1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitcodeCommon.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitstream/BitstreamReader.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <optional> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 std::optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return std::nullopt; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 std::optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 632 // Several operations happen after the module header has been read, but 633 // before function bodies are processed. This keeps track of whether 634 // we've done this yet. 635 bool SeenFirstFunctionBody = false; 636 637 /// When function bodies are initially scanned, this map contains info about 638 /// where to find deferred function body in the stream. 639 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 640 641 /// When Metadata block is initially scanned when parsing the module, we may 642 /// choose to defer parsing of the metadata. This vector contains info about 643 /// which Metadata blocks are deferred. 644 std::vector<uint64_t> DeferredMetadataInfo; 645 646 /// These are basic blocks forward-referenced by block addresses. They are 647 /// inserted lazily into functions when they're loaded. The basic block ID is 648 /// its index into the vector. 649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 650 std::deque<Function *> BasicBlockFwdRefQueue; 651 652 /// These are Functions that contain BlockAddresses which refer a different 653 /// Function. When parsing the different Function, queue Functions that refer 654 /// to the different Function. Those Functions must be materialized in order 655 /// to resolve their BlockAddress constants before the different Function 656 /// gets moved into another Module. 657 std::vector<Function *> BackwardRefFunctions; 658 659 /// Indicates that we are using a new encoding for instruction operands where 660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 661 /// instruction number, for a more compact encoding. Some instruction 662 /// operands are not relative to the instruction ID: basic block numbers, and 663 /// types. Once the old style function blocks have been phased out, we would 664 /// not need this flag. 665 bool UseRelativeIDs = false; 666 667 /// True if all functions will be materialized, negating the need to process 668 /// (e.g.) blockaddress forward references. 669 bool WillMaterializeAllForwardRefs = false; 670 671 bool StripDebugInfo = false; 672 TBAAVerifier TBAAVerifyHelper; 673 674 std::vector<std::string> BundleTags; 675 SmallVector<SyncScope::ID, 8> SSIDs; 676 677 public: 678 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 679 StringRef ProducerIdentification, LLVMContext &Context); 680 681 Error materializeForwardReferencedFunctions(); 682 683 Error materialize(GlobalValue *GV) override; 684 Error materializeModule() override; 685 std::vector<StructType *> getIdentifiedStructTypes() const override; 686 687 /// Main interface to parsing a bitcode buffer. 688 /// \returns true if an error occurred. 689 Error parseBitcodeInto( 690 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting, 691 DataLayoutCallbackTy DataLayoutCallback); 692 693 static uint64_t decodeSignRotatedValue(uint64_t V); 694 695 /// Materialize any deferred Metadata block. 696 Error materializeMetadata() override; 697 698 void setStripDebugInfo() override; 699 700 private: 701 std::vector<StructType *> IdentifiedStructTypes; 702 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 703 StructType *createIdentifiedStructType(LLVMContext &Context); 704 705 static constexpr unsigned InvalidTypeID = ~0u; 706 707 Type *getTypeByID(unsigned ID); 708 Type *getPtrElementTypeByID(unsigned ID); 709 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 710 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 711 712 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 713 Expected<Constant *> getValueForInitializer(unsigned ID); 714 715 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 716 BasicBlock *ConstExprInsertBB) { 717 if (Ty && Ty->isMetadataTy()) 718 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 719 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 720 } 721 722 Metadata *getFnMetadataByID(unsigned ID) { 723 return MDLoader->getMetadataFwdRefOrLoad(ID); 724 } 725 726 BasicBlock *getBasicBlock(unsigned ID) const { 727 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 728 return FunctionBBs[ID]; 729 } 730 731 AttributeList getAttributes(unsigned i) const { 732 if (i-1 < MAttributes.size()) 733 return MAttributes[i-1]; 734 return AttributeList(); 735 } 736 737 /// Read a value/type pair out of the specified record from slot 'Slot'. 738 /// Increment Slot past the number of slots used in the record. Return true on 739 /// failure. 740 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 741 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 742 BasicBlock *ConstExprInsertBB) { 743 if (Slot == Record.size()) return true; 744 unsigned ValNo = (unsigned)Record[Slot++]; 745 // Adjust the ValNo, if it was encoded relative to the InstNum. 746 if (UseRelativeIDs) 747 ValNo = InstNum - ValNo; 748 if (ValNo < InstNum) { 749 // If this is not a forward reference, just return the value we already 750 // have. 751 TypeID = ValueList.getTypeID(ValNo); 752 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 753 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 754 "Incorrect type ID stored for value"); 755 return ResVal == nullptr; 756 } 757 if (Slot == Record.size()) 758 return true; 759 760 TypeID = (unsigned)Record[Slot++]; 761 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 762 ConstExprInsertBB); 763 return ResVal == nullptr; 764 } 765 766 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 767 /// past the number of slots used by the value in the record. Return true if 768 /// there is an error. 769 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 771 BasicBlock *ConstExprInsertBB) { 772 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 773 return true; 774 // All values currently take a single record slot. 775 ++Slot; 776 return false; 777 } 778 779 /// Like popValue, but does not increment the Slot number. 780 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 781 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 782 BasicBlock *ConstExprInsertBB) { 783 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 784 return ResVal == nullptr; 785 } 786 787 /// Version of getValue that returns ResVal directly, or 0 if there is an 788 /// error. 789 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 790 unsigned InstNum, Type *Ty, unsigned TyID, 791 BasicBlock *ConstExprInsertBB) { 792 if (Slot == Record.size()) return nullptr; 793 unsigned ValNo = (unsigned)Record[Slot]; 794 // Adjust the ValNo, if it was encoded relative to the InstNum. 795 if (UseRelativeIDs) 796 ValNo = InstNum - ValNo; 797 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 798 } 799 800 /// Like getValue, but decodes signed VBRs. 801 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 802 unsigned InstNum, Type *Ty, unsigned TyID, 803 BasicBlock *ConstExprInsertBB) { 804 if (Slot == Record.size()) return nullptr; 805 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 806 // Adjust the ValNo, if it was encoded relative to the InstNum. 807 if (UseRelativeIDs) 808 ValNo = InstNum - ValNo; 809 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 810 } 811 812 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 813 /// corresponding argument's pointee type. Also upgrades intrinsics that now 814 /// require an elementtype attribute. 815 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 816 817 /// Converts alignment exponent (i.e. power of two (or zero)) to the 818 /// corresponding alignment to use. If alignment is too large, returns 819 /// a corresponding error code. 820 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 821 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 822 Error parseModule( 823 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 824 DataLayoutCallbackTy DataLayoutCallback = [](StringRef, StringRef) { 825 return std::nullopt; 826 }); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// For per-module summary indexes, the unique numerical identifier given to 908 /// this module by the client. 909 unsigned ModuleId; 910 911 /// Callback to ask whether a symbol is the prevailing copy when invoked 912 /// during combined index building. 913 std::function<bool(GlobalValue::GUID)> IsPrevailing; 914 915 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 916 /// ids from the lists in the callsite and alloc entries to the index. 917 std::vector<uint64_t> StackIds; 918 919 public: 920 ModuleSummaryIndexBitcodeReader( 921 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 922 StringRef ModulePath, unsigned ModuleId, 923 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 924 925 Error parseModule(); 926 927 private: 928 void setValueGUID(uint64_t ValueID, StringRef ValueName, 929 GlobalValue::LinkageTypes Linkage, 930 StringRef SourceFileName); 931 Error parseValueSymbolTable( 932 uint64_t Offset, 933 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 934 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 935 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 936 bool IsOldProfileFormat, 937 bool HasProfile, 938 bool HasRelBF); 939 Error parseEntireSummary(unsigned ID); 940 Error parseModuleStringTable(); 941 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 942 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 943 TypeIdCompatibleVtableInfo &TypeId); 944 std::vector<FunctionSummary::ParamAccess> 945 parseParamAccesses(ArrayRef<uint64_t> Record); 946 947 template <bool AllowNullValueInfo = false> 948 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 949 getValueInfoFromValueId(unsigned ValueId); 950 951 void addThisModule(); 952 ModuleSummaryIndex::ModuleInfo *getThisModule(); 953 }; 954 955 } // end anonymous namespace 956 957 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 958 Error Err) { 959 if (Err) { 960 std::error_code EC; 961 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 962 EC = EIB.convertToErrorCode(); 963 Ctx.emitError(EIB.message()); 964 }); 965 return EC; 966 } 967 return std::error_code(); 968 } 969 970 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 971 StringRef ProducerIdentification, 972 LLVMContext &Context) 973 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 974 ValueList(this->Stream.SizeInBytes(), 975 [this](unsigned ValID, BasicBlock *InsertBB) { 976 return materializeValue(ValID, InsertBB); 977 }) { 978 this->ProducerIdentification = std::string(ProducerIdentification); 979 } 980 981 Error BitcodeReader::materializeForwardReferencedFunctions() { 982 if (WillMaterializeAllForwardRefs) 983 return Error::success(); 984 985 // Prevent recursion. 986 WillMaterializeAllForwardRefs = true; 987 988 while (!BasicBlockFwdRefQueue.empty()) { 989 Function *F = BasicBlockFwdRefQueue.front(); 990 BasicBlockFwdRefQueue.pop_front(); 991 assert(F && "Expected valid function"); 992 if (!BasicBlockFwdRefs.count(F)) 993 // Already materialized. 994 continue; 995 996 // Check for a function that isn't materializable to prevent an infinite 997 // loop. When parsing a blockaddress stored in a global variable, there 998 // isn't a trivial way to check if a function will have a body without a 999 // linear search through FunctionsWithBodies, so just check it here. 1000 if (!F->isMaterializable()) 1001 return error("Never resolved function from blockaddress"); 1002 1003 // Try to materialize F. 1004 if (Error Err = materialize(F)) 1005 return Err; 1006 } 1007 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1008 1009 for (Function *F : BackwardRefFunctions) 1010 if (Error Err = materialize(F)) 1011 return Err; 1012 BackwardRefFunctions.clear(); 1013 1014 // Reset state. 1015 WillMaterializeAllForwardRefs = false; 1016 return Error::success(); 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // Helper functions to implement forward reference resolution, etc. 1021 //===----------------------------------------------------------------------===// 1022 1023 static bool hasImplicitComdat(size_t Val) { 1024 switch (Val) { 1025 default: 1026 return false; 1027 case 1: // Old WeakAnyLinkage 1028 case 4: // Old LinkOnceAnyLinkage 1029 case 10: // Old WeakODRLinkage 1030 case 11: // Old LinkOnceODRLinkage 1031 return true; 1032 } 1033 } 1034 1035 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown/new linkages to external 1038 case 0: 1039 return GlobalValue::ExternalLinkage; 1040 case 2: 1041 return GlobalValue::AppendingLinkage; 1042 case 3: 1043 return GlobalValue::InternalLinkage; 1044 case 5: 1045 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1046 case 6: 1047 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1048 case 7: 1049 return GlobalValue::ExternalWeakLinkage; 1050 case 8: 1051 return GlobalValue::CommonLinkage; 1052 case 9: 1053 return GlobalValue::PrivateLinkage; 1054 case 12: 1055 return GlobalValue::AvailableExternallyLinkage; 1056 case 13: 1057 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1058 case 14: 1059 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1060 case 15: 1061 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1062 case 1: // Old value with implicit comdat. 1063 case 16: 1064 return GlobalValue::WeakAnyLinkage; 1065 case 10: // Old value with implicit comdat. 1066 case 17: 1067 return GlobalValue::WeakODRLinkage; 1068 case 4: // Old value with implicit comdat. 1069 case 18: 1070 return GlobalValue::LinkOnceAnyLinkage; 1071 case 11: // Old value with implicit comdat. 1072 case 19: 1073 return GlobalValue::LinkOnceODRLinkage; 1074 } 1075 } 1076 1077 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1078 FunctionSummary::FFlags Flags; 1079 Flags.ReadNone = RawFlags & 0x1; 1080 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1081 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1082 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1083 Flags.NoInline = (RawFlags >> 4) & 0x1; 1084 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1085 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1086 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1087 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1088 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1089 return Flags; 1090 } 1091 1092 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1093 // 1094 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1095 // visibility: [8, 10). 1096 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1097 uint64_t Version) { 1098 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1099 // like getDecodedLinkage() above. Any future change to the linkage enum and 1100 // to getDecodedLinkage() will need to be taken into account here as above. 1101 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1102 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1103 RawFlags = RawFlags >> 4; 1104 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1105 // The Live flag wasn't introduced until version 3. For dead stripping 1106 // to work correctly on earlier versions, we must conservatively treat all 1107 // values as live. 1108 bool Live = (RawFlags & 0x2) || Version < 3; 1109 bool Local = (RawFlags & 0x4); 1110 bool AutoHide = (RawFlags & 0x8); 1111 1112 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1113 Live, Local, AutoHide); 1114 } 1115 1116 // Decode the flags for GlobalVariable in the summary 1117 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1118 return GlobalVarSummary::GVarFlags( 1119 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1120 (RawFlags & 0x4) ? true : false, 1121 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1122 } 1123 1124 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1125 switch (Val) { 1126 default: // Map unknown visibilities to default. 1127 case 0: return GlobalValue::DefaultVisibility; 1128 case 1: return GlobalValue::HiddenVisibility; 1129 case 2: return GlobalValue::ProtectedVisibility; 1130 } 1131 } 1132 1133 static GlobalValue::DLLStorageClassTypes 1134 getDecodedDLLStorageClass(unsigned Val) { 1135 switch (Val) { 1136 default: // Map unknown values to default. 1137 case 0: return GlobalValue::DefaultStorageClass; 1138 case 1: return GlobalValue::DLLImportStorageClass; 1139 case 2: return GlobalValue::DLLExportStorageClass; 1140 } 1141 } 1142 1143 static bool getDecodedDSOLocal(unsigned Val) { 1144 switch(Val) { 1145 default: // Map unknown values to preemptable. 1146 case 0: return false; 1147 case 1: return true; 1148 } 1149 } 1150 1151 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1152 switch (Val) { 1153 case 0: return GlobalVariable::NotThreadLocal; 1154 default: // Map unknown non-zero value to general dynamic. 1155 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1156 case 2: return GlobalVariable::LocalDynamicTLSModel; 1157 case 3: return GlobalVariable::InitialExecTLSModel; 1158 case 4: return GlobalVariable::LocalExecTLSModel; 1159 } 1160 } 1161 1162 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1163 switch (Val) { 1164 default: // Map unknown to UnnamedAddr::None. 1165 case 0: return GlobalVariable::UnnamedAddr::None; 1166 case 1: return GlobalVariable::UnnamedAddr::Global; 1167 case 2: return GlobalVariable::UnnamedAddr::Local; 1168 } 1169 } 1170 1171 static int getDecodedCastOpcode(unsigned Val) { 1172 switch (Val) { 1173 default: return -1; 1174 case bitc::CAST_TRUNC : return Instruction::Trunc; 1175 case bitc::CAST_ZEXT : return Instruction::ZExt; 1176 case bitc::CAST_SEXT : return Instruction::SExt; 1177 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1178 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1179 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1180 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1181 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1182 case bitc::CAST_FPEXT : return Instruction::FPExt; 1183 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1184 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1185 case bitc::CAST_BITCAST : return Instruction::BitCast; 1186 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1187 } 1188 } 1189 1190 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1191 bool IsFP = Ty->isFPOrFPVectorTy(); 1192 // UnOps are only valid for int/fp or vector of int/fp types 1193 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1194 return -1; 1195 1196 switch (Val) { 1197 default: 1198 return -1; 1199 case bitc::UNOP_FNEG: 1200 return IsFP ? Instruction::FNeg : -1; 1201 } 1202 } 1203 1204 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1205 bool IsFP = Ty->isFPOrFPVectorTy(); 1206 // BinOps are only valid for int/fp or vector of int/fp types 1207 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1208 return -1; 1209 1210 switch (Val) { 1211 default: 1212 return -1; 1213 case bitc::BINOP_ADD: 1214 return IsFP ? Instruction::FAdd : Instruction::Add; 1215 case bitc::BINOP_SUB: 1216 return IsFP ? Instruction::FSub : Instruction::Sub; 1217 case bitc::BINOP_MUL: 1218 return IsFP ? Instruction::FMul : Instruction::Mul; 1219 case bitc::BINOP_UDIV: 1220 return IsFP ? -1 : Instruction::UDiv; 1221 case bitc::BINOP_SDIV: 1222 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1223 case bitc::BINOP_UREM: 1224 return IsFP ? -1 : Instruction::URem; 1225 case bitc::BINOP_SREM: 1226 return IsFP ? Instruction::FRem : Instruction::SRem; 1227 case bitc::BINOP_SHL: 1228 return IsFP ? -1 : Instruction::Shl; 1229 case bitc::BINOP_LSHR: 1230 return IsFP ? -1 : Instruction::LShr; 1231 case bitc::BINOP_ASHR: 1232 return IsFP ? -1 : Instruction::AShr; 1233 case bitc::BINOP_AND: 1234 return IsFP ? -1 : Instruction::And; 1235 case bitc::BINOP_OR: 1236 return IsFP ? -1 : Instruction::Or; 1237 case bitc::BINOP_XOR: 1238 return IsFP ? -1 : Instruction::Xor; 1239 } 1240 } 1241 1242 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1243 switch (Val) { 1244 default: return AtomicRMWInst::BAD_BINOP; 1245 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1246 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1247 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1248 case bitc::RMW_AND: return AtomicRMWInst::And; 1249 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1250 case bitc::RMW_OR: return AtomicRMWInst::Or; 1251 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1252 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1253 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1254 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1255 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1256 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1257 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1258 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1259 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1260 } 1261 } 1262 1263 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1264 switch (Val) { 1265 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1266 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1267 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1268 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1269 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1270 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1271 default: // Map unknown orderings to sequentially-consistent. 1272 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1273 } 1274 } 1275 1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1277 switch (Val) { 1278 default: // Map unknown selection kinds to any. 1279 case bitc::COMDAT_SELECTION_KIND_ANY: 1280 return Comdat::Any; 1281 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1282 return Comdat::ExactMatch; 1283 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1284 return Comdat::Largest; 1285 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1286 return Comdat::NoDeduplicate; 1287 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1288 return Comdat::SameSize; 1289 } 1290 } 1291 1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1293 FastMathFlags FMF; 1294 if (0 != (Val & bitc::UnsafeAlgebra)) 1295 FMF.setFast(); 1296 if (0 != (Val & bitc::AllowReassoc)) 1297 FMF.setAllowReassoc(); 1298 if (0 != (Val & bitc::NoNaNs)) 1299 FMF.setNoNaNs(); 1300 if (0 != (Val & bitc::NoInfs)) 1301 FMF.setNoInfs(); 1302 if (0 != (Val & bitc::NoSignedZeros)) 1303 FMF.setNoSignedZeros(); 1304 if (0 != (Val & bitc::AllowReciprocal)) 1305 FMF.setAllowReciprocal(); 1306 if (0 != (Val & bitc::AllowContract)) 1307 FMF.setAllowContract(true); 1308 if (0 != (Val & bitc::ApproxFunc)) 1309 FMF.setApproxFunc(); 1310 return FMF; 1311 } 1312 1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1314 // A GlobalValue with local linkage cannot have a DLL storage class. 1315 if (GV->hasLocalLinkage()) 1316 return; 1317 switch (Val) { 1318 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1319 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1320 } 1321 } 1322 1323 Type *BitcodeReader::getTypeByID(unsigned ID) { 1324 // The type table size is always specified correctly. 1325 if (ID >= TypeList.size()) 1326 return nullptr; 1327 1328 if (Type *Ty = TypeList[ID]) 1329 return Ty; 1330 1331 // If we have a forward reference, the only possible case is when it is to a 1332 // named struct. Just create a placeholder for now. 1333 return TypeList[ID] = createIdentifiedStructType(Context); 1334 } 1335 1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1337 auto It = ContainedTypeIDs.find(ID); 1338 if (It == ContainedTypeIDs.end()) 1339 return InvalidTypeID; 1340 1341 if (Idx >= It->second.size()) 1342 return InvalidTypeID; 1343 1344 return It->second[Idx]; 1345 } 1346 1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1348 if (ID >= TypeList.size()) 1349 return nullptr; 1350 1351 Type *Ty = TypeList[ID]; 1352 if (!Ty->isPointerTy()) 1353 return nullptr; 1354 1355 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1356 if (!ElemTy) 1357 return nullptr; 1358 1359 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1360 "Incorrect element type"); 1361 return ElemTy; 1362 } 1363 1364 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1365 ArrayRef<unsigned> ChildTypeIDs) { 1366 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1367 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1368 auto It = VirtualTypeIDs.find(CacheKey); 1369 if (It != VirtualTypeIDs.end()) { 1370 // The cmpxchg return value is the only place we need more than one 1371 // contained type ID, however the second one will always be the same (i1), 1372 // so we don't need to include it in the cache key. This asserts that the 1373 // contained types are indeed as expected and there are no collisions. 1374 assert((ChildTypeIDs.empty() || 1375 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1376 "Incorrect cached contained type IDs"); 1377 return It->second; 1378 } 1379 1380 #ifndef NDEBUG 1381 if (!Ty->isOpaquePointerTy()) { 1382 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1383 "Wrong number of contained types"); 1384 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1385 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1386 "Incorrect contained type ID"); 1387 } 1388 } 1389 #endif 1390 1391 unsigned TypeID = TypeList.size(); 1392 TypeList.push_back(Ty); 1393 if (!ChildTypeIDs.empty()) 1394 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1395 VirtualTypeIDs.insert({CacheKey, TypeID}); 1396 return TypeID; 1397 } 1398 1399 static bool isConstExprSupported(uint8_t Opcode) { 1400 // These are not real constant expressions, always consider them supported. 1401 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1402 return true; 1403 1404 // If -expand-constant-exprs is set, we want to consider all expressions 1405 // as unsupported. 1406 if (ExpandConstantExprs) 1407 return false; 1408 1409 if (Instruction::isBinaryOp(Opcode)) 1410 return ConstantExpr::isSupportedBinOp(Opcode); 1411 1412 return Opcode != Instruction::FNeg; 1413 } 1414 1415 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1416 BasicBlock *InsertBB) { 1417 // Quickly handle the case where there is no BitcodeConstant to resolve. 1418 if (StartValID < ValueList.size() && ValueList[StartValID] && 1419 !isa<BitcodeConstant>(ValueList[StartValID])) 1420 return ValueList[StartValID]; 1421 1422 SmallDenseMap<unsigned, Value *> MaterializedValues; 1423 SmallVector<unsigned> Worklist; 1424 Worklist.push_back(StartValID); 1425 while (!Worklist.empty()) { 1426 unsigned ValID = Worklist.back(); 1427 if (MaterializedValues.count(ValID)) { 1428 // Duplicate expression that was already handled. 1429 Worklist.pop_back(); 1430 continue; 1431 } 1432 1433 if (ValID >= ValueList.size() || !ValueList[ValID]) 1434 return error("Invalid value ID"); 1435 1436 Value *V = ValueList[ValID]; 1437 auto *BC = dyn_cast<BitcodeConstant>(V); 1438 if (!BC) { 1439 MaterializedValues.insert({ValID, V}); 1440 Worklist.pop_back(); 1441 continue; 1442 } 1443 1444 // Iterate in reverse, so values will get popped from the worklist in 1445 // expected order. 1446 SmallVector<Value *> Ops; 1447 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1448 auto It = MaterializedValues.find(OpID); 1449 if (It != MaterializedValues.end()) 1450 Ops.push_back(It->second); 1451 else 1452 Worklist.push_back(OpID); 1453 } 1454 1455 // Some expressions have not been resolved yet, handle them first and then 1456 // revisit this one. 1457 if (Ops.size() != BC->getOperandIDs().size()) 1458 continue; 1459 std::reverse(Ops.begin(), Ops.end()); 1460 1461 SmallVector<Constant *> ConstOps; 1462 for (Value *Op : Ops) 1463 if (auto *C = dyn_cast<Constant>(Op)) 1464 ConstOps.push_back(C); 1465 1466 // Materialize as constant expression if possible. 1467 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1468 Constant *C; 1469 if (Instruction::isCast(BC->Opcode)) { 1470 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1471 if (!C) 1472 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1473 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1474 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1475 } else { 1476 switch (BC->Opcode) { 1477 case BitcodeConstant::NoCFIOpcode: { 1478 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1479 if (!GV) 1480 return error("no_cfi operand must be GlobalValue"); 1481 C = NoCFIValue::get(GV); 1482 break; 1483 } 1484 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1485 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1486 if (!GV) 1487 return error("dso_local operand must be GlobalValue"); 1488 C = DSOLocalEquivalent::get(GV); 1489 break; 1490 } 1491 case BitcodeConstant::BlockAddressOpcode: { 1492 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1493 if (!Fn) 1494 return error("blockaddress operand must be a function"); 1495 1496 // If the function is already parsed we can insert the block address 1497 // right away. 1498 BasicBlock *BB; 1499 unsigned BBID = BC->Extra; 1500 if (!BBID) 1501 // Invalid reference to entry block. 1502 return error("Invalid ID"); 1503 if (!Fn->empty()) { 1504 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1505 for (size_t I = 0, E = BBID; I != E; ++I) { 1506 if (BBI == BBE) 1507 return error("Invalid ID"); 1508 ++BBI; 1509 } 1510 BB = &*BBI; 1511 } else { 1512 // Otherwise insert a placeholder and remember it so it can be 1513 // inserted when the function is parsed. 1514 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1515 if (FwdBBs.empty()) 1516 BasicBlockFwdRefQueue.push_back(Fn); 1517 if (FwdBBs.size() < BBID + 1) 1518 FwdBBs.resize(BBID + 1); 1519 if (!FwdBBs[BBID]) 1520 FwdBBs[BBID] = BasicBlock::Create(Context); 1521 BB = FwdBBs[BBID]; 1522 } 1523 C = BlockAddress::get(Fn, BB); 1524 break; 1525 } 1526 case BitcodeConstant::ConstantStructOpcode: 1527 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1528 break; 1529 case BitcodeConstant::ConstantArrayOpcode: 1530 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1531 break; 1532 case BitcodeConstant::ConstantVectorOpcode: 1533 C = ConstantVector::get(ConstOps); 1534 break; 1535 case Instruction::ICmp: 1536 case Instruction::FCmp: 1537 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1538 break; 1539 case Instruction::GetElementPtr: 1540 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1541 ArrayRef(ConstOps).drop_front(), 1542 BC->Flags, BC->getInRangeIndex()); 1543 break; 1544 case Instruction::Select: 1545 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1546 break; 1547 case Instruction::ExtractElement: 1548 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1549 break; 1550 case Instruction::InsertElement: 1551 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1552 ConstOps[2]); 1553 break; 1554 case Instruction::ShuffleVector: { 1555 SmallVector<int, 16> Mask; 1556 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1557 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1558 break; 1559 } 1560 default: 1561 llvm_unreachable("Unhandled bitcode constant"); 1562 } 1563 } 1564 1565 // Cache resolved constant. 1566 ValueList.replaceValueWithoutRAUW(ValID, C); 1567 MaterializedValues.insert({ValID, C}); 1568 Worklist.pop_back(); 1569 continue; 1570 } 1571 1572 if (!InsertBB) 1573 return error(Twine("Value referenced by initializer is an unsupported " 1574 "constant expression of type ") + 1575 BC->getOpcodeName()); 1576 1577 // Materialize as instructions if necessary. 1578 Instruction *I; 1579 if (Instruction::isCast(BC->Opcode)) { 1580 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1581 BC->getType(), "constexpr", InsertBB); 1582 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1583 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1584 "constexpr", InsertBB); 1585 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1586 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1587 Ops[1], "constexpr", InsertBB); 1588 if (isa<OverflowingBinaryOperator>(I)) { 1589 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1590 I->setHasNoSignedWrap(); 1591 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1592 I->setHasNoUnsignedWrap(); 1593 } 1594 if (isa<PossiblyExactOperator>(I) && 1595 (BC->Flags & PossiblyExactOperator::IsExact)) 1596 I->setIsExact(); 1597 } else { 1598 switch (BC->Opcode) { 1599 case BitcodeConstant::ConstantVectorOpcode: { 1600 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1601 Value *V = PoisonValue::get(BC->getType()); 1602 for (auto Pair : enumerate(Ops)) { 1603 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1604 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1605 InsertBB); 1606 } 1607 I = cast<Instruction>(V); 1608 break; 1609 } 1610 case BitcodeConstant::ConstantStructOpcode: 1611 case BitcodeConstant::ConstantArrayOpcode: { 1612 Value *V = PoisonValue::get(BC->getType()); 1613 for (auto Pair : enumerate(Ops)) 1614 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1615 "constexpr.ins", InsertBB); 1616 I = cast<Instruction>(V); 1617 break; 1618 } 1619 case Instruction::ICmp: 1620 case Instruction::FCmp: 1621 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1622 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1623 "constexpr", InsertBB); 1624 break; 1625 case Instruction::GetElementPtr: 1626 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1627 ArrayRef(Ops).drop_front(), "constexpr", 1628 InsertBB); 1629 if (BC->Flags) 1630 cast<GetElementPtrInst>(I)->setIsInBounds(); 1631 break; 1632 case Instruction::Select: 1633 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1634 break; 1635 case Instruction::ExtractElement: 1636 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1637 break; 1638 case Instruction::InsertElement: 1639 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1640 InsertBB); 1641 break; 1642 case Instruction::ShuffleVector: 1643 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1644 InsertBB); 1645 break; 1646 default: 1647 llvm_unreachable("Unhandled bitcode constant"); 1648 } 1649 } 1650 1651 MaterializedValues.insert({ValID, I}); 1652 Worklist.pop_back(); 1653 } 1654 1655 return MaterializedValues[StartValID]; 1656 } 1657 1658 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1659 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1660 if (!MaybeV) 1661 return MaybeV.takeError(); 1662 1663 // Result must be Constant if InsertBB is nullptr. 1664 return cast<Constant>(MaybeV.get()); 1665 } 1666 1667 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1668 StringRef Name) { 1669 auto *Ret = StructType::create(Context, Name); 1670 IdentifiedStructTypes.push_back(Ret); 1671 return Ret; 1672 } 1673 1674 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1675 auto *Ret = StructType::create(Context); 1676 IdentifiedStructTypes.push_back(Ret); 1677 return Ret; 1678 } 1679 1680 //===----------------------------------------------------------------------===// 1681 // Functions for parsing blocks from the bitcode file 1682 //===----------------------------------------------------------------------===// 1683 1684 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1685 switch (Val) { 1686 case Attribute::EndAttrKinds: 1687 case Attribute::EmptyKey: 1688 case Attribute::TombstoneKey: 1689 llvm_unreachable("Synthetic enumerators which should never get here"); 1690 1691 case Attribute::None: return 0; 1692 case Attribute::ZExt: return 1 << 0; 1693 case Attribute::SExt: return 1 << 1; 1694 case Attribute::NoReturn: return 1 << 2; 1695 case Attribute::InReg: return 1 << 3; 1696 case Attribute::StructRet: return 1 << 4; 1697 case Attribute::NoUnwind: return 1 << 5; 1698 case Attribute::NoAlias: return 1 << 6; 1699 case Attribute::ByVal: return 1 << 7; 1700 case Attribute::Nest: return 1 << 8; 1701 case Attribute::ReadNone: return 1 << 9; 1702 case Attribute::ReadOnly: return 1 << 10; 1703 case Attribute::NoInline: return 1 << 11; 1704 case Attribute::AlwaysInline: return 1 << 12; 1705 case Attribute::OptimizeForSize: return 1 << 13; 1706 case Attribute::StackProtect: return 1 << 14; 1707 case Attribute::StackProtectReq: return 1 << 15; 1708 case Attribute::Alignment: return 31 << 16; 1709 case Attribute::NoCapture: return 1 << 21; 1710 case Attribute::NoRedZone: return 1 << 22; 1711 case Attribute::NoImplicitFloat: return 1 << 23; 1712 case Attribute::Naked: return 1 << 24; 1713 case Attribute::InlineHint: return 1 << 25; 1714 case Attribute::StackAlignment: return 7 << 26; 1715 case Attribute::ReturnsTwice: return 1 << 29; 1716 case Attribute::UWTable: return 1 << 30; 1717 case Attribute::NonLazyBind: return 1U << 31; 1718 case Attribute::SanitizeAddress: return 1ULL << 32; 1719 case Attribute::MinSize: return 1ULL << 33; 1720 case Attribute::NoDuplicate: return 1ULL << 34; 1721 case Attribute::StackProtectStrong: return 1ULL << 35; 1722 case Attribute::SanitizeThread: return 1ULL << 36; 1723 case Attribute::SanitizeMemory: return 1ULL << 37; 1724 case Attribute::NoBuiltin: return 1ULL << 38; 1725 case Attribute::Returned: return 1ULL << 39; 1726 case Attribute::Cold: return 1ULL << 40; 1727 case Attribute::Builtin: return 1ULL << 41; 1728 case Attribute::OptimizeNone: return 1ULL << 42; 1729 case Attribute::InAlloca: return 1ULL << 43; 1730 case Attribute::NonNull: return 1ULL << 44; 1731 case Attribute::JumpTable: return 1ULL << 45; 1732 case Attribute::Convergent: return 1ULL << 46; 1733 case Attribute::SafeStack: return 1ULL << 47; 1734 case Attribute::NoRecurse: return 1ULL << 48; 1735 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1736 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1737 case Attribute::SwiftSelf: return 1ULL << 51; 1738 case Attribute::SwiftError: return 1ULL << 52; 1739 case Attribute::WriteOnly: return 1ULL << 53; 1740 case Attribute::Speculatable: return 1ULL << 54; 1741 case Attribute::StrictFP: return 1ULL << 55; 1742 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1743 case Attribute::NoCfCheck: return 1ULL << 57; 1744 case Attribute::OptForFuzzing: return 1ULL << 58; 1745 case Attribute::ShadowCallStack: return 1ULL << 59; 1746 case Attribute::SpeculativeLoadHardening: 1747 return 1ULL << 60; 1748 case Attribute::ImmArg: 1749 return 1ULL << 61; 1750 case Attribute::WillReturn: 1751 return 1ULL << 62; 1752 case Attribute::NoFree: 1753 return 1ULL << 63; 1754 default: 1755 // Other attributes are not supported in the raw format, 1756 // as we ran out of space. 1757 return 0; 1758 } 1759 llvm_unreachable("Unsupported attribute type"); 1760 } 1761 1762 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1763 if (!Val) return; 1764 1765 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1766 I = Attribute::AttrKind(I + 1)) { 1767 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1768 if (I == Attribute::Alignment) 1769 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1770 else if (I == Attribute::StackAlignment) 1771 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1772 else if (Attribute::isTypeAttrKind(I)) 1773 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1774 else 1775 B.addAttribute(I); 1776 } 1777 } 1778 } 1779 1780 /// This fills an AttrBuilder object with the LLVM attributes that have 1781 /// been decoded from the given integer. This function must stay in sync with 1782 /// 'encodeLLVMAttributesForBitcode'. 1783 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1784 uint64_t EncodedAttrs, 1785 uint64_t AttrIdx) { 1786 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1787 // the bits above 31 down by 11 bits. 1788 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1789 assert((!Alignment || isPowerOf2_32(Alignment)) && 1790 "Alignment must be a power of two."); 1791 1792 if (Alignment) 1793 B.addAlignmentAttr(Alignment); 1794 1795 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1796 (EncodedAttrs & 0xffff); 1797 1798 if (AttrIdx == AttributeList::FunctionIndex) { 1799 // Upgrade old memory attributes. 1800 MemoryEffects ME = MemoryEffects::unknown(); 1801 if (Attrs & (1ULL << 9)) { 1802 // ReadNone 1803 Attrs &= ~(1ULL << 9); 1804 ME &= MemoryEffects::none(); 1805 } 1806 if (Attrs & (1ULL << 10)) { 1807 // ReadOnly 1808 Attrs &= ~(1ULL << 10); 1809 ME &= MemoryEffects::readOnly(); 1810 } 1811 if (Attrs & (1ULL << 49)) { 1812 // InaccessibleMemOnly 1813 Attrs &= ~(1ULL << 49); 1814 ME &= MemoryEffects::inaccessibleMemOnly(); 1815 } 1816 if (Attrs & (1ULL << 50)) { 1817 // InaccessibleMemOrArgMemOnly 1818 Attrs &= ~(1ULL << 50); 1819 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1820 } 1821 if (Attrs & (1ULL << 53)) { 1822 // WriteOnly 1823 Attrs &= ~(1ULL << 53); 1824 ME &= MemoryEffects::writeOnly(); 1825 } 1826 if (ME != MemoryEffects::unknown()) 1827 B.addMemoryAttr(ME); 1828 } 1829 1830 addRawAttributeValue(B, Attrs); 1831 } 1832 1833 Error BitcodeReader::parseAttributeBlock() { 1834 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1835 return Err; 1836 1837 if (!MAttributes.empty()) 1838 return error("Invalid multiple blocks"); 1839 1840 SmallVector<uint64_t, 64> Record; 1841 1842 SmallVector<AttributeList, 8> Attrs; 1843 1844 // Read all the records. 1845 while (true) { 1846 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1847 if (!MaybeEntry) 1848 return MaybeEntry.takeError(); 1849 BitstreamEntry Entry = MaybeEntry.get(); 1850 1851 switch (Entry.Kind) { 1852 case BitstreamEntry::SubBlock: // Handled for us already. 1853 case BitstreamEntry::Error: 1854 return error("Malformed block"); 1855 case BitstreamEntry::EndBlock: 1856 return Error::success(); 1857 case BitstreamEntry::Record: 1858 // The interesting case. 1859 break; 1860 } 1861 1862 // Read a record. 1863 Record.clear(); 1864 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1865 if (!MaybeRecord) 1866 return MaybeRecord.takeError(); 1867 switch (MaybeRecord.get()) { 1868 default: // Default behavior: ignore. 1869 break; 1870 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1871 // Deprecated, but still needed to read old bitcode files. 1872 if (Record.size() & 1) 1873 return error("Invalid parameter attribute record"); 1874 1875 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1876 AttrBuilder B(Context); 1877 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1878 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1879 } 1880 1881 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1882 Attrs.clear(); 1883 break; 1884 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1885 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1886 Attrs.push_back(MAttributeGroups[Record[i]]); 1887 1888 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1889 Attrs.clear(); 1890 break; 1891 } 1892 } 1893 } 1894 1895 // Returns Attribute::None on unrecognized codes. 1896 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1897 switch (Code) { 1898 default: 1899 return Attribute::None; 1900 case bitc::ATTR_KIND_ALIGNMENT: 1901 return Attribute::Alignment; 1902 case bitc::ATTR_KIND_ALWAYS_INLINE: 1903 return Attribute::AlwaysInline; 1904 case bitc::ATTR_KIND_BUILTIN: 1905 return Attribute::Builtin; 1906 case bitc::ATTR_KIND_BY_VAL: 1907 return Attribute::ByVal; 1908 case bitc::ATTR_KIND_IN_ALLOCA: 1909 return Attribute::InAlloca; 1910 case bitc::ATTR_KIND_COLD: 1911 return Attribute::Cold; 1912 case bitc::ATTR_KIND_CONVERGENT: 1913 return Attribute::Convergent; 1914 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1915 return Attribute::DisableSanitizerInstrumentation; 1916 case bitc::ATTR_KIND_ELEMENTTYPE: 1917 return Attribute::ElementType; 1918 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1919 return Attribute::FnRetThunkExtern; 1920 case bitc::ATTR_KIND_INLINE_HINT: 1921 return Attribute::InlineHint; 1922 case bitc::ATTR_KIND_IN_REG: 1923 return Attribute::InReg; 1924 case bitc::ATTR_KIND_JUMP_TABLE: 1925 return Attribute::JumpTable; 1926 case bitc::ATTR_KIND_MEMORY: 1927 return Attribute::Memory; 1928 case bitc::ATTR_KIND_MIN_SIZE: 1929 return Attribute::MinSize; 1930 case bitc::ATTR_KIND_NAKED: 1931 return Attribute::Naked; 1932 case bitc::ATTR_KIND_NEST: 1933 return Attribute::Nest; 1934 case bitc::ATTR_KIND_NO_ALIAS: 1935 return Attribute::NoAlias; 1936 case bitc::ATTR_KIND_NO_BUILTIN: 1937 return Attribute::NoBuiltin; 1938 case bitc::ATTR_KIND_NO_CALLBACK: 1939 return Attribute::NoCallback; 1940 case bitc::ATTR_KIND_NO_CAPTURE: 1941 return Attribute::NoCapture; 1942 case bitc::ATTR_KIND_NO_DUPLICATE: 1943 return Attribute::NoDuplicate; 1944 case bitc::ATTR_KIND_NOFREE: 1945 return Attribute::NoFree; 1946 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1947 return Attribute::NoImplicitFloat; 1948 case bitc::ATTR_KIND_NO_INLINE: 1949 return Attribute::NoInline; 1950 case bitc::ATTR_KIND_NO_RECURSE: 1951 return Attribute::NoRecurse; 1952 case bitc::ATTR_KIND_NO_MERGE: 1953 return Attribute::NoMerge; 1954 case bitc::ATTR_KIND_NON_LAZY_BIND: 1955 return Attribute::NonLazyBind; 1956 case bitc::ATTR_KIND_NON_NULL: 1957 return Attribute::NonNull; 1958 case bitc::ATTR_KIND_DEREFERENCEABLE: 1959 return Attribute::Dereferenceable; 1960 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1961 return Attribute::DereferenceableOrNull; 1962 case bitc::ATTR_KIND_ALLOC_ALIGN: 1963 return Attribute::AllocAlign; 1964 case bitc::ATTR_KIND_ALLOC_KIND: 1965 return Attribute::AllocKind; 1966 case bitc::ATTR_KIND_ALLOC_SIZE: 1967 return Attribute::AllocSize; 1968 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1969 return Attribute::AllocatedPointer; 1970 case bitc::ATTR_KIND_NO_RED_ZONE: 1971 return Attribute::NoRedZone; 1972 case bitc::ATTR_KIND_NO_RETURN: 1973 return Attribute::NoReturn; 1974 case bitc::ATTR_KIND_NOSYNC: 1975 return Attribute::NoSync; 1976 case bitc::ATTR_KIND_NOCF_CHECK: 1977 return Attribute::NoCfCheck; 1978 case bitc::ATTR_KIND_NO_PROFILE: 1979 return Attribute::NoProfile; 1980 case bitc::ATTR_KIND_SKIP_PROFILE: 1981 return Attribute::SkipProfile; 1982 case bitc::ATTR_KIND_NO_UNWIND: 1983 return Attribute::NoUnwind; 1984 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1985 return Attribute::NoSanitizeBounds; 1986 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1987 return Attribute::NoSanitizeCoverage; 1988 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1989 return Attribute::NullPointerIsValid; 1990 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1991 return Attribute::OptForFuzzing; 1992 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1993 return Attribute::OptimizeForSize; 1994 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1995 return Attribute::OptimizeNone; 1996 case bitc::ATTR_KIND_READ_NONE: 1997 return Attribute::ReadNone; 1998 case bitc::ATTR_KIND_READ_ONLY: 1999 return Attribute::ReadOnly; 2000 case bitc::ATTR_KIND_RETURNED: 2001 return Attribute::Returned; 2002 case bitc::ATTR_KIND_RETURNS_TWICE: 2003 return Attribute::ReturnsTwice; 2004 case bitc::ATTR_KIND_S_EXT: 2005 return Attribute::SExt; 2006 case bitc::ATTR_KIND_SPECULATABLE: 2007 return Attribute::Speculatable; 2008 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2009 return Attribute::StackAlignment; 2010 case bitc::ATTR_KIND_STACK_PROTECT: 2011 return Attribute::StackProtect; 2012 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2013 return Attribute::StackProtectReq; 2014 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2015 return Attribute::StackProtectStrong; 2016 case bitc::ATTR_KIND_SAFESTACK: 2017 return Attribute::SafeStack; 2018 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2019 return Attribute::ShadowCallStack; 2020 case bitc::ATTR_KIND_STRICT_FP: 2021 return Attribute::StrictFP; 2022 case bitc::ATTR_KIND_STRUCT_RET: 2023 return Attribute::StructRet; 2024 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2025 return Attribute::SanitizeAddress; 2026 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2027 return Attribute::SanitizeHWAddress; 2028 case bitc::ATTR_KIND_SANITIZE_THREAD: 2029 return Attribute::SanitizeThread; 2030 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2031 return Attribute::SanitizeMemory; 2032 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2033 return Attribute::SpeculativeLoadHardening; 2034 case bitc::ATTR_KIND_SWIFT_ERROR: 2035 return Attribute::SwiftError; 2036 case bitc::ATTR_KIND_SWIFT_SELF: 2037 return Attribute::SwiftSelf; 2038 case bitc::ATTR_KIND_SWIFT_ASYNC: 2039 return Attribute::SwiftAsync; 2040 case bitc::ATTR_KIND_UW_TABLE: 2041 return Attribute::UWTable; 2042 case bitc::ATTR_KIND_VSCALE_RANGE: 2043 return Attribute::VScaleRange; 2044 case bitc::ATTR_KIND_WILLRETURN: 2045 return Attribute::WillReturn; 2046 case bitc::ATTR_KIND_WRITEONLY: 2047 return Attribute::WriteOnly; 2048 case bitc::ATTR_KIND_Z_EXT: 2049 return Attribute::ZExt; 2050 case bitc::ATTR_KIND_IMMARG: 2051 return Attribute::ImmArg; 2052 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2053 return Attribute::SanitizeMemTag; 2054 case bitc::ATTR_KIND_PREALLOCATED: 2055 return Attribute::Preallocated; 2056 case bitc::ATTR_KIND_NOUNDEF: 2057 return Attribute::NoUndef; 2058 case bitc::ATTR_KIND_BYREF: 2059 return Attribute::ByRef; 2060 case bitc::ATTR_KIND_MUSTPROGRESS: 2061 return Attribute::MustProgress; 2062 case bitc::ATTR_KIND_HOT: 2063 return Attribute::Hot; 2064 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2065 return Attribute::PresplitCoroutine; 2066 } 2067 } 2068 2069 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2070 MaybeAlign &Alignment) { 2071 // Note: Alignment in bitcode files is incremented by 1, so that zero 2072 // can be used for default alignment. 2073 if (Exponent > Value::MaxAlignmentExponent + 1) 2074 return error("Invalid alignment value"); 2075 Alignment = decodeMaybeAlign(Exponent); 2076 return Error::success(); 2077 } 2078 2079 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2080 *Kind = getAttrFromCode(Code); 2081 if (*Kind == Attribute::None) 2082 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2083 return Error::success(); 2084 } 2085 2086 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2087 switch (EncodedKind) { 2088 case bitc::ATTR_KIND_READ_NONE: 2089 ME &= MemoryEffects::none(); 2090 return true; 2091 case bitc::ATTR_KIND_READ_ONLY: 2092 ME &= MemoryEffects::readOnly(); 2093 return true; 2094 case bitc::ATTR_KIND_WRITEONLY: 2095 ME &= MemoryEffects::writeOnly(); 2096 return true; 2097 case bitc::ATTR_KIND_ARGMEMONLY: 2098 ME &= MemoryEffects::argMemOnly(); 2099 return true; 2100 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2101 ME &= MemoryEffects::inaccessibleMemOnly(); 2102 return true; 2103 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2104 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2105 return true; 2106 default: 2107 return false; 2108 } 2109 } 2110 2111 Error BitcodeReader::parseAttributeGroupBlock() { 2112 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2113 return Err; 2114 2115 if (!MAttributeGroups.empty()) 2116 return error("Invalid multiple blocks"); 2117 2118 SmallVector<uint64_t, 64> Record; 2119 2120 // Read all the records. 2121 while (true) { 2122 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2123 if (!MaybeEntry) 2124 return MaybeEntry.takeError(); 2125 BitstreamEntry Entry = MaybeEntry.get(); 2126 2127 switch (Entry.Kind) { 2128 case BitstreamEntry::SubBlock: // Handled for us already. 2129 case BitstreamEntry::Error: 2130 return error("Malformed block"); 2131 case BitstreamEntry::EndBlock: 2132 return Error::success(); 2133 case BitstreamEntry::Record: 2134 // The interesting case. 2135 break; 2136 } 2137 2138 // Read a record. 2139 Record.clear(); 2140 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2141 if (!MaybeRecord) 2142 return MaybeRecord.takeError(); 2143 switch (MaybeRecord.get()) { 2144 default: // Default behavior: ignore. 2145 break; 2146 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2147 if (Record.size() < 3) 2148 return error("Invalid grp record"); 2149 2150 uint64_t GrpID = Record[0]; 2151 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2152 2153 AttrBuilder B(Context); 2154 MemoryEffects ME = MemoryEffects::unknown(); 2155 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2156 if (Record[i] == 0) { // Enum attribute 2157 Attribute::AttrKind Kind; 2158 uint64_t EncodedKind = Record[++i]; 2159 if (Idx == AttributeList::FunctionIndex && 2160 upgradeOldMemoryAttribute(ME, EncodedKind)) 2161 continue; 2162 2163 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2164 return Err; 2165 2166 // Upgrade old-style byval attribute to one with a type, even if it's 2167 // nullptr. We will have to insert the real type when we associate 2168 // this AttributeList with a function. 2169 if (Kind == Attribute::ByVal) 2170 B.addByValAttr(nullptr); 2171 else if (Kind == Attribute::StructRet) 2172 B.addStructRetAttr(nullptr); 2173 else if (Kind == Attribute::InAlloca) 2174 B.addInAllocaAttr(nullptr); 2175 else if (Kind == Attribute::UWTable) 2176 B.addUWTableAttr(UWTableKind::Default); 2177 else if (Attribute::isEnumAttrKind(Kind)) 2178 B.addAttribute(Kind); 2179 else 2180 return error("Not an enum attribute"); 2181 } else if (Record[i] == 1) { // Integer attribute 2182 Attribute::AttrKind Kind; 2183 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2184 return Err; 2185 if (!Attribute::isIntAttrKind(Kind)) 2186 return error("Not an int attribute"); 2187 if (Kind == Attribute::Alignment) 2188 B.addAlignmentAttr(Record[++i]); 2189 else if (Kind == Attribute::StackAlignment) 2190 B.addStackAlignmentAttr(Record[++i]); 2191 else if (Kind == Attribute::Dereferenceable) 2192 B.addDereferenceableAttr(Record[++i]); 2193 else if (Kind == Attribute::DereferenceableOrNull) 2194 B.addDereferenceableOrNullAttr(Record[++i]); 2195 else if (Kind == Attribute::AllocSize) 2196 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2197 else if (Kind == Attribute::VScaleRange) 2198 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2199 else if (Kind == Attribute::UWTable) 2200 B.addUWTableAttr(UWTableKind(Record[++i])); 2201 else if (Kind == Attribute::AllocKind) 2202 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2203 else if (Kind == Attribute::Memory) 2204 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2205 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2206 bool HasValue = (Record[i++] == 4); 2207 SmallString<64> KindStr; 2208 SmallString<64> ValStr; 2209 2210 while (Record[i] != 0 && i != e) 2211 KindStr += Record[i++]; 2212 assert(Record[i] == 0 && "Kind string not null terminated"); 2213 2214 if (HasValue) { 2215 // Has a value associated with it. 2216 ++i; // Skip the '0' that terminates the "kind" string. 2217 while (Record[i] != 0 && i != e) 2218 ValStr += Record[i++]; 2219 assert(Record[i] == 0 && "Value string not null terminated"); 2220 } 2221 2222 B.addAttribute(KindStr.str(), ValStr.str()); 2223 } else if (Record[i] == 5 || Record[i] == 6) { 2224 bool HasType = Record[i] == 6; 2225 Attribute::AttrKind Kind; 2226 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2227 return Err; 2228 if (!Attribute::isTypeAttrKind(Kind)) 2229 return error("Not a type attribute"); 2230 2231 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2232 } else { 2233 return error("Invalid attribute group entry"); 2234 } 2235 } 2236 2237 if (ME != MemoryEffects::unknown()) 2238 B.addMemoryAttr(ME); 2239 2240 UpgradeAttributes(B); 2241 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2242 break; 2243 } 2244 } 2245 } 2246 } 2247 2248 Error BitcodeReader::parseTypeTable() { 2249 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2250 return Err; 2251 2252 return parseTypeTableBody(); 2253 } 2254 2255 Error BitcodeReader::parseTypeTableBody() { 2256 if (!TypeList.empty()) 2257 return error("Invalid multiple blocks"); 2258 2259 SmallVector<uint64_t, 64> Record; 2260 unsigned NumRecords = 0; 2261 2262 SmallString<64> TypeName; 2263 2264 // Read all the records for this type table. 2265 while (true) { 2266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2267 if (!MaybeEntry) 2268 return MaybeEntry.takeError(); 2269 BitstreamEntry Entry = MaybeEntry.get(); 2270 2271 switch (Entry.Kind) { 2272 case BitstreamEntry::SubBlock: // Handled for us already. 2273 case BitstreamEntry::Error: 2274 return error("Malformed block"); 2275 case BitstreamEntry::EndBlock: 2276 if (NumRecords != TypeList.size()) 2277 return error("Malformed block"); 2278 return Error::success(); 2279 case BitstreamEntry::Record: 2280 // The interesting case. 2281 break; 2282 } 2283 2284 // Read a record. 2285 Record.clear(); 2286 Type *ResultTy = nullptr; 2287 SmallVector<unsigned> ContainedIDs; 2288 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2289 if (!MaybeRecord) 2290 return MaybeRecord.takeError(); 2291 switch (MaybeRecord.get()) { 2292 default: 2293 return error("Invalid value"); 2294 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2295 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2296 // type list. This allows us to reserve space. 2297 if (Record.empty()) 2298 return error("Invalid numentry record"); 2299 TypeList.resize(Record[0]); 2300 continue; 2301 case bitc::TYPE_CODE_VOID: // VOID 2302 ResultTy = Type::getVoidTy(Context); 2303 break; 2304 case bitc::TYPE_CODE_HALF: // HALF 2305 ResultTy = Type::getHalfTy(Context); 2306 break; 2307 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2308 ResultTy = Type::getBFloatTy(Context); 2309 break; 2310 case bitc::TYPE_CODE_FLOAT: // FLOAT 2311 ResultTy = Type::getFloatTy(Context); 2312 break; 2313 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2314 ResultTy = Type::getDoubleTy(Context); 2315 break; 2316 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2317 ResultTy = Type::getX86_FP80Ty(Context); 2318 break; 2319 case bitc::TYPE_CODE_FP128: // FP128 2320 ResultTy = Type::getFP128Ty(Context); 2321 break; 2322 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2323 ResultTy = Type::getPPC_FP128Ty(Context); 2324 break; 2325 case bitc::TYPE_CODE_LABEL: // LABEL 2326 ResultTy = Type::getLabelTy(Context); 2327 break; 2328 case bitc::TYPE_CODE_METADATA: // METADATA 2329 ResultTy = Type::getMetadataTy(Context); 2330 break; 2331 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2332 ResultTy = Type::getX86_MMXTy(Context); 2333 break; 2334 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2335 ResultTy = Type::getX86_AMXTy(Context); 2336 break; 2337 case bitc::TYPE_CODE_TOKEN: // TOKEN 2338 ResultTy = Type::getTokenTy(Context); 2339 break; 2340 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2341 if (Record.empty()) 2342 return error("Invalid integer record"); 2343 2344 uint64_t NumBits = Record[0]; 2345 if (NumBits < IntegerType::MIN_INT_BITS || 2346 NumBits > IntegerType::MAX_INT_BITS) 2347 return error("Bitwidth for integer type out of range"); 2348 ResultTy = IntegerType::get(Context, NumBits); 2349 break; 2350 } 2351 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2352 // [pointee type, address space] 2353 if (Record.empty()) 2354 return error("Invalid pointer record"); 2355 unsigned AddressSpace = 0; 2356 if (Record.size() == 2) 2357 AddressSpace = Record[1]; 2358 ResultTy = getTypeByID(Record[0]); 2359 if (!ResultTy || 2360 !PointerType::isValidElementType(ResultTy)) 2361 return error("Invalid type"); 2362 ContainedIDs.push_back(Record[0]); 2363 ResultTy = PointerType::get(ResultTy, AddressSpace); 2364 break; 2365 } 2366 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2367 if (Record.size() != 1) 2368 return error("Invalid opaque pointer record"); 2369 if (Context.supportsTypedPointers()) 2370 return error( 2371 "Opaque pointers are only supported in -opaque-pointers mode"); 2372 unsigned AddressSpace = Record[0]; 2373 ResultTy = PointerType::get(Context, AddressSpace); 2374 break; 2375 } 2376 case bitc::TYPE_CODE_FUNCTION_OLD: { 2377 // Deprecated, but still needed to read old bitcode files. 2378 // FUNCTION: [vararg, attrid, retty, paramty x N] 2379 if (Record.size() < 3) 2380 return error("Invalid function record"); 2381 SmallVector<Type*, 8> ArgTys; 2382 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2383 if (Type *T = getTypeByID(Record[i])) 2384 ArgTys.push_back(T); 2385 else 2386 break; 2387 } 2388 2389 ResultTy = getTypeByID(Record[2]); 2390 if (!ResultTy || ArgTys.size() < Record.size()-3) 2391 return error("Invalid type"); 2392 2393 ContainedIDs.append(Record.begin() + 2, Record.end()); 2394 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2395 break; 2396 } 2397 case bitc::TYPE_CODE_FUNCTION: { 2398 // FUNCTION: [vararg, retty, paramty x N] 2399 if (Record.size() < 2) 2400 return error("Invalid function record"); 2401 SmallVector<Type*, 8> ArgTys; 2402 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2403 if (Type *T = getTypeByID(Record[i])) { 2404 if (!FunctionType::isValidArgumentType(T)) 2405 return error("Invalid function argument type"); 2406 ArgTys.push_back(T); 2407 } 2408 else 2409 break; 2410 } 2411 2412 ResultTy = getTypeByID(Record[1]); 2413 if (!ResultTy || ArgTys.size() < Record.size()-2) 2414 return error("Invalid type"); 2415 2416 ContainedIDs.append(Record.begin() + 1, Record.end()); 2417 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2418 break; 2419 } 2420 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2421 if (Record.empty()) 2422 return error("Invalid anon struct record"); 2423 SmallVector<Type*, 8> EltTys; 2424 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2425 if (Type *T = getTypeByID(Record[i])) 2426 EltTys.push_back(T); 2427 else 2428 break; 2429 } 2430 if (EltTys.size() != Record.size()-1) 2431 return error("Invalid type"); 2432 ContainedIDs.append(Record.begin() + 1, Record.end()); 2433 ResultTy = StructType::get(Context, EltTys, Record[0]); 2434 break; 2435 } 2436 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2437 if (convertToString(Record, 0, TypeName)) 2438 return error("Invalid struct name record"); 2439 continue; 2440 2441 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2442 if (Record.empty()) 2443 return error("Invalid named struct record"); 2444 2445 if (NumRecords >= TypeList.size()) 2446 return error("Invalid TYPE table"); 2447 2448 // Check to see if this was forward referenced, if so fill in the temp. 2449 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2450 if (Res) { 2451 Res->setName(TypeName); 2452 TypeList[NumRecords] = nullptr; 2453 } else // Otherwise, create a new struct. 2454 Res = createIdentifiedStructType(Context, TypeName); 2455 TypeName.clear(); 2456 2457 SmallVector<Type*, 8> EltTys; 2458 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2459 if (Type *T = getTypeByID(Record[i])) 2460 EltTys.push_back(T); 2461 else 2462 break; 2463 } 2464 if (EltTys.size() != Record.size()-1) 2465 return error("Invalid named struct record"); 2466 Res->setBody(EltTys, Record[0]); 2467 ContainedIDs.append(Record.begin() + 1, Record.end()); 2468 ResultTy = Res; 2469 break; 2470 } 2471 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2472 if (Record.size() != 1) 2473 return error("Invalid opaque type record"); 2474 2475 if (NumRecords >= TypeList.size()) 2476 return error("Invalid TYPE table"); 2477 2478 // Check to see if this was forward referenced, if so fill in the temp. 2479 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2480 if (Res) { 2481 Res->setName(TypeName); 2482 TypeList[NumRecords] = nullptr; 2483 } else // Otherwise, create a new struct with no body. 2484 Res = createIdentifiedStructType(Context, TypeName); 2485 TypeName.clear(); 2486 ResultTy = Res; 2487 break; 2488 } 2489 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2490 if (Record.size() < 1) 2491 return error("Invalid target extension type record"); 2492 2493 if (NumRecords >= TypeList.size()) 2494 return error("Invalid TYPE table"); 2495 2496 if (Record[0] >= Record.size()) 2497 return error("Too many type parameters"); 2498 2499 unsigned NumTys = Record[0]; 2500 SmallVector<Type *, 4> TypeParams; 2501 SmallVector<unsigned, 8> IntParams; 2502 for (unsigned i = 0; i < NumTys; i++) { 2503 if (Type *T = getTypeByID(Record[i + 1])) 2504 TypeParams.push_back(T); 2505 else 2506 return error("Invalid type"); 2507 } 2508 2509 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2510 if (Record[i] > UINT_MAX) 2511 return error("Integer parameter too large"); 2512 IntParams.push_back(Record[i]); 2513 } 2514 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2515 TypeName.clear(); 2516 break; 2517 } 2518 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2519 if (Record.size() < 2) 2520 return error("Invalid array type record"); 2521 ResultTy = getTypeByID(Record[1]); 2522 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2523 return error("Invalid type"); 2524 ContainedIDs.push_back(Record[1]); 2525 ResultTy = ArrayType::get(ResultTy, Record[0]); 2526 break; 2527 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2528 // [numelts, eltty, scalable] 2529 if (Record.size() < 2) 2530 return error("Invalid vector type record"); 2531 if (Record[0] == 0) 2532 return error("Invalid vector length"); 2533 ResultTy = getTypeByID(Record[1]); 2534 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2535 return error("Invalid type"); 2536 bool Scalable = Record.size() > 2 ? Record[2] : false; 2537 ContainedIDs.push_back(Record[1]); 2538 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2539 break; 2540 } 2541 2542 if (NumRecords >= TypeList.size()) 2543 return error("Invalid TYPE table"); 2544 if (TypeList[NumRecords]) 2545 return error( 2546 "Invalid TYPE table: Only named structs can be forward referenced"); 2547 assert(ResultTy && "Didn't read a type?"); 2548 TypeList[NumRecords] = ResultTy; 2549 if (!ContainedIDs.empty()) 2550 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2551 ++NumRecords; 2552 } 2553 } 2554 2555 Error BitcodeReader::parseOperandBundleTags() { 2556 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2557 return Err; 2558 2559 if (!BundleTags.empty()) 2560 return error("Invalid multiple blocks"); 2561 2562 SmallVector<uint64_t, 64> Record; 2563 2564 while (true) { 2565 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2566 if (!MaybeEntry) 2567 return MaybeEntry.takeError(); 2568 BitstreamEntry Entry = MaybeEntry.get(); 2569 2570 switch (Entry.Kind) { 2571 case BitstreamEntry::SubBlock: // Handled for us already. 2572 case BitstreamEntry::Error: 2573 return error("Malformed block"); 2574 case BitstreamEntry::EndBlock: 2575 return Error::success(); 2576 case BitstreamEntry::Record: 2577 // The interesting case. 2578 break; 2579 } 2580 2581 // Tags are implicitly mapped to integers by their order. 2582 2583 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2584 if (!MaybeRecord) 2585 return MaybeRecord.takeError(); 2586 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2587 return error("Invalid operand bundle record"); 2588 2589 // OPERAND_BUNDLE_TAG: [strchr x N] 2590 BundleTags.emplace_back(); 2591 if (convertToString(Record, 0, BundleTags.back())) 2592 return error("Invalid operand bundle record"); 2593 Record.clear(); 2594 } 2595 } 2596 2597 Error BitcodeReader::parseSyncScopeNames() { 2598 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2599 return Err; 2600 2601 if (!SSIDs.empty()) 2602 return error("Invalid multiple synchronization scope names blocks"); 2603 2604 SmallVector<uint64_t, 64> Record; 2605 while (true) { 2606 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2607 if (!MaybeEntry) 2608 return MaybeEntry.takeError(); 2609 BitstreamEntry Entry = MaybeEntry.get(); 2610 2611 switch (Entry.Kind) { 2612 case BitstreamEntry::SubBlock: // Handled for us already. 2613 case BitstreamEntry::Error: 2614 return error("Malformed block"); 2615 case BitstreamEntry::EndBlock: 2616 if (SSIDs.empty()) 2617 return error("Invalid empty synchronization scope names block"); 2618 return Error::success(); 2619 case BitstreamEntry::Record: 2620 // The interesting case. 2621 break; 2622 } 2623 2624 // Synchronization scope names are implicitly mapped to synchronization 2625 // scope IDs by their order. 2626 2627 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2628 if (!MaybeRecord) 2629 return MaybeRecord.takeError(); 2630 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2631 return error("Invalid sync scope record"); 2632 2633 SmallString<16> SSN; 2634 if (convertToString(Record, 0, SSN)) 2635 return error("Invalid sync scope record"); 2636 2637 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2638 Record.clear(); 2639 } 2640 } 2641 2642 /// Associate a value with its name from the given index in the provided record. 2643 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2644 unsigned NameIndex, Triple &TT) { 2645 SmallString<128> ValueName; 2646 if (convertToString(Record, NameIndex, ValueName)) 2647 return error("Invalid record"); 2648 unsigned ValueID = Record[0]; 2649 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2650 return error("Invalid record"); 2651 Value *V = ValueList[ValueID]; 2652 2653 StringRef NameStr(ValueName.data(), ValueName.size()); 2654 if (NameStr.find_first_of(0) != StringRef::npos) 2655 return error("Invalid value name"); 2656 V->setName(NameStr); 2657 auto *GO = dyn_cast<GlobalObject>(V); 2658 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2659 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2660 return V; 2661 } 2662 2663 /// Helper to note and return the current location, and jump to the given 2664 /// offset. 2665 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2666 BitstreamCursor &Stream) { 2667 // Save the current parsing location so we can jump back at the end 2668 // of the VST read. 2669 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2670 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2671 return std::move(JumpFailed); 2672 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2673 if (!MaybeEntry) 2674 return MaybeEntry.takeError(); 2675 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2676 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2677 return error("Expected value symbol table subblock"); 2678 return CurrentBit; 2679 } 2680 2681 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2682 Function *F, 2683 ArrayRef<uint64_t> Record) { 2684 // Note that we subtract 1 here because the offset is relative to one word 2685 // before the start of the identification or module block, which was 2686 // historically always the start of the regular bitcode header. 2687 uint64_t FuncWordOffset = Record[1] - 1; 2688 uint64_t FuncBitOffset = FuncWordOffset * 32; 2689 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2690 // Set the LastFunctionBlockBit to point to the last function block. 2691 // Later when parsing is resumed after function materialization, 2692 // we can simply skip that last function block. 2693 if (FuncBitOffset > LastFunctionBlockBit) 2694 LastFunctionBlockBit = FuncBitOffset; 2695 } 2696 2697 /// Read a new-style GlobalValue symbol table. 2698 Error BitcodeReader::parseGlobalValueSymbolTable() { 2699 unsigned FuncBitcodeOffsetDelta = 2700 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2701 2702 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2703 return Err; 2704 2705 SmallVector<uint64_t, 64> Record; 2706 while (true) { 2707 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2708 if (!MaybeEntry) 2709 return MaybeEntry.takeError(); 2710 BitstreamEntry Entry = MaybeEntry.get(); 2711 2712 switch (Entry.Kind) { 2713 case BitstreamEntry::SubBlock: 2714 case BitstreamEntry::Error: 2715 return error("Malformed block"); 2716 case BitstreamEntry::EndBlock: 2717 return Error::success(); 2718 case BitstreamEntry::Record: 2719 break; 2720 } 2721 2722 Record.clear(); 2723 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2724 if (!MaybeRecord) 2725 return MaybeRecord.takeError(); 2726 switch (MaybeRecord.get()) { 2727 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2728 unsigned ValueID = Record[0]; 2729 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2730 return error("Invalid value reference in symbol table"); 2731 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2732 cast<Function>(ValueList[ValueID]), Record); 2733 break; 2734 } 2735 } 2736 } 2737 } 2738 2739 /// Parse the value symbol table at either the current parsing location or 2740 /// at the given bit offset if provided. 2741 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2742 uint64_t CurrentBit; 2743 // Pass in the Offset to distinguish between calling for the module-level 2744 // VST (where we want to jump to the VST offset) and the function-level 2745 // VST (where we don't). 2746 if (Offset > 0) { 2747 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2748 if (!MaybeCurrentBit) 2749 return MaybeCurrentBit.takeError(); 2750 CurrentBit = MaybeCurrentBit.get(); 2751 // If this module uses a string table, read this as a module-level VST. 2752 if (UseStrtab) { 2753 if (Error Err = parseGlobalValueSymbolTable()) 2754 return Err; 2755 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2756 return JumpFailed; 2757 return Error::success(); 2758 } 2759 // Otherwise, the VST will be in a similar format to a function-level VST, 2760 // and will contain symbol names. 2761 } 2762 2763 // Compute the delta between the bitcode indices in the VST (the word offset 2764 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2765 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2766 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2767 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2768 // just before entering the VST subblock because: 1) the EnterSubBlock 2769 // changes the AbbrevID width; 2) the VST block is nested within the same 2770 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2771 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2772 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2773 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2774 unsigned FuncBitcodeOffsetDelta = 2775 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2776 2777 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2778 return Err; 2779 2780 SmallVector<uint64_t, 64> Record; 2781 2782 Triple TT(TheModule->getTargetTriple()); 2783 2784 // Read all the records for this value table. 2785 SmallString<128> ValueName; 2786 2787 while (true) { 2788 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2789 if (!MaybeEntry) 2790 return MaybeEntry.takeError(); 2791 BitstreamEntry Entry = MaybeEntry.get(); 2792 2793 switch (Entry.Kind) { 2794 case BitstreamEntry::SubBlock: // Handled for us already. 2795 case BitstreamEntry::Error: 2796 return error("Malformed block"); 2797 case BitstreamEntry::EndBlock: 2798 if (Offset > 0) 2799 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2800 return JumpFailed; 2801 return Error::success(); 2802 case BitstreamEntry::Record: 2803 // The interesting case. 2804 break; 2805 } 2806 2807 // Read a record. 2808 Record.clear(); 2809 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2810 if (!MaybeRecord) 2811 return MaybeRecord.takeError(); 2812 switch (MaybeRecord.get()) { 2813 default: // Default behavior: unknown type. 2814 break; 2815 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2816 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2817 if (Error Err = ValOrErr.takeError()) 2818 return Err; 2819 ValOrErr.get(); 2820 break; 2821 } 2822 case bitc::VST_CODE_FNENTRY: { 2823 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2824 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2825 if (Error Err = ValOrErr.takeError()) 2826 return Err; 2827 Value *V = ValOrErr.get(); 2828 2829 // Ignore function offsets emitted for aliases of functions in older 2830 // versions of LLVM. 2831 if (auto *F = dyn_cast<Function>(V)) 2832 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2833 break; 2834 } 2835 case bitc::VST_CODE_BBENTRY: { 2836 if (convertToString(Record, 1, ValueName)) 2837 return error("Invalid bbentry record"); 2838 BasicBlock *BB = getBasicBlock(Record[0]); 2839 if (!BB) 2840 return error("Invalid bbentry record"); 2841 2842 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2843 ValueName.clear(); 2844 break; 2845 } 2846 } 2847 } 2848 } 2849 2850 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2851 /// encoding. 2852 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2853 if ((V & 1) == 0) 2854 return V >> 1; 2855 if (V != 1) 2856 return -(V >> 1); 2857 // There is no such thing as -0 with integers. "-0" really means MININT. 2858 return 1ULL << 63; 2859 } 2860 2861 /// Resolve all of the initializers for global values and aliases that we can. 2862 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2863 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2864 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2865 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2866 2867 GlobalInitWorklist.swap(GlobalInits); 2868 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2869 FunctionOperandWorklist.swap(FunctionOperands); 2870 2871 while (!GlobalInitWorklist.empty()) { 2872 unsigned ValID = GlobalInitWorklist.back().second; 2873 if (ValID >= ValueList.size()) { 2874 // Not ready to resolve this yet, it requires something later in the file. 2875 GlobalInits.push_back(GlobalInitWorklist.back()); 2876 } else { 2877 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2878 if (!MaybeC) 2879 return MaybeC.takeError(); 2880 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2881 } 2882 GlobalInitWorklist.pop_back(); 2883 } 2884 2885 while (!IndirectSymbolInitWorklist.empty()) { 2886 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2887 if (ValID >= ValueList.size()) { 2888 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2889 } else { 2890 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2891 if (!MaybeC) 2892 return MaybeC.takeError(); 2893 Constant *C = MaybeC.get(); 2894 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2895 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2896 if (C->getType() != GV->getType()) 2897 return error("Alias and aliasee types don't match"); 2898 GA->setAliasee(C); 2899 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2900 Type *ResolverFTy = 2901 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2902 // Transparently fix up the type for compatibility with older bitcode 2903 GI->setResolver(ConstantExpr::getBitCast( 2904 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2905 } else { 2906 return error("Expected an alias or an ifunc"); 2907 } 2908 } 2909 IndirectSymbolInitWorklist.pop_back(); 2910 } 2911 2912 while (!FunctionOperandWorklist.empty()) { 2913 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2914 if (Info.PersonalityFn) { 2915 unsigned ValID = Info.PersonalityFn - 1; 2916 if (ValID < ValueList.size()) { 2917 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2918 if (!MaybeC) 2919 return MaybeC.takeError(); 2920 Info.F->setPersonalityFn(MaybeC.get()); 2921 Info.PersonalityFn = 0; 2922 } 2923 } 2924 if (Info.Prefix) { 2925 unsigned ValID = Info.Prefix - 1; 2926 if (ValID < ValueList.size()) { 2927 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2928 if (!MaybeC) 2929 return MaybeC.takeError(); 2930 Info.F->setPrefixData(MaybeC.get()); 2931 Info.Prefix = 0; 2932 } 2933 } 2934 if (Info.Prologue) { 2935 unsigned ValID = Info.Prologue - 1; 2936 if (ValID < ValueList.size()) { 2937 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2938 if (!MaybeC) 2939 return MaybeC.takeError(); 2940 Info.F->setPrologueData(MaybeC.get()); 2941 Info.Prologue = 0; 2942 } 2943 } 2944 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2945 FunctionOperands.push_back(Info); 2946 FunctionOperandWorklist.pop_back(); 2947 } 2948 2949 return Error::success(); 2950 } 2951 2952 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2953 SmallVector<uint64_t, 8> Words(Vals.size()); 2954 transform(Vals, Words.begin(), 2955 BitcodeReader::decodeSignRotatedValue); 2956 2957 return APInt(TypeBits, Words); 2958 } 2959 2960 Error BitcodeReader::parseConstants() { 2961 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2962 return Err; 2963 2964 SmallVector<uint64_t, 64> Record; 2965 2966 // Read all the records for this value table. 2967 Type *CurTy = Type::getInt32Ty(Context); 2968 unsigned Int32TyID = getVirtualTypeID(CurTy); 2969 unsigned CurTyID = Int32TyID; 2970 Type *CurElemTy = nullptr; 2971 unsigned NextCstNo = ValueList.size(); 2972 2973 while (true) { 2974 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2975 if (!MaybeEntry) 2976 return MaybeEntry.takeError(); 2977 BitstreamEntry Entry = MaybeEntry.get(); 2978 2979 switch (Entry.Kind) { 2980 case BitstreamEntry::SubBlock: // Handled for us already. 2981 case BitstreamEntry::Error: 2982 return error("Malformed block"); 2983 case BitstreamEntry::EndBlock: 2984 if (NextCstNo != ValueList.size()) 2985 return error("Invalid constant reference"); 2986 return Error::success(); 2987 case BitstreamEntry::Record: 2988 // The interesting case. 2989 break; 2990 } 2991 2992 // Read a record. 2993 Record.clear(); 2994 Type *VoidType = Type::getVoidTy(Context); 2995 Value *V = nullptr; 2996 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2997 if (!MaybeBitCode) 2998 return MaybeBitCode.takeError(); 2999 switch (unsigned BitCode = MaybeBitCode.get()) { 3000 default: // Default behavior: unknown constant 3001 case bitc::CST_CODE_UNDEF: // UNDEF 3002 V = UndefValue::get(CurTy); 3003 break; 3004 case bitc::CST_CODE_POISON: // POISON 3005 V = PoisonValue::get(CurTy); 3006 break; 3007 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3008 if (Record.empty()) 3009 return error("Invalid settype record"); 3010 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3011 return error("Invalid settype record"); 3012 if (TypeList[Record[0]] == VoidType) 3013 return error("Invalid constant type"); 3014 CurTyID = Record[0]; 3015 CurTy = TypeList[CurTyID]; 3016 CurElemTy = getPtrElementTypeByID(CurTyID); 3017 continue; // Skip the ValueList manipulation. 3018 case bitc::CST_CODE_NULL: // NULL 3019 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3020 return error("Invalid type for a constant null value"); 3021 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3022 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3023 return error("Invalid type for a constant null value"); 3024 V = Constant::getNullValue(CurTy); 3025 break; 3026 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3027 if (!CurTy->isIntegerTy() || Record.empty()) 3028 return error("Invalid integer const record"); 3029 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3030 break; 3031 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3032 if (!CurTy->isIntegerTy() || Record.empty()) 3033 return error("Invalid wide integer const record"); 3034 3035 APInt VInt = 3036 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3037 V = ConstantInt::get(Context, VInt); 3038 3039 break; 3040 } 3041 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3042 if (Record.empty()) 3043 return error("Invalid float const record"); 3044 if (CurTy->isHalfTy()) 3045 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3046 APInt(16, (uint16_t)Record[0]))); 3047 else if (CurTy->isBFloatTy()) 3048 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3049 APInt(16, (uint32_t)Record[0]))); 3050 else if (CurTy->isFloatTy()) 3051 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3052 APInt(32, (uint32_t)Record[0]))); 3053 else if (CurTy->isDoubleTy()) 3054 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3055 APInt(64, Record[0]))); 3056 else if (CurTy->isX86_FP80Ty()) { 3057 // Bits are not stored the same way as a normal i80 APInt, compensate. 3058 uint64_t Rearrange[2]; 3059 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3060 Rearrange[1] = Record[0] >> 48; 3061 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3062 APInt(80, Rearrange))); 3063 } else if (CurTy->isFP128Ty()) 3064 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3065 APInt(128, Record))); 3066 else if (CurTy->isPPC_FP128Ty()) 3067 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3068 APInt(128, Record))); 3069 else 3070 V = UndefValue::get(CurTy); 3071 break; 3072 } 3073 3074 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3075 if (Record.empty()) 3076 return error("Invalid aggregate record"); 3077 3078 unsigned Size = Record.size(); 3079 SmallVector<unsigned, 16> Elts; 3080 for (unsigned i = 0; i != Size; ++i) 3081 Elts.push_back(Record[i]); 3082 3083 if (isa<StructType>(CurTy)) { 3084 V = BitcodeConstant::create( 3085 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3086 } else if (isa<ArrayType>(CurTy)) { 3087 V = BitcodeConstant::create(Alloc, CurTy, 3088 BitcodeConstant::ConstantArrayOpcode, Elts); 3089 } else if (isa<VectorType>(CurTy)) { 3090 V = BitcodeConstant::create( 3091 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3092 } else { 3093 V = UndefValue::get(CurTy); 3094 } 3095 break; 3096 } 3097 case bitc::CST_CODE_STRING: // STRING: [values] 3098 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3099 if (Record.empty()) 3100 return error("Invalid string record"); 3101 3102 SmallString<16> Elts(Record.begin(), Record.end()); 3103 V = ConstantDataArray::getString(Context, Elts, 3104 BitCode == bitc::CST_CODE_CSTRING); 3105 break; 3106 } 3107 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3108 if (Record.empty()) 3109 return error("Invalid data record"); 3110 3111 Type *EltTy; 3112 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3113 EltTy = Array->getElementType(); 3114 else 3115 EltTy = cast<VectorType>(CurTy)->getElementType(); 3116 if (EltTy->isIntegerTy(8)) { 3117 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3118 if (isa<VectorType>(CurTy)) 3119 V = ConstantDataVector::get(Context, Elts); 3120 else 3121 V = ConstantDataArray::get(Context, Elts); 3122 } else if (EltTy->isIntegerTy(16)) { 3123 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3124 if (isa<VectorType>(CurTy)) 3125 V = ConstantDataVector::get(Context, Elts); 3126 else 3127 V = ConstantDataArray::get(Context, Elts); 3128 } else if (EltTy->isIntegerTy(32)) { 3129 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3130 if (isa<VectorType>(CurTy)) 3131 V = ConstantDataVector::get(Context, Elts); 3132 else 3133 V = ConstantDataArray::get(Context, Elts); 3134 } else if (EltTy->isIntegerTy(64)) { 3135 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3136 if (isa<VectorType>(CurTy)) 3137 V = ConstantDataVector::get(Context, Elts); 3138 else 3139 V = ConstantDataArray::get(Context, Elts); 3140 } else if (EltTy->isHalfTy()) { 3141 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3142 if (isa<VectorType>(CurTy)) 3143 V = ConstantDataVector::getFP(EltTy, Elts); 3144 else 3145 V = ConstantDataArray::getFP(EltTy, Elts); 3146 } else if (EltTy->isBFloatTy()) { 3147 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3148 if (isa<VectorType>(CurTy)) 3149 V = ConstantDataVector::getFP(EltTy, Elts); 3150 else 3151 V = ConstantDataArray::getFP(EltTy, Elts); 3152 } else if (EltTy->isFloatTy()) { 3153 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3154 if (isa<VectorType>(CurTy)) 3155 V = ConstantDataVector::getFP(EltTy, Elts); 3156 else 3157 V = ConstantDataArray::getFP(EltTy, Elts); 3158 } else if (EltTy->isDoubleTy()) { 3159 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3160 if (isa<VectorType>(CurTy)) 3161 V = ConstantDataVector::getFP(EltTy, Elts); 3162 else 3163 V = ConstantDataArray::getFP(EltTy, Elts); 3164 } else { 3165 return error("Invalid type for value"); 3166 } 3167 break; 3168 } 3169 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3170 if (Record.size() < 2) 3171 return error("Invalid unary op constexpr record"); 3172 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3173 if (Opc < 0) { 3174 V = UndefValue::get(CurTy); // Unknown unop. 3175 } else { 3176 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3177 } 3178 break; 3179 } 3180 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3181 if (Record.size() < 3) 3182 return error("Invalid binary op constexpr record"); 3183 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3184 if (Opc < 0) { 3185 V = UndefValue::get(CurTy); // Unknown binop. 3186 } else { 3187 uint8_t Flags = 0; 3188 if (Record.size() >= 4) { 3189 if (Opc == Instruction::Add || 3190 Opc == Instruction::Sub || 3191 Opc == Instruction::Mul || 3192 Opc == Instruction::Shl) { 3193 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3194 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3195 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3196 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3197 } else if (Opc == Instruction::SDiv || 3198 Opc == Instruction::UDiv || 3199 Opc == Instruction::LShr || 3200 Opc == Instruction::AShr) { 3201 if (Record[3] & (1 << bitc::PEO_EXACT)) 3202 Flags |= SDivOperator::IsExact; 3203 } 3204 } 3205 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3206 {(unsigned)Record[1], (unsigned)Record[2]}); 3207 } 3208 break; 3209 } 3210 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3211 if (Record.size() < 3) 3212 return error("Invalid cast constexpr record"); 3213 int Opc = getDecodedCastOpcode(Record[0]); 3214 if (Opc < 0) { 3215 V = UndefValue::get(CurTy); // Unknown cast. 3216 } else { 3217 unsigned OpTyID = Record[1]; 3218 Type *OpTy = getTypeByID(OpTyID); 3219 if (!OpTy) 3220 return error("Invalid cast constexpr record"); 3221 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3222 } 3223 break; 3224 } 3225 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3226 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3227 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3228 // operands] 3229 if (Record.size() < 2) 3230 return error("Constant GEP record must have at least two elements"); 3231 unsigned OpNum = 0; 3232 Type *PointeeType = nullptr; 3233 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3234 Record.size() % 2) 3235 PointeeType = getTypeByID(Record[OpNum++]); 3236 3237 bool InBounds = false; 3238 std::optional<unsigned> InRangeIndex; 3239 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3240 uint64_t Op = Record[OpNum++]; 3241 InBounds = Op & 1; 3242 InRangeIndex = Op >> 1; 3243 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3244 InBounds = true; 3245 3246 SmallVector<unsigned, 16> Elts; 3247 unsigned BaseTypeID = Record[OpNum]; 3248 while (OpNum != Record.size()) { 3249 unsigned ElTyID = Record[OpNum++]; 3250 Type *ElTy = getTypeByID(ElTyID); 3251 if (!ElTy) 3252 return error("Invalid getelementptr constexpr record"); 3253 Elts.push_back(Record[OpNum++]); 3254 } 3255 3256 if (Elts.size() < 1) 3257 return error("Invalid gep with no operands"); 3258 3259 Type *BaseType = getTypeByID(BaseTypeID); 3260 if (isa<VectorType>(BaseType)) { 3261 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3262 BaseType = getTypeByID(BaseTypeID); 3263 } 3264 3265 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3266 if (!OrigPtrTy) 3267 return error("GEP base operand must be pointer or vector of pointer"); 3268 3269 if (!PointeeType) { 3270 PointeeType = getPtrElementTypeByID(BaseTypeID); 3271 if (!PointeeType) 3272 return error("Missing element type for old-style constant GEP"); 3273 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3274 return error("Explicit gep operator type does not match pointee type " 3275 "of pointer operand"); 3276 3277 V = BitcodeConstant::create(Alloc, CurTy, 3278 {Instruction::GetElementPtr, InBounds, 3279 InRangeIndex.value_or(-1), PointeeType}, 3280 Elts); 3281 break; 3282 } 3283 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3284 if (Record.size() < 3) 3285 return error("Invalid select constexpr record"); 3286 3287 V = BitcodeConstant::create( 3288 Alloc, CurTy, Instruction::Select, 3289 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3290 break; 3291 } 3292 case bitc::CST_CODE_CE_EXTRACTELT 3293 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3294 if (Record.size() < 3) 3295 return error("Invalid extractelement constexpr record"); 3296 unsigned OpTyID = Record[0]; 3297 VectorType *OpTy = 3298 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3299 if (!OpTy) 3300 return error("Invalid extractelement constexpr record"); 3301 unsigned IdxRecord; 3302 if (Record.size() == 4) { 3303 unsigned IdxTyID = Record[2]; 3304 Type *IdxTy = getTypeByID(IdxTyID); 3305 if (!IdxTy) 3306 return error("Invalid extractelement constexpr record"); 3307 IdxRecord = Record[3]; 3308 } else { 3309 // Deprecated, but still needed to read old bitcode files. 3310 IdxRecord = Record[2]; 3311 } 3312 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3313 {(unsigned)Record[1], IdxRecord}); 3314 break; 3315 } 3316 case bitc::CST_CODE_CE_INSERTELT 3317 : { // CE_INSERTELT: [opval, opval, opty, opval] 3318 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3319 if (Record.size() < 3 || !OpTy) 3320 return error("Invalid insertelement constexpr record"); 3321 unsigned IdxRecord; 3322 if (Record.size() == 4) { 3323 unsigned IdxTyID = Record[2]; 3324 Type *IdxTy = getTypeByID(IdxTyID); 3325 if (!IdxTy) 3326 return error("Invalid insertelement constexpr record"); 3327 IdxRecord = Record[3]; 3328 } else { 3329 // Deprecated, but still needed to read old bitcode files. 3330 IdxRecord = Record[2]; 3331 } 3332 V = BitcodeConstant::create( 3333 Alloc, CurTy, Instruction::InsertElement, 3334 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3335 break; 3336 } 3337 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3338 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3339 if (Record.size() < 3 || !OpTy) 3340 return error("Invalid shufflevector constexpr record"); 3341 V = BitcodeConstant::create( 3342 Alloc, CurTy, Instruction::ShuffleVector, 3343 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3344 break; 3345 } 3346 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3347 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3348 VectorType *OpTy = 3349 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3350 if (Record.size() < 4 || !RTy || !OpTy) 3351 return error("Invalid shufflevector constexpr record"); 3352 V = BitcodeConstant::create( 3353 Alloc, CurTy, Instruction::ShuffleVector, 3354 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3355 break; 3356 } 3357 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3358 if (Record.size() < 4) 3359 return error("Invalid cmp constexpt record"); 3360 unsigned OpTyID = Record[0]; 3361 Type *OpTy = getTypeByID(OpTyID); 3362 if (!OpTy) 3363 return error("Invalid cmp constexpr record"); 3364 V = BitcodeConstant::create( 3365 Alloc, CurTy, 3366 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3367 : Instruction::ICmp), 3368 (uint8_t)Record[3]}, 3369 {(unsigned)Record[1], (unsigned)Record[2]}); 3370 break; 3371 } 3372 // This maintains backward compatibility, pre-asm dialect keywords. 3373 // Deprecated, but still needed to read old bitcode files. 3374 case bitc::CST_CODE_INLINEASM_OLD: { 3375 if (Record.size() < 2) 3376 return error("Invalid inlineasm record"); 3377 std::string AsmStr, ConstrStr; 3378 bool HasSideEffects = Record[0] & 1; 3379 bool IsAlignStack = Record[0] >> 1; 3380 unsigned AsmStrSize = Record[1]; 3381 if (2+AsmStrSize >= Record.size()) 3382 return error("Invalid inlineasm record"); 3383 unsigned ConstStrSize = Record[2+AsmStrSize]; 3384 if (3+AsmStrSize+ConstStrSize > Record.size()) 3385 return error("Invalid inlineasm record"); 3386 3387 for (unsigned i = 0; i != AsmStrSize; ++i) 3388 AsmStr += (char)Record[2+i]; 3389 for (unsigned i = 0; i != ConstStrSize; ++i) 3390 ConstrStr += (char)Record[3+AsmStrSize+i]; 3391 UpgradeInlineAsmString(&AsmStr); 3392 if (!CurElemTy) 3393 return error("Missing element type for old-style inlineasm"); 3394 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3395 HasSideEffects, IsAlignStack); 3396 break; 3397 } 3398 // This version adds support for the asm dialect keywords (e.g., 3399 // inteldialect). 3400 case bitc::CST_CODE_INLINEASM_OLD2: { 3401 if (Record.size() < 2) 3402 return error("Invalid inlineasm record"); 3403 std::string AsmStr, ConstrStr; 3404 bool HasSideEffects = Record[0] & 1; 3405 bool IsAlignStack = (Record[0] >> 1) & 1; 3406 unsigned AsmDialect = Record[0] >> 2; 3407 unsigned AsmStrSize = Record[1]; 3408 if (2+AsmStrSize >= Record.size()) 3409 return error("Invalid inlineasm record"); 3410 unsigned ConstStrSize = Record[2+AsmStrSize]; 3411 if (3+AsmStrSize+ConstStrSize > Record.size()) 3412 return error("Invalid inlineasm record"); 3413 3414 for (unsigned i = 0; i != AsmStrSize; ++i) 3415 AsmStr += (char)Record[2+i]; 3416 for (unsigned i = 0; i != ConstStrSize; ++i) 3417 ConstrStr += (char)Record[3+AsmStrSize+i]; 3418 UpgradeInlineAsmString(&AsmStr); 3419 if (!CurElemTy) 3420 return error("Missing element type for old-style inlineasm"); 3421 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3422 HasSideEffects, IsAlignStack, 3423 InlineAsm::AsmDialect(AsmDialect)); 3424 break; 3425 } 3426 // This version adds support for the unwind keyword. 3427 case bitc::CST_CODE_INLINEASM_OLD3: { 3428 if (Record.size() < 2) 3429 return error("Invalid inlineasm record"); 3430 unsigned OpNum = 0; 3431 std::string AsmStr, ConstrStr; 3432 bool HasSideEffects = Record[OpNum] & 1; 3433 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3434 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3435 bool CanThrow = (Record[OpNum] >> 3) & 1; 3436 ++OpNum; 3437 unsigned AsmStrSize = Record[OpNum]; 3438 ++OpNum; 3439 if (OpNum + AsmStrSize >= Record.size()) 3440 return error("Invalid inlineasm record"); 3441 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3442 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3443 return error("Invalid inlineasm record"); 3444 3445 for (unsigned i = 0; i != AsmStrSize; ++i) 3446 AsmStr += (char)Record[OpNum + i]; 3447 ++OpNum; 3448 for (unsigned i = 0; i != ConstStrSize; ++i) 3449 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3450 UpgradeInlineAsmString(&AsmStr); 3451 if (!CurElemTy) 3452 return error("Missing element type for old-style inlineasm"); 3453 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3454 HasSideEffects, IsAlignStack, 3455 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3456 break; 3457 } 3458 // This version adds explicit function type. 3459 case bitc::CST_CODE_INLINEASM: { 3460 if (Record.size() < 3) 3461 return error("Invalid inlineasm record"); 3462 unsigned OpNum = 0; 3463 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3464 ++OpNum; 3465 if (!FnTy) 3466 return error("Invalid inlineasm record"); 3467 std::string AsmStr, ConstrStr; 3468 bool HasSideEffects = Record[OpNum] & 1; 3469 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3470 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3471 bool CanThrow = (Record[OpNum] >> 3) & 1; 3472 ++OpNum; 3473 unsigned AsmStrSize = Record[OpNum]; 3474 ++OpNum; 3475 if (OpNum + AsmStrSize >= Record.size()) 3476 return error("Invalid inlineasm record"); 3477 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3478 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3479 return error("Invalid inlineasm record"); 3480 3481 for (unsigned i = 0; i != AsmStrSize; ++i) 3482 AsmStr += (char)Record[OpNum + i]; 3483 ++OpNum; 3484 for (unsigned i = 0; i != ConstStrSize; ++i) 3485 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3486 UpgradeInlineAsmString(&AsmStr); 3487 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3488 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3489 break; 3490 } 3491 case bitc::CST_CODE_BLOCKADDRESS:{ 3492 if (Record.size() < 3) 3493 return error("Invalid blockaddress record"); 3494 unsigned FnTyID = Record[0]; 3495 Type *FnTy = getTypeByID(FnTyID); 3496 if (!FnTy) 3497 return error("Invalid blockaddress record"); 3498 V = BitcodeConstant::create( 3499 Alloc, CurTy, 3500 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3501 Record[1]); 3502 break; 3503 } 3504 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3505 if (Record.size() < 2) 3506 return error("Invalid dso_local record"); 3507 unsigned GVTyID = Record[0]; 3508 Type *GVTy = getTypeByID(GVTyID); 3509 if (!GVTy) 3510 return error("Invalid dso_local record"); 3511 V = BitcodeConstant::create( 3512 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3513 break; 3514 } 3515 case bitc::CST_CODE_NO_CFI_VALUE: { 3516 if (Record.size() < 2) 3517 return error("Invalid no_cfi record"); 3518 unsigned GVTyID = Record[0]; 3519 Type *GVTy = getTypeByID(GVTyID); 3520 if (!GVTy) 3521 return error("Invalid no_cfi record"); 3522 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3523 Record[1]); 3524 break; 3525 } 3526 } 3527 3528 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3529 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3530 return Err; 3531 ++NextCstNo; 3532 } 3533 } 3534 3535 Error BitcodeReader::parseUseLists() { 3536 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3537 return Err; 3538 3539 // Read all the records. 3540 SmallVector<uint64_t, 64> Record; 3541 3542 while (true) { 3543 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3544 if (!MaybeEntry) 3545 return MaybeEntry.takeError(); 3546 BitstreamEntry Entry = MaybeEntry.get(); 3547 3548 switch (Entry.Kind) { 3549 case BitstreamEntry::SubBlock: // Handled for us already. 3550 case BitstreamEntry::Error: 3551 return error("Malformed block"); 3552 case BitstreamEntry::EndBlock: 3553 return Error::success(); 3554 case BitstreamEntry::Record: 3555 // The interesting case. 3556 break; 3557 } 3558 3559 // Read a use list record. 3560 Record.clear(); 3561 bool IsBB = false; 3562 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3563 if (!MaybeRecord) 3564 return MaybeRecord.takeError(); 3565 switch (MaybeRecord.get()) { 3566 default: // Default behavior: unknown type. 3567 break; 3568 case bitc::USELIST_CODE_BB: 3569 IsBB = true; 3570 [[fallthrough]]; 3571 case bitc::USELIST_CODE_DEFAULT: { 3572 unsigned RecordLength = Record.size(); 3573 if (RecordLength < 3) 3574 // Records should have at least an ID and two indexes. 3575 return error("Invalid record"); 3576 unsigned ID = Record.pop_back_val(); 3577 3578 Value *V; 3579 if (IsBB) { 3580 assert(ID < FunctionBBs.size() && "Basic block not found"); 3581 V = FunctionBBs[ID]; 3582 } else 3583 V = ValueList[ID]; 3584 unsigned NumUses = 0; 3585 SmallDenseMap<const Use *, unsigned, 16> Order; 3586 for (const Use &U : V->materialized_uses()) { 3587 if (++NumUses > Record.size()) 3588 break; 3589 Order[&U] = Record[NumUses - 1]; 3590 } 3591 if (Order.size() != Record.size() || NumUses > Record.size()) 3592 // Mismatches can happen if the functions are being materialized lazily 3593 // (out-of-order), or a value has been upgraded. 3594 break; 3595 3596 V->sortUseList([&](const Use &L, const Use &R) { 3597 return Order.lookup(&L) < Order.lookup(&R); 3598 }); 3599 break; 3600 } 3601 } 3602 } 3603 } 3604 3605 /// When we see the block for metadata, remember where it is and then skip it. 3606 /// This lets us lazily deserialize the metadata. 3607 Error BitcodeReader::rememberAndSkipMetadata() { 3608 // Save the current stream state. 3609 uint64_t CurBit = Stream.GetCurrentBitNo(); 3610 DeferredMetadataInfo.push_back(CurBit); 3611 3612 // Skip over the block for now. 3613 if (Error Err = Stream.SkipBlock()) 3614 return Err; 3615 return Error::success(); 3616 } 3617 3618 Error BitcodeReader::materializeMetadata() { 3619 for (uint64_t BitPos : DeferredMetadataInfo) { 3620 // Move the bit stream to the saved position. 3621 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3622 return JumpFailed; 3623 if (Error Err = MDLoader->parseModuleMetadata()) 3624 return Err; 3625 } 3626 3627 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3628 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3629 // multiple times. 3630 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3631 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3632 NamedMDNode *LinkerOpts = 3633 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3634 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3635 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3636 } 3637 } 3638 3639 DeferredMetadataInfo.clear(); 3640 return Error::success(); 3641 } 3642 3643 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3644 3645 /// When we see the block for a function body, remember where it is and then 3646 /// skip it. This lets us lazily deserialize the functions. 3647 Error BitcodeReader::rememberAndSkipFunctionBody() { 3648 // Get the function we are talking about. 3649 if (FunctionsWithBodies.empty()) 3650 return error("Insufficient function protos"); 3651 3652 Function *Fn = FunctionsWithBodies.back(); 3653 FunctionsWithBodies.pop_back(); 3654 3655 // Save the current stream state. 3656 uint64_t CurBit = Stream.GetCurrentBitNo(); 3657 assert( 3658 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3659 "Mismatch between VST and scanned function offsets"); 3660 DeferredFunctionInfo[Fn] = CurBit; 3661 3662 // Skip over the function block for now. 3663 if (Error Err = Stream.SkipBlock()) 3664 return Err; 3665 return Error::success(); 3666 } 3667 3668 Error BitcodeReader::globalCleanup() { 3669 // Patch the initializers for globals and aliases up. 3670 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3671 return Err; 3672 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3673 return error("Malformed global initializer set"); 3674 3675 // Look for intrinsic functions which need to be upgraded at some point 3676 // and functions that need to have their function attributes upgraded. 3677 for (Function &F : *TheModule) { 3678 MDLoader->upgradeDebugIntrinsics(F); 3679 Function *NewFn; 3680 if (UpgradeIntrinsicFunction(&F, NewFn)) 3681 UpgradedIntrinsics[&F] = NewFn; 3682 // Look for functions that rely on old function attribute behavior. 3683 UpgradeFunctionAttributes(F); 3684 } 3685 3686 // Look for global variables which need to be renamed. 3687 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3688 for (GlobalVariable &GV : TheModule->globals()) 3689 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3690 UpgradedVariables.emplace_back(&GV, Upgraded); 3691 for (auto &Pair : UpgradedVariables) { 3692 Pair.first->eraseFromParent(); 3693 TheModule->getGlobalList().push_back(Pair.second); 3694 } 3695 3696 // Force deallocation of memory for these vectors to favor the client that 3697 // want lazy deserialization. 3698 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3699 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3700 return Error::success(); 3701 } 3702 3703 /// Support for lazy parsing of function bodies. This is required if we 3704 /// either have an old bitcode file without a VST forward declaration record, 3705 /// or if we have an anonymous function being materialized, since anonymous 3706 /// functions do not have a name and are therefore not in the VST. 3707 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3708 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3709 return JumpFailed; 3710 3711 if (Stream.AtEndOfStream()) 3712 return error("Could not find function in stream"); 3713 3714 if (!SeenFirstFunctionBody) 3715 return error("Trying to materialize functions before seeing function blocks"); 3716 3717 // An old bitcode file with the symbol table at the end would have 3718 // finished the parse greedily. 3719 assert(SeenValueSymbolTable); 3720 3721 SmallVector<uint64_t, 64> Record; 3722 3723 while (true) { 3724 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3725 if (!MaybeEntry) 3726 return MaybeEntry.takeError(); 3727 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3728 3729 switch (Entry.Kind) { 3730 default: 3731 return error("Expect SubBlock"); 3732 case BitstreamEntry::SubBlock: 3733 switch (Entry.ID) { 3734 default: 3735 return error("Expect function block"); 3736 case bitc::FUNCTION_BLOCK_ID: 3737 if (Error Err = rememberAndSkipFunctionBody()) 3738 return Err; 3739 NextUnreadBit = Stream.GetCurrentBitNo(); 3740 return Error::success(); 3741 } 3742 } 3743 } 3744 } 3745 3746 Error BitcodeReaderBase::readBlockInfo() { 3747 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3748 Stream.ReadBlockInfoBlock(); 3749 if (!MaybeNewBlockInfo) 3750 return MaybeNewBlockInfo.takeError(); 3751 std::optional<BitstreamBlockInfo> NewBlockInfo = 3752 std::move(MaybeNewBlockInfo.get()); 3753 if (!NewBlockInfo) 3754 return error("Malformed block"); 3755 BlockInfo = std::move(*NewBlockInfo); 3756 return Error::success(); 3757 } 3758 3759 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3760 // v1: [selection_kind, name] 3761 // v2: [strtab_offset, strtab_size, selection_kind] 3762 StringRef Name; 3763 std::tie(Name, Record) = readNameFromStrtab(Record); 3764 3765 if (Record.empty()) 3766 return error("Invalid record"); 3767 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3768 std::string OldFormatName; 3769 if (!UseStrtab) { 3770 if (Record.size() < 2) 3771 return error("Invalid record"); 3772 unsigned ComdatNameSize = Record[1]; 3773 if (ComdatNameSize > Record.size() - 2) 3774 return error("Comdat name size too large"); 3775 OldFormatName.reserve(ComdatNameSize); 3776 for (unsigned i = 0; i != ComdatNameSize; ++i) 3777 OldFormatName += (char)Record[2 + i]; 3778 Name = OldFormatName; 3779 } 3780 Comdat *C = TheModule->getOrInsertComdat(Name); 3781 C->setSelectionKind(SK); 3782 ComdatList.push_back(C); 3783 return Error::success(); 3784 } 3785 3786 static void inferDSOLocal(GlobalValue *GV) { 3787 // infer dso_local from linkage and visibility if it is not encoded. 3788 if (GV->hasLocalLinkage() || 3789 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3790 GV->setDSOLocal(true); 3791 } 3792 3793 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3794 GlobalValue::SanitizerMetadata Meta; 3795 if (V & (1 << 0)) 3796 Meta.NoAddress = true; 3797 if (V & (1 << 1)) 3798 Meta.NoHWAddress = true; 3799 if (V & (1 << 2)) 3800 Meta.Memtag = true; 3801 if (V & (1 << 3)) 3802 Meta.IsDynInit = true; 3803 return Meta; 3804 } 3805 3806 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3807 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3808 // visibility, threadlocal, unnamed_addr, externally_initialized, 3809 // dllstorageclass, comdat, attributes, preemption specifier, 3810 // partition strtab offset, partition strtab size] (name in VST) 3811 // v2: [strtab_offset, strtab_size, v1] 3812 StringRef Name; 3813 std::tie(Name, Record) = readNameFromStrtab(Record); 3814 3815 if (Record.size() < 6) 3816 return error("Invalid record"); 3817 unsigned TyID = Record[0]; 3818 Type *Ty = getTypeByID(TyID); 3819 if (!Ty) 3820 return error("Invalid record"); 3821 bool isConstant = Record[1] & 1; 3822 bool explicitType = Record[1] & 2; 3823 unsigned AddressSpace; 3824 if (explicitType) { 3825 AddressSpace = Record[1] >> 2; 3826 } else { 3827 if (!Ty->isPointerTy()) 3828 return error("Invalid type for value"); 3829 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3830 TyID = getContainedTypeID(TyID); 3831 Ty = getTypeByID(TyID); 3832 if (!Ty) 3833 return error("Missing element type for old-style global"); 3834 } 3835 3836 uint64_t RawLinkage = Record[3]; 3837 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3838 MaybeAlign Alignment; 3839 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3840 return Err; 3841 std::string Section; 3842 if (Record[5]) { 3843 if (Record[5] - 1 >= SectionTable.size()) 3844 return error("Invalid ID"); 3845 Section = SectionTable[Record[5] - 1]; 3846 } 3847 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3848 // Local linkage must have default visibility. 3849 // auto-upgrade `hidden` and `protected` for old bitcode. 3850 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3851 Visibility = getDecodedVisibility(Record[6]); 3852 3853 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3854 if (Record.size() > 7) 3855 TLM = getDecodedThreadLocalMode(Record[7]); 3856 3857 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3858 if (Record.size() > 8) 3859 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3860 3861 bool ExternallyInitialized = false; 3862 if (Record.size() > 9) 3863 ExternallyInitialized = Record[9]; 3864 3865 GlobalVariable *NewGV = 3866 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3867 nullptr, TLM, AddressSpace, ExternallyInitialized); 3868 NewGV->setAlignment(Alignment); 3869 if (!Section.empty()) 3870 NewGV->setSection(Section); 3871 NewGV->setVisibility(Visibility); 3872 NewGV->setUnnamedAddr(UnnamedAddr); 3873 3874 if (Record.size() > 10) { 3875 // A GlobalValue with local linkage cannot have a DLL storage class. 3876 if (!NewGV->hasLocalLinkage()) { 3877 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3878 } 3879 } else { 3880 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3881 } 3882 3883 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3884 3885 // Remember which value to use for the global initializer. 3886 if (unsigned InitID = Record[2]) 3887 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3888 3889 if (Record.size() > 11) { 3890 if (unsigned ComdatID = Record[11]) { 3891 if (ComdatID > ComdatList.size()) 3892 return error("Invalid global variable comdat ID"); 3893 NewGV->setComdat(ComdatList[ComdatID - 1]); 3894 } 3895 } else if (hasImplicitComdat(RawLinkage)) { 3896 ImplicitComdatObjects.insert(NewGV); 3897 } 3898 3899 if (Record.size() > 12) { 3900 auto AS = getAttributes(Record[12]).getFnAttrs(); 3901 NewGV->setAttributes(AS); 3902 } 3903 3904 if (Record.size() > 13) { 3905 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3906 } 3907 inferDSOLocal(NewGV); 3908 3909 // Check whether we have enough values to read a partition name. 3910 if (Record.size() > 15) 3911 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3912 3913 if (Record.size() > 16 && Record[16]) { 3914 llvm::GlobalValue::SanitizerMetadata Meta = 3915 deserializeSanitizerMetadata(Record[16]); 3916 NewGV->setSanitizerMetadata(Meta); 3917 } 3918 3919 return Error::success(); 3920 } 3921 3922 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3923 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3924 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3925 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3926 // v2: [strtab_offset, strtab_size, v1] 3927 StringRef Name; 3928 std::tie(Name, Record) = readNameFromStrtab(Record); 3929 3930 if (Record.size() < 8) 3931 return error("Invalid record"); 3932 unsigned FTyID = Record[0]; 3933 Type *FTy = getTypeByID(FTyID); 3934 if (!FTy) 3935 return error("Invalid record"); 3936 if (isa<PointerType>(FTy)) { 3937 FTyID = getContainedTypeID(FTyID, 0); 3938 FTy = getTypeByID(FTyID); 3939 if (!FTy) 3940 return error("Missing element type for old-style function"); 3941 } 3942 3943 if (!isa<FunctionType>(FTy)) 3944 return error("Invalid type for value"); 3945 auto CC = static_cast<CallingConv::ID>(Record[1]); 3946 if (CC & ~CallingConv::MaxID) 3947 return error("Invalid calling convention ID"); 3948 3949 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3950 if (Record.size() > 16) 3951 AddrSpace = Record[16]; 3952 3953 Function *Func = 3954 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3955 AddrSpace, Name, TheModule); 3956 3957 assert(Func->getFunctionType() == FTy && 3958 "Incorrect fully specified type provided for function"); 3959 FunctionTypeIDs[Func] = FTyID; 3960 3961 Func->setCallingConv(CC); 3962 bool isProto = Record[2]; 3963 uint64_t RawLinkage = Record[3]; 3964 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3965 Func->setAttributes(getAttributes(Record[4])); 3966 3967 // Upgrade any old-style byval or sret without a type by propagating the 3968 // argument's pointee type. There should be no opaque pointers where the byval 3969 // type is implicit. 3970 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3971 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3972 Attribute::InAlloca}) { 3973 if (!Func->hasParamAttribute(i, Kind)) 3974 continue; 3975 3976 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3977 continue; 3978 3979 Func->removeParamAttr(i, Kind); 3980 3981 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3982 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3983 if (!PtrEltTy) 3984 return error("Missing param element type for attribute upgrade"); 3985 3986 Attribute NewAttr; 3987 switch (Kind) { 3988 case Attribute::ByVal: 3989 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3990 break; 3991 case Attribute::StructRet: 3992 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3993 break; 3994 case Attribute::InAlloca: 3995 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3996 break; 3997 default: 3998 llvm_unreachable("not an upgraded type attribute"); 3999 } 4000 4001 Func->addParamAttr(i, NewAttr); 4002 } 4003 } 4004 4005 if (Func->getCallingConv() == CallingConv::X86_INTR && 4006 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4007 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4008 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4009 if (!ByValTy) 4010 return error("Missing param element type for x86_intrcc upgrade"); 4011 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4012 Func->addParamAttr(0, NewAttr); 4013 } 4014 4015 MaybeAlign Alignment; 4016 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4017 return Err; 4018 Func->setAlignment(Alignment); 4019 if (Record[6]) { 4020 if (Record[6] - 1 >= SectionTable.size()) 4021 return error("Invalid ID"); 4022 Func->setSection(SectionTable[Record[6] - 1]); 4023 } 4024 // Local linkage must have default visibility. 4025 // auto-upgrade `hidden` and `protected` for old bitcode. 4026 if (!Func->hasLocalLinkage()) 4027 Func->setVisibility(getDecodedVisibility(Record[7])); 4028 if (Record.size() > 8 && Record[8]) { 4029 if (Record[8] - 1 >= GCTable.size()) 4030 return error("Invalid ID"); 4031 Func->setGC(GCTable[Record[8] - 1]); 4032 } 4033 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4034 if (Record.size() > 9) 4035 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4036 Func->setUnnamedAddr(UnnamedAddr); 4037 4038 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4039 if (Record.size() > 10) 4040 OperandInfo.Prologue = Record[10]; 4041 4042 if (Record.size() > 11) { 4043 // A GlobalValue with local linkage cannot have a DLL storage class. 4044 if (!Func->hasLocalLinkage()) { 4045 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4046 } 4047 } else { 4048 upgradeDLLImportExportLinkage(Func, RawLinkage); 4049 } 4050 4051 if (Record.size() > 12) { 4052 if (unsigned ComdatID = Record[12]) { 4053 if (ComdatID > ComdatList.size()) 4054 return error("Invalid function comdat ID"); 4055 Func->setComdat(ComdatList[ComdatID - 1]); 4056 } 4057 } else if (hasImplicitComdat(RawLinkage)) { 4058 ImplicitComdatObjects.insert(Func); 4059 } 4060 4061 if (Record.size() > 13) 4062 OperandInfo.Prefix = Record[13]; 4063 4064 if (Record.size() > 14) 4065 OperandInfo.PersonalityFn = Record[14]; 4066 4067 if (Record.size() > 15) { 4068 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4069 } 4070 inferDSOLocal(Func); 4071 4072 // Record[16] is the address space number. 4073 4074 // Check whether we have enough values to read a partition name. Also make 4075 // sure Strtab has enough values. 4076 if (Record.size() > 18 && Strtab.data() && 4077 Record[17] + Record[18] <= Strtab.size()) { 4078 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4079 } 4080 4081 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4082 4083 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4084 FunctionOperands.push_back(OperandInfo); 4085 4086 // If this is a function with a body, remember the prototype we are 4087 // creating now, so that we can match up the body with them later. 4088 if (!isProto) { 4089 Func->setIsMaterializable(true); 4090 FunctionsWithBodies.push_back(Func); 4091 DeferredFunctionInfo[Func] = 0; 4092 } 4093 return Error::success(); 4094 } 4095 4096 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4097 unsigned BitCode, ArrayRef<uint64_t> Record) { 4098 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4099 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4100 // dllstorageclass, threadlocal, unnamed_addr, 4101 // preemption specifier] (name in VST) 4102 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4103 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4104 // preemption specifier] (name in VST) 4105 // v2: [strtab_offset, strtab_size, v1] 4106 StringRef Name; 4107 std::tie(Name, Record) = readNameFromStrtab(Record); 4108 4109 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4110 if (Record.size() < (3 + (unsigned)NewRecord)) 4111 return error("Invalid record"); 4112 unsigned OpNum = 0; 4113 unsigned TypeID = Record[OpNum++]; 4114 Type *Ty = getTypeByID(TypeID); 4115 if (!Ty) 4116 return error("Invalid record"); 4117 4118 unsigned AddrSpace; 4119 if (!NewRecord) { 4120 auto *PTy = dyn_cast<PointerType>(Ty); 4121 if (!PTy) 4122 return error("Invalid type for value"); 4123 AddrSpace = PTy->getAddressSpace(); 4124 TypeID = getContainedTypeID(TypeID); 4125 Ty = getTypeByID(TypeID); 4126 if (!Ty) 4127 return error("Missing element type for old-style indirect symbol"); 4128 } else { 4129 AddrSpace = Record[OpNum++]; 4130 } 4131 4132 auto Val = Record[OpNum++]; 4133 auto Linkage = Record[OpNum++]; 4134 GlobalValue *NewGA; 4135 if (BitCode == bitc::MODULE_CODE_ALIAS || 4136 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4137 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4138 TheModule); 4139 else 4140 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4141 nullptr, TheModule); 4142 4143 // Local linkage must have default visibility. 4144 // auto-upgrade `hidden` and `protected` for old bitcode. 4145 if (OpNum != Record.size()) { 4146 auto VisInd = OpNum++; 4147 if (!NewGA->hasLocalLinkage()) 4148 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4149 } 4150 if (BitCode == bitc::MODULE_CODE_ALIAS || 4151 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4152 if (OpNum != Record.size()) { 4153 auto S = Record[OpNum++]; 4154 // A GlobalValue with local linkage cannot have a DLL storage class. 4155 if (!NewGA->hasLocalLinkage()) 4156 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4157 } 4158 else 4159 upgradeDLLImportExportLinkage(NewGA, Linkage); 4160 if (OpNum != Record.size()) 4161 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4162 if (OpNum != Record.size()) 4163 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4164 } 4165 if (OpNum != Record.size()) 4166 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4167 inferDSOLocal(NewGA); 4168 4169 // Check whether we have enough values to read a partition name. 4170 if (OpNum + 1 < Record.size()) { 4171 NewGA->setPartition( 4172 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4173 OpNum += 2; 4174 } 4175 4176 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4177 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4178 return Error::success(); 4179 } 4180 4181 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4182 bool ShouldLazyLoadMetadata, 4183 DataLayoutCallbackTy DataLayoutCallback) { 4184 if (ResumeBit) { 4185 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4186 return JumpFailed; 4187 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4188 return Err; 4189 4190 SmallVector<uint64_t, 64> Record; 4191 4192 // Parts of bitcode parsing depend on the datalayout. Make sure we 4193 // finalize the datalayout before we run any of that code. 4194 bool ResolvedDataLayout = false; 4195 // In order to support importing modules with illegal data layout strings, 4196 // delay parsing the data layout string until after upgrades and overrides 4197 // have been applied, allowing to fix illegal data layout strings. 4198 // Initialize to the current module's layout string in case none is specified. 4199 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4200 4201 auto ResolveDataLayout = [&]() -> Error { 4202 if (ResolvedDataLayout) 4203 return Error::success(); 4204 4205 // Datalayout and triple can't be parsed after this point. 4206 ResolvedDataLayout = true; 4207 4208 // Auto-upgrade the layout string 4209 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4210 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4211 4212 // Apply override 4213 if (auto LayoutOverride = DataLayoutCallback(TheModule->getTargetTriple(), 4214 TentativeDataLayoutStr)) 4215 TentativeDataLayoutStr = *LayoutOverride; 4216 4217 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4218 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4219 if (!MaybeDL) 4220 return MaybeDL.takeError(); 4221 4222 TheModule->setDataLayout(MaybeDL.get()); 4223 return Error::success(); 4224 }; 4225 4226 // Read all the records for this module. 4227 while (true) { 4228 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4229 if (!MaybeEntry) 4230 return MaybeEntry.takeError(); 4231 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4232 4233 switch (Entry.Kind) { 4234 case BitstreamEntry::Error: 4235 return error("Malformed block"); 4236 case BitstreamEntry::EndBlock: 4237 if (Error Err = ResolveDataLayout()) 4238 return Err; 4239 return globalCleanup(); 4240 4241 case BitstreamEntry::SubBlock: 4242 switch (Entry.ID) { 4243 default: // Skip unknown content. 4244 if (Error Err = Stream.SkipBlock()) 4245 return Err; 4246 break; 4247 case bitc::BLOCKINFO_BLOCK_ID: 4248 if (Error Err = readBlockInfo()) 4249 return Err; 4250 break; 4251 case bitc::PARAMATTR_BLOCK_ID: 4252 if (Error Err = parseAttributeBlock()) 4253 return Err; 4254 break; 4255 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4256 if (Error Err = parseAttributeGroupBlock()) 4257 return Err; 4258 break; 4259 case bitc::TYPE_BLOCK_ID_NEW: 4260 if (Error Err = parseTypeTable()) 4261 return Err; 4262 break; 4263 case bitc::VALUE_SYMTAB_BLOCK_ID: 4264 if (!SeenValueSymbolTable) { 4265 // Either this is an old form VST without function index and an 4266 // associated VST forward declaration record (which would have caused 4267 // the VST to be jumped to and parsed before it was encountered 4268 // normally in the stream), or there were no function blocks to 4269 // trigger an earlier parsing of the VST. 4270 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4271 if (Error Err = parseValueSymbolTable()) 4272 return Err; 4273 SeenValueSymbolTable = true; 4274 } else { 4275 // We must have had a VST forward declaration record, which caused 4276 // the parser to jump to and parse the VST earlier. 4277 assert(VSTOffset > 0); 4278 if (Error Err = Stream.SkipBlock()) 4279 return Err; 4280 } 4281 break; 4282 case bitc::CONSTANTS_BLOCK_ID: 4283 if (Error Err = parseConstants()) 4284 return Err; 4285 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4286 return Err; 4287 break; 4288 case bitc::METADATA_BLOCK_ID: 4289 if (ShouldLazyLoadMetadata) { 4290 if (Error Err = rememberAndSkipMetadata()) 4291 return Err; 4292 break; 4293 } 4294 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4295 if (Error Err = MDLoader->parseModuleMetadata()) 4296 return Err; 4297 break; 4298 case bitc::METADATA_KIND_BLOCK_ID: 4299 if (Error Err = MDLoader->parseMetadataKinds()) 4300 return Err; 4301 break; 4302 case bitc::FUNCTION_BLOCK_ID: 4303 if (Error Err = ResolveDataLayout()) 4304 return Err; 4305 4306 // If this is the first function body we've seen, reverse the 4307 // FunctionsWithBodies list. 4308 if (!SeenFirstFunctionBody) { 4309 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4310 if (Error Err = globalCleanup()) 4311 return Err; 4312 SeenFirstFunctionBody = true; 4313 } 4314 4315 if (VSTOffset > 0) { 4316 // If we have a VST forward declaration record, make sure we 4317 // parse the VST now if we haven't already. It is needed to 4318 // set up the DeferredFunctionInfo vector for lazy reading. 4319 if (!SeenValueSymbolTable) { 4320 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4321 return Err; 4322 SeenValueSymbolTable = true; 4323 // Fall through so that we record the NextUnreadBit below. 4324 // This is necessary in case we have an anonymous function that 4325 // is later materialized. Since it will not have a VST entry we 4326 // need to fall back to the lazy parse to find its offset. 4327 } else { 4328 // If we have a VST forward declaration record, but have already 4329 // parsed the VST (just above, when the first function body was 4330 // encountered here), then we are resuming the parse after 4331 // materializing functions. The ResumeBit points to the 4332 // start of the last function block recorded in the 4333 // DeferredFunctionInfo map. Skip it. 4334 if (Error Err = Stream.SkipBlock()) 4335 return Err; 4336 continue; 4337 } 4338 } 4339 4340 // Support older bitcode files that did not have the function 4341 // index in the VST, nor a VST forward declaration record, as 4342 // well as anonymous functions that do not have VST entries. 4343 // Build the DeferredFunctionInfo vector on the fly. 4344 if (Error Err = rememberAndSkipFunctionBody()) 4345 return Err; 4346 4347 // Suspend parsing when we reach the function bodies. Subsequent 4348 // materialization calls will resume it when necessary. If the bitcode 4349 // file is old, the symbol table will be at the end instead and will not 4350 // have been seen yet. In this case, just finish the parse now. 4351 if (SeenValueSymbolTable) { 4352 NextUnreadBit = Stream.GetCurrentBitNo(); 4353 // After the VST has been parsed, we need to make sure intrinsic name 4354 // are auto-upgraded. 4355 return globalCleanup(); 4356 } 4357 break; 4358 case bitc::USELIST_BLOCK_ID: 4359 if (Error Err = parseUseLists()) 4360 return Err; 4361 break; 4362 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4363 if (Error Err = parseOperandBundleTags()) 4364 return Err; 4365 break; 4366 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4367 if (Error Err = parseSyncScopeNames()) 4368 return Err; 4369 break; 4370 } 4371 continue; 4372 4373 case BitstreamEntry::Record: 4374 // The interesting case. 4375 break; 4376 } 4377 4378 // Read a record. 4379 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4380 if (!MaybeBitCode) 4381 return MaybeBitCode.takeError(); 4382 switch (unsigned BitCode = MaybeBitCode.get()) { 4383 default: break; // Default behavior, ignore unknown content. 4384 case bitc::MODULE_CODE_VERSION: { 4385 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4386 if (!VersionOrErr) 4387 return VersionOrErr.takeError(); 4388 UseRelativeIDs = *VersionOrErr >= 1; 4389 break; 4390 } 4391 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4392 if (ResolvedDataLayout) 4393 return error("target triple too late in module"); 4394 std::string S; 4395 if (convertToString(Record, 0, S)) 4396 return error("Invalid record"); 4397 TheModule->setTargetTriple(S); 4398 break; 4399 } 4400 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4401 if (ResolvedDataLayout) 4402 return error("datalayout too late in module"); 4403 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4404 return error("Invalid record"); 4405 break; 4406 } 4407 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4408 std::string S; 4409 if (convertToString(Record, 0, S)) 4410 return error("Invalid record"); 4411 TheModule->setModuleInlineAsm(S); 4412 break; 4413 } 4414 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4415 // Deprecated, but still needed to read old bitcode files. 4416 std::string S; 4417 if (convertToString(Record, 0, S)) 4418 return error("Invalid record"); 4419 // Ignore value. 4420 break; 4421 } 4422 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4423 std::string S; 4424 if (convertToString(Record, 0, S)) 4425 return error("Invalid record"); 4426 SectionTable.push_back(S); 4427 break; 4428 } 4429 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4430 std::string S; 4431 if (convertToString(Record, 0, S)) 4432 return error("Invalid record"); 4433 GCTable.push_back(S); 4434 break; 4435 } 4436 case bitc::MODULE_CODE_COMDAT: 4437 if (Error Err = parseComdatRecord(Record)) 4438 return Err; 4439 break; 4440 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4441 // written by ThinLinkBitcodeWriter. See 4442 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4443 // record 4444 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4445 case bitc::MODULE_CODE_GLOBALVAR: 4446 if (Error Err = parseGlobalVarRecord(Record)) 4447 return Err; 4448 break; 4449 case bitc::MODULE_CODE_FUNCTION: 4450 if (Error Err = ResolveDataLayout()) 4451 return Err; 4452 if (Error Err = parseFunctionRecord(Record)) 4453 return Err; 4454 break; 4455 case bitc::MODULE_CODE_IFUNC: 4456 case bitc::MODULE_CODE_ALIAS: 4457 case bitc::MODULE_CODE_ALIAS_OLD: 4458 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4459 return Err; 4460 break; 4461 /// MODULE_CODE_VSTOFFSET: [offset] 4462 case bitc::MODULE_CODE_VSTOFFSET: 4463 if (Record.empty()) 4464 return error("Invalid record"); 4465 // Note that we subtract 1 here because the offset is relative to one word 4466 // before the start of the identification or module block, which was 4467 // historically always the start of the regular bitcode header. 4468 VSTOffset = Record[0] - 1; 4469 break; 4470 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4471 case bitc::MODULE_CODE_SOURCE_FILENAME: 4472 SmallString<128> ValueName; 4473 if (convertToString(Record, 0, ValueName)) 4474 return error("Invalid record"); 4475 TheModule->setSourceFileName(ValueName); 4476 break; 4477 } 4478 Record.clear(); 4479 } 4480 return Error::success(); 4481 } 4482 4483 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4484 bool IsImporting, 4485 DataLayoutCallbackTy DataLayoutCallback) { 4486 TheModule = M; 4487 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4488 [&](unsigned ID) { return getTypeByID(ID); }); 4489 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4490 } 4491 4492 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4493 if (!isa<PointerType>(PtrType)) 4494 return error("Load/Store operand is not a pointer type"); 4495 4496 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4497 return error("Explicit load/store type does not match pointee " 4498 "type of pointer operand"); 4499 if (!PointerType::isLoadableOrStorableType(ValType)) 4500 return error("Cannot load/store from pointer"); 4501 return Error::success(); 4502 } 4503 4504 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4505 ArrayRef<unsigned> ArgTyIDs) { 4506 AttributeList Attrs = CB->getAttributes(); 4507 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4508 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4509 Attribute::InAlloca}) { 4510 if (!Attrs.hasParamAttr(i, Kind) || 4511 Attrs.getParamAttr(i, Kind).getValueAsType()) 4512 continue; 4513 4514 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4515 if (!PtrEltTy) 4516 return error("Missing element type for typed attribute upgrade"); 4517 4518 Attribute NewAttr; 4519 switch (Kind) { 4520 case Attribute::ByVal: 4521 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4522 break; 4523 case Attribute::StructRet: 4524 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4525 break; 4526 case Attribute::InAlloca: 4527 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4528 break; 4529 default: 4530 llvm_unreachable("not an upgraded type attribute"); 4531 } 4532 4533 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4534 } 4535 } 4536 4537 if (CB->isInlineAsm()) { 4538 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4539 unsigned ArgNo = 0; 4540 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4541 if (!CI.hasArg()) 4542 continue; 4543 4544 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4545 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4546 if (!ElemTy) 4547 return error("Missing element type for inline asm upgrade"); 4548 Attrs = Attrs.addParamAttribute( 4549 Context, ArgNo, 4550 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4551 } 4552 4553 ArgNo++; 4554 } 4555 } 4556 4557 switch (CB->getIntrinsicID()) { 4558 case Intrinsic::preserve_array_access_index: 4559 case Intrinsic::preserve_struct_access_index: 4560 case Intrinsic::aarch64_ldaxr: 4561 case Intrinsic::aarch64_ldxr: 4562 case Intrinsic::aarch64_stlxr: 4563 case Intrinsic::aarch64_stxr: 4564 case Intrinsic::arm_ldaex: 4565 case Intrinsic::arm_ldrex: 4566 case Intrinsic::arm_stlex: 4567 case Intrinsic::arm_strex: { 4568 unsigned ArgNo; 4569 switch (CB->getIntrinsicID()) { 4570 case Intrinsic::aarch64_stlxr: 4571 case Intrinsic::aarch64_stxr: 4572 case Intrinsic::arm_stlex: 4573 case Intrinsic::arm_strex: 4574 ArgNo = 1; 4575 break; 4576 default: 4577 ArgNo = 0; 4578 break; 4579 } 4580 if (!Attrs.getParamElementType(ArgNo)) { 4581 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4582 if (!ElTy) 4583 return error("Missing element type for elementtype upgrade"); 4584 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4585 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4586 } 4587 break; 4588 } 4589 default: 4590 break; 4591 } 4592 4593 CB->setAttributes(Attrs); 4594 return Error::success(); 4595 } 4596 4597 /// Lazily parse the specified function body block. 4598 Error BitcodeReader::parseFunctionBody(Function *F) { 4599 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4600 return Err; 4601 4602 // Unexpected unresolved metadata when parsing function. 4603 if (MDLoader->hasFwdRefs()) 4604 return error("Invalid function metadata: incoming forward references"); 4605 4606 InstructionList.clear(); 4607 unsigned ModuleValueListSize = ValueList.size(); 4608 unsigned ModuleMDLoaderSize = MDLoader->size(); 4609 4610 // Add all the function arguments to the value table. 4611 unsigned ArgNo = 0; 4612 unsigned FTyID = FunctionTypeIDs[F]; 4613 for (Argument &I : F->args()) { 4614 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4615 assert(I.getType() == getTypeByID(ArgTyID) && 4616 "Incorrect fully specified type for Function Argument"); 4617 ValueList.push_back(&I, ArgTyID); 4618 ++ArgNo; 4619 } 4620 unsigned NextValueNo = ValueList.size(); 4621 BasicBlock *CurBB = nullptr; 4622 unsigned CurBBNo = 0; 4623 // Block into which constant expressions from phi nodes are materialized. 4624 BasicBlock *PhiConstExprBB = nullptr; 4625 // Edge blocks for phi nodes into which constant expressions have been 4626 // expanded. 4627 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4628 ConstExprEdgeBBs; 4629 4630 DebugLoc LastLoc; 4631 auto getLastInstruction = [&]() -> Instruction * { 4632 if (CurBB && !CurBB->empty()) 4633 return &CurBB->back(); 4634 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4635 !FunctionBBs[CurBBNo - 1]->empty()) 4636 return &FunctionBBs[CurBBNo - 1]->back(); 4637 return nullptr; 4638 }; 4639 4640 std::vector<OperandBundleDef> OperandBundles; 4641 4642 // Read all the records. 4643 SmallVector<uint64_t, 64> Record; 4644 4645 while (true) { 4646 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4647 if (!MaybeEntry) 4648 return MaybeEntry.takeError(); 4649 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4650 4651 switch (Entry.Kind) { 4652 case BitstreamEntry::Error: 4653 return error("Malformed block"); 4654 case BitstreamEntry::EndBlock: 4655 goto OutOfRecordLoop; 4656 4657 case BitstreamEntry::SubBlock: 4658 switch (Entry.ID) { 4659 default: // Skip unknown content. 4660 if (Error Err = Stream.SkipBlock()) 4661 return Err; 4662 break; 4663 case bitc::CONSTANTS_BLOCK_ID: 4664 if (Error Err = parseConstants()) 4665 return Err; 4666 NextValueNo = ValueList.size(); 4667 break; 4668 case bitc::VALUE_SYMTAB_BLOCK_ID: 4669 if (Error Err = parseValueSymbolTable()) 4670 return Err; 4671 break; 4672 case bitc::METADATA_ATTACHMENT_ID: 4673 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4674 return Err; 4675 break; 4676 case bitc::METADATA_BLOCK_ID: 4677 assert(DeferredMetadataInfo.empty() && 4678 "Must read all module-level metadata before function-level"); 4679 if (Error Err = MDLoader->parseFunctionMetadata()) 4680 return Err; 4681 break; 4682 case bitc::USELIST_BLOCK_ID: 4683 if (Error Err = parseUseLists()) 4684 return Err; 4685 break; 4686 } 4687 continue; 4688 4689 case BitstreamEntry::Record: 4690 // The interesting case. 4691 break; 4692 } 4693 4694 // Read a record. 4695 Record.clear(); 4696 Instruction *I = nullptr; 4697 unsigned ResTypeID = InvalidTypeID; 4698 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4699 if (!MaybeBitCode) 4700 return MaybeBitCode.takeError(); 4701 switch (unsigned BitCode = MaybeBitCode.get()) { 4702 default: // Default behavior: reject 4703 return error("Invalid value"); 4704 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4705 if (Record.empty() || Record[0] == 0) 4706 return error("Invalid record"); 4707 // Create all the basic blocks for the function. 4708 FunctionBBs.resize(Record[0]); 4709 4710 // See if anything took the address of blocks in this function. 4711 auto BBFRI = BasicBlockFwdRefs.find(F); 4712 if (BBFRI == BasicBlockFwdRefs.end()) { 4713 for (BasicBlock *&BB : FunctionBBs) 4714 BB = BasicBlock::Create(Context, "", F); 4715 } else { 4716 auto &BBRefs = BBFRI->second; 4717 // Check for invalid basic block references. 4718 if (BBRefs.size() > FunctionBBs.size()) 4719 return error("Invalid ID"); 4720 assert(!BBRefs.empty() && "Unexpected empty array"); 4721 assert(!BBRefs.front() && "Invalid reference to entry block"); 4722 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4723 ++I) 4724 if (I < RE && BBRefs[I]) { 4725 BBRefs[I]->insertInto(F); 4726 FunctionBBs[I] = BBRefs[I]; 4727 } else { 4728 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4729 } 4730 4731 // Erase from the table. 4732 BasicBlockFwdRefs.erase(BBFRI); 4733 } 4734 4735 CurBB = FunctionBBs[0]; 4736 continue; 4737 } 4738 4739 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4740 // The record should not be emitted if it's an empty list. 4741 if (Record.empty()) 4742 return error("Invalid record"); 4743 // When we have the RARE case of a BlockAddress Constant that is not 4744 // scoped to the Function it refers to, we need to conservatively 4745 // materialize the referred to Function, regardless of whether or not 4746 // that Function will ultimately be linked, otherwise users of 4747 // BitcodeReader might start splicing out Function bodies such that we 4748 // might no longer be able to materialize the BlockAddress since the 4749 // BasicBlock (and entire body of the Function) the BlockAddress refers 4750 // to may have been moved. In the case that the user of BitcodeReader 4751 // decides ultimately not to link the Function body, materializing here 4752 // could be considered wasteful, but it's better than a deserialization 4753 // failure as described. This keeps BitcodeReader unaware of complex 4754 // linkage policy decisions such as those use by LTO, leaving those 4755 // decisions "one layer up." 4756 for (uint64_t ValID : Record) 4757 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4758 BackwardRefFunctions.push_back(F); 4759 else 4760 return error("Invalid record"); 4761 4762 continue; 4763 4764 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4765 // This record indicates that the last instruction is at the same 4766 // location as the previous instruction with a location. 4767 I = getLastInstruction(); 4768 4769 if (!I) 4770 return error("Invalid record"); 4771 I->setDebugLoc(LastLoc); 4772 I = nullptr; 4773 continue; 4774 4775 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4776 I = getLastInstruction(); 4777 if (!I || Record.size() < 4) 4778 return error("Invalid record"); 4779 4780 unsigned Line = Record[0], Col = Record[1]; 4781 unsigned ScopeID = Record[2], IAID = Record[3]; 4782 bool isImplicitCode = Record.size() == 5 && Record[4]; 4783 4784 MDNode *Scope = nullptr, *IA = nullptr; 4785 if (ScopeID) { 4786 Scope = dyn_cast_or_null<MDNode>( 4787 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4788 if (!Scope) 4789 return error("Invalid record"); 4790 } 4791 if (IAID) { 4792 IA = dyn_cast_or_null<MDNode>( 4793 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4794 if (!IA) 4795 return error("Invalid record"); 4796 } 4797 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4798 isImplicitCode); 4799 I->setDebugLoc(LastLoc); 4800 I = nullptr; 4801 continue; 4802 } 4803 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4804 unsigned OpNum = 0; 4805 Value *LHS; 4806 unsigned TypeID; 4807 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4808 OpNum+1 > Record.size()) 4809 return error("Invalid record"); 4810 4811 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4812 if (Opc == -1) 4813 return error("Invalid record"); 4814 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4815 ResTypeID = TypeID; 4816 InstructionList.push_back(I); 4817 if (OpNum < Record.size()) { 4818 if (isa<FPMathOperator>(I)) { 4819 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4820 if (FMF.any()) 4821 I->setFastMathFlags(FMF); 4822 } 4823 } 4824 break; 4825 } 4826 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4827 unsigned OpNum = 0; 4828 Value *LHS, *RHS; 4829 unsigned TypeID; 4830 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4831 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4832 CurBB) || 4833 OpNum+1 > Record.size()) 4834 return error("Invalid record"); 4835 4836 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4837 if (Opc == -1) 4838 return error("Invalid record"); 4839 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4840 ResTypeID = TypeID; 4841 InstructionList.push_back(I); 4842 if (OpNum < Record.size()) { 4843 if (Opc == Instruction::Add || 4844 Opc == Instruction::Sub || 4845 Opc == Instruction::Mul || 4846 Opc == Instruction::Shl) { 4847 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4848 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4849 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4850 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4851 } else if (Opc == Instruction::SDiv || 4852 Opc == Instruction::UDiv || 4853 Opc == Instruction::LShr || 4854 Opc == Instruction::AShr) { 4855 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4856 cast<BinaryOperator>(I)->setIsExact(true); 4857 } else if (isa<FPMathOperator>(I)) { 4858 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4859 if (FMF.any()) 4860 I->setFastMathFlags(FMF); 4861 } 4862 4863 } 4864 break; 4865 } 4866 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4867 unsigned OpNum = 0; 4868 Value *Op; 4869 unsigned OpTypeID; 4870 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4871 OpNum+2 != Record.size()) 4872 return error("Invalid record"); 4873 4874 ResTypeID = Record[OpNum]; 4875 Type *ResTy = getTypeByID(ResTypeID); 4876 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4877 if (Opc == -1 || !ResTy) 4878 return error("Invalid record"); 4879 Instruction *Temp = nullptr; 4880 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4881 if (Temp) { 4882 InstructionList.push_back(Temp); 4883 assert(CurBB && "No current BB?"); 4884 Temp->insertInto(CurBB, CurBB->end()); 4885 } 4886 } else { 4887 auto CastOp = (Instruction::CastOps)Opc; 4888 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4889 return error("Invalid cast"); 4890 I = CastInst::Create(CastOp, Op, ResTy); 4891 } 4892 InstructionList.push_back(I); 4893 break; 4894 } 4895 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4896 case bitc::FUNC_CODE_INST_GEP_OLD: 4897 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4898 unsigned OpNum = 0; 4899 4900 unsigned TyID; 4901 Type *Ty; 4902 bool InBounds; 4903 4904 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4905 InBounds = Record[OpNum++]; 4906 TyID = Record[OpNum++]; 4907 Ty = getTypeByID(TyID); 4908 } else { 4909 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4910 TyID = InvalidTypeID; 4911 Ty = nullptr; 4912 } 4913 4914 Value *BasePtr; 4915 unsigned BasePtrTypeID; 4916 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4917 CurBB)) 4918 return error("Invalid record"); 4919 4920 if (!Ty) { 4921 TyID = getContainedTypeID(BasePtrTypeID); 4922 if (BasePtr->getType()->isVectorTy()) 4923 TyID = getContainedTypeID(TyID); 4924 Ty = getTypeByID(TyID); 4925 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4926 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4927 return error( 4928 "Explicit gep type does not match pointee type of pointer operand"); 4929 } 4930 4931 SmallVector<Value*, 16> GEPIdx; 4932 while (OpNum != Record.size()) { 4933 Value *Op; 4934 unsigned OpTypeID; 4935 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4936 return error("Invalid record"); 4937 GEPIdx.push_back(Op); 4938 } 4939 4940 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4941 4942 ResTypeID = TyID; 4943 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4944 auto GTI = std::next(gep_type_begin(I)); 4945 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4946 unsigned SubType = 0; 4947 if (GTI.isStruct()) { 4948 ConstantInt *IdxC = 4949 Idx->getType()->isVectorTy() 4950 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4951 : cast<ConstantInt>(Idx); 4952 SubType = IdxC->getZExtValue(); 4953 } 4954 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4955 ++GTI; 4956 } 4957 } 4958 4959 // At this point ResTypeID is the result element type. We need a pointer 4960 // or vector of pointer to it. 4961 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4962 if (I->getType()->isVectorTy()) 4963 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4964 4965 InstructionList.push_back(I); 4966 if (InBounds) 4967 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4968 break; 4969 } 4970 4971 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4972 // EXTRACTVAL: [opty, opval, n x indices] 4973 unsigned OpNum = 0; 4974 Value *Agg; 4975 unsigned AggTypeID; 4976 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4977 return error("Invalid record"); 4978 Type *Ty = Agg->getType(); 4979 4980 unsigned RecSize = Record.size(); 4981 if (OpNum == RecSize) 4982 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4983 4984 SmallVector<unsigned, 4> EXTRACTVALIdx; 4985 ResTypeID = AggTypeID; 4986 for (; OpNum != RecSize; ++OpNum) { 4987 bool IsArray = Ty->isArrayTy(); 4988 bool IsStruct = Ty->isStructTy(); 4989 uint64_t Index = Record[OpNum]; 4990 4991 if (!IsStruct && !IsArray) 4992 return error("EXTRACTVAL: Invalid type"); 4993 if ((unsigned)Index != Index) 4994 return error("Invalid value"); 4995 if (IsStruct && Index >= Ty->getStructNumElements()) 4996 return error("EXTRACTVAL: Invalid struct index"); 4997 if (IsArray && Index >= Ty->getArrayNumElements()) 4998 return error("EXTRACTVAL: Invalid array index"); 4999 EXTRACTVALIdx.push_back((unsigned)Index); 5000 5001 if (IsStruct) { 5002 Ty = Ty->getStructElementType(Index); 5003 ResTypeID = getContainedTypeID(ResTypeID, Index); 5004 } else { 5005 Ty = Ty->getArrayElementType(); 5006 ResTypeID = getContainedTypeID(ResTypeID); 5007 } 5008 } 5009 5010 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5011 InstructionList.push_back(I); 5012 break; 5013 } 5014 5015 case bitc::FUNC_CODE_INST_INSERTVAL: { 5016 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5017 unsigned OpNum = 0; 5018 Value *Agg; 5019 unsigned AggTypeID; 5020 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5021 return error("Invalid record"); 5022 Value *Val; 5023 unsigned ValTypeID; 5024 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5025 return error("Invalid record"); 5026 5027 unsigned RecSize = Record.size(); 5028 if (OpNum == RecSize) 5029 return error("INSERTVAL: Invalid instruction with 0 indices"); 5030 5031 SmallVector<unsigned, 4> INSERTVALIdx; 5032 Type *CurTy = Agg->getType(); 5033 for (; OpNum != RecSize; ++OpNum) { 5034 bool IsArray = CurTy->isArrayTy(); 5035 bool IsStruct = CurTy->isStructTy(); 5036 uint64_t Index = Record[OpNum]; 5037 5038 if (!IsStruct && !IsArray) 5039 return error("INSERTVAL: Invalid type"); 5040 if ((unsigned)Index != Index) 5041 return error("Invalid value"); 5042 if (IsStruct && Index >= CurTy->getStructNumElements()) 5043 return error("INSERTVAL: Invalid struct index"); 5044 if (IsArray && Index >= CurTy->getArrayNumElements()) 5045 return error("INSERTVAL: Invalid array index"); 5046 5047 INSERTVALIdx.push_back((unsigned)Index); 5048 if (IsStruct) 5049 CurTy = CurTy->getStructElementType(Index); 5050 else 5051 CurTy = CurTy->getArrayElementType(); 5052 } 5053 5054 if (CurTy != Val->getType()) 5055 return error("Inserted value type doesn't match aggregate type"); 5056 5057 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5058 ResTypeID = AggTypeID; 5059 InstructionList.push_back(I); 5060 break; 5061 } 5062 5063 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5064 // obsolete form of select 5065 // handles select i1 ... in old bitcode 5066 unsigned OpNum = 0; 5067 Value *TrueVal, *FalseVal, *Cond; 5068 unsigned TypeID; 5069 Type *CondType = Type::getInt1Ty(Context); 5070 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5071 CurBB) || 5072 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5073 FalseVal, CurBB) || 5074 popValue(Record, OpNum, NextValueNo, CondType, 5075 getVirtualTypeID(CondType), Cond, CurBB)) 5076 return error("Invalid record"); 5077 5078 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5079 ResTypeID = TypeID; 5080 InstructionList.push_back(I); 5081 break; 5082 } 5083 5084 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5085 // new form of select 5086 // handles select i1 or select [N x i1] 5087 unsigned OpNum = 0; 5088 Value *TrueVal, *FalseVal, *Cond; 5089 unsigned ValTypeID, CondTypeID; 5090 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5091 CurBB) || 5092 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5093 FalseVal, CurBB) || 5094 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5095 return error("Invalid record"); 5096 5097 // select condition can be either i1 or [N x i1] 5098 if (VectorType* vector_type = 5099 dyn_cast<VectorType>(Cond->getType())) { 5100 // expect <n x i1> 5101 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5102 return error("Invalid type for value"); 5103 } else { 5104 // expect i1 5105 if (Cond->getType() != Type::getInt1Ty(Context)) 5106 return error("Invalid type for value"); 5107 } 5108 5109 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5110 ResTypeID = ValTypeID; 5111 InstructionList.push_back(I); 5112 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5113 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5114 if (FMF.any()) 5115 I->setFastMathFlags(FMF); 5116 } 5117 break; 5118 } 5119 5120 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5121 unsigned OpNum = 0; 5122 Value *Vec, *Idx; 5123 unsigned VecTypeID, IdxTypeID; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5125 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5126 return error("Invalid record"); 5127 if (!Vec->getType()->isVectorTy()) 5128 return error("Invalid type for value"); 5129 I = ExtractElementInst::Create(Vec, Idx); 5130 ResTypeID = getContainedTypeID(VecTypeID); 5131 InstructionList.push_back(I); 5132 break; 5133 } 5134 5135 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5136 unsigned OpNum = 0; 5137 Value *Vec, *Elt, *Idx; 5138 unsigned VecTypeID, IdxTypeID; 5139 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5140 return error("Invalid record"); 5141 if (!Vec->getType()->isVectorTy()) 5142 return error("Invalid type for value"); 5143 if (popValue(Record, OpNum, NextValueNo, 5144 cast<VectorType>(Vec->getType())->getElementType(), 5145 getContainedTypeID(VecTypeID), Elt, CurBB) || 5146 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5147 return error("Invalid record"); 5148 I = InsertElementInst::Create(Vec, Elt, Idx); 5149 ResTypeID = VecTypeID; 5150 InstructionList.push_back(I); 5151 break; 5152 } 5153 5154 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5155 unsigned OpNum = 0; 5156 Value *Vec1, *Vec2, *Mask; 5157 unsigned Vec1TypeID; 5158 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5159 CurBB) || 5160 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5161 Vec2, CurBB)) 5162 return error("Invalid record"); 5163 5164 unsigned MaskTypeID; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5166 return error("Invalid record"); 5167 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5168 return error("Invalid type for value"); 5169 5170 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5171 ResTypeID = 5172 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5173 InstructionList.push_back(I); 5174 break; 5175 } 5176 5177 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5178 // Old form of ICmp/FCmp returning bool 5179 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5180 // both legal on vectors but had different behaviour. 5181 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5182 // FCmp/ICmp returning bool or vector of bool 5183 5184 unsigned OpNum = 0; 5185 Value *LHS, *RHS; 5186 unsigned LHSTypeID; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5188 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5189 CurBB)) 5190 return error("Invalid record"); 5191 5192 if (OpNum >= Record.size()) 5193 return error( 5194 "Invalid record: operand number exceeded available operands"); 5195 5196 unsigned PredVal = Record[OpNum]; 5197 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5198 FastMathFlags FMF; 5199 if (IsFP && Record.size() > OpNum+1) 5200 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5201 5202 if (OpNum+1 != Record.size()) 5203 return error("Invalid record"); 5204 5205 if (LHS->getType()->isFPOrFPVectorTy()) 5206 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5207 else 5208 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5209 5210 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5211 if (LHS->getType()->isVectorTy()) 5212 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5213 5214 if (FMF.any()) 5215 I->setFastMathFlags(FMF); 5216 InstructionList.push_back(I); 5217 break; 5218 } 5219 5220 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5221 { 5222 unsigned Size = Record.size(); 5223 if (Size == 0) { 5224 I = ReturnInst::Create(Context); 5225 InstructionList.push_back(I); 5226 break; 5227 } 5228 5229 unsigned OpNum = 0; 5230 Value *Op = nullptr; 5231 unsigned OpTypeID; 5232 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5233 return error("Invalid record"); 5234 if (OpNum != Record.size()) 5235 return error("Invalid record"); 5236 5237 I = ReturnInst::Create(Context, Op); 5238 InstructionList.push_back(I); 5239 break; 5240 } 5241 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5242 if (Record.size() != 1 && Record.size() != 3) 5243 return error("Invalid record"); 5244 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5245 if (!TrueDest) 5246 return error("Invalid record"); 5247 5248 if (Record.size() == 1) { 5249 I = BranchInst::Create(TrueDest); 5250 InstructionList.push_back(I); 5251 } 5252 else { 5253 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5254 Type *CondType = Type::getInt1Ty(Context); 5255 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5256 getVirtualTypeID(CondType), CurBB); 5257 if (!FalseDest || !Cond) 5258 return error("Invalid record"); 5259 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5260 InstructionList.push_back(I); 5261 } 5262 break; 5263 } 5264 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5265 if (Record.size() != 1 && Record.size() != 2) 5266 return error("Invalid record"); 5267 unsigned Idx = 0; 5268 Type *TokenTy = Type::getTokenTy(Context); 5269 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5270 getVirtualTypeID(TokenTy), CurBB); 5271 if (!CleanupPad) 5272 return error("Invalid record"); 5273 BasicBlock *UnwindDest = nullptr; 5274 if (Record.size() == 2) { 5275 UnwindDest = getBasicBlock(Record[Idx++]); 5276 if (!UnwindDest) 5277 return error("Invalid record"); 5278 } 5279 5280 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5281 InstructionList.push_back(I); 5282 break; 5283 } 5284 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5285 if (Record.size() != 2) 5286 return error("Invalid record"); 5287 unsigned Idx = 0; 5288 Type *TokenTy = Type::getTokenTy(Context); 5289 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5290 getVirtualTypeID(TokenTy), CurBB); 5291 if (!CatchPad) 5292 return error("Invalid record"); 5293 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5294 if (!BB) 5295 return error("Invalid record"); 5296 5297 I = CatchReturnInst::Create(CatchPad, BB); 5298 InstructionList.push_back(I); 5299 break; 5300 } 5301 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5302 // We must have, at minimum, the outer scope and the number of arguments. 5303 if (Record.size() < 2) 5304 return error("Invalid record"); 5305 5306 unsigned Idx = 0; 5307 5308 Type *TokenTy = Type::getTokenTy(Context); 5309 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5310 getVirtualTypeID(TokenTy), CurBB); 5311 5312 unsigned NumHandlers = Record[Idx++]; 5313 5314 SmallVector<BasicBlock *, 2> Handlers; 5315 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5316 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5317 if (!BB) 5318 return error("Invalid record"); 5319 Handlers.push_back(BB); 5320 } 5321 5322 BasicBlock *UnwindDest = nullptr; 5323 if (Idx + 1 == Record.size()) { 5324 UnwindDest = getBasicBlock(Record[Idx++]); 5325 if (!UnwindDest) 5326 return error("Invalid record"); 5327 } 5328 5329 if (Record.size() != Idx) 5330 return error("Invalid record"); 5331 5332 auto *CatchSwitch = 5333 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5334 for (BasicBlock *Handler : Handlers) 5335 CatchSwitch->addHandler(Handler); 5336 I = CatchSwitch; 5337 ResTypeID = getVirtualTypeID(I->getType()); 5338 InstructionList.push_back(I); 5339 break; 5340 } 5341 case bitc::FUNC_CODE_INST_CATCHPAD: 5342 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5343 // We must have, at minimum, the outer scope and the number of arguments. 5344 if (Record.size() < 2) 5345 return error("Invalid record"); 5346 5347 unsigned Idx = 0; 5348 5349 Type *TokenTy = Type::getTokenTy(Context); 5350 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5351 getVirtualTypeID(TokenTy), CurBB); 5352 5353 unsigned NumArgOperands = Record[Idx++]; 5354 5355 SmallVector<Value *, 2> Args; 5356 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5357 Value *Val; 5358 unsigned ValTypeID; 5359 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5360 return error("Invalid record"); 5361 Args.push_back(Val); 5362 } 5363 5364 if (Record.size() != Idx) 5365 return error("Invalid record"); 5366 5367 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5368 I = CleanupPadInst::Create(ParentPad, Args); 5369 else 5370 I = CatchPadInst::Create(ParentPad, Args); 5371 ResTypeID = getVirtualTypeID(I->getType()); 5372 InstructionList.push_back(I); 5373 break; 5374 } 5375 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5376 // Check magic 5377 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5378 // "New" SwitchInst format with case ranges. The changes to write this 5379 // format were reverted but we still recognize bitcode that uses it. 5380 // Hopefully someday we will have support for case ranges and can use 5381 // this format again. 5382 5383 unsigned OpTyID = Record[1]; 5384 Type *OpTy = getTypeByID(OpTyID); 5385 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5386 5387 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5388 BasicBlock *Default = getBasicBlock(Record[3]); 5389 if (!OpTy || !Cond || !Default) 5390 return error("Invalid record"); 5391 5392 unsigned NumCases = Record[4]; 5393 5394 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5395 InstructionList.push_back(SI); 5396 5397 unsigned CurIdx = 5; 5398 for (unsigned i = 0; i != NumCases; ++i) { 5399 SmallVector<ConstantInt*, 1> CaseVals; 5400 unsigned NumItems = Record[CurIdx++]; 5401 for (unsigned ci = 0; ci != NumItems; ++ci) { 5402 bool isSingleNumber = Record[CurIdx++]; 5403 5404 APInt Low; 5405 unsigned ActiveWords = 1; 5406 if (ValueBitWidth > 64) 5407 ActiveWords = Record[CurIdx++]; 5408 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5409 ValueBitWidth); 5410 CurIdx += ActiveWords; 5411 5412 if (!isSingleNumber) { 5413 ActiveWords = 1; 5414 if (ValueBitWidth > 64) 5415 ActiveWords = Record[CurIdx++]; 5416 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5417 ValueBitWidth); 5418 CurIdx += ActiveWords; 5419 5420 // FIXME: It is not clear whether values in the range should be 5421 // compared as signed or unsigned values. The partially 5422 // implemented changes that used this format in the past used 5423 // unsigned comparisons. 5424 for ( ; Low.ule(High); ++Low) 5425 CaseVals.push_back(ConstantInt::get(Context, Low)); 5426 } else 5427 CaseVals.push_back(ConstantInt::get(Context, Low)); 5428 } 5429 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5430 for (ConstantInt *Cst : CaseVals) 5431 SI->addCase(Cst, DestBB); 5432 } 5433 I = SI; 5434 break; 5435 } 5436 5437 // Old SwitchInst format without case ranges. 5438 5439 if (Record.size() < 3 || (Record.size() & 1) == 0) 5440 return error("Invalid record"); 5441 unsigned OpTyID = Record[0]; 5442 Type *OpTy = getTypeByID(OpTyID); 5443 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5444 BasicBlock *Default = getBasicBlock(Record[2]); 5445 if (!OpTy || !Cond || !Default) 5446 return error("Invalid record"); 5447 unsigned NumCases = (Record.size()-3)/2; 5448 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5449 InstructionList.push_back(SI); 5450 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5451 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5452 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5453 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5454 if (!CaseVal || !DestBB) { 5455 delete SI; 5456 return error("Invalid record"); 5457 } 5458 SI->addCase(CaseVal, DestBB); 5459 } 5460 I = SI; 5461 break; 5462 } 5463 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5464 if (Record.size() < 2) 5465 return error("Invalid record"); 5466 unsigned OpTyID = Record[0]; 5467 Type *OpTy = getTypeByID(OpTyID); 5468 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5469 if (!OpTy || !Address) 5470 return error("Invalid record"); 5471 unsigned NumDests = Record.size()-2; 5472 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5473 InstructionList.push_back(IBI); 5474 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5475 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5476 IBI->addDestination(DestBB); 5477 } else { 5478 delete IBI; 5479 return error("Invalid record"); 5480 } 5481 } 5482 I = IBI; 5483 break; 5484 } 5485 5486 case bitc::FUNC_CODE_INST_INVOKE: { 5487 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5488 if (Record.size() < 4) 5489 return error("Invalid record"); 5490 unsigned OpNum = 0; 5491 AttributeList PAL = getAttributes(Record[OpNum++]); 5492 unsigned CCInfo = Record[OpNum++]; 5493 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5494 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5495 5496 unsigned FTyID = InvalidTypeID; 5497 FunctionType *FTy = nullptr; 5498 if ((CCInfo >> 13) & 1) { 5499 FTyID = Record[OpNum++]; 5500 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5501 if (!FTy) 5502 return error("Explicit invoke type is not a function type"); 5503 } 5504 5505 Value *Callee; 5506 unsigned CalleeTypeID; 5507 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5508 CurBB)) 5509 return error("Invalid record"); 5510 5511 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5512 if (!CalleeTy) 5513 return error("Callee is not a pointer"); 5514 if (!FTy) { 5515 FTyID = getContainedTypeID(CalleeTypeID); 5516 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5517 if (!FTy) 5518 return error("Callee is not of pointer to function type"); 5519 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5520 return error("Explicit invoke type does not match pointee type of " 5521 "callee operand"); 5522 if (Record.size() < FTy->getNumParams() + OpNum) 5523 return error("Insufficient operands to call"); 5524 5525 SmallVector<Value*, 16> Ops; 5526 SmallVector<unsigned, 16> ArgTyIDs; 5527 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5528 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5529 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5530 ArgTyID, CurBB)); 5531 ArgTyIDs.push_back(ArgTyID); 5532 if (!Ops.back()) 5533 return error("Invalid record"); 5534 } 5535 5536 if (!FTy->isVarArg()) { 5537 if (Record.size() != OpNum) 5538 return error("Invalid record"); 5539 } else { 5540 // Read type/value pairs for varargs params. 5541 while (OpNum != Record.size()) { 5542 Value *Op; 5543 unsigned OpTypeID; 5544 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5545 return error("Invalid record"); 5546 Ops.push_back(Op); 5547 ArgTyIDs.push_back(OpTypeID); 5548 } 5549 } 5550 5551 // Upgrade the bundles if needed. 5552 if (!OperandBundles.empty()) 5553 UpgradeOperandBundles(OperandBundles); 5554 5555 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5556 OperandBundles); 5557 ResTypeID = getContainedTypeID(FTyID); 5558 OperandBundles.clear(); 5559 InstructionList.push_back(I); 5560 cast<InvokeInst>(I)->setCallingConv( 5561 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5562 cast<InvokeInst>(I)->setAttributes(PAL); 5563 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5564 I->deleteValue(); 5565 return Err; 5566 } 5567 5568 break; 5569 } 5570 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5571 unsigned Idx = 0; 5572 Value *Val = nullptr; 5573 unsigned ValTypeID; 5574 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5575 return error("Invalid record"); 5576 I = ResumeInst::Create(Val); 5577 InstructionList.push_back(I); 5578 break; 5579 } 5580 case bitc::FUNC_CODE_INST_CALLBR: { 5581 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5582 unsigned OpNum = 0; 5583 AttributeList PAL = getAttributes(Record[OpNum++]); 5584 unsigned CCInfo = Record[OpNum++]; 5585 5586 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5587 unsigned NumIndirectDests = Record[OpNum++]; 5588 SmallVector<BasicBlock *, 16> IndirectDests; 5589 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5590 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5591 5592 unsigned FTyID = InvalidTypeID; 5593 FunctionType *FTy = nullptr; 5594 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5595 FTyID = Record[OpNum++]; 5596 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5597 if (!FTy) 5598 return error("Explicit call type is not a function type"); 5599 } 5600 5601 Value *Callee; 5602 unsigned CalleeTypeID; 5603 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5604 CurBB)) 5605 return error("Invalid record"); 5606 5607 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5608 if (!OpTy) 5609 return error("Callee is not a pointer type"); 5610 if (!FTy) { 5611 FTyID = getContainedTypeID(CalleeTypeID); 5612 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5613 if (!FTy) 5614 return error("Callee is not of pointer to function type"); 5615 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5616 return error("Explicit call type does not match pointee type of " 5617 "callee operand"); 5618 if (Record.size() < FTy->getNumParams() + OpNum) 5619 return error("Insufficient operands to call"); 5620 5621 SmallVector<Value*, 16> Args; 5622 SmallVector<unsigned, 16> ArgTyIDs; 5623 // Read the fixed params. 5624 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5625 Value *Arg; 5626 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5627 if (FTy->getParamType(i)->isLabelTy()) 5628 Arg = getBasicBlock(Record[OpNum]); 5629 else 5630 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5631 ArgTyID, CurBB); 5632 if (!Arg) 5633 return error("Invalid record"); 5634 Args.push_back(Arg); 5635 ArgTyIDs.push_back(ArgTyID); 5636 } 5637 5638 // Read type/value pairs for varargs params. 5639 if (!FTy->isVarArg()) { 5640 if (OpNum != Record.size()) 5641 return error("Invalid record"); 5642 } else { 5643 while (OpNum != Record.size()) { 5644 Value *Op; 5645 unsigned OpTypeID; 5646 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5647 return error("Invalid record"); 5648 Args.push_back(Op); 5649 ArgTyIDs.push_back(OpTypeID); 5650 } 5651 } 5652 5653 // Upgrade the bundles if needed. 5654 if (!OperandBundles.empty()) 5655 UpgradeOperandBundles(OperandBundles); 5656 5657 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5658 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5659 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5660 return CI.Type == InlineAsm::isLabel; 5661 }; 5662 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5663 // Upgrade explicit blockaddress arguments to label constraints. 5664 // Verify that the last arguments are blockaddress arguments that 5665 // match the indirect destinations. Clang always generates callbr 5666 // in this form. We could support reordering with more effort. 5667 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5668 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5669 unsigned LabelNo = ArgNo - FirstBlockArg; 5670 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5671 if (!BA || BA->getFunction() != F || 5672 LabelNo > IndirectDests.size() || 5673 BA->getBasicBlock() != IndirectDests[LabelNo]) 5674 return error("callbr argument does not match indirect dest"); 5675 } 5676 5677 // Remove blockaddress arguments. 5678 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5679 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5680 5681 // Recreate the function type with less arguments. 5682 SmallVector<Type *> ArgTys; 5683 for (Value *Arg : Args) 5684 ArgTys.push_back(Arg->getType()); 5685 FTy = 5686 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5687 5688 // Update constraint string to use label constraints. 5689 std::string Constraints = IA->getConstraintString(); 5690 unsigned ArgNo = 0; 5691 size_t Pos = 0; 5692 for (const auto &CI : ConstraintInfo) { 5693 if (CI.hasArg()) { 5694 if (ArgNo >= FirstBlockArg) 5695 Constraints.insert(Pos, "!"); 5696 ++ArgNo; 5697 } 5698 5699 // Go to next constraint in string. 5700 Pos = Constraints.find(',', Pos); 5701 if (Pos == std::string::npos) 5702 break; 5703 ++Pos; 5704 } 5705 5706 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5707 IA->hasSideEffects(), IA->isAlignStack(), 5708 IA->getDialect(), IA->canThrow()); 5709 } 5710 } 5711 5712 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5713 OperandBundles); 5714 ResTypeID = getContainedTypeID(FTyID); 5715 OperandBundles.clear(); 5716 InstructionList.push_back(I); 5717 cast<CallBrInst>(I)->setCallingConv( 5718 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5719 cast<CallBrInst>(I)->setAttributes(PAL); 5720 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5721 I->deleteValue(); 5722 return Err; 5723 } 5724 break; 5725 } 5726 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5727 I = new UnreachableInst(Context); 5728 InstructionList.push_back(I); 5729 break; 5730 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5731 if (Record.empty()) 5732 return error("Invalid phi record"); 5733 // The first record specifies the type. 5734 unsigned TyID = Record[0]; 5735 Type *Ty = getTypeByID(TyID); 5736 if (!Ty) 5737 return error("Invalid phi record"); 5738 5739 // Phi arguments are pairs of records of [value, basic block]. 5740 // There is an optional final record for fast-math-flags if this phi has a 5741 // floating-point type. 5742 size_t NumArgs = (Record.size() - 1) / 2; 5743 PHINode *PN = PHINode::Create(Ty, NumArgs); 5744 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5745 PN->deleteValue(); 5746 return error("Invalid phi record"); 5747 } 5748 InstructionList.push_back(PN); 5749 5750 SmallDenseMap<BasicBlock *, Value *> Args; 5751 for (unsigned i = 0; i != NumArgs; i++) { 5752 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5753 if (!BB) { 5754 PN->deleteValue(); 5755 return error("Invalid phi BB"); 5756 } 5757 5758 // Phi nodes may contain the same predecessor multiple times, in which 5759 // case the incoming value must be identical. Directly reuse the already 5760 // seen value here, to avoid expanding a constant expression multiple 5761 // times. 5762 auto It = Args.find(BB); 5763 if (It != Args.end()) { 5764 PN->addIncoming(It->second, BB); 5765 continue; 5766 } 5767 5768 // If there already is a block for this edge (from a different phi), 5769 // use it. 5770 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5771 if (!EdgeBB) { 5772 // Otherwise, use a temporary block (that we will discard if it 5773 // turns out to be unnecessary). 5774 if (!PhiConstExprBB) 5775 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5776 EdgeBB = PhiConstExprBB; 5777 } 5778 5779 // With the new function encoding, it is possible that operands have 5780 // negative IDs (for forward references). Use a signed VBR 5781 // representation to keep the encoding small. 5782 Value *V; 5783 if (UseRelativeIDs) 5784 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5785 else 5786 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5787 if (!V) { 5788 PN->deleteValue(); 5789 PhiConstExprBB->eraseFromParent(); 5790 return error("Invalid phi record"); 5791 } 5792 5793 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5794 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5795 PhiConstExprBB = nullptr; 5796 } 5797 PN->addIncoming(V, BB); 5798 Args.insert({BB, V}); 5799 } 5800 I = PN; 5801 ResTypeID = TyID; 5802 5803 // If there are an even number of records, the final record must be FMF. 5804 if (Record.size() % 2 == 0) { 5805 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5806 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5807 if (FMF.any()) 5808 I->setFastMathFlags(FMF); 5809 } 5810 5811 break; 5812 } 5813 5814 case bitc::FUNC_CODE_INST_LANDINGPAD: 5815 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5816 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5817 unsigned Idx = 0; 5818 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5819 if (Record.size() < 3) 5820 return error("Invalid record"); 5821 } else { 5822 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5823 if (Record.size() < 4) 5824 return error("Invalid record"); 5825 } 5826 ResTypeID = Record[Idx++]; 5827 Type *Ty = getTypeByID(ResTypeID); 5828 if (!Ty) 5829 return error("Invalid record"); 5830 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5831 Value *PersFn = nullptr; 5832 unsigned PersFnTypeID; 5833 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5834 nullptr)) 5835 return error("Invalid record"); 5836 5837 if (!F->hasPersonalityFn()) 5838 F->setPersonalityFn(cast<Constant>(PersFn)); 5839 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5840 return error("Personality function mismatch"); 5841 } 5842 5843 bool IsCleanup = !!Record[Idx++]; 5844 unsigned NumClauses = Record[Idx++]; 5845 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5846 LP->setCleanup(IsCleanup); 5847 for (unsigned J = 0; J != NumClauses; ++J) { 5848 LandingPadInst::ClauseType CT = 5849 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5850 Value *Val; 5851 unsigned ValTypeID; 5852 5853 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5854 nullptr)) { 5855 delete LP; 5856 return error("Invalid record"); 5857 } 5858 5859 assert((CT != LandingPadInst::Catch || 5860 !isa<ArrayType>(Val->getType())) && 5861 "Catch clause has a invalid type!"); 5862 assert((CT != LandingPadInst::Filter || 5863 isa<ArrayType>(Val->getType())) && 5864 "Filter clause has invalid type!"); 5865 LP->addClause(cast<Constant>(Val)); 5866 } 5867 5868 I = LP; 5869 InstructionList.push_back(I); 5870 break; 5871 } 5872 5873 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5874 if (Record.size() != 4 && Record.size() != 5) 5875 return error("Invalid record"); 5876 using APV = AllocaPackedValues; 5877 const uint64_t Rec = Record[3]; 5878 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5879 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5880 unsigned TyID = Record[0]; 5881 Type *Ty = getTypeByID(TyID); 5882 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5883 TyID = getContainedTypeID(TyID); 5884 Ty = getTypeByID(TyID); 5885 if (!Ty) 5886 return error("Missing element type for old-style alloca"); 5887 } 5888 unsigned OpTyID = Record[1]; 5889 Type *OpTy = getTypeByID(OpTyID); 5890 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5891 MaybeAlign Align; 5892 uint64_t AlignExp = 5893 Bitfield::get<APV::AlignLower>(Rec) | 5894 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5895 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5896 return Err; 5897 } 5898 if (!Ty || !Size) 5899 return error("Invalid record"); 5900 5901 const DataLayout &DL = TheModule->getDataLayout(); 5902 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5903 5904 SmallPtrSet<Type *, 4> Visited; 5905 if (!Align && !Ty->isSized(&Visited)) 5906 return error("alloca of unsized type"); 5907 if (!Align) 5908 Align = DL.getPrefTypeAlign(Ty); 5909 5910 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5911 AI->setUsedWithInAlloca(InAlloca); 5912 AI->setSwiftError(SwiftError); 5913 I = AI; 5914 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5915 InstructionList.push_back(I); 5916 break; 5917 } 5918 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5919 unsigned OpNum = 0; 5920 Value *Op; 5921 unsigned OpTypeID; 5922 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5923 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5924 return error("Invalid record"); 5925 5926 if (!isa<PointerType>(Op->getType())) 5927 return error("Load operand is not a pointer type"); 5928 5929 Type *Ty = nullptr; 5930 if (OpNum + 3 == Record.size()) { 5931 ResTypeID = Record[OpNum++]; 5932 Ty = getTypeByID(ResTypeID); 5933 } else { 5934 ResTypeID = getContainedTypeID(OpTypeID); 5935 Ty = getTypeByID(ResTypeID); 5936 if (!Ty) 5937 return error("Missing element type for old-style load"); 5938 } 5939 5940 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5941 return Err; 5942 5943 MaybeAlign Align; 5944 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5945 return Err; 5946 SmallPtrSet<Type *, 4> Visited; 5947 if (!Align && !Ty->isSized(&Visited)) 5948 return error("load of unsized type"); 5949 if (!Align) 5950 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5951 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5952 InstructionList.push_back(I); 5953 break; 5954 } 5955 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5956 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5957 unsigned OpNum = 0; 5958 Value *Op; 5959 unsigned OpTypeID; 5960 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5961 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5962 return error("Invalid record"); 5963 5964 if (!isa<PointerType>(Op->getType())) 5965 return error("Load operand is not a pointer type"); 5966 5967 Type *Ty = nullptr; 5968 if (OpNum + 5 == Record.size()) { 5969 ResTypeID = Record[OpNum++]; 5970 Ty = getTypeByID(ResTypeID); 5971 } else { 5972 ResTypeID = getContainedTypeID(OpTypeID); 5973 Ty = getTypeByID(ResTypeID); 5974 if (!Ty) 5975 return error("Missing element type for old style atomic load"); 5976 } 5977 5978 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5979 return Err; 5980 5981 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5982 if (Ordering == AtomicOrdering::NotAtomic || 5983 Ordering == AtomicOrdering::Release || 5984 Ordering == AtomicOrdering::AcquireRelease) 5985 return error("Invalid record"); 5986 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5987 return error("Invalid record"); 5988 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5989 5990 MaybeAlign Align; 5991 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5992 return Err; 5993 if (!Align) 5994 return error("Alignment missing from atomic load"); 5995 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5996 InstructionList.push_back(I); 5997 break; 5998 } 5999 case bitc::FUNC_CODE_INST_STORE: 6000 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6001 unsigned OpNum = 0; 6002 Value *Val, *Ptr; 6003 unsigned PtrTypeID, ValTypeID; 6004 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6005 return error("Invalid record"); 6006 6007 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6008 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6009 return error("Invalid record"); 6010 } else { 6011 ValTypeID = getContainedTypeID(PtrTypeID); 6012 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6013 ValTypeID, Val, CurBB)) 6014 return error("Invalid record"); 6015 } 6016 6017 if (OpNum + 2 != Record.size()) 6018 return error("Invalid record"); 6019 6020 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6021 return Err; 6022 MaybeAlign Align; 6023 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6024 return Err; 6025 SmallPtrSet<Type *, 4> Visited; 6026 if (!Align && !Val->getType()->isSized(&Visited)) 6027 return error("store of unsized type"); 6028 if (!Align) 6029 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6030 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6031 InstructionList.push_back(I); 6032 break; 6033 } 6034 case bitc::FUNC_CODE_INST_STOREATOMIC: 6035 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6036 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6037 unsigned OpNum = 0; 6038 Value *Val, *Ptr; 6039 unsigned PtrTypeID, ValTypeID; 6040 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6041 !isa<PointerType>(Ptr->getType())) 6042 return error("Invalid record"); 6043 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6044 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6045 return error("Invalid record"); 6046 } else { 6047 ValTypeID = getContainedTypeID(PtrTypeID); 6048 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6049 ValTypeID, Val, CurBB)) 6050 return error("Invalid record"); 6051 } 6052 6053 if (OpNum + 4 != Record.size()) 6054 return error("Invalid record"); 6055 6056 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6057 return Err; 6058 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6059 if (Ordering == AtomicOrdering::NotAtomic || 6060 Ordering == AtomicOrdering::Acquire || 6061 Ordering == AtomicOrdering::AcquireRelease) 6062 return error("Invalid record"); 6063 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6064 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6065 return error("Invalid record"); 6066 6067 MaybeAlign Align; 6068 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6069 return Err; 6070 if (!Align) 6071 return error("Alignment missing from atomic store"); 6072 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6073 InstructionList.push_back(I); 6074 break; 6075 } 6076 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6077 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6078 // failure_ordering?, weak?] 6079 const size_t NumRecords = Record.size(); 6080 unsigned OpNum = 0; 6081 Value *Ptr = nullptr; 6082 unsigned PtrTypeID; 6083 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6084 return error("Invalid record"); 6085 6086 if (!isa<PointerType>(Ptr->getType())) 6087 return error("Cmpxchg operand is not a pointer type"); 6088 6089 Value *Cmp = nullptr; 6090 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6091 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6092 CmpTypeID, Cmp, CurBB)) 6093 return error("Invalid record"); 6094 6095 Value *New = nullptr; 6096 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6097 New, CurBB) || 6098 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6099 return error("Invalid record"); 6100 6101 const AtomicOrdering SuccessOrdering = 6102 getDecodedOrdering(Record[OpNum + 1]); 6103 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6104 SuccessOrdering == AtomicOrdering::Unordered) 6105 return error("Invalid record"); 6106 6107 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6108 6109 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6110 return Err; 6111 6112 const AtomicOrdering FailureOrdering = 6113 NumRecords < 7 6114 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6115 : getDecodedOrdering(Record[OpNum + 3]); 6116 6117 if (FailureOrdering == AtomicOrdering::NotAtomic || 6118 FailureOrdering == AtomicOrdering::Unordered) 6119 return error("Invalid record"); 6120 6121 const Align Alignment( 6122 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6123 6124 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6125 FailureOrdering, SSID); 6126 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6127 6128 if (NumRecords < 8) { 6129 // Before weak cmpxchgs existed, the instruction simply returned the 6130 // value loaded from memory, so bitcode files from that era will be 6131 // expecting the first component of a modern cmpxchg. 6132 I->insertInto(CurBB, CurBB->end()); 6133 I = ExtractValueInst::Create(I, 0); 6134 ResTypeID = CmpTypeID; 6135 } else { 6136 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6137 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6138 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6139 } 6140 6141 InstructionList.push_back(I); 6142 break; 6143 } 6144 case bitc::FUNC_CODE_INST_CMPXCHG: { 6145 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6146 // failure_ordering, weak, align?] 6147 const size_t NumRecords = Record.size(); 6148 unsigned OpNum = 0; 6149 Value *Ptr = nullptr; 6150 unsigned PtrTypeID; 6151 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6152 return error("Invalid record"); 6153 6154 if (!isa<PointerType>(Ptr->getType())) 6155 return error("Cmpxchg operand is not a pointer type"); 6156 6157 Value *Cmp = nullptr; 6158 unsigned CmpTypeID; 6159 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6160 return error("Invalid record"); 6161 6162 Value *Val = nullptr; 6163 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6164 CurBB)) 6165 return error("Invalid record"); 6166 6167 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6168 return error("Invalid record"); 6169 6170 const bool IsVol = Record[OpNum]; 6171 6172 const AtomicOrdering SuccessOrdering = 6173 getDecodedOrdering(Record[OpNum + 1]); 6174 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6175 return error("Invalid cmpxchg success ordering"); 6176 6177 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6178 6179 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6180 return Err; 6181 6182 const AtomicOrdering FailureOrdering = 6183 getDecodedOrdering(Record[OpNum + 3]); 6184 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6185 return error("Invalid cmpxchg failure ordering"); 6186 6187 const bool IsWeak = Record[OpNum + 4]; 6188 6189 MaybeAlign Alignment; 6190 6191 if (NumRecords == (OpNum + 6)) { 6192 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6193 return Err; 6194 } 6195 if (!Alignment) 6196 Alignment = 6197 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6198 6199 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6200 FailureOrdering, SSID); 6201 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6202 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6203 6204 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6205 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6206 6207 InstructionList.push_back(I); 6208 break; 6209 } 6210 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6211 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6212 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6213 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6214 const size_t NumRecords = Record.size(); 6215 unsigned OpNum = 0; 6216 6217 Value *Ptr = nullptr; 6218 unsigned PtrTypeID; 6219 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6220 return error("Invalid record"); 6221 6222 if (!isa<PointerType>(Ptr->getType())) 6223 return error("Invalid record"); 6224 6225 Value *Val = nullptr; 6226 unsigned ValTypeID = InvalidTypeID; 6227 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6228 ValTypeID = getContainedTypeID(PtrTypeID); 6229 if (popValue(Record, OpNum, NextValueNo, 6230 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6231 return error("Invalid record"); 6232 } else { 6233 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6234 return error("Invalid record"); 6235 } 6236 6237 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6238 return error("Invalid record"); 6239 6240 const AtomicRMWInst::BinOp Operation = 6241 getDecodedRMWOperation(Record[OpNum]); 6242 if (Operation < AtomicRMWInst::FIRST_BINOP || 6243 Operation > AtomicRMWInst::LAST_BINOP) 6244 return error("Invalid record"); 6245 6246 const bool IsVol = Record[OpNum + 1]; 6247 6248 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6249 if (Ordering == AtomicOrdering::NotAtomic || 6250 Ordering == AtomicOrdering::Unordered) 6251 return error("Invalid record"); 6252 6253 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6254 6255 MaybeAlign Alignment; 6256 6257 if (NumRecords == (OpNum + 5)) { 6258 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6259 return Err; 6260 } 6261 6262 if (!Alignment) 6263 Alignment = 6264 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6265 6266 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6267 ResTypeID = ValTypeID; 6268 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6269 6270 InstructionList.push_back(I); 6271 break; 6272 } 6273 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6274 if (2 != Record.size()) 6275 return error("Invalid record"); 6276 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6277 if (Ordering == AtomicOrdering::NotAtomic || 6278 Ordering == AtomicOrdering::Unordered || 6279 Ordering == AtomicOrdering::Monotonic) 6280 return error("Invalid record"); 6281 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6282 I = new FenceInst(Context, Ordering, SSID); 6283 InstructionList.push_back(I); 6284 break; 6285 } 6286 case bitc::FUNC_CODE_INST_CALL: { 6287 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6288 if (Record.size() < 3) 6289 return error("Invalid record"); 6290 6291 unsigned OpNum = 0; 6292 AttributeList PAL = getAttributes(Record[OpNum++]); 6293 unsigned CCInfo = Record[OpNum++]; 6294 6295 FastMathFlags FMF; 6296 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6297 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6298 if (!FMF.any()) 6299 return error("Fast math flags indicator set for call with no FMF"); 6300 } 6301 6302 unsigned FTyID = InvalidTypeID; 6303 FunctionType *FTy = nullptr; 6304 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6305 FTyID = Record[OpNum++]; 6306 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6307 if (!FTy) 6308 return error("Explicit call type is not a function type"); 6309 } 6310 6311 Value *Callee; 6312 unsigned CalleeTypeID; 6313 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6314 CurBB)) 6315 return error("Invalid record"); 6316 6317 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6318 if (!OpTy) 6319 return error("Callee is not a pointer type"); 6320 if (!FTy) { 6321 FTyID = getContainedTypeID(CalleeTypeID); 6322 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6323 if (!FTy) 6324 return error("Callee is not of pointer to function type"); 6325 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6326 return error("Explicit call type does not match pointee type of " 6327 "callee operand"); 6328 if (Record.size() < FTy->getNumParams() + OpNum) 6329 return error("Insufficient operands to call"); 6330 6331 SmallVector<Value*, 16> Args; 6332 SmallVector<unsigned, 16> ArgTyIDs; 6333 // Read the fixed params. 6334 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6335 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6336 if (FTy->getParamType(i)->isLabelTy()) 6337 Args.push_back(getBasicBlock(Record[OpNum])); 6338 else 6339 Args.push_back(getValue(Record, OpNum, NextValueNo, 6340 FTy->getParamType(i), ArgTyID, CurBB)); 6341 ArgTyIDs.push_back(ArgTyID); 6342 if (!Args.back()) 6343 return error("Invalid record"); 6344 } 6345 6346 // Read type/value pairs for varargs params. 6347 if (!FTy->isVarArg()) { 6348 if (OpNum != Record.size()) 6349 return error("Invalid record"); 6350 } else { 6351 while (OpNum != Record.size()) { 6352 Value *Op; 6353 unsigned OpTypeID; 6354 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6355 return error("Invalid record"); 6356 Args.push_back(Op); 6357 ArgTyIDs.push_back(OpTypeID); 6358 } 6359 } 6360 6361 // Upgrade the bundles if needed. 6362 if (!OperandBundles.empty()) 6363 UpgradeOperandBundles(OperandBundles); 6364 6365 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6366 ResTypeID = getContainedTypeID(FTyID); 6367 OperandBundles.clear(); 6368 InstructionList.push_back(I); 6369 cast<CallInst>(I)->setCallingConv( 6370 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6371 CallInst::TailCallKind TCK = CallInst::TCK_None; 6372 if (CCInfo & 1 << bitc::CALL_TAIL) 6373 TCK = CallInst::TCK_Tail; 6374 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6375 TCK = CallInst::TCK_MustTail; 6376 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6377 TCK = CallInst::TCK_NoTail; 6378 cast<CallInst>(I)->setTailCallKind(TCK); 6379 cast<CallInst>(I)->setAttributes(PAL); 6380 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6381 I->deleteValue(); 6382 return Err; 6383 } 6384 if (FMF.any()) { 6385 if (!isa<FPMathOperator>(I)) 6386 return error("Fast-math-flags specified for call without " 6387 "floating-point scalar or vector return type"); 6388 I->setFastMathFlags(FMF); 6389 } 6390 break; 6391 } 6392 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6393 if (Record.size() < 3) 6394 return error("Invalid record"); 6395 unsigned OpTyID = Record[0]; 6396 Type *OpTy = getTypeByID(OpTyID); 6397 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6398 ResTypeID = Record[2]; 6399 Type *ResTy = getTypeByID(ResTypeID); 6400 if (!OpTy || !Op || !ResTy) 6401 return error("Invalid record"); 6402 I = new VAArgInst(Op, ResTy); 6403 InstructionList.push_back(I); 6404 break; 6405 } 6406 6407 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6408 // A call or an invoke can be optionally prefixed with some variable 6409 // number of operand bundle blocks. These blocks are read into 6410 // OperandBundles and consumed at the next call or invoke instruction. 6411 6412 if (Record.empty() || Record[0] >= BundleTags.size()) 6413 return error("Invalid record"); 6414 6415 std::vector<Value *> Inputs; 6416 6417 unsigned OpNum = 1; 6418 while (OpNum != Record.size()) { 6419 Value *Op; 6420 unsigned OpTypeID; 6421 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6422 return error("Invalid record"); 6423 Inputs.push_back(Op); 6424 } 6425 6426 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6427 continue; 6428 } 6429 6430 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6431 unsigned OpNum = 0; 6432 Value *Op = nullptr; 6433 unsigned OpTypeID; 6434 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6435 return error("Invalid record"); 6436 if (OpNum != Record.size()) 6437 return error("Invalid record"); 6438 6439 I = new FreezeInst(Op); 6440 ResTypeID = OpTypeID; 6441 InstructionList.push_back(I); 6442 break; 6443 } 6444 } 6445 6446 // Add instruction to end of current BB. If there is no current BB, reject 6447 // this file. 6448 if (!CurBB) { 6449 I->deleteValue(); 6450 return error("Invalid instruction with no BB"); 6451 } 6452 if (!OperandBundles.empty()) { 6453 I->deleteValue(); 6454 return error("Operand bundles found with no consumer"); 6455 } 6456 I->insertInto(CurBB, CurBB->end()); 6457 6458 // If this was a terminator instruction, move to the next block. 6459 if (I->isTerminator()) { 6460 ++CurBBNo; 6461 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6462 } 6463 6464 // Non-void values get registered in the value table for future use. 6465 if (!I->getType()->isVoidTy()) { 6466 assert(I->getType() == getTypeByID(ResTypeID) && 6467 "Incorrect result type ID"); 6468 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6469 return Err; 6470 } 6471 } 6472 6473 OutOfRecordLoop: 6474 6475 if (!OperandBundles.empty()) 6476 return error("Operand bundles found with no consumer"); 6477 6478 // Check the function list for unresolved values. 6479 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6480 if (!A->getParent()) { 6481 // We found at least one unresolved value. Nuke them all to avoid leaks. 6482 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6483 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6484 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6485 delete A; 6486 } 6487 } 6488 return error("Never resolved value found in function"); 6489 } 6490 } 6491 6492 // Unexpected unresolved metadata about to be dropped. 6493 if (MDLoader->hasFwdRefs()) 6494 return error("Invalid function metadata: outgoing forward refs"); 6495 6496 if (PhiConstExprBB) 6497 PhiConstExprBB->eraseFromParent(); 6498 6499 for (const auto &Pair : ConstExprEdgeBBs) { 6500 BasicBlock *From = Pair.first.first; 6501 BasicBlock *To = Pair.first.second; 6502 BasicBlock *EdgeBB = Pair.second; 6503 BranchInst::Create(To, EdgeBB); 6504 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6505 To->replacePhiUsesWith(From, EdgeBB); 6506 EdgeBB->moveBefore(To); 6507 } 6508 6509 // Trim the value list down to the size it was before we parsed this function. 6510 ValueList.shrinkTo(ModuleValueListSize); 6511 MDLoader->shrinkTo(ModuleMDLoaderSize); 6512 std::vector<BasicBlock*>().swap(FunctionBBs); 6513 return Error::success(); 6514 } 6515 6516 /// Find the function body in the bitcode stream 6517 Error BitcodeReader::findFunctionInStream( 6518 Function *F, 6519 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6520 while (DeferredFunctionInfoIterator->second == 0) { 6521 // This is the fallback handling for the old format bitcode that 6522 // didn't contain the function index in the VST, or when we have 6523 // an anonymous function which would not have a VST entry. 6524 // Assert that we have one of those two cases. 6525 assert(VSTOffset == 0 || !F->hasName()); 6526 // Parse the next body in the stream and set its position in the 6527 // DeferredFunctionInfo map. 6528 if (Error Err = rememberAndSkipFunctionBodies()) 6529 return Err; 6530 } 6531 return Error::success(); 6532 } 6533 6534 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6535 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6536 return SyncScope::ID(Val); 6537 if (Val >= SSIDs.size()) 6538 return SyncScope::System; // Map unknown synchronization scopes to system. 6539 return SSIDs[Val]; 6540 } 6541 6542 //===----------------------------------------------------------------------===// 6543 // GVMaterializer implementation 6544 //===----------------------------------------------------------------------===// 6545 6546 Error BitcodeReader::materialize(GlobalValue *GV) { 6547 Function *F = dyn_cast<Function>(GV); 6548 // If it's not a function or is already material, ignore the request. 6549 if (!F || !F->isMaterializable()) 6550 return Error::success(); 6551 6552 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6553 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6554 // If its position is recorded as 0, its body is somewhere in the stream 6555 // but we haven't seen it yet. 6556 if (DFII->second == 0) 6557 if (Error Err = findFunctionInStream(F, DFII)) 6558 return Err; 6559 6560 // Materialize metadata before parsing any function bodies. 6561 if (Error Err = materializeMetadata()) 6562 return Err; 6563 6564 // Move the bit stream to the saved position of the deferred function body. 6565 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6566 return JumpFailed; 6567 if (Error Err = parseFunctionBody(F)) 6568 return Err; 6569 F->setIsMaterializable(false); 6570 6571 if (StripDebugInfo) 6572 stripDebugInfo(*F); 6573 6574 // Upgrade any old intrinsic calls in the function. 6575 for (auto &I : UpgradedIntrinsics) { 6576 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6577 if (CallInst *CI = dyn_cast<CallInst>(U)) 6578 UpgradeIntrinsicCall(CI, I.second); 6579 } 6580 6581 // Finish fn->subprogram upgrade for materialized functions. 6582 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6583 F->setSubprogram(SP); 6584 6585 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6586 if (!MDLoader->isStrippingTBAA()) { 6587 for (auto &I : instructions(F)) { 6588 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6589 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6590 continue; 6591 MDLoader->setStripTBAA(true); 6592 stripTBAA(F->getParent()); 6593 } 6594 } 6595 6596 for (auto &I : instructions(F)) { 6597 // "Upgrade" older incorrect branch weights by dropping them. 6598 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6599 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6600 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6601 StringRef ProfName = MDS->getString(); 6602 // Check consistency of !prof branch_weights metadata. 6603 if (!ProfName.equals("branch_weights")) 6604 continue; 6605 unsigned ExpectedNumOperands = 0; 6606 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6607 ExpectedNumOperands = BI->getNumSuccessors(); 6608 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6609 ExpectedNumOperands = SI->getNumSuccessors(); 6610 else if (isa<CallInst>(&I)) 6611 ExpectedNumOperands = 1; 6612 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6613 ExpectedNumOperands = IBI->getNumDestinations(); 6614 else if (isa<SelectInst>(&I)) 6615 ExpectedNumOperands = 2; 6616 else 6617 continue; // ignore and continue. 6618 6619 // If branch weight doesn't match, just strip branch weight. 6620 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6621 I.setMetadata(LLVMContext::MD_prof, nullptr); 6622 } 6623 } 6624 6625 // Remove incompatible attributes on function calls. 6626 if (auto *CI = dyn_cast<CallBase>(&I)) { 6627 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6628 CI->getFunctionType()->getReturnType())); 6629 6630 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6631 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6632 CI->getArgOperand(ArgNo)->getType())); 6633 } 6634 } 6635 6636 // Look for functions that rely on old function attribute behavior. 6637 UpgradeFunctionAttributes(*F); 6638 6639 // Bring in any functions that this function forward-referenced via 6640 // blockaddresses. 6641 return materializeForwardReferencedFunctions(); 6642 } 6643 6644 Error BitcodeReader::materializeModule() { 6645 if (Error Err = materializeMetadata()) 6646 return Err; 6647 6648 // Promise to materialize all forward references. 6649 WillMaterializeAllForwardRefs = true; 6650 6651 // Iterate over the module, deserializing any functions that are still on 6652 // disk. 6653 for (Function &F : *TheModule) { 6654 if (Error Err = materialize(&F)) 6655 return Err; 6656 } 6657 // At this point, if there are any function bodies, parse the rest of 6658 // the bits in the module past the last function block we have recorded 6659 // through either lazy scanning or the VST. 6660 if (LastFunctionBlockBit || NextUnreadBit) 6661 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6662 ? LastFunctionBlockBit 6663 : NextUnreadBit)) 6664 return Err; 6665 6666 // Check that all block address forward references got resolved (as we 6667 // promised above). 6668 if (!BasicBlockFwdRefs.empty()) 6669 return error("Never resolved function from blockaddress"); 6670 6671 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6672 // delete the old functions to clean up. We can't do this unless the entire 6673 // module is materialized because there could always be another function body 6674 // with calls to the old function. 6675 for (auto &I : UpgradedIntrinsics) { 6676 for (auto *U : I.first->users()) { 6677 if (CallInst *CI = dyn_cast<CallInst>(U)) 6678 UpgradeIntrinsicCall(CI, I.second); 6679 } 6680 if (!I.first->use_empty()) 6681 I.first->replaceAllUsesWith(I.second); 6682 I.first->eraseFromParent(); 6683 } 6684 UpgradedIntrinsics.clear(); 6685 6686 UpgradeDebugInfo(*TheModule); 6687 6688 UpgradeModuleFlags(*TheModule); 6689 6690 UpgradeARCRuntime(*TheModule); 6691 6692 return Error::success(); 6693 } 6694 6695 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6696 return IdentifiedStructTypes; 6697 } 6698 6699 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6700 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6701 StringRef ModulePath, unsigned ModuleId, 6702 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6703 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6704 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6705 6706 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6707 TheIndex.addModule(ModulePath, ModuleId); 6708 } 6709 6710 ModuleSummaryIndex::ModuleInfo * 6711 ModuleSummaryIndexBitcodeReader::getThisModule() { 6712 return TheIndex.getModule(ModulePath); 6713 } 6714 6715 template <bool AllowNullValueInfo> 6716 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6717 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6718 auto VGI = ValueIdToValueInfoMap[ValueId]; 6719 // We can have a null value info for memprof callsite info records in 6720 // distributed ThinLTO index files when the callee function summary is not 6721 // included in the index. The bitcode writer records 0 in that case, 6722 // and the caller of this helper will set AllowNullValueInfo to true. 6723 assert(AllowNullValueInfo || std::get<0>(VGI)); 6724 return VGI; 6725 } 6726 6727 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6728 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6729 StringRef SourceFileName) { 6730 std::string GlobalId = 6731 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6732 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6733 auto OriginalNameID = ValueGUID; 6734 if (GlobalValue::isLocalLinkage(Linkage)) 6735 OriginalNameID = GlobalValue::getGUID(ValueName); 6736 if (PrintSummaryGUIDs) 6737 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6738 << ValueName << "\n"; 6739 6740 // UseStrtab is false for legacy summary formats and value names are 6741 // created on stack. In that case we save the name in a string saver in 6742 // the index so that the value name can be recorded. 6743 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6744 TheIndex.getOrInsertValueInfo( 6745 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6746 OriginalNameID, ValueGUID); 6747 } 6748 6749 // Specialized value symbol table parser used when reading module index 6750 // blocks where we don't actually create global values. The parsed information 6751 // is saved in the bitcode reader for use when later parsing summaries. 6752 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6753 uint64_t Offset, 6754 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6755 // With a strtab the VST is not required to parse the summary. 6756 if (UseStrtab) 6757 return Error::success(); 6758 6759 assert(Offset > 0 && "Expected non-zero VST offset"); 6760 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6761 if (!MaybeCurrentBit) 6762 return MaybeCurrentBit.takeError(); 6763 uint64_t CurrentBit = MaybeCurrentBit.get(); 6764 6765 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6766 return Err; 6767 6768 SmallVector<uint64_t, 64> Record; 6769 6770 // Read all the records for this value table. 6771 SmallString<128> ValueName; 6772 6773 while (true) { 6774 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6775 if (!MaybeEntry) 6776 return MaybeEntry.takeError(); 6777 BitstreamEntry Entry = MaybeEntry.get(); 6778 6779 switch (Entry.Kind) { 6780 case BitstreamEntry::SubBlock: // Handled for us already. 6781 case BitstreamEntry::Error: 6782 return error("Malformed block"); 6783 case BitstreamEntry::EndBlock: 6784 // Done parsing VST, jump back to wherever we came from. 6785 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6786 return JumpFailed; 6787 return Error::success(); 6788 case BitstreamEntry::Record: 6789 // The interesting case. 6790 break; 6791 } 6792 6793 // Read a record. 6794 Record.clear(); 6795 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6796 if (!MaybeRecord) 6797 return MaybeRecord.takeError(); 6798 switch (MaybeRecord.get()) { 6799 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6800 break; 6801 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6802 if (convertToString(Record, 1, ValueName)) 6803 return error("Invalid record"); 6804 unsigned ValueID = Record[0]; 6805 assert(!SourceFileName.empty()); 6806 auto VLI = ValueIdToLinkageMap.find(ValueID); 6807 assert(VLI != ValueIdToLinkageMap.end() && 6808 "No linkage found for VST entry?"); 6809 auto Linkage = VLI->second; 6810 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6811 ValueName.clear(); 6812 break; 6813 } 6814 case bitc::VST_CODE_FNENTRY: { 6815 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6816 if (convertToString(Record, 2, ValueName)) 6817 return error("Invalid record"); 6818 unsigned ValueID = Record[0]; 6819 assert(!SourceFileName.empty()); 6820 auto VLI = ValueIdToLinkageMap.find(ValueID); 6821 assert(VLI != ValueIdToLinkageMap.end() && 6822 "No linkage found for VST entry?"); 6823 auto Linkage = VLI->second; 6824 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6825 ValueName.clear(); 6826 break; 6827 } 6828 case bitc::VST_CODE_COMBINED_ENTRY: { 6829 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6830 unsigned ValueID = Record[0]; 6831 GlobalValue::GUID RefGUID = Record[1]; 6832 // The "original name", which is the second value of the pair will be 6833 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6834 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6835 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6836 break; 6837 } 6838 } 6839 } 6840 } 6841 6842 // Parse just the blocks needed for building the index out of the module. 6843 // At the end of this routine the module Index is populated with a map 6844 // from global value id to GlobalValueSummary objects. 6845 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6846 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6847 return Err; 6848 6849 SmallVector<uint64_t, 64> Record; 6850 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6851 unsigned ValueId = 0; 6852 6853 // Read the index for this module. 6854 while (true) { 6855 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6856 if (!MaybeEntry) 6857 return MaybeEntry.takeError(); 6858 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6859 6860 switch (Entry.Kind) { 6861 case BitstreamEntry::Error: 6862 return error("Malformed block"); 6863 case BitstreamEntry::EndBlock: 6864 return Error::success(); 6865 6866 case BitstreamEntry::SubBlock: 6867 switch (Entry.ID) { 6868 default: // Skip unknown content. 6869 if (Error Err = Stream.SkipBlock()) 6870 return Err; 6871 break; 6872 case bitc::BLOCKINFO_BLOCK_ID: 6873 // Need to parse these to get abbrev ids (e.g. for VST) 6874 if (Error Err = readBlockInfo()) 6875 return Err; 6876 break; 6877 case bitc::VALUE_SYMTAB_BLOCK_ID: 6878 // Should have been parsed earlier via VSTOffset, unless there 6879 // is no summary section. 6880 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6881 !SeenGlobalValSummary) && 6882 "Expected early VST parse via VSTOffset record"); 6883 if (Error Err = Stream.SkipBlock()) 6884 return Err; 6885 break; 6886 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6887 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6888 // Add the module if it is a per-module index (has a source file name). 6889 if (!SourceFileName.empty()) 6890 addThisModule(); 6891 assert(!SeenValueSymbolTable && 6892 "Already read VST when parsing summary block?"); 6893 // We might not have a VST if there were no values in the 6894 // summary. An empty summary block generated when we are 6895 // performing ThinLTO compiles so we don't later invoke 6896 // the regular LTO process on them. 6897 if (VSTOffset > 0) { 6898 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6899 return Err; 6900 SeenValueSymbolTable = true; 6901 } 6902 SeenGlobalValSummary = true; 6903 if (Error Err = parseEntireSummary(Entry.ID)) 6904 return Err; 6905 break; 6906 case bitc::MODULE_STRTAB_BLOCK_ID: 6907 if (Error Err = parseModuleStringTable()) 6908 return Err; 6909 break; 6910 } 6911 continue; 6912 6913 case BitstreamEntry::Record: { 6914 Record.clear(); 6915 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6916 if (!MaybeBitCode) 6917 return MaybeBitCode.takeError(); 6918 switch (MaybeBitCode.get()) { 6919 default: 6920 break; // Default behavior, ignore unknown content. 6921 case bitc::MODULE_CODE_VERSION: { 6922 if (Error Err = parseVersionRecord(Record).takeError()) 6923 return Err; 6924 break; 6925 } 6926 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6927 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6928 SmallString<128> ValueName; 6929 if (convertToString(Record, 0, ValueName)) 6930 return error("Invalid record"); 6931 SourceFileName = ValueName.c_str(); 6932 break; 6933 } 6934 /// MODULE_CODE_HASH: [5*i32] 6935 case bitc::MODULE_CODE_HASH: { 6936 if (Record.size() != 5) 6937 return error("Invalid hash length " + Twine(Record.size()).str()); 6938 auto &Hash = getThisModule()->second.second; 6939 int Pos = 0; 6940 for (auto &Val : Record) { 6941 assert(!(Val >> 32) && "Unexpected high bits set"); 6942 Hash[Pos++] = Val; 6943 } 6944 break; 6945 } 6946 /// MODULE_CODE_VSTOFFSET: [offset] 6947 case bitc::MODULE_CODE_VSTOFFSET: 6948 if (Record.empty()) 6949 return error("Invalid record"); 6950 // Note that we subtract 1 here because the offset is relative to one 6951 // word before the start of the identification or module block, which 6952 // was historically always the start of the regular bitcode header. 6953 VSTOffset = Record[0] - 1; 6954 break; 6955 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6956 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6957 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6958 // v2: [strtab offset, strtab size, v1] 6959 case bitc::MODULE_CODE_GLOBALVAR: 6960 case bitc::MODULE_CODE_FUNCTION: 6961 case bitc::MODULE_CODE_ALIAS: { 6962 StringRef Name; 6963 ArrayRef<uint64_t> GVRecord; 6964 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6965 if (GVRecord.size() <= 3) 6966 return error("Invalid record"); 6967 uint64_t RawLinkage = GVRecord[3]; 6968 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6969 if (!UseStrtab) { 6970 ValueIdToLinkageMap[ValueId++] = Linkage; 6971 break; 6972 } 6973 6974 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6975 break; 6976 } 6977 } 6978 } 6979 continue; 6980 } 6981 } 6982 } 6983 6984 std::vector<ValueInfo> 6985 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6986 std::vector<ValueInfo> Ret; 6987 Ret.reserve(Record.size()); 6988 for (uint64_t RefValueId : Record) 6989 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 6990 return Ret; 6991 } 6992 6993 std::vector<FunctionSummary::EdgeTy> 6994 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6995 bool IsOldProfileFormat, 6996 bool HasProfile, bool HasRelBF) { 6997 std::vector<FunctionSummary::EdgeTy> Ret; 6998 Ret.reserve(Record.size()); 6999 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7000 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7001 uint64_t RelBF = 0; 7002 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7003 if (IsOldProfileFormat) { 7004 I += 1; // Skip old callsitecount field 7005 if (HasProfile) 7006 I += 1; // Skip old profilecount field 7007 } else if (HasProfile) 7008 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7009 else if (HasRelBF) 7010 RelBF = Record[++I]; 7011 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7012 } 7013 return Ret; 7014 } 7015 7016 static void 7017 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7018 WholeProgramDevirtResolution &Wpd) { 7019 uint64_t ArgNum = Record[Slot++]; 7020 WholeProgramDevirtResolution::ByArg &B = 7021 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7022 Slot += ArgNum; 7023 7024 B.TheKind = 7025 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7026 B.Info = Record[Slot++]; 7027 B.Byte = Record[Slot++]; 7028 B.Bit = Record[Slot++]; 7029 } 7030 7031 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7032 StringRef Strtab, size_t &Slot, 7033 TypeIdSummary &TypeId) { 7034 uint64_t Id = Record[Slot++]; 7035 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7036 7037 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7038 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7039 static_cast<size_t>(Record[Slot + 1])}; 7040 Slot += 2; 7041 7042 uint64_t ResByArgNum = Record[Slot++]; 7043 for (uint64_t I = 0; I != ResByArgNum; ++I) 7044 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7045 } 7046 7047 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7048 StringRef Strtab, 7049 ModuleSummaryIndex &TheIndex) { 7050 size_t Slot = 0; 7051 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7052 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7053 Slot += 2; 7054 7055 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7056 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7057 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7058 TypeId.TTRes.SizeM1 = Record[Slot++]; 7059 TypeId.TTRes.BitMask = Record[Slot++]; 7060 TypeId.TTRes.InlineBits = Record[Slot++]; 7061 7062 while (Slot < Record.size()) 7063 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7064 } 7065 7066 std::vector<FunctionSummary::ParamAccess> 7067 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7068 auto ReadRange = [&]() { 7069 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7070 BitcodeReader::decodeSignRotatedValue(Record.front())); 7071 Record = Record.drop_front(); 7072 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7073 BitcodeReader::decodeSignRotatedValue(Record.front())); 7074 Record = Record.drop_front(); 7075 ConstantRange Range{Lower, Upper}; 7076 assert(!Range.isFullSet()); 7077 assert(!Range.isUpperSignWrapped()); 7078 return Range; 7079 }; 7080 7081 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7082 while (!Record.empty()) { 7083 PendingParamAccesses.emplace_back(); 7084 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7085 ParamAccess.ParamNo = Record.front(); 7086 Record = Record.drop_front(); 7087 ParamAccess.Use = ReadRange(); 7088 ParamAccess.Calls.resize(Record.front()); 7089 Record = Record.drop_front(); 7090 for (auto &Call : ParamAccess.Calls) { 7091 Call.ParamNo = Record.front(); 7092 Record = Record.drop_front(); 7093 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7094 Record = Record.drop_front(); 7095 Call.Offsets = ReadRange(); 7096 } 7097 } 7098 return PendingParamAccesses; 7099 } 7100 7101 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7102 ArrayRef<uint64_t> Record, size_t &Slot, 7103 TypeIdCompatibleVtableInfo &TypeId) { 7104 uint64_t Offset = Record[Slot++]; 7105 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7106 TypeId.push_back({Offset, Callee}); 7107 } 7108 7109 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7110 ArrayRef<uint64_t> Record) { 7111 size_t Slot = 0; 7112 TypeIdCompatibleVtableInfo &TypeId = 7113 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7114 {Strtab.data() + Record[Slot], 7115 static_cast<size_t>(Record[Slot + 1])}); 7116 Slot += 2; 7117 7118 while (Slot < Record.size()) 7119 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7120 } 7121 7122 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7123 unsigned WOCnt) { 7124 // Readonly and writeonly refs are in the end of the refs list. 7125 assert(ROCnt + WOCnt <= Refs.size()); 7126 unsigned FirstWORef = Refs.size() - WOCnt; 7127 unsigned RefNo = FirstWORef - ROCnt; 7128 for (; RefNo < FirstWORef; ++RefNo) 7129 Refs[RefNo].setReadOnly(); 7130 for (; RefNo < Refs.size(); ++RefNo) 7131 Refs[RefNo].setWriteOnly(); 7132 } 7133 7134 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7135 // objects in the index. 7136 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7137 if (Error Err = Stream.EnterSubBlock(ID)) 7138 return Err; 7139 SmallVector<uint64_t, 64> Record; 7140 7141 // Parse version 7142 { 7143 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7144 if (!MaybeEntry) 7145 return MaybeEntry.takeError(); 7146 BitstreamEntry Entry = MaybeEntry.get(); 7147 7148 if (Entry.Kind != BitstreamEntry::Record) 7149 return error("Invalid Summary Block: record for version expected"); 7150 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7151 if (!MaybeRecord) 7152 return MaybeRecord.takeError(); 7153 if (MaybeRecord.get() != bitc::FS_VERSION) 7154 return error("Invalid Summary Block: version expected"); 7155 } 7156 const uint64_t Version = Record[0]; 7157 const bool IsOldProfileFormat = Version == 1; 7158 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7159 return error("Invalid summary version " + Twine(Version) + 7160 ". Version should be in the range [1-" + 7161 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7162 "]."); 7163 Record.clear(); 7164 7165 // Keep around the last seen summary to be used when we see an optional 7166 // "OriginalName" attachement. 7167 GlobalValueSummary *LastSeenSummary = nullptr; 7168 GlobalValue::GUID LastSeenGUID = 0; 7169 7170 // We can expect to see any number of type ID information records before 7171 // each function summary records; these variables store the information 7172 // collected so far so that it can be used to create the summary object. 7173 std::vector<GlobalValue::GUID> PendingTypeTests; 7174 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7175 PendingTypeCheckedLoadVCalls; 7176 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7177 PendingTypeCheckedLoadConstVCalls; 7178 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7179 7180 std::vector<CallsiteInfo> PendingCallsites; 7181 std::vector<AllocInfo> PendingAllocs; 7182 7183 while (true) { 7184 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7185 if (!MaybeEntry) 7186 return MaybeEntry.takeError(); 7187 BitstreamEntry Entry = MaybeEntry.get(); 7188 7189 switch (Entry.Kind) { 7190 case BitstreamEntry::SubBlock: // Handled for us already. 7191 case BitstreamEntry::Error: 7192 return error("Malformed block"); 7193 case BitstreamEntry::EndBlock: 7194 return Error::success(); 7195 case BitstreamEntry::Record: 7196 // The interesting case. 7197 break; 7198 } 7199 7200 // Read a record. The record format depends on whether this 7201 // is a per-module index or a combined index file. In the per-module 7202 // case the records contain the associated value's ID for correlation 7203 // with VST entries. In the combined index the correlation is done 7204 // via the bitcode offset of the summary records (which were saved 7205 // in the combined index VST entries). The records also contain 7206 // information used for ThinLTO renaming and importing. 7207 Record.clear(); 7208 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7209 if (!MaybeBitCode) 7210 return MaybeBitCode.takeError(); 7211 switch (unsigned BitCode = MaybeBitCode.get()) { 7212 default: // Default behavior: ignore. 7213 break; 7214 case bitc::FS_FLAGS: { // [flags] 7215 TheIndex.setFlags(Record[0]); 7216 break; 7217 } 7218 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7219 uint64_t ValueID = Record[0]; 7220 GlobalValue::GUID RefGUID = Record[1]; 7221 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7222 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7223 break; 7224 } 7225 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7226 // numrefs x valueid, n x (valueid)] 7227 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7228 // numrefs x valueid, 7229 // n x (valueid, hotness)] 7230 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7231 // numrefs x valueid, 7232 // n x (valueid, relblockfreq)] 7233 case bitc::FS_PERMODULE: 7234 case bitc::FS_PERMODULE_RELBF: 7235 case bitc::FS_PERMODULE_PROFILE: { 7236 unsigned ValueID = Record[0]; 7237 uint64_t RawFlags = Record[1]; 7238 unsigned InstCount = Record[2]; 7239 uint64_t RawFunFlags = 0; 7240 unsigned NumRefs = Record[3]; 7241 unsigned NumRORefs = 0, NumWORefs = 0; 7242 int RefListStartIndex = 4; 7243 if (Version >= 4) { 7244 RawFunFlags = Record[3]; 7245 NumRefs = Record[4]; 7246 RefListStartIndex = 5; 7247 if (Version >= 5) { 7248 NumRORefs = Record[5]; 7249 RefListStartIndex = 6; 7250 if (Version >= 7) { 7251 NumWORefs = Record[6]; 7252 RefListStartIndex = 7; 7253 } 7254 } 7255 } 7256 7257 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7258 // The module path string ref set in the summary must be owned by the 7259 // index's module string table. Since we don't have a module path 7260 // string table section in the per-module index, we create a single 7261 // module path string table entry with an empty (0) ID to take 7262 // ownership. 7263 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7264 assert(Record.size() >= RefListStartIndex + NumRefs && 7265 "Record size inconsistent with number of references"); 7266 std::vector<ValueInfo> Refs = makeRefList( 7267 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7268 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7269 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7270 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7271 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7272 IsOldProfileFormat, HasProfile, HasRelBF); 7273 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7274 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7275 // In order to save memory, only record the memprof summaries if this is 7276 // the prevailing copy of a symbol. The linker doesn't resolve local 7277 // linkage values so don't check whether those are prevailing. 7278 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7279 if (IsPrevailing && 7280 !GlobalValue::isLocalLinkage(LT) && 7281 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7282 PendingCallsites.clear(); 7283 PendingAllocs.clear(); 7284 } 7285 auto FS = std::make_unique<FunctionSummary>( 7286 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7287 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7288 std::move(PendingTypeTestAssumeVCalls), 7289 std::move(PendingTypeCheckedLoadVCalls), 7290 std::move(PendingTypeTestAssumeConstVCalls), 7291 std::move(PendingTypeCheckedLoadConstVCalls), 7292 std::move(PendingParamAccesses), std::move(PendingCallsites), 7293 std::move(PendingAllocs)); 7294 FS->setModulePath(getThisModule()->first()); 7295 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7296 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7297 std::move(FS)); 7298 break; 7299 } 7300 // FS_ALIAS: [valueid, flags, valueid] 7301 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7302 // they expect all aliasee summaries to be available. 7303 case bitc::FS_ALIAS: { 7304 unsigned ValueID = Record[0]; 7305 uint64_t RawFlags = Record[1]; 7306 unsigned AliaseeID = Record[2]; 7307 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7308 auto AS = std::make_unique<AliasSummary>(Flags); 7309 // The module path string ref set in the summary must be owned by the 7310 // index's module string table. Since we don't have a module path 7311 // string table section in the per-module index, we create a single 7312 // module path string table entry with an empty (0) ID to take 7313 // ownership. 7314 AS->setModulePath(getThisModule()->first()); 7315 7316 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7317 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7318 if (!AliaseeInModule) 7319 return error("Alias expects aliasee summary to be parsed"); 7320 AS->setAliasee(AliaseeVI, AliaseeInModule); 7321 7322 auto GUID = getValueInfoFromValueId(ValueID); 7323 AS->setOriginalName(std::get<1>(GUID)); 7324 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7325 break; 7326 } 7327 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7328 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7329 unsigned ValueID = Record[0]; 7330 uint64_t RawFlags = Record[1]; 7331 unsigned RefArrayStart = 2; 7332 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7333 /* WriteOnly */ false, 7334 /* Constant */ false, 7335 GlobalObject::VCallVisibilityPublic); 7336 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7337 if (Version >= 5) { 7338 GVF = getDecodedGVarFlags(Record[2]); 7339 RefArrayStart = 3; 7340 } 7341 std::vector<ValueInfo> Refs = 7342 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7343 auto FS = 7344 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7345 FS->setModulePath(getThisModule()->first()); 7346 auto GUID = getValueInfoFromValueId(ValueID); 7347 FS->setOriginalName(std::get<1>(GUID)); 7348 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7349 break; 7350 } 7351 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7352 // numrefs, numrefs x valueid, 7353 // n x (valueid, offset)] 7354 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7355 unsigned ValueID = Record[0]; 7356 uint64_t RawFlags = Record[1]; 7357 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7358 unsigned NumRefs = Record[3]; 7359 unsigned RefListStartIndex = 4; 7360 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7361 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7362 std::vector<ValueInfo> Refs = makeRefList( 7363 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7364 VTableFuncList VTableFuncs; 7365 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7366 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7367 uint64_t Offset = Record[++I]; 7368 VTableFuncs.push_back({Callee, Offset}); 7369 } 7370 auto VS = 7371 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7372 VS->setModulePath(getThisModule()->first()); 7373 VS->setVTableFuncs(VTableFuncs); 7374 auto GUID = getValueInfoFromValueId(ValueID); 7375 VS->setOriginalName(std::get<1>(GUID)); 7376 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7377 break; 7378 } 7379 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7380 // numrefs x valueid, n x (valueid)] 7381 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7382 // numrefs x valueid, n x (valueid, hotness)] 7383 case bitc::FS_COMBINED: 7384 case bitc::FS_COMBINED_PROFILE: { 7385 unsigned ValueID = Record[0]; 7386 uint64_t ModuleId = Record[1]; 7387 uint64_t RawFlags = Record[2]; 7388 unsigned InstCount = Record[3]; 7389 uint64_t RawFunFlags = 0; 7390 uint64_t EntryCount = 0; 7391 unsigned NumRefs = Record[4]; 7392 unsigned NumRORefs = 0, NumWORefs = 0; 7393 int RefListStartIndex = 5; 7394 7395 if (Version >= 4) { 7396 RawFunFlags = Record[4]; 7397 RefListStartIndex = 6; 7398 size_t NumRefsIndex = 5; 7399 if (Version >= 5) { 7400 unsigned NumRORefsOffset = 1; 7401 RefListStartIndex = 7; 7402 if (Version >= 6) { 7403 NumRefsIndex = 6; 7404 EntryCount = Record[5]; 7405 RefListStartIndex = 8; 7406 if (Version >= 7) { 7407 RefListStartIndex = 9; 7408 NumWORefs = Record[8]; 7409 NumRORefsOffset = 2; 7410 } 7411 } 7412 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7413 } 7414 NumRefs = Record[NumRefsIndex]; 7415 } 7416 7417 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7418 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7419 assert(Record.size() >= RefListStartIndex + NumRefs && 7420 "Record size inconsistent with number of references"); 7421 std::vector<ValueInfo> Refs = makeRefList( 7422 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7423 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7424 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7425 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7426 IsOldProfileFormat, HasProfile, false); 7427 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7428 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7429 auto FS = std::make_unique<FunctionSummary>( 7430 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7431 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7432 std::move(PendingTypeTestAssumeVCalls), 7433 std::move(PendingTypeCheckedLoadVCalls), 7434 std::move(PendingTypeTestAssumeConstVCalls), 7435 std::move(PendingTypeCheckedLoadConstVCalls), 7436 std::move(PendingParamAccesses), std::move(PendingCallsites), 7437 std::move(PendingAllocs)); 7438 LastSeenSummary = FS.get(); 7439 LastSeenGUID = VI.getGUID(); 7440 FS->setModulePath(ModuleIdMap[ModuleId]); 7441 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7442 break; 7443 } 7444 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7445 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7446 // they expect all aliasee summaries to be available. 7447 case bitc::FS_COMBINED_ALIAS: { 7448 unsigned ValueID = Record[0]; 7449 uint64_t ModuleId = Record[1]; 7450 uint64_t RawFlags = Record[2]; 7451 unsigned AliaseeValueId = Record[3]; 7452 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7453 auto AS = std::make_unique<AliasSummary>(Flags); 7454 LastSeenSummary = AS.get(); 7455 AS->setModulePath(ModuleIdMap[ModuleId]); 7456 7457 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7458 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7459 AS->setAliasee(AliaseeVI, AliaseeInModule); 7460 7461 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7462 LastSeenGUID = VI.getGUID(); 7463 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7464 break; 7465 } 7466 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7467 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7468 unsigned ValueID = Record[0]; 7469 uint64_t ModuleId = Record[1]; 7470 uint64_t RawFlags = Record[2]; 7471 unsigned RefArrayStart = 3; 7472 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7473 /* WriteOnly */ false, 7474 /* Constant */ false, 7475 GlobalObject::VCallVisibilityPublic); 7476 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7477 if (Version >= 5) { 7478 GVF = getDecodedGVarFlags(Record[3]); 7479 RefArrayStart = 4; 7480 } 7481 std::vector<ValueInfo> Refs = 7482 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7483 auto FS = 7484 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7485 LastSeenSummary = FS.get(); 7486 FS->setModulePath(ModuleIdMap[ModuleId]); 7487 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7488 LastSeenGUID = VI.getGUID(); 7489 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7490 break; 7491 } 7492 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7493 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7494 uint64_t OriginalName = Record[0]; 7495 if (!LastSeenSummary) 7496 return error("Name attachment that does not follow a combined record"); 7497 LastSeenSummary->setOriginalName(OriginalName); 7498 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7499 // Reset the LastSeenSummary 7500 LastSeenSummary = nullptr; 7501 LastSeenGUID = 0; 7502 break; 7503 } 7504 case bitc::FS_TYPE_TESTS: 7505 assert(PendingTypeTests.empty()); 7506 llvm::append_range(PendingTypeTests, Record); 7507 break; 7508 7509 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7510 assert(PendingTypeTestAssumeVCalls.empty()); 7511 for (unsigned I = 0; I != Record.size(); I += 2) 7512 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7513 break; 7514 7515 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7516 assert(PendingTypeCheckedLoadVCalls.empty()); 7517 for (unsigned I = 0; I != Record.size(); I += 2) 7518 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7519 break; 7520 7521 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7522 PendingTypeTestAssumeConstVCalls.push_back( 7523 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7524 break; 7525 7526 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7527 PendingTypeCheckedLoadConstVCalls.push_back( 7528 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7529 break; 7530 7531 case bitc::FS_CFI_FUNCTION_DEFS: { 7532 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7533 for (unsigned I = 0; I != Record.size(); I += 2) 7534 CfiFunctionDefs.insert( 7535 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7536 break; 7537 } 7538 7539 case bitc::FS_CFI_FUNCTION_DECLS: { 7540 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7541 for (unsigned I = 0; I != Record.size(); I += 2) 7542 CfiFunctionDecls.insert( 7543 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7544 break; 7545 } 7546 7547 case bitc::FS_TYPE_ID: 7548 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7549 break; 7550 7551 case bitc::FS_TYPE_ID_METADATA: 7552 parseTypeIdCompatibleVtableSummaryRecord(Record); 7553 break; 7554 7555 case bitc::FS_BLOCK_COUNT: 7556 TheIndex.addBlockCount(Record[0]); 7557 break; 7558 7559 case bitc::FS_PARAM_ACCESS: { 7560 PendingParamAccesses = parseParamAccesses(Record); 7561 break; 7562 } 7563 7564 case bitc::FS_STACK_IDS: { // [n x stackid] 7565 // Save stack ids in the reader to consult when adding stack ids from the 7566 // lists in the stack node and alloc node entries. 7567 StackIds = ArrayRef<uint64_t>(Record); 7568 break; 7569 } 7570 7571 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7572 unsigned ValueID = Record[0]; 7573 SmallVector<unsigned> StackIdList; 7574 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7575 assert(*R < StackIds.size()); 7576 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7577 } 7578 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7579 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7580 break; 7581 } 7582 7583 case bitc::FS_COMBINED_CALLSITE_INFO: { 7584 auto RecordIter = Record.begin(); 7585 unsigned ValueID = *RecordIter++; 7586 unsigned NumStackIds = *RecordIter++; 7587 unsigned NumVersions = *RecordIter++; 7588 assert(Record.size() == 3 + NumStackIds + NumVersions); 7589 SmallVector<unsigned> StackIdList; 7590 for (unsigned J = 0; J < NumStackIds; J++) { 7591 assert(*RecordIter < StackIds.size()); 7592 StackIdList.push_back( 7593 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7594 } 7595 SmallVector<unsigned> Versions; 7596 for (unsigned J = 0; J < NumVersions; J++) 7597 Versions.push_back(*RecordIter++); 7598 ValueInfo VI = std::get<0>( 7599 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7600 PendingCallsites.push_back( 7601 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7602 break; 7603 } 7604 7605 case bitc::FS_PERMODULE_ALLOC_INFO: { 7606 unsigned I = 0; 7607 std::vector<MIBInfo> MIBs; 7608 while (I < Record.size()) { 7609 assert(Record.size() - I >= 2); 7610 AllocationType AllocType = (AllocationType)Record[I++]; 7611 unsigned NumStackEntries = Record[I++]; 7612 assert(Record.size() - I >= NumStackEntries); 7613 SmallVector<unsigned> StackIdList; 7614 for (unsigned J = 0; J < NumStackEntries; J++) { 7615 assert(Record[I] < StackIds.size()); 7616 StackIdList.push_back( 7617 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7618 } 7619 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7620 } 7621 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7622 break; 7623 } 7624 7625 case bitc::FS_COMBINED_ALLOC_INFO: { 7626 unsigned I = 0; 7627 std::vector<MIBInfo> MIBs; 7628 unsigned NumMIBs = Record[I++]; 7629 unsigned NumVersions = Record[I++]; 7630 unsigned MIBsRead = 0; 7631 while (MIBsRead++ < NumMIBs) { 7632 assert(Record.size() - I >= 2); 7633 AllocationType AllocType = (AllocationType)Record[I++]; 7634 unsigned NumStackEntries = Record[I++]; 7635 assert(Record.size() - I >= NumStackEntries); 7636 SmallVector<unsigned> StackIdList; 7637 for (unsigned J = 0; J < NumStackEntries; J++) { 7638 assert(Record[I] < StackIds.size()); 7639 StackIdList.push_back( 7640 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7641 } 7642 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7643 } 7644 assert(Record.size() - I >= NumVersions); 7645 SmallVector<uint8_t> Versions; 7646 for (unsigned J = 0; J < NumVersions; J++) 7647 Versions.push_back(Record[I++]); 7648 PendingAllocs.push_back( 7649 AllocInfo(std::move(Versions), std::move(MIBs))); 7650 break; 7651 } 7652 } 7653 } 7654 llvm_unreachable("Exit infinite loop"); 7655 } 7656 7657 // Parse the module string table block into the Index. 7658 // This populates the ModulePathStringTable map in the index. 7659 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7660 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7661 return Err; 7662 7663 SmallVector<uint64_t, 64> Record; 7664 7665 SmallString<128> ModulePath; 7666 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7667 7668 while (true) { 7669 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7670 if (!MaybeEntry) 7671 return MaybeEntry.takeError(); 7672 BitstreamEntry Entry = MaybeEntry.get(); 7673 7674 switch (Entry.Kind) { 7675 case BitstreamEntry::SubBlock: // Handled for us already. 7676 case BitstreamEntry::Error: 7677 return error("Malformed block"); 7678 case BitstreamEntry::EndBlock: 7679 return Error::success(); 7680 case BitstreamEntry::Record: 7681 // The interesting case. 7682 break; 7683 } 7684 7685 Record.clear(); 7686 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7687 if (!MaybeRecord) 7688 return MaybeRecord.takeError(); 7689 switch (MaybeRecord.get()) { 7690 default: // Default behavior: ignore. 7691 break; 7692 case bitc::MST_CODE_ENTRY: { 7693 // MST_ENTRY: [modid, namechar x N] 7694 uint64_t ModuleId = Record[0]; 7695 7696 if (convertToString(Record, 1, ModulePath)) 7697 return error("Invalid record"); 7698 7699 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7700 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7701 7702 ModulePath.clear(); 7703 break; 7704 } 7705 /// MST_CODE_HASH: [5*i32] 7706 case bitc::MST_CODE_HASH: { 7707 if (Record.size() != 5) 7708 return error("Invalid hash length " + Twine(Record.size()).str()); 7709 if (!LastSeenModule) 7710 return error("Invalid hash that does not follow a module path"); 7711 int Pos = 0; 7712 for (auto &Val : Record) { 7713 assert(!(Val >> 32) && "Unexpected high bits set"); 7714 LastSeenModule->second.second[Pos++] = Val; 7715 } 7716 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7717 LastSeenModule = nullptr; 7718 break; 7719 } 7720 } 7721 } 7722 llvm_unreachable("Exit infinite loop"); 7723 } 7724 7725 namespace { 7726 7727 // FIXME: This class is only here to support the transition to llvm::Error. It 7728 // will be removed once this transition is complete. Clients should prefer to 7729 // deal with the Error value directly, rather than converting to error_code. 7730 class BitcodeErrorCategoryType : public std::error_category { 7731 const char *name() const noexcept override { 7732 return "llvm.bitcode"; 7733 } 7734 7735 std::string message(int IE) const override { 7736 BitcodeError E = static_cast<BitcodeError>(IE); 7737 switch (E) { 7738 case BitcodeError::CorruptedBitcode: 7739 return "Corrupted bitcode"; 7740 } 7741 llvm_unreachable("Unknown error type!"); 7742 } 7743 }; 7744 7745 } // end anonymous namespace 7746 7747 const std::error_category &llvm::BitcodeErrorCategory() { 7748 static BitcodeErrorCategoryType ErrorCategory; 7749 return ErrorCategory; 7750 } 7751 7752 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7753 unsigned Block, unsigned RecordID) { 7754 if (Error Err = Stream.EnterSubBlock(Block)) 7755 return std::move(Err); 7756 7757 StringRef Strtab; 7758 while (true) { 7759 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7760 if (!MaybeEntry) 7761 return MaybeEntry.takeError(); 7762 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7763 7764 switch (Entry.Kind) { 7765 case BitstreamEntry::EndBlock: 7766 return Strtab; 7767 7768 case BitstreamEntry::Error: 7769 return error("Malformed block"); 7770 7771 case BitstreamEntry::SubBlock: 7772 if (Error Err = Stream.SkipBlock()) 7773 return std::move(Err); 7774 break; 7775 7776 case BitstreamEntry::Record: 7777 StringRef Blob; 7778 SmallVector<uint64_t, 1> Record; 7779 Expected<unsigned> MaybeRecord = 7780 Stream.readRecord(Entry.ID, Record, &Blob); 7781 if (!MaybeRecord) 7782 return MaybeRecord.takeError(); 7783 if (MaybeRecord.get() == RecordID) 7784 Strtab = Blob; 7785 break; 7786 } 7787 } 7788 } 7789 7790 //===----------------------------------------------------------------------===// 7791 // External interface 7792 //===----------------------------------------------------------------------===// 7793 7794 Expected<std::vector<BitcodeModule>> 7795 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7796 auto FOrErr = getBitcodeFileContents(Buffer); 7797 if (!FOrErr) 7798 return FOrErr.takeError(); 7799 return std::move(FOrErr->Mods); 7800 } 7801 7802 Expected<BitcodeFileContents> 7803 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7804 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7805 if (!StreamOrErr) 7806 return StreamOrErr.takeError(); 7807 BitstreamCursor &Stream = *StreamOrErr; 7808 7809 BitcodeFileContents F; 7810 while (true) { 7811 uint64_t BCBegin = Stream.getCurrentByteNo(); 7812 7813 // We may be consuming bitcode from a client that leaves garbage at the end 7814 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7815 // the end that there cannot possibly be another module, stop looking. 7816 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7817 return F; 7818 7819 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7820 if (!MaybeEntry) 7821 return MaybeEntry.takeError(); 7822 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7823 7824 switch (Entry.Kind) { 7825 case BitstreamEntry::EndBlock: 7826 case BitstreamEntry::Error: 7827 return error("Malformed block"); 7828 7829 case BitstreamEntry::SubBlock: { 7830 uint64_t IdentificationBit = -1ull; 7831 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7832 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7833 if (Error Err = Stream.SkipBlock()) 7834 return std::move(Err); 7835 7836 { 7837 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7838 if (!MaybeEntry) 7839 return MaybeEntry.takeError(); 7840 Entry = MaybeEntry.get(); 7841 } 7842 7843 if (Entry.Kind != BitstreamEntry::SubBlock || 7844 Entry.ID != bitc::MODULE_BLOCK_ID) 7845 return error("Malformed block"); 7846 } 7847 7848 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7849 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7850 if (Error Err = Stream.SkipBlock()) 7851 return std::move(Err); 7852 7853 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7854 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7855 Buffer.getBufferIdentifier(), IdentificationBit, 7856 ModuleBit}); 7857 continue; 7858 } 7859 7860 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7861 Expected<StringRef> Strtab = 7862 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7863 if (!Strtab) 7864 return Strtab.takeError(); 7865 // This string table is used by every preceding bitcode module that does 7866 // not have its own string table. A bitcode file may have multiple 7867 // string tables if it was created by binary concatenation, for example 7868 // with "llvm-cat -b". 7869 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7870 if (!I.Strtab.empty()) 7871 break; 7872 I.Strtab = *Strtab; 7873 } 7874 // Similarly, the string table is used by every preceding symbol table; 7875 // normally there will be just one unless the bitcode file was created 7876 // by binary concatenation. 7877 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7878 F.StrtabForSymtab = *Strtab; 7879 continue; 7880 } 7881 7882 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7883 Expected<StringRef> SymtabOrErr = 7884 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7885 if (!SymtabOrErr) 7886 return SymtabOrErr.takeError(); 7887 7888 // We can expect the bitcode file to have multiple symbol tables if it 7889 // was created by binary concatenation. In that case we silently 7890 // ignore any subsequent symbol tables, which is fine because this is a 7891 // low level function. The client is expected to notice that the number 7892 // of modules in the symbol table does not match the number of modules 7893 // in the input file and regenerate the symbol table. 7894 if (F.Symtab.empty()) 7895 F.Symtab = *SymtabOrErr; 7896 continue; 7897 } 7898 7899 if (Error Err = Stream.SkipBlock()) 7900 return std::move(Err); 7901 continue; 7902 } 7903 case BitstreamEntry::Record: 7904 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7905 return std::move(E); 7906 continue; 7907 } 7908 } 7909 } 7910 7911 /// Get a lazy one-at-time loading module from bitcode. 7912 /// 7913 /// This isn't always used in a lazy context. In particular, it's also used by 7914 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7915 /// in forward-referenced functions from block address references. 7916 /// 7917 /// \param[in] MaterializeAll Set to \c true if we should materialize 7918 /// everything. 7919 Expected<std::unique_ptr<Module>> 7920 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7921 bool ShouldLazyLoadMetadata, bool IsImporting, 7922 DataLayoutCallbackTy DataLayoutCallback) { 7923 BitstreamCursor Stream(Buffer); 7924 7925 std::string ProducerIdentification; 7926 if (IdentificationBit != -1ull) { 7927 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7928 return std::move(JumpFailed); 7929 if (Error E = 7930 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7931 return std::move(E); 7932 } 7933 7934 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7935 return std::move(JumpFailed); 7936 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7937 Context); 7938 7939 std::unique_ptr<Module> M = 7940 std::make_unique<Module>(ModuleIdentifier, Context); 7941 M->setMaterializer(R); 7942 7943 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7944 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7945 IsImporting, DataLayoutCallback)) 7946 return std::move(Err); 7947 7948 if (MaterializeAll) { 7949 // Read in the entire module, and destroy the BitcodeReader. 7950 if (Error Err = M->materializeAll()) 7951 return std::move(Err); 7952 } else { 7953 // Resolve forward references from blockaddresses. 7954 if (Error Err = R->materializeForwardReferencedFunctions()) 7955 return std::move(Err); 7956 } 7957 return std::move(M); 7958 } 7959 7960 Expected<std::unique_ptr<Module>> 7961 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7962 bool IsImporting, 7963 DataLayoutCallbackTy DataLayoutCallback) { 7964 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7965 DataLayoutCallback); 7966 } 7967 7968 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7969 // We don't use ModuleIdentifier here because the client may need to control the 7970 // module path used in the combined summary (e.g. when reading summaries for 7971 // regular LTO modules). 7972 Error BitcodeModule::readSummary( 7973 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 7974 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7975 BitstreamCursor Stream(Buffer); 7976 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7977 return JumpFailed; 7978 7979 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7980 ModulePath, ModuleId, IsPrevailing); 7981 return R.parseModule(); 7982 } 7983 7984 // Parse the specified bitcode buffer, returning the function info index. 7985 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7986 BitstreamCursor Stream(Buffer); 7987 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7988 return std::move(JumpFailed); 7989 7990 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7991 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7992 ModuleIdentifier, 0); 7993 7994 if (Error Err = R.parseModule()) 7995 return std::move(Err); 7996 7997 return std::move(Index); 7998 } 7999 8000 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 8001 unsigned ID) { 8002 if (Error Err = Stream.EnterSubBlock(ID)) 8003 return std::move(Err); 8004 SmallVector<uint64_t, 64> Record; 8005 8006 while (true) { 8007 BitstreamEntry Entry; 8008 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8009 return std::move(E); 8010 8011 switch (Entry.Kind) { 8012 case BitstreamEntry::SubBlock: // Handled for us already. 8013 case BitstreamEntry::Error: 8014 return error("Malformed block"); 8015 case BitstreamEntry::EndBlock: 8016 // If no flags record found, conservatively return true to mimic 8017 // behavior before this flag was added. 8018 return true; 8019 case BitstreamEntry::Record: 8020 // The interesting case. 8021 break; 8022 } 8023 8024 // Look for the FS_FLAGS record. 8025 Record.clear(); 8026 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8027 if (!MaybeBitCode) 8028 return MaybeBitCode.takeError(); 8029 switch (MaybeBitCode.get()) { 8030 default: // Default behavior: ignore. 8031 break; 8032 case bitc::FS_FLAGS: { // [flags] 8033 uint64_t Flags = Record[0]; 8034 // Scan flags. 8035 assert(Flags <= 0xff && "Unexpected bits in flag"); 8036 8037 return Flags & 0x8; 8038 } 8039 } 8040 } 8041 llvm_unreachable("Exit infinite loop"); 8042 } 8043 8044 // Check if the given bitcode buffer contains a global value summary block. 8045 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8046 BitstreamCursor Stream(Buffer); 8047 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8048 return std::move(JumpFailed); 8049 8050 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8051 return std::move(Err); 8052 8053 while (true) { 8054 llvm::BitstreamEntry Entry; 8055 if (Error E = Stream.advance().moveInto(Entry)) 8056 return std::move(E); 8057 8058 switch (Entry.Kind) { 8059 case BitstreamEntry::Error: 8060 return error("Malformed block"); 8061 case BitstreamEntry::EndBlock: 8062 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8063 /*EnableSplitLTOUnit=*/false}; 8064 8065 case BitstreamEntry::SubBlock: 8066 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8067 Expected<bool> EnableSplitLTOUnit = 8068 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8069 if (!EnableSplitLTOUnit) 8070 return EnableSplitLTOUnit.takeError(); 8071 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 8072 *EnableSplitLTOUnit}; 8073 } 8074 8075 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8076 Expected<bool> EnableSplitLTOUnit = 8077 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8078 if (!EnableSplitLTOUnit) 8079 return EnableSplitLTOUnit.takeError(); 8080 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 8081 *EnableSplitLTOUnit}; 8082 } 8083 8084 // Ignore other sub-blocks. 8085 if (Error Err = Stream.SkipBlock()) 8086 return std::move(Err); 8087 continue; 8088 8089 case BitstreamEntry::Record: 8090 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8091 continue; 8092 else 8093 return StreamFailed.takeError(); 8094 } 8095 } 8096 } 8097 8098 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8099 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8100 if (!MsOrErr) 8101 return MsOrErr.takeError(); 8102 8103 if (MsOrErr->size() != 1) 8104 return error("Expected a single module"); 8105 8106 return (*MsOrErr)[0]; 8107 } 8108 8109 Expected<std::unique_ptr<Module>> 8110 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8111 bool ShouldLazyLoadMetadata, bool IsImporting, 8112 DataLayoutCallbackTy DataLayoutCallback) { 8113 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8114 if (!BM) 8115 return BM.takeError(); 8116 8117 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8118 DataLayoutCallback); 8119 } 8120 8121 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8122 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8123 bool ShouldLazyLoadMetadata, bool IsImporting) { 8124 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8125 IsImporting); 8126 if (MOrErr) 8127 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8128 return MOrErr; 8129 } 8130 8131 Expected<std::unique_ptr<Module>> 8132 BitcodeModule::parseModule(LLVMContext &Context, 8133 DataLayoutCallbackTy DataLayoutCallback) { 8134 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 8135 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8136 // written. We must defer until the Module has been fully materialized. 8137 } 8138 8139 Expected<std::unique_ptr<Module>> 8140 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8141 DataLayoutCallbackTy DataLayoutCallback) { 8142 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8143 if (!BM) 8144 return BM.takeError(); 8145 8146 return BM->parseModule(Context, DataLayoutCallback); 8147 } 8148 8149 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8150 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8151 if (!StreamOrErr) 8152 return StreamOrErr.takeError(); 8153 8154 return readTriple(*StreamOrErr); 8155 } 8156 8157 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8158 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8159 if (!StreamOrErr) 8160 return StreamOrErr.takeError(); 8161 8162 return hasObjCCategory(*StreamOrErr); 8163 } 8164 8165 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8166 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8167 if (!StreamOrErr) 8168 return StreamOrErr.takeError(); 8169 8170 return readIdentificationCode(*StreamOrErr); 8171 } 8172 8173 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8174 ModuleSummaryIndex &CombinedIndex, 8175 uint64_t ModuleId) { 8176 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8177 if (!BM) 8178 return BM.takeError(); 8179 8180 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8181 } 8182 8183 Expected<std::unique_ptr<ModuleSummaryIndex>> 8184 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8185 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8186 if (!BM) 8187 return BM.takeError(); 8188 8189 return BM->getSummary(); 8190 } 8191 8192 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8193 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8194 if (!BM) 8195 return BM.takeError(); 8196 8197 return BM->getLTOInfo(); 8198 } 8199 8200 Expected<std::unique_ptr<ModuleSummaryIndex>> 8201 llvm::getModuleSummaryIndexForFile(StringRef Path, 8202 bool IgnoreEmptyThinLTOIndexFile) { 8203 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8204 MemoryBuffer::getFileOrSTDIN(Path); 8205 if (!FileOrErr) 8206 return errorCodeToError(FileOrErr.getError()); 8207 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8208 return nullptr; 8209 return getModuleSummaryIndex(**FileOrErr); 8210 } 8211