1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/OperandTraits.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 35 std::vector<PAListPtr>().swap(ParamAttrs); 36 std::vector<BasicBlock*>().swap(FunctionBBs); 37 std::vector<Function*>().swap(FunctionsWithBodies); 38 DeferredFunctionInfo.clear(); 39 } 40 41 //===----------------------------------------------------------------------===// 42 // Helper functions to implement forward reference resolution, etc. 43 //===----------------------------------------------------------------------===// 44 45 /// ConvertToString - Convert a string from a record into an std::string, return 46 /// true on failure. 47 template<typename StrTy> 48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 49 StrTy &Result) { 50 if (Idx > Record.size()) 51 return true; 52 53 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 54 Result += (char)Record[i]; 55 return false; 56 } 57 58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 59 switch (Val) { 60 default: // Map unknown/new linkages to external 61 case 0: return GlobalValue::ExternalLinkage; 62 case 1: return GlobalValue::WeakLinkage; 63 case 2: return GlobalValue::AppendingLinkage; 64 case 3: return GlobalValue::InternalLinkage; 65 case 4: return GlobalValue::LinkOnceLinkage; 66 case 5: return GlobalValue::DLLImportLinkage; 67 case 6: return GlobalValue::DLLExportLinkage; 68 case 7: return GlobalValue::ExternalWeakLinkage; 69 case 8: return GlobalValue::CommonLinkage; 70 } 71 } 72 73 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 74 switch (Val) { 75 default: // Map unknown visibilities to default. 76 case 0: return GlobalValue::DefaultVisibility; 77 case 1: return GlobalValue::HiddenVisibility; 78 case 2: return GlobalValue::ProtectedVisibility; 79 } 80 } 81 82 static int GetDecodedCastOpcode(unsigned Val) { 83 switch (Val) { 84 default: return -1; 85 case bitc::CAST_TRUNC : return Instruction::Trunc; 86 case bitc::CAST_ZEXT : return Instruction::ZExt; 87 case bitc::CAST_SEXT : return Instruction::SExt; 88 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 89 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 90 case bitc::CAST_UITOFP : return Instruction::UIToFP; 91 case bitc::CAST_SITOFP : return Instruction::SIToFP; 92 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 93 case bitc::CAST_FPEXT : return Instruction::FPExt; 94 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 95 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 96 case bitc::CAST_BITCAST : return Instruction::BitCast; 97 } 98 } 99 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 100 switch (Val) { 101 default: return -1; 102 case bitc::BINOP_ADD: return Instruction::Add; 103 case bitc::BINOP_SUB: return Instruction::Sub; 104 case bitc::BINOP_MUL: return Instruction::Mul; 105 case bitc::BINOP_UDIV: return Instruction::UDiv; 106 case bitc::BINOP_SDIV: 107 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 108 case bitc::BINOP_UREM: return Instruction::URem; 109 case bitc::BINOP_SREM: 110 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 111 case bitc::BINOP_SHL: return Instruction::Shl; 112 case bitc::BINOP_LSHR: return Instruction::LShr; 113 case bitc::BINOP_ASHR: return Instruction::AShr; 114 case bitc::BINOP_AND: return Instruction::And; 115 case bitc::BINOP_OR: return Instruction::Or; 116 case bitc::BINOP_XOR: return Instruction::Xor; 117 } 118 } 119 120 namespace llvm { 121 namespace { 122 /// @brief A class for maintaining the slot number definition 123 /// as a placeholder for the actual definition for forward constants defs. 124 class ConstantPlaceHolder : public ConstantExpr { 125 ConstantPlaceHolder(); // DO NOT IMPLEMENT 126 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 127 public: 128 // allocate space for exactly one operand 129 void *operator new(size_t s) { 130 return User::operator new(s, 1); 131 } 132 explicit ConstantPlaceHolder(const Type *Ty) 133 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 134 Op<0>() = UndefValue::get(Type::Int32Ty); 135 } 136 137 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 138 static inline bool classof(const ConstantPlaceHolder *) { return true; } 139 static bool classof(const Value *V) { 140 return isa<ConstantExpr>(V) && 141 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 142 } 143 144 145 /// Provide fast operand accessors 146 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 147 }; 148 } 149 150 151 // FIXME: can we inherit this from ConstantExpr? 152 template <> 153 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 154 }; 155 156 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 157 } 158 159 void BitcodeReaderValueList::resize(unsigned Desired) { 160 if (Desired > Capacity) { 161 // Since we expect many values to come from the bitcode file we better 162 // allocate the double amount, so that the array size grows exponentially 163 // at each reallocation. Also, add a small amount of 100 extra elements 164 // each time, to reallocate less frequently when the array is still small. 165 // 166 Capacity = Desired * 2 + 100; 167 Use *New = allocHungoffUses(Capacity); 168 Use *Old = OperandList; 169 unsigned Ops = getNumOperands(); 170 for (int i(Ops - 1); i >= 0; --i) 171 New[i] = Old[i].get(); 172 OperandList = New; 173 if (Old) Use::zap(Old, Old + Ops, true); 174 } 175 } 176 177 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 178 const Type *Ty) { 179 if (Idx >= size()) { 180 // Insert a bunch of null values. 181 resize(Idx + 1); 182 NumOperands = Idx+1; 183 } 184 185 if (Value *V = OperandList[Idx]) { 186 assert(Ty == V->getType() && "Type mismatch in constant table!"); 187 return cast<Constant>(V); 188 } 189 190 // Create and return a placeholder, which will later be RAUW'd. 191 Constant *C = new ConstantPlaceHolder(Ty); 192 OperandList[Idx] = C; 193 return C; 194 } 195 196 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 197 if (Idx >= size()) { 198 // Insert a bunch of null values. 199 resize(Idx + 1); 200 NumOperands = Idx+1; 201 } 202 203 if (Value *V = OperandList[Idx]) { 204 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 205 return V; 206 } 207 208 // No type specified, must be invalid reference. 209 if (Ty == 0) return 0; 210 211 // Create and return a placeholder, which will later be RAUW'd. 212 Value *V = new Argument(Ty); 213 OperandList[Idx] = V; 214 return V; 215 } 216 217 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 218 /// resolves any forward references. The idea behind this is that we sometimes 219 /// get constants (such as large arrays) which reference *many* forward ref 220 /// constants. Replacing each of these causes a lot of thrashing when 221 /// building/reuniquing the constant. Instead of doing this, we look at all the 222 /// uses and rewrite all the place holders at once for any constant that uses 223 /// a placeholder. 224 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 225 // Sort the values by-pointer so that they are efficient to look up with a 226 // binary search. 227 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 228 229 SmallVector<Constant*, 64> NewOps; 230 231 while (!ResolveConstants.empty()) { 232 Value *RealVal = getOperand(ResolveConstants.back().second); 233 Constant *Placeholder = ResolveConstants.back().first; 234 ResolveConstants.pop_back(); 235 236 // Loop over all users of the placeholder, updating them to reference the 237 // new value. If they reference more than one placeholder, update them all 238 // at once. 239 while (!Placeholder->use_empty()) { 240 Value::use_iterator UI = Placeholder->use_begin(); 241 242 // If the using object isn't uniqued, just update the operands. This 243 // handles instructions and initializers for global variables. 244 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 245 UI.getUse().set(RealVal); 246 continue; 247 } 248 249 // Otherwise, we have a constant that uses the placeholder. Replace that 250 // constant with a new constant that has *all* placeholder uses updated. 251 Constant *UserC = cast<Constant>(*UI); 252 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 253 I != E; ++I) { 254 Value *NewOp; 255 if (!isa<ConstantPlaceHolder>(*I)) { 256 // Not a placeholder reference. 257 NewOp = *I; 258 } else if (*I == Placeholder) { 259 // Common case is that it just references this one placeholder. 260 NewOp = RealVal; 261 } else { 262 // Otherwise, look up the placeholder in ResolveConstants. 263 ResolveConstantsTy::iterator It = 264 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 265 std::pair<Constant*, unsigned>(cast<Constant>(*I), 266 0)); 267 assert(It != ResolveConstants.end() && It->first == *I); 268 NewOp = this->getOperand(It->second); 269 } 270 271 NewOps.push_back(cast<Constant>(NewOp)); 272 } 273 274 // Make the new constant. 275 Constant *NewC; 276 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 277 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 278 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 279 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 280 UserCS->getType()->isPacked()); 281 } else if (isa<ConstantVector>(UserC)) { 282 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 283 } else { 284 // Must be a constant expression. 285 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 286 NewOps.size()); 287 } 288 289 UserC->replaceAllUsesWith(NewC); 290 UserC->destroyConstant(); 291 NewOps.clear(); 292 } 293 294 delete Placeholder; 295 } 296 } 297 298 299 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 300 // If the TypeID is in range, return it. 301 if (ID < TypeList.size()) 302 return TypeList[ID].get(); 303 if (!isTypeTable) return 0; 304 305 // The type table allows forward references. Push as many Opaque types as 306 // needed to get up to ID. 307 while (TypeList.size() <= ID) 308 TypeList.push_back(OpaqueType::get()); 309 return TypeList.back().get(); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // Functions for parsing blocks from the bitcode file 314 //===----------------------------------------------------------------------===// 315 316 bool BitcodeReader::ParseParamAttrBlock() { 317 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 318 return Error("Malformed block record"); 319 320 if (!ParamAttrs.empty()) 321 return Error("Multiple PARAMATTR blocks found!"); 322 323 SmallVector<uint64_t, 64> Record; 324 325 SmallVector<FnAttributeWithIndex, 8> Attrs; 326 327 // Read all the records. 328 while (1) { 329 unsigned Code = Stream.ReadCode(); 330 if (Code == bitc::END_BLOCK) { 331 if (Stream.ReadBlockEnd()) 332 return Error("Error at end of PARAMATTR block"); 333 return false; 334 } 335 336 if (Code == bitc::ENTER_SUBBLOCK) { 337 // No known subblocks, always skip them. 338 Stream.ReadSubBlockID(); 339 if (Stream.SkipBlock()) 340 return Error("Malformed block record"); 341 continue; 342 } 343 344 if (Code == bitc::DEFINE_ABBREV) { 345 Stream.ReadAbbrevRecord(); 346 continue; 347 } 348 349 // Read a record. 350 Record.clear(); 351 switch (Stream.ReadRecord(Code, Record)) { 352 default: // Default behavior: ignore. 353 break; 354 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 355 if (Record.size() & 1) 356 return Error("Invalid ENTRY record"); 357 358 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 359 if (Record[i+1] != ParamAttr::None) 360 Attrs.push_back(FnAttributeWithIndex::get(Record[i], Record[i+1])); 361 } 362 363 ParamAttrs.push_back(PAListPtr::get(Attrs.begin(), Attrs.end())); 364 Attrs.clear(); 365 break; 366 } 367 } 368 } 369 } 370 371 372 bool BitcodeReader::ParseTypeTable() { 373 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!TypeList.empty()) 377 return Error("Multiple TYPE_BLOCKs found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 unsigned NumRecords = 0; 381 382 // Read all the records for this type table. 383 while (1) { 384 unsigned Code = Stream.ReadCode(); 385 if (Code == bitc::END_BLOCK) { 386 if (NumRecords != TypeList.size()) 387 return Error("Invalid type forward reference in TYPE_BLOCK"); 388 if (Stream.ReadBlockEnd()) 389 return Error("Error at end of type table block"); 390 return false; 391 } 392 393 if (Code == bitc::ENTER_SUBBLOCK) { 394 // No known subblocks, always skip them. 395 Stream.ReadSubBlockID(); 396 if (Stream.SkipBlock()) 397 return Error("Malformed block record"); 398 continue; 399 } 400 401 if (Code == bitc::DEFINE_ABBREV) { 402 Stream.ReadAbbrevRecord(); 403 continue; 404 } 405 406 // Read a record. 407 Record.clear(); 408 const Type *ResultTy = 0; 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: unknown type. 411 ResultTy = 0; 412 break; 413 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 414 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 415 // type list. This allows us to reserve space. 416 if (Record.size() < 1) 417 return Error("Invalid TYPE_CODE_NUMENTRY record"); 418 TypeList.reserve(Record[0]); 419 continue; 420 case bitc::TYPE_CODE_VOID: // VOID 421 ResultTy = Type::VoidTy; 422 break; 423 case bitc::TYPE_CODE_FLOAT: // FLOAT 424 ResultTy = Type::FloatTy; 425 break; 426 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 427 ResultTy = Type::DoubleTy; 428 break; 429 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 430 ResultTy = Type::X86_FP80Ty; 431 break; 432 case bitc::TYPE_CODE_FP128: // FP128 433 ResultTy = Type::FP128Ty; 434 break; 435 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 436 ResultTy = Type::PPC_FP128Ty; 437 break; 438 case bitc::TYPE_CODE_LABEL: // LABEL 439 ResultTy = Type::LabelTy; 440 break; 441 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 442 ResultTy = 0; 443 break; 444 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 445 if (Record.size() < 1) 446 return Error("Invalid Integer type record"); 447 448 ResultTy = IntegerType::get(Record[0]); 449 break; 450 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 451 // [pointee type, address space] 452 if (Record.size() < 1) 453 return Error("Invalid POINTER type record"); 454 unsigned AddressSpace = 0; 455 if (Record.size() == 2) 456 AddressSpace = Record[1]; 457 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 458 break; 459 } 460 case bitc::TYPE_CODE_FUNCTION: { 461 // FIXME: attrid is dead, remove it in LLVM 3.0 462 // FUNCTION: [vararg, attrid, retty, paramty x N] 463 if (Record.size() < 3) 464 return Error("Invalid FUNCTION type record"); 465 std::vector<const Type*> ArgTys; 466 for (unsigned i = 3, e = Record.size(); i != e; ++i) 467 ArgTys.push_back(getTypeByID(Record[i], true)); 468 469 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 470 Record[0]); 471 break; 472 } 473 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 474 if (Record.size() < 1) 475 return Error("Invalid STRUCT type record"); 476 std::vector<const Type*> EltTys; 477 for (unsigned i = 1, e = Record.size(); i != e; ++i) 478 EltTys.push_back(getTypeByID(Record[i], true)); 479 ResultTy = StructType::get(EltTys, Record[0]); 480 break; 481 } 482 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 483 if (Record.size() < 2) 484 return Error("Invalid ARRAY type record"); 485 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 486 break; 487 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 488 if (Record.size() < 2) 489 return Error("Invalid VECTOR type record"); 490 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 491 break; 492 } 493 494 if (NumRecords == TypeList.size()) { 495 // If this is a new type slot, just append it. 496 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 497 ++NumRecords; 498 } else if (ResultTy == 0) { 499 // Otherwise, this was forward referenced, so an opaque type was created, 500 // but the result type is actually just an opaque. Leave the one we 501 // created previously. 502 ++NumRecords; 503 } else { 504 // Otherwise, this was forward referenced, so an opaque type was created. 505 // Resolve the opaque type to the real type now. 506 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 507 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 508 509 // Don't directly push the new type on the Tab. Instead we want to replace 510 // the opaque type we previously inserted with the new concrete value. The 511 // refinement from the abstract (opaque) type to the new type causes all 512 // uses of the abstract type to use the concrete type (NewTy). This will 513 // also cause the opaque type to be deleted. 514 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 515 516 // This should have replaced the old opaque type with the new type in the 517 // value table... or with a preexisting type that was already in the 518 // system. Let's just make sure it did. 519 assert(TypeList[NumRecords-1].get() != OldTy && 520 "refineAbstractType didn't work!"); 521 } 522 } 523 } 524 525 526 bool BitcodeReader::ParseTypeSymbolTable() { 527 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 528 return Error("Malformed block record"); 529 530 SmallVector<uint64_t, 64> Record; 531 532 // Read all the records for this type table. 533 std::string TypeName; 534 while (1) { 535 unsigned Code = Stream.ReadCode(); 536 if (Code == bitc::END_BLOCK) { 537 if (Stream.ReadBlockEnd()) 538 return Error("Error at end of type symbol table block"); 539 return false; 540 } 541 542 if (Code == bitc::ENTER_SUBBLOCK) { 543 // No known subblocks, always skip them. 544 Stream.ReadSubBlockID(); 545 if (Stream.SkipBlock()) 546 return Error("Malformed block record"); 547 continue; 548 } 549 550 if (Code == bitc::DEFINE_ABBREV) { 551 Stream.ReadAbbrevRecord(); 552 continue; 553 } 554 555 // Read a record. 556 Record.clear(); 557 switch (Stream.ReadRecord(Code, Record)) { 558 default: // Default behavior: unknown type. 559 break; 560 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 561 if (ConvertToString(Record, 1, TypeName)) 562 return Error("Invalid TST_ENTRY record"); 563 unsigned TypeID = Record[0]; 564 if (TypeID >= TypeList.size()) 565 return Error("Invalid Type ID in TST_ENTRY record"); 566 567 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 568 TypeName.clear(); 569 break; 570 } 571 } 572 } 573 574 bool BitcodeReader::ParseValueSymbolTable() { 575 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 576 return Error("Malformed block record"); 577 578 SmallVector<uint64_t, 64> Record; 579 580 // Read all the records for this value table. 581 SmallString<128> ValueName; 582 while (1) { 583 unsigned Code = Stream.ReadCode(); 584 if (Code == bitc::END_BLOCK) { 585 if (Stream.ReadBlockEnd()) 586 return Error("Error at end of value symbol table block"); 587 return false; 588 } 589 if (Code == bitc::ENTER_SUBBLOCK) { 590 // No known subblocks, always skip them. 591 Stream.ReadSubBlockID(); 592 if (Stream.SkipBlock()) 593 return Error("Malformed block record"); 594 continue; 595 } 596 597 if (Code == bitc::DEFINE_ABBREV) { 598 Stream.ReadAbbrevRecord(); 599 continue; 600 } 601 602 // Read a record. 603 Record.clear(); 604 switch (Stream.ReadRecord(Code, Record)) { 605 default: // Default behavior: unknown type. 606 break; 607 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 608 if (ConvertToString(Record, 1, ValueName)) 609 return Error("Invalid TST_ENTRY record"); 610 unsigned ValueID = Record[0]; 611 if (ValueID >= ValueList.size()) 612 return Error("Invalid Value ID in VST_ENTRY record"); 613 Value *V = ValueList[ValueID]; 614 615 V->setName(&ValueName[0], ValueName.size()); 616 ValueName.clear(); 617 break; 618 } 619 case bitc::VST_CODE_BBENTRY: { 620 if (ConvertToString(Record, 1, ValueName)) 621 return Error("Invalid VST_BBENTRY record"); 622 BasicBlock *BB = getBasicBlock(Record[0]); 623 if (BB == 0) 624 return Error("Invalid BB ID in VST_BBENTRY record"); 625 626 BB->setName(&ValueName[0], ValueName.size()); 627 ValueName.clear(); 628 break; 629 } 630 } 631 } 632 } 633 634 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 635 /// the LSB for dense VBR encoding. 636 static uint64_t DecodeSignRotatedValue(uint64_t V) { 637 if ((V & 1) == 0) 638 return V >> 1; 639 if (V != 1) 640 return -(V >> 1); 641 // There is no such thing as -0 with integers. "-0" really means MININT. 642 return 1ULL << 63; 643 } 644 645 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 646 /// values and aliases that we can. 647 bool BitcodeReader::ResolveGlobalAndAliasInits() { 648 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 649 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 650 651 GlobalInitWorklist.swap(GlobalInits); 652 AliasInitWorklist.swap(AliasInits); 653 654 while (!GlobalInitWorklist.empty()) { 655 unsigned ValID = GlobalInitWorklist.back().second; 656 if (ValID >= ValueList.size()) { 657 // Not ready to resolve this yet, it requires something later in the file. 658 GlobalInits.push_back(GlobalInitWorklist.back()); 659 } else { 660 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 661 GlobalInitWorklist.back().first->setInitializer(C); 662 else 663 return Error("Global variable initializer is not a constant!"); 664 } 665 GlobalInitWorklist.pop_back(); 666 } 667 668 while (!AliasInitWorklist.empty()) { 669 unsigned ValID = AliasInitWorklist.back().second; 670 if (ValID >= ValueList.size()) { 671 AliasInits.push_back(AliasInitWorklist.back()); 672 } else { 673 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 674 AliasInitWorklist.back().first->setAliasee(C); 675 else 676 return Error("Alias initializer is not a constant!"); 677 } 678 AliasInitWorklist.pop_back(); 679 } 680 return false; 681 } 682 683 684 bool BitcodeReader::ParseConstants() { 685 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 686 return Error("Malformed block record"); 687 688 SmallVector<uint64_t, 64> Record; 689 690 // Read all the records for this value table. 691 const Type *CurTy = Type::Int32Ty; 692 unsigned NextCstNo = ValueList.size(); 693 while (1) { 694 unsigned Code = Stream.ReadCode(); 695 if (Code == bitc::END_BLOCK) 696 break; 697 698 if (Code == bitc::ENTER_SUBBLOCK) { 699 // No known subblocks, always skip them. 700 Stream.ReadSubBlockID(); 701 if (Stream.SkipBlock()) 702 return Error("Malformed block record"); 703 continue; 704 } 705 706 if (Code == bitc::DEFINE_ABBREV) { 707 Stream.ReadAbbrevRecord(); 708 continue; 709 } 710 711 // Read a record. 712 Record.clear(); 713 Value *V = 0; 714 switch (Stream.ReadRecord(Code, Record)) { 715 default: // Default behavior: unknown constant 716 case bitc::CST_CODE_UNDEF: // UNDEF 717 V = UndefValue::get(CurTy); 718 break; 719 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 720 if (Record.empty()) 721 return Error("Malformed CST_SETTYPE record"); 722 if (Record[0] >= TypeList.size()) 723 return Error("Invalid Type ID in CST_SETTYPE record"); 724 CurTy = TypeList[Record[0]]; 725 continue; // Skip the ValueList manipulation. 726 case bitc::CST_CODE_NULL: // NULL 727 V = Constant::getNullValue(CurTy); 728 break; 729 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 730 if (!isa<IntegerType>(CurTy) || Record.empty()) 731 return Error("Invalid CST_INTEGER record"); 732 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 733 break; 734 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 735 if (!isa<IntegerType>(CurTy) || Record.empty()) 736 return Error("Invalid WIDE_INTEGER record"); 737 738 unsigned NumWords = Record.size(); 739 SmallVector<uint64_t, 8> Words; 740 Words.resize(NumWords); 741 for (unsigned i = 0; i != NumWords; ++i) 742 Words[i] = DecodeSignRotatedValue(Record[i]); 743 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 744 NumWords, &Words[0])); 745 break; 746 } 747 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 748 if (Record.empty()) 749 return Error("Invalid FLOAT record"); 750 if (CurTy == Type::FloatTy) 751 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 752 else if (CurTy == Type::DoubleTy) 753 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 754 else if (CurTy == Type::X86_FP80Ty) 755 V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); 756 else if (CurTy == Type::FP128Ty) 757 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 758 else if (CurTy == Type::PPC_FP128Ty) 759 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 760 else 761 V = UndefValue::get(CurTy); 762 break; 763 } 764 765 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 766 if (Record.empty()) 767 return Error("Invalid CST_AGGREGATE record"); 768 769 unsigned Size = Record.size(); 770 std::vector<Constant*> Elts; 771 772 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 773 for (unsigned i = 0; i != Size; ++i) 774 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 775 STy->getElementType(i))); 776 V = ConstantStruct::get(STy, Elts); 777 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 778 const Type *EltTy = ATy->getElementType(); 779 for (unsigned i = 0; i != Size; ++i) 780 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 781 V = ConstantArray::get(ATy, Elts); 782 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 783 const Type *EltTy = VTy->getElementType(); 784 for (unsigned i = 0; i != Size; ++i) 785 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 786 V = ConstantVector::get(Elts); 787 } else { 788 V = UndefValue::get(CurTy); 789 } 790 break; 791 } 792 case bitc::CST_CODE_STRING: { // STRING: [values] 793 if (Record.empty()) 794 return Error("Invalid CST_AGGREGATE record"); 795 796 const ArrayType *ATy = cast<ArrayType>(CurTy); 797 const Type *EltTy = ATy->getElementType(); 798 799 unsigned Size = Record.size(); 800 std::vector<Constant*> Elts; 801 for (unsigned i = 0; i != Size; ++i) 802 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 803 V = ConstantArray::get(ATy, Elts); 804 break; 805 } 806 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 807 if (Record.empty()) 808 return Error("Invalid CST_AGGREGATE record"); 809 810 const ArrayType *ATy = cast<ArrayType>(CurTy); 811 const Type *EltTy = ATy->getElementType(); 812 813 unsigned Size = Record.size(); 814 std::vector<Constant*> Elts; 815 for (unsigned i = 0; i != Size; ++i) 816 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 817 Elts.push_back(Constant::getNullValue(EltTy)); 818 V = ConstantArray::get(ATy, Elts); 819 break; 820 } 821 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 822 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 823 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 824 if (Opc < 0) { 825 V = UndefValue::get(CurTy); // Unknown binop. 826 } else { 827 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 828 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 829 V = ConstantExpr::get(Opc, LHS, RHS); 830 } 831 break; 832 } 833 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 834 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 835 int Opc = GetDecodedCastOpcode(Record[0]); 836 if (Opc < 0) { 837 V = UndefValue::get(CurTy); // Unknown cast. 838 } else { 839 const Type *OpTy = getTypeByID(Record[1]); 840 if (!OpTy) return Error("Invalid CE_CAST record"); 841 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 842 V = ConstantExpr::getCast(Opc, Op, CurTy); 843 } 844 break; 845 } 846 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 847 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 848 SmallVector<Constant*, 16> Elts; 849 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 850 const Type *ElTy = getTypeByID(Record[i]); 851 if (!ElTy) return Error("Invalid CE_GEP record"); 852 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 853 } 854 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 855 break; 856 } 857 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 858 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 859 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 860 Type::Int1Ty), 861 ValueList.getConstantFwdRef(Record[1],CurTy), 862 ValueList.getConstantFwdRef(Record[2],CurTy)); 863 break; 864 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 865 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 866 const VectorType *OpTy = 867 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 868 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 869 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 870 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 871 OpTy->getElementType()); 872 V = ConstantExpr::getExtractElement(Op0, Op1); 873 break; 874 } 875 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 876 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 877 if (Record.size() < 3 || OpTy == 0) 878 return Error("Invalid CE_INSERTELT record"); 879 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 880 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 881 OpTy->getElementType()); 882 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 883 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 884 break; 885 } 886 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 887 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 888 if (Record.size() < 3 || OpTy == 0) 889 return Error("Invalid CE_INSERTELT record"); 890 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 891 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 892 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 893 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 894 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 895 break; 896 } 897 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 898 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 899 const Type *OpTy = getTypeByID(Record[0]); 900 if (OpTy == 0) return Error("Invalid CE_CMP record"); 901 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 902 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 903 904 if (OpTy->isFloatingPoint()) 905 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 906 else if (!isa<VectorType>(OpTy)) 907 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 908 else if (OpTy->isFPOrFPVector()) 909 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 910 else 911 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 912 break; 913 } 914 case bitc::CST_CODE_INLINEASM: { 915 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 916 std::string AsmStr, ConstrStr; 917 bool HasSideEffects = Record[0]; 918 unsigned AsmStrSize = Record[1]; 919 if (2+AsmStrSize >= Record.size()) 920 return Error("Invalid INLINEASM record"); 921 unsigned ConstStrSize = Record[2+AsmStrSize]; 922 if (3+AsmStrSize+ConstStrSize > Record.size()) 923 return Error("Invalid INLINEASM record"); 924 925 for (unsigned i = 0; i != AsmStrSize; ++i) 926 AsmStr += (char)Record[2+i]; 927 for (unsigned i = 0; i != ConstStrSize; ++i) 928 ConstrStr += (char)Record[3+AsmStrSize+i]; 929 const PointerType *PTy = cast<PointerType>(CurTy); 930 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 931 AsmStr, ConstrStr, HasSideEffects); 932 break; 933 } 934 } 935 936 ValueList.AssignValue(V, NextCstNo); 937 ++NextCstNo; 938 } 939 940 if (NextCstNo != ValueList.size()) 941 return Error("Invalid constant reference!"); 942 943 if (Stream.ReadBlockEnd()) 944 return Error("Error at end of constants block"); 945 946 // Once all the constants have been read, go through and resolve forward 947 // references. 948 ValueList.ResolveConstantForwardRefs(); 949 return false; 950 } 951 952 /// RememberAndSkipFunctionBody - When we see the block for a function body, 953 /// remember where it is and then skip it. This lets us lazily deserialize the 954 /// functions. 955 bool BitcodeReader::RememberAndSkipFunctionBody() { 956 // Get the function we are talking about. 957 if (FunctionsWithBodies.empty()) 958 return Error("Insufficient function protos"); 959 960 Function *Fn = FunctionsWithBodies.back(); 961 FunctionsWithBodies.pop_back(); 962 963 // Save the current stream state. 964 uint64_t CurBit = Stream.GetCurrentBitNo(); 965 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 966 967 // Set the functions linkage to GhostLinkage so we know it is lazily 968 // deserialized. 969 Fn->setLinkage(GlobalValue::GhostLinkage); 970 971 // Skip over the function block for now. 972 if (Stream.SkipBlock()) 973 return Error("Malformed block record"); 974 return false; 975 } 976 977 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 978 // Reject multiple MODULE_BLOCK's in a single bitstream. 979 if (TheModule) 980 return Error("Multiple MODULE_BLOCKs in same stream"); 981 982 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 983 return Error("Malformed block record"); 984 985 // Otherwise, create the module. 986 TheModule = new Module(ModuleID); 987 988 SmallVector<uint64_t, 64> Record; 989 std::vector<std::string> SectionTable; 990 std::vector<std::string> GCTable; 991 992 // Read all the records for this module. 993 while (!Stream.AtEndOfStream()) { 994 unsigned Code = Stream.ReadCode(); 995 if (Code == bitc::END_BLOCK) { 996 if (Stream.ReadBlockEnd()) 997 return Error("Error at end of module block"); 998 999 // Patch the initializers for globals and aliases up. 1000 ResolveGlobalAndAliasInits(); 1001 if (!GlobalInits.empty() || !AliasInits.empty()) 1002 return Error("Malformed global initializer set"); 1003 if (!FunctionsWithBodies.empty()) 1004 return Error("Too few function bodies found"); 1005 1006 // Look for intrinsic functions which need to be upgraded at some point 1007 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1008 FI != FE; ++FI) { 1009 Function* NewFn; 1010 if (UpgradeIntrinsicFunction(FI, NewFn)) 1011 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1012 } 1013 1014 // Force deallocation of memory for these vectors to favor the client that 1015 // want lazy deserialization. 1016 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1017 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1018 std::vector<Function*>().swap(FunctionsWithBodies); 1019 return false; 1020 } 1021 1022 if (Code == bitc::ENTER_SUBBLOCK) { 1023 switch (Stream.ReadSubBlockID()) { 1024 default: // Skip unknown content. 1025 if (Stream.SkipBlock()) 1026 return Error("Malformed block record"); 1027 break; 1028 case bitc::BLOCKINFO_BLOCK_ID: 1029 if (Stream.ReadBlockInfoBlock()) 1030 return Error("Malformed BlockInfoBlock"); 1031 break; 1032 case bitc::PARAMATTR_BLOCK_ID: 1033 if (ParseParamAttrBlock()) 1034 return true; 1035 break; 1036 case bitc::TYPE_BLOCK_ID: 1037 if (ParseTypeTable()) 1038 return true; 1039 break; 1040 case bitc::TYPE_SYMTAB_BLOCK_ID: 1041 if (ParseTypeSymbolTable()) 1042 return true; 1043 break; 1044 case bitc::VALUE_SYMTAB_BLOCK_ID: 1045 if (ParseValueSymbolTable()) 1046 return true; 1047 break; 1048 case bitc::CONSTANTS_BLOCK_ID: 1049 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1050 return true; 1051 break; 1052 case bitc::FUNCTION_BLOCK_ID: 1053 // If this is the first function body we've seen, reverse the 1054 // FunctionsWithBodies list. 1055 if (!HasReversedFunctionsWithBodies) { 1056 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1057 HasReversedFunctionsWithBodies = true; 1058 } 1059 1060 if (RememberAndSkipFunctionBody()) 1061 return true; 1062 break; 1063 } 1064 continue; 1065 } 1066 1067 if (Code == bitc::DEFINE_ABBREV) { 1068 Stream.ReadAbbrevRecord(); 1069 continue; 1070 } 1071 1072 // Read a record. 1073 switch (Stream.ReadRecord(Code, Record)) { 1074 default: break; // Default behavior, ignore unknown content. 1075 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1076 if (Record.size() < 1) 1077 return Error("Malformed MODULE_CODE_VERSION"); 1078 // Only version #0 is supported so far. 1079 if (Record[0] != 0) 1080 return Error("Unknown bitstream version!"); 1081 break; 1082 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1083 std::string S; 1084 if (ConvertToString(Record, 0, S)) 1085 return Error("Invalid MODULE_CODE_TRIPLE record"); 1086 TheModule->setTargetTriple(S); 1087 break; 1088 } 1089 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1090 std::string S; 1091 if (ConvertToString(Record, 0, S)) 1092 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1093 TheModule->setDataLayout(S); 1094 break; 1095 } 1096 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1097 std::string S; 1098 if (ConvertToString(Record, 0, S)) 1099 return Error("Invalid MODULE_CODE_ASM record"); 1100 TheModule->setModuleInlineAsm(S); 1101 break; 1102 } 1103 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1104 std::string S; 1105 if (ConvertToString(Record, 0, S)) 1106 return Error("Invalid MODULE_CODE_DEPLIB record"); 1107 TheModule->addLibrary(S); 1108 break; 1109 } 1110 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1111 std::string S; 1112 if (ConvertToString(Record, 0, S)) 1113 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1114 SectionTable.push_back(S); 1115 break; 1116 } 1117 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1118 std::string S; 1119 if (ConvertToString(Record, 0, S)) 1120 return Error("Invalid MODULE_CODE_GCNAME record"); 1121 GCTable.push_back(S); 1122 break; 1123 } 1124 // GLOBALVAR: [pointer type, isconst, initid, 1125 // linkage, alignment, section, visibility, threadlocal] 1126 case bitc::MODULE_CODE_GLOBALVAR: { 1127 if (Record.size() < 6) 1128 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1129 const Type *Ty = getTypeByID(Record[0]); 1130 if (!isa<PointerType>(Ty)) 1131 return Error("Global not a pointer type!"); 1132 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1133 Ty = cast<PointerType>(Ty)->getElementType(); 1134 1135 bool isConstant = Record[1]; 1136 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1137 unsigned Alignment = (1 << Record[4]) >> 1; 1138 std::string Section; 1139 if (Record[5]) { 1140 if (Record[5]-1 >= SectionTable.size()) 1141 return Error("Invalid section ID"); 1142 Section = SectionTable[Record[5]-1]; 1143 } 1144 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1145 if (Record.size() > 6) 1146 Visibility = GetDecodedVisibility(Record[6]); 1147 bool isThreadLocal = false; 1148 if (Record.size() > 7) 1149 isThreadLocal = Record[7]; 1150 1151 GlobalVariable *NewGV = 1152 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1153 isThreadLocal, AddressSpace); 1154 NewGV->setAlignment(Alignment); 1155 if (!Section.empty()) 1156 NewGV->setSection(Section); 1157 NewGV->setVisibility(Visibility); 1158 NewGV->setThreadLocal(isThreadLocal); 1159 1160 ValueList.push_back(NewGV); 1161 1162 // Remember which value to use for the global initializer. 1163 if (unsigned InitID = Record[2]) 1164 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1165 break; 1166 } 1167 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1168 // alignment, section, visibility, gc] 1169 case bitc::MODULE_CODE_FUNCTION: { 1170 if (Record.size() < 8) 1171 return Error("Invalid MODULE_CODE_FUNCTION record"); 1172 const Type *Ty = getTypeByID(Record[0]); 1173 if (!isa<PointerType>(Ty)) 1174 return Error("Function not a pointer type!"); 1175 const FunctionType *FTy = 1176 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1177 if (!FTy) 1178 return Error("Function not a pointer to function type!"); 1179 1180 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1181 "", TheModule); 1182 1183 Func->setCallingConv(Record[1]); 1184 bool isProto = Record[2]; 1185 Func->setLinkage(GetDecodedLinkage(Record[3])); 1186 Func->setParamAttrs(getParamAttrs(Record[4])); 1187 1188 Func->setAlignment((1 << Record[5]) >> 1); 1189 if (Record[6]) { 1190 if (Record[6]-1 >= SectionTable.size()) 1191 return Error("Invalid section ID"); 1192 Func->setSection(SectionTable[Record[6]-1]); 1193 } 1194 Func->setVisibility(GetDecodedVisibility(Record[7])); 1195 if (Record.size() > 8 && Record[8]) { 1196 if (Record[8]-1 > GCTable.size()) 1197 return Error("Invalid GC ID"); 1198 Func->setGC(GCTable[Record[8]-1].c_str()); 1199 } 1200 ValueList.push_back(Func); 1201 1202 // If this is a function with a body, remember the prototype we are 1203 // creating now, so that we can match up the body with them later. 1204 if (!isProto) 1205 FunctionsWithBodies.push_back(Func); 1206 break; 1207 } 1208 // ALIAS: [alias type, aliasee val#, linkage] 1209 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1210 case bitc::MODULE_CODE_ALIAS: { 1211 if (Record.size() < 3) 1212 return Error("Invalid MODULE_ALIAS record"); 1213 const Type *Ty = getTypeByID(Record[0]); 1214 if (!isa<PointerType>(Ty)) 1215 return Error("Function not a pointer type!"); 1216 1217 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1218 "", 0, TheModule); 1219 // Old bitcode files didn't have visibility field. 1220 if (Record.size() > 3) 1221 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1222 ValueList.push_back(NewGA); 1223 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1224 break; 1225 } 1226 /// MODULE_CODE_PURGEVALS: [numvals] 1227 case bitc::MODULE_CODE_PURGEVALS: 1228 // Trim down the value list to the specified size. 1229 if (Record.size() < 1 || Record[0] > ValueList.size()) 1230 return Error("Invalid MODULE_PURGEVALS record"); 1231 ValueList.shrinkTo(Record[0]); 1232 break; 1233 } 1234 Record.clear(); 1235 } 1236 1237 return Error("Premature end of bitstream"); 1238 } 1239 1240 /// SkipWrapperHeader - Some systems wrap bc files with a special header for 1241 /// padding or other reasons. The format of this header is: 1242 /// 1243 /// struct bc_header { 1244 /// uint32_t Magic; // 0x0B17C0DE 1245 /// uint32_t Version; // Version, currently always 0. 1246 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1247 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1248 /// ... potentially other gunk ... 1249 /// }; 1250 /// 1251 /// This function is called when we find a file with a matching magic number. 1252 /// In this case, skip down to the subsection of the file that is actually a BC 1253 /// file. 1254 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { 1255 enum { 1256 KnownHeaderSize = 4*4, // Size of header we read. 1257 OffsetField = 2*4, // Offset in bytes to Offset field. 1258 SizeField = 3*4 // Offset in bytes to Size field. 1259 }; 1260 1261 1262 // Must contain the header! 1263 if (BufEnd-BufPtr < KnownHeaderSize) return true; 1264 1265 unsigned Offset = ( BufPtr[OffsetField ] | 1266 (BufPtr[OffsetField+1] << 8) | 1267 (BufPtr[OffsetField+2] << 16) | 1268 (BufPtr[OffsetField+3] << 24)); 1269 unsigned Size = ( BufPtr[SizeField ] | 1270 (BufPtr[SizeField +1] << 8) | 1271 (BufPtr[SizeField +2] << 16) | 1272 (BufPtr[SizeField +3] << 24)); 1273 1274 // Verify that Offset+Size fits in the file. 1275 if (Offset+Size > unsigned(BufEnd-BufPtr)) 1276 return true; 1277 BufPtr += Offset; 1278 BufEnd = BufPtr+Size; 1279 return false; 1280 } 1281 1282 bool BitcodeReader::ParseBitcode() { 1283 TheModule = 0; 1284 1285 if (Buffer->getBufferSize() & 3) 1286 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1287 1288 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1289 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1290 1291 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1292 // The magic number is 0x0B17C0DE stored in little endian. 1293 if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && 1294 BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) 1295 if (SkipWrapperHeader(BufPtr, BufEnd)) 1296 return Error("Invalid bitcode wrapper header"); 1297 1298 Stream.init(BufPtr, BufEnd); 1299 1300 // Sniff for the signature. 1301 if (Stream.Read(8) != 'B' || 1302 Stream.Read(8) != 'C' || 1303 Stream.Read(4) != 0x0 || 1304 Stream.Read(4) != 0xC || 1305 Stream.Read(4) != 0xE || 1306 Stream.Read(4) != 0xD) 1307 return Error("Invalid bitcode signature"); 1308 1309 // We expect a number of well-defined blocks, though we don't necessarily 1310 // need to understand them all. 1311 while (!Stream.AtEndOfStream()) { 1312 unsigned Code = Stream.ReadCode(); 1313 1314 if (Code != bitc::ENTER_SUBBLOCK) 1315 return Error("Invalid record at top-level"); 1316 1317 unsigned BlockID = Stream.ReadSubBlockID(); 1318 1319 // We only know the MODULE subblock ID. 1320 switch (BlockID) { 1321 case bitc::BLOCKINFO_BLOCK_ID: 1322 if (Stream.ReadBlockInfoBlock()) 1323 return Error("Malformed BlockInfoBlock"); 1324 break; 1325 case bitc::MODULE_BLOCK_ID: 1326 if (ParseModule(Buffer->getBufferIdentifier())) 1327 return true; 1328 break; 1329 default: 1330 if (Stream.SkipBlock()) 1331 return Error("Malformed block record"); 1332 break; 1333 } 1334 } 1335 1336 return false; 1337 } 1338 1339 1340 /// ParseFunctionBody - Lazily parse the specified function body block. 1341 bool BitcodeReader::ParseFunctionBody(Function *F) { 1342 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1343 return Error("Malformed block record"); 1344 1345 unsigned ModuleValueListSize = ValueList.size(); 1346 1347 // Add all the function arguments to the value table. 1348 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1349 ValueList.push_back(I); 1350 1351 unsigned NextValueNo = ValueList.size(); 1352 BasicBlock *CurBB = 0; 1353 unsigned CurBBNo = 0; 1354 1355 // Read all the records. 1356 SmallVector<uint64_t, 64> Record; 1357 while (1) { 1358 unsigned Code = Stream.ReadCode(); 1359 if (Code == bitc::END_BLOCK) { 1360 if (Stream.ReadBlockEnd()) 1361 return Error("Error at end of function block"); 1362 break; 1363 } 1364 1365 if (Code == bitc::ENTER_SUBBLOCK) { 1366 switch (Stream.ReadSubBlockID()) { 1367 default: // Skip unknown content. 1368 if (Stream.SkipBlock()) 1369 return Error("Malformed block record"); 1370 break; 1371 case bitc::CONSTANTS_BLOCK_ID: 1372 if (ParseConstants()) return true; 1373 NextValueNo = ValueList.size(); 1374 break; 1375 case bitc::VALUE_SYMTAB_BLOCK_ID: 1376 if (ParseValueSymbolTable()) return true; 1377 break; 1378 } 1379 continue; 1380 } 1381 1382 if (Code == bitc::DEFINE_ABBREV) { 1383 Stream.ReadAbbrevRecord(); 1384 continue; 1385 } 1386 1387 // Read a record. 1388 Record.clear(); 1389 Instruction *I = 0; 1390 switch (Stream.ReadRecord(Code, Record)) { 1391 default: // Default behavior: reject 1392 return Error("Unknown instruction"); 1393 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1394 if (Record.size() < 1 || Record[0] == 0) 1395 return Error("Invalid DECLAREBLOCKS record"); 1396 // Create all the basic blocks for the function. 1397 FunctionBBs.resize(Record[0]); 1398 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1399 FunctionBBs[i] = BasicBlock::Create("", F); 1400 CurBB = FunctionBBs[0]; 1401 continue; 1402 1403 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1404 unsigned OpNum = 0; 1405 Value *LHS, *RHS; 1406 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1407 getValue(Record, OpNum, LHS->getType(), RHS) || 1408 OpNum+1 != Record.size()) 1409 return Error("Invalid BINOP record"); 1410 1411 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1412 if (Opc == -1) return Error("Invalid BINOP record"); 1413 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1414 break; 1415 } 1416 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1417 unsigned OpNum = 0; 1418 Value *Op; 1419 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1420 OpNum+2 != Record.size()) 1421 return Error("Invalid CAST record"); 1422 1423 const Type *ResTy = getTypeByID(Record[OpNum]); 1424 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1425 if (Opc == -1 || ResTy == 0) 1426 return Error("Invalid CAST record"); 1427 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1428 break; 1429 } 1430 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1431 unsigned OpNum = 0; 1432 Value *BasePtr; 1433 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1434 return Error("Invalid GEP record"); 1435 1436 SmallVector<Value*, 16> GEPIdx; 1437 while (OpNum != Record.size()) { 1438 Value *Op; 1439 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1440 return Error("Invalid GEP record"); 1441 GEPIdx.push_back(Op); 1442 } 1443 1444 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1445 break; 1446 } 1447 1448 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1449 // EXTRACTVAL: [opty, opval, n x indices] 1450 unsigned OpNum = 0; 1451 Value *Agg; 1452 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1453 return Error("Invalid EXTRACTVAL record"); 1454 1455 SmallVector<unsigned, 4> EXTRACTVALIdx; 1456 for (unsigned RecSize = Record.size(); 1457 OpNum != RecSize; ++OpNum) { 1458 uint64_t Index = Record[OpNum]; 1459 if ((unsigned)Index != Index) 1460 return Error("Invalid EXTRACTVAL index"); 1461 EXTRACTVALIdx.push_back((unsigned)Index); 1462 } 1463 1464 I = ExtractValueInst::Create(Agg, 1465 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1466 break; 1467 } 1468 1469 case bitc::FUNC_CODE_INST_INSERTVAL: { 1470 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1471 unsigned OpNum = 0; 1472 Value *Agg; 1473 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1474 return Error("Invalid INSERTVAL record"); 1475 Value *Val; 1476 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1477 return Error("Invalid INSERTVAL record"); 1478 1479 SmallVector<unsigned, 4> INSERTVALIdx; 1480 for (unsigned RecSize = Record.size(); 1481 OpNum != RecSize; ++OpNum) { 1482 uint64_t Index = Record[OpNum]; 1483 if ((unsigned)Index != Index) 1484 return Error("Invalid INSERTVAL index"); 1485 INSERTVALIdx.push_back((unsigned)Index); 1486 } 1487 1488 I = InsertValueInst::Create(Agg, Val, 1489 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1490 break; 1491 } 1492 1493 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1494 // obsolete form of select 1495 // handles select i1 ... in old bitcode 1496 unsigned OpNum = 0; 1497 Value *TrueVal, *FalseVal, *Cond; 1498 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1499 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1500 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1501 return Error("Invalid SELECT record"); 1502 1503 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1504 break; 1505 } 1506 1507 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1508 // new form of select 1509 // handles select i1 or select [N x i1] 1510 unsigned OpNum = 0; 1511 Value *TrueVal, *FalseVal, *Cond; 1512 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1513 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1514 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1515 return Error("Invalid SELECT record"); 1516 1517 // select condition can be either i1 or [N x i1] 1518 if (const VectorType* vector_type = 1519 dyn_cast<const VectorType>(Cond->getType())) { 1520 // expect <n x i1> 1521 if (vector_type->getElementType() != Type::Int1Ty) 1522 return Error("Invalid SELECT condition type"); 1523 } else { 1524 // expect i1 1525 if (Cond->getType() != Type::Int1Ty) 1526 return Error("Invalid SELECT condition type"); 1527 } 1528 1529 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1530 break; 1531 } 1532 1533 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1534 unsigned OpNum = 0; 1535 Value *Vec, *Idx; 1536 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1537 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1538 return Error("Invalid EXTRACTELT record"); 1539 I = new ExtractElementInst(Vec, Idx); 1540 break; 1541 } 1542 1543 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1544 unsigned OpNum = 0; 1545 Value *Vec, *Elt, *Idx; 1546 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1547 getValue(Record, OpNum, 1548 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1549 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1550 return Error("Invalid INSERTELT record"); 1551 I = InsertElementInst::Create(Vec, Elt, Idx); 1552 break; 1553 } 1554 1555 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1556 unsigned OpNum = 0; 1557 Value *Vec1, *Vec2, *Mask; 1558 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1559 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1560 return Error("Invalid SHUFFLEVEC record"); 1561 1562 const Type *MaskTy = 1563 VectorType::get(Type::Int32Ty, 1564 cast<VectorType>(Vec1->getType())->getNumElements()); 1565 1566 if (getValue(Record, OpNum, MaskTy, Mask)) 1567 return Error("Invalid SHUFFLEVEC record"); 1568 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1569 break; 1570 } 1571 1572 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1573 // VFCmp/VICmp 1574 // or old form of ICmp/FCmp returning bool 1575 unsigned OpNum = 0; 1576 Value *LHS, *RHS; 1577 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1578 getValue(Record, OpNum, LHS->getType(), RHS) || 1579 OpNum+1 != Record.size()) 1580 return Error("Invalid CMP record"); 1581 1582 if (LHS->getType()->isFloatingPoint()) 1583 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1584 else if (!isa<VectorType>(LHS->getType())) 1585 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1586 else if (LHS->getType()->isFPOrFPVector()) 1587 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1588 else 1589 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1590 break; 1591 } 1592 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1593 // Fcmp/ICmp returning bool or vector of bool 1594 unsigned OpNum = 0; 1595 Value *LHS, *RHS; 1596 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1597 getValue(Record, OpNum, LHS->getType(), RHS) || 1598 OpNum+1 != Record.size()) 1599 return Error("Invalid CMP2 record"); 1600 1601 if (LHS->getType()->isFPOrFPVector()) 1602 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1603 else 1604 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1605 break; 1606 } 1607 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1608 if (Record.size() != 2) 1609 return Error("Invalid GETRESULT record"); 1610 unsigned OpNum = 0; 1611 Value *Op; 1612 getValueTypePair(Record, OpNum, NextValueNo, Op); 1613 unsigned Index = Record[1]; 1614 I = ExtractValueInst::Create(Op, Index); 1615 break; 1616 } 1617 1618 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1619 { 1620 unsigned Size = Record.size(); 1621 if (Size == 0) { 1622 I = ReturnInst::Create(); 1623 break; 1624 } 1625 1626 unsigned OpNum = 0; 1627 SmallVector<Value *,4> Vs; 1628 do { 1629 Value *Op = NULL; 1630 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1631 return Error("Invalid RET record"); 1632 Vs.push_back(Op); 1633 } while(OpNum != Record.size()); 1634 1635 const Type *ReturnType = F->getReturnType(); 1636 if (Vs.size() > 1 || 1637 (isa<StructType>(ReturnType) && 1638 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1639 Value *RV = UndefValue::get(ReturnType); 1640 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1641 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1642 CurBB->getInstList().push_back(I); 1643 ValueList.AssignValue(I, NextValueNo++); 1644 RV = I; 1645 } 1646 I = ReturnInst::Create(RV); 1647 break; 1648 } 1649 1650 I = ReturnInst::Create(Vs[0]); 1651 break; 1652 } 1653 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1654 if (Record.size() != 1 && Record.size() != 3) 1655 return Error("Invalid BR record"); 1656 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1657 if (TrueDest == 0) 1658 return Error("Invalid BR record"); 1659 1660 if (Record.size() == 1) 1661 I = BranchInst::Create(TrueDest); 1662 else { 1663 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1664 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1665 if (FalseDest == 0 || Cond == 0) 1666 return Error("Invalid BR record"); 1667 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1668 } 1669 break; 1670 } 1671 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1672 if (Record.size() < 3 || (Record.size() & 1) == 0) 1673 return Error("Invalid SWITCH record"); 1674 const Type *OpTy = getTypeByID(Record[0]); 1675 Value *Cond = getFnValueByID(Record[1], OpTy); 1676 BasicBlock *Default = getBasicBlock(Record[2]); 1677 if (OpTy == 0 || Cond == 0 || Default == 0) 1678 return Error("Invalid SWITCH record"); 1679 unsigned NumCases = (Record.size()-3)/2; 1680 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1681 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1682 ConstantInt *CaseVal = 1683 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1684 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1685 if (CaseVal == 0 || DestBB == 0) { 1686 delete SI; 1687 return Error("Invalid SWITCH record!"); 1688 } 1689 SI->addCase(CaseVal, DestBB); 1690 } 1691 I = SI; 1692 break; 1693 } 1694 1695 case bitc::FUNC_CODE_INST_INVOKE: { 1696 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1697 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1698 PAListPtr PAL = getParamAttrs(Record[0]); 1699 unsigned CCInfo = Record[1]; 1700 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1701 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1702 1703 unsigned OpNum = 4; 1704 Value *Callee; 1705 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1706 return Error("Invalid INVOKE record"); 1707 1708 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1709 const FunctionType *FTy = !CalleeTy ? 0 : 1710 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1711 1712 // Check that the right number of fixed parameters are here. 1713 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1714 Record.size() < OpNum+FTy->getNumParams()) 1715 return Error("Invalid INVOKE record"); 1716 1717 SmallVector<Value*, 16> Ops; 1718 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1719 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1720 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1721 } 1722 1723 if (!FTy->isVarArg()) { 1724 if (Record.size() != OpNum) 1725 return Error("Invalid INVOKE record"); 1726 } else { 1727 // Read type/value pairs for varargs params. 1728 while (OpNum != Record.size()) { 1729 Value *Op; 1730 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1731 return Error("Invalid INVOKE record"); 1732 Ops.push_back(Op); 1733 } 1734 } 1735 1736 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1737 Ops.begin(), Ops.end()); 1738 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1739 cast<InvokeInst>(I)->setParamAttrs(PAL); 1740 break; 1741 } 1742 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1743 I = new UnwindInst(); 1744 break; 1745 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1746 I = new UnreachableInst(); 1747 break; 1748 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1749 if (Record.size() < 1 || ((Record.size()-1)&1)) 1750 return Error("Invalid PHI record"); 1751 const Type *Ty = getTypeByID(Record[0]); 1752 if (!Ty) return Error("Invalid PHI record"); 1753 1754 PHINode *PN = PHINode::Create(Ty); 1755 PN->reserveOperandSpace((Record.size()-1)/2); 1756 1757 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1758 Value *V = getFnValueByID(Record[1+i], Ty); 1759 BasicBlock *BB = getBasicBlock(Record[2+i]); 1760 if (!V || !BB) return Error("Invalid PHI record"); 1761 PN->addIncoming(V, BB); 1762 } 1763 I = PN; 1764 break; 1765 } 1766 1767 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1768 if (Record.size() < 3) 1769 return Error("Invalid MALLOC record"); 1770 const PointerType *Ty = 1771 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1772 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1773 unsigned Align = Record[2]; 1774 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1775 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1776 break; 1777 } 1778 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1779 unsigned OpNum = 0; 1780 Value *Op; 1781 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1782 OpNum != Record.size()) 1783 return Error("Invalid FREE record"); 1784 I = new FreeInst(Op); 1785 break; 1786 } 1787 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1788 if (Record.size() < 3) 1789 return Error("Invalid ALLOCA record"); 1790 const PointerType *Ty = 1791 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1792 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1793 unsigned Align = Record[2]; 1794 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1795 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1796 break; 1797 } 1798 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1799 unsigned OpNum = 0; 1800 Value *Op; 1801 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1802 OpNum+2 != Record.size()) 1803 return Error("Invalid LOAD record"); 1804 1805 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1806 break; 1807 } 1808 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1809 unsigned OpNum = 0; 1810 Value *Val, *Ptr; 1811 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1812 getValue(Record, OpNum, 1813 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1814 OpNum+2 != Record.size()) 1815 return Error("Invalid STORE record"); 1816 1817 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1818 break; 1819 } 1820 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1821 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1822 unsigned OpNum = 0; 1823 Value *Val, *Ptr; 1824 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1825 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1826 OpNum+2 != Record.size()) 1827 return Error("Invalid STORE record"); 1828 1829 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1830 break; 1831 } 1832 case bitc::FUNC_CODE_INST_CALL: { 1833 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1834 if (Record.size() < 3) 1835 return Error("Invalid CALL record"); 1836 1837 PAListPtr PAL = getParamAttrs(Record[0]); 1838 unsigned CCInfo = Record[1]; 1839 1840 unsigned OpNum = 2; 1841 Value *Callee; 1842 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1843 return Error("Invalid CALL record"); 1844 1845 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1846 const FunctionType *FTy = 0; 1847 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1848 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1849 return Error("Invalid CALL record"); 1850 1851 SmallVector<Value*, 16> Args; 1852 // Read the fixed params. 1853 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1854 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1855 Args.push_back(getBasicBlock(Record[OpNum])); 1856 else 1857 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1858 if (Args.back() == 0) return Error("Invalid CALL record"); 1859 } 1860 1861 // Read type/value pairs for varargs params. 1862 if (!FTy->isVarArg()) { 1863 if (OpNum != Record.size()) 1864 return Error("Invalid CALL record"); 1865 } else { 1866 while (OpNum != Record.size()) { 1867 Value *Op; 1868 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1869 return Error("Invalid CALL record"); 1870 Args.push_back(Op); 1871 } 1872 } 1873 1874 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1875 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1876 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1877 cast<CallInst>(I)->setParamAttrs(PAL); 1878 break; 1879 } 1880 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1881 if (Record.size() < 3) 1882 return Error("Invalid VAARG record"); 1883 const Type *OpTy = getTypeByID(Record[0]); 1884 Value *Op = getFnValueByID(Record[1], OpTy); 1885 const Type *ResTy = getTypeByID(Record[2]); 1886 if (!OpTy || !Op || !ResTy) 1887 return Error("Invalid VAARG record"); 1888 I = new VAArgInst(Op, ResTy); 1889 break; 1890 } 1891 } 1892 1893 // Add instruction to end of current BB. If there is no current BB, reject 1894 // this file. 1895 if (CurBB == 0) { 1896 delete I; 1897 return Error("Invalid instruction with no BB"); 1898 } 1899 CurBB->getInstList().push_back(I); 1900 1901 // If this was a terminator instruction, move to the next block. 1902 if (isa<TerminatorInst>(I)) { 1903 ++CurBBNo; 1904 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1905 } 1906 1907 // Non-void values get registered in the value table for future use. 1908 if (I && I->getType() != Type::VoidTy) 1909 ValueList.AssignValue(I, NextValueNo++); 1910 } 1911 1912 // Check the function list for unresolved values. 1913 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1914 if (A->getParent() == 0) { 1915 // We found at least one unresolved value. Nuke them all to avoid leaks. 1916 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1917 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1918 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1919 delete A; 1920 } 1921 } 1922 return Error("Never resolved value found in function!"); 1923 } 1924 } 1925 1926 // Trim the value list down to the size it was before we parsed this function. 1927 ValueList.shrinkTo(ModuleValueListSize); 1928 std::vector<BasicBlock*>().swap(FunctionBBs); 1929 1930 return false; 1931 } 1932 1933 //===----------------------------------------------------------------------===// 1934 // ModuleProvider implementation 1935 //===----------------------------------------------------------------------===// 1936 1937 1938 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1939 // If it already is material, ignore the request. 1940 if (!F->hasNotBeenReadFromBitcode()) return false; 1941 1942 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1943 DeferredFunctionInfo.find(F); 1944 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 1945 1946 // Move the bit stream to the saved position of the deferred function body and 1947 // restore the real linkage type for the function. 1948 Stream.JumpToBit(DFII->second.first); 1949 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 1950 1951 if (ParseFunctionBody(F)) { 1952 if (ErrInfo) *ErrInfo = ErrorString; 1953 return true; 1954 } 1955 1956 // Upgrade any old intrinsic calls in the function. 1957 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 1958 E = UpgradedIntrinsics.end(); I != E; ++I) { 1959 if (I->first != I->second) { 1960 for (Value::use_iterator UI = I->first->use_begin(), 1961 UE = I->first->use_end(); UI != UE; ) { 1962 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1963 UpgradeIntrinsicCall(CI, I->second); 1964 } 1965 } 1966 } 1967 1968 return false; 1969 } 1970 1971 void BitcodeReader::dematerializeFunction(Function *F) { 1972 // If this function isn't materialized, or if it is a proto, this is a noop. 1973 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 1974 return; 1975 1976 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 1977 1978 // Just forget the function body, we can remat it later. 1979 F->deleteBody(); 1980 F->setLinkage(GlobalValue::GhostLinkage); 1981 } 1982 1983 1984 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 1985 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 1986 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 1987 ++I) { 1988 Function *F = I->first; 1989 if (F->hasNotBeenReadFromBitcode() && 1990 materializeFunction(F, ErrInfo)) 1991 return 0; 1992 } 1993 1994 // Upgrade any intrinsic calls that slipped through (should not happen!) and 1995 // delete the old functions to clean up. We can't do this unless the entire 1996 // module is materialized because there could always be another function body 1997 // with calls to the old function. 1998 for (std::vector<std::pair<Function*, Function*> >::iterator I = 1999 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2000 if (I->first != I->second) { 2001 for (Value::use_iterator UI = I->first->use_begin(), 2002 UE = I->first->use_end(); UI != UE; ) { 2003 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2004 UpgradeIntrinsicCall(CI, I->second); 2005 } 2006 ValueList.replaceUsesOfWith(I->first, I->second); 2007 I->first->eraseFromParent(); 2008 } 2009 } 2010 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2011 2012 return TheModule; 2013 } 2014 2015 2016 /// This method is provided by the parent ModuleProvde class and overriden 2017 /// here. It simply releases the module from its provided and frees up our 2018 /// state. 2019 /// @brief Release our hold on the generated module 2020 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2021 // Since we're losing control of this Module, we must hand it back complete 2022 Module *M = ModuleProvider::releaseModule(ErrInfo); 2023 FreeState(); 2024 return M; 2025 } 2026 2027 2028 //===----------------------------------------------------------------------===// 2029 // External interface 2030 //===----------------------------------------------------------------------===// 2031 2032 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2033 /// 2034 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2035 std::string *ErrMsg) { 2036 BitcodeReader *R = new BitcodeReader(Buffer); 2037 if (R->ParseBitcode()) { 2038 if (ErrMsg) 2039 *ErrMsg = R->getErrorString(); 2040 2041 // Don't let the BitcodeReader dtor delete 'Buffer'. 2042 R->releaseMemoryBuffer(); 2043 delete R; 2044 return 0; 2045 } 2046 return R; 2047 } 2048 2049 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2050 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2051 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 2052 BitcodeReader *R; 2053 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 2054 if (!R) return 0; 2055 2056 // Read in the entire module. 2057 Module *M = R->materializeModule(ErrMsg); 2058 2059 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2060 // there was an error. 2061 R->releaseMemoryBuffer(); 2062 2063 // If there was no error, tell ModuleProvider not to delete it when its dtor 2064 // is run. 2065 if (M) 2066 M = R->releaseModule(ErrMsg); 2067 2068 delete R; 2069 return M; 2070 } 2071