1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (isa<ConstantVector>(UserC)) { 300 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 301 } else { 302 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 303 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 304 NewOps.size()); 305 } 306 307 UserC->replaceAllUsesWith(NewC); 308 UserC->destroyConstant(); 309 NewOps.clear(); 310 } 311 312 // Update all ValueHandles, they should be the only users at this point. 313 Placeholder->replaceAllUsesWith(RealVal); 314 delete Placeholder; 315 } 316 } 317 318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 319 if (Idx == size()) { 320 push_back(V); 321 return; 322 } 323 324 if (Idx >= size()) 325 resize(Idx+1); 326 327 WeakVH &OldV = MDValuePtrs[Idx]; 328 if (OldV == 0) { 329 OldV = V; 330 return; 331 } 332 333 // If there was a forward reference to this value, replace it. 334 MDNode *PrevVal = cast<MDNode>(OldV); 335 OldV->replaceAllUsesWith(V); 336 MDNode::deleteTemporary(PrevVal); 337 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 338 // value for Idx. 339 MDValuePtrs[Idx] = V; 340 } 341 342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 343 if (Idx >= size()) 344 resize(Idx + 1); 345 346 if (Value *V = MDValuePtrs[Idx]) { 347 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 348 return V; 349 } 350 351 // Create and return a placeholder, which will later be RAUW'd. 352 Value *V = MDNode::getTemporary(Context, 0, 0); 353 MDValuePtrs[Idx] = V; 354 return V; 355 } 356 357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 358 // If the TypeID is in range, return it. 359 if (ID < TypeList.size()) 360 return TypeList[ID].get(); 361 if (!isTypeTable) return 0; 362 363 // The type table allows forward references. Push as many Opaque types as 364 // needed to get up to ID. 365 while (TypeList.size() <= ID) 366 TypeList.push_back(OpaqueType::get(Context)); 367 return TypeList.back().get(); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Functions for parsing blocks from the bitcode file 372 //===----------------------------------------------------------------------===// 373 374 bool BitcodeReader::ParseAttributeBlock() { 375 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 376 return Error("Malformed block record"); 377 378 if (!MAttributes.empty()) 379 return Error("Multiple PARAMATTR blocks found!"); 380 381 SmallVector<uint64_t, 64> Record; 382 383 SmallVector<AttributeWithIndex, 8> Attrs; 384 385 // Read all the records. 386 while (1) { 387 unsigned Code = Stream.ReadCode(); 388 if (Code == bitc::END_BLOCK) { 389 if (Stream.ReadBlockEnd()) 390 return Error("Error at end of PARAMATTR block"); 391 return false; 392 } 393 394 if (Code == bitc::ENTER_SUBBLOCK) { 395 // No known subblocks, always skip them. 396 Stream.ReadSubBlockID(); 397 if (Stream.SkipBlock()) 398 return Error("Malformed block record"); 399 continue; 400 } 401 402 if (Code == bitc::DEFINE_ABBREV) { 403 Stream.ReadAbbrevRecord(); 404 continue; 405 } 406 407 // Read a record. 408 Record.clear(); 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: ignore. 411 break; 412 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 413 if (Record.size() & 1) 414 return Error("Invalid ENTRY record"); 415 416 // FIXME : Remove this autoupgrade code in LLVM 3.0. 417 // If Function attributes are using index 0 then transfer them 418 // to index ~0. Index 0 is used for return value attributes but used to be 419 // used for function attributes. 420 Attributes RetAttribute = Attribute::None; 421 Attributes FnAttribute = Attribute::None; 422 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 423 // FIXME: remove in LLVM 3.0 424 // The alignment is stored as a 16-bit raw value from bits 31--16. 425 // We shift the bits above 31 down by 11 bits. 426 427 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 428 if (Alignment && !isPowerOf2_32(Alignment)) 429 return Error("Alignment is not a power of two."); 430 431 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 432 if (Alignment) 433 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 434 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 435 Record[i+1] = ReconstitutedAttr; 436 437 if (Record[i] == 0) 438 RetAttribute = Record[i+1]; 439 else if (Record[i] == ~0U) 440 FnAttribute = Record[i+1]; 441 } 442 443 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 444 Attribute::ReadOnly|Attribute::ReadNone); 445 446 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 447 (RetAttribute & OldRetAttrs) != 0) { 448 if (FnAttribute == Attribute::None) { // add a slot so they get added. 449 Record.push_back(~0U); 450 Record.push_back(0); 451 } 452 453 FnAttribute |= RetAttribute & OldRetAttrs; 454 RetAttribute &= ~OldRetAttrs; 455 } 456 457 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 458 if (Record[i] == 0) { 459 if (RetAttribute != Attribute::None) 460 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 461 } else if (Record[i] == ~0U) { 462 if (FnAttribute != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 464 } else if (Record[i+1] != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 466 } 467 468 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 469 Attrs.clear(); 470 break; 471 } 472 } 473 } 474 } 475 476 477 bool BitcodeReader::ParseTypeTable() { 478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 479 return Error("Malformed block record"); 480 481 if (!TypeList.empty()) 482 return Error("Multiple TYPE_BLOCKs found!"); 483 484 SmallVector<uint64_t, 64> Record; 485 unsigned NumRecords = 0; 486 487 // Read all the records for this type table. 488 while (1) { 489 unsigned Code = Stream.ReadCode(); 490 if (Code == bitc::END_BLOCK) { 491 if (NumRecords != TypeList.size()) 492 return Error("Invalid type forward reference in TYPE_BLOCK"); 493 if (Stream.ReadBlockEnd()) 494 return Error("Error at end of type table block"); 495 return false; 496 } 497 498 if (Code == bitc::ENTER_SUBBLOCK) { 499 // No known subblocks, always skip them. 500 Stream.ReadSubBlockID(); 501 if (Stream.SkipBlock()) 502 return Error("Malformed block record"); 503 continue; 504 } 505 506 if (Code == bitc::DEFINE_ABBREV) { 507 Stream.ReadAbbrevRecord(); 508 continue; 509 } 510 511 // Read a record. 512 Record.clear(); 513 const Type *ResultTy = 0; 514 switch (Stream.ReadRecord(Code, Record)) { 515 default: // Default behavior: unknown type. 516 ResultTy = 0; 517 break; 518 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 519 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 520 // type list. This allows us to reserve space. 521 if (Record.size() < 1) 522 return Error("Invalid TYPE_CODE_NUMENTRY record"); 523 TypeList.reserve(Record[0]); 524 continue; 525 case bitc::TYPE_CODE_VOID: // VOID 526 ResultTy = Type::getVoidTy(Context); 527 break; 528 case bitc::TYPE_CODE_FLOAT: // FLOAT 529 ResultTy = Type::getFloatTy(Context); 530 break; 531 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 532 ResultTy = Type::getDoubleTy(Context); 533 break; 534 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 535 ResultTy = Type::getX86_FP80Ty(Context); 536 break; 537 case bitc::TYPE_CODE_FP128: // FP128 538 ResultTy = Type::getFP128Ty(Context); 539 break; 540 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 541 ResultTy = Type::getPPC_FP128Ty(Context); 542 break; 543 case bitc::TYPE_CODE_LABEL: // LABEL 544 ResultTy = Type::getLabelTy(Context); 545 break; 546 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 547 ResultTy = 0; 548 break; 549 case bitc::TYPE_CODE_METADATA: // METADATA 550 ResultTy = Type::getMetadataTy(Context); 551 break; 552 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 553 if (Record.size() < 1) 554 return Error("Invalid Integer type record"); 555 556 ResultTy = IntegerType::get(Context, Record[0]); 557 break; 558 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 559 // [pointee type, address space] 560 if (Record.size() < 1) 561 return Error("Invalid POINTER type record"); 562 unsigned AddressSpace = 0; 563 if (Record.size() == 2) 564 AddressSpace = Record[1]; 565 ResultTy = PointerType::get(getTypeByID(Record[0], true), 566 AddressSpace); 567 break; 568 } 569 case bitc::TYPE_CODE_FUNCTION: { 570 // FIXME: attrid is dead, remove it in LLVM 3.0 571 // FUNCTION: [vararg, attrid, retty, paramty x N] 572 if (Record.size() < 3) 573 return Error("Invalid FUNCTION type record"); 574 std::vector<const Type*> ArgTys; 575 for (unsigned i = 3, e = Record.size(); i != e; ++i) 576 ArgTys.push_back(getTypeByID(Record[i], true)); 577 578 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 579 Record[0]); 580 break; 581 } 582 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 583 if (Record.size() < 1) 584 return Error("Invalid STRUCT type record"); 585 std::vector<const Type*> EltTys; 586 for (unsigned i = 1, e = Record.size(); i != e; ++i) 587 EltTys.push_back(getTypeByID(Record[i], true)); 588 ResultTy = StructType::get(Context, EltTys, Record[0]); 589 break; 590 } 591 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 592 if (Record.size() < 2) 593 return Error("Invalid ARRAY type record"); 594 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 595 break; 596 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 597 if (Record.size() < 2) 598 return Error("Invalid VECTOR type record"); 599 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 600 break; 601 } 602 603 if (NumRecords == TypeList.size()) { 604 // If this is a new type slot, just append it. 605 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 606 ++NumRecords; 607 } else if (ResultTy == 0) { 608 // Otherwise, this was forward referenced, so an opaque type was created, 609 // but the result type is actually just an opaque. Leave the one we 610 // created previously. 611 ++NumRecords; 612 } else { 613 // Otherwise, this was forward referenced, so an opaque type was created. 614 // Resolve the opaque type to the real type now. 615 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 616 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 617 618 // Don't directly push the new type on the Tab. Instead we want to replace 619 // the opaque type we previously inserted with the new concrete value. The 620 // refinement from the abstract (opaque) type to the new type causes all 621 // uses of the abstract type to use the concrete type (NewTy). This will 622 // also cause the opaque type to be deleted. 623 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 624 625 // This should have replaced the old opaque type with the new type in the 626 // value table... or with a preexisting type that was already in the 627 // system. Let's just make sure it did. 628 assert(TypeList[NumRecords-1].get() != OldTy && 629 "refineAbstractType didn't work!"); 630 } 631 } 632 } 633 634 635 bool BitcodeReader::ParseTypeSymbolTable() { 636 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 637 return Error("Malformed block record"); 638 639 SmallVector<uint64_t, 64> Record; 640 641 // Read all the records for this type table. 642 std::string TypeName; 643 while (1) { 644 unsigned Code = Stream.ReadCode(); 645 if (Code == bitc::END_BLOCK) { 646 if (Stream.ReadBlockEnd()) 647 return Error("Error at end of type symbol table block"); 648 return false; 649 } 650 651 if (Code == bitc::ENTER_SUBBLOCK) { 652 // No known subblocks, always skip them. 653 Stream.ReadSubBlockID(); 654 if (Stream.SkipBlock()) 655 return Error("Malformed block record"); 656 continue; 657 } 658 659 if (Code == bitc::DEFINE_ABBREV) { 660 Stream.ReadAbbrevRecord(); 661 continue; 662 } 663 664 // Read a record. 665 Record.clear(); 666 switch (Stream.ReadRecord(Code, Record)) { 667 default: // Default behavior: unknown type. 668 break; 669 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 670 if (ConvertToString(Record, 1, TypeName)) 671 return Error("Invalid TST_ENTRY record"); 672 unsigned TypeID = Record[0]; 673 if (TypeID >= TypeList.size()) 674 return Error("Invalid Type ID in TST_ENTRY record"); 675 676 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 677 TypeName.clear(); 678 break; 679 } 680 } 681 } 682 683 bool BitcodeReader::ParseValueSymbolTable() { 684 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 685 return Error("Malformed block record"); 686 687 SmallVector<uint64_t, 64> Record; 688 689 // Read all the records for this value table. 690 SmallString<128> ValueName; 691 while (1) { 692 unsigned Code = Stream.ReadCode(); 693 if (Code == bitc::END_BLOCK) { 694 if (Stream.ReadBlockEnd()) 695 return Error("Error at end of value symbol table block"); 696 return false; 697 } 698 if (Code == bitc::ENTER_SUBBLOCK) { 699 // No known subblocks, always skip them. 700 Stream.ReadSubBlockID(); 701 if (Stream.SkipBlock()) 702 return Error("Malformed block record"); 703 continue; 704 } 705 706 if (Code == bitc::DEFINE_ABBREV) { 707 Stream.ReadAbbrevRecord(); 708 continue; 709 } 710 711 // Read a record. 712 Record.clear(); 713 switch (Stream.ReadRecord(Code, Record)) { 714 default: // Default behavior: unknown type. 715 break; 716 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 717 if (ConvertToString(Record, 1, ValueName)) 718 return Error("Invalid VST_ENTRY record"); 719 unsigned ValueID = Record[0]; 720 if (ValueID >= ValueList.size()) 721 return Error("Invalid Value ID in VST_ENTRY record"); 722 Value *V = ValueList[ValueID]; 723 724 V->setName(StringRef(ValueName.data(), ValueName.size())); 725 ValueName.clear(); 726 break; 727 } 728 case bitc::VST_CODE_BBENTRY: { 729 if (ConvertToString(Record, 1, ValueName)) 730 return Error("Invalid VST_BBENTRY record"); 731 BasicBlock *BB = getBasicBlock(Record[0]); 732 if (BB == 0) 733 return Error("Invalid BB ID in VST_BBENTRY record"); 734 735 BB->setName(StringRef(ValueName.data(), ValueName.size())); 736 ValueName.clear(); 737 break; 738 } 739 } 740 } 741 } 742 743 bool BitcodeReader::ParseMetadata() { 744 unsigned NextMDValueNo = MDValueList.size(); 745 746 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 747 return Error("Malformed block record"); 748 749 SmallVector<uint64_t, 64> Record; 750 751 // Read all the records. 752 while (1) { 753 unsigned Code = Stream.ReadCode(); 754 if (Code == bitc::END_BLOCK) { 755 if (Stream.ReadBlockEnd()) 756 return Error("Error at end of PARAMATTR block"); 757 return false; 758 } 759 760 if (Code == bitc::ENTER_SUBBLOCK) { 761 // No known subblocks, always skip them. 762 Stream.ReadSubBlockID(); 763 if (Stream.SkipBlock()) 764 return Error("Malformed block record"); 765 continue; 766 } 767 768 if (Code == bitc::DEFINE_ABBREV) { 769 Stream.ReadAbbrevRecord(); 770 continue; 771 } 772 773 bool IsFunctionLocal = false; 774 // Read a record. 775 Record.clear(); 776 switch (Stream.ReadRecord(Code, Record)) { 777 default: // Default behavior: ignore. 778 break; 779 case bitc::METADATA_NAME: { 780 // Read named of the named metadata. 781 unsigned NameLength = Record.size(); 782 SmallString<8> Name; 783 Name.resize(NameLength); 784 for (unsigned i = 0; i != NameLength; ++i) 785 Name[i] = Record[i]; 786 Record.clear(); 787 Code = Stream.ReadCode(); 788 789 // METADATA_NAME is always followed by METADATA_NAMED_NODE2. 790 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 791 // FIXME: LLVM 3.0: Remove this. 792 if (NextBitCode == bitc::METADATA_NAMED_NODE) 793 break; 794 if (NextBitCode != bitc::METADATA_NAMED_NODE2) 795 assert ( 0 && "Inavlid Named Metadata record"); 796 797 // Read named metadata elements. 798 unsigned Size = Record.size(); 799 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 800 for (unsigned i = 0; i != Size; ++i) { 801 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 802 if (MD == 0) 803 return Error("Malformed metadata record"); 804 NMD->addOperand(MD); 805 } 806 break; 807 } 808 case bitc::METADATA_FN_NODE: 809 // FIXME: Legacy support for the old fn_node, where function-local 810 // metadata operands were bogus. Remove in LLVM 3.0. 811 break; 812 case bitc::METADATA_NODE: 813 // FIXME: Legacy support for the old node, where function-local 814 // metadata operands were bogus. Remove in LLVM 3.0. 815 break; 816 case bitc::METADATA_FN_NODE2: 817 IsFunctionLocal = true; 818 // fall-through 819 case bitc::METADATA_NODE2: { 820 if (Record.size() % 2 == 1) 821 return Error("Invalid METADATA_NODE2 record"); 822 823 unsigned Size = Record.size(); 824 SmallVector<Value*, 8> Elts; 825 for (unsigned i = 0; i != Size; i += 2) { 826 const Type *Ty = getTypeByID(Record[i], false); 827 if (Ty->isMetadataTy()) 828 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 829 else if (!Ty->isVoidTy()) 830 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 831 else 832 Elts.push_back(NULL); 833 } 834 Value *V = MDNode::getWhenValsUnresolved(Context, 835 Elts.data(), Elts.size(), 836 IsFunctionLocal); 837 IsFunctionLocal = false; 838 MDValueList.AssignValue(V, NextMDValueNo++); 839 break; 840 } 841 case bitc::METADATA_STRING: { 842 unsigned MDStringLength = Record.size(); 843 SmallString<8> String; 844 String.resize(MDStringLength); 845 for (unsigned i = 0; i != MDStringLength; ++i) 846 String[i] = Record[i]; 847 Value *V = MDString::get(Context, 848 StringRef(String.data(), String.size())); 849 MDValueList.AssignValue(V, NextMDValueNo++); 850 break; 851 } 852 case bitc::METADATA_KIND: { 853 unsigned RecordLength = Record.size(); 854 if (Record.empty() || RecordLength < 2) 855 return Error("Invalid METADATA_KIND record"); 856 SmallString<8> Name; 857 Name.resize(RecordLength-1); 858 unsigned Kind = Record[0]; 859 for (unsigned i = 1; i != RecordLength; ++i) 860 Name[i-1] = Record[i]; 861 862 unsigned NewKind = TheModule->getMDKindID(Name.str()); 863 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 864 return Error("Conflicting METADATA_KIND records"); 865 break; 866 } 867 } 868 } 869 } 870 871 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 872 /// the LSB for dense VBR encoding. 873 static uint64_t DecodeSignRotatedValue(uint64_t V) { 874 if ((V & 1) == 0) 875 return V >> 1; 876 if (V != 1) 877 return -(V >> 1); 878 // There is no such thing as -0 with integers. "-0" really means MININT. 879 return 1ULL << 63; 880 } 881 882 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 883 /// values and aliases that we can. 884 bool BitcodeReader::ResolveGlobalAndAliasInits() { 885 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 886 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 887 888 GlobalInitWorklist.swap(GlobalInits); 889 AliasInitWorklist.swap(AliasInits); 890 891 while (!GlobalInitWorklist.empty()) { 892 unsigned ValID = GlobalInitWorklist.back().second; 893 if (ValID >= ValueList.size()) { 894 // Not ready to resolve this yet, it requires something later in the file. 895 GlobalInits.push_back(GlobalInitWorklist.back()); 896 } else { 897 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 898 GlobalInitWorklist.back().first->setInitializer(C); 899 else 900 return Error("Global variable initializer is not a constant!"); 901 } 902 GlobalInitWorklist.pop_back(); 903 } 904 905 while (!AliasInitWorklist.empty()) { 906 unsigned ValID = AliasInitWorklist.back().second; 907 if (ValID >= ValueList.size()) { 908 AliasInits.push_back(AliasInitWorklist.back()); 909 } else { 910 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 911 AliasInitWorklist.back().first->setAliasee(C); 912 else 913 return Error("Alias initializer is not a constant!"); 914 } 915 AliasInitWorklist.pop_back(); 916 } 917 return false; 918 } 919 920 bool BitcodeReader::ParseConstants() { 921 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 922 return Error("Malformed block record"); 923 924 SmallVector<uint64_t, 64> Record; 925 926 // Read all the records for this value table. 927 const Type *CurTy = Type::getInt32Ty(Context); 928 unsigned NextCstNo = ValueList.size(); 929 while (1) { 930 unsigned Code = Stream.ReadCode(); 931 if (Code == bitc::END_BLOCK) 932 break; 933 934 if (Code == bitc::ENTER_SUBBLOCK) { 935 // No known subblocks, always skip them. 936 Stream.ReadSubBlockID(); 937 if (Stream.SkipBlock()) 938 return Error("Malformed block record"); 939 continue; 940 } 941 942 if (Code == bitc::DEFINE_ABBREV) { 943 Stream.ReadAbbrevRecord(); 944 continue; 945 } 946 947 // Read a record. 948 Record.clear(); 949 Value *V = 0; 950 unsigned BitCode = Stream.ReadRecord(Code, Record); 951 switch (BitCode) { 952 default: // Default behavior: unknown constant 953 case bitc::CST_CODE_UNDEF: // UNDEF 954 V = UndefValue::get(CurTy); 955 break; 956 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 957 if (Record.empty()) 958 return Error("Malformed CST_SETTYPE record"); 959 if (Record[0] >= TypeList.size()) 960 return Error("Invalid Type ID in CST_SETTYPE record"); 961 CurTy = TypeList[Record[0]]; 962 continue; // Skip the ValueList manipulation. 963 case bitc::CST_CODE_NULL: // NULL 964 V = Constant::getNullValue(CurTy); 965 break; 966 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 967 if (!CurTy->isIntegerTy() || Record.empty()) 968 return Error("Invalid CST_INTEGER record"); 969 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 970 break; 971 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 972 if (!CurTy->isIntegerTy() || Record.empty()) 973 return Error("Invalid WIDE_INTEGER record"); 974 975 unsigned NumWords = Record.size(); 976 SmallVector<uint64_t, 8> Words; 977 Words.resize(NumWords); 978 for (unsigned i = 0; i != NumWords; ++i) 979 Words[i] = DecodeSignRotatedValue(Record[i]); 980 V = ConstantInt::get(Context, 981 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 982 NumWords, &Words[0])); 983 break; 984 } 985 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 986 if (Record.empty()) 987 return Error("Invalid FLOAT record"); 988 if (CurTy->isFloatTy()) 989 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 990 else if (CurTy->isDoubleTy()) 991 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 992 else if (CurTy->isX86_FP80Ty()) { 993 // Bits are not stored the same way as a normal i80 APInt, compensate. 994 uint64_t Rearrange[2]; 995 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 996 Rearrange[1] = Record[0] >> 48; 997 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 998 } else if (CurTy->isFP128Ty()) 999 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1000 else if (CurTy->isPPC_FP128Ty()) 1001 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1002 else 1003 V = UndefValue::get(CurTy); 1004 break; 1005 } 1006 1007 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1008 if (Record.empty()) 1009 return Error("Invalid CST_AGGREGATE record"); 1010 1011 unsigned Size = Record.size(); 1012 std::vector<Constant*> Elts; 1013 1014 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1015 for (unsigned i = 0; i != Size; ++i) 1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1017 STy->getElementType(i))); 1018 V = ConstantStruct::get(STy, Elts); 1019 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1020 const Type *EltTy = ATy->getElementType(); 1021 for (unsigned i = 0; i != Size; ++i) 1022 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1023 V = ConstantArray::get(ATy, Elts); 1024 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1025 const Type *EltTy = VTy->getElementType(); 1026 for (unsigned i = 0; i != Size; ++i) 1027 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1028 V = ConstantVector::get(Elts); 1029 } else { 1030 V = UndefValue::get(CurTy); 1031 } 1032 break; 1033 } 1034 case bitc::CST_CODE_STRING: { // STRING: [values] 1035 if (Record.empty()) 1036 return Error("Invalid CST_AGGREGATE record"); 1037 1038 const ArrayType *ATy = cast<ArrayType>(CurTy); 1039 const Type *EltTy = ATy->getElementType(); 1040 1041 unsigned Size = Record.size(); 1042 std::vector<Constant*> Elts; 1043 for (unsigned i = 0; i != Size; ++i) 1044 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1045 V = ConstantArray::get(ATy, Elts); 1046 break; 1047 } 1048 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1049 if (Record.empty()) 1050 return Error("Invalid CST_AGGREGATE record"); 1051 1052 const ArrayType *ATy = cast<ArrayType>(CurTy); 1053 const Type *EltTy = ATy->getElementType(); 1054 1055 unsigned Size = Record.size(); 1056 std::vector<Constant*> Elts; 1057 for (unsigned i = 0; i != Size; ++i) 1058 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1059 Elts.push_back(Constant::getNullValue(EltTy)); 1060 V = ConstantArray::get(ATy, Elts); 1061 break; 1062 } 1063 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1064 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1065 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1066 if (Opc < 0) { 1067 V = UndefValue::get(CurTy); // Unknown binop. 1068 } else { 1069 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1070 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1071 unsigned Flags = 0; 1072 if (Record.size() >= 4) { 1073 if (Opc == Instruction::Add || 1074 Opc == Instruction::Sub || 1075 Opc == Instruction::Mul) { 1076 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1077 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1078 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1079 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1080 } else if (Opc == Instruction::SDiv) { 1081 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1082 Flags |= SDivOperator::IsExact; 1083 } 1084 } 1085 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1086 } 1087 break; 1088 } 1089 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1090 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1091 int Opc = GetDecodedCastOpcode(Record[0]); 1092 if (Opc < 0) { 1093 V = UndefValue::get(CurTy); // Unknown cast. 1094 } else { 1095 const Type *OpTy = getTypeByID(Record[1]); 1096 if (!OpTy) return Error("Invalid CE_CAST record"); 1097 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1098 V = ConstantExpr::getCast(Opc, Op, CurTy); 1099 } 1100 break; 1101 } 1102 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1103 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1104 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1105 SmallVector<Constant*, 16> Elts; 1106 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1107 const Type *ElTy = getTypeByID(Record[i]); 1108 if (!ElTy) return Error("Invalid CE_GEP record"); 1109 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1110 } 1111 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1112 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1113 Elts.size()-1); 1114 else 1115 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1116 Elts.size()-1); 1117 break; 1118 } 1119 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1120 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1121 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1122 Type::getInt1Ty(Context)), 1123 ValueList.getConstantFwdRef(Record[1],CurTy), 1124 ValueList.getConstantFwdRef(Record[2],CurTy)); 1125 break; 1126 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1127 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1128 const VectorType *OpTy = 1129 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1130 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1131 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1132 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1133 V = ConstantExpr::getExtractElement(Op0, Op1); 1134 break; 1135 } 1136 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1137 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1138 if (Record.size() < 3 || OpTy == 0) 1139 return Error("Invalid CE_INSERTELT record"); 1140 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1141 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1142 OpTy->getElementType()); 1143 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1144 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1145 break; 1146 } 1147 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1148 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1149 if (Record.size() < 3 || OpTy == 0) 1150 return Error("Invalid CE_SHUFFLEVEC record"); 1151 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1152 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1153 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1154 OpTy->getNumElements()); 1155 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1156 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1157 break; 1158 } 1159 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1160 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1161 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1162 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1163 return Error("Invalid CE_SHUFVEC_EX record"); 1164 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1165 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1166 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1167 RTy->getNumElements()); 1168 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1169 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1170 break; 1171 } 1172 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1173 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1174 const Type *OpTy = getTypeByID(Record[0]); 1175 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1176 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1177 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1178 1179 if (OpTy->isFPOrFPVectorTy()) 1180 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1181 else 1182 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1183 break; 1184 } 1185 case bitc::CST_CODE_INLINEASM: { 1186 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1187 std::string AsmStr, ConstrStr; 1188 bool HasSideEffects = Record[0] & 1; 1189 bool IsAlignStack = Record[0] >> 1; 1190 unsigned AsmStrSize = Record[1]; 1191 if (2+AsmStrSize >= Record.size()) 1192 return Error("Invalid INLINEASM record"); 1193 unsigned ConstStrSize = Record[2+AsmStrSize]; 1194 if (3+AsmStrSize+ConstStrSize > Record.size()) 1195 return Error("Invalid INLINEASM record"); 1196 1197 for (unsigned i = 0; i != AsmStrSize; ++i) 1198 AsmStr += (char)Record[2+i]; 1199 for (unsigned i = 0; i != ConstStrSize; ++i) 1200 ConstrStr += (char)Record[3+AsmStrSize+i]; 1201 const PointerType *PTy = cast<PointerType>(CurTy); 1202 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1203 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1204 break; 1205 } 1206 case bitc::CST_CODE_BLOCKADDRESS:{ 1207 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1208 const Type *FnTy = getTypeByID(Record[0]); 1209 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1210 Function *Fn = 1211 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1212 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1213 1214 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1215 Type::getInt8Ty(Context), 1216 false, GlobalValue::InternalLinkage, 1217 0, ""); 1218 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1219 V = FwdRef; 1220 break; 1221 } 1222 } 1223 1224 ValueList.AssignValue(V, NextCstNo); 1225 ++NextCstNo; 1226 } 1227 1228 if (NextCstNo != ValueList.size()) 1229 return Error("Invalid constant reference!"); 1230 1231 if (Stream.ReadBlockEnd()) 1232 return Error("Error at end of constants block"); 1233 1234 // Once all the constants have been read, go through and resolve forward 1235 // references. 1236 ValueList.ResolveConstantForwardRefs(); 1237 return false; 1238 } 1239 1240 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1241 /// remember where it is and then skip it. This lets us lazily deserialize the 1242 /// functions. 1243 bool BitcodeReader::RememberAndSkipFunctionBody() { 1244 // Get the function we are talking about. 1245 if (FunctionsWithBodies.empty()) 1246 return Error("Insufficient function protos"); 1247 1248 Function *Fn = FunctionsWithBodies.back(); 1249 FunctionsWithBodies.pop_back(); 1250 1251 // Save the current stream state. 1252 uint64_t CurBit = Stream.GetCurrentBitNo(); 1253 DeferredFunctionInfo[Fn] = CurBit; 1254 1255 // Skip over the function block for now. 1256 if (Stream.SkipBlock()) 1257 return Error("Malformed block record"); 1258 return false; 1259 } 1260 1261 bool BitcodeReader::ParseModule() { 1262 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1263 return Error("Malformed block record"); 1264 1265 SmallVector<uint64_t, 64> Record; 1266 std::vector<std::string> SectionTable; 1267 std::vector<std::string> GCTable; 1268 1269 // Read all the records for this module. 1270 while (!Stream.AtEndOfStream()) { 1271 unsigned Code = Stream.ReadCode(); 1272 if (Code == bitc::END_BLOCK) { 1273 if (Stream.ReadBlockEnd()) 1274 return Error("Error at end of module block"); 1275 1276 // Patch the initializers for globals and aliases up. 1277 ResolveGlobalAndAliasInits(); 1278 if (!GlobalInits.empty() || !AliasInits.empty()) 1279 return Error("Malformed global initializer set"); 1280 if (!FunctionsWithBodies.empty()) 1281 return Error("Too few function bodies found"); 1282 1283 // Look for intrinsic functions which need to be upgraded at some point 1284 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1285 FI != FE; ++FI) { 1286 Function* NewFn; 1287 if (UpgradeIntrinsicFunction(FI, NewFn)) 1288 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1289 } 1290 1291 // Force deallocation of memory for these vectors to favor the client that 1292 // want lazy deserialization. 1293 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1294 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1295 std::vector<Function*>().swap(FunctionsWithBodies); 1296 return false; 1297 } 1298 1299 if (Code == bitc::ENTER_SUBBLOCK) { 1300 switch (Stream.ReadSubBlockID()) { 1301 default: // Skip unknown content. 1302 if (Stream.SkipBlock()) 1303 return Error("Malformed block record"); 1304 break; 1305 case bitc::BLOCKINFO_BLOCK_ID: 1306 if (Stream.ReadBlockInfoBlock()) 1307 return Error("Malformed BlockInfoBlock"); 1308 break; 1309 case bitc::PARAMATTR_BLOCK_ID: 1310 if (ParseAttributeBlock()) 1311 return true; 1312 break; 1313 case bitc::TYPE_BLOCK_ID: 1314 if (ParseTypeTable()) 1315 return true; 1316 break; 1317 case bitc::TYPE_SYMTAB_BLOCK_ID: 1318 if (ParseTypeSymbolTable()) 1319 return true; 1320 break; 1321 case bitc::VALUE_SYMTAB_BLOCK_ID: 1322 if (ParseValueSymbolTable()) 1323 return true; 1324 break; 1325 case bitc::CONSTANTS_BLOCK_ID: 1326 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1327 return true; 1328 break; 1329 case bitc::METADATA_BLOCK_ID: 1330 if (ParseMetadata()) 1331 return true; 1332 break; 1333 case bitc::FUNCTION_BLOCK_ID: 1334 // If this is the first function body we've seen, reverse the 1335 // FunctionsWithBodies list. 1336 if (!HasReversedFunctionsWithBodies) { 1337 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1338 HasReversedFunctionsWithBodies = true; 1339 } 1340 1341 if (RememberAndSkipFunctionBody()) 1342 return true; 1343 break; 1344 } 1345 continue; 1346 } 1347 1348 if (Code == bitc::DEFINE_ABBREV) { 1349 Stream.ReadAbbrevRecord(); 1350 continue; 1351 } 1352 1353 // Read a record. 1354 switch (Stream.ReadRecord(Code, Record)) { 1355 default: break; // Default behavior, ignore unknown content. 1356 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1357 if (Record.size() < 1) 1358 return Error("Malformed MODULE_CODE_VERSION"); 1359 // Only version #0 is supported so far. 1360 if (Record[0] != 0) 1361 return Error("Unknown bitstream version!"); 1362 break; 1363 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1364 std::string S; 1365 if (ConvertToString(Record, 0, S)) 1366 return Error("Invalid MODULE_CODE_TRIPLE record"); 1367 TheModule->setTargetTriple(S); 1368 break; 1369 } 1370 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1371 std::string S; 1372 if (ConvertToString(Record, 0, S)) 1373 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1374 TheModule->setDataLayout(S); 1375 break; 1376 } 1377 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1378 std::string S; 1379 if (ConvertToString(Record, 0, S)) 1380 return Error("Invalid MODULE_CODE_ASM record"); 1381 TheModule->setModuleInlineAsm(S); 1382 break; 1383 } 1384 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1385 std::string S; 1386 if (ConvertToString(Record, 0, S)) 1387 return Error("Invalid MODULE_CODE_DEPLIB record"); 1388 TheModule->addLibrary(S); 1389 break; 1390 } 1391 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1392 std::string S; 1393 if (ConvertToString(Record, 0, S)) 1394 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1395 SectionTable.push_back(S); 1396 break; 1397 } 1398 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1399 std::string S; 1400 if (ConvertToString(Record, 0, S)) 1401 return Error("Invalid MODULE_CODE_GCNAME record"); 1402 GCTable.push_back(S); 1403 break; 1404 } 1405 // GLOBALVAR: [pointer type, isconst, initid, 1406 // linkage, alignment, section, visibility, threadlocal] 1407 case bitc::MODULE_CODE_GLOBALVAR: { 1408 if (Record.size() < 6) 1409 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1410 const Type *Ty = getTypeByID(Record[0]); 1411 if (!Ty->isPointerTy()) 1412 return Error("Global not a pointer type!"); 1413 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1414 Ty = cast<PointerType>(Ty)->getElementType(); 1415 1416 bool isConstant = Record[1]; 1417 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1418 unsigned Alignment = (1 << Record[4]) >> 1; 1419 std::string Section; 1420 if (Record[5]) { 1421 if (Record[5]-1 >= SectionTable.size()) 1422 return Error("Invalid section ID"); 1423 Section = SectionTable[Record[5]-1]; 1424 } 1425 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1426 if (Record.size() > 6) 1427 Visibility = GetDecodedVisibility(Record[6]); 1428 bool isThreadLocal = false; 1429 if (Record.size() > 7) 1430 isThreadLocal = Record[7]; 1431 1432 GlobalVariable *NewGV = 1433 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1434 isThreadLocal, AddressSpace); 1435 NewGV->setAlignment(Alignment); 1436 if (!Section.empty()) 1437 NewGV->setSection(Section); 1438 NewGV->setVisibility(Visibility); 1439 NewGV->setThreadLocal(isThreadLocal); 1440 1441 ValueList.push_back(NewGV); 1442 1443 // Remember which value to use for the global initializer. 1444 if (unsigned InitID = Record[2]) 1445 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1446 break; 1447 } 1448 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1449 // alignment, section, visibility, gc] 1450 case bitc::MODULE_CODE_FUNCTION: { 1451 if (Record.size() < 8) 1452 return Error("Invalid MODULE_CODE_FUNCTION record"); 1453 const Type *Ty = getTypeByID(Record[0]); 1454 if (!Ty->isPointerTy()) 1455 return Error("Function not a pointer type!"); 1456 const FunctionType *FTy = 1457 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1458 if (!FTy) 1459 return Error("Function not a pointer to function type!"); 1460 1461 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1462 "", TheModule); 1463 1464 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1465 bool isProto = Record[2]; 1466 Func->setLinkage(GetDecodedLinkage(Record[3])); 1467 Func->setAttributes(getAttributes(Record[4])); 1468 1469 Func->setAlignment((1 << Record[5]) >> 1); 1470 if (Record[6]) { 1471 if (Record[6]-1 >= SectionTable.size()) 1472 return Error("Invalid section ID"); 1473 Func->setSection(SectionTable[Record[6]-1]); 1474 } 1475 Func->setVisibility(GetDecodedVisibility(Record[7])); 1476 if (Record.size() > 8 && Record[8]) { 1477 if (Record[8]-1 > GCTable.size()) 1478 return Error("Invalid GC ID"); 1479 Func->setGC(GCTable[Record[8]-1].c_str()); 1480 } 1481 ValueList.push_back(Func); 1482 1483 // If this is a function with a body, remember the prototype we are 1484 // creating now, so that we can match up the body with them later. 1485 if (!isProto) 1486 FunctionsWithBodies.push_back(Func); 1487 break; 1488 } 1489 // ALIAS: [alias type, aliasee val#, linkage] 1490 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1491 case bitc::MODULE_CODE_ALIAS: { 1492 if (Record.size() < 3) 1493 return Error("Invalid MODULE_ALIAS record"); 1494 const Type *Ty = getTypeByID(Record[0]); 1495 if (!Ty->isPointerTy()) 1496 return Error("Function not a pointer type!"); 1497 1498 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1499 "", 0, TheModule); 1500 // Old bitcode files didn't have visibility field. 1501 if (Record.size() > 3) 1502 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1503 ValueList.push_back(NewGA); 1504 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1505 break; 1506 } 1507 /// MODULE_CODE_PURGEVALS: [numvals] 1508 case bitc::MODULE_CODE_PURGEVALS: 1509 // Trim down the value list to the specified size. 1510 if (Record.size() < 1 || Record[0] > ValueList.size()) 1511 return Error("Invalid MODULE_PURGEVALS record"); 1512 ValueList.shrinkTo(Record[0]); 1513 break; 1514 } 1515 Record.clear(); 1516 } 1517 1518 return Error("Premature end of bitstream"); 1519 } 1520 1521 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1522 TheModule = 0; 1523 1524 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1525 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1526 1527 if (Buffer->getBufferSize() & 3) { 1528 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1529 return Error("Invalid bitcode signature"); 1530 else 1531 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1532 } 1533 1534 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1535 // The magic number is 0x0B17C0DE stored in little endian. 1536 if (isBitcodeWrapper(BufPtr, BufEnd)) 1537 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1538 return Error("Invalid bitcode wrapper header"); 1539 1540 StreamFile.init(BufPtr, BufEnd); 1541 Stream.init(StreamFile); 1542 1543 // Sniff for the signature. 1544 if (Stream.Read(8) != 'B' || 1545 Stream.Read(8) != 'C' || 1546 Stream.Read(4) != 0x0 || 1547 Stream.Read(4) != 0xC || 1548 Stream.Read(4) != 0xE || 1549 Stream.Read(4) != 0xD) 1550 return Error("Invalid bitcode signature"); 1551 1552 // We expect a number of well-defined blocks, though we don't necessarily 1553 // need to understand them all. 1554 while (!Stream.AtEndOfStream()) { 1555 unsigned Code = Stream.ReadCode(); 1556 1557 if (Code != bitc::ENTER_SUBBLOCK) 1558 return Error("Invalid record at top-level"); 1559 1560 unsigned BlockID = Stream.ReadSubBlockID(); 1561 1562 // We only know the MODULE subblock ID. 1563 switch (BlockID) { 1564 case bitc::BLOCKINFO_BLOCK_ID: 1565 if (Stream.ReadBlockInfoBlock()) 1566 return Error("Malformed BlockInfoBlock"); 1567 break; 1568 case bitc::MODULE_BLOCK_ID: 1569 // Reject multiple MODULE_BLOCK's in a single bitstream. 1570 if (TheModule) 1571 return Error("Multiple MODULE_BLOCKs in same stream"); 1572 TheModule = M; 1573 if (ParseModule()) 1574 return true; 1575 break; 1576 default: 1577 if (Stream.SkipBlock()) 1578 return Error("Malformed block record"); 1579 break; 1580 } 1581 } 1582 1583 return false; 1584 } 1585 1586 /// ParseMetadataAttachment - Parse metadata attachments. 1587 bool BitcodeReader::ParseMetadataAttachment() { 1588 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1589 return Error("Malformed block record"); 1590 1591 SmallVector<uint64_t, 64> Record; 1592 while(1) { 1593 unsigned Code = Stream.ReadCode(); 1594 if (Code == bitc::END_BLOCK) { 1595 if (Stream.ReadBlockEnd()) 1596 return Error("Error at end of PARAMATTR block"); 1597 break; 1598 } 1599 if (Code == bitc::DEFINE_ABBREV) { 1600 Stream.ReadAbbrevRecord(); 1601 continue; 1602 } 1603 // Read a metadata attachment record. 1604 Record.clear(); 1605 switch (Stream.ReadRecord(Code, Record)) { 1606 default: // Default behavior: ignore. 1607 break; 1608 case bitc::METADATA_ATTACHMENT: 1609 // LLVM 3.0: Remove this. 1610 break; 1611 case bitc::METADATA_ATTACHMENT2: { 1612 unsigned RecordLength = Record.size(); 1613 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1614 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1615 Instruction *Inst = InstructionList[Record[0]]; 1616 for (unsigned i = 1; i != RecordLength; i = i+2) { 1617 unsigned Kind = Record[i]; 1618 DenseMap<unsigned, unsigned>::iterator I = 1619 MDKindMap.find(Kind); 1620 if (I == MDKindMap.end()) 1621 return Error("Invalid metadata kind ID"); 1622 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1623 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1624 } 1625 break; 1626 } 1627 } 1628 } 1629 return false; 1630 } 1631 1632 /// ParseFunctionBody - Lazily parse the specified function body block. 1633 bool BitcodeReader::ParseFunctionBody(Function *F) { 1634 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1635 return Error("Malformed block record"); 1636 1637 InstructionList.clear(); 1638 unsigned ModuleValueListSize = ValueList.size(); 1639 unsigned ModuleMDValueListSize = MDValueList.size(); 1640 1641 // Add all the function arguments to the value table. 1642 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1643 ValueList.push_back(I); 1644 1645 unsigned NextValueNo = ValueList.size(); 1646 BasicBlock *CurBB = 0; 1647 unsigned CurBBNo = 0; 1648 1649 DebugLoc LastLoc; 1650 1651 // Read all the records. 1652 SmallVector<uint64_t, 64> Record; 1653 while (1) { 1654 unsigned Code = Stream.ReadCode(); 1655 if (Code == bitc::END_BLOCK) { 1656 if (Stream.ReadBlockEnd()) 1657 return Error("Error at end of function block"); 1658 break; 1659 } 1660 1661 if (Code == bitc::ENTER_SUBBLOCK) { 1662 switch (Stream.ReadSubBlockID()) { 1663 default: // Skip unknown content. 1664 if (Stream.SkipBlock()) 1665 return Error("Malformed block record"); 1666 break; 1667 case bitc::CONSTANTS_BLOCK_ID: 1668 if (ParseConstants()) return true; 1669 NextValueNo = ValueList.size(); 1670 break; 1671 case bitc::VALUE_SYMTAB_BLOCK_ID: 1672 if (ParseValueSymbolTable()) return true; 1673 break; 1674 case bitc::METADATA_ATTACHMENT_ID: 1675 if (ParseMetadataAttachment()) return true; 1676 break; 1677 case bitc::METADATA_BLOCK_ID: 1678 if (ParseMetadata()) return true; 1679 break; 1680 } 1681 continue; 1682 } 1683 1684 if (Code == bitc::DEFINE_ABBREV) { 1685 Stream.ReadAbbrevRecord(); 1686 continue; 1687 } 1688 1689 // Read a record. 1690 Record.clear(); 1691 Instruction *I = 0; 1692 unsigned BitCode = Stream.ReadRecord(Code, Record); 1693 switch (BitCode) { 1694 default: // Default behavior: reject 1695 return Error("Unknown instruction"); 1696 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1697 if (Record.size() < 1 || Record[0] == 0) 1698 return Error("Invalid DECLAREBLOCKS record"); 1699 // Create all the basic blocks for the function. 1700 FunctionBBs.resize(Record[0]); 1701 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1702 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1703 CurBB = FunctionBBs[0]; 1704 continue; 1705 1706 1707 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1708 // This record indicates that the last instruction is at the same 1709 // location as the previous instruction with a location. 1710 I = 0; 1711 1712 // Get the last instruction emitted. 1713 if (CurBB && !CurBB->empty()) 1714 I = &CurBB->back(); 1715 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1716 !FunctionBBs[CurBBNo-1]->empty()) 1717 I = &FunctionBBs[CurBBNo-1]->back(); 1718 1719 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1720 I->setDebugLoc(LastLoc); 1721 I = 0; 1722 continue; 1723 1724 case bitc::FUNC_CODE_DEBUG_LOC: 1725 // FIXME: Ignore. Remove this in LLVM 3.0. 1726 continue; 1727 1728 case bitc::FUNC_CODE_DEBUG_LOC2: { // DEBUG_LOC: [line, col, scope, ia] 1729 I = 0; // Get the last instruction emitted. 1730 if (CurBB && !CurBB->empty()) 1731 I = &CurBB->back(); 1732 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1733 !FunctionBBs[CurBBNo-1]->empty()) 1734 I = &FunctionBBs[CurBBNo-1]->back(); 1735 if (I == 0 || Record.size() < 4) 1736 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1737 1738 unsigned Line = Record[0], Col = Record[1]; 1739 unsigned ScopeID = Record[2], IAID = Record[3]; 1740 1741 MDNode *Scope = 0, *IA = 0; 1742 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1743 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1744 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1745 I->setDebugLoc(LastLoc); 1746 I = 0; 1747 continue; 1748 } 1749 1750 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1751 unsigned OpNum = 0; 1752 Value *LHS, *RHS; 1753 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1754 getValue(Record, OpNum, LHS->getType(), RHS) || 1755 OpNum+1 > Record.size()) 1756 return Error("Invalid BINOP record"); 1757 1758 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1759 if (Opc == -1) return Error("Invalid BINOP record"); 1760 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1761 InstructionList.push_back(I); 1762 if (OpNum < Record.size()) { 1763 if (Opc == Instruction::Add || 1764 Opc == Instruction::Sub || 1765 Opc == Instruction::Mul) { 1766 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1767 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1768 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1769 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1770 } else if (Opc == Instruction::SDiv) { 1771 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1772 cast<BinaryOperator>(I)->setIsExact(true); 1773 } 1774 } 1775 break; 1776 } 1777 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1778 unsigned OpNum = 0; 1779 Value *Op; 1780 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1781 OpNum+2 != Record.size()) 1782 return Error("Invalid CAST record"); 1783 1784 const Type *ResTy = getTypeByID(Record[OpNum]); 1785 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1786 if (Opc == -1 || ResTy == 0) 1787 return Error("Invalid CAST record"); 1788 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1789 InstructionList.push_back(I); 1790 break; 1791 } 1792 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1793 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1794 unsigned OpNum = 0; 1795 Value *BasePtr; 1796 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1797 return Error("Invalid GEP record"); 1798 1799 SmallVector<Value*, 16> GEPIdx; 1800 while (OpNum != Record.size()) { 1801 Value *Op; 1802 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1803 return Error("Invalid GEP record"); 1804 GEPIdx.push_back(Op); 1805 } 1806 1807 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1808 InstructionList.push_back(I); 1809 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1810 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1811 break; 1812 } 1813 1814 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1815 // EXTRACTVAL: [opty, opval, n x indices] 1816 unsigned OpNum = 0; 1817 Value *Agg; 1818 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1819 return Error("Invalid EXTRACTVAL record"); 1820 1821 SmallVector<unsigned, 4> EXTRACTVALIdx; 1822 for (unsigned RecSize = Record.size(); 1823 OpNum != RecSize; ++OpNum) { 1824 uint64_t Index = Record[OpNum]; 1825 if ((unsigned)Index != Index) 1826 return Error("Invalid EXTRACTVAL index"); 1827 EXTRACTVALIdx.push_back((unsigned)Index); 1828 } 1829 1830 I = ExtractValueInst::Create(Agg, 1831 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1832 InstructionList.push_back(I); 1833 break; 1834 } 1835 1836 case bitc::FUNC_CODE_INST_INSERTVAL: { 1837 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1838 unsigned OpNum = 0; 1839 Value *Agg; 1840 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1841 return Error("Invalid INSERTVAL record"); 1842 Value *Val; 1843 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1844 return Error("Invalid INSERTVAL record"); 1845 1846 SmallVector<unsigned, 4> INSERTVALIdx; 1847 for (unsigned RecSize = Record.size(); 1848 OpNum != RecSize; ++OpNum) { 1849 uint64_t Index = Record[OpNum]; 1850 if ((unsigned)Index != Index) 1851 return Error("Invalid INSERTVAL index"); 1852 INSERTVALIdx.push_back((unsigned)Index); 1853 } 1854 1855 I = InsertValueInst::Create(Agg, Val, 1856 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1857 InstructionList.push_back(I); 1858 break; 1859 } 1860 1861 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1862 // obsolete form of select 1863 // handles select i1 ... in old bitcode 1864 unsigned OpNum = 0; 1865 Value *TrueVal, *FalseVal, *Cond; 1866 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1867 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1868 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1869 return Error("Invalid SELECT record"); 1870 1871 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1872 InstructionList.push_back(I); 1873 break; 1874 } 1875 1876 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1877 // new form of select 1878 // handles select i1 or select [N x i1] 1879 unsigned OpNum = 0; 1880 Value *TrueVal, *FalseVal, *Cond; 1881 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1882 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1883 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1884 return Error("Invalid SELECT record"); 1885 1886 // select condition can be either i1 or [N x i1] 1887 if (const VectorType* vector_type = 1888 dyn_cast<const VectorType>(Cond->getType())) { 1889 // expect <n x i1> 1890 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1891 return Error("Invalid SELECT condition type"); 1892 } else { 1893 // expect i1 1894 if (Cond->getType() != Type::getInt1Ty(Context)) 1895 return Error("Invalid SELECT condition type"); 1896 } 1897 1898 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1899 InstructionList.push_back(I); 1900 break; 1901 } 1902 1903 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1904 unsigned OpNum = 0; 1905 Value *Vec, *Idx; 1906 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1907 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1908 return Error("Invalid EXTRACTELT record"); 1909 I = ExtractElementInst::Create(Vec, Idx); 1910 InstructionList.push_back(I); 1911 break; 1912 } 1913 1914 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1915 unsigned OpNum = 0; 1916 Value *Vec, *Elt, *Idx; 1917 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1918 getValue(Record, OpNum, 1919 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1920 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1921 return Error("Invalid INSERTELT record"); 1922 I = InsertElementInst::Create(Vec, Elt, Idx); 1923 InstructionList.push_back(I); 1924 break; 1925 } 1926 1927 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1928 unsigned OpNum = 0; 1929 Value *Vec1, *Vec2, *Mask; 1930 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1931 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1932 return Error("Invalid SHUFFLEVEC record"); 1933 1934 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1935 return Error("Invalid SHUFFLEVEC record"); 1936 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1937 InstructionList.push_back(I); 1938 break; 1939 } 1940 1941 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1942 // Old form of ICmp/FCmp returning bool 1943 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1944 // both legal on vectors but had different behaviour. 1945 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1946 // FCmp/ICmp returning bool or vector of bool 1947 1948 unsigned OpNum = 0; 1949 Value *LHS, *RHS; 1950 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1951 getValue(Record, OpNum, LHS->getType(), RHS) || 1952 OpNum+1 != Record.size()) 1953 return Error("Invalid CMP record"); 1954 1955 if (LHS->getType()->isFPOrFPVectorTy()) 1956 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1957 else 1958 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1959 InstructionList.push_back(I); 1960 break; 1961 } 1962 1963 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1964 if (Record.size() != 2) 1965 return Error("Invalid GETRESULT record"); 1966 unsigned OpNum = 0; 1967 Value *Op; 1968 getValueTypePair(Record, OpNum, NextValueNo, Op); 1969 unsigned Index = Record[1]; 1970 I = ExtractValueInst::Create(Op, Index); 1971 InstructionList.push_back(I); 1972 break; 1973 } 1974 1975 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1976 { 1977 unsigned Size = Record.size(); 1978 if (Size == 0) { 1979 I = ReturnInst::Create(Context); 1980 InstructionList.push_back(I); 1981 break; 1982 } 1983 1984 unsigned OpNum = 0; 1985 SmallVector<Value *,4> Vs; 1986 do { 1987 Value *Op = NULL; 1988 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1989 return Error("Invalid RET record"); 1990 Vs.push_back(Op); 1991 } while(OpNum != Record.size()); 1992 1993 const Type *ReturnType = F->getReturnType(); 1994 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 1995 if (Vs.size() > 1 || 1996 (ReturnType->isStructTy() && 1997 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1998 Value *RV = UndefValue::get(ReturnType); 1999 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2000 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2001 InstructionList.push_back(I); 2002 CurBB->getInstList().push_back(I); 2003 ValueList.AssignValue(I, NextValueNo++); 2004 RV = I; 2005 } 2006 I = ReturnInst::Create(Context, RV); 2007 InstructionList.push_back(I); 2008 break; 2009 } 2010 2011 I = ReturnInst::Create(Context, Vs[0]); 2012 InstructionList.push_back(I); 2013 break; 2014 } 2015 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2016 if (Record.size() != 1 && Record.size() != 3) 2017 return Error("Invalid BR record"); 2018 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2019 if (TrueDest == 0) 2020 return Error("Invalid BR record"); 2021 2022 if (Record.size() == 1) { 2023 I = BranchInst::Create(TrueDest); 2024 InstructionList.push_back(I); 2025 } 2026 else { 2027 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2028 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2029 if (FalseDest == 0 || Cond == 0) 2030 return Error("Invalid BR record"); 2031 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2032 InstructionList.push_back(I); 2033 } 2034 break; 2035 } 2036 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2037 if (Record.size() < 3 || (Record.size() & 1) == 0) 2038 return Error("Invalid SWITCH record"); 2039 const Type *OpTy = getTypeByID(Record[0]); 2040 Value *Cond = getFnValueByID(Record[1], OpTy); 2041 BasicBlock *Default = getBasicBlock(Record[2]); 2042 if (OpTy == 0 || Cond == 0 || Default == 0) 2043 return Error("Invalid SWITCH record"); 2044 unsigned NumCases = (Record.size()-3)/2; 2045 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2046 InstructionList.push_back(SI); 2047 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2048 ConstantInt *CaseVal = 2049 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2050 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2051 if (CaseVal == 0 || DestBB == 0) { 2052 delete SI; 2053 return Error("Invalid SWITCH record!"); 2054 } 2055 SI->addCase(CaseVal, DestBB); 2056 } 2057 I = SI; 2058 break; 2059 } 2060 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2061 if (Record.size() < 2) 2062 return Error("Invalid INDIRECTBR record"); 2063 const Type *OpTy = getTypeByID(Record[0]); 2064 Value *Address = getFnValueByID(Record[1], OpTy); 2065 if (OpTy == 0 || Address == 0) 2066 return Error("Invalid INDIRECTBR record"); 2067 unsigned NumDests = Record.size()-2; 2068 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2069 InstructionList.push_back(IBI); 2070 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2071 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2072 IBI->addDestination(DestBB); 2073 } else { 2074 delete IBI; 2075 return Error("Invalid INDIRECTBR record!"); 2076 } 2077 } 2078 I = IBI; 2079 break; 2080 } 2081 2082 case bitc::FUNC_CODE_INST_INVOKE: { 2083 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2084 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2085 AttrListPtr PAL = getAttributes(Record[0]); 2086 unsigned CCInfo = Record[1]; 2087 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2088 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2089 2090 unsigned OpNum = 4; 2091 Value *Callee; 2092 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2093 return Error("Invalid INVOKE record"); 2094 2095 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2096 const FunctionType *FTy = !CalleeTy ? 0 : 2097 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2098 2099 // Check that the right number of fixed parameters are here. 2100 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2101 Record.size() < OpNum+FTy->getNumParams()) 2102 return Error("Invalid INVOKE record"); 2103 2104 SmallVector<Value*, 16> Ops; 2105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2106 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2107 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2108 } 2109 2110 if (!FTy->isVarArg()) { 2111 if (Record.size() != OpNum) 2112 return Error("Invalid INVOKE record"); 2113 } else { 2114 // Read type/value pairs for varargs params. 2115 while (OpNum != Record.size()) { 2116 Value *Op; 2117 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2118 return Error("Invalid INVOKE record"); 2119 Ops.push_back(Op); 2120 } 2121 } 2122 2123 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2124 Ops.begin(), Ops.end()); 2125 InstructionList.push_back(I); 2126 cast<InvokeInst>(I)->setCallingConv( 2127 static_cast<CallingConv::ID>(CCInfo)); 2128 cast<InvokeInst>(I)->setAttributes(PAL); 2129 break; 2130 } 2131 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2132 I = new UnwindInst(Context); 2133 InstructionList.push_back(I); 2134 break; 2135 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2136 I = new UnreachableInst(Context); 2137 InstructionList.push_back(I); 2138 break; 2139 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2140 if (Record.size() < 1 || ((Record.size()-1)&1)) 2141 return Error("Invalid PHI record"); 2142 const Type *Ty = getTypeByID(Record[0]); 2143 if (!Ty) return Error("Invalid PHI record"); 2144 2145 PHINode *PN = PHINode::Create(Ty); 2146 InstructionList.push_back(PN); 2147 PN->reserveOperandSpace((Record.size()-1)/2); 2148 2149 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2150 Value *V = getFnValueByID(Record[1+i], Ty); 2151 BasicBlock *BB = getBasicBlock(Record[2+i]); 2152 if (!V || !BB) return Error("Invalid PHI record"); 2153 PN->addIncoming(V, BB); 2154 } 2155 I = PN; 2156 break; 2157 } 2158 2159 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2160 // Autoupgrade malloc instruction to malloc call. 2161 // FIXME: Remove in LLVM 3.0. 2162 if (Record.size() < 3) 2163 return Error("Invalid MALLOC record"); 2164 const PointerType *Ty = 2165 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2166 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2167 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2168 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2169 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2170 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2171 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2172 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2173 AllocSize, Size, NULL); 2174 InstructionList.push_back(I); 2175 break; 2176 } 2177 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2178 unsigned OpNum = 0; 2179 Value *Op; 2180 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2181 OpNum != Record.size()) 2182 return Error("Invalid FREE record"); 2183 if (!CurBB) return Error("Invalid free instruction with no BB"); 2184 I = CallInst::CreateFree(Op, CurBB); 2185 InstructionList.push_back(I); 2186 break; 2187 } 2188 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2189 // For backward compatibility, tolerate a lack of an opty, and use i32. 2190 // LLVM 3.0: Remove this. 2191 if (Record.size() < 3 || Record.size() > 4) 2192 return Error("Invalid ALLOCA record"); 2193 unsigned OpNum = 0; 2194 const PointerType *Ty = 2195 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2196 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2197 Type::getInt32Ty(Context); 2198 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2199 unsigned Align = Record[OpNum++]; 2200 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2201 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2202 InstructionList.push_back(I); 2203 break; 2204 } 2205 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2206 unsigned OpNum = 0; 2207 Value *Op; 2208 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2209 OpNum+2 != Record.size()) 2210 return Error("Invalid LOAD record"); 2211 2212 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2213 InstructionList.push_back(I); 2214 break; 2215 } 2216 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2217 unsigned OpNum = 0; 2218 Value *Val, *Ptr; 2219 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2220 getValue(Record, OpNum, 2221 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2222 OpNum+2 != Record.size()) 2223 return Error("Invalid STORE record"); 2224 2225 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2226 InstructionList.push_back(I); 2227 break; 2228 } 2229 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2230 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2231 unsigned OpNum = 0; 2232 Value *Val, *Ptr; 2233 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2234 getValue(Record, OpNum, 2235 PointerType::getUnqual(Val->getType()), Ptr)|| 2236 OpNum+2 != Record.size()) 2237 return Error("Invalid STORE record"); 2238 2239 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2240 InstructionList.push_back(I); 2241 break; 2242 } 2243 case bitc::FUNC_CODE_INST_CALL: 2244 case bitc::FUNC_CODE_INST_CALL2: { 2245 // FIXME: Legacy support for the old call instruction, where function-local 2246 // metadata operands were bogus. Remove in LLVM 3.0. 2247 bool DropMetadata = BitCode == bitc::FUNC_CODE_INST_CALL; 2248 2249 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2250 if (Record.size() < 3) 2251 return Error("Invalid CALL record"); 2252 2253 AttrListPtr PAL = getAttributes(Record[0]); 2254 unsigned CCInfo = Record[1]; 2255 2256 unsigned OpNum = 2; 2257 Value *Callee; 2258 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2259 return Error("Invalid CALL record"); 2260 2261 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2262 const FunctionType *FTy = 0; 2263 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2264 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2265 return Error("Invalid CALL record"); 2266 2267 SmallVector<Value*, 16> Args; 2268 // Read the fixed params. 2269 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2270 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2271 Args.push_back(getBasicBlock(Record[OpNum])); 2272 else if (DropMetadata && 2273 FTy->getParamType(i)->getTypeID()==Type::MetadataTyID) { 2274 // LLVM 2.7 compatibility: drop metadata arguments to null. 2275 Value *Ops = 0; 2276 Args.push_back(MDNode::get(Context, &Ops, 1)); 2277 continue; 2278 } else 2279 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2280 if (Args.back() == 0) return Error("Invalid CALL record"); 2281 } 2282 2283 // Read type/value pairs for varargs params. 2284 if (!FTy->isVarArg()) { 2285 if (OpNum != Record.size()) 2286 return Error("Invalid CALL record"); 2287 } else { 2288 while (OpNum != Record.size()) { 2289 Value *Op; 2290 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2291 return Error("Invalid CALL record"); 2292 Args.push_back(Op); 2293 } 2294 } 2295 2296 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2297 InstructionList.push_back(I); 2298 cast<CallInst>(I)->setCallingConv( 2299 static_cast<CallingConv::ID>(CCInfo>>1)); 2300 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2301 cast<CallInst>(I)->setAttributes(PAL); 2302 break; 2303 } 2304 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2305 if (Record.size() < 3) 2306 return Error("Invalid VAARG record"); 2307 const Type *OpTy = getTypeByID(Record[0]); 2308 Value *Op = getFnValueByID(Record[1], OpTy); 2309 const Type *ResTy = getTypeByID(Record[2]); 2310 if (!OpTy || !Op || !ResTy) 2311 return Error("Invalid VAARG record"); 2312 I = new VAArgInst(Op, ResTy); 2313 InstructionList.push_back(I); 2314 break; 2315 } 2316 } 2317 2318 // Add instruction to end of current BB. If there is no current BB, reject 2319 // this file. 2320 if (CurBB == 0) { 2321 delete I; 2322 return Error("Invalid instruction with no BB"); 2323 } 2324 CurBB->getInstList().push_back(I); 2325 2326 // If this was a terminator instruction, move to the next block. 2327 if (isa<TerminatorInst>(I)) { 2328 ++CurBBNo; 2329 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2330 } 2331 2332 // Non-void values get registered in the value table for future use. 2333 if (I && !I->getType()->isVoidTy()) 2334 ValueList.AssignValue(I, NextValueNo++); 2335 } 2336 2337 // Check the function list for unresolved values. 2338 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2339 if (A->getParent() == 0) { 2340 // We found at least one unresolved value. Nuke them all to avoid leaks. 2341 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2342 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2343 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2344 delete A; 2345 } 2346 } 2347 return Error("Never resolved value found in function!"); 2348 } 2349 } 2350 2351 // FIXME: Check for unresolved forward-declared metadata references 2352 // and clean up leaks. 2353 2354 // See if anything took the address of blocks in this function. If so, 2355 // resolve them now. 2356 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2357 BlockAddrFwdRefs.find(F); 2358 if (BAFRI != BlockAddrFwdRefs.end()) { 2359 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2360 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2361 unsigned BlockIdx = RefList[i].first; 2362 if (BlockIdx >= FunctionBBs.size()) 2363 return Error("Invalid blockaddress block #"); 2364 2365 GlobalVariable *FwdRef = RefList[i].second; 2366 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2367 FwdRef->eraseFromParent(); 2368 } 2369 2370 BlockAddrFwdRefs.erase(BAFRI); 2371 } 2372 2373 // Trim the value list down to the size it was before we parsed this function. 2374 ValueList.shrinkTo(ModuleValueListSize); 2375 MDValueList.shrinkTo(ModuleMDValueListSize); 2376 std::vector<BasicBlock*>().swap(FunctionBBs); 2377 2378 return false; 2379 } 2380 2381 //===----------------------------------------------------------------------===// 2382 // GVMaterializer implementation 2383 //===----------------------------------------------------------------------===// 2384 2385 2386 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2387 if (const Function *F = dyn_cast<Function>(GV)) { 2388 return F->isDeclaration() && 2389 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2390 } 2391 return false; 2392 } 2393 2394 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2395 Function *F = dyn_cast<Function>(GV); 2396 // If it's not a function or is already material, ignore the request. 2397 if (!F || !F->isMaterializable()) return false; 2398 2399 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2400 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2401 2402 // Move the bit stream to the saved position of the deferred function body. 2403 Stream.JumpToBit(DFII->second); 2404 2405 if (ParseFunctionBody(F)) { 2406 if (ErrInfo) *ErrInfo = ErrorString; 2407 return true; 2408 } 2409 2410 // Upgrade any old intrinsic calls in the function. 2411 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2412 E = UpgradedIntrinsics.end(); I != E; ++I) { 2413 if (I->first != I->second) { 2414 for (Value::use_iterator UI = I->first->use_begin(), 2415 UE = I->first->use_end(); UI != UE; ) { 2416 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2417 UpgradeIntrinsicCall(CI, I->second); 2418 } 2419 } 2420 } 2421 2422 return false; 2423 } 2424 2425 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2426 const Function *F = dyn_cast<Function>(GV); 2427 if (!F || F->isDeclaration()) 2428 return false; 2429 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2430 } 2431 2432 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2433 Function *F = dyn_cast<Function>(GV); 2434 // If this function isn't dematerializable, this is a noop. 2435 if (!F || !isDematerializable(F)) 2436 return; 2437 2438 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2439 2440 // Just forget the function body, we can remat it later. 2441 F->deleteBody(); 2442 } 2443 2444 2445 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2446 assert(M == TheModule && 2447 "Can only Materialize the Module this BitcodeReader is attached to."); 2448 // Iterate over the module, deserializing any functions that are still on 2449 // disk. 2450 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2451 F != E; ++F) 2452 if (F->isMaterializable() && 2453 Materialize(F, ErrInfo)) 2454 return true; 2455 2456 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2457 // delete the old functions to clean up. We can't do this unless the entire 2458 // module is materialized because there could always be another function body 2459 // with calls to the old function. 2460 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2461 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2462 if (I->first != I->second) { 2463 for (Value::use_iterator UI = I->first->use_begin(), 2464 UE = I->first->use_end(); UI != UE; ) { 2465 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2466 UpgradeIntrinsicCall(CI, I->second); 2467 } 2468 if (!I->first->use_empty()) 2469 I->first->replaceAllUsesWith(I->second); 2470 I->first->eraseFromParent(); 2471 } 2472 } 2473 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2474 2475 // Check debug info intrinsics. 2476 CheckDebugInfoIntrinsics(TheModule); 2477 2478 return false; 2479 } 2480 2481 2482 //===----------------------------------------------------------------------===// 2483 // External interface 2484 //===----------------------------------------------------------------------===// 2485 2486 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2487 /// 2488 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2489 LLVMContext& Context, 2490 std::string *ErrMsg) { 2491 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2492 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2493 M->setMaterializer(R); 2494 if (R->ParseBitcodeInto(M)) { 2495 if (ErrMsg) 2496 *ErrMsg = R->getErrorString(); 2497 2498 delete M; // Also deletes R. 2499 return 0; 2500 } 2501 // Have the BitcodeReader dtor delete 'Buffer'. 2502 R->setBufferOwned(true); 2503 return M; 2504 } 2505 2506 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2507 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2508 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2509 std::string *ErrMsg){ 2510 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2511 if (!M) return 0; 2512 2513 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2514 // there was an error. 2515 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2516 2517 // Read in the entire module, and destroy the BitcodeReader. 2518 if (M->MaterializeAllPermanently(ErrMsg)) { 2519 delete M; 2520 return NULL; 2521 } 2522 return M; 2523 } 2524