xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 62e46f262158e2a6ea9c1c458f52633bb40a8590)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/AutoUpgrade.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GVMaterializer.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/IntrinsicsAArch64.h"
53 #include "llvm/IR/IntrinsicsARM.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/ModRef.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/TargetParser/Triple.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <optional>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 static cl::opt<bool> ExpandConstantExprs(
98     "expand-constant-exprs", cl::Hidden,
99     cl::desc(
100         "Expand constant expressions to instructions for testing purposes"));
101 
102 namespace {
103 
104 enum {
105   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
106 };
107 
108 } // end anonymous namespace
109 
110 static Error error(const Twine &Message) {
111   return make_error<StringError>(
112       Message, make_error_code(BitcodeError::CorruptedBitcode));
113 }
114 
115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
116   if (!Stream.canSkipToPos(4))
117     return createStringError(std::errc::illegal_byte_sequence,
118                              "file too small to contain bitcode header");
119   for (unsigned C : {'B', 'C'})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
127     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
128       if (Res.get() != C)
129         return createStringError(std::errc::illegal_byte_sequence,
130                                  "file doesn't start with bitcode header");
131     } else
132       return Res.takeError();
133   return Error::success();
134 }
135 
136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
137   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
138   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
139 
140   if (Buffer.getBufferSize() & 3)
141     return error("Invalid bitcode signature");
142 
143   // If we have a wrapper header, parse it and ignore the non-bc file contents.
144   // The magic number is 0x0B17C0DE stored in little endian.
145   if (isBitcodeWrapper(BufPtr, BufEnd))
146     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
147       return error("Invalid bitcode wrapper header");
148 
149   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
150   if (Error Err = hasInvalidBitcodeHeader(Stream))
151     return std::move(Err);
152 
153   return std::move(Stream);
154 }
155 
156 /// Convert a string from a record into an std::string, return true on failure.
157 template <typename StrTy>
158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
159                             StrTy &Result) {
160   if (Idx > Record.size())
161     return true;
162 
163   Result.append(Record.begin() + Idx, Record.end());
164   return false;
165 }
166 
167 // Strip all the TBAA attachment for the module.
168 static void stripTBAA(Module *M) {
169   for (auto &F : *M) {
170     if (F.isMaterializable())
171       continue;
172     for (auto &I : instructions(F))
173       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
174   }
175 }
176 
177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
178 /// "epoch" encoded in the bitcode, and return the producer name if any.
179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
180   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
181     return std::move(Err);
182 
183   // Read all the records.
184   SmallVector<uint64_t, 64> Record;
185 
186   std::string ProducerIdentification;
187 
188   while (true) {
189     BitstreamEntry Entry;
190     if (Error E = Stream.advance().moveInto(Entry))
191       return std::move(E);
192 
193     switch (Entry.Kind) {
194     default:
195     case BitstreamEntry::Error:
196       return error("Malformed block");
197     case BitstreamEntry::EndBlock:
198       return ProducerIdentification;
199     case BitstreamEntry::Record:
200       // The interesting case.
201       break;
202     }
203 
204     // Read a record.
205     Record.clear();
206     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
207     if (!MaybeBitCode)
208       return MaybeBitCode.takeError();
209     switch (MaybeBitCode.get()) {
210     default: // Default behavior: reject
211       return error("Invalid value");
212     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
213       convertToString(Record, 0, ProducerIdentification);
214       break;
215     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
216       unsigned epoch = (unsigned)Record[0];
217       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
218         return error(
219           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
220           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
221       }
222     }
223     }
224   }
225 }
226 
227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
228   // We expect a number of well-defined blocks, though we don't necessarily
229   // need to understand them all.
230   while (true) {
231     if (Stream.AtEndOfStream())
232       return "";
233 
234     BitstreamEntry Entry;
235     if (Error E = Stream.advance().moveInto(Entry))
236       return std::move(E);
237 
238     switch (Entry.Kind) {
239     case BitstreamEntry::EndBlock:
240     case BitstreamEntry::Error:
241       return error("Malformed block");
242 
243     case BitstreamEntry::SubBlock:
244       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
245         return readIdentificationBlock(Stream);
246 
247       // Ignore other sub-blocks.
248       if (Error Err = Stream.SkipBlock())
249         return std::move(Err);
250       continue;
251     case BitstreamEntry::Record:
252       if (Error E = Stream.skipRecord(Entry.ID).takeError())
253         return std::move(E);
254       continue;
255     }
256   }
257 }
258 
259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
260   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
261     return std::move(Err);
262 
263   SmallVector<uint64_t, 64> Record;
264   // Read all the records for this module.
265 
266   while (true) {
267     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
268     if (!MaybeEntry)
269       return MaybeEntry.takeError();
270     BitstreamEntry Entry = MaybeEntry.get();
271 
272     switch (Entry.Kind) {
273     case BitstreamEntry::SubBlock: // Handled for us already.
274     case BitstreamEntry::Error:
275       return error("Malformed block");
276     case BitstreamEntry::EndBlock:
277       return false;
278     case BitstreamEntry::Record:
279       // The interesting case.
280       break;
281     }
282 
283     // Read a record.
284     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
285     if (!MaybeRecord)
286       return MaybeRecord.takeError();
287     switch (MaybeRecord.get()) {
288     default:
289       break; // Default behavior, ignore unknown content.
290     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
291       std::string S;
292       if (convertToString(Record, 0, S))
293         return error("Invalid section name record");
294       // Check for the i386 and other (x86_64, ARM) conventions
295       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
296           S.find("__OBJC,__category") != std::string::npos)
297         return true;
298       break;
299     }
300     }
301     Record.clear();
302   }
303   llvm_unreachable("Exit infinite loop");
304 }
305 
306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
307   // We expect a number of well-defined blocks, though we don't necessarily
308   // need to understand them all.
309   while (true) {
310     BitstreamEntry Entry;
311     if (Error E = Stream.advance().moveInto(Entry))
312       return std::move(E);
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Error E = Stream.skipRecord(Entry.ID).takeError())
331         return std::move(E);
332       continue;
333     }
334   }
335 }
336 
337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339     return std::move(Err);
340 
341   SmallVector<uint64_t, 64> Record;
342 
343   std::string Triple;
344 
345   // Read all the records for this module.
346   while (true) {
347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348     if (!MaybeEntry)
349       return MaybeEntry.takeError();
350     BitstreamEntry Entry = MaybeEntry.get();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::SubBlock: // Handled for us already.
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return Triple;
358     case BitstreamEntry::Record:
359       // The interesting case.
360       break;
361     }
362 
363     // Read a record.
364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365     if (!MaybeRecord)
366       return MaybeRecord.takeError();
367     switch (MaybeRecord.get()) {
368     default: break;  // Default behavior, ignore unknown content.
369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370       std::string S;
371       if (convertToString(Record, 0, S))
372         return error("Invalid triple record");
373       Triple = S;
374       break;
375     }
376     }
377     Record.clear();
378   }
379   llvm_unreachable("Exit infinite loop");
380 }
381 
382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383   // We expect a number of well-defined blocks, though we don't necessarily
384   // need to understand them all.
385   while (true) {
386     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387     if (!MaybeEntry)
388       return MaybeEntry.takeError();
389     BitstreamEntry Entry = MaybeEntry.get();
390 
391     switch (Entry.Kind) {
392     case BitstreamEntry::Error:
393       return error("Malformed block");
394     case BitstreamEntry::EndBlock:
395       return "";
396 
397     case BitstreamEntry::SubBlock:
398       if (Entry.ID == bitc::MODULE_BLOCK_ID)
399         return readModuleTriple(Stream);
400 
401       // Ignore other sub-blocks.
402       if (Error Err = Stream.SkipBlock())
403         return std::move(Err);
404       continue;
405 
406     case BitstreamEntry::Record:
407       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408         continue;
409       else
410         return Skipped.takeError();
411     }
412   }
413 }
414 
415 namespace {
416 
417 class BitcodeReaderBase {
418 protected:
419   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420       : Stream(std::move(Stream)), Strtab(Strtab) {
421     this->Stream.setBlockInfo(&BlockInfo);
422   }
423 
424   BitstreamBlockInfo BlockInfo;
425   BitstreamCursor Stream;
426   StringRef Strtab;
427 
428   /// In version 2 of the bitcode we store names of global values and comdats in
429   /// a string table rather than in the VST.
430   bool UseStrtab = false;
431 
432   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433 
434   /// If this module uses a string table, pop the reference to the string table
435   /// and return the referenced string and the rest of the record. Otherwise
436   /// just return the record itself.
437   std::pair<StringRef, ArrayRef<uint64_t>>
438   readNameFromStrtab(ArrayRef<uint64_t> Record);
439 
440   Error readBlockInfo();
441 
442   // Contains an arbitrary and optional string identifying the bitcode producer
443   std::string ProducerIdentification;
444 
445   Error error(const Twine &Message);
446 };
447 
448 } // end anonymous namespace
449 
450 Error BitcodeReaderBase::error(const Twine &Message) {
451   std::string FullMsg = Message.str();
452   if (!ProducerIdentification.empty())
453     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454                LLVM_VERSION_STRING "')";
455   return ::error(FullMsg);
456 }
457 
458 Expected<unsigned>
459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460   if (Record.empty())
461     return error("Invalid version record");
462   unsigned ModuleVersion = Record[0];
463   if (ModuleVersion > 2)
464     return error("Invalid value");
465   UseStrtab = ModuleVersion >= 2;
466   return ModuleVersion;
467 }
468 
469 std::pair<StringRef, ArrayRef<uint64_t>>
470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471   if (!UseStrtab)
472     return {"", Record};
473   // Invalid reference. Let the caller complain about the record being empty.
474   if (Record[0] + Record[1] > Strtab.size())
475     return {"", {}};
476   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478 
479 namespace {
480 
481 /// This represents a constant expression or constant aggregate using a custom
482 /// structure internal to the bitcode reader. Later, this structure will be
483 /// expanded by materializeValue() either into a constant expression/aggregate,
484 /// or into an instruction sequence at the point of use. This allows us to
485 /// upgrade bitcode using constant expressions even if this kind of constant
486 /// expression is no longer supported.
487 class BitcodeConstant final : public Value,
488                               TrailingObjects<BitcodeConstant, unsigned> {
489   friend TrailingObjects;
490 
491   // Value subclass ID: Pick largest possible value to avoid any clashes.
492   static constexpr uint8_t SubclassID = 255;
493 
494 public:
495   // Opcodes used for non-expressions. This includes constant aggregates
496   // (struct, array, vector) that might need expansion, as well as non-leaf
497   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
498   // but still go through BitcodeConstant to avoid different uselist orders
499   // between the two cases.
500   static constexpr uint8_t ConstantStructOpcode = 255;
501   static constexpr uint8_t ConstantArrayOpcode = 254;
502   static constexpr uint8_t ConstantVectorOpcode = 253;
503   static constexpr uint8_t NoCFIOpcode = 252;
504   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
505   static constexpr uint8_t BlockAddressOpcode = 250;
506   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
507 
508   // Separate struct to make passing different number of parameters to
509   // BitcodeConstant::create() more convenient.
510   struct ExtraInfo {
511     uint8_t Opcode;
512     uint8_t Flags;
513     unsigned Extra;
514     Type *SrcElemTy;
515 
516     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
517               Type *SrcElemTy = nullptr)
518         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
519   };
520 
521   uint8_t Opcode;
522   uint8_t Flags;
523   unsigned NumOperands;
524   unsigned Extra;  // GEP inrange index or blockaddress BB id.
525   Type *SrcElemTy; // GEP source element type.
526 
527 private:
528   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
529       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
530         NumOperands(OpIDs.size()), Extra(Info.Extra),
531         SrcElemTy(Info.SrcElemTy) {
532     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
533                             getTrailingObjects<unsigned>());
534   }
535 
536   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
537 
538 public:
539   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
540                                  const ExtraInfo &Info,
541                                  ArrayRef<unsigned> OpIDs) {
542     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
543                            alignof(BitcodeConstant));
544     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
545   }
546 
547   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
548 
549   ArrayRef<unsigned> getOperandIDs() const {
550     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
551   }
552 
553   std::optional<unsigned> getInRangeIndex() const {
554     assert(Opcode == Instruction::GetElementPtr);
555     if (Extra == (unsigned)-1)
556       return std::nullopt;
557     return Extra;
558   }
559 
560   const char *getOpcodeName() const {
561     return Instruction::getOpcodeName(Opcode);
562   }
563 };
564 
565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
566   LLVMContext &Context;
567   Module *TheModule = nullptr;
568   // Next offset to start scanning for lazy parsing of function bodies.
569   uint64_t NextUnreadBit = 0;
570   // Last function offset found in the VST.
571   uint64_t LastFunctionBlockBit = 0;
572   bool SeenValueSymbolTable = false;
573   uint64_t VSTOffset = 0;
574 
575   std::vector<std::string> SectionTable;
576   std::vector<std::string> GCTable;
577 
578   std::vector<Type *> TypeList;
579   /// Track type IDs of contained types. Order is the same as the contained
580   /// types of a Type*. This is used during upgrades of typed pointer IR in
581   /// opaque pointer mode.
582   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
583   /// In some cases, we need to create a type ID for a type that was not
584   /// explicitly encoded in the bitcode, or we don't know about at the current
585   /// point. For example, a global may explicitly encode the value type ID, but
586   /// not have a type ID for the pointer to value type, for which we create a
587   /// virtual type ID instead. This map stores the new type ID that was created
588   /// for the given pair of Type and contained type ID.
589   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
590   DenseMap<Function *, unsigned> FunctionTypeIDs;
591   /// Allocator for BitcodeConstants. This should come before ValueList,
592   /// because the ValueList might hold ValueHandles to these constants, so
593   /// ValueList must be destroyed before Alloc.
594   BumpPtrAllocator Alloc;
595   BitcodeReaderValueList ValueList;
596   std::optional<MetadataLoader> MDLoader;
597   std::vector<Comdat *> ComdatList;
598   DenseSet<GlobalObject *> ImplicitComdatObjects;
599   SmallVector<Instruction *, 64> InstructionList;
600 
601   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
602   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
603 
604   struct FunctionOperandInfo {
605     Function *F;
606     unsigned PersonalityFn;
607     unsigned Prefix;
608     unsigned Prologue;
609   };
610   std::vector<FunctionOperandInfo> FunctionOperands;
611 
612   /// The set of attributes by index.  Index zero in the file is for null, and
613   /// is thus not represented here.  As such all indices are off by one.
614   std::vector<AttributeList> MAttributes;
615 
616   /// The set of attribute groups.
617   std::map<unsigned, AttributeList> MAttributeGroups;
618 
619   /// While parsing a function body, this is a list of the basic blocks for the
620   /// function.
621   std::vector<BasicBlock*> FunctionBBs;
622 
623   // When reading the module header, this list is populated with functions that
624   // have bodies later in the file.
625   std::vector<Function*> FunctionsWithBodies;
626 
627   // When intrinsic functions are encountered which require upgrading they are
628   // stored here with their replacement function.
629   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
630   UpdatedIntrinsicMap UpgradedIntrinsics;
631 
632   // Several operations happen after the module header has been read, but
633   // before function bodies are processed. This keeps track of whether
634   // we've done this yet.
635   bool SeenFirstFunctionBody = false;
636 
637   /// When function bodies are initially scanned, this map contains info about
638   /// where to find deferred function body in the stream.
639   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
640 
641   /// When Metadata block is initially scanned when parsing the module, we may
642   /// choose to defer parsing of the metadata. This vector contains info about
643   /// which Metadata blocks are deferred.
644   std::vector<uint64_t> DeferredMetadataInfo;
645 
646   /// These are basic blocks forward-referenced by block addresses.  They are
647   /// inserted lazily into functions when they're loaded.  The basic block ID is
648   /// its index into the vector.
649   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
650   std::deque<Function *> BasicBlockFwdRefQueue;
651 
652   /// These are Functions that contain BlockAddresses which refer a different
653   /// Function. When parsing the different Function, queue Functions that refer
654   /// to the different Function. Those Functions must be materialized in order
655   /// to resolve their BlockAddress constants before the different Function
656   /// gets moved into another Module.
657   std::vector<Function *> BackwardRefFunctions;
658 
659   /// Indicates that we are using a new encoding for instruction operands where
660   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
661   /// instruction number, for a more compact encoding.  Some instruction
662   /// operands are not relative to the instruction ID: basic block numbers, and
663   /// types. Once the old style function blocks have been phased out, we would
664   /// not need this flag.
665   bool UseRelativeIDs = false;
666 
667   /// True if all functions will be materialized, negating the need to process
668   /// (e.g.) blockaddress forward references.
669   bool WillMaterializeAllForwardRefs = false;
670 
671   bool StripDebugInfo = false;
672   TBAAVerifier TBAAVerifyHelper;
673 
674   std::vector<std::string> BundleTags;
675   SmallVector<SyncScope::ID, 8> SSIDs;
676 
677   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
678 
679 public:
680   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
681                 StringRef ProducerIdentification, LLVMContext &Context);
682 
683   Error materializeForwardReferencedFunctions();
684 
685   Error materialize(GlobalValue *GV) override;
686   Error materializeModule() override;
687   std::vector<StructType *> getIdentifiedStructTypes() const override;
688 
689   /// Main interface to parsing a bitcode buffer.
690   /// \returns true if an error occurred.
691   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
692                          bool IsImporting, ParserCallbacks Callbacks = {});
693 
694   static uint64_t decodeSignRotatedValue(uint64_t V);
695 
696   /// Materialize any deferred Metadata block.
697   Error materializeMetadata() override;
698 
699   void setStripDebugInfo() override;
700 
701 private:
702   std::vector<StructType *> IdentifiedStructTypes;
703   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704   StructType *createIdentifiedStructType(LLVMContext &Context);
705 
706   static constexpr unsigned InvalidTypeID = ~0u;
707 
708   Type *getTypeByID(unsigned ID);
709   Type *getPtrElementTypeByID(unsigned ID);
710   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712 
713   void callValueTypeCallback(Value *F, unsigned TypeID);
714   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
715   Expected<Constant *> getValueForInitializer(unsigned ID);
716 
717   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
718                         BasicBlock *ConstExprInsertBB) {
719     if (Ty && Ty->isMetadataTy())
720       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
721     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
722   }
723 
724   Metadata *getFnMetadataByID(unsigned ID) {
725     return MDLoader->getMetadataFwdRefOrLoad(ID);
726   }
727 
728   BasicBlock *getBasicBlock(unsigned ID) const {
729     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
730     return FunctionBBs[ID];
731   }
732 
733   AttributeList getAttributes(unsigned i) const {
734     if (i-1 < MAttributes.size())
735       return MAttributes[i-1];
736     return AttributeList();
737   }
738 
739   /// Read a value/type pair out of the specified record from slot 'Slot'.
740   /// Increment Slot past the number of slots used in the record. Return true on
741   /// failure.
742   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
743                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
744                         BasicBlock *ConstExprInsertBB) {
745     if (Slot == Record.size()) return true;
746     unsigned ValNo = (unsigned)Record[Slot++];
747     // Adjust the ValNo, if it was encoded relative to the InstNum.
748     if (UseRelativeIDs)
749       ValNo = InstNum - ValNo;
750     if (ValNo < InstNum) {
751       // If this is not a forward reference, just return the value we already
752       // have.
753       TypeID = ValueList.getTypeID(ValNo);
754       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
755       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
756              "Incorrect type ID stored for value");
757       return ResVal == nullptr;
758     }
759     if (Slot == Record.size())
760       return true;
761 
762     TypeID = (unsigned)Record[Slot++];
763     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
764                             ConstExprInsertBB);
765     return ResVal == nullptr;
766   }
767 
768   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
769   /// past the number of slots used by the value in the record. Return true if
770   /// there is an error.
771   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
772                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
773                 BasicBlock *ConstExprInsertBB) {
774     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
775       return true;
776     // All values currently take a single record slot.
777     ++Slot;
778     return false;
779   }
780 
781   /// Like popValue, but does not increment the Slot number.
782   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
783                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
784                 BasicBlock *ConstExprInsertBB) {
785     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
786     return ResVal == nullptr;
787   }
788 
789   /// Version of getValue that returns ResVal directly, or 0 if there is an
790   /// error.
791   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
792                   unsigned InstNum, Type *Ty, unsigned TyID,
793                   BasicBlock *ConstExprInsertBB) {
794     if (Slot == Record.size()) return nullptr;
795     unsigned ValNo = (unsigned)Record[Slot];
796     // Adjust the ValNo, if it was encoded relative to the InstNum.
797     if (UseRelativeIDs)
798       ValNo = InstNum - ValNo;
799     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
800   }
801 
802   /// Like getValue, but decodes signed VBRs.
803   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
804                         unsigned InstNum, Type *Ty, unsigned TyID,
805                         BasicBlock *ConstExprInsertBB) {
806     if (Slot == Record.size()) return nullptr;
807     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
808     // Adjust the ValNo, if it was encoded relative to the InstNum.
809     if (UseRelativeIDs)
810       ValNo = InstNum - ValNo;
811     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
812   }
813 
814   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
815   /// corresponding argument's pointee type. Also upgrades intrinsics that now
816   /// require an elementtype attribute.
817   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
818 
819   /// Converts alignment exponent (i.e. power of two (or zero)) to the
820   /// corresponding alignment to use. If alignment is too large, returns
821   /// a corresponding error code.
822   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
823   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
824   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825                     ParserCallbacks Callbacks = {});
826 
827   Error parseComdatRecord(ArrayRef<uint64_t> Record);
828   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831                                         ArrayRef<uint64_t> Record);
832 
833   Error parseAttributeBlock();
834   Error parseAttributeGroupBlock();
835   Error parseTypeTable();
836   Error parseTypeTableBody();
837   Error parseOperandBundleTags();
838   Error parseSyncScopeNames();
839 
840   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841                                 unsigned NameIndex, Triple &TT);
842   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843                                ArrayRef<uint64_t> Record);
844   Error parseValueSymbolTable(uint64_t Offset = 0);
845   Error parseGlobalValueSymbolTable();
846   Error parseConstants();
847   Error rememberAndSkipFunctionBodies();
848   Error rememberAndSkipFunctionBody();
849   /// Save the positions of the Metadata blocks and skip parsing the blocks.
850   Error rememberAndSkipMetadata();
851   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852   Error parseFunctionBody(Function *F);
853   Error globalCleanup();
854   Error resolveGlobalAndIndirectSymbolInits();
855   Error parseUseLists();
856   Error findFunctionInStream(
857       Function *F,
858       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859 
860   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861 };
862 
863 /// Class to manage reading and parsing function summary index bitcode
864 /// files/sections.
865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866   /// The module index built during parsing.
867   ModuleSummaryIndex &TheIndex;
868 
869   /// Indicates whether we have encountered a global value summary section
870   /// yet during parsing.
871   bool SeenGlobalValSummary = false;
872 
873   /// Indicates whether we have already parsed the VST, used for error checking.
874   bool SeenValueSymbolTable = false;
875 
876   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877   /// Used to enable on-demand parsing of the VST.
878   uint64_t VSTOffset = 0;
879 
880   // Map to save ValueId to ValueInfo association that was recorded in the
881   // ValueSymbolTable. It is used after the VST is parsed to convert
882   // call graph edges read from the function summary from referencing
883   // callees by their ValueId to using the ValueInfo instead, which is how
884   // they are recorded in the summary index being built.
885   // We save a GUID which refers to the same global as the ValueInfo, but
886   // ignoring the linkage, i.e. for values other than local linkage they are
887   // identical (this is the second tuple member).
888   // The third tuple member is the real GUID of the ValueInfo.
889   DenseMap<unsigned,
890            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
891       ValueIdToValueInfoMap;
892 
893   /// Map populated during module path string table parsing, from the
894   /// module ID to a string reference owned by the index's module
895   /// path string table, used to correlate with combined index
896   /// summary records.
897   DenseMap<uint64_t, StringRef> ModuleIdMap;
898 
899   /// Original source file name recorded in a bitcode record.
900   std::string SourceFileName;
901 
902   /// The string identifier given to this module by the client, normally the
903   /// path to the bitcode file.
904   StringRef ModulePath;
905 
906   /// For per-module summary indexes, the unique numerical identifier given to
907   /// this module by the client.
908   unsigned ModuleId;
909 
910   /// Callback to ask whether a symbol is the prevailing copy when invoked
911   /// during combined index building.
912   std::function<bool(GlobalValue::GUID)> IsPrevailing;
913 
914   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
915   /// ids from the lists in the callsite and alloc entries to the index.
916   std::vector<uint64_t> StackIds;
917 
918 public:
919   ModuleSummaryIndexBitcodeReader(
920       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
921       StringRef ModulePath, unsigned ModuleId,
922       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
923 
924   Error parseModule();
925 
926 private:
927   void setValueGUID(uint64_t ValueID, StringRef ValueName,
928                     GlobalValue::LinkageTypes Linkage,
929                     StringRef SourceFileName);
930   Error parseValueSymbolTable(
931       uint64_t Offset,
932       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
933   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
934   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
935                                                     bool IsOldProfileFormat,
936                                                     bool HasProfile,
937                                                     bool HasRelBF);
938   Error parseEntireSummary(unsigned ID);
939   Error parseModuleStringTable();
940   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
941   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
942                                        TypeIdCompatibleVtableInfo &TypeId);
943   std::vector<FunctionSummary::ParamAccess>
944   parseParamAccesses(ArrayRef<uint64_t> Record);
945 
946   template <bool AllowNullValueInfo = false>
947   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
948   getValueInfoFromValueId(unsigned ValueId);
949 
950   void addThisModule();
951   ModuleSummaryIndex::ModuleInfo *getThisModule();
952 };
953 
954 } // end anonymous namespace
955 
956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
957                                                     Error Err) {
958   if (Err) {
959     std::error_code EC;
960     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
961       EC = EIB.convertToErrorCode();
962       Ctx.emitError(EIB.message());
963     });
964     return EC;
965   }
966   return std::error_code();
967 }
968 
969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
970                              StringRef ProducerIdentification,
971                              LLVMContext &Context)
972     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
973       ValueList(this->Stream.SizeInBytes(),
974                 [this](unsigned ValID, BasicBlock *InsertBB) {
975                   return materializeValue(ValID, InsertBB);
976                 }) {
977   this->ProducerIdentification = std::string(ProducerIdentification);
978 }
979 
980 Error BitcodeReader::materializeForwardReferencedFunctions() {
981   if (WillMaterializeAllForwardRefs)
982     return Error::success();
983 
984   // Prevent recursion.
985   WillMaterializeAllForwardRefs = true;
986 
987   while (!BasicBlockFwdRefQueue.empty()) {
988     Function *F = BasicBlockFwdRefQueue.front();
989     BasicBlockFwdRefQueue.pop_front();
990     assert(F && "Expected valid function");
991     if (!BasicBlockFwdRefs.count(F))
992       // Already materialized.
993       continue;
994 
995     // Check for a function that isn't materializable to prevent an infinite
996     // loop.  When parsing a blockaddress stored in a global variable, there
997     // isn't a trivial way to check if a function will have a body without a
998     // linear search through FunctionsWithBodies, so just check it here.
999     if (!F->isMaterializable())
1000       return error("Never resolved function from blockaddress");
1001 
1002     // Try to materialize F.
1003     if (Error Err = materialize(F))
1004       return Err;
1005   }
1006   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1007 
1008   for (Function *F : BackwardRefFunctions)
1009     if (Error Err = materialize(F))
1010       return Err;
1011   BackwardRefFunctions.clear();
1012 
1013   // Reset state.
1014   WillMaterializeAllForwardRefs = false;
1015   return Error::success();
1016 }
1017 
1018 //===----------------------------------------------------------------------===//
1019 //  Helper functions to implement forward reference resolution, etc.
1020 //===----------------------------------------------------------------------===//
1021 
1022 static bool hasImplicitComdat(size_t Val) {
1023   switch (Val) {
1024   default:
1025     return false;
1026   case 1:  // Old WeakAnyLinkage
1027   case 4:  // Old LinkOnceAnyLinkage
1028   case 10: // Old WeakODRLinkage
1029   case 11: // Old LinkOnceODRLinkage
1030     return true;
1031   }
1032 }
1033 
1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1035   switch (Val) {
1036   default: // Map unknown/new linkages to external
1037   case 0:
1038     return GlobalValue::ExternalLinkage;
1039   case 2:
1040     return GlobalValue::AppendingLinkage;
1041   case 3:
1042     return GlobalValue::InternalLinkage;
1043   case 5:
1044     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1045   case 6:
1046     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1047   case 7:
1048     return GlobalValue::ExternalWeakLinkage;
1049   case 8:
1050     return GlobalValue::CommonLinkage;
1051   case 9:
1052     return GlobalValue::PrivateLinkage;
1053   case 12:
1054     return GlobalValue::AvailableExternallyLinkage;
1055   case 13:
1056     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1057   case 14:
1058     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1059   case 15:
1060     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1061   case 1: // Old value with implicit comdat.
1062   case 16:
1063     return GlobalValue::WeakAnyLinkage;
1064   case 10: // Old value with implicit comdat.
1065   case 17:
1066     return GlobalValue::WeakODRLinkage;
1067   case 4: // Old value with implicit comdat.
1068   case 18:
1069     return GlobalValue::LinkOnceAnyLinkage;
1070   case 11: // Old value with implicit comdat.
1071   case 19:
1072     return GlobalValue::LinkOnceODRLinkage;
1073   }
1074 }
1075 
1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1077   FunctionSummary::FFlags Flags;
1078   Flags.ReadNone = RawFlags & 0x1;
1079   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1080   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1081   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1082   Flags.NoInline = (RawFlags >> 4) & 0x1;
1083   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1084   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1085   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1086   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1087   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1088   return Flags;
1089 }
1090 
1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1092 //
1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1094 // visibility: [8, 10).
1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1096                                                             uint64_t Version) {
1097   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1098   // like getDecodedLinkage() above. Any future change to the linkage enum and
1099   // to getDecodedLinkage() will need to be taken into account here as above.
1100   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1101   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1102   RawFlags = RawFlags >> 4;
1103   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1104   // The Live flag wasn't introduced until version 3. For dead stripping
1105   // to work correctly on earlier versions, we must conservatively treat all
1106   // values as live.
1107   bool Live = (RawFlags & 0x2) || Version < 3;
1108   bool Local = (RawFlags & 0x4);
1109   bool AutoHide = (RawFlags & 0x8);
1110 
1111   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1112                                      Live, Local, AutoHide);
1113 }
1114 
1115 // Decode the flags for GlobalVariable in the summary
1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1117   return GlobalVarSummary::GVarFlags(
1118       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1119       (RawFlags & 0x4) ? true : false,
1120       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1121 }
1122 
1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1124   switch (Val) {
1125   default: // Map unknown visibilities to default.
1126   case 0: return GlobalValue::DefaultVisibility;
1127   case 1: return GlobalValue::HiddenVisibility;
1128   case 2: return GlobalValue::ProtectedVisibility;
1129   }
1130 }
1131 
1132 static GlobalValue::DLLStorageClassTypes
1133 getDecodedDLLStorageClass(unsigned Val) {
1134   switch (Val) {
1135   default: // Map unknown values to default.
1136   case 0: return GlobalValue::DefaultStorageClass;
1137   case 1: return GlobalValue::DLLImportStorageClass;
1138   case 2: return GlobalValue::DLLExportStorageClass;
1139   }
1140 }
1141 
1142 static bool getDecodedDSOLocal(unsigned Val) {
1143   switch(Val) {
1144   default: // Map unknown values to preemptable.
1145   case 0:  return false;
1146   case 1:  return true;
1147   }
1148 }
1149 
1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1151   switch (Val) {
1152     case 0: return GlobalVariable::NotThreadLocal;
1153     default: // Map unknown non-zero value to general dynamic.
1154     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1155     case 2: return GlobalVariable::LocalDynamicTLSModel;
1156     case 3: return GlobalVariable::InitialExecTLSModel;
1157     case 4: return GlobalVariable::LocalExecTLSModel;
1158   }
1159 }
1160 
1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1162   switch (Val) {
1163     default: // Map unknown to UnnamedAddr::None.
1164     case 0: return GlobalVariable::UnnamedAddr::None;
1165     case 1: return GlobalVariable::UnnamedAddr::Global;
1166     case 2: return GlobalVariable::UnnamedAddr::Local;
1167   }
1168 }
1169 
1170 static int getDecodedCastOpcode(unsigned Val) {
1171   switch (Val) {
1172   default: return -1;
1173   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1174   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1175   case bitc::CAST_SEXT    : return Instruction::SExt;
1176   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1177   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1178   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1179   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1180   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1181   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1182   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1183   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1184   case bitc::CAST_BITCAST : return Instruction::BitCast;
1185   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1186   }
1187 }
1188 
1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1190   bool IsFP = Ty->isFPOrFPVectorTy();
1191   // UnOps are only valid for int/fp or vector of int/fp types
1192   if (!IsFP && !Ty->isIntOrIntVectorTy())
1193     return -1;
1194 
1195   switch (Val) {
1196   default:
1197     return -1;
1198   case bitc::UNOP_FNEG:
1199     return IsFP ? Instruction::FNeg : -1;
1200   }
1201 }
1202 
1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1204   bool IsFP = Ty->isFPOrFPVectorTy();
1205   // BinOps are only valid for int/fp or vector of int/fp types
1206   if (!IsFP && !Ty->isIntOrIntVectorTy())
1207     return -1;
1208 
1209   switch (Val) {
1210   default:
1211     return -1;
1212   case bitc::BINOP_ADD:
1213     return IsFP ? Instruction::FAdd : Instruction::Add;
1214   case bitc::BINOP_SUB:
1215     return IsFP ? Instruction::FSub : Instruction::Sub;
1216   case bitc::BINOP_MUL:
1217     return IsFP ? Instruction::FMul : Instruction::Mul;
1218   case bitc::BINOP_UDIV:
1219     return IsFP ? -1 : Instruction::UDiv;
1220   case bitc::BINOP_SDIV:
1221     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1222   case bitc::BINOP_UREM:
1223     return IsFP ? -1 : Instruction::URem;
1224   case bitc::BINOP_SREM:
1225     return IsFP ? Instruction::FRem : Instruction::SRem;
1226   case bitc::BINOP_SHL:
1227     return IsFP ? -1 : Instruction::Shl;
1228   case bitc::BINOP_LSHR:
1229     return IsFP ? -1 : Instruction::LShr;
1230   case bitc::BINOP_ASHR:
1231     return IsFP ? -1 : Instruction::AShr;
1232   case bitc::BINOP_AND:
1233     return IsFP ? -1 : Instruction::And;
1234   case bitc::BINOP_OR:
1235     return IsFP ? -1 : Instruction::Or;
1236   case bitc::BINOP_XOR:
1237     return IsFP ? -1 : Instruction::Xor;
1238   }
1239 }
1240 
1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1242   switch (Val) {
1243   default: return AtomicRMWInst::BAD_BINOP;
1244   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1245   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1246   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1247   case bitc::RMW_AND: return AtomicRMWInst::And;
1248   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1249   case bitc::RMW_OR: return AtomicRMWInst::Or;
1250   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1251   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1252   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1253   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1254   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1255   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1256   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1257   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1258   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1259   case bitc::RMW_UINC_WRAP:
1260     return AtomicRMWInst::UIncWrap;
1261   case bitc::RMW_UDEC_WRAP:
1262     return AtomicRMWInst::UDecWrap;
1263   }
1264 }
1265 
1266 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1267   switch (Val) {
1268   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1269   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1270   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1271   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1272   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1273   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1274   default: // Map unknown orderings to sequentially-consistent.
1275   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1276   }
1277 }
1278 
1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1280   switch (Val) {
1281   default: // Map unknown selection kinds to any.
1282   case bitc::COMDAT_SELECTION_KIND_ANY:
1283     return Comdat::Any;
1284   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1285     return Comdat::ExactMatch;
1286   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1287     return Comdat::Largest;
1288   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1289     return Comdat::NoDeduplicate;
1290   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1291     return Comdat::SameSize;
1292   }
1293 }
1294 
1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1296   FastMathFlags FMF;
1297   if (0 != (Val & bitc::UnsafeAlgebra))
1298     FMF.setFast();
1299   if (0 != (Val & bitc::AllowReassoc))
1300     FMF.setAllowReassoc();
1301   if (0 != (Val & bitc::NoNaNs))
1302     FMF.setNoNaNs();
1303   if (0 != (Val & bitc::NoInfs))
1304     FMF.setNoInfs();
1305   if (0 != (Val & bitc::NoSignedZeros))
1306     FMF.setNoSignedZeros();
1307   if (0 != (Val & bitc::AllowReciprocal))
1308     FMF.setAllowReciprocal();
1309   if (0 != (Val & bitc::AllowContract))
1310     FMF.setAllowContract(true);
1311   if (0 != (Val & bitc::ApproxFunc))
1312     FMF.setApproxFunc();
1313   return FMF;
1314 }
1315 
1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1317   // A GlobalValue with local linkage cannot have a DLL storage class.
1318   if (GV->hasLocalLinkage())
1319     return;
1320   switch (Val) {
1321   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1322   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1323   }
1324 }
1325 
1326 Type *BitcodeReader::getTypeByID(unsigned ID) {
1327   // The type table size is always specified correctly.
1328   if (ID >= TypeList.size())
1329     return nullptr;
1330 
1331   if (Type *Ty = TypeList[ID])
1332     return Ty;
1333 
1334   // If we have a forward reference, the only possible case is when it is to a
1335   // named struct.  Just create a placeholder for now.
1336   return TypeList[ID] = createIdentifiedStructType(Context);
1337 }
1338 
1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1340   auto It = ContainedTypeIDs.find(ID);
1341   if (It == ContainedTypeIDs.end())
1342     return InvalidTypeID;
1343 
1344   if (Idx >= It->second.size())
1345     return InvalidTypeID;
1346 
1347   return It->second[Idx];
1348 }
1349 
1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1351   if (ID >= TypeList.size())
1352     return nullptr;
1353 
1354   Type *Ty = TypeList[ID];
1355   if (!Ty->isPointerTy())
1356     return nullptr;
1357 
1358   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1359   if (!ElemTy)
1360     return nullptr;
1361 
1362   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1363          "Incorrect element type");
1364   return ElemTy;
1365 }
1366 
1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1368                                          ArrayRef<unsigned> ChildTypeIDs) {
1369   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1370   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1371   auto It = VirtualTypeIDs.find(CacheKey);
1372   if (It != VirtualTypeIDs.end()) {
1373     // The cmpxchg return value is the only place we need more than one
1374     // contained type ID, however the second one will always be the same (i1),
1375     // so we don't need to include it in the cache key. This asserts that the
1376     // contained types are indeed as expected and there are no collisions.
1377     assert((ChildTypeIDs.empty() ||
1378             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1379            "Incorrect cached contained type IDs");
1380     return It->second;
1381   }
1382 
1383 #ifndef NDEBUG
1384   if (!Ty->isOpaquePointerTy()) {
1385     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1386            "Wrong number of contained types");
1387     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1388       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1389              "Incorrect contained type ID");
1390     }
1391   }
1392 #endif
1393 
1394   unsigned TypeID = TypeList.size();
1395   TypeList.push_back(Ty);
1396   if (!ChildTypeIDs.empty())
1397     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1398   VirtualTypeIDs.insert({CacheKey, TypeID});
1399   return TypeID;
1400 }
1401 
1402 static bool isConstExprSupported(const BitcodeConstant *BC) {
1403   uint8_t Opcode = BC->Opcode;
1404 
1405   // These are not real constant expressions, always consider them supported.
1406   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1407     return true;
1408 
1409   // If -expand-constant-exprs is set, we want to consider all expressions
1410   // as unsupported.
1411   if (ExpandConstantExprs)
1412     return false;
1413 
1414   if (Instruction::isBinaryOp(Opcode))
1415     return ConstantExpr::isSupportedBinOp(Opcode);
1416 
1417   if (Opcode == Instruction::GetElementPtr)
1418     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1419 
1420   return Opcode != Instruction::FNeg;
1421 }
1422 
1423 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1424                                                   BasicBlock *InsertBB) {
1425   // Quickly handle the case where there is no BitcodeConstant to resolve.
1426   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1427       !isa<BitcodeConstant>(ValueList[StartValID]))
1428     return ValueList[StartValID];
1429 
1430   SmallDenseMap<unsigned, Value *> MaterializedValues;
1431   SmallVector<unsigned> Worklist;
1432   Worklist.push_back(StartValID);
1433   while (!Worklist.empty()) {
1434     unsigned ValID = Worklist.back();
1435     if (MaterializedValues.count(ValID)) {
1436       // Duplicate expression that was already handled.
1437       Worklist.pop_back();
1438       continue;
1439     }
1440 
1441     if (ValID >= ValueList.size() || !ValueList[ValID])
1442       return error("Invalid value ID");
1443 
1444     Value *V = ValueList[ValID];
1445     auto *BC = dyn_cast<BitcodeConstant>(V);
1446     if (!BC) {
1447       MaterializedValues.insert({ValID, V});
1448       Worklist.pop_back();
1449       continue;
1450     }
1451 
1452     // Iterate in reverse, so values will get popped from the worklist in
1453     // expected order.
1454     SmallVector<Value *> Ops;
1455     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1456       auto It = MaterializedValues.find(OpID);
1457       if (It != MaterializedValues.end())
1458         Ops.push_back(It->second);
1459       else
1460         Worklist.push_back(OpID);
1461     }
1462 
1463     // Some expressions have not been resolved yet, handle them first and then
1464     // revisit this one.
1465     if (Ops.size() != BC->getOperandIDs().size())
1466       continue;
1467     std::reverse(Ops.begin(), Ops.end());
1468 
1469     SmallVector<Constant *> ConstOps;
1470     for (Value *Op : Ops)
1471       if (auto *C = dyn_cast<Constant>(Op))
1472         ConstOps.push_back(C);
1473 
1474     // Materialize as constant expression if possible.
1475     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1476       Constant *C;
1477       if (Instruction::isCast(BC->Opcode)) {
1478         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1479         if (!C)
1480           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1481       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1482         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1483       } else {
1484         switch (BC->Opcode) {
1485         case BitcodeConstant::NoCFIOpcode: {
1486           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1487           if (!GV)
1488             return error("no_cfi operand must be GlobalValue");
1489           C = NoCFIValue::get(GV);
1490           break;
1491         }
1492         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1493           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1494           if (!GV)
1495             return error("dso_local operand must be GlobalValue");
1496           C = DSOLocalEquivalent::get(GV);
1497           break;
1498         }
1499         case BitcodeConstant::BlockAddressOpcode: {
1500           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1501           if (!Fn)
1502             return error("blockaddress operand must be a function");
1503 
1504           // If the function is already parsed we can insert the block address
1505           // right away.
1506           BasicBlock *BB;
1507           unsigned BBID = BC->Extra;
1508           if (!BBID)
1509             // Invalid reference to entry block.
1510             return error("Invalid ID");
1511           if (!Fn->empty()) {
1512             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1513             for (size_t I = 0, E = BBID; I != E; ++I) {
1514               if (BBI == BBE)
1515                 return error("Invalid ID");
1516               ++BBI;
1517             }
1518             BB = &*BBI;
1519           } else {
1520             // Otherwise insert a placeholder and remember it so it can be
1521             // inserted when the function is parsed.
1522             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1523             if (FwdBBs.empty())
1524               BasicBlockFwdRefQueue.push_back(Fn);
1525             if (FwdBBs.size() < BBID + 1)
1526               FwdBBs.resize(BBID + 1);
1527             if (!FwdBBs[BBID])
1528               FwdBBs[BBID] = BasicBlock::Create(Context);
1529             BB = FwdBBs[BBID];
1530           }
1531           C = BlockAddress::get(Fn, BB);
1532           break;
1533         }
1534         case BitcodeConstant::ConstantStructOpcode:
1535           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1536           break;
1537         case BitcodeConstant::ConstantArrayOpcode:
1538           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1539           break;
1540         case BitcodeConstant::ConstantVectorOpcode:
1541           C = ConstantVector::get(ConstOps);
1542           break;
1543         case Instruction::ICmp:
1544         case Instruction::FCmp:
1545           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1546           break;
1547         case Instruction::GetElementPtr:
1548           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1549                                              ArrayRef(ConstOps).drop_front(),
1550                                              BC->Flags, BC->getInRangeIndex());
1551           break;
1552         case Instruction::Select:
1553           C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1554           break;
1555         case Instruction::ExtractElement:
1556           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1557           break;
1558         case Instruction::InsertElement:
1559           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1560                                              ConstOps[2]);
1561           break;
1562         case Instruction::ShuffleVector: {
1563           SmallVector<int, 16> Mask;
1564           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1565           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1566           break;
1567         }
1568         default:
1569           llvm_unreachable("Unhandled bitcode constant");
1570         }
1571       }
1572 
1573       // Cache resolved constant.
1574       ValueList.replaceValueWithoutRAUW(ValID, C);
1575       MaterializedValues.insert({ValID, C});
1576       Worklist.pop_back();
1577       continue;
1578     }
1579 
1580     if (!InsertBB)
1581       return error(Twine("Value referenced by initializer is an unsupported "
1582                          "constant expression of type ") +
1583                    BC->getOpcodeName());
1584 
1585     // Materialize as instructions if necessary.
1586     Instruction *I;
1587     if (Instruction::isCast(BC->Opcode)) {
1588       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1589                            BC->getType(), "constexpr", InsertBB);
1590     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1591       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1592                                 "constexpr", InsertBB);
1593     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1594       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1595                                  Ops[1], "constexpr", InsertBB);
1596       if (isa<OverflowingBinaryOperator>(I)) {
1597         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1598           I->setHasNoSignedWrap();
1599         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1600           I->setHasNoUnsignedWrap();
1601       }
1602       if (isa<PossiblyExactOperator>(I) &&
1603           (BC->Flags & PossiblyExactOperator::IsExact))
1604         I->setIsExact();
1605     } else {
1606       switch (BC->Opcode) {
1607       case BitcodeConstant::ConstantVectorOpcode: {
1608         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1609         Value *V = PoisonValue::get(BC->getType());
1610         for (auto Pair : enumerate(Ops)) {
1611           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1612           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1613                                         InsertBB);
1614         }
1615         I = cast<Instruction>(V);
1616         break;
1617       }
1618       case BitcodeConstant::ConstantStructOpcode:
1619       case BitcodeConstant::ConstantArrayOpcode: {
1620         Value *V = PoisonValue::get(BC->getType());
1621         for (auto Pair : enumerate(Ops))
1622           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1623                                       "constexpr.ins", InsertBB);
1624         I = cast<Instruction>(V);
1625         break;
1626       }
1627       case Instruction::ICmp:
1628       case Instruction::FCmp:
1629         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1630                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1631                             "constexpr", InsertBB);
1632         break;
1633       case Instruction::GetElementPtr:
1634         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1635                                       ArrayRef(Ops).drop_front(), "constexpr",
1636                                       InsertBB);
1637         if (BC->Flags)
1638           cast<GetElementPtrInst>(I)->setIsInBounds();
1639         break;
1640       case Instruction::Select:
1641         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1642         break;
1643       case Instruction::ExtractElement:
1644         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1645         break;
1646       case Instruction::InsertElement:
1647         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1648                                       InsertBB);
1649         break;
1650       case Instruction::ShuffleVector:
1651         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1652                                   InsertBB);
1653         break;
1654       default:
1655         llvm_unreachable("Unhandled bitcode constant");
1656       }
1657     }
1658 
1659     MaterializedValues.insert({ValID, I});
1660     Worklist.pop_back();
1661   }
1662 
1663   return MaterializedValues[StartValID];
1664 }
1665 
1666 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1667   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1668   if (!MaybeV)
1669     return MaybeV.takeError();
1670 
1671   // Result must be Constant if InsertBB is nullptr.
1672   return cast<Constant>(MaybeV.get());
1673 }
1674 
1675 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1676                                                       StringRef Name) {
1677   auto *Ret = StructType::create(Context, Name);
1678   IdentifiedStructTypes.push_back(Ret);
1679   return Ret;
1680 }
1681 
1682 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1683   auto *Ret = StructType::create(Context);
1684   IdentifiedStructTypes.push_back(Ret);
1685   return Ret;
1686 }
1687 
1688 //===----------------------------------------------------------------------===//
1689 //  Functions for parsing blocks from the bitcode file
1690 //===----------------------------------------------------------------------===//
1691 
1692 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1693   switch (Val) {
1694   case Attribute::EndAttrKinds:
1695   case Attribute::EmptyKey:
1696   case Attribute::TombstoneKey:
1697     llvm_unreachable("Synthetic enumerators which should never get here");
1698 
1699   case Attribute::None:            return 0;
1700   case Attribute::ZExt:            return 1 << 0;
1701   case Attribute::SExt:            return 1 << 1;
1702   case Attribute::NoReturn:        return 1 << 2;
1703   case Attribute::InReg:           return 1 << 3;
1704   case Attribute::StructRet:       return 1 << 4;
1705   case Attribute::NoUnwind:        return 1 << 5;
1706   case Attribute::NoAlias:         return 1 << 6;
1707   case Attribute::ByVal:           return 1 << 7;
1708   case Attribute::Nest:            return 1 << 8;
1709   case Attribute::ReadNone:        return 1 << 9;
1710   case Attribute::ReadOnly:        return 1 << 10;
1711   case Attribute::NoInline:        return 1 << 11;
1712   case Attribute::AlwaysInline:    return 1 << 12;
1713   case Attribute::OptimizeForSize: return 1 << 13;
1714   case Attribute::StackProtect:    return 1 << 14;
1715   case Attribute::StackProtectReq: return 1 << 15;
1716   case Attribute::Alignment:       return 31 << 16;
1717   case Attribute::NoCapture:       return 1 << 21;
1718   case Attribute::NoRedZone:       return 1 << 22;
1719   case Attribute::NoImplicitFloat: return 1 << 23;
1720   case Attribute::Naked:           return 1 << 24;
1721   case Attribute::InlineHint:      return 1 << 25;
1722   case Attribute::StackAlignment:  return 7 << 26;
1723   case Attribute::ReturnsTwice:    return 1 << 29;
1724   case Attribute::UWTable:         return 1 << 30;
1725   case Attribute::NonLazyBind:     return 1U << 31;
1726   case Attribute::SanitizeAddress: return 1ULL << 32;
1727   case Attribute::MinSize:         return 1ULL << 33;
1728   case Attribute::NoDuplicate:     return 1ULL << 34;
1729   case Attribute::StackProtectStrong: return 1ULL << 35;
1730   case Attribute::SanitizeThread:  return 1ULL << 36;
1731   case Attribute::SanitizeMemory:  return 1ULL << 37;
1732   case Attribute::NoBuiltin:       return 1ULL << 38;
1733   case Attribute::Returned:        return 1ULL << 39;
1734   case Attribute::Cold:            return 1ULL << 40;
1735   case Attribute::Builtin:         return 1ULL << 41;
1736   case Attribute::OptimizeNone:    return 1ULL << 42;
1737   case Attribute::InAlloca:        return 1ULL << 43;
1738   case Attribute::NonNull:         return 1ULL << 44;
1739   case Attribute::JumpTable:       return 1ULL << 45;
1740   case Attribute::Convergent:      return 1ULL << 46;
1741   case Attribute::SafeStack:       return 1ULL << 47;
1742   case Attribute::NoRecurse:       return 1ULL << 48;
1743   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1744   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1745   case Attribute::SwiftSelf:       return 1ULL << 51;
1746   case Attribute::SwiftError:      return 1ULL << 52;
1747   case Attribute::WriteOnly:       return 1ULL << 53;
1748   case Attribute::Speculatable:    return 1ULL << 54;
1749   case Attribute::StrictFP:        return 1ULL << 55;
1750   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1751   case Attribute::NoCfCheck:       return 1ULL << 57;
1752   case Attribute::OptForFuzzing:   return 1ULL << 58;
1753   case Attribute::ShadowCallStack: return 1ULL << 59;
1754   case Attribute::SpeculativeLoadHardening:
1755     return 1ULL << 60;
1756   case Attribute::ImmArg:
1757     return 1ULL << 61;
1758   case Attribute::WillReturn:
1759     return 1ULL << 62;
1760   case Attribute::NoFree:
1761     return 1ULL << 63;
1762   default:
1763     // Other attributes are not supported in the raw format,
1764     // as we ran out of space.
1765     return 0;
1766   }
1767   llvm_unreachable("Unsupported attribute type");
1768 }
1769 
1770 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1771   if (!Val) return;
1772 
1773   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1774        I = Attribute::AttrKind(I + 1)) {
1775     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1776       if (I == Attribute::Alignment)
1777         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1778       else if (I == Attribute::StackAlignment)
1779         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1780       else if (Attribute::isTypeAttrKind(I))
1781         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1782       else
1783         B.addAttribute(I);
1784     }
1785   }
1786 }
1787 
1788 /// This fills an AttrBuilder object with the LLVM attributes that have
1789 /// been decoded from the given integer. This function must stay in sync with
1790 /// 'encodeLLVMAttributesForBitcode'.
1791 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1792                                            uint64_t EncodedAttrs,
1793                                            uint64_t AttrIdx) {
1794   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1795   // the bits above 31 down by 11 bits.
1796   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1797   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1798          "Alignment must be a power of two.");
1799 
1800   if (Alignment)
1801     B.addAlignmentAttr(Alignment);
1802 
1803   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1804                    (EncodedAttrs & 0xffff);
1805 
1806   if (AttrIdx == AttributeList::FunctionIndex) {
1807     // Upgrade old memory attributes.
1808     MemoryEffects ME = MemoryEffects::unknown();
1809     if (Attrs & (1ULL << 9)) {
1810       // ReadNone
1811       Attrs &= ~(1ULL << 9);
1812       ME &= MemoryEffects::none();
1813     }
1814     if (Attrs & (1ULL << 10)) {
1815       // ReadOnly
1816       Attrs &= ~(1ULL << 10);
1817       ME &= MemoryEffects::readOnly();
1818     }
1819     if (Attrs & (1ULL << 49)) {
1820       // InaccessibleMemOnly
1821       Attrs &= ~(1ULL << 49);
1822       ME &= MemoryEffects::inaccessibleMemOnly();
1823     }
1824     if (Attrs & (1ULL << 50)) {
1825       // InaccessibleMemOrArgMemOnly
1826       Attrs &= ~(1ULL << 50);
1827       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1828     }
1829     if (Attrs & (1ULL << 53)) {
1830       // WriteOnly
1831       Attrs &= ~(1ULL << 53);
1832       ME &= MemoryEffects::writeOnly();
1833     }
1834     if (ME != MemoryEffects::unknown())
1835       B.addMemoryAttr(ME);
1836   }
1837 
1838   addRawAttributeValue(B, Attrs);
1839 }
1840 
1841 Error BitcodeReader::parseAttributeBlock() {
1842   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1843     return Err;
1844 
1845   if (!MAttributes.empty())
1846     return error("Invalid multiple blocks");
1847 
1848   SmallVector<uint64_t, 64> Record;
1849 
1850   SmallVector<AttributeList, 8> Attrs;
1851 
1852   // Read all the records.
1853   while (true) {
1854     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1855     if (!MaybeEntry)
1856       return MaybeEntry.takeError();
1857     BitstreamEntry Entry = MaybeEntry.get();
1858 
1859     switch (Entry.Kind) {
1860     case BitstreamEntry::SubBlock: // Handled for us already.
1861     case BitstreamEntry::Error:
1862       return error("Malformed block");
1863     case BitstreamEntry::EndBlock:
1864       return Error::success();
1865     case BitstreamEntry::Record:
1866       // The interesting case.
1867       break;
1868     }
1869 
1870     // Read a record.
1871     Record.clear();
1872     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1873     if (!MaybeRecord)
1874       return MaybeRecord.takeError();
1875     switch (MaybeRecord.get()) {
1876     default:  // Default behavior: ignore.
1877       break;
1878     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1879       // Deprecated, but still needed to read old bitcode files.
1880       if (Record.size() & 1)
1881         return error("Invalid parameter attribute record");
1882 
1883       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1884         AttrBuilder B(Context);
1885         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1886         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1887       }
1888 
1889       MAttributes.push_back(AttributeList::get(Context, Attrs));
1890       Attrs.clear();
1891       break;
1892     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1893       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1894         Attrs.push_back(MAttributeGroups[Record[i]]);
1895 
1896       MAttributes.push_back(AttributeList::get(Context, Attrs));
1897       Attrs.clear();
1898       break;
1899     }
1900   }
1901 }
1902 
1903 // Returns Attribute::None on unrecognized codes.
1904 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1905   switch (Code) {
1906   default:
1907     return Attribute::None;
1908   case bitc::ATTR_KIND_ALIGNMENT:
1909     return Attribute::Alignment;
1910   case bitc::ATTR_KIND_ALWAYS_INLINE:
1911     return Attribute::AlwaysInline;
1912   case bitc::ATTR_KIND_BUILTIN:
1913     return Attribute::Builtin;
1914   case bitc::ATTR_KIND_BY_VAL:
1915     return Attribute::ByVal;
1916   case bitc::ATTR_KIND_IN_ALLOCA:
1917     return Attribute::InAlloca;
1918   case bitc::ATTR_KIND_COLD:
1919     return Attribute::Cold;
1920   case bitc::ATTR_KIND_CONVERGENT:
1921     return Attribute::Convergent;
1922   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1923     return Attribute::DisableSanitizerInstrumentation;
1924   case bitc::ATTR_KIND_ELEMENTTYPE:
1925     return Attribute::ElementType;
1926   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1927     return Attribute::FnRetThunkExtern;
1928   case bitc::ATTR_KIND_INLINE_HINT:
1929     return Attribute::InlineHint;
1930   case bitc::ATTR_KIND_IN_REG:
1931     return Attribute::InReg;
1932   case bitc::ATTR_KIND_JUMP_TABLE:
1933     return Attribute::JumpTable;
1934   case bitc::ATTR_KIND_MEMORY:
1935     return Attribute::Memory;
1936   case bitc::ATTR_KIND_NOFPCLASS:
1937     return Attribute::NoFPClass;
1938   case bitc::ATTR_KIND_MIN_SIZE:
1939     return Attribute::MinSize;
1940   case bitc::ATTR_KIND_NAKED:
1941     return Attribute::Naked;
1942   case bitc::ATTR_KIND_NEST:
1943     return Attribute::Nest;
1944   case bitc::ATTR_KIND_NO_ALIAS:
1945     return Attribute::NoAlias;
1946   case bitc::ATTR_KIND_NO_BUILTIN:
1947     return Attribute::NoBuiltin;
1948   case bitc::ATTR_KIND_NO_CALLBACK:
1949     return Attribute::NoCallback;
1950   case bitc::ATTR_KIND_NO_CAPTURE:
1951     return Attribute::NoCapture;
1952   case bitc::ATTR_KIND_NO_DUPLICATE:
1953     return Attribute::NoDuplicate;
1954   case bitc::ATTR_KIND_NOFREE:
1955     return Attribute::NoFree;
1956   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1957     return Attribute::NoImplicitFloat;
1958   case bitc::ATTR_KIND_NO_INLINE:
1959     return Attribute::NoInline;
1960   case bitc::ATTR_KIND_NO_RECURSE:
1961     return Attribute::NoRecurse;
1962   case bitc::ATTR_KIND_NO_MERGE:
1963     return Attribute::NoMerge;
1964   case bitc::ATTR_KIND_NON_LAZY_BIND:
1965     return Attribute::NonLazyBind;
1966   case bitc::ATTR_KIND_NON_NULL:
1967     return Attribute::NonNull;
1968   case bitc::ATTR_KIND_DEREFERENCEABLE:
1969     return Attribute::Dereferenceable;
1970   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1971     return Attribute::DereferenceableOrNull;
1972   case bitc::ATTR_KIND_ALLOC_ALIGN:
1973     return Attribute::AllocAlign;
1974   case bitc::ATTR_KIND_ALLOC_KIND:
1975     return Attribute::AllocKind;
1976   case bitc::ATTR_KIND_ALLOC_SIZE:
1977     return Attribute::AllocSize;
1978   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1979     return Attribute::AllocatedPointer;
1980   case bitc::ATTR_KIND_NO_RED_ZONE:
1981     return Attribute::NoRedZone;
1982   case bitc::ATTR_KIND_NO_RETURN:
1983     return Attribute::NoReturn;
1984   case bitc::ATTR_KIND_NOSYNC:
1985     return Attribute::NoSync;
1986   case bitc::ATTR_KIND_NOCF_CHECK:
1987     return Attribute::NoCfCheck;
1988   case bitc::ATTR_KIND_NO_PROFILE:
1989     return Attribute::NoProfile;
1990   case bitc::ATTR_KIND_SKIP_PROFILE:
1991     return Attribute::SkipProfile;
1992   case bitc::ATTR_KIND_NO_UNWIND:
1993     return Attribute::NoUnwind;
1994   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1995     return Attribute::NoSanitizeBounds;
1996   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1997     return Attribute::NoSanitizeCoverage;
1998   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1999     return Attribute::NullPointerIsValid;
2000   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2001     return Attribute::OptForFuzzing;
2002   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2003     return Attribute::OptimizeForSize;
2004   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2005     return Attribute::OptimizeNone;
2006   case bitc::ATTR_KIND_READ_NONE:
2007     return Attribute::ReadNone;
2008   case bitc::ATTR_KIND_READ_ONLY:
2009     return Attribute::ReadOnly;
2010   case bitc::ATTR_KIND_RETURNED:
2011     return Attribute::Returned;
2012   case bitc::ATTR_KIND_RETURNS_TWICE:
2013     return Attribute::ReturnsTwice;
2014   case bitc::ATTR_KIND_S_EXT:
2015     return Attribute::SExt;
2016   case bitc::ATTR_KIND_SPECULATABLE:
2017     return Attribute::Speculatable;
2018   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2019     return Attribute::StackAlignment;
2020   case bitc::ATTR_KIND_STACK_PROTECT:
2021     return Attribute::StackProtect;
2022   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2023     return Attribute::StackProtectReq;
2024   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2025     return Attribute::StackProtectStrong;
2026   case bitc::ATTR_KIND_SAFESTACK:
2027     return Attribute::SafeStack;
2028   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2029     return Attribute::ShadowCallStack;
2030   case bitc::ATTR_KIND_STRICT_FP:
2031     return Attribute::StrictFP;
2032   case bitc::ATTR_KIND_STRUCT_RET:
2033     return Attribute::StructRet;
2034   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2035     return Attribute::SanitizeAddress;
2036   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2037     return Attribute::SanitizeHWAddress;
2038   case bitc::ATTR_KIND_SANITIZE_THREAD:
2039     return Attribute::SanitizeThread;
2040   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2041     return Attribute::SanitizeMemory;
2042   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2043     return Attribute::SpeculativeLoadHardening;
2044   case bitc::ATTR_KIND_SWIFT_ERROR:
2045     return Attribute::SwiftError;
2046   case bitc::ATTR_KIND_SWIFT_SELF:
2047     return Attribute::SwiftSelf;
2048   case bitc::ATTR_KIND_SWIFT_ASYNC:
2049     return Attribute::SwiftAsync;
2050   case bitc::ATTR_KIND_UW_TABLE:
2051     return Attribute::UWTable;
2052   case bitc::ATTR_KIND_VSCALE_RANGE:
2053     return Attribute::VScaleRange;
2054   case bitc::ATTR_KIND_WILLRETURN:
2055     return Attribute::WillReturn;
2056   case bitc::ATTR_KIND_WRITEONLY:
2057     return Attribute::WriteOnly;
2058   case bitc::ATTR_KIND_Z_EXT:
2059     return Attribute::ZExt;
2060   case bitc::ATTR_KIND_IMMARG:
2061     return Attribute::ImmArg;
2062   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2063     return Attribute::SanitizeMemTag;
2064   case bitc::ATTR_KIND_PREALLOCATED:
2065     return Attribute::Preallocated;
2066   case bitc::ATTR_KIND_NOUNDEF:
2067     return Attribute::NoUndef;
2068   case bitc::ATTR_KIND_BYREF:
2069     return Attribute::ByRef;
2070   case bitc::ATTR_KIND_MUSTPROGRESS:
2071     return Attribute::MustProgress;
2072   case bitc::ATTR_KIND_HOT:
2073     return Attribute::Hot;
2074   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2075     return Attribute::PresplitCoroutine;
2076   }
2077 }
2078 
2079 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2080                                          MaybeAlign &Alignment) {
2081   // Note: Alignment in bitcode files is incremented by 1, so that zero
2082   // can be used for default alignment.
2083   if (Exponent > Value::MaxAlignmentExponent + 1)
2084     return error("Invalid alignment value");
2085   Alignment = decodeMaybeAlign(Exponent);
2086   return Error::success();
2087 }
2088 
2089 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2090   *Kind = getAttrFromCode(Code);
2091   if (*Kind == Attribute::None)
2092     return error("Unknown attribute kind (" + Twine(Code) + ")");
2093   return Error::success();
2094 }
2095 
2096 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2097   switch (EncodedKind) {
2098   case bitc::ATTR_KIND_READ_NONE:
2099     ME &= MemoryEffects::none();
2100     return true;
2101   case bitc::ATTR_KIND_READ_ONLY:
2102     ME &= MemoryEffects::readOnly();
2103     return true;
2104   case bitc::ATTR_KIND_WRITEONLY:
2105     ME &= MemoryEffects::writeOnly();
2106     return true;
2107   case bitc::ATTR_KIND_ARGMEMONLY:
2108     ME &= MemoryEffects::argMemOnly();
2109     return true;
2110   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2111     ME &= MemoryEffects::inaccessibleMemOnly();
2112     return true;
2113   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2114     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2115     return true;
2116   default:
2117     return false;
2118   }
2119 }
2120 
2121 Error BitcodeReader::parseAttributeGroupBlock() {
2122   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2123     return Err;
2124 
2125   if (!MAttributeGroups.empty())
2126     return error("Invalid multiple blocks");
2127 
2128   SmallVector<uint64_t, 64> Record;
2129 
2130   // Read all the records.
2131   while (true) {
2132     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2133     if (!MaybeEntry)
2134       return MaybeEntry.takeError();
2135     BitstreamEntry Entry = MaybeEntry.get();
2136 
2137     switch (Entry.Kind) {
2138     case BitstreamEntry::SubBlock: // Handled for us already.
2139     case BitstreamEntry::Error:
2140       return error("Malformed block");
2141     case BitstreamEntry::EndBlock:
2142       return Error::success();
2143     case BitstreamEntry::Record:
2144       // The interesting case.
2145       break;
2146     }
2147 
2148     // Read a record.
2149     Record.clear();
2150     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2151     if (!MaybeRecord)
2152       return MaybeRecord.takeError();
2153     switch (MaybeRecord.get()) {
2154     default:  // Default behavior: ignore.
2155       break;
2156     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2157       if (Record.size() < 3)
2158         return error("Invalid grp record");
2159 
2160       uint64_t GrpID = Record[0];
2161       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2162 
2163       AttrBuilder B(Context);
2164       MemoryEffects ME = MemoryEffects::unknown();
2165       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2166         if (Record[i] == 0) {        // Enum attribute
2167           Attribute::AttrKind Kind;
2168           uint64_t EncodedKind = Record[++i];
2169           if (Idx == AttributeList::FunctionIndex &&
2170               upgradeOldMemoryAttribute(ME, EncodedKind))
2171             continue;
2172 
2173           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2174             return Err;
2175 
2176           // Upgrade old-style byval attribute to one with a type, even if it's
2177           // nullptr. We will have to insert the real type when we associate
2178           // this AttributeList with a function.
2179           if (Kind == Attribute::ByVal)
2180             B.addByValAttr(nullptr);
2181           else if (Kind == Attribute::StructRet)
2182             B.addStructRetAttr(nullptr);
2183           else if (Kind == Attribute::InAlloca)
2184             B.addInAllocaAttr(nullptr);
2185           else if (Kind == Attribute::UWTable)
2186             B.addUWTableAttr(UWTableKind::Default);
2187           else if (Attribute::isEnumAttrKind(Kind))
2188             B.addAttribute(Kind);
2189           else
2190             return error("Not an enum attribute");
2191         } else if (Record[i] == 1) { // Integer attribute
2192           Attribute::AttrKind Kind;
2193           if (Error Err = parseAttrKind(Record[++i], &Kind))
2194             return Err;
2195           if (!Attribute::isIntAttrKind(Kind))
2196             return error("Not an int attribute");
2197           if (Kind == Attribute::Alignment)
2198             B.addAlignmentAttr(Record[++i]);
2199           else if (Kind == Attribute::StackAlignment)
2200             B.addStackAlignmentAttr(Record[++i]);
2201           else if (Kind == Attribute::Dereferenceable)
2202             B.addDereferenceableAttr(Record[++i]);
2203           else if (Kind == Attribute::DereferenceableOrNull)
2204             B.addDereferenceableOrNullAttr(Record[++i]);
2205           else if (Kind == Attribute::AllocSize)
2206             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2207           else if (Kind == Attribute::VScaleRange)
2208             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2209           else if (Kind == Attribute::UWTable)
2210             B.addUWTableAttr(UWTableKind(Record[++i]));
2211           else if (Kind == Attribute::AllocKind)
2212             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2213           else if (Kind == Attribute::Memory)
2214             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2215           else if (Kind == Attribute::NoFPClass)
2216             B.addNoFPClassAttr(
2217                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2218         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2219           bool HasValue = (Record[i++] == 4);
2220           SmallString<64> KindStr;
2221           SmallString<64> ValStr;
2222 
2223           while (Record[i] != 0 && i != e)
2224             KindStr += Record[i++];
2225           assert(Record[i] == 0 && "Kind string not null terminated");
2226 
2227           if (HasValue) {
2228             // Has a value associated with it.
2229             ++i; // Skip the '0' that terminates the "kind" string.
2230             while (Record[i] != 0 && i != e)
2231               ValStr += Record[i++];
2232             assert(Record[i] == 0 && "Value string not null terminated");
2233           }
2234 
2235           B.addAttribute(KindStr.str(), ValStr.str());
2236         } else if (Record[i] == 5 || Record[i] == 6) {
2237           bool HasType = Record[i] == 6;
2238           Attribute::AttrKind Kind;
2239           if (Error Err = parseAttrKind(Record[++i], &Kind))
2240             return Err;
2241           if (!Attribute::isTypeAttrKind(Kind))
2242             return error("Not a type attribute");
2243 
2244           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2245         } else {
2246           return error("Invalid attribute group entry");
2247         }
2248       }
2249 
2250       if (ME != MemoryEffects::unknown())
2251         B.addMemoryAttr(ME);
2252 
2253       UpgradeAttributes(B);
2254       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2255       break;
2256     }
2257     }
2258   }
2259 }
2260 
2261 Error BitcodeReader::parseTypeTable() {
2262   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2263     return Err;
2264 
2265   return parseTypeTableBody();
2266 }
2267 
2268 Error BitcodeReader::parseTypeTableBody() {
2269   if (!TypeList.empty())
2270     return error("Invalid multiple blocks");
2271 
2272   SmallVector<uint64_t, 64> Record;
2273   unsigned NumRecords = 0;
2274 
2275   SmallString<64> TypeName;
2276 
2277   // Read all the records for this type table.
2278   while (true) {
2279     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2280     if (!MaybeEntry)
2281       return MaybeEntry.takeError();
2282     BitstreamEntry Entry = MaybeEntry.get();
2283 
2284     switch (Entry.Kind) {
2285     case BitstreamEntry::SubBlock: // Handled for us already.
2286     case BitstreamEntry::Error:
2287       return error("Malformed block");
2288     case BitstreamEntry::EndBlock:
2289       if (NumRecords != TypeList.size())
2290         return error("Malformed block");
2291       return Error::success();
2292     case BitstreamEntry::Record:
2293       // The interesting case.
2294       break;
2295     }
2296 
2297     // Read a record.
2298     Record.clear();
2299     Type *ResultTy = nullptr;
2300     SmallVector<unsigned> ContainedIDs;
2301     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2302     if (!MaybeRecord)
2303       return MaybeRecord.takeError();
2304     switch (MaybeRecord.get()) {
2305     default:
2306       return error("Invalid value");
2307     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2308       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2309       // type list.  This allows us to reserve space.
2310       if (Record.empty())
2311         return error("Invalid numentry record");
2312       TypeList.resize(Record[0]);
2313       continue;
2314     case bitc::TYPE_CODE_VOID:      // VOID
2315       ResultTy = Type::getVoidTy(Context);
2316       break;
2317     case bitc::TYPE_CODE_HALF:     // HALF
2318       ResultTy = Type::getHalfTy(Context);
2319       break;
2320     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2321       ResultTy = Type::getBFloatTy(Context);
2322       break;
2323     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2324       ResultTy = Type::getFloatTy(Context);
2325       break;
2326     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2327       ResultTy = Type::getDoubleTy(Context);
2328       break;
2329     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2330       ResultTy = Type::getX86_FP80Ty(Context);
2331       break;
2332     case bitc::TYPE_CODE_FP128:     // FP128
2333       ResultTy = Type::getFP128Ty(Context);
2334       break;
2335     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2336       ResultTy = Type::getPPC_FP128Ty(Context);
2337       break;
2338     case bitc::TYPE_CODE_LABEL:     // LABEL
2339       ResultTy = Type::getLabelTy(Context);
2340       break;
2341     case bitc::TYPE_CODE_METADATA:  // METADATA
2342       ResultTy = Type::getMetadataTy(Context);
2343       break;
2344     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2345       ResultTy = Type::getX86_MMXTy(Context);
2346       break;
2347     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2348       ResultTy = Type::getX86_AMXTy(Context);
2349       break;
2350     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2351       ResultTy = Type::getTokenTy(Context);
2352       break;
2353     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2354       if (Record.empty())
2355         return error("Invalid integer record");
2356 
2357       uint64_t NumBits = Record[0];
2358       if (NumBits < IntegerType::MIN_INT_BITS ||
2359           NumBits > IntegerType::MAX_INT_BITS)
2360         return error("Bitwidth for integer type out of range");
2361       ResultTy = IntegerType::get(Context, NumBits);
2362       break;
2363     }
2364     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2365                                     //          [pointee type, address space]
2366       if (Record.empty())
2367         return error("Invalid pointer record");
2368       unsigned AddressSpace = 0;
2369       if (Record.size() == 2)
2370         AddressSpace = Record[1];
2371       ResultTy = getTypeByID(Record[0]);
2372       if (!ResultTy ||
2373           !PointerType::isValidElementType(ResultTy))
2374         return error("Invalid type");
2375       ContainedIDs.push_back(Record[0]);
2376       ResultTy = PointerType::get(ResultTy, AddressSpace);
2377       break;
2378     }
2379     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2380       if (Record.size() != 1)
2381         return error("Invalid opaque pointer record");
2382       if (Context.supportsTypedPointers())
2383         return error(
2384             "Opaque pointers are only supported in -opaque-pointers mode");
2385       unsigned AddressSpace = Record[0];
2386       ResultTy = PointerType::get(Context, AddressSpace);
2387       break;
2388     }
2389     case bitc::TYPE_CODE_FUNCTION_OLD: {
2390       // Deprecated, but still needed to read old bitcode files.
2391       // FUNCTION: [vararg, attrid, retty, paramty x N]
2392       if (Record.size() < 3)
2393         return error("Invalid function record");
2394       SmallVector<Type*, 8> ArgTys;
2395       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2396         if (Type *T = getTypeByID(Record[i]))
2397           ArgTys.push_back(T);
2398         else
2399           break;
2400       }
2401 
2402       ResultTy = getTypeByID(Record[2]);
2403       if (!ResultTy || ArgTys.size() < Record.size()-3)
2404         return error("Invalid type");
2405 
2406       ContainedIDs.append(Record.begin() + 2, Record.end());
2407       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2408       break;
2409     }
2410     case bitc::TYPE_CODE_FUNCTION: {
2411       // FUNCTION: [vararg, retty, paramty x N]
2412       if (Record.size() < 2)
2413         return error("Invalid function record");
2414       SmallVector<Type*, 8> ArgTys;
2415       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2416         if (Type *T = getTypeByID(Record[i])) {
2417           if (!FunctionType::isValidArgumentType(T))
2418             return error("Invalid function argument type");
2419           ArgTys.push_back(T);
2420         }
2421         else
2422           break;
2423       }
2424 
2425       ResultTy = getTypeByID(Record[1]);
2426       if (!ResultTy || ArgTys.size() < Record.size()-2)
2427         return error("Invalid type");
2428 
2429       ContainedIDs.append(Record.begin() + 1, Record.end());
2430       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2431       break;
2432     }
2433     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2434       if (Record.empty())
2435         return error("Invalid anon struct record");
2436       SmallVector<Type*, 8> EltTys;
2437       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2438         if (Type *T = getTypeByID(Record[i]))
2439           EltTys.push_back(T);
2440         else
2441           break;
2442       }
2443       if (EltTys.size() != Record.size()-1)
2444         return error("Invalid type");
2445       ContainedIDs.append(Record.begin() + 1, Record.end());
2446       ResultTy = StructType::get(Context, EltTys, Record[0]);
2447       break;
2448     }
2449     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2450       if (convertToString(Record, 0, TypeName))
2451         return error("Invalid struct name record");
2452       continue;
2453 
2454     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2455       if (Record.empty())
2456         return error("Invalid named struct record");
2457 
2458       if (NumRecords >= TypeList.size())
2459         return error("Invalid TYPE table");
2460 
2461       // Check to see if this was forward referenced, if so fill in the temp.
2462       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2463       if (Res) {
2464         Res->setName(TypeName);
2465         TypeList[NumRecords] = nullptr;
2466       } else  // Otherwise, create a new struct.
2467         Res = createIdentifiedStructType(Context, TypeName);
2468       TypeName.clear();
2469 
2470       SmallVector<Type*, 8> EltTys;
2471       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2472         if (Type *T = getTypeByID(Record[i]))
2473           EltTys.push_back(T);
2474         else
2475           break;
2476       }
2477       if (EltTys.size() != Record.size()-1)
2478         return error("Invalid named struct record");
2479       Res->setBody(EltTys, Record[0]);
2480       ContainedIDs.append(Record.begin() + 1, Record.end());
2481       ResultTy = Res;
2482       break;
2483     }
2484     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2485       if (Record.size() != 1)
2486         return error("Invalid opaque type record");
2487 
2488       if (NumRecords >= TypeList.size())
2489         return error("Invalid TYPE table");
2490 
2491       // Check to see if this was forward referenced, if so fill in the temp.
2492       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2493       if (Res) {
2494         Res->setName(TypeName);
2495         TypeList[NumRecords] = nullptr;
2496       } else  // Otherwise, create a new struct with no body.
2497         Res = createIdentifiedStructType(Context, TypeName);
2498       TypeName.clear();
2499       ResultTy = Res;
2500       break;
2501     }
2502     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2503       if (Record.size() < 1)
2504         return error("Invalid target extension type record");
2505 
2506       if (NumRecords >= TypeList.size())
2507         return error("Invalid TYPE table");
2508 
2509       if (Record[0] >= Record.size())
2510         return error("Too many type parameters");
2511 
2512       unsigned NumTys = Record[0];
2513       SmallVector<Type *, 4> TypeParams;
2514       SmallVector<unsigned, 8> IntParams;
2515       for (unsigned i = 0; i < NumTys; i++) {
2516         if (Type *T = getTypeByID(Record[i + 1]))
2517           TypeParams.push_back(T);
2518         else
2519           return error("Invalid type");
2520       }
2521 
2522       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2523         if (Record[i] > UINT_MAX)
2524           return error("Integer parameter too large");
2525         IntParams.push_back(Record[i]);
2526       }
2527       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2528       TypeName.clear();
2529       break;
2530     }
2531     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2532       if (Record.size() < 2)
2533         return error("Invalid array type record");
2534       ResultTy = getTypeByID(Record[1]);
2535       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2536         return error("Invalid type");
2537       ContainedIDs.push_back(Record[1]);
2538       ResultTy = ArrayType::get(ResultTy, Record[0]);
2539       break;
2540     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2541                                     //         [numelts, eltty, scalable]
2542       if (Record.size() < 2)
2543         return error("Invalid vector type record");
2544       if (Record[0] == 0)
2545         return error("Invalid vector length");
2546       ResultTy = getTypeByID(Record[1]);
2547       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2548         return error("Invalid type");
2549       bool Scalable = Record.size() > 2 ? Record[2] : false;
2550       ContainedIDs.push_back(Record[1]);
2551       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2552       break;
2553     }
2554 
2555     if (NumRecords >= TypeList.size())
2556       return error("Invalid TYPE table");
2557     if (TypeList[NumRecords])
2558       return error(
2559           "Invalid TYPE table: Only named structs can be forward referenced");
2560     assert(ResultTy && "Didn't read a type?");
2561     TypeList[NumRecords] = ResultTy;
2562     if (!ContainedIDs.empty())
2563       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2564     ++NumRecords;
2565   }
2566 }
2567 
2568 Error BitcodeReader::parseOperandBundleTags() {
2569   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2570     return Err;
2571 
2572   if (!BundleTags.empty())
2573     return error("Invalid multiple blocks");
2574 
2575   SmallVector<uint64_t, 64> Record;
2576 
2577   while (true) {
2578     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2579     if (!MaybeEntry)
2580       return MaybeEntry.takeError();
2581     BitstreamEntry Entry = MaybeEntry.get();
2582 
2583     switch (Entry.Kind) {
2584     case BitstreamEntry::SubBlock: // Handled for us already.
2585     case BitstreamEntry::Error:
2586       return error("Malformed block");
2587     case BitstreamEntry::EndBlock:
2588       return Error::success();
2589     case BitstreamEntry::Record:
2590       // The interesting case.
2591       break;
2592     }
2593 
2594     // Tags are implicitly mapped to integers by their order.
2595 
2596     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2597     if (!MaybeRecord)
2598       return MaybeRecord.takeError();
2599     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2600       return error("Invalid operand bundle record");
2601 
2602     // OPERAND_BUNDLE_TAG: [strchr x N]
2603     BundleTags.emplace_back();
2604     if (convertToString(Record, 0, BundleTags.back()))
2605       return error("Invalid operand bundle record");
2606     Record.clear();
2607   }
2608 }
2609 
2610 Error BitcodeReader::parseSyncScopeNames() {
2611   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2612     return Err;
2613 
2614   if (!SSIDs.empty())
2615     return error("Invalid multiple synchronization scope names blocks");
2616 
2617   SmallVector<uint64_t, 64> Record;
2618   while (true) {
2619     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2620     if (!MaybeEntry)
2621       return MaybeEntry.takeError();
2622     BitstreamEntry Entry = MaybeEntry.get();
2623 
2624     switch (Entry.Kind) {
2625     case BitstreamEntry::SubBlock: // Handled for us already.
2626     case BitstreamEntry::Error:
2627       return error("Malformed block");
2628     case BitstreamEntry::EndBlock:
2629       if (SSIDs.empty())
2630         return error("Invalid empty synchronization scope names block");
2631       return Error::success();
2632     case BitstreamEntry::Record:
2633       // The interesting case.
2634       break;
2635     }
2636 
2637     // Synchronization scope names are implicitly mapped to synchronization
2638     // scope IDs by their order.
2639 
2640     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2641     if (!MaybeRecord)
2642       return MaybeRecord.takeError();
2643     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2644       return error("Invalid sync scope record");
2645 
2646     SmallString<16> SSN;
2647     if (convertToString(Record, 0, SSN))
2648       return error("Invalid sync scope record");
2649 
2650     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2651     Record.clear();
2652   }
2653 }
2654 
2655 /// Associate a value with its name from the given index in the provided record.
2656 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2657                                              unsigned NameIndex, Triple &TT) {
2658   SmallString<128> ValueName;
2659   if (convertToString(Record, NameIndex, ValueName))
2660     return error("Invalid record");
2661   unsigned ValueID = Record[0];
2662   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2663     return error("Invalid record");
2664   Value *V = ValueList[ValueID];
2665 
2666   StringRef NameStr(ValueName.data(), ValueName.size());
2667   if (NameStr.find_first_of(0) != StringRef::npos)
2668     return error("Invalid value name");
2669   V->setName(NameStr);
2670   auto *GO = dyn_cast<GlobalObject>(V);
2671   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2672     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2673   return V;
2674 }
2675 
2676 /// Helper to note and return the current location, and jump to the given
2677 /// offset.
2678 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2679                                                  BitstreamCursor &Stream) {
2680   // Save the current parsing location so we can jump back at the end
2681   // of the VST read.
2682   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2683   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2684     return std::move(JumpFailed);
2685   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2686   if (!MaybeEntry)
2687     return MaybeEntry.takeError();
2688   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2689       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2690     return error("Expected value symbol table subblock");
2691   return CurrentBit;
2692 }
2693 
2694 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2695                                             Function *F,
2696                                             ArrayRef<uint64_t> Record) {
2697   // Note that we subtract 1 here because the offset is relative to one word
2698   // before the start of the identification or module block, which was
2699   // historically always the start of the regular bitcode header.
2700   uint64_t FuncWordOffset = Record[1] - 1;
2701   uint64_t FuncBitOffset = FuncWordOffset * 32;
2702   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2703   // Set the LastFunctionBlockBit to point to the last function block.
2704   // Later when parsing is resumed after function materialization,
2705   // we can simply skip that last function block.
2706   if (FuncBitOffset > LastFunctionBlockBit)
2707     LastFunctionBlockBit = FuncBitOffset;
2708 }
2709 
2710 /// Read a new-style GlobalValue symbol table.
2711 Error BitcodeReader::parseGlobalValueSymbolTable() {
2712   unsigned FuncBitcodeOffsetDelta =
2713       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2714 
2715   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2716     return Err;
2717 
2718   SmallVector<uint64_t, 64> Record;
2719   while (true) {
2720     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2721     if (!MaybeEntry)
2722       return MaybeEntry.takeError();
2723     BitstreamEntry Entry = MaybeEntry.get();
2724 
2725     switch (Entry.Kind) {
2726     case BitstreamEntry::SubBlock:
2727     case BitstreamEntry::Error:
2728       return error("Malformed block");
2729     case BitstreamEntry::EndBlock:
2730       return Error::success();
2731     case BitstreamEntry::Record:
2732       break;
2733     }
2734 
2735     Record.clear();
2736     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2737     if (!MaybeRecord)
2738       return MaybeRecord.takeError();
2739     switch (MaybeRecord.get()) {
2740     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2741       unsigned ValueID = Record[0];
2742       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2743         return error("Invalid value reference in symbol table");
2744       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2745                               cast<Function>(ValueList[ValueID]), Record);
2746       break;
2747     }
2748     }
2749   }
2750 }
2751 
2752 /// Parse the value symbol table at either the current parsing location or
2753 /// at the given bit offset if provided.
2754 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2755   uint64_t CurrentBit;
2756   // Pass in the Offset to distinguish between calling for the module-level
2757   // VST (where we want to jump to the VST offset) and the function-level
2758   // VST (where we don't).
2759   if (Offset > 0) {
2760     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2761     if (!MaybeCurrentBit)
2762       return MaybeCurrentBit.takeError();
2763     CurrentBit = MaybeCurrentBit.get();
2764     // If this module uses a string table, read this as a module-level VST.
2765     if (UseStrtab) {
2766       if (Error Err = parseGlobalValueSymbolTable())
2767         return Err;
2768       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2769         return JumpFailed;
2770       return Error::success();
2771     }
2772     // Otherwise, the VST will be in a similar format to a function-level VST,
2773     // and will contain symbol names.
2774   }
2775 
2776   // Compute the delta between the bitcode indices in the VST (the word offset
2777   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2778   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2779   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2780   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2781   // just before entering the VST subblock because: 1) the EnterSubBlock
2782   // changes the AbbrevID width; 2) the VST block is nested within the same
2783   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2784   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2785   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2786   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2787   unsigned FuncBitcodeOffsetDelta =
2788       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2789 
2790   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2791     return Err;
2792 
2793   SmallVector<uint64_t, 64> Record;
2794 
2795   Triple TT(TheModule->getTargetTriple());
2796 
2797   // Read all the records for this value table.
2798   SmallString<128> ValueName;
2799 
2800   while (true) {
2801     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2802     if (!MaybeEntry)
2803       return MaybeEntry.takeError();
2804     BitstreamEntry Entry = MaybeEntry.get();
2805 
2806     switch (Entry.Kind) {
2807     case BitstreamEntry::SubBlock: // Handled for us already.
2808     case BitstreamEntry::Error:
2809       return error("Malformed block");
2810     case BitstreamEntry::EndBlock:
2811       if (Offset > 0)
2812         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2813           return JumpFailed;
2814       return Error::success();
2815     case BitstreamEntry::Record:
2816       // The interesting case.
2817       break;
2818     }
2819 
2820     // Read a record.
2821     Record.clear();
2822     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2823     if (!MaybeRecord)
2824       return MaybeRecord.takeError();
2825     switch (MaybeRecord.get()) {
2826     default:  // Default behavior: unknown type.
2827       break;
2828     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2829       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2830       if (Error Err = ValOrErr.takeError())
2831         return Err;
2832       ValOrErr.get();
2833       break;
2834     }
2835     case bitc::VST_CODE_FNENTRY: {
2836       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2837       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2838       if (Error Err = ValOrErr.takeError())
2839         return Err;
2840       Value *V = ValOrErr.get();
2841 
2842       // Ignore function offsets emitted for aliases of functions in older
2843       // versions of LLVM.
2844       if (auto *F = dyn_cast<Function>(V))
2845         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2846       break;
2847     }
2848     case bitc::VST_CODE_BBENTRY: {
2849       if (convertToString(Record, 1, ValueName))
2850         return error("Invalid bbentry record");
2851       BasicBlock *BB = getBasicBlock(Record[0]);
2852       if (!BB)
2853         return error("Invalid bbentry record");
2854 
2855       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2856       ValueName.clear();
2857       break;
2858     }
2859     }
2860   }
2861 }
2862 
2863 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2864 /// encoding.
2865 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2866   if ((V & 1) == 0)
2867     return V >> 1;
2868   if (V != 1)
2869     return -(V >> 1);
2870   // There is no such thing as -0 with integers.  "-0" really means MININT.
2871   return 1ULL << 63;
2872 }
2873 
2874 /// Resolve all of the initializers for global values and aliases that we can.
2875 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2876   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2877   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2878   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2879 
2880   GlobalInitWorklist.swap(GlobalInits);
2881   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2882   FunctionOperandWorklist.swap(FunctionOperands);
2883 
2884   while (!GlobalInitWorklist.empty()) {
2885     unsigned ValID = GlobalInitWorklist.back().second;
2886     if (ValID >= ValueList.size()) {
2887       // Not ready to resolve this yet, it requires something later in the file.
2888       GlobalInits.push_back(GlobalInitWorklist.back());
2889     } else {
2890       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2891       if (!MaybeC)
2892         return MaybeC.takeError();
2893       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2894     }
2895     GlobalInitWorklist.pop_back();
2896   }
2897 
2898   while (!IndirectSymbolInitWorklist.empty()) {
2899     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2900     if (ValID >= ValueList.size()) {
2901       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2902     } else {
2903       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2904       if (!MaybeC)
2905         return MaybeC.takeError();
2906       Constant *C = MaybeC.get();
2907       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2908       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2909         if (C->getType() != GV->getType())
2910           return error("Alias and aliasee types don't match");
2911         GA->setAliasee(C);
2912       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2913         Type *ResolverFTy =
2914             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2915         // Transparently fix up the type for compatibility with older bitcode
2916         GI->setResolver(ConstantExpr::getBitCast(
2917             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2918       } else {
2919         return error("Expected an alias or an ifunc");
2920       }
2921     }
2922     IndirectSymbolInitWorklist.pop_back();
2923   }
2924 
2925   while (!FunctionOperandWorklist.empty()) {
2926     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2927     if (Info.PersonalityFn) {
2928       unsigned ValID = Info.PersonalityFn - 1;
2929       if (ValID < ValueList.size()) {
2930         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2931         if (!MaybeC)
2932           return MaybeC.takeError();
2933         Info.F->setPersonalityFn(MaybeC.get());
2934         Info.PersonalityFn = 0;
2935       }
2936     }
2937     if (Info.Prefix) {
2938       unsigned ValID = Info.Prefix - 1;
2939       if (ValID < ValueList.size()) {
2940         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2941         if (!MaybeC)
2942           return MaybeC.takeError();
2943         Info.F->setPrefixData(MaybeC.get());
2944         Info.Prefix = 0;
2945       }
2946     }
2947     if (Info.Prologue) {
2948       unsigned ValID = Info.Prologue - 1;
2949       if (ValID < ValueList.size()) {
2950         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2951         if (!MaybeC)
2952           return MaybeC.takeError();
2953         Info.F->setPrologueData(MaybeC.get());
2954         Info.Prologue = 0;
2955       }
2956     }
2957     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2958       FunctionOperands.push_back(Info);
2959     FunctionOperandWorklist.pop_back();
2960   }
2961 
2962   return Error::success();
2963 }
2964 
2965 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2966   SmallVector<uint64_t, 8> Words(Vals.size());
2967   transform(Vals, Words.begin(),
2968                  BitcodeReader::decodeSignRotatedValue);
2969 
2970   return APInt(TypeBits, Words);
2971 }
2972 
2973 Error BitcodeReader::parseConstants() {
2974   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2975     return Err;
2976 
2977   SmallVector<uint64_t, 64> Record;
2978 
2979   // Read all the records for this value table.
2980   Type *CurTy = Type::getInt32Ty(Context);
2981   unsigned Int32TyID = getVirtualTypeID(CurTy);
2982   unsigned CurTyID = Int32TyID;
2983   Type *CurElemTy = nullptr;
2984   unsigned NextCstNo = ValueList.size();
2985 
2986   while (true) {
2987     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2988     if (!MaybeEntry)
2989       return MaybeEntry.takeError();
2990     BitstreamEntry Entry = MaybeEntry.get();
2991 
2992     switch (Entry.Kind) {
2993     case BitstreamEntry::SubBlock: // Handled for us already.
2994     case BitstreamEntry::Error:
2995       return error("Malformed block");
2996     case BitstreamEntry::EndBlock:
2997       if (NextCstNo != ValueList.size())
2998         return error("Invalid constant reference");
2999       return Error::success();
3000     case BitstreamEntry::Record:
3001       // The interesting case.
3002       break;
3003     }
3004 
3005     // Read a record.
3006     Record.clear();
3007     Type *VoidType = Type::getVoidTy(Context);
3008     Value *V = nullptr;
3009     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3010     if (!MaybeBitCode)
3011       return MaybeBitCode.takeError();
3012     switch (unsigned BitCode = MaybeBitCode.get()) {
3013     default:  // Default behavior: unknown constant
3014     case bitc::CST_CODE_UNDEF:     // UNDEF
3015       V = UndefValue::get(CurTy);
3016       break;
3017     case bitc::CST_CODE_POISON:    // POISON
3018       V = PoisonValue::get(CurTy);
3019       break;
3020     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3021       if (Record.empty())
3022         return error("Invalid settype record");
3023       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3024         return error("Invalid settype record");
3025       if (TypeList[Record[0]] == VoidType)
3026         return error("Invalid constant type");
3027       CurTyID = Record[0];
3028       CurTy = TypeList[CurTyID];
3029       CurElemTy = getPtrElementTypeByID(CurTyID);
3030       continue;  // Skip the ValueList manipulation.
3031     case bitc::CST_CODE_NULL:      // NULL
3032       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3033         return error("Invalid type for a constant null value");
3034       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3035         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3036           return error("Invalid type for a constant null value");
3037       V = Constant::getNullValue(CurTy);
3038       break;
3039     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3040       if (!CurTy->isIntegerTy() || Record.empty())
3041         return error("Invalid integer const record");
3042       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3043       break;
3044     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3045       if (!CurTy->isIntegerTy() || Record.empty())
3046         return error("Invalid wide integer const record");
3047 
3048       APInt VInt =
3049           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3050       V = ConstantInt::get(Context, VInt);
3051 
3052       break;
3053     }
3054     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3055       if (Record.empty())
3056         return error("Invalid float const record");
3057       if (CurTy->isHalfTy())
3058         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3059                                              APInt(16, (uint16_t)Record[0])));
3060       else if (CurTy->isBFloatTy())
3061         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3062                                              APInt(16, (uint32_t)Record[0])));
3063       else if (CurTy->isFloatTy())
3064         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3065                                              APInt(32, (uint32_t)Record[0])));
3066       else if (CurTy->isDoubleTy())
3067         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3068                                              APInt(64, Record[0])));
3069       else if (CurTy->isX86_FP80Ty()) {
3070         // Bits are not stored the same way as a normal i80 APInt, compensate.
3071         uint64_t Rearrange[2];
3072         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3073         Rearrange[1] = Record[0] >> 48;
3074         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3075                                              APInt(80, Rearrange)));
3076       } else if (CurTy->isFP128Ty())
3077         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3078                                              APInt(128, Record)));
3079       else if (CurTy->isPPC_FP128Ty())
3080         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3081                                              APInt(128, Record)));
3082       else
3083         V = UndefValue::get(CurTy);
3084       break;
3085     }
3086 
3087     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3088       if (Record.empty())
3089         return error("Invalid aggregate record");
3090 
3091       unsigned Size = Record.size();
3092       SmallVector<unsigned, 16> Elts;
3093       for (unsigned i = 0; i != Size; ++i)
3094         Elts.push_back(Record[i]);
3095 
3096       if (isa<StructType>(CurTy)) {
3097         V = BitcodeConstant::create(
3098             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3099       } else if (isa<ArrayType>(CurTy)) {
3100         V = BitcodeConstant::create(Alloc, CurTy,
3101                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3102       } else if (isa<VectorType>(CurTy)) {
3103         V = BitcodeConstant::create(
3104             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3105       } else {
3106         V = UndefValue::get(CurTy);
3107       }
3108       break;
3109     }
3110     case bitc::CST_CODE_STRING:    // STRING: [values]
3111     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3112       if (Record.empty())
3113         return error("Invalid string record");
3114 
3115       SmallString<16> Elts(Record.begin(), Record.end());
3116       V = ConstantDataArray::getString(Context, Elts,
3117                                        BitCode == bitc::CST_CODE_CSTRING);
3118       break;
3119     }
3120     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3121       if (Record.empty())
3122         return error("Invalid data record");
3123 
3124       Type *EltTy;
3125       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3126         EltTy = Array->getElementType();
3127       else
3128         EltTy = cast<VectorType>(CurTy)->getElementType();
3129       if (EltTy->isIntegerTy(8)) {
3130         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3131         if (isa<VectorType>(CurTy))
3132           V = ConstantDataVector::get(Context, Elts);
3133         else
3134           V = ConstantDataArray::get(Context, Elts);
3135       } else if (EltTy->isIntegerTy(16)) {
3136         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3137         if (isa<VectorType>(CurTy))
3138           V = ConstantDataVector::get(Context, Elts);
3139         else
3140           V = ConstantDataArray::get(Context, Elts);
3141       } else if (EltTy->isIntegerTy(32)) {
3142         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3143         if (isa<VectorType>(CurTy))
3144           V = ConstantDataVector::get(Context, Elts);
3145         else
3146           V = ConstantDataArray::get(Context, Elts);
3147       } else if (EltTy->isIntegerTy(64)) {
3148         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3149         if (isa<VectorType>(CurTy))
3150           V = ConstantDataVector::get(Context, Elts);
3151         else
3152           V = ConstantDataArray::get(Context, Elts);
3153       } else if (EltTy->isHalfTy()) {
3154         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3155         if (isa<VectorType>(CurTy))
3156           V = ConstantDataVector::getFP(EltTy, Elts);
3157         else
3158           V = ConstantDataArray::getFP(EltTy, Elts);
3159       } else if (EltTy->isBFloatTy()) {
3160         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3161         if (isa<VectorType>(CurTy))
3162           V = ConstantDataVector::getFP(EltTy, Elts);
3163         else
3164           V = ConstantDataArray::getFP(EltTy, Elts);
3165       } else if (EltTy->isFloatTy()) {
3166         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3167         if (isa<VectorType>(CurTy))
3168           V = ConstantDataVector::getFP(EltTy, Elts);
3169         else
3170           V = ConstantDataArray::getFP(EltTy, Elts);
3171       } else if (EltTy->isDoubleTy()) {
3172         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3173         if (isa<VectorType>(CurTy))
3174           V = ConstantDataVector::getFP(EltTy, Elts);
3175         else
3176           V = ConstantDataArray::getFP(EltTy, Elts);
3177       } else {
3178         return error("Invalid type for value");
3179       }
3180       break;
3181     }
3182     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3183       if (Record.size() < 2)
3184         return error("Invalid unary op constexpr record");
3185       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3186       if (Opc < 0) {
3187         V = UndefValue::get(CurTy);  // Unknown unop.
3188       } else {
3189         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3190       }
3191       break;
3192     }
3193     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3194       if (Record.size() < 3)
3195         return error("Invalid binary op constexpr record");
3196       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3197       if (Opc < 0) {
3198         V = UndefValue::get(CurTy);  // Unknown binop.
3199       } else {
3200         uint8_t Flags = 0;
3201         if (Record.size() >= 4) {
3202           if (Opc == Instruction::Add ||
3203               Opc == Instruction::Sub ||
3204               Opc == Instruction::Mul ||
3205               Opc == Instruction::Shl) {
3206             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3207               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3208             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3209               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3210           } else if (Opc == Instruction::SDiv ||
3211                      Opc == Instruction::UDiv ||
3212                      Opc == Instruction::LShr ||
3213                      Opc == Instruction::AShr) {
3214             if (Record[3] & (1 << bitc::PEO_EXACT))
3215               Flags |= SDivOperator::IsExact;
3216           }
3217         }
3218         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3219                                     {(unsigned)Record[1], (unsigned)Record[2]});
3220       }
3221       break;
3222     }
3223     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3224       if (Record.size() < 3)
3225         return error("Invalid cast constexpr record");
3226       int Opc = getDecodedCastOpcode(Record[0]);
3227       if (Opc < 0) {
3228         V = UndefValue::get(CurTy);  // Unknown cast.
3229       } else {
3230         unsigned OpTyID = Record[1];
3231         Type *OpTy = getTypeByID(OpTyID);
3232         if (!OpTy)
3233           return error("Invalid cast constexpr record");
3234         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3235       }
3236       break;
3237     }
3238     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3239     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3240     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3241                                                      // operands]
3242       if (Record.size() < 2)
3243         return error("Constant GEP record must have at least two elements");
3244       unsigned OpNum = 0;
3245       Type *PointeeType = nullptr;
3246       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3247           Record.size() % 2)
3248         PointeeType = getTypeByID(Record[OpNum++]);
3249 
3250       bool InBounds = false;
3251       std::optional<unsigned> InRangeIndex;
3252       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3253         uint64_t Op = Record[OpNum++];
3254         InBounds = Op & 1;
3255         InRangeIndex = Op >> 1;
3256       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3257         InBounds = true;
3258 
3259       SmallVector<unsigned, 16> Elts;
3260       unsigned BaseTypeID = Record[OpNum];
3261       while (OpNum != Record.size()) {
3262         unsigned ElTyID = Record[OpNum++];
3263         Type *ElTy = getTypeByID(ElTyID);
3264         if (!ElTy)
3265           return error("Invalid getelementptr constexpr record");
3266         Elts.push_back(Record[OpNum++]);
3267       }
3268 
3269       if (Elts.size() < 1)
3270         return error("Invalid gep with no operands");
3271 
3272       Type *BaseType = getTypeByID(BaseTypeID);
3273       if (isa<VectorType>(BaseType)) {
3274         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3275         BaseType = getTypeByID(BaseTypeID);
3276       }
3277 
3278       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3279       if (!OrigPtrTy)
3280         return error("GEP base operand must be pointer or vector of pointer");
3281 
3282       if (!PointeeType) {
3283         PointeeType = getPtrElementTypeByID(BaseTypeID);
3284         if (!PointeeType)
3285           return error("Missing element type for old-style constant GEP");
3286       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3287         return error("Explicit gep operator type does not match pointee type "
3288                      "of pointer operand");
3289 
3290       V = BitcodeConstant::create(Alloc, CurTy,
3291                                   {Instruction::GetElementPtr, InBounds,
3292                                    InRangeIndex.value_or(-1), PointeeType},
3293                                   Elts);
3294       break;
3295     }
3296     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3297       if (Record.size() < 3)
3298         return error("Invalid select constexpr record");
3299 
3300       V = BitcodeConstant::create(
3301           Alloc, CurTy, Instruction::Select,
3302           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3303       break;
3304     }
3305     case bitc::CST_CODE_CE_EXTRACTELT
3306         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3307       if (Record.size() < 3)
3308         return error("Invalid extractelement constexpr record");
3309       unsigned OpTyID = Record[0];
3310       VectorType *OpTy =
3311         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3312       if (!OpTy)
3313         return error("Invalid extractelement constexpr record");
3314       unsigned IdxRecord;
3315       if (Record.size() == 4) {
3316         unsigned IdxTyID = Record[2];
3317         Type *IdxTy = getTypeByID(IdxTyID);
3318         if (!IdxTy)
3319           return error("Invalid extractelement constexpr record");
3320         IdxRecord = Record[3];
3321       } else {
3322         // Deprecated, but still needed to read old bitcode files.
3323         IdxRecord = Record[2];
3324       }
3325       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3326                                   {(unsigned)Record[1], IdxRecord});
3327       break;
3328     }
3329     case bitc::CST_CODE_CE_INSERTELT
3330         : { // CE_INSERTELT: [opval, opval, opty, opval]
3331       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3332       if (Record.size() < 3 || !OpTy)
3333         return error("Invalid insertelement constexpr record");
3334       unsigned IdxRecord;
3335       if (Record.size() == 4) {
3336         unsigned IdxTyID = Record[2];
3337         Type *IdxTy = getTypeByID(IdxTyID);
3338         if (!IdxTy)
3339           return error("Invalid insertelement constexpr record");
3340         IdxRecord = Record[3];
3341       } else {
3342         // Deprecated, but still needed to read old bitcode files.
3343         IdxRecord = Record[2];
3344       }
3345       V = BitcodeConstant::create(
3346           Alloc, CurTy, Instruction::InsertElement,
3347           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3348       break;
3349     }
3350     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3351       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3352       if (Record.size() < 3 || !OpTy)
3353         return error("Invalid shufflevector constexpr record");
3354       V = BitcodeConstant::create(
3355           Alloc, CurTy, Instruction::ShuffleVector,
3356           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3357       break;
3358     }
3359     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3360       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3361       VectorType *OpTy =
3362         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3363       if (Record.size() < 4 || !RTy || !OpTy)
3364         return error("Invalid shufflevector constexpr record");
3365       V = BitcodeConstant::create(
3366           Alloc, CurTy, Instruction::ShuffleVector,
3367           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3368       break;
3369     }
3370     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3371       if (Record.size() < 4)
3372         return error("Invalid cmp constexpt record");
3373       unsigned OpTyID = Record[0];
3374       Type *OpTy = getTypeByID(OpTyID);
3375       if (!OpTy)
3376         return error("Invalid cmp constexpr record");
3377       V = BitcodeConstant::create(
3378           Alloc, CurTy,
3379           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3380                                               : Instruction::ICmp),
3381            (uint8_t)Record[3]},
3382           {(unsigned)Record[1], (unsigned)Record[2]});
3383       break;
3384     }
3385     // This maintains backward compatibility, pre-asm dialect keywords.
3386     // Deprecated, but still needed to read old bitcode files.
3387     case bitc::CST_CODE_INLINEASM_OLD: {
3388       if (Record.size() < 2)
3389         return error("Invalid inlineasm record");
3390       std::string AsmStr, ConstrStr;
3391       bool HasSideEffects = Record[0] & 1;
3392       bool IsAlignStack = Record[0] >> 1;
3393       unsigned AsmStrSize = Record[1];
3394       if (2+AsmStrSize >= Record.size())
3395         return error("Invalid inlineasm record");
3396       unsigned ConstStrSize = Record[2+AsmStrSize];
3397       if (3+AsmStrSize+ConstStrSize > Record.size())
3398         return error("Invalid inlineasm record");
3399 
3400       for (unsigned i = 0; i != AsmStrSize; ++i)
3401         AsmStr += (char)Record[2+i];
3402       for (unsigned i = 0; i != ConstStrSize; ++i)
3403         ConstrStr += (char)Record[3+AsmStrSize+i];
3404       UpgradeInlineAsmString(&AsmStr);
3405       if (!CurElemTy)
3406         return error("Missing element type for old-style inlineasm");
3407       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3408                          HasSideEffects, IsAlignStack);
3409       break;
3410     }
3411     // This version adds support for the asm dialect keywords (e.g.,
3412     // inteldialect).
3413     case bitc::CST_CODE_INLINEASM_OLD2: {
3414       if (Record.size() < 2)
3415         return error("Invalid inlineasm record");
3416       std::string AsmStr, ConstrStr;
3417       bool HasSideEffects = Record[0] & 1;
3418       bool IsAlignStack = (Record[0] >> 1) & 1;
3419       unsigned AsmDialect = Record[0] >> 2;
3420       unsigned AsmStrSize = Record[1];
3421       if (2+AsmStrSize >= Record.size())
3422         return error("Invalid inlineasm record");
3423       unsigned ConstStrSize = Record[2+AsmStrSize];
3424       if (3+AsmStrSize+ConstStrSize > Record.size())
3425         return error("Invalid inlineasm record");
3426 
3427       for (unsigned i = 0; i != AsmStrSize; ++i)
3428         AsmStr += (char)Record[2+i];
3429       for (unsigned i = 0; i != ConstStrSize; ++i)
3430         ConstrStr += (char)Record[3+AsmStrSize+i];
3431       UpgradeInlineAsmString(&AsmStr);
3432       if (!CurElemTy)
3433         return error("Missing element type for old-style inlineasm");
3434       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3435                          HasSideEffects, IsAlignStack,
3436                          InlineAsm::AsmDialect(AsmDialect));
3437       break;
3438     }
3439     // This version adds support for the unwind keyword.
3440     case bitc::CST_CODE_INLINEASM_OLD3: {
3441       if (Record.size() < 2)
3442         return error("Invalid inlineasm record");
3443       unsigned OpNum = 0;
3444       std::string AsmStr, ConstrStr;
3445       bool HasSideEffects = Record[OpNum] & 1;
3446       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3447       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3448       bool CanThrow = (Record[OpNum] >> 3) & 1;
3449       ++OpNum;
3450       unsigned AsmStrSize = Record[OpNum];
3451       ++OpNum;
3452       if (OpNum + AsmStrSize >= Record.size())
3453         return error("Invalid inlineasm record");
3454       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3455       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3456         return error("Invalid inlineasm record");
3457 
3458       for (unsigned i = 0; i != AsmStrSize; ++i)
3459         AsmStr += (char)Record[OpNum + i];
3460       ++OpNum;
3461       for (unsigned i = 0; i != ConstStrSize; ++i)
3462         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3463       UpgradeInlineAsmString(&AsmStr);
3464       if (!CurElemTy)
3465         return error("Missing element type for old-style inlineasm");
3466       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3467                          HasSideEffects, IsAlignStack,
3468                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3469       break;
3470     }
3471     // This version adds explicit function type.
3472     case bitc::CST_CODE_INLINEASM: {
3473       if (Record.size() < 3)
3474         return error("Invalid inlineasm record");
3475       unsigned OpNum = 0;
3476       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3477       ++OpNum;
3478       if (!FnTy)
3479         return error("Invalid inlineasm record");
3480       std::string AsmStr, ConstrStr;
3481       bool HasSideEffects = Record[OpNum] & 1;
3482       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3483       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3484       bool CanThrow = (Record[OpNum] >> 3) & 1;
3485       ++OpNum;
3486       unsigned AsmStrSize = Record[OpNum];
3487       ++OpNum;
3488       if (OpNum + AsmStrSize >= Record.size())
3489         return error("Invalid inlineasm record");
3490       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3491       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3492         return error("Invalid inlineasm record");
3493 
3494       for (unsigned i = 0; i != AsmStrSize; ++i)
3495         AsmStr += (char)Record[OpNum + i];
3496       ++OpNum;
3497       for (unsigned i = 0; i != ConstStrSize; ++i)
3498         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3499       UpgradeInlineAsmString(&AsmStr);
3500       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3501                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3502       break;
3503     }
3504     case bitc::CST_CODE_BLOCKADDRESS:{
3505       if (Record.size() < 3)
3506         return error("Invalid blockaddress record");
3507       unsigned FnTyID = Record[0];
3508       Type *FnTy = getTypeByID(FnTyID);
3509       if (!FnTy)
3510         return error("Invalid blockaddress record");
3511       V = BitcodeConstant::create(
3512           Alloc, CurTy,
3513           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3514           Record[1]);
3515       break;
3516     }
3517     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3518       if (Record.size() < 2)
3519         return error("Invalid dso_local record");
3520       unsigned GVTyID = Record[0];
3521       Type *GVTy = getTypeByID(GVTyID);
3522       if (!GVTy)
3523         return error("Invalid dso_local record");
3524       V = BitcodeConstant::create(
3525           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3526       break;
3527     }
3528     case bitc::CST_CODE_NO_CFI_VALUE: {
3529       if (Record.size() < 2)
3530         return error("Invalid no_cfi record");
3531       unsigned GVTyID = Record[0];
3532       Type *GVTy = getTypeByID(GVTyID);
3533       if (!GVTy)
3534         return error("Invalid no_cfi record");
3535       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3536                                   Record[1]);
3537       break;
3538     }
3539     }
3540 
3541     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3542     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3543       return Err;
3544     ++NextCstNo;
3545   }
3546 }
3547 
3548 Error BitcodeReader::parseUseLists() {
3549   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3550     return Err;
3551 
3552   // Read all the records.
3553   SmallVector<uint64_t, 64> Record;
3554 
3555   while (true) {
3556     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3557     if (!MaybeEntry)
3558       return MaybeEntry.takeError();
3559     BitstreamEntry Entry = MaybeEntry.get();
3560 
3561     switch (Entry.Kind) {
3562     case BitstreamEntry::SubBlock: // Handled for us already.
3563     case BitstreamEntry::Error:
3564       return error("Malformed block");
3565     case BitstreamEntry::EndBlock:
3566       return Error::success();
3567     case BitstreamEntry::Record:
3568       // The interesting case.
3569       break;
3570     }
3571 
3572     // Read a use list record.
3573     Record.clear();
3574     bool IsBB = false;
3575     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3576     if (!MaybeRecord)
3577       return MaybeRecord.takeError();
3578     switch (MaybeRecord.get()) {
3579     default:  // Default behavior: unknown type.
3580       break;
3581     case bitc::USELIST_CODE_BB:
3582       IsBB = true;
3583       [[fallthrough]];
3584     case bitc::USELIST_CODE_DEFAULT: {
3585       unsigned RecordLength = Record.size();
3586       if (RecordLength < 3)
3587         // Records should have at least an ID and two indexes.
3588         return error("Invalid record");
3589       unsigned ID = Record.pop_back_val();
3590 
3591       Value *V;
3592       if (IsBB) {
3593         assert(ID < FunctionBBs.size() && "Basic block not found");
3594         V = FunctionBBs[ID];
3595       } else
3596         V = ValueList[ID];
3597       unsigned NumUses = 0;
3598       SmallDenseMap<const Use *, unsigned, 16> Order;
3599       for (const Use &U : V->materialized_uses()) {
3600         if (++NumUses > Record.size())
3601           break;
3602         Order[&U] = Record[NumUses - 1];
3603       }
3604       if (Order.size() != Record.size() || NumUses > Record.size())
3605         // Mismatches can happen if the functions are being materialized lazily
3606         // (out-of-order), or a value has been upgraded.
3607         break;
3608 
3609       V->sortUseList([&](const Use &L, const Use &R) {
3610         return Order.lookup(&L) < Order.lookup(&R);
3611       });
3612       break;
3613     }
3614     }
3615   }
3616 }
3617 
3618 /// When we see the block for metadata, remember where it is and then skip it.
3619 /// This lets us lazily deserialize the metadata.
3620 Error BitcodeReader::rememberAndSkipMetadata() {
3621   // Save the current stream state.
3622   uint64_t CurBit = Stream.GetCurrentBitNo();
3623   DeferredMetadataInfo.push_back(CurBit);
3624 
3625   // Skip over the block for now.
3626   if (Error Err = Stream.SkipBlock())
3627     return Err;
3628   return Error::success();
3629 }
3630 
3631 Error BitcodeReader::materializeMetadata() {
3632   for (uint64_t BitPos : DeferredMetadataInfo) {
3633     // Move the bit stream to the saved position.
3634     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3635       return JumpFailed;
3636     if (Error Err = MDLoader->parseModuleMetadata())
3637       return Err;
3638   }
3639 
3640   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3641   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3642   // multiple times.
3643   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3644     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3645       NamedMDNode *LinkerOpts =
3646           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3647       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3648         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3649     }
3650   }
3651 
3652   DeferredMetadataInfo.clear();
3653   return Error::success();
3654 }
3655 
3656 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3657 
3658 /// When we see the block for a function body, remember where it is and then
3659 /// skip it.  This lets us lazily deserialize the functions.
3660 Error BitcodeReader::rememberAndSkipFunctionBody() {
3661   // Get the function we are talking about.
3662   if (FunctionsWithBodies.empty())
3663     return error("Insufficient function protos");
3664 
3665   Function *Fn = FunctionsWithBodies.back();
3666   FunctionsWithBodies.pop_back();
3667 
3668   // Save the current stream state.
3669   uint64_t CurBit = Stream.GetCurrentBitNo();
3670   assert(
3671       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3672       "Mismatch between VST and scanned function offsets");
3673   DeferredFunctionInfo[Fn] = CurBit;
3674 
3675   // Skip over the function block for now.
3676   if (Error Err = Stream.SkipBlock())
3677     return Err;
3678   return Error::success();
3679 }
3680 
3681 Error BitcodeReader::globalCleanup() {
3682   // Patch the initializers for globals and aliases up.
3683   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3684     return Err;
3685   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3686     return error("Malformed global initializer set");
3687 
3688   // Look for intrinsic functions which need to be upgraded at some point
3689   // and functions that need to have their function attributes upgraded.
3690   for (Function &F : *TheModule) {
3691     MDLoader->upgradeDebugIntrinsics(F);
3692     Function *NewFn;
3693     if (UpgradeIntrinsicFunction(&F, NewFn))
3694       UpgradedIntrinsics[&F] = NewFn;
3695     // Look for functions that rely on old function attribute behavior.
3696     UpgradeFunctionAttributes(F);
3697   }
3698 
3699   // Look for global variables which need to be renamed.
3700   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3701   for (GlobalVariable &GV : TheModule->globals())
3702     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3703       UpgradedVariables.emplace_back(&GV, Upgraded);
3704   for (auto &Pair : UpgradedVariables) {
3705     Pair.first->eraseFromParent();
3706     TheModule->insertGlobalVariable(Pair.second);
3707   }
3708 
3709   // Force deallocation of memory for these vectors to favor the client that
3710   // want lazy deserialization.
3711   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3712   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3713   return Error::success();
3714 }
3715 
3716 /// Support for lazy parsing of function bodies. This is required if we
3717 /// either have an old bitcode file without a VST forward declaration record,
3718 /// or if we have an anonymous function being materialized, since anonymous
3719 /// functions do not have a name and are therefore not in the VST.
3720 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3721   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3722     return JumpFailed;
3723 
3724   if (Stream.AtEndOfStream())
3725     return error("Could not find function in stream");
3726 
3727   if (!SeenFirstFunctionBody)
3728     return error("Trying to materialize functions before seeing function blocks");
3729 
3730   // An old bitcode file with the symbol table at the end would have
3731   // finished the parse greedily.
3732   assert(SeenValueSymbolTable);
3733 
3734   SmallVector<uint64_t, 64> Record;
3735 
3736   while (true) {
3737     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3738     if (!MaybeEntry)
3739       return MaybeEntry.takeError();
3740     llvm::BitstreamEntry Entry = MaybeEntry.get();
3741 
3742     switch (Entry.Kind) {
3743     default:
3744       return error("Expect SubBlock");
3745     case BitstreamEntry::SubBlock:
3746       switch (Entry.ID) {
3747       default:
3748         return error("Expect function block");
3749       case bitc::FUNCTION_BLOCK_ID:
3750         if (Error Err = rememberAndSkipFunctionBody())
3751           return Err;
3752         NextUnreadBit = Stream.GetCurrentBitNo();
3753         return Error::success();
3754       }
3755     }
3756   }
3757 }
3758 
3759 Error BitcodeReaderBase::readBlockInfo() {
3760   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3761       Stream.ReadBlockInfoBlock();
3762   if (!MaybeNewBlockInfo)
3763     return MaybeNewBlockInfo.takeError();
3764   std::optional<BitstreamBlockInfo> NewBlockInfo =
3765       std::move(MaybeNewBlockInfo.get());
3766   if (!NewBlockInfo)
3767     return error("Malformed block");
3768   BlockInfo = std::move(*NewBlockInfo);
3769   return Error::success();
3770 }
3771 
3772 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3773   // v1: [selection_kind, name]
3774   // v2: [strtab_offset, strtab_size, selection_kind]
3775   StringRef Name;
3776   std::tie(Name, Record) = readNameFromStrtab(Record);
3777 
3778   if (Record.empty())
3779     return error("Invalid record");
3780   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3781   std::string OldFormatName;
3782   if (!UseStrtab) {
3783     if (Record.size() < 2)
3784       return error("Invalid record");
3785     unsigned ComdatNameSize = Record[1];
3786     if (ComdatNameSize > Record.size() - 2)
3787       return error("Comdat name size too large");
3788     OldFormatName.reserve(ComdatNameSize);
3789     for (unsigned i = 0; i != ComdatNameSize; ++i)
3790       OldFormatName += (char)Record[2 + i];
3791     Name = OldFormatName;
3792   }
3793   Comdat *C = TheModule->getOrInsertComdat(Name);
3794   C->setSelectionKind(SK);
3795   ComdatList.push_back(C);
3796   return Error::success();
3797 }
3798 
3799 static void inferDSOLocal(GlobalValue *GV) {
3800   // infer dso_local from linkage and visibility if it is not encoded.
3801   if (GV->hasLocalLinkage() ||
3802       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3803     GV->setDSOLocal(true);
3804 }
3805 
3806 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3807   GlobalValue::SanitizerMetadata Meta;
3808   if (V & (1 << 0))
3809     Meta.NoAddress = true;
3810   if (V & (1 << 1))
3811     Meta.NoHWAddress = true;
3812   if (V & (1 << 2))
3813     Meta.Memtag = true;
3814   if (V & (1 << 3))
3815     Meta.IsDynInit = true;
3816   return Meta;
3817 }
3818 
3819 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3820   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3821   // visibility, threadlocal, unnamed_addr, externally_initialized,
3822   // dllstorageclass, comdat, attributes, preemption specifier,
3823   // partition strtab offset, partition strtab size] (name in VST)
3824   // v2: [strtab_offset, strtab_size, v1]
3825   StringRef Name;
3826   std::tie(Name, Record) = readNameFromStrtab(Record);
3827 
3828   if (Record.size() < 6)
3829     return error("Invalid record");
3830   unsigned TyID = Record[0];
3831   Type *Ty = getTypeByID(TyID);
3832   if (!Ty)
3833     return error("Invalid record");
3834   bool isConstant = Record[1] & 1;
3835   bool explicitType = Record[1] & 2;
3836   unsigned AddressSpace;
3837   if (explicitType) {
3838     AddressSpace = Record[1] >> 2;
3839   } else {
3840     if (!Ty->isPointerTy())
3841       return error("Invalid type for value");
3842     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3843     TyID = getContainedTypeID(TyID);
3844     Ty = getTypeByID(TyID);
3845     if (!Ty)
3846       return error("Missing element type for old-style global");
3847   }
3848 
3849   uint64_t RawLinkage = Record[3];
3850   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3851   MaybeAlign Alignment;
3852   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3853     return Err;
3854   std::string Section;
3855   if (Record[5]) {
3856     if (Record[5] - 1 >= SectionTable.size())
3857       return error("Invalid ID");
3858     Section = SectionTable[Record[5] - 1];
3859   }
3860   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3861   // Local linkage must have default visibility.
3862   // auto-upgrade `hidden` and `protected` for old bitcode.
3863   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3864     Visibility = getDecodedVisibility(Record[6]);
3865 
3866   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3867   if (Record.size() > 7)
3868     TLM = getDecodedThreadLocalMode(Record[7]);
3869 
3870   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3871   if (Record.size() > 8)
3872     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3873 
3874   bool ExternallyInitialized = false;
3875   if (Record.size() > 9)
3876     ExternallyInitialized = Record[9];
3877 
3878   GlobalVariable *NewGV =
3879       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3880                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3881   if (Alignment)
3882     NewGV->setAlignment(*Alignment);
3883   if (!Section.empty())
3884     NewGV->setSection(Section);
3885   NewGV->setVisibility(Visibility);
3886   NewGV->setUnnamedAddr(UnnamedAddr);
3887 
3888   if (Record.size() > 10) {
3889     // A GlobalValue with local linkage cannot have a DLL storage class.
3890     if (!NewGV->hasLocalLinkage()) {
3891       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3892     }
3893   } else {
3894     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3895   }
3896 
3897   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3898 
3899   // Remember which value to use for the global initializer.
3900   if (unsigned InitID = Record[2])
3901     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3902 
3903   if (Record.size() > 11) {
3904     if (unsigned ComdatID = Record[11]) {
3905       if (ComdatID > ComdatList.size())
3906         return error("Invalid global variable comdat ID");
3907       NewGV->setComdat(ComdatList[ComdatID - 1]);
3908     }
3909   } else if (hasImplicitComdat(RawLinkage)) {
3910     ImplicitComdatObjects.insert(NewGV);
3911   }
3912 
3913   if (Record.size() > 12) {
3914     auto AS = getAttributes(Record[12]).getFnAttrs();
3915     NewGV->setAttributes(AS);
3916   }
3917 
3918   if (Record.size() > 13) {
3919     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3920   }
3921   inferDSOLocal(NewGV);
3922 
3923   // Check whether we have enough values to read a partition name.
3924   if (Record.size() > 15)
3925     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3926 
3927   if (Record.size() > 16 && Record[16]) {
3928     llvm::GlobalValue::SanitizerMetadata Meta =
3929         deserializeSanitizerMetadata(Record[16]);
3930     NewGV->setSanitizerMetadata(Meta);
3931   }
3932 
3933   return Error::success();
3934 }
3935 
3936 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3937   if (ValueTypeCallback) {
3938     (*ValueTypeCallback)(
3939         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3940         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3941   }
3942 }
3943 
3944 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3945   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3946   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3947   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3948   // v2: [strtab_offset, strtab_size, v1]
3949   StringRef Name;
3950   std::tie(Name, Record) = readNameFromStrtab(Record);
3951 
3952   if (Record.size() < 8)
3953     return error("Invalid record");
3954   unsigned FTyID = Record[0];
3955   Type *FTy = getTypeByID(FTyID);
3956   if (!FTy)
3957     return error("Invalid record");
3958   if (isa<PointerType>(FTy)) {
3959     FTyID = getContainedTypeID(FTyID, 0);
3960     FTy = getTypeByID(FTyID);
3961     if (!FTy)
3962       return error("Missing element type for old-style function");
3963   }
3964 
3965   if (!isa<FunctionType>(FTy))
3966     return error("Invalid type for value");
3967   auto CC = static_cast<CallingConv::ID>(Record[1]);
3968   if (CC & ~CallingConv::MaxID)
3969     return error("Invalid calling convention ID");
3970 
3971   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3972   if (Record.size() > 16)
3973     AddrSpace = Record[16];
3974 
3975   Function *Func =
3976       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3977                        AddrSpace, Name, TheModule);
3978 
3979   assert(Func->getFunctionType() == FTy &&
3980          "Incorrect fully specified type provided for function");
3981   FunctionTypeIDs[Func] = FTyID;
3982 
3983   Func->setCallingConv(CC);
3984   bool isProto = Record[2];
3985   uint64_t RawLinkage = Record[3];
3986   Func->setLinkage(getDecodedLinkage(RawLinkage));
3987   Func->setAttributes(getAttributes(Record[4]));
3988   callValueTypeCallback(Func, FTyID);
3989 
3990   // Upgrade any old-style byval or sret without a type by propagating the
3991   // argument's pointee type. There should be no opaque pointers where the byval
3992   // type is implicit.
3993   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3994     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3995                                      Attribute::InAlloca}) {
3996       if (!Func->hasParamAttribute(i, Kind))
3997         continue;
3998 
3999       if (Func->getParamAttribute(i, Kind).getValueAsType())
4000         continue;
4001 
4002       Func->removeParamAttr(i, Kind);
4003 
4004       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4005       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4006       if (!PtrEltTy)
4007         return error("Missing param element type for attribute upgrade");
4008 
4009       Attribute NewAttr;
4010       switch (Kind) {
4011       case Attribute::ByVal:
4012         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4013         break;
4014       case Attribute::StructRet:
4015         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4016         break;
4017       case Attribute::InAlloca:
4018         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4019         break;
4020       default:
4021         llvm_unreachable("not an upgraded type attribute");
4022       }
4023 
4024       Func->addParamAttr(i, NewAttr);
4025     }
4026   }
4027 
4028   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4029       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4030     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4031     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4032     if (!ByValTy)
4033       return error("Missing param element type for x86_intrcc upgrade");
4034     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4035     Func->addParamAttr(0, NewAttr);
4036   }
4037 
4038   MaybeAlign Alignment;
4039   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4040     return Err;
4041   if (Alignment)
4042     Func->setAlignment(*Alignment);
4043   if (Record[6]) {
4044     if (Record[6] - 1 >= SectionTable.size())
4045       return error("Invalid ID");
4046     Func->setSection(SectionTable[Record[6] - 1]);
4047   }
4048   // Local linkage must have default visibility.
4049   // auto-upgrade `hidden` and `protected` for old bitcode.
4050   if (!Func->hasLocalLinkage())
4051     Func->setVisibility(getDecodedVisibility(Record[7]));
4052   if (Record.size() > 8 && Record[8]) {
4053     if (Record[8] - 1 >= GCTable.size())
4054       return error("Invalid ID");
4055     Func->setGC(GCTable[Record[8] - 1]);
4056   }
4057   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4058   if (Record.size() > 9)
4059     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4060   Func->setUnnamedAddr(UnnamedAddr);
4061 
4062   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4063   if (Record.size() > 10)
4064     OperandInfo.Prologue = Record[10];
4065 
4066   if (Record.size() > 11) {
4067     // A GlobalValue with local linkage cannot have a DLL storage class.
4068     if (!Func->hasLocalLinkage()) {
4069       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4070     }
4071   } else {
4072     upgradeDLLImportExportLinkage(Func, RawLinkage);
4073   }
4074 
4075   if (Record.size() > 12) {
4076     if (unsigned ComdatID = Record[12]) {
4077       if (ComdatID > ComdatList.size())
4078         return error("Invalid function comdat ID");
4079       Func->setComdat(ComdatList[ComdatID - 1]);
4080     }
4081   } else if (hasImplicitComdat(RawLinkage)) {
4082     ImplicitComdatObjects.insert(Func);
4083   }
4084 
4085   if (Record.size() > 13)
4086     OperandInfo.Prefix = Record[13];
4087 
4088   if (Record.size() > 14)
4089     OperandInfo.PersonalityFn = Record[14];
4090 
4091   if (Record.size() > 15) {
4092     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4093   }
4094   inferDSOLocal(Func);
4095 
4096   // Record[16] is the address space number.
4097 
4098   // Check whether we have enough values to read a partition name. Also make
4099   // sure Strtab has enough values.
4100   if (Record.size() > 18 && Strtab.data() &&
4101       Record[17] + Record[18] <= Strtab.size()) {
4102     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4103   }
4104 
4105   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4106 
4107   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4108     FunctionOperands.push_back(OperandInfo);
4109 
4110   // If this is a function with a body, remember the prototype we are
4111   // creating now, so that we can match up the body with them later.
4112   if (!isProto) {
4113     Func->setIsMaterializable(true);
4114     FunctionsWithBodies.push_back(Func);
4115     DeferredFunctionInfo[Func] = 0;
4116   }
4117   return Error::success();
4118 }
4119 
4120 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4121     unsigned BitCode, ArrayRef<uint64_t> Record) {
4122   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4123   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4124   // dllstorageclass, threadlocal, unnamed_addr,
4125   // preemption specifier] (name in VST)
4126   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4127   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4128   // preemption specifier] (name in VST)
4129   // v2: [strtab_offset, strtab_size, v1]
4130   StringRef Name;
4131   std::tie(Name, Record) = readNameFromStrtab(Record);
4132 
4133   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4134   if (Record.size() < (3 + (unsigned)NewRecord))
4135     return error("Invalid record");
4136   unsigned OpNum = 0;
4137   unsigned TypeID = Record[OpNum++];
4138   Type *Ty = getTypeByID(TypeID);
4139   if (!Ty)
4140     return error("Invalid record");
4141 
4142   unsigned AddrSpace;
4143   if (!NewRecord) {
4144     auto *PTy = dyn_cast<PointerType>(Ty);
4145     if (!PTy)
4146       return error("Invalid type for value");
4147     AddrSpace = PTy->getAddressSpace();
4148     TypeID = getContainedTypeID(TypeID);
4149     Ty = getTypeByID(TypeID);
4150     if (!Ty)
4151       return error("Missing element type for old-style indirect symbol");
4152   } else {
4153     AddrSpace = Record[OpNum++];
4154   }
4155 
4156   auto Val = Record[OpNum++];
4157   auto Linkage = Record[OpNum++];
4158   GlobalValue *NewGA;
4159   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4160       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4161     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4162                                 TheModule);
4163   else
4164     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4165                                 nullptr, TheModule);
4166 
4167   // Local linkage must have default visibility.
4168   // auto-upgrade `hidden` and `protected` for old bitcode.
4169   if (OpNum != Record.size()) {
4170     auto VisInd = OpNum++;
4171     if (!NewGA->hasLocalLinkage())
4172       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4173   }
4174   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4175       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4176     if (OpNum != Record.size()) {
4177       auto S = Record[OpNum++];
4178       // A GlobalValue with local linkage cannot have a DLL storage class.
4179       if (!NewGA->hasLocalLinkage())
4180         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4181     }
4182     else
4183       upgradeDLLImportExportLinkage(NewGA, Linkage);
4184     if (OpNum != Record.size())
4185       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4186     if (OpNum != Record.size())
4187       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4188   }
4189   if (OpNum != Record.size())
4190     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4191   inferDSOLocal(NewGA);
4192 
4193   // Check whether we have enough values to read a partition name.
4194   if (OpNum + 1 < Record.size()) {
4195     NewGA->setPartition(
4196         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4197     OpNum += 2;
4198   }
4199 
4200   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4201   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4202   return Error::success();
4203 }
4204 
4205 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4206                                  bool ShouldLazyLoadMetadata,
4207                                  ParserCallbacks Callbacks) {
4208   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4209   if (ResumeBit) {
4210     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4211       return JumpFailed;
4212   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4213     return Err;
4214 
4215   SmallVector<uint64_t, 64> Record;
4216 
4217   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4218   // finalize the datalayout before we run any of that code.
4219   bool ResolvedDataLayout = false;
4220   // In order to support importing modules with illegal data layout strings,
4221   // delay parsing the data layout string until after upgrades and overrides
4222   // have been applied, allowing to fix illegal data layout strings.
4223   // Initialize to the current module's layout string in case none is specified.
4224   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4225 
4226   auto ResolveDataLayout = [&]() -> Error {
4227     if (ResolvedDataLayout)
4228       return Error::success();
4229 
4230     // Datalayout and triple can't be parsed after this point.
4231     ResolvedDataLayout = true;
4232 
4233     // Auto-upgrade the layout string
4234     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4235         TentativeDataLayoutStr, TheModule->getTargetTriple());
4236 
4237     // Apply override
4238     if (Callbacks.DataLayout) {
4239       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4240               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4241         TentativeDataLayoutStr = *LayoutOverride;
4242     }
4243 
4244     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4245     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4246     if (!MaybeDL)
4247       return MaybeDL.takeError();
4248 
4249     TheModule->setDataLayout(MaybeDL.get());
4250     return Error::success();
4251   };
4252 
4253   // Read all the records for this module.
4254   while (true) {
4255     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4256     if (!MaybeEntry)
4257       return MaybeEntry.takeError();
4258     llvm::BitstreamEntry Entry = MaybeEntry.get();
4259 
4260     switch (Entry.Kind) {
4261     case BitstreamEntry::Error:
4262       return error("Malformed block");
4263     case BitstreamEntry::EndBlock:
4264       if (Error Err = ResolveDataLayout())
4265         return Err;
4266       return globalCleanup();
4267 
4268     case BitstreamEntry::SubBlock:
4269       switch (Entry.ID) {
4270       default:  // Skip unknown content.
4271         if (Error Err = Stream.SkipBlock())
4272           return Err;
4273         break;
4274       case bitc::BLOCKINFO_BLOCK_ID:
4275         if (Error Err = readBlockInfo())
4276           return Err;
4277         break;
4278       case bitc::PARAMATTR_BLOCK_ID:
4279         if (Error Err = parseAttributeBlock())
4280           return Err;
4281         break;
4282       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4283         if (Error Err = parseAttributeGroupBlock())
4284           return Err;
4285         break;
4286       case bitc::TYPE_BLOCK_ID_NEW:
4287         if (Error Err = parseTypeTable())
4288           return Err;
4289         break;
4290       case bitc::VALUE_SYMTAB_BLOCK_ID:
4291         if (!SeenValueSymbolTable) {
4292           // Either this is an old form VST without function index and an
4293           // associated VST forward declaration record (which would have caused
4294           // the VST to be jumped to and parsed before it was encountered
4295           // normally in the stream), or there were no function blocks to
4296           // trigger an earlier parsing of the VST.
4297           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4298           if (Error Err = parseValueSymbolTable())
4299             return Err;
4300           SeenValueSymbolTable = true;
4301         } else {
4302           // We must have had a VST forward declaration record, which caused
4303           // the parser to jump to and parse the VST earlier.
4304           assert(VSTOffset > 0);
4305           if (Error Err = Stream.SkipBlock())
4306             return Err;
4307         }
4308         break;
4309       case bitc::CONSTANTS_BLOCK_ID:
4310         if (Error Err = parseConstants())
4311           return Err;
4312         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4313           return Err;
4314         break;
4315       case bitc::METADATA_BLOCK_ID:
4316         if (ShouldLazyLoadMetadata) {
4317           if (Error Err = rememberAndSkipMetadata())
4318             return Err;
4319           break;
4320         }
4321         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4322         if (Error Err = MDLoader->parseModuleMetadata())
4323           return Err;
4324         break;
4325       case bitc::METADATA_KIND_BLOCK_ID:
4326         if (Error Err = MDLoader->parseMetadataKinds())
4327           return Err;
4328         break;
4329       case bitc::FUNCTION_BLOCK_ID:
4330         if (Error Err = ResolveDataLayout())
4331           return Err;
4332 
4333         // If this is the first function body we've seen, reverse the
4334         // FunctionsWithBodies list.
4335         if (!SeenFirstFunctionBody) {
4336           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4337           if (Error Err = globalCleanup())
4338             return Err;
4339           SeenFirstFunctionBody = true;
4340         }
4341 
4342         if (VSTOffset > 0) {
4343           // If we have a VST forward declaration record, make sure we
4344           // parse the VST now if we haven't already. It is needed to
4345           // set up the DeferredFunctionInfo vector for lazy reading.
4346           if (!SeenValueSymbolTable) {
4347             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4348               return Err;
4349             SeenValueSymbolTable = true;
4350             // Fall through so that we record the NextUnreadBit below.
4351             // This is necessary in case we have an anonymous function that
4352             // is later materialized. Since it will not have a VST entry we
4353             // need to fall back to the lazy parse to find its offset.
4354           } else {
4355             // If we have a VST forward declaration record, but have already
4356             // parsed the VST (just above, when the first function body was
4357             // encountered here), then we are resuming the parse after
4358             // materializing functions. The ResumeBit points to the
4359             // start of the last function block recorded in the
4360             // DeferredFunctionInfo map. Skip it.
4361             if (Error Err = Stream.SkipBlock())
4362               return Err;
4363             continue;
4364           }
4365         }
4366 
4367         // Support older bitcode files that did not have the function
4368         // index in the VST, nor a VST forward declaration record, as
4369         // well as anonymous functions that do not have VST entries.
4370         // Build the DeferredFunctionInfo vector on the fly.
4371         if (Error Err = rememberAndSkipFunctionBody())
4372           return Err;
4373 
4374         // Suspend parsing when we reach the function bodies. Subsequent
4375         // materialization calls will resume it when necessary. If the bitcode
4376         // file is old, the symbol table will be at the end instead and will not
4377         // have been seen yet. In this case, just finish the parse now.
4378         if (SeenValueSymbolTable) {
4379           NextUnreadBit = Stream.GetCurrentBitNo();
4380           // After the VST has been parsed, we need to make sure intrinsic name
4381           // are auto-upgraded.
4382           return globalCleanup();
4383         }
4384         break;
4385       case bitc::USELIST_BLOCK_ID:
4386         if (Error Err = parseUseLists())
4387           return Err;
4388         break;
4389       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4390         if (Error Err = parseOperandBundleTags())
4391           return Err;
4392         break;
4393       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4394         if (Error Err = parseSyncScopeNames())
4395           return Err;
4396         break;
4397       }
4398       continue;
4399 
4400     case BitstreamEntry::Record:
4401       // The interesting case.
4402       break;
4403     }
4404 
4405     // Read a record.
4406     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4407     if (!MaybeBitCode)
4408       return MaybeBitCode.takeError();
4409     switch (unsigned BitCode = MaybeBitCode.get()) {
4410     default: break;  // Default behavior, ignore unknown content.
4411     case bitc::MODULE_CODE_VERSION: {
4412       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4413       if (!VersionOrErr)
4414         return VersionOrErr.takeError();
4415       UseRelativeIDs = *VersionOrErr >= 1;
4416       break;
4417     }
4418     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4419       if (ResolvedDataLayout)
4420         return error("target triple too late in module");
4421       std::string S;
4422       if (convertToString(Record, 0, S))
4423         return error("Invalid record");
4424       TheModule->setTargetTriple(S);
4425       break;
4426     }
4427     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4428       if (ResolvedDataLayout)
4429         return error("datalayout too late in module");
4430       if (convertToString(Record, 0, TentativeDataLayoutStr))
4431         return error("Invalid record");
4432       break;
4433     }
4434     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4435       std::string S;
4436       if (convertToString(Record, 0, S))
4437         return error("Invalid record");
4438       TheModule->setModuleInlineAsm(S);
4439       break;
4440     }
4441     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4442       // Deprecated, but still needed to read old bitcode files.
4443       std::string S;
4444       if (convertToString(Record, 0, S))
4445         return error("Invalid record");
4446       // Ignore value.
4447       break;
4448     }
4449     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4450       std::string S;
4451       if (convertToString(Record, 0, S))
4452         return error("Invalid record");
4453       SectionTable.push_back(S);
4454       break;
4455     }
4456     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4457       std::string S;
4458       if (convertToString(Record, 0, S))
4459         return error("Invalid record");
4460       GCTable.push_back(S);
4461       break;
4462     }
4463     case bitc::MODULE_CODE_COMDAT:
4464       if (Error Err = parseComdatRecord(Record))
4465         return Err;
4466       break;
4467     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4468     // written by ThinLinkBitcodeWriter. See
4469     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4470     // record
4471     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4472     case bitc::MODULE_CODE_GLOBALVAR:
4473       if (Error Err = parseGlobalVarRecord(Record))
4474         return Err;
4475       break;
4476     case bitc::MODULE_CODE_FUNCTION:
4477       if (Error Err = ResolveDataLayout())
4478         return Err;
4479       if (Error Err = parseFunctionRecord(Record))
4480         return Err;
4481       break;
4482     case bitc::MODULE_CODE_IFUNC:
4483     case bitc::MODULE_CODE_ALIAS:
4484     case bitc::MODULE_CODE_ALIAS_OLD:
4485       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4486         return Err;
4487       break;
4488     /// MODULE_CODE_VSTOFFSET: [offset]
4489     case bitc::MODULE_CODE_VSTOFFSET:
4490       if (Record.empty())
4491         return error("Invalid record");
4492       // Note that we subtract 1 here because the offset is relative to one word
4493       // before the start of the identification or module block, which was
4494       // historically always the start of the regular bitcode header.
4495       VSTOffset = Record[0] - 1;
4496       break;
4497     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4498     case bitc::MODULE_CODE_SOURCE_FILENAME:
4499       SmallString<128> ValueName;
4500       if (convertToString(Record, 0, ValueName))
4501         return error("Invalid record");
4502       TheModule->setSourceFileName(ValueName);
4503       break;
4504     }
4505     Record.clear();
4506   }
4507   this->ValueTypeCallback = std::nullopt;
4508   return Error::success();
4509 }
4510 
4511 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4512                                       bool IsImporting,
4513                                       ParserCallbacks Callbacks) {
4514   TheModule = M;
4515   MetadataLoaderCallbacks MDCallbacks;
4516   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4517   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4518     return getContainedTypeID(I, J);
4519   };
4520   MDCallbacks.MDType = Callbacks.MDType;
4521   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4522   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4523 }
4524 
4525 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4526   if (!isa<PointerType>(PtrType))
4527     return error("Load/Store operand is not a pointer type");
4528 
4529   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4530     return error("Explicit load/store type does not match pointee "
4531                  "type of pointer operand");
4532   if (!PointerType::isLoadableOrStorableType(ValType))
4533     return error("Cannot load/store from pointer");
4534   return Error::success();
4535 }
4536 
4537 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4538                                              ArrayRef<unsigned> ArgTyIDs) {
4539   AttributeList Attrs = CB->getAttributes();
4540   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4541     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4542                                      Attribute::InAlloca}) {
4543       if (!Attrs.hasParamAttr(i, Kind) ||
4544           Attrs.getParamAttr(i, Kind).getValueAsType())
4545         continue;
4546 
4547       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4548       if (!PtrEltTy)
4549         return error("Missing element type for typed attribute upgrade");
4550 
4551       Attribute NewAttr;
4552       switch (Kind) {
4553       case Attribute::ByVal:
4554         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4555         break;
4556       case Attribute::StructRet:
4557         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4558         break;
4559       case Attribute::InAlloca:
4560         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4561         break;
4562       default:
4563         llvm_unreachable("not an upgraded type attribute");
4564       }
4565 
4566       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4567     }
4568   }
4569 
4570   if (CB->isInlineAsm()) {
4571     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4572     unsigned ArgNo = 0;
4573     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4574       if (!CI.hasArg())
4575         continue;
4576 
4577       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4578         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4579         if (!ElemTy)
4580           return error("Missing element type for inline asm upgrade");
4581         Attrs = Attrs.addParamAttribute(
4582             Context, ArgNo,
4583             Attribute::get(Context, Attribute::ElementType, ElemTy));
4584       }
4585 
4586       ArgNo++;
4587     }
4588   }
4589 
4590   switch (CB->getIntrinsicID()) {
4591   case Intrinsic::preserve_array_access_index:
4592   case Intrinsic::preserve_struct_access_index:
4593   case Intrinsic::aarch64_ldaxr:
4594   case Intrinsic::aarch64_ldxr:
4595   case Intrinsic::aarch64_stlxr:
4596   case Intrinsic::aarch64_stxr:
4597   case Intrinsic::arm_ldaex:
4598   case Intrinsic::arm_ldrex:
4599   case Intrinsic::arm_stlex:
4600   case Intrinsic::arm_strex: {
4601     unsigned ArgNo;
4602     switch (CB->getIntrinsicID()) {
4603     case Intrinsic::aarch64_stlxr:
4604     case Intrinsic::aarch64_stxr:
4605     case Intrinsic::arm_stlex:
4606     case Intrinsic::arm_strex:
4607       ArgNo = 1;
4608       break;
4609     default:
4610       ArgNo = 0;
4611       break;
4612     }
4613     if (!Attrs.getParamElementType(ArgNo)) {
4614       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4615       if (!ElTy)
4616         return error("Missing element type for elementtype upgrade");
4617       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4618       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4619     }
4620     break;
4621   }
4622   default:
4623     break;
4624   }
4625 
4626   CB->setAttributes(Attrs);
4627   return Error::success();
4628 }
4629 
4630 /// Lazily parse the specified function body block.
4631 Error BitcodeReader::parseFunctionBody(Function *F) {
4632   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4633     return Err;
4634 
4635   // Unexpected unresolved metadata when parsing function.
4636   if (MDLoader->hasFwdRefs())
4637     return error("Invalid function metadata: incoming forward references");
4638 
4639   InstructionList.clear();
4640   unsigned ModuleValueListSize = ValueList.size();
4641   unsigned ModuleMDLoaderSize = MDLoader->size();
4642 
4643   // Add all the function arguments to the value table.
4644   unsigned ArgNo = 0;
4645   unsigned FTyID = FunctionTypeIDs[F];
4646   for (Argument &I : F->args()) {
4647     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4648     assert(I.getType() == getTypeByID(ArgTyID) &&
4649            "Incorrect fully specified type for Function Argument");
4650     ValueList.push_back(&I, ArgTyID);
4651     ++ArgNo;
4652   }
4653   unsigned NextValueNo = ValueList.size();
4654   BasicBlock *CurBB = nullptr;
4655   unsigned CurBBNo = 0;
4656   // Block into which constant expressions from phi nodes are materialized.
4657   BasicBlock *PhiConstExprBB = nullptr;
4658   // Edge blocks for phi nodes into which constant expressions have been
4659   // expanded.
4660   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4661     ConstExprEdgeBBs;
4662 
4663   DebugLoc LastLoc;
4664   auto getLastInstruction = [&]() -> Instruction * {
4665     if (CurBB && !CurBB->empty())
4666       return &CurBB->back();
4667     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4668              !FunctionBBs[CurBBNo - 1]->empty())
4669       return &FunctionBBs[CurBBNo - 1]->back();
4670     return nullptr;
4671   };
4672 
4673   std::vector<OperandBundleDef> OperandBundles;
4674 
4675   // Read all the records.
4676   SmallVector<uint64_t, 64> Record;
4677 
4678   while (true) {
4679     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4680     if (!MaybeEntry)
4681       return MaybeEntry.takeError();
4682     llvm::BitstreamEntry Entry = MaybeEntry.get();
4683 
4684     switch (Entry.Kind) {
4685     case BitstreamEntry::Error:
4686       return error("Malformed block");
4687     case BitstreamEntry::EndBlock:
4688       goto OutOfRecordLoop;
4689 
4690     case BitstreamEntry::SubBlock:
4691       switch (Entry.ID) {
4692       default:  // Skip unknown content.
4693         if (Error Err = Stream.SkipBlock())
4694           return Err;
4695         break;
4696       case bitc::CONSTANTS_BLOCK_ID:
4697         if (Error Err = parseConstants())
4698           return Err;
4699         NextValueNo = ValueList.size();
4700         break;
4701       case bitc::VALUE_SYMTAB_BLOCK_ID:
4702         if (Error Err = parseValueSymbolTable())
4703           return Err;
4704         break;
4705       case bitc::METADATA_ATTACHMENT_ID:
4706         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4707           return Err;
4708         break;
4709       case bitc::METADATA_BLOCK_ID:
4710         assert(DeferredMetadataInfo.empty() &&
4711                "Must read all module-level metadata before function-level");
4712         if (Error Err = MDLoader->parseFunctionMetadata())
4713           return Err;
4714         break;
4715       case bitc::USELIST_BLOCK_ID:
4716         if (Error Err = parseUseLists())
4717           return Err;
4718         break;
4719       }
4720       continue;
4721 
4722     case BitstreamEntry::Record:
4723       // The interesting case.
4724       break;
4725     }
4726 
4727     // Read a record.
4728     Record.clear();
4729     Instruction *I = nullptr;
4730     unsigned ResTypeID = InvalidTypeID;
4731     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4732     if (!MaybeBitCode)
4733       return MaybeBitCode.takeError();
4734     switch (unsigned BitCode = MaybeBitCode.get()) {
4735     default: // Default behavior: reject
4736       return error("Invalid value");
4737     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4738       if (Record.empty() || Record[0] == 0)
4739         return error("Invalid record");
4740       // Create all the basic blocks for the function.
4741       FunctionBBs.resize(Record[0]);
4742 
4743       // See if anything took the address of blocks in this function.
4744       auto BBFRI = BasicBlockFwdRefs.find(F);
4745       if (BBFRI == BasicBlockFwdRefs.end()) {
4746         for (BasicBlock *&BB : FunctionBBs)
4747           BB = BasicBlock::Create(Context, "", F);
4748       } else {
4749         auto &BBRefs = BBFRI->second;
4750         // Check for invalid basic block references.
4751         if (BBRefs.size() > FunctionBBs.size())
4752           return error("Invalid ID");
4753         assert(!BBRefs.empty() && "Unexpected empty array");
4754         assert(!BBRefs.front() && "Invalid reference to entry block");
4755         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4756              ++I)
4757           if (I < RE && BBRefs[I]) {
4758             BBRefs[I]->insertInto(F);
4759             FunctionBBs[I] = BBRefs[I];
4760           } else {
4761             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4762           }
4763 
4764         // Erase from the table.
4765         BasicBlockFwdRefs.erase(BBFRI);
4766       }
4767 
4768       CurBB = FunctionBBs[0];
4769       continue;
4770     }
4771 
4772     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4773       // The record should not be emitted if it's an empty list.
4774       if (Record.empty())
4775         return error("Invalid record");
4776       // When we have the RARE case of a BlockAddress Constant that is not
4777       // scoped to the Function it refers to, we need to conservatively
4778       // materialize the referred to Function, regardless of whether or not
4779       // that Function will ultimately be linked, otherwise users of
4780       // BitcodeReader might start splicing out Function bodies such that we
4781       // might no longer be able to materialize the BlockAddress since the
4782       // BasicBlock (and entire body of the Function) the BlockAddress refers
4783       // to may have been moved. In the case that the user of BitcodeReader
4784       // decides ultimately not to link the Function body, materializing here
4785       // could be considered wasteful, but it's better than a deserialization
4786       // failure as described. This keeps BitcodeReader unaware of complex
4787       // linkage policy decisions such as those use by LTO, leaving those
4788       // decisions "one layer up."
4789       for (uint64_t ValID : Record)
4790         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4791           BackwardRefFunctions.push_back(F);
4792         else
4793           return error("Invalid record");
4794 
4795       continue;
4796 
4797     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4798       // This record indicates that the last instruction is at the same
4799       // location as the previous instruction with a location.
4800       I = getLastInstruction();
4801 
4802       if (!I)
4803         return error("Invalid record");
4804       I->setDebugLoc(LastLoc);
4805       I = nullptr;
4806       continue;
4807 
4808     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4809       I = getLastInstruction();
4810       if (!I || Record.size() < 4)
4811         return error("Invalid record");
4812 
4813       unsigned Line = Record[0], Col = Record[1];
4814       unsigned ScopeID = Record[2], IAID = Record[3];
4815       bool isImplicitCode = Record.size() == 5 && Record[4];
4816 
4817       MDNode *Scope = nullptr, *IA = nullptr;
4818       if (ScopeID) {
4819         Scope = dyn_cast_or_null<MDNode>(
4820             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4821         if (!Scope)
4822           return error("Invalid record");
4823       }
4824       if (IAID) {
4825         IA = dyn_cast_or_null<MDNode>(
4826             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4827         if (!IA)
4828           return error("Invalid record");
4829       }
4830       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4831                                 isImplicitCode);
4832       I->setDebugLoc(LastLoc);
4833       I = nullptr;
4834       continue;
4835     }
4836     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4837       unsigned OpNum = 0;
4838       Value *LHS;
4839       unsigned TypeID;
4840       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4841           OpNum+1 > Record.size())
4842         return error("Invalid record");
4843 
4844       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4845       if (Opc == -1)
4846         return error("Invalid record");
4847       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4848       ResTypeID = TypeID;
4849       InstructionList.push_back(I);
4850       if (OpNum < Record.size()) {
4851         if (isa<FPMathOperator>(I)) {
4852           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4853           if (FMF.any())
4854             I->setFastMathFlags(FMF);
4855         }
4856       }
4857       break;
4858     }
4859     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4860       unsigned OpNum = 0;
4861       Value *LHS, *RHS;
4862       unsigned TypeID;
4863       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4864           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4865                    CurBB) ||
4866           OpNum+1 > Record.size())
4867         return error("Invalid record");
4868 
4869       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4870       if (Opc == -1)
4871         return error("Invalid record");
4872       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4873       ResTypeID = TypeID;
4874       InstructionList.push_back(I);
4875       if (OpNum < Record.size()) {
4876         if (Opc == Instruction::Add ||
4877             Opc == Instruction::Sub ||
4878             Opc == Instruction::Mul ||
4879             Opc == Instruction::Shl) {
4880           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4881             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4882           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4883             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4884         } else if (Opc == Instruction::SDiv ||
4885                    Opc == Instruction::UDiv ||
4886                    Opc == Instruction::LShr ||
4887                    Opc == Instruction::AShr) {
4888           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4889             cast<BinaryOperator>(I)->setIsExact(true);
4890         } else if (isa<FPMathOperator>(I)) {
4891           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4892           if (FMF.any())
4893             I->setFastMathFlags(FMF);
4894         }
4895 
4896       }
4897       break;
4898     }
4899     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4900       unsigned OpNum = 0;
4901       Value *Op;
4902       unsigned OpTypeID;
4903       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4904           OpNum+2 != Record.size())
4905         return error("Invalid record");
4906 
4907       ResTypeID = Record[OpNum];
4908       Type *ResTy = getTypeByID(ResTypeID);
4909       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4910       if (Opc == -1 || !ResTy)
4911         return error("Invalid record");
4912       Instruction *Temp = nullptr;
4913       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4914         if (Temp) {
4915           InstructionList.push_back(Temp);
4916           assert(CurBB && "No current BB?");
4917           Temp->insertInto(CurBB, CurBB->end());
4918         }
4919       } else {
4920         auto CastOp = (Instruction::CastOps)Opc;
4921         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4922           return error("Invalid cast");
4923         I = CastInst::Create(CastOp, Op, ResTy);
4924       }
4925       InstructionList.push_back(I);
4926       break;
4927     }
4928     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4929     case bitc::FUNC_CODE_INST_GEP_OLD:
4930     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4931       unsigned OpNum = 0;
4932 
4933       unsigned TyID;
4934       Type *Ty;
4935       bool InBounds;
4936 
4937       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4938         InBounds = Record[OpNum++];
4939         TyID = Record[OpNum++];
4940         Ty = getTypeByID(TyID);
4941       } else {
4942         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4943         TyID = InvalidTypeID;
4944         Ty = nullptr;
4945       }
4946 
4947       Value *BasePtr;
4948       unsigned BasePtrTypeID;
4949       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4950                            CurBB))
4951         return error("Invalid record");
4952 
4953       if (!Ty) {
4954         TyID = getContainedTypeID(BasePtrTypeID);
4955         if (BasePtr->getType()->isVectorTy())
4956           TyID = getContainedTypeID(TyID);
4957         Ty = getTypeByID(TyID);
4958       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4959                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4960         return error(
4961             "Explicit gep type does not match pointee type of pointer operand");
4962       }
4963 
4964       SmallVector<Value*, 16> GEPIdx;
4965       while (OpNum != Record.size()) {
4966         Value *Op;
4967         unsigned OpTypeID;
4968         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4969           return error("Invalid record");
4970         GEPIdx.push_back(Op);
4971       }
4972 
4973       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4974 
4975       ResTypeID = TyID;
4976       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4977         auto GTI = std::next(gep_type_begin(I));
4978         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4979           unsigned SubType = 0;
4980           if (GTI.isStruct()) {
4981             ConstantInt *IdxC =
4982                 Idx->getType()->isVectorTy()
4983                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4984                     : cast<ConstantInt>(Idx);
4985             SubType = IdxC->getZExtValue();
4986           }
4987           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4988           ++GTI;
4989         }
4990       }
4991 
4992       // At this point ResTypeID is the result element type. We need a pointer
4993       // or vector of pointer to it.
4994       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4995       if (I->getType()->isVectorTy())
4996         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4997 
4998       InstructionList.push_back(I);
4999       if (InBounds)
5000         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5001       break;
5002     }
5003 
5004     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5005                                        // EXTRACTVAL: [opty, opval, n x indices]
5006       unsigned OpNum = 0;
5007       Value *Agg;
5008       unsigned AggTypeID;
5009       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5010         return error("Invalid record");
5011       Type *Ty = Agg->getType();
5012 
5013       unsigned RecSize = Record.size();
5014       if (OpNum == RecSize)
5015         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5016 
5017       SmallVector<unsigned, 4> EXTRACTVALIdx;
5018       ResTypeID = AggTypeID;
5019       for (; OpNum != RecSize; ++OpNum) {
5020         bool IsArray = Ty->isArrayTy();
5021         bool IsStruct = Ty->isStructTy();
5022         uint64_t Index = Record[OpNum];
5023 
5024         if (!IsStruct && !IsArray)
5025           return error("EXTRACTVAL: Invalid type");
5026         if ((unsigned)Index != Index)
5027           return error("Invalid value");
5028         if (IsStruct && Index >= Ty->getStructNumElements())
5029           return error("EXTRACTVAL: Invalid struct index");
5030         if (IsArray && Index >= Ty->getArrayNumElements())
5031           return error("EXTRACTVAL: Invalid array index");
5032         EXTRACTVALIdx.push_back((unsigned)Index);
5033 
5034         if (IsStruct) {
5035           Ty = Ty->getStructElementType(Index);
5036           ResTypeID = getContainedTypeID(ResTypeID, Index);
5037         } else {
5038           Ty = Ty->getArrayElementType();
5039           ResTypeID = getContainedTypeID(ResTypeID);
5040         }
5041       }
5042 
5043       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5044       InstructionList.push_back(I);
5045       break;
5046     }
5047 
5048     case bitc::FUNC_CODE_INST_INSERTVAL: {
5049                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5050       unsigned OpNum = 0;
5051       Value *Agg;
5052       unsigned AggTypeID;
5053       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5054         return error("Invalid record");
5055       Value *Val;
5056       unsigned ValTypeID;
5057       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5058         return error("Invalid record");
5059 
5060       unsigned RecSize = Record.size();
5061       if (OpNum == RecSize)
5062         return error("INSERTVAL: Invalid instruction with 0 indices");
5063 
5064       SmallVector<unsigned, 4> INSERTVALIdx;
5065       Type *CurTy = Agg->getType();
5066       for (; OpNum != RecSize; ++OpNum) {
5067         bool IsArray = CurTy->isArrayTy();
5068         bool IsStruct = CurTy->isStructTy();
5069         uint64_t Index = Record[OpNum];
5070 
5071         if (!IsStruct && !IsArray)
5072           return error("INSERTVAL: Invalid type");
5073         if ((unsigned)Index != Index)
5074           return error("Invalid value");
5075         if (IsStruct && Index >= CurTy->getStructNumElements())
5076           return error("INSERTVAL: Invalid struct index");
5077         if (IsArray && Index >= CurTy->getArrayNumElements())
5078           return error("INSERTVAL: Invalid array index");
5079 
5080         INSERTVALIdx.push_back((unsigned)Index);
5081         if (IsStruct)
5082           CurTy = CurTy->getStructElementType(Index);
5083         else
5084           CurTy = CurTy->getArrayElementType();
5085       }
5086 
5087       if (CurTy != Val->getType())
5088         return error("Inserted value type doesn't match aggregate type");
5089 
5090       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5091       ResTypeID = AggTypeID;
5092       InstructionList.push_back(I);
5093       break;
5094     }
5095 
5096     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5097       // obsolete form of select
5098       // handles select i1 ... in old bitcode
5099       unsigned OpNum = 0;
5100       Value *TrueVal, *FalseVal, *Cond;
5101       unsigned TypeID;
5102       Type *CondType = Type::getInt1Ty(Context);
5103       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5104                            CurBB) ||
5105           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5106                    FalseVal, CurBB) ||
5107           popValue(Record, OpNum, NextValueNo, CondType,
5108                    getVirtualTypeID(CondType), Cond, CurBB))
5109         return error("Invalid record");
5110 
5111       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5112       ResTypeID = TypeID;
5113       InstructionList.push_back(I);
5114       break;
5115     }
5116 
5117     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5118       // new form of select
5119       // handles select i1 or select [N x i1]
5120       unsigned OpNum = 0;
5121       Value *TrueVal, *FalseVal, *Cond;
5122       unsigned ValTypeID, CondTypeID;
5123       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5124                            CurBB) ||
5125           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5126                    FalseVal, CurBB) ||
5127           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5128         return error("Invalid record");
5129 
5130       // select condition can be either i1 or [N x i1]
5131       if (VectorType* vector_type =
5132           dyn_cast<VectorType>(Cond->getType())) {
5133         // expect <n x i1>
5134         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5135           return error("Invalid type for value");
5136       } else {
5137         // expect i1
5138         if (Cond->getType() != Type::getInt1Ty(Context))
5139           return error("Invalid type for value");
5140       }
5141 
5142       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5143       ResTypeID = ValTypeID;
5144       InstructionList.push_back(I);
5145       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5146         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5147         if (FMF.any())
5148           I->setFastMathFlags(FMF);
5149       }
5150       break;
5151     }
5152 
5153     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5154       unsigned OpNum = 0;
5155       Value *Vec, *Idx;
5156       unsigned VecTypeID, IdxTypeID;
5157       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5158           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5159         return error("Invalid record");
5160       if (!Vec->getType()->isVectorTy())
5161         return error("Invalid type for value");
5162       I = ExtractElementInst::Create(Vec, Idx);
5163       ResTypeID = getContainedTypeID(VecTypeID);
5164       InstructionList.push_back(I);
5165       break;
5166     }
5167 
5168     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5169       unsigned OpNum = 0;
5170       Value *Vec, *Elt, *Idx;
5171       unsigned VecTypeID, IdxTypeID;
5172       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5173         return error("Invalid record");
5174       if (!Vec->getType()->isVectorTy())
5175         return error("Invalid type for value");
5176       if (popValue(Record, OpNum, NextValueNo,
5177                    cast<VectorType>(Vec->getType())->getElementType(),
5178                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5179           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5180         return error("Invalid record");
5181       I = InsertElementInst::Create(Vec, Elt, Idx);
5182       ResTypeID = VecTypeID;
5183       InstructionList.push_back(I);
5184       break;
5185     }
5186 
5187     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5188       unsigned OpNum = 0;
5189       Value *Vec1, *Vec2, *Mask;
5190       unsigned Vec1TypeID;
5191       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5192                            CurBB) ||
5193           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5194                    Vec2, CurBB))
5195         return error("Invalid record");
5196 
5197       unsigned MaskTypeID;
5198       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5199         return error("Invalid record");
5200       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5201         return error("Invalid type for value");
5202 
5203       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5204       ResTypeID =
5205           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5206       InstructionList.push_back(I);
5207       break;
5208     }
5209 
5210     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5211       // Old form of ICmp/FCmp returning bool
5212       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5213       // both legal on vectors but had different behaviour.
5214     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5215       // FCmp/ICmp returning bool or vector of bool
5216 
5217       unsigned OpNum = 0;
5218       Value *LHS, *RHS;
5219       unsigned LHSTypeID;
5220       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5221           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5222                    CurBB))
5223         return error("Invalid record");
5224 
5225       if (OpNum >= Record.size())
5226         return error(
5227             "Invalid record: operand number exceeded available operands");
5228 
5229       unsigned PredVal = Record[OpNum];
5230       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5231       FastMathFlags FMF;
5232       if (IsFP && Record.size() > OpNum+1)
5233         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5234 
5235       if (OpNum+1 != Record.size())
5236         return error("Invalid record");
5237 
5238       if (LHS->getType()->isFPOrFPVectorTy())
5239         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5240       else
5241         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5242 
5243       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5244       if (LHS->getType()->isVectorTy())
5245         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5246 
5247       if (FMF.any())
5248         I->setFastMathFlags(FMF);
5249       InstructionList.push_back(I);
5250       break;
5251     }
5252 
5253     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5254       {
5255         unsigned Size = Record.size();
5256         if (Size == 0) {
5257           I = ReturnInst::Create(Context);
5258           InstructionList.push_back(I);
5259           break;
5260         }
5261 
5262         unsigned OpNum = 0;
5263         Value *Op = nullptr;
5264         unsigned OpTypeID;
5265         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5266           return error("Invalid record");
5267         if (OpNum != Record.size())
5268           return error("Invalid record");
5269 
5270         I = ReturnInst::Create(Context, Op);
5271         InstructionList.push_back(I);
5272         break;
5273       }
5274     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5275       if (Record.size() != 1 && Record.size() != 3)
5276         return error("Invalid record");
5277       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5278       if (!TrueDest)
5279         return error("Invalid record");
5280 
5281       if (Record.size() == 1) {
5282         I = BranchInst::Create(TrueDest);
5283         InstructionList.push_back(I);
5284       }
5285       else {
5286         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5287         Type *CondType = Type::getInt1Ty(Context);
5288         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5289                                getVirtualTypeID(CondType), CurBB);
5290         if (!FalseDest || !Cond)
5291           return error("Invalid record");
5292         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5293         InstructionList.push_back(I);
5294       }
5295       break;
5296     }
5297     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5298       if (Record.size() != 1 && Record.size() != 2)
5299         return error("Invalid record");
5300       unsigned Idx = 0;
5301       Type *TokenTy = Type::getTokenTy(Context);
5302       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5303                                    getVirtualTypeID(TokenTy), CurBB);
5304       if (!CleanupPad)
5305         return error("Invalid record");
5306       BasicBlock *UnwindDest = nullptr;
5307       if (Record.size() == 2) {
5308         UnwindDest = getBasicBlock(Record[Idx++]);
5309         if (!UnwindDest)
5310           return error("Invalid record");
5311       }
5312 
5313       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5314       InstructionList.push_back(I);
5315       break;
5316     }
5317     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5318       if (Record.size() != 2)
5319         return error("Invalid record");
5320       unsigned Idx = 0;
5321       Type *TokenTy = Type::getTokenTy(Context);
5322       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5323                                  getVirtualTypeID(TokenTy), CurBB);
5324       if (!CatchPad)
5325         return error("Invalid record");
5326       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5327       if (!BB)
5328         return error("Invalid record");
5329 
5330       I = CatchReturnInst::Create(CatchPad, BB);
5331       InstructionList.push_back(I);
5332       break;
5333     }
5334     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5335       // We must have, at minimum, the outer scope and the number of arguments.
5336       if (Record.size() < 2)
5337         return error("Invalid record");
5338 
5339       unsigned Idx = 0;
5340 
5341       Type *TokenTy = Type::getTokenTy(Context);
5342       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5343                                   getVirtualTypeID(TokenTy), CurBB);
5344 
5345       unsigned NumHandlers = Record[Idx++];
5346 
5347       SmallVector<BasicBlock *, 2> Handlers;
5348       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5349         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5350         if (!BB)
5351           return error("Invalid record");
5352         Handlers.push_back(BB);
5353       }
5354 
5355       BasicBlock *UnwindDest = nullptr;
5356       if (Idx + 1 == Record.size()) {
5357         UnwindDest = getBasicBlock(Record[Idx++]);
5358         if (!UnwindDest)
5359           return error("Invalid record");
5360       }
5361 
5362       if (Record.size() != Idx)
5363         return error("Invalid record");
5364 
5365       auto *CatchSwitch =
5366           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5367       for (BasicBlock *Handler : Handlers)
5368         CatchSwitch->addHandler(Handler);
5369       I = CatchSwitch;
5370       ResTypeID = getVirtualTypeID(I->getType());
5371       InstructionList.push_back(I);
5372       break;
5373     }
5374     case bitc::FUNC_CODE_INST_CATCHPAD:
5375     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5376       // We must have, at minimum, the outer scope and the number of arguments.
5377       if (Record.size() < 2)
5378         return error("Invalid record");
5379 
5380       unsigned Idx = 0;
5381 
5382       Type *TokenTy = Type::getTokenTy(Context);
5383       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5384                                   getVirtualTypeID(TokenTy), CurBB);
5385 
5386       unsigned NumArgOperands = Record[Idx++];
5387 
5388       SmallVector<Value *, 2> Args;
5389       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5390         Value *Val;
5391         unsigned ValTypeID;
5392         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5393           return error("Invalid record");
5394         Args.push_back(Val);
5395       }
5396 
5397       if (Record.size() != Idx)
5398         return error("Invalid record");
5399 
5400       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5401         I = CleanupPadInst::Create(ParentPad, Args);
5402       else
5403         I = CatchPadInst::Create(ParentPad, Args);
5404       ResTypeID = getVirtualTypeID(I->getType());
5405       InstructionList.push_back(I);
5406       break;
5407     }
5408     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5409       // Check magic
5410       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5411         // "New" SwitchInst format with case ranges. The changes to write this
5412         // format were reverted but we still recognize bitcode that uses it.
5413         // Hopefully someday we will have support for case ranges and can use
5414         // this format again.
5415 
5416         unsigned OpTyID = Record[1];
5417         Type *OpTy = getTypeByID(OpTyID);
5418         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5419 
5420         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5421         BasicBlock *Default = getBasicBlock(Record[3]);
5422         if (!OpTy || !Cond || !Default)
5423           return error("Invalid record");
5424 
5425         unsigned NumCases = Record[4];
5426 
5427         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5428         InstructionList.push_back(SI);
5429 
5430         unsigned CurIdx = 5;
5431         for (unsigned i = 0; i != NumCases; ++i) {
5432           SmallVector<ConstantInt*, 1> CaseVals;
5433           unsigned NumItems = Record[CurIdx++];
5434           for (unsigned ci = 0; ci != NumItems; ++ci) {
5435             bool isSingleNumber = Record[CurIdx++];
5436 
5437             APInt Low;
5438             unsigned ActiveWords = 1;
5439             if (ValueBitWidth > 64)
5440               ActiveWords = Record[CurIdx++];
5441             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5442                                 ValueBitWidth);
5443             CurIdx += ActiveWords;
5444 
5445             if (!isSingleNumber) {
5446               ActiveWords = 1;
5447               if (ValueBitWidth > 64)
5448                 ActiveWords = Record[CurIdx++];
5449               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5450                                          ValueBitWidth);
5451               CurIdx += ActiveWords;
5452 
5453               // FIXME: It is not clear whether values in the range should be
5454               // compared as signed or unsigned values. The partially
5455               // implemented changes that used this format in the past used
5456               // unsigned comparisons.
5457               for ( ; Low.ule(High); ++Low)
5458                 CaseVals.push_back(ConstantInt::get(Context, Low));
5459             } else
5460               CaseVals.push_back(ConstantInt::get(Context, Low));
5461           }
5462           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5463           for (ConstantInt *Cst : CaseVals)
5464             SI->addCase(Cst, DestBB);
5465         }
5466         I = SI;
5467         break;
5468       }
5469 
5470       // Old SwitchInst format without case ranges.
5471 
5472       if (Record.size() < 3 || (Record.size() & 1) == 0)
5473         return error("Invalid record");
5474       unsigned OpTyID = Record[0];
5475       Type *OpTy = getTypeByID(OpTyID);
5476       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5477       BasicBlock *Default = getBasicBlock(Record[2]);
5478       if (!OpTy || !Cond || !Default)
5479         return error("Invalid record");
5480       unsigned NumCases = (Record.size()-3)/2;
5481       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5482       InstructionList.push_back(SI);
5483       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5484         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5485             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5486         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5487         if (!CaseVal || !DestBB) {
5488           delete SI;
5489           return error("Invalid record");
5490         }
5491         SI->addCase(CaseVal, DestBB);
5492       }
5493       I = SI;
5494       break;
5495     }
5496     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5497       if (Record.size() < 2)
5498         return error("Invalid record");
5499       unsigned OpTyID = Record[0];
5500       Type *OpTy = getTypeByID(OpTyID);
5501       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5502       if (!OpTy || !Address)
5503         return error("Invalid record");
5504       unsigned NumDests = Record.size()-2;
5505       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5506       InstructionList.push_back(IBI);
5507       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5508         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5509           IBI->addDestination(DestBB);
5510         } else {
5511           delete IBI;
5512           return error("Invalid record");
5513         }
5514       }
5515       I = IBI;
5516       break;
5517     }
5518 
5519     case bitc::FUNC_CODE_INST_INVOKE: {
5520       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5521       if (Record.size() < 4)
5522         return error("Invalid record");
5523       unsigned OpNum = 0;
5524       AttributeList PAL = getAttributes(Record[OpNum++]);
5525       unsigned CCInfo = Record[OpNum++];
5526       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5527       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5528 
5529       unsigned FTyID = InvalidTypeID;
5530       FunctionType *FTy = nullptr;
5531       if ((CCInfo >> 13) & 1) {
5532         FTyID = Record[OpNum++];
5533         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5534         if (!FTy)
5535           return error("Explicit invoke type is not a function type");
5536       }
5537 
5538       Value *Callee;
5539       unsigned CalleeTypeID;
5540       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5541                            CurBB))
5542         return error("Invalid record");
5543 
5544       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5545       if (!CalleeTy)
5546         return error("Callee is not a pointer");
5547       if (!FTy) {
5548         FTyID = getContainedTypeID(CalleeTypeID);
5549         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5550         if (!FTy)
5551           return error("Callee is not of pointer to function type");
5552       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5553         return error("Explicit invoke type does not match pointee type of "
5554                      "callee operand");
5555       if (Record.size() < FTy->getNumParams() + OpNum)
5556         return error("Insufficient operands to call");
5557 
5558       SmallVector<Value*, 16> Ops;
5559       SmallVector<unsigned, 16> ArgTyIDs;
5560       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5561         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5562         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5563                                ArgTyID, CurBB));
5564         ArgTyIDs.push_back(ArgTyID);
5565         if (!Ops.back())
5566           return error("Invalid record");
5567       }
5568 
5569       if (!FTy->isVarArg()) {
5570         if (Record.size() != OpNum)
5571           return error("Invalid record");
5572       } else {
5573         // Read type/value pairs for varargs params.
5574         while (OpNum != Record.size()) {
5575           Value *Op;
5576           unsigned OpTypeID;
5577           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5578             return error("Invalid record");
5579           Ops.push_back(Op);
5580           ArgTyIDs.push_back(OpTypeID);
5581         }
5582       }
5583 
5584       // Upgrade the bundles if needed.
5585       if (!OperandBundles.empty())
5586         UpgradeOperandBundles(OperandBundles);
5587 
5588       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5589                              OperandBundles);
5590       ResTypeID = getContainedTypeID(FTyID);
5591       OperandBundles.clear();
5592       InstructionList.push_back(I);
5593       cast<InvokeInst>(I)->setCallingConv(
5594           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5595       cast<InvokeInst>(I)->setAttributes(PAL);
5596       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5597         I->deleteValue();
5598         return Err;
5599       }
5600 
5601       break;
5602     }
5603     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5604       unsigned Idx = 0;
5605       Value *Val = nullptr;
5606       unsigned ValTypeID;
5607       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5608         return error("Invalid record");
5609       I = ResumeInst::Create(Val);
5610       InstructionList.push_back(I);
5611       break;
5612     }
5613     case bitc::FUNC_CODE_INST_CALLBR: {
5614       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5615       unsigned OpNum = 0;
5616       AttributeList PAL = getAttributes(Record[OpNum++]);
5617       unsigned CCInfo = Record[OpNum++];
5618 
5619       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5620       unsigned NumIndirectDests = Record[OpNum++];
5621       SmallVector<BasicBlock *, 16> IndirectDests;
5622       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5623         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5624 
5625       unsigned FTyID = InvalidTypeID;
5626       FunctionType *FTy = nullptr;
5627       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5628         FTyID = Record[OpNum++];
5629         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5630         if (!FTy)
5631           return error("Explicit call type is not a function type");
5632       }
5633 
5634       Value *Callee;
5635       unsigned CalleeTypeID;
5636       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5637                            CurBB))
5638         return error("Invalid record");
5639 
5640       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5641       if (!OpTy)
5642         return error("Callee is not a pointer type");
5643       if (!FTy) {
5644         FTyID = getContainedTypeID(CalleeTypeID);
5645         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5646         if (!FTy)
5647           return error("Callee is not of pointer to function type");
5648       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5649         return error("Explicit call type does not match pointee type of "
5650                      "callee operand");
5651       if (Record.size() < FTy->getNumParams() + OpNum)
5652         return error("Insufficient operands to call");
5653 
5654       SmallVector<Value*, 16> Args;
5655       SmallVector<unsigned, 16> ArgTyIDs;
5656       // Read the fixed params.
5657       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5658         Value *Arg;
5659         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5660         if (FTy->getParamType(i)->isLabelTy())
5661           Arg = getBasicBlock(Record[OpNum]);
5662         else
5663           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5664                          ArgTyID, CurBB);
5665         if (!Arg)
5666           return error("Invalid record");
5667         Args.push_back(Arg);
5668         ArgTyIDs.push_back(ArgTyID);
5669       }
5670 
5671       // Read type/value pairs for varargs params.
5672       if (!FTy->isVarArg()) {
5673         if (OpNum != Record.size())
5674           return error("Invalid record");
5675       } else {
5676         while (OpNum != Record.size()) {
5677           Value *Op;
5678           unsigned OpTypeID;
5679           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5680             return error("Invalid record");
5681           Args.push_back(Op);
5682           ArgTyIDs.push_back(OpTypeID);
5683         }
5684       }
5685 
5686       // Upgrade the bundles if needed.
5687       if (!OperandBundles.empty())
5688         UpgradeOperandBundles(OperandBundles);
5689 
5690       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5691         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5692         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5693           return CI.Type == InlineAsm::isLabel;
5694         };
5695         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5696           // Upgrade explicit blockaddress arguments to label constraints.
5697           // Verify that the last arguments are blockaddress arguments that
5698           // match the indirect destinations. Clang always generates callbr
5699           // in this form. We could support reordering with more effort.
5700           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5701           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5702             unsigned LabelNo = ArgNo - FirstBlockArg;
5703             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5704             if (!BA || BA->getFunction() != F ||
5705                 LabelNo > IndirectDests.size() ||
5706                 BA->getBasicBlock() != IndirectDests[LabelNo])
5707               return error("callbr argument does not match indirect dest");
5708           }
5709 
5710           // Remove blockaddress arguments.
5711           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5712           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5713 
5714           // Recreate the function type with less arguments.
5715           SmallVector<Type *> ArgTys;
5716           for (Value *Arg : Args)
5717             ArgTys.push_back(Arg->getType());
5718           FTy =
5719               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5720 
5721           // Update constraint string to use label constraints.
5722           std::string Constraints = IA->getConstraintString();
5723           unsigned ArgNo = 0;
5724           size_t Pos = 0;
5725           for (const auto &CI : ConstraintInfo) {
5726             if (CI.hasArg()) {
5727               if (ArgNo >= FirstBlockArg)
5728                 Constraints.insert(Pos, "!");
5729               ++ArgNo;
5730             }
5731 
5732             // Go to next constraint in string.
5733             Pos = Constraints.find(',', Pos);
5734             if (Pos == std::string::npos)
5735               break;
5736             ++Pos;
5737           }
5738 
5739           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5740                                   IA->hasSideEffects(), IA->isAlignStack(),
5741                                   IA->getDialect(), IA->canThrow());
5742         }
5743       }
5744 
5745       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5746                              OperandBundles);
5747       ResTypeID = getContainedTypeID(FTyID);
5748       OperandBundles.clear();
5749       InstructionList.push_back(I);
5750       cast<CallBrInst>(I)->setCallingConv(
5751           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5752       cast<CallBrInst>(I)->setAttributes(PAL);
5753       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5754         I->deleteValue();
5755         return Err;
5756       }
5757       break;
5758     }
5759     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5760       I = new UnreachableInst(Context);
5761       InstructionList.push_back(I);
5762       break;
5763     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5764       if (Record.empty())
5765         return error("Invalid phi record");
5766       // The first record specifies the type.
5767       unsigned TyID = Record[0];
5768       Type *Ty = getTypeByID(TyID);
5769       if (!Ty)
5770         return error("Invalid phi record");
5771 
5772       // Phi arguments are pairs of records of [value, basic block].
5773       // There is an optional final record for fast-math-flags if this phi has a
5774       // floating-point type.
5775       size_t NumArgs = (Record.size() - 1) / 2;
5776       PHINode *PN = PHINode::Create(Ty, NumArgs);
5777       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5778         PN->deleteValue();
5779         return error("Invalid phi record");
5780       }
5781       InstructionList.push_back(PN);
5782 
5783       SmallDenseMap<BasicBlock *, Value *> Args;
5784       for (unsigned i = 0; i != NumArgs; i++) {
5785         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5786         if (!BB) {
5787           PN->deleteValue();
5788           return error("Invalid phi BB");
5789         }
5790 
5791         // Phi nodes may contain the same predecessor multiple times, in which
5792         // case the incoming value must be identical. Directly reuse the already
5793         // seen value here, to avoid expanding a constant expression multiple
5794         // times.
5795         auto It = Args.find(BB);
5796         if (It != Args.end()) {
5797           PN->addIncoming(It->second, BB);
5798           continue;
5799         }
5800 
5801         // If there already is a block for this edge (from a different phi),
5802         // use it.
5803         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5804         if (!EdgeBB) {
5805           // Otherwise, use a temporary block (that we will discard if it
5806           // turns out to be unnecessary).
5807           if (!PhiConstExprBB)
5808             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5809           EdgeBB = PhiConstExprBB;
5810         }
5811 
5812         // With the new function encoding, it is possible that operands have
5813         // negative IDs (for forward references).  Use a signed VBR
5814         // representation to keep the encoding small.
5815         Value *V;
5816         if (UseRelativeIDs)
5817           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5818         else
5819           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5820         if (!V) {
5821           PN->deleteValue();
5822           PhiConstExprBB->eraseFromParent();
5823           return error("Invalid phi record");
5824         }
5825 
5826         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5827           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5828           PhiConstExprBB = nullptr;
5829         }
5830         PN->addIncoming(V, BB);
5831         Args.insert({BB, V});
5832       }
5833       I = PN;
5834       ResTypeID = TyID;
5835 
5836       // If there are an even number of records, the final record must be FMF.
5837       if (Record.size() % 2 == 0) {
5838         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5839         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5840         if (FMF.any())
5841           I->setFastMathFlags(FMF);
5842       }
5843 
5844       break;
5845     }
5846 
5847     case bitc::FUNC_CODE_INST_LANDINGPAD:
5848     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5849       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5850       unsigned Idx = 0;
5851       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5852         if (Record.size() < 3)
5853           return error("Invalid record");
5854       } else {
5855         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5856         if (Record.size() < 4)
5857           return error("Invalid record");
5858       }
5859       ResTypeID = Record[Idx++];
5860       Type *Ty = getTypeByID(ResTypeID);
5861       if (!Ty)
5862         return error("Invalid record");
5863       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5864         Value *PersFn = nullptr;
5865         unsigned PersFnTypeID;
5866         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5867                              nullptr))
5868           return error("Invalid record");
5869 
5870         if (!F->hasPersonalityFn())
5871           F->setPersonalityFn(cast<Constant>(PersFn));
5872         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5873           return error("Personality function mismatch");
5874       }
5875 
5876       bool IsCleanup = !!Record[Idx++];
5877       unsigned NumClauses = Record[Idx++];
5878       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5879       LP->setCleanup(IsCleanup);
5880       for (unsigned J = 0; J != NumClauses; ++J) {
5881         LandingPadInst::ClauseType CT =
5882           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5883         Value *Val;
5884         unsigned ValTypeID;
5885 
5886         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5887                              nullptr)) {
5888           delete LP;
5889           return error("Invalid record");
5890         }
5891 
5892         assert((CT != LandingPadInst::Catch ||
5893                 !isa<ArrayType>(Val->getType())) &&
5894                "Catch clause has a invalid type!");
5895         assert((CT != LandingPadInst::Filter ||
5896                 isa<ArrayType>(Val->getType())) &&
5897                "Filter clause has invalid type!");
5898         LP->addClause(cast<Constant>(Val));
5899       }
5900 
5901       I = LP;
5902       InstructionList.push_back(I);
5903       break;
5904     }
5905 
5906     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5907       if (Record.size() != 4 && Record.size() != 5)
5908         return error("Invalid record");
5909       using APV = AllocaPackedValues;
5910       const uint64_t Rec = Record[3];
5911       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5912       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5913       unsigned TyID = Record[0];
5914       Type *Ty = getTypeByID(TyID);
5915       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5916         TyID = getContainedTypeID(TyID);
5917         Ty = getTypeByID(TyID);
5918         if (!Ty)
5919           return error("Missing element type for old-style alloca");
5920       }
5921       unsigned OpTyID = Record[1];
5922       Type *OpTy = getTypeByID(OpTyID);
5923       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5924       MaybeAlign Align;
5925       uint64_t AlignExp =
5926           Bitfield::get<APV::AlignLower>(Rec) |
5927           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5928       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5929         return Err;
5930       }
5931       if (!Ty || !Size)
5932         return error("Invalid record");
5933 
5934       const DataLayout &DL = TheModule->getDataLayout();
5935       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5936 
5937       SmallPtrSet<Type *, 4> Visited;
5938       if (!Align && !Ty->isSized(&Visited))
5939         return error("alloca of unsized type");
5940       if (!Align)
5941         Align = DL.getPrefTypeAlign(Ty);
5942 
5943       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5944       AI->setUsedWithInAlloca(InAlloca);
5945       AI->setSwiftError(SwiftError);
5946       I = AI;
5947       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5948       InstructionList.push_back(I);
5949       break;
5950     }
5951     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5952       unsigned OpNum = 0;
5953       Value *Op;
5954       unsigned OpTypeID;
5955       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5956           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5957         return error("Invalid record");
5958 
5959       if (!isa<PointerType>(Op->getType()))
5960         return error("Load operand is not a pointer type");
5961 
5962       Type *Ty = nullptr;
5963       if (OpNum + 3 == Record.size()) {
5964         ResTypeID = Record[OpNum++];
5965         Ty = getTypeByID(ResTypeID);
5966       } else {
5967         ResTypeID = getContainedTypeID(OpTypeID);
5968         Ty = getTypeByID(ResTypeID);
5969         if (!Ty)
5970           return error("Missing element type for old-style load");
5971       }
5972 
5973       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5974         return Err;
5975 
5976       MaybeAlign Align;
5977       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5978         return Err;
5979       SmallPtrSet<Type *, 4> Visited;
5980       if (!Align && !Ty->isSized(&Visited))
5981         return error("load of unsized type");
5982       if (!Align)
5983         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5984       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5985       InstructionList.push_back(I);
5986       break;
5987     }
5988     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5989        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5990       unsigned OpNum = 0;
5991       Value *Op;
5992       unsigned OpTypeID;
5993       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5994           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5995         return error("Invalid record");
5996 
5997       if (!isa<PointerType>(Op->getType()))
5998         return error("Load operand is not a pointer type");
5999 
6000       Type *Ty = nullptr;
6001       if (OpNum + 5 == Record.size()) {
6002         ResTypeID = Record[OpNum++];
6003         Ty = getTypeByID(ResTypeID);
6004       } else {
6005         ResTypeID = getContainedTypeID(OpTypeID);
6006         Ty = getTypeByID(ResTypeID);
6007         if (!Ty)
6008           return error("Missing element type for old style atomic load");
6009       }
6010 
6011       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6012         return Err;
6013 
6014       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6015       if (Ordering == AtomicOrdering::NotAtomic ||
6016           Ordering == AtomicOrdering::Release ||
6017           Ordering == AtomicOrdering::AcquireRelease)
6018         return error("Invalid record");
6019       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6020         return error("Invalid record");
6021       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6022 
6023       MaybeAlign Align;
6024       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6025         return Err;
6026       if (!Align)
6027         return error("Alignment missing from atomic load");
6028       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6029       InstructionList.push_back(I);
6030       break;
6031     }
6032     case bitc::FUNC_CODE_INST_STORE:
6033     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6034       unsigned OpNum = 0;
6035       Value *Val, *Ptr;
6036       unsigned PtrTypeID, ValTypeID;
6037       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6038         return error("Invalid record");
6039 
6040       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6041         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6042           return error("Invalid record");
6043       } else {
6044         ValTypeID = getContainedTypeID(PtrTypeID);
6045         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6046                      ValTypeID, Val, CurBB))
6047           return error("Invalid record");
6048       }
6049 
6050       if (OpNum + 2 != Record.size())
6051         return error("Invalid record");
6052 
6053       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6054         return Err;
6055       MaybeAlign Align;
6056       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6057         return Err;
6058       SmallPtrSet<Type *, 4> Visited;
6059       if (!Align && !Val->getType()->isSized(&Visited))
6060         return error("store of unsized type");
6061       if (!Align)
6062         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6063       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6064       InstructionList.push_back(I);
6065       break;
6066     }
6067     case bitc::FUNC_CODE_INST_STOREATOMIC:
6068     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6069       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6070       unsigned OpNum = 0;
6071       Value *Val, *Ptr;
6072       unsigned PtrTypeID, ValTypeID;
6073       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6074           !isa<PointerType>(Ptr->getType()))
6075         return error("Invalid record");
6076       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6077         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6078           return error("Invalid record");
6079       } else {
6080         ValTypeID = getContainedTypeID(PtrTypeID);
6081         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6082                      ValTypeID, Val, CurBB))
6083           return error("Invalid record");
6084       }
6085 
6086       if (OpNum + 4 != Record.size())
6087         return error("Invalid record");
6088 
6089       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6090         return Err;
6091       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6092       if (Ordering == AtomicOrdering::NotAtomic ||
6093           Ordering == AtomicOrdering::Acquire ||
6094           Ordering == AtomicOrdering::AcquireRelease)
6095         return error("Invalid record");
6096       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6097       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6098         return error("Invalid record");
6099 
6100       MaybeAlign Align;
6101       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6102         return Err;
6103       if (!Align)
6104         return error("Alignment missing from atomic store");
6105       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6106       InstructionList.push_back(I);
6107       break;
6108     }
6109     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6110       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6111       // failure_ordering?, weak?]
6112       const size_t NumRecords = Record.size();
6113       unsigned OpNum = 0;
6114       Value *Ptr = nullptr;
6115       unsigned PtrTypeID;
6116       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6117         return error("Invalid record");
6118 
6119       if (!isa<PointerType>(Ptr->getType()))
6120         return error("Cmpxchg operand is not a pointer type");
6121 
6122       Value *Cmp = nullptr;
6123       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6124       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6125                    CmpTypeID, Cmp, CurBB))
6126         return error("Invalid record");
6127 
6128       Value *New = nullptr;
6129       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6130                    New, CurBB) ||
6131           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6132         return error("Invalid record");
6133 
6134       const AtomicOrdering SuccessOrdering =
6135           getDecodedOrdering(Record[OpNum + 1]);
6136       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6137           SuccessOrdering == AtomicOrdering::Unordered)
6138         return error("Invalid record");
6139 
6140       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6141 
6142       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6143         return Err;
6144 
6145       const AtomicOrdering FailureOrdering =
6146           NumRecords < 7
6147               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6148               : getDecodedOrdering(Record[OpNum + 3]);
6149 
6150       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6151           FailureOrdering == AtomicOrdering::Unordered)
6152         return error("Invalid record");
6153 
6154       const Align Alignment(
6155           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6156 
6157       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6158                                 FailureOrdering, SSID);
6159       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6160 
6161       if (NumRecords < 8) {
6162         // Before weak cmpxchgs existed, the instruction simply returned the
6163         // value loaded from memory, so bitcode files from that era will be
6164         // expecting the first component of a modern cmpxchg.
6165         I->insertInto(CurBB, CurBB->end());
6166         I = ExtractValueInst::Create(I, 0);
6167         ResTypeID = CmpTypeID;
6168       } else {
6169         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6170         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6171         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6172       }
6173 
6174       InstructionList.push_back(I);
6175       break;
6176     }
6177     case bitc::FUNC_CODE_INST_CMPXCHG: {
6178       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6179       // failure_ordering, weak, align?]
6180       const size_t NumRecords = Record.size();
6181       unsigned OpNum = 0;
6182       Value *Ptr = nullptr;
6183       unsigned PtrTypeID;
6184       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6185         return error("Invalid record");
6186 
6187       if (!isa<PointerType>(Ptr->getType()))
6188         return error("Cmpxchg operand is not a pointer type");
6189 
6190       Value *Cmp = nullptr;
6191       unsigned CmpTypeID;
6192       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6193         return error("Invalid record");
6194 
6195       Value *Val = nullptr;
6196       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6197                    CurBB))
6198         return error("Invalid record");
6199 
6200       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6201         return error("Invalid record");
6202 
6203       const bool IsVol = Record[OpNum];
6204 
6205       const AtomicOrdering SuccessOrdering =
6206           getDecodedOrdering(Record[OpNum + 1]);
6207       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6208         return error("Invalid cmpxchg success ordering");
6209 
6210       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6211 
6212       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6213         return Err;
6214 
6215       const AtomicOrdering FailureOrdering =
6216           getDecodedOrdering(Record[OpNum + 3]);
6217       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6218         return error("Invalid cmpxchg failure ordering");
6219 
6220       const bool IsWeak = Record[OpNum + 4];
6221 
6222       MaybeAlign Alignment;
6223 
6224       if (NumRecords == (OpNum + 6)) {
6225         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6226           return Err;
6227       }
6228       if (!Alignment)
6229         Alignment =
6230             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6231 
6232       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6233                                 FailureOrdering, SSID);
6234       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6235       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6236 
6237       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6238       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6239 
6240       InstructionList.push_back(I);
6241       break;
6242     }
6243     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6244     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6245       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6246       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6247       const size_t NumRecords = Record.size();
6248       unsigned OpNum = 0;
6249 
6250       Value *Ptr = nullptr;
6251       unsigned PtrTypeID;
6252       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6253         return error("Invalid record");
6254 
6255       if (!isa<PointerType>(Ptr->getType()))
6256         return error("Invalid record");
6257 
6258       Value *Val = nullptr;
6259       unsigned ValTypeID = InvalidTypeID;
6260       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6261         ValTypeID = getContainedTypeID(PtrTypeID);
6262         if (popValue(Record, OpNum, NextValueNo,
6263                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6264           return error("Invalid record");
6265       } else {
6266         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6267           return error("Invalid record");
6268       }
6269 
6270       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6271         return error("Invalid record");
6272 
6273       const AtomicRMWInst::BinOp Operation =
6274           getDecodedRMWOperation(Record[OpNum]);
6275       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6276           Operation > AtomicRMWInst::LAST_BINOP)
6277         return error("Invalid record");
6278 
6279       const bool IsVol = Record[OpNum + 1];
6280 
6281       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6282       if (Ordering == AtomicOrdering::NotAtomic ||
6283           Ordering == AtomicOrdering::Unordered)
6284         return error("Invalid record");
6285 
6286       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6287 
6288       MaybeAlign Alignment;
6289 
6290       if (NumRecords == (OpNum + 5)) {
6291         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6292           return Err;
6293       }
6294 
6295       if (!Alignment)
6296         Alignment =
6297             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6298 
6299       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6300       ResTypeID = ValTypeID;
6301       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6302 
6303       InstructionList.push_back(I);
6304       break;
6305     }
6306     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6307       if (2 != Record.size())
6308         return error("Invalid record");
6309       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6310       if (Ordering == AtomicOrdering::NotAtomic ||
6311           Ordering == AtomicOrdering::Unordered ||
6312           Ordering == AtomicOrdering::Monotonic)
6313         return error("Invalid record");
6314       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6315       I = new FenceInst(Context, Ordering, SSID);
6316       InstructionList.push_back(I);
6317       break;
6318     }
6319     case bitc::FUNC_CODE_INST_CALL: {
6320       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6321       if (Record.size() < 3)
6322         return error("Invalid record");
6323 
6324       unsigned OpNum = 0;
6325       AttributeList PAL = getAttributes(Record[OpNum++]);
6326       unsigned CCInfo = Record[OpNum++];
6327 
6328       FastMathFlags FMF;
6329       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6330         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6331         if (!FMF.any())
6332           return error("Fast math flags indicator set for call with no FMF");
6333       }
6334 
6335       unsigned FTyID = InvalidTypeID;
6336       FunctionType *FTy = nullptr;
6337       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6338         FTyID = Record[OpNum++];
6339         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6340         if (!FTy)
6341           return error("Explicit call type is not a function type");
6342       }
6343 
6344       Value *Callee;
6345       unsigned CalleeTypeID;
6346       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6347                            CurBB))
6348         return error("Invalid record");
6349 
6350       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6351       if (!OpTy)
6352         return error("Callee is not a pointer type");
6353       if (!FTy) {
6354         FTyID = getContainedTypeID(CalleeTypeID);
6355         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6356         if (!FTy)
6357           return error("Callee is not of pointer to function type");
6358       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6359         return error("Explicit call type does not match pointee type of "
6360                      "callee operand");
6361       if (Record.size() < FTy->getNumParams() + OpNum)
6362         return error("Insufficient operands to call");
6363 
6364       SmallVector<Value*, 16> Args;
6365       SmallVector<unsigned, 16> ArgTyIDs;
6366       // Read the fixed params.
6367       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6368         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6369         if (FTy->getParamType(i)->isLabelTy())
6370           Args.push_back(getBasicBlock(Record[OpNum]));
6371         else
6372           Args.push_back(getValue(Record, OpNum, NextValueNo,
6373                                   FTy->getParamType(i), ArgTyID, CurBB));
6374         ArgTyIDs.push_back(ArgTyID);
6375         if (!Args.back())
6376           return error("Invalid record");
6377       }
6378 
6379       // Read type/value pairs for varargs params.
6380       if (!FTy->isVarArg()) {
6381         if (OpNum != Record.size())
6382           return error("Invalid record");
6383       } else {
6384         while (OpNum != Record.size()) {
6385           Value *Op;
6386           unsigned OpTypeID;
6387           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6388             return error("Invalid record");
6389           Args.push_back(Op);
6390           ArgTyIDs.push_back(OpTypeID);
6391         }
6392       }
6393 
6394       // Upgrade the bundles if needed.
6395       if (!OperandBundles.empty())
6396         UpgradeOperandBundles(OperandBundles);
6397 
6398       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6399       ResTypeID = getContainedTypeID(FTyID);
6400       OperandBundles.clear();
6401       InstructionList.push_back(I);
6402       cast<CallInst>(I)->setCallingConv(
6403           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6404       CallInst::TailCallKind TCK = CallInst::TCK_None;
6405       if (CCInfo & 1 << bitc::CALL_TAIL)
6406         TCK = CallInst::TCK_Tail;
6407       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6408         TCK = CallInst::TCK_MustTail;
6409       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6410         TCK = CallInst::TCK_NoTail;
6411       cast<CallInst>(I)->setTailCallKind(TCK);
6412       cast<CallInst>(I)->setAttributes(PAL);
6413       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6414         I->deleteValue();
6415         return Err;
6416       }
6417       if (FMF.any()) {
6418         if (!isa<FPMathOperator>(I))
6419           return error("Fast-math-flags specified for call without "
6420                        "floating-point scalar or vector return type");
6421         I->setFastMathFlags(FMF);
6422       }
6423       break;
6424     }
6425     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6426       if (Record.size() < 3)
6427         return error("Invalid record");
6428       unsigned OpTyID = Record[0];
6429       Type *OpTy = getTypeByID(OpTyID);
6430       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6431       ResTypeID = Record[2];
6432       Type *ResTy = getTypeByID(ResTypeID);
6433       if (!OpTy || !Op || !ResTy)
6434         return error("Invalid record");
6435       I = new VAArgInst(Op, ResTy);
6436       InstructionList.push_back(I);
6437       break;
6438     }
6439 
6440     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6441       // A call or an invoke can be optionally prefixed with some variable
6442       // number of operand bundle blocks.  These blocks are read into
6443       // OperandBundles and consumed at the next call or invoke instruction.
6444 
6445       if (Record.empty() || Record[0] >= BundleTags.size())
6446         return error("Invalid record");
6447 
6448       std::vector<Value *> Inputs;
6449 
6450       unsigned OpNum = 1;
6451       while (OpNum != Record.size()) {
6452         Value *Op;
6453         unsigned OpTypeID;
6454         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6455           return error("Invalid record");
6456         Inputs.push_back(Op);
6457       }
6458 
6459       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6460       continue;
6461     }
6462 
6463     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6464       unsigned OpNum = 0;
6465       Value *Op = nullptr;
6466       unsigned OpTypeID;
6467       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6468         return error("Invalid record");
6469       if (OpNum != Record.size())
6470         return error("Invalid record");
6471 
6472       I = new FreezeInst(Op);
6473       ResTypeID = OpTypeID;
6474       InstructionList.push_back(I);
6475       break;
6476     }
6477     }
6478 
6479     // Add instruction to end of current BB.  If there is no current BB, reject
6480     // this file.
6481     if (!CurBB) {
6482       I->deleteValue();
6483       return error("Invalid instruction with no BB");
6484     }
6485     if (!OperandBundles.empty()) {
6486       I->deleteValue();
6487       return error("Operand bundles found with no consumer");
6488     }
6489     I->insertInto(CurBB, CurBB->end());
6490 
6491     // If this was a terminator instruction, move to the next block.
6492     if (I->isTerminator()) {
6493       ++CurBBNo;
6494       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6495     }
6496 
6497     // Non-void values get registered in the value table for future use.
6498     if (!I->getType()->isVoidTy()) {
6499       assert(I->getType() == getTypeByID(ResTypeID) &&
6500              "Incorrect result type ID");
6501       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6502         return Err;
6503     }
6504   }
6505 
6506 OutOfRecordLoop:
6507 
6508   if (!OperandBundles.empty())
6509     return error("Operand bundles found with no consumer");
6510 
6511   // Check the function list for unresolved values.
6512   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6513     if (!A->getParent()) {
6514       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6515       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6516         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6517           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6518           delete A;
6519         }
6520       }
6521       return error("Never resolved value found in function");
6522     }
6523   }
6524 
6525   // Unexpected unresolved metadata about to be dropped.
6526   if (MDLoader->hasFwdRefs())
6527     return error("Invalid function metadata: outgoing forward refs");
6528 
6529   if (PhiConstExprBB)
6530     PhiConstExprBB->eraseFromParent();
6531 
6532   for (const auto &Pair : ConstExprEdgeBBs) {
6533     BasicBlock *From = Pair.first.first;
6534     BasicBlock *To = Pair.first.second;
6535     BasicBlock *EdgeBB = Pair.second;
6536     BranchInst::Create(To, EdgeBB);
6537     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6538     To->replacePhiUsesWith(From, EdgeBB);
6539     EdgeBB->moveBefore(To);
6540   }
6541 
6542   // Trim the value list down to the size it was before we parsed this function.
6543   ValueList.shrinkTo(ModuleValueListSize);
6544   MDLoader->shrinkTo(ModuleMDLoaderSize);
6545   std::vector<BasicBlock*>().swap(FunctionBBs);
6546   return Error::success();
6547 }
6548 
6549 /// Find the function body in the bitcode stream
6550 Error BitcodeReader::findFunctionInStream(
6551     Function *F,
6552     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6553   while (DeferredFunctionInfoIterator->second == 0) {
6554     // This is the fallback handling for the old format bitcode that
6555     // didn't contain the function index in the VST, or when we have
6556     // an anonymous function which would not have a VST entry.
6557     // Assert that we have one of those two cases.
6558     assert(VSTOffset == 0 || !F->hasName());
6559     // Parse the next body in the stream and set its position in the
6560     // DeferredFunctionInfo map.
6561     if (Error Err = rememberAndSkipFunctionBodies())
6562       return Err;
6563   }
6564   return Error::success();
6565 }
6566 
6567 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6568   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6569     return SyncScope::ID(Val);
6570   if (Val >= SSIDs.size())
6571     return SyncScope::System; // Map unknown synchronization scopes to system.
6572   return SSIDs[Val];
6573 }
6574 
6575 //===----------------------------------------------------------------------===//
6576 // GVMaterializer implementation
6577 //===----------------------------------------------------------------------===//
6578 
6579 Error BitcodeReader::materialize(GlobalValue *GV) {
6580   Function *F = dyn_cast<Function>(GV);
6581   // If it's not a function or is already material, ignore the request.
6582   if (!F || !F->isMaterializable())
6583     return Error::success();
6584 
6585   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6586   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6587   // If its position is recorded as 0, its body is somewhere in the stream
6588   // but we haven't seen it yet.
6589   if (DFII->second == 0)
6590     if (Error Err = findFunctionInStream(F, DFII))
6591       return Err;
6592 
6593   // Materialize metadata before parsing any function bodies.
6594   if (Error Err = materializeMetadata())
6595     return Err;
6596 
6597   // Move the bit stream to the saved position of the deferred function body.
6598   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6599     return JumpFailed;
6600   if (Error Err = parseFunctionBody(F))
6601     return Err;
6602   F->setIsMaterializable(false);
6603 
6604   if (StripDebugInfo)
6605     stripDebugInfo(*F);
6606 
6607   // Upgrade any old intrinsic calls in the function.
6608   for (auto &I : UpgradedIntrinsics) {
6609     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6610       if (CallInst *CI = dyn_cast<CallInst>(U))
6611         UpgradeIntrinsicCall(CI, I.second);
6612   }
6613 
6614   // Finish fn->subprogram upgrade for materialized functions.
6615   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6616     F->setSubprogram(SP);
6617 
6618   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6619   if (!MDLoader->isStrippingTBAA()) {
6620     for (auto &I : instructions(F)) {
6621       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6622       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6623         continue;
6624       MDLoader->setStripTBAA(true);
6625       stripTBAA(F->getParent());
6626     }
6627   }
6628 
6629   for (auto &I : instructions(F)) {
6630     // "Upgrade" older incorrect branch weights by dropping them.
6631     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6632       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6633         MDString *MDS = cast<MDString>(MD->getOperand(0));
6634         StringRef ProfName = MDS->getString();
6635         // Check consistency of !prof branch_weights metadata.
6636         if (!ProfName.equals("branch_weights"))
6637           continue;
6638         unsigned ExpectedNumOperands = 0;
6639         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6640           ExpectedNumOperands = BI->getNumSuccessors();
6641         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6642           ExpectedNumOperands = SI->getNumSuccessors();
6643         else if (isa<CallInst>(&I))
6644           ExpectedNumOperands = 1;
6645         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6646           ExpectedNumOperands = IBI->getNumDestinations();
6647         else if (isa<SelectInst>(&I))
6648           ExpectedNumOperands = 2;
6649         else
6650           continue; // ignore and continue.
6651 
6652         // If branch weight doesn't match, just strip branch weight.
6653         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6654           I.setMetadata(LLVMContext::MD_prof, nullptr);
6655       }
6656     }
6657 
6658     // Remove incompatible attributes on function calls.
6659     if (auto *CI = dyn_cast<CallBase>(&I)) {
6660       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6661           CI->getFunctionType()->getReturnType()));
6662 
6663       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6664         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6665                                         CI->getArgOperand(ArgNo)->getType()));
6666     }
6667   }
6668 
6669   // Look for functions that rely on old function attribute behavior.
6670   UpgradeFunctionAttributes(*F);
6671 
6672   // Bring in any functions that this function forward-referenced via
6673   // blockaddresses.
6674   return materializeForwardReferencedFunctions();
6675 }
6676 
6677 Error BitcodeReader::materializeModule() {
6678   if (Error Err = materializeMetadata())
6679     return Err;
6680 
6681   // Promise to materialize all forward references.
6682   WillMaterializeAllForwardRefs = true;
6683 
6684   // Iterate over the module, deserializing any functions that are still on
6685   // disk.
6686   for (Function &F : *TheModule) {
6687     if (Error Err = materialize(&F))
6688       return Err;
6689   }
6690   // At this point, if there are any function bodies, parse the rest of
6691   // the bits in the module past the last function block we have recorded
6692   // through either lazy scanning or the VST.
6693   if (LastFunctionBlockBit || NextUnreadBit)
6694     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6695                                     ? LastFunctionBlockBit
6696                                     : NextUnreadBit))
6697       return Err;
6698 
6699   // Check that all block address forward references got resolved (as we
6700   // promised above).
6701   if (!BasicBlockFwdRefs.empty())
6702     return error("Never resolved function from blockaddress");
6703 
6704   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6705   // delete the old functions to clean up. We can't do this unless the entire
6706   // module is materialized because there could always be another function body
6707   // with calls to the old function.
6708   for (auto &I : UpgradedIntrinsics) {
6709     for (auto *U : I.first->users()) {
6710       if (CallInst *CI = dyn_cast<CallInst>(U))
6711         UpgradeIntrinsicCall(CI, I.second);
6712     }
6713     if (!I.first->use_empty())
6714       I.first->replaceAllUsesWith(I.second);
6715     I.first->eraseFromParent();
6716   }
6717   UpgradedIntrinsics.clear();
6718 
6719   UpgradeDebugInfo(*TheModule);
6720 
6721   UpgradeModuleFlags(*TheModule);
6722 
6723   UpgradeARCRuntime(*TheModule);
6724 
6725   return Error::success();
6726 }
6727 
6728 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6729   return IdentifiedStructTypes;
6730 }
6731 
6732 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6733     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6734     StringRef ModulePath, unsigned ModuleId,
6735     std::function<bool(GlobalValue::GUID)> IsPrevailing)
6736     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6737       ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {}
6738 
6739 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6740   TheIndex.addModule(ModulePath, ModuleId);
6741 }
6742 
6743 ModuleSummaryIndex::ModuleInfo *
6744 ModuleSummaryIndexBitcodeReader::getThisModule() {
6745   return TheIndex.getModule(ModulePath);
6746 }
6747 
6748 template <bool AllowNullValueInfo>
6749 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6750 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6751   auto VGI = ValueIdToValueInfoMap[ValueId];
6752   // We can have a null value info for memprof callsite info records in
6753   // distributed ThinLTO index files when the callee function summary is not
6754   // included in the index. The bitcode writer records 0 in that case,
6755   // and the caller of this helper will set AllowNullValueInfo to true.
6756   assert(AllowNullValueInfo || std::get<0>(VGI));
6757   return VGI;
6758 }
6759 
6760 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6761     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6762     StringRef SourceFileName) {
6763   std::string GlobalId =
6764       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6765   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6766   auto OriginalNameID = ValueGUID;
6767   if (GlobalValue::isLocalLinkage(Linkage))
6768     OriginalNameID = GlobalValue::getGUID(ValueName);
6769   if (PrintSummaryGUIDs)
6770     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6771            << ValueName << "\n";
6772 
6773   // UseStrtab is false for legacy summary formats and value names are
6774   // created on stack. In that case we save the name in a string saver in
6775   // the index so that the value name can be recorded.
6776   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6777       TheIndex.getOrInsertValueInfo(
6778           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6779       OriginalNameID, ValueGUID);
6780 }
6781 
6782 // Specialized value symbol table parser used when reading module index
6783 // blocks where we don't actually create global values. The parsed information
6784 // is saved in the bitcode reader for use when later parsing summaries.
6785 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6786     uint64_t Offset,
6787     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6788   // With a strtab the VST is not required to parse the summary.
6789   if (UseStrtab)
6790     return Error::success();
6791 
6792   assert(Offset > 0 && "Expected non-zero VST offset");
6793   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6794   if (!MaybeCurrentBit)
6795     return MaybeCurrentBit.takeError();
6796   uint64_t CurrentBit = MaybeCurrentBit.get();
6797 
6798   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6799     return Err;
6800 
6801   SmallVector<uint64_t, 64> Record;
6802 
6803   // Read all the records for this value table.
6804   SmallString<128> ValueName;
6805 
6806   while (true) {
6807     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6808     if (!MaybeEntry)
6809       return MaybeEntry.takeError();
6810     BitstreamEntry Entry = MaybeEntry.get();
6811 
6812     switch (Entry.Kind) {
6813     case BitstreamEntry::SubBlock: // Handled for us already.
6814     case BitstreamEntry::Error:
6815       return error("Malformed block");
6816     case BitstreamEntry::EndBlock:
6817       // Done parsing VST, jump back to wherever we came from.
6818       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6819         return JumpFailed;
6820       return Error::success();
6821     case BitstreamEntry::Record:
6822       // The interesting case.
6823       break;
6824     }
6825 
6826     // Read a record.
6827     Record.clear();
6828     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6829     if (!MaybeRecord)
6830       return MaybeRecord.takeError();
6831     switch (MaybeRecord.get()) {
6832     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6833       break;
6834     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6835       if (convertToString(Record, 1, ValueName))
6836         return error("Invalid record");
6837       unsigned ValueID = Record[0];
6838       assert(!SourceFileName.empty());
6839       auto VLI = ValueIdToLinkageMap.find(ValueID);
6840       assert(VLI != ValueIdToLinkageMap.end() &&
6841              "No linkage found for VST entry?");
6842       auto Linkage = VLI->second;
6843       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6844       ValueName.clear();
6845       break;
6846     }
6847     case bitc::VST_CODE_FNENTRY: {
6848       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6849       if (convertToString(Record, 2, ValueName))
6850         return error("Invalid record");
6851       unsigned ValueID = Record[0];
6852       assert(!SourceFileName.empty());
6853       auto VLI = ValueIdToLinkageMap.find(ValueID);
6854       assert(VLI != ValueIdToLinkageMap.end() &&
6855              "No linkage found for VST entry?");
6856       auto Linkage = VLI->second;
6857       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6858       ValueName.clear();
6859       break;
6860     }
6861     case bitc::VST_CODE_COMBINED_ENTRY: {
6862       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6863       unsigned ValueID = Record[0];
6864       GlobalValue::GUID RefGUID = Record[1];
6865       // The "original name", which is the second value of the pair will be
6866       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6867       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6868           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6869       break;
6870     }
6871     }
6872   }
6873 }
6874 
6875 // Parse just the blocks needed for building the index out of the module.
6876 // At the end of this routine the module Index is populated with a map
6877 // from global value id to GlobalValueSummary objects.
6878 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6879   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6880     return Err;
6881 
6882   SmallVector<uint64_t, 64> Record;
6883   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6884   unsigned ValueId = 0;
6885 
6886   // Read the index for this module.
6887   while (true) {
6888     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6889     if (!MaybeEntry)
6890       return MaybeEntry.takeError();
6891     llvm::BitstreamEntry Entry = MaybeEntry.get();
6892 
6893     switch (Entry.Kind) {
6894     case BitstreamEntry::Error:
6895       return error("Malformed block");
6896     case BitstreamEntry::EndBlock:
6897       return Error::success();
6898 
6899     case BitstreamEntry::SubBlock:
6900       switch (Entry.ID) {
6901       default: // Skip unknown content.
6902         if (Error Err = Stream.SkipBlock())
6903           return Err;
6904         break;
6905       case bitc::BLOCKINFO_BLOCK_ID:
6906         // Need to parse these to get abbrev ids (e.g. for VST)
6907         if (Error Err = readBlockInfo())
6908           return Err;
6909         break;
6910       case bitc::VALUE_SYMTAB_BLOCK_ID:
6911         // Should have been parsed earlier via VSTOffset, unless there
6912         // is no summary section.
6913         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6914                 !SeenGlobalValSummary) &&
6915                "Expected early VST parse via VSTOffset record");
6916         if (Error Err = Stream.SkipBlock())
6917           return Err;
6918         break;
6919       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6920       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6921         // Add the module if it is a per-module index (has a source file name).
6922         if (!SourceFileName.empty())
6923           addThisModule();
6924         assert(!SeenValueSymbolTable &&
6925                "Already read VST when parsing summary block?");
6926         // We might not have a VST if there were no values in the
6927         // summary. An empty summary block generated when we are
6928         // performing ThinLTO compiles so we don't later invoke
6929         // the regular LTO process on them.
6930         if (VSTOffset > 0) {
6931           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6932             return Err;
6933           SeenValueSymbolTable = true;
6934         }
6935         SeenGlobalValSummary = true;
6936         if (Error Err = parseEntireSummary(Entry.ID))
6937           return Err;
6938         break;
6939       case bitc::MODULE_STRTAB_BLOCK_ID:
6940         if (Error Err = parseModuleStringTable())
6941           return Err;
6942         break;
6943       }
6944       continue;
6945 
6946     case BitstreamEntry::Record: {
6947         Record.clear();
6948         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6949         if (!MaybeBitCode)
6950           return MaybeBitCode.takeError();
6951         switch (MaybeBitCode.get()) {
6952         default:
6953           break; // Default behavior, ignore unknown content.
6954         case bitc::MODULE_CODE_VERSION: {
6955           if (Error Err = parseVersionRecord(Record).takeError())
6956             return Err;
6957           break;
6958         }
6959         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6960         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6961           SmallString<128> ValueName;
6962           if (convertToString(Record, 0, ValueName))
6963             return error("Invalid record");
6964           SourceFileName = ValueName.c_str();
6965           break;
6966         }
6967         /// MODULE_CODE_HASH: [5*i32]
6968         case bitc::MODULE_CODE_HASH: {
6969           if (Record.size() != 5)
6970             return error("Invalid hash length " + Twine(Record.size()).str());
6971           auto &Hash = getThisModule()->second.second;
6972           int Pos = 0;
6973           for (auto &Val : Record) {
6974             assert(!(Val >> 32) && "Unexpected high bits set");
6975             Hash[Pos++] = Val;
6976           }
6977           break;
6978         }
6979         /// MODULE_CODE_VSTOFFSET: [offset]
6980         case bitc::MODULE_CODE_VSTOFFSET:
6981           if (Record.empty())
6982             return error("Invalid record");
6983           // Note that we subtract 1 here because the offset is relative to one
6984           // word before the start of the identification or module block, which
6985           // was historically always the start of the regular bitcode header.
6986           VSTOffset = Record[0] - 1;
6987           break;
6988         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6989         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6990         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6991         // v2: [strtab offset, strtab size, v1]
6992         case bitc::MODULE_CODE_GLOBALVAR:
6993         case bitc::MODULE_CODE_FUNCTION:
6994         case bitc::MODULE_CODE_ALIAS: {
6995           StringRef Name;
6996           ArrayRef<uint64_t> GVRecord;
6997           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6998           if (GVRecord.size() <= 3)
6999             return error("Invalid record");
7000           uint64_t RawLinkage = GVRecord[3];
7001           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7002           if (!UseStrtab) {
7003             ValueIdToLinkageMap[ValueId++] = Linkage;
7004             break;
7005           }
7006 
7007           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7008           break;
7009         }
7010         }
7011       }
7012       continue;
7013     }
7014   }
7015 }
7016 
7017 std::vector<ValueInfo>
7018 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7019   std::vector<ValueInfo> Ret;
7020   Ret.reserve(Record.size());
7021   for (uint64_t RefValueId : Record)
7022     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7023   return Ret;
7024 }
7025 
7026 std::vector<FunctionSummary::EdgeTy>
7027 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7028                                               bool IsOldProfileFormat,
7029                                               bool HasProfile, bool HasRelBF) {
7030   std::vector<FunctionSummary::EdgeTy> Ret;
7031   Ret.reserve(Record.size());
7032   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7033     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7034     uint64_t RelBF = 0;
7035     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7036     if (IsOldProfileFormat) {
7037       I += 1; // Skip old callsitecount field
7038       if (HasProfile)
7039         I += 1; // Skip old profilecount field
7040     } else if (HasProfile)
7041       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7042     else if (HasRelBF)
7043       RelBF = Record[++I];
7044     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7045   }
7046   return Ret;
7047 }
7048 
7049 static void
7050 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7051                                        WholeProgramDevirtResolution &Wpd) {
7052   uint64_t ArgNum = Record[Slot++];
7053   WholeProgramDevirtResolution::ByArg &B =
7054       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7055   Slot += ArgNum;
7056 
7057   B.TheKind =
7058       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7059   B.Info = Record[Slot++];
7060   B.Byte = Record[Slot++];
7061   B.Bit = Record[Slot++];
7062 }
7063 
7064 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7065                                               StringRef Strtab, size_t &Slot,
7066                                               TypeIdSummary &TypeId) {
7067   uint64_t Id = Record[Slot++];
7068   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7069 
7070   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7071   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7072                         static_cast<size_t>(Record[Slot + 1])};
7073   Slot += 2;
7074 
7075   uint64_t ResByArgNum = Record[Slot++];
7076   for (uint64_t I = 0; I != ResByArgNum; ++I)
7077     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7078 }
7079 
7080 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7081                                      StringRef Strtab,
7082                                      ModuleSummaryIndex &TheIndex) {
7083   size_t Slot = 0;
7084   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7085       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7086   Slot += 2;
7087 
7088   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7089   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7090   TypeId.TTRes.AlignLog2 = Record[Slot++];
7091   TypeId.TTRes.SizeM1 = Record[Slot++];
7092   TypeId.TTRes.BitMask = Record[Slot++];
7093   TypeId.TTRes.InlineBits = Record[Slot++];
7094 
7095   while (Slot < Record.size())
7096     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7097 }
7098 
7099 std::vector<FunctionSummary::ParamAccess>
7100 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7101   auto ReadRange = [&]() {
7102     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7103                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7104     Record = Record.drop_front();
7105     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7106                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7107     Record = Record.drop_front();
7108     ConstantRange Range{Lower, Upper};
7109     assert(!Range.isFullSet());
7110     assert(!Range.isUpperSignWrapped());
7111     return Range;
7112   };
7113 
7114   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7115   while (!Record.empty()) {
7116     PendingParamAccesses.emplace_back();
7117     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7118     ParamAccess.ParamNo = Record.front();
7119     Record = Record.drop_front();
7120     ParamAccess.Use = ReadRange();
7121     ParamAccess.Calls.resize(Record.front());
7122     Record = Record.drop_front();
7123     for (auto &Call : ParamAccess.Calls) {
7124       Call.ParamNo = Record.front();
7125       Record = Record.drop_front();
7126       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7127       Record = Record.drop_front();
7128       Call.Offsets = ReadRange();
7129     }
7130   }
7131   return PendingParamAccesses;
7132 }
7133 
7134 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7135     ArrayRef<uint64_t> Record, size_t &Slot,
7136     TypeIdCompatibleVtableInfo &TypeId) {
7137   uint64_t Offset = Record[Slot++];
7138   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7139   TypeId.push_back({Offset, Callee});
7140 }
7141 
7142 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7143     ArrayRef<uint64_t> Record) {
7144   size_t Slot = 0;
7145   TypeIdCompatibleVtableInfo &TypeId =
7146       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7147           {Strtab.data() + Record[Slot],
7148            static_cast<size_t>(Record[Slot + 1])});
7149   Slot += 2;
7150 
7151   while (Slot < Record.size())
7152     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7153 }
7154 
7155 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7156                            unsigned WOCnt) {
7157   // Readonly and writeonly refs are in the end of the refs list.
7158   assert(ROCnt + WOCnt <= Refs.size());
7159   unsigned FirstWORef = Refs.size() - WOCnt;
7160   unsigned RefNo = FirstWORef - ROCnt;
7161   for (; RefNo < FirstWORef; ++RefNo)
7162     Refs[RefNo].setReadOnly();
7163   for (; RefNo < Refs.size(); ++RefNo)
7164     Refs[RefNo].setWriteOnly();
7165 }
7166 
7167 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7168 // objects in the index.
7169 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7170   if (Error Err = Stream.EnterSubBlock(ID))
7171     return Err;
7172   SmallVector<uint64_t, 64> Record;
7173 
7174   // Parse version
7175   {
7176     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7177     if (!MaybeEntry)
7178       return MaybeEntry.takeError();
7179     BitstreamEntry Entry = MaybeEntry.get();
7180 
7181     if (Entry.Kind != BitstreamEntry::Record)
7182       return error("Invalid Summary Block: record for version expected");
7183     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7184     if (!MaybeRecord)
7185       return MaybeRecord.takeError();
7186     if (MaybeRecord.get() != bitc::FS_VERSION)
7187       return error("Invalid Summary Block: version expected");
7188   }
7189   const uint64_t Version = Record[0];
7190   const bool IsOldProfileFormat = Version == 1;
7191   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7192     return error("Invalid summary version " + Twine(Version) +
7193                  ". Version should be in the range [1-" +
7194                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7195                  "].");
7196   Record.clear();
7197 
7198   // Keep around the last seen summary to be used when we see an optional
7199   // "OriginalName" attachement.
7200   GlobalValueSummary *LastSeenSummary = nullptr;
7201   GlobalValue::GUID LastSeenGUID = 0;
7202 
7203   // We can expect to see any number of type ID information records before
7204   // each function summary records; these variables store the information
7205   // collected so far so that it can be used to create the summary object.
7206   std::vector<GlobalValue::GUID> PendingTypeTests;
7207   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7208       PendingTypeCheckedLoadVCalls;
7209   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7210       PendingTypeCheckedLoadConstVCalls;
7211   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7212 
7213   std::vector<CallsiteInfo> PendingCallsites;
7214   std::vector<AllocInfo> PendingAllocs;
7215 
7216   while (true) {
7217     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7218     if (!MaybeEntry)
7219       return MaybeEntry.takeError();
7220     BitstreamEntry Entry = MaybeEntry.get();
7221 
7222     switch (Entry.Kind) {
7223     case BitstreamEntry::SubBlock: // Handled for us already.
7224     case BitstreamEntry::Error:
7225       return error("Malformed block");
7226     case BitstreamEntry::EndBlock:
7227       return Error::success();
7228     case BitstreamEntry::Record:
7229       // The interesting case.
7230       break;
7231     }
7232 
7233     // Read a record. The record format depends on whether this
7234     // is a per-module index or a combined index file. In the per-module
7235     // case the records contain the associated value's ID for correlation
7236     // with VST entries. In the combined index the correlation is done
7237     // via the bitcode offset of the summary records (which were saved
7238     // in the combined index VST entries). The records also contain
7239     // information used for ThinLTO renaming and importing.
7240     Record.clear();
7241     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7242     if (!MaybeBitCode)
7243       return MaybeBitCode.takeError();
7244     switch (unsigned BitCode = MaybeBitCode.get()) {
7245     default: // Default behavior: ignore.
7246       break;
7247     case bitc::FS_FLAGS: {  // [flags]
7248       TheIndex.setFlags(Record[0]);
7249       break;
7250     }
7251     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7252       uint64_t ValueID = Record[0];
7253       GlobalValue::GUID RefGUID = Record[1];
7254       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7255           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7256       break;
7257     }
7258     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7259     //                numrefs x valueid, n x (valueid)]
7260     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7261     //                        numrefs x valueid,
7262     //                        n x (valueid, hotness)]
7263     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7264     //                      numrefs x valueid,
7265     //                      n x (valueid, relblockfreq)]
7266     case bitc::FS_PERMODULE:
7267     case bitc::FS_PERMODULE_RELBF:
7268     case bitc::FS_PERMODULE_PROFILE: {
7269       unsigned ValueID = Record[0];
7270       uint64_t RawFlags = Record[1];
7271       unsigned InstCount = Record[2];
7272       uint64_t RawFunFlags = 0;
7273       unsigned NumRefs = Record[3];
7274       unsigned NumRORefs = 0, NumWORefs = 0;
7275       int RefListStartIndex = 4;
7276       if (Version >= 4) {
7277         RawFunFlags = Record[3];
7278         NumRefs = Record[4];
7279         RefListStartIndex = 5;
7280         if (Version >= 5) {
7281           NumRORefs = Record[5];
7282           RefListStartIndex = 6;
7283           if (Version >= 7) {
7284             NumWORefs = Record[6];
7285             RefListStartIndex = 7;
7286           }
7287         }
7288       }
7289 
7290       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7291       // The module path string ref set in the summary must be owned by the
7292       // index's module string table. Since we don't have a module path
7293       // string table section in the per-module index, we create a single
7294       // module path string table entry with an empty (0) ID to take
7295       // ownership.
7296       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7297       assert(Record.size() >= RefListStartIndex + NumRefs &&
7298              "Record size inconsistent with number of references");
7299       std::vector<ValueInfo> Refs = makeRefList(
7300           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7301       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7302       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7303       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7304           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7305           IsOldProfileFormat, HasProfile, HasRelBF);
7306       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7307       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7308       // In order to save memory, only record the memprof summaries if this is
7309       // the prevailing copy of a symbol. The linker doesn't resolve local
7310       // linkage values so don't check whether those are prevailing.
7311       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7312       if (IsPrevailing &&
7313           !GlobalValue::isLocalLinkage(LT) &&
7314           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7315         PendingCallsites.clear();
7316         PendingAllocs.clear();
7317       }
7318       auto FS = std::make_unique<FunctionSummary>(
7319           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7320           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7321           std::move(PendingTypeTestAssumeVCalls),
7322           std::move(PendingTypeCheckedLoadVCalls),
7323           std::move(PendingTypeTestAssumeConstVCalls),
7324           std::move(PendingTypeCheckedLoadConstVCalls),
7325           std::move(PendingParamAccesses), std::move(PendingCallsites),
7326           std::move(PendingAllocs));
7327       FS->setModulePath(getThisModule()->first());
7328       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7329       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7330                                      std::move(FS));
7331       break;
7332     }
7333     // FS_ALIAS: [valueid, flags, valueid]
7334     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7335     // they expect all aliasee summaries to be available.
7336     case bitc::FS_ALIAS: {
7337       unsigned ValueID = Record[0];
7338       uint64_t RawFlags = Record[1];
7339       unsigned AliaseeID = Record[2];
7340       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7341       auto AS = std::make_unique<AliasSummary>(Flags);
7342       // The module path string ref set in the summary must be owned by the
7343       // index's module string table. Since we don't have a module path
7344       // string table section in the per-module index, we create a single
7345       // module path string table entry with an empty (0) ID to take
7346       // ownership.
7347       AS->setModulePath(getThisModule()->first());
7348 
7349       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7350       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7351       if (!AliaseeInModule)
7352         return error("Alias expects aliasee summary to be parsed");
7353       AS->setAliasee(AliaseeVI, AliaseeInModule);
7354 
7355       auto GUID = getValueInfoFromValueId(ValueID);
7356       AS->setOriginalName(std::get<1>(GUID));
7357       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7358       break;
7359     }
7360     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7361     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7362       unsigned ValueID = Record[0];
7363       uint64_t RawFlags = Record[1];
7364       unsigned RefArrayStart = 2;
7365       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7366                                       /* WriteOnly */ false,
7367                                       /* Constant */ false,
7368                                       GlobalObject::VCallVisibilityPublic);
7369       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7370       if (Version >= 5) {
7371         GVF = getDecodedGVarFlags(Record[2]);
7372         RefArrayStart = 3;
7373       }
7374       std::vector<ValueInfo> Refs =
7375           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7376       auto FS =
7377           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7378       FS->setModulePath(getThisModule()->first());
7379       auto GUID = getValueInfoFromValueId(ValueID);
7380       FS->setOriginalName(std::get<1>(GUID));
7381       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7382       break;
7383     }
7384     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7385     //                        numrefs, numrefs x valueid,
7386     //                        n x (valueid, offset)]
7387     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7388       unsigned ValueID = Record[0];
7389       uint64_t RawFlags = Record[1];
7390       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7391       unsigned NumRefs = Record[3];
7392       unsigned RefListStartIndex = 4;
7393       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7394       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7395       std::vector<ValueInfo> Refs = makeRefList(
7396           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7397       VTableFuncList VTableFuncs;
7398       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7399         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7400         uint64_t Offset = Record[++I];
7401         VTableFuncs.push_back({Callee, Offset});
7402       }
7403       auto VS =
7404           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7405       VS->setModulePath(getThisModule()->first());
7406       VS->setVTableFuncs(VTableFuncs);
7407       auto GUID = getValueInfoFromValueId(ValueID);
7408       VS->setOriginalName(std::get<1>(GUID));
7409       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7410       break;
7411     }
7412     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7413     //               numrefs x valueid, n x (valueid)]
7414     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7415     //                       numrefs x valueid, n x (valueid, hotness)]
7416     case bitc::FS_COMBINED:
7417     case bitc::FS_COMBINED_PROFILE: {
7418       unsigned ValueID = Record[0];
7419       uint64_t ModuleId = Record[1];
7420       uint64_t RawFlags = Record[2];
7421       unsigned InstCount = Record[3];
7422       uint64_t RawFunFlags = 0;
7423       uint64_t EntryCount = 0;
7424       unsigned NumRefs = Record[4];
7425       unsigned NumRORefs = 0, NumWORefs = 0;
7426       int RefListStartIndex = 5;
7427 
7428       if (Version >= 4) {
7429         RawFunFlags = Record[4];
7430         RefListStartIndex = 6;
7431         size_t NumRefsIndex = 5;
7432         if (Version >= 5) {
7433           unsigned NumRORefsOffset = 1;
7434           RefListStartIndex = 7;
7435           if (Version >= 6) {
7436             NumRefsIndex = 6;
7437             EntryCount = Record[5];
7438             RefListStartIndex = 8;
7439             if (Version >= 7) {
7440               RefListStartIndex = 9;
7441               NumWORefs = Record[8];
7442               NumRORefsOffset = 2;
7443             }
7444           }
7445           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7446         }
7447         NumRefs = Record[NumRefsIndex];
7448       }
7449 
7450       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7451       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7452       assert(Record.size() >= RefListStartIndex + NumRefs &&
7453              "Record size inconsistent with number of references");
7454       std::vector<ValueInfo> Refs = makeRefList(
7455           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7456       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7457       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7458           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7459           IsOldProfileFormat, HasProfile, false);
7460       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7461       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7462       auto FS = std::make_unique<FunctionSummary>(
7463           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7464           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7465           std::move(PendingTypeTestAssumeVCalls),
7466           std::move(PendingTypeCheckedLoadVCalls),
7467           std::move(PendingTypeTestAssumeConstVCalls),
7468           std::move(PendingTypeCheckedLoadConstVCalls),
7469           std::move(PendingParamAccesses), std::move(PendingCallsites),
7470           std::move(PendingAllocs));
7471       LastSeenSummary = FS.get();
7472       LastSeenGUID = VI.getGUID();
7473       FS->setModulePath(ModuleIdMap[ModuleId]);
7474       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7475       break;
7476     }
7477     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7478     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7479     // they expect all aliasee summaries to be available.
7480     case bitc::FS_COMBINED_ALIAS: {
7481       unsigned ValueID = Record[0];
7482       uint64_t ModuleId = Record[1];
7483       uint64_t RawFlags = Record[2];
7484       unsigned AliaseeValueId = Record[3];
7485       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7486       auto AS = std::make_unique<AliasSummary>(Flags);
7487       LastSeenSummary = AS.get();
7488       AS->setModulePath(ModuleIdMap[ModuleId]);
7489 
7490       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7491       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7492       AS->setAliasee(AliaseeVI, AliaseeInModule);
7493 
7494       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7495       LastSeenGUID = VI.getGUID();
7496       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7497       break;
7498     }
7499     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7500     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7501       unsigned ValueID = Record[0];
7502       uint64_t ModuleId = Record[1];
7503       uint64_t RawFlags = Record[2];
7504       unsigned RefArrayStart = 3;
7505       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7506                                       /* WriteOnly */ false,
7507                                       /* Constant */ false,
7508                                       GlobalObject::VCallVisibilityPublic);
7509       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7510       if (Version >= 5) {
7511         GVF = getDecodedGVarFlags(Record[3]);
7512         RefArrayStart = 4;
7513       }
7514       std::vector<ValueInfo> Refs =
7515           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7516       auto FS =
7517           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7518       LastSeenSummary = FS.get();
7519       FS->setModulePath(ModuleIdMap[ModuleId]);
7520       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7521       LastSeenGUID = VI.getGUID();
7522       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7523       break;
7524     }
7525     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7526     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7527       uint64_t OriginalName = Record[0];
7528       if (!LastSeenSummary)
7529         return error("Name attachment that does not follow a combined record");
7530       LastSeenSummary->setOriginalName(OriginalName);
7531       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7532       // Reset the LastSeenSummary
7533       LastSeenSummary = nullptr;
7534       LastSeenGUID = 0;
7535       break;
7536     }
7537     case bitc::FS_TYPE_TESTS:
7538       assert(PendingTypeTests.empty());
7539       llvm::append_range(PendingTypeTests, Record);
7540       break;
7541 
7542     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7543       assert(PendingTypeTestAssumeVCalls.empty());
7544       for (unsigned I = 0; I != Record.size(); I += 2)
7545         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7546       break;
7547 
7548     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7549       assert(PendingTypeCheckedLoadVCalls.empty());
7550       for (unsigned I = 0; I != Record.size(); I += 2)
7551         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7552       break;
7553 
7554     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7555       PendingTypeTestAssumeConstVCalls.push_back(
7556           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7557       break;
7558 
7559     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7560       PendingTypeCheckedLoadConstVCalls.push_back(
7561           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7562       break;
7563 
7564     case bitc::FS_CFI_FUNCTION_DEFS: {
7565       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7566       for (unsigned I = 0; I != Record.size(); I += 2)
7567         CfiFunctionDefs.insert(
7568             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7569       break;
7570     }
7571 
7572     case bitc::FS_CFI_FUNCTION_DECLS: {
7573       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7574       for (unsigned I = 0; I != Record.size(); I += 2)
7575         CfiFunctionDecls.insert(
7576             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7577       break;
7578     }
7579 
7580     case bitc::FS_TYPE_ID:
7581       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7582       break;
7583 
7584     case bitc::FS_TYPE_ID_METADATA:
7585       parseTypeIdCompatibleVtableSummaryRecord(Record);
7586       break;
7587 
7588     case bitc::FS_BLOCK_COUNT:
7589       TheIndex.addBlockCount(Record[0]);
7590       break;
7591 
7592     case bitc::FS_PARAM_ACCESS: {
7593       PendingParamAccesses = parseParamAccesses(Record);
7594       break;
7595     }
7596 
7597     case bitc::FS_STACK_IDS: { // [n x stackid]
7598       // Save stack ids in the reader to consult when adding stack ids from the
7599       // lists in the stack node and alloc node entries.
7600       StackIds = ArrayRef<uint64_t>(Record);
7601       break;
7602     }
7603 
7604     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7605       unsigned ValueID = Record[0];
7606       SmallVector<unsigned> StackIdList;
7607       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7608         assert(*R < StackIds.size());
7609         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7610       }
7611       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7612       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7613       break;
7614     }
7615 
7616     case bitc::FS_COMBINED_CALLSITE_INFO: {
7617       auto RecordIter = Record.begin();
7618       unsigned ValueID = *RecordIter++;
7619       unsigned NumStackIds = *RecordIter++;
7620       unsigned NumVersions = *RecordIter++;
7621       assert(Record.size() == 3 + NumStackIds + NumVersions);
7622       SmallVector<unsigned> StackIdList;
7623       for (unsigned J = 0; J < NumStackIds; J++) {
7624         assert(*RecordIter < StackIds.size());
7625         StackIdList.push_back(
7626             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7627       }
7628       SmallVector<unsigned> Versions;
7629       for (unsigned J = 0; J < NumVersions; J++)
7630         Versions.push_back(*RecordIter++);
7631       ValueInfo VI = std::get<0>(
7632           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7633       PendingCallsites.push_back(
7634           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7635       break;
7636     }
7637 
7638     case bitc::FS_PERMODULE_ALLOC_INFO: {
7639       unsigned I = 0;
7640       std::vector<MIBInfo> MIBs;
7641       while (I < Record.size()) {
7642         assert(Record.size() - I >= 2);
7643         AllocationType AllocType = (AllocationType)Record[I++];
7644         unsigned NumStackEntries = Record[I++];
7645         assert(Record.size() - I >= NumStackEntries);
7646         SmallVector<unsigned> StackIdList;
7647         for (unsigned J = 0; J < NumStackEntries; J++) {
7648           assert(Record[I] < StackIds.size());
7649           StackIdList.push_back(
7650               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7651         }
7652         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7653       }
7654       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7655       break;
7656     }
7657 
7658     case bitc::FS_COMBINED_ALLOC_INFO: {
7659       unsigned I = 0;
7660       std::vector<MIBInfo> MIBs;
7661       unsigned NumMIBs = Record[I++];
7662       unsigned NumVersions = Record[I++];
7663       unsigned MIBsRead = 0;
7664       while (MIBsRead++ < NumMIBs) {
7665         assert(Record.size() - I >= 2);
7666         AllocationType AllocType = (AllocationType)Record[I++];
7667         unsigned NumStackEntries = Record[I++];
7668         assert(Record.size() - I >= NumStackEntries);
7669         SmallVector<unsigned> StackIdList;
7670         for (unsigned J = 0; J < NumStackEntries; J++) {
7671           assert(Record[I] < StackIds.size());
7672           StackIdList.push_back(
7673               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7674         }
7675         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7676       }
7677       assert(Record.size() - I >= NumVersions);
7678       SmallVector<uint8_t> Versions;
7679       for (unsigned J = 0; J < NumVersions; J++)
7680         Versions.push_back(Record[I++]);
7681       PendingAllocs.push_back(
7682           AllocInfo(std::move(Versions), std::move(MIBs)));
7683       break;
7684     }
7685     }
7686   }
7687   llvm_unreachable("Exit infinite loop");
7688 }
7689 
7690 // Parse the  module string table block into the Index.
7691 // This populates the ModulePathStringTable map in the index.
7692 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7693   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7694     return Err;
7695 
7696   SmallVector<uint64_t, 64> Record;
7697 
7698   SmallString<128> ModulePath;
7699   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7700 
7701   while (true) {
7702     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7703     if (!MaybeEntry)
7704       return MaybeEntry.takeError();
7705     BitstreamEntry Entry = MaybeEntry.get();
7706 
7707     switch (Entry.Kind) {
7708     case BitstreamEntry::SubBlock: // Handled for us already.
7709     case BitstreamEntry::Error:
7710       return error("Malformed block");
7711     case BitstreamEntry::EndBlock:
7712       return Error::success();
7713     case BitstreamEntry::Record:
7714       // The interesting case.
7715       break;
7716     }
7717 
7718     Record.clear();
7719     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7720     if (!MaybeRecord)
7721       return MaybeRecord.takeError();
7722     switch (MaybeRecord.get()) {
7723     default: // Default behavior: ignore.
7724       break;
7725     case bitc::MST_CODE_ENTRY: {
7726       // MST_ENTRY: [modid, namechar x N]
7727       uint64_t ModuleId = Record[0];
7728 
7729       if (convertToString(Record, 1, ModulePath))
7730         return error("Invalid record");
7731 
7732       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7733       ModuleIdMap[ModuleId] = LastSeenModule->first();
7734 
7735       ModulePath.clear();
7736       break;
7737     }
7738     /// MST_CODE_HASH: [5*i32]
7739     case bitc::MST_CODE_HASH: {
7740       if (Record.size() != 5)
7741         return error("Invalid hash length " + Twine(Record.size()).str());
7742       if (!LastSeenModule)
7743         return error("Invalid hash that does not follow a module path");
7744       int Pos = 0;
7745       for (auto &Val : Record) {
7746         assert(!(Val >> 32) && "Unexpected high bits set");
7747         LastSeenModule->second.second[Pos++] = Val;
7748       }
7749       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7750       LastSeenModule = nullptr;
7751       break;
7752     }
7753     }
7754   }
7755   llvm_unreachable("Exit infinite loop");
7756 }
7757 
7758 namespace {
7759 
7760 // FIXME: This class is only here to support the transition to llvm::Error. It
7761 // will be removed once this transition is complete. Clients should prefer to
7762 // deal with the Error value directly, rather than converting to error_code.
7763 class BitcodeErrorCategoryType : public std::error_category {
7764   const char *name() const noexcept override {
7765     return "llvm.bitcode";
7766   }
7767 
7768   std::string message(int IE) const override {
7769     BitcodeError E = static_cast<BitcodeError>(IE);
7770     switch (E) {
7771     case BitcodeError::CorruptedBitcode:
7772       return "Corrupted bitcode";
7773     }
7774     llvm_unreachable("Unknown error type!");
7775   }
7776 };
7777 
7778 } // end anonymous namespace
7779 
7780 const std::error_category &llvm::BitcodeErrorCategory() {
7781   static BitcodeErrorCategoryType ErrorCategory;
7782   return ErrorCategory;
7783 }
7784 
7785 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7786                                             unsigned Block, unsigned RecordID) {
7787   if (Error Err = Stream.EnterSubBlock(Block))
7788     return std::move(Err);
7789 
7790   StringRef Strtab;
7791   while (true) {
7792     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7793     if (!MaybeEntry)
7794       return MaybeEntry.takeError();
7795     llvm::BitstreamEntry Entry = MaybeEntry.get();
7796 
7797     switch (Entry.Kind) {
7798     case BitstreamEntry::EndBlock:
7799       return Strtab;
7800 
7801     case BitstreamEntry::Error:
7802       return error("Malformed block");
7803 
7804     case BitstreamEntry::SubBlock:
7805       if (Error Err = Stream.SkipBlock())
7806         return std::move(Err);
7807       break;
7808 
7809     case BitstreamEntry::Record:
7810       StringRef Blob;
7811       SmallVector<uint64_t, 1> Record;
7812       Expected<unsigned> MaybeRecord =
7813           Stream.readRecord(Entry.ID, Record, &Blob);
7814       if (!MaybeRecord)
7815         return MaybeRecord.takeError();
7816       if (MaybeRecord.get() == RecordID)
7817         Strtab = Blob;
7818       break;
7819     }
7820   }
7821 }
7822 
7823 //===----------------------------------------------------------------------===//
7824 // External interface
7825 //===----------------------------------------------------------------------===//
7826 
7827 Expected<std::vector<BitcodeModule>>
7828 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7829   auto FOrErr = getBitcodeFileContents(Buffer);
7830   if (!FOrErr)
7831     return FOrErr.takeError();
7832   return std::move(FOrErr->Mods);
7833 }
7834 
7835 Expected<BitcodeFileContents>
7836 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7837   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7838   if (!StreamOrErr)
7839     return StreamOrErr.takeError();
7840   BitstreamCursor &Stream = *StreamOrErr;
7841 
7842   BitcodeFileContents F;
7843   while (true) {
7844     uint64_t BCBegin = Stream.getCurrentByteNo();
7845 
7846     // We may be consuming bitcode from a client that leaves garbage at the end
7847     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7848     // the end that there cannot possibly be another module, stop looking.
7849     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7850       return F;
7851 
7852     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7853     if (!MaybeEntry)
7854       return MaybeEntry.takeError();
7855     llvm::BitstreamEntry Entry = MaybeEntry.get();
7856 
7857     switch (Entry.Kind) {
7858     case BitstreamEntry::EndBlock:
7859     case BitstreamEntry::Error:
7860       return error("Malformed block");
7861 
7862     case BitstreamEntry::SubBlock: {
7863       uint64_t IdentificationBit = -1ull;
7864       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7865         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7866         if (Error Err = Stream.SkipBlock())
7867           return std::move(Err);
7868 
7869         {
7870           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7871           if (!MaybeEntry)
7872             return MaybeEntry.takeError();
7873           Entry = MaybeEntry.get();
7874         }
7875 
7876         if (Entry.Kind != BitstreamEntry::SubBlock ||
7877             Entry.ID != bitc::MODULE_BLOCK_ID)
7878           return error("Malformed block");
7879       }
7880 
7881       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7882         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7883         if (Error Err = Stream.SkipBlock())
7884           return std::move(Err);
7885 
7886         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7887                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7888                           Buffer.getBufferIdentifier(), IdentificationBit,
7889                           ModuleBit});
7890         continue;
7891       }
7892 
7893       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7894         Expected<StringRef> Strtab =
7895             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7896         if (!Strtab)
7897           return Strtab.takeError();
7898         // This string table is used by every preceding bitcode module that does
7899         // not have its own string table. A bitcode file may have multiple
7900         // string tables if it was created by binary concatenation, for example
7901         // with "llvm-cat -b".
7902         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7903           if (!I.Strtab.empty())
7904             break;
7905           I.Strtab = *Strtab;
7906         }
7907         // Similarly, the string table is used by every preceding symbol table;
7908         // normally there will be just one unless the bitcode file was created
7909         // by binary concatenation.
7910         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7911           F.StrtabForSymtab = *Strtab;
7912         continue;
7913       }
7914 
7915       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7916         Expected<StringRef> SymtabOrErr =
7917             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7918         if (!SymtabOrErr)
7919           return SymtabOrErr.takeError();
7920 
7921         // We can expect the bitcode file to have multiple symbol tables if it
7922         // was created by binary concatenation. In that case we silently
7923         // ignore any subsequent symbol tables, which is fine because this is a
7924         // low level function. The client is expected to notice that the number
7925         // of modules in the symbol table does not match the number of modules
7926         // in the input file and regenerate the symbol table.
7927         if (F.Symtab.empty())
7928           F.Symtab = *SymtabOrErr;
7929         continue;
7930       }
7931 
7932       if (Error Err = Stream.SkipBlock())
7933         return std::move(Err);
7934       continue;
7935     }
7936     case BitstreamEntry::Record:
7937       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7938         return std::move(E);
7939       continue;
7940     }
7941   }
7942 }
7943 
7944 /// Get a lazy one-at-time loading module from bitcode.
7945 ///
7946 /// This isn't always used in a lazy context.  In particular, it's also used by
7947 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7948 /// in forward-referenced functions from block address references.
7949 ///
7950 /// \param[in] MaterializeAll Set to \c true if we should materialize
7951 /// everything.
7952 Expected<std::unique_ptr<Module>>
7953 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7954                              bool ShouldLazyLoadMetadata, bool IsImporting,
7955                              ParserCallbacks Callbacks) {
7956   BitstreamCursor Stream(Buffer);
7957 
7958   std::string ProducerIdentification;
7959   if (IdentificationBit != -1ull) {
7960     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7961       return std::move(JumpFailed);
7962     if (Error E =
7963             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7964       return std::move(E);
7965   }
7966 
7967   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7968     return std::move(JumpFailed);
7969   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7970                               Context);
7971 
7972   std::unique_ptr<Module> M =
7973       std::make_unique<Module>(ModuleIdentifier, Context);
7974   M->setMaterializer(R);
7975 
7976   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7977   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7978                                       IsImporting, Callbacks))
7979     return std::move(Err);
7980 
7981   if (MaterializeAll) {
7982     // Read in the entire module, and destroy the BitcodeReader.
7983     if (Error Err = M->materializeAll())
7984       return std::move(Err);
7985   } else {
7986     // Resolve forward references from blockaddresses.
7987     if (Error Err = R->materializeForwardReferencedFunctions())
7988       return std::move(Err);
7989   }
7990   return std::move(M);
7991 }
7992 
7993 Expected<std::unique_ptr<Module>>
7994 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7995                              bool IsImporting, ParserCallbacks Callbacks) {
7996   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7997                        Callbacks);
7998 }
7999 
8000 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8001 // We don't use ModuleIdentifier here because the client may need to control the
8002 // module path used in the combined summary (e.g. when reading summaries for
8003 // regular LTO modules).
8004 Error BitcodeModule::readSummary(
8005     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId,
8006     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8007   BitstreamCursor Stream(Buffer);
8008   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8009     return JumpFailed;
8010 
8011   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8012                                     ModulePath, ModuleId, IsPrevailing);
8013   return R.parseModule();
8014 }
8015 
8016 // Parse the specified bitcode buffer, returning the function info index.
8017 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8018   BitstreamCursor Stream(Buffer);
8019   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8020     return std::move(JumpFailed);
8021 
8022   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8023   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8024                                     ModuleIdentifier, 0);
8025 
8026   if (Error Err = R.parseModule())
8027     return std::move(Err);
8028 
8029   return std::move(Index);
8030 }
8031 
8032 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
8033                                                 unsigned ID) {
8034   if (Error Err = Stream.EnterSubBlock(ID))
8035     return std::move(Err);
8036   SmallVector<uint64_t, 64> Record;
8037 
8038   while (true) {
8039     BitstreamEntry Entry;
8040     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8041       return std::move(E);
8042 
8043     switch (Entry.Kind) {
8044     case BitstreamEntry::SubBlock: // Handled for us already.
8045     case BitstreamEntry::Error:
8046       return error("Malformed block");
8047     case BitstreamEntry::EndBlock:
8048       // If no flags record found, conservatively return true to mimic
8049       // behavior before this flag was added.
8050       return true;
8051     case BitstreamEntry::Record:
8052       // The interesting case.
8053       break;
8054     }
8055 
8056     // Look for the FS_FLAGS record.
8057     Record.clear();
8058     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8059     if (!MaybeBitCode)
8060       return MaybeBitCode.takeError();
8061     switch (MaybeBitCode.get()) {
8062     default: // Default behavior: ignore.
8063       break;
8064     case bitc::FS_FLAGS: { // [flags]
8065       uint64_t Flags = Record[0];
8066       // Scan flags.
8067       assert(Flags <= 0xff && "Unexpected bits in flag");
8068 
8069       return Flags & 0x8;
8070     }
8071     }
8072   }
8073   llvm_unreachable("Exit infinite loop");
8074 }
8075 
8076 // Check if the given bitcode buffer contains a global value summary block.
8077 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8078   BitstreamCursor Stream(Buffer);
8079   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8080     return std::move(JumpFailed);
8081 
8082   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8083     return std::move(Err);
8084 
8085   while (true) {
8086     llvm::BitstreamEntry Entry;
8087     if (Error E = Stream.advance().moveInto(Entry))
8088       return std::move(E);
8089 
8090     switch (Entry.Kind) {
8091     case BitstreamEntry::Error:
8092       return error("Malformed block");
8093     case BitstreamEntry::EndBlock:
8094       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8095                             /*EnableSplitLTOUnit=*/false};
8096 
8097     case BitstreamEntry::SubBlock:
8098       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8099         Expected<bool> EnableSplitLTOUnit =
8100             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8101         if (!EnableSplitLTOUnit)
8102           return EnableSplitLTOUnit.takeError();
8103         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
8104                               *EnableSplitLTOUnit};
8105       }
8106 
8107       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8108         Expected<bool> EnableSplitLTOUnit =
8109             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8110         if (!EnableSplitLTOUnit)
8111           return EnableSplitLTOUnit.takeError();
8112         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
8113                               *EnableSplitLTOUnit};
8114       }
8115 
8116       // Ignore other sub-blocks.
8117       if (Error Err = Stream.SkipBlock())
8118         return std::move(Err);
8119       continue;
8120 
8121     case BitstreamEntry::Record:
8122       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8123         continue;
8124       else
8125         return StreamFailed.takeError();
8126     }
8127   }
8128 }
8129 
8130 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8131   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8132   if (!MsOrErr)
8133     return MsOrErr.takeError();
8134 
8135   if (MsOrErr->size() != 1)
8136     return error("Expected a single module");
8137 
8138   return (*MsOrErr)[0];
8139 }
8140 
8141 Expected<std::unique_ptr<Module>>
8142 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8143                            bool ShouldLazyLoadMetadata, bool IsImporting,
8144                            ParserCallbacks Callbacks) {
8145   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8146   if (!BM)
8147     return BM.takeError();
8148 
8149   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8150                            Callbacks);
8151 }
8152 
8153 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8154     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8155     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8156   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8157                                      IsImporting, Callbacks);
8158   if (MOrErr)
8159     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8160   return MOrErr;
8161 }
8162 
8163 Expected<std::unique_ptr<Module>>
8164 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8165   return getModuleImpl(Context, true, false, false, Callbacks);
8166   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8167   // written.  We must defer until the Module has been fully materialized.
8168 }
8169 
8170 Expected<std::unique_ptr<Module>>
8171 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8172                        ParserCallbacks Callbacks) {
8173   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8174   if (!BM)
8175     return BM.takeError();
8176 
8177   return BM->parseModule(Context, Callbacks);
8178 }
8179 
8180 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8181   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8182   if (!StreamOrErr)
8183     return StreamOrErr.takeError();
8184 
8185   return readTriple(*StreamOrErr);
8186 }
8187 
8188 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8189   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8190   if (!StreamOrErr)
8191     return StreamOrErr.takeError();
8192 
8193   return hasObjCCategory(*StreamOrErr);
8194 }
8195 
8196 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8197   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8198   if (!StreamOrErr)
8199     return StreamOrErr.takeError();
8200 
8201   return readIdentificationCode(*StreamOrErr);
8202 }
8203 
8204 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8205                                    ModuleSummaryIndex &CombinedIndex,
8206                                    uint64_t ModuleId) {
8207   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8208   if (!BM)
8209     return BM.takeError();
8210 
8211   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
8212 }
8213 
8214 Expected<std::unique_ptr<ModuleSummaryIndex>>
8215 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8216   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8217   if (!BM)
8218     return BM.takeError();
8219 
8220   return BM->getSummary();
8221 }
8222 
8223 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8224   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8225   if (!BM)
8226     return BM.takeError();
8227 
8228   return BM->getLTOInfo();
8229 }
8230 
8231 Expected<std::unique_ptr<ModuleSummaryIndex>>
8232 llvm::getModuleSummaryIndexForFile(StringRef Path,
8233                                    bool IgnoreEmptyThinLTOIndexFile) {
8234   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8235       MemoryBuffer::getFileOrSTDIN(Path);
8236   if (!FileOrErr)
8237     return errorCodeToError(FileOrErr.getError());
8238   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8239     return nullptr;
8240   return getModuleSummaryIndex(**FileOrErr);
8241 }
8242