (Record.size() < 2)
3429         return error("Constant GEP record must have at least two elements");
3430       unsigned OpNum = 0;
3431       Type *PointeeType = nullptr;
3432       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3433           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3434           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3435         PointeeType = getTypeByID(Record[OpNum++]);
3436 
3437       uint64_t Flags = 0;
3438       std::optional<ConstantRange> InRange;
3439       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3440         uint64_t Op = Record[OpNum++];
3441         Flags = Op & 1; // inbounds
3442         unsigned InRangeIndex = Op >> 1;
3443         // "Upgrade" inrange by dropping it. The feature is too niche to
3444         // bother.
3445         (void)InRangeIndex;
3446       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3447         Flags = Record[OpNum++];
3448         Expected<ConstantRange> MaybeInRange =
3449             readBitWidthAndConstantRange(Record, OpNum);
3450         if (!MaybeInRange)
3451           return MaybeInRange.takeError();
3452         InRange = MaybeInRange.get();
3453       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3454         Flags = Record[OpNum++];
3455       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3456         Flags = (1 << bitc::GEP_INBOUNDS);
3457 
3458       SmallVector<unsigned, 16> Elts;
3459       unsigned BaseTypeID = Record[OpNum];
3460       while (OpNum != Record.size()) {
3461         unsigned ElTyID = Record[OpNum++];
3462         Type *ElTy = getTypeByID(ElTyID);
3463         if (!ElTy)
3464           return error("Invalid getelementptr constexpr record");
3465         Elts.push_back(Record[OpNum++]);
3466       }
3467 
3468       if (Elts.size() < 1)
3469         return error("Invalid gep with no operands");
3470 
3471       Type *BaseType = getTypeByID(BaseTypeID);
3472       if (isa<VectorType>(BaseType)) {
3473         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3474         BaseType = getTypeByID(BaseTypeID);
3475       }
3476 
3477       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3478       if (!OrigPtrTy)
3479         return error("GEP base operand must be pointer or vector of pointer");
3480 
3481       if (!PointeeType) {
3482         PointeeType = getPtrElementTypeByID(BaseTypeID);
3483         if (!PointeeType)
3484           return error("Missing element type for old-style constant GEP");
3485       }
3486 
3487       V = BitcodeConstant::create(
3488           Alloc, CurTy,
3489           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3490           Elts);
3491       break;
3492     }
3493     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3494       if (Record.size() < 3)
3495         return error("Invalid select constexpr record");
3496 
3497       V = BitcodeConstant::create(
3498           Alloc, CurTy, Instruction::Select,
3499           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3500       break;
3501     }
3502     case bitc::CST_CODE_CE_EXTRACTELT
3503         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3504       if (Record.size() < 3)
3505         return error("Invalid extractelement constexpr record");
3506       unsigned OpTyID = Record[0];
3507       VectorType *OpTy =
3508         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3509       if (!OpTy)
3510         return error("Invalid extractelement constexpr record");
3511       unsigned IdxRecord;
3512       if (Record.size() == 4) {
3513         unsigned IdxTyID = Record[2];
3514         Type *IdxTy = getTypeByID(IdxTyID);
3515         if (!IdxTy)
3516           return error("Invalid extractelement constexpr record");
3517         IdxRecord = Record[3];
3518       } else {
3519         // Deprecated, but still needed to read old bitcode files.
3520         IdxRecord = Record[2];
3521       }
3522       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3523                                   {(unsigned)Record[1], IdxRecord});
3524       break;
3525     }
3526     case bitc::CST_CODE_CE_INSERTELT
3527         : { // CE_INSERTELT: [opval, opval, opty, opval]
3528       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3529       if (Record.size() < 3 || !OpTy)
3530         return error("Invalid insertelement constexpr record");
3531       unsigned IdxRecord;
3532       if (Record.size() == 4) {
3533         unsigned IdxTyID = Record[2];
3534         Type *IdxTy = getTypeByID(IdxTyID);
3535         if (!IdxTy)
3536           return error("Invalid insertelement constexpr record");
3537         IdxRecord = Record[3];
3538       } else {
3539         // Deprecated, but still needed to read old bitcode files.
3540         IdxRecord = Record[2];
3541       }
3542       V = BitcodeConstant::create(
3543           Alloc, CurTy, Instruction::InsertElement,
3544           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3545       break;
3546     }
3547     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3548       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3549       if (Record.size() < 3 || !OpTy)
3550         return error("Invalid shufflevector constexpr record");
3551       V = BitcodeConstant::create(
3552           Alloc, CurTy, Instruction::ShuffleVector,
3553           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3554       break;
3555     }
3556     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3557       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3558       VectorType *OpTy =
3559         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3560       if (Record.size() < 4 || !RTy || !OpTy)
3561         return error("Invalid shufflevector constexpr record");
3562       V = BitcodeConstant::create(
3563           Alloc, CurTy, Instruction::ShuffleVector,
3564           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3565       break;
3566     }
3567     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3568       if (Record.size() < 4)
3569         return error("Invalid cmp constexpt record");
3570       unsigned OpTyID = Record[0];
3571       Type *OpTy = getTypeByID(OpTyID);
3572       if (!OpTy)
3573         return error("Invalid cmp constexpr record");
3574       V = BitcodeConstant::create(
3575           Alloc, CurTy,
3576           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3577                                               : Instruction::ICmp),
3578            (uint8_t)Record[3]},
3579           {(unsigned)Record[1], (unsigned)Record[2]});
3580       break;
3581     }
3582     // This maintains backward compatibility, pre-asm dialect keywords.
3583     // Deprecated, but still needed to read old bitcode files.
3584     case bitc::CST_CODE_INLINEASM_OLD: {
3585       if (Record.size() < 2)
3586         return error("Invalid inlineasm record");
3587       std::string AsmStr, ConstrStr;
3588       bool HasSideEffects = Record[0] & 1;
3589       bool IsAlignStack = Record[0] >> 1;
3590       unsigned AsmStrSize = Record[1];
3591       if (2+AsmStrSize >= Record.size())
3592         return error("Invalid inlineasm record");
3593       unsigned ConstStrSize = Record[2+AsmStrSize];
3594       if (3+AsmStrSize+ConstStrSize > Record.size())
3595         return error("Invalid inlineasm record");
3596 
3597       for (unsigned i = 0; i != AsmStrSize; ++i)
3598         AsmStr += (char)Record[2+i];
3599       for (unsigned i = 0; i != ConstStrSize; ++i)
3600         ConstrStr += (char)Record[3+AsmStrSize+i];
3601       UpgradeInlineAsmString(&AsmStr);
3602       if (!CurElemTy)
3603         return error("Missing element type for old-style inlineasm");
3604       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3605                          HasSideEffects, IsAlignStack);
3606       break;
3607     }
3608     // This version adds support for the asm dialect keywords (e.g.,
3609     // inteldialect).
3610     case bitc::CST_CODE_INLINEASM_OLD2: {
3611       if (Record.size() < 2)
3612         return error("Invalid inlineasm record");
3613       std::string AsmStr, ConstrStr;
3614       bool HasSideEffects = Record[0] & 1;
3615       bool IsAlignStack = (Record[0] >> 1) & 1;
3616       unsigned AsmDialect = Record[0] >> 2;
3617       unsigned AsmStrSize = Record[1];
3618       if (2+AsmStrSize >= Record.size())
3619         return error("Invalid inlineasm record");
3620       unsigned ConstStrSize = Record[2+AsmStrSize];
3621       if (3+AsmStrSize+ConstStrSize > Record.size())
3622         return error("Invalid inlineasm record");
3623 
3624       for (unsigned i = 0; i != AsmStrSize; ++i)
3625         AsmStr += (char)Record[2+i];
3626       for (unsigned i = 0; i != ConstStrSize; ++i)
3627         ConstrStr += (char)Record[3+AsmStrSize+i];
3628       UpgradeInlineAsmString(&AsmStr);
3629       if (!CurElemTy)
3630         return error("Missing element type for old-style inlineasm");
3631       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3632                          HasSideEffects, IsAlignStack,
3633                          InlineAsm::AsmDialect(AsmDialect));
3634       break;
3635     }
3636     // This version adds support for the unwind keyword.
3637     case bitc::CST_CODE_INLINEASM_OLD3: {
3638       if (Record.size() < 2)
3639         return error("Invalid inlineasm record");
3640       unsigned OpNum = 0;
3641       std::string AsmStr, ConstrStr;
3642       bool HasSideEffects = Record[OpNum] & 1;
3643       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3644       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3645       bool CanThrow = (Record[OpNum] >> 3) & 1;
3646       ++OpNum;
3647       unsigned AsmStrSize = Record[OpNum];
3648       ++OpNum;
3649       if (OpNum + AsmStrSize >= Record.size())
3650         return error("Invalid inlineasm record");
3651       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3652       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3653         return error("Invalid inlineasm record");
3654 
3655       for (unsigned i = 0; i != AsmStrSize; ++i)
3656         AsmStr += (char)Record[OpNum + i];
3657       ++OpNum;
3658       for (unsigned i = 0; i != ConstStrSize; ++i)
3659         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3660       UpgradeInlineAsmString(&AsmStr);
3661       if (!CurElemTy)
3662         return error("Missing element type for old-style inlineasm");
3663       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3664                          HasSideEffects, IsAlignStack,
3665                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3666       break;
3667     }
3668     // This version adds explicit function type.
3669     case bitc::CST_CODE_INLINEASM: {
3670       if (Record.size() < 3)
3671         return error("Invalid inlineasm record");
3672       unsigned OpNum = 0;
3673       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3674       ++OpNum;
3675       if (!FnTy)
3676         return error("Invalid inlineasm record");
3677       std::string AsmStr, ConstrStr;
3678       bool HasSideEffects = Record[OpNum] & 1;
3679       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3680       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3681       bool CanThrow = (Record[OpNum] >> 3) & 1;
3682       ++OpNum;
3683       unsigned AsmStrSize = Record[OpNum];
3684       ++OpNum;
3685       if (OpNum + AsmStrSize >= Record.size())
3686         return error("Invalid inlineasm record");
3687       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3688       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3689         return error("Invalid inlineasm record");
3690 
3691       for (unsigned i = 0; i != AsmStrSize; ++i)
3692         AsmStr += (char)Record[OpNum + i];
3693       ++OpNum;
3694       for (unsigned i = 0; i != ConstStrSize; ++i)
3695         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3696       UpgradeInlineAsmString(&AsmStr);
3697       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3698                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3699       break;
3700     }
3701     case bitc::CST_CODE_BLOCKADDRESS:{
3702       if (Record.size() < 3)
3703         return error("Invalid blockaddress record");
3704       unsigned FnTyID = Record[0];
3705       Type *FnTy = getTypeByID(FnTyID);
3706       if (!FnTy)
3707         return error("Invalid blockaddress record");
3708       V = BitcodeConstant::create(
3709           Alloc, CurTy,
3710           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3711           Record[1]);
3712       break;
3713     }
3714     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3715       if (Record.size() < 2)
3716         return error("Invalid dso_local record");
3717       unsigned GVTyID = Record[0];
3718       Type *GVTy = getTypeByID(GVTyID);
3719       if (!GVTy)
3720         return error("Invalid dso_local record");
3721       V = BitcodeConstant::create(
3722           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3723       break;
3724     }
3725     case bitc::CST_CODE_NO_CFI_VALUE: {
3726       if (Record.size() < 2)
3727         return error("Invalid no_cfi record");
3728       unsigned GVTyID = Record[0];
3729       Type *GVTy = getTypeByID(GVTyID);
3730       if (!GVTy)
3731         return error("Invalid no_cfi record");
3732       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3733                                   Record[1]);
3734       break;
3735     }
3736     case bitc::CST_CODE_PTRAUTH: {
3737       if (Record.size() < 4)
3738         return error("Invalid ptrauth record");
3739       // Ptr, Key, Disc, AddrDisc
3740       V = BitcodeConstant::create(Alloc, CurTy,
3741                                   BitcodeConstant::ConstantPtrAuthOpcode,
3742                                   {(unsigned)Record[0], (unsigned)Record[1],
3743                                    (unsigned)Record[2], (unsigned)Record[3]});
3744       break;
3745     }
3746     }
3747 
3748     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3749     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3750       return Err;
3751     ++NextCstNo;
3752   }
3753 }
3754 
3755 Error BitcodeReader::parseUseLists() {
3756   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3757     return Err;
3758 
3759   // Read all the records.
3760   SmallVector<uint64_t, 64> Record;
3761 
3762   while (true) {
3763     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3764     if (!MaybeEntry)
3765       return MaybeEntry.takeError();
3766     BitstreamEntry Entry = MaybeEntry.get();
3767 
3768     switch (Entry.Kind) {
3769     case BitstreamEntry::SubBlock: // Handled for us already.
3770     case BitstreamEntry::Error:
3771       return error("Malformed block");
3772     case BitstreamEntry::EndBlock:
3773       return Error::success();
3774     case BitstreamEntry::Record:
3775       // The interesting case.
3776       break;
3777     }
3778 
3779     // Read a use list record.
3780     Record.clear();
3781     bool IsBB = false;
3782     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3783     if (!MaybeRecord)
3784       return MaybeRecord.takeError();
3785     switch (MaybeRecord.get()) {
3786     default:  // Default behavior: unknown type.
3787       break;
3788     case bitc::USELIST_CODE_BB:
3789       IsBB = true;
3790       [[fallthrough]];
3791     case bitc::USELIST_CODE_DEFAULT: {
3792       unsigned RecordLength = Record.size();
3793       if (RecordLength < 3)
3794         // Records should have at least an ID and two indexes.
3795         return error("Invalid record");
3796       unsigned ID = Record.pop_back_val();
3797 
3798       Value *V;
3799       if (IsBB) {
3800         assert(ID < FunctionBBs.size() && "Basic block not found");
3801         V = FunctionBBs[ID];
3802       } else
3803         V = ValueList[ID];
3804       unsigned NumUses = 0;
3805       SmallDenseMap<const Use *, unsigned, 16> Order;
3806       for (const Use &U : V->materialized_uses()) {
3807         if (++NumUses > Record.size())
3808           break;
3809         Order[&U] = Record[NumUses - 1];
3810       }
3811       if (Order.size() != Record.size() || NumUses > Record.size())
3812         // Mismatches can happen if the functions are being materialized lazily
3813         // (out-of-order), or a value has been upgraded.
3814         break;
3815 
3816       V->sortUseList([&](const Use &L, const Use &R) {
3817         return Order.lookup(&L) < Order.lookup(&R);
3818       });
3819       break;
3820     }
3821     }
3822   }
3823 }
3824 
3825 /// When we see the block for metadata, remember where it is and then skip it.
3826 /// This lets us lazily deserialize the metadata.
3827 Error BitcodeReader::rememberAndSkipMetadata() {
3828   // Save the current stream state.
3829   uint64_t CurBit = Stream.GetCurrentBitNo();
3830   DeferredMetadataInfo.push_back(CurBit);
3831 
3832   // Skip over the block for now.
3833   if (Error Err = Stream.SkipBlock())
3834     return Err;
3835   return Error::success();
3836 }
3837 
3838 Error BitcodeReader::materializeMetadata() {
3839   for (uint64_t BitPos : DeferredMetadataInfo) {
3840     // Move the bit stream to the saved position.
3841     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3842       return JumpFailed;
3843     if (Error Err = MDLoader->parseModuleMetadata())
3844       return Err;
3845   }
3846 
3847   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3848   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3849   // multiple times.
3850   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3851     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3852       NamedMDNode *LinkerOpts =
3853           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3854       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3855         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3856     }
3857   }
3858 
3859   DeferredMetadataInfo.clear();
3860   return Error::success();
3861 }
3862 
3863 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3864 
3865 /// When we see the block for a function body, remember where it is and then
3866 /// skip it.  This lets us lazily deserialize the functions.
3867 Error BitcodeReader::rememberAndSkipFunctionBody() {
3868   // Get the function we are talking about.
3869   if (FunctionsWithBodies.empty())
3870     return error("Insufficient function protos");
3871 
3872   Function *Fn = FunctionsWithBodies.back();
3873   FunctionsWithBodies.pop_back();
3874 
3875   // Save the current stream state.
3876   uint64_t CurBit = Stream.GetCurrentBitNo();
3877   assert(
3878       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3879       "Mismatch between VST and scanned function offsets");
3880   DeferredFunctionInfo[Fn] = CurBit;
3881 
3882   // Skip over the function block for now.
3883   if (Error Err = Stream.SkipBlock())
3884     return Err;
3885   return Error::success();
3886 }
3887 
3888 Error BitcodeReader::globalCleanup() {
3889   // Patch the initializers for globals and aliases up.
3890   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3891     return Err;
3892   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3893     return error("Malformed global initializer set");
3894 
3895   // Look for intrinsic functions which need to be upgraded at some point
3896   // and functions that need to have their function attributes upgraded.
3897   for (Function &F : *TheModule) {
3898     MDLoader->upgradeDebugIntrinsics(F);
3899     Function *NewFn;
3900     // If PreserveInputDbgFormat=true, then we don't know whether we want
3901     // intrinsics or records, and we won't perform any conversions in either
3902     // case, so don't upgrade intrinsics to records.
3903     if (UpgradeIntrinsicFunction(
3904             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3905       UpgradedIntrinsics[&F] = NewFn;
3906     // Look for functions that rely on old function attribute behavior.
3907     UpgradeFunctionAttributes(F);
3908   }
3909 
3910   // Look for global variables which need to be renamed.
3911   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3912   for (GlobalVariable &GV : TheModule->globals())
3913     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3914       UpgradedVariables.emplace_back(&GV, Upgraded);
3915   for (auto &Pair : UpgradedVariables) {
3916     Pair.first->eraseFromParent();
3917     TheModule->insertGlobalVariable(Pair.second);
3918   }
3919 
3920   // Force deallocation of memory for these vectors to favor the client that
3921   // want lazy deserialization.
3922   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3923   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3924   return Error::success();
3925 }
3926 
3927 /// Support for lazy parsing of function bodies. This is required if we
3928 /// either have an old bitcode file without a VST forward declaration record,
3929 /// or if we have an anonymous function being materialized, since anonymous
3930 /// functions do not have a name and are therefore not in the VST.
3931 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3932   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3933     return JumpFailed;
3934 
3935   if (Stream.AtEndOfStream())
3936     return error("Could not find function in stream");
3937 
3938   if (!SeenFirstFunctionBody)
3939     return error("Trying to materialize functions before seeing function blocks");
3940 
3941   // An old bitcode file with the symbol table at the end would have
3942   // finished the parse greedily.
3943   assert(SeenValueSymbolTable);
3944 
3945   SmallVector<uint64_t, 64> Record;
3946 
3947   while (true) {
3948     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3949     if (!MaybeEntry)
3950       return MaybeEntry.takeError();
3951     llvm::BitstreamEntry Entry = MaybeEntry.get();
3952 
3953     switch (Entry.Kind) {
3954     default:
3955       return error("Expect SubBlock");
3956     case BitstreamEntry::SubBlock:
3957       switch (Entry.ID) {
3958       default:
3959         return error("Expect function block");
3960       case bitc::FUNCTION_BLOCK_ID:
3961         if (Error Err = rememberAndSkipFunctionBody())
3962           return Err;
3963         NextUnreadBit = Stream.GetCurrentBitNo();
3964         return Error::success();
3965       }
3966     }
3967   }
3968 }
3969 
3970 Error BitcodeReaderBase::readBlockInfo() {
3971   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3972       Stream.ReadBlockInfoBlock();
3973   if (!MaybeNewBlockInfo)
3974     return MaybeNewBlockInfo.takeError();
3975   std::optional<BitstreamBlockInfo> NewBlockInfo =
3976       std::move(MaybeNewBlockInfo.get());
3977   if (!NewBlockInfo)
3978     return error("Malformed block");
3979   BlockInfo = std::move(*NewBlockInfo);
3980   return Error::success();
3981 }
3982 
3983 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3984   // v1: [selection_kind, name]
3985   // v2: [strtab_offset, strtab_size, selection_kind]
3986   StringRef Name;
3987   std::tie(Name, Record) = readNameFromStrtab(Record);
3988 
3989   if (Record.empty())
3990     return error("Invalid record");
3991   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3992   std::string OldFormatName;
3993   if (!UseStrtab) {
3994     if (Record.size() < 2)
3995       return error("Invalid record");
3996     unsigned ComdatNameSize = Record[1];
3997     if (ComdatNameSize > Record.size() - 2)
3998       return error("Comdat name size too large");
3999     OldFormatName.reserve(ComdatNameSize);
4000     for (unsigned i = 0; i != ComdatNameSize; ++i)
4001       OldFormatName += (char)Record[2 + i];
4002     Name = OldFormatName;
4003   }
4004   Comdat *C = TheModule->getOrInsertComdat(Name);
4005   C->setSelectionKind(SK);
4006   ComdatList.push_back(C);
4007   return Error::success();
4008 }
4009 
4010 static void inferDSOLocal(GlobalValue *GV) {
4011   // infer dso_local from linkage and visibility if it is not encoded.
4012   if (GV->hasLocalLinkage() ||
4013       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
4014     GV->setDSOLocal(true);
4015 }
4016 
4017 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
4018   GlobalValue::SanitizerMetadata Meta;
4019   if (V & (1 << 0))
4020     Meta.NoAddress = true;
4021   if (V & (1 << 1))
4022     Meta.NoHWAddress = true;
4023   if (V & (1 << 2))
4024     Meta.Memtag = true;
4025   if (V & (1 << 3))
4026     Meta.IsDynInit = true;
4027   return Meta;
4028 }
4029 
4030 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4031   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4032   // visibility, threadlocal, unnamed_addr, externally_initialized,
4033   // dllstorageclass, comdat, attributes, preemption specifier,
4034   // partition strtab offset, partition strtab size] (name in VST)
4035   // v2: [strtab_offset, strtab_size, v1]
4036   // v3: [v2, code_model]
4037   StringRef Name;
4038   std::tie(Name, Record) = readNameFromStrtab(Record);
4039 
4040   if (Record.size() < 6)
4041     return error("Invalid record");
4042   unsigned TyID = Record[0];
4043   Type *Ty = getTypeByID(TyID);
4044   if (!Ty)
4045     return error("Invalid record");
4046   bool isConstant = Record[1] & 1;
4047   bool explicitType = Record[1] & 2;
4048   unsigned AddressSpace;
4049   if (explicitType) {
4050     AddressSpace = Record[1] >> 2;
4051   } else {
4052     if (!Ty->isPointerTy())
4053       return error("Invalid type for value");
4054     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4055     TyID = getContainedTypeID(TyID);
4056     Ty = getTypeByID(TyID);
4057     if (!Ty)
4058       return error("Missing element type for old-style global");
4059   }
4060 
4061   uint64_t RawLinkage = Record[3];
4062   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4063   MaybeAlign Alignment;
4064   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4065     return Err;
4066   std::string Section;
4067   if (Record[5]) {
4068     if (Record[5] - 1 >= SectionTable.size())
4069       return error("Invalid ID");
4070     Section = SectionTable[Record[5] - 1];
4071   }
4072   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4073   // Local linkage must have default visibility.
4074   // auto-upgrade `hidden` and `protected` for old bitcode.
4075   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4076     Visibility = getDecodedVisibility(Record[6]);
4077 
4078   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4079   if (Record.size() > 7)
4080     TLM = getDecodedThreadLocalMode(Record[7]);
4081 
4082   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4083   if (Record.size() > 8)
4084     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4085 
4086   bool ExternallyInitialized = false;
4087   if (Record.size() > 9)
4088     ExternallyInitialized = Record[9];
4089 
4090   GlobalVariable *NewGV =
4091       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4092                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4093   if (Alignment)
4094     NewGV->setAlignment(*Alignment);
4095   if (!Section.empty())
4096     NewGV->setSection(Section);
4097   NewGV->setVisibility(Visibility);
4098   NewGV->setUnnamedAddr(UnnamedAddr);
4099 
4100   if (Record.size() > 10) {
4101     // A GlobalValue with local linkage cannot have a DLL storage class.
4102     if (!NewGV->hasLocalLinkage()) {
4103       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4104     }
4105   } else {
4106     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4107   }
4108 
4109   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4110 
4111   // Remember which value to use for the global initializer.
4112   if (unsigned InitID = Record[2])
4113     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4114 
4115   if (Record.size() > 11) {
4116     if (unsigned ComdatID = Record[11]) {
4117       if (ComdatID > ComdatList.size())
4118         return error("Invalid global variable comdat ID");
4119       NewGV->setComdat(ComdatList[ComdatID - 1]);
4120     }
4121   } else if (hasImplicitComdat(RawLinkage)) {
4122     ImplicitComdatObjects.insert(NewGV);
4123   }
4124 
4125   if (Record.size() > 12) {
4126     auto AS = getAttributes(Record[12]).getFnAttrs();
4127     NewGV->setAttributes(AS);
4128   }
4129 
4130   if (Record.size() > 13) {
4131     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4132   }
4133   inferDSOLocal(NewGV);
4134 
4135   // Check whether we have enough values to read a partition name.
4136   if (Record.size() > 15)
4137     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4138 
4139   if (Record.size() > 16 && Record[16]) {
4140     llvm::GlobalValue::SanitizerMetadata Meta =
4141         deserializeSanitizerMetadata(Record[16]);
4142     NewGV->setSanitizerMetadata(Meta);
4143   }
4144 
4145   if (Record.size() > 17 && Record[17]) {
4146     if (auto CM = getDecodedCodeModel(Record[17]))
4147       NewGV->setCodeModel(*CM);
4148     else
4149       return error("Invalid global variable code model");
4150   }
4151 
4152   return Error::success();
4153 }
4154 
4155 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4156   if (ValueTypeCallback) {
4157     (*ValueTypeCallback)(
4158         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4159         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4160   }
4161 }
4162 
4163 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4164   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4165   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4166   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4167   // v2: [strtab_offset, strtab_size, v1]
4168   StringRef Name;
4169   std::tie(Name, Record) = readNameFromStrtab(Record);
4170 
4171   if (Record.size() < 8)
4172     return error("Invalid record");
4173   unsigned FTyID = Record[0];
4174   Type *FTy = getTypeByID(FTyID);
4175   if (!FTy)
4176     return error("Invalid record");
4177   if (isa<PointerType>(FTy)) {
4178     FTyID = getContainedTypeID(FTyID, 0);
4179     FTy = getTypeByID(FTyID);
4180     if (!FTy)
4181       return error("Missing element type for old-style function");
4182   }
4183 
4184   if (!isa<FunctionType>(FTy))
4185     return error("Invalid type for value");
4186   auto CC = static_cast<CallingConv::ID>(Record[1]);
4187   if (CC & ~CallingConv::MaxID)
4188     return error("Invalid calling convention ID");
4189 
4190   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4191   if (Record.size() > 16)
4192     AddrSpace = Record[16];
4193 
4194   Function *Func =
4195       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4196                        AddrSpace, Name, TheModule);
4197 
4198   assert(Func->getFunctionType() == FTy &&
4199          "Incorrect fully specified type provided for function");
4200   FunctionTypeIDs[Func] = FTyID;
4201 
4202   Func->setCallingConv(CC);
4203   bool isProto = Record[2];
4204   uint64_t RawLinkage = Record[3];
4205   Func->setLinkage(getDecodedLinkage(RawLinkage));
4206   Func->setAttributes(getAttributes(Record[4]));
4207   callValueTypeCallback(Func, FTyID);
4208 
4209   // Upgrade any old-style byval or sret without a type by propagating the
4210   // argument's pointee type. There should be no opaque pointers where the byval
4211   // type is implicit.
4212   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4213     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4214                                      Attribute::InAlloca}) {
4215       if (!Func->hasParamAttribute(i, Kind))
4216         continue;
4217 
4218       if (Func->getParamAttribute(i, Kind).getValueAsType())
4219         continue;
4220 
4221       Func->removeParamAttr(i, Kind);
4222 
4223       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4224       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4225       if (!PtrEltTy)
4226         return error("Missing param element type for attribute upgrade");
4227 
4228       Attribute NewAttr;
4229       switch (Kind) {
4230       case Attribute::ByVal:
4231         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4232         break;
4233       case Attribute::StructRet:
4234         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4235         break;
4236       case Attribute::InAlloca:
4237         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4238         break;
4239       default:
4240         llvm_unreachable("not an upgraded type attribute");
4241       }
4242 
4243       Func->addParamAttr(i, NewAttr);
4244     }
4245   }
4246 
4247   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4248       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4249     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4250     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4251     if (!ByValTy)
4252       return error("Missing param element type for x86_intrcc upgrade");
4253     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4254     Func->addParamAttr(0, NewAttr);
4255   }
4256 
4257   MaybeAlign Alignment;
4258   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4259     return Err;
4260   if (Alignment)
4261     Func->setAlignment(*Alignment);
4262   if (Record[6]) {
4263     if (Record[6] - 1 >= SectionTable.size())
4264       return error("Invalid ID");
4265     Func->setSection(SectionTable[Record[6] - 1]);
4266   }
4267   // Local linkage must have default visibility.
4268   // auto-upgrade `hidden` and `protected` for old bitcode.
4269   if (!Func->hasLocalLinkage())
4270     Func->setVisibility(getDecodedVisibility(Record[7]));
4271   if (Record.size() > 8 && Record[8]) {
4272     if (Record[8] - 1 >= GCTable.size())
4273       return error("Invalid ID");
4274     Func->setGC(GCTable[Record[8] - 1]);
4275   }
4276   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4277   if (Record.size() > 9)
4278     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4279   Func->setUnnamedAddr(UnnamedAddr);
4280 
4281   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4282   if (Record.size() > 10)
4283     OperandInfo.Prologue = Record[10];
4284 
4285   if (Record.size() > 11) {
4286     // A GlobalValue with local linkage cannot have a DLL storage class.
4287     if (!Func->hasLocalLinkage()) {
4288       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4289     }
4290   } else {
4291     upgradeDLLImportExportLinkage(Func, RawLinkage);
4292   }
4293 
4294   if (Record.size() > 12) {
4295     if (unsigned ComdatID = Record[12]) {
4296       if (ComdatID > ComdatList.size())
4297         return error("Invalid function comdat ID");
4298       Func->setComdat(ComdatList[ComdatID - 1]);
4299     }
4300   } else if (hasImplicitComdat(RawLinkage)) {
4301     ImplicitComdatObjects.insert(Func);
4302   }
4303 
4304   if (Record.size() > 13)
4305     OperandInfo.Prefix = Record[13];
4306 
4307   if (Record.size() > 14)
4308     OperandInfo.PersonalityFn = Record[14];
4309 
4310   if (Record.size() > 15) {
4311     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4312   }
4313   inferDSOLocal(Func);
4314 
4315   // Record[16] is the address space number.
4316 
4317   // Check whether we have enough values to read a partition name. Also make
4318   // sure Strtab has enough values.
4319   if (Record.size() > 18 && Strtab.data() &&
4320       Record[17] + Record[18] <= Strtab.size()) {
4321     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4322   }
4323 
4324   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4325 
4326   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4327     FunctionOperands.push_back(OperandInfo);
4328 
4329   // If this is a function with a body, remember the prototype we are
4330   // creating now, so that we can match up the body with them later.
4331   if (!isProto) {
4332     Func->setIsMaterializable(true);
4333     FunctionsWithBodies.push_back(Func);
4334     DeferredFunctionInfo[Func] = 0;
4335   }
4336   return Error::success();
4337 }
4338 
4339 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4340     unsigned BitCode, ArrayRef<uint64_t> Record) {
4341   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4342   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4343   // dllstorageclass, threadlocal, unnamed_addr,
4344   // preemption specifier] (name in VST)
4345   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4346   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4347   // preemption specifier] (name in VST)
4348   // v2: [strtab_offset, strtab_size, v1]
4349   StringRef Name;
4350   std::tie(Name, Record) = readNameFromStrtab(Record);
4351 
4352   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4353   if (Record.size() < (3 + (unsigned)NewRecord))
4354     return error("Invalid record");
4355   unsigned OpNum = 0;
4356   unsigned TypeID = Record[OpNum++];
4357   Type *Ty = getTypeByID(TypeID);
4358   if (!Ty)
4359     return error("Invalid record");
4360 
4361   unsigned AddrSpace;
4362   if (!NewRecord) {
4363     auto *PTy = dyn_cast<PointerType>(Ty);
4364     if (!PTy)
4365       return error("Invalid type for value");
4366     AddrSpace = PTy->getAddressSpace();
4367     TypeID = getContainedTypeID(TypeID);
4368     Ty = getTypeByID(TypeID);
4369     if (!Ty)
4370       return error("Missing element type for old-style indirect symbol");
4371   } else {
4372     AddrSpace = Record[OpNum++];
4373   }
4374 
4375   auto Val = Record[OpNum++];
4376   auto Linkage = Record[OpNum++];
4377   GlobalValue *NewGA;
4378   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4379       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4380     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4381                                 TheModule);
4382   else
4383     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4384                                 nullptr, TheModule);
4385 
4386   // Local linkage must have default visibility.
4387   // auto-upgrade `hidden` and `protected` for old bitcode.
4388   if (OpNum != Record.size()) {
4389     auto VisInd = OpNum++;
4390     if (!NewGA->hasLocalLinkage())
4391       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4392   }
4393   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4394       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4395     if (OpNum != Record.size()) {
4396       auto S = Record[OpNum++];
4397       // A GlobalValue with local linkage cannot have a DLL storage class.
4398       if (!NewGA->hasLocalLinkage())
4399         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4400     }
4401     else
4402       upgradeDLLImportExportLinkage(NewGA, Linkage);
4403     if (OpNum != Record.size())
4404       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4405     if (OpNum != Record.size())
4406       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4407   }
4408   if (OpNum != Record.size())
4409     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4410   inferDSOLocal(NewGA);
4411 
4412   // Check whether we have enough values to read a partition name.
4413   if (OpNum + 1 < Record.size()) {
4414     // Check Strtab has enough values for the partition.
4415     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4416       return error("Malformed partition, too large.");
4417     NewGA->setPartition(
4418         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4419   }
4420 
4421   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4422   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4423   return Error::success();
4424 }
4425 
4426 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4427                                  bool ShouldLazyLoadMetadata,
4428                                  ParserCallbacks Callbacks) {
4429   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4430   // has been set to true and we aren't attempting to preserve the existing
4431   // format in the bitcode (default action: load into the old debug format).
4432   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4433     TheModule->IsNewDbgInfoFormat =
4434         UseNewDbgInfoFormat &&
4435         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4436   }
4437 
4438   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4439   if (ResumeBit) {
4440     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4441       return JumpFailed;
4442   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4443     return Err;
4444 
4445   SmallVector<uint64_t, 64> Record;
4446 
4447   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4448   // finalize the datalayout before we run any of that code.
4449   bool ResolvedDataLayout = false;
4450   // In order to support importing modules with illegal data layout strings,
4451   // delay parsing the data layout string until after upgrades and overrides
4452   // have been applied, allowing to fix illegal data layout strings.
4453   // Initialize to the current module's layout string in case none is specified.
4454   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4455 
4456   auto ResolveDataLayout = [&]() -> Error {
4457     if (ResolvedDataLayout)
4458       return Error::success();
4459 
4460     // Datalayout and triple can't be parsed after this point.
4461     ResolvedDataLayout = true;
4462 
4463     // Auto-upgrade the layout string
4464     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4465         TentativeDataLayoutStr, TheModule->getTargetTriple());
4466 
4467     // Apply override
4468     if (Callbacks.DataLayout) {
4469       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4470               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4471         TentativeDataLayoutStr = *LayoutOverride;
4472     }
4473 
4474     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4475     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4476     if (!MaybeDL)
4477       return MaybeDL.takeError();
4478 
4479     TheModule->setDataLayout(MaybeDL.get());
4480     return Error::success();
4481   };
4482 
4483   // Read all the records for this module.
4484   while (true) {
4485     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4486     if (!MaybeEntry)
4487       return MaybeEntry.takeError();
4488     llvm::BitstreamEntry Entry = MaybeEntry.get();
4489 
4490     switch (Entry.Kind) {
4491     case BitstreamEntry::Error:
4492       return error("Malformed block");
4493     case BitstreamEntry::EndBlock:
4494       if (Error Err = ResolveDataLayout())
4495         return Err;
4496       return globalCleanup();
4497 
4498     case BitstreamEntry::SubBlock:
4499       switch (Entry.ID) {
4500       default:  // Skip unknown content.
4501         if (Error Err = Stream.SkipBlock())
4502           return Err;
4503         break;
4504       case bitc::BLOCKINFO_BLOCK_ID:
4505         if (Error Err = readBlockInfo())
4506           return Err;
4507         break;
4508       case bitc::PARAMATTR_BLOCK_ID:
4509         if (Error Err = parseAttributeBlock())
4510           return Err;
4511         break;
4512       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4513         if (Error Err = parseAttributeGroupBlock())
4514           return Err;
4515         break;
4516       case bitc::TYPE_BLOCK_ID_NEW:
4517         if (Error Err = parseTypeTable())
4518           return Err;
4519         break;
4520       case bitc::VALUE_SYMTAB_BLOCK_ID:
4521         if (!SeenValueSymbolTable) {
4522           // Either this is an old form VST without function index and an
4523           // associated VST forward declaration record (which would have caused
4524           // the VST to be jumped to and parsed before it was encountered
4525           // normally in the stream), or there were no function blocks to
4526           // trigger an earlier parsing of the VST.
4527           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4528           if (Error Err = parseValueSymbolTable())
4529             return Err;
4530           SeenValueSymbolTable = true;
4531         } else {
4532           // We must have had a VST forward declaration record, which caused
4533           // the parser to jump to and parse the VST earlier.
4534           assert(VSTOffset > 0);
4535           if (Error Err = Stream.SkipBlock())
4536             return Err;
4537         }
4538         break;
4539       case bitc::CONSTANTS_BLOCK_ID:
4540         if (Error Err = parseConstants())
4541           return Err;
4542         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4543           return Err;
4544         break;
4545       case bitc::METADATA_BLOCK_ID:
4546         if (ShouldLazyLoadMetadata) {
4547           if (Error Err = rememberAndSkipMetadata())
4548             return Err;
4549           break;
4550         }
4551         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4552         if (Error Err = MDLoader->parseModuleMetadata())
4553           return Err;
4554         break;
4555       case bitc::METADATA_KIND_BLOCK_ID:
4556         if (Error Err = MDLoader->parseMetadataKinds())
4557           return Err;
4558         break;
4559       case bitc::FUNCTION_BLOCK_ID:
4560         if (Error Err = ResolveDataLayout())
4561           return Err;
4562 
4563         // If this is the first function body we've seen, reverse the
4564         // FunctionsWithBodies list.
4565         if (!SeenFirstFunctionBody) {
4566           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4567           if (Error Err = globalCleanup())
4568             return Err;
4569           SeenFirstFunctionBody = true;
4570         }
4571 
4572         if (VSTOffset > 0) {
4573           // If we have a VST forward declaration record, make sure we
4574           // parse the VST now if we haven't already. It is needed to
4575           // set up the DeferredFunctionInfo vector for lazy reading.
4576           if (!SeenValueSymbolTable) {
4577             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4578               return Err;
4579             SeenValueSymbolTable = true;
4580             // Fall through so that we record the NextUnreadBit below.
4581             // This is necessary in case we have an anonymous function that
4582             // is later materialized. Since it will not have a VST entry we
4583             // need to fall back to the lazy parse to find its offset.
4584           } else {
4585             // If we have a VST forward declaration record, but have already
4586             // parsed the VST (just above, when the first function body was
4587             // encountered here), then we are resuming the parse after
4588             // materializing functions. The ResumeBit points to the
4589             // start of the last function block recorded in the
4590             // DeferredFunctionInfo map. Skip it.
4591             if (Error Err = Stream.SkipBlock())
4592               return Err;
4593             continue;
4594           }
4595         }
4596 
4597         // Support older bitcode files that did not have the function
4598         // index in the VST, nor a VST forward declaration record, as
4599         // well as anonymous functions that do not have VST entries.
4600         // Build the DeferredFunctionInfo vector on the fly.
4601         if (Error Err = rememberAndSkipFunctionBody())
4602           return Err;
4603 
4604         // Suspend parsing when we reach the function bodies. Subsequent
4605         // materialization calls will resume it when necessary. If the bitcode
4606         // file is old, the symbol table will be at the end instead and will not
4607         // have been seen yet. In this case, just finish the parse now.
4608         if (SeenValueSymbolTable) {
4609           NextUnreadBit = Stream.GetCurrentBitNo();
4610           // After the VST has been parsed, we need to make sure intrinsic name
4611           // are auto-upgraded.
4612           return globalCleanup();
4613         }
4614         break;
4615       case bitc::USELIST_BLOCK_ID:
4616         if (Error Err = parseUseLists())
4617           return Err;
4618         break;
4619       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4620         if (Error Err = parseOperandBundleTags())
4621           return Err;
4622         break;
4623       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4624         if (Error Err = parseSyncScopeNames())
4625           return Err;
4626         break;
4627       }
4628       continue;
4629 
4630     case BitstreamEntry::Record:
4631       // The interesting case.
4632       break;
4633     }
4634 
4635     // Read a record.
4636     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4637     if (!MaybeBitCode)
4638       return MaybeBitCode.takeError();
4639     switch (unsigned BitCode = MaybeBitCode.get()) {
4640     default: break;  // Default behavior, ignore unknown content.
4641     case bitc::MODULE_CODE_VERSION: {
4642       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4643       if (!VersionOrErr)
4644         return VersionOrErr.takeError();
4645       UseRelativeIDs = *VersionOrErr >= 1;
4646       break;
4647     }
4648     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4649       if (ResolvedDataLayout)
4650         return error("target triple too late in module");
4651       std::string S;
4652       if (convertToString(Record, 0, S))
4653         return error("Invalid record");
4654       TheModule->setTargetTriple(S);
4655       break;
4656     }
4657     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4658       if (ResolvedDataLayout)
4659         return error("datalayout too late in module");
4660       if (convertToString(Record, 0, TentativeDataLayoutStr))
4661         return error("Invalid record");
4662       break;
4663     }
4664     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4665       std::string S;
4666       if (convertToString(Record, 0, S))
4667         return error("Invalid record");
4668       TheModule->setModuleInlineAsm(S);
4669       break;
4670     }
4671     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4672       // Deprecated, but still needed to read old bitcode files.
4673       std::string S;
4674       if (convertToString(Record, 0, S))
4675         return error("Invalid record");
4676       // Ignore value.
4677       break;
4678     }
4679     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4680       std::string S;
4681       if (convertToString(Record, 0, S))
4682         return error("Invalid record");
4683       SectionTable.push_back(S);
4684       break;
4685     }
4686     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4687       std::string S;
4688       if (convertToString(Record, 0, S))
4689         return error("Invalid record");
4690       GCTable.push_back(S);
4691       break;
4692     }
4693     case bitc::MODULE_CODE_COMDAT:
4694       if (Error Err = parseComdatRecord(Record))
4695         return Err;
4696       break;
4697     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4698     // written by ThinLinkBitcodeWriter. See
4699     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4700     // record
4701     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4702     case bitc::MODULE_CODE_GLOBALVAR:
4703       if (Error Err = parseGlobalVarRecord(Record))
4704         return Err;
4705       break;
4706     case bitc::MODULE_CODE_FUNCTION:
4707       if (Error Err = ResolveDataLayout())
4708         return Err;
4709       if (Error Err = parseFunctionRecord(Record))
4710         return Err;
4711       break;
4712     case bitc::MODULE_CODE_IFUNC:
4713     case bitc::MODULE_CODE_ALIAS:
4714     case bitc::MODULE_CODE_ALIAS_OLD:
4715       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4716         return Err;
4717       break;
4718     /// MODULE_CODE_VSTOFFSET: [offset]
4719     case bitc::MODULE_CODE_VSTOFFSET:
4720       if (Record.empty())
4721         return error("Invalid record");
4722       // Note that we subtract 1 here because the offset is relative to one word
4723       // before the start of the identification or module block, which was
4724       // historically always the start of the regular bitcode header.
4725       VSTOffset = Record[0] - 1;
4726       break;
4727     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4728     case bitc::MODULE_CODE_SOURCE_FILENAME:
4729       SmallString<128> ValueName;
4730       if (convertToString(Record, 0, ValueName))
4731         return error("Invalid record");
4732       TheModule->setSourceFileName(ValueName);
4733       break;
4734     }
4735     Record.clear();
4736   }
4737   this->ValueTypeCallback = std::nullopt;
4738   return Error::success();
4739 }
4740 
4741 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4742                                       bool IsImporting,
4743                                       ParserCallbacks Callbacks) {
4744   TheModule = M;
4745   MetadataLoaderCallbacks MDCallbacks;
4746   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4747   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4748     return getContainedTypeID(I, J);
4749   };
4750   MDCallbacks.MDType = Callbacks.MDType;
4751   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4752   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4753 }
4754 
4755 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4756   if (!isa<PointerType>(PtrType))
4757     return error("Load/Store operand is not a pointer type");
4758   if (!PointerType::isLoadableOrStorableType(ValType))
4759     return error("Cannot load/store from pointer");
4760   return Error::success();
4761 }
4762 
4763 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4764                                              ArrayRef<unsigned> ArgTyIDs) {
4765   AttributeList Attrs = CB->getAttributes();
4766   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4767     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4768                                      Attribute::InAlloca}) {
4769       if (!Attrs.hasParamAttr(i, Kind) ||
4770           Attrs.getParamAttr(i, Kind).getValueAsType())
4771         continue;
4772 
4773       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4774       if (!PtrEltTy)
4775         return error("Missing element type for typed attribute upgrade");
4776 
4777       Attribute NewAttr;
4778       switch (Kind) {
4779       case Attribute::ByVal:
4780         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4781         break;
4782       case Attribute::StructRet:
4783         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4784         break;
4785       case Attribute::InAlloca:
4786         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4787         break;
4788       default:
4789         llvm_unreachable("not an upgraded type attribute");
4790       }
4791 
4792       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4793     }
4794   }
4795 
4796   if (CB->isInlineAsm()) {
4797     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4798     unsigned ArgNo = 0;
4799     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4800       if (!CI.hasArg())
4801         continue;
4802 
4803       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4804         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4805         if (!ElemTy)
4806           return error("Missing element type for inline asm upgrade");
4807         Attrs = Attrs.addParamAttribute(
4808             Context, ArgNo,
4809             Attribute::get(Context, Attribute::ElementType, ElemTy));
4810       }
4811 
4812       ArgNo++;
4813     }
4814   }
4815 
4816   switch (CB->getIntrinsicID()) {
4817   case Intrinsic::preserve_array_access_index:
4818   case Intrinsic::preserve_struct_access_index:
4819   case Intrinsic::aarch64_ldaxr:
4820   case Intrinsic::aarch64_ldxr:
4821   case Intrinsic::aarch64_stlxr:
4822   case Intrinsic::aarch64_stxr:
4823   case Intrinsic::arm_ldaex:
4824   case Intrinsic::arm_ldrex:
4825   case Intrinsic::arm_stlex:
4826   case Intrinsic::arm_strex: {
4827     unsigned ArgNo;
4828     switch (CB->getIntrinsicID()) {
4829     case Intrinsic::aarch64_stlxr:
4830     case Intrinsic::aarch64_stxr:
4831     case Intrinsic::arm_stlex:
4832     case Intrinsic::arm_strex:
4833       ArgNo = 1;
4834       break;
4835     default:
4836       ArgNo = 0;
4837       break;
4838     }
4839     if (!Attrs.getParamElementType(ArgNo)) {
4840       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4841       if (!ElTy)
4842         return error("Missing element type for elementtype upgrade");
4843       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4844       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4845     }
4846     break;
4847   }
4848   default:
4849     break;
4850   }
4851 
4852   CB->setAttributes(Attrs);
4853   return Error::success();
4854 }
4855 
4856 /// Lazily parse the specified function body block.
4857 Error BitcodeReader::parseFunctionBody(Function *F) {
4858   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4859     return Err;
4860 
4861   // Unexpected unresolved metadata when parsing function.
4862   if (MDLoader->hasFwdRefs())
4863     return error("Invalid function metadata: incoming forward references");
4864 
4865   InstructionList.clear();
4866   unsigned ModuleValueListSize = ValueList.size();
4867   unsigned ModuleMDLoaderSize = MDLoader->size();
4868 
4869   // Add all the function arguments to the value table.
4870   unsigned ArgNo = 0;
4871   unsigned FTyID = FunctionTypeIDs[F];
4872   for (Argument &I : F->args()) {
4873     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4874     assert(I.getType() == getTypeByID(ArgTyID) &&
4875            "Incorrect fully specified type for Function Argument");
4876     ValueList.push_back(&I, ArgTyID);
4877     ++ArgNo;
4878   }
4879   unsigned NextValueNo = ValueList.size();
4880   BasicBlock *CurBB = nullptr;
4881   unsigned CurBBNo = 0;
4882   // Block into which constant expressions from phi nodes are materialized.
4883   BasicBlock *PhiConstExprBB = nullptr;
4884   // Edge blocks for phi nodes into which constant expressions have been
4885   // expanded.
4886   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4887     ConstExprEdgeBBs;
4888 
4889   DebugLoc LastLoc;
4890   auto getLastInstruction = [&]() -> Instruction * {
4891     if (CurBB && !CurBB->empty())
4892       return &CurBB->back();
4893     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4894              !FunctionBBs[CurBBNo - 1]->empty())
4895       return &FunctionBBs[CurBBNo - 1]->back();
4896     return nullptr;
4897   };
4898 
4899   std::vector<OperandBundleDef> OperandBundles;
4900 
4901   // Read all the records.
4902   SmallVector<uint64_t, 64> Record;
4903 
4904   while (true) {
4905     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4906     if (!MaybeEntry)
4907       return MaybeEntry.takeError();
4908     llvm::BitstreamEntry Entry = MaybeEntry.get();
4909 
4910     switch (Entry.Kind) {
4911     case BitstreamEntry::Error:
4912       return error("Malformed block");
4913     case BitstreamEntry::EndBlock:
4914       goto OutOfRecordLoop;
4915 
4916     case BitstreamEntry::SubBlock:
4917       switch (Entry.ID) {
4918       default:  // Skip unknown content.
4919         if (Error Err = Stream.SkipBlock())
4920           return Err;
4921         break;
4922       case bitc::CONSTANTS_BLOCK_ID:
4923         if (Error Err = parseConstants())
4924           return Err;
4925         NextValueNo = ValueList.size();
4926         break;
4927       case bitc::VALUE_SYMTAB_BLOCK_ID:
4928         if (Error Err = parseValueSymbolTable())
4929           return Err;
4930         break;
4931       case bitc::METADATA_ATTACHMENT_ID:
4932         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4933           return Err;
4934         break;
4935       case bitc::METADATA_BLOCK_ID:
4936         assert(DeferredMetadataInfo.empty() &&
4937                "Must read all module-level metadata before function-level");
4938         if (Error Err = MDLoader->parseFunctionMetadata())
4939           return Err;
4940         break;
4941       case bitc::USELIST_BLOCK_ID:
4942         if (Error Err = parseUseLists())
4943           return Err;
4944         break;
4945       }
4946       continue;
4947 
4948     case BitstreamEntry::Record:
4949       // The interesting case.
4950       break;
4951     }
4952 
4953     // Read a record.
4954     Record.clear();
4955     Instruction *I = nullptr;
4956     unsigned ResTypeID = InvalidTypeID;
4957     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4958     if (!MaybeBitCode)
4959       return MaybeBitCode.takeError();
4960     switch (unsigned BitCode = MaybeBitCode.get()) {
4961     default: // Default behavior: reject
4962       return error("Invalid value");
4963     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4964       if (Record.empty() || Record[0] == 0)
4965         return error("Invalid record");
4966       // Create all the basic blocks for the function.
4967       FunctionBBs.resize(Record[0]);
4968 
4969       // See if anything took the address of blocks in this function.
4970       auto BBFRI = BasicBlockFwdRefs.find(F);
4971       if (BBFRI == BasicBlockFwdRefs.end()) {
4972         for (BasicBlock *&BB : FunctionBBs)
4973           BB = BasicBlock::Create(Context, "", F);
4974       } else {
4975         auto &BBRefs = BBFRI->second;
4976         // Check for invalid basic block references.
4977         if (BBRefs.size() > FunctionBBs.size())
4978           return error("Invalid ID");
4979         assert(!BBRefs.empty() && "Unexpected empty array");
4980         assert(!BBRefs.front() && "Invalid reference to entry block");
4981         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4982              ++I)
4983           if (I < RE && BBRefs[I]) {
4984             BBRefs[I]->insertInto(F);
4985             FunctionBBs[I] = BBRefs[I];
4986           } else {
4987             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4988           }
4989 
4990         // Erase from the table.
4991         BasicBlockFwdRefs.erase(BBFRI);
4992       }
4993 
4994       CurBB = FunctionBBs[0];
4995       continue;
4996     }
4997 
4998     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4999       // The record should not be emitted if it's an empty list.
5000       if (Record.empty())
5001         return error("Invalid record");
5002       // When we have the RARE case of a BlockAddress Constant that is not
5003       // scoped to the Function it refers to, we need to conservatively
5004       // materialize the referred to Function, regardless of whether or not
5005       // that Function will ultimately be linked, otherwise users of
5006       // BitcodeReader might start splicing out Function bodies such that we
5007       // might no longer be able to materialize the BlockAddress since the
5008       // BasicBlock (and entire body of the Function) the BlockAddress refers
5009       // to may have been moved. In the case that the user of BitcodeReader
5010       // decides ultimately not to link the Function body, materializing here
5011       // could be considered wasteful, but it's better than a deserialization
5012       // failure as described. This keeps BitcodeReader unaware of complex
5013       // linkage policy decisions such as those use by LTO, leaving those
5014       // decisions "one layer up."
5015       for (uint64_t ValID : Record)
5016         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
5017           BackwardRefFunctions.push_back(F);
5018         else
5019           return error("Invalid record");
5020 
5021       continue;
5022 
5023     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
5024       // This record indicates that the last instruction is at the same
5025       // location as the previous instruction with a location.
5026       I = getLastInstruction();
5027 
5028       if (!I)
5029         return error("Invalid record");
5030       I->setDebugLoc(LastLoc);
5031       I = nullptr;
5032       continue;
5033 
5034     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5035       I = getLastInstruction();
5036       if (!I || Record.size() < 4)
5037         return error("Invalid record");
5038 
5039       unsigned Line = Record[0], Col = Record[1];
5040       unsigned ScopeID = Record[2], IAID = Record[3];
5041       bool isImplicitCode = Record.size() == 5 && Record[4];
5042 
5043       MDNode *Scope = nullptr, *IA = nullptr;
5044       if (ScopeID) {
5045         Scope = dyn_cast_or_null<MDNode>(
5046             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5047         if (!Scope)
5048           return error("Invalid record");
5049       }
5050       if (IAID) {
5051         IA = dyn_cast_or_null<MDNode>(
5052             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5053         if (!IA)
5054           return error("Invalid record");
5055       }
5056       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5057                                 isImplicitCode);
5058       I->setDebugLoc(LastLoc);
5059       I = nullptr;
5060       continue;
5061     }
5062     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5063       unsigned OpNum = 0;
5064       Value *LHS;
5065       unsigned TypeID;
5066       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5067           OpNum+1 > Record.size())
5068         return error("Invalid record");
5069 
5070       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5071       if (Opc == -1)
5072         return error("Invalid record");
5073       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5074       ResTypeID = TypeID;
5075       InstructionList.push_back(I);
5076       if (OpNum < Record.size()) {
5077         if (isa<FPMathOperator>(I)) {
5078           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5079           if (FMF.any())
5080             I->setFastMathFlags(FMF);
5081         }
5082       }
5083       break;
5084     }
5085     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5086       unsigned OpNum = 0;
5087       Value *LHS, *RHS;
5088       unsigned TypeID;
5089       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5090           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5091                    CurBB) ||
5092           OpNum+1 > Record.size())
5093         return error("Invalid record");
5094 
5095       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5096       if (Opc == -1)
5097         return error("Invalid record");
5098       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5099       ResTypeID = TypeID;
5100       InstructionList.push_back(I);
5101       if (OpNum < Record.size()) {
5102         if (Opc == Instruction::Add ||
5103             Opc == Instruction::Sub ||
5104             Opc == Instruction::Mul ||
5105             Opc == Instruction::Shl) {
5106           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5107             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5108           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5109             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5110         } else if (Opc == Instruction::SDiv ||
5111                    Opc == Instruction::UDiv ||
5112                    Opc == Instruction::LShr ||
5113                    Opc == Instruction::AShr) {
5114           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5115             cast<BinaryOperator>(I)->setIsExact(true);
5116         } else if (Opc == Instruction::Or) {
5117           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5118             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5119         } else if (isa<FPMathOperator>(I)) {
5120           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5121           if (FMF.any())
5122             I->setFastMathFlags(FMF);
5123         }
5124       }
5125       break;
5126     }
5127     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5128       unsigned OpNum = 0;
5129       Value *Op;
5130       unsigned OpTypeID;
5131       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5132           OpNum + 1 > Record.size())
5133         return error("Invalid record");
5134 
5135       ResTypeID = Record[OpNum++];
5136       Type *ResTy = getTypeByID(ResTypeID);
5137       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5138 
5139       if (Opc == -1 || !ResTy)
5140         return error("Invalid record");
5141       Instruction *Temp = nullptr;
5142       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5143         if (Temp) {
5144           InstructionList.push_back(Temp);
5145           assert(CurBB && "No current BB?");
5146           Temp->insertInto(CurBB, CurBB->end());
5147         }
5148       } else {
5149         auto CastOp = (Instruction::CastOps)Opc;
5150         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5151           return error("Invalid cast");
5152         I = CastInst::Create(CastOp, Op, ResTy);
5153       }
5154 
5155       if (OpNum < Record.size()) {
5156         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5157           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5158             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5159         } else if (Opc == Instruction::Trunc) {
5160           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5161             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5162           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5163             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5164         }
5165       }
5166 
5167       InstructionList.push_back(I);
5168       break;
5169     }
5170     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5171     case bitc::FUNC_CODE_INST_GEP_OLD:
5172     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5173       unsigned OpNum = 0;
5174 
5175       unsigned TyID;
5176       Type *Ty;
5177       GEPNoWrapFlags NW;
5178 
5179       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5180         NW = toGEPNoWrapFlags(Record[OpNum++]);
5181         TyID = Record[OpNum++];
5182         Ty = getTypeByID(TyID);
5183       } else {
5184         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5185           NW = GEPNoWrapFlags::inBounds();
5186         TyID = InvalidTypeID;
5187         Ty = nullptr;
5188       }
5189 
5190       Value *BasePtr;
5191       unsigned BasePtrTypeID;
5192       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5193                            CurBB))
5194         return error("Invalid record");
5195 
5196       if (!Ty) {
5197         TyID = getContainedTypeID(BasePtrTypeID);
5198         if (BasePtr->getType()->isVectorTy())
5199           TyID = getContainedTypeID(TyID);
5200         Ty = getTypeByID(TyID);
5201       }
5202 
5203       SmallVector<Value*, 16> GEPIdx;
5204       while (OpNum != Record.size()) {
5205         Value *Op;
5206         unsigned OpTypeID;
5207         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5208           return error("Invalid record");
5209         GEPIdx.push_back(Op);
5210       }
5211 
5212       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5213       I = GEP;
5214 
5215       ResTypeID = TyID;
5216       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5217         auto GTI = std::next(gep_type_begin(I));
5218         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5219           unsigned SubType = 0;
5220           if (GTI.isStruct()) {
5221             ConstantInt *IdxC =
5222                 Idx->getType()->isVectorTy()
5223                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5224                     : cast<ConstantInt>(Idx);
5225             SubType = IdxC->getZExtValue();
5226           }
5227           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5228           ++GTI;
5229         }
5230       }
5231 
5232       // At this point ResTypeID is the result element type. We need a pointer
5233       // or vector of pointer to it.
5234       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5235       if (I->getType()->isVectorTy())
5236         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5237 
5238       InstructionList.push_back(I);
5239       GEP->setNoWrapFlags(NW);
5240       break;
5241     }
5242 
5243     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5244                                        // EXTRACTVAL: [opty, opval, n x indices]
5245       unsigned OpNum = 0;
5246       Value *Agg;
5247       unsigned AggTypeID;
5248       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5249         return error("Invalid record");
5250       Type *Ty = Agg->getType();
5251 
5252       unsigned RecSize = Record.size();
5253       if (OpNum == RecSize)
5254         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5255 
5256       SmallVector<unsigned, 4> EXTRACTVALIdx;
5257       ResTypeID = AggTypeID;
5258       for (; OpNum != RecSize; ++OpNum) {
5259         bool IsArray = Ty->isArrayTy();
5260         bool IsStruct = Ty->isStructTy();
5261         uint64_t Index = Record[OpNum];
5262 
5263         if (!IsStruct && !IsArray)
5264           return error("EXTRACTVAL: Invalid type");
5265         if ((unsigned)Index != Index)
5266           return error("Invalid value");
5267         if (IsStruct && Index >= Ty->getStructNumElements())
5268           return error("EXTRACTVAL: Invalid struct index");
5269         if (IsArray && Index >= Ty->getArrayNumElements())
5270           return error("EXTRACTVAL: Invalid array index");
5271         EXTRACTVALIdx.push_back((unsigned)Index);
5272 
5273         if (IsStruct) {
5274           Ty = Ty->getStructElementType(Index);
5275           ResTypeID = getContainedTypeID(ResTypeID, Index);
5276         } else {
5277           Ty = Ty->getArrayElementType();
5278           ResTypeID = getContainedTypeID(ResTypeID);
5279         }
5280       }
5281 
5282       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5283       InstructionList.push_back(I);
5284       break;
5285     }
5286 
5287     case bitc::FUNC_CODE_INST_INSERTVAL: {
5288                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5289       unsigned OpNum = 0;
5290       Value *Agg;
5291       unsigned AggTypeID;
5292       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5293         return error("Invalid record");
5294       Value *Val;
5295       unsigned ValTypeID;
5296       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5297         return error("Invalid record");
5298 
5299       unsigned RecSize = Record.size();
5300       if (OpNum == RecSize)
5301         return error("INSERTVAL: Invalid instruction with 0 indices");
5302 
5303       SmallVector<unsigned, 4> INSERTVALIdx;
5304       Type *CurTy = Agg->getType();
5305       for (; OpNum != RecSize; ++OpNum) {
5306         bool IsArray = CurTy->isArrayTy();
5307         bool IsStruct = CurTy->isStructTy();
5308         uint64_t Index = Record[OpNum];
5309 
5310         if (!IsStruct && !IsArray)
5311           return error("INSERTVAL: Invalid type");
5312         if ((unsigned)Index != Index)
5313           return error("Invalid value");
5314         if (IsStruct && Index >= CurTy->getStructNumElements())
5315           return error("INSERTVAL: Invalid struct index");
5316         if (IsArray && Index >= CurTy->getArrayNumElements())
5317           return error("INSERTVAL: Invalid array index");
5318 
5319         INSERTVALIdx.push_back((unsigned)Index);
5320         if (IsStruct)
5321           CurTy = CurTy->getStructElementType(Index);
5322         else
5323           CurTy = CurTy->getArrayElementType();
5324       }
5325 
5326       if (CurTy != Val->getType())
5327         return error("Inserted value type doesn't match aggregate type");
5328 
5329       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5330       ResTypeID = AggTypeID;
5331       InstructionList.push_back(I);
5332       break;
5333     }
5334 
5335     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5336       // obsolete form of select
5337       // handles select i1 ... in old bitcode
5338       unsigned OpNum = 0;
5339       Value *TrueVal, *FalseVal, *Cond;
5340       unsigned TypeID;
5341       Type *CondType = Type::getInt1Ty(Context);
5342       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5343                            CurBB) ||
5344           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5345                    FalseVal, CurBB) ||
5346           popValue(Record, OpNum, NextValueNo, CondType,
5347                    getVirtualTypeID(CondType), Cond, CurBB))
5348         return error("Invalid record");
5349 
5350       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5351       ResTypeID = TypeID;
5352       InstructionList.push_back(I);
5353       break;
5354     }
5355 
5356     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5357       // new form of select
5358       // handles select i1 or select [N x i1]
5359       unsigned OpNum = 0;
5360       Value *TrueVal, *FalseVal, *Cond;
5361       unsigned ValTypeID, CondTypeID;
5362       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5363                            CurBB) ||
5364           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5365                    FalseVal, CurBB) ||
5366           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5367         return error("Invalid record");
5368 
5369       // select condition can be either i1 or [N x i1]
5370       if (VectorType* vector_type =
5371           dyn_cast<VectorType>(Cond->getType())) {
5372         // expect <n x i1>
5373         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5374           return error("Invalid type for value");
5375       } else {
5376         // expect i1
5377         if (Cond->getType() != Type::getInt1Ty(Context))
5378           return error("Invalid type for value");
5379       }
5380 
5381       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5382       ResTypeID = ValTypeID;
5383       InstructionList.push_back(I);
5384       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5385         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5386         if (FMF.any())
5387           I->setFastMathFlags(FMF);
5388       }
5389       break;
5390     }
5391 
5392     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5393       unsigned OpNum = 0;
5394       Value *Vec, *Idx;
5395       unsigned VecTypeID, IdxTypeID;
5396       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5397           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5398         return error("Invalid record");
5399       if (!Vec->getType()->isVectorTy())
5400         return error("Invalid type for value");
5401       I = ExtractElementInst::Create(Vec, Idx);
5402       ResTypeID = getContainedTypeID(VecTypeID);
5403       InstructionList.push_back(I);
5404       break;
5405     }
5406 
5407     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5408       unsigned OpNum = 0;
5409       Value *Vec, *Elt, *Idx;
5410       unsigned VecTypeID, IdxTypeID;
5411       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5412         return error("Invalid record");
5413       if (!Vec->getType()->isVectorTy())
5414         return error("Invalid type for value");
5415       if (popValue(Record, OpNum, NextValueNo,
5416                    cast<VectorType>(Vec->getType())->getElementType(),
5417                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5418           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5419         return error("Invalid record");
5420       I = InsertElementInst::Create(Vec, Elt, Idx);
5421       ResTypeID = VecTypeID;
5422       InstructionList.push_back(I);
5423       break;
5424     }
5425 
5426     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5427       unsigned OpNum = 0;
5428       Value *Vec1, *Vec2, *Mask;
5429       unsigned Vec1TypeID;
5430       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5431                            CurBB) ||
5432           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5433                    Vec2, CurBB))
5434         return error("Invalid record");
5435 
5436       unsigned MaskTypeID;
5437       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5438         return error("Invalid record");
5439       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5440         return error("Invalid type for value");
5441 
5442       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5443       ResTypeID =
5444           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5445       InstructionList.push_back(I);
5446       break;
5447     }
5448 
5449     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5450       // Old form of ICmp/FCmp returning bool
5451       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5452       // both legal on vectors but had different behaviour.
5453     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5454       // FCmp/ICmp returning bool or vector of bool
5455 
5456       unsigned OpNum = 0;
5457       Value *LHS, *RHS;
5458       unsigned LHSTypeID;
5459       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5460           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5461                    CurBB))
5462         return error("Invalid record");
5463 
5464       if (OpNum >= Record.size())
5465         return error(
5466             "Invalid record: operand number exceeded available operands");
5467 
5468       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5469       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5470       FastMathFlags FMF;
5471       if (IsFP && Record.size() > OpNum+1)
5472         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5473 
5474       if (OpNum+1 != Record.size())
5475         return error("Invalid record");
5476 
5477       if (IsFP) {
5478         if (!CmpInst::isFPPredicate(PredVal))
5479           return error("Invalid fcmp predicate");
5480         I = new FCmpInst(PredVal, LHS, RHS);
5481       } else {
5482         if (!CmpInst::isIntPredicate(PredVal))
5483           return error("Invalid icmp predicate");
5484         I = new ICmpInst(PredVal, LHS, RHS);
5485       }
5486 
5487       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5488       if (LHS->getType()->isVectorTy())
5489         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5490 
5491       if (FMF.any())
5492         I->setFastMathFlags(FMF);
5493       InstructionList.push_back(I);
5494       break;
5495     }
5496 
5497     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5498       {
5499         unsigned Size = Record.size();
5500         if (Size == 0) {
5501           I = ReturnInst::Create(Context);
5502           InstructionList.push_back(I);
5503           break;
5504         }
5505 
5506         unsigned OpNum = 0;
5507         Value *Op = nullptr;
5508         unsigned OpTypeID;
5509         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5510           return error("Invalid record");
5511         if (OpNum != Record.size())
5512           return error("Invalid record");
5513 
5514         I = ReturnInst::Create(Context, Op);
5515         InstructionList.push_back(I);
5516         break;
5517       }
5518     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5519       if (Record.size() != 1 && Record.size() != 3)
5520         return error("Invalid record");
5521       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5522       if (!TrueDest)
5523         return error("Invalid record");
5524 
5525       if (Record.size() == 1) {
5526         I = BranchInst::Create(TrueDest);
5527         InstructionList.push_back(I);
5528       }
5529       else {
5530         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5531         Type *CondType = Type::getInt1Ty(Context);
5532         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5533                                getVirtualTypeID(CondType), CurBB);
5534         if (!FalseDest || !Cond)
5535           return error("Invalid record");
5536         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5537         InstructionList.push_back(I);
5538       }
5539       break;
5540     }
5541     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5542       if (Record.size() != 1 && Record.size() != 2)
5543         return error("Invalid record");
5544       unsigned Idx = 0;
5545       Type *TokenTy = Type::getTokenTy(Context);
5546       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5547                                    getVirtualTypeID(TokenTy), CurBB);
5548       if (!CleanupPad)
5549         return error("Invalid record");
5550       BasicBlock *UnwindDest = nullptr;
5551       if (Record.size() == 2) {
5552         UnwindDest = getBasicBlock(Record[Idx++]);
5553         if (!UnwindDest)
5554           return error("Invalid record");
5555       }
5556 
5557       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5558       InstructionList.push_back(I);
5559       break;
5560     }
5561     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5562       if (Record.size() != 2)
5563         return error("Invalid record");
5564       unsigned Idx = 0;
5565       Type *TokenTy = Type::getTokenTy(Context);
5566       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5567                                  getVirtualTypeID(TokenTy), CurBB);
5568       if (!CatchPad)
5569         return error("Invalid record");
5570       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5571       if (!BB)
5572         return error("Invalid record");
5573 
5574       I = CatchReturnInst::Create(CatchPad, BB);
5575       InstructionList.push_back(I);
5576       break;
5577     }
5578     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5579       // We must have, at minimum, the outer scope and the number of arguments.
5580       if (Record.size() < 2)
5581         return error("Invalid record");
5582 
5583       unsigned Idx = 0;
5584 
5585       Type *TokenTy = Type::getTokenTy(Context);
5586       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5587                                   getVirtualTypeID(TokenTy), CurBB);
5588       if (!ParentPad)
5589         return error("Invalid record");
5590 
5591       unsigned NumHandlers = Record[Idx++];
5592 
5593       SmallVector<BasicBlock *, 2> Handlers;
5594       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5595         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5596         if (!BB)
5597           return error("Invalid record");
5598         Handlers.push_back(BB);
5599       }
5600 
5601       BasicBlock *UnwindDest = nullptr;
5602       if (Idx + 1 == Record.size()) {
5603         UnwindDest = getBasicBlock(Record[Idx++]);
5604         if (!UnwindDest)
5605           return error("Invalid record");
5606       }
5607 
5608       if (Record.size() != Idx)
5609         return error("Invalid record");
5610 
5611       auto *CatchSwitch =
5612           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5613       for (BasicBlock *Handler : Handlers)
5614         CatchSwitch->addHandler(Handler);
5615       I = CatchSwitch;
5616       ResTypeID = getVirtualTypeID(I->getType());
5617       InstructionList.push_back(I);
5618       break;
5619     }
5620     case bitc::FUNC_CODE_INST_CATCHPAD:
5621     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5622       // We must have, at minimum, the outer scope and the number of arguments.
5623       if (Record.size() < 2)
5624         return error("Invalid record");
5625 
5626       unsigned Idx = 0;
5627 
5628       Type *TokenTy = Type::getTokenTy(Context);
5629       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5630                                   getVirtualTypeID(TokenTy), CurBB);
5631       if (!ParentPad)
5632         return error("Invald record");
5633 
5634       unsigned NumArgOperands = Record[Idx++];
5635 
5636       SmallVector<Value *, 2> Args;
5637       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5638         Value *Val;
5639         unsigned ValTypeID;
5640         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5641           return error("Invalid record");
5642         Args.push_back(Val);
5643       }
5644 
5645       if (Record.size() != Idx)
5646         return error("Invalid record");
5647 
5648       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5649         I = CleanupPadInst::Create(ParentPad, Args);
5650       else
5651         I = CatchPadInst::Create(ParentPad, Args);
5652       ResTypeID = getVirtualTypeID(I->getType());
5653       InstructionList.push_back(I);
5654       break;
5655     }
5656     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5657       // Check magic
5658       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5659         // "New" SwitchInst format with case ranges. The changes to write this
5660         // format were reverted but we still recognize bitcode that uses it.
5661         // Hopefully someday we will have support for case ranges and can use
5662         // this format again.
5663 
5664         unsigned OpTyID = Record[1];
5665         Type *OpTy = getTypeByID(OpTyID);
5666         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5667 
5668         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5669         BasicBlock *Default = getBasicBlock(Record[3]);
5670         if (!OpTy || !Cond || !Default)
5671           return error("Invalid record");
5672 
5673         unsigned NumCases = Record[4];
5674 
5675         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5676         InstructionList.push_back(SI);
5677 
5678         unsigned CurIdx = 5;
5679         for (unsigned i = 0; i != NumCases; ++i) {
5680           SmallVector<ConstantInt*, 1> CaseVals;
5681           unsigned NumItems = Record[CurIdx++];
5682           for (unsigned ci = 0; ci != NumItems; ++ci) {
5683             bool isSingleNumber = Record[CurIdx++];
5684 
5685             APInt Low;
5686             unsigned ActiveWords = 1;
5687             if (ValueBitWidth > 64)
5688               ActiveWords = Record[CurIdx++];
5689             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5690                                 ValueBitWidth);
5691             CurIdx += ActiveWords;
5692 
5693             if (!isSingleNumber) {
5694               ActiveWords = 1;
5695               if (ValueBitWidth > 64)
5696                 ActiveWords = Record[CurIdx++];
5697               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5698                                          ValueBitWidth);
5699               CurIdx += ActiveWords;
5700 
5701               // FIXME: It is not clear whether values in the range should be
5702               // compared as signed or unsigned values. The partially
5703               // implemented changes that used this format in the past used
5704               // unsigned comparisons.
5705               for ( ; Low.ule(High); ++Low)
5706                 CaseVals.push_back(ConstantInt::get(Context, Low));
5707             } else
5708               CaseVals.push_back(ConstantInt::get(Context, Low));
5709           }
5710           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5711           for (ConstantInt *Cst : CaseVals)
5712             SI->addCase(Cst, DestBB);
5713         }
5714         I = SI;
5715         break;
5716       }
5717 
5718       // Old SwitchInst format without case ranges.
5719 
5720       if (Record.size() < 3 || (Record.size() & 1) == 0)
5721         return error("Invalid record");
5722       unsigned OpTyID = Record[0];
5723       Type *OpTy = getTypeByID(OpTyID);
5724       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5725       BasicBlock *Default = getBasicBlock(Record[2]);
5726       if (!OpTy || !Cond || !Default)
5727         return error("Invalid record");
5728       unsigned NumCases = (Record.size()-3)/2;
5729       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5730       InstructionList.push_back(SI);
5731       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5732         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5733             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5734         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5735         if (!CaseVal || !DestBB) {
5736           delete SI;
5737           return error("Invalid record");
5738         }
5739         SI->addCase(CaseVal, DestBB);
5740       }
5741       I = SI;
5742       break;
5743     }
5744     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5745       if (Record.size() < 2)
5746         return error("Invalid record");
5747       unsigned OpTyID = Record[0];
5748       Type *OpTy = getTypeByID(OpTyID);
5749       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5750       if (!OpTy || !Address)
5751         return error("Invalid record");
5752       unsigned NumDests = Record.size()-2;
5753       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5754       InstructionList.push_back(IBI);
5755       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5756         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5757           IBI->addDestination(DestBB);
5758         } else {
5759           delete IBI;
5760           return error("Invalid record");
5761         }
5762       }
5763       I = IBI;
5764       break;
5765     }
5766 
5767     case bitc::FUNC_CODE_INST_INVOKE: {
5768       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5769       if (Record.size() < 4)
5770         return error("Invalid record");
5771       unsigned OpNum = 0;
5772       AttributeList PAL = getAttributes(Record[OpNum++]);
5773       unsigned CCInfo = Record[OpNum++];
5774       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5775       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5776 
5777       unsigned FTyID = InvalidTypeID;
5778       FunctionType *FTy = nullptr;
5779       if ((CCInfo >> 13) & 1) {
5780         FTyID = Record[OpNum++];
5781         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5782         if (!FTy)
5783           return error("Explicit invoke type is not a function type");
5784       }
5785 
5786       Value *Callee;
5787       unsigned CalleeTypeID;
5788       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5789                            CurBB))
5790         return error("Invalid record");
5791 
5792       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5793       if (!CalleeTy)
5794         return error("Callee is not a pointer");
5795       if (!FTy) {
5796         FTyID = getContainedTypeID(CalleeTypeID);
5797         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5798         if (!FTy)
5799           return error("Callee is not of pointer to function type");
5800       }
5801       if (Record.size() < FTy->getNumParams() + OpNum)
5802         return error("Insufficient operands to call");
5803 
5804       SmallVector<Value*, 16> Ops;
5805       SmallVector<unsigned, 16> ArgTyIDs;
5806       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5807         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5808         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5809                                ArgTyID, CurBB));
5810         ArgTyIDs.push_back(ArgTyID);
5811         if (!Ops.back())
5812           return error("Invalid record");
5813       }
5814 
5815       if (!FTy->isVarArg()) {
5816         if (Record.size() != OpNum)
5817           return error("Invalid record");
5818       } else {
5819         // Read type/value pairs for varargs params.
5820         while (OpNum != Record.size()) {
5821           Value *Op;
5822           unsigned OpTypeID;
5823           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5824             return error("Invalid record");
5825           Ops.push_back(Op);
5826           ArgTyIDs.push_back(OpTypeID);
5827         }
5828       }
5829 
5830       // Upgrade the bundles if needed.
5831       if (!OperandBundles.empty())
5832         UpgradeOperandBundles(OperandBundles);
5833 
5834       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5835                              OperandBundles);
5836       ResTypeID = getContainedTypeID(FTyID);
5837       OperandBundles.clear();
5838       InstructionList.push_back(I);
5839       cast<InvokeInst>(I)->setCallingConv(
5840           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5841       cast<InvokeInst>(I)->setAttributes(PAL);
5842       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5843         I->deleteValue();
5844         return Err;
5845       }
5846 
5847       break;
5848     }
5849     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5850       unsigned Idx = 0;
5851       Value *Val = nullptr;
5852       unsigned ValTypeID;
5853       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5854         return error("Invalid record");
5855       I = ResumeInst::Create(Val);
5856       InstructionList.push_back(I);
5857       break;
5858     }
5859     case bitc::FUNC_CODE_INST_CALLBR: {
5860       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5861       unsigned OpNum = 0;
5862       AttributeList PAL = getAttributes(Record[OpNum++]);
5863       unsigned CCInfo = Record[OpNum++];
5864 
5865       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5866       unsigned NumIndirectDests = Record[OpNum++];
5867       SmallVector<BasicBlock *, 16> IndirectDests;
5868       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5869         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5870 
5871       unsigned FTyID = InvalidTypeID;
5872       FunctionType *FTy = nullptr;
5873       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5874         FTyID = Record[OpNum++];
5875         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5876         if (!FTy)
5877           return error("Explicit call type is not a function type");
5878       }
5879 
5880       Value *Callee;
5881       unsigned CalleeTypeID;
5882       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5883                            CurBB))
5884         return error("Invalid record");
5885 
5886       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5887       if (!OpTy)
5888         return error("Callee is not a pointer type");
5889       if (!FTy) {
5890         FTyID = getContainedTypeID(CalleeTypeID);
5891         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5892         if (!FTy)
5893           return error("Callee is not of pointer to function type");
5894       }
5895       if (Record.size() < FTy->getNumParams() + OpNum)
5896         return error("Insufficient operands to call");
5897 
5898       SmallVector<Value*, 16> Args;
5899       SmallVector<unsigned, 16> ArgTyIDs;
5900       // Read the fixed params.
5901       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5902         Value *Arg;
5903         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5904         if (FTy->getParamType(i)->isLabelTy())
5905           Arg = getBasicBlock(Record[OpNum]);
5906         else
5907           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5908                          ArgTyID, CurBB);
5909         if (!Arg)
5910           return error("Invalid record");
5911         Args.push_back(Arg);
5912         ArgTyIDs.push_back(ArgTyID);
5913       }
5914 
5915       // Read type/value pairs for varargs params.
5916       if (!FTy->isVarArg()) {
5917         if (OpNum != Record.size())
5918           return error("Invalid record");
5919       } else {
5920         while (OpNum != Record.size()) {
5921           Value *Op;
5922           unsigned OpTypeID;
5923           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5924             return error("Invalid record");
5925           Args.push_back(Op);
5926           ArgTyIDs.push_back(OpTypeID);
5927         }
5928       }
5929 
5930       // Upgrade the bundles if needed.
5931       if (!OperandBundles.empty())
5932         UpgradeOperandBundles(OperandBundles);
5933 
5934       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5935         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5936         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5937           return CI.Type == InlineAsm::isLabel;
5938         };
5939         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5940           // Upgrade explicit blockaddress arguments to label constraints.
5941           // Verify that the last arguments are blockaddress arguments that
5942           // match the indirect destinations. Clang always generates callbr
5943           // in this form. We could support reordering with more effort.
5944           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5945           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5946             unsigned LabelNo = ArgNo - FirstBlockArg;
5947             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5948             if (!BA || BA->getFunction() != F ||
5949                 LabelNo > IndirectDests.size() ||
5950                 BA->getBasicBlock() != IndirectDests[LabelNo])
5951               return error("callbr argument does not match indirect dest");
5952           }
5953 
5954           // Remove blockaddress arguments.
5955           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5956           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5957 
5958           // Recreate the function type with less arguments.
5959           SmallVector<Type *> ArgTys;
5960           for (Value *Arg : Args)
5961             ArgTys.push_back(Arg->getType());
5962           FTy =
5963               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5964 
5965           // Update constraint string to use label constraints.
5966           std::string Constraints = IA->getConstraintString();
5967           unsigned ArgNo = 0;
5968           size_t Pos = 0;
5969           for (const auto &CI : ConstraintInfo) {
5970             if (CI.hasArg()) {
5971               if (ArgNo >= FirstBlockArg)
5972                 Constraints.insert(Pos, "!");
5973               ++ArgNo;
5974             }
5975 
5976             // Go to next constraint in string.
5977             Pos = Constraints.find(',', Pos);
5978             if (Pos == std::string::npos)
5979               break;
5980             ++Pos;
5981           }
5982 
5983           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5984                                   IA->hasSideEffects(), IA->isAlignStack(),
5985                                   IA->getDialect(), IA->canThrow());
5986         }
5987       }
5988 
5989       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5990                              OperandBundles);
5991       ResTypeID = getContainedTypeID(FTyID);
5992       OperandBundles.clear();
5993       InstructionList.push_back(I);
5994       cast<CallBrInst>(I)->setCallingConv(
5995           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5996       cast<CallBrInst>(I)->setAttributes(PAL);
5997       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5998         I->deleteValue();
5999         return Err;
6000       }
6001       break;
6002     }
6003     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
6004       I = new UnreachableInst(Context);
6005       InstructionList.push_back(I);
6006       break;
6007     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
6008       if (Record.empty())
6009         return error("Invalid phi record");
6010       // The first record specifies the type.
6011       unsigned TyID = Record[0];
6012       Type *Ty = getTypeByID(TyID);
6013       if (!Ty)
6014         return error("Invalid phi record");
6015 
6016       // Phi arguments are pairs of records of [value, basic block].
6017       // There is an optional final record for fast-math-flags if this phi has a
6018       // floating-point type.
6019       size_t NumArgs = (Record.size() - 1) / 2;
6020       PHINode *PN = PHINode::Create(Ty, NumArgs);
6021       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
6022         PN->deleteValue();
6023         return error("Invalid phi record");
6024       }
6025       InstructionList.push_back(PN);
6026 
6027       SmallDenseMap<BasicBlock *, Value *> Args;
6028       for (unsigned i = 0; i != NumArgs; i++) {
6029         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6030         if (!BB) {
6031           PN->deleteValue();
6032           return error("Invalid phi BB");
6033         }
6034 
6035         // Phi nodes may contain the same predecessor multiple times, in which
6036         // case the incoming value must be identical. Directly reuse the already
6037         // seen value here, to avoid expanding a constant expression multiple
6038         // times.
6039         auto It = Args.find(BB);
6040         if (It != Args.end()) {
6041           PN->addIncoming(It->second, BB);
6042           continue;
6043         }
6044 
6045         // If there already is a block for this edge (from a different phi),
6046         // use it.
6047         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6048         if (!EdgeBB) {
6049           // Otherwise, use a temporary block (that we will discard if it
6050           // turns out to be unnecessary).
6051           if (!PhiConstExprBB)
6052             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6053           EdgeBB = PhiConstExprBB;
6054         }
6055 
6056         // With the new function encoding, it is possible that operands have
6057         // negative IDs (for forward references).  Use a signed VBR
6058         // representation to keep the encoding small.
6059         Value *V;
6060         if (UseRelativeIDs)
6061           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6062         else
6063           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6064         if (!V) {
6065           PN->deleteValue();
6066           PhiConstExprBB->eraseFromParent();
6067           return error("Invalid phi record");
6068         }
6069 
6070         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6071           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6072           PhiConstExprBB = nullptr;
6073         }
6074         PN->addIncoming(V, BB);
6075         Args.insert({BB, V});
6076       }
6077       I = PN;
6078       ResTypeID = TyID;
6079 
6080       // If there are an even number of records, the final record must be FMF.
6081       if (Record.size() % 2 == 0) {
6082         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6083         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6084         if (FMF.any())
6085           I->setFastMathFlags(FMF);
6086       }
6087 
6088       break;
6089     }
6090 
6091     case bitc::FUNC_CODE_INST_LANDINGPAD:
6092     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6093       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6094       unsigned Idx = 0;
6095       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6096         if (Record.size() < 3)
6097           return error("Invalid record");
6098       } else {
6099         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6100         if (Record.size() < 4)
6101           return error("Invalid record");
6102       }
6103       ResTypeID = Record[Idx++];
6104       Type *Ty = getTypeByID(ResTypeID);
6105       if (!Ty)
6106         return error("Invalid record");
6107       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6108         Value *PersFn = nullptr;
6109         unsigned PersFnTypeID;
6110         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6111                              nullptr))
6112           return error("Invalid record");
6113 
6114         if (!F->hasPersonalityFn())
6115           F->setPersonalityFn(cast<Constant>(PersFn));
6116         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6117           return error("Personality function mismatch");
6118       }
6119 
6120       bool IsCleanup = !!Record[Idx++];
6121       unsigned NumClauses = Record[Idx++];
6122       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6123       LP->setCleanup(IsCleanup);
6124       for (unsigned J = 0; J != NumClauses; ++J) {
6125         LandingPadInst::ClauseType CT =
6126           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6127         Value *Val;
6128         unsigned ValTypeID;
6129 
6130         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6131                              nullptr)) {
6132           delete LP;
6133           return error("Invalid record");
6134         }
6135 
6136         assert((CT != LandingPadInst::Catch ||
6137                 !isa<ArrayType>(Val->getType())) &&
6138                "Catch clause has a invalid type!");
6139         assert((CT != LandingPadInst::Filter ||
6140                 isa<ArrayType>(Val->getType())) &&
6141                "Filter clause has invalid type!");
6142         LP->addClause(cast<Constant>(Val));
6143       }
6144 
6145       I = LP;
6146       InstructionList.push_back(I);
6147       break;
6148     }
6149 
6150     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6151       if (Record.size() != 4 && Record.size() != 5)
6152         return error("Invalid record");
6153       using APV = AllocaPackedValues;
6154       const uint64_t Rec = Record[3];
6155       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6156       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6157       unsigned TyID = Record[0];
6158       Type *Ty = getTypeByID(TyID);
6159       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6160         TyID = getContainedTypeID(TyID);
6161         Ty = getTypeByID(TyID);
6162         if (!Ty)
6163           return error("Missing element type for old-style alloca");
6164       }
6165       unsigned OpTyID = Record[1];
6166       Type *OpTy = getTypeByID(OpTyID);
6167       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6168       MaybeAlign Align;
6169       uint64_t AlignExp =
6170           Bitfield::get<APV::AlignLower>(Rec) |
6171           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6172       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6173         return Err;
6174       }
6175       if (!Ty || !Size)
6176         return error("Invalid record");
6177 
6178       const DataLayout &DL = TheModule->getDataLayout();
6179       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6180 
6181       SmallPtrSet<Type *, 4> Visited;
6182       if (!Align && !Ty->isSized(&Visited))
6183         return error("alloca of unsized type");
6184       if (!Align)
6185         Align = DL.getPrefTypeAlign(Ty);
6186 
6187       if (!Size->getType()->isIntegerTy())
6188         return error("alloca element count must have integer type");
6189 
6190       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6191       AI->setUsedWithInAlloca(InAlloca);
6192       AI->setSwiftError(SwiftError);
6193       I = AI;
6194       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6195       InstructionList.push_back(I);
6196       break;
6197     }
6198     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6199       unsigned OpNum = 0;
6200       Value *Op;
6201       unsigned OpTypeID;
6202       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6203           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6204         return error("Invalid record");
6205 
6206       if (!isa<PointerType>(Op->getType()))
6207         return error("Load operand is not a pointer type");
6208 
6209       Type *Ty = nullptr;
6210       if (OpNum + 3 == Record.size()) {
6211         ResTypeID = Record[OpNum++];
6212         Ty = getTypeByID(ResTypeID);
6213       } else {
6214         ResTypeID = getContainedTypeID(OpTypeID);
6215         Ty = getTypeByID(ResTypeID);
6216       }
6217 
6218       if (!Ty)
6219         return error("Missing load type");
6220 
6221       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6222         return Err;
6223 
6224       MaybeAlign Align;
6225       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6226         return Err;
6227       SmallPtrSet<Type *, 4> Visited;
6228       if (!Align && !Ty->isSized(&Visited))
6229         return error("load of unsized type");
6230       if (!Align)
6231         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6232       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6233       InstructionList.push_back(I);
6234       break;
6235     }
6236     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6237        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6238       unsigned OpNum = 0;
6239       Value *Op;
6240       unsigned OpTypeID;
6241       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6242           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6243         return error("Invalid record");
6244 
6245       if (!isa<PointerType>(Op->getType()))
6246         return error("Load operand is not a pointer type");
6247 
6248       Type *Ty = nullptr;
6249       if (OpNum + 5 == Record.size()) {
6250         ResTypeID = Record[OpNum++];
6251         Ty = getTypeByID(ResTypeID);
6252       } else {
6253         ResTypeID = getContainedTypeID(OpTypeID);
6254         Ty = getTypeByID(ResTypeID);
6255       }
6256 
6257       if (!Ty)
6258         return error("Missing atomic load type");
6259 
6260       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6261         return Err;
6262 
6263       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6264       if (Ordering == AtomicOrdering::NotAtomic ||
6265           Ordering == AtomicOrdering::Release ||
6266           Ordering == AtomicOrdering::AcquireRelease)
6267         return error("Invalid record");
6268       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6269         return error("Invalid record");
6270       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6271 
6272       MaybeAlign Align;
6273       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6274         return Err;
6275       if (!Align)
6276         return error("Alignment missing from atomic load");
6277       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6278       InstructionList.push_back(I);
6279       break;
6280     }
6281     case bitc::FUNC_CODE_INST_STORE:
6282     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6283       unsigned OpNum = 0;
6284       Value *Val, *Ptr;
6285       unsigned PtrTypeID, ValTypeID;
6286       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6287         return error("Invalid record");
6288 
6289       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6290         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6291           return error("Invalid record");
6292       } else {
6293         ValTypeID = getContainedTypeID(PtrTypeID);
6294         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6295                      ValTypeID, Val, CurBB))
6296           return error("Invalid record");
6297       }
6298 
6299       if (OpNum + 2 != Record.size())
6300         return error("Invalid record");
6301 
6302       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6303         return Err;
6304       MaybeAlign Align;
6305       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6306         return Err;
6307       SmallPtrSet<Type *, 4> Visited;
6308       if (!Align && !Val->getType()->isSized(&Visited))
6309         return error("store of unsized type");
6310       if (!Align)
6311         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6312       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6313       InstructionList.push_back(I);
6314       break;
6315     }
6316     case bitc::FUNC_CODE_INST_STOREATOMIC:
6317     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6318       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6319       unsigned OpNum = 0;
6320       Value *Val, *Ptr;
6321       unsigned PtrTypeID, ValTypeID;
6322       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6323           !isa<PointerType>(Ptr->getType()))
6324         return error("Invalid record");
6325       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6326         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6327           return error("Invalid record");
6328       } else {
6329         ValTypeID = getContainedTypeID(PtrTypeID);
6330         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6331                      ValTypeID, Val, CurBB))
6332           return error("Invalid record");
6333       }
6334 
6335       if (OpNum + 4 != Record.size())
6336         return error("Invalid record");
6337 
6338       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6339         return Err;
6340       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6341       if (Ordering == AtomicOrdering::NotAtomic ||
6342           Ordering == AtomicOrdering::Acquire ||
6343           Ordering == AtomicOrdering::AcquireRelease)
6344         return error("Invalid record");
6345       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6346       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6347         return error("Invalid record");
6348 
6349       MaybeAlign Align;
6350       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6351         return Err;
6352       if (!Align)
6353         return error("Alignment missing from atomic store");
6354       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6355       InstructionList.push_back(I);
6356       break;
6357     }
6358     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6359       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6360       // failure_ordering?, weak?]
6361       const size_t NumRecords = Record.size();
6362       unsigned OpNum = 0;
6363       Value *Ptr = nullptr;
6364       unsigned PtrTypeID;
6365       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6366         return error("Invalid record");
6367 
6368       if (!isa<PointerType>(Ptr->getType()))
6369         return error("Cmpxchg operand is not a pointer type");
6370 
6371       Value *Cmp = nullptr;
6372       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6373       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6374                    CmpTypeID, Cmp, CurBB))
6375         return error("Invalid record");
6376 
6377       Value *New = nullptr;
6378       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6379                    New, CurBB) ||
6380           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6381         return error("Invalid record");
6382 
6383       const AtomicOrdering SuccessOrdering =
6384           getDecodedOrdering(Record[OpNum + 1]);
6385       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6386           SuccessOrdering == AtomicOrdering::Unordered)
6387         return error("Invalid record");
6388 
6389       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6390 
6391       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6392         return Err;
6393 
6394       const AtomicOrdering FailureOrdering =
6395           NumRecords < 7
6396               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6397               : getDecodedOrdering(Record[OpNum + 3]);
6398 
6399       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6400           FailureOrdering == AtomicOrdering::Unordered)
6401         return error("Invalid record");
6402 
6403       const Align Alignment(
6404           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6405 
6406       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6407                                 FailureOrdering, SSID);
6408       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6409 
6410       if (NumRecords < 8) {
6411         // Before weak cmpxchgs existed, the instruction simply returned the
6412         // value loaded from memory, so bitcode files from that era will be
6413         // expecting the first component of a modern cmpxchg.
6414         I->insertInto(CurBB, CurBB->end());
6415         I = ExtractValueInst::Create(I, 0);
6416         ResTypeID = CmpTypeID;
6417       } else {
6418         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6419         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6420         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6421       }
6422 
6423       InstructionList.push_back(I);
6424       break;
6425     }
6426     case bitc::FUNC_CODE_INST_CMPXCHG: {
6427       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6428       // failure_ordering, weak, align?]
6429       const size_t NumRecords = Record.size();
6430       unsigned OpNum = 0;
6431       Value *Ptr = nullptr;
6432       unsigned PtrTypeID;
6433       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6434         return error("Invalid record");
6435 
6436       if (!isa<PointerType>(Ptr->getType()))
6437         return error("Cmpxchg operand is not a pointer type");
6438 
6439       Value *Cmp = nullptr;
6440       unsigned CmpTypeID;
6441       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6442         return error("Invalid record");
6443 
6444       Value *Val = nullptr;
6445       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6446                    CurBB))
6447         return error("Invalid record");
6448 
6449       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6450         return error("Invalid record");
6451 
6452       const bool IsVol = Record[OpNum];
6453 
6454       const AtomicOrdering SuccessOrdering =
6455           getDecodedOrdering(Record[OpNum + 1]);
6456       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6457         return error("Invalid cmpxchg success ordering");
6458 
6459       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6460 
6461       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6462         return Err;
6463 
6464       const AtomicOrdering FailureOrdering =
6465           getDecodedOrdering(Record[OpNum + 3]);
6466       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6467         return error("Invalid cmpxchg failure ordering");
6468 
6469       const bool IsWeak = Record[OpNum + 4];
6470 
6471       MaybeAlign Alignment;
6472 
6473       if (NumRecords == (OpNum + 6)) {
6474         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6475           return Err;
6476       }
6477       if (!Alignment)
6478         Alignment =
6479             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6480 
6481       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6482                                 FailureOrdering, SSID);
6483       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6484       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6485 
6486       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6487       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6488 
6489       InstructionList.push_back(I);
6490       break;
6491     }
6492     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6493     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6494       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6495       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6496       const size_t NumRecords = Record.size();
6497       unsigned OpNum = 0;
6498 
6499       Value *Ptr = nullptr;
6500       unsigned PtrTypeID;
6501       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6502         return error("Invalid record");
6503 
6504       if (!isa<PointerType>(Ptr->getType()))
6505         return error("Invalid record");
6506 
6507       Value *Val = nullptr;
6508       unsigned ValTypeID = InvalidTypeID;
6509       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6510         ValTypeID = getContainedTypeID(PtrTypeID);
6511         if (popValue(Record, OpNum, NextValueNo,
6512                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6513           return error("Invalid record");
6514       } else {
6515         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6516           return error("Invalid record");
6517       }
6518 
6519       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6520         return error("Invalid record");
6521 
6522       const AtomicRMWInst::BinOp Operation =
6523           getDecodedRMWOperation(Record[OpNum]);
6524       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6525           Operation > AtomicRMWInst::LAST_BINOP)
6526         return error("Invalid record");
6527 
6528       const bool IsVol = Record[OpNum + 1];
6529 
6530       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6531       if (Ordering == AtomicOrdering::NotAtomic ||
6532           Ordering == AtomicOrdering::Unordered)
6533         return error("Invalid record");
6534 
6535       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6536 
6537       MaybeAlign Alignment;
6538 
6539       if (NumRecords == (OpNum + 5)) {
6540         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6541           return Err;
6542       }
6543 
6544       if (!Alignment)
6545         Alignment =
6546             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6547 
6548       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6549       ResTypeID = ValTypeID;
6550       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6551 
6552       InstructionList.push_back(I);
6553       break;
6554     }
6555     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6556       if (2 != Record.size())
6557         return error("Invalid record");
6558       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6559       if (Ordering == AtomicOrdering::NotAtomic ||
6560           Ordering == AtomicOrdering::Unordered ||
6561           Ordering == AtomicOrdering::Monotonic)
6562         return error("Invalid record");
6563       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6564       I = new FenceInst(Context, Ordering, SSID);
6565       InstructionList.push_back(I);
6566       break;
6567     }
6568     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6569       // DbgLabelRecords are placed after the Instructions that they are
6570       // attached to.
6571       SeenDebugRecord = true;
6572       Instruction *Inst = getLastInstruction();
6573       if (!Inst)
6574         return error("Invalid dbg record: missing instruction");
6575       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6576       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6577       Inst->getParent()->insertDbgRecordBefore(
6578           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6579       continue; // This isn't an instruction.
6580     }
6581     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6582     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6583     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6584     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6585       // DbgVariableRecords are placed after the Instructions that they are
6586       // attached to.
6587       SeenDebugRecord = true;
6588       Instruction *Inst = getLastInstruction();
6589       if (!Inst)
6590         return error("Invalid dbg record: missing instruction");
6591 
6592       // First 3 fields are common to all kinds:
6593       //   DILocation, DILocalVariable, DIExpression
6594       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6595       //   ..., LocationMetadata
6596       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6597       //   ..., Value
6598       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6599       //   ..., LocationMetadata
6600       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6601       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6602       unsigned Slot = 0;
6603       // Common fields (0-2).
6604       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6605       DILocalVariable *Var =
6606           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6607       DIExpression *Expr =
6608           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6609 
6610       // Union field (3: LocationMetadata | Value).
6611       Metadata *RawLocation = nullptr;
6612       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6613         Value *V = nullptr;
6614         unsigned TyID = 0;
6615         // We never expect to see a fwd reference value here because
6616         // use-before-defs are encoded with the standard non-abbrev record
6617         // type (they'd require encoding the type too, and they're rare). As a
6618         // result, getValueTypePair only ever increments Slot by one here (once
6619         // for the value, never twice for value and type).
6620         unsigned SlotBefore = Slot;
6621         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6622           return error("Invalid dbg record: invalid value");
6623         (void)SlotBefore;
6624         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6625         RawLocation = ValueAsMetadata::get(V);
6626       } else {
6627         RawLocation = getFnMetadataByID(Record[Slot++]);
6628       }
6629 
6630       DbgVariableRecord *DVR = nullptr;
6631       switch (BitCode) {
6632       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6633       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6634         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6635                                     DbgVariableRecord::LocationType::Value);
6636         break;
6637       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6638         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6639                                     DbgVariableRecord::LocationType::Declare);
6640         break;
6641       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6642         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6643         DIExpression *AddrExpr =
6644             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6645         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6646         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6647                                     DIL);
6648         break;
6649       }
6650       default:
6651         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6652       }
6653       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6654       continue; // This isn't an instruction.
6655     }
6656     case bitc::FUNC_CODE_INST_CALL: {
6657       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6658       if (Record.size() < 3)
6659         return error("Invalid record");
6660 
6661       unsigned OpNum = 0;
6662       AttributeList PAL = getAttributes(Record[OpNum++]);
6663       unsigned CCInfo = Record[OpNum++];
6664 
6665       FastMathFlags FMF;
6666       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6667         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6668         if (!FMF.any())
6669           return error("Fast math flags indicator set for call with no FMF");
6670       }
6671 
6672       unsigned FTyID = InvalidTypeID;
6673       FunctionType *FTy = nullptr;
6674       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6675         FTyID = Record[OpNum++];
6676         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6677         if (!FTy)
6678           return error("Explicit call type is not a function type");
6679       }
6680 
6681       Value *Callee;
6682       unsigned CalleeTypeID;
6683       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6684                            CurBB))
6685         return error("Invalid record");
6686 
6687       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6688       if (!OpTy)
6689         return error("Callee is not a pointer type");
6690       if (!FTy) {
6691         FTyID = getContainedTypeID(CalleeTypeID);
6692         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6693         if (!FTy)
6694           return error("Callee is not of pointer to function type");
6695       }
6696       if (Record.size() < FTy->getNumParams() + OpNum)
6697         return error("Insufficient operands to call");
6698 
6699       SmallVector<Value*, 16> Args;
6700       SmallVector<unsigned, 16> ArgTyIDs;
6701       // Read the fixed params.
6702       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6703         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6704         if (FTy->getParamType(i)->isLabelTy())
6705           Args.push_back(getBasicBlock(Record[OpNum]));
6706         else
6707           Args.push_back(getValue(Record, OpNum, NextValueNo,
6708                                   FTy->getParamType(i), ArgTyID, CurBB));
6709         ArgTyIDs.push_back(ArgTyID);
6710         if (!Args.back())
6711           return error("Invalid record");
6712       }
6713 
6714       // Read type/value pairs for varargs params.
6715       if (!FTy->isVarArg()) {
6716         if (OpNum != Record.size())
6717           return error("Invalid record");
6718       } else {
6719         while (OpNum != Record.size()) {
6720           Value *Op;
6721           unsigned OpTypeID;
6722           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6723             return error("Invalid record");
6724           Args.push_back(Op);
6725           ArgTyIDs.push_back(OpTypeID);
6726         }
6727       }
6728 
6729       // Upgrade the bundles if needed.
6730       if (!OperandBundles.empty())
6731         UpgradeOperandBundles(OperandBundles);
6732 
6733       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6734       ResTypeID = getContainedTypeID(FTyID);
6735       OperandBundles.clear();
6736       InstructionList.push_back(I);
6737       cast<CallInst>(I)->setCallingConv(
6738           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6739       CallInst::TailCallKind TCK = CallInst::TCK_None;
6740       if (CCInfo & (1 << bitc::CALL_TAIL))
6741         TCK = CallInst::TCK_Tail;
6742       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6743         TCK = CallInst::TCK_MustTail;
6744       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6745         TCK = CallInst::TCK_NoTail;
6746       cast<CallInst>(I)->setTailCallKind(TCK);
6747       cast<CallInst>(I)->setAttributes(PAL);
6748       if (isa<DbgInfoIntrinsic>(I))
6749         SeenDebugIntrinsic = true;
6750       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6751         I->deleteValue();
6752         return Err;
6753       }
6754       if (FMF.any()) {
6755         if (!isa<FPMathOperator>(I))
6756           return error("Fast-math-flags specified for call without "
6757                        "floating-point scalar or vector return type");
6758         I->setFastMathFlags(FMF);
6759       }
6760       break;
6761     }
6762     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6763       if (Record.size() < 3)
6764         return error("Invalid record");
6765       unsigned OpTyID = Record[0];
6766       Type *OpTy = getTypeByID(OpTyID);
6767       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6768       ResTypeID = Record[2];
6769       Type *ResTy = getTypeByID(ResTypeID);
6770       if (!OpTy || !Op || !ResTy)
6771         return error("Invalid record");
6772       I = new VAArgInst(Op, ResTy);
6773       InstructionList.push_back(I);
6774       break;
6775     }
6776 
6777     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6778       // A call or an invoke can be optionally prefixed with some variable
6779       // number of operand bundle blocks.  These blocks are read into
6780       // OperandBundles and consumed at the next call or invoke instruction.
6781 
6782       if (Record.empty() || Record[0] >= BundleTags.size())
6783         return error("Invalid record");
6784 
6785       std::vector<Value *> Inputs;
6786 
6787       unsigned OpNum = 1;
6788       while (OpNum != Record.size()) {
6789         Value *Op;
6790         if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB))
6791           return error("Invalid record");
6792         Inputs.push_back(Op);
6793       }
6794 
6795       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6796       continue;
6797     }
6798 
6799     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6800       unsigned OpNum = 0;
6801       Value *Op = nullptr;
6802       unsigned OpTypeID;
6803       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6804         return error("Invalid record");
6805       if (OpNum != Record.size())
6806         return error("Invalid record");
6807 
6808       I = new FreezeInst(Op);
6809       ResTypeID = OpTypeID;
6810       InstructionList.push_back(I);
6811       break;
6812     }
6813     }
6814 
6815     // Add instruction to end of current BB.  If there is no current BB, reject
6816     // this file.
6817     if (!CurBB) {
6818       I->deleteValue();
6819       return error("Invalid instruction with no BB");
6820     }
6821     if (!OperandBundles.empty()) {
6822       I->deleteValue();
6823       return error("Operand bundles found with no consumer");
6824     }
6825     I->insertInto(CurBB, CurBB->end());
6826 
6827     // If this was a terminator instruction, move to the next block.
6828     if (I->isTerminator()) {
6829       ++CurBBNo;
6830       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6831     }
6832 
6833     // Non-void values get registered in the value table for future use.
6834     if (!I->getType()->isVoidTy()) {
6835       assert(I->getType() == getTypeByID(ResTypeID) &&
6836              "Incorrect result type ID");
6837       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6838         return Err;
6839     }
6840   }
6841 
6842 OutOfRecordLoop:
6843 
6844   if (!OperandBundles.empty())
6845     return error("Operand bundles found with no consumer");
6846 
6847   // Check the function list for unresolved values.
6848   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6849     if (!A->getParent()) {
6850       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6851       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6852         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6853           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6854           delete A;
6855         }
6856       }
6857       return error("Never resolved value found in function");
6858     }
6859   }
6860 
6861   // Unexpected unresolved metadata about to be dropped.
6862   if (MDLoader->hasFwdRefs())
6863     return error("Invalid function metadata: outgoing forward refs");
6864 
6865   if (PhiConstExprBB)
6866     PhiConstExprBB->eraseFromParent();
6867 
6868   for (const auto &Pair : ConstExprEdgeBBs) {
6869     BasicBlock *From = Pair.first.first;
6870     BasicBlock *To = Pair.first.second;
6871     BasicBlock *EdgeBB = Pair.second;
6872     BranchInst::Create(To, EdgeBB);
6873     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6874     To->replacePhiUsesWith(From, EdgeBB);
6875     EdgeBB->moveBefore(To);
6876   }
6877 
6878   // Trim the value list down to the size it was before we parsed this function.
6879   ValueList.shrinkTo(ModuleValueListSize);
6880   MDLoader->shrinkTo(ModuleMDLoaderSize);
6881   std::vector<BasicBlock*>().swap(FunctionBBs);
6882   return Error::success();
6883 }
6884 
6885 /// Find the function body in the bitcode stream
6886 Error BitcodeReader::findFunctionInStream(
6887     Function *F,
6888     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6889   while (DeferredFunctionInfoIterator->second == 0) {
6890     // This is the fallback handling for the old format bitcode that
6891     // didn't contain the function index in the VST, or when we have
6892     // an anonymous function which would not have a VST entry.
6893     // Assert that we have one of those two cases.
6894     assert(VSTOffset == 0 || !F->hasName());
6895     // Parse the next body in the stream and set its position in the
6896     // DeferredFunctionInfo map.
6897     if (Error Err = rememberAndSkipFunctionBodies())
6898       return Err;
6899   }
6900   return Error::success();
6901 }
6902 
6903 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6904   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6905     return SyncScope::ID(Val);
6906   if (Val >= SSIDs.size())
6907     return SyncScope::System; // Map unknown synchronization scopes to system.
6908   return SSIDs[Val];
6909 }
6910 
6911 //===----------------------------------------------------------------------===//
6912 // GVMaterializer implementation
6913 //===----------------------------------------------------------------------===//
6914 
6915 Error BitcodeReader::materialize(GlobalValue *GV) {
6916   Function *F = dyn_cast<Function>(GV);
6917   // If it's not a function or is already material, ignore the request.
6918   if (!F || !F->isMaterializable())
6919     return Error::success();
6920 
6921   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6922   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6923   // If its position is recorded as 0, its body is somewhere in the stream
6924   // but we haven't seen it yet.
6925   if (DFII->second == 0)
6926     if (Error Err = findFunctionInStream(F, DFII))
6927       return Err;
6928 
6929   // Materialize metadata before parsing any function bodies.
6930   if (Error Err = materializeMetadata())
6931     return Err;
6932 
6933   // Move the bit stream to the saved position of the deferred function body.
6934   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6935     return JumpFailed;
6936 
6937   // Regardless of the debug info format we want to end up in, we need
6938   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6939   F->IsNewDbgInfoFormat = true;
6940 
6941   if (Error Err = parseFunctionBody(F))
6942     return Err;
6943   F->setIsMaterializable(false);
6944 
6945   // All parsed Functions should load into the debug info format dictated by the
6946   // Module, unless we're attempting to preserve the input debug info format.
6947   if (SeenDebugIntrinsic && SeenDebugRecord)
6948     return error("Mixed debug intrinsics and debug records in bitcode module!");
6949   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6950     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6951     bool NewDbgInfoFormatDesired =
6952         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6953     if (SeenAnyDebugInfo) {
6954       UseNewDbgInfoFormat = SeenDebugRecord;
6955       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6956       WriteNewDbgInfoFormat = SeenDebugRecord;
6957     }
6958     // If the module's debug info format doesn't match the observed input
6959     // format, then set its format now; we don't need to call the conversion
6960     // function because there must be no existing intrinsics to convert.
6961     // Otherwise, just set the format on this function now.
6962     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6963       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6964     else
6965       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6966   } else {
6967     // If we aren't preserving formats, we use the Module flag to get our
6968     // desired format instead of reading flags, in case we are lazy-loading and
6969     // the format of the module has been changed since it was set by the flags.
6970     // We only need to convert debug info here if we have debug records but
6971     // desire the intrinsic format; everything else is a no-op or handled by the
6972     // autoupgrader.
6973     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6974     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6975       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6976     else
6977       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6978   }
6979 
6980   if (StripDebugInfo)
6981     stripDebugInfo(*F);
6982 
6983   // Upgrade any old intrinsic calls in the function.
6984   for (auto &I : UpgradedIntrinsics) {
6985     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6986       if (CallInst *CI = dyn_cast<CallInst>(U))
6987         UpgradeIntrinsicCall(CI, I.second);
6988   }
6989 
6990   // Finish fn->subprogram upgrade for materialized functions.
6991   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6992     F->setSubprogram(SP);
6993 
6994   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6995   if (!MDLoader->isStrippingTBAA()) {
6996     for (auto &I : instructions(F)) {
6997       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6998       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6999         continue;
7000       MDLoader->setStripTBAA(true);
7001       stripTBAA(F->getParent());
7002     }
7003   }
7004 
7005   for (auto &I : instructions(F)) {
7006     // "Upgrade" older incorrect branch weights by dropping them.
7007     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
7008       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
7009         MDString *MDS = cast<MDString>(MD->getOperand(0));
7010         StringRef ProfName = MDS->getString();
7011         // Check consistency of !prof branch_weights metadata.
7012         if (ProfName != "branch_weights")
7013           continue;
7014         unsigned ExpectedNumOperands = 0;
7015         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
7016           ExpectedNumOperands = BI->getNumSuccessors();
7017         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
7018           ExpectedNumOperands = SI->getNumSuccessors();
7019         else if (isa<CallInst>(&I))
7020           ExpectedNumOperands = 1;
7021         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
7022           ExpectedNumOperands = IBI->getNumDestinations();
7023         else if (isa<SelectInst>(&I))
7024           ExpectedNumOperands = 2;
7025         else
7026           continue; // ignore and continue.
7027 
7028         unsigned Offset = getBranchWeightOffset(MD);
7029 
7030         // If branch weight doesn't match, just strip branch weight.
7031         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7032           I.setMetadata(LLVMContext::MD_prof, nullptr);
7033       }
7034     }
7035 
7036     // Remove incompatible attributes on function calls.
7037     if (auto *CI = dyn_cast<CallBase>(&I)) {
7038       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7039           CI->getFunctionType()->getReturnType()));
7040 
7041       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7042         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7043                                         CI->getArgOperand(ArgNo)->getType()));
7044     }
7045   }
7046 
7047   // Look for functions that rely on old function attribute behavior.
7048   UpgradeFunctionAttributes(*F);
7049 
7050   // Bring in any functions that this function forward-referenced via
7051   // blockaddresses.
7052   return materializeForwardReferencedFunctions();
7053 }
7054 
7055 Error BitcodeReader::materializeModule() {
7056   if (Error Err = materializeMetadata())
7057     return Err;
7058 
7059   // Promise to materialize all forward references.
7060   WillMaterializeAllForwardRefs = true;
7061 
7062   // Iterate over the module, deserializing any functions that are still on
7063   // disk.
7064   for (Function &F : *TheModule) {
7065     if (Error Err = materialize(&F))
7066       return Err;
7067   }
7068   // At this point, if there are any function bodies, parse the rest of
7069   // the bits in the module past the last function block we have recorded
7070   // through either lazy scanning or the VST.
7071   if (LastFunctionBlockBit || NextUnreadBit)
7072     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7073                                     ? LastFunctionBlockBit
7074                                     : NextUnreadBit))
7075       return Err;
7076 
7077   // Check that all block address forward references got resolved (as we
7078   // promised above).
7079   if (!BasicBlockFwdRefs.empty())
7080     return error("Never resolved function from blockaddress");
7081 
7082   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7083   // delete the old functions to clean up. We can't do this unless the entire
7084   // module is materialized because there could always be another function body
7085   // with calls to the old function.
7086   for (auto &I : UpgradedIntrinsics) {
7087     for (auto *U : I.first->users()) {
7088       if (CallInst *CI = dyn_cast<CallInst>(U))
7089         UpgradeIntrinsicCall(CI, I.second);
7090     }
7091     if (!I.first->use_empty())
7092       I.first->replaceAllUsesWith(I.second);
7093     I.first->eraseFromParent();
7094   }
7095   UpgradedIntrinsics.clear();
7096 
7097   UpgradeDebugInfo(*TheModule);
7098 
7099   UpgradeModuleFlags(*TheModule);
7100 
7101   UpgradeARCRuntime(*TheModule);
7102 
7103   return Error::success();
7104 }
7105 
7106 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7107   return IdentifiedStructTypes;
7108 }
7109 
7110 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7111     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7112     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7113     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7114       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7115 
7116 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7117   TheIndex.addModule(ModulePath);
7118 }
7119 
7120 ModuleSummaryIndex::ModuleInfo *
7121 ModuleSummaryIndexBitcodeReader::getThisModule() {
7122   return TheIndex.getModule(ModulePath);
7123 }
7124 
7125 template <bool AllowNullValueInfo>
7126 std::pair<ValueInfo, GlobalValue::GUID>
7127 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7128   auto VGI = ValueIdToValueInfoMap[ValueId];
7129   // We can have a null value info for memprof callsite info records in
7130   // distributed ThinLTO index files when the callee function summary is not
7131   // included in the index. The bitcode writer records 0 in that case,
7132   // and the caller of this helper will set AllowNullValueInfo to true.
7133   assert(AllowNullValueInfo || std::get<0>(VGI));
7134   return VGI;
7135 }
7136 
7137 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7138     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7139     StringRef SourceFileName) {
7140   std::string GlobalId =
7141       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7142   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7143   auto OriginalNameID = ValueGUID;
7144   if (GlobalValue::isLocalLinkage(Linkage))
7145     OriginalNameID = GlobalValue::getGUID(ValueName);
7146   if (PrintSummaryGUIDs)
7147     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7148            << ValueName << "\n";
7149 
7150   // UseStrtab is false for legacy summary formats and value names are
7151   // created on stack. In that case we save the name in a string saver in
7152   // the index so that the value name can be recorded.
7153   ValueIdToValueInfoMap[ValueID] = std::make_pair(
7154       TheIndex.getOrInsertValueInfo(
7155           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7156       OriginalNameID);
7157 }
7158 
7159 // Specialized value symbol table parser used when reading module index
7160 // blocks where we don't actually create global values. The parsed information
7161 // is saved in the bitcode reader for use when later parsing summaries.
7162 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7163     uint64_t Offset,
7164     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7165   // With a strtab the VST is not required to parse the summary.
7166   if (UseStrtab)
7167     return Error::success();
7168 
7169   assert(Offset > 0 && "Expected non-zero VST offset");
7170   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7171   if (!MaybeCurrentBit)
7172     return MaybeCurrentBit.takeError();
7173   uint64_t CurrentBit = MaybeCurrentBit.get();
7174 
7175   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7176     return Err;
7177 
7178   SmallVector<uint64_t, 64> Record;
7179 
7180   // Read all the records for this value table.
7181   SmallString<128> ValueName;
7182 
7183   while (true) {
7184     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7185     if (!MaybeEntry)
7186       return MaybeEntry.takeError();
7187     BitstreamEntry Entry = MaybeEntry.get();
7188 
7189     switch (Entry.Kind) {
7190     case BitstreamEntry::SubBlock: // Handled for us already.
7191     case BitstreamEntry::Error:
7192       return error("Malformed block");
7193     case BitstreamEntry::EndBlock:
7194       // Done parsing VST, jump back to wherever we came from.
7195       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7196         return JumpFailed;
7197       return Error::success();
7198     case BitstreamEntry::Record:
7199       // The interesting case.
7200       break;
7201     }
7202 
7203     // Read a record.
7204     Record.clear();
7205     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7206     if (!MaybeRecord)
7207       return MaybeRecord.takeError();
7208     switch (MaybeRecord.get()) {
7209     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7210       break;
7211     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7212       if (convertToString(Record, 1, ValueName))
7213         return error("Invalid record");
7214       unsigned ValueID = Record[0];
7215       assert(!SourceFileName.empty());
7216       auto VLI = ValueIdToLinkageMap.find(ValueID);
7217       assert(VLI != ValueIdToLinkageMap.end() &&
7218              "No linkage found for VST entry?");
7219       auto Linkage = VLI->second;
7220       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7221       ValueName.clear();
7222       break;
7223     }
7224     case bitc::VST_CODE_FNENTRY: {
7225       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7226       if (convertToString(Record, 2, ValueName))
7227         return error("Invalid record");
7228       unsigned ValueID = Record[0];
7229       assert(!SourceFileName.empty());
7230       auto VLI = ValueIdToLinkageMap.find(ValueID);
7231       assert(VLI != ValueIdToLinkageMap.end() &&
7232              "No linkage found for VST entry?");
7233       auto Linkage = VLI->second;
7234       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7235       ValueName.clear();
7236       break;
7237     }
7238     case bitc::VST_CODE_COMBINED_ENTRY: {
7239       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7240       unsigned ValueID = Record[0];
7241       GlobalValue::GUID RefGUID = Record[1];
7242       // The "original name", which is the second value of the pair will be
7243       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7244       ValueIdToValueInfoMap[ValueID] =
7245           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7246       break;
7247     }
7248     }
7249   }
7250 }
7251 
7252 // Parse just the blocks needed for building the index out of the module.
7253 // At the end of this routine the module Index is populated with a map
7254 // from global value id to GlobalValueSummary objects.
7255 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7256   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7257     return Err;
7258 
7259   SmallVector<uint64_t, 64> Record;
7260   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7261   unsigned ValueId = 0;
7262 
7263   // Read the index for this module.
7264   while (true) {
7265     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7266     if (!MaybeEntry)
7267       return MaybeEntry.takeError();
7268     llvm::BitstreamEntry Entry = MaybeEntry.get();
7269 
7270     switch (Entry.Kind) {
7271     case BitstreamEntry::Error:
7272       return error("Malformed block");
7273     case BitstreamEntry::EndBlock:
7274       return Error::success();
7275 
7276     case BitstreamEntry::SubBlock:
7277       switch (Entry.ID) {
7278       default: // Skip unknown content.
7279         if (Error Err = Stream.SkipBlock())
7280           return Err;
7281         break;
7282       case bitc::BLOCKINFO_BLOCK_ID:
7283         // Need to parse these to get abbrev ids (e.g. for VST)
7284         if (Error Err = readBlockInfo())
7285           return Err;
7286         break;
7287       case bitc::VALUE_SYMTAB_BLOCK_ID:
7288         // Should have been parsed earlier via VSTOffset, unless there
7289         // is no summary section.
7290         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7291                 !SeenGlobalValSummary) &&
7292                "Expected early VST parse via VSTOffset record");
7293         if (Error Err = Stream.SkipBlock())
7294           return Err;
7295         break;
7296       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7297       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7298         // Add the module if it is a per-module index (has a source file name).
7299         if (!SourceFileName.empty())
7300           addThisModule();
7301         assert(!SeenValueSymbolTable &&
7302                "Already read VST when parsing summary block?");
7303         // We might not have a VST if there were no values in the
7304         // summary. An empty summary block generated when we are
7305         // performing ThinLTO compiles so we don't later invoke
7306         // the regular LTO process on them.
7307         if (VSTOffset > 0) {
7308           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7309             return Err;
7310           SeenValueSymbolTable = true;
7311         }
7312         SeenGlobalValSummary = true;
7313         if (Error Err = parseEntireSummary(Entry.ID))
7314           return Err;
7315         break;
7316       case bitc::MODULE_STRTAB_BLOCK_ID:
7317         if (Error Err = parseModuleStringTable())
7318           return Err;
7319         break;
7320       }
7321       continue;
7322 
7323     case BitstreamEntry::Record: {
7324         Record.clear();
7325         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7326         if (!MaybeBitCode)
7327           return MaybeBitCode.takeError();
7328         switch (MaybeBitCode.get()) {
7329         default:
7330           break; // Default behavior, ignore unknown content.
7331         case bitc::MODULE_CODE_VERSION: {
7332           if (Error Err = parseVersionRecord(Record).takeError())
7333             return Err;
7334           break;
7335         }
7336         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7337         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7338           SmallString<128> ValueName;
7339           if (convertToString(Record, 0, ValueName))
7340             return error("Invalid record");
7341           SourceFileName = ValueName.c_str();
7342           break;
7343         }
7344         /// MODULE_CODE_HASH: [5*i32]
7345         case bitc::MODULE_CODE_HASH: {
7346           if (Record.size() != 5)
7347             return error("Invalid hash length " + Twine(Record.size()).str());
7348           auto &Hash = getThisModule()->second;
7349           int Pos = 0;
7350           for (auto &Val : Record) {
7351             assert(!(Val >> 32) && "Unexpected high bits set");
7352             Hash[Pos++] = Val;
7353           }
7354           break;
7355         }
7356         /// MODULE_CODE_VSTOFFSET: [offset]
7357         case bitc::MODULE_CODE_VSTOFFSET:
7358           if (Record.empty())
7359             return error("Invalid record");
7360           // Note that we subtract 1 here because the offset is relative to one
7361           // word before the start of the identification or module block, which
7362           // was historically always the start of the regular bitcode header.
7363           VSTOffset = Record[0] - 1;
7364           break;
7365         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7366         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7367         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7368         // v2: [strtab offset, strtab size, v1]
7369         case bitc::MODULE_CODE_GLOBALVAR:
7370         case bitc::MODULE_CODE_FUNCTION:
7371         case bitc::MODULE_CODE_ALIAS: {
7372           StringRef Name;
7373           ArrayRef<uint64_t> GVRecord;
7374           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7375           if (GVRecord.size() <= 3)
7376             return error("Invalid record");
7377           uint64_t RawLinkage = GVRecord[3];
7378           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7379           if (!UseStrtab) {
7380             ValueIdToLinkageMap[ValueId++] = Linkage;
7381             break;
7382           }
7383 
7384           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7385           break;
7386         }
7387         }
7388       }
7389       continue;
7390     }
7391   }
7392 }
7393 
7394 SmallVector<ValueInfo, 0>
7395 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7396   SmallVector<ValueInfo, 0> Ret;
7397   Ret.reserve(Record.size());
7398   for (uint64_t RefValueId : Record)
7399     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7400   return Ret;
7401 }
7402 
7403 SmallVector<FunctionSummary::EdgeTy, 0>
7404 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7405                                               bool IsOldProfileFormat,
7406                                               bool HasProfile, bool HasRelBF) {
7407   SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7408   // In the case of new profile formats, there are two Record entries per
7409   // Edge. Otherwise, conservatively reserve up to Record.size.
7410   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7411     Ret.reserve(Record.size() / 2);
7412   else
7413     Ret.reserve(Record.size());
7414 
7415   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7416     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7417     bool HasTailCall = false;
7418     uint64_t RelBF = 0;
7419     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7420     if (IsOldProfileFormat) {
7421       I += 1; // Skip old callsitecount field
7422       if (HasProfile)
7423         I += 1; // Skip old profilecount field
7424     } else if (HasProfile)
7425       std::tie(Hotness, HasTailCall) =
7426           getDecodedHotnessCallEdgeInfo(Record[++I]);
7427     else if (HasRelBF)
7428       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7429     Ret.push_back(FunctionSummary::EdgeTy{
7430         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7431   }
7432   return Ret;
7433 }
7434 
7435 static void
7436 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7437                                        WholeProgramDevirtResolution &Wpd) {
7438   uint64_t ArgNum = Record[Slot++];
7439   WholeProgramDevirtResolution::ByArg &B =
7440       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7441   Slot += ArgNum;
7442 
7443   B.TheKind =
7444       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7445   B.Info = Record[Slot++];
7446   B.Byte = Record[Slot++];
7447   B.Bit = Record[Slot++];
7448 }
7449 
7450 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7451                                               StringRef Strtab, size_t &Slot,
7452                                               TypeIdSummary &TypeId) {
7453   uint64_t Id = Record[Slot++];
7454   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7455 
7456   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7457   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7458                         static_cast<size_t>(Record[Slot + 1])};
7459   Slot += 2;
7460 
7461   uint64_t ResByArgNum = Record[Slot++];
7462   for (uint64_t I = 0; I != ResByArgNum; ++I)
7463     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7464 }
7465 
7466 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7467                                      StringRef Strtab,
7468                                      ModuleSummaryIndex &TheIndex) {
7469   size_t Slot = 0;
7470   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7471       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7472   Slot += 2;
7473 
7474   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7475   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7476   TypeId.TTRes.AlignLog2 = Record[Slot++];
7477   TypeId.TTRes.SizeM1 = Record[Slot++];
7478   TypeId.TTRes.BitMask = Record[Slot++];
7479   TypeId.TTRes.InlineBits = Record[Slot++];
7480 
7481   while (Slot < Record.size())
7482     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7483 }
7484 
7485 std::vector<FunctionSummary::ParamAccess>
7486 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7487   auto ReadRange = [&]() {
7488     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7489                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7490     Record = Record.drop_front();
7491     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7492                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7493     Record = Record.drop_front();
7494     ConstantRange Range{Lower, Upper};
7495     assert(!Range.isFullSet());
7496     assert(!Range.isUpperSignWrapped());
7497     return Range;
7498   };
7499 
7500   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7501   while (!Record.empty()) {
7502     PendingParamAccesses.emplace_back();
7503     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7504     ParamAccess.ParamNo = Record.front();
7505     Record = Record.drop_front();
7506     ParamAccess.Use = ReadRange();
7507     ParamAccess.Calls.resize(Record.front());
7508     Record = Record.drop_front();
7509     for (auto &Call : ParamAccess.Calls) {
7510       Call.ParamNo = Record.front();
7511       Record = Record.drop_front();
7512       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7513       Record = Record.drop_front();
7514       Call.Offsets = ReadRange();
7515     }
7516   }
7517   return PendingParamAccesses;
7518 }
7519 
7520 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7521     ArrayRef<uint64_t> Record, size_t &Slot,
7522     TypeIdCompatibleVtableInfo &TypeId) {
7523   uint64_t Offset = Record[Slot++];
7524   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7525   TypeId.push_back({Offset, Callee});
7526 }
7527 
7528 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7529     ArrayRef<uint64_t> Record) {
7530   size_t Slot = 0;
7531   TypeIdCompatibleVtableInfo &TypeId =
7532       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7533           {Strtab.data() + Record[Slot],
7534            static_cast<size_t>(Record[Slot + 1])});
7535   Slot += 2;
7536 
7537   while (Slot < Record.size())
7538     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7539 }
7540 
7541 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7542                            unsigned WOCnt) {
7543   // Readonly and writeonly refs are in the end of the refs list.
7544   assert(ROCnt + WOCnt <= Refs.size());
7545   unsigned FirstWORef = Refs.size() - WOCnt;
7546   unsigned RefNo = FirstWORef - ROCnt;
7547   for (; RefNo < FirstWORef; ++RefNo)
7548     Refs[RefNo].setReadOnly();
7549   for (; RefNo < Refs.size(); ++RefNo)
7550     Refs[RefNo].setWriteOnly();
7551 }
7552 
7553 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7554 // objects in the index.
7555 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7556   if (Error Err = Stream.EnterSubBlock(ID))
7557     return Err;
7558   SmallVector<uint64_t, 64> Record;
7559 
7560   // Parse version
7561   {
7562     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7563     if (!MaybeEntry)
7564       return MaybeEntry.takeError();
7565     BitstreamEntry Entry = MaybeEntry.get();
7566 
7567     if (Entry.Kind != BitstreamEntry::Record)
7568       return error("Invalid Summary Block: record for version expected");
7569     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7570     if (!MaybeRecord)
7571       return MaybeRecord.takeError();
7572     if (MaybeRecord.get() != bitc::FS_VERSION)
7573       return error("Invalid Summary Block: version expected");
7574   }
7575   const uint64_t Version = Record[0];
7576   const bool IsOldProfileFormat = Version == 1;
7577   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7578     return error("Invalid summary version " + Twine(Version) +
7579                  ". Version should be in the range [1-" +
7580                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7581                  "].");
7582   Record.clear();
7583 
7584   // Keep around the last seen summary to be used when we see an optional
7585   // "OriginalName" attachement.
7586   GlobalValueSummary *LastSeenSummary = nullptr;
7587   GlobalValue::GUID LastSeenGUID = 0;
7588 
7589   // We can expect to see any number of type ID information records before
7590   // each function summary records; these variables store the information
7591   // collected so far so that it can be used to create the summary object.
7592   std::vector<GlobalValue::GUID> PendingTypeTests;
7593   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7594       PendingTypeCheckedLoadVCalls;
7595   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7596       PendingTypeCheckedLoadConstVCalls;
7597   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7598 
7599   std::vector<CallsiteInfo> PendingCallsites;
7600   std::vector<AllocInfo> PendingAllocs;
7601 
7602   while (true) {
7603     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7604     if (!MaybeEntry)
7605       return MaybeEntry.takeError();
7606     BitstreamEntry Entry = MaybeEntry.get();
7607 
7608     switch (Entry.Kind) {
7609     case BitstreamEntry::SubBlock: // Handled for us already.
7610     case BitstreamEntry::Error:
7611       return error("Malformed block");
7612     case BitstreamEntry::EndBlock:
7613       return Error::success();
7614     case BitstreamEntry::Record:
7615       // The interesting case.
7616       break;
7617     }
7618 
7619     // Read a record. The record format depends on whether this
7620     // is a per-module index or a combined index file. In the per-module
7621     // case the records contain the associated value's ID for correlation
7622     // with VST entries. In the combined index the correlation is done
7623     // via the bitcode offset of the summary records (which were saved
7624     // in the combined index VST entries). The records also contain
7625     // information used for ThinLTO renaming and importing.
7626     Record.clear();
7627     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7628     if (!MaybeBitCode)
7629       return MaybeBitCode.takeError();
7630     switch (unsigned BitCode = MaybeBitCode.get()) {
7631     default: // Default behavior: ignore.
7632       break;
7633     case bitc::FS_FLAGS: {  // [flags]
7634       TheIndex.setFlags(Record[0]);
7635       break;
7636     }
7637     case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7638       uint64_t ValueID = Record[0];
7639       GlobalValue::GUID RefGUID;
7640       if (Version >= 11) {
7641         RefGUID = Record[1] << 32 | Record[2];
7642       } else {
7643         RefGUID = Record[1];
7644       }
7645       ValueIdToValueInfoMap[ValueID] =
7646           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7647       break;
7648     }
7649     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7650     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7651     //                numrefs x valueid, n x (valueid)]
7652     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7653     //                        numrefs x valueid,
7654     //                        n x (valueid, hotness+tailcall flags)]
7655     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7656     //                      numrefs x valueid,
7657     //                      n x (valueid, relblockfreq+tailcall)]
7658     case bitc::FS_PERMODULE:
7659     case bitc::FS_PERMODULE_RELBF:
7660     case bitc::FS_PERMODULE_PROFILE: {
7661       unsigned ValueID = Record[0];
7662       uint64_t RawFlags = Record[1];
7663       unsigned InstCount = Record[2];
7664       uint64_t RawFunFlags = 0;
7665       unsigned NumRefs = Record[3];
7666       unsigned NumRORefs = 0, NumWORefs = 0;
7667       int RefListStartIndex = 4;
7668       if (Version >= 4) {
7669         RawFunFlags = Record[3];
7670         NumRefs = Record[4];
7671         RefListStartIndex = 5;
7672         if (Version >= 5) {
7673           NumRORefs = Record[5];
7674           RefListStartIndex = 6;
7675           if (Version >= 7) {
7676             NumWORefs = Record[6];
7677             RefListStartIndex = 7;
7678           }
7679         }
7680       }
7681 
7682       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7683       // The module path string ref set in the summary must be owned by the
7684       // index's module string table. Since we don't have a module path
7685       // string table section in the per-module index, we create a single
7686       // module path string table entry with an empty (0) ID to take
7687       // ownership.
7688       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7689       assert(Record.size() >= RefListStartIndex + NumRefs &&
7690              "Record size inconsistent with number of references");
7691       SmallVector<ValueInfo, 0> Refs = makeRefList(
7692           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7693       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7694       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7695       SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7696           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7697           IsOldProfileFormat, HasProfile, HasRelBF);
7698       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7699       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7700       // In order to save memory, only record the memprof summaries if this is
7701       // the prevailing copy of a symbol. The linker doesn't resolve local
7702       // linkage values so don't check whether those are prevailing.
7703       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7704       if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
7705           !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7706         PendingCallsites.clear();
7707         PendingAllocs.clear();
7708       }
7709       auto FS = std::make_unique<FunctionSummary>(
7710           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7711           std::move(Calls), std::move(PendingTypeTests),
7712           std::move(PendingTypeTestAssumeVCalls),
7713           std::move(PendingTypeCheckedLoadVCalls),
7714           std::move(PendingTypeTestAssumeConstVCalls),
7715           std::move(PendingTypeCheckedLoadConstVCalls),
7716           std::move(PendingParamAccesses), std::move(PendingCallsites),
7717           std::move(PendingAllocs));
7718       FS->setModulePath(getThisModule()->first());
7719       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7720       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7721                                      std::move(FS));
7722       break;
7723     }
7724     // FS_ALIAS: [valueid, flags, valueid]
7725     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7726     // they expect all aliasee summaries to be available.
7727     case bitc::FS_ALIAS: {
7728       unsigned ValueID = Record[0];
7729       uint64_t RawFlags = Record[1];
7730       unsigned AliaseeID = Record[2];
7731       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7732       auto AS = std::make_unique<AliasSummary>(Flags);
7733       // The module path string ref set in the summary must be owned by the
7734       // index's module string table. Since we don't have a module path
7735       // string table section in the per-module index, we create a single
7736       // module path string table entry with an empty (0) ID to take
7737       // ownership.
7738       AS->setModulePath(getThisModule()->first());
7739 
7740       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7741       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7742       if (!AliaseeInModule)
7743         return error("Alias expects aliasee summary to be parsed");
7744       AS->setAliasee(AliaseeVI, AliaseeInModule);
7745 
7746       auto GUID = getValueInfoFromValueId(ValueID);
7747       AS->setOriginalName(std::get<1>(GUID));
7748       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7749       break;
7750     }
7751     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7752     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7753       unsigned ValueID = Record[0];
7754       uint64_t RawFlags = Record[1];
7755       unsigned RefArrayStart = 2;
7756       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7757                                       /* WriteOnly */ false,
7758                                       /* Constant */ false,
7759                                       GlobalObject::VCallVisibilityPublic);
7760       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7761       if (Version >= 5) {
7762         GVF = getDecodedGVarFlags(Record[2]);
7763         RefArrayStart = 3;
7764       }
7765       SmallVector<ValueInfo, 0> Refs =
7766           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7767       auto FS =
7768           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7769       FS->setModulePath(getThisModule()->first());
7770       auto GUID = getValueInfoFromValueId(ValueID);
7771       FS->setOriginalName(std::get<1>(GUID));
7772       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7773       break;
7774     }
7775     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7776     //                        numrefs, numrefs x valueid,
7777     //                        n x (valueid, offset)]
7778     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7779       unsigned ValueID = Record[0];
7780       uint64_t RawFlags = Record[1];
7781       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7782       unsigned NumRefs = Record[3];
7783       unsigned RefListStartIndex = 4;
7784       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7785       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7786       SmallVector<ValueInfo, 0> Refs = makeRefList(
7787           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7788       VTableFuncList VTableFuncs;
7789       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7790         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7791         uint64_t Offset = Record[++I];
7792         VTableFuncs.push_back({Callee, Offset});
7793       }
7794       auto VS =
7795           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7796       VS->setModulePath(getThisModule()->first());
7797       VS->setVTableFuncs(VTableFuncs);
7798       auto GUID = getValueInfoFromValueId(ValueID);
7799       VS->setOriginalName(std::get<1>(GUID));
7800       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7801       break;
7802     }
7803     // FS_COMBINED is legacy and does not have support for the tail call flag.
7804     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7805     //               numrefs x valueid, n x (valueid)]
7806     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7807     //                       numrefs x valueid,
7808     //                       n x (valueid, hotness+tailcall flags)]
7809     case bitc::FS_COMBINED:
7810     case bitc::FS_COMBINED_PROFILE: {
7811       unsigned ValueID = Record[0];
7812       uint64_t ModuleId = Record[1];
7813       uint64_t RawFlags = Record[2];
7814       unsigned InstCount = Record[3];
7815       uint64_t RawFunFlags = 0;
7816       unsigned NumRefs = Record[4];
7817       unsigned NumRORefs = 0, NumWORefs = 0;
7818       int RefListStartIndex = 5;
7819 
7820       if (Version >= 4) {
7821         RawFunFlags = Record[4];
7822         RefListStartIndex = 6;
7823         size_t NumRefsIndex = 5;
7824         if (Version >= 5) {
7825           unsigned NumRORefsOffset = 1;
7826           RefListStartIndex = 7;
7827           if (Version >= 6) {
7828             NumRefsIndex = 6;
7829             RefListStartIndex = 8;
7830             if (Version >= 7) {
7831               RefListStartIndex = 9;
7832               NumWORefs = Record[8];
7833               NumRORefsOffset = 2;
7834             }
7835           }
7836           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7837         }
7838         NumRefs = Record[NumRefsIndex];
7839       }
7840 
7841       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7842       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7843       assert(Record.size() >= RefListStartIndex + NumRefs &&
7844              "Record size inconsistent with number of references");
7845       SmallVector<ValueInfo, 0> Refs = makeRefList(
7846           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7847       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7848       SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7849           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7850           IsOldProfileFormat, HasProfile, false);
7851       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7852       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7853       auto FS = std::make_unique<FunctionSummary>(
7854           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7855           std::move(Edges), std::move(PendingTypeTests),
7856           std::move(PendingTypeTestAssumeVCalls),
7857           std::move(PendingTypeCheckedLoadVCalls),
7858           std::move(PendingTypeTestAssumeConstVCalls),
7859           std::move(PendingTypeCheckedLoadConstVCalls),
7860           std::move(PendingParamAccesses), std::move(PendingCallsites),
7861           std::move(PendingAllocs));
7862       LastSeenSummary = FS.get();
7863       LastSeenGUID = VI.getGUID();
7864       FS->setModulePath(ModuleIdMap[ModuleId]);
7865       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7866       break;
7867     }
7868     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7869     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7870     // they expect all aliasee summaries to be available.
7871     case bitc::FS_COMBINED_ALIAS: {
7872       unsigned ValueID = Record[0];
7873       uint64_t ModuleId = Record[1];
7874       uint64_t RawFlags = Record[2];
7875       unsigned AliaseeValueId = Record[3];
7876       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7877       auto AS = std::make_unique<AliasSummary>(Flags);
7878       LastSeenSummary = AS.get();
7879       AS->setModulePath(ModuleIdMap[ModuleId]);
7880 
7881       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7882       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7883       AS->setAliasee(AliaseeVI, AliaseeInModule);
7884 
7885       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7886       LastSeenGUID = VI.getGUID();
7887       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7888       break;
7889     }
7890     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7891     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7892       unsigned ValueID = Record[0];
7893       uint64_t ModuleId = Record[1];
7894       uint64_t RawFlags = Record[2];
7895       unsigned RefArrayStart = 3;
7896       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7897                                       /* WriteOnly */ false,
7898                                       /* Constant */ false,
7899                                       GlobalObject::VCallVisibilityPublic);
7900       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7901       if (Version >= 5) {
7902         GVF = getDecodedGVarFlags(Record[3]);
7903         RefArrayStart = 4;
7904       }
7905       SmallVector<ValueInfo, 0> Refs =
7906           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7907       auto FS =
7908           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7909       LastSeenSummary = FS.get();
7910       FS->setModulePath(ModuleIdMap[ModuleId]);
7911       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7912       LastSeenGUID = VI.getGUID();
7913       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7914       break;
7915     }
7916     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7917     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7918       uint64_t OriginalName = Record[0];
7919       if (!LastSeenSummary)
7920         return error("Name attachment that does not follow a combined record");
7921       LastSeenSummary->setOriginalName(OriginalName);
7922       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7923       // Reset the LastSeenSummary
7924       LastSeenSummary = nullptr;
7925       LastSeenGUID = 0;
7926       break;
7927     }
7928     case bitc::FS_TYPE_TESTS:
7929       assert(PendingTypeTests.empty());
7930       llvm::append_range(PendingTypeTests, Record);
7931       break;
7932 
7933     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7934       assert(PendingTypeTestAssumeVCalls.empty());
7935       for (unsigned I = 0; I != Record.size(); I += 2)
7936         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7937       break;
7938 
7939     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7940       assert(PendingTypeCheckedLoadVCalls.empty());
7941       for (unsigned I = 0; I != Record.size(); I += 2)
7942         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7943       break;
7944 
7945     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7946       PendingTypeTestAssumeConstVCalls.push_back(
7947           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7948       break;
7949 
7950     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7951       PendingTypeCheckedLoadConstVCalls.push_back(
7952           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7953       break;
7954 
7955     case bitc::FS_CFI_FUNCTION_DEFS: {
7956       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7957       for (unsigned I = 0; I != Record.size(); I += 2)
7958         CfiFunctionDefs.insert(
7959             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7960       break;
7961     }
7962 
7963     case bitc::FS_CFI_FUNCTION_DECLS: {
7964       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7965       for (unsigned I = 0; I != Record.size(); I += 2)
7966         CfiFunctionDecls.insert(
7967             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7968       break;
7969     }
7970 
7971     case bitc::FS_TYPE_ID:
7972       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7973       break;
7974 
7975     case bitc::FS_TYPE_ID_METADATA:
7976       parseTypeIdCompatibleVtableSummaryRecord(Record);
7977       break;
7978 
7979     case bitc::FS_BLOCK_COUNT:
7980       TheIndex.addBlockCount(Record[0]);
7981       break;
7982 
7983     case bitc::FS_PARAM_ACCESS: {
7984       PendingParamAccesses = parseParamAccesses(Record);
7985       break;
7986     }
7987 
7988     case bitc::FS_STACK_IDS: { // [n x stackid]
7989       // Save stack ids in the reader to consult when adding stack ids from the
7990       // lists in the stack node and alloc node entries.
7991       StackIds = ArrayRef<uint64_t>(Record);
7992       break;
7993     }
7994 
7995     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7996       unsigned ValueID = Record[0];
7997       SmallVector<unsigned> StackIdList;
7998       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7999         assert(*R < StackIds.size());
8000         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
8001       }
8002       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8003       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
8004       break;
8005     }
8006 
8007     case bitc::FS_COMBINED_CALLSITE_INFO: {
8008       auto RecordIter = Record.begin();
8009       unsigned ValueID = *RecordIter++;
8010       unsigned NumStackIds = *RecordIter++;
8011       unsigned NumVersions = *RecordIter++;
8012       assert(Record.size() == 3 + NumStackIds + NumVersions);
8013       SmallVector<unsigned> StackIdList;
8014       for (unsigned J = 0; J < NumStackIds; J++) {
8015         assert(*RecordIter < StackIds.size());
8016         StackIdList.push_back(
8017             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
8018       }
8019       SmallVector<unsigned> Versions;
8020       for (unsigned J = 0; J < NumVersions; J++)
8021         Versions.push_back(*RecordIter++);
8022       ValueInfo VI = std::get<0>(
8023           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
8024       PendingCallsites.push_back(
8025           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8026       break;
8027     }
8028 
8029     case bitc::FS_PERMODULE_ALLOC_INFO: {
8030       unsigned I = 0;
8031       std::vector<MIBInfo> MIBs;
8032       unsigned NumMIBs = 0;
8033       if (Version >= 10)
8034         NumMIBs = Record[I++];
8035       unsigned MIBsRead = 0;
8036       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8037              (Version < 10 && I < Record.size())) {
8038         assert(Record.size() - I >= 2);
8039         AllocationType AllocType = (AllocationType)Record[I++];
8040         unsigned NumStackEntries = Record[I++];
8041         assert(Record.size() - I >= NumStackEntries);
8042         SmallVector<unsigned> StackIdList;
8043         for (unsigned J = 0; J < NumStackEntries; J++) {
8044           assert(Record[I] < StackIds.size());
8045           StackIdList.push_back(
8046               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8047         }
8048         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8049       }
8050       std::vector<uint64_t> TotalSizes;
8051       // We either have no sizes or NumMIBs of them.
8052       assert(I == Record.size() || Record.size() - I == NumMIBs);
8053       if (I < Record.size()) {
8054         MIBsRead = 0;
8055         while (MIBsRead++ < NumMIBs)
8056           TotalSizes.push_back(Record[I++]);
8057       }
8058       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8059       if (!TotalSizes.empty()) {
8060         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8061         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8062       }
8063       break;
8064     }
8065 
8066     case bitc::FS_COMBINED_ALLOC_INFO: {
8067       unsigned I = 0;
8068       std::vector<MIBInfo> MIBs;
8069       unsigned NumMIBs = Record[I++];
8070       unsigned NumVersions = Record[I++];
8071       unsigned MIBsRead = 0;
8072       while (MIBsRead++ < NumMIBs) {
8073         assert(Record.size() - I >= 2);
8074         AllocationType AllocType = (AllocationType)Record[I++];
8075         unsigned NumStackEntries = Record[I++];
8076         assert(Record.size() - I >= NumStackEntries);
8077         SmallVector<unsigned> StackIdList;
8078         for (unsigned J = 0; J < NumStackEntries; J++) {
8079           assert(Record[I] < StackIds.size());
8080           StackIdList.push_back(
8081               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8082         }
8083         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8084       }
8085       assert(Record.size() - I >= NumVersions);
8086       SmallVector<uint8_t> Versions;
8087       for (unsigned J = 0; J < NumVersions; J++)
8088         Versions.push_back(Record[I++]);
8089       std::vector<uint64_t> TotalSizes;
8090       // We either have no sizes or NumMIBs of them.
8091       assert(I == Record.size() || Record.size() - I == NumMIBs);
8092       if (I < Record.size()) {
8093         MIBsRead = 0;
8094         while (MIBsRead++ < NumMIBs) {
8095           TotalSizes.push_back(Record[I++]);
8096         }
8097       }
8098       PendingAllocs.push_back(
8099           AllocInfo(std::move(Versions), std::move(MIBs)));
8100       if (!TotalSizes.empty()) {
8101         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8102         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8103       }
8104       break;
8105     }
8106     }
8107   }
8108   llvm_unreachable("Exit infinite loop");
8109 }
8110 
8111 // Parse the  module string table block into the Index.
8112 // This populates the ModulePathStringTable map in the index.
8113 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8114   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8115     return Err;
8116 
8117   SmallVector<uint64_t, 64> Record;
8118 
8119   SmallString<128> ModulePath;
8120   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8121 
8122   while (true) {
8123     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8124     if (!MaybeEntry)
8125       return MaybeEntry.takeError();
8126     BitstreamEntry Entry = MaybeEntry.get();
8127 
8128     switch (Entry.Kind) {
8129     case BitstreamEntry::SubBlock: // Handled for us already.
8130     case BitstreamEntry::Error:
8131       return error("Malformed block");
8132     case BitstreamEntry::EndBlock:
8133       return Error::success();
8134     case BitstreamEntry::Record:
8135       // The interesting case.
8136       break;
8137     }
8138 
8139     Record.clear();
8140     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8141     if (!MaybeRecord)
8142       return MaybeRecord.takeError();
8143     switch (MaybeRecord.get()) {
8144     default: // Default behavior: ignore.
8145       break;
8146     case bitc::MST_CODE_ENTRY: {
8147       // MST_ENTRY: [modid, namechar x N]
8148       uint64_t ModuleId = Record[0];
8149 
8150       if (convertToString(Record, 1, ModulePath))
8151         return error("Invalid record");
8152 
8153       LastSeenModule = TheIndex.addModule(ModulePath);
8154       ModuleIdMap[ModuleId] = LastSeenModule->first();
8155 
8156       ModulePath.clear();
8157       break;
8158     }
8159     /// MST_CODE_HASH: [5*i32]
8160     case bitc::MST_CODE_HASH: {
8161       if (Record.size() != 5)
8162         return error("Invalid hash length " + Twine(Record.size()).str());
8163       if (!LastSeenModule)
8164         return error("Invalid hash that does not follow a module path");
8165       int Pos = 0;
8166       for (auto &Val : Record) {
8167         assert(!(Val >> 32) && "Unexpected high bits set");
8168         LastSeenModule->second[Pos++] = Val;
8169       }
8170       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8171       LastSeenModule = nullptr;
8172       break;
8173     }
8174     }
8175   }
8176   llvm_unreachable("Exit infinite loop");
8177 }
8178 
8179 namespace {
8180 
8181 // FIXME: This class is only here to support the transition to llvm::Error. It
8182 // will be removed once this transition is complete. Clients should prefer to
8183 // deal with the Error value directly, rather than converting to error_code.
8184 class BitcodeErrorCategoryType : public std::error_category {
8185   const char *name() const noexcept override {
8186     return "llvm.bitcode";
8187   }
8188 
8189   std::string message(int IE) const override {
8190     BitcodeError E = static_cast<BitcodeError>(IE);
8191     switch (E) {
8192     case BitcodeError::CorruptedBitcode:
8193       return "Corrupted bitcode";
8194     }
8195     llvm_unreachable("Unknown error type!");
8196   }
8197 };
8198 
8199 } // end anonymous namespace
8200 
8201 const std::error_category &llvm::BitcodeErrorCategory() {
8202   static BitcodeErrorCategoryType ErrorCategory;
8203   return ErrorCategory;
8204 }
8205 
8206 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8207                                             unsigned Block, unsigned RecordID) {
8208   if (Error Err = Stream.EnterSubBlock(Block))
8209     return std::move(Err);
8210 
8211   StringRef Strtab;
8212   while (true) {
8213     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8214     if (!MaybeEntry)
8215       return MaybeEntry.takeError();
8216     llvm::BitstreamEntry Entry = MaybeEntry.get();
8217 
8218     switch (Entry.Kind) {
8219     case BitstreamEntry::EndBlock:
8220       return Strtab;
8221 
8222     case BitstreamEntry::Error:
8223       return error("Malformed block");
8224 
8225     case BitstreamEntry::SubBlock:
8226       if (Error Err = Stream.SkipBlock())
8227         return std::move(Err);
8228       break;
8229 
8230     case BitstreamEntry::Record:
8231       StringRef Blob;
8232       SmallVector<uint64_t, 1> Record;
8233       Expected<unsigned> MaybeRecord =
8234           Stream.readRecord(Entry.ID, Record, &Blob);
8235       if (!MaybeRecord)
8236         return MaybeRecord.takeError();
8237       if (MaybeRecord.get() == RecordID)
8238         Strtab = Blob;
8239       break;
8240     }
8241   }
8242 }
8243 
8244 //===----------------------------------------------------------------------===//
8245 // External interface
8246 //===----------------------------------------------------------------------===//
8247 
8248 Expected<std::vector<BitcodeModule>>
8249 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8250   auto FOrErr = getBitcodeFileContents(Buffer);
8251   if (!FOrErr)
8252     return FOrErr.takeError();
8253   return std::move(FOrErr->Mods);
8254 }
8255 
8256 Expected<BitcodeFileContents>
8257 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8258   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8259   if (!StreamOrErr)
8260     return StreamOrErr.takeError();
8261   BitstreamCursor &Stream = *StreamOrErr;
8262 
8263   BitcodeFileContents F;
8264   while (true) {
8265     uint64_t BCBegin = Stream.getCurrentByteNo();
8266 
8267     // We may be consuming bitcode from a client that leaves garbage at the end
8268     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8269     // the end that there cannot possibly be another module, stop looking.
8270     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8271       return F;
8272 
8273     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8274     if (!MaybeEntry)
8275       return MaybeEntry.takeError();
8276     llvm::BitstreamEntry Entry = MaybeEntry.get();
8277 
8278     switch (Entry.Kind) {
8279     case BitstreamEntry::EndBlock:
8280     case BitstreamEntry::Error:
8281       return error("Malformed block");
8282 
8283     case BitstreamEntry::SubBlock: {
8284       uint64_t IdentificationBit = -1ull;
8285       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8286         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8287         if (Error Err = Stream.SkipBlock())
8288           return std::move(Err);
8289 
8290         {
8291           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8292           if (!MaybeEntry)
8293             return MaybeEntry.takeError();
8294           Entry = MaybeEntry.get();
8295         }
8296 
8297         if (Entry.Kind != BitstreamEntry::SubBlock ||
8298             Entry.ID != bitc::MODULE_BLOCK_ID)
8299           return error("Malformed block");
8300       }
8301 
8302       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8303         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8304         if (Error Err = Stream.SkipBlock())
8305           return std::move(Err);
8306 
8307         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8308                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8309                           Buffer.getBufferIdentifier(), IdentificationBit,
8310                           ModuleBit});
8311         continue;
8312       }
8313 
8314       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8315         Expected<StringRef> Strtab =
8316             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8317         if (!Strtab)
8318           return Strtab.takeError();
8319         // This string table is used by every preceding bitcode module that does
8320         // not have its own string table. A bitcode file may have multiple
8321         // string tables if it was created by binary concatenation, for example
8322         // with "llvm-cat -b".
8323         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8324           if (!I.Strtab.empty())
8325             break;
8326           I.Strtab = *Strtab;
8327         }
8328         // Similarly, the string table is used by every preceding symbol table;
8329         // normally there will be just one unless the bitcode file was created
8330         // by binary concatenation.
8331         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8332           F.StrtabForSymtab = *Strtab;
8333         continue;
8334       }
8335 
8336       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8337         Expected<StringRef> SymtabOrErr =
8338             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8339         if (!SymtabOrErr)
8340           return SymtabOrErr.takeError();
8341 
8342         // We can expect the bitcode file to have multiple symbol tables if it
8343         // was created by binary concatenation. In that case we silently
8344         // ignore any subsequent symbol tables, which is fine because this is a
8345         // low level function. The client is expected to notice that the number
8346         // of modules in the symbol table does not match the number of modules
8347         // in the input file and regenerate the symbol table.
8348         if (F.Symtab.empty())
8349           F.Symtab = *SymtabOrErr;
8350         continue;
8351       }
8352 
8353       if (Error Err = Stream.SkipBlock())
8354         return std::move(Err);
8355       continue;
8356     }
8357     case BitstreamEntry::Record:
8358       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8359         return std::move(E);
8360       continue;
8361     }
8362   }
8363 }
8364 
8365 /// Get a lazy one-at-time loading module from bitcode.
8366 ///
8367 /// This isn't always used in a lazy context.  In particular, it's also used by
8368 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8369 /// in forward-referenced functions from block address references.
8370 ///
8371 /// \param[in] MaterializeAll Set to \c true if we should materialize
8372 /// everything.
8373 Expected<std::unique_ptr<Module>>
8374 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8375                              bool ShouldLazyLoadMetadata, bool IsImporting,
8376                              ParserCallbacks Callbacks) {
8377   BitstreamCursor Stream(Buffer);
8378 
8379   std::string ProducerIdentification;
8380   if (IdentificationBit != -1ull) {
8381     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8382       return std::move(JumpFailed);
8383     if (Error E =
8384             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8385       return std::move(E);
8386   }
8387 
8388   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8389     return std::move(JumpFailed);
8390   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8391                               Context);
8392 
8393   std::unique_ptr<Module> M =
8394       std::make_unique<Module>(ModuleIdentifier, Context);
8395   M->setMaterializer(R);
8396 
8397   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8398   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8399                                       IsImporting, Callbacks))
8400     return std::move(Err);
8401 
8402   if (MaterializeAll) {
8403     // Read in the entire module, and destroy the BitcodeReader.
8404     if (Error Err = M->materializeAll())
8405       return std::move(Err);
8406   } else {
8407     // Resolve forward references from blockaddresses.
8408     if (Error Err = R->materializeForwardReferencedFunctions())
8409       return std::move(Err);
8410   }
8411 
8412   return std::move(M);
8413 }
8414 
8415 Expected<std::unique_ptr<Module>>
8416 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8417                              bool IsImporting, ParserCallbacks Callbacks) {
8418   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8419                        Callbacks);
8420 }
8421 
8422 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8423 // We don't use ModuleIdentifier here because the client may need to control the
8424 // module path used in the combined summary (e.g. when reading summaries for
8425 // regular LTO modules).
8426 Error BitcodeModule::readSummary(
8427     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8428     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8429   BitstreamCursor Stream(Buffer);
8430   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8431     return JumpFailed;
8432 
8433   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8434                                     ModulePath, IsPrevailing);
8435   return R.parseModule();
8436 }
8437 
8438 // Parse the specified bitcode buffer, returning the function info index.
8439 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8440   BitstreamCursor Stream(Buffer);
8441   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8442     return std::move(JumpFailed);
8443 
8444   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8445   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8446                                     ModuleIdentifier, 0);
8447 
8448   if (Error Err = R.parseModule())
8449     return std::move(Err);
8450 
8451   return std::move(Index);
8452 }
8453 
8454 static Expected<std::pair<bool, bool>>
8455 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8456                                                  unsigned ID,
8457                                                  BitcodeLTOInfo &LTOInfo) {
8458   if (Error Err = Stream.EnterSubBlock(ID))
8459     return std::move(Err);
8460   SmallVector<uint64_t, 64> Record;
8461 
8462   while (true) {
8463     BitstreamEntry Entry;
8464     std::pair<bool, bool> Result = {false,false};
8465     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8466       return std::move(E);
8467 
8468     switch (Entry.Kind) {
8469     case BitstreamEntry::SubBlock: // Handled for us already.
8470     case BitstreamEntry::Error:
8471       return error("Malformed block");
8472     case BitstreamEntry::EndBlock: {
8473       // If no flags record found, set both flags to false.
8474       return Result;
8475     }
8476     case BitstreamEntry::Record:
8477       // The interesting case.
8478       break;
8479     }
8480 
8481     // Look for the FS_FLAGS record.
8482     Record.clear();
8483     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8484     if (!MaybeBitCode)
8485       return MaybeBitCode.takeError();
8486     switch (MaybeBitCode.get()) {
8487     default: // Default behavior: ignore.
8488       break;
8489     case bitc::FS_FLAGS: { // [flags]
8490       uint64_t Flags = Record[0];
8491       // Scan flags.
8492       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8493 
8494       bool EnableSplitLTOUnit = Flags & 0x8;
8495       bool UnifiedLTO = Flags & 0x200;
8496       Result = {EnableSplitLTOUnit, UnifiedLTO};
8497 
8498       return Result;
8499     }
8500     }
8501   }
8502   llvm_unreachable("Exit infinite loop");
8503 }
8504 
8505 // Check if the given bitcode buffer contains a global value summary block.
8506 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8507   BitstreamCursor Stream(Buffer);
8508   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8509     return std::move(JumpFailed);
8510 
8511   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8512     return std::move(Err);
8513 
8514   while (true) {
8515     llvm::BitstreamEntry Entry;
8516     if (Error E = Stream.advance().moveInto(Entry))
8517       return std::move(E);
8518 
8519     switch (Entry.Kind) {
8520     case BitstreamEntry::Error:
8521       return error("Malformed block");
8522     case BitstreamEntry::EndBlock:
8523       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8524                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8525 
8526     case BitstreamEntry::SubBlock:
8527       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8528         BitcodeLTOInfo LTOInfo;
8529         Expected<std::pair<bool, bool>> Flags =
8530             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8531         if (!Flags)
8532           return Flags.takeError();
8533         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8534         LTOInfo.IsThinLTO = true;
8535         LTOInfo.HasSummary = true;
8536         return LTOInfo;
8537       }
8538 
8539       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8540         BitcodeLTOInfo LTOInfo;
8541         Expected<std::pair<bool, bool>> Flags =
8542             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8543         if (!Flags)
8544           return Flags.takeError();
8545         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8546         LTOInfo.IsThinLTO = false;
8547         LTOInfo.HasSummary = true;
8548         return LTOInfo;
8549       }
8550 
8551       // Ignore other sub-blocks.
8552       if (Error Err = Stream.SkipBlock())
8553         return std::move(Err);
8554       continue;
8555 
8556     case BitstreamEntry::Record:
8557       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8558         continue;
8559       else
8560         return StreamFailed.takeError();
8561     }
8562   }
8563 }
8564 
8565 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8566   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8567   if (!MsOrErr)
8568     return MsOrErr.takeError();
8569 
8570   if (MsOrErr->size() != 1)
8571     return error("Expected a single module");
8572 
8573   return (*MsOrErr)[0];
8574 }
8575 
8576 Expected<std::unique_ptr<Module>>
8577 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8578                            bool ShouldLazyLoadMetadata, bool IsImporting,
8579                            ParserCallbacks Callbacks) {
8580   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8581   if (!BM)
8582     return BM.takeError();
8583 
8584   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8585                            Callbacks);
8586 }
8587 
8588 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8589     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8590     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8591   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8592                                      IsImporting, Callbacks);
8593   if (MOrErr)
8594     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8595   return MOrErr;
8596 }
8597 
8598 Expected<std::unique_ptr<Module>>
8599 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8600   return getModuleImpl(Context, true, false, false, Callbacks);
8601   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8602   // written.  We must defer until the Module has been fully materialized.
8603 }
8604 
8605 Expected<std::unique_ptr<Module>>
8606 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8607                        ParserCallbacks Callbacks) {
8608   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8609   if (!BM)
8610     return BM.takeError();
8611 
8612   return BM->parseModule(Context, Callbacks);
8613 }
8614 
8615 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8616   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8617   if (!StreamOrErr)
8618     return StreamOrErr.takeError();
8619 
8620   return readTriple(*StreamOrErr);
8621 }
8622 
8623 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8624   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8625   if (!StreamOrErr)
8626     return StreamOrErr.takeError();
8627 
8628   return hasObjCCategory(*StreamOrErr);
8629 }
8630 
8631 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8632   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8633   if (!StreamOrErr)
8634     return StreamOrErr.takeError();
8635 
8636   return readIdentificationCode(*StreamOrErr);
8637 }
8638 
8639 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8640                                    ModuleSummaryIndex &CombinedIndex) {
8641   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8642   if (!BM)
8643     return BM.takeError();
8644 
8645   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8646 }
8647 
8648 Expected<std::unique_ptr<ModuleSummaryIndex>>
8649 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8650   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8651   if (!BM)
8652     return BM.takeError();
8653 
8654   return BM->getSummary();
8655 }
8656 
8657 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8658   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8659   if (!BM)
8660     return BM.takeError();
8661 
8662   return BM->getLTOInfo();
8663 }
8664 
8665 Expected<std::unique_ptr<ModuleSummaryIndex>>
8666 llvm::getModuleSummaryIndexForFile(StringRef Path,
8667                                    bool IgnoreEmptyThinLTOIndexFile) {
8668   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8669       MemoryBuffer::getFileOrSTDIN(Path);
8670   if (!FileOrErr)
8671     return errorCodeToError(FileOrErr.getError());
8672   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8673     return nullptr;
8674   return getModuleSummaryIndex(**FileOrErr);
8675 }
8676