1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/LLVMContext.h" 21 #include "llvm/Metadata.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/AutoUpgrade.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/OperandTraits.h" 30 using namespace llvm; 31 32 void BitcodeReader::FreeState() { 33 delete Buffer; 34 Buffer = 0; 35 std::vector<PATypeHolder>().swap(TypeList); 36 ValueList.clear(); 37 MDValueList.clear(); 38 39 std::vector<AttrListPtr>().swap(MAttributes); 40 std::vector<BasicBlock*>().swap(FunctionBBs); 41 std::vector<Function*>().swap(FunctionsWithBodies); 42 DeferredFunctionInfo.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 } 80 } 81 82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 83 switch (Val) { 84 default: // Map unknown visibilities to default. 85 case 0: return GlobalValue::DefaultVisibility; 86 case 1: return GlobalValue::HiddenVisibility; 87 case 2: return GlobalValue::ProtectedVisibility; 88 } 89 } 90 91 static int GetDecodedCastOpcode(unsigned Val) { 92 switch (Val) { 93 default: return -1; 94 case bitc::CAST_TRUNC : return Instruction::Trunc; 95 case bitc::CAST_ZEXT : return Instruction::ZExt; 96 case bitc::CAST_SEXT : return Instruction::SExt; 97 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 98 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 99 case bitc::CAST_UITOFP : return Instruction::UIToFP; 100 case bitc::CAST_SITOFP : return Instruction::SIToFP; 101 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 102 case bitc::CAST_FPEXT : return Instruction::FPExt; 103 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 104 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 105 case bitc::CAST_BITCAST : return Instruction::BitCast; 106 } 107 } 108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 109 switch (Val) { 110 default: return -1; 111 case bitc::BINOP_ADD: 112 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 113 case bitc::BINOP_SUB: 114 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 115 case bitc::BINOP_MUL: 116 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 117 case bitc::BINOP_UDIV: return Instruction::UDiv; 118 case bitc::BINOP_SDIV: 119 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 120 case bitc::BINOP_UREM: return Instruction::URem; 121 case bitc::BINOP_SREM: 122 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 123 case bitc::BINOP_SHL: return Instruction::Shl; 124 case bitc::BINOP_LSHR: return Instruction::LShr; 125 case bitc::BINOP_ASHR: return Instruction::AShr; 126 case bitc::BINOP_AND: return Instruction::And; 127 case bitc::BINOP_OR: return Instruction::Or; 128 case bitc::BINOP_XOR: return Instruction::Xor; 129 } 130 } 131 132 namespace llvm { 133 namespace { 134 /// @brief A class for maintaining the slot number definition 135 /// as a placeholder for the actual definition for forward constants defs. 136 class ConstantPlaceHolder : public ConstantExpr { 137 ConstantPlaceHolder(); // DO NOT IMPLEMENT 138 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 139 public: 140 // allocate space for exactly one operand 141 void *operator new(size_t s) { 142 return User::operator new(s, 1); 143 } 144 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 145 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 146 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 147 } 148 149 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 150 static inline bool classof(const ConstantPlaceHolder *) { return true; } 151 static bool classof(const Value *V) { 152 return isa<ConstantExpr>(V) && 153 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 154 } 155 156 157 /// Provide fast operand accessors 158 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 159 }; 160 } 161 162 // FIXME: can we inherit this from ConstantExpr? 163 template <> 164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 165 }; 166 } 167 168 169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 170 if (Idx == size()) { 171 push_back(V); 172 return; 173 } 174 175 if (Idx >= size()) 176 resize(Idx+1); 177 178 WeakVH &OldV = ValuePtrs[Idx]; 179 if (OldV == 0) { 180 OldV = V; 181 return; 182 } 183 184 // Handle constants and non-constants (e.g. instrs) differently for 185 // efficiency. 186 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 187 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 188 OldV = V; 189 } else { 190 // If there was a forward reference to this value, replace it. 191 Value *PrevVal = OldV; 192 OldV->replaceAllUsesWith(V); 193 delete PrevVal; 194 } 195 } 196 197 198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 199 const Type *Ty) { 200 if (Idx >= size()) 201 resize(Idx + 1); 202 203 if (Value *V = ValuePtrs[Idx]) { 204 assert(Ty == V->getType() && "Type mismatch in constant table!"); 205 return cast<Constant>(V); 206 } 207 208 // Create and return a placeholder, which will later be RAUW'd. 209 Constant *C = new ConstantPlaceHolder(Ty, Context); 210 ValuePtrs[Idx] = C; 211 return C; 212 } 213 214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 215 if (Idx >= size()) 216 resize(Idx + 1); 217 218 if (Value *V = ValuePtrs[Idx]) { 219 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 220 return V; 221 } 222 223 // No type specified, must be invalid reference. 224 if (Ty == 0) return 0; 225 226 // Create and return a placeholder, which will later be RAUW'd. 227 Value *V = new Argument(Ty); 228 ValuePtrs[Idx] = V; 229 return V; 230 } 231 232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 233 /// resolves any forward references. The idea behind this is that we sometimes 234 /// get constants (such as large arrays) which reference *many* forward ref 235 /// constants. Replacing each of these causes a lot of thrashing when 236 /// building/reuniquing the constant. Instead of doing this, we look at all the 237 /// uses and rewrite all the place holders at once for any constant that uses 238 /// a placeholder. 239 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 240 // Sort the values by-pointer so that they are efficient to look up with a 241 // binary search. 242 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 243 244 SmallVector<Constant*, 64> NewOps; 245 246 while (!ResolveConstants.empty()) { 247 Value *RealVal = operator[](ResolveConstants.back().second); 248 Constant *Placeholder = ResolveConstants.back().first; 249 ResolveConstants.pop_back(); 250 251 // Loop over all users of the placeholder, updating them to reference the 252 // new value. If they reference more than one placeholder, update them all 253 // at once. 254 while (!Placeholder->use_empty()) { 255 Value::use_iterator UI = Placeholder->use_begin(); 256 257 // If the using object isn't uniqued, just update the operands. This 258 // handles instructions and initializers for global variables. 259 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 260 UI.getUse().set(RealVal); 261 continue; 262 } 263 264 // Otherwise, we have a constant that uses the placeholder. Replace that 265 // constant with a new constant that has *all* placeholder uses updated. 266 Constant *UserC = cast<Constant>(*UI); 267 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 268 I != E; ++I) { 269 Value *NewOp; 270 if (!isa<ConstantPlaceHolder>(*I)) { 271 // Not a placeholder reference. 272 NewOp = *I; 273 } else if (*I == Placeholder) { 274 // Common case is that it just references this one placeholder. 275 NewOp = RealVal; 276 } else { 277 // Otherwise, look up the placeholder in ResolveConstants. 278 ResolveConstantsTy::iterator It = 279 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 280 std::pair<Constant*, unsigned>(cast<Constant>(*I), 281 0)); 282 assert(It != ResolveConstants.end() && It->first == *I); 283 NewOp = operator[](It->second); 284 } 285 286 NewOps.push_back(cast<Constant>(NewOp)); 287 } 288 289 // Make the new constant. 290 Constant *NewC; 291 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 292 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 293 NewOps.size()); 294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 295 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 296 UserCS->getType()->isPacked()); 297 } else if (isa<ConstantVector>(UserC)) { 298 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 299 } else { 300 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 301 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 302 NewOps.size()); 303 } 304 305 UserC->replaceAllUsesWith(NewC); 306 UserC->destroyConstant(); 307 NewOps.clear(); 308 } 309 310 // Update all ValueHandles, they should be the only users at this point. 311 Placeholder->replaceAllUsesWith(RealVal); 312 delete Placeholder; 313 } 314 } 315 316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 317 if (Idx == size()) { 318 push_back(V); 319 return; 320 } 321 322 if (Idx >= size()) 323 resize(Idx+1); 324 325 WeakVH &OldV = MDValuePtrs[Idx]; 326 if (OldV == 0) { 327 OldV = V; 328 return; 329 } 330 331 // If there was a forward reference to this value, replace it. 332 Value *PrevVal = OldV; 333 OldV->replaceAllUsesWith(V); 334 delete PrevVal; 335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 336 // value for Idx. 337 MDValuePtrs[Idx] = V; 338 } 339 340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 341 if (Idx >= size()) 342 resize(Idx + 1); 343 344 if (Value *V = MDValuePtrs[Idx]) { 345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 346 return V; 347 } 348 349 // Create and return a placeholder, which will later be RAUW'd. 350 Value *V = new Argument(Type::getMetadataTy(Context)); 351 MDValuePtrs[Idx] = V; 352 return V; 353 } 354 355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 356 // If the TypeID is in range, return it. 357 if (ID < TypeList.size()) 358 return TypeList[ID].get(); 359 if (!isTypeTable) return 0; 360 361 // The type table allows forward references. Push as many Opaque types as 362 // needed to get up to ID. 363 while (TypeList.size() <= ID) 364 TypeList.push_back(OpaqueType::get(Context)); 365 return TypeList.back().get(); 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Functions for parsing blocks from the bitcode file 370 //===----------------------------------------------------------------------===// 371 372 bool BitcodeReader::ParseAttributeBlock() { 373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!MAttributes.empty()) 377 return Error("Multiple PARAMATTR blocks found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 381 SmallVector<AttributeWithIndex, 8> Attrs; 382 383 // Read all the records. 384 while (1) { 385 unsigned Code = Stream.ReadCode(); 386 if (Code == bitc::END_BLOCK) { 387 if (Stream.ReadBlockEnd()) 388 return Error("Error at end of PARAMATTR block"); 389 return false; 390 } 391 392 if (Code == bitc::ENTER_SUBBLOCK) { 393 // No known subblocks, always skip them. 394 Stream.ReadSubBlockID(); 395 if (Stream.SkipBlock()) 396 return Error("Malformed block record"); 397 continue; 398 } 399 400 if (Code == bitc::DEFINE_ABBREV) { 401 Stream.ReadAbbrevRecord(); 402 continue; 403 } 404 405 // Read a record. 406 Record.clear(); 407 switch (Stream.ReadRecord(Code, Record)) { 408 default: // Default behavior: ignore. 409 break; 410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 411 if (Record.size() & 1) 412 return Error("Invalid ENTRY record"); 413 414 // FIXME : Remove this autoupgrade code in LLVM 3.0. 415 // If Function attributes are using index 0 then transfer them 416 // to index ~0. Index 0 is used for return value attributes but used to be 417 // used for function attributes. 418 Attributes RetAttribute = Attribute::None; 419 Attributes FnAttribute = Attribute::None; 420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 421 // FIXME: remove in LLVM 3.0 422 // The alignment is stored as a 16-bit raw value from bits 31--16. 423 // We shift the bits above 31 down by 11 bits. 424 425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 426 if (Alignment && !isPowerOf2_32(Alignment)) 427 return Error("Alignment is not a power of two."); 428 429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 430 if (Alignment) 431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 433 Record[i+1] = ReconstitutedAttr; 434 435 if (Record[i] == 0) 436 RetAttribute = Record[i+1]; 437 else if (Record[i] == ~0U) 438 FnAttribute = Record[i+1]; 439 } 440 441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 442 Attribute::ReadOnly|Attribute::ReadNone); 443 444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 445 (RetAttribute & OldRetAttrs) != 0) { 446 if (FnAttribute == Attribute::None) { // add a slot so they get added. 447 Record.push_back(~0U); 448 Record.push_back(0); 449 } 450 451 FnAttribute |= RetAttribute & OldRetAttrs; 452 RetAttribute &= ~OldRetAttrs; 453 } 454 455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 456 if (Record[i] == 0) { 457 if (RetAttribute != Attribute::None) 458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 459 } else if (Record[i] == ~0U) { 460 if (FnAttribute != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 462 } else if (Record[i+1] != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 464 } 465 466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 467 Attrs.clear(); 468 break; 469 } 470 } 471 } 472 } 473 474 475 bool BitcodeReader::ParseTypeTable() { 476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 477 return Error("Malformed block record"); 478 479 if (!TypeList.empty()) 480 return Error("Multiple TYPE_BLOCKs found!"); 481 482 SmallVector<uint64_t, 64> Record; 483 unsigned NumRecords = 0; 484 485 // Read all the records for this type table. 486 while (1) { 487 unsigned Code = Stream.ReadCode(); 488 if (Code == bitc::END_BLOCK) { 489 if (NumRecords != TypeList.size()) 490 return Error("Invalid type forward reference in TYPE_BLOCK"); 491 if (Stream.ReadBlockEnd()) 492 return Error("Error at end of type table block"); 493 return false; 494 } 495 496 if (Code == bitc::ENTER_SUBBLOCK) { 497 // No known subblocks, always skip them. 498 Stream.ReadSubBlockID(); 499 if (Stream.SkipBlock()) 500 return Error("Malformed block record"); 501 continue; 502 } 503 504 if (Code == bitc::DEFINE_ABBREV) { 505 Stream.ReadAbbrevRecord(); 506 continue; 507 } 508 509 // Read a record. 510 Record.clear(); 511 const Type *ResultTy = 0; 512 switch (Stream.ReadRecord(Code, Record)) { 513 default: // Default behavior: unknown type. 514 ResultTy = 0; 515 break; 516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 518 // type list. This allows us to reserve space. 519 if (Record.size() < 1) 520 return Error("Invalid TYPE_CODE_NUMENTRY record"); 521 TypeList.reserve(Record[0]); 522 continue; 523 case bitc::TYPE_CODE_VOID: // VOID 524 ResultTy = Type::getVoidTy(Context); 525 break; 526 case bitc::TYPE_CODE_FLOAT: // FLOAT 527 ResultTy = Type::getFloatTy(Context); 528 break; 529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 530 ResultTy = Type::getDoubleTy(Context); 531 break; 532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 533 ResultTy = Type::getX86_FP80Ty(Context); 534 break; 535 case bitc::TYPE_CODE_FP128: // FP128 536 ResultTy = Type::getFP128Ty(Context); 537 break; 538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 539 ResultTy = Type::getPPC_FP128Ty(Context); 540 break; 541 case bitc::TYPE_CODE_LABEL: // LABEL 542 ResultTy = Type::getLabelTy(Context); 543 break; 544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 545 ResultTy = 0; 546 break; 547 case bitc::TYPE_CODE_METADATA: // METADATA 548 ResultTy = Type::getMetadataTy(Context); 549 break; 550 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 551 if (Record.size() < 1) 552 return Error("Invalid Integer type record"); 553 554 ResultTy = IntegerType::get(Context, Record[0]); 555 break; 556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 557 // [pointee type, address space] 558 if (Record.size() < 1) 559 return Error("Invalid POINTER type record"); 560 unsigned AddressSpace = 0; 561 if (Record.size() == 2) 562 AddressSpace = Record[1]; 563 ResultTy = PointerType::get(getTypeByID(Record[0], true), 564 AddressSpace); 565 break; 566 } 567 case bitc::TYPE_CODE_FUNCTION: { 568 // FIXME: attrid is dead, remove it in LLVM 3.0 569 // FUNCTION: [vararg, attrid, retty, paramty x N] 570 if (Record.size() < 3) 571 return Error("Invalid FUNCTION type record"); 572 std::vector<const Type*> ArgTys; 573 for (unsigned i = 3, e = Record.size(); i != e; ++i) 574 ArgTys.push_back(getTypeByID(Record[i], true)); 575 576 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 577 Record[0]); 578 break; 579 } 580 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 581 if (Record.size() < 1) 582 return Error("Invalid STRUCT type record"); 583 std::vector<const Type*> EltTys; 584 for (unsigned i = 1, e = Record.size(); i != e; ++i) 585 EltTys.push_back(getTypeByID(Record[i], true)); 586 ResultTy = StructType::get(Context, EltTys, Record[0]); 587 break; 588 } 589 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 590 if (Record.size() < 2) 591 return Error("Invalid ARRAY type record"); 592 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 593 break; 594 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid VECTOR type record"); 597 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 } 600 601 if (NumRecords == TypeList.size()) { 602 // If this is a new type slot, just append it. 603 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 604 ++NumRecords; 605 } else if (ResultTy == 0) { 606 // Otherwise, this was forward referenced, so an opaque type was created, 607 // but the result type is actually just an opaque. Leave the one we 608 // created previously. 609 ++NumRecords; 610 } else { 611 // Otherwise, this was forward referenced, so an opaque type was created. 612 // Resolve the opaque type to the real type now. 613 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 614 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 615 616 // Don't directly push the new type on the Tab. Instead we want to replace 617 // the opaque type we previously inserted with the new concrete value. The 618 // refinement from the abstract (opaque) type to the new type causes all 619 // uses of the abstract type to use the concrete type (NewTy). This will 620 // also cause the opaque type to be deleted. 621 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 622 623 // This should have replaced the old opaque type with the new type in the 624 // value table... or with a preexisting type that was already in the 625 // system. Let's just make sure it did. 626 assert(TypeList[NumRecords-1].get() != OldTy && 627 "refineAbstractType didn't work!"); 628 } 629 } 630 } 631 632 633 bool BitcodeReader::ParseTypeSymbolTable() { 634 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 635 return Error("Malformed block record"); 636 637 SmallVector<uint64_t, 64> Record; 638 639 // Read all the records for this type table. 640 std::string TypeName; 641 while (1) { 642 unsigned Code = Stream.ReadCode(); 643 if (Code == bitc::END_BLOCK) { 644 if (Stream.ReadBlockEnd()) 645 return Error("Error at end of type symbol table block"); 646 return false; 647 } 648 649 if (Code == bitc::ENTER_SUBBLOCK) { 650 // No known subblocks, always skip them. 651 Stream.ReadSubBlockID(); 652 if (Stream.SkipBlock()) 653 return Error("Malformed block record"); 654 continue; 655 } 656 657 if (Code == bitc::DEFINE_ABBREV) { 658 Stream.ReadAbbrevRecord(); 659 continue; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.ReadRecord(Code, Record)) { 665 default: // Default behavior: unknown type. 666 break; 667 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 668 if (ConvertToString(Record, 1, TypeName)) 669 return Error("Invalid TST_ENTRY record"); 670 unsigned TypeID = Record[0]; 671 if (TypeID >= TypeList.size()) 672 return Error("Invalid Type ID in TST_ENTRY record"); 673 674 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 675 TypeName.clear(); 676 break; 677 } 678 } 679 } 680 681 bool BitcodeReader::ParseValueSymbolTable() { 682 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 683 return Error("Malformed block record"); 684 685 SmallVector<uint64_t, 64> Record; 686 687 // Read all the records for this value table. 688 SmallString<128> ValueName; 689 while (1) { 690 unsigned Code = Stream.ReadCode(); 691 if (Code == bitc::END_BLOCK) { 692 if (Stream.ReadBlockEnd()) 693 return Error("Error at end of value symbol table block"); 694 return false; 695 } 696 if (Code == bitc::ENTER_SUBBLOCK) { 697 // No known subblocks, always skip them. 698 Stream.ReadSubBlockID(); 699 if (Stream.SkipBlock()) 700 return Error("Malformed block record"); 701 continue; 702 } 703 704 if (Code == bitc::DEFINE_ABBREV) { 705 Stream.ReadAbbrevRecord(); 706 continue; 707 } 708 709 // Read a record. 710 Record.clear(); 711 switch (Stream.ReadRecord(Code, Record)) { 712 default: // Default behavior: unknown type. 713 break; 714 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 715 if (ConvertToString(Record, 1, ValueName)) 716 return Error("Invalid VST_ENTRY record"); 717 unsigned ValueID = Record[0]; 718 if (ValueID >= ValueList.size()) 719 return Error("Invalid Value ID in VST_ENTRY record"); 720 Value *V = ValueList[ValueID]; 721 722 V->setName(StringRef(ValueName.data(), ValueName.size())); 723 ValueName.clear(); 724 break; 725 } 726 case bitc::VST_CODE_BBENTRY: { 727 if (ConvertToString(Record, 1, ValueName)) 728 return Error("Invalid VST_BBENTRY record"); 729 BasicBlock *BB = getBasicBlock(Record[0]); 730 if (BB == 0) 731 return Error("Invalid BB ID in VST_BBENTRY record"); 732 733 BB->setName(StringRef(ValueName.data(), ValueName.size())); 734 ValueName.clear(); 735 break; 736 } 737 } 738 } 739 } 740 741 bool BitcodeReader::ParseMetadata() { 742 unsigned NextValueNo = MDValueList.size(); 743 744 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 745 return Error("Malformed block record"); 746 747 SmallVector<uint64_t, 64> Record; 748 749 // Read all the records. 750 while (1) { 751 unsigned Code = Stream.ReadCode(); 752 if (Code == bitc::END_BLOCK) { 753 if (Stream.ReadBlockEnd()) 754 return Error("Error at end of PARAMATTR block"); 755 return false; 756 } 757 758 if (Code == bitc::ENTER_SUBBLOCK) { 759 // No known subblocks, always skip them. 760 Stream.ReadSubBlockID(); 761 if (Stream.SkipBlock()) 762 return Error("Malformed block record"); 763 continue; 764 } 765 766 if (Code == bitc::DEFINE_ABBREV) { 767 Stream.ReadAbbrevRecord(); 768 continue; 769 } 770 771 // Read a record. 772 Record.clear(); 773 switch (Stream.ReadRecord(Code, Record)) { 774 default: // Default behavior: ignore. 775 break; 776 case bitc::METADATA_NAME: { 777 // Read named of the named metadata. 778 unsigned NameLength = Record.size(); 779 SmallString<8> Name; 780 Name.resize(NameLength); 781 for (unsigned i = 0; i != NameLength; ++i) 782 Name[i] = Record[i]; 783 Record.clear(); 784 Code = Stream.ReadCode(); 785 786 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 787 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 788 assert ( 0 && "Inavlid Named Metadata record"); 789 790 // Read named metadata elements. 791 unsigned Size = Record.size(); 792 SmallVector<MetadataBase*, 8> Elts; 793 for (unsigned i = 0; i != Size; ++i) { 794 Value *MD = MDValueList.getValueFwdRef(Record[i]); 795 if (MetadataBase *B = dyn_cast<MetadataBase>(MD)) 796 Elts.push_back(B); 797 } 798 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 799 Elts.size(), TheModule); 800 MDValueList.AssignValue(V, NextValueNo++); 801 break; 802 } 803 case bitc::METADATA_NODE: { 804 if (Record.empty() || Record.size() % 2 == 1) 805 return Error("Invalid METADATA_NODE record"); 806 807 unsigned Size = Record.size(); 808 SmallVector<Value*, 8> Elts; 809 for (unsigned i = 0; i != Size; i += 2) { 810 const Type *Ty = getTypeByID(Record[i], false); 811 if (Ty->isMetadataTy()) 812 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 813 else if (Ty != Type::getVoidTy(Context)) 814 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 815 else 816 Elts.push_back(NULL); 817 } 818 Value *V = MDNode::get(Context, &Elts[0], Elts.size()); 819 MDValueList.AssignValue(V, NextValueNo++); 820 break; 821 } 822 case bitc::METADATA_STRING: { 823 unsigned MDStringLength = Record.size(); 824 SmallString<8> String; 825 String.resize(MDStringLength); 826 for (unsigned i = 0; i != MDStringLength; ++i) 827 String[i] = Record[i]; 828 Value *V = MDString::get(Context, 829 StringRef(String.data(), String.size())); 830 MDValueList.AssignValue(V, NextValueNo++); 831 break; 832 } 833 case bitc::METADATA_KIND: { 834 unsigned RecordLength = Record.size(); 835 if (Record.empty() || RecordLength < 2) 836 return Error("Invalid METADATA_KIND record"); 837 SmallString<8> Name; 838 Name.resize(RecordLength-1); 839 unsigned Kind = Record[0]; 840 (void) Kind; 841 for (unsigned i = 1; i != RecordLength; ++i) 842 Name[i-1] = Record[i]; 843 844 unsigned NewKind = Context.getMetadata().getMDKindID(Name.str()); 845 assert(Kind == NewKind && 846 "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind; 847 break; 848 } 849 } 850 } 851 } 852 853 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 854 /// the LSB for dense VBR encoding. 855 static uint64_t DecodeSignRotatedValue(uint64_t V) { 856 if ((V & 1) == 0) 857 return V >> 1; 858 if (V != 1) 859 return -(V >> 1); 860 // There is no such thing as -0 with integers. "-0" really means MININT. 861 return 1ULL << 63; 862 } 863 864 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 865 /// values and aliases that we can. 866 bool BitcodeReader::ResolveGlobalAndAliasInits() { 867 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 868 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 869 870 GlobalInitWorklist.swap(GlobalInits); 871 AliasInitWorklist.swap(AliasInits); 872 873 while (!GlobalInitWorklist.empty()) { 874 unsigned ValID = GlobalInitWorklist.back().second; 875 if (ValID >= ValueList.size()) { 876 // Not ready to resolve this yet, it requires something later in the file. 877 GlobalInits.push_back(GlobalInitWorklist.back()); 878 } else { 879 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 880 GlobalInitWorklist.back().first->setInitializer(C); 881 else 882 return Error("Global variable initializer is not a constant!"); 883 } 884 GlobalInitWorklist.pop_back(); 885 } 886 887 while (!AliasInitWorklist.empty()) { 888 unsigned ValID = AliasInitWorklist.back().second; 889 if (ValID >= ValueList.size()) { 890 AliasInits.push_back(AliasInitWorklist.back()); 891 } else { 892 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 893 AliasInitWorklist.back().first->setAliasee(C); 894 else 895 return Error("Alias initializer is not a constant!"); 896 } 897 AliasInitWorklist.pop_back(); 898 } 899 return false; 900 } 901 902 bool BitcodeReader::ParseConstants() { 903 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 904 return Error("Malformed block record"); 905 906 SmallVector<uint64_t, 64> Record; 907 908 // Read all the records for this value table. 909 const Type *CurTy = Type::getInt32Ty(Context); 910 unsigned NextCstNo = ValueList.size(); 911 while (1) { 912 unsigned Code = Stream.ReadCode(); 913 if (Code == bitc::END_BLOCK) 914 break; 915 916 if (Code == bitc::ENTER_SUBBLOCK) { 917 // No known subblocks, always skip them. 918 Stream.ReadSubBlockID(); 919 if (Stream.SkipBlock()) 920 return Error("Malformed block record"); 921 continue; 922 } 923 924 if (Code == bitc::DEFINE_ABBREV) { 925 Stream.ReadAbbrevRecord(); 926 continue; 927 } 928 929 // Read a record. 930 Record.clear(); 931 Value *V = 0; 932 unsigned BitCode = Stream.ReadRecord(Code, Record); 933 switch (BitCode) { 934 default: // Default behavior: unknown constant 935 case bitc::CST_CODE_UNDEF: // UNDEF 936 V = UndefValue::get(CurTy); 937 break; 938 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 939 if (Record.empty()) 940 return Error("Malformed CST_SETTYPE record"); 941 if (Record[0] >= TypeList.size()) 942 return Error("Invalid Type ID in CST_SETTYPE record"); 943 CurTy = TypeList[Record[0]]; 944 continue; // Skip the ValueList manipulation. 945 case bitc::CST_CODE_NULL: // NULL 946 V = Constant::getNullValue(CurTy); 947 break; 948 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 949 if (!isa<IntegerType>(CurTy) || Record.empty()) 950 return Error("Invalid CST_INTEGER record"); 951 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 952 break; 953 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 954 if (!isa<IntegerType>(CurTy) || Record.empty()) 955 return Error("Invalid WIDE_INTEGER record"); 956 957 unsigned NumWords = Record.size(); 958 SmallVector<uint64_t, 8> Words; 959 Words.resize(NumWords); 960 for (unsigned i = 0; i != NumWords; ++i) 961 Words[i] = DecodeSignRotatedValue(Record[i]); 962 V = ConstantInt::get(Context, 963 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 964 NumWords, &Words[0])); 965 break; 966 } 967 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 968 if (Record.empty()) 969 return Error("Invalid FLOAT record"); 970 if (CurTy->isFloatTy()) 971 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 972 else if (CurTy->isDoubleTy()) 973 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 974 else if (CurTy->isX86_FP80Ty()) { 975 // Bits are not stored the same way as a normal i80 APInt, compensate. 976 uint64_t Rearrange[2]; 977 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 978 Rearrange[1] = Record[0] >> 48; 979 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 980 } else if (CurTy->isFP128Ty()) 981 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 982 else if (CurTy->isPPC_FP128Ty()) 983 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 984 else 985 V = UndefValue::get(CurTy); 986 break; 987 } 988 989 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 990 if (Record.empty()) 991 return Error("Invalid CST_AGGREGATE record"); 992 993 unsigned Size = Record.size(); 994 std::vector<Constant*> Elts; 995 996 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 997 for (unsigned i = 0; i != Size; ++i) 998 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 999 STy->getElementType(i))); 1000 V = ConstantStruct::get(STy, Elts); 1001 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1002 const Type *EltTy = ATy->getElementType(); 1003 for (unsigned i = 0; i != Size; ++i) 1004 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1005 V = ConstantArray::get(ATy, Elts); 1006 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1007 const Type *EltTy = VTy->getElementType(); 1008 for (unsigned i = 0; i != Size; ++i) 1009 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1010 V = ConstantVector::get(Elts); 1011 } else { 1012 V = UndefValue::get(CurTy); 1013 } 1014 break; 1015 } 1016 case bitc::CST_CODE_STRING: { // STRING: [values] 1017 if (Record.empty()) 1018 return Error("Invalid CST_AGGREGATE record"); 1019 1020 const ArrayType *ATy = cast<ArrayType>(CurTy); 1021 const Type *EltTy = ATy->getElementType(); 1022 1023 unsigned Size = Record.size(); 1024 std::vector<Constant*> Elts; 1025 for (unsigned i = 0; i != Size; ++i) 1026 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1027 V = ConstantArray::get(ATy, Elts); 1028 break; 1029 } 1030 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1031 if (Record.empty()) 1032 return Error("Invalid CST_AGGREGATE record"); 1033 1034 const ArrayType *ATy = cast<ArrayType>(CurTy); 1035 const Type *EltTy = ATy->getElementType(); 1036 1037 unsigned Size = Record.size(); 1038 std::vector<Constant*> Elts; 1039 for (unsigned i = 0; i != Size; ++i) 1040 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1041 Elts.push_back(Constant::getNullValue(EltTy)); 1042 V = ConstantArray::get(ATy, Elts); 1043 break; 1044 } 1045 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1046 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1047 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1048 if (Opc < 0) { 1049 V = UndefValue::get(CurTy); // Unknown binop. 1050 } else { 1051 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1052 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1053 unsigned Flags = 0; 1054 if (Record.size() >= 4) { 1055 if (Opc == Instruction::Add || 1056 Opc == Instruction::Sub || 1057 Opc == Instruction::Mul) { 1058 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1059 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1060 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1061 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1062 } else if (Opc == Instruction::SDiv) { 1063 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1064 Flags |= SDivOperator::IsExact; 1065 } 1066 } 1067 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1068 } 1069 break; 1070 } 1071 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1072 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1073 int Opc = GetDecodedCastOpcode(Record[0]); 1074 if (Opc < 0) { 1075 V = UndefValue::get(CurTy); // Unknown cast. 1076 } else { 1077 const Type *OpTy = getTypeByID(Record[1]); 1078 if (!OpTy) return Error("Invalid CE_CAST record"); 1079 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1080 V = ConstantExpr::getCast(Opc, Op, CurTy); 1081 } 1082 break; 1083 } 1084 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1085 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1086 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1087 SmallVector<Constant*, 16> Elts; 1088 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1089 const Type *ElTy = getTypeByID(Record[i]); 1090 if (!ElTy) return Error("Invalid CE_GEP record"); 1091 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1092 } 1093 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1094 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1095 Elts.size()-1); 1096 else 1097 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1098 Elts.size()-1); 1099 break; 1100 } 1101 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1102 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1103 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1104 Type::getInt1Ty(Context)), 1105 ValueList.getConstantFwdRef(Record[1],CurTy), 1106 ValueList.getConstantFwdRef(Record[2],CurTy)); 1107 break; 1108 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1109 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1110 const VectorType *OpTy = 1111 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1112 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1113 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1114 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1115 V = ConstantExpr::getExtractElement(Op0, Op1); 1116 break; 1117 } 1118 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1119 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1120 if (Record.size() < 3 || OpTy == 0) 1121 return Error("Invalid CE_INSERTELT record"); 1122 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1123 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1124 OpTy->getElementType()); 1125 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1126 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1127 break; 1128 } 1129 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1130 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1131 if (Record.size() < 3 || OpTy == 0) 1132 return Error("Invalid CE_SHUFFLEVEC record"); 1133 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1134 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1135 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1136 OpTy->getNumElements()); 1137 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1138 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1139 break; 1140 } 1141 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1142 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1143 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1144 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1145 return Error("Invalid CE_SHUFVEC_EX record"); 1146 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1147 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1148 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1149 RTy->getNumElements()); 1150 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1151 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1152 break; 1153 } 1154 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1155 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1156 const Type *OpTy = getTypeByID(Record[0]); 1157 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1158 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1159 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1160 1161 if (OpTy->isFloatingPoint()) 1162 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1163 else 1164 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1165 break; 1166 } 1167 case bitc::CST_CODE_INLINEASM: { 1168 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1169 std::string AsmStr, ConstrStr; 1170 bool HasSideEffects = Record[0] & 1; 1171 bool IsAlignStack = Record[0] >> 1; 1172 unsigned AsmStrSize = Record[1]; 1173 if (2+AsmStrSize >= Record.size()) 1174 return Error("Invalid INLINEASM record"); 1175 unsigned ConstStrSize = Record[2+AsmStrSize]; 1176 if (3+AsmStrSize+ConstStrSize > Record.size()) 1177 return Error("Invalid INLINEASM record"); 1178 1179 for (unsigned i = 0; i != AsmStrSize; ++i) 1180 AsmStr += (char)Record[2+i]; 1181 for (unsigned i = 0; i != ConstStrSize; ++i) 1182 ConstrStr += (char)Record[3+AsmStrSize+i]; 1183 const PointerType *PTy = cast<PointerType>(CurTy); 1184 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1185 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1186 break; 1187 } 1188 case bitc::CST_CODE_BLOCKADDRESS:{ 1189 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1190 const Type *FnTy = getTypeByID(Record[0]); 1191 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1192 Function *Fn = 1193 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1194 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1195 1196 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1197 Type::getInt8Ty(Context), 1198 false, GlobalValue::InternalLinkage, 1199 0, ""); 1200 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1201 V = FwdRef; 1202 break; 1203 } 1204 } 1205 1206 ValueList.AssignValue(V, NextCstNo); 1207 ++NextCstNo; 1208 } 1209 1210 if (NextCstNo != ValueList.size()) 1211 return Error("Invalid constant reference!"); 1212 1213 if (Stream.ReadBlockEnd()) 1214 return Error("Error at end of constants block"); 1215 1216 // Once all the constants have been read, go through and resolve forward 1217 // references. 1218 ValueList.ResolveConstantForwardRefs(); 1219 return false; 1220 } 1221 1222 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1223 /// remember where it is and then skip it. This lets us lazily deserialize the 1224 /// functions. 1225 bool BitcodeReader::RememberAndSkipFunctionBody() { 1226 // Get the function we are talking about. 1227 if (FunctionsWithBodies.empty()) 1228 return Error("Insufficient function protos"); 1229 1230 Function *Fn = FunctionsWithBodies.back(); 1231 FunctionsWithBodies.pop_back(); 1232 1233 // Save the current stream state. 1234 uint64_t CurBit = Stream.GetCurrentBitNo(); 1235 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1236 1237 // Set the functions linkage to GhostLinkage so we know it is lazily 1238 // deserialized. 1239 Fn->setLinkage(GlobalValue::GhostLinkage); 1240 1241 // Skip over the function block for now. 1242 if (Stream.SkipBlock()) 1243 return Error("Malformed block record"); 1244 return false; 1245 } 1246 1247 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1248 // Reject multiple MODULE_BLOCK's in a single bitstream. 1249 if (TheModule) 1250 return Error("Multiple MODULE_BLOCKs in same stream"); 1251 1252 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1253 return Error("Malformed block record"); 1254 1255 // Otherwise, create the module. 1256 TheModule = new Module(ModuleID, Context); 1257 1258 SmallVector<uint64_t, 64> Record; 1259 std::vector<std::string> SectionTable; 1260 std::vector<std::string> GCTable; 1261 1262 // Read all the records for this module. 1263 while (!Stream.AtEndOfStream()) { 1264 unsigned Code = Stream.ReadCode(); 1265 if (Code == bitc::END_BLOCK) { 1266 if (Stream.ReadBlockEnd()) 1267 return Error("Error at end of module block"); 1268 1269 // Patch the initializers for globals and aliases up. 1270 ResolveGlobalAndAliasInits(); 1271 if (!GlobalInits.empty() || !AliasInits.empty()) 1272 return Error("Malformed global initializer set"); 1273 if (!FunctionsWithBodies.empty()) 1274 return Error("Too few function bodies found"); 1275 1276 // Look for intrinsic functions which need to be upgraded at some point 1277 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1278 FI != FE; ++FI) { 1279 Function* NewFn; 1280 if (UpgradeIntrinsicFunction(FI, NewFn)) 1281 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1282 } 1283 1284 // Force deallocation of memory for these vectors to favor the client that 1285 // want lazy deserialization. 1286 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1287 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1288 std::vector<Function*>().swap(FunctionsWithBodies); 1289 return false; 1290 } 1291 1292 if (Code == bitc::ENTER_SUBBLOCK) { 1293 switch (Stream.ReadSubBlockID()) { 1294 default: // Skip unknown content. 1295 if (Stream.SkipBlock()) 1296 return Error("Malformed block record"); 1297 break; 1298 case bitc::BLOCKINFO_BLOCK_ID: 1299 if (Stream.ReadBlockInfoBlock()) 1300 return Error("Malformed BlockInfoBlock"); 1301 break; 1302 case bitc::PARAMATTR_BLOCK_ID: 1303 if (ParseAttributeBlock()) 1304 return true; 1305 break; 1306 case bitc::TYPE_BLOCK_ID: 1307 if (ParseTypeTable()) 1308 return true; 1309 break; 1310 case bitc::TYPE_SYMTAB_BLOCK_ID: 1311 if (ParseTypeSymbolTable()) 1312 return true; 1313 break; 1314 case bitc::VALUE_SYMTAB_BLOCK_ID: 1315 if (ParseValueSymbolTable()) 1316 return true; 1317 break; 1318 case bitc::CONSTANTS_BLOCK_ID: 1319 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1320 return true; 1321 break; 1322 case bitc::METADATA_BLOCK_ID: 1323 if (ParseMetadata()) 1324 return true; 1325 break; 1326 case bitc::FUNCTION_BLOCK_ID: 1327 // If this is the first function body we've seen, reverse the 1328 // FunctionsWithBodies list. 1329 if (!HasReversedFunctionsWithBodies) { 1330 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1331 HasReversedFunctionsWithBodies = true; 1332 } 1333 1334 if (RememberAndSkipFunctionBody()) 1335 return true; 1336 break; 1337 } 1338 continue; 1339 } 1340 1341 if (Code == bitc::DEFINE_ABBREV) { 1342 Stream.ReadAbbrevRecord(); 1343 continue; 1344 } 1345 1346 // Read a record. 1347 switch (Stream.ReadRecord(Code, Record)) { 1348 default: break; // Default behavior, ignore unknown content. 1349 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1350 if (Record.size() < 1) 1351 return Error("Malformed MODULE_CODE_VERSION"); 1352 // Only version #0 is supported so far. 1353 if (Record[0] != 0) 1354 return Error("Unknown bitstream version!"); 1355 break; 1356 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1357 std::string S; 1358 if (ConvertToString(Record, 0, S)) 1359 return Error("Invalid MODULE_CODE_TRIPLE record"); 1360 TheModule->setTargetTriple(S); 1361 break; 1362 } 1363 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1364 std::string S; 1365 if (ConvertToString(Record, 0, S)) 1366 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1367 TheModule->setDataLayout(S); 1368 break; 1369 } 1370 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1371 std::string S; 1372 if (ConvertToString(Record, 0, S)) 1373 return Error("Invalid MODULE_CODE_ASM record"); 1374 TheModule->setModuleInlineAsm(S); 1375 break; 1376 } 1377 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1378 std::string S; 1379 if (ConvertToString(Record, 0, S)) 1380 return Error("Invalid MODULE_CODE_DEPLIB record"); 1381 TheModule->addLibrary(S); 1382 break; 1383 } 1384 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1385 std::string S; 1386 if (ConvertToString(Record, 0, S)) 1387 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1388 SectionTable.push_back(S); 1389 break; 1390 } 1391 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1392 std::string S; 1393 if (ConvertToString(Record, 0, S)) 1394 return Error("Invalid MODULE_CODE_GCNAME record"); 1395 GCTable.push_back(S); 1396 break; 1397 } 1398 // GLOBALVAR: [pointer type, isconst, initid, 1399 // linkage, alignment, section, visibility, threadlocal] 1400 case bitc::MODULE_CODE_GLOBALVAR: { 1401 if (Record.size() < 6) 1402 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1403 const Type *Ty = getTypeByID(Record[0]); 1404 if (!isa<PointerType>(Ty)) 1405 return Error("Global not a pointer type!"); 1406 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1407 Ty = cast<PointerType>(Ty)->getElementType(); 1408 1409 bool isConstant = Record[1]; 1410 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1411 unsigned Alignment = (1 << Record[4]) >> 1; 1412 std::string Section; 1413 if (Record[5]) { 1414 if (Record[5]-1 >= SectionTable.size()) 1415 return Error("Invalid section ID"); 1416 Section = SectionTable[Record[5]-1]; 1417 } 1418 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1419 if (Record.size() > 6) 1420 Visibility = GetDecodedVisibility(Record[6]); 1421 bool isThreadLocal = false; 1422 if (Record.size() > 7) 1423 isThreadLocal = Record[7]; 1424 1425 GlobalVariable *NewGV = 1426 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1427 isThreadLocal, AddressSpace); 1428 NewGV->setAlignment(Alignment); 1429 if (!Section.empty()) 1430 NewGV->setSection(Section); 1431 NewGV->setVisibility(Visibility); 1432 NewGV->setThreadLocal(isThreadLocal); 1433 1434 ValueList.push_back(NewGV); 1435 1436 // Remember which value to use for the global initializer. 1437 if (unsigned InitID = Record[2]) 1438 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1439 break; 1440 } 1441 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1442 // alignment, section, visibility, gc] 1443 case bitc::MODULE_CODE_FUNCTION: { 1444 if (Record.size() < 8) 1445 return Error("Invalid MODULE_CODE_FUNCTION record"); 1446 const Type *Ty = getTypeByID(Record[0]); 1447 if (!isa<PointerType>(Ty)) 1448 return Error("Function not a pointer type!"); 1449 const FunctionType *FTy = 1450 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1451 if (!FTy) 1452 return Error("Function not a pointer to function type!"); 1453 1454 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1455 "", TheModule); 1456 1457 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1458 bool isProto = Record[2]; 1459 Func->setLinkage(GetDecodedLinkage(Record[3])); 1460 Func->setAttributes(getAttributes(Record[4])); 1461 1462 Func->setAlignment((1 << Record[5]) >> 1); 1463 if (Record[6]) { 1464 if (Record[6]-1 >= SectionTable.size()) 1465 return Error("Invalid section ID"); 1466 Func->setSection(SectionTable[Record[6]-1]); 1467 } 1468 Func->setVisibility(GetDecodedVisibility(Record[7])); 1469 if (Record.size() > 8 && Record[8]) { 1470 if (Record[8]-1 > GCTable.size()) 1471 return Error("Invalid GC ID"); 1472 Func->setGC(GCTable[Record[8]-1].c_str()); 1473 } 1474 ValueList.push_back(Func); 1475 1476 // If this is a function with a body, remember the prototype we are 1477 // creating now, so that we can match up the body with them later. 1478 if (!isProto) 1479 FunctionsWithBodies.push_back(Func); 1480 break; 1481 } 1482 // ALIAS: [alias type, aliasee val#, linkage] 1483 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1484 case bitc::MODULE_CODE_ALIAS: { 1485 if (Record.size() < 3) 1486 return Error("Invalid MODULE_ALIAS record"); 1487 const Type *Ty = getTypeByID(Record[0]); 1488 if (!isa<PointerType>(Ty)) 1489 return Error("Function not a pointer type!"); 1490 1491 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1492 "", 0, TheModule); 1493 // Old bitcode files didn't have visibility field. 1494 if (Record.size() > 3) 1495 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1496 ValueList.push_back(NewGA); 1497 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1498 break; 1499 } 1500 /// MODULE_CODE_PURGEVALS: [numvals] 1501 case bitc::MODULE_CODE_PURGEVALS: 1502 // Trim down the value list to the specified size. 1503 if (Record.size() < 1 || Record[0] > ValueList.size()) 1504 return Error("Invalid MODULE_PURGEVALS record"); 1505 ValueList.shrinkTo(Record[0]); 1506 break; 1507 } 1508 Record.clear(); 1509 } 1510 1511 return Error("Premature end of bitstream"); 1512 } 1513 1514 bool BitcodeReader::ParseBitcode() { 1515 TheModule = 0; 1516 1517 if (Buffer->getBufferSize() & 3) 1518 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1519 1520 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1521 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1522 1523 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1524 // The magic number is 0x0B17C0DE stored in little endian. 1525 if (isBitcodeWrapper(BufPtr, BufEnd)) 1526 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1527 return Error("Invalid bitcode wrapper header"); 1528 1529 StreamFile.init(BufPtr, BufEnd); 1530 Stream.init(StreamFile); 1531 1532 // Sniff for the signature. 1533 if (Stream.Read(8) != 'B' || 1534 Stream.Read(8) != 'C' || 1535 Stream.Read(4) != 0x0 || 1536 Stream.Read(4) != 0xC || 1537 Stream.Read(4) != 0xE || 1538 Stream.Read(4) != 0xD) 1539 return Error("Invalid bitcode signature"); 1540 1541 // We expect a number of well-defined blocks, though we don't necessarily 1542 // need to understand them all. 1543 while (!Stream.AtEndOfStream()) { 1544 unsigned Code = Stream.ReadCode(); 1545 1546 if (Code != bitc::ENTER_SUBBLOCK) 1547 return Error("Invalid record at top-level"); 1548 1549 unsigned BlockID = Stream.ReadSubBlockID(); 1550 1551 // We only know the MODULE subblock ID. 1552 switch (BlockID) { 1553 case bitc::BLOCKINFO_BLOCK_ID: 1554 if (Stream.ReadBlockInfoBlock()) 1555 return Error("Malformed BlockInfoBlock"); 1556 break; 1557 case bitc::MODULE_BLOCK_ID: 1558 if (ParseModule(Buffer->getBufferIdentifier())) 1559 return true; 1560 break; 1561 default: 1562 if (Stream.SkipBlock()) 1563 return Error("Malformed block record"); 1564 break; 1565 } 1566 } 1567 1568 return false; 1569 } 1570 1571 /// ParseMetadataAttachment - Parse metadata attachments. 1572 bool BitcodeReader::ParseMetadataAttachment() { 1573 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1574 return Error("Malformed block record"); 1575 1576 MetadataContext &TheMetadata = Context.getMetadata(); 1577 SmallVector<uint64_t, 64> Record; 1578 while(1) { 1579 unsigned Code = Stream.ReadCode(); 1580 if (Code == bitc::END_BLOCK) { 1581 if (Stream.ReadBlockEnd()) 1582 return Error("Error at end of PARAMATTR block"); 1583 break; 1584 } 1585 if (Code == bitc::DEFINE_ABBREV) { 1586 Stream.ReadAbbrevRecord(); 1587 continue; 1588 } 1589 // Read a metadata attachment record. 1590 Record.clear(); 1591 switch (Stream.ReadRecord(Code, Record)) { 1592 default: // Default behavior: ignore. 1593 break; 1594 case bitc::METADATA_ATTACHMENT: { 1595 unsigned RecordLength = Record.size(); 1596 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1597 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1598 Instruction *Inst = InstructionList[Record[0]]; 1599 for (unsigned i = 1; i != RecordLength; i = i+2) { 1600 unsigned Kind = Record[i]; 1601 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1602 TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst); 1603 } 1604 break; 1605 } 1606 } 1607 } 1608 return false; 1609 } 1610 1611 /// ParseFunctionBody - Lazily parse the specified function body block. 1612 bool BitcodeReader::ParseFunctionBody(Function *F) { 1613 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1614 return Error("Malformed block record"); 1615 1616 unsigned ModuleValueListSize = ValueList.size(); 1617 1618 // Add all the function arguments to the value table. 1619 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1620 ValueList.push_back(I); 1621 1622 unsigned NextValueNo = ValueList.size(); 1623 BasicBlock *CurBB = 0; 1624 unsigned CurBBNo = 0; 1625 1626 // Read all the records. 1627 SmallVector<uint64_t, 64> Record; 1628 while (1) { 1629 unsigned Code = Stream.ReadCode(); 1630 if (Code == bitc::END_BLOCK) { 1631 if (Stream.ReadBlockEnd()) 1632 return Error("Error at end of function block"); 1633 break; 1634 } 1635 1636 if (Code == bitc::ENTER_SUBBLOCK) { 1637 switch (Stream.ReadSubBlockID()) { 1638 default: // Skip unknown content. 1639 if (Stream.SkipBlock()) 1640 return Error("Malformed block record"); 1641 break; 1642 case bitc::CONSTANTS_BLOCK_ID: 1643 if (ParseConstants()) return true; 1644 NextValueNo = ValueList.size(); 1645 break; 1646 case bitc::VALUE_SYMTAB_BLOCK_ID: 1647 if (ParseValueSymbolTable()) return true; 1648 break; 1649 case bitc::METADATA_ATTACHMENT_ID: 1650 if (ParseMetadataAttachment()) return true; 1651 break; 1652 } 1653 continue; 1654 } 1655 1656 if (Code == bitc::DEFINE_ABBREV) { 1657 Stream.ReadAbbrevRecord(); 1658 continue; 1659 } 1660 1661 // Read a record. 1662 Record.clear(); 1663 Instruction *I = 0; 1664 unsigned BitCode = Stream.ReadRecord(Code, Record); 1665 switch (BitCode) { 1666 default: // Default behavior: reject 1667 return Error("Unknown instruction"); 1668 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1669 if (Record.size() < 1 || Record[0] == 0) 1670 return Error("Invalid DECLAREBLOCKS record"); 1671 // Create all the basic blocks for the function. 1672 FunctionBBs.resize(Record[0]); 1673 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1674 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1675 CurBB = FunctionBBs[0]; 1676 continue; 1677 1678 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1679 unsigned OpNum = 0; 1680 Value *LHS, *RHS; 1681 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1682 getValue(Record, OpNum, LHS->getType(), RHS) || 1683 OpNum+1 > Record.size()) 1684 return Error("Invalid BINOP record"); 1685 1686 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1687 if (Opc == -1) return Error("Invalid BINOP record"); 1688 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1689 InstructionList.push_back(I); 1690 if (OpNum < Record.size()) { 1691 if (Opc == Instruction::Add || 1692 Opc == Instruction::Sub || 1693 Opc == Instruction::Mul) { 1694 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1695 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1696 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1697 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1698 } else if (Opc == Instruction::SDiv) { 1699 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1700 cast<BinaryOperator>(I)->setIsExact(true); 1701 } 1702 } 1703 break; 1704 } 1705 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1706 unsigned OpNum = 0; 1707 Value *Op; 1708 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1709 OpNum+2 != Record.size()) 1710 return Error("Invalid CAST record"); 1711 1712 const Type *ResTy = getTypeByID(Record[OpNum]); 1713 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1714 if (Opc == -1 || ResTy == 0) 1715 return Error("Invalid CAST record"); 1716 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1717 InstructionList.push_back(I); 1718 break; 1719 } 1720 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1721 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1722 unsigned OpNum = 0; 1723 Value *BasePtr; 1724 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1725 return Error("Invalid GEP record"); 1726 1727 SmallVector<Value*, 16> GEPIdx; 1728 while (OpNum != Record.size()) { 1729 Value *Op; 1730 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1731 return Error("Invalid GEP record"); 1732 GEPIdx.push_back(Op); 1733 } 1734 1735 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1736 InstructionList.push_back(I); 1737 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1738 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1739 break; 1740 } 1741 1742 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1743 // EXTRACTVAL: [opty, opval, n x indices] 1744 unsigned OpNum = 0; 1745 Value *Agg; 1746 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1747 return Error("Invalid EXTRACTVAL record"); 1748 1749 SmallVector<unsigned, 4> EXTRACTVALIdx; 1750 for (unsigned RecSize = Record.size(); 1751 OpNum != RecSize; ++OpNum) { 1752 uint64_t Index = Record[OpNum]; 1753 if ((unsigned)Index != Index) 1754 return Error("Invalid EXTRACTVAL index"); 1755 EXTRACTVALIdx.push_back((unsigned)Index); 1756 } 1757 1758 I = ExtractValueInst::Create(Agg, 1759 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1760 InstructionList.push_back(I); 1761 break; 1762 } 1763 1764 case bitc::FUNC_CODE_INST_INSERTVAL: { 1765 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1766 unsigned OpNum = 0; 1767 Value *Agg; 1768 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1769 return Error("Invalid INSERTVAL record"); 1770 Value *Val; 1771 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1772 return Error("Invalid INSERTVAL record"); 1773 1774 SmallVector<unsigned, 4> INSERTVALIdx; 1775 for (unsigned RecSize = Record.size(); 1776 OpNum != RecSize; ++OpNum) { 1777 uint64_t Index = Record[OpNum]; 1778 if ((unsigned)Index != Index) 1779 return Error("Invalid INSERTVAL index"); 1780 INSERTVALIdx.push_back((unsigned)Index); 1781 } 1782 1783 I = InsertValueInst::Create(Agg, Val, 1784 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1785 InstructionList.push_back(I); 1786 break; 1787 } 1788 1789 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1790 // obsolete form of select 1791 // handles select i1 ... in old bitcode 1792 unsigned OpNum = 0; 1793 Value *TrueVal, *FalseVal, *Cond; 1794 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1795 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1796 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1797 return Error("Invalid SELECT record"); 1798 1799 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1800 InstructionList.push_back(I); 1801 break; 1802 } 1803 1804 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1805 // new form of select 1806 // handles select i1 or select [N x i1] 1807 unsigned OpNum = 0; 1808 Value *TrueVal, *FalseVal, *Cond; 1809 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1810 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1811 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1812 return Error("Invalid SELECT record"); 1813 1814 // select condition can be either i1 or [N x i1] 1815 if (const VectorType* vector_type = 1816 dyn_cast<const VectorType>(Cond->getType())) { 1817 // expect <n x i1> 1818 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1819 return Error("Invalid SELECT condition type"); 1820 } else { 1821 // expect i1 1822 if (Cond->getType() != Type::getInt1Ty(Context)) 1823 return Error("Invalid SELECT condition type"); 1824 } 1825 1826 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1827 InstructionList.push_back(I); 1828 break; 1829 } 1830 1831 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1832 unsigned OpNum = 0; 1833 Value *Vec, *Idx; 1834 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1835 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1836 return Error("Invalid EXTRACTELT record"); 1837 I = ExtractElementInst::Create(Vec, Idx); 1838 InstructionList.push_back(I); 1839 break; 1840 } 1841 1842 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1843 unsigned OpNum = 0; 1844 Value *Vec, *Elt, *Idx; 1845 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1846 getValue(Record, OpNum, 1847 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1848 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1849 return Error("Invalid INSERTELT record"); 1850 I = InsertElementInst::Create(Vec, Elt, Idx); 1851 InstructionList.push_back(I); 1852 break; 1853 } 1854 1855 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1856 unsigned OpNum = 0; 1857 Value *Vec1, *Vec2, *Mask; 1858 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1859 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1860 return Error("Invalid SHUFFLEVEC record"); 1861 1862 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1863 return Error("Invalid SHUFFLEVEC record"); 1864 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1865 InstructionList.push_back(I); 1866 break; 1867 } 1868 1869 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1870 // Old form of ICmp/FCmp returning bool 1871 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1872 // both legal on vectors but had different behaviour. 1873 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1874 // FCmp/ICmp returning bool or vector of bool 1875 1876 unsigned OpNum = 0; 1877 Value *LHS, *RHS; 1878 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1879 getValue(Record, OpNum, LHS->getType(), RHS) || 1880 OpNum+1 != Record.size()) 1881 return Error("Invalid CMP record"); 1882 1883 if (LHS->getType()->isFPOrFPVector()) 1884 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1885 else 1886 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1887 InstructionList.push_back(I); 1888 break; 1889 } 1890 1891 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1892 if (Record.size() != 2) 1893 return Error("Invalid GETRESULT record"); 1894 unsigned OpNum = 0; 1895 Value *Op; 1896 getValueTypePair(Record, OpNum, NextValueNo, Op); 1897 unsigned Index = Record[1]; 1898 I = ExtractValueInst::Create(Op, Index); 1899 InstructionList.push_back(I); 1900 break; 1901 } 1902 1903 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1904 { 1905 unsigned Size = Record.size(); 1906 if (Size == 0) { 1907 I = ReturnInst::Create(Context); 1908 InstructionList.push_back(I); 1909 break; 1910 } 1911 1912 unsigned OpNum = 0; 1913 SmallVector<Value *,4> Vs; 1914 do { 1915 Value *Op = NULL; 1916 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1917 return Error("Invalid RET record"); 1918 Vs.push_back(Op); 1919 } while(OpNum != Record.size()); 1920 1921 const Type *ReturnType = F->getReturnType(); 1922 if (Vs.size() > 1 || 1923 (isa<StructType>(ReturnType) && 1924 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1925 Value *RV = UndefValue::get(ReturnType); 1926 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1927 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1928 InstructionList.push_back(I); 1929 CurBB->getInstList().push_back(I); 1930 ValueList.AssignValue(I, NextValueNo++); 1931 RV = I; 1932 } 1933 I = ReturnInst::Create(Context, RV); 1934 InstructionList.push_back(I); 1935 break; 1936 } 1937 1938 I = ReturnInst::Create(Context, Vs[0]); 1939 InstructionList.push_back(I); 1940 break; 1941 } 1942 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1943 if (Record.size() != 1 && Record.size() != 3) 1944 return Error("Invalid BR record"); 1945 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1946 if (TrueDest == 0) 1947 return Error("Invalid BR record"); 1948 1949 if (Record.size() == 1) { 1950 I = BranchInst::Create(TrueDest); 1951 InstructionList.push_back(I); 1952 } 1953 else { 1954 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1955 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 1956 if (FalseDest == 0 || Cond == 0) 1957 return Error("Invalid BR record"); 1958 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1959 InstructionList.push_back(I); 1960 } 1961 break; 1962 } 1963 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 1964 if (Record.size() < 3 || (Record.size() & 1) == 0) 1965 return Error("Invalid SWITCH record"); 1966 const Type *OpTy = getTypeByID(Record[0]); 1967 Value *Cond = getFnValueByID(Record[1], OpTy); 1968 BasicBlock *Default = getBasicBlock(Record[2]); 1969 if (OpTy == 0 || Cond == 0 || Default == 0) 1970 return Error("Invalid SWITCH record"); 1971 unsigned NumCases = (Record.size()-3)/2; 1972 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1973 InstructionList.push_back(SI); 1974 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1975 ConstantInt *CaseVal = 1976 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1977 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1978 if (CaseVal == 0 || DestBB == 0) { 1979 delete SI; 1980 return Error("Invalid SWITCH record!"); 1981 } 1982 SI->addCase(CaseVal, DestBB); 1983 } 1984 I = SI; 1985 break; 1986 } 1987 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 1988 if (Record.size() < 2) 1989 return Error("Invalid INDIRECTBR record"); 1990 const Type *OpTy = getTypeByID(Record[0]); 1991 Value *Address = getFnValueByID(Record[1], OpTy); 1992 if (OpTy == 0 || Address == 0) 1993 return Error("Invalid INDIRECTBR record"); 1994 unsigned NumDests = Record.size()-2; 1995 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 1996 InstructionList.push_back(IBI); 1997 for (unsigned i = 0, e = NumDests; i != e; ++i) { 1998 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 1999 IBI->addDestination(DestBB); 2000 } else { 2001 delete IBI; 2002 return Error("Invalid INDIRECTBR record!"); 2003 } 2004 } 2005 I = IBI; 2006 break; 2007 } 2008 2009 case bitc::FUNC_CODE_INST_INVOKE: { 2010 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2011 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2012 AttrListPtr PAL = getAttributes(Record[0]); 2013 unsigned CCInfo = Record[1]; 2014 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2015 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2016 2017 unsigned OpNum = 4; 2018 Value *Callee; 2019 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2020 return Error("Invalid INVOKE record"); 2021 2022 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2023 const FunctionType *FTy = !CalleeTy ? 0 : 2024 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2025 2026 // Check that the right number of fixed parameters are here. 2027 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2028 Record.size() < OpNum+FTy->getNumParams()) 2029 return Error("Invalid INVOKE record"); 2030 2031 SmallVector<Value*, 16> Ops; 2032 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2033 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2034 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2035 } 2036 2037 if (!FTy->isVarArg()) { 2038 if (Record.size() != OpNum) 2039 return Error("Invalid INVOKE record"); 2040 } else { 2041 // Read type/value pairs for varargs params. 2042 while (OpNum != Record.size()) { 2043 Value *Op; 2044 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2045 return Error("Invalid INVOKE record"); 2046 Ops.push_back(Op); 2047 } 2048 } 2049 2050 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2051 Ops.begin(), Ops.end()); 2052 InstructionList.push_back(I); 2053 cast<InvokeInst>(I)->setCallingConv( 2054 static_cast<CallingConv::ID>(CCInfo)); 2055 cast<InvokeInst>(I)->setAttributes(PAL); 2056 break; 2057 } 2058 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2059 I = new UnwindInst(Context); 2060 InstructionList.push_back(I); 2061 break; 2062 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2063 I = new UnreachableInst(Context); 2064 InstructionList.push_back(I); 2065 break; 2066 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2067 if (Record.size() < 1 || ((Record.size()-1)&1)) 2068 return Error("Invalid PHI record"); 2069 const Type *Ty = getTypeByID(Record[0]); 2070 if (!Ty) return Error("Invalid PHI record"); 2071 2072 PHINode *PN = PHINode::Create(Ty); 2073 InstructionList.push_back(PN); 2074 PN->reserveOperandSpace((Record.size()-1)/2); 2075 2076 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2077 Value *V = getFnValueByID(Record[1+i], Ty); 2078 BasicBlock *BB = getBasicBlock(Record[2+i]); 2079 if (!V || !BB) return Error("Invalid PHI record"); 2080 PN->addIncoming(V, BB); 2081 } 2082 I = PN; 2083 break; 2084 } 2085 2086 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2087 // Autoupgrade malloc instruction to malloc call. 2088 // FIXME: Remove in LLVM 3.0. 2089 if (Record.size() < 3) 2090 return Error("Invalid MALLOC record"); 2091 const PointerType *Ty = 2092 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2093 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2094 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2095 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2096 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2097 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2098 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2099 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2100 AllocSize, Size, NULL); 2101 InstructionList.push_back(I); 2102 break; 2103 } 2104 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2105 unsigned OpNum = 0; 2106 Value *Op; 2107 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2108 OpNum != Record.size()) 2109 return Error("Invalid FREE record"); 2110 if (!CurBB) return Error("Invalid free instruction with no BB"); 2111 I = CallInst::CreateFree(Op, CurBB); 2112 InstructionList.push_back(I); 2113 break; 2114 } 2115 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 2116 if (Record.size() < 3) 2117 return Error("Invalid ALLOCA record"); 2118 const PointerType *Ty = 2119 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2120 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2121 unsigned Align = Record[2]; 2122 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2123 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2124 InstructionList.push_back(I); 2125 break; 2126 } 2127 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2128 unsigned OpNum = 0; 2129 Value *Op; 2130 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2131 OpNum+2 != Record.size()) 2132 return Error("Invalid LOAD record"); 2133 2134 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2135 InstructionList.push_back(I); 2136 break; 2137 } 2138 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2139 unsigned OpNum = 0; 2140 Value *Val, *Ptr; 2141 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2142 getValue(Record, OpNum, 2143 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2144 OpNum+2 != Record.size()) 2145 return Error("Invalid STORE record"); 2146 2147 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2148 InstructionList.push_back(I); 2149 break; 2150 } 2151 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2152 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2153 unsigned OpNum = 0; 2154 Value *Val, *Ptr; 2155 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2156 getValue(Record, OpNum, 2157 PointerType::getUnqual(Val->getType()), Ptr)|| 2158 OpNum+2 != Record.size()) 2159 return Error("Invalid STORE record"); 2160 2161 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2162 InstructionList.push_back(I); 2163 break; 2164 } 2165 case bitc::FUNC_CODE_INST_CALL: { 2166 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2167 if (Record.size() < 3) 2168 return Error("Invalid CALL record"); 2169 2170 AttrListPtr PAL = getAttributes(Record[0]); 2171 unsigned CCInfo = Record[1]; 2172 2173 unsigned OpNum = 2; 2174 Value *Callee; 2175 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2176 return Error("Invalid CALL record"); 2177 2178 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2179 const FunctionType *FTy = 0; 2180 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2181 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2182 return Error("Invalid CALL record"); 2183 2184 SmallVector<Value*, 16> Args; 2185 // Read the fixed params. 2186 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2187 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2188 Args.push_back(getBasicBlock(Record[OpNum])); 2189 else 2190 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2191 if (Args.back() == 0) return Error("Invalid CALL record"); 2192 } 2193 2194 // Read type/value pairs for varargs params. 2195 if (!FTy->isVarArg()) { 2196 if (OpNum != Record.size()) 2197 return Error("Invalid CALL record"); 2198 } else { 2199 while (OpNum != Record.size()) { 2200 Value *Op; 2201 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2202 return Error("Invalid CALL record"); 2203 Args.push_back(Op); 2204 } 2205 } 2206 2207 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2208 InstructionList.push_back(I); 2209 cast<CallInst>(I)->setCallingConv( 2210 static_cast<CallingConv::ID>(CCInfo>>1)); 2211 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2212 cast<CallInst>(I)->setAttributes(PAL); 2213 break; 2214 } 2215 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2216 if (Record.size() < 3) 2217 return Error("Invalid VAARG record"); 2218 const Type *OpTy = getTypeByID(Record[0]); 2219 Value *Op = getFnValueByID(Record[1], OpTy); 2220 const Type *ResTy = getTypeByID(Record[2]); 2221 if (!OpTy || !Op || !ResTy) 2222 return Error("Invalid VAARG record"); 2223 I = new VAArgInst(Op, ResTy); 2224 InstructionList.push_back(I); 2225 break; 2226 } 2227 } 2228 2229 // Add instruction to end of current BB. If there is no current BB, reject 2230 // this file. 2231 if (CurBB == 0) { 2232 delete I; 2233 return Error("Invalid instruction with no BB"); 2234 } 2235 CurBB->getInstList().push_back(I); 2236 2237 // If this was a terminator instruction, move to the next block. 2238 if (isa<TerminatorInst>(I)) { 2239 ++CurBBNo; 2240 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2241 } 2242 2243 // Non-void values get registered in the value table for future use. 2244 if (I && I->getType() != Type::getVoidTy(Context)) 2245 ValueList.AssignValue(I, NextValueNo++); 2246 } 2247 2248 // Check the function list for unresolved values. 2249 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2250 if (A->getParent() == 0) { 2251 // We found at least one unresolved value. Nuke them all to avoid leaks. 2252 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2253 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2254 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2255 delete A; 2256 } 2257 } 2258 return Error("Never resolved value found in function!"); 2259 } 2260 } 2261 2262 // See if anything took the address of blocks in this function. If so, 2263 // resolve them now. 2264 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These 2265 /// are resolved lazily when functions are loaded. 2266 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2267 BlockAddrFwdRefs.find(F); 2268 if (BAFRI != BlockAddrFwdRefs.end()) { 2269 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2270 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2271 unsigned BlockIdx = RefList[i].first; 2272 if (BlockIdx >= FunctionBBs.size()) 2273 return Error("Invalid blockaddress block #"); 2274 2275 GlobalVariable *FwdRef = RefList[i].second; 2276 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2277 FwdRef->eraseFromParent(); 2278 } 2279 2280 BlockAddrFwdRefs.erase(BAFRI); 2281 } 2282 2283 // Trim the value list down to the size it was before we parsed this function. 2284 ValueList.shrinkTo(ModuleValueListSize); 2285 std::vector<BasicBlock*>().swap(FunctionBBs); 2286 2287 return false; 2288 } 2289 2290 //===----------------------------------------------------------------------===// 2291 // ModuleProvider implementation 2292 //===----------------------------------------------------------------------===// 2293 2294 2295 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 2296 // If it already is material, ignore the request. 2297 if (!F->hasNotBeenReadFromBitcode()) return false; 2298 2299 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2300 DeferredFunctionInfo.find(F); 2301 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2302 2303 // Move the bit stream to the saved position of the deferred function body and 2304 // restore the real linkage type for the function. 2305 Stream.JumpToBit(DFII->second.first); 2306 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2307 2308 if (ParseFunctionBody(F)) { 2309 if (ErrInfo) *ErrInfo = ErrorString; 2310 return true; 2311 } 2312 2313 // Upgrade any old intrinsic calls in the function. 2314 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2315 E = UpgradedIntrinsics.end(); I != E; ++I) { 2316 if (I->first != I->second) { 2317 for (Value::use_iterator UI = I->first->use_begin(), 2318 UE = I->first->use_end(); UI != UE; ) { 2319 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2320 UpgradeIntrinsicCall(CI, I->second); 2321 } 2322 } 2323 } 2324 2325 return false; 2326 } 2327 2328 void BitcodeReader::dematerializeFunction(Function *F) { 2329 // If this function isn't materialized, or if it is a proto, this is a noop. 2330 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2331 return; 2332 2333 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2334 2335 // Just forget the function body, we can remat it later. 2336 F->deleteBody(); 2337 F->setLinkage(GlobalValue::GhostLinkage); 2338 } 2339 2340 2341 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2342 // Iterate over the module, deserializing any functions that are still on 2343 // disk. 2344 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2345 F != E; ++F) 2346 if (F->hasNotBeenReadFromBitcode() && 2347 materializeFunction(F, ErrInfo)) 2348 return 0; 2349 2350 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2351 // delete the old functions to clean up. We can't do this unless the entire 2352 // module is materialized because there could always be another function body 2353 // with calls to the old function. 2354 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2355 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2356 if (I->first != I->second) { 2357 for (Value::use_iterator UI = I->first->use_begin(), 2358 UE = I->first->use_end(); UI != UE; ) { 2359 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2360 UpgradeIntrinsicCall(CI, I->second); 2361 } 2362 if (!I->first->use_empty()) 2363 I->first->replaceAllUsesWith(I->second); 2364 I->first->eraseFromParent(); 2365 } 2366 } 2367 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2368 2369 // Check debug info intrinsics. 2370 CheckDebugInfoIntrinsics(TheModule); 2371 2372 return TheModule; 2373 } 2374 2375 2376 /// This method is provided by the parent ModuleProvde class and overriden 2377 /// here. It simply releases the module from its provided and frees up our 2378 /// state. 2379 /// @brief Release our hold on the generated module 2380 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2381 // Since we're losing control of this Module, we must hand it back complete 2382 Module *M = ModuleProvider::releaseModule(ErrInfo); 2383 FreeState(); 2384 return M; 2385 } 2386 2387 2388 //===----------------------------------------------------------------------===// 2389 // External interface 2390 //===----------------------------------------------------------------------===// 2391 2392 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2393 /// 2394 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2395 LLVMContext& Context, 2396 std::string *ErrMsg) { 2397 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2398 if (R->ParseBitcode()) { 2399 if (ErrMsg) 2400 *ErrMsg = R->getErrorString(); 2401 2402 // Don't let the BitcodeReader dtor delete 'Buffer'. 2403 R->releaseMemoryBuffer(); 2404 delete R; 2405 return 0; 2406 } 2407 return R; 2408 } 2409 2410 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2411 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2412 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2413 std::string *ErrMsg){ 2414 BitcodeReader *R; 2415 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2416 ErrMsg)); 2417 if (!R) return 0; 2418 2419 // Read in the entire module. 2420 Module *M = R->materializeModule(ErrMsg); 2421 2422 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2423 // there was an error. 2424 R->releaseMemoryBuffer(); 2425 2426 // If there was no error, tell ModuleProvider not to delete it when its dtor 2427 // is run. 2428 if (M) 2429 M = R->releaseModule(ErrMsg); 2430 2431 delete R; 2432 return M; 2433 } 2434