1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown visibilities to default. 1123 case 0: return GlobalValue::DefaultVisibility; 1124 case 1: return GlobalValue::HiddenVisibility; 1125 case 2: return GlobalValue::ProtectedVisibility; 1126 } 1127 } 1128 1129 static GlobalValue::DLLStorageClassTypes 1130 getDecodedDLLStorageClass(unsigned Val) { 1131 switch (Val) { 1132 default: // Map unknown values to default. 1133 case 0: return GlobalValue::DefaultStorageClass; 1134 case 1: return GlobalValue::DLLImportStorageClass; 1135 case 2: return GlobalValue::DLLExportStorageClass; 1136 } 1137 } 1138 1139 static bool getDecodedDSOLocal(unsigned Val) { 1140 switch(Val) { 1141 default: // Map unknown values to preemptable. 1142 case 0: return false; 1143 case 1: return true; 1144 } 1145 } 1146 1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1148 switch (Val) { 1149 case 0: return GlobalVariable::NotThreadLocal; 1150 default: // Map unknown non-zero value to general dynamic. 1151 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1152 case 2: return GlobalVariable::LocalDynamicTLSModel; 1153 case 3: return GlobalVariable::InitialExecTLSModel; 1154 case 4: return GlobalVariable::LocalExecTLSModel; 1155 } 1156 } 1157 1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1159 switch (Val) { 1160 default: // Map unknown to UnnamedAddr::None. 1161 case 0: return GlobalVariable::UnnamedAddr::None; 1162 case 1: return GlobalVariable::UnnamedAddr::Global; 1163 case 2: return GlobalVariable::UnnamedAddr::Local; 1164 } 1165 } 1166 1167 static int getDecodedCastOpcode(unsigned Val) { 1168 switch (Val) { 1169 default: return -1; 1170 case bitc::CAST_TRUNC : return Instruction::Trunc; 1171 case bitc::CAST_ZEXT : return Instruction::ZExt; 1172 case bitc::CAST_SEXT : return Instruction::SExt; 1173 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1174 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1175 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1176 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1177 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1178 case bitc::CAST_FPEXT : return Instruction::FPExt; 1179 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1180 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1181 case bitc::CAST_BITCAST : return Instruction::BitCast; 1182 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1183 } 1184 } 1185 1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1187 bool IsFP = Ty->isFPOrFPVectorTy(); 1188 // UnOps are only valid for int/fp or vector of int/fp types 1189 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1190 return -1; 1191 1192 switch (Val) { 1193 default: 1194 return -1; 1195 case bitc::UNOP_FNEG: 1196 return IsFP ? Instruction::FNeg : -1; 1197 } 1198 } 1199 1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1201 bool IsFP = Ty->isFPOrFPVectorTy(); 1202 // BinOps are only valid for int/fp or vector of int/fp types 1203 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1204 return -1; 1205 1206 switch (Val) { 1207 default: 1208 return -1; 1209 case bitc::BINOP_ADD: 1210 return IsFP ? Instruction::FAdd : Instruction::Add; 1211 case bitc::BINOP_SUB: 1212 return IsFP ? Instruction::FSub : Instruction::Sub; 1213 case bitc::BINOP_MUL: 1214 return IsFP ? Instruction::FMul : Instruction::Mul; 1215 case bitc::BINOP_UDIV: 1216 return IsFP ? -1 : Instruction::UDiv; 1217 case bitc::BINOP_SDIV: 1218 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1219 case bitc::BINOP_UREM: 1220 return IsFP ? -1 : Instruction::URem; 1221 case bitc::BINOP_SREM: 1222 return IsFP ? Instruction::FRem : Instruction::SRem; 1223 case bitc::BINOP_SHL: 1224 return IsFP ? -1 : Instruction::Shl; 1225 case bitc::BINOP_LSHR: 1226 return IsFP ? -1 : Instruction::LShr; 1227 case bitc::BINOP_ASHR: 1228 return IsFP ? -1 : Instruction::AShr; 1229 case bitc::BINOP_AND: 1230 return IsFP ? -1 : Instruction::And; 1231 case bitc::BINOP_OR: 1232 return IsFP ? -1 : Instruction::Or; 1233 case bitc::BINOP_XOR: 1234 return IsFP ? -1 : Instruction::Xor; 1235 } 1236 } 1237 1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1239 switch (Val) { 1240 default: return AtomicRMWInst::BAD_BINOP; 1241 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1242 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1243 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1244 case bitc::RMW_AND: return AtomicRMWInst::And; 1245 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1246 case bitc::RMW_OR: return AtomicRMWInst::Or; 1247 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1248 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1249 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1250 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1251 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1252 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1253 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1254 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1255 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1256 case bitc::RMW_UINC_WRAP: 1257 return AtomicRMWInst::UIncWrap; 1258 case bitc::RMW_UDEC_WRAP: 1259 return AtomicRMWInst::UDecWrap; 1260 } 1261 } 1262 1263 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1264 switch (Val) { 1265 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1266 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1267 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1268 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1269 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1270 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1271 default: // Map unknown orderings to sequentially-consistent. 1272 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1273 } 1274 } 1275 1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1277 switch (Val) { 1278 default: // Map unknown selection kinds to any. 1279 case bitc::COMDAT_SELECTION_KIND_ANY: 1280 return Comdat::Any; 1281 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1282 return Comdat::ExactMatch; 1283 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1284 return Comdat::Largest; 1285 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1286 return Comdat::NoDeduplicate; 1287 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1288 return Comdat::SameSize; 1289 } 1290 } 1291 1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1293 FastMathFlags FMF; 1294 if (0 != (Val & bitc::UnsafeAlgebra)) 1295 FMF.setFast(); 1296 if (0 != (Val & bitc::AllowReassoc)) 1297 FMF.setAllowReassoc(); 1298 if (0 != (Val & bitc::NoNaNs)) 1299 FMF.setNoNaNs(); 1300 if (0 != (Val & bitc::NoInfs)) 1301 FMF.setNoInfs(); 1302 if (0 != (Val & bitc::NoSignedZeros)) 1303 FMF.setNoSignedZeros(); 1304 if (0 != (Val & bitc::AllowReciprocal)) 1305 FMF.setAllowReciprocal(); 1306 if (0 != (Val & bitc::AllowContract)) 1307 FMF.setAllowContract(true); 1308 if (0 != (Val & bitc::ApproxFunc)) 1309 FMF.setApproxFunc(); 1310 return FMF; 1311 } 1312 1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1314 // A GlobalValue with local linkage cannot have a DLL storage class. 1315 if (GV->hasLocalLinkage()) 1316 return; 1317 switch (Val) { 1318 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1319 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1320 } 1321 } 1322 1323 Type *BitcodeReader::getTypeByID(unsigned ID) { 1324 // The type table size is always specified correctly. 1325 if (ID >= TypeList.size()) 1326 return nullptr; 1327 1328 if (Type *Ty = TypeList[ID]) 1329 return Ty; 1330 1331 // If we have a forward reference, the only possible case is when it is to a 1332 // named struct. Just create a placeholder for now. 1333 return TypeList[ID] = createIdentifiedStructType(Context); 1334 } 1335 1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1337 auto It = ContainedTypeIDs.find(ID); 1338 if (It == ContainedTypeIDs.end()) 1339 return InvalidTypeID; 1340 1341 if (Idx >= It->second.size()) 1342 return InvalidTypeID; 1343 1344 return It->second[Idx]; 1345 } 1346 1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1348 if (ID >= TypeList.size()) 1349 return nullptr; 1350 1351 Type *Ty = TypeList[ID]; 1352 if (!Ty->isPointerTy()) 1353 return nullptr; 1354 1355 return getTypeByID(getContainedTypeID(ID, 0)); 1356 } 1357 1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1359 ArrayRef<unsigned> ChildTypeIDs) { 1360 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1361 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1362 auto It = VirtualTypeIDs.find(CacheKey); 1363 if (It != VirtualTypeIDs.end()) { 1364 // The cmpxchg return value is the only place we need more than one 1365 // contained type ID, however the second one will always be the same (i1), 1366 // so we don't need to include it in the cache key. This asserts that the 1367 // contained types are indeed as expected and there are no collisions. 1368 assert((ChildTypeIDs.empty() || 1369 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1370 "Incorrect cached contained type IDs"); 1371 return It->second; 1372 } 1373 1374 unsigned TypeID = TypeList.size(); 1375 TypeList.push_back(Ty); 1376 if (!ChildTypeIDs.empty()) 1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1378 VirtualTypeIDs.insert({CacheKey, TypeID}); 1379 return TypeID; 1380 } 1381 1382 static bool isConstExprSupported(const BitcodeConstant *BC) { 1383 uint8_t Opcode = BC->Opcode; 1384 1385 // These are not real constant expressions, always consider them supported. 1386 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1387 return true; 1388 1389 // If -expand-constant-exprs is set, we want to consider all expressions 1390 // as unsupported. 1391 if (ExpandConstantExprs) 1392 return false; 1393 1394 if (Instruction::isBinaryOp(Opcode)) 1395 return ConstantExpr::isSupportedBinOp(Opcode); 1396 1397 if (Opcode == Instruction::GetElementPtr) 1398 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1399 1400 switch (Opcode) { 1401 case Instruction::FNeg: 1402 case Instruction::Select: 1403 return false; 1404 default: 1405 return true; 1406 } 1407 } 1408 1409 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1410 BasicBlock *InsertBB) { 1411 // Quickly handle the case where there is no BitcodeConstant to resolve. 1412 if (StartValID < ValueList.size() && ValueList[StartValID] && 1413 !isa<BitcodeConstant>(ValueList[StartValID])) 1414 return ValueList[StartValID]; 1415 1416 SmallDenseMap<unsigned, Value *> MaterializedValues; 1417 SmallVector<unsigned> Worklist; 1418 Worklist.push_back(StartValID); 1419 while (!Worklist.empty()) { 1420 unsigned ValID = Worklist.back(); 1421 if (MaterializedValues.count(ValID)) { 1422 // Duplicate expression that was already handled. 1423 Worklist.pop_back(); 1424 continue; 1425 } 1426 1427 if (ValID >= ValueList.size() || !ValueList[ValID]) 1428 return error("Invalid value ID"); 1429 1430 Value *V = ValueList[ValID]; 1431 auto *BC = dyn_cast<BitcodeConstant>(V); 1432 if (!BC) { 1433 MaterializedValues.insert({ValID, V}); 1434 Worklist.pop_back(); 1435 continue; 1436 } 1437 1438 // Iterate in reverse, so values will get popped from the worklist in 1439 // expected order. 1440 SmallVector<Value *> Ops; 1441 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1442 auto It = MaterializedValues.find(OpID); 1443 if (It != MaterializedValues.end()) 1444 Ops.push_back(It->second); 1445 else 1446 Worklist.push_back(OpID); 1447 } 1448 1449 // Some expressions have not been resolved yet, handle them first and then 1450 // revisit this one. 1451 if (Ops.size() != BC->getOperandIDs().size()) 1452 continue; 1453 std::reverse(Ops.begin(), Ops.end()); 1454 1455 SmallVector<Constant *> ConstOps; 1456 for (Value *Op : Ops) 1457 if (auto *C = dyn_cast<Constant>(Op)) 1458 ConstOps.push_back(C); 1459 1460 // Materialize as constant expression if possible. 1461 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1462 Constant *C; 1463 if (Instruction::isCast(BC->Opcode)) { 1464 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1465 if (!C) 1466 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1467 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1468 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1469 } else { 1470 switch (BC->Opcode) { 1471 case BitcodeConstant::NoCFIOpcode: { 1472 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1473 if (!GV) 1474 return error("no_cfi operand must be GlobalValue"); 1475 C = NoCFIValue::get(GV); 1476 break; 1477 } 1478 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1479 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1480 if (!GV) 1481 return error("dso_local operand must be GlobalValue"); 1482 C = DSOLocalEquivalent::get(GV); 1483 break; 1484 } 1485 case BitcodeConstant::BlockAddressOpcode: { 1486 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1487 if (!Fn) 1488 return error("blockaddress operand must be a function"); 1489 1490 // If the function is already parsed we can insert the block address 1491 // right away. 1492 BasicBlock *BB; 1493 unsigned BBID = BC->Extra; 1494 if (!BBID) 1495 // Invalid reference to entry block. 1496 return error("Invalid ID"); 1497 if (!Fn->empty()) { 1498 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1499 for (size_t I = 0, E = BBID; I != E; ++I) { 1500 if (BBI == BBE) 1501 return error("Invalid ID"); 1502 ++BBI; 1503 } 1504 BB = &*BBI; 1505 } else { 1506 // Otherwise insert a placeholder and remember it so it can be 1507 // inserted when the function is parsed. 1508 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1509 if (FwdBBs.empty()) 1510 BasicBlockFwdRefQueue.push_back(Fn); 1511 if (FwdBBs.size() < BBID + 1) 1512 FwdBBs.resize(BBID + 1); 1513 if (!FwdBBs[BBID]) 1514 FwdBBs[BBID] = BasicBlock::Create(Context); 1515 BB = FwdBBs[BBID]; 1516 } 1517 C = BlockAddress::get(Fn, BB); 1518 break; 1519 } 1520 case BitcodeConstant::ConstantStructOpcode: 1521 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1522 break; 1523 case BitcodeConstant::ConstantArrayOpcode: 1524 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1525 break; 1526 case BitcodeConstant::ConstantVectorOpcode: 1527 C = ConstantVector::get(ConstOps); 1528 break; 1529 case Instruction::ICmp: 1530 case Instruction::FCmp: 1531 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1532 break; 1533 case Instruction::GetElementPtr: 1534 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1535 ArrayRef(ConstOps).drop_front(), 1536 BC->Flags, BC->getInRangeIndex()); 1537 break; 1538 case Instruction::ExtractElement: 1539 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1540 break; 1541 case Instruction::InsertElement: 1542 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1543 ConstOps[2]); 1544 break; 1545 case Instruction::ShuffleVector: { 1546 SmallVector<int, 16> Mask; 1547 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1548 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1549 break; 1550 } 1551 default: 1552 llvm_unreachable("Unhandled bitcode constant"); 1553 } 1554 } 1555 1556 // Cache resolved constant. 1557 ValueList.replaceValueWithoutRAUW(ValID, C); 1558 MaterializedValues.insert({ValID, C}); 1559 Worklist.pop_back(); 1560 continue; 1561 } 1562 1563 if (!InsertBB) 1564 return error(Twine("Value referenced by initializer is an unsupported " 1565 "constant expression of type ") + 1566 BC->getOpcodeName()); 1567 1568 // Materialize as instructions if necessary. 1569 Instruction *I; 1570 if (Instruction::isCast(BC->Opcode)) { 1571 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1572 BC->getType(), "constexpr", InsertBB); 1573 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1574 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1575 "constexpr", InsertBB); 1576 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1577 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1578 Ops[1], "constexpr", InsertBB); 1579 if (isa<OverflowingBinaryOperator>(I)) { 1580 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1581 I->setHasNoSignedWrap(); 1582 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1583 I->setHasNoUnsignedWrap(); 1584 } 1585 if (isa<PossiblyExactOperator>(I) && 1586 (BC->Flags & PossiblyExactOperator::IsExact)) 1587 I->setIsExact(); 1588 } else { 1589 switch (BC->Opcode) { 1590 case BitcodeConstant::ConstantVectorOpcode: { 1591 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1592 Value *V = PoisonValue::get(BC->getType()); 1593 for (auto Pair : enumerate(Ops)) { 1594 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1595 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1596 InsertBB); 1597 } 1598 I = cast<Instruction>(V); 1599 break; 1600 } 1601 case BitcodeConstant::ConstantStructOpcode: 1602 case BitcodeConstant::ConstantArrayOpcode: { 1603 Value *V = PoisonValue::get(BC->getType()); 1604 for (auto Pair : enumerate(Ops)) 1605 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1606 "constexpr.ins", InsertBB); 1607 I = cast<Instruction>(V); 1608 break; 1609 } 1610 case Instruction::ICmp: 1611 case Instruction::FCmp: 1612 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1613 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1614 "constexpr", InsertBB); 1615 break; 1616 case Instruction::GetElementPtr: 1617 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1618 ArrayRef(Ops).drop_front(), "constexpr", 1619 InsertBB); 1620 if (BC->Flags) 1621 cast<GetElementPtrInst>(I)->setIsInBounds(); 1622 break; 1623 case Instruction::Select: 1624 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1625 break; 1626 case Instruction::ExtractElement: 1627 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1628 break; 1629 case Instruction::InsertElement: 1630 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1631 InsertBB); 1632 break; 1633 case Instruction::ShuffleVector: 1634 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1635 InsertBB); 1636 break; 1637 default: 1638 llvm_unreachable("Unhandled bitcode constant"); 1639 } 1640 } 1641 1642 MaterializedValues.insert({ValID, I}); 1643 Worklist.pop_back(); 1644 } 1645 1646 return MaterializedValues[StartValID]; 1647 } 1648 1649 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1650 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1651 if (!MaybeV) 1652 return MaybeV.takeError(); 1653 1654 // Result must be Constant if InsertBB is nullptr. 1655 return cast<Constant>(MaybeV.get()); 1656 } 1657 1658 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1659 StringRef Name) { 1660 auto *Ret = StructType::create(Context, Name); 1661 IdentifiedStructTypes.push_back(Ret); 1662 return Ret; 1663 } 1664 1665 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1666 auto *Ret = StructType::create(Context); 1667 IdentifiedStructTypes.push_back(Ret); 1668 return Ret; 1669 } 1670 1671 //===----------------------------------------------------------------------===// 1672 // Functions for parsing blocks from the bitcode file 1673 //===----------------------------------------------------------------------===// 1674 1675 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1676 switch (Val) { 1677 case Attribute::EndAttrKinds: 1678 case Attribute::EmptyKey: 1679 case Attribute::TombstoneKey: 1680 llvm_unreachable("Synthetic enumerators which should never get here"); 1681 1682 case Attribute::None: return 0; 1683 case Attribute::ZExt: return 1 << 0; 1684 case Attribute::SExt: return 1 << 1; 1685 case Attribute::NoReturn: return 1 << 2; 1686 case Attribute::InReg: return 1 << 3; 1687 case Attribute::StructRet: return 1 << 4; 1688 case Attribute::NoUnwind: return 1 << 5; 1689 case Attribute::NoAlias: return 1 << 6; 1690 case Attribute::ByVal: return 1 << 7; 1691 case Attribute::Nest: return 1 << 8; 1692 case Attribute::ReadNone: return 1 << 9; 1693 case Attribute::ReadOnly: return 1 << 10; 1694 case Attribute::NoInline: return 1 << 11; 1695 case Attribute::AlwaysInline: return 1 << 12; 1696 case Attribute::OptimizeForSize: return 1 << 13; 1697 case Attribute::StackProtect: return 1 << 14; 1698 case Attribute::StackProtectReq: return 1 << 15; 1699 case Attribute::Alignment: return 31 << 16; 1700 case Attribute::NoCapture: return 1 << 21; 1701 case Attribute::NoRedZone: return 1 << 22; 1702 case Attribute::NoImplicitFloat: return 1 << 23; 1703 case Attribute::Naked: return 1 << 24; 1704 case Attribute::InlineHint: return 1 << 25; 1705 case Attribute::StackAlignment: return 7 << 26; 1706 case Attribute::ReturnsTwice: return 1 << 29; 1707 case Attribute::UWTable: return 1 << 30; 1708 case Attribute::NonLazyBind: return 1U << 31; 1709 case Attribute::SanitizeAddress: return 1ULL << 32; 1710 case Attribute::MinSize: return 1ULL << 33; 1711 case Attribute::NoDuplicate: return 1ULL << 34; 1712 case Attribute::StackProtectStrong: return 1ULL << 35; 1713 case Attribute::SanitizeThread: return 1ULL << 36; 1714 case Attribute::SanitizeMemory: return 1ULL << 37; 1715 case Attribute::NoBuiltin: return 1ULL << 38; 1716 case Attribute::Returned: return 1ULL << 39; 1717 case Attribute::Cold: return 1ULL << 40; 1718 case Attribute::Builtin: return 1ULL << 41; 1719 case Attribute::OptimizeNone: return 1ULL << 42; 1720 case Attribute::InAlloca: return 1ULL << 43; 1721 case Attribute::NonNull: return 1ULL << 44; 1722 case Attribute::JumpTable: return 1ULL << 45; 1723 case Attribute::Convergent: return 1ULL << 46; 1724 case Attribute::SafeStack: return 1ULL << 47; 1725 case Attribute::NoRecurse: return 1ULL << 48; 1726 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1727 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1728 case Attribute::SwiftSelf: return 1ULL << 51; 1729 case Attribute::SwiftError: return 1ULL << 52; 1730 case Attribute::WriteOnly: return 1ULL << 53; 1731 case Attribute::Speculatable: return 1ULL << 54; 1732 case Attribute::StrictFP: return 1ULL << 55; 1733 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1734 case Attribute::NoCfCheck: return 1ULL << 57; 1735 case Attribute::OptForFuzzing: return 1ULL << 58; 1736 case Attribute::ShadowCallStack: return 1ULL << 59; 1737 case Attribute::SpeculativeLoadHardening: 1738 return 1ULL << 60; 1739 case Attribute::ImmArg: 1740 return 1ULL << 61; 1741 case Attribute::WillReturn: 1742 return 1ULL << 62; 1743 case Attribute::NoFree: 1744 return 1ULL << 63; 1745 default: 1746 // Other attributes are not supported in the raw format, 1747 // as we ran out of space. 1748 return 0; 1749 } 1750 llvm_unreachable("Unsupported attribute type"); 1751 } 1752 1753 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1754 if (!Val) return; 1755 1756 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1757 I = Attribute::AttrKind(I + 1)) { 1758 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1759 if (I == Attribute::Alignment) 1760 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1761 else if (I == Attribute::StackAlignment) 1762 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1763 else if (Attribute::isTypeAttrKind(I)) 1764 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1765 else 1766 B.addAttribute(I); 1767 } 1768 } 1769 } 1770 1771 /// This fills an AttrBuilder object with the LLVM attributes that have 1772 /// been decoded from the given integer. This function must stay in sync with 1773 /// 'encodeLLVMAttributesForBitcode'. 1774 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1775 uint64_t EncodedAttrs, 1776 uint64_t AttrIdx) { 1777 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1778 // the bits above 31 down by 11 bits. 1779 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1780 assert((!Alignment || isPowerOf2_32(Alignment)) && 1781 "Alignment must be a power of two."); 1782 1783 if (Alignment) 1784 B.addAlignmentAttr(Alignment); 1785 1786 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1787 (EncodedAttrs & 0xffff); 1788 1789 if (AttrIdx == AttributeList::FunctionIndex) { 1790 // Upgrade old memory attributes. 1791 MemoryEffects ME = MemoryEffects::unknown(); 1792 if (Attrs & (1ULL << 9)) { 1793 // ReadNone 1794 Attrs &= ~(1ULL << 9); 1795 ME &= MemoryEffects::none(); 1796 } 1797 if (Attrs & (1ULL << 10)) { 1798 // ReadOnly 1799 Attrs &= ~(1ULL << 10); 1800 ME &= MemoryEffects::readOnly(); 1801 } 1802 if (Attrs & (1ULL << 49)) { 1803 // InaccessibleMemOnly 1804 Attrs &= ~(1ULL << 49); 1805 ME &= MemoryEffects::inaccessibleMemOnly(); 1806 } 1807 if (Attrs & (1ULL << 50)) { 1808 // InaccessibleMemOrArgMemOnly 1809 Attrs &= ~(1ULL << 50); 1810 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1811 } 1812 if (Attrs & (1ULL << 53)) { 1813 // WriteOnly 1814 Attrs &= ~(1ULL << 53); 1815 ME &= MemoryEffects::writeOnly(); 1816 } 1817 if (ME != MemoryEffects::unknown()) 1818 B.addMemoryAttr(ME); 1819 } 1820 1821 addRawAttributeValue(B, Attrs); 1822 } 1823 1824 Error BitcodeReader::parseAttributeBlock() { 1825 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1826 return Err; 1827 1828 if (!MAttributes.empty()) 1829 return error("Invalid multiple blocks"); 1830 1831 SmallVector<uint64_t, 64> Record; 1832 1833 SmallVector<AttributeList, 8> Attrs; 1834 1835 // Read all the records. 1836 while (true) { 1837 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1838 if (!MaybeEntry) 1839 return MaybeEntry.takeError(); 1840 BitstreamEntry Entry = MaybeEntry.get(); 1841 1842 switch (Entry.Kind) { 1843 case BitstreamEntry::SubBlock: // Handled for us already. 1844 case BitstreamEntry::Error: 1845 return error("Malformed block"); 1846 case BitstreamEntry::EndBlock: 1847 return Error::success(); 1848 case BitstreamEntry::Record: 1849 // The interesting case. 1850 break; 1851 } 1852 1853 // Read a record. 1854 Record.clear(); 1855 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1856 if (!MaybeRecord) 1857 return MaybeRecord.takeError(); 1858 switch (MaybeRecord.get()) { 1859 default: // Default behavior: ignore. 1860 break; 1861 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1862 // Deprecated, but still needed to read old bitcode files. 1863 if (Record.size() & 1) 1864 return error("Invalid parameter attribute record"); 1865 1866 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1867 AttrBuilder B(Context); 1868 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1869 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1870 } 1871 1872 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1873 Attrs.clear(); 1874 break; 1875 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1876 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1877 Attrs.push_back(MAttributeGroups[Record[i]]); 1878 1879 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1880 Attrs.clear(); 1881 break; 1882 } 1883 } 1884 } 1885 1886 // Returns Attribute::None on unrecognized codes. 1887 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1888 switch (Code) { 1889 default: 1890 return Attribute::None; 1891 case bitc::ATTR_KIND_ALIGNMENT: 1892 return Attribute::Alignment; 1893 case bitc::ATTR_KIND_ALWAYS_INLINE: 1894 return Attribute::AlwaysInline; 1895 case bitc::ATTR_KIND_BUILTIN: 1896 return Attribute::Builtin; 1897 case bitc::ATTR_KIND_BY_VAL: 1898 return Attribute::ByVal; 1899 case bitc::ATTR_KIND_IN_ALLOCA: 1900 return Attribute::InAlloca; 1901 case bitc::ATTR_KIND_COLD: 1902 return Attribute::Cold; 1903 case bitc::ATTR_KIND_CONVERGENT: 1904 return Attribute::Convergent; 1905 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1906 return Attribute::DisableSanitizerInstrumentation; 1907 case bitc::ATTR_KIND_ELEMENTTYPE: 1908 return Attribute::ElementType; 1909 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1910 return Attribute::FnRetThunkExtern; 1911 case bitc::ATTR_KIND_INLINE_HINT: 1912 return Attribute::InlineHint; 1913 case bitc::ATTR_KIND_IN_REG: 1914 return Attribute::InReg; 1915 case bitc::ATTR_KIND_JUMP_TABLE: 1916 return Attribute::JumpTable; 1917 case bitc::ATTR_KIND_MEMORY: 1918 return Attribute::Memory; 1919 case bitc::ATTR_KIND_NOFPCLASS: 1920 return Attribute::NoFPClass; 1921 case bitc::ATTR_KIND_MIN_SIZE: 1922 return Attribute::MinSize; 1923 case bitc::ATTR_KIND_NAKED: 1924 return Attribute::Naked; 1925 case bitc::ATTR_KIND_NEST: 1926 return Attribute::Nest; 1927 case bitc::ATTR_KIND_NO_ALIAS: 1928 return Attribute::NoAlias; 1929 case bitc::ATTR_KIND_NO_BUILTIN: 1930 return Attribute::NoBuiltin; 1931 case bitc::ATTR_KIND_NO_CALLBACK: 1932 return Attribute::NoCallback; 1933 case bitc::ATTR_KIND_NO_CAPTURE: 1934 return Attribute::NoCapture; 1935 case bitc::ATTR_KIND_NO_DUPLICATE: 1936 return Attribute::NoDuplicate; 1937 case bitc::ATTR_KIND_NOFREE: 1938 return Attribute::NoFree; 1939 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1940 return Attribute::NoImplicitFloat; 1941 case bitc::ATTR_KIND_NO_INLINE: 1942 return Attribute::NoInline; 1943 case bitc::ATTR_KIND_NO_RECURSE: 1944 return Attribute::NoRecurse; 1945 case bitc::ATTR_KIND_NO_MERGE: 1946 return Attribute::NoMerge; 1947 case bitc::ATTR_KIND_NON_LAZY_BIND: 1948 return Attribute::NonLazyBind; 1949 case bitc::ATTR_KIND_NON_NULL: 1950 return Attribute::NonNull; 1951 case bitc::ATTR_KIND_DEREFERENCEABLE: 1952 return Attribute::Dereferenceable; 1953 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1954 return Attribute::DereferenceableOrNull; 1955 case bitc::ATTR_KIND_ALLOC_ALIGN: 1956 return Attribute::AllocAlign; 1957 case bitc::ATTR_KIND_ALLOC_KIND: 1958 return Attribute::AllocKind; 1959 case bitc::ATTR_KIND_ALLOC_SIZE: 1960 return Attribute::AllocSize; 1961 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1962 return Attribute::AllocatedPointer; 1963 case bitc::ATTR_KIND_NO_RED_ZONE: 1964 return Attribute::NoRedZone; 1965 case bitc::ATTR_KIND_NO_RETURN: 1966 return Attribute::NoReturn; 1967 case bitc::ATTR_KIND_NOSYNC: 1968 return Attribute::NoSync; 1969 case bitc::ATTR_KIND_NOCF_CHECK: 1970 return Attribute::NoCfCheck; 1971 case bitc::ATTR_KIND_NO_PROFILE: 1972 return Attribute::NoProfile; 1973 case bitc::ATTR_KIND_SKIP_PROFILE: 1974 return Attribute::SkipProfile; 1975 case bitc::ATTR_KIND_NO_UNWIND: 1976 return Attribute::NoUnwind; 1977 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1978 return Attribute::NoSanitizeBounds; 1979 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1980 return Attribute::NoSanitizeCoverage; 1981 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1982 return Attribute::NullPointerIsValid; 1983 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 1984 return Attribute::OptimizeForDebugging; 1985 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1986 return Attribute::OptForFuzzing; 1987 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1988 return Attribute::OptimizeForSize; 1989 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1990 return Attribute::OptimizeNone; 1991 case bitc::ATTR_KIND_READ_NONE: 1992 return Attribute::ReadNone; 1993 case bitc::ATTR_KIND_READ_ONLY: 1994 return Attribute::ReadOnly; 1995 case bitc::ATTR_KIND_RETURNED: 1996 return Attribute::Returned; 1997 case bitc::ATTR_KIND_RETURNS_TWICE: 1998 return Attribute::ReturnsTwice; 1999 case bitc::ATTR_KIND_S_EXT: 2000 return Attribute::SExt; 2001 case bitc::ATTR_KIND_SPECULATABLE: 2002 return Attribute::Speculatable; 2003 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2004 return Attribute::StackAlignment; 2005 case bitc::ATTR_KIND_STACK_PROTECT: 2006 return Attribute::StackProtect; 2007 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2008 return Attribute::StackProtectReq; 2009 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2010 return Attribute::StackProtectStrong; 2011 case bitc::ATTR_KIND_SAFESTACK: 2012 return Attribute::SafeStack; 2013 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2014 return Attribute::ShadowCallStack; 2015 case bitc::ATTR_KIND_STRICT_FP: 2016 return Attribute::StrictFP; 2017 case bitc::ATTR_KIND_STRUCT_RET: 2018 return Attribute::StructRet; 2019 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2020 return Attribute::SanitizeAddress; 2021 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2022 return Attribute::SanitizeHWAddress; 2023 case bitc::ATTR_KIND_SANITIZE_THREAD: 2024 return Attribute::SanitizeThread; 2025 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2026 return Attribute::SanitizeMemory; 2027 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2028 return Attribute::SpeculativeLoadHardening; 2029 case bitc::ATTR_KIND_SWIFT_ERROR: 2030 return Attribute::SwiftError; 2031 case bitc::ATTR_KIND_SWIFT_SELF: 2032 return Attribute::SwiftSelf; 2033 case bitc::ATTR_KIND_SWIFT_ASYNC: 2034 return Attribute::SwiftAsync; 2035 case bitc::ATTR_KIND_UW_TABLE: 2036 return Attribute::UWTable; 2037 case bitc::ATTR_KIND_VSCALE_RANGE: 2038 return Attribute::VScaleRange; 2039 case bitc::ATTR_KIND_WILLRETURN: 2040 return Attribute::WillReturn; 2041 case bitc::ATTR_KIND_WRITEONLY: 2042 return Attribute::WriteOnly; 2043 case bitc::ATTR_KIND_Z_EXT: 2044 return Attribute::ZExt; 2045 case bitc::ATTR_KIND_IMMARG: 2046 return Attribute::ImmArg; 2047 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2048 return Attribute::SanitizeMemTag; 2049 case bitc::ATTR_KIND_PREALLOCATED: 2050 return Attribute::Preallocated; 2051 case bitc::ATTR_KIND_NOUNDEF: 2052 return Attribute::NoUndef; 2053 case bitc::ATTR_KIND_BYREF: 2054 return Attribute::ByRef; 2055 case bitc::ATTR_KIND_MUSTPROGRESS: 2056 return Attribute::MustProgress; 2057 case bitc::ATTR_KIND_HOT: 2058 return Attribute::Hot; 2059 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2060 return Attribute::PresplitCoroutine; 2061 case bitc::ATTR_KIND_WRITABLE: 2062 return Attribute::Writable; 2063 } 2064 } 2065 2066 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2067 MaybeAlign &Alignment) { 2068 // Note: Alignment in bitcode files is incremented by 1, so that zero 2069 // can be used for default alignment. 2070 if (Exponent > Value::MaxAlignmentExponent + 1) 2071 return error("Invalid alignment value"); 2072 Alignment = decodeMaybeAlign(Exponent); 2073 return Error::success(); 2074 } 2075 2076 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2077 *Kind = getAttrFromCode(Code); 2078 if (*Kind == Attribute::None) 2079 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2080 return Error::success(); 2081 } 2082 2083 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2084 switch (EncodedKind) { 2085 case bitc::ATTR_KIND_READ_NONE: 2086 ME &= MemoryEffects::none(); 2087 return true; 2088 case bitc::ATTR_KIND_READ_ONLY: 2089 ME &= MemoryEffects::readOnly(); 2090 return true; 2091 case bitc::ATTR_KIND_WRITEONLY: 2092 ME &= MemoryEffects::writeOnly(); 2093 return true; 2094 case bitc::ATTR_KIND_ARGMEMONLY: 2095 ME &= MemoryEffects::argMemOnly(); 2096 return true; 2097 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2098 ME &= MemoryEffects::inaccessibleMemOnly(); 2099 return true; 2100 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2101 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2102 return true; 2103 default: 2104 return false; 2105 } 2106 } 2107 2108 Error BitcodeReader::parseAttributeGroupBlock() { 2109 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2110 return Err; 2111 2112 if (!MAttributeGroups.empty()) 2113 return error("Invalid multiple blocks"); 2114 2115 SmallVector<uint64_t, 64> Record; 2116 2117 // Read all the records. 2118 while (true) { 2119 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2120 if (!MaybeEntry) 2121 return MaybeEntry.takeError(); 2122 BitstreamEntry Entry = MaybeEntry.get(); 2123 2124 switch (Entry.Kind) { 2125 case BitstreamEntry::SubBlock: // Handled for us already. 2126 case BitstreamEntry::Error: 2127 return error("Malformed block"); 2128 case BitstreamEntry::EndBlock: 2129 return Error::success(); 2130 case BitstreamEntry::Record: 2131 // The interesting case. 2132 break; 2133 } 2134 2135 // Read a record. 2136 Record.clear(); 2137 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2138 if (!MaybeRecord) 2139 return MaybeRecord.takeError(); 2140 switch (MaybeRecord.get()) { 2141 default: // Default behavior: ignore. 2142 break; 2143 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2144 if (Record.size() < 3) 2145 return error("Invalid grp record"); 2146 2147 uint64_t GrpID = Record[0]; 2148 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2149 2150 AttrBuilder B(Context); 2151 MemoryEffects ME = MemoryEffects::unknown(); 2152 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2153 if (Record[i] == 0) { // Enum attribute 2154 Attribute::AttrKind Kind; 2155 uint64_t EncodedKind = Record[++i]; 2156 if (Idx == AttributeList::FunctionIndex && 2157 upgradeOldMemoryAttribute(ME, EncodedKind)) 2158 continue; 2159 2160 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2161 return Err; 2162 2163 // Upgrade old-style byval attribute to one with a type, even if it's 2164 // nullptr. We will have to insert the real type when we associate 2165 // this AttributeList with a function. 2166 if (Kind == Attribute::ByVal) 2167 B.addByValAttr(nullptr); 2168 else if (Kind == Attribute::StructRet) 2169 B.addStructRetAttr(nullptr); 2170 else if (Kind == Attribute::InAlloca) 2171 B.addInAllocaAttr(nullptr); 2172 else if (Kind == Attribute::UWTable) 2173 B.addUWTableAttr(UWTableKind::Default); 2174 else if (Attribute::isEnumAttrKind(Kind)) 2175 B.addAttribute(Kind); 2176 else 2177 return error("Not an enum attribute"); 2178 } else if (Record[i] == 1) { // Integer attribute 2179 Attribute::AttrKind Kind; 2180 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2181 return Err; 2182 if (!Attribute::isIntAttrKind(Kind)) 2183 return error("Not an int attribute"); 2184 if (Kind == Attribute::Alignment) 2185 B.addAlignmentAttr(Record[++i]); 2186 else if (Kind == Attribute::StackAlignment) 2187 B.addStackAlignmentAttr(Record[++i]); 2188 else if (Kind == Attribute::Dereferenceable) 2189 B.addDereferenceableAttr(Record[++i]); 2190 else if (Kind == Attribute::DereferenceableOrNull) 2191 B.addDereferenceableOrNullAttr(Record[++i]); 2192 else if (Kind == Attribute::AllocSize) 2193 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2194 else if (Kind == Attribute::VScaleRange) 2195 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2196 else if (Kind == Attribute::UWTable) 2197 B.addUWTableAttr(UWTableKind(Record[++i])); 2198 else if (Kind == Attribute::AllocKind) 2199 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2200 else if (Kind == Attribute::Memory) 2201 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2202 else if (Kind == Attribute::NoFPClass) 2203 B.addNoFPClassAttr( 2204 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2205 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2206 bool HasValue = (Record[i++] == 4); 2207 SmallString<64> KindStr; 2208 SmallString<64> ValStr; 2209 2210 while (Record[i] != 0 && i != e) 2211 KindStr += Record[i++]; 2212 assert(Record[i] == 0 && "Kind string not null terminated"); 2213 2214 if (HasValue) { 2215 // Has a value associated with it. 2216 ++i; // Skip the '0' that terminates the "kind" string. 2217 while (Record[i] != 0 && i != e) 2218 ValStr += Record[i++]; 2219 assert(Record[i] == 0 && "Value string not null terminated"); 2220 } 2221 2222 B.addAttribute(KindStr.str(), ValStr.str()); 2223 } else if (Record[i] == 5 || Record[i] == 6) { 2224 bool HasType = Record[i] == 6; 2225 Attribute::AttrKind Kind; 2226 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2227 return Err; 2228 if (!Attribute::isTypeAttrKind(Kind)) 2229 return error("Not a type attribute"); 2230 2231 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2232 } else { 2233 return error("Invalid attribute group entry"); 2234 } 2235 } 2236 2237 if (ME != MemoryEffects::unknown()) 2238 B.addMemoryAttr(ME); 2239 2240 UpgradeAttributes(B); 2241 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2242 break; 2243 } 2244 } 2245 } 2246 } 2247 2248 Error BitcodeReader::parseTypeTable() { 2249 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2250 return Err; 2251 2252 return parseTypeTableBody(); 2253 } 2254 2255 Error BitcodeReader::parseTypeTableBody() { 2256 if (!TypeList.empty()) 2257 return error("Invalid multiple blocks"); 2258 2259 SmallVector<uint64_t, 64> Record; 2260 unsigned NumRecords = 0; 2261 2262 SmallString<64> TypeName; 2263 2264 // Read all the records for this type table. 2265 while (true) { 2266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2267 if (!MaybeEntry) 2268 return MaybeEntry.takeError(); 2269 BitstreamEntry Entry = MaybeEntry.get(); 2270 2271 switch (Entry.Kind) { 2272 case BitstreamEntry::SubBlock: // Handled for us already. 2273 case BitstreamEntry::Error: 2274 return error("Malformed block"); 2275 case BitstreamEntry::EndBlock: 2276 if (NumRecords != TypeList.size()) 2277 return error("Malformed block"); 2278 return Error::success(); 2279 case BitstreamEntry::Record: 2280 // The interesting case. 2281 break; 2282 } 2283 2284 // Read a record. 2285 Record.clear(); 2286 Type *ResultTy = nullptr; 2287 SmallVector<unsigned> ContainedIDs; 2288 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2289 if (!MaybeRecord) 2290 return MaybeRecord.takeError(); 2291 switch (MaybeRecord.get()) { 2292 default: 2293 return error("Invalid value"); 2294 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2295 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2296 // type list. This allows us to reserve space. 2297 if (Record.empty()) 2298 return error("Invalid numentry record"); 2299 TypeList.resize(Record[0]); 2300 continue; 2301 case bitc::TYPE_CODE_VOID: // VOID 2302 ResultTy = Type::getVoidTy(Context); 2303 break; 2304 case bitc::TYPE_CODE_HALF: // HALF 2305 ResultTy = Type::getHalfTy(Context); 2306 break; 2307 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2308 ResultTy = Type::getBFloatTy(Context); 2309 break; 2310 case bitc::TYPE_CODE_FLOAT: // FLOAT 2311 ResultTy = Type::getFloatTy(Context); 2312 break; 2313 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2314 ResultTy = Type::getDoubleTy(Context); 2315 break; 2316 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2317 ResultTy = Type::getX86_FP80Ty(Context); 2318 break; 2319 case bitc::TYPE_CODE_FP128: // FP128 2320 ResultTy = Type::getFP128Ty(Context); 2321 break; 2322 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2323 ResultTy = Type::getPPC_FP128Ty(Context); 2324 break; 2325 case bitc::TYPE_CODE_LABEL: // LABEL 2326 ResultTy = Type::getLabelTy(Context); 2327 break; 2328 case bitc::TYPE_CODE_METADATA: // METADATA 2329 ResultTy = Type::getMetadataTy(Context); 2330 break; 2331 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2332 ResultTy = Type::getX86_MMXTy(Context); 2333 break; 2334 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2335 ResultTy = Type::getX86_AMXTy(Context); 2336 break; 2337 case bitc::TYPE_CODE_TOKEN: // TOKEN 2338 ResultTy = Type::getTokenTy(Context); 2339 break; 2340 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2341 if (Record.empty()) 2342 return error("Invalid integer record"); 2343 2344 uint64_t NumBits = Record[0]; 2345 if (NumBits < IntegerType::MIN_INT_BITS || 2346 NumBits > IntegerType::MAX_INT_BITS) 2347 return error("Bitwidth for integer type out of range"); 2348 ResultTy = IntegerType::get(Context, NumBits); 2349 break; 2350 } 2351 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2352 // [pointee type, address space] 2353 if (Record.empty()) 2354 return error("Invalid pointer record"); 2355 unsigned AddressSpace = 0; 2356 if (Record.size() == 2) 2357 AddressSpace = Record[1]; 2358 ResultTy = getTypeByID(Record[0]); 2359 if (!ResultTy || 2360 !PointerType::isValidElementType(ResultTy)) 2361 return error("Invalid type"); 2362 ContainedIDs.push_back(Record[0]); 2363 ResultTy = PointerType::get(ResultTy, AddressSpace); 2364 break; 2365 } 2366 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2367 if (Record.size() != 1) 2368 return error("Invalid opaque pointer record"); 2369 unsigned AddressSpace = Record[0]; 2370 ResultTy = PointerType::get(Context, AddressSpace); 2371 break; 2372 } 2373 case bitc::TYPE_CODE_FUNCTION_OLD: { 2374 // Deprecated, but still needed to read old bitcode files. 2375 // FUNCTION: [vararg, attrid, retty, paramty x N] 2376 if (Record.size() < 3) 2377 return error("Invalid function record"); 2378 SmallVector<Type*, 8> ArgTys; 2379 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2380 if (Type *T = getTypeByID(Record[i])) 2381 ArgTys.push_back(T); 2382 else 2383 break; 2384 } 2385 2386 ResultTy = getTypeByID(Record[2]); 2387 if (!ResultTy || ArgTys.size() < Record.size()-3) 2388 return error("Invalid type"); 2389 2390 ContainedIDs.append(Record.begin() + 2, Record.end()); 2391 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2392 break; 2393 } 2394 case bitc::TYPE_CODE_FUNCTION: { 2395 // FUNCTION: [vararg, retty, paramty x N] 2396 if (Record.size() < 2) 2397 return error("Invalid function record"); 2398 SmallVector<Type*, 8> ArgTys; 2399 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2400 if (Type *T = getTypeByID(Record[i])) { 2401 if (!FunctionType::isValidArgumentType(T)) 2402 return error("Invalid function argument type"); 2403 ArgTys.push_back(T); 2404 } 2405 else 2406 break; 2407 } 2408 2409 ResultTy = getTypeByID(Record[1]); 2410 if (!ResultTy || ArgTys.size() < Record.size()-2) 2411 return error("Invalid type"); 2412 2413 ContainedIDs.append(Record.begin() + 1, Record.end()); 2414 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2415 break; 2416 } 2417 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2418 if (Record.empty()) 2419 return error("Invalid anon struct record"); 2420 SmallVector<Type*, 8> EltTys; 2421 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2422 if (Type *T = getTypeByID(Record[i])) 2423 EltTys.push_back(T); 2424 else 2425 break; 2426 } 2427 if (EltTys.size() != Record.size()-1) 2428 return error("Invalid type"); 2429 ContainedIDs.append(Record.begin() + 1, Record.end()); 2430 ResultTy = StructType::get(Context, EltTys, Record[0]); 2431 break; 2432 } 2433 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2434 if (convertToString(Record, 0, TypeName)) 2435 return error("Invalid struct name record"); 2436 continue; 2437 2438 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2439 if (Record.empty()) 2440 return error("Invalid named struct record"); 2441 2442 if (NumRecords >= TypeList.size()) 2443 return error("Invalid TYPE table"); 2444 2445 // Check to see if this was forward referenced, if so fill in the temp. 2446 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2447 if (Res) { 2448 Res->setName(TypeName); 2449 TypeList[NumRecords] = nullptr; 2450 } else // Otherwise, create a new struct. 2451 Res = createIdentifiedStructType(Context, TypeName); 2452 TypeName.clear(); 2453 2454 SmallVector<Type*, 8> EltTys; 2455 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2456 if (Type *T = getTypeByID(Record[i])) 2457 EltTys.push_back(T); 2458 else 2459 break; 2460 } 2461 if (EltTys.size() != Record.size()-1) 2462 return error("Invalid named struct record"); 2463 Res->setBody(EltTys, Record[0]); 2464 ContainedIDs.append(Record.begin() + 1, Record.end()); 2465 ResultTy = Res; 2466 break; 2467 } 2468 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2469 if (Record.size() != 1) 2470 return error("Invalid opaque type record"); 2471 2472 if (NumRecords >= TypeList.size()) 2473 return error("Invalid TYPE table"); 2474 2475 // Check to see if this was forward referenced, if so fill in the temp. 2476 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2477 if (Res) { 2478 Res->setName(TypeName); 2479 TypeList[NumRecords] = nullptr; 2480 } else // Otherwise, create a new struct with no body. 2481 Res = createIdentifiedStructType(Context, TypeName); 2482 TypeName.clear(); 2483 ResultTy = Res; 2484 break; 2485 } 2486 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2487 if (Record.size() < 1) 2488 return error("Invalid target extension type record"); 2489 2490 if (NumRecords >= TypeList.size()) 2491 return error("Invalid TYPE table"); 2492 2493 if (Record[0] >= Record.size()) 2494 return error("Too many type parameters"); 2495 2496 unsigned NumTys = Record[0]; 2497 SmallVector<Type *, 4> TypeParams; 2498 SmallVector<unsigned, 8> IntParams; 2499 for (unsigned i = 0; i < NumTys; i++) { 2500 if (Type *T = getTypeByID(Record[i + 1])) 2501 TypeParams.push_back(T); 2502 else 2503 return error("Invalid type"); 2504 } 2505 2506 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2507 if (Record[i] > UINT_MAX) 2508 return error("Integer parameter too large"); 2509 IntParams.push_back(Record[i]); 2510 } 2511 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2512 TypeName.clear(); 2513 break; 2514 } 2515 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2516 if (Record.size() < 2) 2517 return error("Invalid array type record"); 2518 ResultTy = getTypeByID(Record[1]); 2519 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2520 return error("Invalid type"); 2521 ContainedIDs.push_back(Record[1]); 2522 ResultTy = ArrayType::get(ResultTy, Record[0]); 2523 break; 2524 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2525 // [numelts, eltty, scalable] 2526 if (Record.size() < 2) 2527 return error("Invalid vector type record"); 2528 if (Record[0] == 0) 2529 return error("Invalid vector length"); 2530 ResultTy = getTypeByID(Record[1]); 2531 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2532 return error("Invalid type"); 2533 bool Scalable = Record.size() > 2 ? Record[2] : false; 2534 ContainedIDs.push_back(Record[1]); 2535 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2536 break; 2537 } 2538 2539 if (NumRecords >= TypeList.size()) 2540 return error("Invalid TYPE table"); 2541 if (TypeList[NumRecords]) 2542 return error( 2543 "Invalid TYPE table: Only named structs can be forward referenced"); 2544 assert(ResultTy && "Didn't read a type?"); 2545 TypeList[NumRecords] = ResultTy; 2546 if (!ContainedIDs.empty()) 2547 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2548 ++NumRecords; 2549 } 2550 } 2551 2552 Error BitcodeReader::parseOperandBundleTags() { 2553 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2554 return Err; 2555 2556 if (!BundleTags.empty()) 2557 return error("Invalid multiple blocks"); 2558 2559 SmallVector<uint64_t, 64> Record; 2560 2561 while (true) { 2562 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2563 if (!MaybeEntry) 2564 return MaybeEntry.takeError(); 2565 BitstreamEntry Entry = MaybeEntry.get(); 2566 2567 switch (Entry.Kind) { 2568 case BitstreamEntry::SubBlock: // Handled for us already. 2569 case BitstreamEntry::Error: 2570 return error("Malformed block"); 2571 case BitstreamEntry::EndBlock: 2572 return Error::success(); 2573 case BitstreamEntry::Record: 2574 // The interesting case. 2575 break; 2576 } 2577 2578 // Tags are implicitly mapped to integers by their order. 2579 2580 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2581 if (!MaybeRecord) 2582 return MaybeRecord.takeError(); 2583 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2584 return error("Invalid operand bundle record"); 2585 2586 // OPERAND_BUNDLE_TAG: [strchr x N] 2587 BundleTags.emplace_back(); 2588 if (convertToString(Record, 0, BundleTags.back())) 2589 return error("Invalid operand bundle record"); 2590 Record.clear(); 2591 } 2592 } 2593 2594 Error BitcodeReader::parseSyncScopeNames() { 2595 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2596 return Err; 2597 2598 if (!SSIDs.empty()) 2599 return error("Invalid multiple synchronization scope names blocks"); 2600 2601 SmallVector<uint64_t, 64> Record; 2602 while (true) { 2603 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2604 if (!MaybeEntry) 2605 return MaybeEntry.takeError(); 2606 BitstreamEntry Entry = MaybeEntry.get(); 2607 2608 switch (Entry.Kind) { 2609 case BitstreamEntry::SubBlock: // Handled for us already. 2610 case BitstreamEntry::Error: 2611 return error("Malformed block"); 2612 case BitstreamEntry::EndBlock: 2613 if (SSIDs.empty()) 2614 return error("Invalid empty synchronization scope names block"); 2615 return Error::success(); 2616 case BitstreamEntry::Record: 2617 // The interesting case. 2618 break; 2619 } 2620 2621 // Synchronization scope names are implicitly mapped to synchronization 2622 // scope IDs by their order. 2623 2624 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2625 if (!MaybeRecord) 2626 return MaybeRecord.takeError(); 2627 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2628 return error("Invalid sync scope record"); 2629 2630 SmallString<16> SSN; 2631 if (convertToString(Record, 0, SSN)) 2632 return error("Invalid sync scope record"); 2633 2634 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2635 Record.clear(); 2636 } 2637 } 2638 2639 /// Associate a value with its name from the given index in the provided record. 2640 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2641 unsigned NameIndex, Triple &TT) { 2642 SmallString<128> ValueName; 2643 if (convertToString(Record, NameIndex, ValueName)) 2644 return error("Invalid record"); 2645 unsigned ValueID = Record[0]; 2646 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2647 return error("Invalid record"); 2648 Value *V = ValueList[ValueID]; 2649 2650 StringRef NameStr(ValueName.data(), ValueName.size()); 2651 if (NameStr.contains(0)) 2652 return error("Invalid value name"); 2653 V->setName(NameStr); 2654 auto *GO = dyn_cast<GlobalObject>(V); 2655 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2656 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2657 return V; 2658 } 2659 2660 /// Helper to note and return the current location, and jump to the given 2661 /// offset. 2662 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2663 BitstreamCursor &Stream) { 2664 // Save the current parsing location so we can jump back at the end 2665 // of the VST read. 2666 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2667 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2668 return std::move(JumpFailed); 2669 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2670 if (!MaybeEntry) 2671 return MaybeEntry.takeError(); 2672 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2673 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2674 return error("Expected value symbol table subblock"); 2675 return CurrentBit; 2676 } 2677 2678 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2679 Function *F, 2680 ArrayRef<uint64_t> Record) { 2681 // Note that we subtract 1 here because the offset is relative to one word 2682 // before the start of the identification or module block, which was 2683 // historically always the start of the regular bitcode header. 2684 uint64_t FuncWordOffset = Record[1] - 1; 2685 uint64_t FuncBitOffset = FuncWordOffset * 32; 2686 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2687 // Set the LastFunctionBlockBit to point to the last function block. 2688 // Later when parsing is resumed after function materialization, 2689 // we can simply skip that last function block. 2690 if (FuncBitOffset > LastFunctionBlockBit) 2691 LastFunctionBlockBit = FuncBitOffset; 2692 } 2693 2694 /// Read a new-style GlobalValue symbol table. 2695 Error BitcodeReader::parseGlobalValueSymbolTable() { 2696 unsigned FuncBitcodeOffsetDelta = 2697 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2698 2699 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2700 return Err; 2701 2702 SmallVector<uint64_t, 64> Record; 2703 while (true) { 2704 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2705 if (!MaybeEntry) 2706 return MaybeEntry.takeError(); 2707 BitstreamEntry Entry = MaybeEntry.get(); 2708 2709 switch (Entry.Kind) { 2710 case BitstreamEntry::SubBlock: 2711 case BitstreamEntry::Error: 2712 return error("Malformed block"); 2713 case BitstreamEntry::EndBlock: 2714 return Error::success(); 2715 case BitstreamEntry::Record: 2716 break; 2717 } 2718 2719 Record.clear(); 2720 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2721 if (!MaybeRecord) 2722 return MaybeRecord.takeError(); 2723 switch (MaybeRecord.get()) { 2724 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2725 unsigned ValueID = Record[0]; 2726 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2727 return error("Invalid value reference in symbol table"); 2728 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2729 cast<Function>(ValueList[ValueID]), Record); 2730 break; 2731 } 2732 } 2733 } 2734 } 2735 2736 /// Parse the value symbol table at either the current parsing location or 2737 /// at the given bit offset if provided. 2738 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2739 uint64_t CurrentBit; 2740 // Pass in the Offset to distinguish between calling for the module-level 2741 // VST (where we want to jump to the VST offset) and the function-level 2742 // VST (where we don't). 2743 if (Offset > 0) { 2744 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2745 if (!MaybeCurrentBit) 2746 return MaybeCurrentBit.takeError(); 2747 CurrentBit = MaybeCurrentBit.get(); 2748 // If this module uses a string table, read this as a module-level VST. 2749 if (UseStrtab) { 2750 if (Error Err = parseGlobalValueSymbolTable()) 2751 return Err; 2752 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2753 return JumpFailed; 2754 return Error::success(); 2755 } 2756 // Otherwise, the VST will be in a similar format to a function-level VST, 2757 // and will contain symbol names. 2758 } 2759 2760 // Compute the delta between the bitcode indices in the VST (the word offset 2761 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2762 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2763 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2764 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2765 // just before entering the VST subblock because: 1) the EnterSubBlock 2766 // changes the AbbrevID width; 2) the VST block is nested within the same 2767 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2768 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2769 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2770 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2771 unsigned FuncBitcodeOffsetDelta = 2772 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2773 2774 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2775 return Err; 2776 2777 SmallVector<uint64_t, 64> Record; 2778 2779 Triple TT(TheModule->getTargetTriple()); 2780 2781 // Read all the records for this value table. 2782 SmallString<128> ValueName; 2783 2784 while (true) { 2785 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2786 if (!MaybeEntry) 2787 return MaybeEntry.takeError(); 2788 BitstreamEntry Entry = MaybeEntry.get(); 2789 2790 switch (Entry.Kind) { 2791 case BitstreamEntry::SubBlock: // Handled for us already. 2792 case BitstreamEntry::Error: 2793 return error("Malformed block"); 2794 case BitstreamEntry::EndBlock: 2795 if (Offset > 0) 2796 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2797 return JumpFailed; 2798 return Error::success(); 2799 case BitstreamEntry::Record: 2800 // The interesting case. 2801 break; 2802 } 2803 2804 // Read a record. 2805 Record.clear(); 2806 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2807 if (!MaybeRecord) 2808 return MaybeRecord.takeError(); 2809 switch (MaybeRecord.get()) { 2810 default: // Default behavior: unknown type. 2811 break; 2812 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2813 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2814 if (Error Err = ValOrErr.takeError()) 2815 return Err; 2816 ValOrErr.get(); 2817 break; 2818 } 2819 case bitc::VST_CODE_FNENTRY: { 2820 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2821 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2822 if (Error Err = ValOrErr.takeError()) 2823 return Err; 2824 Value *V = ValOrErr.get(); 2825 2826 // Ignore function offsets emitted for aliases of functions in older 2827 // versions of LLVM. 2828 if (auto *F = dyn_cast<Function>(V)) 2829 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2830 break; 2831 } 2832 case bitc::VST_CODE_BBENTRY: { 2833 if (convertToString(Record, 1, ValueName)) 2834 return error("Invalid bbentry record"); 2835 BasicBlock *BB = getBasicBlock(Record[0]); 2836 if (!BB) 2837 return error("Invalid bbentry record"); 2838 2839 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2840 ValueName.clear(); 2841 break; 2842 } 2843 } 2844 } 2845 } 2846 2847 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2848 /// encoding. 2849 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2850 if ((V & 1) == 0) 2851 return V >> 1; 2852 if (V != 1) 2853 return -(V >> 1); 2854 // There is no such thing as -0 with integers. "-0" really means MININT. 2855 return 1ULL << 63; 2856 } 2857 2858 /// Resolve all of the initializers for global values and aliases that we can. 2859 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2860 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2861 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2862 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2863 2864 GlobalInitWorklist.swap(GlobalInits); 2865 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2866 FunctionOperandWorklist.swap(FunctionOperands); 2867 2868 while (!GlobalInitWorklist.empty()) { 2869 unsigned ValID = GlobalInitWorklist.back().second; 2870 if (ValID >= ValueList.size()) { 2871 // Not ready to resolve this yet, it requires something later in the file. 2872 GlobalInits.push_back(GlobalInitWorklist.back()); 2873 } else { 2874 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2875 if (!MaybeC) 2876 return MaybeC.takeError(); 2877 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2878 } 2879 GlobalInitWorklist.pop_back(); 2880 } 2881 2882 while (!IndirectSymbolInitWorklist.empty()) { 2883 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2884 if (ValID >= ValueList.size()) { 2885 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2886 } else { 2887 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2888 if (!MaybeC) 2889 return MaybeC.takeError(); 2890 Constant *C = MaybeC.get(); 2891 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2892 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2893 if (C->getType() != GV->getType()) 2894 return error("Alias and aliasee types don't match"); 2895 GA->setAliasee(C); 2896 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2897 Type *ResolverFTy = 2898 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2899 // Transparently fix up the type for compatibility with older bitcode 2900 GI->setResolver(ConstantExpr::getBitCast( 2901 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2902 } else { 2903 return error("Expected an alias or an ifunc"); 2904 } 2905 } 2906 IndirectSymbolInitWorklist.pop_back(); 2907 } 2908 2909 while (!FunctionOperandWorklist.empty()) { 2910 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2911 if (Info.PersonalityFn) { 2912 unsigned ValID = Info.PersonalityFn - 1; 2913 if (ValID < ValueList.size()) { 2914 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2915 if (!MaybeC) 2916 return MaybeC.takeError(); 2917 Info.F->setPersonalityFn(MaybeC.get()); 2918 Info.PersonalityFn = 0; 2919 } 2920 } 2921 if (Info.Prefix) { 2922 unsigned ValID = Info.Prefix - 1; 2923 if (ValID < ValueList.size()) { 2924 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2925 if (!MaybeC) 2926 return MaybeC.takeError(); 2927 Info.F->setPrefixData(MaybeC.get()); 2928 Info.Prefix = 0; 2929 } 2930 } 2931 if (Info.Prologue) { 2932 unsigned ValID = Info.Prologue - 1; 2933 if (ValID < ValueList.size()) { 2934 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2935 if (!MaybeC) 2936 return MaybeC.takeError(); 2937 Info.F->setPrologueData(MaybeC.get()); 2938 Info.Prologue = 0; 2939 } 2940 } 2941 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2942 FunctionOperands.push_back(Info); 2943 FunctionOperandWorklist.pop_back(); 2944 } 2945 2946 return Error::success(); 2947 } 2948 2949 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2950 SmallVector<uint64_t, 8> Words(Vals.size()); 2951 transform(Vals, Words.begin(), 2952 BitcodeReader::decodeSignRotatedValue); 2953 2954 return APInt(TypeBits, Words); 2955 } 2956 2957 Error BitcodeReader::parseConstants() { 2958 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2959 return Err; 2960 2961 SmallVector<uint64_t, 64> Record; 2962 2963 // Read all the records for this value table. 2964 Type *CurTy = Type::getInt32Ty(Context); 2965 unsigned Int32TyID = getVirtualTypeID(CurTy); 2966 unsigned CurTyID = Int32TyID; 2967 Type *CurElemTy = nullptr; 2968 unsigned NextCstNo = ValueList.size(); 2969 2970 while (true) { 2971 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2972 if (!MaybeEntry) 2973 return MaybeEntry.takeError(); 2974 BitstreamEntry Entry = MaybeEntry.get(); 2975 2976 switch (Entry.Kind) { 2977 case BitstreamEntry::SubBlock: // Handled for us already. 2978 case BitstreamEntry::Error: 2979 return error("Malformed block"); 2980 case BitstreamEntry::EndBlock: 2981 if (NextCstNo != ValueList.size()) 2982 return error("Invalid constant reference"); 2983 return Error::success(); 2984 case BitstreamEntry::Record: 2985 // The interesting case. 2986 break; 2987 } 2988 2989 // Read a record. 2990 Record.clear(); 2991 Type *VoidType = Type::getVoidTy(Context); 2992 Value *V = nullptr; 2993 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2994 if (!MaybeBitCode) 2995 return MaybeBitCode.takeError(); 2996 switch (unsigned BitCode = MaybeBitCode.get()) { 2997 default: // Default behavior: unknown constant 2998 case bitc::CST_CODE_UNDEF: // UNDEF 2999 V = UndefValue::get(CurTy); 3000 break; 3001 case bitc::CST_CODE_POISON: // POISON 3002 V = PoisonValue::get(CurTy); 3003 break; 3004 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3005 if (Record.empty()) 3006 return error("Invalid settype record"); 3007 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3008 return error("Invalid settype record"); 3009 if (TypeList[Record[0]] == VoidType) 3010 return error("Invalid constant type"); 3011 CurTyID = Record[0]; 3012 CurTy = TypeList[CurTyID]; 3013 CurElemTy = getPtrElementTypeByID(CurTyID); 3014 continue; // Skip the ValueList manipulation. 3015 case bitc::CST_CODE_NULL: // NULL 3016 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3017 return error("Invalid type for a constant null value"); 3018 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3019 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3020 return error("Invalid type for a constant null value"); 3021 V = Constant::getNullValue(CurTy); 3022 break; 3023 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3024 if (!CurTy->isIntegerTy() || Record.empty()) 3025 return error("Invalid integer const record"); 3026 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3027 break; 3028 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3029 if (!CurTy->isIntegerTy() || Record.empty()) 3030 return error("Invalid wide integer const record"); 3031 3032 APInt VInt = 3033 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3034 V = ConstantInt::get(Context, VInt); 3035 3036 break; 3037 } 3038 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3039 if (Record.empty()) 3040 return error("Invalid float const record"); 3041 if (CurTy->isHalfTy()) 3042 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3043 APInt(16, (uint16_t)Record[0]))); 3044 else if (CurTy->isBFloatTy()) 3045 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3046 APInt(16, (uint32_t)Record[0]))); 3047 else if (CurTy->isFloatTy()) 3048 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3049 APInt(32, (uint32_t)Record[0]))); 3050 else if (CurTy->isDoubleTy()) 3051 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3052 APInt(64, Record[0]))); 3053 else if (CurTy->isX86_FP80Ty()) { 3054 // Bits are not stored the same way as a normal i80 APInt, compensate. 3055 uint64_t Rearrange[2]; 3056 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3057 Rearrange[1] = Record[0] >> 48; 3058 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3059 APInt(80, Rearrange))); 3060 } else if (CurTy->isFP128Ty()) 3061 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3062 APInt(128, Record))); 3063 else if (CurTy->isPPC_FP128Ty()) 3064 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3065 APInt(128, Record))); 3066 else 3067 V = UndefValue::get(CurTy); 3068 break; 3069 } 3070 3071 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3072 if (Record.empty()) 3073 return error("Invalid aggregate record"); 3074 3075 unsigned Size = Record.size(); 3076 SmallVector<unsigned, 16> Elts; 3077 for (unsigned i = 0; i != Size; ++i) 3078 Elts.push_back(Record[i]); 3079 3080 if (isa<StructType>(CurTy)) { 3081 V = BitcodeConstant::create( 3082 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3083 } else if (isa<ArrayType>(CurTy)) { 3084 V = BitcodeConstant::create(Alloc, CurTy, 3085 BitcodeConstant::ConstantArrayOpcode, Elts); 3086 } else if (isa<VectorType>(CurTy)) { 3087 V = BitcodeConstant::create( 3088 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3089 } else { 3090 V = UndefValue::get(CurTy); 3091 } 3092 break; 3093 } 3094 case bitc::CST_CODE_STRING: // STRING: [values] 3095 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3096 if (Record.empty()) 3097 return error("Invalid string record"); 3098 3099 SmallString<16> Elts(Record.begin(), Record.end()); 3100 V = ConstantDataArray::getString(Context, Elts, 3101 BitCode == bitc::CST_CODE_CSTRING); 3102 break; 3103 } 3104 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3105 if (Record.empty()) 3106 return error("Invalid data record"); 3107 3108 Type *EltTy; 3109 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3110 EltTy = Array->getElementType(); 3111 else 3112 EltTy = cast<VectorType>(CurTy)->getElementType(); 3113 if (EltTy->isIntegerTy(8)) { 3114 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3115 if (isa<VectorType>(CurTy)) 3116 V = ConstantDataVector::get(Context, Elts); 3117 else 3118 V = ConstantDataArray::get(Context, Elts); 3119 } else if (EltTy->isIntegerTy(16)) { 3120 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3121 if (isa<VectorType>(CurTy)) 3122 V = ConstantDataVector::get(Context, Elts); 3123 else 3124 V = ConstantDataArray::get(Context, Elts); 3125 } else if (EltTy->isIntegerTy(32)) { 3126 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3127 if (isa<VectorType>(CurTy)) 3128 V = ConstantDataVector::get(Context, Elts); 3129 else 3130 V = ConstantDataArray::get(Context, Elts); 3131 } else if (EltTy->isIntegerTy(64)) { 3132 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3133 if (isa<VectorType>(CurTy)) 3134 V = ConstantDataVector::get(Context, Elts); 3135 else 3136 V = ConstantDataArray::get(Context, Elts); 3137 } else if (EltTy->isHalfTy()) { 3138 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3139 if (isa<VectorType>(CurTy)) 3140 V = ConstantDataVector::getFP(EltTy, Elts); 3141 else 3142 V = ConstantDataArray::getFP(EltTy, Elts); 3143 } else if (EltTy->isBFloatTy()) { 3144 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3145 if (isa<VectorType>(CurTy)) 3146 V = ConstantDataVector::getFP(EltTy, Elts); 3147 else 3148 V = ConstantDataArray::getFP(EltTy, Elts); 3149 } else if (EltTy->isFloatTy()) { 3150 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3151 if (isa<VectorType>(CurTy)) 3152 V = ConstantDataVector::getFP(EltTy, Elts); 3153 else 3154 V = ConstantDataArray::getFP(EltTy, Elts); 3155 } else if (EltTy->isDoubleTy()) { 3156 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3157 if (isa<VectorType>(CurTy)) 3158 V = ConstantDataVector::getFP(EltTy, Elts); 3159 else 3160 V = ConstantDataArray::getFP(EltTy, Elts); 3161 } else { 3162 return error("Invalid type for value"); 3163 } 3164 break; 3165 } 3166 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3167 if (Record.size() < 2) 3168 return error("Invalid unary op constexpr record"); 3169 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3170 if (Opc < 0) { 3171 V = UndefValue::get(CurTy); // Unknown unop. 3172 } else { 3173 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3174 } 3175 break; 3176 } 3177 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3178 if (Record.size() < 3) 3179 return error("Invalid binary op constexpr record"); 3180 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3181 if (Opc < 0) { 3182 V = UndefValue::get(CurTy); // Unknown binop. 3183 } else { 3184 uint8_t Flags = 0; 3185 if (Record.size() >= 4) { 3186 if (Opc == Instruction::Add || 3187 Opc == Instruction::Sub || 3188 Opc == Instruction::Mul || 3189 Opc == Instruction::Shl) { 3190 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3191 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3192 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3193 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3194 } else if (Opc == Instruction::SDiv || 3195 Opc == Instruction::UDiv || 3196 Opc == Instruction::LShr || 3197 Opc == Instruction::AShr) { 3198 if (Record[3] & (1 << bitc::PEO_EXACT)) 3199 Flags |= PossiblyExactOperator::IsExact; 3200 } 3201 } 3202 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3203 {(unsigned)Record[1], (unsigned)Record[2]}); 3204 } 3205 break; 3206 } 3207 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3208 if (Record.size() < 3) 3209 return error("Invalid cast constexpr record"); 3210 int Opc = getDecodedCastOpcode(Record[0]); 3211 if (Opc < 0) { 3212 V = UndefValue::get(CurTy); // Unknown cast. 3213 } else { 3214 unsigned OpTyID = Record[1]; 3215 Type *OpTy = getTypeByID(OpTyID); 3216 if (!OpTy) 3217 return error("Invalid cast constexpr record"); 3218 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3219 } 3220 break; 3221 } 3222 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3223 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3224 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3225 // operands] 3226 if (Record.size() < 2) 3227 return error("Constant GEP record must have at least two elements"); 3228 unsigned OpNum = 0; 3229 Type *PointeeType = nullptr; 3230 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3231 Record.size() % 2) 3232 PointeeType = getTypeByID(Record[OpNum++]); 3233 3234 bool InBounds = false; 3235 std::optional<unsigned> InRangeIndex; 3236 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3237 uint64_t Op = Record[OpNum++]; 3238 InBounds = Op & 1; 3239 InRangeIndex = Op >> 1; 3240 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3241 InBounds = true; 3242 3243 SmallVector<unsigned, 16> Elts; 3244 unsigned BaseTypeID = Record[OpNum]; 3245 while (OpNum != Record.size()) { 3246 unsigned ElTyID = Record[OpNum++]; 3247 Type *ElTy = getTypeByID(ElTyID); 3248 if (!ElTy) 3249 return error("Invalid getelementptr constexpr record"); 3250 Elts.push_back(Record[OpNum++]); 3251 } 3252 3253 if (Elts.size() < 1) 3254 return error("Invalid gep with no operands"); 3255 3256 Type *BaseType = getTypeByID(BaseTypeID); 3257 if (isa<VectorType>(BaseType)) { 3258 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3259 BaseType = getTypeByID(BaseTypeID); 3260 } 3261 3262 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3263 if (!OrigPtrTy) 3264 return error("GEP base operand must be pointer or vector of pointer"); 3265 3266 if (!PointeeType) { 3267 PointeeType = getPtrElementTypeByID(BaseTypeID); 3268 if (!PointeeType) 3269 return error("Missing element type for old-style constant GEP"); 3270 } 3271 3272 V = BitcodeConstant::create(Alloc, CurTy, 3273 {Instruction::GetElementPtr, InBounds, 3274 InRangeIndex.value_or(-1), PointeeType}, 3275 Elts); 3276 break; 3277 } 3278 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3279 if (Record.size() < 3) 3280 return error("Invalid select constexpr record"); 3281 3282 V = BitcodeConstant::create( 3283 Alloc, CurTy, Instruction::Select, 3284 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3285 break; 3286 } 3287 case bitc::CST_CODE_CE_EXTRACTELT 3288 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3289 if (Record.size() < 3) 3290 return error("Invalid extractelement constexpr record"); 3291 unsigned OpTyID = Record[0]; 3292 VectorType *OpTy = 3293 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3294 if (!OpTy) 3295 return error("Invalid extractelement constexpr record"); 3296 unsigned IdxRecord; 3297 if (Record.size() == 4) { 3298 unsigned IdxTyID = Record[2]; 3299 Type *IdxTy = getTypeByID(IdxTyID); 3300 if (!IdxTy) 3301 return error("Invalid extractelement constexpr record"); 3302 IdxRecord = Record[3]; 3303 } else { 3304 // Deprecated, but still needed to read old bitcode files. 3305 IdxRecord = Record[2]; 3306 } 3307 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3308 {(unsigned)Record[1], IdxRecord}); 3309 break; 3310 } 3311 case bitc::CST_CODE_CE_INSERTELT 3312 : { // CE_INSERTELT: [opval, opval, opty, opval] 3313 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3314 if (Record.size() < 3 || !OpTy) 3315 return error("Invalid insertelement constexpr record"); 3316 unsigned IdxRecord; 3317 if (Record.size() == 4) { 3318 unsigned IdxTyID = Record[2]; 3319 Type *IdxTy = getTypeByID(IdxTyID); 3320 if (!IdxTy) 3321 return error("Invalid insertelement constexpr record"); 3322 IdxRecord = Record[3]; 3323 } else { 3324 // Deprecated, but still needed to read old bitcode files. 3325 IdxRecord = Record[2]; 3326 } 3327 V = BitcodeConstant::create( 3328 Alloc, CurTy, Instruction::InsertElement, 3329 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3330 break; 3331 } 3332 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3333 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3334 if (Record.size() < 3 || !OpTy) 3335 return error("Invalid shufflevector constexpr record"); 3336 V = BitcodeConstant::create( 3337 Alloc, CurTy, Instruction::ShuffleVector, 3338 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3339 break; 3340 } 3341 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3342 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3343 VectorType *OpTy = 3344 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3345 if (Record.size() < 4 || !RTy || !OpTy) 3346 return error("Invalid shufflevector constexpr record"); 3347 V = BitcodeConstant::create( 3348 Alloc, CurTy, Instruction::ShuffleVector, 3349 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3350 break; 3351 } 3352 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3353 if (Record.size() < 4) 3354 return error("Invalid cmp constexpt record"); 3355 unsigned OpTyID = Record[0]; 3356 Type *OpTy = getTypeByID(OpTyID); 3357 if (!OpTy) 3358 return error("Invalid cmp constexpr record"); 3359 V = BitcodeConstant::create( 3360 Alloc, CurTy, 3361 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3362 : Instruction::ICmp), 3363 (uint8_t)Record[3]}, 3364 {(unsigned)Record[1], (unsigned)Record[2]}); 3365 break; 3366 } 3367 // This maintains backward compatibility, pre-asm dialect keywords. 3368 // Deprecated, but still needed to read old bitcode files. 3369 case bitc::CST_CODE_INLINEASM_OLD: { 3370 if (Record.size() < 2) 3371 return error("Invalid inlineasm record"); 3372 std::string AsmStr, ConstrStr; 3373 bool HasSideEffects = Record[0] & 1; 3374 bool IsAlignStack = Record[0] >> 1; 3375 unsigned AsmStrSize = Record[1]; 3376 if (2+AsmStrSize >= Record.size()) 3377 return error("Invalid inlineasm record"); 3378 unsigned ConstStrSize = Record[2+AsmStrSize]; 3379 if (3+AsmStrSize+ConstStrSize > Record.size()) 3380 return error("Invalid inlineasm record"); 3381 3382 for (unsigned i = 0; i != AsmStrSize; ++i) 3383 AsmStr += (char)Record[2+i]; 3384 for (unsigned i = 0; i != ConstStrSize; ++i) 3385 ConstrStr += (char)Record[3+AsmStrSize+i]; 3386 UpgradeInlineAsmString(&AsmStr); 3387 if (!CurElemTy) 3388 return error("Missing element type for old-style inlineasm"); 3389 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3390 HasSideEffects, IsAlignStack); 3391 break; 3392 } 3393 // This version adds support for the asm dialect keywords (e.g., 3394 // inteldialect). 3395 case bitc::CST_CODE_INLINEASM_OLD2: { 3396 if (Record.size() < 2) 3397 return error("Invalid inlineasm record"); 3398 std::string AsmStr, ConstrStr; 3399 bool HasSideEffects = Record[0] & 1; 3400 bool IsAlignStack = (Record[0] >> 1) & 1; 3401 unsigned AsmDialect = Record[0] >> 2; 3402 unsigned AsmStrSize = Record[1]; 3403 if (2+AsmStrSize >= Record.size()) 3404 return error("Invalid inlineasm record"); 3405 unsigned ConstStrSize = Record[2+AsmStrSize]; 3406 if (3+AsmStrSize+ConstStrSize > Record.size()) 3407 return error("Invalid inlineasm record"); 3408 3409 for (unsigned i = 0; i != AsmStrSize; ++i) 3410 AsmStr += (char)Record[2+i]; 3411 for (unsigned i = 0; i != ConstStrSize; ++i) 3412 ConstrStr += (char)Record[3+AsmStrSize+i]; 3413 UpgradeInlineAsmString(&AsmStr); 3414 if (!CurElemTy) 3415 return error("Missing element type for old-style inlineasm"); 3416 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3417 HasSideEffects, IsAlignStack, 3418 InlineAsm::AsmDialect(AsmDialect)); 3419 break; 3420 } 3421 // This version adds support for the unwind keyword. 3422 case bitc::CST_CODE_INLINEASM_OLD3: { 3423 if (Record.size() < 2) 3424 return error("Invalid inlineasm record"); 3425 unsigned OpNum = 0; 3426 std::string AsmStr, ConstrStr; 3427 bool HasSideEffects = Record[OpNum] & 1; 3428 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3429 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3430 bool CanThrow = (Record[OpNum] >> 3) & 1; 3431 ++OpNum; 3432 unsigned AsmStrSize = Record[OpNum]; 3433 ++OpNum; 3434 if (OpNum + AsmStrSize >= Record.size()) 3435 return error("Invalid inlineasm record"); 3436 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3437 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3438 return error("Invalid inlineasm record"); 3439 3440 for (unsigned i = 0; i != AsmStrSize; ++i) 3441 AsmStr += (char)Record[OpNum + i]; 3442 ++OpNum; 3443 for (unsigned i = 0; i != ConstStrSize; ++i) 3444 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3445 UpgradeInlineAsmString(&AsmStr); 3446 if (!CurElemTy) 3447 return error("Missing element type for old-style inlineasm"); 3448 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3449 HasSideEffects, IsAlignStack, 3450 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3451 break; 3452 } 3453 // This version adds explicit function type. 3454 case bitc::CST_CODE_INLINEASM: { 3455 if (Record.size() < 3) 3456 return error("Invalid inlineasm record"); 3457 unsigned OpNum = 0; 3458 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3459 ++OpNum; 3460 if (!FnTy) 3461 return error("Invalid inlineasm record"); 3462 std::string AsmStr, ConstrStr; 3463 bool HasSideEffects = Record[OpNum] & 1; 3464 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3465 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3466 bool CanThrow = (Record[OpNum] >> 3) & 1; 3467 ++OpNum; 3468 unsigned AsmStrSize = Record[OpNum]; 3469 ++OpNum; 3470 if (OpNum + AsmStrSize >= Record.size()) 3471 return error("Invalid inlineasm record"); 3472 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3473 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3474 return error("Invalid inlineasm record"); 3475 3476 for (unsigned i = 0; i != AsmStrSize; ++i) 3477 AsmStr += (char)Record[OpNum + i]; 3478 ++OpNum; 3479 for (unsigned i = 0; i != ConstStrSize; ++i) 3480 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3481 UpgradeInlineAsmString(&AsmStr); 3482 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3483 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3484 break; 3485 } 3486 case bitc::CST_CODE_BLOCKADDRESS:{ 3487 if (Record.size() < 3) 3488 return error("Invalid blockaddress record"); 3489 unsigned FnTyID = Record[0]; 3490 Type *FnTy = getTypeByID(FnTyID); 3491 if (!FnTy) 3492 return error("Invalid blockaddress record"); 3493 V = BitcodeConstant::create( 3494 Alloc, CurTy, 3495 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3496 Record[1]); 3497 break; 3498 } 3499 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3500 if (Record.size() < 2) 3501 return error("Invalid dso_local record"); 3502 unsigned GVTyID = Record[0]; 3503 Type *GVTy = getTypeByID(GVTyID); 3504 if (!GVTy) 3505 return error("Invalid dso_local record"); 3506 V = BitcodeConstant::create( 3507 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3508 break; 3509 } 3510 case bitc::CST_CODE_NO_CFI_VALUE: { 3511 if (Record.size() < 2) 3512 return error("Invalid no_cfi record"); 3513 unsigned GVTyID = Record[0]; 3514 Type *GVTy = getTypeByID(GVTyID); 3515 if (!GVTy) 3516 return error("Invalid no_cfi record"); 3517 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3518 Record[1]); 3519 break; 3520 } 3521 } 3522 3523 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3524 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3525 return Err; 3526 ++NextCstNo; 3527 } 3528 } 3529 3530 Error BitcodeReader::parseUseLists() { 3531 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3532 return Err; 3533 3534 // Read all the records. 3535 SmallVector<uint64_t, 64> Record; 3536 3537 while (true) { 3538 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3539 if (!MaybeEntry) 3540 return MaybeEntry.takeError(); 3541 BitstreamEntry Entry = MaybeEntry.get(); 3542 3543 switch (Entry.Kind) { 3544 case BitstreamEntry::SubBlock: // Handled for us already. 3545 case BitstreamEntry::Error: 3546 return error("Malformed block"); 3547 case BitstreamEntry::EndBlock: 3548 return Error::success(); 3549 case BitstreamEntry::Record: 3550 // The interesting case. 3551 break; 3552 } 3553 3554 // Read a use list record. 3555 Record.clear(); 3556 bool IsBB = false; 3557 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3558 if (!MaybeRecord) 3559 return MaybeRecord.takeError(); 3560 switch (MaybeRecord.get()) { 3561 default: // Default behavior: unknown type. 3562 break; 3563 case bitc::USELIST_CODE_BB: 3564 IsBB = true; 3565 [[fallthrough]]; 3566 case bitc::USELIST_CODE_DEFAULT: { 3567 unsigned RecordLength = Record.size(); 3568 if (RecordLength < 3) 3569 // Records should have at least an ID and two indexes. 3570 return error("Invalid record"); 3571 unsigned ID = Record.pop_back_val(); 3572 3573 Value *V; 3574 if (IsBB) { 3575 assert(ID < FunctionBBs.size() && "Basic block not found"); 3576 V = FunctionBBs[ID]; 3577 } else 3578 V = ValueList[ID]; 3579 unsigned NumUses = 0; 3580 SmallDenseMap<const Use *, unsigned, 16> Order; 3581 for (const Use &U : V->materialized_uses()) { 3582 if (++NumUses > Record.size()) 3583 break; 3584 Order[&U] = Record[NumUses - 1]; 3585 } 3586 if (Order.size() != Record.size() || NumUses > Record.size()) 3587 // Mismatches can happen if the functions are being materialized lazily 3588 // (out-of-order), or a value has been upgraded. 3589 break; 3590 3591 V->sortUseList([&](const Use &L, const Use &R) { 3592 return Order.lookup(&L) < Order.lookup(&R); 3593 }); 3594 break; 3595 } 3596 } 3597 } 3598 } 3599 3600 /// When we see the block for metadata, remember where it is and then skip it. 3601 /// This lets us lazily deserialize the metadata. 3602 Error BitcodeReader::rememberAndSkipMetadata() { 3603 // Save the current stream state. 3604 uint64_t CurBit = Stream.GetCurrentBitNo(); 3605 DeferredMetadataInfo.push_back(CurBit); 3606 3607 // Skip over the block for now. 3608 if (Error Err = Stream.SkipBlock()) 3609 return Err; 3610 return Error::success(); 3611 } 3612 3613 Error BitcodeReader::materializeMetadata() { 3614 for (uint64_t BitPos : DeferredMetadataInfo) { 3615 // Move the bit stream to the saved position. 3616 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3617 return JumpFailed; 3618 if (Error Err = MDLoader->parseModuleMetadata()) 3619 return Err; 3620 } 3621 3622 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3623 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3624 // multiple times. 3625 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3626 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3627 NamedMDNode *LinkerOpts = 3628 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3629 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3630 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3631 } 3632 } 3633 3634 DeferredMetadataInfo.clear(); 3635 return Error::success(); 3636 } 3637 3638 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3639 3640 /// When we see the block for a function body, remember where it is and then 3641 /// skip it. This lets us lazily deserialize the functions. 3642 Error BitcodeReader::rememberAndSkipFunctionBody() { 3643 // Get the function we are talking about. 3644 if (FunctionsWithBodies.empty()) 3645 return error("Insufficient function protos"); 3646 3647 Function *Fn = FunctionsWithBodies.back(); 3648 FunctionsWithBodies.pop_back(); 3649 3650 // Save the current stream state. 3651 uint64_t CurBit = Stream.GetCurrentBitNo(); 3652 assert( 3653 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3654 "Mismatch between VST and scanned function offsets"); 3655 DeferredFunctionInfo[Fn] = CurBit; 3656 3657 // Skip over the function block for now. 3658 if (Error Err = Stream.SkipBlock()) 3659 return Err; 3660 return Error::success(); 3661 } 3662 3663 Error BitcodeReader::globalCleanup() { 3664 // Patch the initializers for globals and aliases up. 3665 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3666 return Err; 3667 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3668 return error("Malformed global initializer set"); 3669 3670 // Look for intrinsic functions which need to be upgraded at some point 3671 // and functions that need to have their function attributes upgraded. 3672 for (Function &F : *TheModule) { 3673 MDLoader->upgradeDebugIntrinsics(F); 3674 Function *NewFn; 3675 if (UpgradeIntrinsicFunction(&F, NewFn)) 3676 UpgradedIntrinsics[&F] = NewFn; 3677 // Look for functions that rely on old function attribute behavior. 3678 UpgradeFunctionAttributes(F); 3679 } 3680 3681 // Look for global variables which need to be renamed. 3682 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3683 for (GlobalVariable &GV : TheModule->globals()) 3684 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3685 UpgradedVariables.emplace_back(&GV, Upgraded); 3686 for (auto &Pair : UpgradedVariables) { 3687 Pair.first->eraseFromParent(); 3688 TheModule->insertGlobalVariable(Pair.second); 3689 } 3690 3691 // Force deallocation of memory for these vectors to favor the client that 3692 // want lazy deserialization. 3693 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3694 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3695 return Error::success(); 3696 } 3697 3698 /// Support for lazy parsing of function bodies. This is required if we 3699 /// either have an old bitcode file without a VST forward declaration record, 3700 /// or if we have an anonymous function being materialized, since anonymous 3701 /// functions do not have a name and are therefore not in the VST. 3702 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3703 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3704 return JumpFailed; 3705 3706 if (Stream.AtEndOfStream()) 3707 return error("Could not find function in stream"); 3708 3709 if (!SeenFirstFunctionBody) 3710 return error("Trying to materialize functions before seeing function blocks"); 3711 3712 // An old bitcode file with the symbol table at the end would have 3713 // finished the parse greedily. 3714 assert(SeenValueSymbolTable); 3715 3716 SmallVector<uint64_t, 64> Record; 3717 3718 while (true) { 3719 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3720 if (!MaybeEntry) 3721 return MaybeEntry.takeError(); 3722 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3723 3724 switch (Entry.Kind) { 3725 default: 3726 return error("Expect SubBlock"); 3727 case BitstreamEntry::SubBlock: 3728 switch (Entry.ID) { 3729 default: 3730 return error("Expect function block"); 3731 case bitc::FUNCTION_BLOCK_ID: 3732 if (Error Err = rememberAndSkipFunctionBody()) 3733 return Err; 3734 NextUnreadBit = Stream.GetCurrentBitNo(); 3735 return Error::success(); 3736 } 3737 } 3738 } 3739 } 3740 3741 Error BitcodeReaderBase::readBlockInfo() { 3742 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3743 Stream.ReadBlockInfoBlock(); 3744 if (!MaybeNewBlockInfo) 3745 return MaybeNewBlockInfo.takeError(); 3746 std::optional<BitstreamBlockInfo> NewBlockInfo = 3747 std::move(MaybeNewBlockInfo.get()); 3748 if (!NewBlockInfo) 3749 return error("Malformed block"); 3750 BlockInfo = std::move(*NewBlockInfo); 3751 return Error::success(); 3752 } 3753 3754 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3755 // v1: [selection_kind, name] 3756 // v2: [strtab_offset, strtab_size, selection_kind] 3757 StringRef Name; 3758 std::tie(Name, Record) = readNameFromStrtab(Record); 3759 3760 if (Record.empty()) 3761 return error("Invalid record"); 3762 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3763 std::string OldFormatName; 3764 if (!UseStrtab) { 3765 if (Record.size() < 2) 3766 return error("Invalid record"); 3767 unsigned ComdatNameSize = Record[1]; 3768 if (ComdatNameSize > Record.size() - 2) 3769 return error("Comdat name size too large"); 3770 OldFormatName.reserve(ComdatNameSize); 3771 for (unsigned i = 0; i != ComdatNameSize; ++i) 3772 OldFormatName += (char)Record[2 + i]; 3773 Name = OldFormatName; 3774 } 3775 Comdat *C = TheModule->getOrInsertComdat(Name); 3776 C->setSelectionKind(SK); 3777 ComdatList.push_back(C); 3778 return Error::success(); 3779 } 3780 3781 static void inferDSOLocal(GlobalValue *GV) { 3782 // infer dso_local from linkage and visibility if it is not encoded. 3783 if (GV->hasLocalLinkage() || 3784 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3785 GV->setDSOLocal(true); 3786 } 3787 3788 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3789 GlobalValue::SanitizerMetadata Meta; 3790 if (V & (1 << 0)) 3791 Meta.NoAddress = true; 3792 if (V & (1 << 1)) 3793 Meta.NoHWAddress = true; 3794 if (V & (1 << 2)) 3795 Meta.Memtag = true; 3796 if (V & (1 << 3)) 3797 Meta.IsDynInit = true; 3798 return Meta; 3799 } 3800 3801 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3802 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3803 // visibility, threadlocal, unnamed_addr, externally_initialized, 3804 // dllstorageclass, comdat, attributes, preemption specifier, 3805 // partition strtab offset, partition strtab size] (name in VST) 3806 // v2: [strtab_offset, strtab_size, v1] 3807 StringRef Name; 3808 std::tie(Name, Record) = readNameFromStrtab(Record); 3809 3810 if (Record.size() < 6) 3811 return error("Invalid record"); 3812 unsigned TyID = Record[0]; 3813 Type *Ty = getTypeByID(TyID); 3814 if (!Ty) 3815 return error("Invalid record"); 3816 bool isConstant = Record[1] & 1; 3817 bool explicitType = Record[1] & 2; 3818 unsigned AddressSpace; 3819 if (explicitType) { 3820 AddressSpace = Record[1] >> 2; 3821 } else { 3822 if (!Ty->isPointerTy()) 3823 return error("Invalid type for value"); 3824 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3825 TyID = getContainedTypeID(TyID); 3826 Ty = getTypeByID(TyID); 3827 if (!Ty) 3828 return error("Missing element type for old-style global"); 3829 } 3830 3831 uint64_t RawLinkage = Record[3]; 3832 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3833 MaybeAlign Alignment; 3834 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3835 return Err; 3836 std::string Section; 3837 if (Record[5]) { 3838 if (Record[5] - 1 >= SectionTable.size()) 3839 return error("Invalid ID"); 3840 Section = SectionTable[Record[5] - 1]; 3841 } 3842 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3843 // Local linkage must have default visibility. 3844 // auto-upgrade `hidden` and `protected` for old bitcode. 3845 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3846 Visibility = getDecodedVisibility(Record[6]); 3847 3848 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3849 if (Record.size() > 7) 3850 TLM = getDecodedThreadLocalMode(Record[7]); 3851 3852 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3853 if (Record.size() > 8) 3854 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3855 3856 bool ExternallyInitialized = false; 3857 if (Record.size() > 9) 3858 ExternallyInitialized = Record[9]; 3859 3860 GlobalVariable *NewGV = 3861 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3862 nullptr, TLM, AddressSpace, ExternallyInitialized); 3863 if (Alignment) 3864 NewGV->setAlignment(*Alignment); 3865 if (!Section.empty()) 3866 NewGV->setSection(Section); 3867 NewGV->setVisibility(Visibility); 3868 NewGV->setUnnamedAddr(UnnamedAddr); 3869 3870 if (Record.size() > 10) { 3871 // A GlobalValue with local linkage cannot have a DLL storage class. 3872 if (!NewGV->hasLocalLinkage()) { 3873 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3874 } 3875 } else { 3876 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3877 } 3878 3879 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3880 3881 // Remember which value to use for the global initializer. 3882 if (unsigned InitID = Record[2]) 3883 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3884 3885 if (Record.size() > 11) { 3886 if (unsigned ComdatID = Record[11]) { 3887 if (ComdatID > ComdatList.size()) 3888 return error("Invalid global variable comdat ID"); 3889 NewGV->setComdat(ComdatList[ComdatID - 1]); 3890 } 3891 } else if (hasImplicitComdat(RawLinkage)) { 3892 ImplicitComdatObjects.insert(NewGV); 3893 } 3894 3895 if (Record.size() > 12) { 3896 auto AS = getAttributes(Record[12]).getFnAttrs(); 3897 NewGV->setAttributes(AS); 3898 } 3899 3900 if (Record.size() > 13) { 3901 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3902 } 3903 inferDSOLocal(NewGV); 3904 3905 // Check whether we have enough values to read a partition name. 3906 if (Record.size() > 15) 3907 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3908 3909 if (Record.size() > 16 && Record[16]) { 3910 llvm::GlobalValue::SanitizerMetadata Meta = 3911 deserializeSanitizerMetadata(Record[16]); 3912 NewGV->setSanitizerMetadata(Meta); 3913 } 3914 3915 return Error::success(); 3916 } 3917 3918 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3919 if (ValueTypeCallback) { 3920 (*ValueTypeCallback)( 3921 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3922 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3923 } 3924 } 3925 3926 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3927 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3928 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3929 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3930 // v2: [strtab_offset, strtab_size, v1] 3931 StringRef Name; 3932 std::tie(Name, Record) = readNameFromStrtab(Record); 3933 3934 if (Record.size() < 8) 3935 return error("Invalid record"); 3936 unsigned FTyID = Record[0]; 3937 Type *FTy = getTypeByID(FTyID); 3938 if (!FTy) 3939 return error("Invalid record"); 3940 if (isa<PointerType>(FTy)) { 3941 FTyID = getContainedTypeID(FTyID, 0); 3942 FTy = getTypeByID(FTyID); 3943 if (!FTy) 3944 return error("Missing element type for old-style function"); 3945 } 3946 3947 if (!isa<FunctionType>(FTy)) 3948 return error("Invalid type for value"); 3949 auto CC = static_cast<CallingConv::ID>(Record[1]); 3950 if (CC & ~CallingConv::MaxID) 3951 return error("Invalid calling convention ID"); 3952 3953 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3954 if (Record.size() > 16) 3955 AddrSpace = Record[16]; 3956 3957 Function *Func = 3958 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3959 AddrSpace, Name, TheModule); 3960 3961 assert(Func->getFunctionType() == FTy && 3962 "Incorrect fully specified type provided for function"); 3963 FunctionTypeIDs[Func] = FTyID; 3964 3965 Func->setCallingConv(CC); 3966 bool isProto = Record[2]; 3967 uint64_t RawLinkage = Record[3]; 3968 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3969 Func->setAttributes(getAttributes(Record[4])); 3970 callValueTypeCallback(Func, FTyID); 3971 3972 // Upgrade any old-style byval or sret without a type by propagating the 3973 // argument's pointee type. There should be no opaque pointers where the byval 3974 // type is implicit. 3975 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3976 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3977 Attribute::InAlloca}) { 3978 if (!Func->hasParamAttribute(i, Kind)) 3979 continue; 3980 3981 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3982 continue; 3983 3984 Func->removeParamAttr(i, Kind); 3985 3986 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3987 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3988 if (!PtrEltTy) 3989 return error("Missing param element type for attribute upgrade"); 3990 3991 Attribute NewAttr; 3992 switch (Kind) { 3993 case Attribute::ByVal: 3994 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3995 break; 3996 case Attribute::StructRet: 3997 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3998 break; 3999 case Attribute::InAlloca: 4000 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4001 break; 4002 default: 4003 llvm_unreachable("not an upgraded type attribute"); 4004 } 4005 4006 Func->addParamAttr(i, NewAttr); 4007 } 4008 } 4009 4010 if (Func->getCallingConv() == CallingConv::X86_INTR && 4011 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4012 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4013 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4014 if (!ByValTy) 4015 return error("Missing param element type for x86_intrcc upgrade"); 4016 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4017 Func->addParamAttr(0, NewAttr); 4018 } 4019 4020 MaybeAlign Alignment; 4021 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4022 return Err; 4023 if (Alignment) 4024 Func->setAlignment(*Alignment); 4025 if (Record[6]) { 4026 if (Record[6] - 1 >= SectionTable.size()) 4027 return error("Invalid ID"); 4028 Func->setSection(SectionTable[Record[6] - 1]); 4029 } 4030 // Local linkage must have default visibility. 4031 // auto-upgrade `hidden` and `protected` for old bitcode. 4032 if (!Func->hasLocalLinkage()) 4033 Func->setVisibility(getDecodedVisibility(Record[7])); 4034 if (Record.size() > 8 && Record[8]) { 4035 if (Record[8] - 1 >= GCTable.size()) 4036 return error("Invalid ID"); 4037 Func->setGC(GCTable[Record[8] - 1]); 4038 } 4039 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4040 if (Record.size() > 9) 4041 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4042 Func->setUnnamedAddr(UnnamedAddr); 4043 4044 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4045 if (Record.size() > 10) 4046 OperandInfo.Prologue = Record[10]; 4047 4048 if (Record.size() > 11) { 4049 // A GlobalValue with local linkage cannot have a DLL storage class. 4050 if (!Func->hasLocalLinkage()) { 4051 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4052 } 4053 } else { 4054 upgradeDLLImportExportLinkage(Func, RawLinkage); 4055 } 4056 4057 if (Record.size() > 12) { 4058 if (unsigned ComdatID = Record[12]) { 4059 if (ComdatID > ComdatList.size()) 4060 return error("Invalid function comdat ID"); 4061 Func->setComdat(ComdatList[ComdatID - 1]); 4062 } 4063 } else if (hasImplicitComdat(RawLinkage)) { 4064 ImplicitComdatObjects.insert(Func); 4065 } 4066 4067 if (Record.size() > 13) 4068 OperandInfo.Prefix = Record[13]; 4069 4070 if (Record.size() > 14) 4071 OperandInfo.PersonalityFn = Record[14]; 4072 4073 if (Record.size() > 15) { 4074 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4075 } 4076 inferDSOLocal(Func); 4077 4078 // Record[16] is the address space number. 4079 4080 // Check whether we have enough values to read a partition name. Also make 4081 // sure Strtab has enough values. 4082 if (Record.size() > 18 && Strtab.data() && 4083 Record[17] + Record[18] <= Strtab.size()) { 4084 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4085 } 4086 4087 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4088 4089 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4090 FunctionOperands.push_back(OperandInfo); 4091 4092 // If this is a function with a body, remember the prototype we are 4093 // creating now, so that we can match up the body with them later. 4094 if (!isProto) { 4095 Func->setIsMaterializable(true); 4096 FunctionsWithBodies.push_back(Func); 4097 DeferredFunctionInfo[Func] = 0; 4098 } 4099 return Error::success(); 4100 } 4101 4102 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4103 unsigned BitCode, ArrayRef<uint64_t> Record) { 4104 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4105 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4106 // dllstorageclass, threadlocal, unnamed_addr, 4107 // preemption specifier] (name in VST) 4108 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4109 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4110 // preemption specifier] (name in VST) 4111 // v2: [strtab_offset, strtab_size, v1] 4112 StringRef Name; 4113 std::tie(Name, Record) = readNameFromStrtab(Record); 4114 4115 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4116 if (Record.size() < (3 + (unsigned)NewRecord)) 4117 return error("Invalid record"); 4118 unsigned OpNum = 0; 4119 unsigned TypeID = Record[OpNum++]; 4120 Type *Ty = getTypeByID(TypeID); 4121 if (!Ty) 4122 return error("Invalid record"); 4123 4124 unsigned AddrSpace; 4125 if (!NewRecord) { 4126 auto *PTy = dyn_cast<PointerType>(Ty); 4127 if (!PTy) 4128 return error("Invalid type for value"); 4129 AddrSpace = PTy->getAddressSpace(); 4130 TypeID = getContainedTypeID(TypeID); 4131 Ty = getTypeByID(TypeID); 4132 if (!Ty) 4133 return error("Missing element type for old-style indirect symbol"); 4134 } else { 4135 AddrSpace = Record[OpNum++]; 4136 } 4137 4138 auto Val = Record[OpNum++]; 4139 auto Linkage = Record[OpNum++]; 4140 GlobalValue *NewGA; 4141 if (BitCode == bitc::MODULE_CODE_ALIAS || 4142 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4143 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4144 TheModule); 4145 else 4146 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4147 nullptr, TheModule); 4148 4149 // Local linkage must have default visibility. 4150 // auto-upgrade `hidden` and `protected` for old bitcode. 4151 if (OpNum != Record.size()) { 4152 auto VisInd = OpNum++; 4153 if (!NewGA->hasLocalLinkage()) 4154 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4155 } 4156 if (BitCode == bitc::MODULE_CODE_ALIAS || 4157 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4158 if (OpNum != Record.size()) { 4159 auto S = Record[OpNum++]; 4160 // A GlobalValue with local linkage cannot have a DLL storage class. 4161 if (!NewGA->hasLocalLinkage()) 4162 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4163 } 4164 else 4165 upgradeDLLImportExportLinkage(NewGA, Linkage); 4166 if (OpNum != Record.size()) 4167 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4168 if (OpNum != Record.size()) 4169 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4170 } 4171 if (OpNum != Record.size()) 4172 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4173 inferDSOLocal(NewGA); 4174 4175 // Check whether we have enough values to read a partition name. 4176 if (OpNum + 1 < Record.size()) { 4177 NewGA->setPartition( 4178 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4179 OpNum += 2; 4180 } 4181 4182 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4183 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4184 return Error::success(); 4185 } 4186 4187 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4188 bool ShouldLazyLoadMetadata, 4189 ParserCallbacks Callbacks) { 4190 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4191 if (ResumeBit) { 4192 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4193 return JumpFailed; 4194 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4195 return Err; 4196 4197 SmallVector<uint64_t, 64> Record; 4198 4199 // Parts of bitcode parsing depend on the datalayout. Make sure we 4200 // finalize the datalayout before we run any of that code. 4201 bool ResolvedDataLayout = false; 4202 // In order to support importing modules with illegal data layout strings, 4203 // delay parsing the data layout string until after upgrades and overrides 4204 // have been applied, allowing to fix illegal data layout strings. 4205 // Initialize to the current module's layout string in case none is specified. 4206 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4207 4208 auto ResolveDataLayout = [&]() -> Error { 4209 if (ResolvedDataLayout) 4210 return Error::success(); 4211 4212 // Datalayout and triple can't be parsed after this point. 4213 ResolvedDataLayout = true; 4214 4215 // Auto-upgrade the layout string 4216 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4217 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4218 4219 // Apply override 4220 if (Callbacks.DataLayout) { 4221 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4222 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4223 TentativeDataLayoutStr = *LayoutOverride; 4224 } 4225 4226 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4227 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4228 if (!MaybeDL) 4229 return MaybeDL.takeError(); 4230 4231 TheModule->setDataLayout(MaybeDL.get()); 4232 return Error::success(); 4233 }; 4234 4235 // Read all the records for this module. 4236 while (true) { 4237 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4238 if (!MaybeEntry) 4239 return MaybeEntry.takeError(); 4240 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4241 4242 switch (Entry.Kind) { 4243 case BitstreamEntry::Error: 4244 return error("Malformed block"); 4245 case BitstreamEntry::EndBlock: 4246 if (Error Err = ResolveDataLayout()) 4247 return Err; 4248 return globalCleanup(); 4249 4250 case BitstreamEntry::SubBlock: 4251 switch (Entry.ID) { 4252 default: // Skip unknown content. 4253 if (Error Err = Stream.SkipBlock()) 4254 return Err; 4255 break; 4256 case bitc::BLOCKINFO_BLOCK_ID: 4257 if (Error Err = readBlockInfo()) 4258 return Err; 4259 break; 4260 case bitc::PARAMATTR_BLOCK_ID: 4261 if (Error Err = parseAttributeBlock()) 4262 return Err; 4263 break; 4264 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4265 if (Error Err = parseAttributeGroupBlock()) 4266 return Err; 4267 break; 4268 case bitc::TYPE_BLOCK_ID_NEW: 4269 if (Error Err = parseTypeTable()) 4270 return Err; 4271 break; 4272 case bitc::VALUE_SYMTAB_BLOCK_ID: 4273 if (!SeenValueSymbolTable) { 4274 // Either this is an old form VST without function index and an 4275 // associated VST forward declaration record (which would have caused 4276 // the VST to be jumped to and parsed before it was encountered 4277 // normally in the stream), or there were no function blocks to 4278 // trigger an earlier parsing of the VST. 4279 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4280 if (Error Err = parseValueSymbolTable()) 4281 return Err; 4282 SeenValueSymbolTable = true; 4283 } else { 4284 // We must have had a VST forward declaration record, which caused 4285 // the parser to jump to and parse the VST earlier. 4286 assert(VSTOffset > 0); 4287 if (Error Err = Stream.SkipBlock()) 4288 return Err; 4289 } 4290 break; 4291 case bitc::CONSTANTS_BLOCK_ID: 4292 if (Error Err = parseConstants()) 4293 return Err; 4294 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4295 return Err; 4296 break; 4297 case bitc::METADATA_BLOCK_ID: 4298 if (ShouldLazyLoadMetadata) { 4299 if (Error Err = rememberAndSkipMetadata()) 4300 return Err; 4301 break; 4302 } 4303 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4304 if (Error Err = MDLoader->parseModuleMetadata()) 4305 return Err; 4306 break; 4307 case bitc::METADATA_KIND_BLOCK_ID: 4308 if (Error Err = MDLoader->parseMetadataKinds()) 4309 return Err; 4310 break; 4311 case bitc::FUNCTION_BLOCK_ID: 4312 if (Error Err = ResolveDataLayout()) 4313 return Err; 4314 4315 // If this is the first function body we've seen, reverse the 4316 // FunctionsWithBodies list. 4317 if (!SeenFirstFunctionBody) { 4318 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4319 if (Error Err = globalCleanup()) 4320 return Err; 4321 SeenFirstFunctionBody = true; 4322 } 4323 4324 if (VSTOffset > 0) { 4325 // If we have a VST forward declaration record, make sure we 4326 // parse the VST now if we haven't already. It is needed to 4327 // set up the DeferredFunctionInfo vector for lazy reading. 4328 if (!SeenValueSymbolTable) { 4329 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4330 return Err; 4331 SeenValueSymbolTable = true; 4332 // Fall through so that we record the NextUnreadBit below. 4333 // This is necessary in case we have an anonymous function that 4334 // is later materialized. Since it will not have a VST entry we 4335 // need to fall back to the lazy parse to find its offset. 4336 } else { 4337 // If we have a VST forward declaration record, but have already 4338 // parsed the VST (just above, when the first function body was 4339 // encountered here), then we are resuming the parse after 4340 // materializing functions. The ResumeBit points to the 4341 // start of the last function block recorded in the 4342 // DeferredFunctionInfo map. Skip it. 4343 if (Error Err = Stream.SkipBlock()) 4344 return Err; 4345 continue; 4346 } 4347 } 4348 4349 // Support older bitcode files that did not have the function 4350 // index in the VST, nor a VST forward declaration record, as 4351 // well as anonymous functions that do not have VST entries. 4352 // Build the DeferredFunctionInfo vector on the fly. 4353 if (Error Err = rememberAndSkipFunctionBody()) 4354 return Err; 4355 4356 // Suspend parsing when we reach the function bodies. Subsequent 4357 // materialization calls will resume it when necessary. If the bitcode 4358 // file is old, the symbol table will be at the end instead and will not 4359 // have been seen yet. In this case, just finish the parse now. 4360 if (SeenValueSymbolTable) { 4361 NextUnreadBit = Stream.GetCurrentBitNo(); 4362 // After the VST has been parsed, we need to make sure intrinsic name 4363 // are auto-upgraded. 4364 return globalCleanup(); 4365 } 4366 break; 4367 case bitc::USELIST_BLOCK_ID: 4368 if (Error Err = parseUseLists()) 4369 return Err; 4370 break; 4371 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4372 if (Error Err = parseOperandBundleTags()) 4373 return Err; 4374 break; 4375 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4376 if (Error Err = parseSyncScopeNames()) 4377 return Err; 4378 break; 4379 } 4380 continue; 4381 4382 case BitstreamEntry::Record: 4383 // The interesting case. 4384 break; 4385 } 4386 4387 // Read a record. 4388 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4389 if (!MaybeBitCode) 4390 return MaybeBitCode.takeError(); 4391 switch (unsigned BitCode = MaybeBitCode.get()) { 4392 default: break; // Default behavior, ignore unknown content. 4393 case bitc::MODULE_CODE_VERSION: { 4394 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4395 if (!VersionOrErr) 4396 return VersionOrErr.takeError(); 4397 UseRelativeIDs = *VersionOrErr >= 1; 4398 break; 4399 } 4400 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4401 if (ResolvedDataLayout) 4402 return error("target triple too late in module"); 4403 std::string S; 4404 if (convertToString(Record, 0, S)) 4405 return error("Invalid record"); 4406 TheModule->setTargetTriple(S); 4407 break; 4408 } 4409 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4410 if (ResolvedDataLayout) 4411 return error("datalayout too late in module"); 4412 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4413 return error("Invalid record"); 4414 break; 4415 } 4416 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4417 std::string S; 4418 if (convertToString(Record, 0, S)) 4419 return error("Invalid record"); 4420 TheModule->setModuleInlineAsm(S); 4421 break; 4422 } 4423 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4424 // Deprecated, but still needed to read old bitcode files. 4425 std::string S; 4426 if (convertToString(Record, 0, S)) 4427 return error("Invalid record"); 4428 // Ignore value. 4429 break; 4430 } 4431 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4432 std::string S; 4433 if (convertToString(Record, 0, S)) 4434 return error("Invalid record"); 4435 SectionTable.push_back(S); 4436 break; 4437 } 4438 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4439 std::string S; 4440 if (convertToString(Record, 0, S)) 4441 return error("Invalid record"); 4442 GCTable.push_back(S); 4443 break; 4444 } 4445 case bitc::MODULE_CODE_COMDAT: 4446 if (Error Err = parseComdatRecord(Record)) 4447 return Err; 4448 break; 4449 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4450 // written by ThinLinkBitcodeWriter. See 4451 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4452 // record 4453 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4454 case bitc::MODULE_CODE_GLOBALVAR: 4455 if (Error Err = parseGlobalVarRecord(Record)) 4456 return Err; 4457 break; 4458 case bitc::MODULE_CODE_FUNCTION: 4459 if (Error Err = ResolveDataLayout()) 4460 return Err; 4461 if (Error Err = parseFunctionRecord(Record)) 4462 return Err; 4463 break; 4464 case bitc::MODULE_CODE_IFUNC: 4465 case bitc::MODULE_CODE_ALIAS: 4466 case bitc::MODULE_CODE_ALIAS_OLD: 4467 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4468 return Err; 4469 break; 4470 /// MODULE_CODE_VSTOFFSET: [offset] 4471 case bitc::MODULE_CODE_VSTOFFSET: 4472 if (Record.empty()) 4473 return error("Invalid record"); 4474 // Note that we subtract 1 here because the offset is relative to one word 4475 // before the start of the identification or module block, which was 4476 // historically always the start of the regular bitcode header. 4477 VSTOffset = Record[0] - 1; 4478 break; 4479 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4480 case bitc::MODULE_CODE_SOURCE_FILENAME: 4481 SmallString<128> ValueName; 4482 if (convertToString(Record, 0, ValueName)) 4483 return error("Invalid record"); 4484 TheModule->setSourceFileName(ValueName); 4485 break; 4486 } 4487 Record.clear(); 4488 } 4489 this->ValueTypeCallback = std::nullopt; 4490 return Error::success(); 4491 } 4492 4493 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4494 bool IsImporting, 4495 ParserCallbacks Callbacks) { 4496 TheModule = M; 4497 MetadataLoaderCallbacks MDCallbacks; 4498 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4499 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4500 return getContainedTypeID(I, J); 4501 }; 4502 MDCallbacks.MDType = Callbacks.MDType; 4503 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4504 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4505 } 4506 4507 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4508 if (!isa<PointerType>(PtrType)) 4509 return error("Load/Store operand is not a pointer type"); 4510 if (!PointerType::isLoadableOrStorableType(ValType)) 4511 return error("Cannot load/store from pointer"); 4512 return Error::success(); 4513 } 4514 4515 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4516 ArrayRef<unsigned> ArgTyIDs) { 4517 AttributeList Attrs = CB->getAttributes(); 4518 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4519 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4520 Attribute::InAlloca}) { 4521 if (!Attrs.hasParamAttr(i, Kind) || 4522 Attrs.getParamAttr(i, Kind).getValueAsType()) 4523 continue; 4524 4525 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4526 if (!PtrEltTy) 4527 return error("Missing element type for typed attribute upgrade"); 4528 4529 Attribute NewAttr; 4530 switch (Kind) { 4531 case Attribute::ByVal: 4532 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4533 break; 4534 case Attribute::StructRet: 4535 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4536 break; 4537 case Attribute::InAlloca: 4538 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4539 break; 4540 default: 4541 llvm_unreachable("not an upgraded type attribute"); 4542 } 4543 4544 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4545 } 4546 } 4547 4548 if (CB->isInlineAsm()) { 4549 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4550 unsigned ArgNo = 0; 4551 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4552 if (!CI.hasArg()) 4553 continue; 4554 4555 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4556 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4557 if (!ElemTy) 4558 return error("Missing element type for inline asm upgrade"); 4559 Attrs = Attrs.addParamAttribute( 4560 Context, ArgNo, 4561 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4562 } 4563 4564 ArgNo++; 4565 } 4566 } 4567 4568 switch (CB->getIntrinsicID()) { 4569 case Intrinsic::preserve_array_access_index: 4570 case Intrinsic::preserve_struct_access_index: 4571 case Intrinsic::aarch64_ldaxr: 4572 case Intrinsic::aarch64_ldxr: 4573 case Intrinsic::aarch64_stlxr: 4574 case Intrinsic::aarch64_stxr: 4575 case Intrinsic::arm_ldaex: 4576 case Intrinsic::arm_ldrex: 4577 case Intrinsic::arm_stlex: 4578 case Intrinsic::arm_strex: { 4579 unsigned ArgNo; 4580 switch (CB->getIntrinsicID()) { 4581 case Intrinsic::aarch64_stlxr: 4582 case Intrinsic::aarch64_stxr: 4583 case Intrinsic::arm_stlex: 4584 case Intrinsic::arm_strex: 4585 ArgNo = 1; 4586 break; 4587 default: 4588 ArgNo = 0; 4589 break; 4590 } 4591 if (!Attrs.getParamElementType(ArgNo)) { 4592 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4593 if (!ElTy) 4594 return error("Missing element type for elementtype upgrade"); 4595 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4596 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4597 } 4598 break; 4599 } 4600 default: 4601 break; 4602 } 4603 4604 CB->setAttributes(Attrs); 4605 return Error::success(); 4606 } 4607 4608 /// Lazily parse the specified function body block. 4609 Error BitcodeReader::parseFunctionBody(Function *F) { 4610 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4611 return Err; 4612 4613 // Unexpected unresolved metadata when parsing function. 4614 if (MDLoader->hasFwdRefs()) 4615 return error("Invalid function metadata: incoming forward references"); 4616 4617 InstructionList.clear(); 4618 unsigned ModuleValueListSize = ValueList.size(); 4619 unsigned ModuleMDLoaderSize = MDLoader->size(); 4620 4621 // Add all the function arguments to the value table. 4622 unsigned ArgNo = 0; 4623 unsigned FTyID = FunctionTypeIDs[F]; 4624 for (Argument &I : F->args()) { 4625 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4626 assert(I.getType() == getTypeByID(ArgTyID) && 4627 "Incorrect fully specified type for Function Argument"); 4628 ValueList.push_back(&I, ArgTyID); 4629 ++ArgNo; 4630 } 4631 unsigned NextValueNo = ValueList.size(); 4632 BasicBlock *CurBB = nullptr; 4633 unsigned CurBBNo = 0; 4634 // Block into which constant expressions from phi nodes are materialized. 4635 BasicBlock *PhiConstExprBB = nullptr; 4636 // Edge blocks for phi nodes into which constant expressions have been 4637 // expanded. 4638 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4639 ConstExprEdgeBBs; 4640 4641 DebugLoc LastLoc; 4642 auto getLastInstruction = [&]() -> Instruction * { 4643 if (CurBB && !CurBB->empty()) 4644 return &CurBB->back(); 4645 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4646 !FunctionBBs[CurBBNo - 1]->empty()) 4647 return &FunctionBBs[CurBBNo - 1]->back(); 4648 return nullptr; 4649 }; 4650 4651 std::vector<OperandBundleDef> OperandBundles; 4652 4653 // Read all the records. 4654 SmallVector<uint64_t, 64> Record; 4655 4656 while (true) { 4657 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4658 if (!MaybeEntry) 4659 return MaybeEntry.takeError(); 4660 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4661 4662 switch (Entry.Kind) { 4663 case BitstreamEntry::Error: 4664 return error("Malformed block"); 4665 case BitstreamEntry::EndBlock: 4666 goto OutOfRecordLoop; 4667 4668 case BitstreamEntry::SubBlock: 4669 switch (Entry.ID) { 4670 default: // Skip unknown content. 4671 if (Error Err = Stream.SkipBlock()) 4672 return Err; 4673 break; 4674 case bitc::CONSTANTS_BLOCK_ID: 4675 if (Error Err = parseConstants()) 4676 return Err; 4677 NextValueNo = ValueList.size(); 4678 break; 4679 case bitc::VALUE_SYMTAB_BLOCK_ID: 4680 if (Error Err = parseValueSymbolTable()) 4681 return Err; 4682 break; 4683 case bitc::METADATA_ATTACHMENT_ID: 4684 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4685 return Err; 4686 break; 4687 case bitc::METADATA_BLOCK_ID: 4688 assert(DeferredMetadataInfo.empty() && 4689 "Must read all module-level metadata before function-level"); 4690 if (Error Err = MDLoader->parseFunctionMetadata()) 4691 return Err; 4692 break; 4693 case bitc::USELIST_BLOCK_ID: 4694 if (Error Err = parseUseLists()) 4695 return Err; 4696 break; 4697 } 4698 continue; 4699 4700 case BitstreamEntry::Record: 4701 // The interesting case. 4702 break; 4703 } 4704 4705 // Read a record. 4706 Record.clear(); 4707 Instruction *I = nullptr; 4708 unsigned ResTypeID = InvalidTypeID; 4709 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4710 if (!MaybeBitCode) 4711 return MaybeBitCode.takeError(); 4712 switch (unsigned BitCode = MaybeBitCode.get()) { 4713 default: // Default behavior: reject 4714 return error("Invalid value"); 4715 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4716 if (Record.empty() || Record[0] == 0) 4717 return error("Invalid record"); 4718 // Create all the basic blocks for the function. 4719 FunctionBBs.resize(Record[0]); 4720 4721 // See if anything took the address of blocks in this function. 4722 auto BBFRI = BasicBlockFwdRefs.find(F); 4723 if (BBFRI == BasicBlockFwdRefs.end()) { 4724 for (BasicBlock *&BB : FunctionBBs) 4725 BB = BasicBlock::Create(Context, "", F); 4726 } else { 4727 auto &BBRefs = BBFRI->second; 4728 // Check for invalid basic block references. 4729 if (BBRefs.size() > FunctionBBs.size()) 4730 return error("Invalid ID"); 4731 assert(!BBRefs.empty() && "Unexpected empty array"); 4732 assert(!BBRefs.front() && "Invalid reference to entry block"); 4733 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4734 ++I) 4735 if (I < RE && BBRefs[I]) { 4736 BBRefs[I]->insertInto(F); 4737 FunctionBBs[I] = BBRefs[I]; 4738 } else { 4739 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4740 } 4741 4742 // Erase from the table. 4743 BasicBlockFwdRefs.erase(BBFRI); 4744 } 4745 4746 CurBB = FunctionBBs[0]; 4747 continue; 4748 } 4749 4750 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4751 // The record should not be emitted if it's an empty list. 4752 if (Record.empty()) 4753 return error("Invalid record"); 4754 // When we have the RARE case of a BlockAddress Constant that is not 4755 // scoped to the Function it refers to, we need to conservatively 4756 // materialize the referred to Function, regardless of whether or not 4757 // that Function will ultimately be linked, otherwise users of 4758 // BitcodeReader might start splicing out Function bodies such that we 4759 // might no longer be able to materialize the BlockAddress since the 4760 // BasicBlock (and entire body of the Function) the BlockAddress refers 4761 // to may have been moved. In the case that the user of BitcodeReader 4762 // decides ultimately not to link the Function body, materializing here 4763 // could be considered wasteful, but it's better than a deserialization 4764 // failure as described. This keeps BitcodeReader unaware of complex 4765 // linkage policy decisions such as those use by LTO, leaving those 4766 // decisions "one layer up." 4767 for (uint64_t ValID : Record) 4768 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4769 BackwardRefFunctions.push_back(F); 4770 else 4771 return error("Invalid record"); 4772 4773 continue; 4774 4775 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4776 // This record indicates that the last instruction is at the same 4777 // location as the previous instruction with a location. 4778 I = getLastInstruction(); 4779 4780 if (!I) 4781 return error("Invalid record"); 4782 I->setDebugLoc(LastLoc); 4783 I = nullptr; 4784 continue; 4785 4786 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4787 I = getLastInstruction(); 4788 if (!I || Record.size() < 4) 4789 return error("Invalid record"); 4790 4791 unsigned Line = Record[0], Col = Record[1]; 4792 unsigned ScopeID = Record[2], IAID = Record[3]; 4793 bool isImplicitCode = Record.size() == 5 && Record[4]; 4794 4795 MDNode *Scope = nullptr, *IA = nullptr; 4796 if (ScopeID) { 4797 Scope = dyn_cast_or_null<MDNode>( 4798 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4799 if (!Scope) 4800 return error("Invalid record"); 4801 } 4802 if (IAID) { 4803 IA = dyn_cast_or_null<MDNode>( 4804 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4805 if (!IA) 4806 return error("Invalid record"); 4807 } 4808 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4809 isImplicitCode); 4810 I->setDebugLoc(LastLoc); 4811 I = nullptr; 4812 continue; 4813 } 4814 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4815 unsigned OpNum = 0; 4816 Value *LHS; 4817 unsigned TypeID; 4818 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4819 OpNum+1 > Record.size()) 4820 return error("Invalid record"); 4821 4822 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4823 if (Opc == -1) 4824 return error("Invalid record"); 4825 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4826 ResTypeID = TypeID; 4827 InstructionList.push_back(I); 4828 if (OpNum < Record.size()) { 4829 if (isa<FPMathOperator>(I)) { 4830 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4831 if (FMF.any()) 4832 I->setFastMathFlags(FMF); 4833 } 4834 } 4835 break; 4836 } 4837 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4838 unsigned OpNum = 0; 4839 Value *LHS, *RHS; 4840 unsigned TypeID; 4841 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4842 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4843 CurBB) || 4844 OpNum+1 > Record.size()) 4845 return error("Invalid record"); 4846 4847 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4848 if (Opc == -1) 4849 return error("Invalid record"); 4850 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4851 ResTypeID = TypeID; 4852 InstructionList.push_back(I); 4853 if (OpNum < Record.size()) { 4854 if (Opc == Instruction::Add || 4855 Opc == Instruction::Sub || 4856 Opc == Instruction::Mul || 4857 Opc == Instruction::Shl) { 4858 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4859 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4860 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4861 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4862 } else if (Opc == Instruction::SDiv || 4863 Opc == Instruction::UDiv || 4864 Opc == Instruction::LShr || 4865 Opc == Instruction::AShr) { 4866 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4867 cast<BinaryOperator>(I)->setIsExact(true); 4868 } else if (isa<FPMathOperator>(I)) { 4869 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4870 if (FMF.any()) 4871 I->setFastMathFlags(FMF); 4872 } 4873 4874 } 4875 break; 4876 } 4877 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4878 unsigned OpNum = 0; 4879 Value *Op; 4880 unsigned OpTypeID; 4881 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4882 OpNum + 1 > Record.size()) 4883 return error("Invalid record"); 4884 4885 ResTypeID = Record[OpNum++]; 4886 Type *ResTy = getTypeByID(ResTypeID); 4887 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4888 4889 if (Opc == -1 || !ResTy) 4890 return error("Invalid record"); 4891 Instruction *Temp = nullptr; 4892 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4893 if (Temp) { 4894 InstructionList.push_back(Temp); 4895 assert(CurBB && "No current BB?"); 4896 Temp->insertInto(CurBB, CurBB->end()); 4897 } 4898 } else { 4899 auto CastOp = (Instruction::CastOps)Opc; 4900 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4901 return error("Invalid cast"); 4902 I = CastInst::Create(CastOp, Op, ResTy); 4903 } 4904 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4905 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4906 I->setNonNeg(true); 4907 InstructionList.push_back(I); 4908 break; 4909 } 4910 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4911 case bitc::FUNC_CODE_INST_GEP_OLD: 4912 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4913 unsigned OpNum = 0; 4914 4915 unsigned TyID; 4916 Type *Ty; 4917 bool InBounds; 4918 4919 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4920 InBounds = Record[OpNum++]; 4921 TyID = Record[OpNum++]; 4922 Ty = getTypeByID(TyID); 4923 } else { 4924 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4925 TyID = InvalidTypeID; 4926 Ty = nullptr; 4927 } 4928 4929 Value *BasePtr; 4930 unsigned BasePtrTypeID; 4931 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4932 CurBB)) 4933 return error("Invalid record"); 4934 4935 if (!Ty) { 4936 TyID = getContainedTypeID(BasePtrTypeID); 4937 if (BasePtr->getType()->isVectorTy()) 4938 TyID = getContainedTypeID(TyID); 4939 Ty = getTypeByID(TyID); 4940 } 4941 4942 SmallVector<Value*, 16> GEPIdx; 4943 while (OpNum != Record.size()) { 4944 Value *Op; 4945 unsigned OpTypeID; 4946 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4947 return error("Invalid record"); 4948 GEPIdx.push_back(Op); 4949 } 4950 4951 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4952 4953 ResTypeID = TyID; 4954 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4955 auto GTI = std::next(gep_type_begin(I)); 4956 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4957 unsigned SubType = 0; 4958 if (GTI.isStruct()) { 4959 ConstantInt *IdxC = 4960 Idx->getType()->isVectorTy() 4961 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4962 : cast<ConstantInt>(Idx); 4963 SubType = IdxC->getZExtValue(); 4964 } 4965 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4966 ++GTI; 4967 } 4968 } 4969 4970 // At this point ResTypeID is the result element type. We need a pointer 4971 // or vector of pointer to it. 4972 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4973 if (I->getType()->isVectorTy()) 4974 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4975 4976 InstructionList.push_back(I); 4977 if (InBounds) 4978 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4979 break; 4980 } 4981 4982 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4983 // EXTRACTVAL: [opty, opval, n x indices] 4984 unsigned OpNum = 0; 4985 Value *Agg; 4986 unsigned AggTypeID; 4987 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4988 return error("Invalid record"); 4989 Type *Ty = Agg->getType(); 4990 4991 unsigned RecSize = Record.size(); 4992 if (OpNum == RecSize) 4993 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4994 4995 SmallVector<unsigned, 4> EXTRACTVALIdx; 4996 ResTypeID = AggTypeID; 4997 for (; OpNum != RecSize; ++OpNum) { 4998 bool IsArray = Ty->isArrayTy(); 4999 bool IsStruct = Ty->isStructTy(); 5000 uint64_t Index = Record[OpNum]; 5001 5002 if (!IsStruct && !IsArray) 5003 return error("EXTRACTVAL: Invalid type"); 5004 if ((unsigned)Index != Index) 5005 return error("Invalid value"); 5006 if (IsStruct && Index >= Ty->getStructNumElements()) 5007 return error("EXTRACTVAL: Invalid struct index"); 5008 if (IsArray && Index >= Ty->getArrayNumElements()) 5009 return error("EXTRACTVAL: Invalid array index"); 5010 EXTRACTVALIdx.push_back((unsigned)Index); 5011 5012 if (IsStruct) { 5013 Ty = Ty->getStructElementType(Index); 5014 ResTypeID = getContainedTypeID(ResTypeID, Index); 5015 } else { 5016 Ty = Ty->getArrayElementType(); 5017 ResTypeID = getContainedTypeID(ResTypeID); 5018 } 5019 } 5020 5021 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 5026 case bitc::FUNC_CODE_INST_INSERTVAL: { 5027 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5028 unsigned OpNum = 0; 5029 Value *Agg; 5030 unsigned AggTypeID; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5032 return error("Invalid record"); 5033 Value *Val; 5034 unsigned ValTypeID; 5035 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5036 return error("Invalid record"); 5037 5038 unsigned RecSize = Record.size(); 5039 if (OpNum == RecSize) 5040 return error("INSERTVAL: Invalid instruction with 0 indices"); 5041 5042 SmallVector<unsigned, 4> INSERTVALIdx; 5043 Type *CurTy = Agg->getType(); 5044 for (; OpNum != RecSize; ++OpNum) { 5045 bool IsArray = CurTy->isArrayTy(); 5046 bool IsStruct = CurTy->isStructTy(); 5047 uint64_t Index = Record[OpNum]; 5048 5049 if (!IsStruct && !IsArray) 5050 return error("INSERTVAL: Invalid type"); 5051 if ((unsigned)Index != Index) 5052 return error("Invalid value"); 5053 if (IsStruct && Index >= CurTy->getStructNumElements()) 5054 return error("INSERTVAL: Invalid struct index"); 5055 if (IsArray && Index >= CurTy->getArrayNumElements()) 5056 return error("INSERTVAL: Invalid array index"); 5057 5058 INSERTVALIdx.push_back((unsigned)Index); 5059 if (IsStruct) 5060 CurTy = CurTy->getStructElementType(Index); 5061 else 5062 CurTy = CurTy->getArrayElementType(); 5063 } 5064 5065 if (CurTy != Val->getType()) 5066 return error("Inserted value type doesn't match aggregate type"); 5067 5068 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5069 ResTypeID = AggTypeID; 5070 InstructionList.push_back(I); 5071 break; 5072 } 5073 5074 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5075 // obsolete form of select 5076 // handles select i1 ... in old bitcode 5077 unsigned OpNum = 0; 5078 Value *TrueVal, *FalseVal, *Cond; 5079 unsigned TypeID; 5080 Type *CondType = Type::getInt1Ty(Context); 5081 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5082 CurBB) || 5083 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5084 FalseVal, CurBB) || 5085 popValue(Record, OpNum, NextValueNo, CondType, 5086 getVirtualTypeID(CondType), Cond, CurBB)) 5087 return error("Invalid record"); 5088 5089 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5090 ResTypeID = TypeID; 5091 InstructionList.push_back(I); 5092 break; 5093 } 5094 5095 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5096 // new form of select 5097 // handles select i1 or select [N x i1] 5098 unsigned OpNum = 0; 5099 Value *TrueVal, *FalseVal, *Cond; 5100 unsigned ValTypeID, CondTypeID; 5101 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5102 CurBB) || 5103 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5104 FalseVal, CurBB) || 5105 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5106 return error("Invalid record"); 5107 5108 // select condition can be either i1 or [N x i1] 5109 if (VectorType* vector_type = 5110 dyn_cast<VectorType>(Cond->getType())) { 5111 // expect <n x i1> 5112 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5113 return error("Invalid type for value"); 5114 } else { 5115 // expect i1 5116 if (Cond->getType() != Type::getInt1Ty(Context)) 5117 return error("Invalid type for value"); 5118 } 5119 5120 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5121 ResTypeID = ValTypeID; 5122 InstructionList.push_back(I); 5123 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5124 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5125 if (FMF.any()) 5126 I->setFastMathFlags(FMF); 5127 } 5128 break; 5129 } 5130 5131 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5132 unsigned OpNum = 0; 5133 Value *Vec, *Idx; 5134 unsigned VecTypeID, IdxTypeID; 5135 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5136 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5137 return error("Invalid record"); 5138 if (!Vec->getType()->isVectorTy()) 5139 return error("Invalid type for value"); 5140 I = ExtractElementInst::Create(Vec, Idx); 5141 ResTypeID = getContainedTypeID(VecTypeID); 5142 InstructionList.push_back(I); 5143 break; 5144 } 5145 5146 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5147 unsigned OpNum = 0; 5148 Value *Vec, *Elt, *Idx; 5149 unsigned VecTypeID, IdxTypeID; 5150 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5151 return error("Invalid record"); 5152 if (!Vec->getType()->isVectorTy()) 5153 return error("Invalid type for value"); 5154 if (popValue(Record, OpNum, NextValueNo, 5155 cast<VectorType>(Vec->getType())->getElementType(), 5156 getContainedTypeID(VecTypeID), Elt, CurBB) || 5157 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5158 return error("Invalid record"); 5159 I = InsertElementInst::Create(Vec, Elt, Idx); 5160 ResTypeID = VecTypeID; 5161 InstructionList.push_back(I); 5162 break; 5163 } 5164 5165 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5166 unsigned OpNum = 0; 5167 Value *Vec1, *Vec2, *Mask; 5168 unsigned Vec1TypeID; 5169 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5170 CurBB) || 5171 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5172 Vec2, CurBB)) 5173 return error("Invalid record"); 5174 5175 unsigned MaskTypeID; 5176 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5177 return error("Invalid record"); 5178 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5179 return error("Invalid type for value"); 5180 5181 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5182 ResTypeID = 5183 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5184 InstructionList.push_back(I); 5185 break; 5186 } 5187 5188 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5189 // Old form of ICmp/FCmp returning bool 5190 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5191 // both legal on vectors but had different behaviour. 5192 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5193 // FCmp/ICmp returning bool or vector of bool 5194 5195 unsigned OpNum = 0; 5196 Value *LHS, *RHS; 5197 unsigned LHSTypeID; 5198 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5199 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5200 CurBB)) 5201 return error("Invalid record"); 5202 5203 if (OpNum >= Record.size()) 5204 return error( 5205 "Invalid record: operand number exceeded available operands"); 5206 5207 unsigned PredVal = Record[OpNum]; 5208 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5209 FastMathFlags FMF; 5210 if (IsFP && Record.size() > OpNum+1) 5211 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5212 5213 if (OpNum+1 != Record.size()) 5214 return error("Invalid record"); 5215 5216 if (LHS->getType()->isFPOrFPVectorTy()) 5217 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5218 else 5219 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5220 5221 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5222 if (LHS->getType()->isVectorTy()) 5223 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5224 5225 if (FMF.any()) 5226 I->setFastMathFlags(FMF); 5227 InstructionList.push_back(I); 5228 break; 5229 } 5230 5231 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5232 { 5233 unsigned Size = Record.size(); 5234 if (Size == 0) { 5235 I = ReturnInst::Create(Context); 5236 InstructionList.push_back(I); 5237 break; 5238 } 5239 5240 unsigned OpNum = 0; 5241 Value *Op = nullptr; 5242 unsigned OpTypeID; 5243 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5244 return error("Invalid record"); 5245 if (OpNum != Record.size()) 5246 return error("Invalid record"); 5247 5248 I = ReturnInst::Create(Context, Op); 5249 InstructionList.push_back(I); 5250 break; 5251 } 5252 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5253 if (Record.size() != 1 && Record.size() != 3) 5254 return error("Invalid record"); 5255 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5256 if (!TrueDest) 5257 return error("Invalid record"); 5258 5259 if (Record.size() == 1) { 5260 I = BranchInst::Create(TrueDest); 5261 InstructionList.push_back(I); 5262 } 5263 else { 5264 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5265 Type *CondType = Type::getInt1Ty(Context); 5266 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5267 getVirtualTypeID(CondType), CurBB); 5268 if (!FalseDest || !Cond) 5269 return error("Invalid record"); 5270 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5271 InstructionList.push_back(I); 5272 } 5273 break; 5274 } 5275 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5276 if (Record.size() != 1 && Record.size() != 2) 5277 return error("Invalid record"); 5278 unsigned Idx = 0; 5279 Type *TokenTy = Type::getTokenTy(Context); 5280 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5281 getVirtualTypeID(TokenTy), CurBB); 5282 if (!CleanupPad) 5283 return error("Invalid record"); 5284 BasicBlock *UnwindDest = nullptr; 5285 if (Record.size() == 2) { 5286 UnwindDest = getBasicBlock(Record[Idx++]); 5287 if (!UnwindDest) 5288 return error("Invalid record"); 5289 } 5290 5291 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5292 InstructionList.push_back(I); 5293 break; 5294 } 5295 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5296 if (Record.size() != 2) 5297 return error("Invalid record"); 5298 unsigned Idx = 0; 5299 Type *TokenTy = Type::getTokenTy(Context); 5300 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5301 getVirtualTypeID(TokenTy), CurBB); 5302 if (!CatchPad) 5303 return error("Invalid record"); 5304 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5305 if (!BB) 5306 return error("Invalid record"); 5307 5308 I = CatchReturnInst::Create(CatchPad, BB); 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5313 // We must have, at minimum, the outer scope and the number of arguments. 5314 if (Record.size() < 2) 5315 return error("Invalid record"); 5316 5317 unsigned Idx = 0; 5318 5319 Type *TokenTy = Type::getTokenTy(Context); 5320 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5321 getVirtualTypeID(TokenTy), CurBB); 5322 5323 unsigned NumHandlers = Record[Idx++]; 5324 5325 SmallVector<BasicBlock *, 2> Handlers; 5326 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5327 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5328 if (!BB) 5329 return error("Invalid record"); 5330 Handlers.push_back(BB); 5331 } 5332 5333 BasicBlock *UnwindDest = nullptr; 5334 if (Idx + 1 == Record.size()) { 5335 UnwindDest = getBasicBlock(Record[Idx++]); 5336 if (!UnwindDest) 5337 return error("Invalid record"); 5338 } 5339 5340 if (Record.size() != Idx) 5341 return error("Invalid record"); 5342 5343 auto *CatchSwitch = 5344 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5345 for (BasicBlock *Handler : Handlers) 5346 CatchSwitch->addHandler(Handler); 5347 I = CatchSwitch; 5348 ResTypeID = getVirtualTypeID(I->getType()); 5349 InstructionList.push_back(I); 5350 break; 5351 } 5352 case bitc::FUNC_CODE_INST_CATCHPAD: 5353 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5354 // We must have, at minimum, the outer scope and the number of arguments. 5355 if (Record.size() < 2) 5356 return error("Invalid record"); 5357 5358 unsigned Idx = 0; 5359 5360 Type *TokenTy = Type::getTokenTy(Context); 5361 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5362 getVirtualTypeID(TokenTy), CurBB); 5363 5364 unsigned NumArgOperands = Record[Idx++]; 5365 5366 SmallVector<Value *, 2> Args; 5367 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5368 Value *Val; 5369 unsigned ValTypeID; 5370 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5371 return error("Invalid record"); 5372 Args.push_back(Val); 5373 } 5374 5375 if (Record.size() != Idx) 5376 return error("Invalid record"); 5377 5378 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5379 I = CleanupPadInst::Create(ParentPad, Args); 5380 else 5381 I = CatchPadInst::Create(ParentPad, Args); 5382 ResTypeID = getVirtualTypeID(I->getType()); 5383 InstructionList.push_back(I); 5384 break; 5385 } 5386 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5387 // Check magic 5388 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5389 // "New" SwitchInst format with case ranges. The changes to write this 5390 // format were reverted but we still recognize bitcode that uses it. 5391 // Hopefully someday we will have support for case ranges and can use 5392 // this format again. 5393 5394 unsigned OpTyID = Record[1]; 5395 Type *OpTy = getTypeByID(OpTyID); 5396 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5397 5398 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5399 BasicBlock *Default = getBasicBlock(Record[3]); 5400 if (!OpTy || !Cond || !Default) 5401 return error("Invalid record"); 5402 5403 unsigned NumCases = Record[4]; 5404 5405 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5406 InstructionList.push_back(SI); 5407 5408 unsigned CurIdx = 5; 5409 for (unsigned i = 0; i != NumCases; ++i) { 5410 SmallVector<ConstantInt*, 1> CaseVals; 5411 unsigned NumItems = Record[CurIdx++]; 5412 for (unsigned ci = 0; ci != NumItems; ++ci) { 5413 bool isSingleNumber = Record[CurIdx++]; 5414 5415 APInt Low; 5416 unsigned ActiveWords = 1; 5417 if (ValueBitWidth > 64) 5418 ActiveWords = Record[CurIdx++]; 5419 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5420 ValueBitWidth); 5421 CurIdx += ActiveWords; 5422 5423 if (!isSingleNumber) { 5424 ActiveWords = 1; 5425 if (ValueBitWidth > 64) 5426 ActiveWords = Record[CurIdx++]; 5427 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5428 ValueBitWidth); 5429 CurIdx += ActiveWords; 5430 5431 // FIXME: It is not clear whether values in the range should be 5432 // compared as signed or unsigned values. The partially 5433 // implemented changes that used this format in the past used 5434 // unsigned comparisons. 5435 for ( ; Low.ule(High); ++Low) 5436 CaseVals.push_back(ConstantInt::get(Context, Low)); 5437 } else 5438 CaseVals.push_back(ConstantInt::get(Context, Low)); 5439 } 5440 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5441 for (ConstantInt *Cst : CaseVals) 5442 SI->addCase(Cst, DestBB); 5443 } 5444 I = SI; 5445 break; 5446 } 5447 5448 // Old SwitchInst format without case ranges. 5449 5450 if (Record.size() < 3 || (Record.size() & 1) == 0) 5451 return error("Invalid record"); 5452 unsigned OpTyID = Record[0]; 5453 Type *OpTy = getTypeByID(OpTyID); 5454 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5455 BasicBlock *Default = getBasicBlock(Record[2]); 5456 if (!OpTy || !Cond || !Default) 5457 return error("Invalid record"); 5458 unsigned NumCases = (Record.size()-3)/2; 5459 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5460 InstructionList.push_back(SI); 5461 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5462 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5463 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5464 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5465 if (!CaseVal || !DestBB) { 5466 delete SI; 5467 return error("Invalid record"); 5468 } 5469 SI->addCase(CaseVal, DestBB); 5470 } 5471 I = SI; 5472 break; 5473 } 5474 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5475 if (Record.size() < 2) 5476 return error("Invalid record"); 5477 unsigned OpTyID = Record[0]; 5478 Type *OpTy = getTypeByID(OpTyID); 5479 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5480 if (!OpTy || !Address) 5481 return error("Invalid record"); 5482 unsigned NumDests = Record.size()-2; 5483 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5484 InstructionList.push_back(IBI); 5485 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5486 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5487 IBI->addDestination(DestBB); 5488 } else { 5489 delete IBI; 5490 return error("Invalid record"); 5491 } 5492 } 5493 I = IBI; 5494 break; 5495 } 5496 5497 case bitc::FUNC_CODE_INST_INVOKE: { 5498 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5499 if (Record.size() < 4) 5500 return error("Invalid record"); 5501 unsigned OpNum = 0; 5502 AttributeList PAL = getAttributes(Record[OpNum++]); 5503 unsigned CCInfo = Record[OpNum++]; 5504 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5505 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5506 5507 unsigned FTyID = InvalidTypeID; 5508 FunctionType *FTy = nullptr; 5509 if ((CCInfo >> 13) & 1) { 5510 FTyID = Record[OpNum++]; 5511 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5512 if (!FTy) 5513 return error("Explicit invoke type is not a function type"); 5514 } 5515 5516 Value *Callee; 5517 unsigned CalleeTypeID; 5518 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5519 CurBB)) 5520 return error("Invalid record"); 5521 5522 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5523 if (!CalleeTy) 5524 return error("Callee is not a pointer"); 5525 if (!FTy) { 5526 FTyID = getContainedTypeID(CalleeTypeID); 5527 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5528 if (!FTy) 5529 return error("Callee is not of pointer to function type"); 5530 } 5531 if (Record.size() < FTy->getNumParams() + OpNum) 5532 return error("Insufficient operands to call"); 5533 5534 SmallVector<Value*, 16> Ops; 5535 SmallVector<unsigned, 16> ArgTyIDs; 5536 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5537 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5538 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5539 ArgTyID, CurBB)); 5540 ArgTyIDs.push_back(ArgTyID); 5541 if (!Ops.back()) 5542 return error("Invalid record"); 5543 } 5544 5545 if (!FTy->isVarArg()) { 5546 if (Record.size() != OpNum) 5547 return error("Invalid record"); 5548 } else { 5549 // Read type/value pairs for varargs params. 5550 while (OpNum != Record.size()) { 5551 Value *Op; 5552 unsigned OpTypeID; 5553 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5554 return error("Invalid record"); 5555 Ops.push_back(Op); 5556 ArgTyIDs.push_back(OpTypeID); 5557 } 5558 } 5559 5560 // Upgrade the bundles if needed. 5561 if (!OperandBundles.empty()) 5562 UpgradeOperandBundles(OperandBundles); 5563 5564 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5565 OperandBundles); 5566 ResTypeID = getContainedTypeID(FTyID); 5567 OperandBundles.clear(); 5568 InstructionList.push_back(I); 5569 cast<InvokeInst>(I)->setCallingConv( 5570 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5571 cast<InvokeInst>(I)->setAttributes(PAL); 5572 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5573 I->deleteValue(); 5574 return Err; 5575 } 5576 5577 break; 5578 } 5579 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5580 unsigned Idx = 0; 5581 Value *Val = nullptr; 5582 unsigned ValTypeID; 5583 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5584 return error("Invalid record"); 5585 I = ResumeInst::Create(Val); 5586 InstructionList.push_back(I); 5587 break; 5588 } 5589 case bitc::FUNC_CODE_INST_CALLBR: { 5590 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5591 unsigned OpNum = 0; 5592 AttributeList PAL = getAttributes(Record[OpNum++]); 5593 unsigned CCInfo = Record[OpNum++]; 5594 5595 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5596 unsigned NumIndirectDests = Record[OpNum++]; 5597 SmallVector<BasicBlock *, 16> IndirectDests; 5598 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5599 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5600 5601 unsigned FTyID = InvalidTypeID; 5602 FunctionType *FTy = nullptr; 5603 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5604 FTyID = Record[OpNum++]; 5605 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5606 if (!FTy) 5607 return error("Explicit call type is not a function type"); 5608 } 5609 5610 Value *Callee; 5611 unsigned CalleeTypeID; 5612 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5613 CurBB)) 5614 return error("Invalid record"); 5615 5616 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5617 if (!OpTy) 5618 return error("Callee is not a pointer type"); 5619 if (!FTy) { 5620 FTyID = getContainedTypeID(CalleeTypeID); 5621 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5622 if (!FTy) 5623 return error("Callee is not of pointer to function type"); 5624 } 5625 if (Record.size() < FTy->getNumParams() + OpNum) 5626 return error("Insufficient operands to call"); 5627 5628 SmallVector<Value*, 16> Args; 5629 SmallVector<unsigned, 16> ArgTyIDs; 5630 // Read the fixed params. 5631 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5632 Value *Arg; 5633 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5634 if (FTy->getParamType(i)->isLabelTy()) 5635 Arg = getBasicBlock(Record[OpNum]); 5636 else 5637 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5638 ArgTyID, CurBB); 5639 if (!Arg) 5640 return error("Invalid record"); 5641 Args.push_back(Arg); 5642 ArgTyIDs.push_back(ArgTyID); 5643 } 5644 5645 // Read type/value pairs for varargs params. 5646 if (!FTy->isVarArg()) { 5647 if (OpNum != Record.size()) 5648 return error("Invalid record"); 5649 } else { 5650 while (OpNum != Record.size()) { 5651 Value *Op; 5652 unsigned OpTypeID; 5653 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5654 return error("Invalid record"); 5655 Args.push_back(Op); 5656 ArgTyIDs.push_back(OpTypeID); 5657 } 5658 } 5659 5660 // Upgrade the bundles if needed. 5661 if (!OperandBundles.empty()) 5662 UpgradeOperandBundles(OperandBundles); 5663 5664 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5665 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5666 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5667 return CI.Type == InlineAsm::isLabel; 5668 }; 5669 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5670 // Upgrade explicit blockaddress arguments to label constraints. 5671 // Verify that the last arguments are blockaddress arguments that 5672 // match the indirect destinations. Clang always generates callbr 5673 // in this form. We could support reordering with more effort. 5674 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5675 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5676 unsigned LabelNo = ArgNo - FirstBlockArg; 5677 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5678 if (!BA || BA->getFunction() != F || 5679 LabelNo > IndirectDests.size() || 5680 BA->getBasicBlock() != IndirectDests[LabelNo]) 5681 return error("callbr argument does not match indirect dest"); 5682 } 5683 5684 // Remove blockaddress arguments. 5685 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5686 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5687 5688 // Recreate the function type with less arguments. 5689 SmallVector<Type *> ArgTys; 5690 for (Value *Arg : Args) 5691 ArgTys.push_back(Arg->getType()); 5692 FTy = 5693 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5694 5695 // Update constraint string to use label constraints. 5696 std::string Constraints = IA->getConstraintString(); 5697 unsigned ArgNo = 0; 5698 size_t Pos = 0; 5699 for (const auto &CI : ConstraintInfo) { 5700 if (CI.hasArg()) { 5701 if (ArgNo >= FirstBlockArg) 5702 Constraints.insert(Pos, "!"); 5703 ++ArgNo; 5704 } 5705 5706 // Go to next constraint in string. 5707 Pos = Constraints.find(',', Pos); 5708 if (Pos == std::string::npos) 5709 break; 5710 ++Pos; 5711 } 5712 5713 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5714 IA->hasSideEffects(), IA->isAlignStack(), 5715 IA->getDialect(), IA->canThrow()); 5716 } 5717 } 5718 5719 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5720 OperandBundles); 5721 ResTypeID = getContainedTypeID(FTyID); 5722 OperandBundles.clear(); 5723 InstructionList.push_back(I); 5724 cast<CallBrInst>(I)->setCallingConv( 5725 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5726 cast<CallBrInst>(I)->setAttributes(PAL); 5727 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5728 I->deleteValue(); 5729 return Err; 5730 } 5731 break; 5732 } 5733 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5734 I = new UnreachableInst(Context); 5735 InstructionList.push_back(I); 5736 break; 5737 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5738 if (Record.empty()) 5739 return error("Invalid phi record"); 5740 // The first record specifies the type. 5741 unsigned TyID = Record[0]; 5742 Type *Ty = getTypeByID(TyID); 5743 if (!Ty) 5744 return error("Invalid phi record"); 5745 5746 // Phi arguments are pairs of records of [value, basic block]. 5747 // There is an optional final record for fast-math-flags if this phi has a 5748 // floating-point type. 5749 size_t NumArgs = (Record.size() - 1) / 2; 5750 PHINode *PN = PHINode::Create(Ty, NumArgs); 5751 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5752 PN->deleteValue(); 5753 return error("Invalid phi record"); 5754 } 5755 InstructionList.push_back(PN); 5756 5757 SmallDenseMap<BasicBlock *, Value *> Args; 5758 for (unsigned i = 0; i != NumArgs; i++) { 5759 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5760 if (!BB) { 5761 PN->deleteValue(); 5762 return error("Invalid phi BB"); 5763 } 5764 5765 // Phi nodes may contain the same predecessor multiple times, in which 5766 // case the incoming value must be identical. Directly reuse the already 5767 // seen value here, to avoid expanding a constant expression multiple 5768 // times. 5769 auto It = Args.find(BB); 5770 if (It != Args.end()) { 5771 PN->addIncoming(It->second, BB); 5772 continue; 5773 } 5774 5775 // If there already is a block for this edge (from a different phi), 5776 // use it. 5777 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5778 if (!EdgeBB) { 5779 // Otherwise, use a temporary block (that we will discard if it 5780 // turns out to be unnecessary). 5781 if (!PhiConstExprBB) 5782 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5783 EdgeBB = PhiConstExprBB; 5784 } 5785 5786 // With the new function encoding, it is possible that operands have 5787 // negative IDs (for forward references). Use a signed VBR 5788 // representation to keep the encoding small. 5789 Value *V; 5790 if (UseRelativeIDs) 5791 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5792 else 5793 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5794 if (!V) { 5795 PN->deleteValue(); 5796 PhiConstExprBB->eraseFromParent(); 5797 return error("Invalid phi record"); 5798 } 5799 5800 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5801 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5802 PhiConstExprBB = nullptr; 5803 } 5804 PN->addIncoming(V, BB); 5805 Args.insert({BB, V}); 5806 } 5807 I = PN; 5808 ResTypeID = TyID; 5809 5810 // If there are an even number of records, the final record must be FMF. 5811 if (Record.size() % 2 == 0) { 5812 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5813 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5814 if (FMF.any()) 5815 I->setFastMathFlags(FMF); 5816 } 5817 5818 break; 5819 } 5820 5821 case bitc::FUNC_CODE_INST_LANDINGPAD: 5822 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5823 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5824 unsigned Idx = 0; 5825 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5826 if (Record.size() < 3) 5827 return error("Invalid record"); 5828 } else { 5829 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5830 if (Record.size() < 4) 5831 return error("Invalid record"); 5832 } 5833 ResTypeID = Record[Idx++]; 5834 Type *Ty = getTypeByID(ResTypeID); 5835 if (!Ty) 5836 return error("Invalid record"); 5837 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5838 Value *PersFn = nullptr; 5839 unsigned PersFnTypeID; 5840 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5841 nullptr)) 5842 return error("Invalid record"); 5843 5844 if (!F->hasPersonalityFn()) 5845 F->setPersonalityFn(cast<Constant>(PersFn)); 5846 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5847 return error("Personality function mismatch"); 5848 } 5849 5850 bool IsCleanup = !!Record[Idx++]; 5851 unsigned NumClauses = Record[Idx++]; 5852 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5853 LP->setCleanup(IsCleanup); 5854 for (unsigned J = 0; J != NumClauses; ++J) { 5855 LandingPadInst::ClauseType CT = 5856 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5857 Value *Val; 5858 unsigned ValTypeID; 5859 5860 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5861 nullptr)) { 5862 delete LP; 5863 return error("Invalid record"); 5864 } 5865 5866 assert((CT != LandingPadInst::Catch || 5867 !isa<ArrayType>(Val->getType())) && 5868 "Catch clause has a invalid type!"); 5869 assert((CT != LandingPadInst::Filter || 5870 isa<ArrayType>(Val->getType())) && 5871 "Filter clause has invalid type!"); 5872 LP->addClause(cast<Constant>(Val)); 5873 } 5874 5875 I = LP; 5876 InstructionList.push_back(I); 5877 break; 5878 } 5879 5880 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5881 if (Record.size() != 4 && Record.size() != 5) 5882 return error("Invalid record"); 5883 using APV = AllocaPackedValues; 5884 const uint64_t Rec = Record[3]; 5885 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5886 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5887 unsigned TyID = Record[0]; 5888 Type *Ty = getTypeByID(TyID); 5889 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5890 TyID = getContainedTypeID(TyID); 5891 Ty = getTypeByID(TyID); 5892 if (!Ty) 5893 return error("Missing element type for old-style alloca"); 5894 } 5895 unsigned OpTyID = Record[1]; 5896 Type *OpTy = getTypeByID(OpTyID); 5897 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5898 MaybeAlign Align; 5899 uint64_t AlignExp = 5900 Bitfield::get<APV::AlignLower>(Rec) | 5901 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5902 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5903 return Err; 5904 } 5905 if (!Ty || !Size) 5906 return error("Invalid record"); 5907 5908 const DataLayout &DL = TheModule->getDataLayout(); 5909 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5910 5911 SmallPtrSet<Type *, 4> Visited; 5912 if (!Align && !Ty->isSized(&Visited)) 5913 return error("alloca of unsized type"); 5914 if (!Align) 5915 Align = DL.getPrefTypeAlign(Ty); 5916 5917 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5918 AI->setUsedWithInAlloca(InAlloca); 5919 AI->setSwiftError(SwiftError); 5920 I = AI; 5921 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5922 InstructionList.push_back(I); 5923 break; 5924 } 5925 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5926 unsigned OpNum = 0; 5927 Value *Op; 5928 unsigned OpTypeID; 5929 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5930 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5931 return error("Invalid record"); 5932 5933 if (!isa<PointerType>(Op->getType())) 5934 return error("Load operand is not a pointer type"); 5935 5936 Type *Ty = nullptr; 5937 if (OpNum + 3 == Record.size()) { 5938 ResTypeID = Record[OpNum++]; 5939 Ty = getTypeByID(ResTypeID); 5940 } else { 5941 ResTypeID = getContainedTypeID(OpTypeID); 5942 Ty = getTypeByID(ResTypeID); 5943 if (!Ty) 5944 return error("Missing element type for old-style load"); 5945 } 5946 5947 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5948 return Err; 5949 5950 MaybeAlign Align; 5951 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5952 return Err; 5953 SmallPtrSet<Type *, 4> Visited; 5954 if (!Align && !Ty->isSized(&Visited)) 5955 return error("load of unsized type"); 5956 if (!Align) 5957 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5958 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5959 InstructionList.push_back(I); 5960 break; 5961 } 5962 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5963 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5964 unsigned OpNum = 0; 5965 Value *Op; 5966 unsigned OpTypeID; 5967 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5968 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5969 return error("Invalid record"); 5970 5971 if (!isa<PointerType>(Op->getType())) 5972 return error("Load operand is not a pointer type"); 5973 5974 Type *Ty = nullptr; 5975 if (OpNum + 5 == Record.size()) { 5976 ResTypeID = Record[OpNum++]; 5977 Ty = getTypeByID(ResTypeID); 5978 } else { 5979 ResTypeID = getContainedTypeID(OpTypeID); 5980 Ty = getTypeByID(ResTypeID); 5981 if (!Ty) 5982 return error("Missing element type for old style atomic load"); 5983 } 5984 5985 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5986 return Err; 5987 5988 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5989 if (Ordering == AtomicOrdering::NotAtomic || 5990 Ordering == AtomicOrdering::Release || 5991 Ordering == AtomicOrdering::AcquireRelease) 5992 return error("Invalid record"); 5993 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5994 return error("Invalid record"); 5995 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5996 5997 MaybeAlign Align; 5998 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5999 return Err; 6000 if (!Align) 6001 return error("Alignment missing from atomic load"); 6002 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6003 InstructionList.push_back(I); 6004 break; 6005 } 6006 case bitc::FUNC_CODE_INST_STORE: 6007 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6008 unsigned OpNum = 0; 6009 Value *Val, *Ptr; 6010 unsigned PtrTypeID, ValTypeID; 6011 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6012 return error("Invalid record"); 6013 6014 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6015 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6016 return error("Invalid record"); 6017 } else { 6018 ValTypeID = getContainedTypeID(PtrTypeID); 6019 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6020 ValTypeID, Val, CurBB)) 6021 return error("Invalid record"); 6022 } 6023 6024 if (OpNum + 2 != Record.size()) 6025 return error("Invalid record"); 6026 6027 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6028 return Err; 6029 MaybeAlign Align; 6030 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6031 return Err; 6032 SmallPtrSet<Type *, 4> Visited; 6033 if (!Align && !Val->getType()->isSized(&Visited)) 6034 return error("store of unsized type"); 6035 if (!Align) 6036 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6037 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6038 InstructionList.push_back(I); 6039 break; 6040 } 6041 case bitc::FUNC_CODE_INST_STOREATOMIC: 6042 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6043 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6044 unsigned OpNum = 0; 6045 Value *Val, *Ptr; 6046 unsigned PtrTypeID, ValTypeID; 6047 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6048 !isa<PointerType>(Ptr->getType())) 6049 return error("Invalid record"); 6050 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6051 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6052 return error("Invalid record"); 6053 } else { 6054 ValTypeID = getContainedTypeID(PtrTypeID); 6055 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6056 ValTypeID, Val, CurBB)) 6057 return error("Invalid record"); 6058 } 6059 6060 if (OpNum + 4 != Record.size()) 6061 return error("Invalid record"); 6062 6063 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6064 return Err; 6065 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6066 if (Ordering == AtomicOrdering::NotAtomic || 6067 Ordering == AtomicOrdering::Acquire || 6068 Ordering == AtomicOrdering::AcquireRelease) 6069 return error("Invalid record"); 6070 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6071 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6072 return error("Invalid record"); 6073 6074 MaybeAlign Align; 6075 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6076 return Err; 6077 if (!Align) 6078 return error("Alignment missing from atomic store"); 6079 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6080 InstructionList.push_back(I); 6081 break; 6082 } 6083 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6084 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6085 // failure_ordering?, weak?] 6086 const size_t NumRecords = Record.size(); 6087 unsigned OpNum = 0; 6088 Value *Ptr = nullptr; 6089 unsigned PtrTypeID; 6090 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6091 return error("Invalid record"); 6092 6093 if (!isa<PointerType>(Ptr->getType())) 6094 return error("Cmpxchg operand is not a pointer type"); 6095 6096 Value *Cmp = nullptr; 6097 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6098 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6099 CmpTypeID, Cmp, CurBB)) 6100 return error("Invalid record"); 6101 6102 Value *New = nullptr; 6103 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6104 New, CurBB) || 6105 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6106 return error("Invalid record"); 6107 6108 const AtomicOrdering SuccessOrdering = 6109 getDecodedOrdering(Record[OpNum + 1]); 6110 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6111 SuccessOrdering == AtomicOrdering::Unordered) 6112 return error("Invalid record"); 6113 6114 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6115 6116 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6117 return Err; 6118 6119 const AtomicOrdering FailureOrdering = 6120 NumRecords < 7 6121 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6122 : getDecodedOrdering(Record[OpNum + 3]); 6123 6124 if (FailureOrdering == AtomicOrdering::NotAtomic || 6125 FailureOrdering == AtomicOrdering::Unordered) 6126 return error("Invalid record"); 6127 6128 const Align Alignment( 6129 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6130 6131 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6132 FailureOrdering, SSID); 6133 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6134 6135 if (NumRecords < 8) { 6136 // Before weak cmpxchgs existed, the instruction simply returned the 6137 // value loaded from memory, so bitcode files from that era will be 6138 // expecting the first component of a modern cmpxchg. 6139 I->insertInto(CurBB, CurBB->end()); 6140 I = ExtractValueInst::Create(I, 0); 6141 ResTypeID = CmpTypeID; 6142 } else { 6143 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6144 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6145 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6146 } 6147 6148 InstructionList.push_back(I); 6149 break; 6150 } 6151 case bitc::FUNC_CODE_INST_CMPXCHG: { 6152 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6153 // failure_ordering, weak, align?] 6154 const size_t NumRecords = Record.size(); 6155 unsigned OpNum = 0; 6156 Value *Ptr = nullptr; 6157 unsigned PtrTypeID; 6158 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6159 return error("Invalid record"); 6160 6161 if (!isa<PointerType>(Ptr->getType())) 6162 return error("Cmpxchg operand is not a pointer type"); 6163 6164 Value *Cmp = nullptr; 6165 unsigned CmpTypeID; 6166 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6167 return error("Invalid record"); 6168 6169 Value *Val = nullptr; 6170 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6171 CurBB)) 6172 return error("Invalid record"); 6173 6174 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6175 return error("Invalid record"); 6176 6177 const bool IsVol = Record[OpNum]; 6178 6179 const AtomicOrdering SuccessOrdering = 6180 getDecodedOrdering(Record[OpNum + 1]); 6181 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6182 return error("Invalid cmpxchg success ordering"); 6183 6184 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6185 6186 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6187 return Err; 6188 6189 const AtomicOrdering FailureOrdering = 6190 getDecodedOrdering(Record[OpNum + 3]); 6191 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6192 return error("Invalid cmpxchg failure ordering"); 6193 6194 const bool IsWeak = Record[OpNum + 4]; 6195 6196 MaybeAlign Alignment; 6197 6198 if (NumRecords == (OpNum + 6)) { 6199 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6200 return Err; 6201 } 6202 if (!Alignment) 6203 Alignment = 6204 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6205 6206 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6207 FailureOrdering, SSID); 6208 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6209 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6210 6211 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6212 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6213 6214 InstructionList.push_back(I); 6215 break; 6216 } 6217 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6218 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6219 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6220 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6221 const size_t NumRecords = Record.size(); 6222 unsigned OpNum = 0; 6223 6224 Value *Ptr = nullptr; 6225 unsigned PtrTypeID; 6226 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6227 return error("Invalid record"); 6228 6229 if (!isa<PointerType>(Ptr->getType())) 6230 return error("Invalid record"); 6231 6232 Value *Val = nullptr; 6233 unsigned ValTypeID = InvalidTypeID; 6234 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6235 ValTypeID = getContainedTypeID(PtrTypeID); 6236 if (popValue(Record, OpNum, NextValueNo, 6237 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6238 return error("Invalid record"); 6239 } else { 6240 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6241 return error("Invalid record"); 6242 } 6243 6244 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6245 return error("Invalid record"); 6246 6247 const AtomicRMWInst::BinOp Operation = 6248 getDecodedRMWOperation(Record[OpNum]); 6249 if (Operation < AtomicRMWInst::FIRST_BINOP || 6250 Operation > AtomicRMWInst::LAST_BINOP) 6251 return error("Invalid record"); 6252 6253 const bool IsVol = Record[OpNum + 1]; 6254 6255 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6256 if (Ordering == AtomicOrdering::NotAtomic || 6257 Ordering == AtomicOrdering::Unordered) 6258 return error("Invalid record"); 6259 6260 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6261 6262 MaybeAlign Alignment; 6263 6264 if (NumRecords == (OpNum + 5)) { 6265 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6266 return Err; 6267 } 6268 6269 if (!Alignment) 6270 Alignment = 6271 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6272 6273 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6274 ResTypeID = ValTypeID; 6275 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6276 6277 InstructionList.push_back(I); 6278 break; 6279 } 6280 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6281 if (2 != Record.size()) 6282 return error("Invalid record"); 6283 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6284 if (Ordering == AtomicOrdering::NotAtomic || 6285 Ordering == AtomicOrdering::Unordered || 6286 Ordering == AtomicOrdering::Monotonic) 6287 return error("Invalid record"); 6288 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6289 I = new FenceInst(Context, Ordering, SSID); 6290 InstructionList.push_back(I); 6291 break; 6292 } 6293 case bitc::FUNC_CODE_INST_CALL: { 6294 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6295 if (Record.size() < 3) 6296 return error("Invalid record"); 6297 6298 unsigned OpNum = 0; 6299 AttributeList PAL = getAttributes(Record[OpNum++]); 6300 unsigned CCInfo = Record[OpNum++]; 6301 6302 FastMathFlags FMF; 6303 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6304 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6305 if (!FMF.any()) 6306 return error("Fast math flags indicator set for call with no FMF"); 6307 } 6308 6309 unsigned FTyID = InvalidTypeID; 6310 FunctionType *FTy = nullptr; 6311 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6312 FTyID = Record[OpNum++]; 6313 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6314 if (!FTy) 6315 return error("Explicit call type is not a function type"); 6316 } 6317 6318 Value *Callee; 6319 unsigned CalleeTypeID; 6320 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6321 CurBB)) 6322 return error("Invalid record"); 6323 6324 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6325 if (!OpTy) 6326 return error("Callee is not a pointer type"); 6327 if (!FTy) { 6328 FTyID = getContainedTypeID(CalleeTypeID); 6329 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6330 if (!FTy) 6331 return error("Callee is not of pointer to function type"); 6332 } 6333 if (Record.size() < FTy->getNumParams() + OpNum) 6334 return error("Insufficient operands to call"); 6335 6336 SmallVector<Value*, 16> Args; 6337 SmallVector<unsigned, 16> ArgTyIDs; 6338 // Read the fixed params. 6339 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6340 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6341 if (FTy->getParamType(i)->isLabelTy()) 6342 Args.push_back(getBasicBlock(Record[OpNum])); 6343 else 6344 Args.push_back(getValue(Record, OpNum, NextValueNo, 6345 FTy->getParamType(i), ArgTyID, CurBB)); 6346 ArgTyIDs.push_back(ArgTyID); 6347 if (!Args.back()) 6348 return error("Invalid record"); 6349 } 6350 6351 // Read type/value pairs for varargs params. 6352 if (!FTy->isVarArg()) { 6353 if (OpNum != Record.size()) 6354 return error("Invalid record"); 6355 } else { 6356 while (OpNum != Record.size()) { 6357 Value *Op; 6358 unsigned OpTypeID; 6359 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6360 return error("Invalid record"); 6361 Args.push_back(Op); 6362 ArgTyIDs.push_back(OpTypeID); 6363 } 6364 } 6365 6366 // Upgrade the bundles if needed. 6367 if (!OperandBundles.empty()) 6368 UpgradeOperandBundles(OperandBundles); 6369 6370 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6371 ResTypeID = getContainedTypeID(FTyID); 6372 OperandBundles.clear(); 6373 InstructionList.push_back(I); 6374 cast<CallInst>(I)->setCallingConv( 6375 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6376 CallInst::TailCallKind TCK = CallInst::TCK_None; 6377 if (CCInfo & (1 << bitc::CALL_TAIL)) 6378 TCK = CallInst::TCK_Tail; 6379 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6380 TCK = CallInst::TCK_MustTail; 6381 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6382 TCK = CallInst::TCK_NoTail; 6383 cast<CallInst>(I)->setTailCallKind(TCK); 6384 cast<CallInst>(I)->setAttributes(PAL); 6385 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6386 I->deleteValue(); 6387 return Err; 6388 } 6389 if (FMF.any()) { 6390 if (!isa<FPMathOperator>(I)) 6391 return error("Fast-math-flags specified for call without " 6392 "floating-point scalar or vector return type"); 6393 I->setFastMathFlags(FMF); 6394 } 6395 break; 6396 } 6397 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6398 if (Record.size() < 3) 6399 return error("Invalid record"); 6400 unsigned OpTyID = Record[0]; 6401 Type *OpTy = getTypeByID(OpTyID); 6402 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6403 ResTypeID = Record[2]; 6404 Type *ResTy = getTypeByID(ResTypeID); 6405 if (!OpTy || !Op || !ResTy) 6406 return error("Invalid record"); 6407 I = new VAArgInst(Op, ResTy); 6408 InstructionList.push_back(I); 6409 break; 6410 } 6411 6412 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6413 // A call or an invoke can be optionally prefixed with some variable 6414 // number of operand bundle blocks. These blocks are read into 6415 // OperandBundles and consumed at the next call or invoke instruction. 6416 6417 if (Record.empty() || Record[0] >= BundleTags.size()) 6418 return error("Invalid record"); 6419 6420 std::vector<Value *> Inputs; 6421 6422 unsigned OpNum = 1; 6423 while (OpNum != Record.size()) { 6424 Value *Op; 6425 unsigned OpTypeID; 6426 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6427 return error("Invalid record"); 6428 Inputs.push_back(Op); 6429 } 6430 6431 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6432 continue; 6433 } 6434 6435 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6436 unsigned OpNum = 0; 6437 Value *Op = nullptr; 6438 unsigned OpTypeID; 6439 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6440 return error("Invalid record"); 6441 if (OpNum != Record.size()) 6442 return error("Invalid record"); 6443 6444 I = new FreezeInst(Op); 6445 ResTypeID = OpTypeID; 6446 InstructionList.push_back(I); 6447 break; 6448 } 6449 } 6450 6451 // Add instruction to end of current BB. If there is no current BB, reject 6452 // this file. 6453 if (!CurBB) { 6454 I->deleteValue(); 6455 return error("Invalid instruction with no BB"); 6456 } 6457 if (!OperandBundles.empty()) { 6458 I->deleteValue(); 6459 return error("Operand bundles found with no consumer"); 6460 } 6461 I->insertInto(CurBB, CurBB->end()); 6462 6463 // If this was a terminator instruction, move to the next block. 6464 if (I->isTerminator()) { 6465 ++CurBBNo; 6466 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6467 } 6468 6469 // Non-void values get registered in the value table for future use. 6470 if (!I->getType()->isVoidTy()) { 6471 assert(I->getType() == getTypeByID(ResTypeID) && 6472 "Incorrect result type ID"); 6473 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6474 return Err; 6475 } 6476 } 6477 6478 OutOfRecordLoop: 6479 6480 if (!OperandBundles.empty()) 6481 return error("Operand bundles found with no consumer"); 6482 6483 // Check the function list for unresolved values. 6484 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6485 if (!A->getParent()) { 6486 // We found at least one unresolved value. Nuke them all to avoid leaks. 6487 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6488 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6489 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6490 delete A; 6491 } 6492 } 6493 return error("Never resolved value found in function"); 6494 } 6495 } 6496 6497 // Unexpected unresolved metadata about to be dropped. 6498 if (MDLoader->hasFwdRefs()) 6499 return error("Invalid function metadata: outgoing forward refs"); 6500 6501 if (PhiConstExprBB) 6502 PhiConstExprBB->eraseFromParent(); 6503 6504 for (const auto &Pair : ConstExprEdgeBBs) { 6505 BasicBlock *From = Pair.first.first; 6506 BasicBlock *To = Pair.first.second; 6507 BasicBlock *EdgeBB = Pair.second; 6508 BranchInst::Create(To, EdgeBB); 6509 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6510 To->replacePhiUsesWith(From, EdgeBB); 6511 EdgeBB->moveBefore(To); 6512 } 6513 6514 // Trim the value list down to the size it was before we parsed this function. 6515 ValueList.shrinkTo(ModuleValueListSize); 6516 MDLoader->shrinkTo(ModuleMDLoaderSize); 6517 std::vector<BasicBlock*>().swap(FunctionBBs); 6518 return Error::success(); 6519 } 6520 6521 /// Find the function body in the bitcode stream 6522 Error BitcodeReader::findFunctionInStream( 6523 Function *F, 6524 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6525 while (DeferredFunctionInfoIterator->second == 0) { 6526 // This is the fallback handling for the old format bitcode that 6527 // didn't contain the function index in the VST, or when we have 6528 // an anonymous function which would not have a VST entry. 6529 // Assert that we have one of those two cases. 6530 assert(VSTOffset == 0 || !F->hasName()); 6531 // Parse the next body in the stream and set its position in the 6532 // DeferredFunctionInfo map. 6533 if (Error Err = rememberAndSkipFunctionBodies()) 6534 return Err; 6535 } 6536 return Error::success(); 6537 } 6538 6539 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6540 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6541 return SyncScope::ID(Val); 6542 if (Val >= SSIDs.size()) 6543 return SyncScope::System; // Map unknown synchronization scopes to system. 6544 return SSIDs[Val]; 6545 } 6546 6547 //===----------------------------------------------------------------------===// 6548 // GVMaterializer implementation 6549 //===----------------------------------------------------------------------===// 6550 6551 Error BitcodeReader::materialize(GlobalValue *GV) { 6552 Function *F = dyn_cast<Function>(GV); 6553 // If it's not a function or is already material, ignore the request. 6554 if (!F || !F->isMaterializable()) 6555 return Error::success(); 6556 6557 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6558 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6559 // If its position is recorded as 0, its body is somewhere in the stream 6560 // but we haven't seen it yet. 6561 if (DFII->second == 0) 6562 if (Error Err = findFunctionInStream(F, DFII)) 6563 return Err; 6564 6565 // Materialize metadata before parsing any function bodies. 6566 if (Error Err = materializeMetadata()) 6567 return Err; 6568 6569 // Move the bit stream to the saved position of the deferred function body. 6570 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6571 return JumpFailed; 6572 if (Error Err = parseFunctionBody(F)) 6573 return Err; 6574 F->setIsMaterializable(false); 6575 6576 if (StripDebugInfo) 6577 stripDebugInfo(*F); 6578 6579 // Upgrade any old intrinsic calls in the function. 6580 for (auto &I : UpgradedIntrinsics) { 6581 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6582 if (CallInst *CI = dyn_cast<CallInst>(U)) 6583 UpgradeIntrinsicCall(CI, I.second); 6584 } 6585 6586 // Finish fn->subprogram upgrade for materialized functions. 6587 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6588 F->setSubprogram(SP); 6589 6590 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6591 if (!MDLoader->isStrippingTBAA()) { 6592 for (auto &I : instructions(F)) { 6593 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6594 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6595 continue; 6596 MDLoader->setStripTBAA(true); 6597 stripTBAA(F->getParent()); 6598 } 6599 } 6600 6601 for (auto &I : instructions(F)) { 6602 // "Upgrade" older incorrect branch weights by dropping them. 6603 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6604 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6605 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6606 StringRef ProfName = MDS->getString(); 6607 // Check consistency of !prof branch_weights metadata. 6608 if (!ProfName.equals("branch_weights")) 6609 continue; 6610 unsigned ExpectedNumOperands = 0; 6611 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6612 ExpectedNumOperands = BI->getNumSuccessors(); 6613 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6614 ExpectedNumOperands = SI->getNumSuccessors(); 6615 else if (isa<CallInst>(&I)) 6616 ExpectedNumOperands = 1; 6617 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6618 ExpectedNumOperands = IBI->getNumDestinations(); 6619 else if (isa<SelectInst>(&I)) 6620 ExpectedNumOperands = 2; 6621 else 6622 continue; // ignore and continue. 6623 6624 // If branch weight doesn't match, just strip branch weight. 6625 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6626 I.setMetadata(LLVMContext::MD_prof, nullptr); 6627 } 6628 } 6629 6630 // Remove incompatible attributes on function calls. 6631 if (auto *CI = dyn_cast<CallBase>(&I)) { 6632 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6633 CI->getFunctionType()->getReturnType())); 6634 6635 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6636 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6637 CI->getArgOperand(ArgNo)->getType())); 6638 } 6639 } 6640 6641 // Look for functions that rely on old function attribute behavior. 6642 UpgradeFunctionAttributes(*F); 6643 6644 // Bring in any functions that this function forward-referenced via 6645 // blockaddresses. 6646 return materializeForwardReferencedFunctions(); 6647 } 6648 6649 Error BitcodeReader::materializeModule() { 6650 if (Error Err = materializeMetadata()) 6651 return Err; 6652 6653 // Promise to materialize all forward references. 6654 WillMaterializeAllForwardRefs = true; 6655 6656 // Iterate over the module, deserializing any functions that are still on 6657 // disk. 6658 for (Function &F : *TheModule) { 6659 if (Error Err = materialize(&F)) 6660 return Err; 6661 } 6662 // At this point, if there are any function bodies, parse the rest of 6663 // the bits in the module past the last function block we have recorded 6664 // through either lazy scanning or the VST. 6665 if (LastFunctionBlockBit || NextUnreadBit) 6666 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6667 ? LastFunctionBlockBit 6668 : NextUnreadBit)) 6669 return Err; 6670 6671 // Check that all block address forward references got resolved (as we 6672 // promised above). 6673 if (!BasicBlockFwdRefs.empty()) 6674 return error("Never resolved function from blockaddress"); 6675 6676 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6677 // delete the old functions to clean up. We can't do this unless the entire 6678 // module is materialized because there could always be another function body 6679 // with calls to the old function. 6680 for (auto &I : UpgradedIntrinsics) { 6681 for (auto *U : I.first->users()) { 6682 if (CallInst *CI = dyn_cast<CallInst>(U)) 6683 UpgradeIntrinsicCall(CI, I.second); 6684 } 6685 if (!I.first->use_empty()) 6686 I.first->replaceAllUsesWith(I.second); 6687 I.first->eraseFromParent(); 6688 } 6689 UpgradedIntrinsics.clear(); 6690 6691 UpgradeDebugInfo(*TheModule); 6692 6693 UpgradeModuleFlags(*TheModule); 6694 6695 UpgradeARCRuntime(*TheModule); 6696 6697 return Error::success(); 6698 } 6699 6700 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6701 return IdentifiedStructTypes; 6702 } 6703 6704 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6705 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6706 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6707 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6708 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6709 6710 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6711 TheIndex.addModule(ModulePath); 6712 } 6713 6714 ModuleSummaryIndex::ModuleInfo * 6715 ModuleSummaryIndexBitcodeReader::getThisModule() { 6716 return TheIndex.getModule(ModulePath); 6717 } 6718 6719 template <bool AllowNullValueInfo> 6720 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6721 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6722 auto VGI = ValueIdToValueInfoMap[ValueId]; 6723 // We can have a null value info for memprof callsite info records in 6724 // distributed ThinLTO index files when the callee function summary is not 6725 // included in the index. The bitcode writer records 0 in that case, 6726 // and the caller of this helper will set AllowNullValueInfo to true. 6727 assert(AllowNullValueInfo || std::get<0>(VGI)); 6728 return VGI; 6729 } 6730 6731 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6732 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6733 StringRef SourceFileName) { 6734 std::string GlobalId = 6735 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6736 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6737 auto OriginalNameID = ValueGUID; 6738 if (GlobalValue::isLocalLinkage(Linkage)) 6739 OriginalNameID = GlobalValue::getGUID(ValueName); 6740 if (PrintSummaryGUIDs) 6741 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6742 << ValueName << "\n"; 6743 6744 // UseStrtab is false for legacy summary formats and value names are 6745 // created on stack. In that case we save the name in a string saver in 6746 // the index so that the value name can be recorded. 6747 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6748 TheIndex.getOrInsertValueInfo( 6749 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6750 OriginalNameID, ValueGUID); 6751 } 6752 6753 // Specialized value symbol table parser used when reading module index 6754 // blocks where we don't actually create global values. The parsed information 6755 // is saved in the bitcode reader for use when later parsing summaries. 6756 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6757 uint64_t Offset, 6758 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6759 // With a strtab the VST is not required to parse the summary. 6760 if (UseStrtab) 6761 return Error::success(); 6762 6763 assert(Offset > 0 && "Expected non-zero VST offset"); 6764 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6765 if (!MaybeCurrentBit) 6766 return MaybeCurrentBit.takeError(); 6767 uint64_t CurrentBit = MaybeCurrentBit.get(); 6768 6769 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6770 return Err; 6771 6772 SmallVector<uint64_t, 64> Record; 6773 6774 // Read all the records for this value table. 6775 SmallString<128> ValueName; 6776 6777 while (true) { 6778 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6779 if (!MaybeEntry) 6780 return MaybeEntry.takeError(); 6781 BitstreamEntry Entry = MaybeEntry.get(); 6782 6783 switch (Entry.Kind) { 6784 case BitstreamEntry::SubBlock: // Handled for us already. 6785 case BitstreamEntry::Error: 6786 return error("Malformed block"); 6787 case BitstreamEntry::EndBlock: 6788 // Done parsing VST, jump back to wherever we came from. 6789 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6790 return JumpFailed; 6791 return Error::success(); 6792 case BitstreamEntry::Record: 6793 // The interesting case. 6794 break; 6795 } 6796 6797 // Read a record. 6798 Record.clear(); 6799 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6800 if (!MaybeRecord) 6801 return MaybeRecord.takeError(); 6802 switch (MaybeRecord.get()) { 6803 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6804 break; 6805 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6806 if (convertToString(Record, 1, ValueName)) 6807 return error("Invalid record"); 6808 unsigned ValueID = Record[0]; 6809 assert(!SourceFileName.empty()); 6810 auto VLI = ValueIdToLinkageMap.find(ValueID); 6811 assert(VLI != ValueIdToLinkageMap.end() && 6812 "No linkage found for VST entry?"); 6813 auto Linkage = VLI->second; 6814 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6815 ValueName.clear(); 6816 break; 6817 } 6818 case bitc::VST_CODE_FNENTRY: { 6819 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6820 if (convertToString(Record, 2, ValueName)) 6821 return error("Invalid record"); 6822 unsigned ValueID = Record[0]; 6823 assert(!SourceFileName.empty()); 6824 auto VLI = ValueIdToLinkageMap.find(ValueID); 6825 assert(VLI != ValueIdToLinkageMap.end() && 6826 "No linkage found for VST entry?"); 6827 auto Linkage = VLI->second; 6828 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6829 ValueName.clear(); 6830 break; 6831 } 6832 case bitc::VST_CODE_COMBINED_ENTRY: { 6833 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6834 unsigned ValueID = Record[0]; 6835 GlobalValue::GUID RefGUID = Record[1]; 6836 // The "original name", which is the second value of the pair will be 6837 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6838 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6839 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6840 break; 6841 } 6842 } 6843 } 6844 } 6845 6846 // Parse just the blocks needed for building the index out of the module. 6847 // At the end of this routine the module Index is populated with a map 6848 // from global value id to GlobalValueSummary objects. 6849 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6850 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6851 return Err; 6852 6853 SmallVector<uint64_t, 64> Record; 6854 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6855 unsigned ValueId = 0; 6856 6857 // Read the index for this module. 6858 while (true) { 6859 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6860 if (!MaybeEntry) 6861 return MaybeEntry.takeError(); 6862 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6863 6864 switch (Entry.Kind) { 6865 case BitstreamEntry::Error: 6866 return error("Malformed block"); 6867 case BitstreamEntry::EndBlock: 6868 return Error::success(); 6869 6870 case BitstreamEntry::SubBlock: 6871 switch (Entry.ID) { 6872 default: // Skip unknown content. 6873 if (Error Err = Stream.SkipBlock()) 6874 return Err; 6875 break; 6876 case bitc::BLOCKINFO_BLOCK_ID: 6877 // Need to parse these to get abbrev ids (e.g. for VST) 6878 if (Error Err = readBlockInfo()) 6879 return Err; 6880 break; 6881 case bitc::VALUE_SYMTAB_BLOCK_ID: 6882 // Should have been parsed earlier via VSTOffset, unless there 6883 // is no summary section. 6884 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6885 !SeenGlobalValSummary) && 6886 "Expected early VST parse via VSTOffset record"); 6887 if (Error Err = Stream.SkipBlock()) 6888 return Err; 6889 break; 6890 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6891 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6892 // Add the module if it is a per-module index (has a source file name). 6893 if (!SourceFileName.empty()) 6894 addThisModule(); 6895 assert(!SeenValueSymbolTable && 6896 "Already read VST when parsing summary block?"); 6897 // We might not have a VST if there were no values in the 6898 // summary. An empty summary block generated when we are 6899 // performing ThinLTO compiles so we don't later invoke 6900 // the regular LTO process on them. 6901 if (VSTOffset > 0) { 6902 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6903 return Err; 6904 SeenValueSymbolTable = true; 6905 } 6906 SeenGlobalValSummary = true; 6907 if (Error Err = parseEntireSummary(Entry.ID)) 6908 return Err; 6909 break; 6910 case bitc::MODULE_STRTAB_BLOCK_ID: 6911 if (Error Err = parseModuleStringTable()) 6912 return Err; 6913 break; 6914 } 6915 continue; 6916 6917 case BitstreamEntry::Record: { 6918 Record.clear(); 6919 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6920 if (!MaybeBitCode) 6921 return MaybeBitCode.takeError(); 6922 switch (MaybeBitCode.get()) { 6923 default: 6924 break; // Default behavior, ignore unknown content. 6925 case bitc::MODULE_CODE_VERSION: { 6926 if (Error Err = parseVersionRecord(Record).takeError()) 6927 return Err; 6928 break; 6929 } 6930 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6931 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6932 SmallString<128> ValueName; 6933 if (convertToString(Record, 0, ValueName)) 6934 return error("Invalid record"); 6935 SourceFileName = ValueName.c_str(); 6936 break; 6937 } 6938 /// MODULE_CODE_HASH: [5*i32] 6939 case bitc::MODULE_CODE_HASH: { 6940 if (Record.size() != 5) 6941 return error("Invalid hash length " + Twine(Record.size()).str()); 6942 auto &Hash = getThisModule()->second; 6943 int Pos = 0; 6944 for (auto &Val : Record) { 6945 assert(!(Val >> 32) && "Unexpected high bits set"); 6946 Hash[Pos++] = Val; 6947 } 6948 break; 6949 } 6950 /// MODULE_CODE_VSTOFFSET: [offset] 6951 case bitc::MODULE_CODE_VSTOFFSET: 6952 if (Record.empty()) 6953 return error("Invalid record"); 6954 // Note that we subtract 1 here because the offset is relative to one 6955 // word before the start of the identification or module block, which 6956 // was historically always the start of the regular bitcode header. 6957 VSTOffset = Record[0] - 1; 6958 break; 6959 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6960 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6961 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6962 // v2: [strtab offset, strtab size, v1] 6963 case bitc::MODULE_CODE_GLOBALVAR: 6964 case bitc::MODULE_CODE_FUNCTION: 6965 case bitc::MODULE_CODE_ALIAS: { 6966 StringRef Name; 6967 ArrayRef<uint64_t> GVRecord; 6968 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6969 if (GVRecord.size() <= 3) 6970 return error("Invalid record"); 6971 uint64_t RawLinkage = GVRecord[3]; 6972 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6973 if (!UseStrtab) { 6974 ValueIdToLinkageMap[ValueId++] = Linkage; 6975 break; 6976 } 6977 6978 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6979 break; 6980 } 6981 } 6982 } 6983 continue; 6984 } 6985 } 6986 } 6987 6988 std::vector<ValueInfo> 6989 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6990 std::vector<ValueInfo> Ret; 6991 Ret.reserve(Record.size()); 6992 for (uint64_t RefValueId : Record) 6993 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 6994 return Ret; 6995 } 6996 6997 std::vector<FunctionSummary::EdgeTy> 6998 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6999 bool IsOldProfileFormat, 7000 bool HasProfile, bool HasRelBF) { 7001 std::vector<FunctionSummary::EdgeTy> Ret; 7002 Ret.reserve(Record.size()); 7003 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7004 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7005 uint64_t RelBF = 0; 7006 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7007 if (IsOldProfileFormat) { 7008 I += 1; // Skip old callsitecount field 7009 if (HasProfile) 7010 I += 1; // Skip old profilecount field 7011 } else if (HasProfile) 7012 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7013 else if (HasRelBF) 7014 RelBF = Record[++I]; 7015 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7016 } 7017 return Ret; 7018 } 7019 7020 static void 7021 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7022 WholeProgramDevirtResolution &Wpd) { 7023 uint64_t ArgNum = Record[Slot++]; 7024 WholeProgramDevirtResolution::ByArg &B = 7025 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7026 Slot += ArgNum; 7027 7028 B.TheKind = 7029 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7030 B.Info = Record[Slot++]; 7031 B.Byte = Record[Slot++]; 7032 B.Bit = Record[Slot++]; 7033 } 7034 7035 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7036 StringRef Strtab, size_t &Slot, 7037 TypeIdSummary &TypeId) { 7038 uint64_t Id = Record[Slot++]; 7039 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7040 7041 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7042 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7043 static_cast<size_t>(Record[Slot + 1])}; 7044 Slot += 2; 7045 7046 uint64_t ResByArgNum = Record[Slot++]; 7047 for (uint64_t I = 0; I != ResByArgNum; ++I) 7048 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7049 } 7050 7051 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7052 StringRef Strtab, 7053 ModuleSummaryIndex &TheIndex) { 7054 size_t Slot = 0; 7055 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7056 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7057 Slot += 2; 7058 7059 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7060 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7061 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7062 TypeId.TTRes.SizeM1 = Record[Slot++]; 7063 TypeId.TTRes.BitMask = Record[Slot++]; 7064 TypeId.TTRes.InlineBits = Record[Slot++]; 7065 7066 while (Slot < Record.size()) 7067 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7068 } 7069 7070 std::vector<FunctionSummary::ParamAccess> 7071 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7072 auto ReadRange = [&]() { 7073 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7074 BitcodeReader::decodeSignRotatedValue(Record.front())); 7075 Record = Record.drop_front(); 7076 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7077 BitcodeReader::decodeSignRotatedValue(Record.front())); 7078 Record = Record.drop_front(); 7079 ConstantRange Range{Lower, Upper}; 7080 assert(!Range.isFullSet()); 7081 assert(!Range.isUpperSignWrapped()); 7082 return Range; 7083 }; 7084 7085 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7086 while (!Record.empty()) { 7087 PendingParamAccesses.emplace_back(); 7088 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7089 ParamAccess.ParamNo = Record.front(); 7090 Record = Record.drop_front(); 7091 ParamAccess.Use = ReadRange(); 7092 ParamAccess.Calls.resize(Record.front()); 7093 Record = Record.drop_front(); 7094 for (auto &Call : ParamAccess.Calls) { 7095 Call.ParamNo = Record.front(); 7096 Record = Record.drop_front(); 7097 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7098 Record = Record.drop_front(); 7099 Call.Offsets = ReadRange(); 7100 } 7101 } 7102 return PendingParamAccesses; 7103 } 7104 7105 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7106 ArrayRef<uint64_t> Record, size_t &Slot, 7107 TypeIdCompatibleVtableInfo &TypeId) { 7108 uint64_t Offset = Record[Slot++]; 7109 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7110 TypeId.push_back({Offset, Callee}); 7111 } 7112 7113 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7114 ArrayRef<uint64_t> Record) { 7115 size_t Slot = 0; 7116 TypeIdCompatibleVtableInfo &TypeId = 7117 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7118 {Strtab.data() + Record[Slot], 7119 static_cast<size_t>(Record[Slot + 1])}); 7120 Slot += 2; 7121 7122 while (Slot < Record.size()) 7123 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7124 } 7125 7126 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7127 unsigned WOCnt) { 7128 // Readonly and writeonly refs are in the end of the refs list. 7129 assert(ROCnt + WOCnt <= Refs.size()); 7130 unsigned FirstWORef = Refs.size() - WOCnt; 7131 unsigned RefNo = FirstWORef - ROCnt; 7132 for (; RefNo < FirstWORef; ++RefNo) 7133 Refs[RefNo].setReadOnly(); 7134 for (; RefNo < Refs.size(); ++RefNo) 7135 Refs[RefNo].setWriteOnly(); 7136 } 7137 7138 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7139 // objects in the index. 7140 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7141 if (Error Err = Stream.EnterSubBlock(ID)) 7142 return Err; 7143 SmallVector<uint64_t, 64> Record; 7144 7145 // Parse version 7146 { 7147 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7148 if (!MaybeEntry) 7149 return MaybeEntry.takeError(); 7150 BitstreamEntry Entry = MaybeEntry.get(); 7151 7152 if (Entry.Kind != BitstreamEntry::Record) 7153 return error("Invalid Summary Block: record for version expected"); 7154 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7155 if (!MaybeRecord) 7156 return MaybeRecord.takeError(); 7157 if (MaybeRecord.get() != bitc::FS_VERSION) 7158 return error("Invalid Summary Block: version expected"); 7159 } 7160 const uint64_t Version = Record[0]; 7161 const bool IsOldProfileFormat = Version == 1; 7162 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7163 return error("Invalid summary version " + Twine(Version) + 7164 ". Version should be in the range [1-" + 7165 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7166 "]."); 7167 Record.clear(); 7168 7169 // Keep around the last seen summary to be used when we see an optional 7170 // "OriginalName" attachement. 7171 GlobalValueSummary *LastSeenSummary = nullptr; 7172 GlobalValue::GUID LastSeenGUID = 0; 7173 7174 // We can expect to see any number of type ID information records before 7175 // each function summary records; these variables store the information 7176 // collected so far so that it can be used to create the summary object. 7177 std::vector<GlobalValue::GUID> PendingTypeTests; 7178 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7179 PendingTypeCheckedLoadVCalls; 7180 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7181 PendingTypeCheckedLoadConstVCalls; 7182 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7183 7184 std::vector<CallsiteInfo> PendingCallsites; 7185 std::vector<AllocInfo> PendingAllocs; 7186 7187 while (true) { 7188 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7189 if (!MaybeEntry) 7190 return MaybeEntry.takeError(); 7191 BitstreamEntry Entry = MaybeEntry.get(); 7192 7193 switch (Entry.Kind) { 7194 case BitstreamEntry::SubBlock: // Handled for us already. 7195 case BitstreamEntry::Error: 7196 return error("Malformed block"); 7197 case BitstreamEntry::EndBlock: 7198 return Error::success(); 7199 case BitstreamEntry::Record: 7200 // The interesting case. 7201 break; 7202 } 7203 7204 // Read a record. The record format depends on whether this 7205 // is a per-module index or a combined index file. In the per-module 7206 // case the records contain the associated value's ID for correlation 7207 // with VST entries. In the combined index the correlation is done 7208 // via the bitcode offset of the summary records (which were saved 7209 // in the combined index VST entries). The records also contain 7210 // information used for ThinLTO renaming and importing. 7211 Record.clear(); 7212 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7213 if (!MaybeBitCode) 7214 return MaybeBitCode.takeError(); 7215 switch (unsigned BitCode = MaybeBitCode.get()) { 7216 default: // Default behavior: ignore. 7217 break; 7218 case bitc::FS_FLAGS: { // [flags] 7219 TheIndex.setFlags(Record[0]); 7220 break; 7221 } 7222 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7223 uint64_t ValueID = Record[0]; 7224 GlobalValue::GUID RefGUID = Record[1]; 7225 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7226 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7227 break; 7228 } 7229 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7230 // numrefs x valueid, n x (valueid)] 7231 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7232 // numrefs x valueid, 7233 // n x (valueid, hotness)] 7234 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7235 // numrefs x valueid, 7236 // n x (valueid, relblockfreq)] 7237 case bitc::FS_PERMODULE: 7238 case bitc::FS_PERMODULE_RELBF: 7239 case bitc::FS_PERMODULE_PROFILE: { 7240 unsigned ValueID = Record[0]; 7241 uint64_t RawFlags = Record[1]; 7242 unsigned InstCount = Record[2]; 7243 uint64_t RawFunFlags = 0; 7244 unsigned NumRefs = Record[3]; 7245 unsigned NumRORefs = 0, NumWORefs = 0; 7246 int RefListStartIndex = 4; 7247 if (Version >= 4) { 7248 RawFunFlags = Record[3]; 7249 NumRefs = Record[4]; 7250 RefListStartIndex = 5; 7251 if (Version >= 5) { 7252 NumRORefs = Record[5]; 7253 RefListStartIndex = 6; 7254 if (Version >= 7) { 7255 NumWORefs = Record[6]; 7256 RefListStartIndex = 7; 7257 } 7258 } 7259 } 7260 7261 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7262 // The module path string ref set in the summary must be owned by the 7263 // index's module string table. Since we don't have a module path 7264 // string table section in the per-module index, we create a single 7265 // module path string table entry with an empty (0) ID to take 7266 // ownership. 7267 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7268 assert(Record.size() >= RefListStartIndex + NumRefs && 7269 "Record size inconsistent with number of references"); 7270 std::vector<ValueInfo> Refs = makeRefList( 7271 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7272 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7273 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7274 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7275 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7276 IsOldProfileFormat, HasProfile, HasRelBF); 7277 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7278 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7279 // In order to save memory, only record the memprof summaries if this is 7280 // the prevailing copy of a symbol. The linker doesn't resolve local 7281 // linkage values so don't check whether those are prevailing. 7282 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7283 if (IsPrevailing && 7284 !GlobalValue::isLocalLinkage(LT) && 7285 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7286 PendingCallsites.clear(); 7287 PendingAllocs.clear(); 7288 } 7289 auto FS = std::make_unique<FunctionSummary>( 7290 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7291 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7292 std::move(PendingTypeTestAssumeVCalls), 7293 std::move(PendingTypeCheckedLoadVCalls), 7294 std::move(PendingTypeTestAssumeConstVCalls), 7295 std::move(PendingTypeCheckedLoadConstVCalls), 7296 std::move(PendingParamAccesses), std::move(PendingCallsites), 7297 std::move(PendingAllocs)); 7298 FS->setModulePath(getThisModule()->first()); 7299 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7300 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7301 std::move(FS)); 7302 break; 7303 } 7304 // FS_ALIAS: [valueid, flags, valueid] 7305 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7306 // they expect all aliasee summaries to be available. 7307 case bitc::FS_ALIAS: { 7308 unsigned ValueID = Record[0]; 7309 uint64_t RawFlags = Record[1]; 7310 unsigned AliaseeID = Record[2]; 7311 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7312 auto AS = std::make_unique<AliasSummary>(Flags); 7313 // The module path string ref set in the summary must be owned by the 7314 // index's module string table. Since we don't have a module path 7315 // string table section in the per-module index, we create a single 7316 // module path string table entry with an empty (0) ID to take 7317 // ownership. 7318 AS->setModulePath(getThisModule()->first()); 7319 7320 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7321 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7322 if (!AliaseeInModule) 7323 return error("Alias expects aliasee summary to be parsed"); 7324 AS->setAliasee(AliaseeVI, AliaseeInModule); 7325 7326 auto GUID = getValueInfoFromValueId(ValueID); 7327 AS->setOriginalName(std::get<1>(GUID)); 7328 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7329 break; 7330 } 7331 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7332 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7333 unsigned ValueID = Record[0]; 7334 uint64_t RawFlags = Record[1]; 7335 unsigned RefArrayStart = 2; 7336 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7337 /* WriteOnly */ false, 7338 /* Constant */ false, 7339 GlobalObject::VCallVisibilityPublic); 7340 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7341 if (Version >= 5) { 7342 GVF = getDecodedGVarFlags(Record[2]); 7343 RefArrayStart = 3; 7344 } 7345 std::vector<ValueInfo> Refs = 7346 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7347 auto FS = 7348 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7349 FS->setModulePath(getThisModule()->first()); 7350 auto GUID = getValueInfoFromValueId(ValueID); 7351 FS->setOriginalName(std::get<1>(GUID)); 7352 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7353 break; 7354 } 7355 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7356 // numrefs, numrefs x valueid, 7357 // n x (valueid, offset)] 7358 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7359 unsigned ValueID = Record[0]; 7360 uint64_t RawFlags = Record[1]; 7361 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7362 unsigned NumRefs = Record[3]; 7363 unsigned RefListStartIndex = 4; 7364 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7365 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7366 std::vector<ValueInfo> Refs = makeRefList( 7367 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7368 VTableFuncList VTableFuncs; 7369 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7370 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7371 uint64_t Offset = Record[++I]; 7372 VTableFuncs.push_back({Callee, Offset}); 7373 } 7374 auto VS = 7375 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7376 VS->setModulePath(getThisModule()->first()); 7377 VS->setVTableFuncs(VTableFuncs); 7378 auto GUID = getValueInfoFromValueId(ValueID); 7379 VS->setOriginalName(std::get<1>(GUID)); 7380 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7381 break; 7382 } 7383 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7384 // numrefs x valueid, n x (valueid)] 7385 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7386 // numrefs x valueid, n x (valueid, hotness)] 7387 case bitc::FS_COMBINED: 7388 case bitc::FS_COMBINED_PROFILE: { 7389 unsigned ValueID = Record[0]; 7390 uint64_t ModuleId = Record[1]; 7391 uint64_t RawFlags = Record[2]; 7392 unsigned InstCount = Record[3]; 7393 uint64_t RawFunFlags = 0; 7394 uint64_t EntryCount = 0; 7395 unsigned NumRefs = Record[4]; 7396 unsigned NumRORefs = 0, NumWORefs = 0; 7397 int RefListStartIndex = 5; 7398 7399 if (Version >= 4) { 7400 RawFunFlags = Record[4]; 7401 RefListStartIndex = 6; 7402 size_t NumRefsIndex = 5; 7403 if (Version >= 5) { 7404 unsigned NumRORefsOffset = 1; 7405 RefListStartIndex = 7; 7406 if (Version >= 6) { 7407 NumRefsIndex = 6; 7408 EntryCount = Record[5]; 7409 RefListStartIndex = 8; 7410 if (Version >= 7) { 7411 RefListStartIndex = 9; 7412 NumWORefs = Record[8]; 7413 NumRORefsOffset = 2; 7414 } 7415 } 7416 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7417 } 7418 NumRefs = Record[NumRefsIndex]; 7419 } 7420 7421 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7422 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7423 assert(Record.size() >= RefListStartIndex + NumRefs && 7424 "Record size inconsistent with number of references"); 7425 std::vector<ValueInfo> Refs = makeRefList( 7426 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7427 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7428 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7429 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7430 IsOldProfileFormat, HasProfile, false); 7431 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7432 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7433 auto FS = std::make_unique<FunctionSummary>( 7434 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7435 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7436 std::move(PendingTypeTestAssumeVCalls), 7437 std::move(PendingTypeCheckedLoadVCalls), 7438 std::move(PendingTypeTestAssumeConstVCalls), 7439 std::move(PendingTypeCheckedLoadConstVCalls), 7440 std::move(PendingParamAccesses), std::move(PendingCallsites), 7441 std::move(PendingAllocs)); 7442 LastSeenSummary = FS.get(); 7443 LastSeenGUID = VI.getGUID(); 7444 FS->setModulePath(ModuleIdMap[ModuleId]); 7445 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7446 break; 7447 } 7448 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7449 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7450 // they expect all aliasee summaries to be available. 7451 case bitc::FS_COMBINED_ALIAS: { 7452 unsigned ValueID = Record[0]; 7453 uint64_t ModuleId = Record[1]; 7454 uint64_t RawFlags = Record[2]; 7455 unsigned AliaseeValueId = Record[3]; 7456 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7457 auto AS = std::make_unique<AliasSummary>(Flags); 7458 LastSeenSummary = AS.get(); 7459 AS->setModulePath(ModuleIdMap[ModuleId]); 7460 7461 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7462 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7463 AS->setAliasee(AliaseeVI, AliaseeInModule); 7464 7465 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7466 LastSeenGUID = VI.getGUID(); 7467 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7468 break; 7469 } 7470 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7471 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7472 unsigned ValueID = Record[0]; 7473 uint64_t ModuleId = Record[1]; 7474 uint64_t RawFlags = Record[2]; 7475 unsigned RefArrayStart = 3; 7476 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7477 /* WriteOnly */ false, 7478 /* Constant */ false, 7479 GlobalObject::VCallVisibilityPublic); 7480 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7481 if (Version >= 5) { 7482 GVF = getDecodedGVarFlags(Record[3]); 7483 RefArrayStart = 4; 7484 } 7485 std::vector<ValueInfo> Refs = 7486 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7487 auto FS = 7488 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7489 LastSeenSummary = FS.get(); 7490 FS->setModulePath(ModuleIdMap[ModuleId]); 7491 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7492 LastSeenGUID = VI.getGUID(); 7493 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7494 break; 7495 } 7496 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7497 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7498 uint64_t OriginalName = Record[0]; 7499 if (!LastSeenSummary) 7500 return error("Name attachment that does not follow a combined record"); 7501 LastSeenSummary->setOriginalName(OriginalName); 7502 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7503 // Reset the LastSeenSummary 7504 LastSeenSummary = nullptr; 7505 LastSeenGUID = 0; 7506 break; 7507 } 7508 case bitc::FS_TYPE_TESTS: 7509 assert(PendingTypeTests.empty()); 7510 llvm::append_range(PendingTypeTests, Record); 7511 break; 7512 7513 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7514 assert(PendingTypeTestAssumeVCalls.empty()); 7515 for (unsigned I = 0; I != Record.size(); I += 2) 7516 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7517 break; 7518 7519 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7520 assert(PendingTypeCheckedLoadVCalls.empty()); 7521 for (unsigned I = 0; I != Record.size(); I += 2) 7522 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7523 break; 7524 7525 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7526 PendingTypeTestAssumeConstVCalls.push_back( 7527 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7528 break; 7529 7530 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7531 PendingTypeCheckedLoadConstVCalls.push_back( 7532 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7533 break; 7534 7535 case bitc::FS_CFI_FUNCTION_DEFS: { 7536 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7537 for (unsigned I = 0; I != Record.size(); I += 2) 7538 CfiFunctionDefs.insert( 7539 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7540 break; 7541 } 7542 7543 case bitc::FS_CFI_FUNCTION_DECLS: { 7544 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7545 for (unsigned I = 0; I != Record.size(); I += 2) 7546 CfiFunctionDecls.insert( 7547 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7548 break; 7549 } 7550 7551 case bitc::FS_TYPE_ID: 7552 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7553 break; 7554 7555 case bitc::FS_TYPE_ID_METADATA: 7556 parseTypeIdCompatibleVtableSummaryRecord(Record); 7557 break; 7558 7559 case bitc::FS_BLOCK_COUNT: 7560 TheIndex.addBlockCount(Record[0]); 7561 break; 7562 7563 case bitc::FS_PARAM_ACCESS: { 7564 PendingParamAccesses = parseParamAccesses(Record); 7565 break; 7566 } 7567 7568 case bitc::FS_STACK_IDS: { // [n x stackid] 7569 // Save stack ids in the reader to consult when adding stack ids from the 7570 // lists in the stack node and alloc node entries. 7571 StackIds = ArrayRef<uint64_t>(Record); 7572 break; 7573 } 7574 7575 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7576 unsigned ValueID = Record[0]; 7577 SmallVector<unsigned> StackIdList; 7578 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7579 assert(*R < StackIds.size()); 7580 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7581 } 7582 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7583 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7584 break; 7585 } 7586 7587 case bitc::FS_COMBINED_CALLSITE_INFO: { 7588 auto RecordIter = Record.begin(); 7589 unsigned ValueID = *RecordIter++; 7590 unsigned NumStackIds = *RecordIter++; 7591 unsigned NumVersions = *RecordIter++; 7592 assert(Record.size() == 3 + NumStackIds + NumVersions); 7593 SmallVector<unsigned> StackIdList; 7594 for (unsigned J = 0; J < NumStackIds; J++) { 7595 assert(*RecordIter < StackIds.size()); 7596 StackIdList.push_back( 7597 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7598 } 7599 SmallVector<unsigned> Versions; 7600 for (unsigned J = 0; J < NumVersions; J++) 7601 Versions.push_back(*RecordIter++); 7602 ValueInfo VI = std::get<0>( 7603 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7604 PendingCallsites.push_back( 7605 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7606 break; 7607 } 7608 7609 case bitc::FS_PERMODULE_ALLOC_INFO: { 7610 unsigned I = 0; 7611 std::vector<MIBInfo> MIBs; 7612 while (I < Record.size()) { 7613 assert(Record.size() - I >= 2); 7614 AllocationType AllocType = (AllocationType)Record[I++]; 7615 unsigned NumStackEntries = Record[I++]; 7616 assert(Record.size() - I >= NumStackEntries); 7617 SmallVector<unsigned> StackIdList; 7618 for (unsigned J = 0; J < NumStackEntries; J++) { 7619 assert(Record[I] < StackIds.size()); 7620 StackIdList.push_back( 7621 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7622 } 7623 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7624 } 7625 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7626 break; 7627 } 7628 7629 case bitc::FS_COMBINED_ALLOC_INFO: { 7630 unsigned I = 0; 7631 std::vector<MIBInfo> MIBs; 7632 unsigned NumMIBs = Record[I++]; 7633 unsigned NumVersions = Record[I++]; 7634 unsigned MIBsRead = 0; 7635 while (MIBsRead++ < NumMIBs) { 7636 assert(Record.size() - I >= 2); 7637 AllocationType AllocType = (AllocationType)Record[I++]; 7638 unsigned NumStackEntries = Record[I++]; 7639 assert(Record.size() - I >= NumStackEntries); 7640 SmallVector<unsigned> StackIdList; 7641 for (unsigned J = 0; J < NumStackEntries; J++) { 7642 assert(Record[I] < StackIds.size()); 7643 StackIdList.push_back( 7644 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7645 } 7646 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7647 } 7648 assert(Record.size() - I >= NumVersions); 7649 SmallVector<uint8_t> Versions; 7650 for (unsigned J = 0; J < NumVersions; J++) 7651 Versions.push_back(Record[I++]); 7652 PendingAllocs.push_back( 7653 AllocInfo(std::move(Versions), std::move(MIBs))); 7654 break; 7655 } 7656 } 7657 } 7658 llvm_unreachable("Exit infinite loop"); 7659 } 7660 7661 // Parse the module string table block into the Index. 7662 // This populates the ModulePathStringTable map in the index. 7663 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7664 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7665 return Err; 7666 7667 SmallVector<uint64_t, 64> Record; 7668 7669 SmallString<128> ModulePath; 7670 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7671 7672 while (true) { 7673 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7674 if (!MaybeEntry) 7675 return MaybeEntry.takeError(); 7676 BitstreamEntry Entry = MaybeEntry.get(); 7677 7678 switch (Entry.Kind) { 7679 case BitstreamEntry::SubBlock: // Handled for us already. 7680 case BitstreamEntry::Error: 7681 return error("Malformed block"); 7682 case BitstreamEntry::EndBlock: 7683 return Error::success(); 7684 case BitstreamEntry::Record: 7685 // The interesting case. 7686 break; 7687 } 7688 7689 Record.clear(); 7690 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7691 if (!MaybeRecord) 7692 return MaybeRecord.takeError(); 7693 switch (MaybeRecord.get()) { 7694 default: // Default behavior: ignore. 7695 break; 7696 case bitc::MST_CODE_ENTRY: { 7697 // MST_ENTRY: [modid, namechar x N] 7698 uint64_t ModuleId = Record[0]; 7699 7700 if (convertToString(Record, 1, ModulePath)) 7701 return error("Invalid record"); 7702 7703 LastSeenModule = TheIndex.addModule(ModulePath); 7704 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7705 7706 ModulePath.clear(); 7707 break; 7708 } 7709 /// MST_CODE_HASH: [5*i32] 7710 case bitc::MST_CODE_HASH: { 7711 if (Record.size() != 5) 7712 return error("Invalid hash length " + Twine(Record.size()).str()); 7713 if (!LastSeenModule) 7714 return error("Invalid hash that does not follow a module path"); 7715 int Pos = 0; 7716 for (auto &Val : Record) { 7717 assert(!(Val >> 32) && "Unexpected high bits set"); 7718 LastSeenModule->second[Pos++] = Val; 7719 } 7720 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7721 LastSeenModule = nullptr; 7722 break; 7723 } 7724 } 7725 } 7726 llvm_unreachable("Exit infinite loop"); 7727 } 7728 7729 namespace { 7730 7731 // FIXME: This class is only here to support the transition to llvm::Error. It 7732 // will be removed once this transition is complete. Clients should prefer to 7733 // deal with the Error value directly, rather than converting to error_code. 7734 class BitcodeErrorCategoryType : public std::error_category { 7735 const char *name() const noexcept override { 7736 return "llvm.bitcode"; 7737 } 7738 7739 std::string message(int IE) const override { 7740 BitcodeError E = static_cast<BitcodeError>(IE); 7741 switch (E) { 7742 case BitcodeError::CorruptedBitcode: 7743 return "Corrupted bitcode"; 7744 } 7745 llvm_unreachable("Unknown error type!"); 7746 } 7747 }; 7748 7749 } // end anonymous namespace 7750 7751 const std::error_category &llvm::BitcodeErrorCategory() { 7752 static BitcodeErrorCategoryType ErrorCategory; 7753 return ErrorCategory; 7754 } 7755 7756 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7757 unsigned Block, unsigned RecordID) { 7758 if (Error Err = Stream.EnterSubBlock(Block)) 7759 return std::move(Err); 7760 7761 StringRef Strtab; 7762 while (true) { 7763 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7764 if (!MaybeEntry) 7765 return MaybeEntry.takeError(); 7766 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7767 7768 switch (Entry.Kind) { 7769 case BitstreamEntry::EndBlock: 7770 return Strtab; 7771 7772 case BitstreamEntry::Error: 7773 return error("Malformed block"); 7774 7775 case BitstreamEntry::SubBlock: 7776 if (Error Err = Stream.SkipBlock()) 7777 return std::move(Err); 7778 break; 7779 7780 case BitstreamEntry::Record: 7781 StringRef Blob; 7782 SmallVector<uint64_t, 1> Record; 7783 Expected<unsigned> MaybeRecord = 7784 Stream.readRecord(Entry.ID, Record, &Blob); 7785 if (!MaybeRecord) 7786 return MaybeRecord.takeError(); 7787 if (MaybeRecord.get() == RecordID) 7788 Strtab = Blob; 7789 break; 7790 } 7791 } 7792 } 7793 7794 //===----------------------------------------------------------------------===// 7795 // External interface 7796 //===----------------------------------------------------------------------===// 7797 7798 Expected<std::vector<BitcodeModule>> 7799 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7800 auto FOrErr = getBitcodeFileContents(Buffer); 7801 if (!FOrErr) 7802 return FOrErr.takeError(); 7803 return std::move(FOrErr->Mods); 7804 } 7805 7806 Expected<BitcodeFileContents> 7807 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7808 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7809 if (!StreamOrErr) 7810 return StreamOrErr.takeError(); 7811 BitstreamCursor &Stream = *StreamOrErr; 7812 7813 BitcodeFileContents F; 7814 while (true) { 7815 uint64_t BCBegin = Stream.getCurrentByteNo(); 7816 7817 // We may be consuming bitcode from a client that leaves garbage at the end 7818 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7819 // the end that there cannot possibly be another module, stop looking. 7820 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7821 return F; 7822 7823 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7824 if (!MaybeEntry) 7825 return MaybeEntry.takeError(); 7826 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7827 7828 switch (Entry.Kind) { 7829 case BitstreamEntry::EndBlock: 7830 case BitstreamEntry::Error: 7831 return error("Malformed block"); 7832 7833 case BitstreamEntry::SubBlock: { 7834 uint64_t IdentificationBit = -1ull; 7835 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7836 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7837 if (Error Err = Stream.SkipBlock()) 7838 return std::move(Err); 7839 7840 { 7841 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7842 if (!MaybeEntry) 7843 return MaybeEntry.takeError(); 7844 Entry = MaybeEntry.get(); 7845 } 7846 7847 if (Entry.Kind != BitstreamEntry::SubBlock || 7848 Entry.ID != bitc::MODULE_BLOCK_ID) 7849 return error("Malformed block"); 7850 } 7851 7852 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7853 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7854 if (Error Err = Stream.SkipBlock()) 7855 return std::move(Err); 7856 7857 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7858 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7859 Buffer.getBufferIdentifier(), IdentificationBit, 7860 ModuleBit}); 7861 continue; 7862 } 7863 7864 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7865 Expected<StringRef> Strtab = 7866 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7867 if (!Strtab) 7868 return Strtab.takeError(); 7869 // This string table is used by every preceding bitcode module that does 7870 // not have its own string table. A bitcode file may have multiple 7871 // string tables if it was created by binary concatenation, for example 7872 // with "llvm-cat -b". 7873 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7874 if (!I.Strtab.empty()) 7875 break; 7876 I.Strtab = *Strtab; 7877 } 7878 // Similarly, the string table is used by every preceding symbol table; 7879 // normally there will be just one unless the bitcode file was created 7880 // by binary concatenation. 7881 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7882 F.StrtabForSymtab = *Strtab; 7883 continue; 7884 } 7885 7886 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7887 Expected<StringRef> SymtabOrErr = 7888 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7889 if (!SymtabOrErr) 7890 return SymtabOrErr.takeError(); 7891 7892 // We can expect the bitcode file to have multiple symbol tables if it 7893 // was created by binary concatenation. In that case we silently 7894 // ignore any subsequent symbol tables, which is fine because this is a 7895 // low level function. The client is expected to notice that the number 7896 // of modules in the symbol table does not match the number of modules 7897 // in the input file and regenerate the symbol table. 7898 if (F.Symtab.empty()) 7899 F.Symtab = *SymtabOrErr; 7900 continue; 7901 } 7902 7903 if (Error Err = Stream.SkipBlock()) 7904 return std::move(Err); 7905 continue; 7906 } 7907 case BitstreamEntry::Record: 7908 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7909 return std::move(E); 7910 continue; 7911 } 7912 } 7913 } 7914 7915 /// Get a lazy one-at-time loading module from bitcode. 7916 /// 7917 /// This isn't always used in a lazy context. In particular, it's also used by 7918 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7919 /// in forward-referenced functions from block address references. 7920 /// 7921 /// \param[in] MaterializeAll Set to \c true if we should materialize 7922 /// everything. 7923 Expected<std::unique_ptr<Module>> 7924 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7925 bool ShouldLazyLoadMetadata, bool IsImporting, 7926 ParserCallbacks Callbacks) { 7927 BitstreamCursor Stream(Buffer); 7928 7929 std::string ProducerIdentification; 7930 if (IdentificationBit != -1ull) { 7931 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7932 return std::move(JumpFailed); 7933 if (Error E = 7934 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7935 return std::move(E); 7936 } 7937 7938 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7939 return std::move(JumpFailed); 7940 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7941 Context); 7942 7943 std::unique_ptr<Module> M = 7944 std::make_unique<Module>(ModuleIdentifier, Context); 7945 M->setMaterializer(R); 7946 7947 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7948 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7949 IsImporting, Callbacks)) 7950 return std::move(Err); 7951 7952 if (MaterializeAll) { 7953 // Read in the entire module, and destroy the BitcodeReader. 7954 if (Error Err = M->materializeAll()) 7955 return std::move(Err); 7956 } else { 7957 // Resolve forward references from blockaddresses. 7958 if (Error Err = R->materializeForwardReferencedFunctions()) 7959 return std::move(Err); 7960 } 7961 return std::move(M); 7962 } 7963 7964 Expected<std::unique_ptr<Module>> 7965 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7966 bool IsImporting, ParserCallbacks Callbacks) { 7967 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7968 Callbacks); 7969 } 7970 7971 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7972 // We don't use ModuleIdentifier here because the client may need to control the 7973 // module path used in the combined summary (e.g. when reading summaries for 7974 // regular LTO modules). 7975 Error BitcodeModule::readSummary( 7976 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 7977 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7978 BitstreamCursor Stream(Buffer); 7979 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7980 return JumpFailed; 7981 7982 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7983 ModulePath, IsPrevailing); 7984 return R.parseModule(); 7985 } 7986 7987 // Parse the specified bitcode buffer, returning the function info index. 7988 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7989 BitstreamCursor Stream(Buffer); 7990 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7991 return std::move(JumpFailed); 7992 7993 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7994 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7995 ModuleIdentifier, 0); 7996 7997 if (Error Err = R.parseModule()) 7998 return std::move(Err); 7999 8000 return std::move(Index); 8001 } 8002 8003 static Expected<std::pair<bool, bool>> 8004 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8005 unsigned ID, 8006 BitcodeLTOInfo <OInfo) { 8007 if (Error Err = Stream.EnterSubBlock(ID)) 8008 return std::move(Err); 8009 SmallVector<uint64_t, 64> Record; 8010 8011 while (true) { 8012 BitstreamEntry Entry; 8013 std::pair<bool, bool> Result = {false,false}; 8014 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8015 return std::move(E); 8016 8017 switch (Entry.Kind) { 8018 case BitstreamEntry::SubBlock: // Handled for us already. 8019 case BitstreamEntry::Error: 8020 return error("Malformed block"); 8021 case BitstreamEntry::EndBlock: { 8022 // If no flags record found, set both flags to false. 8023 return Result; 8024 } 8025 case BitstreamEntry::Record: 8026 // The interesting case. 8027 break; 8028 } 8029 8030 // Look for the FS_FLAGS record. 8031 Record.clear(); 8032 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8033 if (!MaybeBitCode) 8034 return MaybeBitCode.takeError(); 8035 switch (MaybeBitCode.get()) { 8036 default: // Default behavior: ignore. 8037 break; 8038 case bitc::FS_FLAGS: { // [flags] 8039 uint64_t Flags = Record[0]; 8040 // Scan flags. 8041 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8042 8043 bool EnableSplitLTOUnit = Flags & 0x8; 8044 bool UnifiedLTO = Flags & 0x200; 8045 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8046 8047 return Result; 8048 } 8049 } 8050 } 8051 llvm_unreachable("Exit infinite loop"); 8052 } 8053 8054 // Check if the given bitcode buffer contains a global value summary block. 8055 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8056 BitstreamCursor Stream(Buffer); 8057 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8058 return std::move(JumpFailed); 8059 8060 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8061 return std::move(Err); 8062 8063 while (true) { 8064 llvm::BitstreamEntry Entry; 8065 if (Error E = Stream.advance().moveInto(Entry)) 8066 return std::move(E); 8067 8068 switch (Entry.Kind) { 8069 case BitstreamEntry::Error: 8070 return error("Malformed block"); 8071 case BitstreamEntry::EndBlock: 8072 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8073 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8074 8075 case BitstreamEntry::SubBlock: 8076 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8077 BitcodeLTOInfo LTOInfo; 8078 Expected<std::pair<bool, bool>> Flags = 8079 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8080 if (!Flags) 8081 return Flags.takeError(); 8082 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8083 LTOInfo.IsThinLTO = true; 8084 LTOInfo.HasSummary = true; 8085 return LTOInfo; 8086 } 8087 8088 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8089 BitcodeLTOInfo LTOInfo; 8090 Expected<std::pair<bool, bool>> Flags = 8091 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8092 if (!Flags) 8093 return Flags.takeError(); 8094 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8095 LTOInfo.IsThinLTO = false; 8096 LTOInfo.HasSummary = true; 8097 return LTOInfo; 8098 } 8099 8100 // Ignore other sub-blocks. 8101 if (Error Err = Stream.SkipBlock()) 8102 return std::move(Err); 8103 continue; 8104 8105 case BitstreamEntry::Record: 8106 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8107 continue; 8108 else 8109 return StreamFailed.takeError(); 8110 } 8111 } 8112 } 8113 8114 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8115 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8116 if (!MsOrErr) 8117 return MsOrErr.takeError(); 8118 8119 if (MsOrErr->size() != 1) 8120 return error("Expected a single module"); 8121 8122 return (*MsOrErr)[0]; 8123 } 8124 8125 Expected<std::unique_ptr<Module>> 8126 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8127 bool ShouldLazyLoadMetadata, bool IsImporting, 8128 ParserCallbacks Callbacks) { 8129 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8130 if (!BM) 8131 return BM.takeError(); 8132 8133 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8134 Callbacks); 8135 } 8136 8137 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8138 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8139 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8140 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8141 IsImporting, Callbacks); 8142 if (MOrErr) 8143 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8144 return MOrErr; 8145 } 8146 8147 Expected<std::unique_ptr<Module>> 8148 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8149 return getModuleImpl(Context, true, false, false, Callbacks); 8150 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8151 // written. We must defer until the Module has been fully materialized. 8152 } 8153 8154 Expected<std::unique_ptr<Module>> 8155 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8156 ParserCallbacks Callbacks) { 8157 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8158 if (!BM) 8159 return BM.takeError(); 8160 8161 return BM->parseModule(Context, Callbacks); 8162 } 8163 8164 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8165 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8166 if (!StreamOrErr) 8167 return StreamOrErr.takeError(); 8168 8169 return readTriple(*StreamOrErr); 8170 } 8171 8172 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8173 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8174 if (!StreamOrErr) 8175 return StreamOrErr.takeError(); 8176 8177 return hasObjCCategory(*StreamOrErr); 8178 } 8179 8180 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8181 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8182 if (!StreamOrErr) 8183 return StreamOrErr.takeError(); 8184 8185 return readIdentificationCode(*StreamOrErr); 8186 } 8187 8188 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8189 ModuleSummaryIndex &CombinedIndex) { 8190 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8191 if (!BM) 8192 return BM.takeError(); 8193 8194 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8195 } 8196 8197 Expected<std::unique_ptr<ModuleSummaryIndex>> 8198 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8199 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8200 if (!BM) 8201 return BM.takeError(); 8202 8203 return BM->getSummary(); 8204 } 8205 8206 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8207 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8208 if (!BM) 8209 return BM.takeError(); 8210 8211 return BM->getLTOInfo(); 8212 } 8213 8214 Expected<std::unique_ptr<ModuleSummaryIndex>> 8215 llvm::getModuleSummaryIndexForFile(StringRef Path, 8216 bool IgnoreEmptyThinLTOIndexFile) { 8217 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8218 MemoryBuffer::getFileOrSTDIN(Path); 8219 if (!FileOrErr) 8220 return errorCodeToError(FileOrErr.getError()); 8221 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8222 return nullptr; 8223 return getModuleSummaryIndex(**FileOrErr); 8224 } 8225